SD Read Less-Learn More"

Yoitr vzsual blueprmt for
creating Java-enhanced Web programs

Java and XML tools on CD-ROM

- Java 2 Platform, Standard Edition
version 1.4 for Windows

+ Plus XML parsers, an e-version
of the book, and more Visit us at www.wiley.com

Java™ and XML

Your visual blueprint for creating
Java-enhanced Web programs

by Paul Whitehead, Dr. Ernest Friedman-Hill,
and Emily Vander Veer

From

maranGraphics®

&

Wiley Publishing, Inc.

Java™ and XML

Your visual blueprint for creating
Java-enhanced Web programs

by Paul Whitehead, Dr. Ernest Friedman-Hill,
and Emily Vander Veer

From

maranGraphics®

&

Wiley Publishing, Inc.

Java™ and XML.: Your visual blueprint for creating
Java-enhanced Web programs

Published by

Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022

Published simultaneously in Canada
Copyright © 2002 by Wiley Publishing, Inc., Indianapolis, Indiana

Certain designs and text Copyright © 1992-2002 maranGraphics, Inc., used with
maranGraphics’ permission.

maranGraphics, Inc.

5755 Coopers Avenue
Mississauga, Ontario, Canada
L4Z 1R9

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission
should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-mail: permcoordinator@wiley.com.

Library of Congress Control Number: 2002102421
ISBN: 0-7645-3683-4

Manufactured in the United States of America

10 9 8 76 5 43 21

1V/RZ/QW/QS/IN

Trademark Acknowledgments

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND TECHNIQUES
DESCRIBED IN THIS BOOK, THE AUTHOR HAS CREATED VARIOUS
NAMES, COMPANY NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR INFORMATION,
ALL OF WHICH ARE FICTITIOUS. ANY RESEMBLANCE OF THESE
FICTITIOUS NAMES, ADDRESSES, PHONE AND FAX NUMBERS AND
SIMILAR INFORMATION TO ANY ACTUAL PERSON, COMPANY AND/OR
ORGANIZATION IS UNINTENTIONAL AND PURELY COINCIDENTAL.

Important Numbers

For U.S. corporate orders, please call maranGraphics at 800-469-6616 or fax
905-890-9434.

For general information on our other products and services or to obtain

technical support, please contact our Customer Care Department within the
U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Permissions

maranGraphics

Certain text and illustrations by maranGraphics, Inc., used with
maranGraphics’ permission.

Wiley, the Wiley Publishing logo, Visual, the Visual logo, Simplified, Master
VISUALLY, Teach Yourself VISUALLY, In an Instant, Read Less - Learn More and
related trade dress are trademarks or registered trademarks of Wiley Publishing,
Inc. in the United States and other countries and may not be used without written
permission. The maranGraphics logo is a trademark or registered trademark of
maranGraphics, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc. and maranGraphics, Inc. are not associated with any
product or vendor mentioned in this book.

Originally built in 1803
with an addition in 1853,
North Carolina’s Cape
Hatteras Lighthouse stands
193 feet tall, making it the
tallest brick lighthouse in
the United States. To find
out more about the Cape
Hatteras Lighthouse and
the Cape Hatteras National
Seashore, check out
Frommer’s® The Carolinas
& Georgia, 5th Edition,
available wherever
books are sold or at
Frommers.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND
AUTHOR HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD
CONSULT WITH A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER
NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,

CONSEQUENTIAL, OR OTHER DAMAGES.

is a trademark of

Wiley Publishing, Inc. wiley Publishing, Inc.

U.S. Trade Sales

Contact Wiley
at (800) 762-2974
or (317) 572-4002.

U.S. Corporate Sales

Contact maranGraphics
at (800) 469-6616 or
fax (905) 890-9434.

Your visual blueprint for creating
Java-enhanced Web programs

\« | 1
W /’{/
\

maranGraphics is a family-run business
located near Toronto, Canada.

At maranGraphics, we believe in producing great
computer books — one book at a time.

maranGraphics has been producing high-technology
products for over 25 years, which enables us to offer the
computer book community a unique communication
process.

Our computer books use an integrated communication
process, which is very different from the approach used
in other computer books. Each spread is, in essence, a
flow chart — the text and screen shots are totally
incorporated into the layout of the spread. Introductory
text and helpful tips complete the learning experience.

maranGraphics’ approach encourages the left and right
sides of the brain to work together — resulting in faster
orientation and greater memory retention.

Above all, we are very proud of the handcrafted nature
of our books. Our carefully chosen writers are experts
in their fields, and spend countless hours researching

and organizing the content for each topic. Our artists
rebuild every screen shot to provide the best clarity
possible, making our screen shots the most precise and
easiest to read in the industry. We strive for perfection,
and believe that the time spent handcrafting each
element results in the best computer books money can
buy.

Thank you for purchasing this book. We hope you
enjoy it!

Sincerely,

Robert Maran
President
maranGraphics
Rob@maran.com

www.maran.com

CREDITS

Acquisitions, Editorial, Production
and Media Development Book Design
Project Editor

maranGraphics®
Maureen Spears

Production Coordinator

Acquisitions Editor Dale White
Jen Dorsey Layout
Product Development Supervisor Melanie DesJardins, LeAndra Johnson,

Lindsay Sandman Kristin McMullan, Laurie Petrone

Copy Editor Screen Artists
Marylouise Wiack Mark Harris, Jill A. Proll
Technical Editor

Dr. Ernest Friedman-Hill

Cover Illustration
David E. Gregory

Editorial Manager Proofreader
Rev Mengle Christine Pingleton
Permissions Editor Quality Control
Laura Moss John Bitter
Media Development Specialist Indexer
Travis Silvers Johnna VanHoose
Manufacturing Special Help
Allan Conley Cricket Franklin, Jill Mazurcyzk,
Linda Cook Jade Williams

Paul Gilchrist
Jennifer Guynn

ACKNOWLEDGMENTS

Wiley Technology Publishing Group: Richard Swadley, Vice President and Executive Group Publisher;

Bob Ipsen, Vice President and Executive Publisher; Barry Pruett, Vice President and Publisher; Joseph Wikert,
Vice President and Publisher; Mary Bednarek, Editorial Director; Mary C. Corder, Editorial Director;

Andy Cummings, Editorial Director.

Wiley Production for Branded Press: Debbie Stailey, Production Director.

TABLE OF CONTENTS

1) INTRODUCING JAVA AND XML

Introducing the Java Phenomenoniiiiiiiniiicicceissesssesssens 2
INtrOdUCING XML ..ttt s s s s s s nes 6
Java and XML COmDINEAeoeoeriieeeeeccteeeceeeccteeccteeceteeeessaseessseeseseesssssesssssessssssessssssessseens 12
2) JAVA BASICS
INSEAll The JAVA SDK ...eveiieeeeeeeeeceeecctee ettt cetr e cetre e aeeeesses e e sse e e sseessseesssssesssssesesssssensseens 14
Object-Oriented Programming CONCEPLScceueiiiririiiiiiniiiiiceecessese e 16
The Java Class LIDraryniiiniiiciciiecteiseiseesssessssesessesessssssssseseses 18
JAVA CONVENTIONS ..eevrreeiiiiiiieieeeieeittreeeeeeirteeeeeeeersaseeeesessssseeeessssssssesesssssssssesesssssssssssssssssssessssssnns 20
Create a SOUICE FIle ...ttt b s e 22
Create a Method ...t 24
Create the Method Body ...ttt ressssesess 26
Compile @ Java Program ... 28
Execute a Java Program ...ttt 30
3) JAVA PROGRAMMING
Create an ODJECE ...ttt 32
Work with Object Fields ...t 34
Specify the Data Type for a Variable ... 36
WOrk With StHNGS ...ceoveviiii e 38
Call a Method ... 40
Using Return Values and Arguments ..o sesesesesssssssssesens 42
Using the if Statement ... e 44
Using the for Statement ... e 46
Using The While Or Do While LOOPcovviiuirerciciitiictttt s 48
Using the Switch Statement ... e 50
Create an AFTAY ..ot 52
Create a PaCKage ..ottt 54
IMPOrt @ PacKage ...t 56
EXtENd @ ClaSS ..ottt 58
Create an EXCEPLION ...ttt 60
HaNAI@ EITOIS ...oviiiiiiiitttt bbb 62
Understanding Variable SCOPEcomiiiiiicicicicct e 64
4) XML BASICS
Create an XML DOCUMENT ...ttt 66
Verify Well-FOrmedness ...ttt ssensas s 68
Create EIEMENts ...t 70
Add AHFDULES .ttt 72
Add @ COMMENT ...t bbb 74
Include Special Processing INStrUCLIONScvucueveviriiiiiiccc s 76
Using Predefined XML ENtitiesccoueveiviiiimiicicicicctt s 78
Include Nonstandard TeXt ... esesens 80

Java™ and XML:
Your visual blueprint for creating
Java-enhanced Web programs

5) XML DOCUMENT TYPE DEFINITIONS

DECIAre @ DTD ..ccveoiiiiieereeseeteteseeteste st e sae et e sae s e ssaesee e e essessaessessssssessasssassasseessensasssessansesssenses
Create an External DTD File

Declare a Container Element

Define the Structure of EI@MENLScc.cocveeeeiiierieriericriesenteseseesreseesaeseeeseesaesseessessessaessesses 88
Define Element AtIHDULEScoveeviiierieiieieeicteceetesteeeestese e see st sae s e e saesseesaessesaesaessassaanes 90
Declare Attributes as WOEAScoiicieviiiviiniriireneerieneeeesteseeseeseesssessesssessessesssessessasssessesssesees 92
Restrict Attributes to a List Of VAlUESccuevuviieeiiiicectccccecrcscsresesnesrese e sve e sae e esaeseeas 94
Create Internal General Entities

Create a Notationccccceeveeeveenvennnen

Create External General Entities

USING NAMESPACES ..oveeiriiitiitinitcrtcerc et b s s s b s snnen
Using the XML Namespace Attribute ... 104
6) XML SCHEMAS

Introducing XML SChemas ...t 106
Create an XML Schema Declarationccceeceeeeiieceerieceeiecieceeseecreseesaeseecaesesssessessssnnes 108
Declare an EIEMENTouveveeeeeeeeeceeeetestee et ste st et e st et e s re e e e sae et e ae e e e b e saenaans 110
Assign an XML Schema to an XML Document
Validate an XML DOCUMENT ...cueeviereeiieieeteeteceseteseesee e e eestesseesaesseesessesssessesssessessesssessessaenes
Declare a Container EI@MENTc.coveeveeieieeiecieeeecteseeeecteeeestesteessesse s e saesseesaessessaessessaenens
Declare Optional Elements ... seaesanes
SPeCify Data TYPES ...cucviueiiiricrctcttct s
Constrain Element VAlUEScovicveeieciieieeeceeeeeteteeeetee et sreeeeste s e s sae s e saesve s s e sessaennas
Constrain Element Values t0 @ LIStcceoeecieeeriieceeeccececcteceeeesee e ctesesae e aesve s s e sse s e snnes
Declare an Attributec............

Constrain the Values of an Attribute

Reference Predefined EIEMENTScccoviieeiiieeeeiceecteeeteee et saesae e nns
Create a Group Of AttHDULESoucuveveeiiicc s
Constrain Values Using Regular EXpressionsccooveveicmcicicecininininieccescsenese s 134
7) THE SAX API

AN Introduction t0 the SAX API ...ttt ettt e e st sae s e ssaesaessnenes 136
Install the Xerces XML Parsercocooceciiverirnienentintenertenesteseeseessessesssessesssessessesssessesssees 138
Set the CLASSPATH Environment Variable 140
Create an Event Handler Classcccoeievirverirnieeierieeeeeereeeereseeeessesessseseessessessessesseennes 142
Parse an XML DOCUMENTcciiiiiiiiiiiiiiiiiiiiiiicntc et ssetessstssease s sasesssaseesssasessssnesas 144
Detect Elements in an XML DOCUMENTcouiruiiiiieirieieeeceeeteeeeeeeeeeeeeeseseesnesseesesseeneens 146
Extract Textual Element CONtentcocoveeienieninnieniereeeeeeeeteeeeeesteeseeseeeseseessessessessesneens 148
Determine the Number of Element AttribUtesccocceveeevenienirienienienenienieeseseseseesseseenens 150
Determine the Name of AtrDULESccvoiviririniiniiirerereetct sttt sa et e e 152
Determine the Value of Attributes154
Determine the Line Number Being Parsed 156
Determine Ignorable Whitespace in an Element ..o 158

vii

TABLE OF CONTENTS

viii

Work with Processing Instructionsccceevvvieiccceinnenincncnnnns ...160
Parse Multiple XML Documents Using Multiple Event Handlers 162
Create an Error Handler ...ttt 164
Create a Custom Error MESSageoeeueieiiieiientinteiceienenteteeeeeeesese s se s esens 166
Create an Entity RESOIVErccviiiiiniiiiiiiiiiiictctccccnscssetsaeesesesssenes 168
Using the Default Handler ...t 170
Determine Feature and Property Settingscccocovveiiiininiiicicciciccccscinne 172

Detect Notation Declarations174
Create a Declaration Handler 176
Create a Lexical HaNdIErcovivioiiiiieiriecenereserrcsestesesessses e sssessesnessessssssessesssessesanes 178
TUIN ON ValIAALION ..cvviiiieiietcieeterteetetceesreecres e saes e e saes e s eessessaesaessesssessesssessesssessessesssensesas 180
Toggle Namespace and Prefix USAe ...ttt 182

8) THE DOM

INtroducing the DOM ...ttt ae e
Retrieve the Root Element Name .

Determine Node Type ...
WOIK With NOAES ..eveeeiieieciccctctestrtcse sttt sr e e st sae s e e saessesaessas e eseessaeseessassnassasnns
Transverse All EIement NOAESc.ooiiiiriiiiineciccertccresesecstesreesres e ssesesaes e ssaessesassaessasns
Determine Names Of AFHDULES ...cc.coveevieiiiieeiceecececeeere e ae e e sae e e
Determine the Values of Attributes
Work with Processing Instructions
Detect Entity REfErencCes ...ttt
Detect General Entities in the DTD

Retrieve DTD INfOrMAtiON ...cccociivierieiiriiiteresteseeeeseeseeseeseesseesaessaessessessasssessasssessasssessessasns

Retrieve Text INfOrMAtionccciceeviiiinienieneeteseeeesreseeseeseeeseesaessesaessessaessessesssessasssessessanes
EXTract COMIMENTSeeeiiiiiiiiiiereteeeeiteeeireeeeseeseseeessneeseneesessnessssessssesssneessssessnsnessssnesssnsens
EXtract CDATA SECIONS ..coocuiiereiiieceierernteeeeesresstesseeeeseesnessseesseesssessseesssesssessssesssessssssssessnns
Retrieve Notation Declarationscceeveeruerieeienenieinenreeseseessesesssessessssssessesssessessssssessanes
NaVIZAte NOAESouieiviritiitct bbb nnes
Create an XML Document ...
Create a New DOM Tree with a Root Element ..
Add Attributes to an Element

Add @ Child EIEMENT ..eeeeeeeeeeeeteeeteeteecteeteecrecraeeeeeeeeesseeeseessseessaeessessssessassssesessassssesssenssesnnns 222
Create @ TEXE NOAE ...uciceeeceeeieeeeceeecteeeeeeteeeeeerteesaresaessseeessessessssesssassssesssesssesssesssesssessesnns 224
Create Other NOde TYPES ...ttt 226
COPY NOUES ...ttt s b s s s as s 228
9) JDOM

INtroducing JDOM ...ttt
Create the Root Element

Add Content to the ROOt EI@MENTccuvevieieieeieeeeeteeeeeectee et eeae e saesve e e sressans 234
Create Child EIE@MENTSeccveeeeieeieeieeeieceeeceecteetreseeeteesseesseessesseessssesssesssesssesssessssessesnns 236
Read an XML DOCUMENT cocveierieeiieeieeeieesteeeeeecteestesssseesseesessssesssesssessssessssesssesssessssesssesssesssne 238
Extract Element TEXt CONTENT ...ccuvecveeiieeeteecieeieeeteeereeeeeteesseeesseeseesssessseesssesssessssesssesssesnnns 240

Java™ and XML:
Your visual blueprint for creating
Java-enhanced Web programs

INSErt @ COMMENT ..c..coviiiiiiiiiiiiiititctttt ettt ettt sae st esae s st st s st ssbssaesntesas 242
Insert @ CDATA SECLION ..cocviiiiiiniiiciniiitntiictitccnt ettt esae st sae st sstssss st esassssones 244
Add Processing INSTIUCLIONSccuiiiiiiiiiiiiiiiiictc e 246
Add Attributes to an EIEMENTc..occiiiuiiiiiiiiiiiicietetrtncctetttsesetet et sse st 248
Work with Attribute ODBJECtSccoueiiiiiriiiniiiiiciicceesessseeaens 250
Save an XML DOCUMENTcouiviiiiiiniiiininicintiicntiicsntnrescse e sssessesnessesssssaesssssessssanes 252
Work with Child EIEMENTSccuiiiiiiiiiiiiiiincctetetrencrctetet ettt ssesse st enes 254
Insert Pre-defined Entity REfEreNCES ...ttt 256
Determine Element TYPE ..ccviiiiniiniiiitcicictcetnsessssssessseessssessssesesnes 258
Output a DOM Tree Using JDOM iiiiiiiieiieteectctceteteeeseesees s s s e 260
10) JAXP
INtrOdUCING JAXP ...oviiiiittt s 262
Parse an XML DOCUMENTcocivvuiiiiiiiiniiiiiiiiiiintiiciitctcne st saessseesaessaessseessaee 264
DELECTE EVENTS ..ottt et s st e s r e s s se s s seesesnaesesnnessssnessssnsassnsaasesaes 266
Configure FActory SEtHiNGS ... 268
Set SAXPArser FEATUIEScoiiviiiiiiiiiniiiiicieinitntccce ettt ssse e ssseessaeans 270
Parse a Document Using DOM ...ttt senenens 272
Create an Error Handler for Use with DOMccociiiiiiiiiiinceeeeeeeeeeece et 274
APPENDIX A
SAX APl QUICK REFEIENCEueneieereieieieienieteeete ettt ettt et st e st sse e sesae e e e saeen
DOM API Quick Reference ...
JDOM Quick Reference
JAXP QUICK REFEFENCE ..ttt ettt ettt et sae st e et sesa et e e nenne
APPENDIX B
Java QUICK REFEIENCE ...uveuiruerieieieieteeetentetete ettt et saeste st eae e s e ssestesbesseessessessessensenanne 286
APPENDIX C
XML QUICK REFEIEINCE ..eveeieveiiirinierterientestererstese st e sre st estes e s sressesstessesstessassasssessasssessassaenes 290
APPENDIX D
What's 0N the CD-ROMcccuioiiiiriiriiientitesestesesstesseseessessesssessesssessesssessessssssessesssessassaenes 294
Using the E-Version of this BOOK ... 296
Wiley Publishing, Inc. End-User License Agreement ... 298
INDEXoooooooooeeeeeeesesssssseessssssssssmssssssssssssssmssssssssssssssmssssssssssssssmsssseeon 304

JAVA AND XML

INTRODUCING THE JAVA PHENOMENON

ell suited for developing modern, Internet-enabled
Wand XML-aware applications, developers often find
that the Java computer programming language

allows them to write software more quickly, and with better
quality, than other languages they know. Java allows you to

THE BIRTH OF JAVA

build applications that you can safely use in a wide range of
different environments and that you can construct with
widely recognized, and highly efficient, programming
techniques.

First released by Sun Microsystems in 1994 as part of
the Hot Java Web browser, Java featured several types
of downloadable dynamic content. Java’s safe nature
made this kind of dynamic content possible without
posing any threat of data loss or compromise to the
user. The dynamic content included special handlers for
new network protocols as well as small graphical
modules that were embedded on a Web page. These
modules were called applets, and applets gave Java its
first wave of visibility. In the fall of 1995, version 2.0 of

the Netscape Navigator Web browser was the first
mainstream application to include applet support.
Other browsers soon followed suit.

James Gosling and others originally conceived Java as a
simple, portable, safe, object-oriented, dynamic, and
mobile environment for developing consumer
electronics software, specifically set-top TV boxes. Each
of these goals greatly contributed to Java’s popularity.

A Simple Language of Least Surprise

Although it contains powerful and sophisticated features,
Java is simple in the sense that it is a small and consistent
language. This language does not have a long list of rules
and special cases. The average Java programmer can
understand and use it easily. A simple language lets you
concentrate on what your program should do, rather than
how to do it. Java also embodies the principle of least
surprise. Java programs always behave the way you expect
them to. You cannot redefine the meanings of the basic
components of the language, as you can with C++, and
you cannot perform surprising textual substitutions, as
you can with the preprocessor in C. These properties
make Java programmers more productive because you do
not waste your time puzzling over difficult-to-understand
code.

Portable Programs

Java is a portable language in which you can write a
program once and run it on any computer that supports
Java. While you must distribute programs written in
many languages in special versions for Microsoft
Windows, Macintosh, Linux, and other platforms, the
same Java program can run on each of these systems
without change. Java programs cannot only run on
every operating system, but they run the same way on
different operating systems. Java is a precisely specified
language. That is, Java spells out every aspect of the
language — the sizes of data types, the order of
evaluation of function arguments, the behavior of
floating-point arithmetic — in its formal language
specifications. Most other computer languages do not
specify these details, which makes other languages
difficult to use to write programs that run on more than
one kind of computer.

Java programs are also portable across international
boundaries because Java supports translation of
programs for international use. Java represents text in
Unicode, a special system that can represent the
characters of almost every alphabet in current use
around the world. Furthermore, Java includes libraries
that enable you to work with and store foreign-
language translations of the text that appears in the user
interface of your software.

THE BIRTH OF JAVA (CONTINUED)

INTRODUCING JAVA AND XML

Object-Oriented Language

In an object-oriented language, a program is divided
into many separate units called objects. You can
program and understand each type of object in
isolation. Breaking a program into small, well-defined
pieces in this way makes object-oriented programs
easier to write, to understand, and to change.

An object typically includes two parts. First, it includes
information. Just as each object in the real world has a
color, a size, and a weight, Java objects contain their own
unique data. Secondly, objects include instructions for
working with this data; for example, a Button object might
include instructions for drawing a button on the computer
screen and for reacting to mouse clicks. Each set of
instructions is termed a method. In general, doing useful
work in Java consists mainly of asking objects to perform
methods for you. An object responds to such a request by
following the instructions that the method contains.

Having all the instructions and data broken up into
objects makes Java software modular, and thus easier to
understand one piece at a time. Object-oriented
languages also promote software reuse — that is, you
may define a kind of object and use it in several
different programs unchanged.

Safe Programs

Java prevents faulty or malicious programs from
crashing your computer. Such crashes often come about
due to language constructs that allow access to raw
memory or other hardware features. Java’s architecture
allows you to control access to your computer’s
resources and to protect your data.

Because Java is safe, downloading Java software onto
your computer presents little risk. You may find
downloading a document, or a bit of software, to your
computer dangerous, but there is no such thing as a
Java virus. Likewise, Java applets embedded in a Web
page can safely run on your desktop computer. Java
runs the applets inside a protected environment to
prevent them from accessing any of your files, network
servers, or other resources.

Dynamic Language

Because Java is a dynamic language, you can upgrade
Java-based applications without shutting them down. You
can add new code or remove old code from a running
Java application at any time. You may find this an
enormously powerful feature in a network environment
in which you must have certain services available 24
hours a day, 7 days a week. For example, as technology
evolves, an electronic commerce Web site can add new
features, modify its presentation style, and patch its
existing code. The dynamic nature of Java enables you to
upgrade the server without interrupting service.

JAVA AND XML

INTRODUCING THE JAVA
PHENOMENON (CONTINUED)

JAVA ON THE SERVER

JAVA VIRTUAL MACHINE

The safety and dynamic qualities of Java make it an
excellent choice for around-the-clock application
deployment, while Java’s portability and ease-of-use
make it a winner for developing server-side Web
applications. As a result, Java’s Web presence includes
more than just the applets you see on Web pages. Many

Web sites use Java to perform non-graphical tasks
behind the scenes. You have access to the data that
Web servers store and reference in databases and in
XML format. Java’s ability to easily work with these
technologies reinforces its position on the server.

The characteristics of Java are all natural consequences
of its virtual machine architecture. Programs in the Java
language run on an idealized computer called the Java
Virtual Machine, or JVM. Although hardware engineers
have built hardware implementations of the JVM, most
often you simulate the JVM in software on another
computer. Real or simulated, all JVMs execute the same
instructions in the same way, so that every Java program
runs properly on every JVM. Several independent
implementations of the JVM in software include JVMs
from Sun Microsystem, Microsoft, IBM, and the GNU
project. Hardware vendors and academic groups have
ported Sun Microsystem’s implementation to many
systems. You have software JVMs available to you for
essentially every kind of computer.

The virtual machine architecture is an excellent

choice for implementing a safe environment to run a
suspicious program from an unknown source. Although
you may find it difficult or impossible to disconnect
your hard drive from the computer before running a
suspicious program, you can disconnect simulated JVM
effortlessly. Similarly, you can prevent programs running
in a JVM from accessing other peripherals and other
parts of your computer, as necessary. When you trust an
application, however, it can have the same access to
your computer as do any other programs you run.

JAVA PROGRAM STRUCTURE

INTRODUCING JAVA AND XML

The Java language organizes its programs in a
hierarchical fashion, making them easier to read and
understand. The fundamental unit of Java software is
the class. A class is a description of a type of object, and
includes a collection of data and the code that operates
on that data. A typical Java program consists of dozens
or hundreds of classes, some written specifically for that
program, and many others culled from Java’s extensive
library of useful standard classes.

Classes reside in groups called packages. Java typically
categorizes the classes in a package by their function.
For example, the Java libraries contain a package
specifically devoted to classes for formatting text.
Although the classes written in the exercises of this
book are not collected into packages, you should
always collect real code that you write into packages.

All Java code appears inside of classes. Furthermore, all
executable statements appear inside of methods, which
reside in classes. No global variables or functions may
appear outside of any class, as happens in C++. You
cannot write a single isolated line of Java code the way
that you can write a single line of Perl or JavaScript.
Java’s rigorous structural rules might not seem worth
the effort for short programs, but for substantial
software — anything more than a few dozen lines —
the benefits of a more structured language immediately
become clear.

JAVA AND XML

INTRODUCING XML

g n efficient and effective way of storing and sharing

yet powerful markup language, you can use XML to store
information, which you can access on a wide variety of
platforms with a multitude of differing applications. You can
rapidly develop XML programs at a low cost and facilitate
communication of organized and accessible data between
users.

information, XML (Extensible Markup Language)

enables you to share data along with information that
describes the data. XML makes it possible for a wide range
of technologies, devices, and applications to easily share
data in a controlled and consistent manner. Being a simple

THE WORLD WIDE WEB CONSORTIUM

MARKUP LANGUAGES

XML is a specification laid down by the World Wide Web
Consortium, more simply known as the W3C. The
primary purpose of the W3C includes specifying and
promoting standards for technology and software that
programmers use with the World Wide Web. The W3C
consists of many different companies, but the products

that they support do not tie in to any specific company
and are freely available for any individual or company to
use or otherwise implement. The W3Ciis a truly
international organization, with members from
companies and educational institutions around the
world.

A markup language consists of programming code that
you use to describe information. For example, you may
call the name of the document title, which allows any
program — such as a word processor — that processes
the information to easily determine the title of the
document. The markup language consists of tags, which
identify pieces of information. A tag typically consists of
a tag name, which you precede with a less-than symbol
(<) and follow with a greater-than symbol (>). For
example, a tag that identifies the title of a document
would resemble <title>. Tags typically consist of a

start and an end tag, both tags being identical except
for the end tag that includes a forward slash, as in
</title>. You identify the information, generally
known as the content of the tag, by enclosing it within
the start and end tags. HTML (Hypertext Markup
Language) is probably the most widely known markup
language.

XML is a subset of SGML (Standard Generalized Markup
Language) and is similar to HTML, which is itself a
subset of SGML.

XML is based on SGML. You use SGML to structure
information, or more specifically, to create your own
markup languages, which you can then use to structure
data. In existence for many years, large organizations,
such as governments, have used SGML within
proprietary software. SGML makes it easy to store
information, which you can transform, reformat, and

output to different devices, such as printers and
screens. You use HTML, the most popular example of an
SGML-based markup language, to format information
that you want to make available on the World Wide
Web so that HTML-compatible applications, such as
Web browsers, can access it.

INTRODUCING JAVA AND XML

Because they do not find HTML as complex as SGML,
many people use HTML as a markup language to format
their data. Unfortunately, HTML is not an appropriate
method for storing many different types of information,
such as image or audio information. Because HTML
evolved to contain tags that you use solely for formatting
the display of information, using HTML to format the
structure of information may present problems. For
example, HTML contains a font tag that describes which
font to use when displaying text. You may find this type
of formatting information helpful if you intend to display
the information in a Web browser, but unnecessary when

you store the information in a database. For this reason,
you primarily use HTML to format information that a
Web browser displays, and other markup languages to
format the information for other purposes such as storing
data and data analysis. For example, programmers use
Wireless Markup Language, WML, to format information
for display on wireless communication devices. In many
cases you use another markup language, such as XML, to
format and structure information. You can then easily
convert that information to HTML for displaying within a
Web browser.

XML

Initially developed in an effort to focus more on the
content of information rather than on the formatting
and displaying of that information, document authors
can use the XML markup language to create their own
tags to describe the information in their documents.
The document authors can use these tags with their
own applications to interpret the information correctly,

as well as in conjunction with other markup languages,
to format the information for display. Unlike HTML,
which uses a specific set of tags to describe the
formatting of information, XML does not contain any
tags that describe how to format the information for
display. XML merely lays out how you can create your
own markup language to describe your information.

XML DOCUMENTS

An XML document contains data as well as additional
information, which you represent with XML markup
tags and which describes the data in the document. You
specify these tags within the document itself. For
example, if you want to use a tag called manager to
describe the person who oversees a project, you define
the manager tag within the XML document. You can
then use the manager tag throughout the XML
document to specify the name of anyone who manages
a project. Although XML documents are rarely similar,
you base them on specifications, which you must always

follow when creating and using the markup tags that
describe the information within XML documents. You
do not require any special XML applications to create
XML documents; in fact, you can create very simple
XML documents with a basic text editor. Although text
based, you are not intended to read the information in
an XML document as you would with a word processing
document. You usually access information in XML
documents via XML-compatible applications, such as
Web browsers, or via an application that you have
created yourself.

JAVA AND XML

INTRODUCING XML (CONTINUED)

VERSIONS

COMPATIBLE

To standardize the way you use XML, the W3C created
the XML specification, which consists of a set of rules
and guidelines that details exactly how to implement
XML. Known simply as the XML specification, it ensures

compatibility between the applications and code that
work with XML information, and the other XML
applications and information. The current version of the
XML specification is 1.0.

Because it is platform independent, you can use XML on
computers that utilize different operating systems. For
example, when you create an XML document on a
computer with UNIX, and then transfer that document
to a computer running the Windows XP operating
system, the XML applications can access the document
without any conversion. Programs that you create with
different programming languages can also access XML;
you can create an application with Java, and another

application with Perl, and both applications can just as
easily access the same XML document. Because a wide
range of vendors and applications now support XML,
you can use different applications to process your XML
documents. For example, you may use an XML-based
spellchecker to check the spelling of the text in your
XML document and then use another XML application
to display the information.

You can take your information and structure it into an
XML document without having to pay a license or
registration fee to use that document with XML
applications. The XML specification is freely available to
anyone who wants to access it. You can create
documents and applications, or transfer information

using the XML specification. This does not mean that
XML-based applications are free; for example, you have
to pay for most XML applications, but you do not have
to pay for using the XML specification to build those
applications.

XML-BASED TECHNOLOGIES

INTRODUCING JAVA AND XML

Apart from the XML specification, which details how to
create XML documents, you also have a multitude of
technologies and XML-related specifications available to
you. For example, Extensible Stylesheet Language (XSL)

is an XML-based technology that formats XML
information for display. The W3C creates and controls
many of these companion technologies and modules.

A very stable technology, once you have structured your
information with XML, you do not have to alter that
information to accomplish different tasks. For example,
if you have documents that contain information
structured with XML, you can create an application that
can display the embedded information in the XML

document. If at a later date you want to display the
information differently, such as on a cellular phone
display, you can simply use another application, or alter
your existing application; you do not have to alter the
information in the XML document.

EASY TO LEARN

Formatting your information with XML is a very simple
process to learn. Basic XML documents contain
information enclosed in tags that you can easily create
yourself. You do not require special tools, applications,
or prior programming knowledge to create XML
documents that can store information. Although you
must follow rules and guidelines, XML is highly

structured, making it very easy to acquire knowledge
incrementally, so you can learn different aspects of XML
as the need arises. You can create and save a simple
XML document for the first time in less than an hour. If
you are already familiar with programming or using
another markup language such as HTML, then you will
find learning XML even easier.

JAVA AND XML

INTRODUCING XML (CONTINUED)

RESOURCES

Due to XML’s wide implementation and acceptance,
you have a collection of XML-related information
available to you on the Internet. Many Web sites,
newsgroups, and mailing lists exist that provide a wide
variety of information for people learning to use XML,

as well as information for more experienced
developers. When looking for XML-related information
on the Internet, a good place to start is the W3C Web
site, http://www.w3.org/XML/.

VIEWING XML

People who work with an XML document generally
want to view the information stored within the
document. This may cause a problem because the XML
tags in the XML document do not actually specify how
to display the information. You can view the XML
document itself, sometimes color-coded and formatted
to make it easier to read, but the information itself is
not formatted solely for display — you typically must
view the information along with the tags inside the XML

document. If you want to view information within an
XML document and want that information to be
formatted in a specific way, you must create an
application that accesses and then formats the
information for display. Because each XML document
can use different tags and contain different types of
information, no one application can view information in
a variety of XML documents.

NETWORKS

Text based, just like HTML, XML makes it easy to transfer
information across networks. Besides local area
networks and the Internet, programmers increasingly
use XML for wireless networks. Because of its platform
independence, XML can format information for transfer
via wireless networks — a benefit because the platforms

of the devices on a wireless network typically differ
greatly. For example, you can transfer a list of your daily
meetings via a wireless network to your personal digital
assistant, your home computer, or your cellular phone,
which can all display the same information.

EXCHANGE INFORMATION

INTRODUCING JAVA AND XML

People primarily use XML to structure information
because of XML data’s ability to communicate
efficiently with different applications. For example, a
network application may need to keep track of users
and passwords and in turn exchange that information

with other computers on the network. XML provides a
very efficient way to structure that information so that
you can transfer and process it between the different
applications on the different networks.

BUSINESS DATA

Almost all businesses must now exchange information
with clients, suppliers, contractors, and other
companies. XML allows businesses to construct their
own markup languages, which they can use to transfer
information to other businesses and clients. For
example, a business that sells cleaning products might
create a markup language to describe their products.
The company can then exchange information with both

their clients and suppliers using information about their
products, and format this information with their own
custom XML. This ensures that both client and company
have the same methods when referring to products,
such as serial numbers and product numbers. This leads
to more efficient, effective, and error-free exchange of
information.

LOCATING INFORMATION

Structuring information with XML usually involves
identifying and labeling individual parts of the
information. For example, you may need to examine
and identify a person’s address, street name, country,
and ZIP code. Identifying and labeling information

makes it easier to search for data instead of searching a
complete text document to locate a street name; now
you can simply search the part of the document that
contains the addresses because you have identified the
addresses using markup tags.

JAVA AND XML

JAVA AND XML COMBINED

XML enjoy, you should consider combining the Java
and XML technologies when creating applications or
working with information because together, these

3 side from the immense popularity that both Java and

PORTABILITY

technologies give you portability, well-defined standards,
extendibility, Internet compatibility, a variety of
applications, and the option of reusing code.

One of Java’s strengths is its ability to run on multiple
platforms. Because programmers have adapted the Java
environment to run on a wide variety of operating
systems and devices, you can execute the Java programs
you created on a UNIX computer on a computer that
uses the Microsoft Windows XP operating system.
Because the information you store in XML format is also
platform independent, you can easily transfer it across
different networks, operating systems, and applications.
Wherever Java programs can run, you can also access

XML information. This enables both Java and XML
information to interoperate efficiently and effectively
on a wide variety of platforms. Where you once
commonly developed applications so that you could
port them to different operating systems with different
programming languages, you can now create Java
applications, and store the applications’ data with XML.
You can create your application and data once and run
it on any mainstream operating system without having
to alter the code of the application or your data.

STANDARDS

Because W3C details the XML specification and Sun
Microsystems controls the specification for the Java
programming language, and because a multitude of
developers make changes to the standards and
specifications of Java and XML only after thorough
testing and investigation, both Java and XML have well-
defined specifications. This leads to a longer lifetime for

any Java applications and any information you store
with the XML specifications guidelines. Changes to the
Java and XML specifications are also more infrequent
than newer technology specifications. This means you
do not have to worry about rapidly changing
specifications or that the code you write today may
become incompatible with future specifications.

EXTENSIBLE

You can consider code that you create using Java and
information that you store using XML documents to be
very extensible. From its conception, one of the Java
programming language’s strengths lies in its ability to
create extensible applications. As a truly object-
oriented programming language, you can improve,
modify, or even completely rewrite portions of code
without having to alter any other parts of an application
that use that code. Information that you store within an
XML document has access to an unlimited number of

markup tags. The document’s author completely
controls the makeup and nature of these tags. You can
rearrange, sort, or otherwise modify the information in
whatever manner suits the applications which access
that data. At a future date, you can easily add features
to any application that uses the Java programming
language and stores its application data in an XML
format with minimal impact on the existing code. This
further ensures the longest possible lifetime for the
applications and the data you create.

INTERNET COMPATIBLE

INTRODUCING JAVA AND XML

One of the most popular programming languages for
creating network applications, the Java programming
language lets you build both large and small networks,
particularly those you want to place on the Internet.
You have a wide range of resources, developers, and
tools available to help create Java applications for the
Internet. Likewise, XML information is fast becoming

one of the most popular methods of storing data on the
Internet, particularly on the World Wide Web and
applications related to the World Wide Web. Because
XML is derived from SGML, the same source from
whence HTML was derived, many Java developers
familiar with HTML can easily make the transition to
Java- and XML-structured information.

INTEROPERABILITY

A large number of technologies allow XML data and
Java programs to work together efficiently. You can
easily create a Java application that can access XML
documents. Many Java developers and corporations
contribute to various tools and utilities that make it easy
for Java applications to work with XML information.
While most of these technologies—such as some
Application Programming Interfaces (APls)—which
access XML information, lack full maturity, they are still
stable enough to use in a production environment. As
time progresses, you can anticipate even more
integration between Java and XML with new and
improved tools and applications. Because stable

standards and specifications govern both Java and XML,
interoperability between the two technologies can only
increase in the future. Because XML is vendor neutral,
meaning that no one corporation controls XML,
developers of new applications and technologies are
more receptive to the concept of using XML to
structure their data. XML data in itself is very easy to
process; an application you create with Java can access
XML documents as easily as it can access any other file,
if not more easily. Both Java and XML can use Unicode
character encoding, a system that makes it easy to
exchange data and information between your XML
applications and your Java code.

APPLICATIONS

Applications are now available that use both XML and
Java technologies. For example, you can use very
popular XML parsers, which Java code can easily access,
to work with XML documents. Many XML parsers
include the Java code necessary to communicate with
the XML parsers. Newer Java development tools also
feature full support for XML information. Given the
advantages of storing information using XML, such as
easier information manageability and identification, you

can only expect more applications to start using XML
to format their data. Having a wide range of XML-
compatible applications gives you a wider choice of
tools when you create Java applications. From within
your Java application you can easily access specialized
XML applications. For example, you can use one XML
application to generate XML tags and document
markup, and use another more specialized application
to display or save that data.

REUSABILITY

Another useful feature for application development is
the concept of reusable code. If you create code in a
modular fashion, then you have those code modules
available for reuse in other applications. This allows for
more efficient, more reliable, and faster creation of
applications. Once you create a number of modules,
each of which performs a specific task, you can

combine them to create a new application. You can
create both Java applications and XML documents using
a modular design, allowing for the reuse of both Java
code and XML information. This code and information
reusability allows developers to quickly create flexible,
more efficient applications using Java and XML.

JAVA AND XML

INSTALL THE JAVA SDK

known as the SDK, or the JDK, to compile and execute
Java programs. You need to install the Java SDK to
create Java programs and to access an XML parser with Java.

You use the Java Software Development Kit, simply

In addition to accessing version 1.3.1 of the Java SDK on the
CD-ROM that accompanies this book, you can obtain the
latest version of the Java SDK from the main Java Web site
at java.sun.com. The Web site includes downloading and
installation instructions. Sun Microsystems regularly updates
the Java SDK with new features and improvements. Always
check for and use the latest version of the Java SDK. See
Appendix D for more information on the CD-ROM that
accompanies this book.

On the Windows platform, you install the Java SDK using a
standard Windows installer program. The Java SDK also
currently has versions for the Solaris and Linux platforms
available on the Sun Java Web site. Follow the instructions
on the Web site to download and install these versions.

During the installation process, Java SDK suggests a default
directory to which Sun Microsystems recommends you
install the program. You can select which components of
the Java SDK to install. Unless you have a reason not to, you
should install all the components available.

After you install the Java SDK, you should restart your
computer, particularly if you are upgrading from an older
version of the Java SDK.

After the installation is complete, you can view a file that
displays any last-minute changes to the documentation.
Always carefully review this file when installing a new Java
SDK. Besides listing changes to the Java files themselves, you
may find that the Java SDK installation procedure requires
that you make changes to your computer’s configuration
when you install later versions of the Java SDK.

INSTALL THE JAVA SDK

n Insert the Java SDK
CD-ROM and double-click
the icon for the Java SDK
installation program to start
installing the Java SDK.

M A setup screen appears.

Click Next to continue.

—ll A software license
agreement displays.

Click Yes to accept the
agreement.

JAVA BASICS

EX&E The Java SDK has a large quantity of documentation available.
Due to its large size, you can download the Java SDK
documentation, available in a separate package, from the same
Web site that carries the Java SDK, http://java.sun.com. It is
recommended that you install the Java SDK documentation,
particularly if you want to create your own Java applications. If
you install the documentation, you have a quick way to reference
up-to-date information about your Java SDK installation.

The Java SDK is over 20MB in size. If you use a modem to
connect to the Internet, it can take a few hours to download. For
convenience and slightly increased speed, you can start the
Internet download and let it continue through the night.

Consider placing the location of the Java SDK in the path of your
operating system. Adding the location to the path enables you to
compile and run Java programs without always having to specify
the location of the Java SDK. Refer to the Java SDK installation
documentation and your operating system’s documentation for
information about changing the path.

]
— [1

M The Choose Destination

Location dialog box appears.

—ll This area displays the
directory where the program
installs Java SDK.

i You can click Browse to

select a different destination
folder.

—ﬂ Click Next to continue.
Note: A dialog box may appear

asking you to install a browser plug-

in. Click Next to continue.

—M Java installs each
component in this area that
displays a check mark.

—E Click Next to install the

Java SDK on your computer.

M A dialog box appears
when the installation
completes.

B Click Finish to close the
dialog box.

E Restart your computer.

JAVA AND XML

OBJECT-ORIENTED PROGRAMMING CONCEPTS

ava shares many concepts with other object-oriented

programming languages, such as C++ and Python. While

object-oriented programming languages use the same
concepts, the terminology and coding systems sometimes

CLASSES

differ. For example, in Perl, you refer to a single value in an
object as a property. In Java, you refer to it as a field.

A class is the primary programming structure that you
use to create applications. It consists of the Java code
that serves as a template or plan for creating objects,
which are the core features of object-oriented
programming. You can use a single class to create many
objects. For example, you can use a class with code that
generates comments to create an object that inserts a

comment at the start of an XML document. You can use
the same class to create another object that inserts
copyright information at the bottom of an XML
document. Because more than one Java program

can use and share classes, programmers can avoid
constantly rewriting the same type of code.

OBJECTS

An object, a package of data and a set of procedures
that make use of the data, has two primary functions: to
store information and to perform tasks. Objects contain
fields to store information, and methods, which you use
to perform tasks. You can create objects to perform a

single task or a range of related tasks. You can create
multiple objects using the same class. When you create
an object, you consider it an instance of the class that
creates the object.

Fields, also known as data fields, consist of the
properties or attributes associated with an object. In
comparison to other programming languages, Java
treats its fields as variables of the class. Fields can store
different types of data, such as strings of text, integers,
and references to other objects.

Changing the values of an object’s fields usually affects
the behavior of the object. For example, in an object that

inserts a line break into the content of an XML element,
you can create a field to specify how many line breaks
you want to insert. With a field value of 1, Java inserts a
single line break. When you change the field value to 10,
Java inserts 10 new lines in the XML document.

When you create multiple objects using the same class,
you make the objects the same, except for the values
held in the object’s fields.

METHODS

A method is the code that objects use to perform a
specific task. A class that creates objects can contain
multiple methods. The methods in a class usually
perform related tasks. For example, in a class that

creates an XML document, one method may format the
data, while another method saves the information to a
file. The values stored in the fields of the object may
influence the behavior of methods.

ARGUMENTS

JAVA BASICS

You may pass one or more values, called arguments, to
a method to provide it with input data or additional

information about how to perform a task. For example,
when using a method that creates elements in an XML

document, you may need to pass the number of
required elements to the method. Some methods do
not require any arguments.

RETURN VALUES

A method may return a value after performing a specific
task. The return value may indicate the result of a
calculation, or it could indicate whether the program
performed the task successfully. For example, a method

that writes information may return a true or false
value depending on whether the program saved the
information. The program can then use the information
to determine the next code that it needs to execute.

DATA HIDING

By making the fields and methods of the classes
inaccessible to other parts of the program, data hiding
makes classes easier to use. The program only has to
know how to access the class, not the internal workings
of the class. You often hide data in programs to protect
outside users from tampering with classes and to ensure

that users apply the methods of the classes as you
originally intended. A programmer can modify and
maintain the code within the class without affecting the
programs that use the class. This also helps ensure that
objects developed by multiple people are compatible.

KEYWORDS

The Java programming language includes many your code. If you use a Java keyword inappropriately,
keywords that you utilize to create applications. A the Java compiler detects the error and stops compiling
keyword is a word reserved for use only by Java. You the code. The following table displays a listing of Java
cannot use keywords as variable names or values in keywords:

abstract boolean break byte case

catch char class const continue

default do double else extends

false final finally float for

goto if implements import instanceof

int interface long native new

null package private protected public

return short static strictfp super

switch synchronized this throw throws

transient true try void volatile

while

JAVA AND XML

THE JAVA CLASS LIBRARY

the fundamental structure that Java applications use to

group together related code. Java includes a collection
of predefined classes, called the Java class library, also
known as the standard class library or the Java Application
Programming Interface (API), for use in every Java program
you create. You save time and effort creating programs by
using the predefined classes in the Java class library because

g class, the smallest unit of Java code that you can run, is

JAVA CLASS LIBRARY INSTALLATION

you do not have to re-create the code every time you want
to perform a common task, such as displaying a message on
the screen. You use some predefined classes quite often,
such as those that display output, while you may require
others less frequently, such as the classes that help you
create Graphical User Interfaces (GUIs).

When you install the Java SDK on your computer, the
Java class library also automatically installs. Java stores
the class library in a Java Archive (JAR) file named
rt.jar in the lib subdirectory of the jre directory. You
can find the jre directory in the main Java SDK
directory. You do not need to adjust any settings on

your computer to specify the location of the Java class
library before using a class from the library in your
code. The Java compiler automatically knows where to
locate the files that make up the Java class library.

The Java standard class library is continually modified
and appended by Sun Microsystems. Applications that
you created with a later version of the Java standard
class library may not work when the code compiles
using an older version of the class library. Ensure that

any code you create works with the current version of
the standard class library to which you have access. In
almost all cases you want to use the very latest version
of the Java class library.

Java organizes the classes that make up the class library
into packages. A package consists of a set of related
classes that Java stores in a separate collection. For
example, Java stores classes that generate output in a
different package than classes that process data from a
database. Generally, classes in the same package can
easily access each other.

Java bases package names on the directory structure
that stores the classes in the package. For example, Java
stores the classes in the java.util package in the util
subdirectory of the java directory.

IMPORT PACKAGES

JAVA BASICS

You can import a package from the Java class library automatically imports into every Java program you
into a Java program. This allows you to efficiently use all create. For more information about importing a
the classes in the package. The java.lang package package, see Chapter 3.

CREATE PACKAGES

In addition to using predefined classes from Java class you can store these classes in a package named

library packages, you can author your own classes and xmldoc. You can then use the classes from the package
store them in packages you create. For example, if you when creating other Java applications. For more

create three classes to work with an XML document, information about creating packages, see Chapter 3.

COMMONLY USED JAVA CLASS LIBRARY PACKAGES

PACKAGE

java.io

The Java class library contains more than 70 packages.
The following table lists some of the most commonly
used packages in the library. For a more detailed list of
the packages in the Java class library, see Appendix B.

DESCRIPTION

Contains classes that allow Java programs to perform data input and output tasks.

java.lang

Contains the fundamental classes of the Java programming language. The Java compiler
automatically loads this package.

java.math

Contains classes that allow Java programs to perform arbitrary-precision arithmetic.

java.lang.ref

Contains classes that allow Java programs to interact with the garbage collector, which
performs memory management tasks.

java.lang.reflect

Contains classes that allow Java programs to obtain information about the variables and
methods of loaded classes.

java.security

Contains classes that allow Java programs to carry out security procedures, such as controlling
access and encrypting data.

java.sqgl

Contains classes that allow Java programs to access and process data from a database.

java.text

Contains classes that allow a Java program to manipulate strings, dates, numbers, and
characters.

java.util

Contains utility classes that allow Java programs to perform various tasks such as date and time
operations and random number generation.

java.util.jar

Contains utility classes that allow Java programs to read and write Java Archive (JAR) files.

java.util.zip

Contains utility classes that allow Java programs to read and write ZIP files.

javax.swing

Contains classes for creating Swing Graphical User Interface (GUI) components. You can use
Swing GUI components on all platforms.

JAVA AND XML

JAVA CONVENTIONS

section lists the most common conventions. For more
information about the conventions in Java, you can consult
the Java SDK documentation.

language, you should familiarize yourself with its

To work effectively with the Java programming
conventions and understand how to follow them. This

SEMICOLONS

Most Java statements end with a semicolon (;). Java
statements that include a block of code, known as the
body of the statement, are the exception. Examples of
these types of statements include methods, conditional
statements, and statements that create a loop. The Java
compiler stops compiling code and reports an error if it
finds a required semicolon missing or if you include an
unnecessary semicolon. When an error occurs due to

the omission or misplacement of a semicolon, the Java
compiler may mark the error in the statement following
the actual location of the error. To avoid these types of
errors, always review your Java code carefully before
compiling the code. Some Java development tools
automatically inform you if you omit a required
semicolon in your code.

Java statements that include a body use braces {} to
indicate the beginning and the end of the body. A body
often contains several statements. If a statement block
contains only one statement, you typically do not need
braces, but for consistency programmers often include
them. You can include braces in one of two accepted
formats in your Java code. No one braces format is
more correct than the other. When making your
decision about which style to use, consider who may

review your code in the future and the format with
which you are more comfortable. Choose one format
and then use that format consistently throughout your
code. Most Java development tools can automatically
reformat existing code to reflect a particular style. You
can use these tools to reformat your own, or other
people’s, Java code. A popular Java development tool
that allows you to reformat code is SlickEdit, available at
http://www.slickedit.com.

Brace on same line as statement:

The most widely used format places the opening brace on
the same line as the Java statement. You place the closing
brace on its own line and in the same column as the first
character of the Java statement that uses the braces.

Example:

public static void main(String[] args) {
System.out.println("Hello.") ;
System.out.println("My name is Bob.");

Brace directly underneath the statement:

The second format places each brace on its own line. The
braces are in the same column as the first character of
the Java statement that uses the braces. Although easier
to read, the format adds more lines to your Java code.

Example:
public static void main(Stringl]

{

args)

System.out.println("Hello.") ;

System.out.println("My name is Mary.");

INDENTING

JAVA BASICS

When working with a Java statement that includes a
body, always indent the code within the body. Indenting
makes your code easier to read. To keep your Java

programs consistent, you should use the same indenting
style in all of your code. You can use either tabs or
spaces to indent code.

Code without indents:

public static void main(String[] args)
{

int counter = 1;

while (counter <= 5)

{

System.out.println (counter) ;
counter++;

}

}

Code with indents:

public static void main(Stringl]

{

args)
int counter = 1;
while (counter <= 5)
{
System.out.println (counter) ;

counter++;

WHITESPACE

Whitespace is the term used to describe characters

that do not display or print, such as spaces, tabs, and
newlines. Using whitespace in your Java code can greatly
improve the readability of your code. For example, a
user may find x + 1 / age easier to read than

x+1/age. Java removes whitespace in your code before
it compiles. This means that including whitespace does
not affect the speed at which the Java code compiles,
nor does it affect the performance of the application
using the code.

You can include comments in your Java code to explain
important or difficult sections of code. A good
programming practice, adding comments can help
make the code easier to understand. Comments are
particularly useful if you or someone else will need to

modify or troubleshoot the code in the future. Using
descriptive names for items such as classes, methods,
and variables can also make your code easier to
understand. To learn how to add comments to your Java
code, see Chapter 4.

21

JAVA AND XML

CREATE A SOURCE FILE

Java programs. The first step involves class creation. A

class, the smallest unit of Java code that you can run,
is the fundamental structure that Java applications use to
group together related code. For example, a class called
CheckText may contain all the code it needs to analyze
and validate a string of text. You can also use the
CheckText class on its own in a program, or in conjunction
with other classes. All Java applications must include at least
one class. For more on Java classes, see the section "The
Java Class Library."

3 fter installing the Java SDK, you can begin to build

You define Java classes using the keyword class followed
by a space and then the class name. You should make the
class name easy to understand and include the purpose of
the class. You follow the class name with a pair of braces {}.
You must place all methods and Java code in the class

between the braces. The code between the braces, called
the body of the class, consists of methods, which are
structures that contain the Java code for specific actions. For
more information about defining a method, see the section
"Create a Method."

You must make the class name the same as the filename
you use to save the program. For example, if you call the
class in your Java program DisplayText, you must save
the program with the filename DisplayText . java. Please
also note that Java is a case-sensitive language. Therefore,
continuing the previous example, if you save the program
with the filename displaytext.java, an error may occur
when you attempt to compile the program.

After you save the code that creates the class in the file, the
file is referred to as a source file. Java applications can use
single or multiple source files.

CREATE A SOURCE FILE

1

Kl start the text editor you H Type class.
want to use to create a Java

program.

22

= 3| Type the name of the
class you want to create.

JAVA BASICS

EX&E Class names can begin with any letter, an underscore (_) or the You may want to add comments
symbols $, £ or ¥. Class names cannot begin with a number or contain that span multiple lines to your
any punctuation, such as a period or a comma. You cannot make class Java code. To do so, type /*
names the same as any of the Java reserved words, such as do, while, before the first line of the
or public. These naming rules also apply to the naming of methods, comment and */ after the last
fields, and parameters in Java code. line of the comment.

You should always include comments to make your Java code easier Example:
to understand. Comments are helpful if you or other people need /

to modify or troubleshoot the code. Any code you write should
include comments that indicate the author’s name and the main
purpose of the program. You precede comments with //, which T T
you can include at the end of a line of code or on a separate line. y

This Java application

displays a welcome message when

Example: /
// Author: Martine Edwards

class DisplayWelcome // This class displays a welcome
message

{
// The body of the class is placed here

0
0
m— >
=4 Type an opening brace to E press Enter to create blank {3 Type a closing brace to Note: To define methods for the
mark the beginning of the lines where you type the mark the end of the body of classes you create, see "Create a
body of the class. body of the class. the class. Method" in this chapter.

B Your source file is complete
and ready for a method.

23

JAVA AND XML

CREATE A METHOD

the class. Similar to subroutines and functions that

you find in other, non-object-oriented programming
languages, methods contain lines of code that perform a
specific task, such as displaying an invoice number or
calculating the final total of an invoice. Using methods
allows you to re-use sections of code and to group lines of
code into smaller, more manageable sections. This makes it
easier for people to understand and troubleshoot the code.

3 fter you create a class, you can create methods for

You can use method modifiers, such as public and
static, to tell Java how you want to utilize a method. An
access modifier, the public method modifier indicates that
other classes can use this method. A static method
modifier means that any program can use the method
without having to create an object of the class to declare
the method.

A method declaration should also include a return type. A
return type specifies the type of value the method returns.

If a method does not return a value to the code, you should
make the return type void. For more information about
return values in methods, see Chapter 3.

You follow the name of a method with parentheses, as in
the example:

DisplayInvoice()

Every Java application must have a method called main,
which Java calls when the application starts up. You must
place the argument String[] args within the
parentheses at the end of the method name for amain
method. This argument indicates that the method can
accept strings passed from the command line when the Java
program executes.

The method declaration ends with a pair of braces. You
place the code that makes up the body of the method
inside the braces.

CREATE A METHOD

B A main method must
include the public and
static method modifiers.

Kl In the body of a class,
type the method modifiers
for the method you want to
declare.

3] Type the name of the
method and follow it with ().

= 2] Type the return type of the
method.

B A method that does not
return a value must include
the void return type.

JAVA BASICS

displayMyName

access the private access modifier.

compiler may generate an error message.

Consisting of multiple words, the method’s name should indicate
its purpose. To make the name easier to read, you can capitalize
the first letter of each word except the first, for example:

You can use different access modifiers when declaring a method,
depending on how Java accesses it. Any class within any package
can access the public access modifier. Any class within the
same package and any subclass of the class that contains the
method within a different package can access the protected
access modifier. Only the class that contains the method can

A method can generate a result, which it then returns to the
calling code. You can make the return type any valid data type in
Java, such as String, byte, or boolean. The body of a method
that returns a value must also include a return statement. An
error may occur if the data type of the returned value does not
match the specified method declaration return type.

You must precede every main method with the public and
static keywords. If you do not specify these keywords, the

—
—1 Between the parentheses, M You must make the —E Type the opening and
type any arguments the arguments of a main method closing braces that will
method requires. String[] args. contain the body of the

method.

Note: To create the body of the
method, see the section "Create
the Method Body" in this chapter.

B Your method is complete.

JAVA AND XML

CREATE THE METHOD BODY

the Java code that performs a task, within the method'’s

braces {}.Java often uses the code in the body of a
method to call, or access, another method. You can define
the called method in the same class or in a different class.
Re-using methods saves you time and effort when writing
Java programs. For example, if you create a method that
displays your name and e-mail address, you can use the
same method in any Java application you create.

You must create the body of a method, which contains

You can apply many classes and methods within the Java
SDK to perform a wide variety of common tasks. For
example, the Java SDK includes a class called Math, which
contains several methods that perform mathematical
calculations. To determine the square root of a number, you
can simply call the sgrt method from the Math class.

You can use methods, for example System.out.print, to
display information on a user’s screen. Java automatically
creates the system class, included in the Java SDK, when it
executes the program. You use the out field to send
information to the standard output device, typically the
screen. The print member takes an argument, which you
must enclose in parentheses. Use System.out.print

to display any type of data in Java. When using
System.out.print to display a string of text, you must
enclose the string in quotation marks.

After you create the code for your Java program, save it as a
text file with the . java extension. You must make the
name of the file the same as the name of the first class
defined in the code.

CREATE THE METHOD BODY

CREATE THE METHOD
BODY CODE

= 1] Type the code that defines
the class and the method you
want to use.

“H In the body of the method,

B This example uses
System.out.print
to display output.

type the code for the task you
want to perform.

JAVA BASICS

Apﬁm To start a new line at the end of a line of text when it displays, you can use the escape
k sequence \n. This escape sequence \n allows you to display text over multiple lines. You can
also use System.out.println to start a new line.

TYPETHIS:

class MyIntroduction
{
public static void main(String[] args)
{
System.out.println("My name is Andrew.");
System.out.print ("\nThis is my first Java program." + "\n");

RESULT:

|<

My name is Andrew.

This is my first Java program.

The classes and methods within the Java SDK are collectively known as the Java class library, also
called the Java Application Programming Interface (API). The Java SDK documentation describes
all the classes and methods available in the Java class library. If you have not already installed the
Java SDK documentation, you can obtain the documentation on the Web at java.sun.com.

= 3| Type any arguments the B You must enclose string SAVE JAVA CODE M You may need to place
code requires. arguments within quotation 1 | @k il 2 Seve open quotation marks around the
marks. the Save As dialog box. name of the file.

1 Type the name of the file. Click Save.

B Use the same name as that W Notepad saves your code.

of the first class in the code Note: You can now compile the Java

and include the . java code. See the section "Compile a
extension. Java Program" for more information.

27

JAVA AND XML

COMPILE A JAVA PROGRAM

saved source code in a text file into bytecode.
Bytecode contains instructions that the Java interpreter
executes.

By compiling Java code you can convert previously

You need a Java compiler to compile Java code. The Java
SDK includes a Java compiler application called javac,
which you can execute from the command prompt. If you
have a Windows operating system, you need to open a
Command Prompt window to use javac.

To compile Java source code, you enter the name of the
Java compiler, such as javac, at the command prompt,
followed by the name of the file that stores the code you
want to compile. The filename must have the . java
extension. Depending on whether you have added the
location of the Java SDK programs to your operating
system'’s path variable, you may need to specify the full path
to the Java compiler, which is typically c:\jdk1.3\bin\javac.

For information about setting the path variable, refer to the
Java SDK installation instructions or your operating system’s
documentation.

Before compiling Java code, the Java compiler checks the
code for errors. If it finds an error, the code does not
compile and an error message displays.

If the Java code compiles successfully, Java saves the
resulting bytecode in a new file with the . class extension.
Java takes the name of the new file from the name of the
file that stores the source code. For example, when Java
compiles the code in a file named Program. java that
contains a class called Program, it saves the bytecode in a
file called Program. class. The filenames of Java programs
are case sensitive on most platforms. After Java compiles
the source code, you can execute the Java program. For
more on executing the Java program, see the section
"Execute a Java Program."

COMPILE A JAVA PROGRAM

H Navigate to the directory
that stores the Java code you
want to compile.

(1] Open the window that
allows you to work at the
command prompt.

= 3 Bre compile the Java code

Command Prompt

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Andrew>cd c:icode

C:\Code>javac

e Command Promp

WY 12:00 PM

M If you did not add the
location of the javac
compiler to your operating
system's path variable, you
need to type the full path of
the javac program.

using the javac compiler,
type javac.

JAVA BASICS

Ele When compiling Java source code, you may see one of two main types of errors:

Java SDK Errors

If your operating system cannot locate the Java compiler, you may have
experienced a problem during the Java SDK installation. Java SDK errors usually
result in an error message such as "bad command or file name." To correct this
type of error, first determine the correct path to the compiler. If you cannot
locate the Java compiler, try re-installing the Java SDK. If you still cannot
confirm the path to the compiler, check that you have not made any typing
mistakes in the path.

Source Code Errors

A wide variety of errors can occur in Java source code. When the Java compiler
finds an errorcode, it displays an error message that usually specifies the error
type and where the compiler detected the error. For example, the error
"Program.java:5: invalid method declaration" indicates that an error involving a
method declaration was generated at line 5 in the Program. java file. It is
important to note that the line number indicates the line that the compiler was
processing when it detected the error, which is not necessarily the line that
contains the error.

Command Prompt

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 19852001 Microsoft Corp.

Command Prompt

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 19852001 Microsoft Corp.

C:\Documents and Settings\Andrew>cd c:\code C:\Documents and Settings\Andrew>cd c:\code
C:\Code>javac DisplayWelcome.java C:\Code>javac DisplayWelcome.java

C:\Code>

W8 12:00PM

JW¥ 12:00PM

=4 Type the name of the file H press Enter to compile the Ml If the Java code M The Java program is now
that stores the Java code you Java code. successfully compiles, the ready for execution.
want to compile, including command prompt reappears.

Note: See the section "Execute a

M If an error message Java Program" for more information.
appears, the Java code did

not successfully compile.

the . java extension.

JAVA AND XML

EXECUTE A JAVA PROGRAM

Java program into bytecode, you can execute, or run,

the program. Executing an application enables the
computer to read and process your code. The computer, in
conjunction with the operating system, then performs the
actions that you specify in the program. Some applications
execute a task and then terminate, while others may
continue executing until a user, or other condition, causes
the application to cease execution.

3 fter the Java compiler converts the source code for a

The Java interpreter must process the bytecode before you
can execute the code. The Java interpreter first checks the
bytecode to ensure the code is safe to execute, and then it
interprets and executes the instructions within the
bytecode.

The Java interpreter executes the instructions in the
bytecode in the Java Virtual Machine, or JVM, which is a
controlled environment.

EXECUTE A JAVA PROGRAM

The Java interpreter, called java, comes with the Java SDK
and is typically stored in the c:\jdk1.3\bin directory. Like the
Java compiler, you must run the Java interpreter at the
command prompt. Although a standalone program, you can
integrate the Java interpreter into other programs, such as
Web browsers. This allows you to execute your Java
programs on different platforms.

To evoke the Java interpreter, you include the name of the
interpreter and follow it with the name of the bytecode file.
You should not include the .class extension. For example,
to execute the instructions in the Program. class file,
type java Program.

If the Java program executes successfully, the results of the
program display. If the Java interpreter encounters any
errors, it stops executing the program. Most of the errors
that you encounter at this stage usually relate to the use of
incorrect filenames or paths.

H Navigate to the directory
that stores the bytecode for
the Java program you want
to execute.

(1] Open the window that
allows you to work at the
command prompt.

30

—ﬂ To execute the instructions

Command Prompt

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 19852001 Microsoft Corp.

C:\Documents and Settings\Andrew>cd c:\code

DM 12:00PM

M If you did not add

the location of the Java
interpreter to your operating
system's path variable, you
need to type the full path of
the Java interpreter.

in the bytecode using the Java
interpreter, type java.

JAVA BASICS

~N

Some text editors you use to create Java programs
allow you to bind commands to unused keystrokes.
Binding allows you to add commands that insert small
templates for parts of Java syntax, increasing the speed
and efficiency with which you can create Java code.

A

Example: Cirl+C for a class:
public class Example {

}

Example: Ctrl+M for an empty ma in method:
public static void main(String[] argv) {
}

Example: Cirl+P for a print1ln statement:
System.out.println() ;

Ctrl+C up-arrow,Ctrl+M up-arrow,Ctrl+P

public class Example {
public static void main(String[] argv) {
System.out.println() ;
}

Command Prompt

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 19852001 Microsoft Corp.

Command Prompt
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 19852001 Microsoft Corp.

C:\Documents and Settings\Andrew>cd c:\code C:\Documents and Settings\Andrew>cd c:\code

C:\Code>java DisplayWelcome
Java program has been executed. Have a good day.
“\Code>

C:\Code>java DisplayWelcome

DM 12:00PM

DM 12:00PM

= 4| Type the name of the file E Press Enter to execute the Ml The results of the program
that stores the bytecode for program. display on the screen.
the Java program you want
to execute.

31

JAVA AND XML

CREATE AN OBJECT

hen a class file exists, you can create an object that
Wtakes on the characteristics of the specifications

laid out in the class file. For example, if a class file
specifies the code for a method "displayName", then any
object you create using that class file has a method called
"displayName". For more information about creating a
class file, see Chapter 2.

The first step in creating a simple object requires you to
build a class file that contains a method. A simple class file
includes a class and method declaration within the class
file. The method body can include code that returns some
information. In this section’s example, the method simply
returns a string that contains an e-mail address. You must
compile the class file before you can use it to create an
object. Because you do not execute the class file like a

standalone application, it does not need to use the main
method. The second step entails building a standalone Java
application that you then use to create, or instantiate, the
object with the newly created class file. Because the
purpose of this program is to make it an executable
standalone application, you must include the method main.

A class file can create an object by using the new operator.
The statement to create the new object starts with the
name of the class. You follow this with the name you want
to give to the object. The name you use for the object
accesses the different characteristics of the object.

After you create the object, or instantiate the object, you
can access the method in the object and then retrieve the

information in the method.

CREATE AN OBJECT

DEFINE THE CLASS

= 1] Type the code that defines
the class and method you
want to use.

B in the body of the method,
type the code that defines the
object you want to use.

E save and compile the Java
code.

INSTANTIATE THE OBJECT

1 To create a standalone
program that instantiates the
object, type the code that
defines the class and method
you want to use.

H In the body of the method,
type the name of the class
you defined in step 1.

= 6| Type a name you want to
use for the object, and follow
it with =.

JAVA PROGRAMMING

EXJIE The directory you create to store files for your Java programs may
depend on the setup of your computer and the tools, such as a Java
development application, that you use to create your Java applications.
In most cases, you can set up a specific directory dedicated to Java
program development. When first learning to create Java applications,
you may find it easier to store the class file that defines an object and
the file that instantiates the object in the same directory. You often use
packages to access class files that exist across multiple directories. For
more information about using packages, see the section "Import a
Package" in this chapter.

You very rarely find an object consisting of only a single method. In
most cases, objects are more complex, containing a wide range of
related methods and fields that dictate the behavior of the object.

The methods and fields of an object are also referred to as members.
Methods and fields that are available when you instantiate an object
and are unique to that object are called instance members.

| | | | |
| | I
|
—d Type new. To access the method of &l Compile the Java code M The results of using the
the object, type the name of and execute the program. object display.
B ype thz name O]; the Slass the object, follow it with a Note: See Chapter 2 e and
you created in step 1, an period, and then type the ote: See Chapter 2 to compile an
follow it with (). name of the method you execute your program.
want to access.
I Type the code that uses
the object.

JAVA AND XML

WORK WITH OBJECT FIELDS

field, to hold information that typically relates to the

object. The information you contain in an object’s
fields determines the properties and attributes of the
object.

You can create an object field, also referred to as a data

When you create objects of the same class, the objects have
the same methods, but some or all of the object fields may
hold different information. For example, each object you
create from the Employee class may have an object field
called empNumber that stores the unique employee number
for each object.

You must declare object fields in the class body outside of
any methods. This allows you to use the field as soon as you
create the object. You can specify an access modifier for an
object field you create, as well as the storage field’s data
type. The access modifier determines what code has access
to the field.

You create most object fields with an initial value. You

can later change the value of an object field as you would
change the value of a variable. Changing the value of an
object field may alter the way some of the methods of the
object behave. Object fields may also hold constant data,
which you cannot change.

You can use the dot operator (.) to access an object field

in a program. When specifying the object field, you separate
the field name from the object name by a dot, such as
object.field. The object name is the name that you gave
the object when you first created it.

Unlike methods, you do not follow object field names with
parentheses. You can have object fields and methods that
share the same name in a program.

WORK WITH OBJECT FIELDS

CREATE A FIELD

Type the name of the

n Create a class to serve as a ObJeCt field.

template for an object.

—H In the body of the class,
type the access modifier and
data type for the object field
you want to create.

3 save and compile the Java
code.

1

USING AN OBJECT FIELD

& To create a standalone

[3 in the body of the main
method, type the code to
create an object using the

[[psm, Bfpe i @ul: class you created in step 1.

that declares the class and
main method.

JAVA PROGRAMMING

EX{E{ You can set a default value for an object field by using a constructor. A
constructor is a special type of method that always executes each time you
create an object. This makes constructors useful in performing initialization tasks
for new objects, such as setting up a connection to a database. A constructor
method must have the same name as the class for which it is the constructor.

Example:
class AuthorInformation {

public int headerLevel;

public AuthorInformation() {
headerLevel = 3;
}
public String EmailAddress() {
String message = "<h" + headerLevel +
">sandman@myhost.com</h" + headerLevel + ">";

return message;

— 1 [
[—_
m— >
- To assign a value to an Type = and follow it with I Compile the Java code M The results of using the
object field, type the name of | the value you want to assign and execute the program. object field display.
the object, follow it with the to the object field. Note: See Chapter 2 & e and
dot operator, and then type Ote- o8¢ CNapier 2 10 compie an

£ Type the code that uses execute your program.

the name of the field. T ol el

35

JAVA AND XML

SPECIFY THE DATA TYPE FOR A VARIABLE

ava is a "strongly typed language," which means that you

must specify a data type for each variable that you use in

a Java program. This distinguishes Java from many other
programming languages, such as Perl, which do not require
you to assign variables to data types.

Variables can use eight basic data types, called primitive
types. The data type you specify for a variable determines
the range of values that the variable can store and the
amount of memory, measured in bits, that the variable
requires. For example, a variable with the byte data type
can store a number between -128 and 127, and requires 8
bits of memory.

Each primitive data type has a default value. If you declare
a variable as an object field without assigning a value, Java
assigns the default value for the variable’s data type to the
variable.

The operating system or compiler that you use does not
affect the specifications for data types in Java, such as

SPECIFY THE DATA TYPE FOR A VARIABLE

memory requirements and default values. This ensures that
a data type has the same meaning when a user executes a
program on different computers.

Specifying the data type for a variable requires that you
know in advance the types of values that you want to store
in the variable throughout your program. Once you declare
a variable, you cannot change the data type for the variable.
If you want to convert the value in a variable to a different
data type, you must assign the value to a new variable that
uses the desired data type. This process is called casting.
When converting a value to a new data type, make sure
that the conversion does not result in an unintended loss
of data. For example, converting the number 13.56 to an
integer value, which does not allow any numbers after the
decimal, results in a new value of 13.

Variable names can consist of any number of letters,
numbers, or underscore characters and must start with a
dollar symbol, underscore, or a letter.

— I F———
CREATE A VARIABLE 2] Type the code that names
LN To specify a data type for a the variable and assigns it a
value.

variable you want to create,
type the name of the data
type in the body of the
method.

— I I —
CONVERT AVALUETO A Type the data type to
DIFFERENT DATATYPE which you want to convert
—E Type the code that the value enclosing it in
declares a variable, which parentheses.
stores the converted value. A Type the name of the
I Type the name of the variable that stores the value
variable you created in step BN WEIHHE 60 COET

3, and follow it with a =.

JAVA PROGRAMMING

EX&E You can use eight primitive data

types as the value for a variable.
PRIMITIVE DATA TYPES
TYPE SIZE INBITS DEFAULTVALUE POSSIBLE VALUES
boolean 1 false 'true' or 'false’
char 16 \u0000 unicode character, '\u0000' to 'uFFFF'
byte 8 0 -128 to 127
short 16 0 -32,768 to 32,767
int 32 0 -2,147,483,648 to 2,147,483,647
long 64 0 -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807
float 32 0.0 +1.4E-45 to £3.4028235E+38
double 64 0.0 +4.9E-324 to +1.7976931348623157E+308

i Type the code that uses M In this example, the values EJ Compile the Java code M The results of using the
the values of the variables of the firstvalue and and then execute the variables display.
you created in step 2. secondValue variables program.
display.

Note: See Chapter 2 to compile and
execute your program.

JAVA AND XML

WORK WITH STRINGS

work with string values. A string contains textual data.

A collection of characters, a string contains any
combination of letters, numbers, and special characters,
such as $, & or #.

3 Imost all Java applications require you to create and

Before you can use a string variable in a Java program, you
must declare the string variable, a process similar to that of
declaring other types of variables. To declare a string
variable, use the name String, and follow it with the
variable name. The capital S at the beginning of the
keyword String indicates that a string variable is an object
of the String class. The String class is contained in the
java.lang package available to all Java programs as part
of the standard class library.

After you declare a string variable, you can assign it a value
using the assignment operator (=).You must enclose a
string value in double quotation marks ("), which identify

the beginning and end of the string and allow Java to work
with the string as one piece of information.

You can use the concatenation operator (+) to join multiple
strings together. You can also use the concatenation
operator to join other types of variables and values together.

You can insert special characters called escape sequences
into a string. Escape sequences allow you to include special
characters in the string. Commonly used escape sequences
include \ t, which inserts a tab, and \n, which starts a new
line.

If you installed the documentation package available for the
Java Software Development Kit (JDK or SDK), you can find
more information about the String class under the main
JDK directory at \docs\api\java\lang\String.html.
You can also find documentation for JDK at the
java.sun.com Web site.

WORK WITH STRINGS

K1 To declare a string
variable, type String and
follow it with the variable

E Type = and follow it

with ",

name.

1 Between the quotation

E3 Type the code that uses
marks, type the text you want | the string variable.

the string to contain.

A Type the code that creates
another variable.

JAVA PROGRAMMING

~

You can determine the number of characters a string contains
by using the 1ength method of the String class.

i

class DisplayVariables {
public static void main(String[] args) {
String message = "The temperature is ";
System.out.print ("The length of the string is ");
System.out.println (message.length());

The length of the string is 19

Command Prompt

C:\Code>javac displayTemperature.java
C:\Code>java displayTemperature

Current Temperature
The temperature is 34 degrees.

C:\Code>

ld Type the code that uses 3 Compile the Java code The result of using strings
the concatenated variables. and then execute the displays.
program.

3 To join the string with
other variables or values, type
the concatenation operator
between each variable, or .

! Note: See Chapter 2 to compile and

value, you want to join.
execute your program.
39

JAVA AND XML

CALL A METHOD

process by which Java accesses and executes the
code in the method. The code in a method does not
execute until you call the method.

O nce you create a method, you need to call it, a

To call a method in the same class in which you declared it,
you can create an object of the class and then type the
name of the object followed by a period and then the name
of the method followed by a set of parentheses. Make sure
you type the method name exactly as you type it in the
code that declares the method.

Some methods require you to include arguments within the
parentheses that follow the method name. For information
about passing arguments to methods, see the section
"Using Return Values and Arguments." For more on creating
a method, see Chapter 2.

When you call a method, the code within the method
executes as if you had typed the code in the location where

you called the method. Once Java finishes processing the
code in the method, it continues execution from the line
following the method call.

In some programs, you may need to call a method that you
have declared in a different class. The access modifiers you
use in method declaration determine the locations from
which you can call the method.

You can also group classes that contain methods into a
package. You may need to specify the package in which the
class containing the method is located. For more
information about packages, see the section "Create a
Package."

In addition to calling methods you have created, you can
also call methods that the Java class library provides. For
example, System.out.println() calls a Java class library
method, which you can use to display data. For more
information about the Java class library, see Chapter 2.

CALL A METHOD

1 Create a class file with a
main method.

Note: See Chapter 2 for more on
creating a class file.

1 Declare the method you

E] Create the body of the

want to call. method you want to call.

JAVA PROGRAMMING

A static method is a method that is the same for each object that uses the
method. You denote a static method by the keyword static in the method
declaration. If you declare a static method that you want to call in a
different class, you must specify the class that contains the method you
want to call. You use the dot operator (.) to link the class name and the
method name. You must create any methods you intend to call from
another class with the public access modifier. You can create a class that
accesses the methods of the created class in the example that follows.

A

public class CallingClassMethods {
public static void main(String[] args) {
System.out.println("My Personal Details");

PersonalInformation.DisplayMyName () ;
}
}

RESULT:

‘<

My Personal Details
Peter Smith

—T]
I 4'—
m— >
1 In the body of the main E Type the name of the 3 Compile the Java code M The result of executing the
method, create an object object followed by a period and then execute the code in the method displays.
from the class. and the name of the method program.

you want to call, and follow

it with a set of parentheses. Note: See Chapter 2 to compile and

execute your program.

P

JAVA AND XML

USING RETURN VALUES AND ARGUMENTS

might make a return value the result of a calculation

You can have a method return a value to the code. You

or procedure, or make it indicate whether Java
successfully completed a process.

When you declare the method, you must specify the return
value’s data type. You can make return values any valid data
type in Java, such as String, byte, or boolean. An error
may occur if the returned value’s data type does not match
the specified return type in the method declaration. The Java
compiler generates an error when you attempt to compile
the Java code that contains the mismatched data types.

Java returns information from a method using the keyword
return. Once the return statement executes, the
processing of the method ends and the value in the
return statement passes back to the calling statement.

You can use a method with a return value as if it were a
variable. For example, you can display the value that a

USING RETURN VALUES AND ARGUMENTS

method returns using System. out.print. You can also
assign the value that the method returns to a variable.

You can also pass one or more values, called arguments, to
a created method. Passing arguments to a method allows
you to use one method throughout a program to process

different data.

To define a method that accepts an argument, you include a
data type and variable name in the parentheses at the end
of the method name in a method declaration. When you
call the method, you include the data you want to pass in
the parentheses following the method name.

You can pass any type of data to a method, but it must
match the data type you specify in the method declaration.
For example, if a method expects an integer value for
calculation, passing a string value to the method causes an

error to occur.

CREATE A RETURN STATEMENT

—

&l Within a class, type the
code that declares the
method you want to use.

42

E Type the code for the body
of the method.

—E1 In the body of the method,
type return and follow it with
the information you want the
method to return.

PREPARE A METHOD TO ACCEPT
ARGUMENTS

1 Between the parentheses,
following the method name
in the method declaration,
specify the data type of the
argument that the method
will accept.

Type the name of the
variable that will store the
value of the argument.

B When preparing a method
to accept multiple arguments,
you must separate each data
type and variable pair with a
comma.

JAVA PROGRAMMING

A method can have more than one return statement. You commonly find this in
methods that use conditional statements. Although a method can have more than
one return statement, Java only executes one return statement. When Java
encounters a return statement, it terminates the execution of the method.

TYPETHIS:

class MakeList {
public static void main(String[] args) {
System.out.println (Checkage (29)) ;
}
static String CheckAge (int age) {
if (age > 21) {
return "You may take the survey";
} else {
return "You are too young to take the survey";
}
}
}

A4

RESULT:

You may take the survey

CALL A METHOD USING
ARGUMENTS

3 In the body of the main
method, type the code that
calls the method you want
to use.

Id Between the parentheses

following the method name,

type the arguments you want
to pass to the method.

9| Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and

B When passing multiple
arguments, you must separate
the arguments with a comma.

execute your program.

B save the Java code.

M The result of passing
arguments to a method
using a return value displays.

43

JAVA AND XML

USING THE IF STATEMENT

condition is true or false. You can make the condition

as complex as you want provided that it always
produces either a true or false value. With a true condition,
the section of code directly following the if statement
executes. For example, you can create a program that
displays a "Good Morning" message when a user runs the
program between 5:00 AM and 11:59 AM. With a false
condition, code from the if statement does not execute.

You can use an if statement to determine whether a

If the code consists of more than one line, you must enclose
the section of code you want to execute in braces {},
referred to as a statement block. You must enclose the
condition for an if statement in parentheses ().

If you want an if statement to execute a block when a
condition remains false, you must include an else clause.
Using an if statement with an else clause allows you to

USING THE IF STATEMENT

execute one of two sections of code, depending on the
outcome of testing the condition. If the condition is true,
the statement block directly following the if statement
executes. If the condition remains false, the statement block
directly following the else clause executes. Using an else
clause ensures that a section of code executes regardless of
the testing condition’s outcome. For example, you can have
a program display a "Good Morning" message or a "Good
Evening" message, depending on the time set on the
computer that executes the program.

To make your code easier to read and understand, always
indent the statement block that contains the code that you
want to execute. Many programmers also use spaces within
statements to make the statements easier to read. The Java
compiler ignores whitespace characters, such as tabs and
blank lines, so these characters do not affect the function or
performance of your Java program.

Kl Type the code that
declares the variables and
assigns their values.

2] Type if.

—E Type the condition you
want to test, enclosing the
condition in parentheses.

Lt

3 Type the code you want to

execute for a true condition,
enclosing the code in braces.

JAVA PROGRAMMING

A

If you need to execute only one line of code based on a condition being true, you
can place the code that you want to execute on the same line as the if statement.
You can also place the condition code on the next line without the braces {}.

YOU CANTYPE THIS: ASTHIS:

if (currentTemp > hot) { > if (currentTemp > hot) System.out.println("It’s hot.");
System.out.println("It’s hot.");
}

Nested if statements allow you to specify multiple conditions for an i f statement
at the same time. Java evaluates each if statement only if the previous if statement
is true. If all of the i f statements remain true, a section of code executes. If any of
the if statements are false, code from the i f statements does not execute.

TYPETHIS: RESULT:

int hot = 80, veryHot = 85, currentTemp = 88; 88 degrees. It’s very, very hot.
if (currentTemp > hot) {

System.out.print (currentTemp + " degrees. It’s ");

if (currentTemp > veryHot) { >

System.out.print ("very, very ");
}
System.out.println("hot.");

I
|
¥ To use the else [3 Type the code you want to i Compile the Java code M The result of testing the
statement, type else. execute for a false condition, and then execute the condition displays on the
enclosing the code in braces. program. screen.

Note: See Chapter 2 to compile and
execute your program.

45

JAVA AND XML

USING THE FOR STATEMENT

or block of statements several times. The for

statement allows you to create a loop that repeats the
execution of code a specific number of times. For example,
you may want to create five line breaks in an XML
document. Instead of typing the code that creates a line
break five times, you can create a loop that executes the
code to create a line break and then repeats the loop until
the value of a counter reaches five.

Programmers often need to execute the same statement

When creating a for statement, you usually use a variable,
called an iterator, which acts as a counter for the loop. You
use an initialization expression to specify a starting value for
the iterator.

You must also specify a condition that evaluates the value of
the iterator. For true conditions, the loop executes and
processes the block of code you specify. For false

conditions, the block of code does not execute and the
loop ends.

You use the re-initialization expression to modify the value of
the iterator. For example, if you use the increment operator
(++) in the re-initialization expression, the value of the
iterator increments by one each time Java executes the loop.
The expression i++ functions the sameasi = i+ 1.

You place the block of code, known as the body of the
loop, you want to execute between braces {}. You should
indent the code in the body of a loop to make the code
easier to read and understand. The code in the body of a
for loop can include any valid Java statements, such as calls
to other methods. You may also place another loop within
the body of a for loop, a process referred to as nesting.
You should avoid having too many nested loops because it
makes the program difficult to read and troubleshoot.

USING THE FOR STATEMENT

—=

K1 In the body of the method,
declare a variable that you
want to use as the iterator.

H Type for ().

46

- 3 Type the initialization

E3 Type the condition that
evaluates the value of the
iterator and follow it with a
semicolon.

expression that specifies the
starting value of the iterator
and follow it with a
semicolon.

JAVA PROGRAMMING

EX&E Java can still execute a loop even if you omit If a for statement has no condition and you do not
one or more expressions from the for specify a condition in the body of the loop, Java assumes
statement. However, you must specify any that the condition is always true and creates an infinite
expressions you omit from the for statement loop, a situation that you want to avoid.

elsewhere in the code. For example, if you

specify the starting value of the iterator in Example:
another part of your code, you do not need to | int loopCounter;
for (loopCounter = 1; ; loopCounter++) {

include an initialization expression in the for
statement. Remember to still include all the
necessary semicolons in the for statement.

System.out.println(loopCounter) ;
}
If you have a single line of code in the body of a for loop,

Example: you forego enclosing the line in braces. Although optional
int loopCounter = 3; in this situation, most programmers use the braces to keep
for (; loopCounter < 5; loopCounter++) { their code consistent.
System.out.println(loopCounter) ;
3 Example:
for (loopCounter = 0; loopCounter < 10; loopCounter++)

System.out.println (loopCounter) ;

|]
D S
—H Type the re-initialization [3 Type the code you want to i Compile the Java code M The result of using the for
yp yp Y p 8

expression that modifies the execute as long as the and execute the program. statement displays.

value of the iterator each time specified condition remains Note: See Chapter 21 e and

the loop executes. true, enclosing the code in 01€: o566 LNapter 2 [0 Compre an

braces. execute your program.

47

JAVA AND XML

USING THE WHILE OR DO WHILE LOOP

conditional loop that executes a section of code as

long as a specified condition remains true. Conditions
often test the value of an iterator. For example, you may
want to process a pay statement for each of the 100
employees in a company. Instead of typing the code that
processes a pay statement 100 times, you can create a loop
to process the pay statement for each employee. The
condition checks how many pay statements Java has
processed. After the 100th pay statement, the condition
evaluates as false and the loop ends.

The while statement allows you to create a

You enclose the body of a while loop, which contains the
section of code you want to execute, in braces {}. If the
condition tests the value of an iterator, the loop body also
contains code to alter the value of the iterator. You can
increase or decrease the value of an iterator. As long as the
condition remains true, the section of code within the body
of the loop executes. When Java reaches the end of the

loop body, it re-evaluates the condition. If the condition still
holds true, the section of code executes again. If the
condition turns false, the section of code in the loop body
does not execute and the loop ends.

When creating a loop using the while statement, you make
sure that Java evaluates the testing condition as false at
some point. If the condition always remains true, the code
in the loop body executes indefinitely. This kind of never-
ending loop is known as an infinite loop. If you create an
infinite loop, you must forcibly stop the execution of the
Java program.

Depending on the result of the condition to be tested, the
code within the while loop may never execute. If you need
the code in the while loop to execute at least once,
regardless of how Java evaluates the condition, you can

use a do while loop.

USING THE WHILE OR DO WHILE LOOP

K1 In the body of the method,
type the code that creates an
iterator and assigns it a value.

“H Type while ().

Type the condition you
want to evaluate.

JAVA PROGRAMMING

A

You can use a do while statement to test a condition after Java
executes the code in the loop body. You can also place another
loop within the body of a do while loop to create a nested loop.

do {
System.out.print ("This
}

loopCounter++;
} while (loopCounter < 3)

int loopCounter = 0, dotCounter;

for (dotCounter = 0; dotCounter < 8; dotCounter++) {
System.out.print(".");

System.out.println(loopCounter) ;

is line number") ;

7

This is line number......
This is line number......
This is line number......

- 4] Type the code you want to
execute as long as the
specified condition remains
true and enclose the code in
braces.

H In the body of the loop,
type the code that alters the
value of the iterator each time
the loop executes.

B3 Command Prompt

‘C:‘aCotle>javac WhileDemo.java

‘C:‘«Code>iava WhileDemo
This is line number 1
This is line number 2
[This is line number 3
This is line number 4
This is line number 5

DM 12:00PM

3 Compile the Java code The result of using the
and execute the program. while statement displays.

Note: See Chapter 2 to compile and
execute your program.

49

JAVA AND XML

USING THE SWITCH STATEMENT

of code, depending on the value of an expression you

specify. When Java executes a switch statement, it
compares the value of the expression against a number of
possible choices, called case values. If the value of the
expression matches a case value, the section of code
following the case value executes. For example, you can
create a switch statement that displays a specific message,
depending on information that a user enters.

The switch statement allows you to execute a section

To use the switch statement, you must first specify the
expression you want to use. The value of the expression
must have a char, byte, short, or int data type. After
specifying the expression, you must create the case values
against which Java compares the expression. The expression
must match the case value exactly. You cannot use an
indefinite expression, such as x > 10, for a case value.
Using an indefinite expression results in your code
generating an error.

The switch statement compares the value of the
expression to each case value in order, from top to
bottom. You can place the case statements in any order,
but to make your program more efficient, you should place
the most commonly used case values first.

To prevent the switch statement from testing the
remaining case values after Java finds a match, you should
use the break statement to skip the remaining case
statements and continue processing the code after the
closing brace of the switch statement. You should use
the break statement as the last statement for each case
statement. Although the last case statement does not
require a break statement, some programmers include it
to be consistent. Including a break statement helps you
remember to include the break statement if you later add
another case statement to the switch statement.

USING THE SWITCH STATEMENT

K

—El Create the expression you
want to use in the switch
statement.

Type the name of the
expression, enclosing it in
parentheses.

3 Type a pair of braces to
hold the case statements.

M You must use char, byte,
short, or int data types in
the expression.

—E Type switch.

[Type the statements you
want to execute if the case
value matches the expression
you specified in step 1.

1 Type case, following it
with the value the expression
may contain and a colon.

JAVA PROGRAMMING

You can execute one section of code for multiple
case statements, which allows you to use
multiple conditions for the case values. You
must follow each case statement you want to
match with a colon.

Example:
switch
{

(gender)

case M: case m:
System.out.println("Male") ;
break;

case F: case f:

System.out.println("Female") ;

break;

You can include a default statement in a switch
statement if you want to execute specific code
when none of the other case values match the
specified expression. You must place the default
statement last in the switch statement structure.

Example:

switch (priority)
{
case 1:
System.out.println ("Urgent") ;
break;
case 2:
System.out.println("Not Important");
break;
default:

System.out.println ("Ignore") ;

—d Type break to prevent the
switch statement from
testing the remaining case
values after a section of code

executes.

") Untitled - Notepad E]EI
File Edit Format View Help
class ShowStatus {
public static void main(String(] args) {
int priority = 2;
switch (priority) {
case 1:
System.out.println("<status>Urgent</status>");
{break;
Case 2:
System.out.println("<status>Very Important</status>");
break;
case 3!
System.out.println{"<status>Not Important</status>");
¥
b
}

EJ Repeat steps 5 to 7 for
each value the expression
may contain.

9| Compile the Java code
and then execute the
program.

M The result of using the

Note: See Chapter 2 to compile and

execute your program.

switch statement displays.

JAVA AND XML

CREATE AN ARRAY

that are of the same data type. For example, an array

can store the name of each day of the week. Using an
array allows you to work with multiple values at the same
time.

g n array stores a set of related values, called elements,

The first step in creating an array involves declaring an array
variable. You do this by specifying the data type of the
values that you want the array to store and following it with
brackets [1. For more information about data types, see
the section "Specify the Data Type for a Variable." You must
also give the array a name. As with variable names, array
names can consist of any number of letters, numbers or
underscore characters and must start with a dollar symbol,
underscore, or a letter.

Next, you can define the array. You do this using the new
operator, which indicates that you want to set aside space
in memory for the new array. You must also specify the
number of elements that you want the array to store.

Java identifies each element in an array with an index
number, which starts at 0, not 1. For example, an array that
you define as items = new int[6] contains six
elements indexed from 0 to 5.

You can specify the values you want each element to store.
You must enclose string values in quotation marks.

To access an individual element in an array, you use the
name of the array followed by the index number for the
element enclosed in brackets. When you use brackets in
this context, you refer to them as the array access operator.
You can use an array element in a Java program as you
would use a variable. For more information about using
variables, see the section "Specify the Data Type for a
Variable." Changing the value of an element does not affect
the other elements in the array.

CREATE AN ARRAY

K1 To declare an array
variable, type the data type of
the values that you want to
store in the array, following it
with [1.

E Type a name for the array
variable.

1 To define the array, type
the name of the array
variable, and follow it with =.

E3 Type new to create the
new array, and follow it with
the data type for the array.

A Type the number of
elements that you want the
array to contain and enclose
the number in brackets.

A

JAVA PROGRAMMING

Because it is a truly object-oriented programming
language, Java treats arrays as objects. The length
member of the array object allows you to determine
the number of elements in an array.

TYPETHIS:

class ArraylLength {
public static void main(String[] args) {
int[] items;
items = new int[3];

items[0] = 331;
items[1] = 324;
items[2] = 298;

int total = items.length;
System.out.print ("Number of items = " + total);

v

RESULT:

Number of items = 3

3 To initialize an element in
the array, type the name of
the array, and follow it with
the element’s index number,
enclosing the number in
brackets.

Type = and follow it with I3 Compile the Java code M The results of creating an
the value for the element. and then execute the array and accessing elements
. isplay.
1 Repeat steps 6 and 7 for program display
each element in the array. Note: See Chapter 2 to compile and
LY Type the code that execute your program.
accesses elements in the
array.

53

JAVA AND XML

CREATE A PACKAGE

files, you can organize the files by grouping them into

packages. Keeping your files organized allows you to
more efficiently locate needed information in those files. A
package stores a collection of related classes. For example,
you can group all the shipping-related classes in a program
into a package called shipping.

| f your Java program contains a large number of class

Packages allow you to use classes with identical names in
the same Java program. To prevent naming conflicts, Java
normally does not permit you to use classes with the same
name in one program. However, when you place classes
with the same name in different packages, you can use the
classes in a single application without conflict.

When creating a package, you must build a directory to
store all the classes for the package. The name of the
directory you create should describe the classes the

package will store. You must also make the name of the
directory the same as the added package name. You must
save all the classes belonging to a package in the same
directory.

You add a package statement to a class file to specify the
name of the package to which you want the class to belong.
The package statement must match the first line of code in
the class file. If the package name consists of multiple
words, separate the words with dots. Each word in the
name must represent an actual directory on your computer.
For example, Java stores classes that you place in a package
called myapps . internet in a directory called internet,
located within the myapps directory.

To use a class stored in a package in an application, you
specify the package name and the class name.

CREATE A PACKAGE

STORE A CLASS B3 On the first line type

Kl Create a directory to store

classes for the package. name of the package you

want to create.

Note: You must name the package with

the same names as the directory you
created in step 1.

package and follow it with the

—E1 Type the code that H save the code in the
declares a class and a directory you created in
method that you want to use step 1.

in other Java programs.
J prog M Java saves the code.

1 In the body of the method,
type the code for the task you
want to perform.

JAVA PROGRAMMING

m Java specifies that every class must belong to a package. If you do not
specify a package for a class, it always belongs to the default package,
whose name is the empty string " " .

If you use a Java development tool, such as an Integrated Development
Environment (IDE), Java may have already set up package directories
within a main class directory for you. You can usually change the
configuration of the program to specify another directory as the main
class directory.

The method you employ to create directories depends on the type of
operating system you have on your computer. If you have a UNIX-
based operating system, such as Linux, you might use the mkdir
command to create directories in a terminal window. If you have an
operating system with a Graphical User Interface (GUI), such as
Macintosh or Windows, you can utilize program-provided graphical
tools to create directories.

When you use a stored class in a package, you must specify the name
of the package in addition to the class name. To avoid specifying the
package name each time you use the class, you can import the package
into your program. For more information on importing packages, see
the section "Import a Package."

USING A CLASS STORED IN A Type the name of the class 3§ Compile the Java code M The result of using a class
PACKAGE f h dth h di kage displ
you want to use from the and then execute the stored in a package displays.
0 Type the name of the package, and follow it with program.
padckage and follow it with a dot. Note: See Chapter 2 to compile and
CREE = 3| Type the name of the execute your program.

method you want to access.

JAVA AND XML

IMPORT A PACKAGE

application, you can import a class from a previously

created package into a Java program. You may find this
helpful if you plan to use the class several times in the
program. You must first create the package you want to
import. For more information about creating a package, see
"Create a Package" in this chapter. Once you import a
package and a class, you do not need to specify the name of
the package each time you want to access the class.

To reduce the amount of typing required to create a Java

You use the import statement to import a package and
usually place it at the beginning of your Java program. If your
program contains a package statement, you must place the
import statement after the package statement. You can
import several packages and classes into one Java program.
Each package you want to import must have its own import

statement. To prevent naming conflicts, you should not
import two classes with the same name into one program.

To avoid generating an error during code compilation, you
must check the availability of the package directory and the
class that you want to import. Although not a concern in
most situations, availability becomes important if you
develop programs on different computers or different
platforms.

When importing a class from a package, you must specify
the name of the class you want to import.

In addition to packages and classes that you create, you can
import packages and classes from the Java class library. For
more information about the packages included in the Java
class library, see Chapter 2.

IMPORT A PACKAGE

A T 1

E Type the name of the
package you want to import
and follow it with a dot.

K1 To import a package, type
import in the first line of
code.

M This example uses the
package created in the
section "Create a Package."

E3 Type the code that
declares the class and the
method you want to use.

1 Type the name of the class
you want to import.

JAVA PROGRAMMING

EX&E You can use the wildcard character * to have Java import all the classes a
package contains. You may find this useful if you want to access several classes
in a package. For example, to import all the classes in the myapps .webutils
package, use the statement import myapps.webutils.*

When using the wildcard character *, remember that only the classes in the
named package import. For example, the import myapps.webutils.*
statement only imports the classes it finds in the myapps .webutils package
and does not import any classes it finds in the myapps .webutils. text
package. To import classes from the myapps .webutils.text package, you
must use the import myapps.webutils.text.* statement.

Java can automatically import certain packages when you compile code. The
java.lang package, a part of the Java class library, automatically imports
whenever you compile code. If your code contains classes that do not belong
to a package, Java imports the default package " " and assigns the classes to
that package. If your Java code contains a package statement, the named
package also automatically imports.

—1 | —

1 In the body of the method, To use the imported class, —EJ Compile the Java code M The result of using a class
type the code for the task you | type the name of the class and then execute the from an imported package
want to perform. and follow it with a dot. program. displays.

4 Type the name of the Note: See Chapter 2 to compile and
method you want to access. execute your program.

57

JAVA AND XML

EXTEND A CLASS

you can make the new class an extension of the original

class. For example, you can make a new class that
performs tasks using a database, making it an extension of
the class that connects to the database. This allows you to
re-use Java code in the original class without having to
retype the code in the new class.

I f a class you create relates to a previously created class,

When you extend a class, you usually refer to the original
class as the superclass, while you call the new class the
subclass.

When declaring a class for use as a subclass, you must
include the extends keyword to specify the name of the
class that you want to act as the superclass. You must make
the class you specify with the extends keyword a valid
class and accessible to the subclass when the subclass
compiles.

The ability of a method within a superclass to access a
subclass depends on the access modifier the method uses.

Any other class can access a method with the public access
modifier, while no other class can access a method with the
private modifier. A method that does not have a specified
access modifier is said to have default access, which means
any class in the same package as the defining class can
access it, while classes outside of the package cannot
access it. The protected modifier is like the default, but all
subclasses can access a protected method no matter what
the package to which they belong is.

Once you create a subclass as an extension of a superclass,
you can produce a new class that accesses the subclass.
For example, a new class can create an object using the
subclass. The class information from both the subclass

and the superclass combines to form a single object, with
methods from both the subclass and the superclass
available to the object.

Many of the classes included with the JDK extend other
classes. For information about the JDK classes, refer to the
JDK documentation that accompanies the JDK.

EXTEND A CLASS

CREATE THE SUPERCLASS

1 Type the code that defines
a class you want to use as a
superclass.

2] Compile the Java code.

M The class file is created.

CREATE THE SUBCLASS In the method declaration,

X1 Type the code that defines

type extends, following it
with the name of the class
you want to use as the
superclass.

a class you want to use as an
extension of another class.

EJ Compile the Java code.

M The class file is created.

JAVA PROGRAMMING

EX&E As with methods, fields within a superclass also become available to a
subclass, depending on the access modifier a field uses. Subclasses have
access to all the public and protected fields of their superclass; they
may also use the fields with default protection, if the subclass and
superclass are in the same package.

You can override methods in a superclass. To override a method in the
superclass, create a method in the subclass that has the same name as
the method you want to override. You must make the access modifier
of the method in the subclass the same or less restrictive than the
access modifier of the method in the superclass. When you create an
object using the subclass, the method in the subclass becomes available
instead of the method in the superclass.

You can also make a subclass a superclass of another class. This allows
you to create a chain of subclasses and superclasses. You call a class that
extends directly from a superclass a direct subclass of the superclass.
You refer to a class that is an extension of another subclass as an
indirect subclass of the superclass.

] |

| L
USING AN EXTENDED CLASS H in the body of the method, 4 Compile the Java code M The results of instantiating
1 110 @resie @ ks (bt tylge t{we code that creates the and then execute the the objhect of ?hsudbclz;st;and
instantiates an object of the object. program. 2§gﬁlszlszgarr:jesuoesrc?ass =
subclass you Cre&}ted, type] Type the code that Note: See Chapter 2 to compile and display P
the code that defines the accesses methods from the execute your program. '
class and method you want subclass and the superclass.

to use.

JAVA AND XML

CREATE AN EXCEPTION

problem during the execution of a Java program,

causes Java to create an object that stores information
about the problem. You handle errors by accessing the
properties of an exception object. The type of exception
object that Java creates depends on the kind of problem
that occurs. For example, an error in a mathematical
calculation may generate an ArithmeticException
object.

3 n exception, which occurs when Java encounters a

Encountering an exception does not necessarily mean that
the processing of a Java program must stop. You can handle
some errors within the Java code of a program; it all
depends on the type and severity of the error. For example,
you can create a try block and a catch block to handle
exceptions that could potentially arise when a section of
code processes, allowing your code to recover from an
exception. For information about creating a try block

and a catch block, see the section "Handling Errors."

For more information about the different types of exception
classes and the kinds of errors that create them, refer to the
Java Application Programming Interface (API)
documentation or to Appendix B.

To troubleshoot the error-handling capabilities of your

Java applications, consider having your Java code generate
exceptions. One of the easiest ways to generate an error in
any programming language involves creating a mathematical
calculation where zero divides into a number, which
generates a 'division by zero' error. Within your Java code, a
division by zero error generates an ArithmeticException
object, which you can then use to create the code that
handles the error.

CREATE AN EXCEPTION

E Create some numerical
variables.

B Create a class file with a
main method.

M Ensure that one variable
has a value of zero.

= 3| Type the code that assigns

E1 Create an expression that
the results of an expression to generates an error.

iable.
a variable M This example divides a

number by zero.

JAVA PROGRAMMING

One of the most common sources of exceptions is the interpretation of user
input. You can use NumberFormatExceptions to determine if a user entered
a number as an integer, a floating-point number, or not a number at all.

public class NumberFormat {

try {
new Integer (number) ;
System.out.println (number +

return;
}
catch (NumberFormatException notAnInt) {
try |
new Double (number) ;
System.out.println (number +

return;

}
catch
System.out.println (number +

}
}
public static void main(Stringl]
testNumber ("1v") ;
testNumber ("2.3") ;
testNumber ("ABC") ;

argv) {

public static void testNumber (String number) {

" is an integer.");

" is a floating-point number.");

(NumberFormatException notAFloat) {

" is not a number at all.");

1 is an integer.
2.3 is a floating-point number.
ABC is not a number at all.

A Type the code that

generates a message.

Command Prompt

C:\Code>javac ShowCost.java
C:\Code>java ShowCost

‘java.lang.ArilhmelicExcep(inn: / by zero
at ShowCost.main(ShowCost.java:7)

Exception in thread "main”
C:\Code>

6| Compile the Java code
and then execute the
program.

An error message displays.

Note: See Chapter 2 to compile and
execute your program.

JAVA AND XML

HANDLE ERRORS

generate an error, you can create a try block and a

I f a section of code in a Java program may possibly
catch block to handle the error.

A try block detects if an exception occurs in a section of
code. To create a try block, use the keyword try and
enclose the code that may cause an exception in braces.

A catch block contains the code that executes when the
try block detects an error. The catch block must
immediately follow the try block. To create a catch block,
use the keyword catch and enclose the code you want to
execute in braces. You follow the catch keyword with a
parameter enclosed in parentheses. The parameter specifies
the class of the exception and a name for the object that
Java creates when the error occurs.

A catch block can only catch the type of exception that a
parameter specifies. If the try block generates a different

type of exception, the code in the catch block does not
execute. Usually the exceptions you catch consist of
checked exceptions, which the compiler forces you to
catch. Checked exceptions indicate an unexpected but
recoverable condition.

When an exception occurs in a line of code, the line of code
is said to throw an exception. When a line of code ina try
block throws an exception, the processing of code in the
try block stops immediately and any remaining statements
in the try block do not execute. The catch block catches
the error that a try block throws and Java continues
processing on the first line of code in the catch block.

You can make the code in a catch block display a
customized error message to notify a user of an error
occurrence. You should make the customized error message
easy to understand as well as specific to the error.

HANDLE ERRORS

[0
-
W,

To create a try block,
enclose the code that
generates an exception in
braces.

—E] Directly to the left of the
opening brace, type try.

K1 Type the code that
generates an exception.

M This example tries to
divide a number by zero.

A To create a catch block,
type catch() immediately
following the try block.

Between the parentheses,
type the class of the
exception that the try block
throws.

3 Type a name for the object
that Java creates when it
throws an exception.

JAVA PROGRAMMING

()
EXim As with any Java code, you have strict rules governing Make your try blocks as large as
the scope of variables that you use in try and catch possible, ideally encompassing
blocks. Java does not make variables that you declare virtually all the code in a method.

This has the effect of placing all
the functional code inside the
try block, and all the error
handling code at the end of a

in a try block available for use in the catch block. In
the following example, the code does not compile
because the 1ocationMessage variable is not

available in the catch block. routine. Separating the two kinds
of code makes them both easier
Example: to understand and troubleshoot.
try { V,
String locationMessage = "determining item cost";
int itemCost = itemGrossCost / itemQuantity;

out.print ("Each item costs " + itemCost) ;
} catch (ArithmeticException e) {

out.print ("Error has occurred at " +
locationMessage) ;

}

. J
2 Untitled - Notepad u@]@
File Edit Format View Help &3 Command Prompt
public class ShowCost {
public static void main(String[] args) { C:\Code>javac ShowCost.java
int itemGrossCost = 945;
int itemQuantity = 0; C:\Code>java ShowCost
try (An error has been detected while performing a calculation
int itemCost = itemGrossCost / itemQuantity: C:\Code>
System.out.print("Each item costs " + itemCost);
} catch (ArithmeticException e) [{
System.out.print("An error has been detected ");
System.out.println{"while performing a calculation")]
L
}
}
ﬂi’!!h) @ 1z:00em
—d Type the code you want to 1 Compile the Java code An error message is
execute when the catch and then execute the displayed.
block processes and enclose program.

ihe @ole i bieces. Note: See Chapter 2 to compile and

execute your program.

63

JAVA AND XML

UNDERSTANDING VARIABLE SCOPE

program that can access the variable and use its value.
Java has strict guidelines governing variable scope,
which it refers to as scoping rules.

The scope of a variable determines the part of a

You determine the scope of a variable by the position of the
variable declaration within a block of code. An opening
brace and a closing brace denote a block of code. The
scope of a variable runs from the line of code containing
the variable declaration to the closing brace of the block.

If you declare a variable in the body of a class, outside of
any method, the variable becomes accessible to all the
methods in the class. You refer to a variable that you
declare in a class body as a member variable.

A variable that you declare within a method is referred to as
a local variable. A local variable only becomes accessible

within the method in which you declared it. Other blocks of
code created within the method can access the local
variable.

You can use the same name to declare a member variable
and a local variable in one class. When you use the same
name to declare two variables of different scopes, Java
treats the variables as distinct. Although variables with
different scopes can have the same name, using unique
variable names makes your code easier to understand. For
example, instead of using a variable named counter for all
your counting functions, you should use variations of the
name, such as loopCounter for counting loop iterations or
processCounter for counting the number of times a
particular process executes.

UNDERSTANDING VARIABLE SCOPE

&l To create a member B3 Type the code that
variable, type static in the declares the member
body of the class. variable.

—E1 Type the code that

declares a main method.

Lo lf

3 Type the code that

" To create a local variable,

M Give the local variable the
same name as the member
variable, but a different value.

declares a method.

type the code that declares a 3 Type the code that
variable in the body of the displays the value of the local
method. variable.

JAVA PROGRAMMING

.|

=
To prevent errors, you must not reference variables declared in other
blocks of code. Java restricts the scope of a variable to the block of
code that contains the variable declaration. If you declare a variable
in a block of code that an if statement or a statement that produces
a loop creates, the variable becomes a local variable.
if (242 == 4) {
int x = 3;
}
System.out.print (x) ;
Scope.java:12: cannot resolve symbol
symbol : variable x
location: class Scope
System.out.print (x) ;
1 error
. J

2 Untitled - Notepad

BEX]

File Edit Format View Help

public class ShowScope {
static int x = 10;

public static void main(String[] args) {

Command Prompt

C:\Code>javac ShowScope.java

‘\Code>java ShowScope
This is the value of the local variable x:55

firstMethod():
secondMethod();
}

private static void firstMethod() {
int x = 55;

}

System.out.println("This is the value of the local variable x:" + x);

This is the value of the member variable x:10

C:\Code>

of the member wvariable x:"+ x);|

private static void secondMethod() { |
— [ystem.out. printin{"This is the value
i

}

YT

@ WY 12:00PM

—id Type the code that
declares another method.

] In the body of the method,
type the code that displays
the value of the member
variable.

El in the body of the main =10 Compile the Java code The value of the member
method, type the code that and then execute the variable and the value of the
calls each method. program. local variable display.

Note: See Chapter 2 to compile and
execute your program.

JAVA AND XML

CREATE AN XML DOCUMENT

information which conforms to the XML specification.
Because XML documents use plain text, you can
employ any simple text editor to easily create them.

XML documents are text documents that contain

A simple XML document starts with an XML declaration.
An XML declaration provides basic information concerning
the XML document to any application that processes the
document. You must make the XML declaration the very
first line of an XML document. For simple XML documents,
the following line is the XML declaration:

<?xml version="1.0" standalone="yes"?>

This XML declaration tells the processing application that
this is an XML document that should conform to the XML
1.0 specification and that it is a standalone document. A
standalone document does not need to access any other
documents or files for information.

The bulk of XML documents consist of sections of
information called elements. Elements have a start tag and
an end tag, and typically contain some content, which you
place between the start and end tags. For example, the
element <name>Andrew</name> consists of a start and an
end tag, and as the content — in this example, the word
'Andrew’'. You call the first element in an XML document
the root element.

When saving a previously created XML document using

a word processor, you must ensure that you save the XML
document as a plain text document. By default, most word
processors save documents in a proprietary format that
XML-reading applications cannot read. You save the XML
document with the file extension .xm1l.

Once you save an XML document, you can load it into

an application capable of processing XML documents.

Microsoft’s Internet Explorer is a popular Web browser
that you can use to view simple XML documents.

CREATE AN XML DOCUMENT

—

Kl start your text editor. H Type the XML declaration.

M This example uses
Microsoft Notepad.

1

_|
C§

—E] Type an element's 5 Type an element's
start tag. end tag.

=4 Type the content for the [save the XML document.
element.

XML BASICS

indents and new lines into the XML

You can always view the original

<?xml version="1.0" standalone="vyes"?>

<todo> source code file by using the View
Backup sales data for last month Source feature of your Web browser.
</todonow>

Apﬁg If you make a mistake in your XML document, When you use a Web browser to view
k the Web browser generates an error message an XML document, the Web browser
and may even give you detailed information may reformat the information prior to
about the type and location of that error. displaying it. For example, it may insert

code to make the code easier to read.

RESULT:

‘<

End tag 'todonow' does not match the start tag 'todo'.d
Error processing resource 'file:///C:/Code/file.xml'.d
Line 4, Position 3

</todonow>
I
— >
Start the application that EJ in the address bar, type M The content of the XML
you want to process the XML the name of your XML document displays.
document. document and press Enter.

B This example uses
Microsoft Internet Explorer 6.

67

JAVA AND XML

VERIFY WELL-FORMEDNESS

you must ensure that the XML code in the document

is well-formed. The XML specification is a collection
of rules, or constraints, that specifies how you should
construct an XML document. Part of the XML specification
dictates the structure of an XML document, as well as how
you should format the individual items in the document.
These syntax and structure constraints, detailed in the XML
specification, determine if an XML document is well-
formed. If an XML document follows all the rules and
guidelines in the XML specification, then you can call the
XML document well-formed. You cannot call a document
that is not well-formed an XML document.

Before you can consider something an XML document,

Checking if an XML document is well-formed requires

the use of an XML application that can analyze the XML
document and verify the document’s well-formedness. Many
applications exist that allow you to verify well-formedness.

For example, although primarily designed to display
HTML documents, some Web browsers also check the
XML document’s well-formedness. While you may find
Web browsers a quick and convenient way to check for
well-formed XML documents, if you intend to work with a
number of XML documents, you should use an application
designed primarily to work with XML documents.

Many XML applications that you utilize to develop XML
documents only allow you to perform certain actions, such
as spell checking your document or reformatting the code
to make it easier to read, if the document is well-formed.
For this reason you should continually check your XML
document to ensure that the XML document is well-formed
as you develop the document. If you check your XML
document and it is not well-formed, an error message
displays to indication the portion of the document causing
the failure.

VERIFY WELL-FORMEDNESS

CHECK AWELL-FORMED
DOCUMENT

Note: See the section "Create an
XML Document" to create an XML
document.

E Save the XML document.

KB Create or open a simple
XML document.

") Untitled - Notepad BEX XML Spy - [file.xan(] BEX
File Edit Format View Help [File Edit Project XML DTDjSchema Schemadesign XSL DocumentEditor Convert Table View Browser Soap
<?xml version="1.0"?7> .
<todo> Tools Window Help -8 X
<task> 2 ol [Gl By) O & . 3 .
<description>Backup sales data for last month</description> 0 &d Bo 8 ‘% 4 ¢ % WCE @_ @ @ @
<owner>Andrews /owner> —7xml version=" 0"7
<status>open</status> <todo=
<priority>low</priority> <tasks
— </task> =description=Backup sales data for last month=idescription=
<task> =owner=Andrews/owners
<description>Complete end of month report</description> =status=open=/status=
<owner>Andrew</owner> <priority=lows=fpriority>
<status>closed</status> =hask=
<priority>medium</priority> task>)
</task> =description=Complete end of month report=<idescription=
< > =<owner=Andrew=jowners
/todo =status=closed</status>
=priority=medium=/priority=
<hask=
=fodo=
75, This file is well-formed. Please note: you can also validate an XML file against its document type
) st
[file. xml
XML Spy v4.2 U Ln1, Col1 UM
— 1 — 1
w: “d [Untitled - Notepad @"® 1z:00pm “‘ " d @ %ML Spy - [File.xm] (D2 12:00pm

H Click the Check Well-
Formedness button.

EJ Load the XML document
into the XML application.

—ll The application indicates
that the document is well-
formed.

Note: This example uses XML
Spy, available on the companion
CD-ROM.

XML BASICS

EX]H The XML specification contains rules that identify what constitutes
a well-formed XML document. The XML specification indicates the
rules, or constraints, that apply to well-formed XML documents
with the letters wfc. You can view the XML specification on the
Internet at http://www.w3.0rg/TR/2000/REC-xmI-20001006.html.

Besides monitoring an XML document for well-formedness, you
must also verify the XML document’s validity. You must create a
valid XML document according to the exact rules laid out in the
XML specification. If a document is a valid XML document, it is also
well-formed. For more information about XML document validity,
see Chapter 6.

The information in XML documents is always case sensitive. If you
use the wrong case when typing start and end tags, a common
error, you create code that generates an XML document that is
not well-formed. For example, <myName>Andrew</myName> is
correct, but the code <MyName>Andrew</myName> generates an
XML document that is not well-formed.

J Untitled - Notepad 2kl [%ML spy - (oot WEX]
File Edit Format View Help
<7xml version="1.0"7>

i@ﬁile Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table View Browser Soap

<todo> Tools Window Help _8x
<task> : > B #
<description>Backup sales data for last D3R H0 S * BB 0~ Dj e RBRERD

<owner>Andrew</owner>
<status>open</status>
<priority>low</priority>

<7xml version="1.0"7>
<todo=
<task=

</ task> =description=Backup sales data for last month=/DESCRIPTION=
<task> =owner=Andrewsiowners
<description>Complete end of month report</description> =status=open=istatus=
<owner>Andrew< /owner> <priority=low=foriority=
<status>closed</status> <hask=
<task=

<priority>medium</priority>
</ tgslo ¥ 4 4 =description=Complete end of month report=idescription=
<owner=Andrewsiowner>
< >
/todo <status>closedzistatus>
=priority=medium=/priority=
<hask=
=fodo=

This file is not well-formed:
0 description closing element name expected. W Recheck
[file.xml

XML Spy v4.2 U I to Paul Whit (ABCinc.) (c)1998-200)1 Altova GmbH & AltoyLn 4, Col 52 [o |

w “. d CW® 12:00PM “ 5 ‘“d @ XML Spy - [file.xmi] W 12:00PM

CHECK A NON-WELL- H Adjust the end tag so 1 Load the document into B The application indicates
SOERERIDS e that it does not match the the XML application. that the document is not
Kl Create a simple XML start tag. L Click the Check Well- well-formed.

dloauime E] save the document. Formedness button.

Note: See the section "Create an
XML Document" to create an XML
document.

JAVA AND XML

CREATE ELEMENTS

identify information. An element consists of a start tag

You use an element within an XML document to

and an end tag. Between the start and end tags, you
place the element’s content. Tags start with the < delimiter
and end with the > delimiter. You place the tag name
between the delimiters. In the end tag, you must precede
the element name with a /.

In many cases elements contain text information, but they
can also contain other types of information including other
elements. You call an element that you make a part of the
content of another element a child element. You refer to
an element that contains another element as the parent
element of the child element. For more information about
the different types of element content, see Chapter 5.

How you structure the elements in an XML document
depends on the type of information that it contains. You
have no rules governing how you place your elements so
long as the document conforms to the XML specification.

However, you should try to structure the elements to match
the structure of the information within the XML document.

You do not have to place information in elements to
consider them valid; in fact, quite commonly the elements
of an XML document contain no information.

You cannot use spaces in the name of an element. To make
XML documents easier to read, the names of elements
should specifically indicate the type of content within

the elements.

You make the root element the first element in an XML
document, placing all other elements within the start
and end tags of the root element.

When adding elements to an XML document, you should
verify that the XML document is well-formed. See the
section "Verify Well-Formedness" in this chapter to verify
your XML document.

CREATE ELEMENTS

Position the cursor
between the start and end
tags of the root element and
create another element.

—ﬂ Position the cursor
between the new element's
start and end tags and type
the content of the child

70 element.

—&l Type the code that creates
the XML declaration.

= 2| Type the root element of
the XML document.

= 5| Type the code that creates

additional child elements.

XML BASICS 4

N
EX&& Element names can consist of any combination of alphanumeric characters,

hyphens, underscores, periods, or colons. The name of any element must begin

with a letter, a colon, or an underscore.

If an element contains no content, you call it an empty element. Instead of
creating both a start and an end tag, you combine an empty element into one tag.
This tag consists of the element name, which you follow with a /. For example,
the element <status></status> is exactly the same as <status/>.

While you can nest elements together, you cannot allow the start and end tags
of elements to overlap, as in the following example.

Example:

A Valid Element

<person>Tom<age>33</age></person>

An Invalid Element

<person>Tom<age></person>33</age>

You cannot use markup symbols in the text of an element’s content. For example,
you cannot define an element <notes>I always make sure to use the

 tag in my html code.</notes> because it contains the markup tag

 as part of the element’s content.

> <owner>Andrews /owners >

"J Untitled - Notepad BEX]|
File Edit Format View Help
<?xml version="1.0"?>
<todo>
<task>
<description>Backup sales data for last month</description>
<owner>Andrew</owners
<status>open</status>
<priority>low</priority>
</ task>
<task>
<description>Complete end of month report</description>

<status>closed</status>
<priority>medium</priority>
</task>
</todo>

.
i) Qs aom

=6 Type the code that creates I save the XML document. E start the application that In the address bar, type
additional child elements of you want to process the XML | the name of your XML
the root element. document. document and press Enter.
W This example uses —Ml If the XML document
Microsoft Internet Explorer 6. is well-formed, the XML

document displays and
shows the elements.

Vil

JAVA AND XML

ADD ATTRIBUTES

about an element’s content. Most elements store data

in the form of content between the start and end tags
of the element. As well as content, elements may also have
attributes, which hold data, associated with them.

You use an attribute to provide additional information

An attribute consists of its name and value. You separate the
attribute name and value with the = character. You must
enclose an element’s attributes and their values within the
element’s start tag. You must always enclose the value of

an attribute within quotes, even if you use the attribute

to indicate a numerical value. For example, the start tag
<alert level="3">isvalid while <alert level=3>

is not valid.

An element can have multiple attributes. You can separate
attributes from each other and from the element name by

one or more spaces or line breaks. Using line breaks to
separate attributes may make your XML document easier
to read, especially if you have many attributes within a
single start tag.

In many cases, elements that have attributes can also use
child elements instead of attributes. Typically, you can use
attributes even when you only have one option for a given
value. For example, an element that describes a product in
a warehouse may have an attribute that indicates whether
you have the item in stock. This information makes a
suitable attribute because you can only have one value, yes
or no, depending on the item’s availability. Conversely, you
can place the name of the item’s supplier in a child element
because an item in the warehouse may have more than one
supplier.

ADD ATTRIBUTES

") Untitled - Notepad (=)z)g3| |& Untitled - Notepad J=es|
File Edit Format VYiew Help File Edit Format Yiew Help
<?xml version="1.0"?7> __[<7xml version="1.0"?>
<todo> <todo>
<task> <task [timeframe="long[' [checked="no"p _
<description>Backup sales data for last month</description> <description>Backup sales data for last month</description>
<owner>Andrew</owners> <owner>Andrew</owners>
<status>open</status> <status>open</stdtus>
<priority>low</priority> <priority>low</priiority>
— <{task> </ task>
<task> <task>
<description>Complete end of month report</description> <description>Compllete end of month rfeport</description>
<owner=Andrews /owners> <owner=Andrews /owners>
<status>closed</status> <status>closed</dtatus>
<priority>medium</priority> <priority>medium<|/priority>
</task> </task>
</ todo> <qtodo>
T G L ¢ e G o
K&l Create or open a simple Note: See the section "Create an Place the cursor within a E3 position the cursor
XML document. XML Document” to create an XML tag and type the name of the between the quotation marks
document. attribute. and type the value for the
LR T . attribute.
ype="".

72

= 5| Repeat steps 2 through 4
for each attribute of the
element you want to create.

XML BASICS

You cannot use the same attribute name more than once in an
element’s start tag. If you have to use multiple attributes of the
same name, you should simply create more elements.

A

Non-well-formed

<task dept="sales" dept="shipping" complete="no">
<description>Backup sales data for last month</description>
<owner>Andrew</owner>
<status>open</status>
<priority>low</priority>

</task>

Well-formed
<task complete="no">
<dept>sales</dept>
<dept>shipping</dept>
<description>Backup sales data for last month</description>
<owner>Andrew</owner>
<status>open</status>
<priority>low</priority>
</task>

') Untitled - Notepad
File Edit Format View Help
<?xml version="1.0"7>
<todo>
<task timeframe="long" checked="no">
<description>Backup sales data for last month</description>
<owner[dept="1LUJrAndrew</owner>
<status>open</status>
<priority>low</priority>
</task>
<task [timeframe="short" checked="medium"}>
<description>Complete end of month report</description>
<owner deEt:”'it']>Andrew</nwner> >

BEX

<status>clogsed</status>
<priority>medium</priority>
</task>
</todo>

@; 12:00 PM

—ll Repeat steps 2 through 5
for each element to which
you want to add attributes.

B Save the XML document.

Start the application that
you want to process the XML
document.

M This example uses

Microsoft Internet Explorer 6.

EJ in the address bar, type
the name of your XML
document and press Enter.

M If the XML document is
well-formed, the XML
document displays the
elements' attributes.

73

JAVA AND XML

ADD A COMMENT

ou can add a comment, a helpful piece of inserted

text, to an XML document. You typically insert

comments as a reference for users who actually
read the XML document. While you typically may find the
overall structure of an XML document easy to read and
understand, readers may not find specific details of your
particular XML document apparent. By including a detailed
comment, you help to ensure that anyone who reads
your XML document will understand your reasons for
constructing your document the way you did. Not only
does this serve as an aid to people who may read your
code, but it may also help you if you have to reread your
own code after you have not read it for some time.

You denote the start of a comment with <! -- and end the
comment with -->. You use this same method to insert
comments in HTML documents. The application processing

the XML document ignores any comments you place in it.
You must place comments outside of any tags in the XML
document, preferably on their own line.

You can place any text information within a comment
except a double hyphen. You can even include line breaks
in your comments to make your comments easier to read.

You can only use comments after the XML declaration in an
XML document, and you must place the XML declaration in
the first line of your XML document.

Placing comments in your code is a good programming
practice. At the very least, you should ensure that you use
comments to include the author of the document and a
method by which a reader can contact the author.

ADD A COMMENT

—l Create or open an XML
document.

Note: You can use the XML
document created in the section
"Add Attributes."

T4

. file.xml - Notepad [._}[i] . file.xml - Notepad u[i]
File Edit Format View Help File Edit Format View Help
<7xml version="1.0"7> _[<?xml version="1.8"?>[<!--[Created by Andrew[-->]
< todo> <todo> |
<task timeframe="long" checked="no"> <task timeframe="long" checked="no">
<description»Backup sales data for last month</description> <description»Backup sales data for last mofth</description>
<owner dept="1it">Andrew</owner> <owner dept="1it">Andrew</owner>
<status>open</status> <status>open</status>
<priority>low</priority> <priority>low</priority>
— </task> </task>
<task timeframe="short" checked="medium"> <task timeframe="short" checked="medium">
<description>Complete end of month report</description> <description>Complete end of month report<fdescription>
<awner dept="1it">Andrew</awner> <owner dept="1it">Andrew</owner> I
<status>closed</status> <status>closed</status>
<priority>medium</priority> <priority>medium</priority>
</task> <ftask>
</todo> </ todo>
1 1
i) Q2 com | | i) @2 o

4] Type --> to close the
comment tag.

3 Position the cursor where
you want to place the
comment and type <!--.

=3 Type the remainder of the
comment.

XML BASICS

r 2
Apﬁly You can also use comments while developing your code to help eliminate errors.
h For example, you can use comments to isolate unfinished sections of code that
would otherwise generate errors when you check them for well-formedness.
TYPE:
<?xml version="1.0"?>
<todo>
<task dept="sales" complete="no">
<description>Backup sales data for last month</description>
<owner>&name; </owner>
<status>open</status>
<priority>low</priority>
</task>
<!—
<task dept="accounting" complete="no">
<description>
<owner>
<status>
<priority>
</task>
—>
</todo>

RESULT:

‘<

This file is well-formed.

;iﬁe.xmi - ﬁuuapad u@
File Edit Format View Help
<?xml version="1.0"?> <!-- Created by Andrew -->
—<!-- informaton for my planner program -->
<todo>

<task timeframe="long" checked="no">
<description»Backup sales data for last month</description>
<owner dept="it">Andrew</owner>
<status>open</status>
<priority>low</priority> |
</task>
<task timeframe="short" checked="medium">
<description>Complete end of month report</description>
<owner dept="1it">Andrew</owner>
<status>closed</status>
<priority>medium</priority>
</ftask>
</todo>

Ebgplmuuw

E Position the cursor on a

new line.

3 Repeat steps 2 through 4
to create another comment.

Save your XML
document.

E] start the application that
you want to process the XML
document.

B This example uses
Microsoft Internet Explorer 6.

In the address bar, type
the name of your XML
document and press Enter.

—ll If the XML document
is well-formed, the XML
document displays the
comments.

JAVA AND XML

INCLUDE SPECIAL PROCESSING

INSTRUCTIONS

XML document to an XML processor using a construct

called a processing instruction. You only use
processing instructions when working with an application
that expects the instructions in an XML document.

You can pass application-specific instructions from an

When creating your own Java applications you can easily
make applications that detect processing instructions in an
XML document. You can then have the application perform
a task, depending on the parameters you specify in the
processing instructions.

The syntax for declaring a processing instruction is
<?spaceDelimitedInstructions?>, where you replace
spaceDelimitedInstructions with any valid XML name,
and follow it with any required parameters. Because you aim
processing instructions at specific applications, the first word
in a processing instruction often represents the name of that
specific application. You follow the name with any additional
words, which represent the parameters that the target

application can interpret. If you create a Java application

and call it printXML, you may specify printXML so that the
processing instruction targets that application. You may use
the data in the processing instruction to indicate whether the
printXML application should print the document or perform
some other functions on the XML document.

An application that processes XML documents ignores any
processing instructions that do not target that application.
Most XML applications do not make use of the processing
instructions you place in XML documents.

You can insert a processing instruction anywhere in an XML
document as long as you do not place it within a tag or
make it the first line of the XML document. Where you
place the processing instruction depends on the application
at which you target the processing instruction and what
task that application performs. Users commonly place
processing instructions at the top of the XML document,
after the XML declaration.

INCLUDE SPECIAL PROCESSING INSTRUCTIONS

E position your cursor after
the XML declaration.

(1) Open or create the XML
file to which you want to add
a processing instruction.

76

. file.xml - Notepad
File Edit Format View Help

<?xml _wversion="1.0"?>
i< JParseDoc
<todo>

BE)X|

<task>
<description>Backup sales data for last month</description>
<owner>Andrews</owner>
<status>open</status>
<priority>low</priority>

</ task>

<task>
<description>Complete end of month report</description>
<owner>Andrew</owners>
<status>closed</status>
<priority>medium</priority>

</task>

</ todo>

@ WY 12:00PM

= 3 Type the beginning tag, <?,
for the processing instruction.

M In this example, the target
application is ParseDoc,

| Typae the meme e dhe which is a Java application.

target application.

XML BASICS

m Each word within a processing instruction must begin with a letter or
underscore and can only contain the following:

* Letters ¢ Hyphens

¢ Digits * Periods

e Underscores

You cannot make the first word in a processing instruction xm1, which is
a reserved word.

With a few exceptions, XML parsers ignore processing instructions.
Recognizing and executing processing instructions appropriately is up to the
processor — the application that extracts, manipulates, and displays XML.

The exception is the XML declaration itself (<xml version="1.0">).
All XML parsers recognize and handle this processing instruction.

You have no limit to the number of parameters that you can specify for
a processing instruction. For example, you can use:

Example:

<?ParseDoc check="yes" print="laser" compile?>

Any text after the target application name passes to the target application.
The target application analyzes the parameters of the processing instruction

and extracts the necessary information.

= 5| Type the text that you
want to use as the
parameters.

. file.xml - Notepad g@ . file.xml - Notepad QE
File Edit Format View Help File Edit Format View Help
<?xml version="1.0"?> <?xml version="1.0"
<?ParseDoc|check="yes" <?ParseDoc check="ye
<todo> <todo>
<task> <task>
<description>Backup sales data for last month</description> <description>Backup sales data for last month</description>
<owner>Andrews</owners> <owner>Andrews</owner>
<status>open</status> <status>open</status>
<priority>low</priority> <priority>low</priority>
</ task> </ task>
<task> <task>
<description>Complete end of month report</description> <description>Complete end of month report</description>
<owner>Andrews< /owner> <owner>Andrews< /owner>
<status>closed</status> <status>closed</status>
<priority>medium</priority> <priority>medium</priority>
</task> </task>
</todo> </ todo>
L L
CW® 12:00Pm CW® 12:00PM

= 6| Type the ending tag, 2>, I save the file.

for the processing instruction.

JAVA AND XML

USING PREDEFINED XML ENTITIES

ML applications processing the XML document may To define data containing special characters like angle
X incorrectly interpret some special characters that brackets, XML uses predefined entities to differentiate
you place into element content XML markup tags. between symbols that have special meaning in XML,
You can incorporate special characters into XML data such as the left angle bracket, and those same symbols
using predefined XML entities. embedded in a text string.
XML parsers make certain assumptions about XML XML supports five predefined entities. Each of them
document syntax, for example, that a left angle bracket (<) includes a semicolon at the end of the entity:
begins a tag. However, you may need to include a left .
angle bracket in an element’s value, for example: * <, which stands for the less-than character (<)
<err desc>If the system fails, you will see * > ;, which stands for the greater-than character (>)

this message: <error 101></err_desc>. .
* < - * &, which stands for an ampersand (&)

Because an XML parser has no way of determining that the
second left angle bracket shown above is not the beginning
of another tag, it generates an error when attempting to
process this statement.

USING PREDEFINED XML ENTITIES '

&apos ;, which stands for an apostrophe (')

® ", which stands for a quotation mark (")

. ParseDoc.java - Notepad u[i] . ParseDoc.java - Notepad u[i]
File Edit Format View Help File Edit Format View Help
<?xml version="1.0"7> <?xml version="1.0"?7>
<todo> <todo>
<task> <task>
<description»Backup sales data for last month</description> <descr1‘pt1‘0n>Backup-sales data for last month</description>
<owner>Andrew< /owners> <owner>Andrew</owners
<status>open</status> <status>open</status>
<priority>low</priority> <priority>low</priority>
— </task> </task>
<task> <task>
<description>Complete end of month report</description> <description>Complete end of month reporft</descriptions>
<owner>=Andrew< /owners <owner>Andrew< /owners _
<status>closed</status> <status>closed</status>
<priority>medium</priority> <priority>medium</priority>
</task> <{task>
</todo> </todo>

, ,
i) Qs com | | Q2 o

1 Open or create the XML E position your cursor at the 3] Type the entity reference.
file in which you want to point in the text where you B in thi le. th .
reference a predefined entity. want to add the predefined B E s UL

referenced is the apostrophe,
which you declare using

M In this example, the '.

reference will be added

directly to an element's

content.

entity.

78

XML BASICS

Eij Entities can appear inside attribute declarations as well as inside element values.
For example, the following XML code is valid:

Example:
<wholesalers name="Biggs & Tate"/>

The five entities in this example are sometimes referred to as predefined internal
entities. Internet Explorer provides support for these five entities, which are available
for both XML and HTML documents. See Chapter 5 to define custom entities, including
external, parsed, and unparsed entities. Entities in XML can take one of four forms:

ENTITY FORM

Internal general Referenced from inside an XML document; you define substitute
text inside a DTD.

External general Referenced from inside an XML document; you define substitute
text inside some external file.

Internal parameter Referenced from inside a DTD document; you define substitute
text inside a DTD.

External parameter Referenced from inside a DTD document; you define substitute

text inside some external file.

_> <owner>Andrews /owners> >

. ParseDoc.java - Notepad [:_][i'}ﬂ

File Edit Format View Help

<?xml version="1.0"7>
<todo>
<task>
<description>Backup 'sales datdiapns; for last month</description>
Lowner>Andrew</owners>
<status>open</status>
<priority>low</priority>
</task>
<task>
<description>Complete[<]end of month report</description>

<status>closed</status>
<priority>medium</priority>
<{task>
</ todo>

@g 12:00 PM

[ParseDoc.

=4 Type any other entity H save the file. 6 Display the XML M The predefined entities
references. document in an XML display as special characters.

application.

W This example uses
Microsoft Internet Explorer 6.

79

JAVA AND XML

INCLUDE NONSTANDARD TEXT

elements that may contain nonstandard text, such

as HTML code. The section "Using Predefined XML
Entities" earlier in this chapter shows you how to include
special characters in your XML documents using predefined
entities. Entities are fine for occasional use, and individual
characters, but if you need to incorporate a large number of
special characters, you can use another construct designed
specifically for that purpose: the CDATA section.

You can include a large amount of data in XML

The CDATA section enables you to incorporate large blocks
of text containing special characters into an XML document
without replacing each special character with an entity
reference.

A CDATA section starts with the characters <! [CDATA [
and ends with the characters]]>. Within the tag, you

can include any text that may contain special characters.
When an XML application processes this information, the
XML parser does not check the text; instead, the text passes
through the XML parser as the parser encounters it in the
document. The XML application that processes the

XML document then takes the responsibility to analyze or
otherwise use the text containing special characters in a
meaningful way.

You can make the information in the CDATA section almost
anything. It can contain programming code, such as Java,
or, more commonly, HTML. You often use HTML code in
CDATA sections because an XML parser interprets the
markup tags that you use in HTML as XML markup tags and
generates parsing errors. You can include XML information
in a CDATA section, but the XML parser does not check the
XML code for validity or any other XML characteristic.

INCLUDE NONSTANDARD TEXT

F position your cursor
where you want to declare
the CDATA section.

(1) Open or create the XML
document in which you want
to declare a CDATA section.

M In this example, the

CDATA section will be

declared as the content
for an element.

m 3 Type the beginning CDATA
tag, <![CDATA.

Add the ending CDATA
tag, 11>.

=4 Type the special
character text.

XML BASICS

Because the CDATA section
holds unrestricted character
data, few syntax rules apply
to CDATA contents. These
rules are:

* You must represent CDATA
sections as element values.

* You cannot use]] between
the start and end CDATA tags.

You may find a CDATA section
ideal if you want to pass a large
block of text containing several
special characters to your XML
processing application. The
following example incorporates
a block of scripting code, which
contains many special
characters, into an XML
document.

Example:

<! [CDATA[

<SCRIPT LANGUAGE="JavaScript">
// Jamcracker, Inc. is providing this code as a service only;

// no warranties or fitness for use are implied. Please check J
our

// service manual for instructions on coding additional .
necessary

// functions and parameters.
function isUpToDate (downloadDate) {

// This function queries Jamcracker, Inc.’s database to J
determine if

// there have been product updates since the last XML file J
download.

var connectionUp=pingDatabase() ;
lastUpdated = queryDatabase() ;
if (downloadDate < lastUpdated && connectionUp) ({

display ("Please download the latest XML file to J
ensure up-to-date product information.")

}
}
</SCRIPT>
11>

= 6 i required, add other
CDATA sections.

4 save the XML document.

8 Display the XML
document in an XML
application.

B This example uses
Microsoft Internet Explorer 6.

M The special characters
display.

JAVA AND XML

DECLARE A DTD

This allows you to control the format of data that

makes up your XML documents. For example, you can
specify that an element called company contain only text,
and no other type of information.

You can create a set of rules for each XML document.

You can define the content make-up for components of an
XML document by using a document type definition, or
DTD. Comprised of plain text, DTDs, also called
vocabularies, define a common set of structured elements
and attributes, much like human vocabularies establish
common words and syntax rules.

As with XML documents, you create the DTD using plain
text, so you can include the text for a DTD inside your XML
document. Referred to as inline DTDs, you use DTDs within
an XML document for short XML documents as well as all
XML documents that you are in the process of developing.
To create element declarations for multiple XML
documents, see the section "Create an External DTD File."

DECLARE A DTD

You place a DTD into an XML document in a tag. You make
the opening characters of the tag <! DOCTYPE and follow
the tag with the name of the root element. You make the
root element the first element in the XML document. After
the name of the root element, you enclose the DTD rules in
square brackets, and follow the rules with a greater-than
character (>).

The DTD rules can specify the type of data that a user can
include as content for elements within the XML document.
You call rules that apply to elements element declarations.
An element declaration consists of a tag that starts with

< |ELEMENT, the element name, and then the type of data
that forms the element’s content. You close the element
declaration with a greater-than character (>). For elements
that contain text data, the data type (#PCDAT2) indicates
that you must make the content of the element character
data.

Kl Open or create the XML
file to which you want to add
an inline DTD.

E Position the cursor directly
below the XML declaration
and directly above the root
element declaration.

B This example uses the root
element task.

—E1 Type <!DOCTYPE. E1 Type the root element of

the XML document.

XML DOCUMENT TYPE DEFINITIONS

ﬁXim When using a DTD with an XML document, you must associate all elements
that you define in an XML file with a corresponding declaration in the DTD.
You can declare the type of an XML element using any of the following:

(#PCDATA) Character data.

(#PCDATA) * Zero or more characters.

(anElement) One instance of anElement.

(anElement+) One or more instances of anElement.

(anElement?) Zero or more instances of anElement.

(anElement, anotherElement) One instance each of anElement and
anotherElement.

(anElement | anotherElement) One instance of anElement or one instance of
anotherElement.

(#PCDATA | anElement) * Either an instance of anElement or multiple
characters. When you use this as one of multiple
options, #PCDATA must appear first.

EMPTY No content.

\ J
[T 1
) >
—E Type . B This example uses the 4 Add the closing bracket B save the file.

keyword #PCDATA to restrict and close the tag.
values for the task element
to character data.

I3 Type an element M The file is saved.

declaration.

83

JAVA AND XML

CREATE AN EXTERNAL DTD FILE

declarations for elements located throughout multiple

XML documents. For more on creating an inline DTD,
see the section "Declare a DTD." If you want other XML
documents to access your DTD, you can save the text of a
DTD as a separate file and refer to the DTD file from inside
your other XML documents. A DTD that you save in a
separate file is an external DTD. Because using an external
DTD separates validation rules from XML data, this external
DTD approach promotes document reusability. Multiple
XML documents can refer to the same DTD file without
having to replicate validation rules within each XML
document.

You can use the same DTD to create element

Because an external DTD is a text file, you can create it with
any text editor. Java still considers an external DTD as an
XML file and therefore requires an XML declaration as the
first line of the DTD. After the XML declaration, you can

specify the DTD element declarations for each element you
use in the XML document. Unlike inline DTDs, you do not
need to enclose the DTD rules in a DOCTYPE declaration or
use other types of start and end tags to encompass the

validation rules.

You must indicate the name and location of the external
DTD file within the XML document to which you want the
DTD to apply. As with inline DTDs, the DOCTYPE declaration
indicates the root element name, but instead of containing
the DTD rules, you use the SYSTEM keyword and follow it
with the DTD filename. The SYSTEM keyword indicates that
the local computer system can access the DTD file.

You can use any valid filename as the name of a DTD file.
Consider using a name that indicates to what type of
elements the DTD applies. By convention, all DTD files
end with the file extension .dtad.

CREATE AN EXTERNAL DTD FILE

El Type an element
declaration.

A save the external DTD.

Kl start your text editor.

M This example uses
Microsoft Notepad.

1 Type the XML declaration.

B This example calls the
DTD file todo.dtd.

E Open or create the XML
file to which you want to add
an external inline DTD
reference.

Note: To create an inline DTD, see the
section "Declare a DTD."

[3 position the cursor directly
below the XML declaration
and directly above the root
element declaration.

—d Type <!DOCTYPE.

XML DOCUMENT TYPE DEFINITIONS

EX{EE The XML parser assumes that an unqualified filename resides in the same
directory as the referring XML document. If the DTD file resides in another
directory, the value for this parameter must reflect the qualified DTD
filename. For example, if the £ile.xml file resides in the c:\code directory,
and the todo.dtd file resides one directory beneath it in the c:\code\DTDs
directory, the DOCTYPE declaration of the file.xml XML document must
appear as follows:

Example:
<!DOCTYPE tasks SYSTEM "/DTDs/todo.dtd">

To determine if your DTD works with your XML documents, check your XML
documents with an application that can validate both XML documents and
DTDs. You can find a trial version of one such application, XML Spy, at
http://www.xmlspy.com/ as well as on the CD-ROM included with this book.

Using external DTDs presents you with the difficulty of transferring multiple
files when you want to share your XML documents. Not only must you
include your external DTD file with the XML documents that access them,
you must also locate the DTDs in the correct directory when transferring
them to another system. For more convenience, most developers store the
DTD in the same folder as the XML documents that use the DTD.

F O
m— >
—E1 Type the root element to & Type the quote-delimited &l Type the closing angle i Save the file.
\E\)/_lF;:c)h you want to apply the name of the DTD file. bracket (>). B The DTD file is saved.
’ B This example uses the
“EY Type SYSTEM. DTD file todo.dtd.

JAVA AND XML

DECLARE A CONTAINER ELEMENT

specify rules for simple elements that hold only

textual data. You can also create element declarations
in the DTD that define a more complex element structure,
such as elements that contain other elements. A container
element is what you call any element that contains another
element.

You can create element declarations in the DTD that

Programmers commonly create XML documents that nest
elements within other XML elements. Enforcing container
relationships enables you to model complex relationships
between XML data. For example, you can model
relationships between repeating, related groups of
elements, such as employees and projects, customers and
orders, and products and retailers.

Similar to a declaration containing character data, when you
declare an element containing other elements, you specify

the name of the element instead of a data type. An element
you contain within another element must still have its own
element declaration elsewhere in the same DTD.

You can also create container elements that contain other
elements. As long as you declare them all properly in the
DTD with the appropriate element declarations, you can
endlessly nest levels of elements. Elements can contain just
one other element or multiple elements. AImost every XML
document contains at least one container element. In most
cases, an XML document consists of many container
elements. In all but the very simplest XML documents, you
make the root element a container element that has no
textual data, just elements.

You can also define elements to contain a combination of
text and one or more other elements. For more information
about defining other element types, see the section "Define
the Structure of Elements" in this chapter.

DECLARE A CONTAINER ELEMENT

E] Create an element inside
an existing element that
contains some data.

Kl Open or create an XML
document.

A Create an element.

Note: For information on how to create
an element, see Chapter 4.

3 Type the start and end of
the DOCTYPE declaration.

E Type the element
declaration for an element
that has some content.

XML DOCUMENT TYPE DEFINITIONS

Eij While you do not need to declare contained elements
in the same order in the DTD as you have them in the
XML document, doing so is good programming
practice, making your code easier to read and
troubleshoot. Indenting each contained element
makes identifying the relationships between elements
much easier.

DTD

<!ELEMENT description (#PCDATA)>
<!ELEMENT who (#PCDATA)>

<!ELEMENT task (description, who)>

XML Code
<task>
<description>Backup sales data</description>

<who>Andrew</who>

You must reference elements that belong to
namespaces in DTDs by their fully qualified
names. For example, the following specifies
that the retailers element associated in the
corresponding XML file with the r namespace
is contained by the marketing_info
element. For more information about
namespaces, see the section "Using
Namespaces" in this chapter.

Example:

<!ELEMENT marketing_info
(unique_characteristics, rank, r:retailers)>

</task>
4|:IFI:IJ 1
m— >
3 Type <!ELEMENT ()> to 4 Position the cursor in the] Type the name of the El save the file.
create the element element declaration and type ~ contained element. -
declaration. the name of the element that M The DTD file is saved.

will contain another element.

87

JAVA AND XML

DEFINE THE STRUCTURE OF ELEMENTS

document. Constraining what type of data an element

contains ensures the proper formatting of information
in the XML document — a format that an XML application
may require. For example, you can specify an element that
stores a person’s name may only contain other elements
that represent the first and last name of the person. This
helps ensure the integrity of the data in that element when
you use an XML application that verifies the validity of the
data in the XML document.

You can specify the function of elements in the XML

Defining the content of an element to ANY allows you to
make the content of the element virtually any text. You can
make the content of the element another element or allow
the content of the element to contain markup such as
HTML tags.

You can define an element as empty. Although empty
elements cannot hold any content, they can still have
attributes you define within the element’s start tag. For
more information about attributes, see the section "Define
Element Attributes."

You can also define an element to only allow the element
to contain other specific elements. For example, an
address element may contain the element street and
the element city. When defining an element that contains
other elements, you must define the listed elements
elsewhere in the DTD within their own element
declarations.

When specifying a list of elements that you want to contain
within an element in an XML document, you can group the
element names together by enclosing them in parentheses.

If an XML document uses an element, and that element
does not comply with the specified validation rules in the
DTD, an XML application may consider the document
invalid and may not process it. You can verify that the
structure of elements within an XML document conforms to
the validation rules set out in the DTD by using an XML
validation application such as XML Spy. For more
information about using an XML validation application, see
Chapter 4.

DEFINE THE STRUCTURE OF ELEMENTS

_|

|

—&l Create or open an XML
document that contains child
elements.

Type code to create the
element declaration for the
parent element.

Note: For information on how to create
an element, see Chapter 4.

= 2| Type code to create the
element declarations for the
child elements.

A Add the name for the new
element to the list of values
in the element declaration.

XML DOCUMENT TYPE DEFINITIONS

ﬁXﬁ You can use additional symbols to further define the contents of an element.
Depending on the symbol, you can increase or restrict the type of content for
an element. For example, you can specify that an element, or parenthesized
group of elements, may appear more than once by using the plus symbol (+).

Example:
<!ELEMENT task (description | who | reserved)+>

SYMBOL DESCRIPTION

| A single element from a list of elements separated by a | .

* Allows multiple elements or no element to appear.
+ Requires at least one or more elements to appear.
? Allows an optional selection of one choice.

Specifies the sequence in which the elements must appear.

() Groups all or some of the elements together.

XML Spy - [file.an(] [:.][i]ﬁl

f@ﬁile Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table ‘Yiew Browser Soap

- Tools Window Help -8 X
DR AE8|ling oo ass yyE e ERERE

—1] <?xml version="1.0"?>

<IDOCTYPE todo [
<IELEMENT description (#PCDATA)>
<IATTLIST description priority (low | high | medium) “low" >
<IELEMENT task (description)>

| — > <IELEMENT todo (task+)>
=

<todo>

4 <task>

<description priority="low">Backup sales data</description>
<ftask>
<task>
<description priority="high">Complete end of month report</description>
<ftask>
</todo>

This file is valid. |
@D
File xml

XML Spy v4.2 U Ln4,Col64 | |NUI[|

w‘l‘i @ =ML Spy - [file.xml] M8 12:00Pm

—H Type the element I save the XML document. B Open the document in an | [EJ Validate the XML
declaration for a new empty XML validation application. document.
clement. M This example uses XML —l The XML document

A Type the code that creates Spy, available on the validates.
the empty element. companion CD-ROM.

JAVA AND XML

DEFINE ELEMENT ATTRIBUTES

pairs in the form of strings, that can store additional

information about an element. Attributes give you
another choice, other than elements, for storing data. You
declare attributes in the DTD using the <! ATTLIST> tag.
When declaring an attribute for an element, you must
specify the element with which you associate the attribute,
as well as the type of data that you want to contain as the
value of the attribute. The most commonly specified type
for an attribute, CDATA, uses normal text as a value for an
attribute. When specifying the CDATA attribute type, you
cannot include markup, such as HTML tags, within the
attribute value. For a list of other attribute types, see
Appendix C.

X ML elements can contain attributes, name and value

A DTD can specify a default value for an attribute, to be
used if a given element in an XML document does not
specify a value for that attribute. You typically define the
attribute declaration within the DTD immediately after the
element to which the attribute applies. See the section
"Declare a DTD" for more information on DTDs.

While multiple elements of differing names can use
attributes that have the same name, you must have a
separate attribute declaration for each element that uses
the attribute of the same name. For example, you may have
two attribute declarations that specify the attribute name
title; one declaration specifies the attribute with the
element book, while another declaration specifies the
element position.

Whether you consider an empty element or one that
contains data, you can still specify attributes for that
element in the DTD.

After you create the attribute declaration in the DTD, you
can save your file or check that you have defined the
attributes properly by using an XML validation application.
The companion CD-ROM has an XML validation
application, called XML Spy, which validates XML
documents.

DEFINE ELEMENT ATTRIBUTES

(1] Open or create an XML
document that contains
elements.

2] Type attributes for the
elements.

Note: For more information about
aading attributes, see Chapter 4.

—E Type the opening

4] Type the characters that
characters of an inline DTD close the DTD declaration.

declaration.

XML DOCUMENT TYPE DEFINITIONS

A

<!DOCTYPE
<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT

TYPETHIS:

todo [
description (#PCDATA)>
description priority CDATA "low"
status CDATA "open"
owner CDATA "non assigned"

task (description)>
todo (task+)>

You can declare multiple attributes for a single element in the DTD.

RESULT:

<todo>
<task>

<description priority="high" status="open" owner="Andrew">
Backup sales data for last month

</description>
</task>
<task>

<description priority="low" status="open" owner="Andrew">
Complete end of month report

</description>
</task>
</todo>

A Type the code that creates

the element declarations for
the elements in the XML

document.

Bﬁe.xml-ﬂnlepad =\E
File Edit Format View Help
<?xml version="1.0"?7>
<!DOCTYPE todo [
<!ELEMENT description (#PCDATA)>
[H<!ATTLIST[description priority [CDATA["low'}]
T
<!ELEMENT task (description)>
<!ELEMENT todo (task+)>
1>
<todo>
<task>
<description priority="high">
Backup sales data for last month
<fdescription>
</task>
<task>
<description priority="low">
Complete end of month report
</description>
</task>
</ todo>
ﬂ‘.“ﬂ — file.xml - Notepad @’ 12:00EH

3 Type the attribute
declaration tag.

—ld Type the name of the
element and the name of the
attribute.

B Type the attribute type.

M This example uses the
most common attribute type,
CDATA.

Note: See Appendix C for a list of other
attribute types.

= 9| Type the default value for
the attribute.

[save the file.

M The XML document is
saved.

JAVA AND XML

DECLARE ATTRIBUTES AS WORDS

the value of an XML attribute to a single word, or

token, to help ensure the integrity of the data in the
XML document. For example, an attribute you call name
may have a value of John, while the same attribute may not
have a value of John Smith if you only make the value a
word. To define an attribute validation rule that constrains
the value of an XML attribute to a single word, you must
define the attribute type as NMTOKEN.

You can define an attribute validation rule to constrain

You can make the single word any valid XML name. You
always start with a letter or an underscore. The remaining
characters in a valid XML name can include letters,
numbers, periods, hyphens, and underscores. Valid XML
names can also contain colons, although you want to avoid
colon usage because they cause confusion when you work
with namespaces. You cannot use whitespace, such as tabs
and spaces, in a valid XML name.

DECLARE ATTRIBUTES AS WORDS

If you define an attribute with an attribute type of NMTOKEN
and the attribute’s value contains more than a single word,
your XML document will fail validation. You can still specify
a default value for an NMTOKEN type attribute, but you must
make the default value for the attribute a single word;
otherwise the document will fail validation.

As with all validation rules in the DTD, specifying that an
attribute can only have a single word is useful as long as the
application that processes the XML document containing
the DTD understands and implements the validation rule. If
you create your own applications, you need to ensure that
any data that uses the value for an attribute in an XML
document conforms to the validation rules laid out in the
DTD. The companion CD-ROM has an XML validation
application on it called XML Spy that you can use to
validate XML documents.

Kl Open or create an XML
document that contains
elements.

E Type attributes that use a
single word as a value to the
elements.

Note: For more information about
aading attributes, see Chapter 4.

M<UIATTLIST description priority NMTOKEN "low'>

—E] Type the code that creates

. file.xml - Notepad
File Edit Format View Help

<?xml version="1.0"7>
<!DOCTYPE todo [
<!ELEMENT description (#PCDATA)>

BEX]

<VELEMENT task (description)>
<!ELEMENT todo (task+)>
1>
<todo>
<task>
<description priority="high">Backup sales data for last month</description>
</task>
<task>
<description priority="low">Complete end of month report</description>
</task>
</todo>

@g 12:00 PM

gﬁﬂ gk [file.xml - Notepad

3 save the XML document.
the attribute declaration,

setting the attribute type as

NMTOKEN.

XML DOCUMENT TYPE DEFINITIONS

(A
mm You can define an attribute validation rule to constrain the value of an XML attribute
h to multiple words by specifying the NMTOKENS attribute type instead of NMTOKEN.
TYPE THIS:
<?xml version="1.0"?>
<!DOCTYPE todo [
<!ELEMENT description (#PCDATA)>
<!ATTLIST description priority NMTOKENS "very low">
<!ELEMENT task (description)>
<!ELEMENT todo (task+)>
1>
<todo>
<task>
<description priority="somewhat high"> Backup sales data for last month </description>
</task>
<task>
<description priority="very low">Complete end of month report</description>
</task>
</todo>
RESULT:
This file is wvalid.
\. vy
SRR CEE| [y e =
@ File Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table ‘iew Browser Soap ;@ File Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table View Browser Soap
Tools Window Help -8 X - Tools Window Help -8 X
DSl A S8 el oo s Y ee BRERE | (DR HE S8 1@ (oo st | YYd o RRERR
<?uml version="1.0"?> (i) <?xml version="1.0"?> i)
<IDOCTYPE todo [<IDOCTYPE todo [
<IELEMENT description (#PCDATA)> <IELEMENT description (#PCDATA)>
<IATTLIST description priority NMTOKEN "low"> <IATTLIST description priotity NMTOKEN "low">
<IELEMENT task (description)> <IELEMENT task (description)>
<IELEMENT todo (task+)> <IELEMENT todo {task+)>
; (NE ‘
<todo> 3 <todo> 3
<task> <task>
<description priority="high"> Backup sales data for last month </description>| <description > Backup sales data for last month </description>
<ftask> <ftask>
<task> <task>
<description priority="low">Complete end of month report</description= <description priority="low">Complete end of month report</description=
<ftask> B <ftask> m
<ftodo> [w] </todo> [v]
This file is valid. This file is not valic:
@ 0 Invalid value for datatype NMTOKEN in attribute 'priority"
[file.xml [file. xml
XML Spy v4.2 U Ln10,Col28 | |NUI| XML Spy v4.2 U Ln10,Col18 | NUI|
; @2 o Q2 wom

H Open the document in an
XML validation application.

B This example uses XML
Spy, available on the
companion CD-ROM.

[3 validate the XML
document.

—ll The XML document
validates.

EJ validate the XML
document.

—d Change the value of an
attribute to two words.

valid.

—ll The XML document is not

93

JAVA AND XML

RESTRICT ATTRIBUTES TO A LIST OF VALUES

of an XML attribute to one in a list of predefined

values. In other words, you can declare an attribute of
type enumerated list. Declaring attributes in this way helps
reduce input errors and serves as a good approach for
fields, where you already know all the possible values
during XML document creation. For example, you may have
state or province codes available to you when you create
the XML document and can easily incorporate this
information into a list.

You can define a validation rule to constrain the value

You must separate each option within the list with a vertical
bar (|). On most keyboards, you find the vertical bar key to
the left of the backspace key, and you commonly use it
when programming to symbolize the keyword OR. You can
specify any number of values within the enumerated list,
although lists with a large number of values can make your
declarations harder to read. You enclose the list of possible
values that a user can choose in parentheses.

You must give each value within the list of options a valid
XML name. Although you must start XML names with a
letter or an underscore, the remaining characters can
include letters, numbers, periods, hyphens, and
underscores.

You can also specify a default value for an attribute that
uses an enumerated list. You must make the default value
one of the words in the list of possible values.

If you intend to create the code that sets the values for an
attribute, and you have those values available in a DTD
validation rule, you must also create the code that can parse
the attribute declaration and select a valid value from the
enumerated list.

The companion CD-ROM has an XML validation application
on it called XML Spy that you can use to validate XML
documents.

RESTRICT ATTRIBUTES TO A LIST OF VALUES

—El Open or create an XML
document that contains
elements and a DTD.

94

. file.xml - Notepad
File Edit Format View Help

<?xml version="1.0"7>
<!DOCTYPE todo [

BEX]

1
H—KIATTLIST description priority[(flow | high | mediump ["low" >]

</task>
<task>

<!ELEMENT description (#PCDATA)>

<!ELEMENT task (description)>
<!ELEMENT todo (task+)>

1>

<todo>
<task>

<description>Backup sales data</desdription>

<description>Complete end of month rfeport</description>
</ task>
</ todo>

@g 12:00 PM

N [file.xml - Notepad

4] Type ().

—H Type a list of values
separated by vertical bars (|).

1 Type the code that creates
an attribute declaration.

E Position the cursor after
the name of the attribute.

XML DOCUMENT TYPE DEFINITIONS

TYPETHIS:

<?xml version="1.0"?>
<!DOCTYPE todo [

<!ELEMENT description
<!ATTLIST
<!ELEMENT
<!ELEMENT

1>

(#PCDATA) >

task (description)>
todo (task+)>

<todo>
<task>
<description priority="Low">
Backup sales data for last month
</description>
</task>
<task>
<description priority="high">
Complete end of month report
</description>
</task>
</todo>

Remember that any values you specify within an attribute declaration are always
case sensitive; as with most things to do with XML documents, mismatching the
case of attribute values results in an error when you validate the XML document.

description priority (low | high | medium)

RESULT:

This file is not wvalid:

Unexpected choice "Low" for
attribute "priority": (low
high | medium) expected

"low">

| file.xml - Notepad

(] XML Spy - [file.xm(] mEx)|

File Edit Format View Help
<?xml version="1,0"?>
<!DOCTYPE todo [
<VELEMENT description (#PCDATA)>
KIATTLIST description priority (low | high | medium) "low" >

<!ELEMENT task (description)>
<!ELEMENT todo (task+)>

<description [priority="low"pBackup sales data</description>
</task>
<task>
<description >Cnmp1ete end of month report</description>
<ftask>
</ todo>

E@Eila Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table View Browser Soap

- Tools Window Help -8 X

DEeR A0 8| nilec ads | U ne RRERLR

<?xml version="1.0"?>
<IDOCTYPE todo [
<IELEMENT description (#PCDATA)>
<IATTLIST description priority {low | high | medium) "low" >
<IELEMENT task (description)>
<IELEMENT todo (task+)>
1=
<todo>
<task>
<description priority="low">Backup sales data</description>
<ftask>
<task>
<description priority="high">Complete end of month report</description=
<ftask>
<ftodo>

@ This file is velid.l
[file. xml

U

@; 12:00PM

[file.xml - Notepad

3 Type the code that creates Save the XML document.
the attributes for the elements

as specified in the DTD.

XML Spy v4.2 Ln4,Col64 | |NUI| |

CW® 12:00PM

E Open the document in an | [EJ Validate the XML

XML validation application. document.
B This example uses XML —l The XML document is
Spy, available on the valid.

companion CD-ROM.

JAVA AND XML

CREATE INTERNAL GENERAL ENTITIES

general entity, which you refer to repeatedly inside an

XML document. Defining entities saves you from
having to constantly repeat long or difficult passages of text
inside an XML file. You often define general entities to
represent sections of code for information such as
addresses, phone numbers, company names, or disclaimers.
Apart from reducing the size of the XML document, using
general entities also makes it easier to update the
information throughout an XML document or, indeed,
multiple XML documents. When information changes, for
example a phone number, you only have to update the
information where you declare the general entity, and not
the potentially numerous locations throughout your XML
document.

You can describe a single section of data, called a

You declare general entities in the DTD. You start an entity
declaration in the DTD with <!ENTITY and follow it with

the name for the entity as well as its value. You must
enclose the value of an internal general entity within
quotation marks (" "). Whenever you include the name of
the general entity in the XML document, XML substitutes
the values you specify in the DTD for the entity name.
When specifying an entity name in an XML document, you
precede the name of the general entity with an ampersand
(&). You immediately follow the name of the general entity
with a semicolon (;).

Most XML applications, including most XML parsers,
automatically substitute the value for the general entity
name before your code can access the XML document. If
you create a Java application that uses an XML parser that
does not resolve the entities, you need to create the code
that substitutes the specified value for the general entity
name throughout the XML document.

CREATE INTERNAL GENERAL ENTITIES

&l Open or create an XML
document that contains
elements and a DTD.

—F Type <!ENTITY. Type the value you want

to assign to the entity.

—E Type the name of the
= 5| Type >.

entity.

XML DOCUMENT TYPE DEFINITIONS

elements; you can also use them to provide information for
other parts of an XML document, such as attribute values.

TYPETHIS:

<?xml version="1.0"?>

<!DOCTYPE todo [
<!ELEMENT description (#PCDATA)>
<!ATTLIST description
who CDATA #REQUIRED

AW[X You do not have to use general entities only in the content of

<!ELEMENT task (description)>
<!ELEMENT todo (task)>
<!ENTITY owner "Andrew">
1>
<todo>
<task>
<description who="&owner; ">Backup sales data</description>
</task>
</todo>

RESULT:

|<

- <todo>
- <task>
<description who="Andrew">Backup sales data</description>
</task>
</todo>

_> <description>Backup sales data</description»

| file.xml - Notepad u@@

File Edit Format View Help

<?xml version="1.0"?>

<!DOCTYPE todo [
<!IELEMENT description (#PCDATA)>
<!ELEMENT who (#PCDATA)>
<!ELEMENT task (description, who)>
<!ELEMENT todo (task+)>
<!IENTITY aowner “"Andrew">

<task>

</ task>

1
<task>
<description>Print end of month report</description>
<who>Rowner ;< fwho>
<ftask>
</ todo>

[file.xml - Notepad @g 12:00 PM

3 Type the name of the 4 Repeat step 6 for each E Open the document in an
general entity, preceding it instance of the general entity ~ XML viewing application.
with an & and following it in the XML document.

with a ;.

M This example uses
Microsoft Internet Explorer.

The internal general
entities resolve. 97

JAVA AND XML

CREATE A NOTATION

straight text. You can use an XML document to store,

or reference, many different types of data. You use a
notation declaration to notify the application that the XML
document may contain non-XML data. Non-XML data
includes information such as a word-processing file, an
image file or some other proprietary file type. For example,
an XML document that stores information about employees
of a company might need to reference an image that
contains a picture of an employee.

X ML documents may contain information other than

A notation declaration specifies the name of the notation. It
starts with <! NOTATION followed by the name of the
notation. You must make the name of a notation a valid
XML name consisting of letters, digits, periods, underscores,
and hyphens. After the name of a notation, the notation
declaration can indicate the file type of the data. You can
indicate the file type by including the SYSTEM keyword and
following it with the data type of the information that you

CREATE A NOTATION

want to reference within the XML document. You enclose
the data type in quotation marks (" ").

XML applications do not typically support the processing of
non-XML data; if you create your own code to process the
XML data, you must create code that can handle the data
types in the XML document as specified in a notation
declaration. Typically, XML applications, such as an XML
parser, do not verify or otherwise check the validity of a
notation declaration. The XML parser checks the notation
declaration for correct formatting, but only to ensure the
validity of the DTD and XML documents.

You use notation declarations with external unparsed
entities. For more information about external unparsed
entities, see the section "Create External General Entities"
in this chapter. After you create a notation declaration, you
can use an XML validation application to verify the validity
of the notation declaration.

B Position the cursor on a
new line within the DTD.

1 Open or create an XML
document that contains a
DTD.

—E] Type <!NOTATION>.

Position the cursor within
the tag and type the name of
the notation.

M In this example, the
notation name is GIF.

XML DOCUMENT TYPE DEFINITIONS

Similar to XML entities and processing instructions, notations enable
developers to incorporate non-XML data into XML applications. The
difference among these three approaches is as follows:

e Entities provide links to the physical location of non-XML data; for
example, <!ENTITY name SYSTEM "http://www.someDomain
.com/someURL">.

* Processing instructions provide programmatic instructions for accessing
and viewing non-XML data; for example, <?gcc helloWorld.c?>.

¢ Notations, in contrast, describe the format of non-XML data files; for
example, <!NOTATION PDF SYSTEM "application/pdf"> or
<!NOTATION PDF PUBLIC "someUrl"s>.

You use notation declarations to identify information that requires the use
of another application to process the information. The applications that
can process the information are called helper applications. For example,
you may consider an image-editing program a helper application that
prints image data stored in an XML document. When dealing with notation
declarations and helper applications, you have no guarantee that a specific
helper application exists on the computer system processing your XML
documents. If you intend to process your XML documents on multiple
computers on which you do not have the helper application available, the
notation declaration’s information may not process as you intend.

—H Type the SYSTEM
keyword.

notation, enclosing it in

3 Type the data type of the

XML Spy - [file.xam(]

BEX]

Tools Window Help

D Ee@ @ (8Ll oo s s Y]

@Eile Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table View Browser Soap

-8 X

we BRERB

<?xml version="1.0"?>
<IDOCTYPE todo [
<IELEMENT description (#PCDATA)>
<IELEMENT task (description)>
<IELEMENT todo (task+)>
> <INOTATION GIF SYSTEM "image/gif'>|
=
<todo>
<task>
<description>Backup sales data</description>
<ftask>
<task>
<description=Print end of month report</description
<ftask>
<ftodo>

@ This file is valid.

v

File xml

Ln 4, Col 64 NUI

XML Spy v4.2 U

" 1z:00Pm

TN oo |

M In this example, the E Open the document in an

notation data type is XML validation application. document.
i if.

image/gi M This example uses XML —ll The XML
I save the XML document. Spy, available on the validates.

companion CD-ROM.

E] validate the XML

document

JAVA AND XML

CREATE EXTERNAL GENERAL ENTITIES

an external data source, such as a JPG or PDF file, in

your XML-based application. You define an external
data type as any non-XML data type, such as a picture or
word-processing document. While you can store different
data types in an XML document, programmers more
commonly reference an external file that contains the data.

You can declare an external general entity to reference

As with internal general entities, you precede an external
general entity declaration with an exclamation point (!) and
the ENTITY keyword. You must also specify the name of
the external general entity that you want to use. You can
indicate the location of the data file by specifying the
SYSTEM keyword and following it with the path and
filename of the XML data file. You must enclose the
filename in quotation marks (" ").

When you reference an external data file in an external
entity declaration, and that data file is not another XML
document, you must specify the NDATA keyword. You

follow the NDATA keyword with a notation name that you
have previously specified in a notation declaration within
the DTD. For information about notation declarations, see
the section "Create a Notation" in this chapter.

To declare an external general entity that you want to
include as an external data source, you must first create a
notation declaration in a DTD. To do so, see the section
"Create a Notation."

Most XML applications do not automatically process the
files to which an external general entity refers. For this
reason, when creating your own code, make sure your code
can process the files that the general entity indicates. While
XML does not require this, you typically use the information
in the related notation declaration to process the external
general entity. After you create a general entity, you can use
an XML validation application to verify the validity of your
general entities.

CREATE EXTERNAL GENERAL ENTITIES

—l Open or create an XML
document that contains a
DTD.

—H Type <! ENTITY>.

—E Position the cursor in the
tag and type the name of the
entity.

Type the NDATA keyword
and follow it with the
previously defined notation
attribute.

Note: For information about notation
declarations, see the section "Create a
Notation."

3 Type the SYSTEM keyword
and follow it with the name
of the external file.

XML DOCUMENT TYPE DEFINITIONS

You can specify an external filename using absolute or relative URLs. For
example, the following are all valid entity declarations:

Example:

<!ENTITY P1 SYSTEM "productl.gif" NDATA GIF>

<!ENTITY Pl SYSTEM "http://www.someDomain/productl.gif" NDATA GIF>
<!ENTITY P1 SYSTEM "../productl.gif" NDATA GIF>

<!ENTITY Pl SYSTEM "/xml/productl.gif" NDATA GIF>

Notation attributes describe non-XML data formats, while external entities
reference notation attributes and describe the logical location of a non-
XML data file. You must define a notation attribute before you can
reference it. A good design practice is to define both notation attributes
and notation references (entity declarations) in the same DTD file, such as:

Example:
<!NOTATION GIF SYSTEM "image/gif">
<!ENTITY Pl SYSTEM "../productl.gif" NDATA GIF>

I3 Type the name of the
general entity, preceding it
with an & and following it
with a ;.

XML Spy - [file.an(]

BEX]

Tools Window Help

i@ﬁile Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table Yiew Browser Soap

DR B8 n@ oo |sd s YT @

<?xml version="1.0"?>
<IDOCTYPE todo [
<IELEMENT description (#PCDATA)>
<IELEMENT task (description, who)>
<IELEMENT todo (task+)>
<IELEMENT who (#PCDATA)>
> <INOTATION GIF SYSTEM “image/gif'>
<IENTITY logo SYSTEM "logo.gif' NDATA GIF=
1=
<todo>
<task>
<description=Backup sales data</description>
<who>&logo; <Awho>
<ftask>
</todo>

[w]

@ This file is valid. |

[File. el

XML Spy v4.2 U

Ln 4, Col 64 [NUl

@ =ML spy

" 12:00pm

E Open the document in an
XML validation application.

4 save the XML document.
document.

B This example uses XML
Spy, available on the
companion CD-ROM.

validates.

E] validate the XML

—l The XML document

JAVA AND XML

USING NAMESPACES

and large XML documents is that you can

unintentionally have names that conflict. For example,
you may have an element called name that refers to the title
of a book, and in another part of the XML document, you
may have another element called name, which refers to the
name of a company. Naming conflicts commonly occur
when you merge two or more XML documents into a single
XML document. With programming languages such as Java,
you can use scoping rules to prevent naming conflicts
between various method, variable, and class names.
Scoping rules define in what area of your code you can
safely use named items.

3 common problem with most programming languages

In XML documents, you can use namespaces to prevent
naming conflicts by associating each name with a
namespace. You indicate what name belongs to which
namespace by preceding each name with a prefix and
following it with a colon.

You can create your own prefix names by simply preceding
the name with the prefix. When you do so, the prefix name

should make sense within the context of the XML
document. For example, you can create a prefix name that
represents the section or element that encompasses the
section of the XML document where you want to use the
namespace. You may find that this makes your XML
documents easier to read, understand, and troubleshoot.

In XML documents, using namespaces prevents naming
conflicts. Because you can use the colon in any valid XML
name, XML applications do not need to recognize
namespaces to process XML documents that define
namespaces with prefixes. The XML applications can simply
interpret the namespace name, the colon, and the element
name as a single word, which it can use as the element
name. For code that needs to recognize namespace usage
within an XML document, you must create the code that
determines when, where, and how to use namespaces. You
can configure most XML parsers to ignore or recognize the
usage of namespaces within an XML document.

USING NAMESPACES

EA Create two or more
elements of the same name.

Kl Open or create an XML
document.

[Repeat steps 3 and 4 for
the end tag.

E] Place the cursor before
the name of the element.

3 Repeat steps 3 to 5 for the
element of the same name.

1 Type the prefix name
followed by a colon (:).

XML DOCUMENT TYPE DEFINITIONS

name of the element or attribute belongs to a specific namespace.

TYPETHIS:

<?xml version="1.0"?>
<!DOCTYPE todo [
<!ELEMENT assign:who (#PCDATA)>
<!ELEMENT completed (completed:who)>
<!ELEMENT completed:who (#PCDATA)>
<!ATTLIST completed:who
completed:dept CDATA #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ATTLIST description
dept CDATA #REQUIRED>
<!ELEMENT todo (description, assign:who, completed)>
1>
<todo>
<description dept="sales">Backup sales data</description>
<assign:who>Andrew</assign:who>
<completed>
<completed:who completed:dept="support">Peter</completed:who>
</completed>
</todo>

(N
Amty: Both elements and attributes can use a prefix to indicate that the subsequent

RESULT:

This file is wvalid.

|<

| file.xml - Notepad @) Spy - [file.an(] @

File Edit Format ‘View Help “ER Ele Edit Project XML DTDjSchema Schemadesign XSL DocumentEditor Convert Table View Browser Soap
<?xml version="1.0"7>

KTDOCTYPE todo [- Tools Window Help _A8x
<IELEMENT assign:who (#PCDATA)> > [B Ci) 8| Ea
_ | <!ELEMENT completed (completed:who)> D|Dlﬂ'|ﬂﬁ[§‘x g‘n o ‘M& %‘wmc‘@'“@ B@@
<!ELEMENT completed:who (#PCDATA)> 23 ="1.0"?> kad
<IELEMENT description (#PCDATA)> Z[?gg?rr;llgnmdl? (&)
<!ELEMENT todo (description, assign:who, completed)> ’ ZIELEMENT assign:who (#PCDATA)>
]<>tod0> <IELEMENT completed {completed:who)>
<description>Backup sales data</description> <IELEMENT completed:wha (#°CDATA)>
I <assign:who>Andrew</assign:who> <IELEMENT description (#PCDATA)>
<completed> <IELEMENT todo (description, assign:who, completed)> |
<completed:who>Peter</completed:who> I= =
</completed> <todo>
</todo> <description>Backup sales data</description>

<assign:who>Andrew</assign:who>
<completed:>
<completed:who>Peter</completed:who>
</completed> L
<ftodo> [w]

This file is valid. |
@

[file. xml
XML Spy v4.2 U Ln 4, Col 64 [NUlL

CW® 12:00PM

Q8 am

d Create a DTD for the XML [EX Save the XML document. B Open the document in an | [d Validate the XML

document. XML validation application. document.
B This example uses XML —M The XML document
Spy, available on the validates.

companion CD-ROM. 103

JAVA AND XML

USING THE XML NAMESPACE ATTRIBUTE

of names within an XML document and prevent

naming conflicts. Although a prefix identifies different
namespaces, you must also make sure that the prefixes
themselves remain unique.

You can use namespaces to guarantee the uniqueness

You can specify the name or address of a URI that identifies
a namespace and thus the associated prefix. The XML
namespace attribute specifies the URI you associate with a
namespace. You typically make the URI in the form of an
Internet address such as http: //www.company.com/
xml/ns. As with all attributes, you specify the XML
namespace attribute within the start tag of an element. The
name of the XML namespace attribute as specified in the
tag is xmlns. You call the URI that targets the XML
namespace attribute the namespace name.

Although not required, you can have the XML namespace
attribute, which targets the URI, provide information about
that namespace. Most XML applications do not access the
specified URI in the XML namespace attribute. You use the

namespace name primarily to guarantee uniqueness; to
ensure uniqueness, no namespaces should ever share the
same namespace name.

You can use the XML namespace attribute in XML
documents that XML applications, unaware of namespaces,
can parse. This ensures compatibility of XML documents
that use namespaces with older XML applications, which
programmers may have developed before the introduction
of namespaces.

You specify the XML namespace attribute just like any
other element attribute: you follow the word xm1lns with a
colon and then the name that you want to use as the
namespace prefix. The value of this attribute becomes the
namespace name. You must enclose the namespace prefix
in quotation marks.

As with the addition of any attribute to an XML document
that uses a DTD, you need to alter the DTD to reflect the
changes in the XML document when you use namespaces.

USING THE XML NAMESPACE ATTRIBUTE

0 Open or create an XML
document that contains
elements.

104

El Type a prefix to an
element name in the element
end tag.

1 Type a prefix to an
element name in the element
start tag.

XML DOCUMENT TYPE DEFINITIONS

EX&E You can specify that XML use a default namespace whenever it
encounters an unspecified prefix in the XML document. You
specify the default namespace within the start tag of the root
element. You define the default namespace using the attribute
xmlns without following the word with a colon and a prefix name.

Example:
<!DOCTYPE todo [
<!ELEMENT description (#PCDATA)>
<!ELEMENT task (description, who)>
<!ELEMENT todo (task)>
<!ATTLIST todo xmlns CDATA #REQUIRED>
<!ELEMENT who (#PCDATA) > 1>
<todo xmlns="http://www.company.com/ns">

<task>

<description>Backup sales data</description>

<who>Andrew</who>

</task>
</todo>
\. J
" file.xml - Notepad BE) XML Spy - [file-xn(] BER
File Edit Format ‘iew Help - Ele Edit Project XML DTD{Schema Schemadesion XSL DocumentEditor Convert Table View Browser Soap
?xml version="1.0"7> H i
IDOCTYPE todo | i Tooks Window Help -ax
<!ELEMENT assign:who (#PCDATA)> . & < 2
<IATTLIST 2ssigniwno DEeR @08 nl - (ass DTE e BRERD
xmlns:assign CDATA #REQUIRED> <2xml version="1.0"?> ~
<1ELEMENT description (#PCDATA)> élljbcﬁlﬁlét p —
<!ELEMENT task (description, assign:who)> IELEMENUTU[' -who (#PCDATA
<IELEMENT todo (task)> :lAwLISTa:S?;r"E\';P“'; 0)=
> ! :
Efodos xmins:assign CDATA #REQUIRED>
_> <task> <IELEMENT description (#PCDATA)>
<description>Backup sales data</description> > <IELEMENT task (description, assign:who)>
<assign:wh0|xm1ns:assigﬁF“http://www.company.com/people”PAndrew</assign:who <IELEMENT todo {task)> E
<7 task> >
K/todo> <todo>
<task>
<description>=Backup sales data</description>
<assign:who xmins: assign="http:/Awww. company. com/people">Andrew</assign:who>
<ftask>
<ftodo> ™

I This file s valid.

%)
[File. el I
XML Spy v4.2 U Ln4,Col64 | |NUI|

@g 12:00 PM ar @ ML Spy CW® 12:00pM

1 Type xmins: and follow it [3 Create or alter the DTD to] Open the document in an | [Validate the XML

with the prefix name. reflect the new attribute XML validation application. document.
A Type = and follow it with name. M This example uses XML —M The XML document
the namespace URI, enclosing [Save the XML document. Spy, available on the validates.

the name in quotation marks. companion CD-ROM.

JAVA AND XML

INTRODUCING XML SCHEMAS

XML syntax, allows you to describe and constrain

both the structure and the data within an XML
document. Having well-defined and easily described XML
documents using XML Schemas makes it easier and more

X ML Schema, an XML document that you create with

WHY NOT DTDS?

efficient to exchange the XML documents with other
applications. Although you can accomplish many of the
same tasks with DTDs, XML Schemas offer many more

advantages than DTDs. In fact, XML Schemas are intended

to replace the use of DTDs.

Non-Standard Format

Programmers who are unfamiliar with Standardized
Generalized Markup Language (SGML) may find the
keywords, coding styles, and structure of DTDs

method of coding prior to creating XML documents if
they want to use DTDs with their XML documents. You
find this less likely with XML Schemas, which use a
standard XML coding style in their creation.

somewhat confusing. DTDs are unlike most programming
languages as well as XML, so beginners must learn a new

Inflexibility
You may find DTDs limited in their ability to describe

Coexisting

You should know how to use, create, and modify both
DTDs and XML Schemas; you use both when creating
XML documents and both have valid methods for
constraining and attempting to ensure the integrity of
information in an XML document. For simpler XML
documents, you may find DTDs more than adequate.
For more complex documents, you may need to have
more control over the content and structure of XML
documents. For example, in XML documents that other
people modify, you may want to use the more
sophisticated aspects of an XML Schema to restrict the
modifications that they can make.

the actual content of the XML documents. For example,
you cannot use a DTD to limit the content of an element
to a numerical value. DTDs allow you to specify a
number of data types, which you can use to restrict the
type of content in an XML document, but you cannot
use DTDs to restrict data to more complex data types,
such as a string that consists of numbers. XML
Schemas give you much better control over the type of
information that you can place in an XML document.

ADVANTAGES OF XML SCHEMAS

XML SCHEMAS

Strong Data Typing

XML Schemas allow you to specify the content of the
elements in an XML document. You can use XML
Schemas to specify that the content of an element be a
simple piece of data, such as a number, or you can even
specify a more complex data structure that contains
multiple elements, multiple data types, attributes, and
structures. You can also constrain values to lists, making
it harder for someone to inadvertently add incorrect
data.

Easy to Learn

Unlike DTDs, you create XML Schemas using XML tags.
This means that programmers learning to create XML
Schemas do not have to learn a new coding language at
the same time. They can focus solely on creating the
schemas themselves, and not on learning the syntax to
create the schemas. The XML syntax that creates XML
Schemas is the exactly same as the syntax you find in
any standard XML document.

Modular Design

XML Schemas enable you to work with data structures,
which you may find more familiar if you have previously
worked with object-oriented programming languages.
For example, XML Schemas allow you to modify, reuse,
and replace previously created objects. As in any
object-oriented programming language, modularity
promotes more efficient and effective use of data. It
also makes it much easier to modify, upgrade, or update
your XML documents, making your information more
extensible.

Efficient Data Exchange

Using XML Schemas allows applications to describe the
information that they exchange with other applications.
This allows applications that share data to understand
this exchanged information. For example, XML Schema
makes it possible to identify date and time information,
which many applications also exchange. Before
accessing the information in the XML document, the
application can use the schema and determine where
the information in the document is located as well as the
format of the information within the XML document.

Namespaces Support

XML Schema fully supports the use of namespaces. Not
only does XML Schema support a single namespace, but
it also allows you to use multiple namespaces in a single
XML document. This makes it much easier to reuse
element definitions, freeing you from having to re-
create the element rules each time you want to use
them. As with namespaces in DTDs, you use prefixes to
distinguish elements from other elements by
referencing different namespaces.

Fewer Errors

When using XML documents, including those that make
use of DTDs, you could consider the document well-
formed and valid, but you could still find errors in the
data itself. For example, a telephone number may have a
missing digit, or you may have omitted the address of a
company. In both of these cases, the XML document
reports any errors during validation. XML Schemas allow
much more control over what can make up the content
of an XML document, and this reduces the number of
errors in the information stored in the XML document.

107

JAVA AND XML

CREATE AN XML SCHEMA DECLARATION

structure and content of an XML document. An XML

Schema consists of an XML document that you can
generate with XML syntax. You create the XML Schema
using a schema declaration, which has a schema element.
Because it uses XML syntax, the schema element must have
a start and an end tag.

You can create an XML Schema to describe the

The XML Schema start tag contains the xm1ns attribute,
which targets the XML Schema namespace. The XML
Schema namespace consists of an XML Schema containing
the definitions for elements and attributes, which construct
the schema. The xmlns attribute also allows you to specify
the prefixes that identify the XML Schema namespace.

With namespaces, you can declare elements globally or
locally. To declare an element globally, you must do so
within the root element of the XML document. You declare
locally declared elements within the content of another
element, other than the root element.

You use the elementFormDefault attribute to mark a
namespace prefix both as a globally and locally declared
element. When you specify the value of the
elementFormDefault attribute as unqualified, only
global elements use the namespace prefix. Setting the
elementFormDefault value to qualified means that
you must use a namespace prefix for all elements within the
XML document, whether global or local.

Because an XML Schema is still an XML document, you
must include an XML declaration as the first line of the XML
Schema. You can save XML Schemas as plain text files,
typically with the extension .xsd. Once you have saved the
XML Schema file, you can reference it from within the XML
document that will use the XML Schema to constrain the
structure and data in that XML document.

CREATE AN XML SCHEMA DECLARATION

|

E‘] Create the XML Schema
end tag.

w1 Type the code that creates
the XML declaration.

3 Create the XML Schema
start tag that also specifies the
namespace prefix.

—n Insert the xmlns attribute
into the start tag.

Type a colon and follow it
with the namespace prefix.

—B Type ="

XML SCHEMAS

\

Eij You may find it difficult to visualize the finished XML Schema file.
An example of a simple XML Schema for a very basic XML
document might look like this:

Example:

<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="description">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="priority" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="owner" type="xs:string"/>
<xs:element name="task">
<xs:complexType>
<XS:sequence>
<xs:element ref="description"/>
<xs:element ref="owner"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

Position the cursor 8 Type the name of the XML —E Insert the & save the XML Schema
between the quotation marks. ~ Schema namespace. elementFormDefault file.

attribute into the start tag. B The XML Schema is saved
0 Assign the value in a file.

qualified to the

elementFormDefault

attribute.

JAVA AND XML

DECLARE AN ELEMENT

ou use elements, the most common type of items
Ywithin an XML document, to identify information. A

simple element consists of a start tag and an end tag
with the content of the elements between the tags.
Elements can also contain other elements; for more
information, see the section "Declare a Container Element"
in this chapter.

As with elements in DTDs and XML documents, you must
declare the elements in the XML Schema that you declare
within the XML document. A simple element declaration
within an XML Schema specifies the name of an element
and the type of data that you want the element to hold. You
specify the name of an element within the start and end
tags of that element in an XML document.

The element content’s data type constrains the element

content’s value within the XML document. When the
content of an element does not match the constraints as

DECLARE AN ELEMENT

specified in the XML Schema, the XML document fails
validation when you check it with a validation application.
For information about validating XML documents that use
an XML schema, refer to the section "Validate an XML
Document" in this chapter. You must use valid XML
documents when accessing XML documents from within a
Java application you create, regardless of whether the XML
document uses an XML Schema.

When specifying the data type of an element content that
consists solely of text, you can use the value string in the
element declaration. You must prefix the string value
with the namespace name you use for the XML Schema
namespace, previously defined within the same XML
Schema.

When converting an XML document using a DTD to an XML
document that utilizes an XML Schema, you can use a
string data type to replace data that have a CDATA type.

1 Open or create an XML
Schema file that contains the
XML Schema declaration.

Note: You can use the code from the
section "Create an XML Schema
Declaration."

3 Type the code that creates
an empty element tag.

E Position the cursor
between the start and end
tags of the schema element.

XML SCHEMAS

If you use empty elements within your XML documents, you still must
declare those elements within an XML Schema. To declare an element
as 'empty’ you must include the complexType element tag within
the element’s declaration. You do not have to specify the data type
for an empty element. You do not consider the whitespace within an
XML document between the element tags textual data.

A

XML Document
<todo>

</todo>
XML Schema
<xs:element name="todo">

<xs:complexType/>

</xs:element>

</xs:schema>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

= 4| Type name="". Type the name of the = 7| Type type="".
B position th element that you want in the B position th
osition the cursor XML document. osition the cursor

between the quotation marks.
B This example uses an XML

document that has one
element, called "todo".

between the quotation marks.

Type the data type of the
element content.

I save the XML Schema
file.

B The XML Schema is saved
in afile.

JAVA AND XML

ASSIGN AN XML SCHEMA
TO AN XML DOCUMENT

to an XML document. To create an XML Schema file,

see the sections "Create an XML Schema
Declaration" and "Declare an Element." Assigning an XML
Schema to an XML document involves specifying the
location of the XML Schema file within the XML document.
You do this by specifying the XML Schema file within the
root element of the XML document that will utilize the XML
Schema file.

O nce you create an XML Schema file, you can assign it

The root element also uses the xm1ns attribute to reference
the location of the XML Schema namespace for instances.
You must use this namespace if you intend to utilize the
XML Schemas.

The prefix that you typically associate with the XML Schema
namespace for instances is xsi. Only more sophisticated
XML applications actually use the information in the xmlns
attribute to locate and access the XML Schema namespace
for instances. While most applications do not use the

information specified as the value for the xm1ns attribute,
you must define the xmlns attribute in order for your XML
Schema and XML document to be valid. For information
about validating XML documents that use an XML Schema,
refer to the section "Validate an XML Document" in this
chapter.

The noNamespaceSchemaLocation attribute of

the XML Schema namespace for instances specifies

the name of the XML Schema file for the element. For
simple XML documents, only the root element uses

the noNamespaceSchemalLocation attribute. The
noNamespaceSchemaLocation attribute helps the XML
application to recognize that it references an XML Schema
file and not another namespace name.

You do not have to make any modifications that depend
upon which XML document uses the XML Schema file. In
this way, you can use the same XML Schema file with
multiple XML documents.

ASSIGN AN XML SCHEMA TO AN XML DOCUMENT

= 1 Open or create a simple
XML document. document with a single
element called "todo" that

contains textual data.

M This example uses an XML

1 Insert the xmlns attribute [EJ Type ="".

into the start tag.

XML SCHEMAS

You are not limited to using the xsi prefix when referring to the XML
Schema namespace for instances. You can use any prefix you want as
long as you use it consistently in the implementation of the prefix.
Because xsi is the most commonly used prefix, you should not change
it without good reason, as changing it may make your code harder to

read by others.

Example:
<?xml version="1.0"?>
<todo xmlns:xmlNxInst="http://www.w3.0rg/2001/XMLSchema-instance"

xmlNxInst :noNamespaceSchemaLocation="C:\Code\file.xsd">
<task priority="high">
<description>Backup Sales Data</description>
<owner>Andrew</owner>
</task>
<task priority="Low">
<description>Backup Accounting Data</description>

<owner>Andrew</owner>
</task>
</todo>

3 position the cursor
between the quotation marks.

5| Type the name of the XML 3 Insert the noNamespace [EJ Save the XML document.

Schema namespace for SchemaLocation attribute .
instances. into the start tag. : eTP;ﬁeXML Schema is saved

—d Assign the name of the
XML Schema file to the
noNamespaceSchema
Location attribute.

13

JAVA AND XML

VALIDATE AN XML DOCUMENT

contents of the referenced XML document conform to

the rules as you specify them in an XML Schema. If
the XML document contains information that does not
conform to the specified XML Schema document rules, you
consider the XML document invalid. During validation, the
XML validation application checks each element in the XML
document and compares it against the rules laid down for
that element within the XML Schema document.

You can validate an XML document to ensure that the

You can install an XML validation application on your
computer. An XML validation application can check your
XML documents to ensure that they conform to the defined
rules in any previously created DTDs or XML Schema
documents. As well as validating an XML document, you can
also validate an XML Schema file itself. Because an XML

Schema document is also an XML document, it must conform
to the rules of well-formedness and validity that apply to
other XML documents. If your XML Schema document is not
valid, you cannot check your XML documents against the
XML Schema file for validity. When using an XML validation
application, you must ensure that the application has the
capability of validating documents using XML Schema
documents and not just the capacity of validating the XML
Schema documents themselves. Some older validation
applications can only validate XML documents against a DTD
and not an XML Schema document.

If the XML validation application finds an XML document
invalid, the application typically indicates when and where
the error occurred. You can use this information to correct
the errors in your document or XML Schema file.

VALIDATE AN XML DOCUMENT

XML Spy - [file.xm(] H@]Ej

XML Spy - [file.xm(] E]E]E_i]

@Eile Edit Project XML DTDfSchema Schemadesign XSL Document Editor Convert Table View Browser Soap

Tools Window Help

DB @ da S

-8 X

Bloo sy ane BRERB

@E&Ie Edit Project XML DTDfSchema Schemadesign XSL Document Editor Convert Table View Browser Soap

Tools Window Help

D3 Ba 8

-8 X

B oo @aés yFkE ae pRER B

07>
tp: /vy w3, orgf2001XMLSchema-instance”
eSchemalocation="C:\CodeMile.xsd">

<?uml vers
<todo

si:noNames

Backup monthly sales data

<ftodo>

[file xml
XML Spy v4.2 U L8, Col 1 UM
]
“‘“ i @ %ML Spy - [file.xml] " 1z:00Pm

VALIDATE A VALID
XML DOCUMENT

Kl start your XML validation
application.

B This example uses XML
Spy, available on the
companion CD-ROM.

H Open or create an XML
document that references an
XML Schema.

Note: You can use the code created
in the section "Assign an XML
Schema to an XML Document.”

114

—B Click the validate button.

<2yl vi 07>
<todo xmin "http: s w3, org/2001/XMLSchema-instance”
sinolMamespaceSchemalocation="C:\Code\file.xsd">
Backup monthly sales data

<ftodo>

This file is valid.
@
[filexml
Validate file Ln 8, Col 1 NUM
2
“‘“ i @ XML Spy - [file.xml] " 1z:00Pm

B A message displays
indicating that the document
is valid.

XML SCHEMAS

EX{E{ You can validate the actual XML Schema document by
submitting it to a validation service on the World Wide Web.
This enables you to create and check your XML Schema
documents without having to install an XML validation
application on your own computer. The most popular
schema validation service is available from the World Wide
Web Consortium, located at http://www.w3.0rg/2001/03/
webdata/xsv. When you create XML documents and their
related XML Schemas, or DTDS, an application called an
XML parser accesses the XML documents from within your
Java code. An XML parser can only process valid XML
documents and make the information in those valid XML
documents available to your Java application. To ensure
proper XML parser operation, if possible, you should check
your XML documents for validity before accessing them
from within your Java applications.

\. J
XML Spy - [file.xml] H@ﬁ XML Spy - [file.xml *] u[g]ﬂ
- Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap ‘M Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap
- Tools Window Help -8 X - Tools Window Help -8 X
DERR HG (S el (Al (VB EREER| |D =l dd S sb@ o acs ypydes ERERD
<?xml version="1.0"?> <?xml version="1.0"?>
<todo xmlr ttp: Awww. w3, 0rg/2001XMLSchema-instance” http: A w3, org/2001/XMLSchema-instance”
¥si:noh spaceSchemalocation="C:\Codelsales.xsd"> xsinollamespaceSchemal ocation="C:\Code\sales. xsd">
Backup monthly sales data Backup monthly sales data
|</todo> > <fodo>
This file is not valic:
— Q Nothing allovved inside empty element ‘todo" [7 Revalidate
File x| [File. xml
XML Spy v4.2 U Ln8, Col 1 [om | Yalidate file Ln 3, Col 52 [om |
[Fm—— 1 1
M @ 0L Spy - [file.xmi])" 12:00pm mmd @ ML Spy - [file.xm] m® 12:00pm

VALIDATE AN INVALID
XML DOCUMENT

Kl start your XML validation
application.

2] Open or create an XML
document that references an
XML Schema.

H Ensure that the document
contains an error.

M In this example, the XML
Schema defines that the
"todo" element must be
empty.

—n Click the validate button.

—ll A message displays
indicating that the document
is invalid.

M In the example, XML Spy
highlights the location of the
error.

JAVA AND XML

DECLARE A CONTAINER ELEMENT

"Declare an Element," elements can also contain
other elements. Creating elements within other
elements allows you to build more complex XML document
structures that can better organize information. You declare

elements in an XML Schema that stipulates that the
elements can only contain other elements. You use the
complexType tag to declare the sub-elements of a
container element and to create complex groups of data
within an element.

3 part from textual data, as shown in the section

You can specify in what order you want to create the sub-
elements of a container element. When specifying the
sequence of elements, you consider the XML document
invalid if the sequence of elements in the XML document
does not match the sequence of the elements in the XML
Schema file.

When declaring a container element, you do not have to
specify the element’s data type in the same manner as you

would the data type for an element that contains
information such as textual data. For more information
about declaring elements that have textual data, see
"Declare an Element" in this chapter.

The sequence of an element enforces the integrity of
information within the XML document. For example, if you
have an element that stores the address of a client, you can
ensure that the information stores in a certain sequence; for
example, you can specify the order: street, then city, and
finally ZIP Code. As with all elements in an XML document,
the sequence element must have a start and an end tag. For
more information about start and end tags, see Chapter 4.

When a container element contains sub-elements, you must
declare the sub-elements in the XML Schema. For simple
elements that have only textual content, you can declare
the elements with a data type of string. You must

include a declaration for each separate element in the
container element.

DECLARE A CONTAINER ELEMENT

—n Create an XML document E Save the XML document.
that contains a root element

and two sub-elements.

I

4] Type the code that
declares the root element
of the XML document.

H Open or create an XML
Schema file.

Note: You can use the code from the
section "Create an XML Schema
Declaration.”

B Type the code that creates
the complexType tags.

XML SCHEMAS

You use the sequence tag known as a compositor, to ensure that
you place the elements in an XML document in a precise order.

To create a container element that contains other elements that
you do not need to place in an ordered sequence, you use the 'all'
compositor instead of the 'sequence' compositor when declaring
the element. Unlike using DTDS, this feature makes XML Schemas
very versatile when it comes to defining the structure of elements.

Example:
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="todo">
<xs:complexType>

<xs:all>
<xs:element name="task" type="xs:string"/>
<xs:element name="status" type="xs:string"/>
</xs:all>
</xs:complexType>
</xs:element>

</xs:schema>

XML Spy - [file.al *]

BEX]

- Tools Window Help

‘[Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap

DR EE S a8 oc et YFE ee BRER

-8 X

<?xml version="1.0"?>

Schemalocation="C:\Code¥file.xsd">

<task>E;1ckup-mnnth[—y sales data</task>

<status>Open</status>

= 6| Type the code that creates
the sequence start tag.

il Type the code that
declares the sub-elements
of the container element.

> </todo>

“http:Awvew. w3, org/2001/XMLSchema-instance”

@ This file is valid.

[File. xml

Ln7, Col 1 MNUM SCRL
1

Validate file

the sequence end tag.
E1 save the XML Schema file.

@ 0L spy "8 12:00pm
EJ Type the code that creates I Validate the XML B A message displays
document in an XML indicating that the XML

validation application. document is valid.

17

JAVA AND XML

DECLARE OPTIONAL ELEMENTS

ou can declare elements in an XML Schema that you

may or may not have present in the XML documents.

When gathering data requirements for your XML
document, you may find that the values for certain
elements do not always exist at the time that you create the
XML document. For example, in the case of an XML
document that contains information about products, a
newly introduced product may not have complete
information about the product at the time of the product’s
introduction. Therefore, a product name and price might
exist, but information such as units sold or supplier names
may not. In cases such as these, you can define optional
elements that you can add to an XML document as more
information becomes available.

In the element declaration, you can use the minOccurs
attribute to specify the minimum amount of occurrences of

an element. You make the value of the minOccurs
attribute the minimum number of times that the elements
can appear, and express it as an integer. Although you use
the value of the attribute as a numerical value, you must
still enclose it, like all attribute values, in quotation marks.

When you specify a value of zero for the minOccurs
attribute, the element is understood to be optional. The
XML Schema sets the rule that the elements may appear in
the XML document, or may not appear at all.

You still consider an empty element in an XML document an
occurrence of an element, so an XML validation application
can check the minOccurs attributes both for elements that
have content, and elements that are empty. For more
information about empty elements, see Chapter 4.

DECLARE OPTIONAL ELEMENTS

Note: You can use the XML
document from the section
"Declare a Container Element."

1 Open or create an XML
document that contains
elements.

. Untitled - Notepad

=J=les
File Edit Format View Help

<7xml version="1.0"7> ~
<xs:schema xmlns:xs="http://waw.w3. org/2001/XMLSchema" [
elementFormDefault="qualified">
<xs:element name="todo">
<xs:complexType>
<XS:sequence>
<xs:element name="task" type="xs:string"/>

<xs:element name="status" type="xs:string"/>
[(xs:element name="priority" type="xs:string"/>]|
</XSisequence>
<ixs:complexType>
<ixsielement>
</xsischema>

v

@; 12:00 PM

w: ah d‘f [Untitled - Notepad

B Create an element
declaration for an element
that does not exist in the XML
document.

2] Open or create an XML
Schema document for the
XML document created in
step 1.

Note: You can use the XML Schema
document from the section "Declare
a Container Element."

XML SCHEMAS

You can specify the maximum amount of times that an element may
appear by defining a value for the maxOccurs attribute. You can
make the value for the maxOccurs attribute any positive integer
value other than zero. To specify that an optional element can occur
no more than once, set the maxOccurs attribute to one and the
minOccurs attribute to zero.

A

Example:
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="todo">
<Xs:complexType>
<XS:sequence>
<xs:element name="task" type="xs:string"/>
<xs:element name="status" type="xs:string"/>
<xs:element maxOccurs="1" minOccurs="0"
name="priority" type="xs:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

[
_> </xs:complexType> > <ftodo>

" Untitled - Notepad BEX] XML Spy - [file.anl "] J=es|

‘[Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap

File Edit Format View Help

<?xml version="1.0"?7> ~ H X
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" Sl * Tools Window Help -8 x
elementFormDefault="qualified"> - ; Y B)
<xsielement name=" todoss DR HE S L 0@ o [ads yFlEee BRERR
07>

QSx?ZZLSZHzf} <2yl \Jer‘sl?nf'l
<xsielement name="task" type="xs:string"/> 5
<xs:element name="status" type="xs:string"/>
<xs:element[min0ccurg="0"| name="priority" type="xs:string"/>

</xsisequence> =

“http: v w3, org/2001/XMLSchema-instance”
amespaceSchemalocation="C:\Codetfile.xsd">
<task>Backup monthly sales data</task>
<status>open</status>

<ixs:element>
</xs:schema>

@ This file is valid. -
OK
vl [File. xml

Yalidate file Ln7, Col1 MNUM SCRL
1

“‘“ﬂ @g 12:00 PM m“‘d @ L Spy "8 12:00pm
=4 Type the minOccurs 5 Type the code that sets the Open an XML validation B A message displays
attribute into the element value of the minOccurs application. indicating that the XML
laration. i . is valid.
declaration attribute to zero LEY Validate the XML document is valid
[3 save the XML Schema document created in step 1.

document.

JAVA AND XML

SPECIFY DATA TYPES

elements. You refer to the data types that you can

specify for an element as primitive data types. You can
use elements that contain primitive data types as the basis
for creating more complex data structures within your XML
documents.

You can specify different data types for the content of

The ability to specify the data types for an element is
another major advantage that using XML Schema
documents has over using a DTD. Specifying the data type
of the content of an element helps to ensure the integrity of
the data that enters into an XML document. For example,
you can set the data type of the content of an element as a
number; thus, if someone modifies your XML document
and inadvertently enters a string of text instead of a number
for that element, the XML document fails validation, and

the XML validation application should indicate the location

of the error. While most validation applications report the
location of any errors, some validation applications may
only report that an error occurred. If you create your own
programs to validate XML documents, you should always
generate as much information as possible about errors,
including their location, in the event that errors occur.

You specify the data type in the element declaration using
the type attribute. The value of the type attribute indicates
the data type of the content that allows for that element.
For textual data the data type is string. You have a
number of data types for numerical data including
decimal for decimal numbers and f£loat for 32-bit
floating numbers. For a list of data types that you can use
when specifying the data type for an element, refer to

Appendix C.

SPECIFY DATA TYPES

E Create an element that
contains a decimal number.

E Save the XML document.

(1] Open or create an XML
document that contains
string elements and uses
an XML Schema.

Note: You can use the XML
document from the section "Declare
a Container Element."

. file.xsd - Notepad

BEX]|

File Edit Format View Help
<?xml version="1.0"?7>

<xs:element name="todo">
<xs:complexType>
<XS:Sequence>

<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema"”
elementFormDefault="qualified">

<xs:element name="task" type="xs:string"/>
<xs:element name="status" type="xs:string"/>

[¢xs:element name="priority™ type="xs:decimal"/>

</XSi5equence>
<ixsicomplexType>
</xs:element>
</xs:schema>

v

mﬂ' ﬂ [file.xsd- Notepad

e W 12:00PM

4] Open or create an XML
Schema document for the
XML document created in
step 1.

Note: You can use the XML Schema
document from the section "Declare
a Container Element."

B Create an element
declaration for the element
that you created in step 2.

B Save the XML Schema
document.

XML SCHEMAS

EX{E{ You can use XML documents to store many different types of
data; you can build even the most complex data structures in
XML documents using elements consisting of simple data
types. You have a wide range of data types that specify the
content of an element. For a more complete list of element
data types, please refer to Appendix C.

COMMON ELEMENT DATA TYPES

DATATYPES DESCRIPTION

xs:string Textual data such as names, addresses, and
product descriptions
xs:decimal Decimal numbers such as 3.0 and 4.27
Xs:integer Whole numbers like 27 and 502
xs:boolean A true or false value
xs:date A specific date such as 1998-09-19
xs:time The time of day such as 13:34:01
\. J
XML Spy - [file.xml *] I;](i]ﬂ XML Spy - [file.xml *] H@E
é@ﬁile Edit Project XML DTDfSchema Schemadesign XSL Document Editor Convert Table View Browser Soap é@ﬁile Edit Project XML DTDfSchema Schemadesign XSL Document Editor Convert Table View Browser Soap
Tools Window Help -8 X Tools Window Help -8 X
DR EHES oo aes YVTHee ERERER | (0S8R E@ S ol o aes Ukl e RRERB
<?xml version="1.0"?> <?xml version="1.0"?>
<todo xmin ttp: A w3, org/2001/XMLSchema-instance” <todo xmins “http:Awvew. w3, org/2001/XMLSchema-instance”
xsi:nolamespaceSchemalocation="C:\Code\file.xsd"> xsi:noNamespaceSchemalocation="C:\Code\file.xsd">
<task>Backup monthly sales data</task> <task>Backup monthly sales data</task>
<status>open</status> <status>open</status>
_> <priority>9.9</priority> <priority fpriority>
<ftodo> > <ftodo>

This file is valid. This file is not valic:
@ e Invalid value for datatype decimal in element 'priority' ————7 [7 Revalidate
[File. el [File. xml

Yalidate file W [Inum [SCRL| Validate file W [Inum ScRL|
star @ 3L spy " 12:00pm Start @ XML spy m® 12:00pm
Open the XML validation M A message displays = 9| Change the content of the M A message displays
application. indicating that the document | element declared as decimal indicating that the document
. is valid. to text. is invalid.
—E] validate the XML
document. —0 Validate the document.

121

JAVA AND XML

CONSTRAIN ELEMENT VALUES

integrity of the data in an XML document. You can
define two types of information in an XML Schema:
complex and simple.

You can restrict the values of an element to ensure the

You can restrict the characteristics, or facets, of information
that become the content of an element. For example, in an
element that contains textual data, you may want to limit
the number of characters that make up that textual data,
such as a 50-character limit for the number of characters in
a person’s name. You can also restrict the minimum length
of characters of textual data; for instance, you may restrict
an element that stores country location information to a
minimum of two characters, thus ensuring that anyone
modifying or adding information to the XML document
stipulates at least an abbreviation for the country as the
content of the element.

You restrict the information in the element using a
simpleType definition. Once you create the simpleType
element, you create a restriction element that details the
restrictions on the type of data that makes up the content
of the element. The restriction tag uses the base attribute to
specify the data type of the element. Depending on the
data type of the element, you can then specify the different
kinds of restrictions that you want to apply to the data. Each
facet has its own tag, which specifies the facet’s name, as
well as a value attribute, which specifies the value of the
facet. For example, the string data type has a minimum
length facet that you set to a number, which becomes the
minimum required number of characters for the element in
an XML document. For a list of data types and the
applicable facets for those data types, refer to Appendix C.

CONSTRAIN ELEMENT VALUES

n Create an XML Schema
file element for an XML
document that contains a
single element.

M This example uses an XML
document with a root
element called "todo" that
will contain textual data.

A Type the code that creates
the opening and closing
simpleType tags.

. Untitled - Notepad

BEX]|
File Edit Format View Help

<7xml version="1.0"7> ~
<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema"” 7l
elementFormDefault="qualified">
<xs:element name="todo">

<xsisimpleType>

—<xs:restriction base="xs:string">|

<xs:minLength value="5"/>] =
[fxs:imaxLength value="20"/>—7mw-w——

</xs:restriction>

<ixsisimpleType>

<ixs:element>
xs:schema>

~

v

—1 Type the code to specify

L2 i | G s
Type the code that creates 5 Type the code to specify

a restriction tag, which
imposes restrictions based
on the string data type.

the maximum length of the
string content.

[3 save the XML Schema
document.

the minimum length of the

string content.

XML SCHEMAS

You can restrict the length of data of a string element to
a specific number of characters by using the 1ength facet.
When using the 1ength facet, be aware that any
whitespace, such as a new line, is counted as a character.

To restrict the textual data of an element to precisely five
characters, use the following code:

Example:
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="todo">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:length value="5"/>
</xs:restriction>
</xs:simpleType>

</xs:element>

</xs:schema>

XML Spy - [file.xml*] [;]@]ﬁ

;@Eile Edit Project XML DTDfSchema Schemadesign XSL Document Editor Convert Table View Browser Soap

- Tools Window Help -8 X

DEpRE@ e tBloc aeh YDk ee ERERR

XML Spy - [file.oanl *] [;][i]ﬁ

- Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap

- Tools Window Help -8 X

DR EE S8l wos UFlH e BRELS

<todo xmins ttp: waew. w3, 0rg/2001/XMLSchema-instance”
xsinolamespaceSchemalocation="C:\Code\file.xsd"> xsi:noNamespaceSchemalocation="C:\Code\file.xsd">
Backup data i
<ftodo> <ftodo>
m—> >

02>

<?xml version="1
S “http: v w3, org/2001/XMLSchema-instance”

|= 2xml version="1.0"?>

[7 Revalidate

This file is nat valic:
Q Value does not match facet maxLength="20" in element ‘toco'

@ This file is valid.

[File. el [File. xml

Validate file Lni, Col 1) [Inum scre| Yalidate file Lni, Col 1 : [Inum ScRL|
: @ =L Spy "8 12:00Pm @ xML Spy "8 12:00pm

Open an XML validation M A message displays = 9| Change the content of B A message displays

application.

1 validate the XML
document.

the element to exceed the
maximum length allowed.

—m Validate the document.

indicating that the document
is valid.

indicating that the document
is invalid.

JAVA AND XML

CONSTRAIN ELEMENT VALUES TO A LIST

document to a value that resides in a list, a capability

you may find useful when creating XML documents.
For example, you may constrain an element’s value to a list
of country codes, area codes, or product model numbers.
Constraining values of an element to a list efficiently ensures
the integrity of your data, particularly if a user may modify
or otherwise alter that data.

You can restrict the value of an element in an XML

The first step in restricting an element to a choice of values
involves creating a simple type definition, which
characterizes the restrictions of the element. The restriction
element specifies the base data type of the element. If you
create an element that stores a value chosen from a list of
words, you define the base type, as specified in the
restriction element, as a string. You can set the base type
of the element to any valid type that allows you to specify
values from a list.

Within the restriction element, the enumeration element
specifies the actual values that you consider valid for that
element. The data type that you specify within the
enumeration element must match the data type as specified
in the restriction element.

If you specify a value for an element in an XML document,
and the value does not match any of the choices that the
enumeration element in the XML Schema document
indicates, the XML document will fail validation. The
validation application typically indicates the nature and
location of the error that causes the validation to fail. By
default, you consider any whitespace within the content of
the element as part of the textual data of the element.

CONSTRAIN ELEMENT VALUES TO A LIST

H Type the code that creates
the simpleType element.

= 3 Type the code that creates
the restriction element,
setting the base data type
to string.

(1] Open or create an XML
Schema file.

M This example uses an XML
Schema file for an XML
document that has a single
element called "todo," which
contains textual data.

124

" Untitled - Notepad

BEX]|
File Edit Format View Help

<7xml version="1.0"7> ~
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"” 7l
elementFormDefault="qualified">
<xs:element name="todo">

> <xs:enumeration value="Update logs"/>

<xsisimpleType> l
<xs:restriction base="xs:sthking">
I 1 1
<xs:enumeration[value="Backup data'[/>]
<xs:enumeration value="Print reports"/>

</xs:restriction>
</xs:simpleType>

<ixsielement>
xs:schema>

~

v

= I
[® Untitled - Notepad W 1z:00Pm

6 Repeat steps 4 and 5 for
each item in the list.

Type the code that creates
an enumeration element.

= 5| Type the code that sets
the value of the value
attribute to a list option.

XML SCHEMAS

You can declare the elements in an XML Schema so validation
applications can ignore any whitespace within the element. You often
use whitespace within XML documents to make the XML document
more readable. To specify that a validation application should ignore
whitespace within an element when comparing the element’s value
to an enumerated list, use the xs:whiteSpace element.

A

Example:
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="todo">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:whiteSpace value="collapse"/>
<xs:enumeration value="Backup data"/>
<xs:enumeration value="Print reports"/>
<xs:enumeration value="Update logs"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

</xs:schema>

\. 7
XML Spy - [file.xml *] [:J[i]ﬂ XML Spy - [file.xml *] [;][i]ﬂ

‘[Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap

- Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap
-8 X - Tools Window Help _ax

- Tools Window Help

DR A8 S L@ o o |sds T BRERR | | DR @@ S 0@ v éds yylE = RRERB

02>
“http: v w3, org/2001/XMLSchema-instance”
amespaceSchermnal ocation="C:ACodeMile. xsd" Backup sales dataj</todo>

<?xml version="1

<?xml version="1.0"?>
s ttp: Awnww. w3, 0rg/2001/XMLSchema-instance”
wsinoMamespaceSchemalocation="C:\Code¥file.xsd">Backup data</todo>

xsi:noh

This file is valid. This file is nat valic:
@ Q Walue does not match facet enumeration="Backup data Print reports Update logs" in element ‘todo’ [7 Revalidate

[File. el [File. xml

Yalidate file W [Inum [SCRL| Validate file W [Inum ScRL|
@ XML Spy "8 12:00Pm ar @ XML Spy "8 12:00pm

Open an XML validation M A message displays = 9| Change the content of the M A message displays

application. indicating that the document | element to an option not indicating that the document

specified in steps 4 and 6. is invalid.

—m Validate the document.

is valid.

1 validate the XML
document.

JAVA AND XML

DECLARE AN ATTRIBUTE

you can assign additional information to them in the

form of attributes. For more information about
element attributes, see Chapter 4. You can define elements
that contain only values and no attributes or other elements
as simple types. If you want to use attributes with elements
in an XML document, you have to declare those attributes
in the XML Schema document for that XML document.

You can declare elements in an XML document so that

Adding attributes to an element involves the creation of a
complex type using a complexType definition. You can use
complex types of data structures within an XML Schema to
contain attributes, elements, or other complex-type data
structures.

Each complex type must use a compositor element to
indicate the sequence of items within the complex type.
You can use the sequence compositor to specify the exact
order of items within the complex type. For more

information about the sequence compositor, see "Declare a
Container Element" in this chapter.

To define the attributes for an element, you must use the
simpleContent and extension elements within the
complexType element declaration.

You use the simpleContent element to indicate that the
element does not contain other elements, and only textual
data. The extension element indicates the data type of the
elements.

The attribute declaration itself is very similar to an element
declaration in that you must specify the data type of the
attributes. You can make the data type any standard schema
primitive data type. For textual values, you can specify the
string data type. The attribute declaration also includes
the name of the attribute as specified in the element tag
within the XML declaration.

DECLARE AN ATTRIBUTE

1 Open or create an XML
document that uses an XML
Schema and contains an
element that has an attribute.

_file.xsd - Notepad

=J=les
File Edit Format View Help

<?7xml version="1.0" encoding="UTF-8"?> ~
<xs:schema xmlns:xs="http://www. w3, 0rg/2001/XMLSChema” I
elementFormDefault="qualified">
<xs:element name="todo">
<xs:complexType>
<XS:Sequence>
<xs:element name="task">

<xs:complexType>
F <xs:simpleContent>

</xs:simpleContent> [

<7Xs:complexTypes

</xs:element>
< /xS sequence>
</xs:complexType>
<fxsielement>
</xs:schema>

v

@; 12:00 PM

m“‘ d‘i [file.xsd- Notepad

B Create the
simpleContent element
for the element you wish to
create the attribute for.

H Open the XML Schema
for the XML document you
created in step 1.

K] Create the complexType
element for the element for
which you want to create the
attribute.

XML SCHEMAS

Just because you define an attribute in an XML Schema, does not mean you must
use it in an XML document. To force an element to use an attribute, you can specify
a value of required for the use attribute within the attribute’s declaration.

A

Example:
<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="todo">
<Xs:complexType>
<XS:sequence>
<xs:element name="task">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="priority"
type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xXs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

i file.xsd - Notepad
File Edit Format VYiew Help
<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSCchema™
elementFormDefault="qualified">
<xs:element name="todo">
<xsicomplexType>
<XS:Sequence>
<xs:element name="task">
<xs:complexType>

<xs:simpleContent>
———{<xs:extension base="xs:string">| =

[<xs:attribute name="priority" type="xs:string"/>|
</X5:extensiony

BEX]| XML Spy - [file.xml *] [BEX

- Ele Edit Project XML DTDjSchema Schemadesign XSL DocumentEditor Convert Table View Browser Soap

>

- Tools Window Help -8 X

DEel @S 8o ses T BERELE
W3

<?uml version="
<todo xmins
xsi:noName:
<task priority=
<ftodo>

http: /A w3, orgf2001/XMLSchema-instance”
Schemalocation="C:\CodeMile. xsd">
high">Backup data</task>

</xs:simpleContent>
<ixs:complexType>
</xs:element>
</xs:sequence>
<fxsicomplexType>
<ixs:element>
<qxs:schema>

@ This file is valid.
P [File xml

Yalidate file Lnt, Col 1 MNUM |SCRL
1)
I file.xsd- Notepad "8 12:00Pm “‘I‘d @ XML Spy - [file.xml] W 1z:00Pm

Type the code that creates 6 Type the code that creates 8 Open an XML validation M A message displays

the extension element, which
specifies the element's data

type.

the attribute declaration,
which specifies the name and
data type of the attribute.

ﬂ Save the XML Schema
document.

application. indicating that the XML

_E Validate the XML document is valid.

document created in step 1.

127

JAVA AND XML

CONSTRAIN THE VALUES OF AN ATTRIBUTE

ou can place limits and restrictions on the type and declaration. When creating restrictions on attributes, you
Yvalue of data that you use for an attribute in an specify the data type of the attribute within the restriction
element. Restricting or limiting the type of element. You specify the name of the attribute within the
information of an attribute value helps to ensure the attribute declaration.
integrity of the attribute data within an XML document. o .
When you use attribute values that do not meet the The type of restrictions you place on an attribute value
constraints as laid out in the XML Schema, the XML depends on the type of data that becomes the value of the
document fails validation when an XML validation attribute. For string values, you can use restrictions such
application attempts to validate it. as maximum and minimum number of characters; for

example, you may want to limit the number of characters in
You define the restrictions on the attribute values within the a person's name to no more than 30 characters. For

XML Schema document. As with any elements for which numerical values you can specify the number of decimal

you want to restrict the values, you must create a simple places for a number, such as specifying two decimal places

type definition. The simple type definition allows you to for currency data. For more information about the types of

specify the attribute’s values. restrictions that you can apply to attribute data, refer to
Appendix C.

When declaring an attribute with no restrictions, you
specify the data type of the attribute within the attribute

CONSTRAIN THE VALUES OF AN ATTRIBUTE '

i file.xsd - Notepad [L]@]E] i file.xsd - Notepad [L]E]E]
File Edit Format View Help File Edit Format View Help
?xml version="1.0" encoding="UTF-8"?> (] ?xml version="1.0" encoding="UTF-8"?> [~
<x5:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" <x5:schema xmlns:xs="http://www.w3.org/2001/XMLSCchema” I
elementFormDefault="qualified"> elementFormDefault="qualified">
<xs:element name="todo"> <xs:element name="todo">
<xs:complexType> <xs:complexType>
<XS:Sequence> <XS:Sequence>
<xs:element name="task">» <xs:element name="task">
<xs:complexType> <xs:complexType>
<xs:simpleContent> <xs:simpleContent>
<xs:extension base="xs:string"> 3 <xs:extension base="xs:string"> =
[<xs:attribute name="priority">] <xs:attribute name="priority"s I
<xs:simpleType> <xs:simpleType>
<xs:restriction base="xs:string"
</xs:simpleType> — | ————————<xs:maxLength value="5" />]
[Krxsattributer———— <ixs:restriction>
</xs:extension> <ixsisimpleType>
<ixs:simpleContent> <ixsiattribute>
<ixs:complexType> <ixs:extension>
<{xs:element> <f/xs:simpleContent>
<ixs:sequence> <ixs:complexType>
</xs:complexType> </xs:element>
</xs:element> </xS:sequence>
</xs:schema> </xs:complexType>
<ixsielement>
™ <{xs:schema> ™

=) — .
Mv i [P file.xsd- Notepad)M 12:00pm ar [P file.xsd- Notepad @@ " 12:00pm

(1) Open or create an XML H Type the code that creates Type the code that creates M This example restricts the
Schema for an XML document | the attribute element, which the restriction element, which length of the attribute to five
that will contain an element, specifies the name of the specifies the data type of the characters.

which has an attribute. attribute. attribute.

[save the XML Schema
M In this example, the XML = 3| Type the code that creates B Type the code that creates document.

document contains the the simple type element for the elements, which restrict

element "todo," with the that attribute. the type of data that you can

attribute named "priority." use for the attribute.

XML SCHEMAS

e \
t¥ In many cases, you want to restrict the values of an attribute
to a predetermined list. As with elements, you can use the
enumeration element to restrict the choice to one of a given list.
You do this by defining the list of choices for the attribute values.
Example:
<xs:element name="task">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="priority">
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="High"/>

<xs:enumeration value="Medium"/>

<xs:enumeration value="Low"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
\. S

=J=)es| XML Spy - [fileanl "] [BER
;@Eile Edit Project XML DTDfSchema Schemadesign XSL Document Editor Convert Table View Browser Soap
-8 X

XML Spy - [file.oanl *]
- Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap
-8 X - Tools Window Help

DEpRE@ e tBloc aeh YDk ee ERERR

- Tools Window Help

DR EE S8l wos UFlH e BRELS

0"?> <?uml version="1.0"?>
<todo xml “http:fAwevew. w3, org/2001/XMLSchema-instance”

<?xuml version

<todo xmins ttp: Awww. w3, 0rg/2001/XMLSchema-instance”
wsi:noNamespaceSchemalocation="C:\Code¥file.xsd"> ¥si:noNar aceSchemalocation="C:\Code¥file.xsd">
<task priority="High">Backup data</task> <task priority="Higher'}>Backup data</task>
<ftodo>

<ftodo>

This file is valid. This file is not valic:
@ Q Value does not match facet maxLength="5" in attribute 'priority" [7 Revalidate

[File. el [File. xml

Validate file Lni, Col 1 [Inum scrL Yalidate file Lni, Col 1 [UM [ScrL
—— 1)
: & D8 12:00pm ; ar @ xvL spy " 1z:00pm

@ xmL spy

= 9| Change the value of the B A message displays

Open an XML validation M A message displays
application. indicating that the document | attribute to exceed five indicating that the document
LEY Validate the XML is valid. characters. is invalid.
—0 Validate the document.

document.

JAVA AND XML

REFERENCE PREDEFINED ELEMENTS

section of an XML Schema. This allows you to group

your element declarations together in a single section
and simply reference those element declarations
throughout the XML Schema.

You can reference an element declaration from another

Using a reference is similar to creating an element
declaration. For more information about declaring elements
within an XML Schema, see Chapter 4. The element
declaration can contain an attribute called ref. You must
assign a value to the ref attribute, and that value must have
the name of the previously declared element. For example,
if you have already declared an element called todo, you
must make the value of the ref attribute in the element
declaration todo.

Global element declarations are element declarations that
you place within the start and end XML Schema tags, but

which other element declarations do not enclose. You can
place element declarations within other elements or type
definitions. You refer to these types of definitions as local
definitions. Typically, within an XML Schema, the types of
element declarations that you reference are either global or
local element declarations.

Even when you reference a global element, if you place the
element reference locally, that is, within an element or type
declaration, and not in the actual schema declaration, you
classify the referenced element as a local element
declaration, even though it references a previously defined
global element declaration.

You typically make references empty element declarations;
they usually consist of one unified start and end tag. For
more information about creating empty elements, see
Chapter 4.

REFERENCE PREDEFINED ELEMENTS

- 1] Open or create an XML
document that uses an XML
Schema document.

XML document, which
contains a root element and
two sub-elements containing
text.

B This example uses a simple

3] Type the code to create
the element declarations for
the elements that you want to
contain text.

= 4 Type the code to create
the element declaration for
the container element.

H Open the XML Schema
document for the XML
document referenced in
step 1.

XML SCHEMAS

You can reference the same element declarations repeatedly throughout the XML
Schema. This prevents you from having to repeatedly use the same element
declarations, particularly when the declaration’s element has a complex data structure.
This example declares the status element once, and then references it twice.

Example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="status" type="xs:string"/>
<xs:element name="task">
<xs:complexType>
<XS:sequence>
<xs:element ref="status"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="todo">
<xs:complexType>
<XS:sequence>
<xs:element ref="task"/>
<xs:element ref="status"/>
</xXs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

BEX|

i@tile Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table View Browser Soap

Bloo @os Yl we RRERR

-8 X

L1, Cal 1 [Inum [scRL

ng 12:00 PM

XML Spy - [file.aml *]
Tools Window Help
DR Ed s L ®
hnp Fhorare. w3, 0rg/2001/XMLSchema-instance”
E chemalocation="C:\Code\file.xsd">
<task>Backup Sales Data<ftask>
l_ I L <status>Open</status>
) | — y o
@ This file is valid.
[File. el
Validate file
5] Type the code to create (7] Repeat step 6 for each B Open an XML validation
the sequence element for the reference you wish to use. application.
container element. .
E Save the XML Schema —m Validate the XML
= 6| Type the code that creates document. document.

the reference to a previously
declared element.

B A message displays
indicating that the document
is valid.

131

JAVA AND XML

CREATE A GROUP OF ATTRIBUTES

attributes to reduce the amount of typing you must

perform when creating XML schemas. Defining an
attribute group also allows for faster maintenance of XML
schemas, should you need to update the XML schemas in
the future.

You can create a declaration that defines a group of

You can create a group of attributes that multiple elements
within an XML document can use. You use an attribute
group element to declare which attributes you want to
include within the attribute group. Within the attribute
group element, the attribute declaration determines the
characteristics of the attribute. The attribute group
definition allows you to specify the name by which the
elements reference that group of attributes.

The attribute declaration within an attributeGroup

element is the same attribute declaration that you use when

you want to declare the attribute within the element
declaration. You may find creating an attributeGroup
declaration helpful if you use the same attributes for

different elements throughout an XML document. The
attributeGroup element allows you to specify the name
and the characteristics of an attribute once. You can then
simply reference that declaration when the element
declarations in the XML Schema require it. Once you define
the attributeGroup, you can reference it from within any
complex type definitions.

You can only place an attributeGroup definition within
the XML Schema element. You cannot nest it within another
element declared in the XML Schema.

You make the actual reference to the attributeGroup
with another attributeGroup element. The ref attribute
of that element must reference the name of the attribute
group. When using an attributeGroup element to
reference a matching attribute group, the element must
remain empty.

An attributeGroup definition can contain attribute
declarations and references to other attributeGroup
definitions.

CREATE A GROUP OF ATTRIBUTES

E3 Create the same attribute
for differing elements.

(1] Open or create an XML
document that contains
multiple elements.

132

=4 Type the code that creates

. Untitled - Notepad

BEX]|
File Edit Format View Help

<?xml version="1.0"7> ~
<xsischema xmlns:xs="http://www. w3, org/2001/XMLSchema" (]
elementFormDefaul t="qualified">

<xs:attributeGroup name="shared">

</xs:attributeGroup>

<xs:element name="todo">

<xs:complexType>

<XS:sequence>
<xs:element name="task"> =

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">

</xsiextension>
<fxs:simpleContent>
<ixs:complexType>
</xs:element>
</XS:sequence>

<ixsicomplexType>
[</xs:element>
</xsischema>

v

e W 12:00PM

ms “ ﬂ [untitled - Notepad

5 Type the code to create

the remaining declarations

for the elements in the XML
document, without creating
attribute declarations.

H Open the XML Schema file
for the document you created
instep 1.

the attributeGroup
element declaration.

XML SCHEMAS

You may find
attributeGroup
definitions a useful
way to declare
multiple attributes
at the same time.
You can combine
different attribute
types with different
restrictions into
one attribute group
and then simply
reference them
throughout your
XML Schema as
required.

Example:
<xs:attributeGroup name="shared">
<xs:attribute name="updatedBy"
<xs:attribute name="date"
<xs:attribute name="version"
</xs:attributeGroup>
<xs:element name="todo">
<xs:complexType>
<XS:sequence>
<xs:element name="task">
<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attributeGroup ref="shared"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:sequence>
<xs:attributeGroup ref="shared"/>
</xs:complexType>

</xs:element>

type="xs:string" use="required"/>
type="xs:string" use="required"/>

type="xs:decimal" use="required"/>

) Untitled - Notepad

XML Spy - [file.al *]

=J=les)

BEX]

File Edit Format View Help
<?xml version="1.,0"%>

elementFormDefault="qualified">
<xs:attributeGroup name="shared">
<xs:attribute name="updatedBy" type="xs:string"/>|
</xsiattributeGroup>
<xs:element name="todo">
<xs:complexType>
<XS5:sequence>
<xs:element name="task">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
[<xs:iattributeGroup ref="shared"/>|
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
[fxs:attributeGroup ref="shared"/>}——
</xsicomplexType>
</xsielement>
</xs:schema>

—

<xs:schema xmlns:xs="http://www. w3.0rg/2001/XMLSchema”

~ H
p— - Tools Window Help

‘[Ele Edit Project XML DTD/Schema Schemadesign XSL DocumentEditor Convert Table View Browser Soap

DERR EHE S LRl ars yFEee RRERR

-8 X

07>
Pete" xmin

<?xuml version=
<todo updatedBy="

3 <task updatedBy="Tom">
Backup sales data
> <ftask>

<ftodo>

="http:/Awww. w3, org/2001XMLSchema-instance”
¥sinolamespaceSchemalocation="C:\Code\file.xsd">

@ This file is valid.

vl [File. xml

Lni, Col 1 MNUM SCRL
1

“‘“ d itled - Notepad

Validate file
1
"8 12:00Pm @ XML Spy

"8 12:00pm

= 6| Type the code to create
the attribute declaration
within the attribute group

element. Schema.
= 7 Type the code that

references the attribute group ~ document.

definition.

B Repeat step 7 for each
attribute group reference that
you require in the XML

10 Open an XML validation
application.

& validate the XML
document.

E Save the XML Schema

B A message displays
indicating that the document
is valid.

133

JAVA AND XML

CONSTRAIN VALUES USING
REGULAR EXPRESSIONS

element must conform to an existing set of rules using

a regular expression. A regular expression is a series of
symbols that allows you to specify the make up, or pattern,
that a value must match. For example, you can use regular
expressions to specify that a value must have textual data
and that it must also have all uppercase characters. You can
also use regular expressions to specify more complex
patterns, for example, that a value must have a specific
number of characters, that it must contain spaces, and that
it must contain at least one space.

You can specify that the value of the content of an

Many different programming languages have long used
regular expressions to constrain values to a preset pattern.
While each programming language may have slight
deviations on the use of regular expressions, if you have
previously used regular expressions with another
programming language, you should have no problem using

CONSTRAIN VALUES USING REGULAR EXPRESSIONS

regular expressions to specify a pattern for a value of an
XML element.

The restriction element establishes the values that you want
to constrain using regular expressions. The pattern element,
within that element, then defines a regular expression that
the XML validation application matches to the value of the
data. You state the regular expression as a value of an
attribute of the pattern element.

Regular expressions may initially seem very cryptic, but it is
well worth the effort to understand how they work. When
you become familiar with regular expressions, you may find
yourself repeatedly using them to constrain the values of
the data in your XML documents. Despite their simple
implementation, you may find them a very powerful tool.
For more information on regular expressions, refer to
Appendix C.

(1] Open or create an XML
Schema for an XML

B This example uses an XML
Schema file for an XML

document. document that contains one
root element called "todo,"
which contains textual data.
A Create the restriction tags
for the element.
134

m3 Type any additional facets
to constrain the value of the
data.

B This example uses the
regular expression "[A-Z,\s]*,"
which allows for a value that
contains only uppercase
characters and whitespaces,
and any number of characters.

B This example uses
whitespace within the
element's content.

E Save the XML Schema

=4 Type the code that creates 4 \ment.

the pattern element, which
specifies the regular expression.

XML SCHEMAS

|¥ Not only can you restrict the value of elements

using regular expressions, you can also use regular
expressions to constrain the values of attributes.

Example:
<xs:element name="task">

<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="priority">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[a-z]*"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>

BEX]

XML Spy - [file.xml *]

BEX]

XML Spy - [file.xml *]

Tools Window Help

:@Eile Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table View Browser Soap

DR @@ S 2@ v add VIl an BRER

-8 x © Tools Window Help

'@Eile Edit Project XML DTD/Schema Schemadesign XSL Document Editor Convert Table View Browser Soap

-8 X

<?xml version='

DR EE@ 8 i@ loc s YYlE ae RRERR

~5

<?xml versi

BACKUP SALES DATA

</todo>

np /lwww w3.0rg/2001/XMLSchema-instance”
iemalocation="C:\Code\file.xsd"> si

<todo xmins

Namesp

Backup sales data

> <ftodo>

hnp Fhorare. w3, 0rg/2001/XMLSchema-instance”
chemalocation="C:\Codefile.xsd">

This file is not valid:
0 Yalue does not match facet pattern="[A-Z \s]*" in element todo’

[%7 Revalidate

@ This file is valid.

[File. el [File. el

validate file ltn1, Col 1 [Inum [scre validate file L1, Cal 1 [Inum [scre
55 @ ¥ sp C)W® 12:00pm : W 12:00pm

6] Open an XML validation
application.

—ﬂ Validate the XML
document.

1 Change the content of the
element to contain lowercase

characters.

—E Validate the XML
document.

M A message displays
indicating that the document

is valid.

B A message displays
indicating that the document

is invalid.

135

JAVA AND XML

AN INTRODUCTION TO THE SAX API

he SAX API allows the Java applications you create to programs to access an XML parser of your choice. SAX only
Tcommunicate with an XML parser so that you can defines what code you must use to communicate with the

access XML documents from within your Java XML parser. You can only use the XML parser, a separate
applications. SAX is an Application Programming Interface, program, with the SAX API if you configure it to understand
or API, for XML parsers. The API consists of a set of rules and support the SAX API. An API allows you to create
and instructions for writing code that details how two programs that you do not have to exclusively tie to specific
applications communicate with each other. Originally applications. For example, if you use the SAX API to
developed in 1998 to become one of the first widely used communicate with an XML parser that uses the SAX APl—a
XML parsers, the SAX API makes it easier for programmers SAX-compliant XML parser—you can upgrade the XML
to work with XML documents using multiple programming parser or switch to one from another vendor as long as the
languages, such as Perl, C++, and Java. new XML parser can use the SAX API. You can make these

changes to the XML parser without having to change your

SAX provides a way to communicate with an XML parser code. Using an APl instead of communicating directly with
from within your Java code using straightforward Java an application also makes your code easier to maintain and

instructions. Although not itself an XML parser, SAX contains
a collection of code that you utilize within your own Java

troubleshoot.

The SAX API has two major versions, both commonly in
use: the older version 1.0, and the current version 2.0,
also known as SAX 2, which will eventually replace SAX
1.0. Unlike SAX 1.0, SAX 2.0 has the capability to work
with XML documents that use namespaces. If given a
choice, you should use SAX 2.0 along with an XML
parser that supports SAX 2.0. You can also work with

different versions, such as beta versions, released during
the development of the SAX API. For example, there is
presently a beta version of SAX called SAX 2.0 beta 2.
When obtaining the SAX API, you should ensure that
you have a current and stable release. If the SAX API
came with an XML parser, then you can be assured that
the accompanying XML parser supports the SAX API.

EVENTS

When you parse an XML document, the XML parser
processes specific characteristics of the XML document,
such as the beginning of the document or the start and
end of an element within the XML document. You refer
to these characteristics as events. In an event-based
XML parser, Java applications that communicate with
the XML parser execute specific code when the XML
parser encounters one of these events. Because the SAX
API was developed for use with event-based parsers,
you refer to it as an event-based API. Using the SAX API
to develop your application allows you to create Java
code that can execute whenever a specific event

happens. The major benefit of event-based parsers
stems from their ability to work efficiently with very
large XML documents. Other types of parsers typically
access an XML document after placing the XML
document in memory. Event-based parsers that must
first load the entire XML document into memory can
easily run out of available memory, and run much
slower when accessing very large XML documents.

You usually have multiple types of XML parsers for a
Java application to use, depending on the nature of the
XML document and the task you require it to perform.

SEQUENTIAL

THE SAX API

You use event-based parsers, and in turn the SAX API,
to access the contents of an XML file sequentially. A
parser reads an XML document from its start through to
its end. Any actions that the parser must take when it
encounters specific content within an XML document
must wait until the parser processes the preceding

content of the XML document. This sequential access of
event-based parsers differs from other types of parsers,
which load the entire XML document into memory and
then allow a Java application to access the XML
document at random locations.

Because the files that make up the SAX API are public
domain software, anyone can access the SAX API free of
charge. The SAX API requires no licensing fee or other
remuneration for developing personal or commercial
applications. Some commercial products, which may

use and include the SAX API with the software
application, may have a cost. You can find many
applications, such as a wide range of SAX-compliant
XML parsers that include the SAX API, readily available
at no cost.

CLASS FILES

Although not a parser itself, SAX consists of a collection
of Java classes and interfaces that you access within
your Java code and that allows you to access a SAX-
compliant XML parser. You must configure the XML
parser in a way that allows SAX classes and interfaces to
use it. Any XML parser that you can use with the SAX
API typically includes the SAX class and interface files

with the parser. Although the SAX file is available
separately, you should always use the SAX file that came
with your current XML parser. This allows you to avoid
compatibility or version conflicts between the SAX files
and the XML parser. You may have to configure your
computer to automatically locate the SAX class files
after you copy them to your computer.

DOCUMENTATION

As with any type of API, current, error-free
documentation on how to use the API is essential. If
you obtain the SAX APl with an XML parser, the parser
almost always includes SAX documentation as well as
very helpful documentation and programming
examples that relate to using SAX with that particular
parser. If the documentation did not come with the

XML parser, you can still access the documentation via
the main SAX Web site at http: //www.saxproject
.org. You should always ensure that the
documentation refers to your version of the SAX API.
For this reason, consider using the SAX documentation
that came with the SAX files and XML parser rather than
the documentation available on the Internet.

137

JAVA AND XML

INSTALL THE XERCES XML PARSER

communicate with an XML parser so that you can

access XML documents from within your Java
applications. The Xerces XML parser is a popular, SAX-
compliant parser that you can find on the companion
CD-ROM, or via the Internet at http://xml.apache.org/.
Once you obtain the Xerces XML parser, you can install it
on your computer so that you can access it from your Java
programs using the SAX API.

The SAX API allows the Java applications you create to

You can find the files that comprise the Xerces XML parser
together in a Java Archive (JAR) file called xerces. jar.
Placing the parser files into a single file makes it more
convenient and efficient to transfer and copy the large
amount of files that the Xerces XML parser requires. The
Java Development Kit (JDK) consists of the files needed to
create Java applications. The JDK can access any of the files
within a JAR file as long as you place the JAR file in a
directory that the JDK can access.

Installing the Xerces XML parser entails copying the
xerces. jar file to a folder that holds Java class files. The
process of copying the xerces. jar file varies depending
on the operating system in use. For computers that utilize
the Microsoft Windows operating system, you can copy files
with the Windows Explorer application.

The special directory to which you copy the xerces.jar
file holds class files that create Java programs. As a matter of
convenience, you can also use the same directory to store
any class files that you write or obtain elsewhere.

Once you copy the xerces. jar file to a class file
directory, you must ensure that you can access the
xerces. jar file and its contents from your Java programs
by setting the CLASSPATH environment variable. For more
information, refer to the section "Set the CLASSPATH
Environment Variable."

INSTALL THE XERCES XML PARSER

Accessories

All Programs

| Windows Explorer |

To start Windows Explorer, g Click Accessories.

click Start.
—H3 Click All Programs.

Click Windows Explorer.

138

M The Windows Explorer [3 Click the xerces. jar
window appears. file.

—H Type the name of the
folder that contains the
Xerces files and press Enter.

Note: Depending on the display
configuration of Windows Explorer,
the file extension may not display.

THE SAX API

EX&E If you have a version of Xerces designed for use on the
Windows operating system, you usually find the Xerces
XML parser and its companion files packaged into a single
zip file. A zip file conveniently collects together multiple
files into one package and then compresses them to save
storage space. This saves you time when transferring the
files over a network, such as the Internet. It also conserves
storage space, an important consideration when you must
store the files on a medium with limited space, such as a
hard drive. To work with the files, you must first extract
them from the zip file.

Many operating systems, such as Windows XP, can work
directly with zip files, allowing you to easily extract some
or all of the files from the zip file. Older operating
systems, such as Windows 98, require you to install an
application specifically for the zip files.

You can download an evaluation version of WinZip, a very
popular application for working with zip files, from the
Internet at http://www.winzip.com. WinZip is available for
most versions of Windows.

i Click Copy this file. M The Copy Items dialog box Click Copy.

appears. B The Xerces XML parser
L] Click the folder that holds Java archive(s) is copied to
the Java class files. the classes folder.

139

JAVA AND XML

SET THE CLASSPATH

ENVIRONMENT VARIABLE

your Java code, you must change the CLASSPATH

environment variable to include the location of the
Xerces Java Archive (JAR) file. The computer’s operating
system uses an environment variable to hold a piece of
information. The most common environment variable, the
PATH environment variable, specifies where the operating
system looks for files when you do not specify a location
for a file. The CLASSPATH variable tells the Java
Development Kit where to look for class files that you
may require when creating your Java code.

—I—o allow the Xerces XML parser to communicate within

The CLASSPATH environment variable usually indicates the
location of many class and JAR files. You can specify
different locations and JAR files within the CLASSPATH
environment variable by separating each particular location
with a semicolon (;) on Windows, or a colon (:) on UNIX.
You can use the CLASSPATH environment variable to
specify the location of JAR files, directories, or both JAR
files and directories.

When creating a new environment variable, you must
specify the name of the variable and a value that you want
to assign to the environment variable. You specify the name
of the environment variable in uppercase letters.

On Windows-based computers, you find user environment
variables and system environment variables. You can only
make user environment variables available to specific users,
while any user who logs onto the computer can access
system environment variables. Users typically create their
own environment variables as they need them. Normally,
you must log onto your computer as an administrator to
add or change system environment variables.

As well as the location of commonly accessed class and JAR
files, the CLASSPATH environment variable also specifies
the current directory in which the Java file resides. You can
accomplish this by specifying a path denoted by a single
period (.).

SET THE CLASSPATH ENVIRONMENT VARIABLE

My Computer

To set the CLASSPATH
environment variable, click
Start.

Right-click My Computer.

<] Click Properties.

140

Click Environment
Variables.

B The System Properties
dialog box appears.

LA Click the Advanced tab.

THE SAX API

You can also set the CLASSPATH environment variable
from the command prompt with the Windows set
command. You can then only access the CLASSPATH
environment variable within the Command Prompt
window where you set it. Opening another Command
Prompt window requires you to reset the CLASSPATH
environment variable.

Example:

set CLASSPATH =.;c:\jdk\classes\xerces.jar

For most Windows operating systems, you use the
Windows set command to set the CLASSPATH
environment variable for all Command Prompt windows.
To do so, place the set command in the autoexec.bat
file in the root directory of the computer, and then restart
the computer. The new CLASSPATH replaces the previously
specified CLASSPATH environment variable. You can
append a new location to the existing CLASSPATH
environment variable with $CLASSPATHS in the new
CLASSPATH environment value. Never replace the existing
content of the CLASSPATH environment variable, as it may
hinder the operation of other applications.

Example:
set CLASSPATH =%CLASSPATH%;.;c:\jdk\classes\xerces.jar

Depending on the operating system,

you may need to set the CLASSPATH
environment variable. Some operating
systems, such as UNIX, allow you to
separate the different locations within the
CLASSPATH environment variable, but you
separate each location with a colon rather
than the semicolon you use in Windows.
To determine the correct configuration
changes to make to your operating
system, and the syntax to set the
CLASSPATH environment variable, see the
installation documentation that came with
the XML parser for your operating system.

L3 Click New.

M The Environment Variables
dialog box appears.

B The New User Variable
dialog box appears.

4 Type CLASSPATH.

—E Type the location of your
class file directory.

1 Click OK.

Click OK.

& Click OK in the System
Properties dialog box.

M The CLASSPATH
environment variable
changes. 141

JAVA AND XML

CREATE AN EVENT HANDLER CLASS

you must create a special class file. You do this

because using the SAX API to parse an XML document
requires that you create a class that implements an
interface. You use this interface much like a class.

B efore you parse XML documents using the SAX API,

The class that you want to use must implement the
ContentHandler interface. You typically refer to the class
you create as the event handler class, because the parser
uses the class to execute code in response to specific
events, such as when it encounters the end of an XML
document during processing.

Before you can use the ContentHandler interface, you
must import the org.xml . sax package, which contains
the interface, into your code. You must define each method
of an interface in any class that implements an interface. If
you do not define a method of an interface within the class
that extends the interface, your code generates an error
when you compile it.

The ContentHandler interface has 11 methods that you
must define in the class, which becomes the event handler
class. The methods are characters, endDocument,
endElement, endPrefixMapping,
ignorableWhitespace, processingInstruction,
setDocumentLocator, skippedEntity,
startDocument, startElement and
startPrefixMapping. For a list of the parameters for
each method, see Appendix A.

Once you create the event handler class, you can compile
your code to check for errors. You cannot perform any
work with the event handler class until you create the code
that actually parses an XML document. To use the event
handler class while parsing an XML document, refer to the
section "Parse an XML Document" in this chapter.

CREATE AN EVENT HANDLER CLASS

1

0 Type the code that imports
the org.xml.sax package.

142

1 Type the code that creates
a class.

Type the code that
implements the
ContentHandler interface.

THE SAX API

When compiling the Java code that defines the handler class, the Java
compiler may generate a message stating that you should declare your
class as abstract. This message appears when you do not define the
correct methods required in your handler class. If you receive a
message about declaring your class as abstract, recheck the method
names in your handler class to ensure that they are correct and that you
have specified the correct number and type of parameters.

The SAX API defines the interface and methods that you must use when
creating an event handler class. You can verify the required method
names and their parameters by checking the SAX APl documentation.

Documentation about the SAX APl and the methods of the handler
class are typically included with any SAX-compliant XML parser. If you
do not have access to the SAX APl documentation on your own
computer, you can find it at http://www.saxproject.com. You should
ensure that any documentation you reference matches the version of
the SAX API that you are using.

. Untitled - Notepad

[BEX]

File Edit Format View Help
import org.xml.sax.*;

class Handler implements ContentHandler {

public void startDocument() {}
public void endDocument() {}

| Ipublic
|_ public void endElement(String namespace,

_> public void characters{char[] ch, int start, int length) {}

public void processingInstruction(String target, String data) {}

public void startPrefixMapping(String prefix, String uri) {}

public void endPrefixMapping(String prefix) {}

public void ignorableWhitespace(char([] ch, int start, int length) {}
public void skippedEntity(String name) {}

public void setDocumentlocator (Locator Locator) {}

void startElement(String namespace, String name, String gName,
Attributes atts) {}

0String name, String gName) {}

Untitled - Motepad

@IQ 12:00 PM

1 Create the required
methods of the event handler
class.

Note: For a list of parameters, see
Appendix A.

H save the file. 3 Compile your Java code.

Note: For instructions on compiling,
see Chapter 2.

M If you have no errors, the
code compiles.

143

JAVA AND XML

PARSE AN XML DOCUMENT

associate it with the XML parser using the SAX API.

This process registers the handler with a reader, an
instance of the XMLReader interface that you find in the
org.xml .sax package and which you use to decipher the
actual XML document. The SaXParser class, part of the
org.apache.xerces.parsers package, allows the SAX
API to communicate with the Xerces XML parser.

O nce you create the event handler class, you need to

Employing a series of callbacks, you use the XMLReader
interface to create an object that reads the information
within an XML document. A callback occurs when an
application calls the methods in your code. In this case, the
XML parser calls the methods in the event handler class that
you have created. The method that the parser calls depends
on the type of information it encounters within an XML
document. For more information about the methods that
you must create in your event handler class, refer to the
section "Create an Event Handler Class."

Once you create the XMLReader object, you must register
the event handler class with the setContentHandler
method. When you create the code that employs the
setContentHandler method, the method uses the
name of the event handler class as its only argument.

You use the parse method of the XMLReader object to
start the parsing of an XML document. The parse method
occurs when you specify the name of the XML document
that you want to parse.

The parser calls the methods in the event handler class
whenever it encounters the corresponding event. To make
a method useful, you must create the code that specifies
what you want the method to do. For testing purposes, you
can simply assign code that displays a message to the
startDocument method of the event handler class. This
code executes when the XMLReader detects the start of
the XML document.

PARSE AN XML DOCUMENT

—El Type the code for the main
class of your application.

Type the code to import
the required packages.

K] Type the code that creates
the XMLReader object.

E3 Type the code that
registers the event handler
class with the reader.

—H Type the code that starts
parsing a document.

THE SAX API

EX&E You can only access the org.apache.xerces.parsers package when
you use the Xerces SAX-compliant XML parser. If you use a different XML
parser, consult that parser’s documentation for instructions on how to
communicate with the parser using the SAX API. For more information
about obtaining and installing the Xerces XML parser, refer to the section
"Install the Xerces XML Parser" in this chapter. You must have a well-
formed XML document for the XML parser to parse it. For more
information about well-formed XML documents, see Chapter 4.

<?xml version="1.0"?>
<todo>

<task>

<owner>Andrew</owner>

<status>open</status>

</task>

<task>

<owner>Andrew</owner>

<status>closed</status>

</task>
</todo>

An Example of a Well-formed XML Document:

<description>Backup sales data for last month</description>

<priority>low</priority>

<description>Complete end of month report</description>

<priority>medium</priority>

. Untitled - Notepad

[BEX]

File Edit Format View Help

import org.apache.x
import org.xml.sax.

public class ParseDi
public static voi
XMLReader reade
reader.setConte

erces.parsers.*;
*

oc {

d main (String[] args) throws Exception {
r = new SAXParser();

ntHandler {new Handler()):

ile. xmlf");

reader.parse ('ff
¥

H

class Handler implements ContentHandler {

public void startl
System.out.prin

Document
t("Start ")} —

}

public void endDo:
public void setDo:
public void start

public void endEl
public void chara
public void proce:
public void startl
public void endPr:
public void ignor
public void skipp:

cument () {}

cumentLocator (Locator locator) {}

Element (String namespace, String name, String gName
Attributes atts) {}

ement(String namespace, String name, String gName) {}

cters(char[] ch, int start, int length) {}

ssingInstruction(String target, String data) {}

PrefixMapping(String prefix, String uri) {}

efixMapping(String prefix) {}

ableWhitespace(char([] ch, int start, int length) {}

edEntity (String name) {}

y
QS 3 g Untitled - Notepad GO 12:00pm

—3 Type the name of the XML [EJ Type the code that will

document to parse. display a message when the

L Add the code that defines

XML document parses.

the event handler class.

Note: Make sure the name of the class
matches the name specified in step 4.

3 Compile and run your M A message displays
program. indicating that the document

Note: See Chapter 2 for instructions on TED[EEE

compiling and running Java programs.

145

JAVA AND XML

DETECT ELEMENTS IN AN XML DOCUMENT

lement declarations make up the majority of content in

an XML document. Elements can have a start and an

end tag, and may or may not have some content
between the tags.

One of the first steps in processing an XML document in an
application involves locating specific elements in the XML
document. Once the parser detects an element in an XML
document, it makes a callback to the appropriate method
of the event handler class. You should place these methods
of the SAX handler class in the Java code that you want to
execute when the parser detects an element.

The parser calls the startElement method of the event
handler class whenever the XMLReader detects a tag that it
identifies as the start tag of an element. Likewise, the parser
calls the endElement method of the event handler class
whenever the XMLReader detects a tag that it identifies as
the end tag of an element. The name of the element to

DETECT ELEMENTS IN AN XML DOCUMENT

which the tag belongs passes to the method as a string. You
can use this string value to determine the name of the
element in your code.

Note that the startElement and endElement methods of
the event handler class do not differentiate between a child
and a parent element. The parser calls the appropriate
method of the event handler class regardless of the position
of the element in the XML document. Therefore, for nested
elements, the parser may call the startElement method
repeatedly before it calls the endElement method. If you
have a situation where the parser must differentiate between
a child and a parent element, you must write the code that
makes that determination.

As with any document that you intend to parse, you should
make the XML document well-formed to ensure that it
processes. For more information about well-formed XML
documents, refer to Chapter 4.

@g 12:00 PM

Qs. i! g— Intitled - Notepad

Note: You can use the code created in
the section "Parse an XML Document."

—El Open or create the code
that parses an XML
document.

146

. Untitled - Notepad u@g‘ " Untitled - Notepad u@]ﬂ
File Edit Format Yiew Help File Edit Format View Help
import org.apache, xerces.parsers. *; import org.apache. xerces.parsers. *;
import org.xml.sax. import org.xml.sax.
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser():
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler()):
reader.parse{"file.,xml"); reader.parse("file.xml");
1 ! i .
Class Handler implements ContentHandler { class Handler implements ContentHandler { |
public void startDocument() {} public void startDocument() {System.out printin("Start "J:]}
public void endDocument() {} public void endDocument() {} _
public void setDocumentlLocator({Locator locator) {} public void setDocumentlLocator(Locator locator) {}
public void startElement(String namespace, String name, String gName, public void startElement(String namespace, String name, String gName,
Attributes atts) {} Attributes atts) {
public void endElement(String namespace, String name, String qgName) {} [System.out. printin("Start of element "™ + name + ™" encountered™);
public void characters(char[] ch, int start, int length) {} }
public void processingInstruction(String target, String data) {} public void endElement(String namespace, String name, String gName) {}
public void startPrefixMapping(String prefix, String uri) {} public void characters(char[] ch, int start, int length) {}
public void endPrefixMapping(String prefix) {} public void processingInstruction(String target, String data) {}
public void ignorableWhitespace(char[] ch, int start, int length) {} public void startPrefixMapping(String prefix, String uri) {}
public void skippedEntity(String name) {} public void endPrefixMapping(String prefix) {}
1 public void ignorableWhitespace(char(] ch, int start, int length) {}
public void skippedEntity(String name) {}

@g 12:00 PM

i)

EJ Type the code that displays
the element name when a
parser detects a start tag.

1 Type the code that you
want to display a message
when the parser starts to
parse the document.

THE SAX API

. ~
Ap:ﬂly You may have some empty elements in an XML document that omit the
h closing element tag as long as the start tag ends with />. For example,

: <name></name> is the same as <name />.The XML parser understands
this, and it still calls both the startElement and endElement methods
even if it sees only one tag. This is illustrated in the following example:
Process the XML document:
<?xml version="1.0"?>
<todo>

<task />

<task />
</todo>
RESULT:
Start
Start of element 'todo' encountered
Start of element 'task' encountered
End of element 'task' encountered
Start of element 'task' encountered
End of element 'task' encountered
End of element 'todo' encountered

. /

. Untitled - Notepad
File Edit Format View Help

import org.apache.xerces.parsers.*;

import org.xml.sax.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler());
reader.parse("file.xml");
}

}
Class Handler implements ContentHandler {
public void startDocument() {System.out.println("Start ");}
public void endDocument() {}
public void setDocumentLocator(Locator locator) {}
public void startElement(String namespace, String name, String gName,
Attributes atts) {

System.out.println{"Start of element '" + name + "' encountered");

{

+ name + "'

encountered");

{System.out.println("End of element '"

public void characters{char[] ch, int start, int length) {}

public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}

public void endPrefixMapping(String prefix) {}

public void ignorableWhitespace(char([] ch, int start, int length) {}
public void skippedEntity(String name) {}

@g@gg) @ 12:00pm

1 Type the code that
displays the element name
when the parser detects an
end tag.

Command Prompt

C:\Code>javac ParseDoc.java

C:\Code>java ParseDoc

Start

Start of element ‘todo’ encountered

Start of element ‘task’ encountered

Start of element "description’ encountered
End of element "description’ encountered
Start of element ‘owner’ encountered
End of element ‘owner’ encountered
Start of element ‘status’ encountered

End of element 'status’ encountered
Start of element "priority’ encountered
End of element ‘priority’ encountered
End of element ‘task’ encountered

C:\Code>

A message displays each
time the parser encounters a
start or end tag.

A Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

147

JAVA AND XML

EXTRACT TEXTUAL ELEMENT CONTENT

ou can use the event handler class file to extract the

content of elements in an XML document. The content

of an element consists of the data between the start
and end tags of the element. Text data typically comprises
the majority of the content of elements you find in an XML
document.

An XML parser can determine the text content of an
element and return the content to your Java code using
the SAX API. The parser returns the text data with the
character method of the event handler class.

The character method of the event handler class makes
the text data of an element available in the form of a
character array. Along with the character array, the
character method also passes the character location
within the array where the text data starts, and the number
of characters that make up the text data of the element.

EXTRACT TEXTUAL ELEMENT CONTENT

Given the character array that contains the element’s
content, along with the start location and number of
characters, you can easily transfer the element data into
a String variable. Converting the text data to a String
makes the data easier to handle.

When working with an element’s content, you typically
identify the name of the element that contains the data.
When displaying the content of elements, you can use the
startElement and endElement methods of the event
handler class to place the corresponding start and end tags
on either side of the element’s content.

What happens to the text data that makes up the content
of an element in an XML document depends on what you
want your application to do with it. Some applications
may simply display or print the text data while other
applications may want to execute other code depending
on the actual content of the text data.

—El Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

148

.\ ParseDoc.java - Notepad u@g‘ . ParseDoc.java - Notepad u@]ﬂ
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.parsers.™*; import org.apache.xerces.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler());
reader.parse("file.xml");} reader.parse{"file.xml"); }
} i
class Handler implements ContentHandler { class Handler implements ContentHandler {
public void startDocument() {} public void startDocument() (|System.nut.println("start ");|}
public void endDocument() {} public void endDocument() {}
public void setDocumentlLocator(Locator locator) {} public void setDocumentLocator(Locator locator) {} _
public void startElement(String namespace, String name, String gName, > public void startElement(String namespace, String name, String gName,
Attributes atts) {} Attributes atts) {
_| public void endElement(String namespace, String name, String gName) {} System. out. print("<" + name + ">");]
public void characters(char[] ch, int start, int length) {} pUBTTC VOTd endelr Ce, String name, String gNamej {
public void processingInstruction(String target, String data) {} System.out.prin + name + ;1L
public void startPrefixMapping(String prefix, String uri) {} pubTiC vo1d charactersichar[] ch, 1nt start, int length) {}
public void endPrefixMapping(String prefix) {} public void processingInstruction(String target, String data) {}
public void ignorableWhitespace(char[] ch, int start, int length) {} public void startPrefixMapping(String prefix, String uri) {}
public void skippedEntity(String name) {} public void endPrefixMapping(String prefix) {}
} public void ignorableWhitespace(char[] ch, int start, int length) {}
public void skippedEntity(String name) {}
b
= 1 1
i) O wom | | i) Q3 o

1 Type the code that you
want to display a message
when the parser starts to
parse the document.

EJ Type the code that displays
the element name when the
parser detects a start tag.

3 Type the code that displays
the element name when the
parser detects an end tag.

THE SAX API

The character method of the event handler class passes the data to
your application in the form of a character array. The character array
does contain data other than the actual textual content of the element.
The character method also returns the start location within the array
and the number of characters of the element content, which you can
use to extract the element content from the character array. You must
always use the start location and number of characters data to extract
the element content from the character array. If you try to access any
other data in the character array other than what the values of the
character method arguments specify, an error may occur.

In some cases the parser may call the character method of the event
handler class repeatedly for one element. The content of the element
passes to the character method in separate sequential sections. The
number of times that the parser calls the character method when it
retrieves element data depends on the type of XML parser in use, as
well as the type of computing environment. You should take this
repeated calling of the character method into account when
working with element data.

.\ ParseDoc.java - Notepad

File Edit Format View Help

import org.apache. xerces. parsers. *;
import org.xml.sax.
public class ParseDDc {
public static void main (String[] args) t
XMLReader reader = new SAXParser();

reader.parse("file.xml");}

}
class Handler implements ContentHandler {
public void startDocument() {System.out.p
public void endDocument() {}
public void setDocumentlLocator(Locator lo
public void startElement(String namespace,
Attributes att
System.out.print("<" + name + ">"); }
public void endElement(S tring namespace
System.out.print("</" + name + "
public void characters(char(] ch, int sta
1

reader.setContentHandler (new Handler());

BEX
Command Prompt
C:\Code>javac ParseDoc.java
hrows Exception { C:\Code>java ParseDoc
Start
<todo>
<task>
<description>Backup sales data for last month</description>
rintln{"Start ");} <owner>Andrew</owner>
<status>open</s
cator) {} <priority>low</p
String name, String ¢gName, </task>
sy { <task>

<description>Complete end of month report</description>
<owner>Andrew</owner>

<status>closed</status>

<priority>medium</priority>

String name, String gName) {

rt, int length) {

[String textData[= new String(ch, start,

Iengthji

|S}ystem.out.print(textData);:

public void processingInstruction(String
public void startPrefixMapping(String pre
public void endPrefixMapping(String prefi

public void skippedEntity (String name) {}
}

public void ignorablelWhitespace(char[] ch,

target, String data) {}
fix, String uri) {}

x) {}

int start, int length) {}

%’ [ParseDoc.java - Note...

@ WY 12:00PM

—H Type the code that creates [Type the code that 3 Compile and run your
a new String variable. displays the string program.
variable. and end tags.

3 Type the code that assigns
the character array to the
String variable.

WY 12:00 PM

Note: See Chapter 2 for instructions on
compiling and running Java programs.

The element content
displays along with the start

149

JAVA AND XML

DETERMINE THE NUMBER OF

ELEMENT ATTRIBUTES

ou can associate an attribute — an additional item of

information that provides more details about an

element or the element content — with an element.
For example, an element called 'fax' may have an attribute
called 'code' that you use to indicate the area code of the
fax number that makes up the content of the fax element.
You need to determine the number of attributes an element
contains in order to access the information in the attributes.

The first step in accessing the attributes of an element
involves determining the number of attributes an element
has. Elements may have multiple attributes or they may
have no attributes at all. Next, you can determine the name
of the attributes and any values associated with those
attributes. The XML parser encounters element attribute
information when it processes the start tag of an element.
Information about any attributes of an element passes as an
Attributes object to the startElement method of the
event handler class. You can easily create code in the

startElement method to determine the number of
attributes an element may have.

Because the Attributes interface is a part of the
org.xml.sax package, you must import the
org.xml .sax package into your program. For more
information about importing a package, see Chapter 3.

As with most other objects, you can use methods to
determine properties of an object. The method that
determines the number of attributes of an Attributes
object is the getLength method. The getLength method
returns the exact number of attributes that you have
specified for an element within an XML document.

Attributes of an element in an XML document may or may
not have a value assigned to them. Regardless of whether
you have specified the value for the attribute, the
getLength method of the Attributes object counts
the attribute.

DETERMINE THE NUMBER OF ELEMENT ATTRIBUTES

public void
public void startElement(String namespace, String name, String qName,
Attributes atts) {}
endElement (String namespace, String name, String gName) {}
charactersichar([] ch, int start, int length) {}
processingInstruction(String target, String data) {}
startPrefixMapping(String prefix, String uri) {}
endPrefixMapping(String prefix) {}
ignorableWhitespace(char[] ch,
skippedEntity(String name) {}

public void
public void
public void
public void
public void
public void
public void

int start, int length) {}

@; 12:00PM

Note: You can use the code created in
the section "Parse an XML Document."

- 1) Open or create the code
that parses an XML

coamme Note: You also need an XML document

that contains elements with attributes.
See Chapter 4 for more information.

. ParseDoc.java - Notepad M@ .\ ParseDoc.java - Notepad u[i]
File Edit Format VYiew Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler()):
reader.parse("file.xml"); reader.parse("file.xml");
} I
class Handler implements ContentHandler { class Handler implements ContentHandler {
public void startDocument() {} public void startDocument() {}
public void endDocument() {} public void endDocument() {} _
setDocumentLocator (Locator locator) {}

public void
public void

setDocumentLocator (Locator locator) {}
startElement(String namespace, String name,
Attributes atts) {

String gName,

+ name + © has)|

; [System.out. print("Element "

public void
public void
public void
public void
public void
public void
public void

endElement (String namespace,
characters(char[] ch, int start, int length) {}
processingInstruction(String target, String data) {}
startPrefixMapping(String prefix, String uri) {}
endPrefixMapping(String prefix) {}
ignorableWhitespace(char[] ch, int start,
skippedEntity(String name) {}

String name, String gName) {}

int length) {}

®§ 12:00 PM

g; l! g [® ParseDoc.java - Note...

1 Type the code that

displays the name of the
element.

THE SAX API

~
If you want to access the attribute information from any method of the
event handler class, you must retrieve it from the startElement method.

private Attributes atts;
public void startElement (String namespace, String name,
String gName, Attributes atts) {
this.atts=atts;
}
public void characters(char[] ch, int start, int length) {
String textData = new String(ch, start, length);
System.out.print ("Element content: ");
System.out.println(textData) ;
System.out.println(atts.getLength() + " attributes\n");
}

Element content: Backup Sales Data
2 attributes

Element content: Andrew
0 attributes

Element content: Print sales report
2 attributes

Element content: Mark
0 attributes

.\ ParseDoc.java - Notepad B

File Edit Format View Help Command Prompt
import org.apache.xerces.parsers.*;
import org.xml.sax.*; C:\Code>javac ParseDoc.java

public class ParseDoc {
public static void main (String[] args) throws Exception { X ;
XMLReader reader = new SAXParser(): C:\Code>java ParseDoc
reader.setContentHandler (new Handler()): Element todo has 0 attributes
reader.parse("file.xml"); Element task has 0 attributes
Element description has 0 attributes

}
class Handler implements ContentHandler {
public void startDocument() {}
public void endDocument() {}
public void setDocumentLocator{Locator locator) {
public void startElement(String namespace, String name, String gName,
Attributes atts) {

System.out.print("Element " + name + " has ");

; Kystem.out.printin{atts.getlength() + " attributes");]

public void endElement({String namespace, String name, String gName) {}
public void charactersichar[] ch, int start, int length) {}

public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}

public void endPrefixMapping(String prefix) {}

public void ignorableWhitespace(char[] ch, int start, int length) {}
public void skippedEntity(String name) {}

—E] Type the code that
displays the number of
attributes.

Element owner has 1 attributes
Element status has 0 attributes
Element priority has 2 attributes
Element task has 0 attributes
Element description has 0 attributes
Element owner has 1 attributes
Element status has 0 attributes
Element priority has 2 attributes

C:\Code>

3 Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

The name of each element
and the number of attributes
displays.

JAVA AND XML

DETERMINE THE NAME OF ATTRIBUTES

ou can determine the name of attributes that you

specify for an element. As with all attribute details,

the way to access the information is by using an
Attributes object. The Attributes object passes to
the startElement method of a previously created event
handler class. For more information about event handlers,
see the section "Create an Event Handler Class" in this
chapter.

You use a specific method of the Attributes object

to retrieve the name of elements’ attributes. The
getLocalName method requires that you specify an index
number to indicate which attribute the name represents.
The index number becomes the sole argument of the
getLocalName method.

The getLength method determines the number of
attributes that an element has. Once you determine the
number of attributes, you typically use a loop to iterate
through the attribute names. For more information about
creating loops, see Chapter 3.

Before accessing the attributes of an element, you should
determine if the element has any attributes associated with
it. You can quickly check for the existence of attributes by
using an if statement to determine if the number of
attributes of an element is greater than zero. For more
information about the if statement, see "Using the if
Statement" in Chapter 3.

As the attribute information becomes available to the
startElement method of the event handler, you can
easily associate the correct element name with the
corresponding attributes.

As with most indexes of numbers in Java, the index of the
attributes starts with zero, not one, so that an element with
two attributes must access them using the index numbers
zero and one, not one and two. If you try to retrieve the
name of an out-of-range attribute, the return value
becomes a null value.

DETERMINE THE NAME OF ATTRIBUTES

that parses an XML the section "Parse an XML Document.”

coamme Note: You also need an XML document

that contains elements with attributes.
See Chapter 4 for more information.

. ParseDoc.java - Notepad [L]E] .\ ParseDoc.java - Notepad u[i]
File Edit Format VYiew Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler());
reader.parse("file.xml");} reader.parse("file.xml");}
} }
class Handler implements ContentHandler { class Handler implements ContentHandler {
| public void startDocument() {} public void startDocument() {}
public void endDocument() {} public void endDocument() {}
public void setDocumentlLocator(Locator locator) {} public void setDocumentLocator(Locator locator) {} _
public void startElement(String namespace, String name, String gName, > public void startElement(String namespace, String name, String gName,
Attributes atts) {} Attributes atts) {
public void endElement(String namespace, String name, String qgName) {} [if (atts.getlength(3>0) {]
public void characters(char[] ch, int start, int length) {} |_System.out . printin("i\nElement " + name + " has attributes ") ,——
public void processingInstruction(String target, String data) {} 9]
public void startPrefixMapping(String prefix, String uri) {} }
public void endPrefixMapping(String prefix) {} public void endElement(String namespace, String name, String gName) {}
public void ignorableWhitespace(char[] ch, int start, int length) {} public void characters{char[] ch, int start, int length) {}
public void skippedEntity(String name) {} public void processingInstruction(String target, String data) {}
} public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char[] ch, int start, int length) {}
public void skippedEntity(String name) {}
}
1 1
" 12:00Pm W 12:00Pm
—El Open or create the code Note: You can use the code created in ' Type the code that checks [Type the code that

for the existence of attributes. displays a message if the

element has attributes.

THE SAX API

~
The order in which a parser detects attributes is not necessarily the same
order in which they become available using the Attributes interface.
You should not write code that assumes a specific order for the
attributes, as the order may change over time and on different platforms.
Typically you create the code that reorders the attributes in a manner
that makes it easy to work with your code, such as alphabetical order.
For example, using the code in the steps below may report the attributes
of this element:
<priority ignore="no" checked="yes" level="3">medium</priority>.
First Parser
Element priority has attributes
ignore
checked
level
Second Parser
Element priority has attributes
level
ignore
checked

| J

.\ ParseDoc.java - Notepad B

File Edit Format View Help

import org.apache.xerces.parsers.*;

import org.xml.sax.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.parse("file.xml");}

}
Cclass Handler implements ContentHandler {

public void startDocument() {}

public void endDocument() {}

public void setDocumentlLocator(Locator locator) {}

public void startElement(String namespace, String name, String gName,

Attributes atts) {
if (atts.getlLength()>) {
System.out.println{"\nElement " + name + " has attributes "});

[for(int i=0; i<atts.getlengthi); 1++

yStem, out. printin(atts. getlocalName (1))}

}

}
public void endElement(String namespace, String name, String gName) {}
public void characters{char[] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char([] ch, int start, int length) {}
public void skippedEntity(String name) {}
}

[ETEIN o it

@ WY 12:00PM

E Type the code that
displays the names of
the attributes.

1 Type the code that loops
through the element
attributes.

Command Prompt

C:\Code>javac ParseDoc.java
C:\Code>java ParseDoc

Element owner has attributes
dept

Element priority has attributes
ignore
checked

Element owner has attributes
dept

Element priority has attributes
ignore
checked

C:\Code>

M The name of each element
and the name of the
element’s attributes display.

3 Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

153

JAVA AND XML

DETERMINE THE VALUE OF ATTRIBUTES

ou can determine the value of an element in order to

retrieve the information from the element’s attributes.

An element’s attributes consist of an attribute name
and value. Once you determine the name of an attribute,
you can retrieve its value and associate the name to the
value. The Attribute object provides the getvalue
method, which utilizes an index number to access the value
of an attribute. You can also use this same index number
with the getLocalName method, to retrieve the attribute’s
name. In this way, the index number matches the attribute’s
name with its value. As attributes do not necessarily follow
in the order that you specified them within the element, you
typically use both the getLocalName and the getvalue
with the index number to access attribute values.

You can determine the number of attributes and values with
the getLength method. Once you determine the number
of attributes, you typically use a loop to iterate through the
attribute names and values.

Attribute values are always returned as a string, even if the
value of the attribute is a number. For example, if the
attribute age has a value of 36, then 36 is the actual
string value, not the number 36. Any mathematical
calculations you perform on the value result in an error.
To easily convert string data to numbers, see Chapter 3.

You must enclose the value of an attribute in single or
double quotes when you specify the attribute value in an
XML document. When the value passes to the event
handler, the XML parser returns the value, without the
quotes. For example, for the attribute name and value pair,
name="555-2230", only the text 555-2230 returns as the
value of the attribute name. If you try to retrieve an out-of-
range value of an attribute, then you receive the return
value of null.

DETERMINE THE VALUE OF ATTRIBUTES

. ParseDoc.java - Notepad [L]E] .\ ParseDoc.java - Notepad u[i]
File Edit Format VYiew Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
public class ParseDoc public class ParseDoc
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler()):
reader.parse("file.xml");} reader.parse("file.xml");}
|class Handler implements ContentHandler { class Handler implements ContentHandler {
public void startDocument() {} public void startDocument() {}
public void endDocument() {} public void endDocument() {}
public void setDocumentlLocator(Locator locator) {} public void setDocumentlLocator(Locator locator) {}
public void startElement(String namespace, String name, String gName, public void startElement(String namespace, String name, String gName, _
Attributes atts) {} Attributes atts) {
public void endElement(String namespace, String name, String gName) {} [if (atts.getlength(3>6) {]
public void characters(char[] ch, int start, int length) {} | System.out.println{"\nElement " + name + " has the attributes)]
public void processingInstruction(String target, String data) {} for(int 1=0, i<atts,getlength(); i++) {
public void startPrefixMapping(String prefix, String uri) {} System.out.print{atts.getLocalName(i));
public void endPrefixMapping(String prefix) {} 1}
public void ignorableWhitespace(char([] ch, int start, int length) {}
public void skippedEntity(String name) {} } }
pubTic void endElement(String namespace, String name, String gName) {}
public void characters{char[] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char(] ch, int start, int length) {}
public void skippedEntity(String name) {} }
1 1
" 12:00Pm W 12:00Pm
—El Open or create the code Note: You can use the code created in 3 Type the code that checks [Type the code that
o u . . .
that parses an XML the section ‘Parse an XML Document." | for the existence of attributes. displays the name of the
document. attributes.

Note: You also need an XML document
that contains elements with attributes.
See Chapter 4 for more information.

154

—E Type the code that
displays a message if the
element has attributes.

THE SAX API

Apﬁty You can use the getType method of the Attributes interface to
determine the type of data of the attribute value. Unless you use a DTD
or schema with your XML document, the data type is always CDATA.

B

public void startElement (String namespace, String name, String gName,
Attributes atts) {
if (atts.getLength()>0) {

System.out.println("\nElement " + name + " has the attributes ");

for(int i=0; i<atts.getLength(); i++) {
System.out.print (atts.getLocalName (i)) ;
System.out.print (" which has a type of ");
System.out.println(atts.getType(i));
}

Element owner has the attributes
dept which has a type of CDATA

Element priority has the attributes
ignore which has a type of CDATA
checked which has a type of CDATA

.\ ParseDoc.java - Notepad B
File Edit Format ‘iew Help Command Prompt

import org.apache.xerces.parsers.*;
import org.xml.sax.*;
public class ParseDoc
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.parse("file.xml");} } Element owner has the attributes
class Handler implements ContentHandler { . _
public void startDocument() {} dept which has a value of sales
public void endDocument() {}
public void setDocumentLocator{Locator locator) {} Element priority has the attributes
public void startElement(String namespace, String name, String gName, ignore which has a value of yes
if (atts.getlength()>0) (Attr1butes atts) { checked which has a value of yes
System.out.println({"\nElement " + name + " has the attributes "); .
for{int i=0; i<atts.getlLength(); i++) { Element owner has the attributes
System.out.print(atts. getlocalName(i)); dept which has a value of sales
§s em. out. print (" which has a value of "Jj]

Stem.out.println(atts.getvalue(i));F

C:\Code>javac ParseDoc.java

C:\Code>java ParseDoc

) Element priority has the attributes
} ignore which has a value of no
} checked which has a value of yes
public void endElement(String namespace, String name, String gName) {}
public void characters(char[] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char([] ch, int start, int length) {}
public void skippedEntity(String name) {} }

C:\Code>

—H Type the code that [3 Type the code that ¢ Compile and run your The name of each element,
displays a message describing displays the value of the program. the name of the element’s
the attribute value. attributes. attributes, and the attribute’s

Note: See Chapter 2 for instructions on

- , lues display.
compiling and running Java programs. vaiues display

JAVA AND XML

DETERMINE THE LINE
NUMBER BEING PARSED

ou can determine which line of an XML document a

parser is currently processing when a specific event,

such as a processing instruction, occurs. You use the
Locator interface, part of the org.xml . sax package, to
create an object. The object contains the location at which
the XML parser is currently parsing in the XML document.
For more information about importing a package, see
Chapter 3.

The XML parser calls the setDocumentLocator method of
the event handler class whenever the XML parser makes a
callback to the event handler class, regardless of the type of
event that triggers the callback or whether the XML parser
intends to call any other method in the event handler. A
Locator object passes to the setDocumentLocator
method, which you can then use to determine the

location that the XML parser is accessing. You use the
getLineNumber method to return a value that represents
the line number that the parser is currently parsing.

DETERMINE THE LINE NUMBER BEING PARSED

Because you cannot guarantee its accuracy, you should not
access the Locator object outside of the event handler
class. The Locator object passes to the
setDocumentLocator method, and this limits its
usefulness to code located within the
setDocumentLocator method. To make it more useful,
you should make the Locator object more accessible to
other methods within the event handler class. The easiest
way to do this involves creating a Locator object with a
scope within the event handler class. This allows you to use
the Locator object in the other methods of your class.

The Locator object and its data are only valid for the
current event. As each event occurs, the data that a Locator
object makes available changes. When working with the line
numbers that the Locator object makes available, the line
numbers start with number one and not zero.

.\ ParseDoc.java - Notepad

BEX]

. ParseDoc.java - Notepad

BEX]

File Edit Format Yiew Help

import org.apache, Xerces.parsers. *;
import org.xml.sax.
public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader. setcuntentHandler(new Handler()):
reader.parse("file.xml");}
class Handler implements ContentHandler {
private Locator locator; |
pubTic void startbocument() {}
public void endDocument() {}
public void setDocumentlLocator(Locator locator) {}
public void startElement(String namespace, String name,
Attributes atts) {}
void endElement(String namespace, String name, String gName) {}
void characters(char[] ch, int start, int length) {}
void processingInstruction(String target, String data) {}
void startPrefixMapping(String prefix, String uri) {}
void endPrefixMapping(String prefix) {}
void ignorableWhitespace(char[] ch, int start,
void sKippedEntity (String name) {}

String gName,

public
public
public
public
public
public
public

int length) {}

@g 12:00 PM

ﬂs& g— " ParseDoc.java - Note...

E Type the code to create
the variable that represents
a Locator object with a
scope within the event
handler.

Kl Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document.”

File Edit Format View Help

import org.apache. Xerces.parsers. *;
import org.xml.sax.
public class ParseDDc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.parse("file.xml");}
class Handler implements ContentHandler {
private Locator locator;
public void startDocument() {}
public void endDocument() {}
public void setDocumentlocator(Locator locator) {
this.locator = locator;

}
public vmdlstartElementcStrmg namespace, String name, String gName,

Attributes atts) {}

public void endElement(String namespace, String name, String gName) {}
public void charactersi{char[] ch, int start, int length) {}

public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}

public void endPrefixMapping(String prefix) {}

public void ignorableWhitespace(char(] ch, int start, int length) {}
public void skippedEntity (String name) {}

C’gg 12:00 PM

gﬁg g— [ParseDoc.java - Note...

] Type the code that assigns
a Locator object to the
Locator object you created
in step 2.

THE SAX API

%;r“

You can also use the Locater interface to locate the
column number, the number of characters from the start
of the line, that the XML parser is currently processing.

public void startElement (String namespace, String name,
Attributes atts) {
System.out.print("On line " + locator.getLineNumber ()) ;
System.out.print (" at column " + locator.getColumnNumber ()) ;
System.out.println(" Start of element '" + name + detected ") ;

String gName,

line column 7 Start of element 'todo' detected

column
column
column
column
column
column
column
column
column
column

line
line
line
line
line
line
line
line
line
line

Start
Start
Start
Start
Start
18 Start
12 Start
13 Start
15 Start

§888888888

9 Start of element 'task’

detected
'description' detected
'owner' detected
'status' detected
'priority' detected
'task' detected
'description' detected
'owner' detected
'status' detected
'priority' detected

of element
element
element
element
element
element
element
element

of element

. ParseDoc.java - Notepad
File Edit Format View Help

import org.apache.x
import org.xml.sax.
public class ParseDoc
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler{));
reader.parse("file,xml");}
class Handler implements ContentHandler {
private Locator locator;
public void startDocument() {}
public void endDocument() {}
public void setDocumentlLocator{Locator locator) {
this.locator locator;

BEX)

erces.parsers.*;
w

}
public void startElement(String namespace, String name, String gName,
A

ttributes atts) {

[System.out.print(on line " + locator.getLineNumber ()]

}|System.uut.pr1’nt1n(" Start of element '" + name + "' detected "):I—
endElement (String namespace, String name, String gName) {}
characters(char([] ch, int start, int length) {}
processinglnstruction(String target, String data) {}
startPrefixMapping(String prefix, String uri) {}
endPrefixMapping(String prefix) {}
ignorableWhitespace(char[] ch, int start,
skippedEntity (String name) {}

void
void
void
void
void
void
void

public
public
public
public
public
public
public

int length) {}

}

o)

@ WY 12:00PM

1 Type the code that
displays the line number.

H Type the code that
displays the name of the
element.

Command Prompt

C:\Code>javac ParseDoc.java

de>java ParseDoc
ne 2 Start of element ‘todo’ detected
On line 3 Start of element ‘task’ detected
On line 4 Start of element ‘description’ detected
On line 5 Start of element ‘owner’ detected
On line 6 Start of element 'status’ detected
On line 7 Start of element ‘priority’ detected
On line 9 Start of element ‘task’ detected
On line 10 Start of element "description’ detected
On line 11 Start of element ‘owner’ detected
On line 12 Start of element 'status’ detected
On line 13 Start of element “priority’ detected

C:\Code>

WY 12:00 PM

The name of each element,
and the line number of the
element in the XML
document display.

3 Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

157

JAVA AND XML

DETERMINE IGNORABLE
WHITESPACE IN AN ELEMENT

ou can have the XML parser detect ignorable

whitespace in your XML document to more efficiently

identify what information the parser does not require
when it processes an XML document. Most XML documents
contain whitespace, which consists of non-displayable items
such as a space character, tabs, or line breaks. Whitespace
may include valid information, such as the spaces in text
that compose an element’s content. When you have valid
whitespace as part of the textual content of an element, the
XML parser detects it and then passes it to the application
using the characters method of the event handler object.
In that context you can consider the whitespace an actual
part of the element content.

Some whitespace in an XML document may not form part
of the content. The XML parser must detect it before it can
perform a task, such as formatting an XML document for
printing. You call this kind of whitespace ignorable

DETERMINE IGNORABLE WHITESPACE IN AN ELEMENT

whitespace because it may not constitute a necessary part
of the XML document, and therefore you can safely ignore
it. For example, you may insert a line break between the
end tag of one element and the start tag of the next
element in an XML document. While making the XML
document easier to read, the parser can safely ignore the
line break without affecting the validity or contents of the
XML document.

You detect ignorable whitespace with the
ignorableWhitespace method of the event handler
object. The ignorablewhitespace method works in
the same manner as the characters method, in that the
whitespace passes in a character array along with the
start location and the length of the data in the array. You
typically convert this character array into a string to make
the information easier to manage.

. file.xml - Notepad

[BEX]

.\ ParseDoc.java - Notepad

[BEX]

File Edit Format View Help

<?xml version="1.0"7>
<TDOCTYPE todo

[
]<!ELEMENT task (description | owner | status | priority)*>
)|

>
<todo>
<task>
<description»Backup sales data for last month</description>
<owner>Andrew
</owner>
<status>open</status>
<priority>low</priority>
</task>
<task>
<description>Complete end of month report</description>
<owner>Andrew</owners
<status>closed</status>
<priority>medium</priority>
</ task>
</ todo>

@ W 12:00PM

Qﬂ! g— P file.xml - Notepad

Kl Open or create an XML
document.

" Create a DTD that defines
an element that does not
contain textual data.

Note: For more information about
creating DTDs, see Chapter 5.

K save the XML document.

File Edit Format View Help

import org.apache. xerces. parsers. *;
import org.xml.sax.
public class ParseDnc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.parse("file.xml");}

}

Cclass Handler implements ContentHandler {
public void startDocument() {}
public void endDocument() {}
public void setDocumentLocator(Locator locator) {}
public void startElement(String namespace, String name, String gName

Attributes atts) {}

public void endElement(String namespace, String name, String gName) {}
public void charactersi{char[] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}

pub11c v01d endPref1xMapp1ng(Str1ng preflx) {}

r in

start, int length) {

nor:
System Dut print{" \nStart of wh1tespace ="y

[System.out.print("< End of whitespace");|

public void skippedEntity(String name)|l {} }

Frer Qs o
3 Open or create the code E Type the code that

that parses the XML displays a starting marker.
document saved in step 3. L Type the code that

Note: You can use the code created in
the section "Parse an XML Document."

displays an ending marker.

THE SAX API

£

Example:
<?xml version="1.0"?>

<todo>

</todo>

}

You must include a valid DTD to determine which parts of the XML document
constitute ignorable whitespace. The ignorableWhitespace method does
not work unless you use a document type definition. You can test this by
displaying a message whenever the parser detects ignorable whitespace.

Try to detect whitespace in an XML document as in the example:

<description>Backup sales data for last month</description>

public void ignorableWhitespace(char[] ch,
System.out.print ("Detected ignorable whitespace");

int start, int length) {

No Result!

.\ ParseDoc.java - Notepad

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.xml.sax.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.parse("file.xml");}

}
class Handler implements ContentHandler {
public void startDocument() {}
public void endDocument() {}
public void setDocumentLocator{Locator locator) {}
public void startElement(String namespace, String name, String ¢Name,
Attributes atts) {}
public void endElement(String namespace, String name, String gName) {}
public void characters(char([] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char([] ch, int start, int length) {
System.out.print("\nStart of whitespace >");
1

String wh1teSpace|= new String(ch, start, 1ength):|

[System.out.print(whiteSpace);

System.out.print("< End of whitespace");

public void skippedEntity (String name) {} }

) parseoocima- e |

@ WY 12:00PM

BEX]

El Type the code that
displays the variable
containing the whitespace.

Type the code that creates
a new string variable.

1 Type the code that assigns
the character array to the
string variable.

Command Prompt

C:\Code>javac ParseDoc.java
C:\Code>java ParseDoc

Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace
Start of whitespace >
< End of whitespace

The markers denoting the
start and end of the
whitespace characters

display.

& Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

JAVA AND XML

WORK WITH PROCESSING INSTRUCTIONS

ou can use processing instructions to pass information

to a specific application accessing an XML document.

The application can then perform a task based on the
values within the processing instruction or, if necessary, take
no action at all.

Processing instructions in an XML document consist of two
parts, the target and the value. The target is the first word
of the processing instruction, while the value of the
processing instruction consists of the remaining characters.
Processing instructions within an XML document begin with
<? and end with ?>.

You target the processing instruction at a specific application.
For example, you may use <?Speller check=no?> asa
processing instruction that notifies a text parsing application
not to spell check the contents of the XML document.

Although you typically make the target name the name of
the application for which you intend the processing
instruction, you can also make it any valid word.

WORK WITH PROCESSING INSTRUC

NS

The XML parser detects processing instructions in an XML
document using the processingInstruction method of
the event handler class. The processingInstruction
method passes two parameters as string data: the target
name, and the value of the processing instructions as you
specify them in the XML document.

Processing instructions have no impact on the document
itself; an application only uses them when it processes the
XML document to perform a task. Multiple processing
instructions can exist in an XML document. If your
application does not look for processing instructions in the
XML document, then the application ignores any processing
instructions that it encounters.

You must write your application so that it recognizes the
processing instructions intended for it and then performs a
task depending on the value of the processing instructions.

. file.xml - Notepad

[BEX]

.\ ParseDoc.java - Notepad

[BEX]

File Edit Format View Help

<?xml version="1.0"?>
_|<7message yes?>
<?Speller check="no"?>
0d0!
<task>
<description»Backup sales data for last month</description>
<owner>Andrew</owners
<status>open</status>
<priority>low</priority>
</task>
<task>
<description>Complete end of month report</description>
<owner>Andrew</owners
<status>closed</status>
<priority>medium</priority>
</task>
</ todo>

QS 2 gk I file.xml - Notep

®’§ 12:00 PM

Kl Open or create an XML
document.

] Insert one or more
processing instructions.

Note: For more information about
creating processing instructions,
see Chapter 4.

E save the XML document.

File Edit Format View Help

import org.apache.xerces.parsers,*;
import org.xml.sax.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.parse("file.xml");

b
class Handler implements ContentHandler {
public void startDocument() {}
public void endDocument() {}
public void setDocumentlLocator(Locator locator) {}
public void startElement(String namespace, String name, String gName
Attributes atts) {}
public void endElement({String namespace, String name, String gName) {}
public void characters(char([] ch, int start, int length) {}
public void processingInstruction(String target, String data) {

[System.out.printin("Processing instruction detected); | —

}

public void startPrefixMapping(String prefix, String uri) {}

public void endPrefixMapping(String prefix) {

public void ignorableWhitespace(char([] ch, int start, int length) {}
public void skippedEntity(String name) {} }

) T G s
3 Open or create the code E Type the code that

that parses an XML
document.

displays a message when the
application detects a

. rocessing instruction.
Note: You can use the code created in P &

the section "Parse an XML Document."

THE SAX API

If your application expects processing instructions in the XML documents
that you process, you typically use multiple if statements to detect the
processing instructions and then perform a specific task depending on the
value in those instructions. If you include the processing instruction
<?myApp priority="high"?> in your XML document, then you can
change the code in the event handler’s processingInstruction method
to display a message when you flag an XML document as important.

A

public void processingInstruction(String target, String data) {
if (target.equals ("myApp") {
if (data.equals ("priority=\"high\"")) {
System.out.println("This document is of high priority. Review carefully");

}

This document is of high priority. Review carefully.

.\ ParseDoc.java - Notepad u@ﬂ

File Edit Format View Help &3 Command Prompt

import org.apache.xerces.parsers.*;
import org.xml.sax.*;
public class ParseDoc {
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
XMLReader reader = new SAXParser(); . g i
reader.setContentHandler (new Handler()):; Processing instruction detected
reader.parse{"file.xm1");

C:\Code>javac ParseDoc.java

in
The target is Speller

}
class Handler implements ContentHandler { b
The value is check="no"

public void startDocument() {}

public void endDocument() {}

public void setDocumentlLocator({Locator locator) {} C:\Code>

public void startElement({String namespace, String name, String gName,
Attributes atts) {}

public void endElement(String namespace, String name, String gName) {}

public void charactersi{char[] ch, int start, int length) {}

public void processinglnstruction(String target, String data) {

System.out.println("Processing instruction detected");

[System.out.println("The target is "+ target);]

[System. out. println("The value is " + data);}

public void startPrefixMapping(String prefix, String uri) {}

public void endPrefixMapping(String prefix) {}

public void ignorableWhitespace(char[] ch, int start, int length) {}
public void skippedEntity(String name) {} ¥

e Q@8 1z00pm

3 Type the code that 4 Type the code that —E1 Compile and run your A message displays,
displays the processing displays the processing program. indicating that the
instruction’s target name. instruction’s value. application found the

Note: See Chapter 2 for instructions on

o . processing instruction,
compiling and running Java programs.

followed by the target
and value.

JAVA AND XML

PARSE MULTIPLE XML

DOCUMENTS

USING MULTIPLE EVENT HANDLERS

n many cases, an application needs to parse multiple

XML documents. As with most Java objects, you can

reuse the pre-existing, application-created objects —
including objects created while parsing another
document — to minimize memory usage and limit the use
of resources on your computer. Reusing existing objects
increases your application’s efficiency, thereby improving
the performance of your application.

You create an XMLReader object to parse an XML
document using the SAX API. Once you create the
XMLReader objects, you can use them to parse multiple
XML documents. If possible, you should avoid creating a
new instance of an XMLReader object if you can reuse an
existing object.

Another advantage of reusing XMLReader objects involves
not having to continually register the reader with an event
handler class each time you want to parse an XML

document. Once you register the use of the event handler
class, the application calls the methods of that handler
class to correspond to the events that occur while the XML
document parses. You can use the specified event handler
on all subsequent parsed documents.

You can also reuse the XMLReader object to parse a
previously parsed document, this time using a different
event handler. For example, you may have one event
handler that primarily checks for errors; if you find an error-
free XML document, you can parse the document again,
this time using an event handler that prints the information
in the XML document.

Different APIs make use of reader objects like XMLReader.
If you use other APIs to parse an XML document at the
same time, you should ensure that you are using your SAX
API event handlers with the appropriate reader objects.

PARSE MULTIPLE XML DOCUMENTS USING MULTIPLE EVENT HANDLERS '

) ParseDoc.java - Notepad

MEX]

. ParseDoc.java - Notepad

File Edit Format View Help
class Handler implements ContentHandler {
S

public void startDocument()
public void endDocument() {
public void setDocumentlLocator
public void startElement(String namespace, String name, String gName
Attributes atts) {}

public void endElement(String namespace, String name, String gName) {}
public void characters(char[] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char[] ch, int start, int length) {}
public void sKippedEntity(String name) {}

H [

class [HandlerTwo| implements ContentHandler {
publiC vo1d startDocument() {S .
public void endDocument() {f
public void setDocumentLocator —
public void startElement(String namespace, String name, String gName

Attributes atts) {}

public void endElement(String namespace, String name, String gName) {}
public void characters(char[] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char[] ch, int start, int length) {}
public void sKippedEntity(String name) {}

i

®‘ ¥ 12:00PM

E] Type the code that creates
another event handler class.

El Create an event handler
class that displays a message
at the start of the document.

—H Type the code that
displays the name of the
event handler.

—Z4 Type a different name for
the second class.

—H Type the code that
indicates the name of the
second event handler.

BEIX]
File Edit Format View Help

import org.apache. xerces parsers.*; ~
import org.xml.sax.

public class ParseDDc {

| public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser():

reader.setContentHandler (new Handler()):
reader.parse("file.xml");

b
class Handler
public void
public void
public void
public void

implements ContentHandler {
startDocument() {System.out. pr1nt1n('Found document"); }
endDocument () {System.out.println("Using Handler Onein--");} =
setDocumentLocator (Locator locator) {}
startElement(String namespace, String name
Attributes atts) {}
endElement (String namespace, String name, String gName) {}
characters(char[] ch, int start, int length) {}
processingInstruction(String target, String data) {}
startPrefixMapping(String prefix, String uri) {}
endPrefixMapping(String prefix) {}
ignorableWhitespace(char[] ch, int start,
skippedEntity(String name) {}

String gName,

public
public
public
public
public
public
public

void
void
void
void
void
void
void

int length) {}

}
class HandlerTwo implements ContentHandler {

public void startDocument() {System.out. pr1nt1n('Found document"); }

public void endDocument() {System.out.println("Using Handler Twoin--");}

public void setDocumentlLocator(Locator locator) {}

public void startElement(String namespace, String name, String gName

Attributes atts) {}

public void endElement(String namespace, String name, String gName) {} [v]

1
i) Qs som

3 Type the code that parses
an XML document.

THE SAX API

Regardless of how many event handler classes you use in your code, all must
implement all the required methods of the ContentHandler interface, even if you
do not use all of the methods. For more information about the methods you need
when creating event handlers, see the section "Create an Event Handler Class."

While you can use the same XMLReader object to read multiple XML documents,
you cannot reuse the XMLReader object while it is in the process of parsing a
document. If you must parse two XML documents at the same time, you need to
create another instance of the XMLReader object.

If necessary, you can create multiple instances of the XMLReader object so that
each XMLReader object uses a different XML parser. You can then use the multiple
XMLReader objects to process a single XML document. You may find this useful if
you want to harness the benefits and strengths of individual parsers to process a
complex XML document. Depending on the operating system environment and the
file system that stores the XML document, you may only be allowed to access the
XML document with one XMLReader object at a time.

.\ ParseDoc.java - Notepad

BEX
File Edit Format View Help

import org.apache.xerces.parsers.*; ~
import org.xml.sax.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {

XMLReader reader = new SAXParser();

reader.setContentHandler {new Handler{));

reader.parse("file.xml");
|—{reader.parse ("TileZ xml™);
——reader. setContentHandler (new HandlerTwo());

parse("file. xml"); }

) [reader. F

class Handler implements ContentHandler {

public void startDocument() {System.out.println("Found document");}

public void endDocument() {System.out.println("Using Handler Onein--");}

public void setDocumentLocator{Locator locator) {}

public void startElement(String namespace, String name, String gName,
Attributes atts) {}

public void endElement(String namespace, String name, String gName) {}

public void characters(char([] ch, int start, int length) {}

public void processinglnstruction(String target, String data) {}

public void startPrefixMapping(String prefix, String uri) {}

public void endPrefixMapping(String prefix) {}

public void ignorableWhitespace(char[] ch, int start, int length) {}

public void skippedEntity(String name) {}

1M

}

class HandlerTwo implements ContentHandler {
public void startDocument() {System.out.println("Start 2 of document");}
public void endDocument() {System.out.println{"Using Handler Twoin--");}
public void setDocumentlLocator{Locator locator) {} v

@ WY 12:00PM

i) T

El Type the code that parses
the XML document specified
in step 6.

i Type the code that parses
a second XML document.

] Type the code that
registers the event handler
specified in step 4 with the
reader.

Command Prompt

ode>javac ParseDoc.java
C:\Code>java ParseDoc
Found document
Using Handler One

Found document
Using Handler One

Found document
Using Handler Two

C:\Code>

WY 12:00PM

A message displays
indicating which event
handler processed the XML
documents.

I Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

163

JAVA AND XML

CREATE AN ERROR HANDLER

ou can use the SAX API to perform a specific task or determine more information about the causes of an error.
tasks whenever it encounters an error when parsing a For more information about SAXParseException, see the
document. You can create code that can attempt to section "Create a Custom Error Message" in this chapter.
recover from the error, commit the error to an error log, or
simply display a custom error message. Once you have created the error handler class, you must
register the error handler with the XMLReader object. You
You can create an error handler class to handle SAX errors. register the error handler using the setErrorHandler
The error handler class you create must implement the method of the XMLReader object.

ErrorHandler interface of the org.xml .sax package.
Typically, you can include more that just the error-handling

In addition, it must also implement three methods: object to detect errors in your code. You should always
warning, error, and fatalError. develop applications that you create to handle any possible

errors that the application generates when it is executed. If
The SAX API calls each method whenever it generates the you do not have any error-handling capability built into
corresponding error while parsing an XML document. For your applications, your applications may abruptly halt and
example, the application calls the fatalError method of display a large amount of information upon encountering
the error handler class whenever an error causes the XML errors; they may even cause data loss. You typica"y Create
parser to cease parsing the document. A error handling code for all the methods in the error
SAXParseException object passes all methods of the error handling class. For more information about handling errors
handler class. You can use a SAXParseException object to in Java code, refer to Chapter 3.

CREATE AN ERROR HANDLER

. ParseDoc.java - Notepad [__]@E‘ .\ ParseDoc.java - Notepad g
File Edit Format Yiew Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*; ~
import org.xml.sax.*; import org.xml.sax.*; [
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler()):
reader.parse("file.xml"); } reader.parse("file.xml"); }
} }
class MyErrHandler implements ErrorHandler { '_class MyErrHandler implements ErrorHandler { -
} |pub11'c void warning (SAXParseException exception) (}|
class Handler implements ContentHandler { __Ipub'l'ic void error(SAXParseException exception) {)l
public void startDocument() {}
public void endDocument() {} [public void fatalError (SAXParseException exception) {}}——m——"
public void setDocumentlLocator(Locator locator) {} ¥
public void startElement(String namespace, String name, String qName,
Attributes atts) {} class Handler implements ContentHandler {
public void endElement(String namespace, String name, String gName) {} public void startDocument() {}
public void charactersichar[] ch, int start, int length) {} public void endDocument() {}
public void processinglnstruction(String target, String data) {} public void setDocumentlLocator(Locator locator) {}
public void startPrefixMapping(String prefix, String uri) {} public void startElement(String namespace, String name, String gName,
public void endPrefixMapping(String prefix) {} Attributes atts) {}
public void ignorableWhitespace(char[] ch, int start, int length) {} public void endElement(String namespace, String name, String gName) {}
public void skippedEntity(String name) {} public void charactersi{char[] ch, int start, int length) {}
} public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {} v
) O Q3 o Qs com
Note: To generate the required error, Note: You can use the code created in -~ —EJ Type the code that creates [Type the code that creates
Yyou need to parse an XML document the section "Parse an XML Document." | the warning method. the fatalError method.
that has an element with a missing
end tag A Type the code that creates LA Type the code that creates

the error handler class. the error method.
a Open or create the code
that parses an XML
document.

164

THE SAX API

EXJH An application calls one of three required methods of the error handler class when it encounters the
corresponding type of error. The XML specification defines the types of errors that the XML parser

reports.

Warning
Warnings are errors that the error or fatalError methods do not catch. You can typically
continue parsing an XML document after a warning generates.

Error

The parser uses the error method with the type of errors from which it can often recover. For
example, the application calls this method if it finds the XML document an invalid XML document
while parsing it.

FatalError

A call to the fatalError method often means that the application cannot properly parse an XML
document, if, for example, the XML document does not have a required start or end element tag.

Fatal errors typically shut down any application that encounters them. To immediately terminate your
application, you should call the exit method of the System class with an argument of -1.

Example:
public void fatalError (SAXParseException exception) {
System.out.println("\n\n There has been a serious error\n\n");

System.exit (-1);

.\ ParseDoc.java - Notepad [;]@]

File Edit Format View Help

import org.apache.xerces.parsers.*; ~
import org.xml.sax.*;

Command Prompt

C:\Code>javac ParseDoc.java

public class ParseDoc { = i
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): T has ‘ Y
reader.setErrorHandler (new MyErrHandler()); here has heen a serious error
reader.parse{"file.xm1");
' Exception in thread “main” org.xml.sax.SAXException: Stopping after fatal error:
class MyErrHandler implements ErrorHandler { The element type “priority” must be terminated by the matching end-tag “</prior
ity>".
public void warning(SAXParseException exception) {} at org.apache.xerces.framework.XMLParser.reportError(XMLParser.java: 1245
public void error(SAXParseException exception) {} at org.apache.xerces.framework.XMLDocumentScanner.reportFatalXMLError(XM
LDocumentScanner.java:579)

p'—(—;u_{—wlbhc void fatalError (SAXParseException exception — at org.apache.xerces.framework.XMLDocumentScanner.abortMarkup(XMLDocumer|
——System. out. printin{"inin There has been a serious errorinin");|} tScanner.java:628)
} at org.apache.xerces.framework.XMLDocumentScanner$ContentDispatcher.disp
atch(XMLDocumentScanner.java:1136)
d;aa:‘?”s;?g Eg}fggg&sﬂeg?re)teﬁHandler { at org.apache.xerces.framework.XMLDocumentScanner.parseSome(XMLDocument
public void endDocument() {} canner.java:381) .
public void setDocumentLocator(Locator locator) {} at org.apache.xerces.framework.XMLParser.parse(XMLParser.java:1098)
public void startElement(String namespace, String name, String gName, at org.apache.xerces.framework.XMLParser.parse(XMLParser.java:1139)
Attributes atts) {} at ParseDoc.main{ParseDoc.java:9)
public void endElement(String namespace, String name, String gName) {}
public void charactersichar[] ch, int start, int length) {} v
PO DA puuiiat. b ISP el pu i g A S-Sy

RS

QB 2w FE— —

A Type the code that —d Compile and run your A message displays stating
displays a message when the program. that the application
licati t fatal . . tered :
Zﬁg:ca fon encounters a fata Note: See Chapter 2 for instructions on encountered an error
’ compiling and running Java programs. Depending on your parser

and other error handling
code, more error information
may display.

JAVA AND XML

CREATE A CUSTOM ERROR MESSAGE

ou can create a custom error message to provide

more information about the type of error a parser

encounters. You can code this custom error message
to display on screen, log to a file, or go into a database.
Custom error messages make an application easier to
troubleshoot and maintain.

When a parser encounters an error during the parsing of
an XML document, it makes a call to a method in the error
handler class. The method the XML parser calls depends on
the type of error it encounters.

When the XML parser calls the method of the error handler,
a SAXParseException object passes into the method. As
with all exception errors, you commonly assign the name
exception to the SAXParseException object.

The sAXParseException object allows you to access
various methods to determine information about the error
that caused the call to the method of the error handler. The
getMessage method returns a string that may describe the
exact nature of the error.

To locate the error in an XML document, you need to know
the line at which the XML parser was parsing when it
encountered the error. The getLineNumber method of the
SAXParseException object determines this line. Similarly,
the getColumnNumber method returns the column
number at the time of the error. The column number is

the number of characters from the beginning of the

line. Because the values that the getLineNumber,
getColumnNumber, and getMessage methods return are
String values, you can easily display them. You typically
create error-handling code for all the methods in the error-
handling class.

The information passed to the SAXParseException
object, such as the text of error messages, may change
depending on the operating system environment, the XML
parser that you use, and the version of Java that created the
application.

CREATE A CUSTOM ERROR MESSAGE

) ParseDoc.java - Notepad

.\ ParseDoc.java - Notepad

BE)X|
File Edit Format View Help

import org.apache.xerces.parsers.*; ~
import org.xml.sax.*;]

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.setErrorHandler(new MyErrHandler());
reader.parse("file.xml"); }
) 3

class MyErrHandler implements ErrorHandler {

public void warning(SAXParseException exception) {}

public void error(SAXParseException exception) {}

public void fatalError(SAXParseException exception) {
System.out.println("inin There has been a serious errorin”);
b

}

class Handler
public void
public void
public void
public void

implements ContentHandler {

startDocument() {}

endDocument{) {}

setDocumentLocator (Locator locator) {}

startElement(String namespace, String name, String gName,
Attributes atts) {}

andFEY amant (Strine namacnaca SHrine nome L7

Akl e wadid

gg! g* [ParseDoc.java - Note...

Strina aNamal 1

®’§ 12:00 PM

Note: You can use the code created in
the section "Create an Error Handler."

Note: To generate the required error,
Yyou need to parse an XML document
that has an element with a missing
end fag.

Kl Open or create the code
that parses an XML document
and uses an error handler.

> class MyErrHandler implements ErrorHandler {

SEX)
File Edit Format View Help

import org.apache.xerces.parsers.*; ~
import org.xml.sax.*; [

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.setErrorHandler(new MyErrHandler());
reader.parse("file.xml"); }
} -

public void warning(SAXParseException exception) {}

public void error(SAXParseException exception) {}

public void fatalError (SAXParseException exception) {
System.out.println("\nin There has been a serious errorin®);

——|System,nut,prmtln("Errnr messagein" + exception.getMessagec));|

}
}

class Handler
public void
public void

IS EP IRV S Pl

g; 1 g* [ParseDoc.java - Note...

implements ContentHandler {
startDocument{) {}
endDocument () {}

catNacimantl acataril acatar Tacatary 51)

®§ 12:00 PM

1 Type the code that displays
a description of the error.

THE SAX API

You can use the getSystemId method of the SAXParseException object to access
the name of the XML document that the parser parsed at the time of an error.

A

public void fatalError (SAXParseException exception) {
System.out.println("\n\n There has been a serious error\n");
System.out.println("Error message\n" + exception.getMessage());
System.out.println("\nAt Line: " + exception.getLineNumber ());
System.out.println("\nAt Column: " + exception.getColumnNumber ());
System.out.println("\nName: " + exception.getSystemId());

}

There has been a serious error

Error message
The element type "priority" must be terminated by the matching end-tag "</priority>".

At Line: 14
At Column: 9

Neme: file:///C:/Code/file.xml

.\ ParseDoc.java - Notepad E]

File Edit Format View Help

import org.apache.xerces.parsers.*; ~
import org.xml.sax.*;

Command Prompt

C:\Code>javac ParseDoc.java

public class ParseDoc { o . .
public static void main (String[] args) throws Exception { [C:\Code>java ParseDoc

XMLReader reader = new SAXParser(); .

reader.setContentHandler (new Handler()): There has heen a serious error

reader.setErrorHandler (new MyErrHandler());

reader.parse("file.xml"); } Error message . . e
3 The element type “priority” must be terminated by the matching end-tag “</priori

ty>".

class MyErrHandler implements ErrorHandler {

public void warning (SAXParseException exception) {}
public void error(SAXParseException exception) {}
public void fatalError(SAXParseException exception) { At Column: 9
System.out.println("inin There has been a serious errorin");

Exception in thread "main” org.xml.sax.SAXException: Stopping after fatal error:

System.out.println("Error messagein” + exception.getMessage()): The element type "priority” must be terminated by the matching end-tag "</prior
| - - — - - - ity>".
r{System.out.printin("inAt Line: + exception. getlineNumber (J) ;] at org.apache.xerces.framework.XMLParser.reportError(XMLParser.java:1245
. .pri " T+ ion. ;)
Lsy&n out.printin(inAt Column exception. getColumniumber (})] at org.apache.xerces.framework.XMLDocumentScanner.reportFatal XMLError(XM
' L DocumentScanner.java:579)
at org.apache.xerces.framework.XMLDocumentScanner.abortMarkup(XMLDocumer

class Handler implements ContentHandler {
public void startDocument() {}
public void endDocument() {}
public void setDocumentlLocator(Locator locator) {} v
POl 4

PP P R A Chviem ahmmn

T O szoom

—E Type the code that E3 Type the code that displays 1 Compile and run your A detailed message
displays the line number that the column number that the program. displays.
the parser was processing. parserwas processing. Note: See Chapter 2 for instructions on -~ I Depending on your parser

compiling and running Java programs. and other error handling
code, more error information
may display.

167

JAVA AND XML

CREATE AN ENTITY RESOLVER

n entity is a reference that allows you to use a string EntityResolver interface. The EntityResolver

to represent a large amount of data in an XML interface is part of the org.xml . sax package, which

document, thus saving you time when you write your you must import prior to using the interface. For more
code; instead of typing the same code repeatedly, you can information about importing a package, see Chapter 3.
simply insert a reference to an entity, which is a single line
of code. The entity resolver class must implement one method,

called resolveEntity. The resolveEntity method has

You can insert entities when you re-use a section of the two arguments, the public ID and the system ID of the file

same XML code within an XML document. For example, you the external entity references.
can insert a company’s address or a copyright warning

message multiple times in the same document. You can display the system ID string to determine the name
of any file that your computer uses to resolve external
You can have either internal or external entities. External entities in a parsed XML document.
entities occur when you access information in a separate
file from within your XML document. From within your Java The resolveEntity method has a return value of type
code, you can determine what files resolve entities in the InputSource, so unless you intend on returning an
XML document that an application parses. InputSource object for use elsewhere in your code, you
must return a value of null from the resolveEntity
To determine the file name of an external entity reference, method. For more information about return values, see
you create an entity resolver class file that implements the Chapter 3.
CREATE AN ENTITY RE ER
.\ ParseDoc.java - Notepad u@g‘ . ParseDoc.java - Notepad [._J[E]ﬂ
File Edit Format Yiew Help File Edit Format View Help
import org.apache.xerces.parsers,*; import org.apache.xerces.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler()):
reader.parse("file.xml"); } reader.parse("file.xml"); }
H b
class MyResolver implements EntityResolver (] class MyResolver implements EntityResolver {
public TnpufSource resolveEntify (String publicId, String systemId) { public InputSource resolveEntity (String publicld, String systemId) {
™ |System.out. println(“Resolving entities using " + systemId);l
1 | >})
|%’lass Handler implements ContentHandler { Class Handler implements ContentHandler {
public void startDocument() {} public void startDocument() {}
public void endDocument() {} public void endDocument() {}
public void setDocumentlLocator(Locator locator) {} public void setDocumentlLocator(Locator locator) {}
public void startElement(String namespace, String name, String qName, public void startElement(String namespace, String name, String gName,
Attributes atts) {} Attributes atts) {}
public void endElement(String namespace, String name, String gName) {} public void endElement(String namespace, String name, String gName) {}
public void charactersichar[] ch, int start, int length) {} public void characters(char[] ch, int start, int length) {}
public void processinglnstruction(String target, String data) {} public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {} public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {} public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char[] ch, int start, int length) {} public void ignorableWhitespace(char[] ch, int start, int length) {}
public void skippedEntity(String name) {} } public void sKippedEntity(String name) {} }

C’gg 12:00 PM

= T
ﬂﬂ! g [ParseDoc. java - Mot " 1z:00Pm

Note: To generate the required resulis, | [Create the entity resolver I Type the code that
you need to parse an XML document class. displays the name of the
that contains external entities. . referenced file.

—E] Create the main method

Kl Open or create the code of the class.
that parses an XML
document.

Note: You can use the code created in
the section "Create an Error Handler."

THE SAX API

If you use multiple entity resolvers, you can easily determine the
identification of the resolver registered with an XMLReader object by
using the getEntityResolver method of the XMLReader object.

A

public class ParseDoc {
public static void main (String[] args) throws Exception {

XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()) ;
reader.setEntityResolver (new MyResolver());
reader.parse("file.xml") ;
System.out.print ("The Current entity resolver is ");
System.out.println(reader.getEntityResolver()) ;
}

Resolving entities using file:///C:/Code/who.xml
Resolving entities using file:///C:/Code/who.xml

The Current entity resolver is MyResolver@283b8a

.\ ParseDoc.java - Notepad H@]ﬂ

File Edit Format View Help Command Prompt
import org.apache.xerces.parsers.*;
import org.xml.sax.*; C:\Code>javac ParseDoc.java

public class ParseDoc {
public static void main (String[] args) throws Exception {) .
XMLReader reader = new SAXParser(); C:\Code>java ParseDoc
reader.setContentHandler (new Handler ; Resolving entities using fil Code/who.xml
reader. setEntityResolver(new MyResolver());} Resolving entities using fil Code/who.xml
reader.parse(tile.xml");

} .
class MyResolver implements EntityResolver { C:\Code>

public InputSource resolveEntity (String publicId, String systemId) {

System.out.println("Resolving entities using " + systemId);
}

i
class Handler implements ContentHandler {
public void startDocument() {}
public void endDocument() {}
public void setDocumentlLocator(Locator locator) {}
public void startElement(String namespace, String name, String gName,
Attributes atts) {}
public void endElement(String namespace, String name, String gName) {}
public void characters(char[] ch, int start, int length) {}
public void processingInstruction(String target, String data) {}
public void startPrefixMapping(String prefix, String uri) {}
public void endPrefixMapping(String prefix) {}
public void ignorableWhitespace(char[] ch, int start, int length) {}
public void skippedEntity (String name) {} }

E!Eﬁ!!é) @Q 12:00 PM ar WY 12:00PM

H Type the code that causes [Type the code that d Compile and run your The names of any
the method to return a null registers the entity resolver program. referenced files display.
value. with the XMLReader object.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

JAVA AND XML

USING THE DEFAULT HANDLER

development of Java applications that you create with

the SAX API. Working with the SAX APl and XML
parsers requires many different types of handler classes to
respond to many different events, such as errors and XML
document parsing. These handler classes implement
interfaces and may require that you define numerous
methods whether you intend to use the methods in your
application or not. The DefaultHandler class simplifies
and reduces the amount of code you need to create for the
various handler classes.

You can use a default handler class to speed up your

The DefaultHandler class implements many of the
interfaces in the org.xml. sax package, including the
ContentHandler, EntityResolver, and ErrorHandler
interfaces. If you use any or all of these interfaces in your
code, you can utilize the DefaultHandler class to create
one multi-use class that can perform a variety of tasks.

The DefaultHandler class is part of the org.xml
.sax.helpers package, which you must import prior to
using the class. For more information about importing a
package, see Chapter 3.

The most common use of the DefaultHandler
class involves replacing the classes that implement
the ContentHandler interface. To employ the
ContentHandler interface you must implement 11
methods, some of which you may not use. With the
DefaultHandler class, you only have to define the
methods that you actually intend to use.

As with any event handler class that implements the
ContentHandler interface, you must register the class
that extends the DefaultHandler class with the
XMLReader object if you want to use a class based on the
DefaultHandler class instead of the ContentHandler
interface. Registering the event handler class with the
XMLReader object enables the XMLReader object to call
the appropriate methods in the event handler class when
events occur, such as the detection of an element’s start tag
when an application parses an XML document.

USING THE DEFAULT HANDLER

|—
0
K1 Type the code that imports Type the code that creates
the required packages. the event handler class.

—E1 Type the code that creates
a method of the

170 ContentHandler interface.

pubTic class ParseDoc {

.\ ParseDoc.java - Notepad E]

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser():

reader.parse("file.xml"); }

| |class Handler extends DefaultHandler {

public void startDocument() {
System.out.print{"\ninStart of documentin");

}

: .
) Q2 wom

4 Type the code that creates [E Type the code that causes
the main class of your code. an application to parse an
XML document.

THE SAX API

the EntityResolver and ContentHandler interfaces.

TYPETHIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser () ;
reader.setContentHandler (new BigHandler()) ;
reader.setEntityResolver (new BigHandler());
reader.parse("file.xml"); }

{ 3\
Apply You can easily use the DefaultHandler class to implement

}
class BigHandler extends DefaultHandler {
public void startDocument () {System.out.println("\n\nStart of document\n");}
public InputSource resolveEntity (String publicId, String systemId) {
System.out.println("Resolving entities using " + systemId);
return null; }

RESULT

|<

Start of document

Resolving entities using file:///C:/Code/who.xml
Resolving entities using file:///C:/Code/who.xml

[ParseDoc,java - Notepad @

File Edit Format View Help

import org.apache. xerces.parsers.*;

import org.xml.sax.

import org.xml.sax. helpers Defaul tHandler;

public class ParseDoc {

public static void mam (String[] args) throws Exception {
XMLReader reader = new SAXParser():;

|__| reader.setContentHandler (new Handler()):

reader.parse("file.xml"); }

class Handler extends DefaultHandler { >

public void startDocument() {
System.out.print{"\ninstart of documentin");
}

Qg 12:00 PM
A Type the code that —d Compile and run your M A message displays
registers the event handler program. indicating that the
with the XMLReader. ,) application parsed the XML

Note: See Chapter 2 for instructions on

> , document.
compiling and running Java programs.

17

JAVA AND XML

DETERMINE FEATURE AND

PROPERTY SETTINGS

check to determine if you have a specific function or

feature available to your application. You refer to the
settings of an XML parser as the features and properties of
the parser.

XML parsers have their own settings, which you can

The getFeature and getProperty methods of the
XMLReader object read the features and properties of the
parser. The getFeature and getProperty methods take
one argument, which becomes the name of the feature. The
name of the feature is usually a uniform resource identifier
(URI). To make long URIs easier to manage, you commonly
assign the URI to a string. Features return a boolean value,
while properties return an object.

One feature that you may want to check is the feature at
http://www.xml.org/sax/features/external-general-entities.
This feature indicates whether text entities resolve when an
XML parser parses an XML document that contains entities.

The SAX API specifies some features and properties

which all SAX-compliant XML parsers must support. Other
features and properties only become available when you
use the SAX API with a specific XML parser. Only the SAX-
specified features and properties are available on all SAX-
compliant parsers.

Normally you do not depend too heavily on features or
properties specific to one parser in your code. If you have
to change the parser or even change to a different version
of the same XML parser sometime in the future, you may
find that the features and properties available in one
version are not available in another. Other XML-parser-
independent features can alter the configuration of an XML
parser and achieve the same results as those that utilize
features and properties. Before using the features and
properties of an XML parser, refer to your specific XML
parser’s documentation for the best alternate methods.

DETERMINE FEATURE AND PROPERTY SETTINGS

El Open or create the code
that parses an XML document
and implements an entity
resolver class.

Note: To generate the required results,
you need to parse an XML document
that contains external entities.

Note: You can use the code created in
the section "Create an Entity Resolver."

172

.\ ParseDoc.java - Notepad u@g‘ . ParseDoc.java - Notepad [._J[i]ﬂ
File Edit Format Yiew Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler; import org.xml.sax.helpers.DefaultHandler;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()); reader.setContentHandler (new Handler()):
reader.setEntityResolver (new MyResolver()); reader.setEntityResolver (new MyResolver());
b I
) >|_ [String feature="http://xmi.org/sax/features/external-general-entities™;| |
class MyResolver implements EntityResolver {
public InputSource resolveEntity (String publicId, String systemId) { if (reader.getFeature(feature))
System.out.println{"Resolving entities using " + systemId);
return null;
}
} I
}
class Handler extends DefaultHandler { }
class MyResolver implements EntityResolver {
public InputSource resolveEntity (String publicId, String systemId) {
System.out.println("Resolving entities using " + systemId);
return null;
}
i
= 1 1
Q2 oo | | [iczid G2 o

El Type the code that tests
the value of the feature.

1 Type the code that assigns
a feature URI to a variable.

THE SAX API

{)
Apﬁly You can use the setFeature or setPropery methods of the XMLReader object to
h modify values, but not all XML parsers allow you to modify all features and properties. The
‘ XML parser may allow you to read, but not set, selected features and properties. If you
attempt to modify a value when the XML parser disallows it, the parser generates an error.
String feature="http://xml.org/sax/features/external-general-entities";
if (reader.getFeature (feature))
{
System.out.print ("The feature\n" + feature + "\nis enabled.\n\n");
System.out.print ("Now turning it off..\n\n");
reader.setFeature (feature, false) ;
}i
The feature
http://xml.org/sax/features/external-general-entities
is enabled.
Now turning it off..
Exception in thread "main" org.xml.sax.SAXNotSupportedException: http://xml.org/
sax/features/external-general-entities
at org.apache.xerces. framework.XMLParser.setExternalGeneralEntities (XML
Parser.java:486)
(. J

.\ ParseDoc.java - Notepad E]

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.xml.sax.*; .a, i 2 Y
import org.xml.sax.helpers.DefaultHandler; C:\Code>javac ParseDoc java

Command Prompt

public class ParseDoc { C:\Code>java ParseDoc

public static void main (String[] args) throws Exception {
fz;gzedggtEgﬁgzgt;azg?eE?ﬁzsra:;é{ér()) . p:/ixml.org/sax/featuresiexternal-general-entities
reader.setEntityResolver (new NyReleverk)); is enabled.

String feature="http://xml.org/sax/features/external-general-entities"; Resolving entities using file:///C:/Code/who.xml|
. Resolving entities using fil Code/who.xml
if (reader.getFeature(feature))

C:\Code>

{System.out.print("The featurein” + feature + "“nis enabled.inin");]
reader.parse(Tile. xml), [
e

}

}
class MyResolver implements EntityResolver {
public InputSource resolveEntity (String publicId, String systemId) {
System.out.println{"Resolving entities using " + systemId);
return null;

}
}

class Handler extends DefaultHandler {
}

@g 12:00 PM 0 DM 12:00PM

i)

1 Type the code that E Type the code that parses & Compile and run your The name of the feature
displays the name of the the XML document. program. displays if the feature is
feature. enabled.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

JAVA AND XML

DETECT NOTATION DECLARATIONS

that an XML document contains information which an

external application needs to process. You use the
information in a notation declaration to determine what
data or application your Java application may need to
access and interpret the data. For example, if you parse an
XML document on computers using different operating
systems, you can access different image applications to
interpret image data in an XML document. In many cases,
the information indicates the actual file name of the
application that you can use to process the data, such as
spellcheck. exe for a spell-checking application. Or it
may only return the type of information, such as
image/gif. In cases where only the data type returns,
you can configure the operating system to choose the
application that best suits the date you want to process.
You must ensure that you create the code that correctly
processes the information.

You can use a notation declaration to tell an application

You use the DTDHandler to access interface notation
information. You must create a DTD handler class that
implements the DTDHandler interface. Once you create
the DTD handler class, you register the class with the
XMLReader object, using the setDTDHandler method.

The DTDHandler interface requires you to define two
methods, the notationDecl method and the
unparsedEntityDecl method. The notationDecl
method accesses any declared notation in the DTD of an
XML document. When the notationDecl method finds
a notation declaration, it passes it to the name of the
notation, the public ID, and the system ID of the external
ID. For more information about notation declaration of
an external ID, see Chapter 5.

You can use notation declaration with processing
instructions to instruct your application to perform a
specific task.

DETECT NOTATION DECLARATIONS

El Open or create the code
that parses an XML
document.

Note: To generate the required results,
you need to parse an XML document
that contains a notation declaration.

174

rclass Handler implements DTDHandler { |

—H Type the code that creates

. ParseDoc.java - Notepad

BEX]

File Edit Format View Help
import org.apache.xerces.parsers.*;
import org.xml.sax.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser():

reader.parse("file.xml");

|pub11‘c void notationDecl(String name, String publicld, String systemId) {I_
b

String systemId, String notationName) {}

ﬁpubhc V01d unparsedEntityDecl(String name, String publicld,
b

@g 12:00 PM

gﬁﬂ gk [ParseDoc.java - Note...

El Type the code that creates

the DTD handler class. the notationDecl method.

3 Type the code that creates
the unparsedEntityDecl
method.

THE SAX API

-

You can use the other method of the DTD handler class, unparsedEntityDecl, to
detect unparsed external entities, which you often use in conjunction with notation

declarations. Create a DTD that contains <! ENTITY owner SYSTEM

"http://

127.0.0.1/who.xml" NDATA txt> and then type the following code.

class Handler implements DTDHandler {
public void notationDecl (String name,
}
public void unparsedEntityDecl (String name,
String notationName) {

(
System.out.println("Name " + name);

System.out.println(”’[he public ID is " + publicId);
System.out.println("The system ID is " + systemId);
System.out.println("The notation name is " + notationName) ;

String publicId, String systemId) {
String publicId, String systemlId,

System.out.println("An Unparsed external entity has been found");

An Unparsed external entity has been found

Name owner

The public ID is null
The system ID is http://127.0.0.1/who.xml
The notation name is txt

.\ ParseDoc.java - Notepad

MEX|

File Edit Format View Help

import org.apache. xerces parsers.*;
import org.xml.sax.

public class ParseDoc {

XMLReader reader = new SAXParser();

public static void main (String[] args) throws Exception {

[reader. setDTDHandler (new Handler (}):}

reader.parse("file.xml");
}

class Handler implements DTDHandler {

Name + name)

System.out.println("A notation declaration has been found"):
ystem,out. printin{

System.out.println("The public ID is "
System.out.println("The system ID is "
}

+ publicId);
+ systemId);

public void unparsedEntityDecl(String name,
String systemlId,

String publicld,
String notationName) {}

T

@ WY 12:00PM

—E Type the code that
displays a message if the
XML parser finds a notation
declaration.

3 Type the code that
displays the notation
declaration information.

[d Register the DTD handler
class with the XMLReader.

Note: For more information about
registering classes with an
XMLReader object, see "Parse an
XML Document."

Command Prompt

C:\Code>javac ParseDoc.java
C:\Code>java ParseDoc

A notation declaration has been found
The system ID is psp.exe

C:\Code>

The name of the notation
declaration and its details

display.

1 Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

175

JAVA AND XML

CREATE A DECLARATION HANDLER

he DTD in an XML document contains declarations,

such as element declarations, that describe the

elements’ format within the XML document. You can
extract the information from the declarations in the DTD.
You may want to retrieve the data in a DTD concerning
declarations to reconstruct an XML document or to compile
an analysis of the elements in an XML document.

You must create a declaration handler class to handle the
callbacks that relate to declarations within the DTD. Each
time the XML parser encounters a declaration in the DTD,
the declaration handler makes a callback to a method. The
method that the declaration handler calls depends on the
type of declaration.

The declaration handler must implement the Dec1Handler
interface in the org.xml . sax.ext package. The
org.xml.sax.ext package, which you must import prior
to using the interface, contains extensions for use with most
SAX-compliant XML parsers. The declaration handler that
implements the Dec1Handler package must define four

CREATE A DECLARATION HANDLER

methods: elementDecl, which reports element
declarations in the DTD; attributeDecl, which reports
about attribute declarations; and internalEntityDecl
and externalEntityDecl, which retrieve information
about internal and external declarations in the DTD. You
must define these four methods in the declaration handler
class, even if you do not use all of the methods. The
element declaration passes each method value that reflects
the information within the declaration. For example, the
element declaration in the DTD passes two string values
that represent the name and content type to the
elementDecl method.

You use the declaration handler in a slightly different manner
than other content handlers. To use the declaration handler,
a declaration handler object passes the setProperty
method of the XMLReader object as a value to the
http://www.xml.org/sax/properties/declaration-handler
property. As with other properties, you may find the URI of
the property quite long, so you should place it in a variable
to make the property easier to manage.

Kl Open or create the code
that parses an XML
document.

Note: To generate the required results,
you need to parse an XML document
that includes element declarations.

—E] Type the code that creates
the declaration handler class.

3 Type the code that creates
the methods of the
176 declaration handler class.

—H Type the code that imports
the required packages.

. file.xml - Notepad [._][E]ﬂ . file.xml - Notepad B[ﬂ]ﬂ
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers,*;
—{import org.xml.sax.*; import org.xml.sax.*;
import org.xml.sax.helpers.Defaul tHandler; import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.ext.*; import org.xml.sax.ext.*;
public class ParseDoc { public class ParseDoc {
public static void main (String(] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler()):
reader.parse("file.xml");} reader.parse("file.xml");}
H }
class Handler2 implements DeclHandler { | class Handler2 implements DeclHandler {
public void elementDecl(String name, String model) { public void elementDecl{String name, String model) {
1 System.out.println("Found Element Declaration");
public void attributeDecl(String eName,String aName,String type, System.out.println("Name: " + name);
String valueDefault,String value) { |System.out.println("Model: " + model);
}
public void internalEntityDecl(String name,String value) { public void attributeDecl(String eName,String aName,String type,
String valueDefault,String value) {
public void externalEntityDecl(String name, String publicId, }
String systemId) { public void internalEntityDecl(String name,String value) {
}
T F public void externalEntityDecl(String name, String publicId,
String systemId) {
}
b
- = 1
i) Q2 com | | [i) T Qs

—H Type the code that

displays the information that
the XML parser passes to the
elementDecl method.

THE SAX API

You can also use the declaration handler to access information
about attributes that you have declared in the DTD.

A

public void attributeDecl (String eName, String aName, String type,
String valueDefault, String value) {
System.out.println("Found Element Declaration: " + eName);
System.out.println("Attribute Name: " + aName);
System.out.println("Value: " + value);

}

Vv
RESUL

Start of document

Found Element Declaration: task
Attribute Name: manager

Value: Andrew

| file.xml - Notepad u@@

File Edit Format View Help

import org.apache.xerces.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.ext.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();

reader. setContentHandler (new Handler()):
ring property="http://xml.org/sax/properties/declaration-handler ;]
Teader . SetPToper Ly (property, new HandlerZ(j):]

_>) reader.parse("Tile.xml™);} >

class Handler2 implements DeclHandler {
public void elementDecl(String name, String model) {
System.out.println("Found Element Declaration"):
System.out.println(“Name: " + name);
System.out.println("Model: " + model);

}
public void attributeDecl(String eName,String aName,String type,
String valueDefault,String value) {

}
public void internalEntityDecl(String name,String value) {

public void externalEntityDecl(String name, String publicId,
String systemId) {
}

(’g 12:00 PM

3 Type the code that creates [Type the code that passes] Compile and run your M The information about
a variable that stores the a declaration handler object program. element declarations in the

name of the property. to the property. Tt e Gt s or DTD displays.

compiling and running Java programs.

177

JAVA AND XML

CREATE A LEXICAL HANDLER

that does not make up part of the content of the

XML document. For example, you can retrieve the
comments and entity declarations that you have present in
an XML document. You may find retrieving this type of
information useful if you want to reconstruct an XML
document or if you need to more closely examine the
information within an XML document.

You can retrieve information from an XML document

You use a lexical handler to access information about lexical
events during the parsing of an XML document. As with
other event handlers, the lexical handler contains methods
that the XML parser calls when it encounters the
corresponding event. For example, the parser calls the
comment method of the lexical handler whenever it
encounters a comment while parsing an XML document.

The lexical handler must implement the LexicalHandler
interface as part of the org.xml . sax.ext package. The
org.xml.sax.ext package contains extensions to the

SAX API and you typically find it included with most SAX-
compliant parsers. The org.xml . sax.ext package must
be imported prior to using the interface. For more
information about importing a package, see Chapter 3.

The lexical handler must implement six methods: the
comment method reports comments; startCDATA and
endCDATA methods report the start and end of CDATA
sections; the startDTD and endDTD methods report the
start and end of the DTD; and the startEntity and
endEntity methods report the start and end of any
entities in the XML document.

You use the lexical handler by passing a lexical handler
object to the property using the setProperty method of
the XMLReader object. As with other properties, you may
find the URI of the property to be quite long, so you may
want to place it in a variable to make the property easier
to handle.

CREATE A LEXICAL HANDLER

Kl Open or create the code
that parses an XML
document.

Note: To generate the required results,
you need to parse an XML document
that contains comments.

—E1 Type the code that creates
the lexical handler class.

1 Type the code that imports
the required packages.

1 Type the code that creates
the required methods of the
lexical handler class.

178

. file.xml - Notepad [._][E]ﬂ . file.xml - Notepad [L][E]EI
File Edit Format View Help File Edit Format View Help
import org.apache. Xerces.parsers. *; import org.apache. xerces. parsers. *;
—fimport org.xml.sax. import org.xml.sax.

import org.xml.sax. ext *; import org.xml.sax. ext *;
public class ParseDoc { public class ParseDoc {

public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {

XMLReader reader = new SAXParser(): XMLReader reader = new SAXParser();
reader.parse("file.xml");} reader.parse("file.xml");}
b

class _LexHandler implements LexicalHandler {F| class LexHandler implements LexicalHandler {

public void comment{char[] ch, 1int start, int length) { public void comment{char ch, int start, int length) {

} ring comment = new ch,start, Tength); _

public void endCDATA() { > System.out.println(comment);

} }

public void endDTD() { public|void endCDATA() {

public void endEntity(String name) { public void endDTD() {

public void startCDATA() { public void endEntity(String name) {

public void startDTD(String name,String publicId,String systemId) { public void startCDATA{) {

public void startEntity(String name) { public void startDTD(String name,String publicId,String systemId) {

b

public void startEntity(String name) {
}
b
— 1 — 1

i) Q3 o Qs

—H Type the code that
displays the information
passed to the comment
method.

THE SAX API

You can see entities as an XML document uses them
in the startEntity method of the lexical handler.

TYPETHIS:

class LexHandler implements LexicalHandler {
public void comment (char[] ch, int start, int length) { }
public void endCDATA() { }
public void endDTD() { }
public void endEntity(String name) { }
public void startCDATA() { }
public void startDTD(String name, String publicId,String systemId) { 1}
public void startEntity(String name) {
System.out.println("Entity being used: " + name);

A

RESULT:

Entity being used: Copyright 2002
Entity being used: (905) 555 - 1234

‘<

}
_ class LexHandler implements LexicalHandler {
public void comment(char[] ch, int start, int length) { >

file.xml - ﬁutepad @
File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.xml.sax.*;
import org.xml.sax.ext.*;

public class ParseDoc {

public static void main (String(] args) throws Exception {
XMLReade eader = new JAXParse H
i http://xml.org/sax/properties/lexical-handler”

String comment = new String(ch,start,length);
System.out.println{comment);

;’)ubl’ic void endCDATA() {

public void endDTD() {

public void endEntity(String name) {

public void startCDATA() {

public void startDTD(String name,String publicld,String systemId) {
F))ublic void startEntity(String name) {

(’g 12:00 PM
3 Type the code that creates [Type the code that passes ' Compile and run your M The comments in the XML
a variable that stores the a lexical handler object to the program. document display.

TS @ P Sy, property. Note: See Chapter 2 for instructions on

compiling and running Java programs.

179

JAVA AND XML

TURN ON VALIDATION

ne of the most useful features of an XML parser see if a parser considers an XML document valid before
O involves checking the validity of XML documents. attempting to process the XML document.

Valid XML documents must conform to a specific L
set of rules that governs their structure and make-up, thus You can turn the validating feature of the parser on or off
maintaining the proper organization of information within by setting the http://www.xml.org/sax/features/validation
XML documents. Validation also ensures the integrity of the feature. Setting the feature to true turns on the validation
data within an XML document, especially if the XML checking of XML documents, while setting this feature to
document makes use of XML Schemas. For more false turns off validation. You must set the feature before
information about XML Schemas, see Chapter 6. you parse a document. You can turn the validation on for

some documents and off for others.
You can have either a validating or a non-validating parser.

Non-validating parsers can verify the validity of an XML All SAX-compliant XML parsers must support the validation

document. A validating parser allows you to either turn feature, and they must all support the enabling and

on or turn off the validating feature of the XML parser. By disabling of validation by using the http://www.xml.org/sax/

default, most validating XML parsers do not have their features/validation feature setting. In addition to setting the

validating feature enabled. validation feature, XML parsers may have the ability to
enable or disable validation using other methods outside of

With its validating feature enabled, the validating parser your Java application.

detects a non-valid document, generates an error, and stops
parsing the XML document. In most cases, you check to

TURN ON VALIDATION

") Untitled - Notepad (=)zJg3| [Z Untitled - Notepad BEX]|
File Edit Format Yiew Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler; import org.xml.sax.helpers.DefaultHandler;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()): reader.setContentHandler (new Handler()):
M —1
reader.parse("file.xml"); [String Teature="http://xml.org/sax/features/validation";
}
class Handler extends DefaultHandler { reader.parse("file.xml");
public void startDocument() {
System.out.println{"inStart of Document found.in"); }
}
} class Handler extends DefaultHandler {
public void startDocument() {
System.out.println("inStart of Document found.\n");
}
b
= 1 — 1
m&- i I Untitled - Notepad ¥ 12:00pm @ﬂ!ﬁ % Untitled - Notepad @ 1zi00pm

Note: For this example, you need to EX Type the code that parses — Type the code that assigns
parse a non-valid XML document. For ~ an XML document. the name of the feature to a

information about XML document variable.
validity, see Chapter 6. Note: You can use the code from the

section "Parse an XML Document.”

THE SAX API

You may find the error message that the XML parser produces when it
discovers a non-valid XML document to be very cryptic. You can provide
a more detailed message by using an error handler.

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()) ;
reader.setErrorHandler (new MyErrHandler()) ;
reader.parse("file.xml") ;}
}
class MyErrHandler implements ErrorHandler {
public void warning (SAXParseException exception) {

}
public void error (SAXParseException exception) {

}

public void fatalError (SAXParseException exception) {
System.out.println("\n\n There has been a serious error\n\n");
System.out.println(" Please ensure your XML document is valid\n\n");

}

There has been a serious error
Please ensure your XML document is valid

. Untitled - Notepad E]

File Edit Format View Help
import org.apache.xerces.parsers.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

Command Prompt

C:\Code>javac ParseDoc.java

C:\Code>java ParseDoc
public class Parseboc { 1
public static void main (String[] args) throws Exception {

XMLReader reader = new SAXParser(); Start of Document found.
org.xml.sax.SAXParseException: The entity "address™ was referenced, but

reader.setContentHandler (new Handler()):
not declared.
String feature="http://xml.org/sax/features/validation"; .
at org.apache.xerces.framework.XMLParser.reportError(XMLParser.java:1213)
[Feader. setFeature(feature, truej] at org.apache.xerces.readers.DefaultEntityHandler.
b startReadingFromEntity(DefaultEntityHandler.java:601)

at org.apache.xerces.framework.XMLDocumentScanner$ContentDispatcher.
dispatch(XMLDocumentScanner.java:1264)
} at org.apache.xerces.framework.XMLDocumentScanner.parseSome
(XMLDocumentScanner.java:381)
class Handler extends DefaultHandler {
public void startDocument() {
System.out.println("\nStart of Document found.in");

}
}

reader.parse("file.xml");

i) Q@ 1zo0pm

—E] Type the code that enables 1 Compile and run your The parser generates an
the parser's validation program. error if it does not find the

feature. Note: See Chapter 2 for instructions on XML document to be valid.
compiling and running Java programs.

JAVA AND XML

TOGGLE NAMESPACE AND PREFIX USAGE

document that you have defined in a multitude of

other documents. For example, you may have two
elements called name in your XML document, where each
name element belongs to a different namespace. For more
information about namespaces, refer to Chapter 5.

N amespaces allow you to use tags in a single XML

You can instruct the XML parser to use namespaces if you
use namespaces in your XML documents. You can set the
http://www.xml.org/sax/features/namespaces feature to
either true or false to turn the use of namespaces on
or off.

XML parsers should have the ability to process XML
documents that use namespaces, even if the parser does
not support namespaces. Because of the format of the
element names, the parser assumes that the namespace,
colon, and element name are a single element name.

When you use namespaces in XML documents, you use
xmlns declarations to indicate the location of the

namespace. For parsers that do not support namespaces,
the xm1ns declaration appears as just another attribute of
an element.

You can turn the reporting of the xmlns declaration as
an attribute on or off. You typically want to turn off the
reporting of xmlns declarations as attributes when you
have enabled the support for namespaces in your XML
parser. You set the http://xml.org/sax/features/
namespace-prefixes feature to either true or

false to turn the prefix reporting on or off.

If you want to handle the namespaces within your own
code, consider enabling the namespace prefix reporting.
Older versions of SAX-compliant XML parsers do not
include support for namespaces. The SAX API version 2,
or simply SAX 2, supports the use of namespaces.

All SAX 2-compliant XML parsers support the enabling or
disabling of namespace processing and namespace prefix
reporting.

TOGGLE NAMESPACE AND PREFIX USAGE

Kl Open or create an XML
document.

Note: See Chapter 5 for more
information about namespaces.

K save the XML document.

A Ensure the document uses
namespaces.

.\ ParseDoc.java - Notepad

ks

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()):
reader.parse("file.xml");

b
class Handler extends DefaultHandler {
public void startElement(String namespace, String name, String gName,
Attributes atts) {
if (atts.getlength()>0) {
System.out.println("inElement " + name + " has the attributes "):
for (int i=0; i<atts.getlLength(); i++) {
System.out.print(atts.getlocalName(i));
System.out.print(" which has a value of ");
System.out.println(atts.getValue(i));
}

gﬁﬂ gk [® ParseDoc.java - Note...

1 Open or create the Java

@IQ 12:00 PM

Note: You can use the code from the
section "Determine the Value of
Attributes.”

code that displays element
attributes.

THE SAX API

. ()
Apﬁty You can parse an XML document repeatedly,
h enabling or disabling namespace prefix reporting.
public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler (new Handler()) ;
String feature="http://xml.org/sax/features/namespace-prefixes";
reader.setFeature (feature, false);
reader.parse("file.xml") ;
feature="http://xml.org/sax/features/namespace-prefixes";
reader.setFeature (feature, true);
reader.parse("file.xml") ;
}

}

Element task has the attributes

manager which has a value of Andrew

Element task has the attributes

corp which has a value of http://www.maran.com/corpns/2.3

manager which has a value of Andrew

_ V,

.\ ParseDoc.java - Notepad [-_][E]

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.xml.sax.*; A\ i . iave
import org.xml.sax.helpers.DefaultHandler; C:\Code>javac ParseDoc,java

Command Prompt

public class ParseDoc { C:\Code>java ParseDoc

public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser(); Element task has the attributes
Leader, setcontentiandlerinen Handler (). corp which has a value of http://www.maran.com/corpns/2.3

String feature="http://xml. org/sax/features/namespace-prefixes”; A
Feader.setFeature(feature, true): manager which has a value of Andrew
feature="http://xml.org/sax/features/namespaces”;|
reader.setFeature(feature, true); | C:\Code>
reader.parse(Tile,xml");
}

}
Class Handler extends DefaultHandler {
public void startElement(String namespace, String name, String gName,
Attributes atts) {
if (atts.getlength()>0) {
System.out.println("\nElement " + name + " has the attributes ");
for (int i=0; i<atts.getlLength(); i++) {
System.out.print(atts.getlocalName(i));
System.out.print(" which has a value of ");
System.out.println(atts.getvValue(i));
i
}
b
}

T Q2 am 4 2 sz

—H Type the code that turns [Type the code that turns i Compile and run your M The namespace prefix
on the reporting of On namespace processing. program. reports as an attribute.
TENTEETPEER [P ES, Note: See Chapter 2 for instructions on

compiling and running Java programs.

JAVA AND XML

INTRODUCING THE DOM

Interface (API), with the Java programming language
and XML documents to allow communication
between a DOM-compliant parser and Java applications.

A specification developed by the World Wide Web
Consortium (W3C), the W3C Document Object Model,
or simply DOM, outlines a collection of interfaces which

DYNAMIC HTML

You use the DOM, an Application Programming

creates the objects that represent an XML document. The
DOM API allows you to access XML documents, and, as
with all Java APIs, consists of a collection of classes and
interfaces that you access within your Java code. The DOM
API files typically come with the application that you use
with the XML documents. For example, most DOM-
compliant XML parsers include the Java DOM API files.

Although developed independently of XML, the DOM
works with XML, and other similar markup languages
like HTML. Originally conceived to permit the use of
dynamic HTML, the DOM specification allows you to
represent the structure of a Web page as objects. You
can then modify, enable, or disable these objects at any
time to create dynamic HTML. Not intended for

exclusive use with applications you create with Java,
DOM was developed for many different programming
languages. Because Java is an object-oriented
programming language, it works very efficiently with
the DOM. Programming language- and platform-
independent, the environment and operating system
have no bearing on the DOM specifications.

TREE STRUCTURE

You can use the DOM API to work with XML
documents, and also with similar documents such as
HTML, the code that creates Web pages. The DOM
works by creating a tree structure with a document that
you parse. For example, if you represent a Web page
that contains two paragraphs in a DOM tree structure,
DOM represents the Web page as a document object
with two branches representing two paragraphs, with

each paragraph containing one or more branches which
contain text. Although initially perplexing, you may find
representing documents and their contents as a tree
structure to be a very effective way to work with data,
particularly for large, complex documents. Utilizing a
tree structure to represent data also makes it easier to
manage your data when using an object-oriented
programming language, such as Java.

TREE NODES

Called nodes, you use the individual items within a
DOM tree structure to represent individual elements
you find within an XML document. For example, you
represent the text content of an element in an XML
document by its own node within the DOM tree
structure. Accessing and modifying the node
information allows you to modify and access the actual

text content of the elements within an XML document.
You can make the XML document a pre-existing and
previously parsed document, or a newly created XML
document, which you generate using the information in
a newly created DOM tree structure. For more
information about nodes, see the section "Work with
Nodes" in this chapter.

184

DIFFERENT APPROACHES

THE DOM

Each API that you use to access or create XML
documents has its own strengths and weaknesses.
Which API you choose to utilize from within your Java
programs depends upon the type of application you
create, the type of XML documents you access, and the
size of those documents.

Analyzing XML documents involves parsing the
documents and then representing each document

as a tree structure. You must retrieve and analyze the
complete XML documents prior to working with them

in the DOM API. This can create limitations depending
on the available memory of the computer and the size
of the XML documents. Other APIs can read XML
documents sequentially from start to finish without
having to store the complete XML documents in
memory. Commonly, Java applications use multiple APIs
when working with XML documents. You can easily use
the DOM API alongside a different API, such as the SAX
API, from within the same Java application that you
create.

GENERATE XML DOCUMENTS

You use the DOM API to represent an XML document
in a tree-like structure that conforms to specific rules.
The DOM API does not specify how you use, save, or
otherwise work with the data in the tree structure. If
you want to save the information that a parser
generates, you must create the code that extracts the
data from the DOM tree, format that data, and save the

data to a file. The DOM allows you to work with
portions of XML documents. For example, you can use
the DOM API to read an XML document, then change a
single element in that document, and create and save a
new XML document containing the modified data. For
more information about creating XML documents, see
the section "Create an XML Document" in this chapter.

DOM-COMPLIANT PARSERS

To use the DOM API, you need a DOM-compliant XML
parser and you need to create Java code that utilizes the
API to communicate with the parser. You can issue
instructions to, and receive information about, XML
documents from an XML parser using the DOM API.
While you have no specification that states that DOM-
compliant applications must represent data parsed from
an XML document as a tree structure, DOM-compliant
applications do so.

Of the many DOM-compliant XML parsers, you can
access one of the most popular ones, Xerces XML parser,
on the Internet at http://www.apache.org, as well as
through the companion CD-ROM to this book. For
information about obtaining and installing the Xerces
XML parser, refer to Chapter 7. The Xerces XML parser is
the XML parser that the examples throughout the
remainder of this chapter use. If you are using an XML
parser other than the Xerces XML parser and you
experience any difficulty with the examples in this
chapter, you should refer to that parser’s documentation.

OTHER PROGRAMMING LANGUAGES

Many other programming languages, such as Perl, in
addition to Java use the DOM. Once you use the DOM
API with one programming language, you should find it
easy to use it with other programming languages. You

can download the DOM API separately, but you should
use the DOM API files included with your XML
application.

JAVA AND XML

RETRIEVE THE ROOT ELEMENT NAME

the name of the document’s root element. Because it

encompasses all the other elements and contents of
an XML document, you can only have one root element in a
document. You should not confuse the root element with
the XML declaration, which comprises the first line of every
XML document. For more information about XML
declarations, see Chapter 5.

—I— o process an XML document, you must first determine

To process an XML document, you create a DOMParser
object. You then use the parse method of the DoMParser
object to specify the name of the XML document to parse,
as well as to initiate the actual parsing of the XML
document. If you use the Xerces XML parser, the package
org.apache.xerces.parsers contains the DOMParser
class that creates DOMParser objects.

You must create a document object, which represents an
XML document as an object, to determine the name of the
root element. You can access almost all information about
an XML document via a document object. The document

interface is part of the package org.w3c.dom, which you
must import in order to use the document interface in your
Java code. For more information about importing packages,
see Chapter 3.

You create an element object to contain information about
an element. You can then access information about the
element, such as the element’s name.

The getDocumentElement method of the document
object returns an element object that represents the first
child node of the document. You must always make the
root element of an XML document the only child node of
the XML document, so the getDocumentElement method
can create an element object that represents the root
element.

You use the getTagName method of the element object
to create a String value that contains the name of the
element. This String value has the same name as the root
element.

RETRIEVE THE ROOT ELEMENT NAME

B |

H Type the code that creates
a DOMParser object.

= 3 Type the code that

initiates the parsing of an
XML document.

Note: To generate the required
results, you need to parse an XML
document that contains a root
element.

= 1] Type the code that
imports the required
packages.

5 Type the code that creates
an element object that
represents the root element.

= 4| Type the code that creates
a document object based on
the parsed XML document.

THE DOM

You can reuse document objects when parsing multiple XML documents. This
enables you to conserve resources when processing multiple XML documents.

TYPETHIS:

public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser () ;
parser.parse("file.xml") ;
Document doc= parser.getDocument () ;
Element root = doc.getDocumentElement () ;
String rootElementName = (root.getTagName()) ;
System.out.println("The root element is " + rootElementName) ;
parser.parse("file2.xml") ;
doc= parser.getDocument () ;
root = doc.getDocumentElement () ;
rootElementName = (root.getTagName()) ;
System.out.println("The root element is " + rootElementName) ;

A

v

RESULT:

The root element is task
The root element is todo

é

. ParseDoc.java - Notepad
File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

DOMParser parser = new DOMParser();
parser.parse("file.xml");

Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
String rootElement = (root.getlagName()); >

System.out.printin(The root element 15 " + rootElement);

}

[® ParseDoc.java - Note... @’ 12:00 PM

Type the code that assigns (7 Type the code that = 8| Compile and run your M The name of the root
the name of the root element displays the name of the root ~ program. element displays.

(DAL, Cleme Note: See Chapter 2 for instructions
on compiling and running Java
programs.

187

JAVA AND XML

DETERMINE NODE TYPE

information using the DOM AP, to represent almost

all the individual parts of an XML document. For
example, you can represent an element, as well as the
textual content of that element, as a node. At this time, the
DOM tree structure does not contain a node that
represents the XML declaration within a parsed XML
document.

You can use nodes, the primary way of working with

Because the type of information about a node changes
depending on the type of node, you need to determine
informational content. For example, if the current node
represents an element, then you can use the getNodeName
method to retrieve the name of the element. However, if the
node represents the textual content of an element, then the
getNodeName method simply returns the string #text,
regardless of the value of the textual content of the element.

DETERMINE NODE TYPE

You use the getNodeType method of the Node interface to
determine the type of node. The getNodeType method
returns a short value that changes depending on the type of
node. The Node interface defines a number of fields that
you can use as constants that match the type of node for
which you want to determine the node type. Because of the
number of different types of nodes, the most efficient
method for working with values that the getNodeType
method returns involves using the Java switch construct.
This construct allows you to execute a specific section of
code depending on the node type. For more information
about the switch construct, see Chapter 3.

You always make the root element of an XML document a
node that represents an element. Therefore, you always
make the node type value of the node representing the
root element Node . ELEMENT_NODE.

Note: You can use the code created
in the section "Retrieve the Root

Note: To generate the required
results, you need to parse an XML

document that contains a root Element Name."
element.

—E Create a switch
(1] Open or create the code statement.

that parses an XML document
and implements an entity
resolver class.

188

. ParseDoc.java - Notepad u@g‘ . ParseDoc.java - Notepad u@ﬂ
File Edit Format View Help File Edit Format View Help
import org.apache, Xerces.parsers. *; import org.apache. xerces. parsers.*;
import org.w3c.dom. import org.w3c. dom
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
parser.parse("filez.xml"); parser.parse("filez.xml");
Document doc= parser.getDocument(); Document doc= parser.getDocument();
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
String rootElementName = (root. getTagName()) String rootElementName = (root. getTagName())
System.out.println("The root element is " + rootElementName); System.out.println("The root element is " + rootElementName);
Switch () { |_ switch _
> break
} 0de. CDA ON_NODE: break;
} Node COMMENT _NODE: break
} Node. DOCUMENT_FRAGMENT_NODE: break;
Node. DOCUMENT_NODE: break;
Node . DOCUMENT_TYPE_NODE: break;
Node,ELEMENT_NODE: break;
Node,ENTITY_NODE: break;
Node, ENTITY_REFERENCE_NODE:break;
Node . NOTATION_NODE:break;
Node, PROCESSING_INSTRUCTION_NODE: break;
Node . TEXT NODE: break;
}
}
= 1 — 1
G2 o G2 o

H Type break;.

Type case.

= 6| Repeat steps 3 to 5 for
each remaining node type.

=4 Type the Node field name
and follow it with a colon.

THE DOM

The DOM has 12 different types of nodes, each of which
are represented with a field of the Node interface.

FIELD TYPE

ATTRIBUTE_NODE

The attributes of an element.

CDATA_SECTION_NODE

A CDATA section.

COMMENT_NODE

An XML comment.

DOCUMENT_FRAGMENT_NODE

A portion of an XML document.

DOCUMENT_NODE

The complete XML document.

DOCUMENT_TYPE_NODE

A DOCTYPE declaration.

ELEMENT_NODE

An XML document element.

ENTITY_NODE

An entity.

ENTITY_REFERENCE_NODE

A reference to an entity.

NOTATION_NODE

A notation you declare in the DTD.

PROCESSING_INSTRUCTION_NODE

A processing instruction.

TEXT_NODE

Textual content within a tag.

') ParseDoc.java - Notepad

BEX

File Edit Format Yiew Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse{"filez.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
String rootElementName = (root.getTagName());
System.out.println("The root element is "

root. getNodeType(]) {
TTTRLED ODET

. B DET break;
case Node,CDATA _SECTION_NODE: break;
case Node.COMMENT_NODE: break;
case Node.DOCUMENT_FRAGMENT_NODE: break;
case Node,DOCUMENT_NODE: break;
case Node,DOCUMENT_TYPE_NODE: break;
case Node.ELEMENT NODE:
gzstem.out.prmt(This is an _element)|
reak;
case Node ENTITY_NODE: break;
case Node, ENTITY_REFERENCE_NODE:break;
case Node,NOTATION_NODE:break;
case Node,PROCESSING_INSTRUCTION_NODE: Hreak;
case Node. TEXT_NODE: break;

+ rootElementName);

[® ParseDoc.java - Note...

@ WY 12:00PM

Type the code that
retrieves the node type for
the root element.

an element.

El Type the code that
executes if a node type is

= 9 Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

B The name and type of the
node displays.

JAVA AND XML

WORK WITH NODES

in a hierarchical manner. You do this because

information that you represent in a hierarchical
manner is easy to manage and access. Child nodes are
nodes that are contained underneath another node, known
as the parent node. In an XML document, the root element
contains all the other elements in the XML document. You
always represent the root element by a node that becomes
the parent node of the child nodes, which represents the
sub-elements of the root element in the XML document.
Multiple child nodes are children of the parent element.

You create the nodes that represent an XML document

You can use the children of the root element node in order
to access the elements and contents the root element
contains. Once you represent the root element as a node,
you can use the getChildNodes method to generate a
NodeList object, which contains information about all the
immediate child nodes of a node.

You use a NodeList object to create a collection of node
objects. The NodeList object has two methods,
getLength and item. The getLength method stores an
int value that indicates the number of nodes in the
NodeList. The item method allows you to access the
node objects by specifying an index number representing
the index of a node in a NodeList.

To transverse the nodes in a NodeList, you typically use a
for loop to access each node in order. For more
information about using a for loop, see Chapter 3.

As with any node object, you can use the node indicated by
an item method of the NodeList object to access the
name of the node using the getNodeName method. The
value that the getNodeName method retrieves depends on
the type of node.

WORK WITH NODES

. ParseDoc.java - Notepad

BEIX]

. ParseDoc.java - Notepad

[BEX]

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();

String rootElementName = (root.getTagName());

System.out.println(“The root element is " + rootElementName);

[NodeList children = root.getChildNodes():]

®§ 12:00 PM

H Type the code that
creates a NodeList object
containing the child nodes
of the root node.

(1] Open or create the code
that parses an XML document
and displays the root element
name.

Note: You can use the code from the
section "Retrieve the Root Element
Name."

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();

String rootElementName = (root.getTagName());
System.out.println("The root element is " + rootElementName);

NodeList children = root.getChildNodes();

'sttem.nut.println(“lt has "+ children.getlLength{) + "

child nodesin"):

®§ 12:00 PM

= 3 Type the code that displays
the number of nodes in the
NodeList collection.

THE DOM

Depending on the structure of your XML document, elements
may report an additional node containing text, even though
the element does not contain textual data. This occurs because
the XML parser interprets the element as containing an
element, or elements, and whitespace, which it classifies as
textual data, and thus as a text node. For more information
about text nodes, see the section "Retrieve Text Information."

TYPETHIS: RESULT:

<?xml version="1.0"?> The root element is todo
<todo> It has 3 child nodes
<task>
<description> > #text
Back up Data task
</description> #text
</task>
</todo>
\ J
:
. ParseDoc.java - Notepad u[i]ﬂ

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc { |
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse{"file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();

String rootElementName = (root.getTagName());
_> System.out.println("The root element is " + rootElementName); >

NodeList children = root.getChildNodes();

System.out.println("It has "+ children.getlLength() + " child nodes\n");

[for (int i=6;i<children.getlength(};i++

[® ParseDoc.java - Note... @g 12:00 PM

= 4| Type the code that creates 5 Type the code that = 7| Compile and run your M The root element name
a for loop that iterates displays the name of each program. and the name of the child
through the nodes in the child node. , . . elements display.
NodeList collection. Note: See Chapter 2 for instructions

[save your Java code. on compiling and running Java
programs.

JAVA AND XML

TRANSVERSE ALL ELEMENT NODES

hen working with the DOM API, it converts an
WXML document into a structure consisting of

multiple nodes. A very common task involves
transversing all the nodes of the XML document after you
parse it. Transversing the nodes of the documents allows
you to iterate through the information within the XML
document. As you transverse nodes, you can identify and
access specific information about the XML document and
the XML document’s contents. Because the primary item in
an XML document consists of elements, you commonly
transverse all the nodes of a document to identify which
nodes represent elements.

The first step in transversing the DOM element nodes
involves identifying the node that represents the root
element. You then transverse the children of the root
element as well as any child elements to determine if
they, too, have children. Using this method you can

TRANSVERSE ALL ELEMENT NODES

gradually transverse all the nodes that represent the
elements of an XML document.

The easiest way to repeatedly transverse all the element
nodes involves creating a method that you pass to a node,
where the code within the method identifies if an element
node has previously passed to the method. The method can
then explore the child nodes of the node passed to it and
call itself on any other element nodes that it finds. You
access the information within the child nodes by creating
a list of type NodeList using the getChildNodes method
of the node object. Once you create the NodeList, you
access individual nodes using the item method and an index
number. If the method initially passes the node that
represents the root element of an XML document, then the
method eventually works its way through all the nodes of
the document, identifying each element node as it finds
them. Once you identify an element node, you can work
with the node, for example, displaying the node name.

Note: To generate the required
results, you need to parse an XML
document that contains multiple
elements.

= 1] Open or create the code

Note: You can use the code created
in the section "Retrieve the Root
Element Name."

—E Create a method that
accepts a node as an

that parses an XML document | argument.
and creates an element
m 3 Type the code that

object representing the root

element. determines if the node

represents an element.

. ParseDoc.java - Notepad [._}[i] .\ ParseDoc.java - Notepad [._}[i]
File Edit Format View Help File Edit Format View Help
import org.apache. Xerces.parsers. *; import org.apache. xerces.parsers. *;
import org.w3c.dom. import org.w3c.dom.
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
- DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
parser.parse("file.xml"); parser.parse("file.xml");
Document doc= parser.getDocument(); Document doc= parser.getDocument();
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
} }
static public void_exploreNode(Node node stat1c pub11c void exploreNDde(Node node) {
71 (node. getNodeType() == Node - tNodeT == Node.ELEMENT NODE
System out. prmtln(<" + node.getNodeName() + ">");
b
(M} [NodeList children = node.getChildNodes();
}
b
}
b
= 1 — 1
e Q3 o Q3 o

Type the code that displays 5] Type the code that
the element name. attempts to create a
NodeList of the node's
children.

THE DOM

()
EX]H You can easily alter your code to display an element’s start tag and end tag.
You can also indent the tags to provide a better layout of your code.
Example:
static int level=0;
"" exploreNode (root) ;
static public void exploreNode (Node node) {
if (node.getNodeType() == Node.ELEMENT NODE) {
for (int x=0;x<level;x++) {
System.out.print (") p
}
System.out.println("<" + node.getNodeName () + ">");
NodeList children = node.getChildNodes () ;
for (int i=0;i<children.getLength();i++) {
level++;
exploreNode (children.item (1)) ;
}
for (int x=0;x<level;x++) {
System.out.print (" m) g
}
System.out.println("</" + node.getNodeName() + ">");
}
level—;
}
}
. J

BEX

. ParseDoc.java - Notepad

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();

exploreNode (root) ;

I
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {
System.out.println{"<" + node.getNodeName() + ">");

NodeList children = node.getChildNodes();

for (int i=0;i<children.getlength(};i++) {]
— | ———JexploreNode(children. item(i));
i

}
}

}

@ WY 12:00PM

?
ype the code that iterates
through the child nodes.
—d Type the code that

recursively calls the method
created in step 2 and passes it
to a child node.

8 Type the code that passes
the method, created in step 3,
to the node representing the
root element.

E Save your Java code.

Command Prompt

C:\Code>javac C:\Code\ParseDoc.java

C:\Code>java ParseDoc
<todo>

<task>

<description>

The names of the elements

0 Compile and run your
in the XML document display.

program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

193

JAVA AND XML

DETERMINE NAMES OF ATTRIBUTES

information that you can associate with an element.

For example, an element called 'fax' may have an
attribute called 'code' that indicates the area code of the
fax number that makes up the content of the fax element. If
an element has an attribute, or attributes, you can access
the names of the attributes. You can use the attribute’s
name to identify the attribute and its value, or simply to
create other nodes using the same attributes. For more
information about creating nodes with attributes, see
the section "Add Attributes to an Element."

You can use an attribute as an additional item of

You represent the attributes of an element as nodes. To
access the nodes that represent each attribute, you must
create a NamedNodeMap object. An NamedNodeMap object
contains a collection of nodes, specifically the nodes that
represent attributes.

Similar to NodeList, the NamedNodeMap object uses the
getLength method to determine the number of nodes in
the collection, and hence the number of attributes that an

element has. The NamedNodeMap object also uses the item
method with an index number to access each of the nodes
in the collection.

You represent each attribute as a node in a NamedNodeMap
collection, so you can use the getNodeName method to
retrieve the name of the node, which becomes the name
of the attribute.

Before you can access element attributes, you must create
code that transverses the nodes of a document. For more
information about transversing through the nodes of a
DOM tree structure, see the section "Transverse All Element
Nodes." This allows you to identify element nodes, which
you can then use to access the attributes of that element.

You should note that the attributes do not appear in the
NamedNodeMap collection in any predefined order. This
means that the first attribute for an element may appear
as the last node in the NamedNodeMap collection.

DETERMINE NAMES OF ATTRIBUTES

.\ ParseDoc.java - Notepad [._]@E‘ .\ ParseDoc.java - Notepad u@ﬁ
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.w3c.dom.*; import org.w3c.dom.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
parser.parse("file.xml"); parser.parse("file.xml");
Document doc= parser.getDocument(); Document doc= parser.getDocument();
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
exploreNode(root); exploreNode(root);
static public void exploreNode(Node node) { static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) { if (node.getNodeType() == Node.ELEMENT_NODE) {
System.out.println("<" + node.getNodeName() + ">"); System.out.println("<" + node.getNodeName() + ">");
[NamedNodeMap attr =[node.getAttributes():] NamedNodeMap attr = node.getAttributes();
NodeList [children = node.getChildNodes();
for (int [i=0;i<children.getLength{);i++) {
exploreNode (children.item(i));
}
} %deList children = node.getChildNodeg();
} for (int i=0;i<children.getlLength():i4+) {
1 exploreNode(children.item(i));
}
}
b
= 1 = 1
Q2 oo | | i) Q2 o
Note: To generate the required Note: You can use the code created 13 Type the code that iterates 5] Type the code that

in the section "Transverse All
Element Nodes."

results, you need to parse an XML
document that contains elements

that have attributes. —E Type the code that creates

a NamedNodeMap object,
following the code with an =.

(1] Open or create the code
that parses an XML document
and identifies the element

—E] Type the code that creates

nodes. :
the NamedNodeMap object
containing the element
194 node's attributes.

through the attributes of an
element node.

displays a text message
describing the attribute.

Note: For more information about
iterating through the attributes of
an element node, see the section
"Transverse All Element Nodes"
in this chapter.

THE DOM

. {)
Apﬁly You can easily use the getLength method of the NamedNodeMap object to
h create an if statement to only display elements that have attributes.
static public void exploreNode (Node node) { <owner>
if (node.getNodeType() == Node.ELEMENT NODE) { Attribute: employeeID

NamedNodeMap attr = node.getAttributes(); Attribute: managerID

if (attr.getLength() > 0) { <priority>
System.out.println("<" + node.getNodeName() + ">"); Attribute: ignore
for (int x=0;x < attr.getLength();x++) {

System.out.print (" Attribute: ");
System.out.println(attr.item(x) .getNodeName ()) ;

}

}

NodeList children = node.getChildNodes () ;

for (int i1=0;i<children.getLength() ;i++) {
exploreNode (children.item(i)) ;

}

}
}
|\ J

BEX

" ParseDoc.java - Notepad

File Edit Format View Help

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {

DOMParser parser = new DOMParser();
parser.parse{"file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
exploreNode(root);

}
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {
System.out.println("<" + node.getNodeName() + ">");
NamedNodeMap attr = node.getAttributes();

for (int x=0;x < attr.getlLength{);x++) {
Attribute: ");

System.out.print (")
[System.out. printin{attr.item{x).getNodeName (J)|:
T I

7

NodeList children = node.getChildNodeq(

for (int i=0;i<children.getlLength(); i+
exploreNode(children.item{i));

{

e @ 1200

7] Type the code that
generates the names of the
attributes.

= 6| Type the code that creates
the print1ln statement that
displays the attribute names.

El save your Java code.

B Command Prompt

C:\Code>javac ParseDoc.java
C:\Code>java ParseDoc
<description>

<owner>

Attribute: employeelD
Attribute: managerlD

Attribute: ignore

C:\Code>

D8 12:00PM

The names of the elements
and their attributes in the
XML document display.

= 9| Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

JAVA AND XML

DETERMINE THE VALUES OF ATTRIBUTES

ttributes that you specify for an element consist of

a name and a corresponding value. Once you

determine the names of the attributes associated with
an element in an XML document, you need to retrieve the
values for those attributes.

A DOM tree structure represents each attribute as a node in
a NamedNodeMap collection, so you can use the
getNodeName method to retrieve the name of the node,
which also becomes the name of the attribute. You use the
getNodeValue method to retrieve the value of an
attribute when you represent that attribute as a node in a
getNodeName collection.

You not only use the getNodeName and getNodevalue
methods to retrieve the names and values of element
attributes, but also to retrieve information about other

types of nodes. For example, the getNodevalue method
returns a comment if you make the node type a comment.
You should always ensure that you work with nodes that
represent attributes if that is the type of data you need to
access.

You may specify some attributes for an element that has a
name but has no value assigned to the attribute. In this
case, you can still retrieve the name of the attribute, but
when you attempt to retrieve the value of the attribute, the
getNodeValue method returns a null value. When
creating your own code to access the attributes and their
values, you need to check all the values that an attribute
returns to make sure they exist. If the returned value of the
attribute is not a null value, indicating that no value is
currently assigned to the attribute, the value of the attribute
returns as a String value.

DETERMINE THE VALUES OF ATTRIBUTES

Note: You can use the code created
in the section "Determine Name of
Attributes."

Note: To generate the required
results, you need to parse an XML
document that contains elements
that have attributes.

= 1 Open or create the code
that parses an XML document
and displays the name of the
attributes.

. ParseDoc.java - Notepad u@ﬂ . ParseDoc.java - Notepad u@ﬂ
File Edit Format View Help File Edit Format View Help
import org.apache. Xerces. parsers. *; import org.apache. Xerces. parsers. *;
import org.w3c.dom. import org.w3c.dom.
public class ParseDoc { public class ParseDDc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
parser.parse("file.xml" parser.parse("file.xml"
Document doc= parser. getDocument() Document doc= parser, getDocument()
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
exploreNode(root); exploreNode(root);
static public void exploreNode(Node node) { static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) { if (node.getNodeType() == Node.ELEMENT_NODE) { _
System.out.println{"<" + node.getNodeName() + ">"); > System.out.println{"<" + node.getNodeName() + ">");
NamedNodeMap attr = node.getAttributes(); NamedNodeMap attr = node.getAttributes();
for {int x=0;x < attr. getLength() xX++) for (int x=0;x < attr.getlength();:x++) {
System.out.print(" Attribute "): [System.out.print(" " Attribute ");
System.out.print(attr.item(x).getNodeName()); System.out.print(attr.item(x). getNodeNarne())
} |System out.print{" has a value of ");
NodeList children = node.getChildNodes();
for (int i=0; 1<ch11dren getlength();i++) { NodeL1st children = node.getChildNodes();
exploreNode(children.item(i)); for (int i=0;i<children.getLength{();i++) {
exploreNode(children.item(i));
}
} b
i }
}
1 1
Q2 o | | i) G2 o

= 2| Type the code that displays
a message about an attribute's
value.

THE DOM

A

N
Once you determine the names and values of attributes, you can easily
generate an element’s start and end tag, including the attributes.
static public void exploreNode (Node node) { <todo></todo>
if (node.getNodeType() == Node.ELEMENT NODE) { <task></task>
System.out.print ("<" + node.getNodeName ()) ; <description></description>
NamedNodeMap attr = node.getAttributes(); <owner employeeID="none"
for (int x=0;x < attr.getLength();x++) { managerID="543"></owner>
System.out.print (" " +attr.item(x).getNodeName() + "=\""); <name></name>
System.out.print (attr.item(x) .getNodevValue() +"\""); <dept></dept>
} <status></status>
System.out.println("></" + node.getNodeName() + ">"); <priority ignore="yes"></priority>
NodeList children = node.getChildNodes () ;
for (int 1=0;i<children.getLength();i++) {
exploreNode (children.item(1i)) ;
}
}
}
|\ J

. ParseDoc.java - Notepad M@]kﬁ

File Edit Format View Help & Command Prompt

import org.apache.xerces.parsers.*;
import org.w3c.dom.*; =t i 2 Tav?
pUbLic cl3ss Parseboc { C:\Code>javac ParseDoc.java

public static void main (String[] args) throws Exception {

DOMParser parser = new DOMParser(); C:\Code>java ParseDoc

parser.parse("file.xml"); <todo>
Document doc= parser.getDocument(); <task>
Element root = doc.getDocumentElement(); P
exploreNode(root); <description>
i <owner>
static public void exploreNode(Node node) { Attribute employeelD has a value of none

if (node.getNodeType() == Node.ELEMENT_NODE) { Attribute managerlD has a value of 543
System.out.println("<" + node.getNodeName() + ">");

NamedNodeMap attr = node.getAttributes();

for (int x=0;x < attr.getlLength();x++) {
System.out.print(" Attribute ");
System.out.print{attr.item(x).getNodeName());
System.out.print(" has a value of "); X
System,out.printlngattr.item(x) . getNodevalue ([C:\Code>
! |

Attribute ignore has a value of yes

}

NodeList children = node.getChildNodeg(

for (int i=0;i<children.getlLength(); i+
exploreNode(children.item(i));

{

}
}
}

&) @g 12:00 PM ar WY 12:00 PM

—E] Create the println (4] Type the code that = 6| Compile and run your The names of the elements
statement that displays the generates the value of the program. and the attribute's names and
attribute values. attribute.)) values display.

Note: See Chapter 2 for instructions pray
B save your Java code. on compiling and running Java
programs.

197

JAVA AND XML

WORK WITH PROCESSING INSTRUCTIONS

that an application can perform actions on those XML

documents. Processing instructions on their own do
not perform any action; you must create the code that can
detect the processing instruction and then perform specific
actions based on information in the processing instruction.
When transversing the nodes of an XML document, you
commonly start with the node that represents the root
element of the XML document and then recurse through all
the other nodes in the document from this starting point.
This approach works fine for nodes that the root element
node encompasses, but it does not transverse any nodes
outside of the root element, such as processing instructions.

You place processing instructions in XML documents so

Although you can include some processing instructions
within the body of an XML document, you place most
instructions after the XML declaration — the first line of
an XML document. When you include instructions in

WORK WITH PROCESSING INSTRUCTIONS

this manner and represent them in a hierarchical way, the
processing instructions reside on the same level as the root
element.

If you have created code that recurses nodes, once it is given
a starting node, then you can recurse all nodes in the XML
document by using the Document object as the primary
node. The DOM treats items in an XML document as nodes,
and this includes the XML document itself. To be sure that
you recurse all nodes in an XML document, including all the
processing instruction nodes, recurse the node representing
the whole document as your starting point.

You can easily check a node to determine if it is a
processing instruction by using the Node . PROCESSING_
INSTRUCTION_NODE constant. Once you detect the
processing instruction node, you can use the getNodeName
method to retrieve the target and the getNodevalue
method to retrieve the text of the processing instruction.

E Create a method that
transverses the nodes of a
DOM.

Note: For more information about
transversing the nodes of a DOM,
see the section "Transverse All
Element Nodes."

Note: To generate the required
results, you need to parse an XML
document that contains processing
instructions.

= 1 Open or create the code
that parses an XML document
and creates a Document
object.

. ParseDoc.java - Notepad u@ﬂ . ParseDoc.java - Notepad [._J[E]ﬂ
File Edit Format View Help File Edit Format View Help
import org.apache. Xerces. parsers. *; import org.apache. Xerces. parsers. *;
import org.w3c.dom. import org.w3c.dom.
public class ParseDoc { public class ParseDDc {
— public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {

DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser():

parser.parse("file.xml"); parser.parse("file.xml");

Document doc= parser.getDocument(); Document doc= parser.getDocument();

exploreNode (doc); exploreNode (doc);

}
Static public voi1d exploreNode(Node node) { r static public void exploreNode(Node node
T (. gTROTRTYp<() == Hore - : —
NodeList children = node.getChildNodes();
for {int i=0; 1<ch11dren getlength();i++) {)
exploreNode(children.item(i));
NodelList children = node.getChildNodes()[;
} for (int i=0;i<children.getlLength();i++)| {
exploreNode(children.item(i));
}
}
= 1 = 1
" ParseDoc.java - Note... W 1z:00pm ﬁﬂl i [ParseDoc.java - Note... W 12:00pm

4] Type the code that checks
if a node represents a
processing instruction.

= 3| Type the code that passes
the Document object to the
method created in step 2.

THE DOM

ProcessingInstruction interface to create objects that represent a processing
instruction. For more detailed information about the ProcessingInstruction
interface, refer to the DOM API documentation.

TYPETHIS:

static public void exploreNode (Node node) {

if (node.getNodeType() == Node.PROCESSING_INSTRUCTION NODE) {
ProcessingInstruction pi = (ProcessingInstruction) node;
System.out.print (pi.getTarget()) ;
System.out.println(pi.getDatal());

}

NodelList children = node.getChildNodes() ;

for (int 1=0;i<children.getLength();i++) {
exploreNode (children.item(1i)) ;

Apﬁb@ If you plan to work extensively with processing instructions, you can use the

RESULT:

|<

myAppprinting="enable"
myAppprint="on"
myAppprint="off"

. ParseDoc.java - Notepad L:J@-@

File Edit Format View Help
import org.apache.xerces.parsers.*;
P

import org.w3c.dom.
public class ParseDoc {
public static void main (String[] args) throws Exception { |
DOMParser parser = new DOMParser();
parser.parse{"file.xml");
Document doc= parser.getDocument();

exploreNode(doc);

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) { >

System.out.print(node.getNodeName H
ystem.out.printin{node.getNodeValue B

}

NodeList children = node.getChildNodes()|;
for {int i=0;i<children.getlLength(); i++)
exploreNode(children.item(i));

Q8 om

Type the code that 6 Type the code that = 8| Compile and run your B The processing instructions
displays the target of the displays the data of the program. in the XML document display.
processing instruction. processing instruction.

Note: See Chapter 2 for instructions
Save your Java code. on compiling and running Java
programs.

JAVA AND XML

DETECT ENTITY REFERENCES

amount of data in an XML document. You often use

entities when you want to recycle a section of the
same XML code within the document. For example, you
may have a company’s address or a copyright warning
message multiple times in the same XML document.

g n entity allows you to use a string to represent a large

When an XML document parses, nodes represent the entity
references in the document, just as they represent most
other elements of the XML document. You can determine
the type of information that the node represents by
analyzing the numerical value of specific fields of the node
object. You can use the numerical constant

Node.ENTITY_ REFERENCE_NODE to identify when a node
represents an entity reference in the collection of nodes
that make up a DOM API tree structure.

Once you identify an entity reference node, you can use the
getNodeValue method to determine the name for the

DETECT ENTITY REFERENCES

entity reference. The getNodeValue method returns a
String value that becomes the name of the entity.

You cannot directly retrieve the value that replaces the
entity reference in your XML document simply by accessing
the entity reference node. You determine the value of the
entity by examining the DTD’s contents — the location
where you define the entities. For more information about
viewing the entities in the DTD, see the section "Detect
General Entities in the DTD" in this chapter.

Some XML parsers may not return the names of entities
when you use the getNodeName method and may, instead,
return the value that the entity references. If you encounter
problems accessing entity references, check the parser
behavior in your XML parser documentation to determine
how to resolve entity references.

. ParseDoc.java - Notepad u@ﬁl

. ParseDoc.java - Notepad u@ﬁ

File Edit Format View Help

import org. apache Xerces.parsers. *;
import org.w3c.dom

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser():
parser.parse("file.xml"

)
Document doc= parser.getDocument();
exploreNode (doc)

}
static public void exploreNode(Node node) |{

NodeList children = node.getChildNodes(}y;
for (int i=0; 1<ch11dren getlLength(); i++
exploreNode(children.item(i));

=)
m“‘ H [ParseDoc.java - Note... @g 12:00 PM

Note: To generate the required E3 Ensure that iteration starts
results, you need to parse an XML with the document node.
document that contains general

entities.

(1] Open or create the code
that parses an XML document
and iterates through the
nodes of a DOM tree.

File Edit Format View Help

import org.apache. Xerces.parsers. *;
import org.w3c.dom.

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser():
parser.parse("file.xml");
Document doc= parser.getDocument();
exploreNode (doc);

}
static public void exploreNode(Node node) {

> if (node.getNodeType() == Node.ENTITY_REFERENCE_NODE) { _

}

Node[7st children = node.getChildNodes();

for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

=)
[ParseDoc.java - Note... @Q 12:00 PM

Type the code that checks
if a node represents an entity
reference.

THE DOM

~
The getNodeName method returns the name of the entity. When you
use the entity in an XML document, you precede the name with an
ampersand and follow it with a semicolon. If you intend to output the
entity name to another XML document, you must add these characters.
static public void exploreNode (Node node) {
if (node.getNodeType() == Node.ENTITY REFERENCE_NODE) {
System.out.print ("&") ;
System.out.print (node.getNodeName ()) ;
System.out.println(";");
}
&address;
&owner;
&owner ;
|\ J
. ParseDoc.java - Notepad u@]@
File Edit Format View Help B Command Prompt
import org.apache.xerces.parsers.*;
import org.w3c.dom.*; C:\Code>javac ParseDoc.java
public class ParseDoc { .
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
DOMParser parser = new DOMParser(); entity reference detected: address
Barser ;garse(file. xml”)tD ¢ entity reference detected: owner
eg;lim;izmgg%aog?rser getDocument () entity reference detected: owner
i
static public void exploreNode(Node node) { C:\Code>

if_{node.getNodeType() == Node.ENTITY REFERENCE NODE) {
—System, out. print(ent1ty reference defected: 7]

System.out.printin(node.getNodeName()); |

}

NodeList children = node.getChildNodes()|;

for {int i=0; 1<ch11dren getlength(); i++)
exploreNode(children.item(i));

(éjg 12:00 PM ar WY 12:00 PM

Type the code that 5| Type the code that —d Compile and run your The names of the entity
displays a message when it displays the name of the program. references in the XML
detects an entity reference. entity reference. document display.

Note: See Chapter 2 for instructions
[save your Java code. on compiling and running Java
programs.

JAVA AND XML

DETECT GENERAL ENTITIES IN THE DTD

XML documents. You can define the information that

you ascribe to an entity within the DTD itself, or you
can link it to an external file. The entity declaration consists
of the entity name and the entity definition. You must
compose the name of the general entity out of a valid XML
name. This includes letters, numbers, underscores, and
colons, although programmers discourage the use of colons
because a parser may confuse them with the namespaces.

You use entities to insert repetitive information into

You can extract the entity definition information from the
DTD. You may want to extract the entity information to
modify the definition of the entity within your code, or
because the application that you utilize to access your XML
documents does not resolve entities; you may have to
resolve the entities yourself as you encounter them
throughout the XML document.

You assess entities with the getEntities method of the
DocumentType object. The getEntities method returns

DETECT GENERAL ENTITIES IN THE DTD

a NamedNodeMap collection of nodes that correspond to
each entity definition within the DTD.

Once you create the NamedNodeMap collection, you can
determine the number of nodes in the NamedNodeMap
collection with the getLength method. Because the
number of nodes in a collection corresponds to the number
of entity definitions in the DTD, the value that the
getLength method returns reflects the number of general
entity definitions within the DTD.

The getNodeName method of the node object returns the
name of the entity. You store the entity definition
information itself as child nodes of the items in the
NamedNodeMap collection. To access the entity definitions,
you can retrieve the value of each of the child nodes. You
can use a simple for loop to iterate through the child
nodes to retrieve the values.

El Create a for loop to
iterate through the nodes.

(1] Open or create a
document that parses an
XML document.

“H Type the code that creates
a NamedNodeMap collection
of the nodes representing the
entities.

202

. ParseDoc.java - Notepad u@ﬂ . ParseDoc.java - Notepad [._J[i]ﬂ
File Edit Format View Help File Edit Format View Help
import org.apache. Xerces. parsers. *; import org.apache. xerces. parsers. *;
import org.w3c.dom. import org.w3c.dom.
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
parser.parse("file.xml"); parser.parse("file.xml");
Document doc= parser.getDocument(); Document doc= parser.getDocument();
DocumentType DocType = doc.getDoctype(); DocumentType DocType = doc.getDoctype();
[NamedNodeMap nm = DocType.getEntities();] NamedNodeMap nm = DocType.getEntities();
[for _(int i=0;i<nm.getlength () i++) {}— > for (int i=6;i<rnm.getlLength();i++) { I
} Node node=nm.item(i);
}
} Is stem out rintln("\nEntit; Name + node. getNodeName
}
}
b
= 1 1
Q2 o | | |izid G2 o

—3 Type the code that
creates a node from the
NamedNodeMap collection.

6 Type the code that creates
a NodeList of the child
nodes.

—H Type the code that displays
the name of the node.

THE DOM
\ 1 _
mg{ You can create an Entity object that accesses more information about an
entity. For example, the get SystemId method of the Entity object
displays the name of the file which an entity declaration references.

=

for (int i=0;i<nm.getLength();i++) {
Node node=nm.item(i);
Entity ent=(Entity) nm.item(i);
System.out.println("\nEntity Name: " + node.getNodeName()) ;
System.out.println("System ID:" + ent.getSystemId());
NodeList children = node.getChildNodes () ;
for (int x=0;x<children.getLength () ;x++) {
System.out.println("Definition: " +
children.item(x) .getNodeValue()) ;
}

Entity Name: address
sysid: who.xml
Definition: null

Entity Name: owner
sysid: null
Definition: Andrew

" ParseDoc.java - Notepad Q
File Edit Format View Help Command Prompt

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

C:\Code>javac ParseDoc.java
public class ParseDoc { A .
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
DOMParser parser = new DOMParser();
parser.parse("file.xml"); Entity Name: address
Document doc= parser.getDocument(); (PP "
DocumentType DocType = doc.getDoctype(); Definition: 123 Main Street

NamedNodeMap nm = DocType.getEntities(); Entity Name: owner
. . . . Definition: Andrew
for (int i=0;i<nm.getlLength();i++) {

Node node=nm.item{i); C:\Code>

System.out.println("\nEntity Name: " + node.getNodeName());
NodeList children = node.getChildNodes();

{for (int x=6;x<children.getlength();x++) {|
[System.out.printin{"Definition: ™ + children.item{(x). . getNodeValue()):]
{1

&) @g 12:00 PM omp DM 12:00PM

—d Create a for loop to 8] Type the code that 0 Compile and run your The names of the entity
iterate through the child displays the values of the program. references and the definitions
nodes. nodes in the NodeList. _ . . in the XML document display.

Note: See Chapter 2 for instructions
E Save your Java code. on compiling and running Java
programs.

203

JAVA AND XML

RETRIEVE DTD INFORMATION

document contains. The DTD can contain a wide

variety of information. Accessing the information in
the DTD allows you to directly access DTD information
such as element and entity declarations.

You can access the information that the DTD of an XML

When parsing an XML document, the parser creates a
DocumentType object that can access some of the
information available in the DTD. You can use the
getDoctype method of the Document object to create a
DocumentType object. Because the DocumentType
interface is part of the org.w3c.dom package, you must
import this package prior to using the DocumentType
interface in your Java code. For more information about
importing the package, see Chapter 3.

You can retrieve the name of a DTD — the same name as
that of the root element of the XML document. You use the
getName method of the DocumentType object to retrieve

the name of the DTD. The name of the DTD returns a
String value from the getName method.

The DocumentType object also allows you to retrieve the
rest of the information in the DTD. The information in the
DTD returns as a string value corresponding to the
information that you find in the DTD between the [and]
delimiters. The get InternalSubset method retrieves the
data.

Depending on the length of the information in the DTD and
the type of XML parser in use, you may find it impossible to
retrieve all the information in the DTD. You should not
depend on the values that the getInternalSubset
method returns, such as notation declarations, to retrieve
information, but should instead use another more
appropriate method to extract the information from the
DTD. The information in a DTD becomes available
regardless of whether the DTD you have is an inline DTD

or an external DTD.

RETRIEVE DTD INFORMATION

H Type the code that creates
a DocumentType object.

Kl Open or create a program
that parses an XML
document.

204

. ParseDoc.java - Notepad

BEX]|

File Edit Format View Help

import org.apache.xerces.parsers,*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();

DocumentType DocType = doc.getDoctype();

System.out.print("DTD Name "):
n

i ,
Qs eom

Type the code that displays 4 Type the code that
a descriptive message about displays the name of the
the name of the DTD. DocumentType object.

THE DOM

~
‘ The getSystemId method can display the name of the DTD file if the DTD
M is in an external file, as in <!DOCTYPE task SYSTEM "todo.dtd">
public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument () ;
DocumentType DocType = doc.getDoctype() ;
System.out.print ("DTD File Name ");
System.out.println(DocType.getSystemId()) ;
}
}
DID File Name todo.dtd
. J

BEX]

. ParseDoc.java - Notepad

File Edit Format Yiew Help

import org.apache. xerces parsers.*;
import org.w3c.dom.

public class ParseDoc {
public static void main (String(] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();

DocumentType DocType = doc.getDoctype();

System.out.print("DTD Name ");
System.out.println(DocType.getName());

—System. out. println(DocType.getInternalSubset());]
}

@8 sz00m

Type the code that [save your Java code.
displays the remaining
information contained

within the DTD.

Command Prompt

C:\Code>javac ParseDoc.java

C:\Code>java ParseDoc

DTD Name todo

<!ELEMENT task (description | owner | status | priority)*>

<!ENTITY owner SYSTEM "who.xml">
<!ENTITY address SYSTEM "CurrentADD.xml">

W 12:00 PM

The name of the DTD and
the information it contains
display.

= 7| Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

JAVA AND XML

RETRIEVE TEXT INFORMATION

ou can retrieve the contents of elements that contain

text. Once you identify an element node, you can

access the information in the element. In most cases,
the type of content in an element of an XML document is
textual data.

When using the DOM to access an XML document, you
consider the content of an element node a child of the
node. This way of treating an element’s data maintains the
strict tree structure that you must enforce when using the
DOM API. Treating the textual content of an element node
as a child node may initially appear an awkward way of
organizing data, but in practice, it makes accessing this
textual content quite easy as you access all the information
in a DOM tree structure, regardless of information type, in
the same hierarchical manner.

RETRIEVE TEXT INFORMATION

When extracting textual data from an element, you can
identify the node as an element node. You can then check
the type of node that you identify as the first child node
of the element node to determine if it is a text node. You
use a text node to contain textual data, and you can verify
the type by checking the node type against the

Node . TEXT_NODE constant.

Typically, you iterate through all the nodes in a DOM tree,
and extract the text data from the nodes that contain text.

The information returned from the XML parser preserves all
whitespace, such as new lines and tabs, within the text data.
This also includes the whitespace that may surround child
elements of an element that contains both text and elements.
When creating code to retrieve text data, you probably want
the code to detect and remove excess whitespace.

. ParseDoc.java - Notepad

=J=les)

. ParseDoc.java - Notepad

=J=les

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
exploreNode(root);

}
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {

}
NodeList children = node.getChildNodes();

for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

= |
\ ParseDoc.java - Note... W 1z:00Pm

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
exploreNode(root);

}
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {

|1'f (node. getFirstChild().getNodeType() == Node.TEXT_NODE) {

= 1] Open or create the code
that parses an XML document
and identifies the element
nodes.

in the section "Transverse All
Element Nodes."

Note: You can use the code created

b

NodelList children = node.getChildNodes();
for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

@g 12:00 PM

m; i d ParseDoc.java - Note...

= 2| Type the code that

determines if the first child
node of the element is a text
node.

THE DOM

Apﬁb[You can easily extract text data from only selected elements by
expanding the if argument to match the name of the node with

the name of the desired element.

=

static public void exploreNode (Node node) {

if (node.getNodeType() == Node.ELEMENT NODE &&
node.getNodeName () .equals ("description")) {
if (node.getFirstChild() .getNodeType() == Node.TEXT NODE) {

System.out.println(node.getFirstChild() .getNodeValue()) ;

}
}
NodeList children = node.getChildNodes () ;
for (int 1=0;i<children.getLength();i++) {
exploreNode (children.item(i)) ;
}

Backup sales data for last month
Complete end of month report

4 ParseDoc.java - Notepad u@ﬂ

File Edit Format VYiew Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

Command Prompt

C:\Code>javac ParseDoc.java

public class ParseDoc {

public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse{"file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
exploreNode(root);

C:\Code>java ParseDoc

Backup sales data for last month

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {

i (node.getFirstChild().getNodeType() == Node.TEXT_NODE) {

[System.out.printin{node.getFirstChild().getNodeValue()):]
}

}
NodeList children = node.getChildNodes();

for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

?A Q= szooem ar
Type the code that B save your Java code. B Compile and run your

The elements’ textual

displays the value of the text program. content displays.
focs Note: See Chapter 2 for instructions

on compiling and running Java

programs.

207

JAVA AND XML

EXTRACT COMMENTS

ou can retrieve information from an XML document

that does not make up part of the content of the XML

document. You may find retrieving this type of
information useful if you want to reconstruct an XML
document, or if you need to examine the information
within an XML document more closely.

You often use comments to help explain a part of the XML
document or to simply provide more background
information, such as the name of the document’s author.
You may want to extract the comments from an XML
document to strip out unneeded information before saving
the XML document to a database or file system where
space is at a premium. Removing the comments from an
XML document does not affect the information or structure
of the XML document.

As with most other types of data in an XML document, the
parser creates a node that represents comments when it

EXTRACT COMMENTS

finds a comment in an XML document. Locating all the
comments in an XML document involves iterating through
the nodes of the DOM tree and identifying the comment
nodes. You can easily identify comment nodes by
determining the node type of the current node and
checking the type against the Node . COMMENT_NODE
constant.

You retrieve the text that makes up the comment of a
comment node by using the getNodevalue method of
the node object. The getNodevValue method retrieves a
string value, which can contain whitespace, such as new
lines, spaces, and tabs.

While you can use information in comments for other
purposes, such as creating a placeholder for data or
passing information to an application, you should use more
appropriate methods, such as entities and processing
instructions, to accomplish these tasks.

. ParseDoc.java - Notepad

=J=les)

. ParseDoc.java - Notepad

=J=les

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
exploreNode(doc);

}
static public void exploreNode(Node node) {
NodeList children = node.getChildNodes();
for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

i ,
Qs eom

= 1] Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

208

>

File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
exploreNode(doc);

}
static public void ex loreNode Node node
1T (node.getNodeType() == Node.COMMENT_NODE) {

i
NodeList children = node.getChildNodes();

for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

i ,
Qs oom

Type the code that
determines if the first child
node of the element is a
comment node.

THE DOM

R 4)
Appb[The comment tag’s start and end delimiters do not return with the comment.
h If you generate an XML document, you can easily add the delimiters.
static public void exploreNode (Node node) {
if (node.getNodeType() == Node.COMMENT NODE) {
String beginCmt = "<!— ", endCmt= " —>";
System.out.println (beginCmt+node.getNodeValue () +endCmt) ;
}
NodeList children = node.getChildNodes() ;
for (int i=0;i<children.getLength();i++) {
exploreNode (children.item(i)) ;
}
}
<!— Filename: file.xIm —>
<!— Created: April 2002 —
|\ J

4 ParseDoc.java - Notepad u@ﬂ

File Edit Format VYiew Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

Command Prompt

C:\Code>javac ParseDoc.java

public class ParseDoc { X .
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
DOMParser parser = new DOMParser(); Comment found: Filename: file.xIm
parser.parse("file.xml"); Comment found: Created: April 2002
Document doc= parser.getDocument();
Element root = doc.getDocumentElement(); \
exploreNode(doc); C:\Code>
}
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.COMMENT_NODE) {

—System. out print("Comment found: ™3]
System.out.printin(node.getNodevalue()):]

NodeList children = node.getChildNodes()|;
for (int i=0;i<children.getlLength(); i++)
exploreNode(children.item(i));

Q@ 1z00em

Type the code that (4 Type the code that = 6 | Compile and run your The comments contained
displays a message describing displays the value of the program. in the XML document display.
the following information. comment node.

Note: See Chapter 2 for instructions
B save your Java code. on compiling and running Java
programs.

JAVA AND XML

EXTRACT CDATA SECTIONS

ML documents contain CDATA sections, into which
X you can place textual data. A CDATA section can

contain any character. The character set, which the
XML document establishes, determines the characters that
you can use. You comprise the ending delimiter of a CDATA
section as the characters]]>. Any information in the
CDATA section except the ending delimiters is considered
valid. If other sources, such as the information that makes
up an image file, generate the information in a CDATA
section, you must check the information to ensure that the
ending delimiter does not appear as a valid part of the
information.

You typically use CDATA sections to store text that contains
markup tags, such as HTML code or fragments of XML
documents. Placing markup information in a CDATA section
prevents the XML parser from interpreting the tags in the
information as part of the XML document. You represent

EXTRACT CDATA SECTIONS

the CDATA sections in an XML document as a CDATA
section node in the DOM tree structure.

You can determine a CDATA section by comparing the node
type against the constant Node . CDATA_SECTION_NODE.
You access the content of the CDATA section with the
getNodeValue method of the node object. The
getNodeValue method returns a string value. You do
not include the CDATA delimiters with the returned string.

The string, which the getNodevalue method returns,
includes any whitespace, such as new lines and tabs, that
comprises part of the CDATA section in the document.
Depending on the character set you use, the CDATA section
may also contain some non-displayable characters, for
which you may need to check, before you can store the
data in a file or other storage format.

—n Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

Note: You need to parse an XML
document that contains a CDATA
section.

. ParseDoc.java - Notepad [._}[i] .\ ParseDoc.java - Notepad [._][i]
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.w3c.dom.*; import org.w3c.dom.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
parser.parse("file.xml"); parser.parse("file.xml");
Document doc= parser.getDocument(); Document doc= parser.getDocument();
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
exploreNode(root); exploreNode(root);
} }
static public void exploreNode(Node node) { static public void exploreNode(Node node _
NodeList children = node.getChildNodes(); 1T (node.getNodeType() == Node.CDATA_SECTION_NODE) {
for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i)); [System.out. printin("Start of CDATA Section")]
} [System.out.println("End of CDATA Section"):]
i
DdeList children = node.getChildNodes();
for (int i=0;i<children.getlLength():[i++) {
exploreNode{children.item(i));
}
b
= 1 = 1
i) @2 o @2 o

3] Type the code that
displays a message indicating
the start of the CDATA section.

=4 Type the code that
displays a message indicating
the end of the CDATA section.

Type the code that
determines if the first child
node of the element is a
CDATA section node.

THE DOM

You can create a CDATASection object to work with CDATASection nodes, for
example, splitting the information in a node into two nodes. For more detailed
information about CDATASection objects, refer to the DOM API documentation.

if (node.getNodeType() == Node.CDATA_ SECTION NODE) {
CDATASection node2 = (CDATASection) node;
Node node3=node2.splitText (10);
System.out.println("Start of CDATA Section");
System.out .println (node.getNodeValue()) ;
System.out.println("End of CDATA Section");

Start of CDATA Section

Ba
End of CDATA Section
Start of CDATA Section
Complete <
End of CDATA Section

. ParseDoc.java - Notepad E]

File Edit Format View Help &3 Command Prompt

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

C:\Code>javac ParseDoc.java

public class ParseDoc { . .
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
DOMParser parser = new DOMParser(); Start of CDATA Section
parser.parse("file.xml");
Document doc= parser.getDocument(); . atz .
Element root = dnc.ge%DocumentE'Lement() ; Backup <sales> data for last month
exploreNode(root);
ATA Section

TA Section
static public void exploreNode(Node node) { /
if (node.getNodeType() == Node.CDATA_SECTION_NODE) { completo *bsend of month report.
System.out.println("Start of CDATA Section");
C:\Code>

{System.out.printin{node. getNodevValue()):]

System.out.println{"End of CDATA Section"):

NodeList children = node.getChildNodes();
for (int i=0;i<children.getLength{();i++) {
exploreNode(children.item(i));

B Type the code that [save your Java code. = 7| Compile and run your The textual content of the
displays the value of the program. CDATA sections displays.

SIPLIA CEGIom el Note: See Chapter 2 for instructions

on compiling and running Java
programs.

JAVA AND XML

RETRIEVE NOTATION DECLARATIONS

know that certain information within the XML

document may require an external application for
processing. You use the information in a notation
declaration to determine what data or application your Java
application may need to access to interpret the data in the
XML document. For example, if you parse an XML
document on computers that have different operating
systems, you may need to access different image
applications to interpret image data in the document.

You can use a notation declaration to let an application

You use the getDoctype method of the Document object
to create a DocumentType object. Once you create an
object, you can access defined entities in the DTD of an
XML document. The getNotations method retrieves a
collection of nodes that represent the notation declaration
in a DTD and places the nodes into a NamedNodeMap
collection.

You can iterate through a NamedNodeMap collection of
nodes by determining the number of nodes in the

RETRIEVE NOTATION DECLARATIONS

collection and then iterating through each node with a
simple for loop. You determine the number of nodes in a
NamedNodeMap collection with the getLength method of
the NamedNodeMap object.

You access each node in the collection with the item
method of the NamedNodeMap object by specifying an
index number as the argument of the method. The
Notation interface, which represents a previously
declared notation in the DTD of an XML document, creates
a Notation object. You create a Notation object from
the nodes in the NamedNode collection.

Once you create a Notation object that represents
individual notation declarations, you can retrieve the name
of the notation with the getNodeName method. If the
notation declaration refers to a local application, you can
retrieve the specified name with the getSystemId method.

i ,
G2 o

—E1 Type the code that creates
a NamedNodeMap collection
of notation nodes.

=4 Type the code that
displays the number of nodes
in the NamedNodeMap
collection.

(1] Open or create the code
that parses an XML
document.

= 2] Type the code that creates
the DocumentType object.

.\ ParseDoc.java - Notepad u@ﬁ .\ ParseDoc.java - Notepad u@ﬁ
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.w3c.dom.*; import org.w3c.dom.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
parser.parse("file.xml"); parser.parse("file.xml");
Document doc= parser.getDocument () Document doc= parser.getDocument();
[DocumentType DoCType = doc.getboctype();] DocumentType DocType = doc.getDoctype();
NamedNodeMap nm = DocType.getNotations();:] NamedNodeMap nm = DocType.getNotations():
System.out.printin("Number of notation declarations: " + rm.getlength());] > System.out.println("Number of notation declarations: " + nm.getLength()); _
; {for (int i=0;7<nm.geflength () ;i++) {]
} [Notation node=(Notationynm,1tem (1) :}—

}
}

. G2 am
1 Create a for loop 6] Type the code that

that iterates through the
NamedNodeMap collection.

creates a new Notation
node from an item in the
NamedNodeMap collection.

THE DOM

: 4 N
Apﬁly If you only want to access the name of the notation node, you do not have to
create a Notation object. The node object returns the name of the notation

using the getNodeName method of the node object.

=y

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser () ;
parser.parse("file.xml");
Document doc = parser.getDocument () ;
DocumentType DocType = doc.getDoctype() ;
NamedNodeMap nm = DocType.getNotations() ;
System.out.println("Number of notation declarations: " + nm.getLength());
for (int 1=0;i<nm.getLength();i++) {
System.out.println("\nName: " + nm.item(i).getNodeName/()) ;

}

Number of notation declarations: 2
Name: gif

Name: note

. ParseDoc.java - Notepad E]

File Edit Format View Help B Command Prompt
import org.apache.xerces.parsers.*;
import org.w3c.dom.*; C:\Code>javac ParseDoc.java
public class ParseDoc { A .
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
DOMParser parser = new DOMParser(); Number of notation declarations: 2

parser.parse("file.xml");
Document doc= parser.getDocument();
DocumentType DocType = doc.getDoctype();

NamedNodeMap nm = DocType.getNotations():
Name: note

System.out.println("Number of notation declarations: " + rm.getLength()); Name: music.exe

for (int i=0;i<nm.getLength();i++) {
C:\Code>
Notation node=(Notation)nm.item(i);

{System.out.printl

n{ snName:
n H +

ame |

+ n
no

i) B o0

= 7| Type the code that 8 Type the code that — Compile and run your The number of notation
displays the name of the displays the system ID of the program. declarations and the
notation node. notation node. Note: See Chapter 2 for instructi information contained in each
B 016- 566 LIGpIer 2 107 INSITUCTIONS 1 tation declaration display.
Save your Java code. on compiling and running Java

programs.

JAVA AND XML

NAVIGATE NODES

node. You must navigate through the nodes in the tree

structure to efficiently access parts of an XML
document representation. You can use a number of node
object methods to move from node to node.

T he primary element of the DOM tree structure is a

You use the getFirstChild method to create a node that
corresponds to the first child node of any known node.
For example, if you create a node that represents the root
element of an XML document, then you use the
getFirstChild method to access the first element in the
XML document other than the root element. Conversely,
you use the getLastChild method to create a node that
represents the last node — the child of the known node.

You use the getNextSibling method of the node object
to retrieve the next node on the same level as the current

node. The getPreviousSibling method retrieves
another node on the same level prior to the current node.
When viewing the tree structure, the DOM’s representation
of an XML document, you define the same level as a node

lateral to another node.

When using any of these methods to access nodes, you may
find that a node that you want to create does not exist. For
example, if an XML document only has a single element, the
root element, then that node does not have any child
nodes. Any attempt to navigate to a node that does not
exist may result in the node-creating navigation method
returning a null value. If you intend to navigate an XML
document of unknown structure, you should create some
checking code to determine that the nodes to which you
attempt to navigate actually do exist.

NAVIGATE NODES

. ParseDoc.java - Notepad [._][E]ﬂ . ParseDoc.java - Notepad [._}@]iﬂ
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.w3c.dom.*; import org.w3c.dom.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser(); DOMParser parser = new DOMParser();
1 parser.parse("file.xml"); parser.parse("file.xml");
Document doc= parser.getDocument(); Document doc= parser.getDocument();
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
System.out.println{"Root element: " + root.getTagName()); System.out.println("Root element: " + root.getTagName());
j%l_ode nodel = root.getFirstChild(y:]
} ystem, out.printin("Ist. child: ™ + nodel.getNodeNameU);
= 1 = I
@2 o 2 o
= 1] Open or create the code Note: You can use the code created Type the code that creates 3] Type the code that
that parses an XML document in the section "Retrigve the Root a node that represents the first displays the name of the

and displays the root element Element Name."

name. Note: In this example, you need an

XML document that contains a root
element and two chi1d elements,
and that contains no whitespace.

214

child node of the root
element.

child node.

THE DOM

node object to navigate to the previous node.

TYPETHIS:

public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser () ;
parser.parse("file.xml") ;
Document doc = parser.getDocument () ;
Element root = doc.getDocumentElement () ;
System.out.println("Root element: " + root.getTagName());
Node nodel = root.getFirstChild();
System.out.println("lst. child: " + nodel.getNodeName()) ;
Node node2 = nodel.getParentNode () ;
System.out.println("Parent node of child: " + node2.getNodeName()) ;

4 N\
Apply You can use the getParentNode method of the

RESULT:

‘<

Root element: todo
1st. child: description
Parent node of child: todo

; ﬁalseﬁnc.jm - ﬁmpad
File Edit Format View Help

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse{"file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();

System.out.println("Root element: " + root.getTagName()):

Node nodel = root.getFirstChild():
System.out.println({"lst. child: " + nodel.getNodeName());

{Node node? = nodel.getNextSiblin,
. Cl H

0. ¥ 12:00PM

[® ParseDoc.java - Note...

n 4| Type the code that creates
a node that represents the
sibling of the child node
you created in step 3.

5 Type the code that
displays the name of the
sibling node.

B Save your Java code.

= 7| Compile and run your
program.

Note: See Chapter 2 for instructions

on compiling and running Java
programs.

M The root element name
and the name of its two
child elements display.

215

JAVA AND XML

CREATE AN XML DOCUMENT

applications, using the DOM API to construct the
documents. Creating XML documents allows you to
save information in a structured, easy-to-manage format.

You can create XML documents from within your Java

You create a DOM tree structure and, in turn, you can
output the DOM tree to a file. You represent existing XML
documents with a DOM tree, modify them, and then write
them back to an XML file. You can easily take multiple XML
documents and, using the DOM API, merge these XML
documents into a single XML document.

The first step in creating an XML document involves writing
the XML declaration. Once you construct the declaration,
you can write it to a file and use it to create an XML
document. You must make the XML declaration the first line
of an XML document.

Unfortunately, the DOM API does not yet provide a way of
representing the XML declaration in a DOM tree structure.

To create an XML declaration, you must construct one from
a string.

You use the Filewriter class of the java.io package to
construct files from within Java code. You have to create a
FileWriter object and pass to it the name of the file to
create. XML documents should use the .xm1 file extension.
The write method of the Filewriter object allows you
to place information in the file. Once you finish working
with the file, you can use the close method of the
FileWriter object to close the file. You may not have
access to the XML document from other applications while
you still have the file open from within your Java code.

Once you save the XML document, you can view it using a
simple text editor or another XML application.

CREATE AN XML DOCUMENT

F ensure that you import the
packages required to create
the files.

Kl Create or open a Java
program that allows you to
work with the DOM API.

5] Type the code that
prevents any more data

w3 Type the code that creates
a new FileWriter object.

L T e codle Gt it from writing to the file.

the XML declaration to a file. [Save your Java code.

THE DOM

A

Quite commonly, you use a String value to represent a new line when
creating data that you want to output. Using a String value to represent a
new line allows you to easily change the new line character and to avoid
using a multitude of escape sequences in your code.

TYPE THIS: RESULT:

public class ParseDoc { <?xml version="1.0"?>
public static void main (String[] args) throws Exception {

FileWriter fw = new FileWriter ("doc.xml"); <!— Created by Andrew —>
String newLine="\n";
fw.write("<?xml version=\"1.0\"?>"); >
fw.write (newLine) ;
fw.write (newLine) ;
fw.write("<!— Created by Andrew —>");
fw.close() ;

—d Compile and run your
program.

Note: See Chapter 2 for instructions [E3 Open the XML document. M The XML declaration is the
on compiling and running Java first line of the document.

programs.

217

JAVA AND XML

CREATE A NEW DOM TREE
WITH A ROOT ELEMENT

created the DOM tree from a parsed XML document.

This enables you to create DOM tree structures from
within your code and then work with the information
within the structure using all the features of the DOM API.

You can create a DOM tree structure as if you had

You create a DOMImplementation object that facilitates
the creation of a new document, as represented by a DOM
tree structure. The DOMImplementationImpl class
produces the new DOMImplementation object. The
DOMImplementationImpl class is part of the
org.apache.xerces.dom package, which you must
import prior to using the DOMImplementationImpl class
in your Java code. For more information about importing
packages, see Chapter 3.

You use the createDocument method of the
DOMImplentation object to make the new Document
object. The createDocument method takes three
arguments. The first and third arguments consist of the
namespace of the document element and the document

type, respectively. For simple XML documents, you can
specify them as null. The second argument consists of the
name you use for the root element of the XML document.

You can easily verify that you have previously created the
root element of the XML document by making a new node
that represents the root element of the document.

You can create an XML document by writing an XML
declaration, and the root element start and end tags, to a
file. You create the root element’s start and end tags by
using the getNodeName method of the node object to
output the name of the root element. You must place the
start and end tag delimiters appropriately around the
element name.

Once you create the XML document, you can easily view it
with a simple text editor to confirm that you have created
the document properly and that you have named the root
element correctly.

CREATE A NEW DOM TREE WITH A ROOT ELEMENT

Kl Create or open the code H Type the code

that can create an XML file that creates a new
containing an XML DOMImplementation
declaration. object.

Note: You can use the code created
in "Create an XML document."

> FileWriter fw = new FileWriter("doc.xml'|);

. ParseDoc.java - Notepad
File Edit Format View Help

import org.apache.xerces.dom.*;
import org.w3c.dom.*;
import java.io.*;

BEX]

public class ParseDoc {
public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl{):
Document doc=di. createDocument (null, "tas K, null);

|_ Element root = doc.getDocumentElement ()]

fw.write("<?xml version=1"1,04"?>\n");

fw.close();

@g 12:00 PM

W [P ParseDocjava - Note...

4] Type the code that creates
a new element node that
represents the root element
of the XML document.

= 3 Type the code that creates
a new document object.

THE DOM

You can easily create a try and catch block to deal with the potential error.

TRY THIS:

public static void main (String[] args)

try {
DOMImplementation di = new DOMImplementationImpl () ;
Document doc = di.createDocument (null, "tas k",null);
Element root = doc.getDocumentElement () ;
FileWriter fw = new FileWriter ("doc.xml");
fw.write("<?xml version=\"1.0\"?>\n");
fw.write("<" + root.getNodeName() + ">\n");
fw.write("</" + root.getNodeName() + ">\n");
fw.close() ;

} catch (DOMException e) {
System.out.println("Error detected:

}

4 3\
AW[X You may generate a DOMException error if the root element name is invalid.

throws Exception {

" + e.getMessage());

v

RESULT:

Error detected: DOM002 Illegal character

| ParseDoc.java - Notepad

File Edit Format View Help

import org.apache.xerces.dom.*;
import org.w3c.dom.*
import java.io.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl();
Document doc=di. createDocument(nuu ‘tas k", null);

Element root = doc.getDocumentElement();

FileWriter fw = new F11eWr1ter(‘doc, xml");
fw.write("<?xml version=4"1.0\"?>\n");

Tfw.write("<"

Tw.close();

[* ParseDoc.java - Mote...

#® 1z:00m

B Type the code that writes
the start tag of the root
element to the file.

6] Type the code that writes
the end tag of the root
element to the file.

(7 Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

8 Open the XML document.

—ll The XML document
contains the root element.

JAVA AND XML

ADD ATTRIBUTES TO AN ELEMENT

text or other elements, elements can contain more

information in the form of attributes. For example, an
element called 'fax' may have an attribute called 'code,’
which you use to indicate the area code of the fax number
that makes up the content of the fax element.

! part from the primary content of an element, such as

You must first create the node that you want to add to the
elements. You must make the node an element node, but
you can also include the root element of the XML
document. Once you create the element node, you can use
the setattribute method of the node object to add an
attribute to an element.

The setAttribute method takes two arguments. The first
argument consists of the attribute’s name, and as with all
attribute names, you must make it an invalid XML name.
The second argument consists of the value that you want to
specify for the attribute. You can state both arguments in
the form of a string.

If you output an element and its associative attributes to an
XML document, you need to format the information
accordingly. For example, as with all attributes, you must
enclose the attribute value within quotation marks when
you save it in the XML document. You must also place the
'equals' symbol between the attribute name and the

attribute value.

As with all attributes, when creating XML documents, you
must place the attributes and their values within the start

tag of an element.

You can access the attributes of an element node via the
NamedNodeMap collection of nodes. When outputting the
attributes of an element to an XML file, you can create a

simple loop that iterates through the nodes in the

NamedNodeMap collection.

ADD ATTRIBUTES TO AN ELEMENT

. ParseDoc.java - Notepad

BEX]

. ParseDoc.java - Notepad

[BEX]

File Edit Format View Help

import org.apache.xerces.dom.*;
import org.w3c.dom.*;
import java.io.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementatwnImpl()
Document doc=di.createDocument(null, "task",null)
Element root = doc.getDocumentElement();

FileWriter fw = new FileWriter{"file.xml");
fw.write{"<?xml version=y"1.0\"?>\n");
fw.write("<" + root.getNodeName());
fw.write(">\n</" + root.getNodeName() + ">\n");
fw.close():;

=)
[ParseDoc.java - Note... @ W 12:00PM

File Edit Format View Help

import org.apache.xerces.dom.*;
import org.w3c.dom.*;
import java.io.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {

DOMImplementation di = new DOHImplementatwnImpl()
Document doc=di.createDocument(null, "task",null)
Element root = doc.getDocumentElement();

rroot.setAttribute("owner™, "Andrew™);|
[root. sefAttribute("priority™, "high™) |+

FileWriter fw = new FileWriter("file.xml");
fw.write{("<?xml version=4"1.0\"?>\n");
fw.write("<" + root.getNodeName());

fw.write(">\n</" + root.getNodeName() +['>\n");
fw.close();

z

Note: You can use the code from the
section "Create a New DOM Tree
with a Root Element.”

= 1] Open or create the code
that creates an element node
and creates an XML
document.

220

the attribute name and value
to the element node.

" ParseDoc.java - Note...

@g 12:00 PM

Type the code that assigns

3] Repeat step 2 for each
attribute you have to create.

THE DOM

Whether you want to output element nodes

A

public static void main (String[] args)
DOMImplementation di
Document doc
Element root
root.setAttribute ("owner",
root.setAttribute ("priority",
writeElement (root) ;

}

static void writeElement

"Andrew") ;
"high") ;

(Node node) {

for
System.out.print ("

}
}

database, you may find it more efficient to create a dedicated method that can output
the element information from any element node and not just from the root element.

TYPETHIS:

new DOMImplementationImpl () ;
di.createDocument (null,
doc.getDocumentElement () ;

System.out.print ("<" + node.getNodeName ()) ;
NamedNodeMap attribs=node.getAttributes();
(int 1=0;i<attribs.getLength();i++) {
"+ attribs.item(i
System.out.print ("=\""+ attribs.item(i).getNodeValue()+"\"");

System.out.print (">\n</" + node.getNodeName() + ">\n");

to an XML document, the display, or a

throws Exception {

"task",null) ;

) .getNodeName ()) ;

v

<task owner="Andrew" priority="high">
</task>

RESULT:

. ParseDoc.java - Notepad
File Edit Format View Help

import org.apache.xerces. dom.*;

import org.w3c.dom.*;

import java.io.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl():
Document doc=di.createDocument(null,"task",null);
Element root = doc.getDocumentElement();

"Andrew");
“high');

root.setAttribute("owner",
root.setAttribute("priority"”,

FileWriter fw = new FileWriter{"file.xml");
fw.owrite("<?xml version=y"1.0\"?2>\n");
fw.write{("<" + root.getNodeName());

[NamedNodeMap attribs=root.getAttributes();]

[for (int i=@;i<attribs.getlength();i++) {}

Tw. write("

attribs.item(i).getNodeName());
fw. write(’ i Y

'+ attribs.item{i).getNodeValue

H
Fw.write(>wn</" + root.getNodeName
fw.close();

)+ ANy

@ W 12:00PM

5| Type the code that creates
the loop that iterates through
the attributes.

= 6| Type the code that
outputs the attribute
information.

= 4 Type the code that
creates the NamedNodeMap
collection of nodes that
represent the attributes.

—d Open the XML document.

M The attributes appear in
the element start tag.

221

JAVA AND XML

ADD A CHILD ELEMENT

ou can create child element nodes for any node in a

DOM tree structure. You create child element nodes

to build DOM tree structures of nodes that represent
elements in an XML document. For example, you can create
multiple child element nodes that add children to the root
element of an XML document.

The first step in the process involves creating an element
node with the desired name. Once you do this, you can
append it to the node that becomes the parent node of the
child element node. You use the createElement method
to create a new node.

The parameter for the createElement method, a
string value, becomes the name of the node, which

also becomes the name of the element within the XML
document. You therefore make the name you specify in the
createElement method a valid element name within an
XML document.

ADD A CHILD ELEMENT

Once you create the new node, you can perform any
operation on the node that you would on any other node,
such as the node of a parsed XML document. For example,
you can use the getNodeName method to retrieve the
name of the new node. Once you build the new element,
you can insert it into the DOM tree structure. You do this by
appending the child node to an existing node in the DOM
tree structure.

You use the appendChild method to append one node to
another. The appendChild method is the method of the
element object. The argument for the appendChild
method becomes the name of the newly created element
node.

When you append the new node, you can work with the
nodes in the DOM tree structure as you would a DOM tree
structure that a parsed XML document generates. In many
cases, you want to display or otherwise output the XML
document that the DOM tree structure represents.

= 1] Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

. ParseDoc.java - Notepad [._][E]ﬂ . ParseDoc.java - Notepad [._}@]iﬂ
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.dom.*; import org.apache.xerces.dom.*;
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.w3c.dom.*; import org.w3c.dom.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl(); DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument (null, "task",null); Document doc=di.createDocument (null, "task",null);
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
exploreNode(root);
} —ETement todoElement = doc.createElement("todo™) ;|
— static public void exploreNode(Node node) { |_
if (node.getNodeType() == Node.ELEMENT_NODE) { exploreNode(root); _
System.out.print("<" + node.getNodeName() + ">");
NodeList children = node.getChildNodes(): static public void exploreNode(Node node)
for (int i=0;i<children.getlLength();i++) { if (node.getNodeType() == Node.ELEMENT_NODE) {
exploreNode(children.item(i)); System.out.print("<" + node.getNodeName() + ">");
NodeList children = node.getChildNodes();
System.out.println("</" + node.getNodeName() + ">"); for (int i=0;i<children.getlLength();i++) {
} exploreNode(children.item(i)};
} }
} System.out.println("</" + node.getNodeName() + ">");
}
}
b
— 1 — 1
Q2 wom | | i) Q3 o

= 2] Type the code that creates

a new element.

B This example creates an
element with the name
"todo."

THE DOM

Just as you can add attributes to the root element, you can add
attributes to any element node in a DOM tree structure.

TYPETHIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl () ;
Document doc = di.createDocument (null, "task",null) ;
Element root = doc.getDocumentElement () ;
Element todoElement = doc.createElement ("todo") ;
todoElement.setAttribute ("owner", "Andrew");
todoElement.setAttribute ("priority", "high");
root.appendChild (todoElement) ;
exploreNode (root) ;

A

Vv

RESULT:

<task>
<todo owner="Andrew" priority="high">
</todo>

</task>

. ParseDoc.java - Notepad L:JLE-'E

File Edit Format View Help

import org.apache.xerces.dom.*;
import org.apache.xerces.parsers.*;
import org.w3c.dom.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument (null, "task",null);

Element root = doc.getDocumentElement();

Element todoElement = doc.createElement("todo"):

root. appendChild(todoElement);

exploreNode(root); >

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT NODE) {
System.out.print("<" + node.getNodeName() + ">");
NodeList children = node.getChildNodes();
for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i)};

System.out.println{"</" + node.getNodeName() + ">");

[® ParseDoc.java - Note... @’ 12:00 PM

Type the code that 1 save your Java code. B Compile and run your M The parent and child
appends the newly created program. elements of the XML
node to the root node of the document display.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

DOM tree structure.

223

JAVA AND XML

CREATE A TEXT NODE

text node allows you to create elements that use

textual data as the content within an XML document.

Once you create an element node, you can generate a
text node that stores textual data in an element of an XML
document. For more information about creating element
nodes, see the section "Add a Child Element" in this chapter.

As with any other newly created node, you can append a
text node to another node. This is how you insert text
nodes into a DOM tree structure. In most cases, you
append text nodes to element nodes.

You use the createTextNode method, a method of the
document object, to create the new text node. You can
work with multiple documents within a single Java
application, but you must ensure that the new text node
uses the createTextNode method of the appropriate
object.

CREATE A TEXT NODE

The createTextNode method takes one argument —
the textual content of the text node. When you create the
element in an XML document, you place the argument of
the createTextNode method between the start and end
tags of the element, which consists of the parent node of
the newly created text node.

Once you create text nodes, you typically write the code
that outputs all the elements in the DOM tree structure to
an XML document. You must create the specific code that
recognizes element nodes, determines if they have child
text nodes, retrieves the data from the nodes, formats it
accordingly, and then outputs the data to an XML
document. If you create an XML document that utilizes
multiple node types, such as comment nodes, you must
generate the code that identifies the node types and
formats the output appropriately.

. ParseDoc.java - Notepad

=J=les)

. ParseDoc.java - Notepad

=J=les

File Edit Format View Help

import org.apache.xerces.dom.*;

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument (null, "task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo");
root.appendChild(todoElement);
exploreNode(root);

}
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {
System.out.println("<" + node.getNodeName() +
odelList children = node.getChildNodes();
for (int i=0;i<children. getLength() it+) |
exploreNode(children.item(i))

SN

System.out.println("</" + node.getNodeName() + ">");

i ,
Qs eom

1 Open or create the code
that creates a root and child
element and then parses the
DOM tree structure and
identifies the element nodes
and their contents.

Note: You can use the code created
in the section "Add a Child Element."

224

File Edit Format View Help

import org.apache.xerces.dom.*;

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument (null, "task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo"):
root.appendChild(todoElement);
exploreNode(root);

}
static public void exploreNode(Node node) {
1f (node. getNodeType() == Node.ELEMENT_NODE) (

OdeList children = node.getChildNoded();
for (int i=0;i<children.getLength();i#+) {
exploreNode(children.item(i)});

}
System.out.println(“</" + node.getNodgName() + ">");

e T Qs o
= 2| Type the code that 3] Type the code that
identifies if the child node displays the value of the

of an element contains text. text node.

THE DOM

r 2
Apﬁ[x Once you create the text node, you can append it to multiple nodes.
h For example, you can append text to element and root nodes.
TYPETHIS: RESU
public class ParseDoc { <task>
public static void main (String[] args) throws Exception { <todo>
DOMImplementation di = new DOMImplementationImpl () ; Backup Sales Data
Document doc = di.createDocument (null, "task",null); </#text>
Element root = doc.getDocumentElement () ; </todo>
Element todoElement = doc.createElement ("todo"); </task>
Text todoText= doc.createTextNode ("Backup Sales Data");
root.appendChild (todoText) ;
todoElement . appendChild (todoText) ;
root .appendChild (todoElement) ;
exploreNode (root) ;
}
\ J
:
. ParseDoc.java - Notepad - =
File Edit Format View Help
import org.apache.xerces. dom,*;
import org.apache.xerces.parsers.*;
import org.w3c.dom.*;
public class ParseDoc { |
public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementatwnImpl()
Document doc=di.createDocument{null, "task",null);
Element root = doc getDocumentElement() .)
|_
—— e >
;taUc public void exploreNode(Node node) [{
if (node.getNodeType() == Node.ELEMENT_NODE) {
System.out.println("<" + node.getNodeh)+ "=y
iT (node.getFirstChild().getNodeType() == Node.TEXT_NODE) {
System.out.println(node.getFirstChilld().getNodevaTue());
NodeList children = node.getChildNoded();
for (int i=0;i<children.gétlength(); 4+ {
exploreNode(children.item{i));
System.out.println("</" + node.getNodgName() + ">");
}
}
@Q 12:00 PM
-4 Type the code that creates 5 Type the code that = 7| Compile and run your M The parent and child
a new text node. appends the newly created program. elements of the XML
text node to an element . . document display along
node. ggfbge?/ghaﬁg 5] nﬂ;,r,-,l,nsjg.jgl 015 \ith the textual content
() g of the elements.
B Save your Java code. programs.

225

JAVA AND XML

CREATE OTHER NODE TYPES

ifferent node types allow you to add differing

structural information and content to an XML

document that you create from a DOM tree
structure. Apart from element and text nodes, you have
many other types of nodes that you can create and insert
into the DOM tree structure. For more information about
creating text elements, refer to "Create a Text Node" in this
chapter.

You create nodes of types other than text and elements in
the same manner — by creating a method of the document
object. For example, the createCDATASection method
creates a new CDATA section node. The object type
corresponds to the type of node that you require; for
example, a CDATA section node requires the creation of a
CDATASection object.

Once you generate the node, you can insert it into the
DOM tree structure by appending it as the child node of
a pre-existing parent node in the DOM tree structure.

The arguments, which the node creation methods use,
correspond to the previously created node type. For
example, the createCDATASection method takes a
String as its sole argument, and the String becomes
the content of the CDATA section when it creates an XML
document.

When creating nodes that place information into an XML
document, you must create the code that formats the data
appropriately. For example, if you create nodes that insert
comments into an XML document, you must format the
information that is used for the comments so that it does
not contain the comment start or end delimiters. Once you
create a node, you insert it into the DOM tree structure.
The limitations of your computer’s available resources
determine the complexity and size of the DOM tree
structure and the XML document you generate from the
DOM tree structure.

CREATE OTHER NODE TYPES

. ParseDoc.java - Notepad

BEX]

. ParseDoc.java - Notepad

[BEX]

File Edit Format View Help

import org.apache.xerces.dom.*;

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument (null, "task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo"):
root.appendChild(todoElement);
exploreNode(root);

}
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.CDATA_SECTION_NODE) {
System.out.println("Start of CDATA Section™);
System.out.println{node.getNodeValue());
System.out.println("End of CDATA Section");

}

NodeList children = node.getChildNodes();

for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

@g 12:00 PM

= 1] Open or create the code
that creates a root and child
element and then parses the
DOM tree structure and
identifies the CDATA section
nodes.

M This example adds a
CDATA section node to a
DOM tree structure.

226

|——|CDATASect10n todoCDATA= doc.createCDATASection("Backup Sales Data"

File Edit Format View Help

import org.apache.xerces.dom.*;

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument(null, "task", null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo"):

root.appendChild(todoElement);
exploreNode(root);

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.CDATA_SECTION_NODE) {
System.out.println("Start of CDATA Section™);
System.out.println{node.getNodeValue());
System.out.println("End of CDATA Section"):

b

NodeList children = node.getChildNodes();

for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));

@g 12:00 PM

H Type the code that creates
a new node object of the
desired type.

THE DOM

You can create many different types of
nodes within a DOM tree structure.

COMMONLY USED NODE CREATION METHODS

A

OBJECT METHOD NODE TYPE
Attr createAttribute (String) Element attributes
CDATASection createCDATASection (String) A CDATA section
Comment createComment (String) A comment
DocumentFragment createDocumentFragment () A fragment of an
XML document
Element createElement (String) An element
EntityReference createEntityReference (String) An entity reference
ProcessingInstruction |createProcessingInstruction A processing instruction
(String target, String data) containing the target and data
Text createTextNode (String) A text node
\ J

" ParseDoc.java - Notepad L:JE@
File Edit Format Yiew Help

import org.apache.xerces. dom.*;

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {

DOMImplementation di = new DOMImplémentationImpl():
Document doc=di.createDocument(null, "task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo");

CDATASection todoCDATA= doc.createCDATASection("Backup Sales Data"’
— todoElement . appendChild(todoCDATA) ;] >

root.appendChild(todoElement);
exploreNode(root);

}
static public void exploreNode(Node node) {
if (node.getNodeType() == Node.CDATA_SECTION_NODE) {
System.out.println("Start of CDATA Section™);
System.out.println({node.getNodeValue());
System.out.println("End of CDATA Section");

}

NodeList children = node.getChildNodes();

for (int i=0;i<children.getlength();i++) {
exploreNode(children.item(i));

Q8 om

Type the code that B save your Java code. =5 Compile and run your M The parent and
appends the newly created program. child elements of the XML
node to an existing node in document display along with

the DOM tree structure. Note: See Chapter 2 for instructions newly inserted content.

on compiling and running Java
programs.

227

JAVA AND XML

COPY NODES

ou can copy nodes to rearrange the structure of an

existing DOM tree structure or to copy a node from

one DOM tree structure to another new or existing
DOM tree structure. You can create exact duplicates of
nodes that you may or may not have as part of the DOM
tree structure.

You can create exact duplicates of the node by using the
cloneNode method of a node object. The cloneNode
method returns the node object. The cloneNode method
takes one argument, a Boolean value that indicates
whether or not to copy the node’s underlying DOM tree
structure.

You commonly utilize the c1loneNode method to copy
nodes between different DOM tree structures. Another use
involves parsing XML documents and then copying an
individual element from one XML document to another.

COPY NODES

When copying nodes using the c1loneNode method, you
also copy any associated attributes of that node. Once you
copy a node, you can append that node to another node in
a DOM tree structure. This enables you to rearrange the
XML documents with which you work. You can treat the
copy of a node as any other previously created node using
the DOM API. Once you make a copy of the node, you have
no relationship between the original and the copy node;
the copied node does not reflect any changes you make to
the original node.

Depending on the type of XML parser, you can create
copies of certain nodes using the c1loneNode method. For
example, some XML parsers may allow you to make copies
of nodes that represent elements, but do not allow you to
make a copy of a node that represents a document object.
For more information about the types of nodes you can
copy with a particular XML parser, refer to the XML parser’s
documentation.

1 Open or create the code
that creates a DOM tree
structure with a root element
and that can display the
elements in the DOM tree
structure.

. ParseDoc.java - Notepad [._][E]ﬂ . ParseDoc.java - Notepad [._}@]iﬂ
File Edit Format View Help File Edit Format View Help
import org.apache.xerces.dom.*; import org.apache.xerces.dom.*;
import org.apache.xerces.parsers.*; import org.apache.xerces.parsers.*;
import org.w3c.dom.*; import org.w3c.dom.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl(); DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument (null, "task",null); Document doc=di.createDocument (null, "task",null);
Element root = doc.getDocumentElement(); Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo"); Element todoElement = doc.createElement("todo");
exploreNode(root);
} |——|Node nodeCopy = todoElement.cloneNode(false);]
| static public void exploreNode(Node node) { _
if (node.getNodeType() == Node.ELEMENT_NODE) { exploreNode(root);
System.out.println("<" + node.getNodeName() + ">");
static public void exploreNode(Node node) {
NodeList children = node.getChildNodes(); if (node.getNodeType() == Node.ELEMENT_NODE) {
for (int i=0;i<children.getlLength();i++) { System.out.println("<" + node.getNodeName() + ">");
exploreNode{children.item(i)};
NodelList children = node.getChildNodes();
System.out.println{"</" + node.getNodeName() + ">"); for (int i=0;i<children.getlLength();i++) {
exploreNode(children.item(i));
} 3
} System.out.println("</" + node.getNodeName() + ">");
}
b
— 1 — 1
Q2 wom | | i) Q3 o

= 2] Type the code that creates

a node, which copies an
existing node.

THE DOM

N
You can create a copy of the node and any of its children by
changing the argument of the cloneNode method to true.

TYPE THIS:
public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl () ;
Document doc = di.createDocument (null, "task",null);
Element root = doc.getDocumentElement () ;
Element todoElement = doc.createElement ("todo");
Text todoText= doc.createTextNode ("Backup Sales Data");
todoElement . appendChild (todoText) ;
Node nodeCopy = todoElement.cloneNode (true) ;
root .appendChild (todoElement) ;
root . appendChild (nodeCopy) ;
exploreNode (root) ;
}
RESULT:
<task>
<todo>Backup Sales Data</todo>
<todo>Backup Sales Data</todo>
</task>
| J/

. ParseDoc.java - Notepad L:JE'.@

File Edit Format VYiew Help

import org.apache.xerces.dom.*;

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

public class ParseDoc { 1

public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl();
Document doc=di.createDocument(null,"task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo");
Node nodeCopy = todoElement.cloneNode(false);
root. appendChild(todoElement); >
root. appendChiLd(nodeCopy)
exploreNode{root);
static public void exploreNode(Node node) |{
if (node.getNodeType() == Node.ELEMENT_NODE) {
System.out.println("<" + node.getNodeMName() + ">");
NodeList children = node.getChildNodes()[;
for (int i=0;i<children.getlLength();i++)| {
exploreNode(children.item(i));
System.out.println("</" + node.getNodeNgme() + ">");
}
}
Q@ o
Type the code that (4 Type the code that = 6 | Compile and run your M Information about the
appends the original node to appends the duplicate nodes program. original and duplicate nodes
the root node. to the root node.) . displays.
Note: See Chapter 2 for instructions piay
B save your Java code. on compiling and running Java

programs.

229

JAVA AND XML

INTRODUCING JDOM

ot actually an acronym for anything, JDOM is an
N application program interface, or API, that enables a

Java application to communicate with an XML parser.

You can use JDOM to create, manipulate, save, and display
XML documents. As with all of the APIs that access XML
parsers from within Java applications, the JDOM API

JAVA COMPATIBLE

consists of a number of classes and packages. Similar to the
DOM API, the JDOM API permits the representation of an
XML document as a tree structure. Despite the similar
names, do not confuse the JDOM API as a part of the DOM
API or vice versa. For more on the DOM API, see Chapter 8.

The concepts you use when working with the Java
programming language are similar to those that you use
when working with JDOM. Therefore, any developer
familiar with Java has an easier task when learning and
using the JDOM API. Created specifically with Java in
mind, JDOM uses the very same object-oriented

other APIs, such as SAX and DOM, provide their own
classes that allow for the collection of items, such as the

approach to working with XML information. For example,

node list classes in the DOM API. Instead of developing

a specific list mechanism for people working with the
JDOM API, JDOM can work with Java collections, which
is a list mechanism that Java developers in other areas
use. This compatibility makes it easier for Java developers
to start using the JDOM APL. In fact, the similarities
between Java and JDOM make not only lists, but also
other areas within the JDOM API, very easy to learn.

XML PARSERS

you create. Not a parser itself, the JDOM is simply an
API that communicates with an XML parser. Many XML
parsers now include the JDOM API as part of the
package of files installed along with an XML parser.
Although the files that make up the JDOM API are
available as a separate package, if your XML parser

that specific XML parser. Using the JDOM files that

An XML parser is an application that you use to process
XML documents in conjunction with Java programs that

includes a version of the JDOM API files, you should use
this JDOM version when developing code to work with

accompanied your XML parser ensures full
compatibility between the version of the JDOM API you
use and your XML parser. This chapter uses the Xerces
parser when working with the JDOM APL. If you want
to work with another XML parser, you must consult the
documentation that accompanied the XML parser for
instructions on configuring and setting up the JDOM
API to work with your particular parser. JDOM should
work with any SAX- or DOM-compliant XML parser.
For more information about installing the Xerces XML
parser, see Chapter 7.

INSTALLATION

Before you can use the JDOM API, you must install the
JDOM APl files. If you acquired the JDOM API files with

during the parser installation. The files that make up the
JDOM APl install with the XML parser if the JDOM API
was included with the parser. If you acquired the JDOM
API files elsewhere, you may have to copy the files to a
specific directory on your computer, and adjust the

an XML parser, you should install those particular API files

CLASSPATH environment variable for your operating
system. For more information about setting the
CLASSPATH environment variable on your computer, see
Chapter 7. For complete installation instructions for the
JDOM API, you should always refer to the installation
instructions for your operating system that accompanied
the JDOM API files. You can download the JDOM API files
from the main JDOM Web site, http://www.jdom.org.

230

JDOM

RESOURCES

The Internet offers many resources and a wide range of ~ Not only does this site contain the JDOM API for
information for Java developers working with the JDOM download, it also contains a complete set of JDOM
API, including newsgroups, mailing lists, and Web sites. API documentation, background articles, and other
The most important of these resources is the primary relevant information.

JDOM Web site, available at http://www.jdom.org.

SAX AND DOM

The JDOM API, which can process DOM tree structures, Using JDOM with SAX and DOM enables you to

is compatible with SAX- and DOM-compliant parsers. utilize the strengths of both the SAX and the DOM API
You can also use SAX events with the JDOM API to without having to deal with their weaknesses. SAX is a
process an XML document. Although JDOM can use great API for quickly reading an XML document, while
a DOM-compliant parser to access XML documents, the DOM API is more efficient at modifying and
typically you use only a SAX-compliant parser to read rearranging XML information. Using JDOM allows you
XML documents, as SAX parsers process and read to combine these strengths when working with complex
XML documents more efficiently and faster than JDOM. XML documents. Although JDOM cannot replace the
Allowing the JDOM API to work efficiently with use of SAX or DOM APIs, it makes them easier to use.
both SAX and DOM enables you to use the best For more information about the SAX API, refer to
implementation of these technologies for any given Chapter 7. For more information about the DOM API,
scenario. refer to Chapter 8.

VERSIONS

Due to constant development and revisions, JDOM XML parser, you can verify the XML parser
continually phases out or adds features. You must documentation to determine the version number of the
always ensure that you use the latest version of the JDOM API included with the XML parser. To determine

JDOM API. This guarantees you have access to the latest the very latest version of the JDOM API, visit the main
features and a longer life span for any applications that ~ JDOM Web site at http://www.jdom.org.
you create. If you acquire the JDOM API files with your

As with most things related to XML and Java implement the JDOM APl in your applications. You can
development, the JDOM API is free to use. The JDOM also distribute those applications without charging a fee
API is open-source software, enabling you to use and for them.

231

JAVA AND XML

CREATE THE ROOT ELEMENT

an XML document. The root element of an XML

document is the first element within the document.
Each XML document requires only one root element, which
contains all the other elements within the document. To
create the root element, you use an Element object, which
allows the creation of the root element within the JDOM
representation of an XML document. For more information
about creating objects, see Chapter 3. The Element object
is part of the main JDOM package called org. jdom, which
you import to create Element objects.

You can create a root element in order to start building

Once you have the root element object, you create a
document object using the root element as an argument
of the document class.

You can list the XML documents created with JDOM on the
display by using an XMLOutputter object. Once you create

the XMLOutputter object, you can use the output method
to send the document object to the display. The output
method of the XMLOutputter class takes two arguments.
The first argument consists of the document object’s name.
The second argument, System. out, displays the output
on the screen. The XMLOutputter class is part of the
org.jdom.output package; you must import this
package before creating XMLOutputter objects within
your application.

If the root element of the document is empty, the JDOM
generates a single element tag instead of separate start and
end tags. When generating the output derived from

the document object, JDOM automatically inserts the

XML declaration, which you must always make the first
line of any XML document.

CREATE THE ROOT ELEMENT

EH Create the class and main
method of a Java application.

Type the code that imports
the required JDOM packages.

232

:

E1 Type the code that creates
a new document object using
the root element.

—E] Type the code that creates
a new Element object with
the root element name.

JDOM

You can check if an element is a root element

by using the isRootElement method of the
Element object.

A

import org.jdom.*;
import org.jdom.output.*;
public class ParseDoc {

Element root = new Element ("todo");

Document doc = new Document (root) ;

if (root.isRootElement ()) {

System.out.println("Root element has been created");

}

TYPETHIS: RESULT:

public static void main (String[] args) throws Exception { > created

Root element is

— |

-5 | Type the code that A save the Java file.

i Compile and run your
generates the XML document.

Java program.

M The XML declaration and
root element appear.

233

JAVA AND XML

ADD CONTENT TO THE ROOT ELEMENT

element and add content to that element. You can

create root elements that have content using the
JDOM API. You can use root elements to contain textual
data. You can place textual data within an element by
using the addContent method of the Element object.
The addContent method takes as its argument a string
value. After adding content to an element, you can append
more textual data by calling the addContent method
again. Each time you call the addCcontent method, and
you have text for the argument of the addContent
method, the data simply appends to the existing textual
data of the element.

T o create XML documents, you can create a root

As with XML documents, you have no limitation, other
than system resources, on the amount of textual data that
you can place in any one element. For more information

about creating textual content for elements in an XML
document, see Chapter 4.

You create an element using a new instance of an Element
object and assigning the object the name of the element.
You can make the element itself the root element, or more
likely, you can make the element, which has text assigned to
it, a sub-element of the root element. For more information
about how to create child elements of the root element, see
the section "Creating Child Elements" in this chapter. Once
you assign textual data to the content of the root elements,
you can display the XML document that includes the root
element. You use the XMLOutputter class to display XML
documents on your screen. If required, you can also save
the XML document to a file. For more information, see
"Save an XML Document" in this chapter.

ADD CONTENT TO THE ROOT ELEMENT

|

L

E] Type the code that assigns
text content to the element.

Kl Open or create a Java
application.

—H Type the code that creates
a new element.

1 Type the code that creates
a new document object.

234

A Type the code that
generates the XML document.

JDOM

Appty You can use the setText method of the Element object to assign new

=

addContent method lies in the fact that the setText method replaces
any existing textual data that you have assigned to the element.

public static void main (String[] args) throws Exception {

Element root = new Element ("todo");
root.addContent ("Backup:"); and
root.addContent ("Sales Data");
root.setText ("Print Sales Reports");
Document doc = new Document (root) ;
XMLOutputter op = new XMLOutputter();
op.output (doc, System.out) ;

<?xml version="1.0" encoding="UTF-8"?>
<todo>Print Sales Reports</todo>

text to an element. The difference between the setText method and the

BEX

. ParseDoc.java - Notepad
Command Prompt

File Edit Format View Help
import org. jdom.*;
import org.jdom.output.*; C:\Code>javac ParseDoc.java
public class ParseDoc { \ .
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
«<?xml version="1.0" encodi
Element root = new Element ("todo"); <todo>Backup:Sales Data</
C:\Code>

root.addContent ("Backup: ")
root.addContent("Sales Data™);

Document doc = new Document(root);

XMLOutputter op = new XMLOutputter();
op.output{doc, System.out);

J W 12:00PM

i) O eawm

d Compile and run your
Java program.

—A Repeat step 3 for any
subsequent text you want to
add to the element.

The XML declaration and
the root element appear with
its contents.

235

JAVA AND XML

CREATE CHILD ELEMENTS

documents that contain multiple items of information.

Apart from textual data, elements can also contain
other elements. The root element of an XML document
usually contains other elements. In this case, the root
element is known as a container element and the elements
that it contains are referred to as children, or child elements.
For more information about creating child elements for
an element in an XML document, see Chapter 4.

You can create child elements in order to build XML

You can create elements and then assign them to a
container element. You can alter the characteristics of any
element before you make it a child element of another
element. For example, you can create an element called
"name" and assign it the text value of a person’s name, and
then assign that element as a child of an element called
"identity."

You assign elements to other elements in the same manner
that you add text to an element: You use the addContent
method of the Element object to assign the element to its
parent. For more information about adding textual content
to an element, see the sections "Create the Root Elements"
and "Add Content to the Root Element" in this chapter.

You can create multiple elements by using the addContent
method to append each element to a single parent element.

When creating child elements of the root element, you can
assign the elements to the root element and then create the
document specifying the name of the root element. You can
then create the XML document with the root element and
the root element’s child elements in place.

CREATE CHILD ELEMENTS

— |
Kl Open or create a Java E] Type the code that assigns
application. textual data to the element.

1 Type the code that creates] Repeat steps 2 and 3 for
a new element. each element you want to

create.

236

.\ ParseDoc.java - Notepad u@g‘
File Edit Format Yiew Help

import org.jdom.*;
import org.jdom.output.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

Element task = new Element ("task");
task.addContent ("Backup sales data");

Element status = new Element ("status");
status.addContent("Open");

>—|E1ement root = new Element ("runt"):l _

root.addContent (task);
[root. addContent{status)]

}

}

=)
QS!! g [ParseDoc.java - Note... W 1z:00Pm

—H Type the code that creates [Repeat step 6 for each
a new root element. element that you want to be
a child of the root element.

3 Type the code that assigns
the element you created in
step 2 as a child element of
the root.

JDOM

You can format the output that the XMLOutputter object generates to
include an indent and new lines. You specify the characters for an indent
as the first argument. Making the second argument a true value indicates
that you want to use new lines when creating the XMLOutputter object.

!

public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent ("Backup sales data");
Element status = new Element ("status");
status.addContent ("Open") ;
Element root = new Element ("root");
root.addContent (task) ;
root.addContent (status) ;
Document doc = new Document (root) ;
XMLOutputter op = new XMLOutputter (" ", true) ;
op.output (doc, System.out) ;

<?xml version="1.0" encoding="UTF-8"?>
<root>
<task>Backup sales data</task>
<status>Open</status>
</root>

.\ ParseDoc.java - Notepad [;J[EJ@

File Edit Format View Help

import org.jdom.*;
import org.jdom.output.*; C:\Code>javac ParseDoc.java

Command Prompt

public class ParseDoc {

public static void main (String[] args) throws Exception { ‘C:“mCo(ie>iava ParseDoc

<?xml version="1.0" encoding="UTF 82>

Element task = new Element ("task"): <root><task>Backup sales data</task><status>Open</status></root>

task.addContent ("Backup sales data");
Element status = new Element ("status"); C:\Code>
status.addContent ("Open");

Element root = new Element {("root"):;

root.addContent (task);
root.addContent{status);

[Document doc = new Document (root);]

XMLOutputter op = new XMLOutputter();
op.output(doc, System.out);
}

%} ©§ 12:00 PM ar N WY 12:00 PM

1 Type the code that creates [Type the code that 8 Compile and run your M The XML declaration,

the new document object. generates the XML document. Java program. root element, and its child
elements appear.

I save your Java file.

237

JAVA AND XML

READ AN XML DOCUMENT

and extract information from that XML document.

You can read XML documents and process them using
JDOM. You find the classes that you use to parse an XML
document in the package org.jdom. input. Before you
can parse an XML document, you need to import this
package. For more information about importing a package,
see Chapter 3.

You can use the JDOM API to read an XML document

The sAxBuilder class uses a SAX-compliant parser to
parse an XML document, and from that information, it
creates a JDOM document object. The arguments you use
when creating the SAXBuilder object depend on the XML
parser that you have. If you have the Xerces XML parser,
you do not have to specify any arguments to create a
SAXBuilder object. For more information about installing
the Xerces XML parser, see Chapter 7.

Once you create a new SAXBuilder object, you can use
the build method to specify the name of the XML

documents that you want to read. The build method of
a SAXBuilder object returns a JDOM document object,
which you can then access to display the contents of the
XML file.

To display the complete contents of the XML file, you can
use the XMLOutputter object to display the JDOM
document object. If required, you can also save the XML
document to a new file. For more information, see the
section "Save an XML Document" in this chapter.

Some XML parsers cannot process the XML declaration
within an XML document. When the JDOM document
object generates, the XML declaration, by default, becomes
<?xml version="1.0" encoding="UTF-8"?>.If you
read an XML document that contains a different XML
declaration, such as <?xml version="1.0"?>, JDOM
replaces the declaration when it appears.

READ AN XML DOCUMENT

i |

H Type the code that creates
the class and main method
of your application.

Note: For this example you need a
valid XML document.

&l Type the code that imports
the required packages.

238

EJ Type the code that creates
a new document object using
the build method of the
SAXBuilder object.

] Type the code that creates
the new SAXBuilder
object.

JDOM

=
You cannot perform the XML document validation before reading the XML
document. You can enable validation by using the Boolean value true
when creating a new SAxXBuilder object. If you enable validation and
attempt to read an XML document that is not valid, an error generates.

If your code accesses XML documents whose validity you cannot verify,

you should create your own error-handling code.

A

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder (true);
Document doc = saxobj.build("file.xml");
XMLOutputter op = new XMLOutputter();
op.output (doc, System.out) ;

org.jdom.JDOMException: Error on line 19 of document .J
file:///C:/Code/file.xml: Attribute "priority" with J
value "higher" must have a value from the list

"(low | high)".

. ParseDoc.java - Notepad
File Edit Format VYiew Help
import org.jdom.*;

=J=les)

Command Prompt

import org.jdom. Dutput *;
import org.jdom. input. SAXBuﬂder

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxobj =

new SAXBuilder():

Document doc = saxobj.build("file.xml");

XMLOutputter op = new XMLOutputter()
op.output{doc, System.out);

}
}

s Q@ 1z00em

—H Type the code that
displays the XML document.

[3 save your XML file.

C:\Code>javac ParseDoc.java

C:\Code>java ParseDoc
".0" encoding="UTF8"?>

<task priority="high
<description>Backup Sales Data</description>
<owner>Andrew</owner>
</task>
<task priority="low">
<description>Print sales report</description>
<owner>Mark</owner>
</task>
do>

C:\Code>

The XML document
appears.

Jd Compile and run your
Java program.

239

JAVA AND XML

EXTRACT ELEMENT TEXT CONTENT

that an XML document contains. You can retrieve the

content of elements that contain text. The content of
an element consists of the data between the start and end
tags of the element. Text data typically comprises the
majority of content of elements you find in an XML
document.

You can extract the information, stored as plain text,

To extract the textual content from an element, you can
create an Element object that represents the root element
of the XML document. You can easily create an Element
object from the root element of the XML document by
using the getRootElement method of the document
object.

Once you create an Element object, you can use the
getText method to extract the textual data from the

element. The value returned from the getText method is
a string value that also contains whitespace within the
textual content of the element.

When displaying element data, you may also want to
display the element’s name, which you find between the
start and end tags of the element within the XML data. The
getName method of the Element object returns the name
of the element as a string value.

What happens to the text data that makes up the contents
of an element in an XML document depends on what you
want your application to do with it. Some applications
may simply display or print the text data, while other
applications may want to execute other code depending
on the actual contents of the text data.

EXTRACT ELEMENT TEXT CONTENT

El Open or create the code
that will read an XML
document.

Note: For this example, you must
create an XML document that has a
root element that contains textual data
and s called file .xml.

240

1

EJ Type the code that
retrieves the textual content
of the element.

1 Type the code that creates
a new Element object from
the information within the
JDOM document object.

JDOM

You can use the getTextTrim method of the
Element object to clean up any unnecessary
white space that you may have within the textual
content of an element.

TYPETHIS:

public class ParseDoc {
public static void main (String[]

SAXBuilder saxobj = new SAXBuilder();
Document doc = saxobj.build("file.xml");
Element element = doc.getRootElement () ;
String todoText = element.getTextTrim();
System.out.println("Element '" + element.getName ()

"' contains ");
System.out.println(todoText) ;

args) throws Exception {

+ d

RESULT:

|<

Element 'todo' contains
Backup Sales Data

; Balseﬁnc.jm - ﬁmpad
File Edit Format VYiew Help

import org.jdom.*;

import org. jdom.output.*;

impart org.jdom. input.SAXBuilder;

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxaobj = new SAXBuilder();
Document doc = saxabj.build("file.xml");

Element element = doc.getRootElement();

String todoText = element.getText();

— System.out.printin("Element "™ + element.getName() + "'

[System.out. printin{todoText) :}—m——

contains ");]

}

Ga om

Type the code that H Type the code that Jd Compile and run your M The name and textual
displays the name of the displays the textual content Java program. content of the element
element. retrieved from the element.

3 save your Java file.

appear.

24

JAVA AND XML

INSERT A COMMENT

ou often use comments in XML documents to help

explain a part of the document, or to simply provide

more background information such as the name of
the document’s author.

To insert an XML comment into a document, you must first
create a comment. You can specify the text string when
creating the comment object. The text string becomes the
string enclosed within the comment delimiters inside of
the XML document.

You input the opening comment delimiter within an XML
document as <! --. You input the ending delimiter as -->.
Do not include any characters that one may interpret as
the ending tags within the text you want to place within
the XML document’s comment.

When outputting the XML document using JDOM, the
comment start and end delimiters automatically appear

on either side of the text that makes up the comment. You
can add comments to an XML document as the content of

elements by using the addContent method of the
Element object. You can create child elements
by this same method.

While you may find it possible to use information

in comments for other purposes, such as creating

a placeholder for data or to pass information to an
application, consider using more appropriate methods,
for example, entities and processing instructions, to
accomplish these types of tasks. For more on entities,
see the section "Insert Pre-Defined Entity References" in
this chapter. For more on processing instructions, see the
section "Add Processing Instructions" in this chapter.

The processing applications and XML parsers ignore
comments you insert into XML documents unless you
specifically identify and extract the information from the
comments in the XML document. For more information
about extracting comments from XML documents, see
Chapter 8.

INSERT A COMMENT

—&l Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

242

. ParseDoc.java - Notepad u@g‘ .\ ParseDoc.java - Notepad u@ﬁ
File Edit Format View Help File Edit Format View Help
import org.jdom.*; import org. jdom.*;
import org.jdom.output.*; import org.jdom.output.*;
public class ParseDoc { public class ParseDoc {
public static void main (Strmg[] args) throws Exception { public static void main (Strmg[] args) throws Exception {

Element task = new Element ("task"j; Element task = new Element ("task"j;

task.addContent("Backup sales data"); task.addContent ("Backup sales data");

Element status = new Element ("status"); Element status = new Element ("status"):

status.addContent ("Open”); status.addContent ("Open");

Element root = new Element ("root"); Element root = new Element ("root");

root.addContent(task); root.addContent(task):;

root.addContent{status); root.addContent(status);

!Cnmment comment = new Comment ("Updated by Andrew”):|

Document doc = new Document{root):;

XMLOutputter op = new XMLOutputter(" ", true); Document doc = new Document(root);

op.output{doc, System.out); XMLOutputter op = new XMLOutputter(" ", true);

} op.output{doc,System.out);
}
b
1 1
Q3 o Qs oo

1 Type the code that creates
the new comment object.

JDOM

~N

You can adjust the placement of the comments in the XML document simply by
moving the content method that inserts the comments to the desired location.

A

public class ParseDoc {
public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent ("Backup sales data");
Element status = new Element ("status");
status.addContent ("Open") ;
Element root = new Element ("root");
Comment comment = new Comment ("Updated by Andrew") ;
root.addContent (task) ;
root .addContent (comment) ;
root.addContent (status) ;
Document doc = new Document (root) ;
XMLOutputter op = new XMLOutputter (" ", true) ;
op.output (doc, System.out) ;

<?xml version="1.0" encoding="UTF-8"?>

<root>
<task>Backup sales data</task>
<!—Updated by Andrew—>
<status>Open</status>

</root>

.\ ParseDoc.java - Notepad [-_][i]

File Edit Format View Help
import org. jdom.*;

Command Prompt

import org. jdom. output.*; C:\Code>javac ParseDoc.java
public class ParseDoc { . .
C:\Code>java ParseDoc
public static void main (Strmg[] args) throws Exception { <?xml version="1.0" encoding="UTF 8"2>
Element task = new Element (") <root>

task.addContent ("Backup sales data ' P
Element Status < nam Element ("status"); <task>Backup sales data</task>
status. addcantent(open”); <status>Open</status>
Element root = new Element ("root"); <!..Updated by Andrew-->
root. addCuntenL(task)
root.addContent(status);

Comment comment = new Comment("Updated by Andrew");

[root.addContent (comment) ;

Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ", true);
op.output{doc, System.out);

e O o % 08 s

—E1 Type the code that adds 3 save your Java file. A Compile and run your The XML document,
the comment object to the Java program. including the comment,
contents of an element. displays.

243

JAVA AND XML

INSERT A CDATA SECTION

blocks of text containing special characters into an

XML document without replacing each special
character with an entity reference. You often use CDATA
sections within an XML document to contain non-text
information such as the data that makes up an image.

T he CDATA section enables you to incorporate large

Within an XML document, a CDATA section starts with the
characters <! [CDATA[and ends with the characters
11>.Within the tag, you can include any text that may
contain special characters. You can make the information
in the CDATA section almost anything. The information
can contain programming code, such as Java, or, more
commonly, HTML. Any information in the CDATA section
except the ending delimiters is considered valid, so you
must be careful to ensure that any data that you want to
place in a CDATA section does not contain the character

sequence]]>. You must create a CDATA object to add a
CDATA section to an XML document. When creating a
CDATA object, specify the content of the CDATA section
information.

You often include CDATA sections in an XML document as
the sole content of an element. You can use the Element
object to create the element for storing this CDATA section.
You can use the addContent method of the Element
object to add the CDATA section object to that element. You
use the addContent method of the Element object to
add a child element to a parent element. Once you create
the element with a CDATA section, you can insert it into the
XML document. To do so, you use the addContent method
of the element object that you want to make the parent
element containing the CDATA section in the XML
document.

INSERT A CDATA SECTION

Note: You can use the code from the
section "Creating Child Elements."

1 Open or create the code
that constructs and displays
an XML document with
multiple elements.

244

. ParseDoc.java - Notepad u@ . ParseDoc.java - Notepad u@
File Edit Format View Help File Edit Format View Help
import org.jdom.*; import org.jdom.*;
import org. jdom. output *; import org.jdom. oltput. *;
public class ParseDoc { public class ParseDoc {
public static void main (Strmg[] args) throws Exception { public static void main (Strmg[] args) throws Exception {

Element task = new Element ("task"j; Element task = new Element ("task"j;

task.addContent ("Backup sales data"); task. addcuntent('‘Backup sales data");

Element status = new Element ("status"); Element status = new Element ("status"):

— status.addContent ("Open"); status.addContent ("Open”);

Element root = new Element (“"root"); Element root = new Element ("root");

root.addContent (task); root.addContent{task);

root.addContent{status); root.addContent (status); _

Document doc = new Document{root); > CDATA secure = new CDATA(" DFGvdsfsLFE!$ds ");l

XMLOutputter op = new XMLOutputter(" ", true); 1

op.output{doc, System. out); |E1ement passElement = new E1ement("passw0rd");|

b
} Document doc = new Document{root);
XMLOutputter op = new XMLOutputter(" "L true);
op.output(doc,System.out);
}
}
= 1 1
Q3 wom Q3 o

El Type the code that creates
the element that you want to
contain the CDATA section.

1 Type the code that creates
the new CDATA object.

JDOM

Apﬁb[You can use the toString method of the

CDATA object to safely convert the information
in this CDATA section to text so that the
information can display.

=

public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent ("Backup sales data");
Element status = new Element ("status");
status.addContent ("Open")
Element root = new Element ("root");
root.addContent (task) ;
root.addContent (status) ;
CDATA secure = new CDATA(" DFGvdsfsLFE!S$ds ");
Element passElement = new Element ("password");
passElement.addContent (secure) ;
root.addContent (passElement) ;
String message=secure.toString() ;
System.out.println (message) ;

[CDATA: <! [CDATA[DFGvdsfsLFE!$ds]]1>]

. ParseDoc.java - Notepad E]

Fle Edt Format View Help G Command Prompt

import org.jdom.*;

import org.jdom. output.*; C:\Code>javac ParseDoc.java

public class ParseDoc { . .

public static void main (Strmg[] args) throws Exception { C:\Code>java ParseDoc

Element task = new Element (") <?xml versi 1.0" encoding="UTF8"?>
task.addContent ("Backup sales data N l<root>
Element status = new Element ("status"); <task>Backup sales data</task>

status. addcantent(Open");

Element root = new Element ("root"):
root. addContenL(task)
root.addContent (status);

CDATA secure = new CDATA(" DFGwdsfsLFE!$ds ");

<status>Open</status>
<password><![CDATA[DFGvdsfsLFE!$ds]]></password>

Element passElement = new Element(“password");

[passElement . addContent (secure) ;|

[root. addContent (passElement) | —

Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ", true);
op.output{doc, System.out);

%) @ W% 12:00PM

3 Type the code that adds E Type the code that inserts i Compile and run your The XML document,
the CDATA section to the the element into the Java program. including the CDATA section,
newly created element. document. displays.

@ save your Java file.

245

JAVA AND XML

ADD PROCESSING INSTRUCTIONS

ou use processing instructions to pass information to

a specific application accessing an XML document.

The application can then perform a task based on
the values within the processing instructions or, if required,
take no action at all.

Processing instructions consist of two parts. The target

is typically the name of the application that reads the
processing instruction. The value is a string that you may
use to contain instructions. For example, you can contain
a processing instruction called print with the value of yes
or no to specify whether to print the XML document when
your XML application processes it.

To add a processing instruction to your XML document, you
must first create a processing instruction object and then
add that object as the content of the document object. You
can insert a processing instruction object as the content of

other elements in the XML document. More typically, you
add processing instructions, as the content to the document
object, on the same level as the root element. You specify
two arguments, string values, when creating the
processing instruction object. The first argument is the
target and the second is the value of the processing
instruction.

You make the ending delimiter of a processing instruction a
question mark and you follow it with a greater-than symbol.
You should make sure that the values for the target and the
processing instruction do not contain these characters.

Processing instructions alone do not affect your XML
documents during parsing. You must write your applications
so that they recognize the processing instructions intended
for them and then perform a task depending on the value
of the processing instructions.

ADD PROCESSING INSTRUCTIONS

. ParseDoc.java - Notepad

J=les

.\ ParseDoc.java - Notepad

BEX]

File Edit Format View Help

import org.jdom.*;
import org.jdom.output.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {
Element task = new Element ("task"):
task.addContent("Backup sales data");
Element status = new Element ("status");
status.addContent{"Open");
Element root = new Element ("root");
root.addContent(task);
root.addContent(status);
Document doc = new Document{root);
XMLOutputter op = new XMLOutputter(" ", true);
op.output(doc, System.out);

File Edit Format View Help

import org.jdom.*;
import org.jdom.output.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

Element task = new Element {"task"):
task.addContent("Backup sales data");
Element status = new Element ("status");
status.addContent ("Open");
Element root = new Element ("root");
root.addContent(task);
root.addContent(status);
Document doc = new Document{root);

[ProcessingInstruction prPI=new ProcessingInstruction("print”, "yes")]
Frocessinglnstruction spPl=new Processinglnstruction(spe eck™, "yesT)]

XMLOutputter op = new XMLOutputter(®
op.output{doc, System.out);

"L true);

ﬂi!! g ParseDoc.java - Note...

@IQ 12:00 PM

—E Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

@IQ 12:00 PM

1 Type the code that

creates the new
ProcessingInstruction
object that you want to insert
into the document.

El Repeat step 2 for each
processing instruction you
want to create.

JDOM

'3 R
Apply If you have previously added a processing instruction to a document, you can move the
h processing instruction to another location in the XML document. You can use the detach

method of the ProcessingInstruction object to remove the processing instruction from
the parent element. You can then attach the processing instruction to another element.

public class ParseDoc { <?xml version="1.0" encoding="UTF-8"7?>
public static void main (String[] args) throws Exception { <root>
Element task = new Element ("task"); <task>Backup sales data</task>
task.addContent ("Backup sales data"); <status>
Element status = new Element ("status"); Open
status.addContent ("Open") ; <?print yes?>
Element root = new Element ("root"); </status>
root.addContent (task) ; </root>

root.addContent (status) ;

Document doc = new Document (root) ;
ProcessingInstruction prPI=new ProcessingInstruction
("print", "yes");

root .addContent (prPI) ;

prPI.detach();

status.addContent (prPI) ;

XMLOutputter op = new XMLOutputter (" ", true) ;
op.output (doc, System.out) ;

) ParseDoc.java - Notepad E]

File Edit Format View Help B Command Prompt
import org.jdom.*;
import org.jdom. UUtp"'t * C:iCode>javac ParseDoc.java
public class ParseDoc { X .
public static void main (String[] args) throws Exception { C:\Code>java ParseDoc
Element task = new Element ("task"); <?xml version="1.0" encoding="UTF 8"?>
task.addContent ("Backup sales data"); <root>

Element status = new Element ("status"):;

status.addContent ("Open™); <task>Backup sales data</task>

Element root = new Element (“root"); <status>Open</status>
root. adanntent(task) </root>
root.addContent{status); <?print yes?>

Document doc = new Document(root); <?spellCheck yes?>

ProcessingInstruction prPI=new Processinglnstruction("print", yes)
ProcessingInstruction spPI=new PrDcessingInstructiUn("spell(heck "yes");
C:\Code>

XMLOutputter op = new XMLOutputter(" ", true);
op.output{doc, System.out);

e Qoo il BT DB izomm

1 Type the code that adds E Repeat step 4 for each —d Compile and run your The XML document
the processing instruction as processing instruction that Java program. appears including the
additional content of the you want to add. processing instructions.

document object. .
) [save your Java file.

247

JAVA AND XML

ADD ATTRIBUTES TO AN ELEMENT

ost elements store data in the form of content,
M placed between the start and end tags of the

element. As well as content, an element may also
have attributes associated with the element that can hold
data. Attributes provide additional information that you
may want to specify about an element’s content.

An attribute consists of the name and the value of the
attribute. You separate the attribute name and value with
the equal character and place them within the start tag of
the element.

The setAttribute method of the Element object assigns
an attribute to an element. The setAttribute method
can take two arguments. The first argument consists of the
attribute’s name, and the second argument consists of the
value you assign to the attribute. You must make both

values. You can assign multiple attributes to the same
elements by simply recalling the setAttribute method
on the same elements.

You separate attributes from other attributes, and the
element name in the element’s start tag, with spaces.
You enclose the value of the attribute in quotes. When
you output elements with attributes, JDOM automatically
handles the spacing and quotation mark requirements.

You have no limits on the number of attributes that

you can assign to a single element. If you try to use the
setAttribute method to create an attribute with the
same name as an attribute that already exists for the same
elements, JDOM removes the existing attribute’s value
and specifies a new value. You can use attributes of the
same name with different elements with no conflict.

values, which the setAttribute method uses, string
ADD ATTRIBUTES TO AN ELEMENT
. ParseDoc.java - Notepad u@‘j) ParseDoc.java - Notepad [._]@ijl
File Edit Format Yiew Help File Edit Format View Help
import org.jdom.*; import org. jdom.*;
import org.jdom.output.*; import org.jdom.output.*;
public class ParseDoc { public class ParseDoc {
public static vmd main (Strmg[] args) throws Exception { public static vcnd main (Str1ng[] args) throws Exception {
Element task = new Element ("task"}; Element task = new Element ("task"};
task.addContent("Backup sales data"); task.addContent ("Backup sales data");
— Element status = new Element ("status"); task.setAttribute("checked", "yes");
status.addContent ("Open"); asK. sefAtEribute("owner™, "Andrew) ||
Element root = new Element (“"root");
root.addContent(task); Element status = new Element ("status"); _
root.addContent (status); status.addContent ("Open");
Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ",true); Element root = new Element ("root");
op.output{doc, System.out); root.addContent{task);
root.addContent{status);
} Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ", true);
op.output (doc, System.out);
}
}
— 1 — 1
Q2 oo | | iz Q2 o

Note: You can use the code from the
section "Creating Child Elements."

—El Open or create the code
that constructs and displays
an XML document with
multiple elements.

248

E] Repeat step 2 for each
attribute that you want to add
to the same elements.

1 Type the code that assigns
a new attribute and its value
to an element.

JDOM

.1

You can delete attributes previously assigned to an element using

the removeAttribute method of the Element object.

public static void main (String[] args) throws Exception {
Element task = new Element ("task");

task.addContent ("Backup sales data");

task.setAttribute ("checked", "yes") ;
task.setAttribute ("owner", "Andrew") ;

task.removeAttribute ("owner") ;
Element status = new Element
status.addContent ("Open") ;
status.setAttribute ("checked", "no") ;
status.removeAttribute ("checked") ;
Element root = new Element ("root");
root.addContent (task) ;
root.addContent (status) ;

Document doc = new Document (root) ;
XMLOutputter op = new XMLOutputter ("
op.output (doc, System.out) ;

("status");

", true);

<?xml version="1.0" encoding="UTF-8"?>

<root>
<task checked="yes">Backup sales data</task>
<status>Open</status>

</root>

.\ ParseDoc.java - Notepad

BEX]

File Edit Format View Help
import org.jdom.*;
import org.jdom.output.*;

public class ParseDoc {

public static void main (String[] args)
Element task = new Element ("task");
task.addContent ("Backup sales data"):;

task.setAttribute("checked", "yes");
task.setAttribute("owner”, "Andrew");
status.addContent ("Open™);

——] status. setAttribute("checked", "no");|

Element root = new Element ("root");
root.addContent(task):
root.addContent(status);

Document doc = new Document(root);
XMLOutputter op = new XMLOutputter("
op.output{doc, System.out);

Element status = new Element ("status");

Command Prompt

C:\Code>javac ParseDoc.java

C:\Code>java ParseDoc

throws Exception {
<?xml version="1.0" encoding="UTF 8"2>

<status checked="no">Open</status>
</root>

C:\Code>

", true);

) T

@ W% 12:00PM

“Andrew">Backup sales data</task>

W 12:00 PM

&

3 Repeat steps 2 and 3 for
each element in which you
want to assign attributes.

3 Compile and run your
Java program.

H save your Java file.

The XML document
appears containing elements
and their attributes.

249

JAVA AND XML

WORK WITH ATTRIBUTE OB]

[ECTS

efficiently with attributes that you may have previously
assigned to elements in an XML document. Attribute
objects have their own methods that you can use to modify
and manipulate the attribute names and values, as well as
to create new Attribute objects.

You can create Attribute objects to work more

You use Attribute objects to represent a name and value
pair of an attribute. The setAttribute method of the
Element object assigns the attribute name and value pair
to an element in an XML document. The setAttribute
method of the Element object takes as its argument the
name of an Attribute object.

You can create duplicate Attribute objects from existing
Attribute objects by using the c1lone method of the

Attribute object. You may find this useful if you want to
take an attribute name and value pair and then manipulate
and reassign them to another element. Making a duplicate

of an Attribute object is also helpful if you have
previously assigned an Attribute object to an element
and you want to use it with another element.

Once you create an Attribute object, you can assign a
new value to the Attribute object. When you assign
the new value, it erases any existing values you assigned
to the Attribute object, including the value assigned
upon the object’s creation. You use the setvalue
method of the Attribute object to assign the new value
to the Attribute object.

As with any attribute, the name of an attribute must not
contain whitespaces. Using whitespaces in the attribute
name causes the code to generate an error when it
executes. If you choose attribute names that describe
the values the attributes contain, it will also help make
you XML documents easier to read. For example, use
the attribute name firstname as opposed to name1.

WORK WITH ATTRIBUTE OBJECTS

. ParseDoc.java - Notepad g . ParseDoc.java - Notepad u@g‘
File Edit Format View Help File Edit Format View Help
import org.jdom.*; import org.jdom.*;
import org. jdom.output.*; import org. jdom.output.*;
public class ParseDoc { public class ParseDoc {
public static void main (Strmg[] args) throws Exception { public static void main (Strmg[] args) throws Exception {
Element task = new Element {"task"): Element task = new Element {"task
Attribute verify = new Attribute("checked"”, "yes"); Attribute verify = new Attribute("checked", "yes");
Attribute owner = new Attribute("owner", "Andrew"); Attribute owner = new Attribute("owner", "Andrew"):;
task.addContent ("Backup sales data"); —verify.setvalue("no"); |
Element status = new Element ("status"):; |_
status.addContent("Open"); task.addContent("Backup sales data"); _
Element status = new Element ("status");
Element root = new Element (“"root"); status.addContent ("Open”);
root.addContent(task);
root.addContent (status); [Attribute manager=(Attribute) owner.clone();]
Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ", true); Element root = new Element ("root");
op.output(doc, System.out); root.addContent{task);
} root.addContent(status);
} Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" " true);
op.output (doc, System.out);
b
}
— 1 — 1
e @2 o Q2 o
Kl Open or create the code EF Type the code that —E] Type the code that E3 Type the code that creates

creates the Attribute
objects for each attribute
you want to use.

that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

changes the value of a
previously created
Attribute object.

a duplicate Attribute
object from an existing
Attribute object.

JDOM

~N

You can use the setName method of the Attribute object to change the name of
the attribute after creating an Attribute object. Changing the name of the attribute
does not re-create the attribute or change the value. It simply changes the name of the
attribute as it appears within the start tag of the element within the XML document.

A

public class ParseDoc {
public static void main (String[] args) throws Exception {

Element task = new Element ("task");
Attribute owner = new Attribute("owner", "Andrew") ;
owner . setName ("manager") ;
task.setAttribute ("owner") ;
task.addContent ("Backup sales data");
Element root = new Element ("root");
root.addContent (task) ;
Document doc = new Document (root) ;
XMLOutputter op = new XMLOutputter (" ", true) ;
op.output (doc, System.out) ;

<?xml version="1.0" encoding="UTF-8"?>
<root>

<task manager="Andrew">Backup sales data</task>
</root>

.\ ParseDoc.java - Notepad E]

File Edit Format ‘iew Help Command Prompt
import arg.jdom.*;
import org.jdom.output,*; C:\Code>javac ParseDoc.java

public class ParseDoc {
public static void main (String[] args) throws Exception {
k")

Element task = new Element ("tas C:\Code>java ParseDoc

<?xml version="1.0" encoding="UTF 8"?>
Attribute verify = new Attribute("checked", "yes"); <root>
Attribute owner = new Attribute("owner","Andrew"); <task checked="no" owner="Andrew">Backup sales data</task>

verify.setWValue("no"): <status owner="Andrew">0pen</status>

task.setAttribute(verify);
task.setAttribute(owner);

task.addContent ("Backup sales data");
Element status = new Element ("status");
status.addContent{"Open");

Attribute manager=(Attribute) owner.clone();
——status se ribute(manager)
Element root = new Element ("root");
root.addContent (task);

root.addContent(status);
Document doc = new Document{root);
XMLOutputter op = new XMLOutputter(" ", true);
op.output(doc, System.out);
}
i

%) @g 12:00 PM

—H Type the code that assigns [Save your Java file. —d Compile and run your The XML document
the Attribute objects to Java program. appears containing elements
the elements that will use the and their attributes.

attributes.

JAVA AND XML

SAVE AN XML DOCUMENT

applications, using the JDOM API to construct the

documents, and then using standard Java procedures
to save the information to a file. JDOM uses an
XMLOutputter object to generate XML documents that
you can save to a file.

You can create XML documents from within your Java

To better format your XML documents, the XMLOutputter
object can take two arguments. You only use the first
argument to indent the code, and you typically make it
two spaces. The second argument is a Boolean value that
enables the inclusion of new lines; true enables new lines,
while £alse turns off new line inclusion.

You can use the Filewriter class of the java.io
package to create files from within Java code. Your Java
program creates a FileWriter object and passes it the
name of the file to create. XML documents should use
the .xml file extension. The write method of the

FileWriter object allows you to place information in the
file. Once you finish working with the file, you can use the

close method of the FileWriter object to close the file.
You generally cannot access the XML document from other
applications when you have the file open from within your
Java code.

Once you save the XML document, you can view the
XML document using a simple text editor or another
XML application.

Once you create a FileWriter object, it passes to the
XMLOutputter object along with the JDOM document
object that you want to save.

If the document which you want to create with the
FileWriter object already exists, the new document
overwrites the current document and you lose all the
contents of the old file.

SAVE AN XML DOCUMENT

E To enable creation of a
FileWriter object, import
the java. io package.

—E1 Type the code that
creates the new
XMLOutputter object.

El Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

252

. ParseDoc.java - Notepad gﬁ . ParseDoc.java - Notepad u[i]
File Edit Format View Help File Edit Format View Help
import org.jdom.*; import org.jdom.*;
import org. jdom.output.*; import org.]dom output *;
import java.io.*; import java.io.
public class ParseDoc { public class ParseDoc {
public static vmd main (Strmg[] args) throws Exception { public static \r01d main (Strmg[] args) throws Exception {

Element task = new Element (") Element task = new Element (")

task. addCUntent('‘Backup sales data B task.addContent{"Backup sales data 'R

Element status = new Element ("status"); Element status = new Element ("status");

status,addContent ("Open"); status.addContent ("Open");

Element root = new Element {"root"); Element root = new Element {"root"):

root. addContent(task) root. addcantent(task) _

root.addContent(status); root.addContent(status);

Document doc = new Document{root):; Document doc = new Document{root):;

[MLOutputter op = new XMLOutputter (" " true);] [FileWriter fw = new FileWriter("file. xml");]

1 XMLOutputter op = new XMLOutputter(" ", true);
}
op. output (doc, fw);
fw.close();
b
}
— 1 = 1

i) O com | | |l @2 eom

1 Type the code that creates
a new FileWriter object,
specifying the name of the
file you want to create.

5 Type the code that saves
the JDOM document to a file.

3 Type the code that closes
the file.

JDOM

A

You can easily output the same JDOM document to a file and to
your display simultaneously using the same XMLOutputter object.

TYPE THIS:

public class ParseDoc {
public static void main

root.addContent (task) ;

op.output (doc, fw) ;

fw.close() ;

Element task = new Element ("task");
task.addContent ("Backup sales data");
Element status = new Element ("statusl");
status.addContent ("Open") ;

Element root = new Element ("root");

root .addContent (status) ;

Document doc = new Document (root) ;
FileWriter fw = new FileWriter ("doc.xml");
XMLOutputter op = new XMLOutputter ("

op.output (doc, System.out) ;

(String[] args) throws Exception {

", true);

RESU

<?xml version="1.0" encoding="UTF-8"?>

<root>

<task>Backup sales data</task>
<statusl>Open</statusl>

</root>

v

lEd save your Java file.

3 Compile and run your
Java program.

M The XML document is
created.

E Open your text editor
application.

T Open the XML document
specified in step 4.

document appears.

M The content of the XML

JAVA AND XML

WORK WITH CHILD ELEMENTS

as children, or child elements. You can manipulate
the child element of an element if you know the
child element name.

C ontainer elements have some elements referred to

You can delete child elements from the JDOM document in
order to delete the element from the resulting XML
document. This allows you to read an XML document,
manipulate the content of that document, and then
redisplay the XML document. If required, you can also save
the XML document to a file. For more information, see the
section "Save an XML Document" in this chapter.

You use the removeChild method of the Element object
to delete a sub-element. Once you remove the element,
you cannot access the element, the element’s attributes,

or any content that you previously stored in the element.

To determine which element you want to delete, you

can examine the content of an element and then make a
decision to remove it or not. To make a decision, you can
use an if statement to compare the content of an element
to a known value. If the values do not match, you can
remove the element. You may find this technique useful for
removing redundant or outdated information from an XML
document. For example, you may want to remove all
references to a model number of a discontinued item in an
XML document that stores the model numbers of items
currently in stock at a store. For more information about
using the if statement, see Chapter 3.

The getChild method of the Element object allows you
to access sub-elements given the element name. You can
access the textual data of a child element by using the
getText method of the Element object.

WORK WITH CHILD ELEMENTS

K0 Create an XML document Note: In this example, you need to

] op. output (doc, System.out);

.\ ParseDoc.java - Notepad

File Edit Format View Help
import org.jdom.*;

import org. jdom.output.*;
import org.jdom. input.*;

[BEX]

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder();
Document doc = saxobj.build("file.xml");
XMLOutputter op = new XMLOUtputter(" ", true);

System.out.println("0riginal Document.");

| Element root=doc. getRontElement(),"_
}

i

®§ 12:00 PM

ﬂﬂ! !I [ParseDoc.java - Note...

that reads an XML file and
creates an XMLOutputter
object.

Note: You can use the code created in
the section "Read an XML Document.

"

254

access an XML document that
contains a root element and child
elements called task and
status. You should make the
contents of the st atus element
'Closed.’

—H Type the code that

displays the XML document.

E] Type the code that creates
a new Element object based
on the root element of the
XML document.

JDOM

You can determine the parent of a child element by using the
getParent method of the Element object.

!

public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder();
Document doc = saxobj.build("file.xml");
Element root=doc.getRootElement () ;
Element childElement=root.getChild("status");
System.out.print ("The parent element of ");
System.out.print (childElement.getName() + " is ");
System.out.println(childElement .getParent () .getName()) ;

The parent element
of status is root.

. ParseDoc.java - Notepad

BEX]

File Edit Format View Help Command Prompt

import org.jdom.*;
import org.jdom.output.*;
import org.jdom. input.*;

public class ParseDoc { C:\Code>java ParseDoc
public static void main (String[] args) throws Exception { Original Document.
SAXBuilder saxobj = new SAXBuilder(); <?xml version="1.0" encoding="UTF 8"2>
Document doc = saxobj.build("file.xml"); <root>
XMLOutputter op = new XMLOutputter(" ", true);
P P P () <task>Backup sales data</task>

<status>Closed</status>
</root>

C:\Code>javac ParseDoc.java

System.out.println("0Original Document.");
op.output{doc, System.out);

Element root=doc.getRootElement();
if_(roof.getChild("status™) . getText() . equals({"Closed™)) (]
|FDD[. removeCh[d{ status™)}

Current Document.
<?xml version="1.0" encoding="UTF8"?>
<root />

root. removeChild("task");

System.out.println{"Current Document.");

op.output {(doc, System.out); C:\Code>
}

) Q#1200

WY 12:00 PM

—3 Type the code that
performs an action if the text
content of a specified
element matches a
predetermined value.

—H Type the code that
removes specific child

elements from the document.

[Type the code that
displays the modified
version of the document.

Ed save your Java file.

—EJ Compile and run your
Java program.

The XML document
appears showing before and
after the elements are
removed.

JAVA AND XML

INSERT PRE-DEFINED ENTITY REFERENCES

may incorrectly interpret some special characters that

you place into element content as XML markup tags.
For example, the text "is x < y" contains a less-than symbol
that the XML parser interprets as the opening delimiter of a
tag, even though the symbol is part of an element's content.
You can incorporate special characters into XML data using
predefined XML entities.

T he XML applications processing your XML document

To enable you to define data containing special characters,
like angle brackets and ampersands, XML uses pre-defined
entities to differentiate between symbols that have special
meaning in XML, such as the left angle bracket, and those
same symbols embedded in a text string.

You can create a special EntityRef object and use it to
represent a pre-defined entity reference, which you can insert
into the content of an element within an XML document.

When you create the EntityRef object, you can specify
a single string argument to represent the name of the

INSERT PRE-DEFINED ENTITY REFERENCES

entity reference. When you insert the entity reference name
into the XML document, you precede the name with an
ampersand and you follow it with a semicolon. When
creating the EntityRef object, you do not have to specify
the ampersand or the semicolon when you specify the
name of the entity reference. The application parsing the
XML document converts the pre-defined entity reference
into the appropriate symbol before processing or displaying
the XML document that contains that pre-defined entity
reference.

Once you create the EntityRef object, you can add it to
the content of an element using the addContent method
of the Element object.

When you view an XML document that contains a pre-
defined entity reference with Microsoft Internet Explorer,
the entity reference resolves into the symbol indicated by
the entity reference.

Note: You can use the code created in
the section "Save an XML Document.”

=1 Open or create the code
that saves an XML document.

. ParseDoc.java - Notepad M@ .\ ParseDoc.java - Notepad Q
File Edit Format VYiew Help File Edit Format View Help
import org.jdom.*; import org.jdom.*;
import org. jdom.output.*; import org.jdom.output.*;
import org.jdom. input.*; import org.jdom. input.*;
import java.io.*; import java.io.*;
public class ParseDoc { public class ParseDoc {
public static void main (Strmg[] args) throws Exception { public static void main (Str1ng[] args) throws Exception {
— Element task = new Element {"task"): Element task = new Element (" k")
task. addcontent(Backup sales”); task.addContent ("Backup sales)
task. addContent (" data reports");
Element status = new Element ("status"); l_ EntityRef andRef = new Ent1t Ref ("
status.addContent("Open"); andRe _
Element root = new Element ("root"); >
root.addContent{task):; task. adanntent(data reports");
root.addContent{status); Element status = new Element ("status"):
Document doc = new Document(root); status.addContent ("Open");
FileWriter fw = new FileWriter({"doc.xml"); Element root = new Element ("root");
XMLOutputter op = new XMLOutputter(" ", true); root.addContent (task);
op.output(doc, fw); root.addContent(status);
fw.close(); Document doc = new Document(root);
} FileWriter fw = new FileWriter("doc.xml");
1 XMLOutputter op = new XMLOutputter(" ", true);
op.output (doc, fw);
fw.close();
}
}
= 1 1
QB 2o Q2 won

El Type the code that inserts
the entity reference object
into the content of an existing
element.

1 Type the code that creates
the new entity reference
object using the name of a
pre-defined entity.

JDOM

EX‘H XML supports five pre-defined entities. You precede each entity with
an ampersand and follow it with a semicolon when you place them
into an XML document. All XML parsers have the ability to recognize
pre-defined entities, also referred to as pre-defined internal entities.
PRE-DEFINED ENTITY DESCRIPTION EXAMPLE
< Less-than character (<) Is X < Y
> Greater-than character (>) Is X > Y
& Ampersand (&) Peaches & Cream
' Apostrophe (') Tom's Diner
" Quotation mark (") He said "Hi"

O———
— >
1 Compile and run the Java M The XML document is E Open your XML viewing M The pre-defined entity
code. saved. application. reference symbol appears.

Note: This example uses Microsoft
Internet Explorer.

257

JAVA AND XML

DETERMINE ELEMENT TYPE

hen using the JDOM API to analyze an XML
W document or the contents of the JDOM tree, you

may want to identify what kind of content each
element stores. For example, when trying to locate the
occurrence of the processing instructions in the XML
document, you need to find element types that contain
processing instructions, and you can ignore all other
element types, such as text or comments.

The easiest way to examine element types is to place the
elements in a List. You use a List to store a sequence

of objects that you can easily iterate through using standard
Java procedures. You can import the java.util package
to create a List. The getContent method of the
Element object creates a List that stores the contents

of the element. You can then iterate through the contents
in the List, extracting each element as an object, and then
analyzing the object to determine what type of object it is.
For example, the contents of the root element are typically

child elements. When you create a List from the contents
of the root element, you can create a List that contains
items that you can use to create objects, which JDOM
interprets as Element objects. You can use the
instanceof keyword in a simple if statement to
determine the type of object and then to perform any
required code when JDOM finds an object of a specified

type.

If you intend to analyze all the contents of every element
in an XML document, you need to create the code that
transverses through the contents of the document, testing
each element to see what type it is and then performing
an action based on the type of element.

For more information about Java Lists and the methods
you use to manipulate the contents of a List, refer to the
Java APl documentation.

DETERMINE ELEMENT TYPE

Kl Open or create the code
that reads an XML document.

Type the code that imports
the package required to

. teaList.
Note: In this example, you need to read creaie a his

an XML document that contains a root
element and two child elements.

—E] Type the code that creates
a List using the contents of
the root element.

258

.\ ParseDoc.java - Notepad
File Edit Format View Help
import org. jdom.*;
import org. jdom. input.*;
import java.util.*;

BEX]

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder();
Document doc = saxobj.build("file.xml");

List rootContents = doc.getRootElement().getContent();

for (Iterator i = rootContents.iterator();i.hasNext();) {|

Object contentoObj= Lnext();'—

1 Type the code that iterates

Lt

@g 12:00 PM

ar W [ParseDoc.java - Note...

H Type the code that
retrieves each object from the
List.

through all the objects in the
List.

JDOM

You can detect the presence of other types of content within
an XML document by using an else if construct.

TYPETHIS:

if (contentObj instanceof Element) {
System.out.println ("Element found");

} else if (contentObj instanceof Text) {
System.out.println ("Text content found");

} else if (contentObj instanceof EntityRef) {
System.out.println ("Entity Reference found");

} else if (contentObj instanceof
ProcessingInstruction) {
System.out.println ("Processing Instruction found");

} else if (contentObj instanceof Comment) {
System.out.println ("Comment found");

} else if (contentObj instanceof CDATA) {
System.out.println ("CDATA Section found");

A

‘<

RESULT:

Processing Instruction found
Element found

Element found

Entity Reference found

) ParseDoc.java - Notepad @
File Edit Format View Help
import org.jdom.*;
import org.jdom. input.*;
import java.util.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder (),
Document doc = saxobj.build("file.xml");

List rootContents = doc.getRootElement().getContent();

_> for (Iterator i = rootContents.iterator();i.hasNext();) { >

Object contentObj= i.next();

if (contentObj instanceof Element) (l

System.out.println ("Element found");
System.out.println (contentObj.toString());

@g 12:00 PM
3 Type the code that 4 Type the code that —E1 Compile and run your B A message appears
determines if the object is of performs an action if the Java program. indicating the discovery of
a specified type. object is of a specified type. specified element types.

B save your Java file.

259

JAVA AND XML

OUTPUT A DOM TREE USING JDOM

hen reading XML files and working with them
Wwithin JDOM, you can use a SAXBuilder class or

a DOMBuilder class to process XML documents
from files or other sources. In almost all cases you should
use a SAXBuilder class to process files because it is
much faster than a DOMBuilder class. You can use a
DOMBuilder class to process DOM tree structures that
already exist within your application using JDOM. It is not
unusual to use many different APIs, including both DOM
and JDOM, within the same application. You can easily
convert a DOM tree structure into a JDOM document that
you can work with using the JDOM API.

The JDOM APl is more efficient at outputting formatted
XML documents than the DOM API, so you may find it
easier to convert a DOM tree structure to a JDOM

OUTPUT A DOM TREE USING JDOM

document and output it than to try and output formatted
XML documents using the DOM API.

After you use DOM to create a DOM tree, you must create
a DOMBuilder object to convert that DOM document
object to a JDOM document object. You create a JDOM
document object by using the build method of the
DOMBuilder object, which takes as its argument the DOM
document object. DOMBuilder is part of the org.jdom
.input package; therefore, to create DOMBuilder objects,
you must import the org. jdom. input package. For more
information about importing packages, see Chapter 3.

Once you convert a DOM document to a JDOM document,
you can work with the information using the JDOM API. For
example, you can very easily output that document to a file
or to the display.

&0 Open or create the code
that creates a DOM tree
structure.

B import the packages
required to work with the
JDOM APL.

260

—E1 Type the code that creates

. ParseDoc.java - Notepad [._J[i]ﬂ .\ ParseDoc.java - Notepad [;]@]E]
File Edit Format View Help File Edit Format View Help
import org.jdom.*; import org.jdom.*;
import org. jdom.output.*; import org. jdom.output.*;
import org.jdom.input.*; import org.jdom. input.*;
import org.apache.Xxerces.dom.*; import org.apache.xerces.dom.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {

org.w3c.dom, DOMImplementation di = new DOMImplementationImpl(); org.w3c.dom.DOMImplementation di = new DOMImplementationImpl();

org.w3c.dom, Document DOMdoc=di.createDocument{null, "task",null); org.w3c. dom.Document DOMdoc=di.createDocument(null, "task",null);

org.w3c.dom.Element root = DOMdoc.getDocumentElement(); org.w3c.dom.Element root = DOMdoc.getDocumentElement();

org.w3c.dom,Element todoElement = DOMdoc.createElement("todo"); org.w3c.dom,Element todoElement = DOMdoc.createElement("todo");

root. appendChild(todoElement); root.appendChild(todoElement);

} J—|DOMBu1’1der dBuilder = new DOMBuilder();]
y —
|nrg.]dnm.Dncument jdoc = dBu11der.bu11d(DOMdoc);|
}
}
1 L

ﬂﬂ! g [ParseDoc.java - Note... "8 12:00pM gﬁ! ! [ParseDoc.java - Note... W8 12:00Pm

E3 Type the code to convert a
DOM document to a JDOM
document.

a new DOMBuilder object.

JDOM

You can also use the DOMBuilder object to convert elements in a
DOM tree structure to elements in a JDOM tree structure.

TYPETHIS: RESULT:

public class ParseDoc {
public static void main (String[] args) throws Exception {
org.w3c.dom.DOMImplementation di = new J
DOMImplementationImpl () ; <task><todo /><owner /></task>
org.w3c.dom.Document DOMdoc =
di.createDocument (null, "task",null) ;
org.w3c.dom.Element root = DOMdoc.getDocumentElement () ;
org.w3c.dom.Element todoElement = DOMdoc. !
createElement ("todo") ;
root.appendChild (todoElement) ; >
DOMBuilder dBuilder = new DOMBuilder() ;
org.jdom.Document jdoc = dBuilder.build(DOMdoc) ;
org.w3c.dom.Element newElement = DOMdoc..!
createElement ("owner") ;
org.jdom.Element jElement = dBuilder.build(newElement) ;
jElement.detach() ;
Element jroot = jdoc.getRootElement () ;
jroot.addContent (jElement) ;
XMLOutputter op = new XMLOutputter();
op.output (jdoc, System.out) ;

A

<?xml version="1.0" encoding= .
"UTF-8"7?>

" ParseDoc.java - Notepad L:JE@

File Edit Format Yiew Help

import org.jdom.*;

import org.jdom.output.*;
import org.jdom. input.*;

import org.apache.xerces.dom.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
org.w3c.dom.DOMImplementation di = new DOMImplementationImpl();

org.w3c.dom. Document DOMdoc=di.createDocument (null, "task", null);
org.w3c. dom. Element root = DOMdoc.getDocumentElement();

org.w3c.dom.Element todoElement = DOMdoc.createElement("todo");
_> root.appendChild{todoElement); >

DOMBuilder dBuilder = new DOMBuilder();
org. jdom.Document jdoc = dBuilder.build(DOMdoc);

[XMLOutputter op = new XMLOutputter()
|op. output (jdoc, System. out);

@Q 12:00 PM

A Type the code that [3 save your Java file. —id Compile and run your M The information appears in
displays the JDOM Java program. the DOM tree structure.
document.

JAVA AND XML

INTRODUCING JAXP

API that allows your Java applications to communicate

with an XML parser so that the parser can read,
process, and generate XML documents. JAXP itself is not a
parser and it does not facilitate XML document parsing. You

The Java API for XML parsing, simply called JAXP, is an

ABSTRACTION

must use JAXP with another API that facilitates XML parsing,
such as the SAX or the DOM API. The JAXP API allows you
to interact with another XML-parsing API. An XML parser
with which APIs, such as SAX, communicate still does the
actual parsing of an XML document.

Frequently, the different levels of APl usage make it
difficult to understand the purpose of using JAXP. The
benefit of JAXP stems from the fact that you can create
code that requires fewer changes should you make
changes to the underlying XML parsing structures of

your Java applications. Because you can think of JAXP as
working on top of another API, programmers often
refer to it as an abstraction layer, because it provides
another level of separation from the underlying API.

SAX AND DOM

JAXP requires access to either the DOM or SAX APIs.
Typically, JAXP accesses both SAX and DOM APIs for
most efficient use. Although JAXP is an APl itself, you
must still install one of these two APIs and make them
accessible to JAXP before you can use the JAXP API with
an XML parser. Some installations of the DOM and SAX
APIs interact with the underlying XML parser in ways
specific to the accessed parser. Accessing the parser

using these types of proprietary methods can lead to
greater difficulty when you want to update or modify
your code or the underlying XML parser. Because JAXP
provides a method of interfacing with the DOM and
SAX APIs, it allows you to perform the same functions
without having to create proprietary techniques for
interacting with the parser.

PARSERS FOR JAXP

Many XML parsers now include the JAXP APl with the
parser, and many XML parsers allow you to use the JAXP
API. The most popular XML parser that can work with
the JAXP APl is the Xerces XML parser, available from
the Apache organization at http://www.apache.org. This
chapter uses the Xerces XML parser to generate its

examples. It is recommended to install the Xerces XML
parser prior to creating the examples and sample code
illustrated in this chapter. You can download the Xerces
XML parser, or you can install a copy from this book’s
companion CD-ROM. See Appendix D for more
information on the CD-ROM.

262

ACQUIRING JAXP

JAXP

You have several options for acquiring a copy of JAXP.
For the latest version of JAXP, you can download the
required files from Sun Microsystem’s main JAXP Web
site at http://java.sun.com/xml/jaxp/. The most common
way of acquiring JAXP files, however, is by using an XML
parser that includes the required JAXP installation files
with the parser. This is the best method for acquiring
JAX. You can safely assume that this version of JAXP is
completely compatible with the XML parser that you
access using JAXP. The companion CD-ROM with this
book has a copy of the JAXP API available. See
Appendix D for more information on the CD-ROM.

As well as the core JAXP API files, the JAXP has a
collection of documentation. Typically, this
documentation comes with the JAXP API files you
acquire. Depending on how you acquire the JAXP files,
you may find the API files separate from the
documentation. This separation facilitates ease of
transfer over networks.

You should always ensure that you have the correct
documentation for the version of JAXP files installed
on your computer. You have no better reference

for any API including JAXP than the authoritative
documentation that accompanies the JAXP API
installation.

INSTALLATION

A simple procedure, installing the JAXP API files involves
copying them to a specific directory on your computer,
typically within the directory structure of the Java SDK
installation. Once you copy the appropriate files to the
target destination, you may have to adjust the
CLASSPATH environment variable to reflect the location
of the installed JAXP files. For more information about
how to change the CLASSPATH environment variable in
your computer, see Chapter 7. If you have the JAXP API
files included with your XML parser, you can install the
required JAXP API files when you install the XML parser

itself. To ensure that you have the correct installation
method for your version of the JAXP API, and that you
place the files in the correct directories, you should
always consult the documentation for the proper
installation and configuration procedures. Although
most JAXP APIs install the same way, some parsers, or
associated XML applications, may require that you
install the JAXP API in a different location. For most
installations, you install the JAXP API files when you
install the Java API itself.

VERSIONS

The first released version of the JAXP APl was JAXP
version 1.0. Although the oldest version, you can still
routinely find JAXP version 1.0 in many installations.
When creating code using an existing JAXP installation,
you should not assume that the latest version of the JAXP
API has been installed. Currently the most popular
version of JAXP is 1.1, which includes some
improvements over JAXP 1.0, such as support for later
versions of the SAX and DOM APIls. When the API deals
with the reading, processing, and generating of XML
documents, you find very little difference between JAXP

1.0 and JAXP 1.1. Any code you create with JAXP 1.0
should work equally well when you use it with an
installation of JAXP 1.1. As with all APIs and
specifications, over time, you may encounter
improvements and modifications made to the API,
resulting in a changed version number. If possible, you
should always use the very latest version of the API to
have access to the complete functionality and advantages
that the JAXP API offers. To view a list of the differences
between JAXP API versions 1.0 and 1.1, visit Sun’s main
JAXP Web site at http://java.sun.com/xml/jaxp/.

263

JAVA AND XML

PARSE AN XML DOCUMENT

XML document and extracting the content and

structural information from the XML document. You
can use JAXP to initiate the parsing of an XML document
and then to access the information in the XML document.

Parsing an XML document is the process of reading the

You can easily use JAXP to communicate with an underlying
SAX parser to parse an XML document with the SaAXParser
object. The first step in using JAXP with a SAX-compliant
parser involves creating a SAXParserFactory object. Part
of the package javax.xml.parsers, a SAXParserFactory
object provides the method newSAXParser, which enables
you to create an instance of the SAX XML parser that you
can use to access an XML document. You use the
newInstance method of the SAXParserFactory

class to create the new SAXParserFactory object.

Once you create the SAXParser object, you can use the
parse method to start parsing an XML document.

The parse method has two arguments. The first argument
consists of the name of the XML document that you want to

parse. The second argument is an instance of a handler
class. You use that handler class to contain the methods
that are called when the SAX-compliant parser encounters
specific events during the parsing of an XML document.
The handler class extends the DefaultHandler class
when accessing the SAXParser using the SAX API. You
can find the DefaultHandler class in the org.xml.
sax.helpers package, which you must import prior to
creating the handler class. For more information about
extending classes and importing a package, see Chapter 3.

Within the handler class you can create a startDocument
method. The startDocument method executes code
when the parser encounters the start of an XML document.
The startDocument method displays a brief message,
which indicates when the parser started processing the
document. For more information about creating the
DefaultHandler class, see the section "Detect Events"

in this chapter.

PARSE AN XML DOCUMENT

1 |

B Create the main method
and class declarations for the
application.

= 1] Type the code that imports
the required packages.

Note: This example requires a

valid XML document. For more on
creating a valid XML document, see
Chapter 6.

264

4] Type the code that creates
the new SAXParser object.

= 3 Type the code that creates
a new SAXParserFactory
object.

A

Most XML parsers, such as Xerces, allow you to easily change the
underlying parser by using the SAXParserFactoryImpl class that
extends a SAXParserFactory object. You can access information
about the parser implementation you are using with the parser.
getClass () .getName () method. The following example illustrates
how to use an implementation-specific SAX parser.

TYPE THIS:

import javax.xml.parsers.*;
import org.xml.sax.*;

import org.xml.sax.helpers.*;
import org.apache.xerces.jaxp.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXParserFactory factory = new SAXParserFactoryImpl () ;
SAXParser parser=factory.newSAXParser () ;
parser.parse("file.xml", new Handler());
System.out.println("Parser implementation;");
System.out.println(parser.getClass () .getName()) ;

RESULT:

|<

Start of document detected
Parser implementation;
org.apache.xerces.jaxp.SAXParserImpl

~

JAXP

. ParseDoc.java - Notepad

File Edit Format View Help

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class ParseDoc {

public static void main (String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser parser=factory.newSAXParser();

}

class Handler extends DefaultHandler {

public void startDocument()

— System.out.print{"\ninStart of document detectedin");
b

tart [® ParseDoc.java - Note...

B Type the code that creates
a handler class, which can
generate a message when the
parser detects the start of the

XML document during parsing.

ﬂ Save your Java file.

[
’|parser.parse("fﬂe.xml", new Handler ()):} >
@g 12:00PM
6 Type the code that = 8| Compile and run your B A message displays
initiates the parsing of the Java code. indicating that the parser
XML document. has parsed the document.

265

JAVA AND XML

DETECT EVENTS

ou can detect events to identify and extract information

from an XML document. When parsing an XML

document, the parser processes specific characteristics
of the XML document, such as the beginning of the
document or the start and end of an element. When an XML
parser encounters one of these specific characteristics, such
as the start tag of an element, you refer to it as an event. In
event-based XML parsing, the parser can execute specific
code when it encounters one of these events.

One of the first steps in processing an XML document in an
application involves locating specific elements in the XML
document. Once the parser detects an element in an XML
document, it makes a callback to the appropriate method
of the handler class. Once you register the event handler
object with the parser object, the parser object uses the

DETECT EVENTS

callback methods in the registered event handler class with
that instance of the parser.

You can create event callback methods within the event

handler class that display a message whenever the parser
encounters the start and end tags of an element when it

parses an XML document.

The XML parser calls the startElement method of the
event handler class whenever the XMLReader detects a tag
that it identifies as the start tag of an element. The XML
parser calls the endElement method of the event handler
class whenever the XMLReader detects a tag that it
identifies as the end tag of an element. For more detailed
information about events and how they work within event
handlers, refer to Chapter 7.

that parses an XML document.

section "Parse an XML Document."

the method you want to call
when the parser detects the
start of an element.

. ParseDoc.java - Notepad H@ . ParseDoc.java - Notepad u@
File Edit Format View Help File Edit Format VYiew Help
import javax.xml.parsers.*; import javax.xml.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
import org.xml.sax.helpers.*; import org.xml.sax.helpers.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newInstance(); SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser=factory.newSAXParser(); SAXParser parser=factory.newSAXParser();
— parser.parse("file.xml", new Handler()); parser.parse("file.xml", new Handler());
} ! }
Class Handler extends DefaultHandler { class Handler extends DefaultHandler { _
public void startDocument() { public void startDocument() {
System.out.println{"inStart of document detectedin"); System.out.println{"inStart of document detectedin");
puUbTTC vOid StartElement(SLring namespace, String name,
} String gqName, Attributes atts) {
[System.out.printin({"start of < +gName + "> element detected ;]
+
}
= 1 = 1
@2 om 2 o
—Bl Open or create the code Note: You can use the code from the A Type the code to create EJ Type the code you want

to execute when the parser
detects the start of an
element.

JAXP

EX]IE The parser detects many types of events when you use a
SAX-compliant parser under JAXP. You can add the
appropriate method to the event handler class to execute
code when the parser encounters certain XML document
characteristics in an XML document.

For more detailed information about handler methods and
how they work within event handlers, refer to Chapter 7.

characters Character data
endDocument End of an XML document
endElement End of an XML element
endPrefixMapping End of prefix mapping section
ignorableWhitespace Non-needed whitespace
processingInstruction A processing instruction
setDocumentLocator Locator object to determine parsing position
startDocument Start of an XML document
startElement Start of an XML element
startPrefixMapping Start of prefix mapping section

- J

4 ParseDoc.java - Notepad H@@]

File Edt Format View Help &3 Command Prompt

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class ParseDoc { C:\Code>java ParseDoc
public static void main (String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newInstance(); Start of document detected
SAXParser parser=factory.newSAXParser();
parser.parse("file.xml", new Handler()):

C:\Code>javac ParseDoc.java

Start of <todo> element detected
} Start of <task> element detected
Claﬁgl:‘gneéfg ::;??ggcﬂsgiﬂ)tHandler { Start of <description> element detected
P System.out.println("wnStart of document detectedin"); End of <description> element detected
Start of <owner> element detected
public void startElement(String namespace, String name, End of <owner> element detected
String gName, Attributes atts) { End of <task> element detected
Start of <task> element detected
Start of <description> element detected
——{public void endElement(String namespace, String name, String gName){ End of <description> element detected
System.out.printin({ End of <"+gName + "> element detected"): Start of <owner> element detected
L End of <owner> element detected
} End of <task> element detected
End of <todo> element detected

System.out.println("Start of <"+qName + "> element detected");
b

C:\Code>

ar [® ParseDoc.java - Note... @ § 12:00 PM 1 e+ Command Prompt <) g 12:00 PM
M : =

=4 Type the code to create the 5 Type the code you want = 7| Compile and run your A message displays

method you want to call when to execute when the parser Java code. indicating that the parser
the parser detects the end tag detects the end tag of an has detected the events.
of an element. element.

B Save your Java code.

267

JAVA AND XML

CONFIGURE FACTORY SETTINGS

You can alter some of the characteristics of a factory
object, which then impact all the objects subsequently
created from that factory. For example, when using
JAXP to create a new SAXParser object using the
SAXParserFactory class, you can enable validation
of any XML documents that you want to parse by setting
a feature of the factory class prior to creating the new
SAXParser object. Enabling validation requires that you
make all XML documents, which your application parses
with the instance of the SAXParser, valid or your code will
generate an error.

! factory is a class file that you use to create objects.

Once you enable a feature with the factory class, any
objects you create using a factory class have those enabled
features. Commonly, you utilize a factory class to create
multiple related objects for use within the same application.
You can enable or disable most features of a factory class,

so you can enable a feature prior to creating some objects,
then disable a feature and continue to create objects using
the same factory class but with a feature now disabled.

Typically, the objects you create from a factory class have
a corresponding method to indicate whether you have
enabled or disabled the feature on the new object. For
example, to determine whether you have the validation
enabled on a new SAXParser object, the isvalidating
method returns a value of true or false to indicate
whether the parser will or will not validate any XML
documents that it parses.

You can configure some settings for the factory class, such
as enabling namespaces, whether you use the DOM or the
SAX APl with JAXP. For more information about the parser
features that you can access using JAXP, see Appendix A.

CONFIGURE FACTORY SETTINGS

.\ ParseDoc.java - Notepad

=J=les|

. ParseDoc.java - Notepad

BEX]

File Edit Format VYiew Help

import javax.xml.parsers.*;
import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser=factory.newSAXParser();

parser.parse("file.xml", new Handler());
}
class Handler extends DefaultHandler {

public void startDocument()
System.out.print("\n\nStart of document detectedin");

@I WY 12:00 PM

w"‘ i— " ParseDoc.java - Note...

= 1] Open or create the code
that parses an XML document.

Note: You can use the code from the
section "Parse an XML Document."

268

File Edit Format Yiew Help

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

SAXParserFactory factory = SAXParserFactory.newInstance();

—|factory. setValidating(true); |

SAXParser parser=factory.newSAXParser();

VT

parser.parse("file.xml", new Handler()):

}
class Handler extends DefaultHandler {

public void startDocument() {
System.out.print("wninStart of document detectedin");

= 1
[* ParseDoc.java - Note... @g 12:00 PM

“H Type the code that
configures the factory
object settings.

M This example uses the
isValidating method to
enable the creation of
validating parsers.

JAXP

A

A namespace aware XML parser can correctly process
XML documents that make use of namespaces. For
more information about namespaces, see Chapter 5.

You can use the setNamespaceAware method to
enable parsers that you created with a factory to

be aware of namespaces in XML documents. You can
check to see if a parser is namespace-aware by using

the isNamespaceAware method of the parser object.

TYPETHIS:

public static void main (String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newlInstance() ;

factory.setValidating (true) ;
factory.setNamespaceAware (true) ;
SAXParser parser = factory.newSAXParser();

if (parser.isvValidating()) {
System.out.println("vValidation is enabled");
}

if (parser.isNamespaceAware()) {

}

parser.parse("file.xml", new Handler());

System.out.println("Parser is namespace aware");

RESULT:

Validation is enabled
Parser is namespace aware

Start of document detected

. ParseDoc.java - Notepad

File Edit Format View Help

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {

SAXParserFactory factory = SAXParserFactory.newInstance():

factory.setvalidating(true);

_> SAXParser parser=factory.newSAXParser();

[iT_{parser. isvali

datin >
TTn(sa)héatwn 15 enabled™):]

}

[System.out.prin
|

parser.parse("file.xml", new Handler()):

class Handler extends DefaultHandler {
public void startDocument()
System.out.print("ininStart of document detectedin");

@; 12:00 PM
= 3 Type code that checks 4] Type the code that you 3 Compile and run your B A message displays
whether you have enabled the want to execute if you have Java code. indicating that the feature
feature for the newly created the feature enabled. is enabled for the parser.

parser object.

E Save your Java file.

269

JAVA AND XML

SET SAXPARSER FEATURES

ML parsers have their own configuration choices, Not all XML parsers allow you to modify the features
which can help you determine if you can access a available to a parser. The SAX API specifies some features
specific function or feature of your application. You that all SAX-compliant XML parsers must support. You may
refer to the settings of an XML parser as the features of the only have other features and properties available to you
parser. when using the SAX API with a specific XML parser. You
have only the SAX-specified features and properties
Represented by URLs, features of an XML parser typically available to you on all SAX-compliant parsers.
consist of very long strings. The setFeature method of
the saXxParserFactory class allows you to enable or You should not depend too heavily on features or
disable a feature by specifying the URL of the feature. After properties specific to one parser in your code. If you have
the URI, you place a boolean value of true or false. to change the parser or even change to a different version
Located at http://xml.org/sax/features/validation, one of the of the same XML parser at some time in the future, the
more common features of SAX-compliant XML parsers features available in one version may become unavailable in
indicates whether you have enabled validation. another version of the same parser. One reason for using

JAXP stems from its ability to change the underlying parser

The getFeature method of the SAXParserFactory class Without you having to modify your Code; you should avoid
allows you to determine the value associated with a feature using implementation-specific features of the parser

of the parser. The getFeature method returns a value of whenever possible.
either true or false, indicating whether the feature is
enabled or not.

SET SAXPARSER FEATURES '

.\ ParseDoc.java - Notepad [L][i]ﬁl .\ ParseDoc.java - Notepad u@g‘
File Edit Format VYiew Help File Edit Format VYiew Help
import javax.xml.parsers.*; import javax.xml.parsers.*;
import org.xml.sax.*; import org.xml.sax.*;
import org.xml.sax.helpers.*; import org.xml.sax.helpers.*;
public class ParseDoc { public class ParseDoc {
public static void main (String[] args) throws Exception { public static void main (String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newInstance(); SAXParserFactory factory = SAXParserFactory.newInstance();
[factory.setFeature("http://xml.org/sax/features/validation”, true):] factory.setFeature("http://xml.org/sax/features/validation”, true);

boolean validation:

SAXParser parser=factory.newSAXParser();
[validation=factory.getFeature("http://xml. org/sax/features/validation™)] _

VT

parser.parse("file.xml", new Handler());
} SAXParser parser=factory.newSAXParser();

}

class Handler extends DefaultHandler {
public void startDocument() { }
System.out.print("\n\nStart of document |[detectedin”);

parser.parse("file.xml", new Handler()):
b

class Handler extends DefaultHandler {
} public void startDocument()
System.out.print("\n\nStart of document |[detectedin”);

= I = T
| ParseDoc.java - Note.. ¥ 12:00pm ar \ ParseDoc.java - Note... @@"® 12:00pm

(1) Open or create the code H Type the code that = 3| Type the code to declare a 4 Type the code that returns
that parses an XML document. enables a feature on the boolean variable. a value, after checking that a
underlying SAXParser. feature is set, and assigns the

Note: You can use the code from the

- ; value to a variable.
section "Parse an XML Document.

270

JAXP

{ \
Apply If you try to set a feature of a SAXParser that
M does not exist, a SAXNotRecognizedException
error may generate. You can use a simple try and
catch block to isolate the error and deal with the
failure of setting the feature.
try {
factory.setFeature ("http://xml.org/sax/features/edit", false);
} catch (SAXNotRecognizedException e) {
System.out.println("The feature ");
System.out.println(e.getMessage()) ;
System.out.println("cannot be set. ");
}
RESULT:
The feature
http://xml.org/sax/features/edit
cannot be set.
\. J
;Bamﬁoc.jm - ﬁmpad L:JLE‘-!-@
File Edit Format View Help
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
public class ParseDoc {
public static void main (String[] args) throws Exception { —
SAXParserFactory factory = SAXParserFactory.newInstance():
factory.setFeature("http://xml.org/sax/features/validation”, true);
boolean validation;
_> validation=factory.getFeature("http://xml.org/sax/features/validation");
(validation) {] >
ystem. out. printIn{"validation s enabled :
SAXParser parser=factory.newSAXParser();
parser.parse("file.xml", new Handler());
}
class Handler extends DefaultHandler {
public void startDocument() {
System.out.print{"\ninStart of document detectedin");
}
i) Q3 o
= 5| Type the code that checks 6 Type the code that you = 8| Compile and run your M A message displays if
if a feature is enabled. want to perform if the feature Java code. the feature is enabled

is enabled. successfully.

ﬂ Save your Java code.

271

JAVA AND XML

PARSE A DOCUMENT USING DOM

with JAXP, you can just as easily use the DOM API to

interact with an underlying XML parser. The DOM API
provides you with another way of working with XML
documents, allowing you more flexibility when creating
your Java applications.

3 Ithough SAX is typically the most popular API to use

The first step involves creating a DocumentBuilderFactory
object, using the newInstance method of the
DocumentBuilderFactory class. Once you create

the DocumentBuilderFactory object, you can

utilize the newDocumentBuilder method to create a
DocumentBuilder object, which you use to parse a
document. The DocumentBuilder object allows you to
use the parse method to specify the name of the XML
document you want to parse. The return type of the parse
method is a DOM document type. Once you create a DOM

PARSE A DOCUMENT USING DOM

document object, you can use the DOM API to access the
information in that object. Before using the DOM API, you
must ensure that you import the appropriate DOM API
packages. For more information about working with the
DOM AP, refer to Chapter 8.

Part of the reason you use the JAXP API stems from the
fact that it provides an additional level of abstraction
when you have different parsers. You can use both DOM-
and SAX-compliant parsers and access the parsers with
their respective APIs, while still using the same methods
to access that data. For example, the SAXParser class and
the DocumentBuilder class both use the parse method
to initiate the parsing of a document. By simply changing a
limited number of class files, you can completely change
the way your Java application interacts with an XML parser,
without having to completely rewrite your code.

3 Type the code that creates
the class and main method
of your application.

—El Import the JAXP AP files.

- 2| Import the required DOM
API files.

272

|\ ParseDoc.java - Notepad
File Edit Format View Help

import javax.xml.parsers.*;
import org.w3c.dom.*;

J=les)

public class ParseDoc {
public static void main (String[] args) throws Exception {

JDocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();]

>}>

[DocumentBuilder builder=factory. newDocumentBuilder ();]

[Document doc=builder.parse("file.xml"):h

L et G wom
-3 Type the code that creates 6 Type the code that
the new factory object. initiates parsing of the XML

document.

=5 Type the code that creates
a new builder object from the
factory object.

JAXP

Regardless of whether you use the SAX or DOM
API, JAXP still allows you to access similar methods
to set the same features. For example, the
setValidation and setNamespaceAware
settings are the same for both APIs.

TYPETHIS: RES

g

public static void main (String[] args) throws Exception { Validation is enabled
DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance() ; Parser is namespace aware
factory.setValidating (true) ; The root element name is todo

factory.setNamespaceAware (true) ;
DocumentBuilder builder = factory.newDocumentBuilder () ;
if (builder.isValidating()) {
System.out.println("Validation is enabled"); >
}
if (builder.isNamespaceAware()) {
System.out.println("Parser is namespace aware");
}
Document doc = builder.parse("file.xml");
Element root = doc.getDocumentElement () ;
String rootElementName = (root.getTagName()) ;
System.out.println("The root element name is " + rootElementName) ;

. ParseDoc.java - Notepad u@@
File Edit Format View Help
import javax.xml.parsers.*;
import org.w3c.dom.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {
|—
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder=factory.newDocumentBuilder();
Document doc=builder.parse("file.xml");
_> IE'lement root = doc.getDocumentElement(); >
String rootElementName = (root.getTagName());
System.out.println("The root element name is " + rootElementName);
)
}
@g 12:00PM
i Create the code that uses El save your Java code. = 9| Compile and run your M Information extracted from
the DOM API to interact with Java code. the DOM tree displays.

the XML document.

273

JAVA AND XML

CREATE AN ERROR HANDLER
FOR USE WITH DOM

utilize the more efficient error handling capabilities of

the SAX API to handle the errors the XML parser
generates. When dealing with SAX API errors you must use
an error handler class to handle the errors. You can use the
setErrorHandler method of the DOM builder class to
register an error handler class with a DOM builder object.

Even if you are using the DOM API with JAXP, you can

The error handler class you create and register with the
DOM builder object must implement the ErrorHandler
interface of the org.xml.sax package. For more
information about creating a SAX error handling class, see
Chapter 7.

The error handler class you create must implement three
methods: warning, error, and fatalError.

The application calls each method whenever code in the
XML document generates the corresponding error. A call to

the fatalError method often means that the parser finds
it impossible to properly parse an XML document, if, for
example, you failed to include the required start or end
element tags in the XML document. Warnings are errors
that the error or fatalError methods do not catch. You
can typically continue parsing an XML document after the
application generates a warning. You use the error
method with the types of errors from which you commonly
recover. For example, the application calls this method if
the XML document is not a valid XML document.

You should always develop every application that you
create to handle whatever errors the application may
generate when it executes your code. You typically create
error-handling code for all of the methods in the error
handling class. For more information about handling errors
in Java code, see Chapter 3.

CREATE AN ERROR HANDLER FOR USE WITH DOM

. ParseDoc.java - Notepad

BEX]

. ParseDoc.java - Notepad

BEX|

File Edit Format Yiew Help

import javax.xml.parsers.*;
import org.w3c.dom.*;

import org.xml.sax.™;

public class ParseDoc {
public static void main (String[] argg) throws Exception {
DocumentBuilderFactory factory = DodumentBuilderFactory.newInstance();
lentBuilder();

DocumentBuilder builder=factory.newDocu

Document doc=builder.parse("file.xml");
Element root = doc.getDocumentElemer{t();
String rootElementName = (root.getTdgName());
System.out.println("The root element| name is "

+ rootElementName);

@I W 12:00PM

] [® ParseDoc.java - Note...

File Edit Format Yiew Help

import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder=factory.newDocumentBuilder();

Document doc=builder.parse("file.xml");
Element root = doc.getDocumentElement();
String rootElementName = (root.getTagName());
System.out.println("The root element name is " + rootElementName);

}

class MyErrHandler implements ErrorHandler {

public void warning(SAXParseException exception) {}

public void error(SAXParseException exception) {}

public void fatalError (SAXParseException exception) {
System.out.println("\nin There has been a serious errorin®);
System.out.println{"Error messagein" + exception.getMessage()):
System.out.println("inAt Line: " + exception.getLineNumber());
System.out.println{"\nAt Column: " + exception.getColumnNumber());

@l w¥ 12:00PM

] [® ParseDoc.java - Note...

Note: To generate the required error
for this example, you need fo parse
an XML document that has an

Note: You can use the code from the
section "Parse a Document Using
DOM."

element with a missing end tag.

(1) Type or create the code
that uses JAXP and the DOM
API to parse a document.

274

—E Import the SAX files you
require to create the error
handler class.

—E Create the error handler
class that displays a message
when the application
encounters a fatal error.

Note: You can use the code from
"Create a Custom Error Message”
in Chapter 7.

JAXP
\ - 2
Apply The application may also generate SAXException errors which you can handle
using a simple try and catch block within your Java code.

=

public static void main (String[] args) throws Exception {

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance() ;
DocumentBuilder builder = factory.newDocumentBuilder () ;
builder.setErrorHandler (new MyErrHandler()) ;
try {

Document doc = builder.parse("file.xml");

Element root = doc.getDocumentElement () ;

String rootElementName = (root.getTagName()) ;

System.out.println("The root element name is " + rootElementName) ;
} catch (SAXException e) {

System.out.println("Program execution has been terminated");

There has been a serious error

Error message
The element type "status" must be terminated by the matching end-tag "</status>".

At Line: 12

At Column: 7
Program execution has been terminated

4 ParseDoc.java - Notepad [;]@

File Edt Format YView Help Command Prompt
import javax.xml.parsers.*;

:mgg;t g;ég%%ggn;* ‘\Code>javac ParseDoc.java
public class ParseDoc { ‘\Code>java ParseDoc

public static void main (String[] args) throws Exception {
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder=factory.newDocumentBuilder(); There has been a serious error

+——builder.setErrorHandler (new MyErrHandler ());]
l_ Error message
Document doc=builder.parse("file.xml"); The element type “status” must be terminated by the matching end-tag
Element root = doc.getDocumentElement();
String rootElementName = (root.getTagName());
System.out.println("The root element name is " + rootElementName);

At Line: 12

} At Column: 7

class MyErrHandler implements ErrorHandler {

public void warning(SAXParseException exception) {}

public void error(SAXParseException exception) {}

public void fatalError (SAXParseException exception) {
System.out.println("\nin There has been a serious errorin");
System.out.println("Error messagein" + exception.getMessage());
System.out.println{"\nAt Line: " + exception.getLineNumber());
System.out.println("inAt Column: " + exception.getColumnNumber());

=4 Type the code that registers H save your Java code. = 6| Compile and run your An error message displays.
the error handler class with the Java program.

DOMBuilder object.

275

APPENDIX
SAX API QUICK REFERENCE

he SAX API contains a complex array of interfaces, comes with your version of the SAX API. The following
I classes, and methods. For detailed information about tables give a quick reference for some of the more
the SAX API, always consult the documentation that commonly used features of the SAX API.

PRIMARY INTERFACES

NAME DESCRIPTION

Attributes Accesses XML attributes.

ContentHandler Handles differing content in an XML document.

DTDHandler Accesses the declarations present in a DTD.

EntityResolver Resolves entities.

ErrorHandler Handles SAX errors.

Locator Locates a position in an XML document.

XMLFilter Use when employing XML filters.

XMLReader Use for accessing XML documents.

RETURNTYPE METHOD DESCRIPTION

void error (SAXParseException exception) Receives notification of a recoverable error.
void fatalError (SAXParseException exception)| Receives notification of a non-recoverable error.
void warning (SAXParseException exception) Receives notification of a warning.

RETURN

TYPE METHOD DESCRIPTION

int getIndex (String gName) Looks up the index of an attribute by XML 1.0 qualified name.
int getIndex (String uri, String localPart) |Looks up the index of an attribute by namespace name.
int getLength () Returns the number of attributes in a list.

String getLocalName (int index) Looks up an attribute’s local name by index.

String |getQName (int index) Looks up an attribute’s XML 1.0 qualified name by index.
String |getType (int index) Looks up an attribute’s type by index.

String |getType(String gName) Looks up an attribute’s type by XML 1.0 qualified name.
String |getType(String uri, String localName)|Looks up an attribute’s type by namespace name.
String |getURI (int index) Looks up an attribute’s namespace URI by index.
String |getValue(int index) Looks up an attribute’s value by index.

String |getValue(String gName) Looks up an attribute’s value by XML 1.0 qualified name.

String |getValue(String uri, String localName)|Looks up an attribute’s value by namespace name.

276

THE CONTENTHANDLER INTERFACE

API QUICK REFERENCE

RETURN

TYPE METHOD DESCRIPTION

void characters (char[] ch, int start, int length) Receives notification of character data.

void endDocument () Receives notification of the end of a document.

void endElement (String namespaceURI, Receives notification of the end of an element.
String localName, String gName)

void endPrefixMapping (String prefix) Ends the scope of a prefix-URI mapping.

void ignorableWhitespace (char([] ch, Receives notification of ignorable whitespace in
int start, int length) element content.

void processingInstruction(String target, String data)|Receives notification of a processing instruction.

void |setDocumentLocator (Locator locator) Receives an object for locating the origin of SAX

document events.

void skippedEntity (String name) Receives notification of a skipped entity.

void startDocument () Receives naotification of the beginning of a document.

void startElement (String namespaceURI, String Receives notification of the beginning of an element.
localName, String gName, Attributes atts)

void startPrefixMapping (String prefix, String uri) Begins the scope of a prefix-URI namespace mapping.

THE XMLREADER INTERFACE

RETURNTYPE METHOD DESCRIPTION

ContentHandler |getContentHandler () Returns the current content handler.

DTDHandler getDTDHandler () Returns the current DTD handler.

EntityResolver |getEntityResolver () Returns the current entity resolver.

ErrorHandler |getErrorHandler () Returns the current error handler.

boolean getFeature (String name) Looks up the value of a feature.

Object getProperty (String name) Looks up the value of a property.

void parse (InputSource input) Parses an XML document.

void parse (String systemId) Parses an XML document from a system identifier (URI).

void setContentHandler Allows an application to register a content event handler.
(ContentHandler handler)

void setDTDHandler (DTDHandler handler) |Allows an application to register a DTD event handler.

void setEntityResolver Allows an application to register an entity resolver.
(EntityResolver resolver)

void setErrorHandler (ErrorHandler handler) |Allows an application to register an error event handler.

void setFeature (String name, boolean value)|Sets the state of a feature.

void setProperty (String name, Object value)|Sets the value of a property.

277

APPENDIX

DOM API QUICK REFERENCE

documentation that came with the version of the DOM API
you are using. The following tables give a quick reference for
some of the more commonly used features of the DOM API.

classes, and methods. For detailed information about

The DOM API contains a complex array of interfaces,
the DOM API, you should always consult the

THE DOCUMENTTYPE INTERFACE

RETURN TYPE METHOD DESCRIPTION

Attr createAttribute (String name) Creates an Attr object of the given name.

Attr createAttributeNs (String Creates an attribute of the given qualified name
namespaceURT, String qualifiedName) |and namespace URI.

CDATASection createCDATASection (String data)Creates a CDATASection node whose value is the

specified string.

Comment createComment (String data) Creates a Comment node given the specified string.

DocumentFragment createDocumentFragment() Creates an empty DocumentFragment object.

Element createElement (String tagName) |Creates an element of the type specified.

Element createElementNS (String Creates an element of the given qualified name
namespaceURI, String qualifiedName)|and namespace URI.

EntityReference createEntityReference (String name) |Creates an EntityReference object.

ProcessingInstruction

createProcessingInstruction
(String target, String data)

Creates a Processinglnstruction node given the
specified name and data strings.

boolean deep)

Text createTextNode (String data) Creates a Text node given the specified string.

DocumentType getDoctype () The Document Type Declaration associated with
this document.

Element getDocumentElement () This is a convenience attribute that allows direct
access to the child node that is the root element
of the document.

Element getElementById(String elementId) [Returns the element whose ID is given by
elementld.

NodeList getElementsByTagName Returns a Nodelist of all the elements with a given

(String tagname) tag name in the order in which they are encountered
in a preorder traversal of the document tree.

NodeList getElementsByTagNameNS (String |Returns a Nodelist of all the elements with a

namespaceURI, String localName)given local name and namespace URI in the order
in which they are encountered in a preorder
traversal of the Document tree.

DOMImplementation getImplementation() The DOMImplementation object that handles this
document.

Node importNode (Node importedNode, |Imports a node from another document to this

document.

278

THE ELEMENT INTERFACE

API QUICK REFERENCE

RETURN TYPE METHOD DESCRIPTION

String getAttribute (String name) Retrieves an attribute value by name.

Attr getAttributeNode (String name) Retrieves an attribute node by name.

Attr getAttributeNodeNS (String Retrieves an Attr node by local name and

namespaceURI, String localName) namespace URI.

String getAttributeNS (String Retrieves an attribute value by local name and

namespaceURI, String localName) namespace URI.

NodeList getElementsByTagName (String name) Returns a NodeList of all descendant elements
with a given tag name, in the order in which they
are encountered in a preorder traversal of this
element tree.

NodeList getElementsByTagNameNS (String Returns a Nodelist of all the descendant elements

namespaceURI, String localName) with a given local name and namespace URI in the
order in which they are encountered in a preorder
traversal of this element tree.

String getTagName () The name of the element.

boolean hasAttribute (String name) Returns true when an attribute with a given name
is specified on this element or has a default value,
false otherwise.

boolean hasAttributeNS (String Returns true when an attribute with a given local

namespaceURI, String localName) name and namespace URI is specified on this
element or has a default value, false otherwise.
void removeAttribute (String name) Removes an attribute by name.

Attr removeAttributeNode (Attr oldAttr) Removes the specified attribute node.

void removeAttributeNS (String Removes an attribute by local name and

namespaceURI, String localName) namespace URI.

void setAttribute (String Adds a new attribute.

name, String value)

Attr setAttributeNode (Attr newAttr) Adds a new attribute node.

Attr setAttributeNodeNS (Attr newAttr) Adds a new attribute.

void setAttributeNS (String namespaceURT,

String qualifiedName, String wvalue) | Adds a new attribute.

279

APPENDIX
DOM API QUICK REFERENCE (CONTINUED)

THE NODE INTERFACE

RETURN TYPE METHOD DESCRIPTION
Node appendChild (Node newChild) | Adds the node newChild to the end of the list of children of
this node.
Node cloneNode (boolean deep) Returns a duplicate of this node. For example, it serves as a
generic copy constructor for nodes.
NamedNodeMap |getAttributes() A NamedNodeMap containing the attributes of this node (if it is
an element) or null otherwise.
NodeList getChildNodes () A NodeList that contains all children of this node.
Node getFirstChild() The first child of this node.
Node getLastChild() The last child of this node.
String getLocalName () Returns the local part of the qualified name of this node.
String getNamespaceURI () The namespace URI of this node, or null if it is unspecified.
Node getNextSibling () The node immediately following this node.
String getNodeName () The name of this node.
Short getNodeType () A code representing the type of the underlying object, as
defined above.
String getNodeValue () The value of this node.
Document getOwnerDocument () The Document object associated with this node.
Node getParentNode () The parent of this node.
String getPrefix() The namespace prefix of this node, or null if it is unspecified.
Node getPreviousSibling () The node immediately preceding this node.
Boolean hasAttributes () Returns whether this node (if it is an element) has any attributes.
Boolean hasChildNodes () Returns whether this node has any children.
Node insertBefore (Node Inserts the node newChild before the existing child node
newChild, Node refChild) refChild.
Boolean isSupported (String Tests whether the DOM implementation creates a specific
feature, String version) feature and whether that feature is supported by this node.
Node removeChild (Node oldChild) | Removes the child node indicated by o1dChild from the list of
children, and returns it.
Node replaceChild (Node Replaces the child node 01dChild with newChild in the list
newChild, Node oldChild) of children, and returns the 01dChild node.

API QUICK REFERENCE

JDOM QUICK REFERENCE

DOM uses many packages and class files. For complete constructors, refer to the JDOM APl documentation that
details about the class files and their methods, fields, and accompanies your JDOM installation.

PACKAGE ORG.JDOM

The org.jom package is the principal package of the JDOM API.

CLASS SUMMARY

CLASS NAME DESCRIPTION

Text Allows for the manipulation of textual data.
ProcessingInstruction Creates and manipulates processing instructions.
EntityRef Defines an entity reference.

Element Creates and manipulates elements of an XML document.
Document Allows representation of an XML document.

DocType Creates an XML docType object.

Comment Creates and manipulates XML document comments.
CDATA Creates and manipulates CDATA sections of an XML document.
Attribute Creates and manipulates element attributes.

THE DOCUMENT CLASS

The Document class allows you to represent an XML
document as an object.

COMMONLY USED METHODS

RETURN TYPE METHOD DESCRIPTION

Document addContent (commentcomment) Adds a comment.

Document addContent (ProcessingInstructionpi) Inserts a processing instruction.
Object clone() Creates a copy of the document.
boolean equals (Objectob) Determines if documents are the same.
List getContent () Retrieves the content of the document.
DocType getDocType () Retrieves the DocType declaration.
Element getRootElement () Retrieves the root element.

boolean removeContent (Commentcomment) Deletes a comment.

boolean removeContent (ProcessingInstructionpi) Deletes a processing instruction.
Document setContent (ListnewContent) Creates content from a list.

Document setDocType (DocTypedocType) Sets the DocType declaration.
Document setRootElement (ElementrootElement) Sets the root element.

String toString () Converts the document to a string.

281

APPENDIX

JDOM QUICK REFERENCE (CONTINUED).

THE TEXT CLASS

You can use the Text class to represent textual
information, as it stores in an XML document.

COMMONLY USED METHODS

RETURN TYPE METHOD DESCRIPTION

void append (StringstringValue) Appends textual data.

Object clone () Copies a text node.

boolean equals (Objectob) Determines if objects are the same.

Document getDocument () Retrieves the document to which the text belongs.
Element getParent () Retrieves the parent element.

String getvalue () Retrieves the value of the text.

void getValue (StringstringValue) Sets the text value.

String toString () Converts the text information to a string.

THE ELEMENT CLASS

The Element class is one of the most used and important ~ of methods reflect the versatility and complexity of the

classes when working with the JDOM API. A wide range Element class.
COMMONLY USED METHODS
RETURN TYPE METHOD DESCRIPTION
Element addContent (CDATAcdata) Adds a CDATA section.
Element addContent (Commentcomment) Adds a comment to the element.
Element addContent (Elementelement) Adds an element content to the element.
Element addContent (EntityRefentity) Adds an entity content to this element.
Element addContent (ProcessingInstructionpi) | Adds a processing instruction to the element.
Element addContent (Stringtext) Adds a textual content to the element.
Object clone() Creates a copy of the element.
Element detach () Detaches the element from its parent.
Attribute getAttribute (Stringname) Retrieves an attribute.
List getAttributes () Retrieves a list of the elements attributes.
String getAttributeValue (Stringname) Retrieves the value of an attribute.

THE ELEMENT CLASS

API QUICK REFERENCE

COMMONLY USED METHODS

RETURN
TYPE

METHOD

DESCRIPTION

Element getChild (Stringname) Retrieves the first child element.

List getChildren () Retrieves a list of all the child elements.

List getChildren (Stringname) Retrieves a list of all the specified child elements.

String getChildText (Stringname) Retrieves the text of a child element.

String getChildTextTrim(Stringname) Retrieves the trimmed text of a child element.

List getContent () Retrieves a list of the elements content.

Document | getDocument () Retrieves the document the element belongs to.

String getName () The element name.

Element getParent () Retrieves the parent element.

String getText () Retrieves the textual content of the element.

String getTextNormalize () Retrieves the textual content of the element with the
whitespace condensed.

String getTextTrim() Retrieves the textual content of the element without
the whitespace.

boolean hasChildren () Determines if an element has children.

boolean isRootElement () Determines if an element is a root element.

boolean removeAttribute (Stringname) Removes an attribute.

boolean hasChild(Stringname) Deletes first child element.

boolean removeChildren () Deletes all child elements.

boolean removeChildren (Stringname) Removes specified child element.

boolean removeContent (CDATAcdata) Removes a CDATA section.

boolean removeContent (Commentcomment) Removes a comment.

boolean removeContent (Elementelement) Removes an element.

boolean removeContent (EntityRefentity) Removes an EnityRef.

boolean removeContent (ProcessingInstructionpi)| Removes a Processinglnstruction.

Element setAttribute (Attributeattribute) Sets an attribute for the element.

Element setAttribute (Stringname, Stringvalue) Sets an attribute value for the element.

Element setAttributes (Listattributes) Sets the attributes for an element from a list.

Element setChildren(Listchildren) Creates child elements from a list.

Element setContent (ListnewContent) Creates element content from a list.

Element setName (Stringname) Specifies the name of the element.

Element settext (Stringtext) Specifies textual content for the element

String toString () Converts element data into a string.

283

APPENDIX
JAXP QUICK REFERENCE

you can use. For detailed information about the JAXP

The JAXP API contains various classes and methods that
API, always consult the documentation that comes

CLASS SUMMARY

with the version of the SAX API you are using. This quick
reference gives some of the more commonly used features
of the JAXP API. The JAXP APl is contained in the package

javax.xml .parsers.

CLASS NAME PURPOSE

DocumentBuilderFactory Creates DOM factory objects.

DocumentBuilder A parser object that uses DOM.

SAXParserFactory Creates SAX factory objects.

SAXParser A parser object that uses SAX.

RETURN TYPE METHOD DESCRIPTION

DOMImplementation getDOMImplementation () Creates a DOM Implementation object.

boolean isNamespaceAware () Determines if a parser understands namespaces.

boolean isvalidating() Determines if a parser will validate XML documents.

Document newDocument () Creates a new DOM Document object.

Document parse(file) Initiates the parsing of a file.

void setEntityResolver Sets the entity resolver that you want to use.
(EntityResolver er)

void setErrorHandler Sets the error handler resolver that you want to use.
(ErrorHandler eh)

DOCUMENTBUILDERFACTORY METHOD SUMMARY

RETURN TYPE METHOD DESCRIPTION
Object getAttribute (java.lang. Retrieves attributes.
String name)
boolean isCoalescing () Determines if a parser coverts CDATA to text nodes.
boolean isExpandEntityReferences () |Determines if a parser resolves entity references.
boolean isIgnoringComments () Determines if a parser ignores comments.
boolean isIgnoringElementContent Determines if a parser ignores whitespace.
Whitespace ()
boolean isNamespaceAware () Determines if a parser recognizes namespace usage.
boolean isValidating () Determines if a parser validates XML documents.
DocumentBuilder newDocumentBuilder () Creates a new DocumentBuilder object.
DocumentBuilderFactory |newInstance () Creates a new DocumentBuilderFactory object.

284

API QUICK REFERENCE

DOCUMENTBUILDERFACTORY METHOD SUMMARY (CONTINUED)

RETURNTYPE METHOD DESCRIPTION
void setAttribute (java.lang.String Sets parser attributes.
name, java.lang.Object value)
void setCoalescing (boolean coalescing) Configures new parsers to convert CDATA to text nodes.
void setExpandEntityReferences Configures new parsers to resolve entity references.
(boolean expandEntityRef)
void setIgnoringComments Configures new parsers to ignore comments.
(booleanignoreComments)
void setIgnoringElementContent Configures new parsers to ignore whitespace.
Whitespace (booleanwhitespace)
void setNamespaceAware (booleanawareness) Configures new parsers to recognize namespace.
void setValidating (booleanvalidating) Configures new parsers to validate XML documents.
SAXPARSERFACTORY METHOD SUMMARY
RETURN TYPE METHOD DESCRIPTION
boolean getFeature (java.lang. Determines parser feature setting.
String name)
boolean isNamespaceAware () Determines if a parser to be created is aware of namespace usage.
boolean isValidating () Determines if a parser to be created will validate XML documents.
SAXParserFactory newlInstance() Creates a new SAXParserFactory object.
SAXParser newSAXParser () Creates a new SAXParser object.
void setFeature(java.lang. Configures the features of new parsers.
String name, boolean value)
void setNamespaceAware Configures new parsers to be namespace aware.
(boolean awareness)
void setValidating (boolean Configure new parsers to validate XML documents.
validating)
SAXPARSER METHOD SUMMARY
RETURNTYPE METHOD DESCRIPTION
Parser getParser () Creates a Parser object.
Object getProperty(java.lang.String name) Retrieves property objects.
XMLReader getXMLReader () Generates an XMLReader object.
boolean isNamespaceAware () Determines if parser recognizes namespace.
boolean isvValidating() Determines if parser validates XML documents.
void parse(File, DefaultHandler dh) Parses a file and registers the default content
handler for callbacks.
void setProperty(java.lang.String Sets a parser’s property.
name, java.lang.Object value)

APPENDIX

JAVA QUICK REFERENCE

T

JAVA KEYWORDS

his appendix contains some useful tabular information,
as well as a quick reference to control structures in Java.

abstract
catch
default
final

if
interface
package

short

synchronized

try

boolean
char

do

finally
implements
long
private
static
this

void

break
class
double
float
import
native
protected
strictfp
throw

volatile

byte case
const” continue
else extends
for goto*
instanceof int

new null
public return
super switch
throws transient
while

*const and goto are reserved but not used.

BUILT-IN TYPES

INTEGRAL TYPES

TYPE SIZE IN BITS MAXIMUM VALUE MINIMUM VALUE
byte 8 127 -128

char 16 65535 0

short 16 32767 -32768

int 32 2147483647 -2147483648

long 64 9223372036854775807 -9223372036854775808

FLOATING-POINT TYPES
TYPE SIZE IN BITS

float 32
double 64

MAXIMUM VALUE

3.403 x 10138
1.798 x 10+308

SMALLEST POSITIVE VALUE

1.401 x 10745
4.900 x 10-324

286

JAVA QUICK REFERENCE

CHARACTER ESCAPE SEQUENCES

You can use these character escape sequences to The following tables list all the operators defined by the
embed special characters in quoted strings. Java language.
ESCAPE SEQUENCE MEANING COMPARISON AND BOOLEAN LOGIC
\b backspace > < == <= >=
\ £ formfeed ! 2 && I =
\n newline instanceof
i t
\r carriage return ARITHMETIC
\t tab
+ - * / %
A" double quote
++ -
\! single quote
\N\ backslash SHIFTS AND BITWISE LOGIC
\unnnn any Unicode character & | N << oo
(n are hexadecimal digits)
>> ~
ASSIGNMENT
= &= |= A= <<=
>>= >> += -= *=
/= %=

. 1 (typename) new

2

(o°)

7

APPENDIX

JAVA QUICK REFERENCE (CONTINUED)

CONTROL FLOW

The following sections describe each of the control
structures available in Java. You can choose the most
appropriate one for each programming situation.

The while loop The do-while loop

while (condition) do
{ {
statementl; statementl;
statement2; statement2;
}
Java evaluates the }

condition, and if it is while (condition);
true, executes the
statements. It repeats
this process until the
condition becomes
false.

Java executes the
statements while the
condition is true. It
always executes the
statements at least once.

The switch statement
switch (integral-value)
{

case constantl:

statementl;

case constant2:

statement?2;

default:
statementn;

}

Java evaluates the value, and if it matches one of the
constants, executes the statements starting with the
next one following that constant. If a case includes no
break statement, execution falls through to the next

statement, even if the code contains an intervening
label.

The for loop
for (initialization; condition; advance)
{
statementl;

statement2;

}

Java executes the initialization statement, and then
evaluates the condition. If the condition is true,
Java executes the statements, and then the advance
clause. Java then re-evaluates the condition, and

if it is true, it executes the statements again,

then executes the advance clause. This sequence
continues until the condition evaluates to false.
Java may execute the statements zero or more times.

The if statement
if (condition)
{
statementl;

statement2;

}
[else
{
statement3;

statement4;

iy

Java evaluates the condition; if it is true, Java
executes the statements in the following block.
If the condition is false and the optional else
block is present, Java executes the statements in
the else block.

CONTROL FLOW (CONTINUED)

JAVA QUICK REFERENCE

The trylcatch/finally
statement

try
{
statementl;

statement2;

}
catch (throwablel t1)
{
statement3;

statement4;

}
catch (throwable2 t2)
{
statement5;

statement6;

}
finally
{
statement6;

statement7;

Java executes the statements in the
try block. If an exception occurs,
Java checks each catch block in
order until it finds a variable of the
given type to which it can assign a

value of the exception object’s type.

If such a block exists, Java executes
its statements. Regardless of
whether Java throws an exception,
after it can no longer execute
statements in the try block or any
catch block, Java executes the
statements in the finally block.

Zero or more catch blocks and
zero or one finally block may
follow a try block; at least one
catch or one finally block must
follow a try.

The break and continue
statements

break [label];

With no label, Java exits any
enclosing while, for, or switch
statement. With a label, Java exits
any number of nested do, while,
for, or switch statements until it
encounters the one labeled with
the corresponding name; Java
then continues execution with the
statement immediately after that
loop.

continue [label];

With no label, Java begins the

next iteration of the enclosing do,
while, or for loop by evaluating
the loop condition. With a label,
Java breaks out of any number of
enclosing do, while, or for loops
until it encounters the one that the
label names; Java continues by
evaluating the condition for that
loop.

USEFUL WEB SITES

www.javasoft.com

www.alphaworks.ibm.com/

Java’s home page. From here, you can find Java software
and documentation, news, helpful hints, and a lot more.

www.javasoft.com/docs/books/tutorial/?frontpage

Sun’s online Java tutorial. A wealth of examples and
explanations are available here.

IBM’s AlphaWorks site. It offers a huge selection of
interesting Java tools for free trial and commercial
licensing.

www.afu.coml/javafaq.htm

The Java programming Frequently Asked Questions list.
A great resource when you have a“How do I ...?”
question.

www. | 0.software.ibm.com/developerworks/
opensourceljikes/project/

The home page for Jikes, IBM’s fast, compliant open-
source Java compiler.

www.javaworld.com

Java World, an online magazine for Java programmers.
This site has many useful technical articles.

www.sys-con.com/java/

The Web site for Java Developer’s Journal, another print
and online Java magazine.

APPENDIX

XML QUICK REFERENCE

documents, the XML language itself is quite creating your XML documents and applications.

While XML allows for the creation of large, complex reference of the XML language that you can use when
compact and easy to learn. Here is a quick

THE XML DECLARATION

Syntax

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
version is the version of XML.

encoding is the character coding of the document, usually UTF-8, but it can also be:
UTF-16

EUC-JP

I5010646-UCS2

standalone indicates if an external DTD is to be used. Can be "yes" or "no".

THE DOCUMENT-TYPE DECLARATION

Syntax
<!DOCTYPE docname External-ID [declarations] >

Starts with the word DOCTYPE. docname is the name of the document type. External-ID is the location of an
external file.

declarations is the optional DTD declarations.

THE NOTATION DECLARATION

Syntax
<!INOTATION name External-ID >

Starts with the word NOTATION. name is the unique name of the format. External-ID identifies the notation.

290

XML QUICK REFERENCE

COMMENTS

Syntax
<-- comment -—>

comment can be any string of characters, but must not contain '-'.

PROCESSING INSTRUCTIONS

Syntax

<?target value ?>

target is typically the name of the intended application. value is the textual data to pass to the target application.

PREDEFINED GENERAL ENTITIES

DESCRIPTION ENTITY SYMBOL VALUE
Ampersand & & &
Less than < < <
Greater than > > >
Apostrophe ' ! '
Quote " " "

INTERNAL ENTITIES

Syntax
<!ENTITY name " replacement text " >

Starts with the word ENTITY. name is the name of the entity. replacement text is the value of the entity.

EXTERNAL ENTITIES

Syntax
<!ENTITY name External-ID NDATA notname >

Starts with the word ENTITY. name is the name of the entity. External-ID is the location of a file. notname is
the name of a notation.

291

APPENDIX

XML QUICK REFERENCE (CONTINUED)

INTERNAL PARAMETER ENTITIES

Syntax
<!ENTITY % name " replacement text " >

Starts with the word ENTITY. name is the name of the entity. replacement text is the value of the entity.

EXTERNAL PARAMETER ENTITIES

Syntax
<!ENTITY % name External-ID >

Starts with the word ENTITY. name is the name of the entity. External-1ID is the location of a file.

CDATA SECTIONS

Syntax
<! [CDATA [textual data 11>

textual data can be any string of characters, but must not contain ']]".

ELEMENT TAGS

Element with Content

<element>content</element>
element is the name of the element.

content is the content model of the element.

Empty Element

<element/ >

292

XML QUICK REFERENCE

ELEMENT ATTRIBUTES

<element name="value">content</element>
name is the name of the attribute.

value is the string value of the attribute. You can use double quotes, as this example shows, or, alternatively,
single quotes.

ELEMENT DECLARATIONS

Syntax
<! ELEMENT name (content) >
Starts with the word ENTITY. name is the name of the element.

content is the type of data in the element; it can be:

ANY any type of data
EMPTY no data
#PCDATA parsed character data

ATTRIBUTE DECLARATIONS

Syntax
<!ATTLIST element name value default >

Starts with the word ATTLIST. element is the name of the element. name is the name of the attribute. value
indicates the type of value; it can be:

CDATA character data

NMTOKEN single name token
NMTOKENS multiple name tokens

ID unique element identifier
ENTITY an entity reference

default is the default value for the attribute.

293

APPENDIX

WHAT’S ON THE CD-ROM

useful files and programs. Before installing any of the

programs on the disc, make sure that you do not
already have a newer version of the program already
installed on your computer. For information on installing

T he CD-ROM included in this book contains many

SYSTEM REQUIREMENTS

To use the contents of the CD-ROM, your computer must
have the following hardware and software:

e A PC with a Pentium or faster processor
¢ Microsoft Windows 95, 98, ME, NT 4.0, 2000, or XP

* At least 128MB of physical RAM installed on your
computer

e A double-speed (8x) or faster CD-ROM drive

* A monitor capable of displaying at least 256 colors or
grayscale

¢ A network card

AUTHOR’S SOURCE CODE

These files contain all the sample code from the book. You

can browse the files directly from the CD-ROM, or you can
copy them to your hard drive and use them as the basis for
your own projects. To find the files on the CD-ROM, open

the D:\Samples folder.

ACROBAT VERSION

The CD-ROM contains an e-version of this book that you
can view and search using Adobe Acrobat Reader. You
cannot print the pages or copy text from the Acrobat files.
The CD-ROM includes an evaluation version of Adobe
Acrobat Reader.

294

different versions of the same program, contact the
program’s manufacturer. For the latest and greatest
information, please refer to the ReadMe file located at the
root level of the CD-ROM.

INSTALLING AND USING THE SOFTWARE

For your convenience, the software titles appearing on the
CD-ROM are listed alphabetically.

Acrobat Reader
For Windows 95/98/NT/2000 and Linux. Freeware.

Adobe Acrobat Reader allows you to view the online
version of this book. For more information on using
Acrobat Reader, see the section "Using the e-Version of this
Book" in this Appendix. For more information about
Acrobat Reader and Adobe Systems, see www.adobe.com.

Crimson
For all platforms. Open Source.

Crimson is a Java XML parser that you can access from
within the Java code you create. The Crimson XML
parser supports JAXP, SAX, and the DOM API. For more
information about the Crimson XML parser, see
http://xml.apache.org/crimson/.

GNU JAXP
For all platforms. GNU Public License.

GNU JAXP is a no-cost version of the standard XML
processing API, SAX, DOM, and JAXP, for Java. For more
information and updates, and for the latest version of GNU
JAXP, see http://www.gnu.org/software/classpathx/jaxp/.

Java 2 SDK, Standard Edition v1.3.1

For Windows 95/98/NT/2000/XP and Linux. Sun
Microsystems Public License.

You can use the standard edition of the Java 2 platform by
Sun Microsystems to create, execute, and assist in deploying
Java applications. For more information, see http://java.sun.
com/j2se/.

JDOM
For Windows 95/98/NT/2000/XP and Linux. Open Source.
JDOM is a programming API that accesses XML documents

from within your Java code. For more information and the
latest updates, see http://www.jdom.org/.

JPad Pro
For Windows 95/98/NT/2000/XP. Shareware.

JPad Pro is an integrated development environment that
creates, compiles, and executes Java applications. For more
information, see http://www.modelworks.com/products.
html.

UltraEdit
For Windows 95/98/NT/2000/XP. Shareware.

UltraEdit is a text editor that creates code in many
languages, including Java and XML. Ultrakdit has many
features to make coding easier and more efficient. For
more information, see http://www.ultraedit.com/.

Xerces Java Parser
For all platforms. Open Source.

Xerces is an XML parser that you can access from within your
Java applications. Xerces is currently the most popular XML
parser for use with Java applications. For more information
and updates, see http://xml.apache.org/xerces-j/.

WHAT’S ON THE CD-ROM

XML Pro
For Windows 95/98/NT/2000/XP. Shareware.

XML Pro is an XML editor that you can use to create

XML documents. As well as having a full range of editing
capabilities, XML Pro fully supports the Java SDK. For more
information, see http://www.vervet.com/demo.html.

XML Spy Suite
For Windows 95/98/NT/2000/XP. Shareware.

XML Spy is an application that creates and validates
XML documents including DTDs and schemas. For
more information, see http://www.xmlspy.com.

TROUBLESHOOTING

The programs on the CD-ROM should work on computers
with the minimum of system requirements. However, some
programs may not work properly.

The two most likely reasons for the programs not working
properly include not having enough memory (RAM) for

the programs you want to use, or having other programs
running that affect the installation or running of a program.
If you receive error messages such as Not enough
memory Or Setup cannot continue, try one or more of
the methods below and then try using the software again:

e Turn off any anti-virus software
¢ Close all running programs

¢ In Windows, close the CD-ROM interface and run
demos or installations directly from Windows Explorer

e Have your local computer store add more RAM to your
computer

If you still have trouble installing the items from the
CD-ROM,, call the Wiley Publishing Customer Service
phone number: 800-762-2974 (outside the U.S.:
317-572-3994). You can also contact Wiley Publishing
Customer Service by e-mail at techsupdum@wiley.com.

APPENDIX

USING THE E-VERSION OF THIS BOOK

ou can view Java and XML: Your visual blueprint for CD-ROM includes this program for your convenience.
Ycreating Java-enhanced Web programs on your screen Acrobat Reader allows you to view Portable Document

using the CD-ROM included at the back of this book. Format (PDF) files, which can display books and magazines
The CD-ROM allows you to search the contents of each on your screen exactly as they appear in printed form.
chapter of the book for a specific word or phrase. The . . .
CDPROM also provides a cgnvenient way opf keeping the U ey the content of this book using Acrobat Reader,
book handy while traveling. display the contents of the CD-ROM. Double-click the

Book folder to display the contents of the folder. In the

You must install Adobe Acrobat Reader on your computer window that appears, double-click the icon for the chapter
before you can view the book on the CD-ROM. The of the book you want to review.

USING THE E-VERSION OF THE BOOK

B
)
FLIP THROUGH PAGES [First page ZOOM IN M Click one of these options
Click one of these options [&] Previous page —E0 Click [&] to magnify an to dlspr.3y the page at 10?_%
to flip through the pages of a area of the page. magnification (I or to fit
section. [Next page the entire page inside the

—H Click the area of the page window ([@]).
[4] Last page you want to magnify.

296

WHAT’S ON THE CD-ROM

EX&{ To install Acrobat Reader, insert the CD-ROM into
a drive. In the screen that appears, click Software.
Click Acrobat Reader and then follow the

instructions on your screen to install the program.

You can make searching the book more
convenient by copying the PDF files to your
computer. To do this, display the contents of the
CD-ROM and then copy the Book folder from
the CD-ROM to your hard drive. This allows you
to easily access the contents of the book at any

Acrobat Reader is a popular and useful program.
There are many files available on the Web that are
designed to be viewed using Acrobat Reader. Look for
files with the .pdf extension. For more information
about Acrobat Reader, visit the www.adobe.com/
products/acrobat/readermain.html Web site.

time.
=
— [1

: > —L

iy
FIND TEXT H Type the text you want to —Mll The first instance of the E1 Click Find Again to find

LN Click @ to search for text find. text is highlighted. the next instance of the text.

in the section. Click Find to start the
M The Find dialog box SR,

appears.

297

APPENDIX

END-USER LICENSE AGREEMENT

READ THIS. You should carefully read these terms and
conditions before opening the software packet(s)
included with Java and XML: Your visual blueprint for
creating Java-enhanced Web programs. This is a license
agreement ("Agreement") between you and "Wiley
Publishing". By opening the accompanying software
packet(s), you acknowledge that you have read and
accept the following terms and conditions. If you do not
agree and do not want to be bound by such terms and
conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them from
for a full refund.

1. License Grant. Wiley Publishing grants to you (either
an individual or entity) a nonexclusive license to use one
copy of the enclosed software program(s) (collectively,
the "Software") solely for your own personal or business
purposes on a single computer (whether a standard
computer or a workstation component of a multi-user
network). The Software is in use on a computer when

it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disc, CD-ROM, or other
storage device). Wiley Publishing reserves all rights not
expressly granted herein.

2. Ownership. Wiley Publishing is the owner of all
right, title, and interest, including copyright, in and

to the compilation of the Software recorded on the
disc(s) or CD-ROM ("Software Media"). Copyright to

the individual programs recorded on the Software Media
is owned by the author, or other authorized copyright
owner of each program. Ownership of the Software and
all proprietary rights relating thereto remain with Wiley
Publishing and its licensers.

3. Restrictions on Use and Transfer.

(@) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software
to a single hard disc, provided that you keep the original
for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any

computer subscriber system or bulletin-board system, or
(iii) modify, adapt, or create derivative works based on
the Software.

(b) You may not reverse engineer, decompile, or
disassemble the Software. You may transfer the Software
and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies.
If the Software is an update or has been updated, any
transfer must include the most recent update and all
prior versions.

4. Restrictions on Use of Individual Programs. You must
follow the individual requirements and restrictions
detailed for each individual program in Appendix D of
this Book. These limitations are also contained in the
individual license agreements recorded on the Software
Media. These limitations may include a requirement that
after using the program for a specified period of time,
the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing
to abide by the licenses and restrictions for these
individual programs that are detailed in Appendix D

and on the Software Media. None of the material on
this Software Media or listed in this Book may ever

be redistributed, in original or modified form, for
commercial purposes.

5. Limited Warranty.

(@) Wiley Publishing warrants that the Software and
Software Media are free from defects in materials and
workmanship under normal use for a period of sixty (60)
days from the date of purchase of this Book. If Wiley
Publishing receives notification within the warranty
period of defects in materials or workmanship, Wiley
Publishing will replace the defective Software Media.

(b) WILEY PUBLISHING AND THE AUTHOR OF THE
BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT
TO THE SOFTWARE, THE PROGRAMS, THE SOURCE

CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WILEY
PUBLISHING DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN THE SOFTWARE

WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights,
and you may have other rights that vary from jurisdiction
to jurisdiction.

6. Remedies.

(@) Wiley Publishing’s entire liability and your exclusive
remedy for defects in materials and workmanship shall
be limited to replacement of the Software Media, which
may be returned to Wiley Publishing with a copy of
your receipt at the following address: Software Media
Fulfillment Department, Attn.: Java and XML: Your visual
blueprint for creating Java-enhanced Web programs,
Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please
allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has
resulted from accident, abuse or misapplication. Any
replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30)
days, whichever is longer.

(b) In no event shall Wiley Publishing or the author be
liable for any damages whatsoever (including without
limitation damages for loss of business profits, business
interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to use
the Book or the Software, even if Wiley Publishing has
been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the
exclusion or limitation of liability for consequential or
incidental damages, the above limitation or exclusion
may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication,
or disclosure of the Software for or on behalf of the
United States of America, its agencies and/or

WHAT’S ON THE CD-ROM

instrumentalities (the "U.S. Government") is subject to
restrictions as stated in paragraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause of
DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of
the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, and in similar clauses in the
NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire
understanding of the parties and revokes and
supersedes all prior agreements, oral or written,
between them and may not be modified or amended
except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement
shall take precedence over any other documents
that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise
unenforceable, each and every other provision shall
remain in full force and effect.

APPENDIX

JAVA™ END-USER LICENSE AGREEMENT

FORTE FOR JAVA, RELEASE 3.0,
COMMUNITY EDITION, ENGLISH

SUN MICROSYSTEMS, INC.
BINARY CODE LICENSE AGREEMENT

To obtain Forte for Java, release 3.0, Community Edition, English, you must
agree to the software license below.

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED
SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”)
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY
OPENING THE SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS
OF THIS AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE
ELECTRONICALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY
SELECTING THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE
UNUSED SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.

1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable
license for the internal use only of the accompanying software and
documentation and any error corrections provided by Sun (collectively
“Software”), by the number of users and the class of computer hardware for
which the corresponding fee has been paid.

2. RESTRICTIONS. Software is confidential and copyrighted. Title to
Software and all associated intellectual property rights is retained by Sun
and/or its licensors. Except as specifically authorized in any Supplemental
License Terms, you may not make copies of Software, other than a single
copy of Software for archival purposes. Unless enforcement is prohibited by
applicable law, you may not modify, decompile, or reverse engineer
Software. You acknowledge that Software is not designed, licensed or
intended for use in the design, construction, operation or maintenance of
any nuclear facility. Sun disclaims any express or implied warranty of fitness
for such uses. No right, title or interest in or to any trademark, service mark,
logo or trade name of Sun or its licensors is granted under this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90)
days from the date of purchase, as evidenced by a copy of the receipt, the
media on which Software is furnished (if any) will be free of defects in
materials and workmanship under normal use. Except for the foregoing,
Software is provided “AS IS”. Your exclusive remedy and Sun’s entire liability
under this limited warranty will be at Sun’s option to replace Software media
or refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT,
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW,
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event
will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this
Agreement. The foregoing limitations will apply even if the above stated
warranty fails of its essential purpose.

6. Termination. This Agreement is effective until terminated. You may
terminate this Agreement at any time by destroying all copies of Software.
This Agreement will terminate immediately without notice from Sun if you
fail to comply with any provision of this Agreement. Upon Termination, you
must destroy all copies of Software.

7. Export Regulations. All Software and technical data delivered under this
Agreement are subject to US export control laws and may be subject to

300

export or import regulations in other countries. You agree to comply strictly
with all such laws and regulations and acknowledge that you have the
responsibility to obtain such licenses to export, re-export, or import as may
be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or on
behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in Software and
accompanying documentation will be only as set forth in this Agreement; this
is in accordance with 48 CFR 227.7201 through 227.7202-4 (for Department
of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-
DOD acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any
jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be
unenforceable, this Agreement will remain in effect with the provision
omitted, unless omission would frustrate the intent of the parties, in which
case this Agreement will immediately terminate.

11. Integration. This Agreement is the entire agreement between you and
Sun relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, representations and warranties
and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification of this
Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

FORTE" FOR JAVA", RELEASE 3.0,
COMMUNITY EDITION

SUPPLEMENTAL LICENSE TERMS

These supplemental license terms (“Supplemental Terms”) add to or modify
the terms of the Binary Code License Agreement (collectively, the
“Agreement”). Capitalized terms not defined in these Supplemental Terms
shall have the same meanings ascribed to them in the Agreement. These
Supplemental Terms shall supersede any inconsistent or conflicting terms in
the Agreement, or in any license contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the
terms and conditions of this Agreement, including, but not limited to Section
4 (Java™ Technology Restrictions) of these Supplemental Terms, Sun grants
you a non-exclusive, non-transferable, limited license to reproduce internally
and use internally the binary form of the Software complete and unmodified
for the sole purpose of designing, developing and testing your Java applets
and applications intended to run on the Java platform (“Programs”).

2. License to Distribute Software. Subject to the terms and conditions of this
Agreement, including, but not limited to Section 4 (Java™ Technology
Restrictions) of these Supplemental Terms, Sun grants you a non-exclusive,
non-transferable, limited license to reproduce and distribute the Software in
binary code form only, provided that (i) you distribute the Software complete
and unmodified and only bundled as part of, and for the sole purpose of
running, your Programs, (ii) the Programs add significant and primary
functionality to the Software, (iii) you do not distribute additional software
intended to replace any component(s) of the Software, (iv) for a particular
version of the Java platform, any executable output generated by a compiler
that is contained in the Software must (a) only be compiled from source code
that conforms to the corresponding version of the OEM Java Language
Specification; (b) be in the class file format defined by the corresponding
version of the OEM Java Virtual Machine Specification; and (c) execute
properly on a reference runtime, as specified by Sun, associated with such
version of the Java platform, (v) you do not remove or alter any proprietary
legends or notices contained in the Software, (v) you only distribute the
Software subject to a license agreement that protects Sun’s interests consistent
with the terms contained in this Agreement, and (vi) you agree to defend and
indemnify Sun and its licensors from and against any damages, costs, liabilities,
settlement amounts and/or expenses (including attorneys’ fees) incurred in
connection with any claim, lawsuit or action by any third party that arises or
results from the use or distribution of any and all Programs and/or Software.

3. License to Distribute Redistributables. Subject to the terms and
conditions of this Agreement, including but not limited to Section 4 (Java
Technology Restrictions) of these Supplemental Terms, Sun grants you a non-

exclusive, non-transferable, limited license to reproduce and distribute the
binary form of those files specifically identified as redistributable in the
Software “RELEASE NOTES” file (“Redistributables”) provided that: (i) you
distribute the Redistributables complete and unmodified (unless otherwise
specified in the applicable RELEASE NOTES file), and only bundled as part of
Programs, (i) you do not distribute additional software intended to
supersede any component(s) of the Redistributables, (iii) you do not remove
or alter any proprietary legends or notices contained in or on the
Redistributables, (iv) for a particular version of the Java platform, any
executable output generated by a compiler that is contained in the Software
must (a) only be compiled from source code that conforms to the
corresponding version of the OEM Java Language Specification; (b) be in the
class file format defined by the corresponding version of the OEM Java
Virtual Machine Specification; and (c) execute properly on a reference
runtime, as specified by Sun, associated with such version of the Java
platform, (v) you only distribute the Redistributables pursuant to a license
agreement that protects Sun’s interests consistent with the terms contained
in the Agreement, and (v) you agree to defend and indemnify Sun and its
licensors from and against any damages, costs, liabilities, settlement amounts
and/or expenses (including attorneys’ fees) incurred in connection with any
claim, lawsuit or action by any third party that arises or results from the use
or distribution of any and all Programs and/or Software.

4. Java Technology Restrictions. You may not modify the Java Platform
Interface (“JPI, identified as classes contained within the “java” package or any
subpackages of the “java” package), by creating additional classes within the
JPI or otherwise causing the addition to or modification of the classes in the
JPL. In the event that you create an additional class and associated API(s) which
(i) extends the functionality of the Java platform, and (ii) is exposed to third
party software developers for the purpose of developing additional software
which invokes such additional API, you must promptly publish broadly an
accurate specification for such API for free use by all developers. You may not
create, or authorize your licensees to create, additional classes, interfaces, or
subpackages that are in any way identified as “java’, “javax’, “sun” or similar
convention as specified by Sun in any naming convention designation.

5. Java Runtime Availability. Refer to the appropriate version of the Java
Runtime Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code
which may be distributed with Java applets and applications.

6. Trademarks and Logos. You acknowledge and agree as between you and
Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related
trademarks, service marks, logos and other brand designations (“Sun
Marks”), and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks.
Any use you make of the Sun Marks inures to Sun’s benefit.

7. Source Code. Software may contain source code that is provided
solely for reference purposes pursuant to the terms of this Agreement.
Source code may not be redistributed unless expressly provided for in
this Agreement.

8. Termination for Infringement. Either party may terminate this Agreement
immediately should any Software become, or in either party’s opinion be
likely to become, the subject of a claim of infringement of any intellectual
property right.

For inquiries please contact: Sun Microsystems, Inc. 901

San Antonio Road, Palo Alto, California 94303

(LFI#91205/Form ID#011801)

TERMS AND CONDITIONS OF THE LICENSE &
EXPORT FOR JAVA"™ 2 SDK, STANDARD EDITION

1.4.0 SUN MICROSYSTEMS, INC.

BINARY CODE LICENSE AGREEMENT

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED
SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”)
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY
OPENING THE SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS
OF THIS AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE
ELECTRONICALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY
SELECTING THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE

WHAT’S ON THE CD-ROM

UNUSED SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.

1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable
license for the internal use only of the accompanying software and
documentation and any error corrections provided by Sun (collectively
“Software”), by the number of users and the class of computer hardware for
which the corresponding fee has been paid.

2. RESTRICTIONS. Software is confidential and copyrighted. Title to
Software and all associated intellectual property rights is retained by Sun
and/or its licensors. Except as specifically authorized in any Supplemental
License Terms, you may not make copies of Software, other than a single
copy of Software for archival purposes. Unless enforcement is prohibited by
applicable law, you may not modify, decompile, or reverse engineer
Software. You acknowledge that Software is not designed, licensed or
intended for use in the design, construction, operation or maintenance of
any nuclear facility. Sun disclaims any express or implied warranty of fitness
for such uses. No right, title or interest in or to any trademark, service mark,
logo or trade name of Sun or its licensors is granted under this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90)
days from the date of purchase, as evidenced by a copy of the receipt, the
media on which Software is furnished (if any) will be free of defects in
materials and workmanship under normal use. Except for the foregoing,
Software is provided “AS 1IS”. Your exclusive remedy and Sun’s entire liability
under this limited warranty will be at Sun’s option to replace Software media
or refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT,
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW,
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event
will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this
Agreement. The foregoing limitations will apply even if the above stated
warranty fails of its essential purpose.

6. Termination. This Agreement is effective until terminated. You may
terminate this Agreement at any time by destroying all copies of Software. This
Agreement will terminate immediately without notice from Sun if you fail to
comply with any provision of this Agreement. Upon Termination, you must
destroy all copies of Software.

7. Export Regulations. All Software and technical data delivered under this
Agreement are subject to US export control laws and may be subject to
export or import regulations in other countries. You agree to comply strictly
with all such laws and regulations and acknowledge that you have the
responsibility to obtain such licenses to export, re-export, or import as may
be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or on
behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in Software and
accompanying documentation will be only as set forth in this Agreement; this
is in accordance with 48 CFR 227.7201 through 227.7202-4 (for Department
of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-
DOD acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any
jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be
unenforceable, this Agreement will remain in effect with the provision
omitted, unless omission would frustrate the intent of the parties, in which
case this Agreement will immediately terminate.

APPENDIX

11. Integration. This Agreement is the entire agreement between you and
Sun relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, representations and warranties
and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification of this
Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

JAVATM 2 SOFTWARE DEVELOPMENT KIT (J2SDK),
STANDARD EDITION,VERSION 1.4.X

SUPPLEMENTAL LICENSE TERMS

These supplemental license terms (“Supplemental Terms”) add to or modify
the terms of the Binary Code License Agreement (collectively, the
“Agreement”). Capitalized terms not defined in these Supplemental Terms
shall have the same meanings ascribed to them in the Agreement. These
Supplemental Terms shall supersede any inconsistent or conflicting terms in
the Agreement, or in any license contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the terms
and conditions of this Agreement, including, but not limited to Section 4 (Java
Technology Restrictions) of these Supplemental Terms, Sun grants you a non-
exclusive, non-transferable, limited license to reproduce internally and use
internally the binary form of the Software complete and unmodified for the
sole purpose of designing, developing and testing your Java applets and
applications intended to run on the Java platform (“Programs”).

2. License to Distribute Software. Subject to the terms and conditions of this
Agreement, including, but not limited to Section 4 (Java Technology
Restrictions) of these Supplemental Terms, Sun grants you a non-exclusive,
non-transferable, limited license to reproduce and distribute the Software,
provided that (i) you distribute the Software complete and unmodified
(unless otherwise specified in the applicable README file) and only bundled
as part of, and for the sole purpose of running, your Programs, (i) the
Programs add significant and primary functionality to the Software, (iii) you
do not distribute additional software intended to replace any component(s)
of the Software (unless otherwise specified in the applicable README file),
(iv) you do not remove or alter any proprietary legends or notices contained
in the Software, (v) you only distribute the Software subject to a license
agreement that protects Sun’s interests consistent with the terms contained
in this Agreement, and (vi) you agree to defend and indemnify Sun and its
licensors from and against any damages, costs, liabilities, settlement amounts
and/or expenses (including attorneys’ fees) incurred in connection with any
claim, lawsuit or action by any third party that arises or results from the use
or distribution of any and all Programs and/or Software. (vi) include the
following statement as part of product documentation (whether hard copy or
electronic), as a part of a copyright page or proprietary rights notice page, in
an “About” box or in any other form reasonably designed to make the
statement visible to users of the Software: “This product includes code
licensed from RSA Security, Inc”; and (vii) include the statement, “Some
portions licensed from IBM are available at
http://oss.software.ibm.com/icu4;j/".

3. License to Distribute Redistributables. Subject to the terms and conditions of
this Agreement, including but not limited to Section 4 (Java Technology
Restrictions) of these Supplemental Terms, Sun grants you a non-exclusive, non-
transferable, limited license to reproduce and distribute those files specifically
identified as redistributable in the Software “README” file (“Redistributables”)
provided that: (i) you distribute the Redistributables complete and unmodified
(unless otherwise specified in the applicable README file), and only bundled as
part of Programs, (i) you do not distribute additional software intended to
supersede any component(s) of the Redistributables (unless otherwise specified
in the applicable README file), (iii) you do not remove or alter any proprietary
legends or notices contained in or on the Redistributables, (iv) you only
distribute the Redistributables pursuant to a license agreement that protects
Sun’s interests consistent with the terms contained in the Agreement, (v) you
agree to defend and indemnify Sun and its licensors from and against any
damages, costs, liabilities, settlement amounts and/or expenses (including
attorneys’ fees) incurred in connection with any claim, lawsuit or action by any
third party that arises or results from the use or distribution of any and all
Programs and/or Software, (vi) include the following statement as part of
product documentation (whether hard copy or electronic), as a part of a
copyright page or proprietary rights notice page, in an “About” box or in any

302

other form reasonably designed to make the statement visible to users of the
Software: “This product includes code licensed from RSA Security, Inc”; and (vii)
include the statement, “Some portions licensed from IBM are available at
http://oss.software.ibm.com/icu4j/".

4. Java Technology Restrictions. You may not modify the Java Platform
Interface (“JPI’, identified as classes contained within the “java” package or any
subpackages of the “java” package), by creating additional classes within the
JPI or otherwise causing the addition to or modification of the classes in the
JPL. In the event that you create an additional class and associated API(s) which
(i) extends the functionality of the Java platform, and (ii) is exposed to third
party software developers for the purpose of developing additional software
which invokes such additional API, you must promptly publish broadly an
accurate specification for such API for free use by all developers. You may not
create, or authorize your licensees to create, additional classes, interfaces, or
subpackages that are in any way identified as “java’, “javax’, “sun” or similar
convention as specified by Sun in any naming convention designation.

5. Notice of Automatic Software Updates from Sun. You acknowledge that the
Software may automatically download, install, and execute applets,
applications, software extensions, and updated versions of the Software from
Sun (“Software Updates”), which may require you to accept updated terms and
conditions for installation. If additional terms and conditions are not presented
on installation, the Software Updates will be considered part of the Software
and subject to the terms and conditions of the Agreement.

6. Notice of Automatic Downloads. You acknowledge that, by your use of the
Software and/or by requesting services that require use of the Software, the
Software may automatically download, install, and execute software
applications from sources other than Sun (“Other Software”). Sun makes no
representations of a relationship of any kind to licensors of Other Software.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE
OTHER SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

7. Trademarks and Logos. You acknowledge and agree as between you and
Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related
trademarks, service marks, logos and other brand designations (“Sun
Marks”), and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks.
Any use you make of the Sun Marks inures to Sun’s benefit.

8. Source Code. Software may contain source code that is provided solely for
reference purposes pursuant to the terms of this Agreement. Source code
may not be redistributed unless expressly provided for in this Agreement.

9. Termination for Infringement. Either party may terminate this Agreement
immediately should any Software become, or in either party’s opinion be
likely to become, the subject of a claim of infringement of any intellectual
property right.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road,
Palo Alto, California 94303

(LFI1#109998/Form ID#011801)

TERMS AND CONDITIONS OF THE LICENSE &
EXPORT FOR JAVA™ 2 MICRO EDITION WIRELESS
TOOLKIT 1.0.3 SUN MICROSYSTEMS, INC.
BINARY CODE LICENSE AGREEMENT

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED
SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”)
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY
OPENING THE SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS
OF THIS AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE
ELECTRONICALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY
SELECTING THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE
UNUSED SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.

1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable
license for the internal use only of the accompanying software and
documentation and any error corrections provided by Sun (collectively
“Software”), by the number of users and the class of computer hardware for
which the corresponding fee has been paid.

2. RESTRICTIONS. Software is confidential and copyrighted. Title to
Software and all associated intellectual property rights is retained by Sun
and/or its licensors. Except as specifically authorized in any Supplemental
License Terms, you may not make copies of Software, other than a single
copy of Software for archival purposes. Unless enforcement is prohibited by

applicable law, you may not modify, decompile, or reverse engineer Software.

You acknowledge that Software is not designed, licensed or intended for use
in the design, construction, operation or maintenance of any nuclear facility.
Sun disclaims any express or implied warranty of fitness for such uses. No
right, title or interest in or to any trademark, service mark, logo or trade
name of Sun or its licensors is granted under this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90)
days from the date of purchase, as evidenced by a copy of the receipt, the
media on which Software is furnished (if any) will be free of defects in
materials and workmanship under normal use. Except for the foregoing,
Software is provided “AS IS”. Your exclusive remedy and Sun’s entire liability
under this limited warranty will be at Sun’s option to replace Software media
or refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT,
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTARBILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW,
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event
will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this
Agreement. The foregoing limitations will apply even if the above stated
warranty fails of its essential purpose.

6. Termination. This Agreement is effective until terminated. You may
terminate this Agreement at any time by destroying all copies of Software.
This Agreement will terminate immediately without notice from Sun if you
fail to comply with any provision of this Agreement. Upon Termination, you
must destroy all copies of Software.

7. Export Regulations. All Software and technical data delivered under this
Agreement are subject to US export control laws and may be subject to
export or import regulations in other countries. You agree to comply strictly
with all such laws and regulations and acknowledge that you have the
responsibility to obtain such licenses to export, re-export, or import as may
be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or on
behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in Software and
accompanying documentation will be only as set forth in this Agreement; this
is in accordance with 48 CFR 227.7201 through 227.7202-4 (for Department
of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-
DOD acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any
jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be
unenforceable, this Agreement will remain in effect with the provision
omitted, unless omission would frustrate the intent of the parties, in which
case this Agreement will immediately terminate.

11. Integration. This Agreement is the entire agreement between you and
Sun relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, representations and warranties

WHAT’S ON THE CD-ROM

and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification of this
Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

JAVA" DEVELOPMENT TOOLS J2ME" WIRELESS
TOOLKIT (J2MEWTK),VERSION 1.0.X
SUPPLEMENTAL LICENSE TERMS

These supplemental license terms (“Supplemental Terms”) add to or modify
the terms of the Binary Code License Agreement (collectively, the
“Agreement”). Capitalized terms not defined in these Supplemental Terms
shall have the same meanings ascribed to them in the Agreement. These
Supplemental Terms shall supersede any inconsistent or conflicting terms in
the Agreement, or in any license contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the
terms and conditions of this Agreement, including, but not limited to Section
2 (Java™ Technology Restrictions) of these Supplemental Terms, Sun grants you
a non-exclusive, non-transferable, limited license to reproduce internally and
use internally the binary form of the Software complete and unmodified for
the sole purpose of designing, developing and testing your Java applets and
applications intended to run on the Java platform (“Programs”) provided that
any executable output generated by a compiler that is contained in the
Software must (a) only be compiled from source code that conforms to the
corresponding version of the OEM Java Language Specification; (b) be in the
class file format defined by the corresponding version of the OEM Java Virtual
Machine Specification; and (c) execute properly on a reference runtime, as
specified by Sun, associated with such version of the Java platform.

2. Java Technology Restrictions. You may not modify the Java Platform
Interface (“JPI’, identified as classes contained within the “java” package or
any subpackages of the “java” package), by creating additional classes within
the JPI or otherwise causing the addition to or modification of the classes in
the JPI. In the event that you create an additional class and associated API(s)
which (i) extends the functionality of the Java platform, and (ii) is exposed to
third party software developers for the purpose of developing additional
software which invokes such additional API, you must promptly publish
broadly an accurate specification for such API for free use by all developers.
You may not create, or authorize your licensees to create, additional classes,
interfaces, or subpackages that are in any way identified as “java’, “javax’,
“sun” or similar convention as specified by Sun in any naming convention
designation.

3. Java Runtime Availability. Refer to the appropriate version of the Java
Runtime Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code
which may be distributed with Java applets and applications.

4. Trademarks and Logos. You acknowledge and agree as between you and
Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related
trademarks, service marks, logos and other brand designations (“Sun Marks”),
and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks.
Any use you make of the Sun Marks inures to Sun’s benefit.

5. Source Code. Software may contain source code that is provided solely for
reference purposes pursuant to the terms of this Agreement. Source code
may not be redistributed unless expressly provided for in this Agreement.

6. Termination for Infringement. Either party may terminate this Agreement
immediately should any Software become, or in either party’s opinion be
likely to become, the subject of a claim of infringement of any intellectual
property right.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road,
Palo Alto, California 94303

(LF1#101620/Form ID#011801)

303

A

abstract classes, 143
API (Application Programming Interface), 18
applications
overview, 13
XML validation, 114-115
arguments, 17, 40-43
arrays, 52-53
attributes
declarations, 79, 124-127, 293
elements
CDATA, 90-91
definition, 90-91
JDOM API, 248-249
SAX API, 150-151
XML, 72-73, 293
enumerated lists, 94-95
groups, 132-133
names, DOM API, 194-195
namespace attribute, 104-105
order, 153
tokens, 92-93
validation rules, 93
values list, 94-95

B

blocks
statement blocks, 44-45
variable scope leave, 65

C

calls, methods, 40-41, 43
case values, 50-51
CD-ROM, 294-295
CDATA attribute, 90-91
CDATA section, XML documents
defined, 292
extraction, DOM API, 210-211
JDOM API, 244-245
overview, 80-81
CDATA section object, 210-211
characters in strings, number of, 39
characters method, 142

304

child elements
DOM API, 222-223
JDOM API, 236-237, 254-255
overview, 70-71
child nodes, 190-191
class files
new operator, 32-33
SAX API, 137
class keyword, 22
classes
abstract, 143
declaration, object creation, 32
event handler, 142-143
extensions, 58-59
import operations, 56-57
instances, 16
Java, 22-23
Java class library, 18
JAXP API, 284
names, 23
overview, 5, 16, 18
packages, directories, 54-55
standard class library, 18
subclasses, 58-59
superclasses, 58-59
CLASSPATH environment variable
JAXP API, 263
JDOM API, 230
SAX API, 140-141
comment method, lexical handler, 178179
comments
extraction, DOM API, 208-209
JDOM API, 242-243
statements, Java, 21
XML, 74-75, 291
compositor sequence tag, elements, 117
conditional statements, 44—45
conditions, 46-51
constraints, XML documents
attribute values, 128-129
element values, lists, 122-123
overview, 69
values, regular expressions, 134-135
constructors, object fields, 35
container elements, 86-87, 116117
control flow, Java, 288-289
Crimson, 294

D

Java™ and XML.:
Your visual blueprint for creating
Java-enhanced Web programs

E

data exchange, XML schemas, 107
data hiding, 17
data types
arrays, 52-53
variables, 36-37, 42
XML schemas, 107
container elements, 116-117
elements, 120-121
declaration handlers, SAX API, 176-177
declarations
array variables, 52-53
attributes, 124-127
container elements, 86-87
elements, 110-111, 116-117
entities in attributes, 79
general entities, DTD, 96-97
global element, 130-131
notation, 98-99, 174-175
optional elements, XML schemas, 118-119
XML, 66-67, 290
XML schemas, 108-109
DHTML (dynamic HTML), 184
direct subclasses, 59
directories
classes, packages, 54-55
Java applications, 33
SDK installation, 14
xerces.jar file, 138—-139
document type declaration, XML, 290
documents, standalone, 66-67
documents, XML
comments, 74-75
creation, DOM, 216-217
elements, 66-67, 70-71
overview, 7
processing instructions, 160-161
saved, JDOM API, 252-253
validation, 69, 114-115
well-formed, 68-69
XML schemas, assigning, 112-113
DOM API, 184-197, 200-231
DTDs (document type definitions)
element declarations, 82-85
general entities, 96-97
detection (DOM), 202-205

elements
arrays, 52-53
attributes, 90-91
child elements, 70-71
DOM API, 222-223
JDOM API, 236-237, 254-255
container elements
declaration, 86-87
XML schemas, 116-117
content, 88-89
data types, XML schemas, 120-121
declarations, 82-83, 110-111
detection, 146-147
empty, 88-89, 111
global element declarations, 130-131
JDOM, text content extraction, 240-241
local definitions, 130-131
name element, 102
nested, 86-87
optional, XML schemas, 118-119
parent elements, 70-71
predefined, references, 130-131
root element, 186-187, 232-235
simple types, 124-125
specific content, 88-89
structure definition, 88-89
textual, extraction (SAX API), 148-149
type determination, JDOM API, 258-259
values, 120-123
whitespace, ignorable, 158-159
XML, 70-73, 292-293
entities
general entities, 96-97
notations comparison, 99
pre-defined references, JDOM, 256-257
reference detection, DOM, 200-201
enumerated lists
attributes, 94-95
element values, 122-123
overview, 129
environment variables, 140-141
error handling
creation, SAX API, 164-165
DOM API, 274-275
overview, 60-63

305

errors I

comments, XML documents, 75
error method, 165
SDK, 29
warnings, 165
XML documents, 66—-67
escape sequence, 287
event-based parsers, 137
event handler classes, 142—-145

IDE (Integrated Development Environment) package
directories, 55

import operations, 56-57
indirect subclasses, 59

infinite loops, 48-49
installation, CD-ROM, 294-295
instances, classes, 16
instatiation, 32-33

events interfaces
detection, JAXP, 266-267
SAX API, 136 DOM API, 278-280

method definitions, 142-143

SAX API, 276277

XMLReader, 144-145
internal entities, XML documents, 79, 291-292
interoperability, Java and XML, 13

exception objects, 60-61

exceptions, 60-63

exclamation point (!), general entities, 100-101
expressions, 46-47, 50-51

extensibility, 12-13

extensions, classes, 58-59]

external DTD files, 84-85
external entities, XML documents
general entities, 100-101
overview, 291
parameter entities, 292

SAX API, 168-169 history of, 2
keywords, 286

F method creation, 24-25

objects, 32-33

operators, 287

SDK (Software Development Kit), 14-15
source file creation, 22-23

Web sites, 289

JAR (Java Archive) files, 18, 138
Java

control flow, 288-289

escape sequences, 287

factory classes, 268-269

false conditions, 46—47

fields, 16, 34-35

float data type, XML schemas, 120-121
floating-point types, Java, 286

XML, 12-13
G Java 2, Enterprise Edition, 294
Java 2 SDK, Standard Edition, 294
general entities, 96-97, 100-101 Java API. See JAXP API
global element declarations, 130-131 Java class library, 18-19
GNU JAXP, 294 Java XML pack, 295
groups, attributes, 132-133 javac compiler, 28-29
GUIs (Graphical User Interfaces), 18 JAXP API
H classes, 284
GNU, 294
handler classes, default (SAX API), 170-171 overview, 262-263
handling errors. See error handling JBuilder Personal, 295
helper applications, notations, 99 JDK (Java Development Kit), 138
hierarchy, 5 JDOM API, 230-281
HTML (Hypertext Markup Language), 6-7 JVM (Java Virtual Machine), 4, 30-31

306

K

keywords
definition, 17
Java, 286

L

lexical handlers, SAX API, 178-179
libraries, 18
license agreement, 8, 14-15, 298-303
lists
element constraints, 122-123
enumerated, attributes, 94-95
local definitions, elements, 130-131
local variables, 64-65
loops,
attribute names, 152-153
iterations, variables, 64—65
Java, semicolons, 20
overview, 46—49

M

main method, 32
markup languages, 6
member variables, 64-65
members, objects, 33
method modifiers, Java, 24-25
methods
arguments, 40-42
body, 32
calls, 40-43
interfaces, 142-143
overview, 3, 16
mobile programs, 3
modular design, XML schemas, 107
modules, 3

N

names
attributes
determination (SAX API), 152-153
DOM API, 194-195
classes, 23
container elements, 86-87

Java™ and XML.:
Your visual blueprint for creating
Java-enhanced Web programs

DTD files, XML documents, 84-85
elements, 71
import operations, 56-57
naming conflicts, 102
namespace-aware parsers, JAXP, 269
namespaces, 102-103
nested elements, 86—87
nested loops, 49
networks, XML, 10
nodes, DOM API and
child nodes, 190-193
copy, 228-229
navigation, 214-215
overview, 184, 190-191
text nodes, 224-225
types, 188189, 226-227
non-XML data, 98-99
nonstandard text, XML documents, 80-81
notations, 98-99

0

object fields, 34-35
object-oriented languages, 3
object-oriented programming, 16-17
objects

defined, 3

exception objects, 60-61

fields, 16

overview 32-35

properties, 16, 150-151
operating systems, SDK, 15
optional element declarations, XML schemas, 118-119
override operations, superclass methods, 59

P

package statements, class files, 54-55
packages, 54-57
parent elements, 70-71
parsed XML documents, 144-145
DOM API, 272-273
JAXP, 264-265
line number being parsed, 156157
SAX API, 144-145

307

parsers
DOM-compliant, 185
event-based parsers, 137
JAXP, 262
non-validating parsers, 180-181
validating parsers, 180-181
PATH environment variable, 140-141
Perl, DOM, 185
platform independence, 8
portability, 2
predefined elements, referencing, 130-131
predefined entities
defined, 78-79
JDOM, 256-257
overview, 291
prefixes, usage toggle (SAX API), 182-183
principle of least surprise, 2
processing instructions, XML documents
defined, 291
notations comparison, 99
overview, 7677
program compiles, Java, 28-29
program executing, 30-31
programming languages, 3, 6
properties
objects, 16, 150-151
XML parsers, SAX API, 172-173

Q

quotes (")
attributes, 72-73
general entities, 96-97

R

readers, event handlers, 144—145
regular expressions, value constraints, 134-135
return statements, 42—43
return types, methods, 24-25
return values, methods, 17
reusable code, 13
root element
DOM tree structure, 218-219
JDOM API, 232-235
name retreival, DOM, 186-187
overview, 70-71

308

S

safe programs, 3
SAX API

attribute interface, 276

attributes, 152-155

class files, 137

cost, 137

declaration handlers, 176-177

default handler, 170-171

documentation, 137

events, 136

overview, 136-137

versions, 136

Xerces XML parser, 138-139
SAX-compliant XML parser, 136
schemas. See XML schemas
scope, variables, 64-65
sequence compositor, 117
servers, 4

SGML (Standard Generalized Markup Language), 6-7

simple language, Java, 2
simple types, elements, 124-125
source code, Java, 28-29
source files creation, Java, 22-23
stability, 9
standalone documents, 66—67
standard class library, 18
statement blocks, 44-45
statements

break statement, 50-51

import statement, 56-57

Java, 20-21

package statements, class files, 54-55

return statements, 42-43
static methods, Java, 24-25, 41

string data type, XML schemas, 110-111, 120-121

String keyword, 38
strings, 38-39

structure, elements, 88-89
subclasses, 58-59
superclasses, 58-59

system environment variables, 140-141

system requirements, 294

T

tags, XML

DTDs, 82-83

overview, 6, 70-71

schemas, 108-109
throw exceptions, 62-63
tokens, attributes, 92-93
tree structure, DOM API and

nodes, 184

output, JDOM, 260-261

root element, 218-219
true conditions, 46—47
typed languages, 36-37

U

UltraEdit, 295
Unicode, 2
user input, exceptions, 61

\

validation, 114-115
values
attributes, 94-95
constraints, regular expressions, 134-135
data type conversion, 36-37
elements, 120-123
expressions, switch statement, 50-51
iterators, re-initialization expressions, 46-47
object fields, 34-35
primitive data types, 36-37
processing instructions, JDOM, 246-247
strings, quotation marks, 38-39
variables, 36-39, 63-65
views, 10
virtual machine architecture, 4
vocabularies, 82-83

W

Web sites, validation services, 115
well-formed XML documents, 68—69

Java™ and XML.:
Your visual blueprint for creating
Java-enhanced Web programs

whitespace
ignorable, SAX API, 158-159
statements, Java, 21
validation, 123

wildcards, imports, 56-57

WinZip, 139

words, tokens, 92-93

X

Xerces Java Parser, 295
Xerces XML Parser, installation, 138-139
XML declaration, 66-67, 290

XML (Extensible Markup Language). See also
documents, XML

Java, 12-13
license, 8
networks, 10
overview, 6
tags, 6, 70-71
versions, 8
XML parser
DTD files, 85
filenames, 85
JDOM API, 230
predefined entities, 78-79
properties, SAX API, 172-173
SAX-compliant, 270-271
Xerces, installation, 138-139
XML Pro, 295
XML schemas, 106-113, 116-121
XML specification, 68—-69
XML Spy Suite, 295
XSL (Extensible Stylesheet Langauge), 9

Z

zip files, 139

309

Read Less — Learn More-

The visual alternative to learning
complex computer topics

New Series!

For experienced “Apply It” and “Extra” provide ready-to-run code and useful tips.

computer users,

Title ISBN Price
developers, network [JEE— Pages 3.0: Your visual blueprint for developing interactive Web sites 0764534726 $26.99
ASP.NET: Your visual blueprint for creating Web

professionals who applications on the .NET Framework 0-7645-3617-6 $26.99
C#: Your visual blueprint for building .NETapplications 0-7645-3601-X $26.99
learn best visual ly N Excel Programming: Your visual blueprint for building

interactive spreadsheets 0-7645-3646-X $26.99
Flash™ ActionScript: Your visual blueprint for creating

Flash™-enhanced Web sites 0-7645-3657-5 $26.99
HTML: Your visual blueprint for designing effective Web pages 0-7645-3471-8 $26.99
Java™: Your visual blueprint for building portable Java programs 0764535439 $26.99
Java™ and XML: Your visual blueprint for creating Java™

enhanced Web programs 0-765-36830-4 $26.99
JavaScript”: Your visual blueprint for building dynamic Web pages 0-7645-4730-5 $26.99
JavaServer” Pages: Your visual blueprint for designing dynamic content with JSP 0-7645-3542-0 $26.99
Linux®: Your visual blueprint to the Linux platform 0-7645-3481-5 $26.99
Perl: Your visual blueprint for building Perl scripts 0764534785 $26.99
PHP: Your visual blueprint for creating open source, server-side content 0-7645-3561-7 $26.99
Unix®: Your visual blueprint to the universe of Unix 0-7645-3480-7 $26.99
Visual Basic® .NET: Your visual blueprint for building versatile

programs on the .NET Framework 0-7645-3649-4 $26.99
Visual C++® .NET: Your visual blueprint for programming on

the .NET platform 0-7645-3664-3 $26.99
XML: Your visual blueprint for building expert Web pages 0-7645-3477-7 $26.99

Over 10 million Visual books in print!

with these two-color Visual guides

The Complete Visual Reference

\T
\ 3
&

“
<
=

Title

Master Active Directory” VISUALLY"

Master Microsoft® Access 2000 VISUALLY™

Master Microsoft® Office 2000 VISUALLY"

Master Microsoft® Word 2000 VISUALLY"

Master Office 97 VISUALLY"

Master Photoshop® 5.5 VISUALLY"

Master Red Hat® Linux® VISUALLY"

Master VISUALLY" Adobe® Photoshop®, Illustrator®,
Premiere®, and After Effects®

Master VISUALLY" Dreamweaver® 4 and Flash™ 5

Master VISUALLY" FrontPage® 2002

Master VISUALLY" HTML 4 & XHTML" 1

Master VISUALLY™ Microsoft® Windows® Me Millennium Edition

Master VISUALLY" Office XP

Master VISUALLY" Photoshop® 6

Master VISUALLY" Web Design

Master VISUALLY" Windows® 2000 Server

Master VISUALLY " Windows® XP

Master Windows® 95 VISUALLY™

Master Windows® 98 VISUALLY"

Master Windows® 2000 Professional VISUALLY"

@ “Master It” tips provide additional topic coverage.

ISBN

0-7645-3425-4
0-7645-6048-4
0-7645-6050-6
0-7645-6046-8
0-7645-6036-0
0-7645-6045-X
0-7645-3436-X

0-7645-3668-0
0-7645-0855-5
0-7645-3580-3
0-7645-3454-8
0-7645-3496-3
0-7645-3599-4
0-7645-3541-2
0-7645-3610-9
0-7645-3426-2
0-7645-3621-4
0-7645-6024-7
0-7645-6034-4
0-7645-3421-1

Price
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99

$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99
$39.99

For visual learners
who want an all-in-one
reference/tutorial that
delivers more in-depth
information about a

technology topic.

The Visual™

series is available
wherever books are
sold, or call
1-800-762-2974.
Outside the US, call
317-572-3993

Java™ and XML:
Your visual blueprint for creating
Java-enhanced Web programs

CD-ROM INSTALLATION INSTRUCTIONS

useful files and programs. Before installing any of

the programs on the disc, make sure that you do
not already have a newer version of the program
already installed on your computer. For information

The CD-ROM included in this book contains many

System Requirements

To use the contents of the CD-ROM, your computer
must have the following hardware and software:

e A PC with a Pentium or faster processor
¢ Microsoft Windows 95, 98, ME, NT 4.0, 2000, or XP

* At least 128MB of physical RAM installed on your
computer

e A double-speed (8x) or faster CD-ROM drive

* A monitor capable of displaying at least 256 colors
or grayscale;

e A network card.

For a full listing of the CD-ROM'’s contents, the
e-Version of the book, troubleshooting instructions,
and End User Licensing Agreements, see Appendix D.

312

on installing different versions of the same program,
contact the program’s manufacturer. For the latest and
greatest information, please refer to the ReadMe file
located at the root level of the CD-ROM.

Java 2 Platform Installations

Use of the Java 2 Platform Micro Edition, Wireless
Toolkit 1.03, (J2ME), Java 2 Platform, Standard Edition
(J2SE) version 1.4 for Windows and Forte for Java are
subject to the Sun Microsystems, Inc. Binary Code
License agreement on pages 298-301 of the
accompanying book. Read this agreement carefully. By
opening the CD package, you are agreeing to be
bound by the terms and conditions of this agreement.

	JavaTM and XML: Your visual blueprint for creating Java-enhanced Web programs
	TABLE OF CONTENTS
	1) INTRODUCING JAVA AND XML
	INTRODUCING THE JAVA PHENOMENON
	INTRODUCING XML
	JAVA AND XML COMBINED

	2) JAVA BASICS
	INSTALL THE JAVA SDK
	OBJECT-ORIENTED PROGRAMMING CONCEPTS
	THE JAVA CLASS LIBRARY
	JAVA CONVENTIONS
	CREATE A SOURCE FILE
	CREATE A METHOD
	CREATE THE METHOD BODY
	COMPILE A JAVA PROGRAM
	EXECUTE A JAVA PROGRAM

	3) JAVA PROGRAMMING
	CREATE AN OBJECT
	WORK WITH OBJECT FIELDS
	SPECIFY THE DATA TYPE FOR A VARIABLE
	WORK WITH STRINGS
	CALL A METHOD
	USING RETURN VALUES AND ARGUMENTS
	USING THE IF STATEMENT
	USING THE FOR STATEMENT
	USING THE WHILE OR DO WHILE LOOP
	USING THE SWITCH STATEMENT
	CREATE AN ARRAY
	CREATE A PACKAGE
	IMPORT A PACKAGE
	EXTEND A CLASS
	CREATE AN EXCEPTION
	HANDLE ERRORS
	UNDERSTANDING VARIABLE SCOPE

	4) XML BASICS
	CREATE AN XML DOCUMENT
	VERIFY WELL-FORMEDNESS
	CREATE ELEMENTS
	ADD ATTRIBUTES
	ADD A COMMENT
	INCLUDE SPECIAL PROCESSING INSTRUCTIONS
	USING PREDEFINED XML ENTITIES
	INCLUDE NONSTANDARD TEXT

	5) XML DOCUMENT TYPE DEFINITIONS
	DECLARE A DTD
	CREATE AN EXTERNAL DTD FILE
	DECLARE A CONTAINER ELEMENT
	DEFINE THE STRUCTURE OF ELEMENTS
	DEFINE ELEMENT ATTRIBUTES
	DECLARE ATTRIBUTES AS WORDS
	RESTRICT ATTRIBUTES TO A LIST OF VALUES
	CREATE INTERNAL GENERAL ENTITIES
	CREATE A NOTATION
	CREATE EXTERNAL GENERAL ENTITIES
	USING NAMESPACES
	USING THE XML NAMESPACE ATTRIBUTE

	6) XML SCHEMAS
	INTRODUCING XML SCHEMAS
	CREATE AN XML SCHEMA DECLARATION
	DECLARE AN ELEMENT
	ASSIGN AN XML SCHEMA TO AN XML DOCUMENT
	VALIDATE AN XML DOCUMENT
	DECLARE A CONTAINER ELEMENT
	DECLARE OPTIONAL ELEMENTS
	SPECIFY DATA TYPES
	CONSTRAIN ELEMENT VALUES
	CONSTRAIN ELEMENT VALUES TO A LIST
	DECLARE AN ATTRIBUTE
	CONSTRAIN THE VALUES OF AN ATTRIBUTE
	REFERENCE PREDEFINED ELEMENTS
	CREATE A GROUP OF ATTRIBUTES
	CONSTRAIN VALUES USING REGULAR EXPRESSIONS

	7) THE SAX API
	AN INTRODUCTION TO THE SAX API
	INSTALL THE XERCES XML PARSER
	SET THE CLASSPATH ENVIRONMENT VARIABLE
	CREATE AN EVENT HANDLER CLASS
	PARSE AN XML DOCUMENT
	DETECT ELEMENTS IN AN XML DOCUMENT
	EXTRACT TEXTUAL ELEMENT CONTENT
	DETERMINE THE NUMBER OF ELEMENT ATTRIBUTES
	DETERMINE THE NAME OF ATTRIBUTES
	DETERMINE THE VALUE OF ATTRIBUTES
	DETERMINE THE LINE NUMBER BEING PARSED
	DETERMINE IGNORABLE WHITESPACE IN AN ELEMENT
	WORK WITH PROCESSING INSTRUCTIONS
	PARSE MULTIPLE XML DOCUMENTS USING MULTIPLE EVENT HANDLERS
	CREATE AN ERROR HANDLER
	CREATE A CUSTOM ERROR MESSAGE
	CREATE AN ENTITY RESOLVER
	USING THE DEFAULT HANDLER
	DETERMINE FEATURE AND PROPERTY SETTINGS
	DETECT NOTATION DECLARATIONS
	CREATE A DECLARATION HANDLER
	CREATE A LEXICAL HANDLER
	TURN ON VALIDATION
	TOGGLE NAMESPACE AND PREFIX USAGE

	8) THE DOM
	INTRODUCING THE DOM
	RETRIEVE THE ROOT ELEMENT NAME
	DETERMINE NODE TYPE
	WORK WITH NODES
	TRANSVERSE ALL ELEMENT NODES
	DETERMINE NAMES OF ATTRIBUTES
	DETERMINE THE VALUES OF ATTRIBUTES
	WORK WITH PROCESSING INSTRUCTIONS
	DETECT ENTITY REFERENCES
	DETECT GENERAL ENTITIES IN THE DTD
	RETRIEVE DTD INFORMATION
	RETRIEVE TEXT INFORMATION
	EXTRACT COMMENTS
	EXTRACT CDATA SECTIONS
	RETRIEVE NOTATION DECLARATIONS
	NAVIGATE NODES
	CREATE AN XML DOCUMENT
	CREATE A NEW DOM TREE WITH A ROOT ELEMENT
	ADD ATTRIBUTES TO AN ELEMENT
	ADD A CHILD ELEMENT
	CREATE A TEXT NODE
	CREATE OTHER NODE TYPES
	COPY NODES

	9) JDOM
	INTRODUCING JDOM
	CREATE THE ROOT ELEMENT
	ADD CONTENT TO THE ROOT ELEMENT
	CREATE CHILD ELEMENTS
	READ AN XML DOCUMENT
	EXTRACT ELEMENT TEXT CONTENT
	INSERT A COMMENT
	INSERT A CDATA SECTION
	ADD PROCESSING INSTRUCTIONS
	ADD ATTRIBUTES TO AN ELEMENT
	WORK WITH ATTRIBUTE OBJECTS
	SAVE AN XML DOCUMENT
	WORK WITH CHILD ELEMENTS
	INSERT PRE-DEFINED ENTITY REFERENCES
	DETERMINE ELEMENT TYPE
	OUTPUT A DOM TREE USING JDOM

	10) JAXP
	INTRODUCING JAXP
	PARSE AN XML DOCUMENT
	DETECT EVENTS
	CONFIGURE FACTORY SETTINGS
	SET SAXPARSER FEATURES
	PARSE A DOCUMENT USING DOM
	CREATE AN ERROR HANDLER FOR USE WITH DOM

	APPENDIX A
	SAX API QUICK REFERENCE
	DOM API QUICK REFERENCE
	JDOM QUICK REFERENCE
	JAXP QUICK REFERENCE

	APPENDIX B
	JAVA QUICK REFERENCE

	APPENDIX C
	XML QUICK REFERENCE

	APPENDIX D
	WHAT'S ON THE CD-ROM
	USING THE E-VERSION OF THIS BOOK
	END-USER LICENSE AGREEMENT

	INDEX
	CD-ROM INSTALLATION INSTRUCTIONS

