
Java™ and XMLJava
™and

X
M

L
System requirements: Pentium PC with Windows 98 or later; Macintosh with OS 8.6 or later; 64 MB RAM.
See the What’s on the CD-ROM Appendix for details and complete system requirements.

Two-page lessons
break big topics into
bite-sized modules

Succinct explanations
walk you through
step by step

“Apply It” and “Extra”
sidebars highlight
useful tips

High-resolution screen
shots demonstrate
each task

Welcome to the only guidebook series that takes a visual

approach to professional-level computer topics. Open the

book and you’ll discover step-by-step screen shots that

demonstrate over 120 key Java and XML programming

techniques, including:

• Creating a Java class file

• Importing a Java package

• Verifying XML well-formedness

• Declaring an XML DTD

• Preparing an XML Schema
declaration

• Parsing an XML document with
the SAX API

• Working with nodes in the DOM

• Extracting CDATA sections

• Creating child elements in JDOM

• Detecting events in JAXP

Java and XML tools on CD-ROM

• Java 2 Platform, Standard Edition
version 1.4 for Windows

• Plus XML parsers, an e-version
of the book, and more

Development tools on
CD-ROM!

• Example code from the book

• Java 2 Platform, Standard
Edition version 1.4 for Windows;
Forte for Java, release 3.0
Community Edition; and Java 2
Platform, Micro Edition, Wireless
Toolkit 1.0.3

• XML Pro and JPad Pro demos

• XML Spy evaluation version

• UltraEdit shareware

• Xerces Java Parser, Crimson Java
XML Parser, and GNU JAXP

• Plus a searchable e-version of
the book

www.wiley.com

$26.99 USA
$39.99 CAN
£20.99 UK incl. VAT

Category:
Web Development

*85555-BAJHBb
ISBN 0-7645-3683-4

,!7IA7G4-fdgida!:p;m;Q;t;T

Whitehead

Visit us at www.wiley.com

Your visual blueprint for
creating Java-enhanced Web programs

Perfect bind Trim: 8 X 9 Bleed: .25” 4-color process plus Pantone 2945 cv Matte layflat

3683-4 Cover 5/16/02 4:16 PM Page 1

TM

Java and XML

®

From

&

Your visual blueprint for creating
Java-enhanced Web programs

by Paul Whitehead, Dr. Ernest Friedman-Hill,
and Emily Vander Veer

013683-4 FM.F 5/24/02 8:58 AM Page i

TM

Java and XML

®

From

&

Your visual blueprint for creating
Java-enhanced Web programs

by Paul Whitehead, Dr. Ernest Friedman-Hill,
and Emily Vander Veer

013683-4 FM.F 5/24/02 8:58 AM Page i

JavaTM and XML: Your visual blueprint for creating
Java-enhanced Web programs

Published by
Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022

Published simultaneously in Canada

Copyright © 2002 by Wiley Publishing, Inc., Indianapolis, Indiana

Certain designs and text Copyright © 1992-2002 maranGraphics, Inc., used with
maranGraphics’ permission.

maranGraphics, Inc.
5755 Coopers Avenue
Mississauga, Ontario, Canada
L4Z 1R9

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission
should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-mail: permcoordinator@wiley.com.

Library of Congress Control Number: 2002102421

ISBN: 0-7645-3683-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1V/RZ/QW/QS/IN

Trademark Acknowledgments

Wiley, the Wiley Publishing logo, Visual, the Visual logo, Simplified, Master
VISUALLY, Teach Yourself VISUALLY, In an Instant, Read Less - Learn More and
related trade dress are trademarks or registered trademarks of Wiley Publishing,
Inc. in the United States and other countries and may not be used without written
permission. The maranGraphics logo is a trademark or registered trademark of
maranGraphics, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc. and maranGraphics, Inc. are not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND
AUTHOR HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD
CONSULT WITH A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER
NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

is a trademark of
Wiley Publishing, Inc.

U.S. Trade Sales

Contact Wiley
at (800) 762-2974
or (317) 572-4002.

U.S. Corporate Sales

Contact maranGraphics
at (800) 469-6616 or
fax (905) 890-9434.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND TECHNIQUES
DESCRIBED IN THIS BOOK, THE AUTHOR HAS CREATED VARIOUS
NAMES, COMPANY NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR INFORMATION,
ALL OF WHICH ARE FICTITIOUS. ANY RESEMBLANCE OF THESE
FICTITIOUS NAMES, ADDRESSES, PHONE AND FAX NUMBERS AND
SIMILAR INFORMATION TO ANY ACTUAL PERSON, COMPANY AND/OR
ORGANIZATION IS UNINTENTIONAL AND PURELY COINCIDENTAL.

Important Numbers

For U.S. corporate orders, please call maranGraphics at 800-469-6616 or fax
905-890-9434.

For general information on our other products and services or to obtain
technical support, please contact our Customer Care Department within the
U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Permissions

maranGraphics

Certain text and illustrations by maranGraphics, Inc., used with
maranGraphics’ permission.

Originally built in 1803
with an addition in 1853,
North Carolina’s Cape
Hatteras Lighthouse stands
193 feet tall, making it the
tallest brick lighthouse in
the United States. To find
out more about the Cape
Hatteras Lighthouse and
the Cape Hatteras National
Seashore, check out
Frommer’s® The Carolinas
& Georgia, 5th Edition,
available wherever
books are sold or at
Frommers.com.

013683-4 FM.F 5/24/02 8:58 AM Page ii

Java and XML
Your visual blueprint for creating

Java-enhanced Web programs

013683-4 FM.F 5/24/02 8:58 AM Page iii

At maranGraphics, we believe in producing great
computer books — one book at a time.

maranGraphics has been producing high-technology
products for over 25 years, which enables us to offer the
computer book community a unique communication
process.

Our computer books use an integrated communication
process, which is very different from the approach used
in other computer books. Each spread is, in essence, a
flow chart — the text and screen shots are totally
incorporated into the layout of the spread. Introductory
text and helpful tips complete the learning experience.

maranGraphics’ approach encourages the left and right
sides of the brain to work together — resulting in faster
orientation and greater memory retention.

Above all, we are very proud of the handcrafted nature
of our books. Our carefully chosen writers are experts
in their fields, and spend countless hours researching

and organizing the content for each topic. Our artists
rebuild every screen shot to provide the best clarity
possible, making our screen shots the most precise and
easiest to read in the industry. We strive for perfection,
and believe that the time spent handcrafting each
element results in the best computer books money can
buy.

Thank you for purchasing this book. We hope you
enjoy it!

Sincerely,

Robert Maran

President

maranGraphics

Rob@maran.com

www.maran.com

maranGraphics is a family-run business
located near Toronto, Canada.

013683-4 FM.F 5/24/02 8:58 AM Page iv

Wiley Technology Publishing Group: Richard Swadley, Vice President and Executive Group Publisher;
Bob Ipsen, Vice President and Executive Publisher; Barry Pruett, Vice President and Publisher; Joseph Wikert,
Vice President and Publisher; Mary Bednarek, Editorial Director; Mary C. Corder, Editorial Director;
Andy Cummings, Editorial Director.

Wiley Production for Branded Press: Debbie Stailey, Production Director.

Acquisitions, Editorial,
and Media Development

Project Editor
Maureen Spears

Acquisitions Editor
Jen Dorsey

Product Development Supervisor
Lindsay Sandman

Copy Editor
Marylouise Wiack
Technical Editor

Dr. Ernest Friedman-Hill
Editorial Manager

Rev Mengle
Permissions Editor

Laura Moss
Media Development Specialist

Travis Silvers
Manufacturing

Allan Conley
Linda Cook

Paul Gilchrist
Jennifer Guynn

Production

Book Design
maranGraphics®

Production Coordinator
Dale White

Layout
Melanie DesJardins, LeAndra Johnson,

Kristin McMullan, Laurie Petrone
Screen Artists

Mark Harris, Jill A. Proll
Cover Illustration
David E. Gregory

Proofreader
Christine Pingleton

Quality Control
John Bitter

Indexer
Johnna VanHoose

Special Help
Cricket Franklin, Jill Mazurcyzk,

Jade Williams

CREDITS

ACKNOWLEDGMENTS

013683-4 FM.F 5/24/02 8:58 AM Page v

vi

1) INTRODUCING JAVA AND XML
Introducing the Java Phenomenon ..2
Introducing XML ..6
Java and XML Combined ..12

2) JAVA BASICS
Install the Java SDK ..14
Object-Oriented Programming Concepts ..16
The Java Class Library ..18
Java Conventions ..20
Create a Source File ..22
Create a Method ..24
Create the Method Body ..26
Compile a Java Program ..28
Execute a Java Program ..30

3) JAVA PROGRAMMING
Create an Object ..32
Work with Object Fields ..34
Specify the Data Type for a Variable ..36
Work with Strings ..38
Call a Method ..40
Using Return Values and Arguments ..42
Using the if Statement ..44
Using the for Statement ..46
Using The While Or Do While Loop ..48
Using the Switch Statement ..50
Create an Array ..52
Create a Package ..54
Import a Package ..56
Extend a Class ..58
Create an Exception ..60
Handle Errors ..62
Understanding Variable Scope ..64

4) XML BASICS
Create an XML Document ..66
Verify Well-Formedness ..68
Create Elements ..70
Add Attributes ..72
Add a Comment ..74
Include Special Processing Instructions ..76
Using Predefined XML Entities ..78
Include Nonstandard Text ..80

TABLE OF CONTENTS

013683-4 FM.F 5/24/02 8:58 AM Page vi

5) XML DOCUMENT TYPE DEFINITIONS
Declare a DTD ..82
Create an External DTD File ..84
Declare a Container Element ..86
Define the Structure of Elements ..88
Define Element Attributes ..90
Declare Attributes as Words ..92
Restrict Attributes to a List of Values ..94
Create Internal General Entities ..96
Create a Notation ..98
Create External General Entities ..100
Using Namespaces ..102
Using the XML Namespace Attribute ..104

6) XML SCHEMAS
Introducing XML Schemas ..106
Create an XML Schema Declaration ..108
Declare an Element ..110
Assign an XML Schema to an XML Document ..112
Validate an XML Document ..114
Declare a Container Element ..116
Declare Optional Elements ..118
Specify Data Types ..120
Constrain Element Values ..122
Constrain Element Values to a List ..124
Declare an Attribute ..126
Constrain the Values of an Attribute ..128
Reference Predefined Elements ..130
Create a Group of Attributes ..132
Constrain Values Using Regular Expressions ..134

7) THE SAX API
An Introduction to the SAX API ..136
Install the Xerces XML Parser ..138
Set the CLASSPATH Environment Variable ..140
Create an Event Handler Class ..142
Parse an XML Document ..144
Detect Elements in an XML Document ..146
Extract Textual Element Content ..148
Determine the Number of Element Attributes ..150
Determine the Name of Attributes ..152
Determine the Value of Attributes ..154
Determine the Line Number Being Parsed ..156
Determine Ignorable Whitespace in an Element ..158

vii

BOOK TITLE:
Your visual blueprint for
the rest of the book title

Java and XML:
Your visual blueprint for creating

Java-enhanced Web programs

013683-4 FM.F 5/24/02 8:58 AM Page vii

viii

Work with Processing Instructions ..160
Parse Multiple XML Documents Using Multiple Event Handlers162
Create an Error Handler ..164
Create a Custom Error Message ..166
Create an Entity Resolver ..168
Using the Default Handler ..170
Determine Feature and Property Settings ..172
Detect Notation Declarations ..174
Create a Declaration Handler ..176
Create a Lexical Handler ..178
Turn on Validation ..180
Toggle Namespace and Prefix Usage ..182

8) THE DOM
Introducing the DOM ..184
Retrieve the Root Element Name ..186
Determine Node Type ..188
Work with Nodes ..190
Transverse All Element Nodes ..192
Determine Names of Attributes ..194
Determine the Values of Attributes ..196
Work with Processing Instructions ..198
Detect Entity References ..200
Detect General Entities in the DTD ..202
Retrieve DTD Information ..204
Retrieve Text Information ..206
Extract Comments ..208
Extract CDATA Sections ..210
Retrieve Notation Declarations ..212
Navigate Nodes ..214
Create an XML Document ..216
Create a New DOM Tree with a Root Element ..218
Add Attributes to an Element ..220
Add a Child Element ..222
Create a Text Node ..224
Create Other Node Types ..226
Copy Nodes ..228

9) JDOM
Introducing JDOM ..230
Create the Root Element ..232
Add Content to the Root Element ..234
Create Child Elements ..236
Read an XML Document ..238
Extract Element Text Content ..240

TABLE OF CONTENTS

013683-4 FM.F 5/24/02 8:58 AM Page viii

Insert a Comment ..242
Insert a CDATA Section ..244
Add Processing Instructions ..246
Add Attributes to an Element ..248
Work with Attribute Objects ..250
Save an XML Document ..252
Work with Child Elements ..254
Insert Pre-defined Entity References ..256
Determine Element Type ..258
Output a DOM Tree Using JDOM ..260

10) JAXP
Introducing JAXP ..262
Parse an XML Document ..264
Detect Events ..266
Configure Factory Settings ..268
Set SAXParser Features ..270
Parse a Document Using DOM ..272
Create an Error Handler for Use with DOM ..274

APPENDIX A
SAX API Quick Reference ..276
DOM API Quick Reference ..278
JDOM Quick Reference ..281
JAXP Quick Reference ..284

APPENDIX B
Java Quick Reference ..286

APPENDIX C
XML Quick Reference ..290

APPENDIX D
What’s on the CD-ROM ..294
Using the E-Version of this Book ..296
Wiley Publishing, Inc. End-User License Agreement ..298

INDEX ..304

ix

Java and XML:
Your visual blueprint for creating

Java-enhanced Web programs

013683-4 FM.F 5/24/02 8:58 AM Page ix

CD-ROM INSTALLATION INSTRUCTIONS312

Well suited for developing modern, Internet-enabled
and XML-aware applications, developers often find
that the Java computer programming language

allows them to write software more quickly, and with better
quality, than other languages they know. Java allows you to

build applications that you can safely use in a wide range of
different environments and that you can construct with
widely recognized, and highly efficient, programming
techniques.

INTRODUCING THE JAVA PHENOMENON

JAVA AND XML

2

A Simple Language of Least Surprise

Although it contains powerful and sophisticated features,
Java is simple in the sense that it is a small and consistent
language. This language does not have a long list of rules
and special cases. The average Java programmer can
understand and use it easily. A simple language lets you
concentrate on what your program should do, rather than
how to do it. Java also embodies the principle of least
surprise. Java programs always behave the way you expect
them to. You cannot redefine the meanings of the basic
components of the language, as you can with C++, and
you cannot perform surprising textual substitutions, as
you can with the preprocessor in C. These properties
make Java programmers more productive because you do
not waste your time puzzling over difficult-to-understand
code.

Portable Programs

Java is a portable language in which you can write a
program once and run it on any computer that supports
Java. While you must distribute programs written in
many languages in special versions for Microsoft
Windows, Macintosh, Linux, and other platforms, the
same Java program can run on each of these systems
without change. Java programs cannot only run on
every operating system, but they run the same way on
different operating systems. Java is a precisely specified
language. That is, Java spells out every aspect of the
language — the sizes of data types, the order of
evaluation of function arguments, the behavior of
floating-point arithmetic — in its formal language
specifications. Most other computer languages do not
specify these details, which makes other languages
difficult to use to write programs that run on more than
one kind of computer.

Java programs are also portable across international
boundaries because Java supports translation of
programs for international use. Java represents text in
Unicode, a special system that can represent the
characters of almost every alphabet in current use
around the world. Furthermore, Java includes libraries
that enable you to work with and store foreign-
language translations of the text that appears in the user
interface of your software.

THE BIRTH OF JAVA

First released by Sun Microsystems in 1994 as part of
the Hot Java Web browser, Java featured several types
of downloadable dynamic content. Java’s safe nature
made this kind of dynamic content possible without
posing any threat of data loss or compromise to the
user. The dynamic content included special handlers for
new network protocols as well as small graphical
modules that were embedded on a Web page. These
modules were called applets, and applets gave Java its
first wave of visibility. In the fall of 1995, version 2.0 of

the Netscape Navigator Web browser was the first
mainstream application to include applet support.
Other browsers soon followed suit.

James Gosling and others originally conceived Java as a
simple, portable, safe, object-oriented, dynamic, and
mobile environment for developing consumer
electronics software, specifically set-top TV boxes. Each
of these goals greatly contributed to Java’s popularity.

3683-4 ch01.F 5/24/02 8:58 AM Page 2

INTRODUCING JAVA AND XML 1

3

Object-Oriented Language

In an object-oriented language, a program is divided
into many separate units called objects. You can
program and understand each type of object in
isolation. Breaking a program into small, well-defined
pieces in this way makes object-oriented programs
easier to write, to understand, and to change.

An object typically includes two parts. First, it includes
information. Just as each object in the real world has a
color, a size, and a weight, Java objects contain their own
unique data. Secondly, objects include instructions for
working with this data; for example, a Button object might
include instructions for drawing a button on the computer
screen and for reacting to mouse clicks. Each set of
instructions is termed a method. In general, doing useful
work in Java consists mainly of asking objects to perform
methods for you. An object responds to such a request by
following the instructions that the method contains.

Having all the instructions and data broken up into
objects makes Java software modular, and thus easier to
understand one piece at a time. Object-oriented
languages also promote software reuse — that is, you
may define a kind of object and use it in several
different programs unchanged.

Safe Programs

Java prevents faulty or malicious programs from
crashing your computer. Such crashes often come about
due to language constructs that allow access to raw
memory or other hardware features. Java’s architecture
allows you to control access to your computer’s
resources and to protect your data.

Because Java is safe, downloading Java software onto
your computer presents little risk. You may find
downloading a document, or a bit of software, to your
computer dangerous, but there is no such thing as a
Java virus. Likewise, Java applets embedded in a Web
page can safely run on your desktop computer. Java
runs the applets inside a protected environment to
prevent them from accessing any of your files, network
servers, or other resources.

Dynamic Language

Because Java is a dynamic language, you can upgrade
Java-based applications without shutting them down. You
can add new code or remove old code from a running
Java application at any time. You may find this an
enormously powerful feature in a network environment
in which you must have certain services available 24
hours a day, 7 days a week. For example, as technology
evolves, an electronic commerce Web site can add new
features, modify its presentation style, and patch its
existing code. The dynamic nature of Java enables you to
upgrade the server without interrupting service.

THE BIRTH OF JAVA (CONTINUED)

3683-4 ch01.F 5/24/02 8:58 AM Page 3

INTRODUCING THE JAVA
PHENOMENON (CONTINUED)

JAVA AND XML

4

The safety and dynamic qualities of Java make it an
excellent choice for around-the-clock application
deployment, while Java’s portability and ease-of-use
make it a winner for developing server-side Web
applications. As a result, Java’s Web presence includes
more than just the applets you see on Web pages. Many

Web sites use Java to perform non-graphical tasks
behind the scenes. You have access to the data that
Web servers store and reference in databases and in
XML format. Java’s ability to easily work with these
technologies reinforces its position on the server.

JAVA ON THE SERVER

The characteristics of Java are all natural consequences
of its virtual machine architecture. Programs in the Java
language run on an idealized computer called the Java
Virtual Machine, or JVM. Although hardware engineers
have built hardware implementations of the JVM, most
often you simulate the JVM in software on another
computer. Real or simulated, all JVMs execute the same
instructions in the same way, so that every Java program
runs properly on every JVM. Several independent
implementations of the JVM in software include JVMs
from Sun Microsystem, Microsoft, IBM, and the GNU
project. Hardware vendors and academic groups have
ported Sun Microsystem’s implementation to many
systems. You have software JVMs available to you for
essentially every kind of computer.

The virtual machine architecture is an excellent
choice for implementing a safe environment to run a
suspicious program from an unknown source. Although
you may find it difficult or impossible to disconnect
your hard drive from the computer before running a
suspicious program, you can disconnect simulated JVM
effortlessly. Similarly, you can prevent programs running
in a JVM from accessing other peripherals and other
parts of your computer, as necessary. When you trust an
application, however, it can have the same access to
your computer as do any other programs you run.

JAVA VIRTUAL MACHINE

3683-4 ch01.F 5/24/02 8:58 AM Page 4

INTRODUCING JAVA AND XML 1

5

The Java language organizes its programs in a
hierarchical fashion, making them easier to read and
understand. The fundamental unit of Java software is
the class. A class is a description of a type of object, and
includes a collection of data and the code that operates
on that data. A typical Java program consists of dozens
or hundreds of classes, some written specifically for that
program, and many others culled from Java’s extensive
library of useful standard classes.

Classes reside in groups called packages. Java typically
categorizes the classes in a package by their function.
For example, the Java libraries contain a package
specifically devoted to classes for formatting text.
Although the classes written in the exercises of this
book are not collected into packages, you should
always collect real code that you write into packages.

All Java code appears inside of classes. Furthermore, all
executable statements appear inside of methods, which
reside in classes. No global variables or functions may
appear outside of any class, as happens in C++. You
cannot write a single isolated line of Java code the way
that you can write a single line of Perl or JavaScript.
Java’s rigorous structural rules might not seem worth
the effort for short programs, but for substantial
software — anything more than a few dozen lines —
the benefits of a more structured language immediately
become clear.

JAVA PROGRAM STRUCTURE

3683-4 ch01.F 5/24/02 8:58 AM Page 5

An efficient and effective way of storing and sharing
information, XML (Extensible Markup Language)
enables you to share data along with information that

describes the data. XML makes it possible for a wide range
of technologies, devices, and applications to easily share
data in a controlled and consistent manner. Being a simple

yet powerful markup language, you can use XML to store
information, which you can access on a wide variety of
platforms with a multitude of differing applications. You can
rapidly develop XML programs at a low cost and facilitate
communication of organized and accessible data between
users.

INTRODUCING XML

JAVA AND XML

6

XML is a specification laid down by the World Wide Web
Consortium, more simply known as the W3C. The
primary purpose of the W3C includes specifying and
promoting standards for technology and software that
programmers use with the World Wide Web. The W3C
consists of many different companies, but the products

that they support do not tie in to any specific company
and are freely available for any individual or company to
use or otherwise implement. The W3C is a truly
international organization, with members from
companies and educational institutions around the
world.

THE WORLD WIDE WEB CONSORTIUM

A markup language consists of programming code that
you use to describe information. For example, you may
call the name of the document title, which allows any
program — such as a word processor — that processes
the information to easily determine the title of the
document. The markup language consists of tags, which
identify pieces of information. A tag typically consists of
a tag name, which you precede with a less-than symbol
(<) and follow with a greater-than symbol (>). For
example, a tag that identifies the title of a document
would resemble <title>. Tags typically consist of a

start and an end tag, both tags being identical except
for the end tag that includes a forward slash, as in
</title>. You identify the information, generally
known as the content of the tag, by enclosing it within
the start and end tags. HTML (Hypertext Markup
Language) is probably the most widely known markup
language.

XML is a subset of SGML (Standard Generalized Markup
Language) and is similar to HTML, which is itself a
subset of SGML.

MARKUP LANGUAGES

XML is based on SGML. You use SGML to structure
information, or more specifically, to create your own
markup languages, which you can then use to structure
data. In existence for many years, large organizations,
such as governments, have used SGML within
proprietary software. SGML makes it easy to store
information, which you can transform, reformat, and

output to different devices, such as printers and
screens. You use HTML, the most popular example of an
SGML-based markup language, to format information
that you want to make available on the World Wide
Web so that HTML-compatible applications, such as
Web browsers, can access it.

SGML

3683-4 ch01.F 5/24/02 8:58 AM Page 6

INTRODUCING JAVA AND XML 1

7

Because they do not find HTML as complex as SGML,
many people use HTML as a markup language to format
their data. Unfortunately, HTML is not an appropriate
method for storing many different types of information,
such as image or audio information. Because HTML
evolved to contain tags that you use solely for formatting
the display of information, using HTML to format the
structure of information may present problems. For
example, HTML contains a font tag that describes which
font to use when displaying text. You may find this type
of formatting information helpful if you intend to display
the information in a Web browser, but unnecessary when

you store the information in a database. For this reason,
you primarily use HTML to format information that a
Web browser displays, and other markup languages to
format the information for other purposes such as storing
data and data analysis. For example, programmers use
Wireless Markup Language, WML, to format information
for display on wireless communication devices. In many
cases you use another markup language, such as XML, to
format and structure information. You can then easily
convert that information to HTML for displaying within a
Web browser.

HTML

Initially developed in an effort to focus more on the
content of information rather than on the formatting
and displaying of that information, document authors
can use the XML markup language to create their own
tags to describe the information in their documents.
The document authors can use these tags with their
own applications to interpret the information correctly,

as well as in conjunction with other markup languages,
to format the information for display. Unlike HTML,
which uses a specific set of tags to describe the
formatting of information, XML does not contain any
tags that describe how to format the information for
display. XML merely lays out how you can create your
own markup language to describe your information.

XML

An XML document contains data as well as additional
information, which you represent with XML markup
tags and which describes the data in the document. You
specify these tags within the document itself. For
example, if you want to use a tag called manager to
describe the person who oversees a project, you define
the manager tag within the XML document. You can
then use the manager tag throughout the XML
document to specify the name of anyone who manages
a project. Although XML documents are rarely similar,
you base them on specifications, which you must always

follow when creating and using the markup tags that
describe the information within XML documents. You
do not require any special XML applications to create
XML documents; in fact, you can create very simple
XML documents with a basic text editor. Although text
based, you are not intended to read the information in
an XML document as you would with a word processing
document. You usually access information in XML
documents via XML-compatible applications, such as
Web browsers, or via an application that you have
created yourself.

XML DOCUMENTS

3683-4 ch01.F 5/24/02 8:58 AM Page 7

INTRODUCING XML (CONTINUED)

JAVA AND XML

8

To standardize the way you use XML, the W3C created
the XML specification, which consists of a set of rules
and guidelines that details exactly how to implement
XML. Known simply as the XML specification, it ensures

compatibility between the applications and code that
work with XML information, and the other XML
applications and information. The current version of the
XML specification is 1.0.

VERSIONS

Because it is platform independent, you can use XML on
computers that utilize different operating systems. For
example, when you create an XML document on a
computer with UNIX, and then transfer that document
to a computer running the Windows XP operating
system, the XML applications can access the document
without any conversion. Programs that you create with
different programming languages can also access XML;
you can create an application with Java, and another

application with Perl, and both applications can just as
easily access the same XML document. Because a wide
range of vendors and applications now support XML,
you can use different applications to process your XML
documents. For example, you may use an XML-based
spellchecker to check the spelling of the text in your
XML document and then use another XML application
to display the information.

COMPATIBLE

You can take your information and structure it into an
XML document without having to pay a license or
registration fee to use that document with XML
applications. The XML specification is freely available to
anyone who wants to access it. You can create
documents and applications, or transfer information

using the XML specification. This does not mean that
XML-based applications are free; for example, you have
to pay for most XML applications, but you do not have
to pay for using the XML specification to build those
applications.

COST

3683-4 ch01.F 5/24/02 8:58 AM Page 8

INTRODUCING JAVA AND XML 1

9

A very stable technology, once you have structured your
information with XML, you do not have to alter that
information to accomplish different tasks. For example,
if you have documents that contain information
structured with XML, you can create an application that
can display the embedded information in the XML

document. If at a later date you want to display the
information differently, such as on a cellular phone
display, you can simply use another application, or alter
your existing application; you do not have to alter the
information in the XML document.

STABLE

Formatting your information with XML is a very simple
process to learn. Basic XML documents contain
information enclosed in tags that you can easily create
yourself. You do not require special tools, applications,
or prior programming knowledge to create XML
documents that can store information. Although you
must follow rules and guidelines, XML is highly

structured, making it very easy to acquire knowledge
incrementally, so you can learn different aspects of XML
as the need arises. You can create and save a simple
XML document for the first time in less than an hour. If
you are already familiar with programming or using
another markup language such as HTML, then you will
find learning XML even easier.

EASY TO LEARN

Apart from the XML specification, which details how to
create XML documents, you also have a multitude of
technologies and XML-related specifications available to
you. For example, Extensible Stylesheet Language (XSL)

is an XML-based technology that formats XML
information for display. The W3C creates and controls
many of these companion technologies and modules.

XML-BASED TECHNOLOGIES

3683-4 ch01.F 5/24/02 8:58 AM Page 9

INTRODUCING XML (CONTINUED)

JAVA AND XML

10

Text based, just like HTML, XML makes it easy to transfer
information across networks. Besides local area
networks and the Internet, programmers increasingly
use XML for wireless networks. Because of its platform
independence, XML can format information for transfer
via wireless networks — a benefit because the platforms

of the devices on a wireless network typically differ
greatly. For example, you can transfer a list of your daily
meetings via a wireless network to your personal digital
assistant, your home computer, or your cellular phone,
which can all display the same information.

NETWORKS

People who work with an XML document generally
want to view the information stored within the
document. This may cause a problem because the XML
tags in the XML document do not actually specify how
to display the information. You can view the XML
document itself, sometimes color-coded and formatted
to make it easier to read, but the information itself is
not formatted solely for display — you typically must
view the information along with the tags inside the XML

document. If you want to view information within an
XML document and want that information to be
formatted in a specific way, you must create an
application that accesses and then formats the
information for display. Because each XML document
can use different tags and contain different types of
information, no one application can view information in
a variety of XML documents.

VIEWING XML

Due to XML’s wide implementation and acceptance,
you have a collection of XML-related information
available to you on the Internet. Many Web sites,
newsgroups, and mailing lists exist that provide a wide
variety of information for people learning to use XML,

as well as information for more experienced
developers. When looking for XML-related information
on the Internet, a good place to start is the W3C Web
site, http://www.w3.org/XML/.

RESOURCES

3683-4 ch01.F 5/24/02 8:58 AM Page 10

INTRODUCING JAVA AND XML 1

11

Almost all businesses must now exchange information
with clients, suppliers, contractors, and other
companies. XML allows businesses to construct their
own markup languages, which they can use to transfer
information to other businesses and clients. For
example, a business that sells cleaning products might
create a markup language to describe their products.
The company can then exchange information with both

their clients and suppliers using information about their
products, and format this information with their own
custom XML. This ensures that both client and company
have the same methods when referring to products,
such as serial numbers and product numbers. This leads
to more efficient, effective, and error-free exchange of
information.

BUSINESS DATA

Structuring information with XML usually involves
identifying and labeling individual parts of the
information. For example, you may need to examine
and identify a person’s address, street name, country,
and ZIP code. Identifying and labeling information

makes it easier to search for data instead of searching a
complete text document to locate a street name; now
you can simply search the part of the document that
contains the addresses because you have identified the
addresses using markup tags.

LOCATING INFORMATION

People primarily use XML to structure information
because of XML data’s ability to communicate
efficiently with different applications. For example, a
network application may need to keep track of users
and passwords and in turn exchange that information

with other computers on the network. XML provides a
very efficient way to structure that information so that
you can transfer and process it between the different
applications on the different networks.

EXCHANGE INFORMATION

3683-4 ch01.F 5/24/02 8:58 AM Page 11

A side from the immense popularity that both Java and
XML enjoy, you should consider combining the Java
and XML technologies when creating applications or

working with information because together, these

technologies give you portability, well-defined standards,
extendibility, Internet compatibility, a variety of
applications, and the option of reusing code.

JAVA AND XML COMBINED

JAVA AND XML

One of Java’s strengths is its ability to run on multiple
platforms. Because programmers have adapted the Java
environment to run on a wide variety of operating
systems and devices, you can execute the Java programs
you created on a UNIX computer on a computer that
uses the Microsoft Windows XP operating system.
Because the information you store in XML format is also
platform independent, you can easily transfer it across
different networks, operating systems, and applications.
Wherever Java programs can run, you can also access

XML information. This enables both Java and XML
information to interoperate efficiently and effectively
on a wide variety of platforms. Where you once
commonly developed applications so that you could
port them to different operating systems with different
programming languages, you can now create Java
applications, and store the applications’ data with XML.
You can create your application and data once and run
it on any mainstream operating system without having
to alter the code of the application or your data.

PORTABILITY

Because W3C details the XML specification and Sun
Microsystems controls the specification for the Java
programming language, and because a multitude of
developers make changes to the standards and
specifications of Java and XML only after thorough
testing and investigation, both Java and XML have well-
defined specifications. This leads to a longer lifetime for

any Java applications and any information you store
with the XML specifications guidelines. Changes to the
Java and XML specifications are also more infrequent
than newer technology specifications. This means you
do not have to worry about rapidly changing
specifications or that the code you write today may
become incompatible with future specifications.

STANDARDS

You can consider code that you create using Java and
information that you store using XML documents to be
very extensible. From its conception, one of the Java
programming language’s strengths lies in its ability to
create extensible applications. As a truly object-
oriented programming language, you can improve,
modify, or even completely rewrite portions of code
without having to alter any other parts of an application
that use that code. Information that you store within an
XML document has access to an unlimited number of

markup tags. The document’s author completely
controls the makeup and nature of these tags. You can
rearrange, sort, or otherwise modify the information in
whatever manner suits the applications which access
that data. At a future date, you can easily add features
to any application that uses the Java programming
language and stores its application data in an XML
format with minimal impact on the existing code. This
further ensures the longest possible lifetime for the
applications and the data you create.

EXTENSIBLE

12

3683-4 ch01.F 5/24/02 8:58 AM Page 12

INTRODUCING JAVA AND XML 1

One of the most popular programming languages for
creating network applications, the Java programming
language lets you build both large and small networks,
particularly those you want to place on the Internet.
You have a wide range of resources, developers, and
tools available to help create Java applications for the
Internet. Likewise, XML information is fast becoming

one of the most popular methods of storing data on the
Internet, particularly on the World Wide Web and
applications related to the World Wide Web. Because
XML is derived from SGML, the same source from
whence HTML was derived, many Java developers
familiar with HTML can easily make the transition to
Java- and XML-structured information.

INTERNET COMPATIBLE

Applications are now available that use both XML and
Java technologies. For example, you can use very
popular XML parsers, which Java code can easily access,
to work with XML documents. Many XML parsers
include the Java code necessary to communicate with
the XML parsers. Newer Java development tools also
feature full support for XML information. Given the
advantages of storing information using XML, such as
easier information manageability and identification, you

can only expect more applications to start using XML
to format their data. Having a wide range of XML-
compatible applications gives you a wider choice of
tools when you create Java applications. From within
your Java application you can easily access specialized
XML applications. For example, you can use one XML
application to generate XML tags and document
markup, and use another more specialized application
to display or save that data.

APPLICATIONS

A large number of technologies allow XML data and
Java programs to work together efficiently. You can
easily create a Java application that can access XML
documents. Many Java developers and corporations
contribute to various tools and utilities that make it easy
for Java applications to work with XML information.
While most of these technologies—such as some
Application Programming Interfaces (APIs)—which
access XML information, lack full maturity, they are still
stable enough to use in a production environment. As
time progresses, you can anticipate even more
integration between Java and XML with new and
improved tools and applications. Because stable

standards and specifications govern both Java and XML,
interoperability between the two technologies can only
increase in the future. Because XML is vendor neutral,
meaning that no one corporation controls XML,
developers of new applications and technologies are
more receptive to the concept of using XML to
structure their data. XML data in itself is very easy to
process; an application you create with Java can access
XML documents as easily as it can access any other file,
if not more easily. Both Java and XML can use Unicode
character encoding, a system that makes it easy to
exchange data and information between your XML
applications and your Java code.

INTEROPERABILITY

Another useful feature for application development is
the concept of reusable code. If you create code in a
modular fashion, then you have those code modules
available for reuse in other applications. This allows for
more efficient, more reliable, and faster creation of
applications. Once you create a number of modules,
each of which performs a specific task, you can

combine them to create a new application. You can
create both Java applications and XML documents using
a modular design, allowing for the reuse of both Java
code and XML information. This code and information
reusability allows developers to quickly create flexible,
more efficient applications using Java and XML.

REUSABILITY

13

3683-4 ch01.F 5/24/02 8:58 AM Page 13

⁄ Insert the Java SDK
CD-ROM and double-click
the icon for the Java SDK
installation program to start
installing the Java SDK.

■ A setup screen appears.

¤ Click Next to continue.

■ A software license
agreement displays.

‹ Click Yes to accept the
agreement.

You use the Java Software Development Kit, simply
known as the SDK, or the JDK, to compile and execute
Java programs. You need to install the Java SDK to

create Java programs and to access an XML parser with Java.

In addition to accessing version 1.3.1 of the Java SDK on the
CD-ROM that accompanies this book, you can obtain the
latest version of the Java SDK from the main Java Web site
at java.sun.com. The Web site includes downloading and
installation instructions. Sun Microsystems regularly updates
the Java SDK with new features and improvements. Always
check for and use the latest version of the Java SDK. See
Appendix D for more information on the CD-ROM that
accompanies this book.

On the Windows platform, you install the Java SDK using a
standard Windows installer program. The Java SDK also
currently has versions for the Solaris and Linux platforms
available on the Sun Java Web site. Follow the instructions
on the Web site to download and install these versions.

During the installation process, Java SDK suggests a default
directory to which Sun Microsystems recommends you
install the program. You can select which components of
the Java SDK to install. Unless you have a reason not to, you
should install all the components available.

After you install the Java SDK, you should restart your
computer, particularly if you are upgrading from an older
version of the Java SDK.

After the installation is complete, you can view a file that
displays any last-minute changes to the documentation.
Always carefully review this file when installing a new Java
SDK. Besides listing changes to the Java files themselves, you
may find that the Java SDK installation procedure requires
that you make changes to your computer’s configuration
when you install later versions of the Java SDK.

INSTALL THE JAVA SDK

JAVA AND XML

14

INSTALL THE JAVA SDK

3683-4 ch02.F 5/24/02 8:58 AM Page 14

Program Files

■ The Choose Destination
Location dialog box appears.

■ This area displays the
directory where the program
installs Java SDK.

■ You can click Browse to
select a different destination
folder.

› Click Next to continue.

Note: A dialog box may appear
asking you to install a browser plug-
in. Click Next to continue.

■ Java installs each
component in this area that
displays a check mark.

ˇ Click Next to install the
Java SDK on your computer.

■ A dialog box appears
when the installation
completes.

Á Click Finish to close the
dialog box.

‡ Restart your computer.

JAVA BASICS 2

The Java SDK has a large quantity of documentation available.
Due to its large size, you can download the Java SDK
documentation, available in a separate package, from the same
Web site that carries the Java SDK, http://java.sun.com. It is
recommended that you install the Java SDK documentation,
particularly if you want to create your own Java applications. If
you install the documentation, you have a quick way to reference
up-to-date information about your Java SDK installation.

The Java SDK is over 20MB in size. If you use a modem to
connect to the Internet, it can take a few hours to download. For
convenience and slightly increased speed, you can start the
Internet download and let it continue through the night.

Consider placing the location of the Java SDK in the path of your
operating system. Adding the location to the path enables you to
compile and run Java programs without always having to specify
the location of the Java SDK. Refer to the Java SDK installation
documentation and your operating system’s documentation for
information about changing the path.

15

3683-4 ch02.F 5/24/02 8:58 AM Page 15

Java shares many concepts with other object-oriented
programming languages, such as C++ and Python. While
object-oriented programming languages use the same

concepts, the terminology and coding systems sometimes

differ. For example, in Perl, you refer to a single value in an
object as a property. In Java, you refer to it as a field.

OBJECT-ORIENTED PROGRAMMING CONCEPTS

JAVA AND XML

16

A class is the primary programming structure that you
use to create applications. It consists of the Java code
that serves as a template or plan for creating objects,
which are the core features of object-oriented
programming. You can use a single class to create many
objects. For example, you can use a class with code that
generates comments to create an object that inserts a

comment at the start of an XML document. You can use
the same class to create another object that inserts
copyright information at the bottom of an XML
document. Because more than one Java program
can use and share classes, programmers can avoid
constantly rewriting the same type of code.

CLASSES

A method is the code that objects use to perform a
specific task. A class that creates objects can contain
multiple methods. The methods in a class usually
perform related tasks. For example, in a class that

creates an XML document, one method may format the
data, while another method saves the information to a
file. The values stored in the fields of the object may
influence the behavior of methods.

METHODS

An object, a package of data and a set of procedures
that make use of the data, has two primary functions: to
store information and to perform tasks. Objects contain
fields to store information, and methods, which you use
to perform tasks. You can create objects to perform a

single task or a range of related tasks. You can create
multiple objects using the same class. When you create
an object, you consider it an instance of the class that
creates the object.

OBJECTS

Fields, also known as data fields, consist of the
properties or attributes associated with an object. In
comparison to other programming languages, Java
treats its fields as variables of the class. Fields can store
different types of data, such as strings of text, integers,
and references to other objects.

Changing the values of an object’s fields usually affects
the behavior of the object. For example, in an object that

inserts a line break into the content of an XML element,
you can create a field to specify how many line breaks
you want to insert. With a field value of 1, Java inserts a
single line break. When you change the field value to 10,
Java inserts 10 new lines in the XML document.

When you create multiple objects using the same class,
you make the objects the same, except for the values
held in the object’s fields.

FIELDS

3683-4 ch02.F 5/24/02 8:58 AM Page 16

JAVA BASICS 2

17

You may pass one or more values, called arguments, to
a method to provide it with input data or additional
information about how to perform a task. For example,
when using a method that creates elements in an XML

document, you may need to pass the number of
required elements to the method. Some methods do
not require any arguments.

ARGUMENTS

A method may return a value after performing a specific
task. The return value may indicate the result of a
calculation, or it could indicate whether the program
performed the task successfully. For example, a method

that writes information may return a true or false
value depending on whether the program saved the
information. The program can then use the information
to determine the next code that it needs to execute.

RETURN VALUES

By making the fields and methods of the classes
inaccessible to other parts of the program, data hiding
makes classes easier to use. The program only has to
know how to access the class, not the internal workings
of the class. You often hide data in programs to protect
outside users from tampering with classes and to ensure

that users apply the methods of the classes as you
originally intended. A programmer can modify and
maintain the code within the class without affecting the
programs that use the class. This also helps ensure that
objects developed by multiple people are compatible.

DATA HIDING

The Java programming language includes many
keywords that you utilize to create applications. A
keyword is a word reserved for use only by Java. You
cannot use keywords as variable names or values in

your code. If you use a Java keyword inappropriately,
the Java compiler detects the error and stops compiling
the code. The following table displays a listing of Java
keywords:

KEYWORDS

abstract boolean break byte case

catch char class const continue

default do double else extends

false final finally float for

goto if implements import instanceof

int interface long native new

null package private protected public

return short static strictfp super

switch synchronized this throw throws

transient true try void volatile

while

3683-4 ch02.F 5/24/02 8:58 AM Page 17

A class, the smallest unit of Java code that you can run, is
the fundamental structure that Java applications use to
group together related code. Java includes a collection

of predefined classes, called the Java class library, also
known as the standard class library or the Java Application
Programming Interface (API), for use in every Java program
you create. You save time and effort creating programs by
using the predefined classes in the Java class library because

you do not have to re-create the code every time you want
to perform a common task, such as displaying a message on
the screen. You use some predefined classes quite often,
such as those that display output, while you may require
others less frequently, such as the classes that help you
create Graphical User Interfaces (GUIs).

THE JAVA CLASS LIBRARY

JAVA AND XML

18

When you install the Java SDK on your computer, the
Java class library also automatically installs. Java stores
the class library in a Java Archive (JAR) file named
rt.jar in the lib subdirectory of the jre directory. You
can find the jre directory in the main Java SDK
directory. You do not need to adjust any settings on

your computer to specify the location of the Java class
library before using a class from the library in your
code. The Java compiler automatically knows where to
locate the files that make up the Java class library.

JAVA CLASS LIBRARY INSTALLATION

The Java standard class library is continually modified
and appended by Sun Microsystems. Applications that
you created with a later version of the Java standard
class library may not work when the code compiles
using an older version of the class library. Ensure that

any code you create works with the current version of
the standard class library to which you have access. In
almost all cases you want to use the very latest version
of the Java class library.

VERSIONS

Java organizes the classes that make up the class library
into packages. A package consists of a set of related
classes that Java stores in a separate collection. For
example, Java stores classes that generate output in a
different package than classes that process data from a
database. Generally, classes in the same package can
easily access each other.

Java bases package names on the directory structure
that stores the classes in the package. For example, Java
stores the classes in the java.util package in the util
subdirectory of the java directory.

PACKAGES

3683-4 ch02.F 5/24/02 8:58 AM Page 18

JAVA BASICS 2

19

You can import a package from the Java class library
into a Java program. This allows you to efficiently use all
the classes in the package. The java.lang package

automatically imports into every Java program you
create. For more information about importing a
package, see Chapter 3.

IMPORT PACKAGES

In addition to using predefined classes from Java class
library packages, you can author your own classes and
store them in packages you create. For example, if you
create three classes to work with an XML document,

you can store these classes in a package named
xmldoc. You can then use the classes from the package
when creating other Java applications. For more
information about creating packages, see Chapter 3.

CREATE PACKAGES

The Java class library contains more than 70 packages.
The following table lists some of the most commonly
used packages in the library. For a more detailed list of
the packages in the Java class library, see Appendix B.

PACKAGE DESCRIPTION

java.io Contains classes that allow Java programs to perform data input and output tasks.

java.lang Contains the fundamental classes of the Java programming language. The Java compiler
automatically loads this package.

java.math Contains classes that allow Java programs to perform arbitrary-precision arithmetic.

java.lang.ref Contains classes that allow Java programs to interact with the garbage collector, which
performs memory management tasks.

java.lang.reflect Contains classes that allow Java programs to obtain information about the variables and
methods of loaded classes.

java.security Contains classes that allow Java programs to carry out security procedures, such as controlling
access and encrypting data.

java.sql Contains classes that allow Java programs to access and process data from a database.

java.text Contains classes that allow a Java program to manipulate strings, dates, numbers, and
characters.

java.util Contains utility classes that allow Java programs to perform various tasks such as date and time
operations and random number generation.

java.util.jar Contains utility classes that allow Java programs to read and write Java Archive (JAR) files.

java.util.zip Contains utility classes that allow Java programs to read and write ZIP files.

javax.swing Contains classes for creating Swing Graphical User Interface (GUI) components. You can use
Swing GUI components on all platforms.

COMMONLY USED JAVA CLASS LIBRARY PACKAGES

3683-4 ch02.F 5/24/02 8:59 AM Page 19

To work effectively with the Java programming
language, you should familiarize yourself with its
conventions and understand how to follow them. This

section lists the most common conventions. For more
information about the conventions in Java, you can consult
the Java SDK documentation.

JAVA CONVENTIONS

JAVA AND XML

20

Most Java statements end with a semicolon (;). Java
statements that include a block of code, known as the
body of the statement, are the exception. Examples of
these types of statements include methods, conditional
statements, and statements that create a loop. The Java
compiler stops compiling code and reports an error if it
finds a required semicolon missing or if you include an
unnecessary semicolon. When an error occurs due to

the omission or misplacement of a semicolon, the Java
compiler may mark the error in the statement following
the actual location of the error. To avoid these types of
errors, always review your Java code carefully before
compiling the code. Some Java development tools
automatically inform you if you omit a required
semicolon in your code.

SEMICOLONS

Java statements that include a body use braces {} to
indicate the beginning and the end of the body. A body
often contains several statements. If a statement block
contains only one statement, you typically do not need
braces, but for consistency programmers often include
them. You can include braces in one of two accepted
formats in your Java code. No one braces format is
more correct than the other. When making your
decision about which style to use, consider who may

review your code in the future and the format with
which you are more comfortable. Choose one format
and then use that format consistently throughout your
code. Most Java development tools can automatically
reformat existing code to reflect a particular style. You
can use these tools to reformat your own, or other
people’s, Java code. A popular Java development tool
that allows you to reformat code is SlickEdit, available at
http://www.slickedit.com.

BRACES

Brace on same line as statement:

The most widely used format places the opening brace on
the same line as the Java statement. You place the closing
brace on its own line and in the same column as the first
character of the Java statement that uses the braces.

Example:
public static void main(String[] args) {

System.out.println("Hello.");

System.out.println("My name is Bob.");

}

Brace directly underneath the statement:

The second format places each brace on its own line. The
braces are in the same column as the first character of
the Java statement that uses the braces. Although easier
to read, the format adds more lines to your Java code.

Example:
public static void main(String[] args)

{

System.out.println("Hello.");

System.out.println("My name is Mary.");

}

3683-4 ch02.F 5/24/02 8:59 AM Page 20

JAVA BASICS 2

21

When working with a Java statement that includes a
body, always indent the code within the body. Indenting
makes your code easier to read. To keep your Java

programs consistent, you should use the same indenting
style in all of your code. You can use either tabs or
spaces to indent code.

INDENTING

Whitespace is the term used to describe characters
that do not display or print, such as spaces, tabs, and
newlines. Using whitespace in your Java code can greatly
improve the readability of your code. For example, a
user may find x + 1 / age easier to read than

x+1/age. Java removes whitespace in your code before
it compiles. This means that including whitespace does
not affect the speed at which the Java code compiles,
nor does it affect the performance of the application
using the code.

WHITESPACE

Code without indents:

public static void main(String[] args)

{

int counter = 1;

while (counter <= 5)

{

System.out.println(counter);

counter++;

}

}

Code with indents:

public static void main(String[] args)

{

int counter = 1;

while (counter <= 5)

{

System.out.println(counter);

counter++;

}

}

You can include comments in your Java code to explain
important or difficult sections of code. A good
programming practice, adding comments can help
make the code easier to understand. Comments are
particularly useful if you or someone else will need to

modify or troubleshoot the code in the future. Using
descriptive names for items such as classes, methods,
and variables can also make your code easier to
understand. To learn how to add comments to your Java
code, see Chapter 4.

COMMENTS

3683-4 ch02.F 5/24/02 8:59 AM Page 21

⁄ Start the text editor you
want to use to create a Java
program.

¤ Type class. ‹ Type the name of the
class you want to create.

After installing the Java SDK, you can begin to build
Java programs. The first step involves class creation. A
class, the smallest unit of Java code that you can run,

is the fundamental structure that Java applications use to
group together related code. For example, a class called
CheckText may contain all the code it needs to analyze
and validate a string of text. You can also use the
CheckText class on its own in a program, or in conjunction
with other classes. All Java applications must include at least
one class. For more on Java classes, see the section "The
Java Class Library."

You define Java classes using the keyword class followed
by a space and then the class name. You should make the
class name easy to understand and include the purpose of
the class. You follow the class name with a pair of braces {}.
You must place all methods and Java code in the class

between the braces. The code between the braces, called
the body of the class, consists of methods, which are
structures that contain the Java code for specific actions. For
more information about defining a method, see the section
"Create a Method."

You must make the class name the same as the filename
you use to save the program. For example, if you call the
class in your Java program DisplayText, you must save
the program with the filename DisplayText.java. Please
also note that Java is a case-sensitive language. Therefore,
continuing the previous example, if you save the program
with the filename displaytext.java, an error may occur
when you attempt to compile the program.

After you save the code that creates the class in the file, the
file is referred to as a source file. Java applications can use
single or multiple source files.

CREATE A SOURCE FILE

JAVA AND XML

22

CREATE A SOURCE FILE

3683-4 ch02.F 5/24/02 8:59 AM Page 22

› Type an opening brace to
mark the beginning of the
body of the class.

ˇ Press Enter to create blank
lines where you type the
body of the class.

Á Type a closing brace to
mark the end of the body of
the class.

■ Your source file is complete
and ready for a method.

Note: To define methods for the
classes you create, see "Create a
Method" in this chapter.

JAVA BASICS 2

23

You may want to add comments
that span multiple lines to your
Java code. To do so, type /*
before the first line of the
comment and */ after the last
line of the comment.

Example:
/*

This Java application

displays a welcome message when

the program is executed

*/

Class names can begin with any letter, an underscore (_) or the
symbols $, £ or ¥. Class names cannot begin with a number or contain
any punctuation, such as a period or a comma. You cannot make class
names the same as any of the Java reserved words, such as do, while,
or public. These naming rules also apply to the naming of methods,
fields, and parameters in Java code.

You should always include comments to make your Java code easier
to understand. Comments are helpful if you or other people need
to modify or troubleshoot the code. Any code you write should
include comments that indicate the author’s name and the main
purpose of the program. You precede comments with //, which
you can include at the end of a line of code or on a separate line.

Example:
// Author: Martine Edwards

class DisplayWelcome // This class displays a welcome
message

{

// The body of the class is placed here

}

3683-4 ch02.F 5/24/02 8:59 AM Page 23

⁄ In the body of a class,
type the method modifiers
for the method you want to
declare.

■ A main method must
include the public and
static method modifiers.

¤ Type the return type of the
method.

■ A method that does not
return a value must include
the void return type.

‹ Type the name of the
method and follow it with ().

After you create a class, you can create methods for
the class. Similar to subroutines and functions that
you find in other, non-object-oriented programming

languages, methods contain lines of code that perform a
specific task, such as displaying an invoice number or
calculating the final total of an invoice. Using methods
allows you to re-use sections of code and to group lines of
code into smaller, more manageable sections. This makes it
easier for people to understand and troubleshoot the code.

You can use method modifiers, such as public and
static, to tell Java how you want to utilize a method. An
access modifier, the public method modifier indicates that
other classes can use this method. A static method
modifier means that any program can use the method
without having to create an object of the class to declare
the method.

A method declaration should also include a return type. A
return type specifies the type of value the method returns.

If a method does not return a value to the code, you should
make the return type void. For more information about
return values in methods, see Chapter 3.

You follow the name of a method with parentheses, as in
the example:

DisplayInvoice()

Every Java application must have a method called main,
which Java calls when the application starts up. You must
place the argument String[] args within the
parentheses at the end of the method name for a main
method. This argument indicates that the method can
accept strings passed from the command line when the Java
program executes.

The method declaration ends with a pair of braces. You
place the code that makes up the body of the method
inside the braces.

CREATE A METHOD

JAVA AND XML

24

CREATE A METHOD

3683-4 ch02.F 5/24/02 8:59 AM Page 24

› Between the parentheses,
type any arguments the
method requires.

■ You must make the
arguments of a main method
String[] args.

ˇ Type the opening and
closing braces that will
contain the body of the
method.

Note: To create the body of the
method, see the section "Create
the Method Body" in this chapter.

■ Your method is complete.

JAVA BASICS 2
Consisting of multiple words, the method’s name should indicate
its purpose. To make the name easier to read, you can capitalize
the first letter of each word except the first, for example:
displayMyName

You can use different access modifiers when declaring a method,
depending on how Java accesses it. Any class within any package
can access the public access modifier. Any class within the
same package and any subclass of the class that contains the
method within a different package can access the protected
access modifier. Only the class that contains the method can
access the private access modifier.

A method can generate a result, which it then returns to the
calling code. You can make the return type any valid data type in
Java, such as String, byte, or boolean. The body of a method
that returns a value must also include a return statement. An
error may occur if the data type of the returned value does not
match the specified method declaration return type.

You must precede every main method with the public and
static keywords. If you do not specify these keywords, the
compiler may generate an error message.

25

3683-4 ch02.F 5/24/02 8:59 AM Page 25

CREATE THE METHOD
BODY CODE

⁄ Type the code that defines
the class and the method you
want to use.

¤ In the body of the method,
type the code for the task you
want to perform.

■ This example uses
System.out.print
to display output.

You must create the body of a method, which contains
the Java code that performs a task, within the method’s
braces {}. Java often uses the code in the body of a

method to call, or access, another method. You can define
the called method in the same class or in a different class.
Re-using methods saves you time and effort when writing
Java programs. For example, if you create a method that
displays your name and e-mail address, you can use the
same method in any Java application you create.

You can apply many classes and methods within the Java
SDK to perform a wide variety of common tasks. For
example, the Java SDK includes a class called Math, which
contains several methods that perform mathematical
calculations. To determine the square root of a number, you
can simply call the sqrt method from the Math class.

You can use methods, for example System.out.print, to
display information on a user’s screen. Java automatically
creates the system class, included in the Java SDK, when it
executes the program. You use the out field to send
information to the standard output device, typically the
screen. The print member takes an argument, which you
must enclose in parentheses. Use System.out.print
to display any type of data in Java. When using
System.out.print to display a string of text, you must
enclose the string in quotation marks.

After you create the code for your Java program, save it as a
text file with the .java extension. You must make the
name of the file the same as the name of the first class
defined in the code.

CREATE THE METHOD BODY

JAVA AND XML

26

CREATE THE METHOD BODY

3683-4 ch02.F 5/24/02 8:59 AM Page 26

‹ Type any arguments the
code requires.

■ You must enclose string
arguments within quotation
marks.

SAVE JAVA CODE

⁄ Click File ➪ Save to open
the Save As dialog box.

¤ Type the name of the file.

■ Use the same name as that
of the first class in the code
and include the .java
extension.

■ You may need to place
quotation marks around the
name of the file.

‹ Click Save.

■ Notepad saves your code.

Note: You can now compile the Java
code. See the section "Compile a
Java Program" for more information.

JAVA BASICS 2
To start a new line at the end of a line of text when it displays, you can use the escape
sequence \n. This escape sequence \n allows you to display text over multiple lines. You can
also use System.out.println to start a new line.

27

TYPE THIS:

class MyIntroduction
{

public static void main(String[] args)
{

System.out.println("My name is Andrew.");
System.out.print("\nThis is my first Java program." + "\n");

}
}

RESULT:

My name is Andrew.

This is my first Java program.

The classes and methods within the Java SDK are collectively known as the Java class library, also
called the Java Application Programming Interface (API). The Java SDK documentation describes
all the classes and methods available in the Java class library. If you have not already installed the
Java SDK documentation, you can obtain the documentation on the Web at java.sun.com.

3683-4 ch02.F 5/24/02 8:59 AM Page 27

⁄ Open the window that
allows you to work at the
command prompt.

¤ Navigate to the directory
that stores the Java code you
want to compile.

‹ To compile the Java code
using the javac compiler,
type javac.

■ If you did not add the
location of the javac
compiler to your operating
system's path variable, you
need to type the full path of
the javac program.

By compiling Java code you can convert previously
saved source code in a text file into bytecode.
Bytecode contains instructions that the Java interpreter

executes.

You need a Java compiler to compile Java code. The Java
SDK includes a Java compiler application called javac,
which you can execute from the command prompt. If you
have a Windows operating system, you need to open a
Command Prompt window to use javac.

To compile Java source code, you enter the name of the
Java compiler, such as javac, at the command prompt,
followed by the name of the file that stores the code you
want to compile. The filename must have the .java
extension. Depending on whether you have added the
location of the Java SDK programs to your operating
system’s path variable, you may need to specify the full path
to the Java compiler, which is typically c:\jdk1.3\bin\javac.

For information about setting the path variable, refer to the
Java SDK installation instructions or your operating system’s
documentation.

Before compiling Java code, the Java compiler checks the
code for errors. If it finds an error, the code does not
compile and an error message displays.

If the Java code compiles successfully, Java saves the
resulting bytecode in a new file with the .class extension.
Java takes the name of the new file from the name of the
file that stores the source code. For example, when Java
compiles the code in a file named Program.java that
contains a class called Program, it saves the bytecode in a
file called Program.class. The filenames of Java programs
are case sensitive on most platforms. After Java compiles
the source code, you can execute the Java program. For
more on executing the Java program, see the section
"Execute a Java Program."

COMPILE A JAVA PROGRAM

JAVA AND XML

28

COMPILE A JAVA PROGRAM

3683-4 ch02.F 5/24/02 8:59 AM Page 28

› Type the name of the file
that stores the Java code you
want to compile, including
the .java extension.

ˇ Press Enter to compile the
Java code.

■ If the Java code
successfully compiles, the
command prompt reappears.

■ If an error message
appears, the Java code did
not successfully compile.

■ The Java program is now
ready for execution.

Note: See the section "Execute a
Java Program" for more information.

JAVA BASICS 2

When compiling Java source code, you may see one of two main types of errors:

Java SDK Errors

If your operating system cannot locate the Java compiler, you may have
experienced a problem during the Java SDK installation. Java SDK errors usually
result in an error message such as "bad command or file name." To correct this
type of error, first determine the correct path to the compiler. If you cannot
locate the Java compiler, try re-installing the Java SDK. If you still cannot
confirm the path to the compiler, check that you have not made any typing
mistakes in the path.

Source Code Errors

A wide variety of errors can occur in Java source code. When the Java compiler
finds an errorcode, it displays an error message that usually specifies the error
type and where the compiler detected the error. For example, the error
"Program.java:5: invalid method declaration" indicates that an error involving a
method declaration was generated at line 5 in the Program.java file. It is
important to note that the line number indicates the line that the compiler was
processing when it detected the error, which is not necessarily the line that
contains the error.

29

3683-4 ch02.F 5/24/02 8:59 AM Page 29

⁄ Open the window that
allows you to work at the
command prompt.

¤ Navigate to the directory
that stores the bytecode for
the Java program you want
to execute.

‹ To execute the instructions
in the bytecode using the Java
interpreter, type java.

■ If you did not add
the location of the Java
interpreter to your operating
system's path variable, you
need to type the full path of
the Java interpreter.

After the Java compiler converts the source code for a
Java program into bytecode, you can execute, or run,
the program. Executing an application enables the

computer to read and process your code. The computer, in
conjunction with the operating system, then performs the
actions that you specify in the program. Some applications
execute a task and then terminate, while others may
continue executing until a user, or other condition, causes
the application to cease execution.

The Java interpreter must process the bytecode before you
can execute the code. The Java interpreter first checks the
bytecode to ensure the code is safe to execute, and then it
interprets and executes the instructions within the
bytecode.

The Java interpreter executes the instructions in the
bytecode in the Java Virtual Machine, or JVM, which is a
controlled environment.

The Java interpreter, called java, comes with the Java SDK
and is typically stored in the c:\jdk1.3\bin directory. Like the
Java compiler, you must run the Java interpreter at the
command prompt. Although a standalone program, you can
integrate the Java interpreter into other programs, such as
Web browsers. This allows you to execute your Java
programs on different platforms.

To evoke the Java interpreter, you include the name of the
interpreter and follow it with the name of the bytecode file.
You should not include the .class extension. For example,
to execute the instructions in the Program.class file,
type java Program.

If the Java program executes successfully, the results of the
program display. If the Java interpreter encounters any
errors, it stops executing the program. Most of the errors
that you encounter at this stage usually relate to the use of
incorrect filenames or paths.

EXECUTE A JAVA PROGRAM

JAVA AND XML

30

EXECUTE A JAVA PROGRAM

3683-4 ch02.F 5/24/02 8:59 AM Page 30

› Type the name of the file
that stores the bytecode for
the Java program you want
to execute.

ˇ Press Enter to execute the
program.

■ The results of the program
display on the screen.

JAVA BASICS 2
Some text editors you use to create Java programs
allow you to bind commands to unused keystrokes.
Binding allows you to add commands that insert small
templates for parts of Java syntax, increasing the speed
and efficiency with which you can create Java code.

Example: Ctrl+C for a class:
public class Example {

}

Example: Ctrl+M for an empty main method:
public static void main(String[] argv) {

}

Example: Ctrl+P for a println statement:
System.out.println();

31

TYPE THIS:

Ctrl+C up-arrow,Ctrl+M up-arrow,Ctrl+P

RESULT:

public class Example {
public static void main(String[] argv) {

System.out.println();
}

}

3683-4 ch02.F 5/24/02 8:59 AM Page 31

DEFINE THE CLASS

⁄ Type the code that defines
the class and method you
want to use.

¤ In the body of the method,
type the code that defines the
object you want to use.

‹ Save and compile the Java
code.

INSTANTIATE THE OBJECT

› To create a standalone
program that instantiates the
object, type the code that
defines the class and method
you want to use.

ˇ In the body of the method,
type the name of the class
you defined in step 1.

Á Type a name you want to
use for the object, and follow
it with =.

When a class file exists, you can create an object that
takes on the characteristics of the specifications
laid out in the class file. For example, if a class file

specifies the code for a method "displayName", then any
object you create using that class file has a method called
"displayName". For more information about creating a
class file, see Chapter 2.

The first step in creating a simple object requires you to
build a class file that contains a method. A simple class file
includes a class and method declaration within the class
file. The method body can include code that returns some
information. In this section’s example, the method simply
returns a string that contains an e-mail address. You must
compile the class file before you can use it to create an
object. Because you do not execute the class file like a

standalone application, it does not need to use the main
method. The second step entails building a standalone Java
application that you then use to create, or instantiate, the
object with the newly created class file. Because the
purpose of this program is to make it an executable
standalone application, you must include the method main.

A class file can create an object by using the new operator.
The statement to create the new object starts with the
name of the class. You follow this with the name you want
to give to the object. The name you use for the object
accesses the different characteristics of the object.

After you create the object, or instantiate the object, you
can access the method in the object and then retrieve the
information in the method.

CREATE AN OBJECT

JAVA AND XML

32

CREATE AN OBJECT

3683-4 ch03.F 5/24/02 8:59 AM Page 32

‡ Type new.

° Type the name of the class
you created in step 1, and
follow it with ().

· To access the method of
the object, type the name of
the object, follow it with a
period, and then type the
name of the method you
want to access.

‚ Type the code that uses
the object.

— Compile the Java code
and execute the program.

Note: See Chapter 2 to compile and
execute your program.

■ The results of using the
object display.

JAVA PROGRAMMING 3

The directory you create to store files for your Java programs may
depend on the setup of your computer and the tools, such as a Java
development application, that you use to create your Java applications.
In most cases, you can set up a specific directory dedicated to Java
program development. When first learning to create Java applications,
you may find it easier to store the class file that defines an object and
the file that instantiates the object in the same directory. You often use
packages to access class files that exist across multiple directories. For
more information about using packages, see the section "Import a
Package" in this chapter.

You very rarely find an object consisting of only a single method. In
most cases, objects are more complex, containing a wide range of
related methods and fields that dictate the behavior of the object.

The methods and fields of an object are also referred to as members.
Methods and fields that are available when you instantiate an object
and are unique to that object are called instance members.

33

3683-4 ch03.F 5/24/02 8:59 AM Page 33

CREATE A FIELD

⁄ Create a class to serve as a
template for an object.

¤ In the body of the class,
type the access modifier and
data type for the object field
you want to create.

‹ Type the name of the
object field.

› Save and compile the Java
code.

USING AN OBJECT FIELD

ˇ To create a standalone
Java program, type the code
that declares the class and
main method.

Á In the body of the main
method, type the code to
create an object using the
class you created in step 1.

You can create an object field, also referred to as a data
field, to hold information that typically relates to the
object. The information you contain in an object’s

fields determines the properties and attributes of the
object.

When you create objects of the same class, the objects have
the same methods, but some or all of the object fields may
hold different information. For example, each object you
create from the Employee class may have an object field
called empNumber that stores the unique employee number
for each object.

You must declare object fields in the class body outside of
any methods. This allows you to use the field as soon as you
create the object. You can specify an access modifier for an
object field you create, as well as the storage field’s data
type. The access modifier determines what code has access
to the field.

You create most object fields with an initial value. You
can later change the value of an object field as you would
change the value of a variable. Changing the value of an
object field may alter the way some of the methods of the
object behave. Object fields may also hold constant data,
which you cannot change.

You can use the dot operator (.) to access an object field
in a program. When specifying the object field, you separate
the field name from the object name by a dot, such as
object.field. The object name is the name that you gave
the object when you first created it.

Unlike methods, you do not follow object field names with
parentheses. You can have object fields and methods that
share the same name in a program.

WORK WITH OBJECT FIELDS

JAVA AND XML

34

WORK WITH OBJECT FIELDS

3683-4 ch03.F 5/24/02 8:59 AM Page 34

‡ To assign a value to an
object field, type the name of
the object, follow it with the
dot operator, and then type
the name of the field.

° Type = and follow it with
the value you want to assign
to the object field.

· Type the code that uses
the object field.

‚ Compile the Java code
and execute the program.

Note: See Chapter 2 to compile and
execute your program.

■ The results of using the
object field display.

JAVA PROGRAMMING 3

You can set a default value for an object field by using a constructor. A
constructor is a special type of method that always executes each time you
create an object. This makes constructors useful in performing initialization tasks
for new objects, such as setting up a connection to a database. A constructor
method must have the same name as the class for which it is the constructor.

Example:
class AuthorInformation {

public int headerLevel;

public AuthorInformation() {

headerLevel = 3;

}

public String EmailAddress() {

String message = "<h" + headerLevel +

">sandman@myhost.com</h" + headerLevel + ">";

return message;

}

}

35

3683-4 ch03.F 5/24/02 8:59 AM Page 35

CREATE A VARIABLE

⁄ To specify a data type for a
variable you want to create,
type the name of the data
type in the body of the
method.

¤ Type the code that names
the variable and assigns it a
value.

CONVERT A VALUE TO A
DIFFERENT DATA TYPE

‹ Type the code that
declares a variable, which
stores the converted value.

› Type the name of the
variable you created in step
3, and follow it with a =.

ˇ Type the data type to
which you want to convert
the value enclosing it in
parentheses.

Á Type the name of the
variable that stores the value
you want to convert.

Java is a "strongly typed language," which means that you
must specify a data type for each variable that you use in
a Java program. This distinguishes Java from many other

programming languages, such as Perl, which do not require
you to assign variables to data types.

Variables can use eight basic data types, called primitive
types. The data type you specify for a variable determines
the range of values that the variable can store and the
amount of memory, measured in bits, that the variable
requires. For example, a variable with the byte data type
can store a number between -128 and 127, and requires 8
bits of memory.

Each primitive data type has a default value. If you declare
a variable as an object field without assigning a value, Java
assigns the default value for the variable’s data type to the
variable.

The operating system or compiler that you use does not
affect the specifications for data types in Java, such as

memory requirements and default values. This ensures that
a data type has the same meaning when a user executes a
program on different computers.

Specifying the data type for a variable requires that you
know in advance the types of values that you want to store
in the variable throughout your program. Once you declare
a variable, you cannot change the data type for the variable.
If you want to convert the value in a variable to a different
data type, you must assign the value to a new variable that
uses the desired data type. This process is called casting.
When converting a value to a new data type, make sure
that the conversion does not result in an unintended loss
of data. For example, converting the number 13.56 to an
integer value, which does not allow any numbers after the
decimal, results in a new value of 13.

Variable names can consist of any number of letters,
numbers, or underscore characters and must start with a
dollar symbol, underscore, or a letter.

SPECIFY THE DATA TYPE FOR A VARIABLE

JAVA AND XML

36

SPECIFY THE DATA TYPE FOR A VARIABLE

3683-4 ch03.F 5/24/02 8:59 AM Page 36

‡ Type the code that uses
the values of the variables
you created in step 2.

■ In this example, the values
of the firstValue and
secondValue variables
display.

° Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The results of using the
variables display.

JAVA PROGRAMMING 3

You can use eight primitive data
types as the value for a variable.

37

PRIMITIVE DATA TYPES

TYPE SIZE IN BITS DEFAULT VALUE POSSIBLE VALUES

boolean 1 false 'true' or 'false'

char 16 \u0000 unicode character, '\u0000' to 'uFFFF'

byte 8 0 -128 to 127

short 16 0 -32,768 to 32,767

int 32 0 -2,147,483,648 to 2,147,483,647

long 64 0 -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

float 32 0.0 ±1.4E-45 to ±3.4028235E+38

double 64 0.0 ±4.9E-324 to ±1.7976931348623157E+308

3683-4 ch03.F 5/24/02 8:59 AM Page 37

⁄ To declare a string
variable, type String and
follow it with the variable
name.

¤ Type = and follow it
with "".

‹ Between the quotation
marks, type the text you want
the string to contain.

› Type the code that uses
the string variable.

ˇ Type the code that creates
another variable.

Almost all Java applications require you to create and
work with string values. A string contains textual data.
A collection of characters, a string contains any

combination of letters, numbers, and special characters,
such as $, & or #.

Before you can use a string variable in a Java program, you
must declare the string variable, a process similar to that of
declaring other types of variables. To declare a string
variable, use the name String, and follow it with the
variable name. The capital S at the beginning of the
keyword String indicates that a string variable is an object
of the String class. The String class is contained in the
java.lang package available to all Java programs as part
of the standard class library.

After you declare a string variable, you can assign it a value
using the assignment operator (=). You must enclose a
string value in double quotation marks ("), which identify

the beginning and end of the string and allow Java to work
with the string as one piece of information.

You can use the concatenation operator (+) to join multiple
strings together. You can also use the concatenation
operator to join other types of variables and values together.

You can insert special characters called escape sequences
into a string. Escape sequences allow you to include special
characters in the string. Commonly used escape sequences
include \t, which inserts a tab, and \n, which starts a new
line.

If you installed the documentation package available for the
Java Software Development Kit (JDK or SDK), you can find
more information about the String class under the main
JDK directory at \docs\api\java\lang\String.html.
You can also find documentation for JDK at the
java.sun.com Web site.

WORK WITH STRINGS

JAVA AND XML

38

WORK WITH STRINGS

3683-4 ch03.F 5/24/02 8:59 AM Page 38

Á To join the string with
other variables or values, type
the concatenation operator
between each variable, or
value, you want to join.

‡ Type the code that uses
the concatenated variables.

° Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of using strings
displays.

JAVA PROGRAMMING 3

You can determine the number of characters a string contains
by using the length method of the String class.

39

TYPE THIS:

class DisplayVariables {
public static void main(String[] args) {
String message = "The temperature is ";
System.out.print("The length of the string is ");
System.out.println(message.length());

}
}

RESULT:

The length of the string is 19

3683-4 ch03.F 5/24/02 8:59 AM Page 39

⁄ Create a class file with a
main method.

Note: See Chapter 2 for more on
creating a class file.

¤ Declare the method you
want to call.

‹ Create the body of the
method you want to call.

Once you create a method, you need to call it, a
process by which Java accesses and executes the
code in the method. The code in a method does not

execute until you call the method.

To call a method in the same class in which you declared it,
you can create an object of the class and then type the
name of the object followed by a period and then the name
of the method followed by a set of parentheses. Make sure
you type the method name exactly as you type it in the
code that declares the method.

Some methods require you to include arguments within the
parentheses that follow the method name. For information
about passing arguments to methods, see the section
"Using Return Values and Arguments." For more on creating
a method, see Chapter 2.

When you call a method, the code within the method
executes as if you had typed the code in the location where

you called the method. Once Java finishes processing the
code in the method, it continues execution from the line
following the method call.

In some programs, you may need to call a method that you
have declared in a different class. The access modifiers you
use in method declaration determine the locations from
which you can call the method.

You can also group classes that contain methods into a
package. You may need to specify the package in which the
class containing the method is located. For more
information about packages, see the section "Create a
Package."

In addition to calling methods you have created, you can
also call methods that the Java class library provides. For
example, System.out.println() calls a Java class library
method, which you can use to display data. For more
information about the Java class library, see Chapter 2.

CALL A METHOD

JAVA AND XML

40

CALL A METHOD

3683-4 ch03.F 5/24/02 8:59 AM Page 40

› In the body of the main
method, create an object
from the class.

ˇ Type the name of the
object followed by a period
and the name of the method
you want to call, and follow
it with a set of parentheses.

Á Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of executing the
code in the method displays.

JAVA PROGRAMMING 3

A static method is a method that is the same for each object that uses the
method. You denote a static method by the keyword static in the method
declaration. If you declare a static method that you want to call in a
different class, you must specify the class that contains the method you
want to call. You use the dot operator (.) to link the class name and the
method name. You must create any methods you intend to call from
another class with the public access modifier. You can create a class that
accesses the methods of the created class in the example that follows.

41

TYPE THIS:

public class CallingClassMethods {
public static void main(String[] args) {
System.out.println("My Personal Details");

PersonalInformation.DisplayMyName();
}

}

RESULT:

My Personal Details
Peter Smith

3683-4 ch03.F 5/24/02 8:59 AM Page 41

CREATE A RETURN STATEMENT

⁄ Within a class, type the
code that declares the
method you want to use.

¤ Type the code for the body
of the method.

‹ In the body of the method,
type return and follow it with
the information you want the
method to return.

PREPARE A METHOD TO ACCEPT
ARGUMENTS

› Between the parentheses,
following the method name
in the method declaration,
specify the data type of the
argument that the method
will accept.

ˇ Type the name of the
variable that will store the
value of the argument.

■ When preparing a method
to accept multiple arguments,
you must separate each data
type and variable pair with a
comma.

You can have a method return a value to the code. You
might make a return value the result of a calculation
or procedure, or make it indicate whether Java

successfully completed a process.

When you declare the method, you must specify the return
value’s data type. You can make return values any valid data
type in Java, such as String, byte, or boolean. An error
may occur if the returned value’s data type does not match
the specified return type in the method declaration. The Java
compiler generates an error when you attempt to compile
the Java code that contains the mismatched data types.

Java returns information from a method using the keyword
return. Once the return statement executes, the
processing of the method ends and the value in the
return statement passes back to the calling statement.

You can use a method with a return value as if it were a
variable. For example, you can display the value that a

method returns using System.out.print. You can also
assign the value that the method returns to a variable.

You can also pass one or more values, called arguments, to
a created method. Passing arguments to a method allows
you to use one method throughout a program to process
different data.

To define a method that accepts an argument, you include a
data type and variable name in the parentheses at the end
of the method name in a method declaration. When you
call the method, you include the data you want to pass in
the parentheses following the method name.

You can pass any type of data to a method, but it must
match the data type you specify in the method declaration.
For example, if a method expects an integer value for
calculation, passing a string value to the method causes an
error to occur.

USING RETURN VALUES AND ARGUMENTS

JAVA AND XML

42

USING RETURN VALUES AND ARGUMENTS

3683-4 ch03.F 5/24/02 8:59 AM Page 42

CALL A METHOD USING
ARGUMENTS

Á In the body of the main
method, type the code that
calls the method you want
to use.

‡ Between the parentheses
following the method name,
type the arguments you want
to pass to the method.

■ When passing multiple
arguments, you must separate
the arguments with a comma.

° Save the Java code.

· Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of passing
arguments to a method
using a return value displays.

JAVA PROGRAMMING 3

A method can have more than one return statement. You commonly find this in
methods that use conditional statements. Although a method can have more than
one return statement, Java only executes one return statement. When Java
encounters a return statement, it terminates the execution of the method.

43

TYPE THIS:

class MakeList {
public static void main(String[] args) {
System.out.println(CheckAge(29));

}
static String CheckAge(int age) {
if (age > 21) {
return "You may take the survey";

} else {
return "You are too young to take the survey";

}
}

}

RESULT:

You may take the survey

3683-4 ch03.F 5/24/02 8:59 AM Page 43

⁄ Type the code that
declares the variables and
assigns their values.

¤ Type if.

‹ Type the condition you
want to test, enclosing the
condition in parentheses.

› Type the code you want to
execute for a true condition,
enclosing the code in braces.

You can use an if statement to determine whether a
condition is true or false. You can make the condition
as complex as you want provided that it always

produces either a true or false value. With a true condition,
the section of code directly following the if statement
executes. For example, you can create a program that
displays a "Good Morning" message when a user runs the
program between 5:00 AM and 11:59 AM. With a false
condition, code from the if statement does not execute.

If the code consists of more than one line, you must enclose
the section of code you want to execute in braces {},
referred to as a statement block. You must enclose the
condition for an if statement in parentheses ().

If you want an if statement to execute a block when a
condition remains false, you must include an else clause.
Using an if statement with an else clause allows you to

execute one of two sections of code, depending on the
outcome of testing the condition. If the condition is true,
the statement block directly following the if statement
executes. If the condition remains false, the statement block
directly following the else clause executes. Using an else
clause ensures that a section of code executes regardless of
the testing condition’s outcome. For example, you can have
a program display a "Good Morning" message or a "Good
Evening" message, depending on the time set on the
computer that executes the program.

To make your code easier to read and understand, always
indent the statement block that contains the code that you
want to execute. Many programmers also use spaces within
statements to make the statements easier to read. The Java
compiler ignores whitespace characters, such as tabs and
blank lines, so these characters do not affect the function or
performance of your Java program.

USING THE IF STATEMENT

JAVA AND XML

44

USING THE IF STATEMENT

3683-4 ch03.F 5/24/02 8:59 AM Page 44

ˇ To use the else
statement, type else.

Á Type the code you want to
execute for a false condition,
enclosing the code in braces.

‡ Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of testing the
condition displays on the
screen.

JAVA PROGRAMMING 3

45

If you need to execute only one line of code based on a condition being true, you
can place the code that you want to execute on the same line as the if statement.
You can also place the condition code on the next line without the braces {}.

YOU CAN TYPE THIS:

if (currentTemp > hot) {
System.out.println("It’s hot.");

}

AS THIS:

if (currentTemp > hot) System.out.println("It’s hot.");

Nested if statements allow you to specify multiple conditions for an if statement
at the same time. Java evaluates each if statement only if the previous if statement
is true. If all of the if statements remain true, a section of code executes. If any of
the if statements are false, code from the if statements does not execute.

TYPE THIS:

int hot = 80, veryHot = 85, currentTemp = 88;
if (currentTemp > hot) {
System.out.print(currentTemp + " degrees. It’s ");
if (currentTemp > veryHot) {
System.out.print("very, very ");

}
System.out.println("hot.");

}

RESULT:

88 degrees. It’s very, very hot.

3683-4 ch03.F 5/24/02 8:59 AM Page 45

⁄ In the body of the method,
declare a variable that you
want to use as the iterator.

¤ Type for (). ‹ Type the initialization
expression that specifies the
starting value of the iterator
and follow it with a
semicolon.

› Type the condition that
evaluates the value of the
iterator and follow it with a
semicolon.

Programmers often need to execute the same statement
or block of statements several times. The for
statement allows you to create a loop that repeats the

execution of code a specific number of times. For example,
you may want to create five line breaks in an XML
document. Instead of typing the code that creates a line
break five times, you can create a loop that executes the
code to create a line break and then repeats the loop until
the value of a counter reaches five.

When creating a for statement, you usually use a variable,
called an iterator, which acts as a counter for the loop. You
use an initialization expression to specify a starting value for
the iterator.

You must also specify a condition that evaluates the value of
the iterator. For true conditions, the loop executes and
processes the block of code you specify. For false

conditions, the block of code does not execute and the
loop ends.

You use the re-initialization expression to modify the value of
the iterator. For example, if you use the increment operator
(++) in the re-initialization expression, the value of the
iterator increments by one each time Java executes the loop.
The expression i++ functions the same as i = i + 1.

You place the block of code, known as the body of the
loop, you want to execute between braces {}. You should
indent the code in the body of a loop to make the code
easier to read and understand. The code in the body of a
for loop can include any valid Java statements, such as calls
to other methods. You may also place another loop within
the body of a for loop, a process referred to as nesting.
You should avoid having too many nested loops because it
makes the program difficult to read and troubleshoot.

USING THE FOR STATEMENT

JAVA AND XML

46

USING THE FOR STATEMENT

3683-4 ch03.F 5/24/02 8:59 AM Page 46

ˇ Type the re-initialization
expression that modifies the
value of the iterator each time
the loop executes.

Á Type the code you want to
execute as long as the
specified condition remains
true, enclosing the code in
braces.

‡ Compile the Java code
and execute the program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of using the for
statement displays.

JAVA PROGRAMMING 3

Java can still execute a loop even if you omit
one or more expressions from the for
statement. However, you must specify any
expressions you omit from the for statement
elsewhere in the code. For example, if you
specify the starting value of the iterator in
another part of your code, you do not need to
include an initialization expression in the for
statement. Remember to still include all the
necessary semicolons in the for statement.

Example:
int loopCounter = 3;

for (; loopCounter < 5; loopCounter++) {

System.out.println(loopCounter);

}

If a for statement has no condition and you do not
specify a condition in the body of the loop, Java assumes
that the condition is always true and creates an infinite
loop, a situation that you want to avoid.

Example:
int loopCounter;

for (loopCounter = 1; ; loopCounter++) {

System.out.println(loopCounter);

}

If you have a single line of code in the body of a for loop,
you forego enclosing the line in braces. Although optional
in this situation, most programmers use the braces to keep
their code consistent.

Example:
for (loopCounter = 0; loopCounter < 10; loopCounter++)

System.out.println(loopCounter);

47

3683-4 ch03.F 5/24/02 8:59 AM Page 47

⁄ In the body of the method,
type the code that creates an
iterator and assigns it a value.

¤ Type while (). ‹ Type the condition you
want to evaluate.

The while statement allows you to create a
conditional loop that executes a section of code as
long as a specified condition remains true. Conditions

often test the value of an iterator. For example, you may
want to process a pay statement for each of the 100
employees in a company. Instead of typing the code that
processes a pay statement 100 times, you can create a loop
to process the pay statement for each employee. The
condition checks how many pay statements Java has
processed. After the 100th pay statement, the condition
evaluates as false and the loop ends.

You enclose the body of a while loop, which contains the
section of code you want to execute, in braces {}. If the
condition tests the value of an iterator, the loop body also
contains code to alter the value of the iterator. You can
increase or decrease the value of an iterator. As long as the
condition remains true, the section of code within the body
of the loop executes. When Java reaches the end of the

loop body, it re-evaluates the condition. If the condition still
holds true, the section of code executes again. If the
condition turns false, the section of code in the loop body
does not execute and the loop ends.

When creating a loop using the while statement, you make
sure that Java evaluates the testing condition as false at
some point. If the condition always remains true, the code
in the loop body executes indefinitely. This kind of never-
ending loop is known as an infinite loop. If you create an
infinite loop, you must forcibly stop the execution of the
Java program.

Depending on the result of the condition to be tested, the
code within the while loop may never execute. If you need
the code in the while loop to execute at least once,
regardless of how Java evaluates the condition, you can
use a do while loop.

USING THE WHILE OR DO WHILE LOOP

JAVA AND XML

48

USING THE WHILE OR DO WHILE LOOP

3683-4 ch03.F 5/24/02 8:59 AM Page 48

› Type the code you want to
execute as long as the
specified condition remains
true and enclose the code in
braces.

ˇ In the body of the loop,
type the code that alters the
value of the iterator each time
the loop executes.

Á Compile the Java code
and execute the program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of using the
while statement displays.

JAVA PROGRAMMING 3

You can use a do while statement to test a condition after Java
executes the code in the loop body. You can also place another
loop within the body of a do while loop to create a nested loop.

49

TYPE THIS:

int loopCounter = 0, dotCounter;
do {
System.out.print("This is line number");
for (dotCounter = 0; dotCounter < 8; dotCounter++) {
System.out.print(".");

}
System.out.println(loopCounter);
loopCounter++;

} while (loopCounter < 3);

RESULT:

This is line number........0
This is line number........1
This is line number........2

3683-4 ch03.F 5/24/02 8:59 AM Page 49

⁄ Create the expression you
want to use in the switch
statement.

■ You must use char, byte,
short, or int data types in
the expression.

¤ Type switch.

‹ Type the name of the
expression, enclosing it in
parentheses.

› Type a pair of braces to
hold the case statements.

ˇ Type case, following it
with the value the expression
may contain and a colon.

Á Type the statements you
want to execute if the case
value matches the expression
you specified in step 1.

The switch statement allows you to execute a section
of code, depending on the value of an expression you
specify. When Java executes a switch statement, it

compares the value of the expression against a number of
possible choices, called case values. If the value of the
expression matches a case value, the section of code
following the case value executes. For example, you can
create a switch statement that displays a specific message,
depending on information that a user enters.

To use the switch statement, you must first specify the
expression you want to use. The value of the expression
must have a char, byte, short, or int data type. After
specifying the expression, you must create the case values
against which Java compares the expression. The expression
must match the case value exactly. You cannot use an
indefinite expression, such as x > 10, for a case value.
Using an indefinite expression results in your code
generating an error.

The switch statement compares the value of the
expression to each case value in order, from top to
bottom. You can place the case statements in any order,
but to make your program more efficient, you should place
the most commonly used case values first.

To prevent the switch statement from testing the
remaining case values after Java finds a match, you should
use the break statement to skip the remaining case
statements and continue processing the code after the
closing brace of the switch statement. You should use
the break statement as the last statement for each case
statement. Although the last case statement does not
require a break statement, some programmers include it
to be consistent. Including a break statement helps you
remember to include the break statement if you later add
another case statement to the switch statement.

USING THE SWITCH STATEMENT

JAVA AND XML

50

USING THE SWITCH STATEMENT

3683-4 ch03.F 5/24/02 8:59 AM Page 50

‡ Type break to prevent the
switch statement from
testing the remaining case
values after a section of code
executes.

° Repeat steps 5 to 7 for
each value the expression
may contain.

· Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of using the
switch statement displays.

JAVA PROGRAMMING 3

You can execute one section of code for multiple
case statements, which allows you to use
multiple conditions for the case values. You
must follow each case statement you want to
match with a colon.

Example:
switch (gender)

{

case M: case m:

System.out.println("Male");

break;

case F: case f:

System.out.println("Female");

break;

}

You can include a default statement in a switch
statement if you want to execute specific code
when none of the other case values match the
specified expression. You must place the default
statement last in the switch statement structure.

Example:

switch (priority)

{

case 1:

System.out.println("Urgent");

break;

case 2:

System.out.println("Not Important");

break;

default:

System.out.println("Ignore");

}

51

3683-4 ch03.F 5/24/02 8:59 AM Page 51

⁄ To declare an array
variable, type the data type of
the values that you want to
store in the array, following it
with [].

¤ Type a name for the array
variable.

‹ To define the array, type
the name of the array
variable, and follow it with =.

› Type new to create the
new array, and follow it with
the data type for the array.

ˇ Type the number of
elements that you want the
array to contain and enclose
the number in brackets.

An array stores a set of related values, called elements,
that are of the same data type. For example, an array
can store the name of each day of the week. Using an

array allows you to work with multiple values at the same
time.

The first step in creating an array involves declaring an array
variable. You do this by specifying the data type of the
values that you want the array to store and following it with
brackets []. For more information about data types, see
the section "Specify the Data Type for a Variable." You must
also give the array a name. As with variable names, array
names can consist of any number of letters, numbers or
underscore characters and must start with a dollar symbol,
underscore, or a letter.

Next, you can define the array. You do this using the new
operator, which indicates that you want to set aside space
in memory for the new array. You must also specify the
number of elements that you want the array to store.

Java identifies each element in an array with an index
number, which starts at 0, not 1. For example, an array that
you define as items = new int[6] contains six
elements indexed from 0 to 5.

You can specify the values you want each element to store.
You must enclose string values in quotation marks.

To access an individual element in an array, you use the
name of the array followed by the index number for the
element enclosed in brackets. When you use brackets in
this context, you refer to them as the array access operator.
You can use an array element in a Java program as you
would use a variable. For more information about using
variables, see the section "Specify the Data Type for a
Variable." Changing the value of an element does not affect
the other elements in the array.

CREATE AN ARRAY

JAVA AND XML

52

CREATE AN ARRAY

3683-4 ch03.F 5/24/02 8:59 AM Page 52

Á To initialize an element in
the array, type the name of
the array, and follow it with
the element’s index number,
enclosing the number in
brackets.

‡ Type = and follow it with
the value for the element.

° Repeat steps 6 and 7 for
each element in the array.

· Type the code that
accesses elements in the
array.

‚ Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The results of creating an
array and accessing elements
display.

JAVA PROGRAMMING 3

Because it is a truly object-oriented programming
language, Java treats arrays as objects. The length
member of the array object allows you to determine
the number of elements in an array.

53

TYPE THIS:

class ArrayLength {
public static void main(String[] args) {
int[] items;
items = new int[3];

items[0] = 331;
items[1] = 324;
items[2] = 298;

int total = items.length;
System.out.print("Number of items = " + total);

}
}

RESULT:

Number of items = 3

3683-4 ch03.F 5/24/02 8:59 AM Page 53

STORE A CLASS

⁄ Create a directory to store
classes for the package.

¤ On the first line type
package and follow it with the
name of the package you
want to create.

Note: You must name the package with
the same names as the directory you
created in step 1.

‹ Type the code that
declares a class and a
method that you want to use
in other Java programs.

› In the body of the method,
type the code for the task you
want to perform.

ˇ Save the code in the
directory you created in
step 1.

■ Java saves the code.

If your Java program contains a large number of class
files, you can organize the files by grouping them into
packages. Keeping your files organized allows you to

more efficiently locate needed information in those files. A
package stores a collection of related classes. For example,
you can group all the shipping-related classes in a program
into a package called shipping.

Packages allow you to use classes with identical names in
the same Java program. To prevent naming conflicts, Java
normally does not permit you to use classes with the same
name in one program. However, when you place classes
with the same name in different packages, you can use the
classes in a single application without conflict.

When creating a package, you must build a directory to
store all the classes for the package. The name of the
directory you create should describe the classes the

package will store. You must also make the name of the
directory the same as the added package name. You must
save all the classes belonging to a package in the same
directory.

You add a package statement to a class file to specify the
name of the package to which you want the class to belong.
The package statement must match the first line of code in
the class file. If the package name consists of multiple
words, separate the words with dots. Each word in the
name must represent an actual directory on your computer.
For example, Java stores classes that you place in a package
called myapps.internet in a directory called internet,
located within the myapps directory.

To use a class stored in a package in an application, you
specify the package name and the class name.

CREATE A PACKAGE

JAVA AND XML

54

CREATE A PACKAGE

3683-4 ch03.F 5/24/02 8:59 AM Page 54

USING A CLASS STORED IN A
PACKAGE

⁄ Type the name of the
package and follow it with
a dot.

¤ Type the name of the class
you want to use from the
package, and follow it with
a dot.

‹ Type the name of the
method you want to access.

› Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of using a class
stored in a package displays.

JAVA PROGRAMMING 3
Java specifies that every class must belong to a package. If you do not
specify a package for a class, it always belongs to the default package,
whose name is the empty string "".

If you use a Java development tool, such as an Integrated Development
Environment (IDE), Java may have already set up package directories
within a main class directory for you. You can usually change the
configuration of the program to specify another directory as the main
class directory.

The method you employ to create directories depends on the type of
operating system you have on your computer. If you have a UNIX-
based operating system, such as Linux, you might use the mkdir
command to create directories in a terminal window. If you have an
operating system with a Graphical User Interface (GUI), such as
Macintosh or Windows, you can utilize program-provided graphical
tools to create directories.

When you use a stored class in a package, you must specify the name
of the package in addition to the class name. To avoid specifying the
package name each time you use the class, you can import the package
into your program. For more information on importing packages, see
the section "Import a Package."

55

3683-4 ch03.F 5/24/02 8:59 AM Page 55

⁄ To import a package, type
import in the first line of
code.

¤ Type the name of the
package you want to import
and follow it with a dot.

■ This example uses the
package created in the
section "Create a Package."

‹ Type the name of the class
you want to import.

› Type the code that
declares the class and the
method you want to use.

To reduce the amount of typing required to create a Java
application, you can import a class from a previously
created package into a Java program. You may find this

helpful if you plan to use the class several times in the
program. You must first create the package you want to
import. For more information about creating a package, see
"Create a Package" in this chapter. Once you import a
package and a class, you do not need to specify the name of
the package each time you want to access the class.

You use the import statement to import a package and
usually place it at the beginning of your Java program. If your
program contains a package statement, you must place the
import statement after the package statement. You can
import several packages and classes into one Java program.
Each package you want to import must have its own import

statement. To prevent naming conflicts, you should not
import two classes with the same name into one program.

To avoid generating an error during code compilation, you
must check the availability of the package directory and the
class that you want to import. Although not a concern in
most situations, availability becomes important if you
develop programs on different computers or different
platforms.

When importing a class from a package, you must specify
the name of the class you want to import.

In addition to packages and classes that you create, you can
import packages and classes from the Java class library. For
more information about the packages included in the Java
class library, see Chapter 2.

IMPORT A PACKAGE

JAVA AND XML

56

IMPORT A PACKAGE

3683-4 ch03.F 5/24/02 8:59 AM Page 56

ˇ In the body of the method,
type the code for the task you
want to perform.

Á To use the imported class,
type the name of the class
and follow it with a dot.

‡ Type the name of the
method you want to access.

° Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The result of using a class
from an imported package
displays.

JAVA PROGRAMMING 3

You can use the wildcard character * to have Java import all the classes a
package contains. You may find this useful if you want to access several classes
in a package. For example, to import all the classes in the myapps.webutils
package, use the statement import myapps.webutils.*

When using the wildcard character *, remember that only the classes in the
named package import. For example, the import myapps.webutils.*
statement only imports the classes it finds in the myapps.webutils package
and does not import any classes it finds in the myapps.webutils.text
package. To import classes from the myapps.webutils.text package, you
must use the import myapps.webutils.text.* statement.

Java can automatically import certain packages when you compile code. The
java.lang package, a part of the Java class library, automatically imports
whenever you compile code. If your code contains classes that do not belong
to a package, Java imports the default package "" and assigns the classes to
that package. If your Java code contains a package statement, the named
package also automatically imports.

57

3683-4 ch03.F 5/24/02 8:59 AM Page 57

CREATE THE SUPERCLASS

⁄ Type the code that defines
a class you want to use as a
superclass.

¤ Compile the Java code.

■ The class file is created.

CREATE THE SUBCLASS

⁄ Type the code that defines
a class you want to use as an
extension of another class.

¤ In the method declaration,
type extends, following it
with the name of the class
you want to use as the
superclass.

‹ Compile the Java code.

■ The class file is created.

If a class you create relates to a previously created class,
you can make the new class an extension of the original
class. For example, you can make a new class that

performs tasks using a database, making it an extension of
the class that connects to the database. This allows you to
re-use Java code in the original class without having to
retype the code in the new class.

When you extend a class, you usually refer to the original
class as the superclass, while you call the new class the
subclass.

When declaring a class for use as a subclass, you must
include the extends keyword to specify the name of the
class that you want to act as the superclass. You must make
the class you specify with the extends keyword a valid
class and accessible to the subclass when the subclass
compiles.

The ability of a method within a superclass to access a
subclass depends on the access modifier the method uses.

Any other class can access a method with the public access
modifier, while no other class can access a method with the
private modifier. A method that does not have a specified
access modifier is said to have default access, which means
any class in the same package as the defining class can
access it, while classes outside of the package cannot
access it. The protected modifier is like the default, but all
subclasses can access a protected method no matter what
the package to which they belong is.

Once you create a subclass as an extension of a superclass,
you can produce a new class that accesses the subclass.
For example, a new class can create an object using the
subclass. The class information from both the subclass
and the superclass combines to form a single object, with
methods from both the subclass and the superclass
available to the object.

Many of the classes included with the JDK extend other
classes. For information about the JDK classes, refer to the
JDK documentation that accompanies the JDK.

EXTEND A CLASS

JAVA AND XML

58

EXTEND A CLASS

3683-4 ch03.F 5/24/02 8:59 AM Page 58

USING AN EXTENDED CLASS

⁄ To create a class that
instantiates an object of the
subclass you created, type
the code that defines the
class and method you want
to use.

¤ In the body of the method,
type the code that creates the
object.

‹ Type the code that
accesses methods from the
subclass and the superclass.

› Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The results of instantiating
the object of a subclass and
accessing methods of the
subclass and superclass
display.

JAVA PROGRAMMING 3

As with methods, fields within a superclass also become available to a
subclass, depending on the access modifier a field uses. Subclasses have
access to all the public and protected fields of their superclass; they
may also use the fields with default protection, if the subclass and
superclass are in the same package.

You can override methods in a superclass. To override a method in the
superclass, create a method in the subclass that has the same name as
the method you want to override. You must make the access modifier
of the method in the subclass the same or less restrictive than the
access modifier of the method in the superclass. When you create an
object using the subclass, the method in the subclass becomes available
instead of the method in the superclass.

You can also make a subclass a superclass of another class. This allows
you to create a chain of subclasses and superclasses. You call a class that
extends directly from a superclass a direct subclass of the superclass.
You refer to a class that is an extension of another subclass as an
indirect subclass of the superclass.

59

3683-4 ch03.F 5/24/02 8:59 AM Page 59

⁄ Create a class file with a
main method.

¤ Create some numerical
variables.

■ Ensure that one variable
has a value of zero.

‹ Type the code that assigns
the results of an expression to
a variable.

› Create an expression that
generates an error.

■ This example divides a
number by zero.

An exception, which occurs when Java encounters a
problem during the execution of a Java program,
causes Java to create an object that stores information

about the problem. You handle errors by accessing the
properties of an exception object. The type of exception
object that Java creates depends on the kind of problem
that occurs. For example, an error in a mathematical
calculation may generate an ArithmeticException
object.

Encountering an exception does not necessarily mean that
the processing of a Java program must stop. You can handle
some errors within the Java code of a program; it all
depends on the type and severity of the error. For example,
you can create a try block and a catch block to handle
exceptions that could potentially arise when a section of
code processes, allowing your code to recover from an
exception. For information about creating a try block
and a catch block, see the section "Handling Errors."

For more information about the different types of exception
classes and the kinds of errors that create them, refer to the
Java Application Programming Interface (API)
documentation or to Appendix B.

To troubleshoot the error-handling capabilities of your
Java applications, consider having your Java code generate
exceptions. One of the easiest ways to generate an error in
any programming language involves creating a mathematical
calculation where zero divides into a number, which
generates a 'division by zero' error. Within your Java code, a
division by zero error generates an ArithmeticException
object, which you can then use to create the code that
handles the error.

CREATE AN EXCEPTION

JAVA AND XML

60

CREATE AN EXCEPTION

3683-4 ch03.F 5/24/02 8:59 AM Page 60

ˇ Type the code that
generates a message.

Á Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ An error message displays.

JAVA PROGRAMMING 3
One of the most common sources of exceptions is the interpretation of user
input. You can use NumberFormatExceptions to determine if a user entered
a number as an integer, a floating-point number, or not a number at all.

61

TYPE THIS:

public class NumberFormat {
public static void testNumber(String number) {
try {

new Integer(number);
System.out.println(number +

" is an integer.");
return;

}
catch (NumberFormatException notAnInt) {

try {
new Double(number);
System.out.println(number +

" is a floating-point number.");
return;

}
catch (NumberFormatException notAFloat) {

System.out.println(number +
" is not a number at all.");

}
}

}
public static void main(String[] argv) {
testNumber("1v");
testNumber("2.3");
testNumber("ABC");

}
}

RESULT:

1 is an integer.
2.3 is a floating-point number.
ABC is not a number at all.

3683-4 ch03.F 5/24/02 8:59 AM Page 61

⁄ Type the code that
generates an exception.

■ This example tries to
divide a number by zero.

¤ To create a try block,
enclose the code that
generates an exception in
braces.

‹ Directly to the left of the
opening brace, type try.

› To create a catch block,
type catch() immediately
following the try block.

ˇ Between the parentheses,
type the class of the
exception that the try block
throws.

Á Type a name for the object
that Java creates when it
throws an exception.

If a section of code in a Java program may possibly
generate an error, you can create a try block and a
catch block to handle the error.

A try block detects if an exception occurs in a section of
code. To create a try block, use the keyword try and
enclose the code that may cause an exception in braces.

A catch block contains the code that executes when the
try block detects an error. The catch block must
immediately follow the try block. To create a catch block,
use the keyword catch and enclose the code you want to
execute in braces. You follow the catch keyword with a
parameter enclosed in parentheses. The parameter specifies
the class of the exception and a name for the object that
Java creates when the error occurs.

A catch block can only catch the type of exception that a
parameter specifies. If the try block generates a different

type of exception, the code in the catch block does not
execute. Usually the exceptions you catch consist of
checked exceptions, which the compiler forces you to
catch. Checked exceptions indicate an unexpected but
recoverable condition.

When an exception occurs in a line of code, the line of code
is said to throw an exception. When a line of code in a try
block throws an exception, the processing of code in the
try block stops immediately and any remaining statements
in the try block do not execute. The catch block catches
the error that a try block throws and Java continues
processing on the first line of code in the catch block.

You can make the code in a catch block display a
customized error message to notify a user of an error
occurrence. You should make the customized error message
easy to understand as well as specific to the error.

HANDLE ERRORS

JAVA AND XML

62

HANDLE ERRORS

3683-4 ch03.F 5/24/02 8:59 AM Page 62

‡ Type the code you want to
execute when the catch
block processes and enclose
the code in braces.

° Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ An error message is
displayed.

JAVA PROGRAMMING 3

As with any Java code, you have strict rules governing
the scope of variables that you use in try and catch
blocks. Java does not make variables that you declare
in a try block available for use in the catch block. In
the following example, the code does not compile
because the locationMessage variable is not
available in the catch block.

Example:
try {

String locationMessage = "determining item cost";

int itemCost = itemGrossCost / itemQuantity;

out.print("Each item costs " + itemCost);

} catch (ArithmeticException e) {

out.print("Error has occurred at " +
locationMessage);

}

Make your try blocks as large as
possible, ideally encompassing
virtually all the code in a method.
This has the effect of placing all
the functional code inside the
try block, and all the error
handling code at the end of a
routine. Separating the two kinds
of code makes them both easier
to understand and troubleshoot.

63

3683-4 ch03.F 5/24/02 8:59 AM Page 63

⁄ To create a member
variable, type static in the
body of the class.

¤ Type the code that
declares the member
variable.

‹ Type the code that
declares a main method.

› Type the code that
declares a method.

ˇ To create a local variable,
type the code that declares a
variable in the body of the
method.

■ Give the local variable the
same name as the member
variable, but a different value.

Á Type the code that
displays the value of the local
variable.

The scope of a variable determines the part of a
program that can access the variable and use its value.
Java has strict guidelines governing variable scope,

which it refers to as scoping rules.

You determine the scope of a variable by the position of the
variable declaration within a block of code. An opening
brace and a closing brace denote a block of code. The
scope of a variable runs from the line of code containing
the variable declaration to the closing brace of the block.

If you declare a variable in the body of a class, outside of
any method, the variable becomes accessible to all the
methods in the class. You refer to a variable that you
declare in a class body as a member variable.

A variable that you declare within a method is referred to as
a local variable. A local variable only becomes accessible

within the method in which you declared it. Other blocks of
code created within the method can access the local
variable.

You can use the same name to declare a member variable
and a local variable in one class. When you use the same
name to declare two variables of different scopes, Java
treats the variables as distinct. Although variables with
different scopes can have the same name, using unique
variable names makes your code easier to understand. For
example, instead of using a variable named counter for all
your counting functions, you should use variations of the
name, such as loopCounter for counting loop iterations or
processCounter for counting the number of times a
particular process executes.

UNDERSTANDING VARIABLE SCOPE

JAVA AND XML

64

UNDERSTANDING VARIABLE SCOPE

3683-4 ch03.F 5/24/02 9:00 AM Page 64

‡ Type the code that
declares another method.

° In the body of the method,
type the code that displays
the value of the member
variable.

· In the body of the main
method, type the code that
calls each method.

‚ Compile the Java code
and then execute the
program.

Note: See Chapter 2 to compile and
execute your program.

■ The value of the member
variable and the value of the
local variable display.

JAVA PROGRAMMING 3

To prevent errors, you must not reference variables declared in other
blocks of code. Java restricts the scope of a variable to the block of
code that contains the variable declaration. If you declare a variable
in a block of code that an if statement or a statement that produces
a loop creates, the variable becomes a local variable.

65

TYPE THIS:

if (2+2 == 4) {
int x = 3;

}

System.out.print(x);

RESULT:

Scope.java:12: cannot resolve symbol
symbol : variable x
location: class Scope

System.out.print(x);
^

1 error

3683-4 ch03.F 5/24/02 9:00 AM Page 65

⁄ Start your text editor.

■ This example uses
Microsoft Notepad.

¤ Type the XML declaration. ‹ Type an element's
start tag.

› Type the content for the
element.

ˇ Type an element's
end tag.

Á Save the XML document.

XML documents are text documents that contain
information which conforms to the XML specification.
Because XML documents use plain text, you can

employ any simple text editor to easily create them.

A simple XML document starts with an XML declaration.
An XML declaration provides basic information concerning
the XML document to any application that processes the
document. You must make the XML declaration the very
first line of an XML document. For simple XML documents,
the following line is the XML declaration:

<?xml version="1.0" standalone="yes"?>

This XML declaration tells the processing application that
this is an XML document that should conform to the XML
1.0 specification and that it is a standalone document. A
standalone document does not need to access any other
documents or files for information.

The bulk of XML documents consist of sections of
information called elements. Elements have a start tag and
an end tag, and typically contain some content, which you
place between the start and end tags. For example, the
element <name>Andrew</name> consists of a start and an
end tag, and as the content — in this example, the word
'Andrew'. You call the first element in an XML document
the root element.

When saving a previously created XML document using
a word processor, you must ensure that you save the XML
document as a plain text document. By default, most word
processors save documents in a proprietary format that
XML-reading applications cannot read. You save the XML
document with the file extension .xml.

Once you save an XML document, you can load it into
an application capable of processing XML documents.
Microsoft’s Internet Explorer is a popular Web browser
that you can use to view simple XML documents.

CREATE AN XML DOCUMENT

JAVA AND XML

66

CREATE AN XML DOCUMENT

3683-4 ch04.F 5/24/02 9:00 AM Page 66

‡ Start the application that
you want to process the XML
document.

■ This example uses
Microsoft Internet Explorer 6.

° In the address bar, type
the name of your XML
document and press Enter.

■ The content of the XML
document displays.

XML BASICS 4

If you make a mistake in your XML document,
the Web browser generates an error message
and may even give you detailed information
about the type and location of that error.

When you use a Web browser to view
an XML document, the Web browser
may reformat the information prior to
displaying it. For example, it may insert
indents and new lines into the XML
code to make the code easier to read.
You can always view the original
source code file by using the View
Source feature of your Web browser.

67

TYPE THIS:

<?xml version="1.0" standalone="yes"?>
<todo>
Backup sales data for last month

</todonow>

RESULT:

End tag 'todonow' does not match the start tag 'todo'.↵
Error processing resource 'file:///C:/Code/file.xml'.↵
Line 4, Position 3

</todonow>

—^

3683-4 ch04.F 5/24/02 9:00 AM Page 67

CHECK A WELL-FORMED
DOCUMENT

⁄ Create or open a simple
XML document.

Note: See the section "Create an
XML Document" to create an XML
document.

¤ Save the XML document.

‹ Load the XML document
into the XML application.

Note: This example uses XML
Spy, available on the companion
CD-ROM.

› Click the Check Well-
Formedness button.

■ The application indicates
that the document is well-
formed.

Before you can consider something an XML document,
you must ensure that the XML code in the document
is well-formed. The XML specification is a collection

of rules, or constraints, that specifies how you should
construct an XML document. Part of the XML specification
dictates the structure of an XML document, as well as how
you should format the individual items in the document.
These syntax and structure constraints, detailed in the XML
specification, determine if an XML document is well-
formed. If an XML document follows all the rules and
guidelines in the XML specification, then you can call the
XML document well-formed. You cannot call a document
that is not well-formed an XML document.

Checking if an XML document is well-formed requires
the use of an XML application that can analyze the XML
document and verify the document’s well-formedness. Many
applications exist that allow you to verify well-formedness.

For example, although primarily designed to display
HTML documents, some Web browsers also check the
XML document’s well-formedness. While you may find
Web browsers a quick and convenient way to check for
well-formed XML documents, if you intend to work with a
number of XML documents, you should use an application
designed primarily to work with XML documents.

Many XML applications that you utilize to develop XML
documents only allow you to perform certain actions, such
as spell checking your document or reformatting the code
to make it easier to read, if the document is well-formed.
For this reason you should continually check your XML
document to ensure that the XML document is well-formed
as you develop the document. If you check your XML
document and it is not well-formed, an error message
displays to indication the portion of the document causing
the failure.

VERIFY WELL-FORMEDNESS

JAVA AND XML

68

VERIFY WELL-FORMEDNESS

3683-4 ch04.F 5/24/02 9:00 AM Page 68

CHECK A NON-WELL-
FORMED DOCUMENT

⁄ Create a simple XML
document.

Note: See the section "Create an
XML Document" to create an XML
document.

¤ Adjust the end tag so
that it does not match the
start tag.

‹ Save the document.

› Load the document into
the XML application.

ˇ Click the Check Well-
Formedness button.

■ The application indicates
that the document is not
well-formed.

XML BASICS 4

The XML specification contains rules that identify what constitutes
a well-formed XML document. The XML specification indicates the
rules, or constraints, that apply to well-formed XML documents
with the letters wfc. You can view the XML specification on the
Internet at http://www.w3.org/TR/2000/REC-xml-20001006.html.

Besides monitoring an XML document for well-formedness, you
must also verify the XML document’s validity. You must create a
valid XML document according to the exact rules laid out in the
XML specification. If a document is a valid XML document, it is also
well-formed. For more information about XML document validity,
see Chapter 6.

The information in XML documents is always case sensitive. If you
use the wrong case when typing start and end tags, a common
error, you create code that generates an XML document that is
not well-formed. For example, <myName>Andrew</myName> is
correct, but the code <MyName>Andrew</myName> generates an
XML document that is not well-formed.

69

3683-4 ch04.F 5/24/02 9:00 AM Page 69

⁄ Type the code that creates
the XML declaration.

¤ Type the root element of
the XML document.

‹ Position the cursor
between the start and end
tags of the root element and
create another element.

› Position the cursor
between the new element's
start and end tags and type
the content of the child
element.

ˇ Type the code that creates
additional child elements.

You use an element within an XML document to
identify information. An element consists of a start tag
and an end tag. Between the start and end tags, you

place the element’s content. Tags start with the < delimiter
and end with the > delimiter. You place the tag name
between the delimiters. In the end tag, you must precede
the element name with a /.

In many cases elements contain text information, but they
can also contain other types of information including other
elements. You call an element that you make a part of the
content of another element a child element. You refer to
an element that contains another element as the parent
element of the child element. For more information about
the different types of element content, see Chapter 5.

How you structure the elements in an XML document
depends on the type of information that it contains. You
have no rules governing how you place your elements so
long as the document conforms to the XML specification.

However, you should try to structure the elements to match
the structure of the information within the XML document.

You do not have to place information in elements to
consider them valid; in fact, quite commonly the elements
of an XML document contain no information.

You cannot use spaces in the name of an element. To make
XML documents easier to read, the names of elements
should specifically indicate the type of content within
the elements.

You make the root element the first element in an XML
document, placing all other elements within the start
and end tags of the root element.

When adding elements to an XML document, you should
verify that the XML document is well-formed. See the
section "Verify Well-Formedness" in this chapter to verify
your XML document.

CREATE ELEMENTS

JAVA AND XML

70

CREATE ELEMENTS

3683-4 ch04.F 5/24/02 9:00 AM Page 70

Á Type the code that creates
additional child elements of
the root element.

‡ Save the XML document. ° Start the application that
you want to process the XML
document.

■ This example uses
Microsoft Internet Explorer 6.

· In the address bar, type
the name of your XML
document and press Enter.

■ If the XML document
is well-formed, the XML
document displays and
shows the elements.

XML BASICS 4
Element names can consist of any combination of alphanumeric characters,
hyphens, underscores, periods, or colons. The name of any element must begin
with a letter, a colon, or an underscore.

If an element contains no content, you call it an empty element. Instead of
creating both a start and an end tag, you combine an empty element into one tag.
This tag consists of the element name, which you follow with a /. For example,
the element <status></status> is exactly the same as <status/>.

While you can nest elements together, you cannot allow the start and end tags
of elements to overlap, as in the following example.

Example:

A Valid Element
<person>Tom<age>33</age></person>

An Invalid Element
<person>Tom<age></person>33</age>

You cannot use markup symbols in the text of an element’s content. For example,
you cannot define an element <notes>I always make sure to use the

 tag in my html code.</notes> because it contains the markup tag

 as part of the element’s content.

71

3683-4 ch04.F 5/24/02 9:00 AM Page 71

⁄ Create or open a simple
XML document.

Note: See the section "Create an
XML Document" to create an XML
document.

¤ Place the cursor within a
tag and type the name of the
attribute.

‹ Type = "".

› Position the cursor
between the quotation marks
and type the value for the
attribute.

ˇ Repeat steps 2 through 4
for each attribute of the
element you want to create.

You use an attribute to provide additional information
about an element’s content. Most elements store data
in the form of content between the start and end tags

of the element. As well as content, elements may also have
attributes, which hold data, associated with them.

An attribute consists of its name and value. You separate the
attribute name and value with the = character. You must
enclose an element’s attributes and their values within the
element’s start tag. You must always enclose the value of
an attribute within quotes, even if you use the attribute
to indicate a numerical value. For example, the start tag
<alert level="3"> is valid while <alert level=3>
is not valid.

An element can have multiple attributes. You can separate
attributes from each other and from the element name by

one or more spaces or line breaks. Using line breaks to
separate attributes may make your XML document easier
to read, especially if you have many attributes within a
single start tag.

In many cases, elements that have attributes can also use
child elements instead of attributes. Typically, you can use
attributes even when you only have one option for a given
value. For example, an element that describes a product in
a warehouse may have an attribute that indicates whether
you have the item in stock. This information makes a
suitable attribute because you can only have one value, yes
or no, depending on the item’s availability. Conversely, you
can place the name of the item’s supplier in a child element
because an item in the warehouse may have more than one
supplier.

ADD ATTRIBUTES

JAVA AND XML

72

ADD ATTRIBUTES

3683-4 ch04.F 5/24/02 9:00 AM Page 72

■ Repeat steps 2 through 5
for each element to which
you want to add attributes.

Á Save the XML document. ‡ Start the application that
you want to process the XML
document.

■ This example uses
Microsoft Internet Explorer 6.

° In the address bar, type
the name of your XML
document and press Enter.

■ If the XML document is
well-formed, the XML
document displays the
elements' attributes.

XML BASICS 4

You cannot use the same attribute name more than once in an
element’s start tag. If you have to use multiple attributes of the
same name, you should simply create more elements.

Non-well-formed
<task dept="sales" dept="shipping" complete="no">

<description>Backup sales data for last month</description>

<owner>Andrew</owner>

<status>open</status>

<priority>low</priority>

</task>

Well-formed
<task complete="no">

<dept>sales</dept>

<dept>shipping</dept>

<description>Backup sales data for last month</description>

<owner>Andrew</owner>

<status>open</status>

<priority>low</priority>

</task>

73

3683-4 ch04.F 5/24/02 9:00 AM Page 73

⁄ Create or open an XML
document.

Note: You can use the XML
document created in the section
"Add Attributes."

¤ Position the cursor where
you want to place the
comment and type <!--.

‹ Type the remainder of the
comment.

› Type --> to close the
comment tag.

You can add a comment, a helpful piece of inserted
text, to an XML document. You typically insert
comments as a reference for users who actually

read the XML document. While you typically may find the
overall structure of an XML document easy to read and
understand, readers may not find specific details of your
particular XML document apparent. By including a detailed
comment, you help to ensure that anyone who reads
your XML document will understand your reasons for
constructing your document the way you did. Not only
does this serve as an aid to people who may read your
code, but it may also help you if you have to reread your
own code after you have not read it for some time.

You denote the start of a comment with <!-- and end the
comment with -->. You use this same method to insert
comments in HTML documents. The application processing

the XML document ignores any comments you place in it.
You must place comments outside of any tags in the XML
document, preferably on their own line.

You can place any text information within a comment
except a double hyphen. You can even include line breaks
in your comments to make your comments easier to read.

You can only use comments after the XML declaration in an
XML document, and you must place the XML declaration in
the first line of your XML document.

Placing comments in your code is a good programming
practice. At the very least, you should ensure that you use
comments to include the author of the document and a
method by which a reader can contact the author.

ADD A COMMENT

JAVA AND XML

74

ADD A COMMENT

3683-4 ch04.F 5/24/02 9:00 AM Page 74

ˇ Position the cursor on a
new line.

Á Repeat steps 2 through 4
to create another comment.

‡ Save your XML
document.

° Start the application that
you want to process the XML
document.

■ This example uses
Microsoft Internet Explorer 6.

· In the address bar, type
the name of your XML
document and press Enter.

■ If the XML document
is well-formed, the XML
document displays the
comments.

XML BASICS 4
You can also use comments while developing your code to help eliminate errors.
For example, you can use comments to isolate unfinished sections of code that
would otherwise generate errors when you check them for well-formedness.

75

TYPE:

<?xml version="1.0"?>
<todo>

<task dept="sales" complete="no">
<description>Backup sales data for last month</description>
<owner>&name;</owner>
<status>open</status>
<priority>low</priority>

</task>
<!—

<task dept="accounting" complete="no">
<description>
<owner>
<status>
<priority>

</task>
—>
</todo>

RESULT:

This file is well-formed.

3683-4 ch04.F 5/24/02 9:00 AM Page 75

⁄ Open or create the XML
file to which you want to add
a processing instruction.

¤ Position your cursor after
the XML declaration.

‹ Type the beginning tag, <?,
for the processing instruction.

› Type the name of the
target application.

■ In this example, the target
application is ParseDoc,
which is a Java application.

You can pass application-specific instructions from an
XML document to an XML processor using a construct
called a processing instruction. You only use

processing instructions when working with an application
that expects the instructions in an XML document.

When creating your own Java applications you can easily
make applications that detect processing instructions in an
XML document. You can then have the application perform
a task, depending on the parameters you specify in the
processing instructions.

The syntax for declaring a processing instruction is
<?spaceDelimitedInstructions?>, where you replace
spaceDelimitedInstructions with any valid XML name,
and follow it with any required parameters. Because you aim
processing instructions at specific applications, the first word
in a processing instruction often represents the name of that
specific application. You follow the name with any additional
words, which represent the parameters that the target

application can interpret. If you create a Java application
and call it printXML, you may specify printXML so that the
processing instruction targets that application. You may use
the data in the processing instruction to indicate whether the
printXML application should print the document or perform
some other functions on the XML document.

An application that processes XML documents ignores any
processing instructions that do not target that application.
Most XML applications do not make use of the processing
instructions you place in XML documents.

You can insert a processing instruction anywhere in an XML
document as long as you do not place it within a tag or
make it the first line of the XML document. Where you
place the processing instruction depends on the application
at which you target the processing instruction and what
task that application performs. Users commonly place
processing instructions at the top of the XML document,
after the XML declaration.

INCLUDE SPECIAL PROCESSING
INSTRUCTIONS

JAVA AND XML

76

INCLUDE SPECIAL PROCESSING INSTRUCTIONS

3683-4 ch04.F 5/24/02 9:00 AM Page 76

ˇ Type the text that you
want to use as the
parameters.

Á Type the ending tag, ?>,
for the processing instruction.

‡ Save the file.

XML BASICS 4

Each word within a processing instruction must begin with a letter or
underscore and can only contain the following:

• Letters • Hyphens

• Digits • Periods

• Underscores

You cannot make the first word in a processing instruction xml, which is
a reserved word.

With a few exceptions, XML parsers ignore processing instructions.
Recognizing and executing processing instructions appropriately is up to the
processor — the application that extracts, manipulates, and displays XML.

The exception is the XML declaration itself (<xml version="1.0">).
All XML parsers recognize and handle this processing instruction.

You have no limit to the number of parameters that you can specify for
a processing instruction. For example, you can use:

Example:
<?ParseDoc check="yes" print="laser" compile?>

Any text after the target application name passes to the target application.
The target application analyzes the parameters of the processing instruction
and extracts the necessary information.

77

3683-4 ch04.F 5/24/02 9:00 AM Page 77

⁄ Open or create the XML
file in which you want to
reference a predefined entity.

¤ Position your cursor at the
point in the text where you
want to add the predefined
entity.

■ In this example, the
reference will be added
directly to an element's
content.

‹ Type the entity reference.

■ In this example, the entity
referenced is the apostrophe,
which you declare using
'.

XML applications processing the XML document may
incorrectly interpret some special characters that
you place into element content XML markup tags.

You can incorporate special characters into XML data
using predefined XML entities.

XML parsers make certain assumptions about XML
document syntax, for example, that a left angle bracket (<)
begins a tag. However, you may need to include a left
angle bracket in an element’s value, for example:

<err_desc>If the system fails, you will see
this message: <error 101></err_desc>.

Because an XML parser has no way of determining that the
second left angle bracket shown above is not the beginning
of another tag, it generates an error when attempting to
process this statement.

To define data containing special characters like angle
brackets, XML uses predefined entities to differentiate
between symbols that have special meaning in XML,
such as the left angle bracket, and those same symbols
embedded in a text string.

XML supports five predefined entities. Each of them
includes a semicolon at the end of the entity:

• <, which stands for the less-than character (<)

• >, which stands for the greater-than character (>)

• &, which stands for an ampersand (&)

• ', which stands for an apostrophe (')

• ", which stands for a quotation mark (")

USING PREDEFINED XML ENTITIES

JAVA AND XML

78

USING PREDEFINED XML ENTITIES

3683-4 ch04.F 5/24/02 9:00 AM Page 78

› Type any other entity
references.

ˇ Save the file. Á Display the XML
document in an XML
application.

■ This example uses
Microsoft Internet Explorer 6.

■ The predefined entities
display as special characters.

XML BASICS 4

Entities can appear inside attribute declarations as well as inside element values.
For example, the following XML code is valid:

Example:
<wholesalers name="Biggs & Tate"/>

The five entities in this example are sometimes referred to as predefined internal
entities. Internet Explorer provides support for these five entities, which are available
for both XML and HTML documents. See Chapter 5 to define custom entities, including
external, parsed, and unparsed entities. Entities in XML can take one of four forms:

ENTITY FORM

Internal general Referenced from inside an XML document; you define substitute
text inside a DTD.

External general Referenced from inside an XML document; you define substitute
text inside some external file.

Internal parameter Referenced from inside a DTD document; you define substitute
text inside a DTD.

External parameter Referenced from inside a DTD document; you define substitute
text inside some external file.

79

3683-4 ch04.F 5/24/02 9:00 AM Page 79

⁄ Open or create the XML
document in which you want
to declare a CDATA section.

¤ Position your cursor
where you want to declare
the CDATA section.

■ In this example, the
CDATA section will be
declared as the content
for an element.

‹ Type the beginning CDATA
tag, <![CDATA[.

› Type the special
character text.

ˇ Add the ending CDATA
tag,]]>.

You can include a large amount of data in XML
elements that may contain nonstandard text, such
as HTML code. The section "Using Predefined XML

Entities" earlier in this chapter shows you how to include
special characters in your XML documents using predefined
entities. Entities are fine for occasional use, and individual
characters, but if you need to incorporate a large number of
special characters, you can use another construct designed
specifically for that purpose: the CDATA section.

The CDATA section enables you to incorporate large blocks
of text containing special characters into an XML document
without replacing each special character with an entity
reference.

A CDATA section starts with the characters <![CDATA[
and ends with the characters]]>. Within the tag, you

can include any text that may contain special characters.
When an XML application processes this information, the
XML parser does not check the text; instead, the text passes
through the XML parser as the parser encounters it in the
document. The XML application that processes the
XML document then takes the responsibility to analyze or
otherwise use the text containing special characters in a
meaningful way.

You can make the information in the CDATA section almost
anything. It can contain programming code, such as Java,
or, more commonly, HTML. You often use HTML code in
CDATA sections because an XML parser interprets the
markup tags that you use in HTML as XML markup tags and
generates parsing errors. You can include XML information
in a CDATA section, but the XML parser does not check the
XML code for validity or any other XML characteristic.

INCLUDE NONSTANDARD TEXT

JAVA AND XML

80

INCLUDE NONSTANDARD TEXT

3683-4 ch04.F 5/24/02 9:00 AM Page 80

Á If required, add other
CDATA sections.

‡ Save the XML document. ° Display the XML
document in an XML
application.

■ This example uses
Microsoft Internet Explorer 6.

■ The special characters
display.

XML BASICS 4

Because the CDATA section
holds unrestricted character
data, few syntax rules apply
to CDATA contents. These
rules are:

• You must represent CDATA
sections as element values.

• You cannot use]] between
the start and end CDATA tags.

You may find a CDATA section
ideal if you want to pass a large
block of text containing several
special characters to your XML
processing application. The
following example incorporates
a block of scripting code, which
contains many special
characters, into an XML
document.

Example:
<![CDATA[

<SCRIPT LANGUAGE="JavaScript">

// Jamcracker, Inc. is providing this code as a service only;

// no warranties or fitness for use are implied. Please check ↵
our

// service manual for instructions on coding additional ↵
necessary

// functions and parameters.

function isUpToDate(downloadDate) {

// This function queries Jamcracker, Inc.’s database to ↵
determine if

// there have been product updates since the last XML file ↵
download.

var connectionUp=pingDatabase();

lastUpdated = queryDatabase();

if (downloadDate < lastUpdated && connectionUp) {

display("Please download the latest XML file to ↵
ensure up-to-date product information.")

}

}

</SCRIPT>

]]>

81

3683-4 ch04.F 5/24/02 9:00 AM Page 81

⁄ Open or create the XML
file to which you want to add
an inline DTD.

¤ Position the cursor directly
below the XML declaration
and directly above the root
element declaration.

■ This example uses the root
element task.

‹ Type <!DOCTYPE. › Type the root element of
the XML document.

You can create a set of rules for each XML document.
This allows you to control the format of data that
makes up your XML documents. For example, you can

specify that an element called company contain only text,
and no other type of information.

You can define the content make-up for components of an
XML document by using a document type definition, or
DTD. Comprised of plain text, DTDs, also called
vocabularies, define a common set of structured elements
and attributes, much like human vocabularies establish
common words and syntax rules.

As with XML documents, you create the DTD using plain
text, so you can include the text for a DTD inside your XML
document. Referred to as inline DTDs, you use DTDs within
an XML document for short XML documents as well as all
XML documents that you are in the process of developing.
To create element declarations for multiple XML
documents, see the section "Create an External DTD File."

You place a DTD into an XML document in a tag. You make
the opening characters of the tag <!DOCTYPE and follow
the tag with the name of the root element. You make the
root element the first element in the XML document. After
the name of the root element, you enclose the DTD rules in
square brackets, and follow the rules with a greater-than
character (>).

The DTD rules can specify the type of data that a user can
include as content for elements within the XML document.
You call rules that apply to elements element declarations.
An element declaration consists of a tag that starts with
<!ELEMENT, the element name, and then the type of data
that forms the element’s content. You close the element
declaration with a greater-than character (>). For elements
that contain text data, the data type (#PCDATA) indicates
that you must make the content of the element character
data.

DECLARE A DTD

JAVA AND XML

82

DECLARE A DTD

3683-4 ch05.F 5/24/02 9:01 AM Page 82

ˇ Type [.

Á Type an element
declaration.

■ This example uses the
keyword #PCDATA to restrict
values for the task element
to character data.

‡ Add the closing bracket
and close the tag.

° Save the file.

■ The file is saved.

XML DOCUMENT TYPE DEFINITIONS 5

When using a DTD with an XML document, you must associate all elements
that you define in an XML file with a corresponding declaration in the DTD.
You can declare the type of an XML element using any of the following:

83

ELEMENT DECLARATION TYPE DESCRIPTION

(#PCDATA) Character data.

(#PCDATA)* Zero or more characters.

(anElement) One instance of anElement.

(anElement+) One or more instances of anElement.

(anElement?) Zero or more instances of anElement.

(anElement, anotherElement) One instance each of anElement and
anotherElement.

(anElement | anotherElement) One instance of anElement or one instance of
anotherElement.

(#PCDATA | anElement)* Either an instance of anElement or multiple
characters. When you use this as one of multiple
options, #PCDATA must appear first.

EMPTY No content.

3683-4 ch05.F 5/24/02 9:01 AM Page 83

⁄ Start your text editor.

■ This example uses
Microsoft Notepad.

¤ Type the XML declaration.

‹ Type an element
declaration.

› Save the external DTD.

■ This example calls the
DTD file todo.dtd.

ˇ Open or create the XML
file to which you want to add
an external inline DTD
reference.

Note: To create an inline DTD, see the
section "Declare a DTD."

Á Position the cursor directly
below the XML declaration
and directly above the root
element declaration.

‡ Type <!DOCTYPE.

You can use the same DTD to create element
declarations for elements located throughout multiple
XML documents. For more on creating an inline DTD,

see the section "Declare a DTD." If you want other XML
documents to access your DTD, you can save the text of a
DTD as a separate file and refer to the DTD file from inside
your other XML documents. A DTD that you save in a
separate file is an external DTD. Because using an external
DTD separates validation rules from XML data, this external
DTD approach promotes document reusability. Multiple
XML documents can refer to the same DTD file without
having to replicate validation rules within each XML
document.

Because an external DTD is a text file, you can create it with
any text editor. Java still considers an external DTD as an
XML file and therefore requires an XML declaration as the
first line of the DTD. After the XML declaration, you can

specify the DTD element declarations for each element you
use in the XML document. Unlike inline DTDs, you do not
need to enclose the DTD rules in a DOCTYPE declaration or
use other types of start and end tags to encompass the
validation rules.

You must indicate the name and location of the external
DTD file within the XML document to which you want the
DTD to apply. As with inline DTDs, the DOCTYPE declaration
indicates the root element name, but instead of containing
the DTD rules, you use the SYSTEM keyword and follow it
with the DTD filename. The SYSTEM keyword indicates that
the local computer system can access the DTD file.

You can use any valid filename as the name of a DTD file.
Consider using a name that indicates to what type of
elements the DTD applies. By convention, all DTD files
end with the file extension .dtd.

CREATE AN EXTERNAL DTD FILE

JAVA AND XML

84

CREATE AN EXTERNAL DTD FILE

3683-4 ch05.F 5/24/02 9:01 AM Page 84

° Type the root element to
which you want to apply the
DTD.

· Type SYSTEM.

‚ Type the quote-delimited
name of the DTD file.

■ This example uses the
DTD file todo.dtd.

— Type the closing angle
bracket (>).

± Save the file.

■ The DTD file is saved.

XML DOCUMENT TYPE DEFINITIONS 5

The XML parser assumes that an unqualified filename resides in the same
directory as the referring XML document. If the DTD file resides in another
directory, the value for this parameter must reflect the qualified DTD
filename. For example, if the file.xml file resides in the c:\code directory,
and the todo.dtd file resides one directory beneath it in the c:\code\DTDs
directory, the DOCTYPE declaration of the file.xml XML document must
appear as follows:

Example:
<!DOCTYPE tasks SYSTEM "/DTDs/todo.dtd">

To determine if your DTD works with your XML documents, check your XML
documents with an application that can validate both XML documents and
DTDs. You can find a trial version of one such application, XML Spy, at
http://www.xmlspy.com/ as well as on the CD-ROM included with this book.

Using external DTDs presents you with the difficulty of transferring multiple
files when you want to share your XML documents. Not only must you
include your external DTD file with the XML documents that access them,
you must also locate the DTDs in the correct directory when transferring
them to another system. For more convenience, most developers store the
DTD in the same folder as the XML documents that use the DTD.

85

3683-4 ch05.F 5/24/02 9:01 AM Page 85

⁄ Open or create an XML
document.

¤ Create an element.

Note: For information on how to create
an element, see Chapter 4.

‹ Create an element inside
an existing element that
contains some data.

› Type the start and end of
the DOCTYPE declaration.

ˇ Type the element
declaration for an element
that has some content.

You can create element declarations in the DTD that
specify rules for simple elements that hold only
textual data. You can also create element declarations

in the DTD that define a more complex element structure,
such as elements that contain other elements. A container
element is what you call any element that contains another
element.

Programmers commonly create XML documents that nest
elements within other XML elements. Enforcing container
relationships enables you to model complex relationships
between XML data. For example, you can model
relationships between repeating, related groups of
elements, such as employees and projects, customers and
orders, and products and retailers.

Similar to a declaration containing character data, when you
declare an element containing other elements, you specify

the name of the element instead of a data type. An element
you contain within another element must still have its own
element declaration elsewhere in the same DTD.

You can also create container elements that contain other
elements. As long as you declare them all properly in the
DTD with the appropriate element declarations, you can
endlessly nest levels of elements. Elements can contain just
one other element or multiple elements. Almost every XML
document contains at least one container element. In most
cases, an XML document consists of many container
elements. In all but the very simplest XML documents, you
make the root element a container element that has no
textual data, just elements.

You can also define elements to contain a combination of
text and one or more other elements. For more information
about defining other element types, see the section "Define
the Structure of Elements" in this chapter.

DECLARE A CONTAINER ELEMENT

JAVA AND XML

86

DECLARE A CONTAINER ELEMENT

3683-4 ch05.F 5/24/02 9:01 AM Page 86

Á Type <!ELEMENT ()> to
create the element
declaration.

‡ Position the cursor in the
element declaration and type
the name of the element that
will contain another element.

° Type the name of the
contained element.

· Save the file.

■ The DTD file is saved.

XML DOCUMENT TYPE DEFINITIONS 5

While you do not need to declare contained elements
in the same order in the DTD as you have them in the
XML document, doing so is good programming
practice, making your code easier to read and
troubleshoot. Indenting each contained element
makes identifying the relationships between elements
much easier.

DTD
<!ELEMENT description (#PCDATA)>

<!ELEMENT who (#PCDATA)>

<!ELEMENT task (description, who)>

XML Code
<task>

<description>Backup sales data</description>

<who>Andrew</who>

</task>

You must reference elements that belong to
namespaces in DTDs by their fully qualified
names. For example, the following specifies
that the retailers element associated in the
corresponding XML file with the r namespace
is contained by the marketing_info
element. For more information about
namespaces, see the section "Using
Namespaces" in this chapter.

Example:
<!ELEMENT marketing_info
(unique_characteristics, rank, r:retailers)>

87

3683-4 ch05.F 5/24/02 9:01 AM Page 87

⁄ Create or open an XML
document that contains child
elements.

¤ Type code to create the
element declarations for the
child elements.

‹ Type code to create the
element declaration for the
parent element.

Note: For information on how to create
an element, see Chapter 4.

› Add the name for the new
element to the list of values
in the element declaration.

You can specify the function of elements in the XML
document. Constraining what type of data an element
contains ensures the proper formatting of information

in the XML document — a format that an XML application
may require. For example, you can specify an element that
stores a person’s name may only contain other elements
that represent the first and last name of the person. This
helps ensure the integrity of the data in that element when
you use an XML application that verifies the validity of the
data in the XML document.

Defining the content of an element to ANY allows you to
make the content of the element virtually any text. You can
make the content of the element another element or allow
the content of the element to contain markup such as
HTML tags.

You can define an element as empty. Although empty
elements cannot hold any content, they can still have
attributes you define within the element’s start tag. For
more information about attributes, see the section "Define
Element Attributes."

You can also define an element to only allow the element
to contain other specific elements. For example, an
address element may contain the element street and
the element city. When defining an element that contains
other elements, you must define the listed elements
elsewhere in the DTD within their own element
declarations.

When specifying a list of elements that you want to contain
within an element in an XML document, you can group the
element names together by enclosing them in parentheses.

If an XML document uses an element, and that element
does not comply with the specified validation rules in the
DTD, an XML application may consider the document
invalid and may not process it. You can verify that the
structure of elements within an XML document conforms to
the validation rules set out in the DTD by using an XML
validation application such as XML Spy. For more
information about using an XML validation application, see
Chapter 4.

DEFINE THE STRUCTURE OF ELEMENTS

JAVA AND XML

88

DEFINE THE STRUCTURE OF ELEMENTS

3683-4 ch05.F 5/24/02 9:01 AM Page 88

ˇ Type the element
declaration for a new empty
element.

Á Type the code that creates
the empty element.

‡ Save the XML document. ° Open the document in an
XML validation application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

· Validate the XML
document.

■ The XML document
validates.

XML DOCUMENT TYPE DEFINITIONS 5

You can use additional symbols to further define the contents of an element.
Depending on the symbol, you can increase or restrict the type of content for
an element. For example, you can specify that an element, or parenthesized
group of elements, may appear more than once by using the plus symbol (+).

Example:
<!ELEMENT task (description | who | reserved)+>

89

SYMBOL DESCRIPTION

| A single element from a list of elements separated by a | .

* Allows multiple elements or no element to appear.

+ Requires at least one or more elements to appear.

? Allows an optional selection of one choice.

, Specifies the sequence in which the elements must appear.

() Groups all or some of the elements together.

3683-4 ch05.F 5/24/02 9:01 AM Page 89

⁄ Open or create an XML
document that contains
elements.

¤ Type attributes for the
elements.

Note: For more information about
adding attributes, see Chapter 4.

‹ Type the opening
characters of an inline DTD
declaration.

› Type the characters that
close the DTD declaration.

XML elements can contain attributes, name and value
pairs in the form of strings, that can store additional
information about an element. Attributes give you

another choice, other than elements, for storing data. You
declare attributes in the DTD using the <!ATTLIST> tag.
When declaring an attribute for an element, you must
specify the element with which you associate the attribute,
as well as the type of data that you want to contain as the
value of the attribute. The most commonly specified type
for an attribute, CDATA, uses normal text as a value for an
attribute. When specifying the CDATA attribute type, you
cannot include markup, such as HTML tags, within the
attribute value. For a list of other attribute types, see
Appendix C.

A DTD can specify a default value for an attribute, to be
used if a given element in an XML document does not
specify a value for that attribute. You typically define the
attribute declaration within the DTD immediately after the
element to which the attribute applies. See the section
"Declare a DTD" for more information on DTDs.

While multiple elements of differing names can use
attributes that have the same name, you must have a
separate attribute declaration for each element that uses
the attribute of the same name. For example, you may have
two attribute declarations that specify the attribute name
title; one declaration specifies the attribute with the
element book, while another declaration specifies the
element position.

Whether you consider an empty element or one that
contains data, you can still specify attributes for that
element in the DTD.

After you create the attribute declaration in the DTD, you
can save your file or check that you have defined the
attributes properly by using an XML validation application.
The companion CD-ROM has an XML validation
application, called XML Spy, which validates XML
documents.

DEFINE ELEMENT ATTRIBUTES
JAVA AND XML

90

DEFINE ELEMENT ATTRIBUTES

3683-4 ch05.F 5/24/02 9:01 AM Page 90

ˇ Type the code that creates
the element declarations for
the elements in the XML
document.

Á Type the attribute
declaration tag.

‡ Type the name of the
element and the name of the
attribute.

° Type the attribute type.

■ This example uses the
most common attribute type,
CDATA.

Note: See Appendix C for a list of other
attribute types.

· Type the default value for
the attribute.

‚ Save the file.

■ The XML document is
saved.

XML DOCUMENT TYPE DEFINITIONS 5

You can declare multiple attributes for a single element in the DTD.

91

TYPE THIS:

<!DOCTYPE todo [
<!ELEMENT description (#PCDATA)>
<!ATTLIST description priority CDATA "low"

status CDATA "open"
owner CDATA "non assigned"

>
<!ELEMENT task (description)>
<!ELEMENT todo (task+)>
]>

RESULT:

<todo>
<task>
<description priority="high" status="open" owner="Andrew">
Backup sales data for last month

</description>
</task>
<task>
<description priority="low" status="open" owner="Andrew">
Complete end of month report

</description>
</task>

</todo>

3683-4 ch05.F 5/24/02 9:01 AM Page 91

⁄ Open or create an XML
document that contains
elements.

¤ Type attributes that use a
single word as a value to the
elements.

Note: For more information about
adding attributes, see Chapter 4.

‹ Type the code that creates
the attribute declaration,
setting the attribute type as
NMTOKEN.

› Save the XML document.

You can define an attribute validation rule to constrain
the value of an XML attribute to a single word, or
token, to help ensure the integrity of the data in the

XML document. For example, an attribute you call name
may have a value of John, while the same attribute may not
have a value of John Smith if you only make the value a
word. To define an attribute validation rule that constrains
the value of an XML attribute to a single word, you must
define the attribute type as NMTOKEN.

You can make the single word any valid XML name. You
always start with a letter or an underscore. The remaining
characters in a valid XML name can include letters,
numbers, periods, hyphens, and underscores. Valid XML
names can also contain colons, although you want to avoid
colon usage because they cause confusion when you work
with namespaces. You cannot use whitespace, such as tabs
and spaces, in a valid XML name.

If you define an attribute with an attribute type of NMTOKEN
and the attribute’s value contains more than a single word,
your XML document will fail validation. You can still specify
a default value for an NMTOKEN type attribute, but you must
make the default value for the attribute a single word;
otherwise the document will fail validation.

As with all validation rules in the DTD, specifying that an
attribute can only have a single word is useful as long as the
application that processes the XML document containing
the DTD understands and implements the validation rule. If
you create your own applications, you need to ensure that
any data that uses the value for an attribute in an XML
document conforms to the validation rules laid out in the
DTD. The companion CD-ROM has an XML validation
application on it called XML Spy that you can use to
validate XML documents.

DECLARE ATTRIBUTES AS WORDS

JAVA AND XML

92

DECLARE ATTRIBUTES AS WORDS

3683-4 ch05.F 5/24/02 9:01 AM Page 92

priority="somewhat high "

ˇ Open the document in an
XML validation application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

Á Validate the XML
document.

■ The XML document
validates.

‡ Change the value of an
attribute to two words.

° Validate the XML
document.

■ The XML document is not
valid.

XML DOCUMENT TYPE DEFINITIONS 5
You can define an attribute validation rule to constrain the value of an XML attribute
to multiple words by specifying the NMTOKENS attribute type instead of NMTOKEN.

93

TYPE THIS:

<?xml version="1.0"?>

<!DOCTYPE todo [

<!ELEMENT description (#PCDATA)>

<!ATTLIST description priority NMTOKENS "very low">

<!ELEMENT task (description)>

<!ELEMENT todo (task+)>

]>

<todo>

<task>

<description priority="somewhat high"> Backup sales data for last month </description>

</task>

<task>

<description priority="very low">Complete end of month report</description>

</task>

</todo>

RESULT:

This file is valid.

3683-4 ch05.F 5/24/02 9:01 AM Page 93

⁄ Open or create an XML
document that contains
elements and a DTD.

¤ Type the code that creates
an attribute declaration.

‹ Position the cursor after
the name of the attribute.

› Type ().

ˇ Type a list of values
separated by vertical bars (|).

You can define a validation rule to constrain the value
of an XML attribute to one in a list of predefined
values. In other words, you can declare an attribute of

type enumerated list. Declaring attributes in this way helps
reduce input errors and serves as a good approach for
fields, where you already know all the possible values
during XML document creation. For example, you may have
state or province codes available to you when you create
the XML document and can easily incorporate this
information into a list.

You must separate each option within the list with a vertical
bar (|). On most keyboards, you find the vertical bar key to
the left of the backspace key, and you commonly use it
when programming to symbolize the keyword OR. You can
specify any number of values within the enumerated list,
although lists with a large number of values can make your
declarations harder to read. You enclose the list of possible
values that a user can choose in parentheses.

You must give each value within the list of options a valid
XML name. Although you must start XML names with a
letter or an underscore, the remaining characters can
include letters, numbers, periods, hyphens, and
underscores.

You can also specify a default value for an attribute that
uses an enumerated list. You must make the default value
one of the words in the list of possible values.

If you intend to create the code that sets the values for an
attribute, and you have those values available in a DTD
validation rule, you must also create the code that can parse
the attribute declaration and select a valid value from the
enumerated list.

The companion CD-ROM has an XML validation application
on it called XML Spy that you can use to validate XML
documents.

RESTRICT ATTRIBUTES TO A LIST OF VALUES

JAVA AND XML

94

RESTRICT ATTRIBUTES TO A LIST OF VALUES

3683-4 ch05.F 5/24/02 9:01 AM Page 94

Á Type the code that creates
the attributes for the elements
as specified in the DTD.

‡ Save the XML document. ° Open the document in an
XML validation application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

· Validate the XML
document.

■ The XML document is
valid.

XML DOCUMENT TYPE DEFINITIONS 5
Remember that any values you specify within an attribute declaration are always
case sensitive; as with most things to do with XML documents, mismatching the
case of attribute values results in an error when you validate the XML document.

95

TYPE THIS:

<?xml version="1.0"?>

<!DOCTYPE todo [

<!ELEMENT description (#PCDATA)>

<!ATTLIST description priority (low | high | medium) "low">

<!ELEMENT task (description)>

<!ELEMENT todo (task+)>

]>

<todo>

<task>

<description priority="Low">

Backup sales data for last month

</description>

</task>

<task>

<description priority="high">

Complete end of month report

</description>

</task>

</todo>

RESULT:

This file is not valid:

Unexpected choice "Low" for
attribute "priority": (low |
high | medium) expected

3683-4 ch05.F 5/24/02 9:01 AM Page 95

⁄ Open or create an XML
document that contains
elements and a DTD.

¤ Type <!ENTITY.

‹ Type the name of the
entity.

› Type the value you want
to assign to the entity.

ˇ Type >.

You can describe a single section of data, called a
general entity, which you refer to repeatedly inside an
XML document. Defining entities saves you from

having to constantly repeat long or difficult passages of text
inside an XML file. You often define general entities to
represent sections of code for information such as
addresses, phone numbers, company names, or disclaimers.
Apart from reducing the size of the XML document, using
general entities also makes it easier to update the
information throughout an XML document or, indeed,
multiple XML documents. When information changes, for
example a phone number, you only have to update the
information where you declare the general entity, and not
the potentially numerous locations throughout your XML
document.

You declare general entities in the DTD. You start an entity
declaration in the DTD with <!ENTITY and follow it with

the name for the entity as well as its value. You must
enclose the value of an internal general entity within
quotation marks (""). Whenever you include the name of
the general entity in the XML document, XML substitutes
the values you specify in the DTD for the entity name.
When specifying an entity name in an XML document, you
precede the name of the general entity with an ampersand
(&). You immediately follow the name of the general entity
with a semicolon (;).

Most XML applications, including most XML parsers,
automatically substitute the value for the general entity
name before your code can access the XML document. If
you create a Java application that uses an XML parser that
does not resolve the entities, you need to create the code
that substitutes the specified value for the general entity
name throughout the XML document.

CREATE INTERNAL GENERAL ENTITIES

JAVA AND XML

96

CREATE INTERNAL GENERAL ENTITIES

3683-4 ch05.F 5/24/02 9:01 AM Page 96

Á Type the name of the
general entity, preceding it
with an & and following it
with a ;.

‡ Repeat step 6 for each
instance of the general entity
in the XML document.

° Open the document in an
XML viewing application.

■ This example uses
Microsoft Internet Explorer.

■ The internal general
entities resolve.

XML DOCUMENT TYPE DEFINITIONS 5

You do not have to use general entities only in the content of
elements; you can also use them to provide information for
other parts of an XML document, such as attribute values.

97

TYPE THIS:

<?xml version="1.0"?>
<!DOCTYPE todo [
<!ELEMENT description (#PCDATA)>
<!ATTLIST description
who CDATA #REQUIRED

>
<!ELEMENT task (description)>
<!ELEMENT todo (task)>
<!ENTITY owner "Andrew">

]>
<todo>
<task>
<description who="&owner;">Backup sales data</description>

</task>
</todo>

RESULT:

- <todo>
- <task>

<description who="Andrew">Backup sales data</description>
</task>

</todo>

3683-4 ch05.F 5/24/02 9:01 AM Page 97

⁄ Open or create an XML
document that contains a
DTD.

¤ Position the cursor on a
new line within the DTD.

‹ Type <!NOTATION>. › Position the cursor within
the tag and type the name of
the notation.

■ In this example, the
notation name is GIF.

XML documents may contain information other than
straight text. You can use an XML document to store,
or reference, many different types of data. You use a

notation declaration to notify the application that the XML
document may contain non-XML data. Non-XML data
includes information such as a word-processing file, an
image file or some other proprietary file type. For example,
an XML document that stores information about employees
of a company might need to reference an image that
contains a picture of an employee.

A notation declaration specifies the name of the notation. It
starts with <!NOTATION followed by the name of the
notation. You must make the name of a notation a valid
XML name consisting of letters, digits, periods, underscores,
and hyphens. After the name of a notation, the notation
declaration can indicate the file type of the data. You can
indicate the file type by including the SYSTEM keyword and
following it with the data type of the information that you

want to reference within the XML document. You enclose
the data type in quotation marks ("").

XML applications do not typically support the processing of
non-XML data; if you create your own code to process the
XML data, you must create code that can handle the data
types in the XML document as specified in a notation
declaration. Typically, XML applications, such as an XML
parser, do not verify or otherwise check the validity of a
notation declaration. The XML parser checks the notation
declaration for correct formatting, but only to ensure the
validity of the DTD and XML documents.

You use notation declarations with external unparsed
entities. For more information about external unparsed
entities, see the section "Create External General Entities"
in this chapter. After you create a notation declaration, you
can use an XML validation application to verify the validity
of the notation declaration.

CREATE A NOTATION

JAVA AND XML

98

CREATE A NOTATION

3683-4 ch05.F 5/24/02 9:01 AM Page 98

ˇ Type the SYSTEM
keyword.

Á Type the data type of the
notation, enclosing it in "".

■ In this example, the
notation data type is
image/gif.

‡ Save the XML document.

° Open the document in an
XML validation application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

· Validate the XML
document.

■ The XML document
validates.

XML DOCUMENT TYPE DEFINITIONS 5
Similar to XML entities and processing instructions, notations enable
developers to incorporate non-XML data into XML applications. The
difference among these three approaches is as follows:

• Entities provide links to the physical location of non-XML data; for
example, <!ENTITY name SYSTEM "http://www.someDomain
.com/someURL">.

• Processing instructions provide programmatic instructions for accessing
and viewing non-XML data; for example, <?gcc helloWorld.c?>.

• Notations, in contrast, describe the format of non-XML data files; for
example, <!NOTATION PDF SYSTEM "application/pdf"> or
<!NOTATION PDF PUBLIC "someUrl">.

You use notation declarations to identify information that requires the use
of another application to process the information. The applications that
can process the information are called helper applications. For example,
you may consider an image-editing program a helper application that
prints image data stored in an XML document. When dealing with notation
declarations and helper applications, you have no guarantee that a specific
helper application exists on the computer system processing your XML
documents. If you intend to process your XML documents on multiple
computers on which you do not have the helper application available, the
notation declaration’s information may not process as you intend.

99

3683-4 ch05.F 5/24/02 9:01 AM Page 99

⁄ Open or create an XML
document that contains a
DTD.

¤ Type <! ENTITY>.

‹ Position the cursor in the
tag and type the name of the
entity.

› Type the SYSTEM keyword
and follow it with the name
of the external file.

ˇ Type the NDATA keyword
and follow it with the
previously defined notation
attribute.

Note: For information about notation
declarations, see the section "Create a
Notation."

You can declare an external general entity to reference
an external data source, such as a JPG or PDF file, in
your XML-based application. You define an external

data type as any non-XML data type, such as a picture or
word-processing document. While you can store different
data types in an XML document, programmers more
commonly reference an external file that contains the data.

As with internal general entities, you precede an external
general entity declaration with an exclamation point (!) and
the ENTITY keyword. You must also specify the name of
the external general entity that you want to use. You can
indicate the location of the data file by specifying the
SYSTEM keyword and following it with the path and
filename of the XML data file. You must enclose the
filename in quotation marks (" ").

When you reference an external data file in an external
entity declaration, and that data file is not another XML
document, you must specify the NDATA keyword. You

follow the NDATA keyword with a notation name that you
have previously specified in a notation declaration within
the DTD. For information about notation declarations, see
the section "Create a Notation" in this chapter.

To declare an external general entity that you want to
include as an external data source, you must first create a
notation declaration in a DTD. To do so, see the section
"Create a Notation."

Most XML applications do not automatically process the
files to which an external general entity refers. For this
reason, when creating your own code, make sure your code
can process the files that the general entity indicates. While
XML does not require this, you typically use the information
in the related notation declaration to process the external
general entity. After you create a general entity, you can use
an XML validation application to verify the validity of your
general entities.

CREATE EXTERNAL GENERAL ENTITIES

JAVA AND XML

100

CREATE EXTERNAL GENERAL ENTITIES

3683-4 ch05.F 5/24/02 9:01 AM Page 100

Á Type the name of the
general entity, preceding it
with an & and following it
with a ;.

‡ Save the XML document. ° Open the document in an
XML validation application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

· Validate the XML
document.

■ The XML document
validates.

XML DOCUMENT TYPE DEFINITIONS 5

You can specify an external filename using absolute or relative URLs. For
example, the following are all valid entity declarations:

Example:
<!ENTITY P1 SYSTEM "product1.gif" NDATA GIF>

<!ENTITY P1 SYSTEM "http://www.someDomain/product1.gif" NDATA GIF>

<!ENTITY P1 SYSTEM "../product1.gif" NDATA GIF>

<!ENTITY P1 SYSTEM "/xml/product1.gif" NDATA GIF>

Notation attributes describe non-XML data formats, while external entities
reference notation attributes and describe the logical location of a non-
XML data file. You must define a notation attribute before you can
reference it. A good design practice is to define both notation attributes
and notation references (entity declarations) in the same DTD file, such as:

Example:
<!NOTATION GIF SYSTEM "image/gif">

<!ENTITY P1 SYSTEM "../product1.gif" NDATA GIF>

101

3683-4 ch05.F 5/24/02 9:01 AM Page 101

⁄ Open or create an XML
document.

¤ Create two or more
elements of the same name.

‹ Place the cursor before
the name of the element.

› Type the prefix name
followed by a colon (:).

ˇ Repeat steps 3 and 4 for
the end tag.

Á Repeat steps 3 to 5 for the
element of the same name.

Acommon problem with most programming languages
and large XML documents is that you can
unintentionally have names that conflict. For example,

you may have an element called name that refers to the title
of a book, and in another part of the XML document, you
may have another element called name, which refers to the
name of a company. Naming conflicts commonly occur
when you merge two or more XML documents into a single
XML document. With programming languages such as Java,
you can use scoping rules to prevent naming conflicts
between various method, variable, and class names.
Scoping rules define in what area of your code you can
safely use named items.

In XML documents, you can use namespaces to prevent
naming conflicts by associating each name with a
namespace. You indicate what name belongs to which
namespace by preceding each name with a prefix and
following it with a colon.

You can create your own prefix names by simply preceding
the name with the prefix. When you do so, the prefix name

should make sense within the context of the XML
document. For example, you can create a prefix name that
represents the section or element that encompasses the
section of the XML document where you want to use the
namespace. You may find that this makes your XML
documents easier to read, understand, and troubleshoot.

In XML documents, using namespaces prevents naming
conflicts. Because you can use the colon in any valid XML
name, XML applications do not need to recognize
namespaces to process XML documents that define
namespaces with prefixes. The XML applications can simply
interpret the namespace name, the colon, and the element
name as a single word, which it can use as the element
name. For code that needs to recognize namespace usage
within an XML document, you must create the code that
determines when, where, and how to use namespaces. You
can configure most XML parsers to ignore or recognize the
usage of namespaces within an XML document.

USING NAMESPACES

JAVA AND XML

102

USING NAMESPACES

3683-4 ch05.F 5/24/02 9:01 AM Page 102

‡ Create a DTD for the XML
document.

° Save the XML document. · Open the document in an
XML validation application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

‚ Validate the XML
document.

■ The XML document
validates.

XML DOCUMENT TYPE DEFINITIONS 5

Both elements and attributes can use a prefix to indicate that the subsequent
name of the element or attribute belongs to a specific namespace.

103

TYPE THIS:

<?xml version="1.0"?>
<!DOCTYPE todo [
<!ELEMENT assign:who (#PCDATA)>
<!ELEMENT completed (completed:who)>
<!ELEMENT completed:who (#PCDATA)>
<!ATTLIST completed:who
completed:dept CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>
<!ATTLIST description
dept CDATA #REQUIRED>

<!ELEMENT todo (description, assign:who, completed)>
]>
<todo>
<description dept="sales">Backup sales data</description>
<assign:who>Andrew</assign:who>
<completed>
<completed:who completed:dept="support">Peter</completed:who>

</completed>
</todo>

RESULT:

This file is valid.

3683-4 ch05.F 5/24/02 9:01 AM Page 103

⁄ Open or create an XML
document that contains
elements.

¤ Type a prefix to an
element name in the element
start tag.

‹ Type a prefix to an
element name in the element
end tag.

You can use namespaces to guarantee the uniqueness
of names within an XML document and prevent
naming conflicts. Although a prefix identifies different

namespaces, you must also make sure that the prefixes
themselves remain unique.

You can specify the name or address of a URI that identifies
a namespace and thus the associated prefix. The XML
namespace attribute specifies the URI you associate with a
namespace. You typically make the URI in the form of an
Internet address such as http://www.company.com/
xml/ns. As with all attributes, you specify the XML
namespace attribute within the start tag of an element. The
name of the XML namespace attribute as specified in the
tag is xmlns. You call the URI that targets the XML
namespace attribute the namespace name.

Although not required, you can have the XML namespace
attribute, which targets the URI, provide information about
that namespace. Most XML applications do not access the
specified URI in the XML namespace attribute. You use the

namespace name primarily to guarantee uniqueness; to
ensure uniqueness, no namespaces should ever share the
same namespace name.

You can use the XML namespace attribute in XML
documents that XML applications, unaware of namespaces,
can parse. This ensures compatibility of XML documents
that use namespaces with older XML applications, which
programmers may have developed before the introduction
of namespaces.

You specify the XML namespace attribute just like any
other element attribute: you follow the word xmlns with a
colon and then the name that you want to use as the
namespace prefix. The value of this attribute becomes the
namespace name. You must enclose the namespace prefix
in quotation marks.

As with the addition of any attribute to an XML document
that uses a DTD, you need to alter the DTD to reflect the
changes in the XML document when you use namespaces.

USING THE XML NAMESPACE ATTRIBUTE

JAVA AND XML

104

USING THE XML NAMESPACE ATTRIBUTE

3683-4 ch05.F 5/24/02 9:01 AM Page 104

› Type xmlns: and follow it
with the prefix name.

ˇ Type = and follow it with
the namespace URI, enclosing
the name in quotation marks.

Á Create or alter the DTD to
reflect the new attribute
name.

‡ Save the XML document.

° Open the document in an
XML validation application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

· Validate the XML
document.

■ The XML document
validates.

XML DOCUMENT TYPE DEFINITIONS 5

You can specify that XML use a default namespace whenever it
encounters an unspecified prefix in the XML document. You
specify the default namespace within the start tag of the root
element. You define the default namespace using the attribute
xmlns without following the word with a colon and a prefix name.

Example:
<!DOCTYPE todo [

<!ELEMENT description (#PCDATA)>

<!ELEMENT task (description, who)>

<!ELEMENT todo (task)>

<!ATTLIST todo xmlns CDATA #REQUIRED>

<!ELEMENT who (#PCDATA) >]>

<todo xmlns="http://www.company.com/ns">

<task>

<description>Backup sales data</description>

<who>Andrew</who>

</task>

</todo>

105

3683-4 ch05.F 5/24/02 9:01 AM Page 105

XML Schema, an XML document that you create with
XML syntax, allows you to describe and constrain
both the structure and the data within an XML

document. Having well-defined and easily described XML
documents using XML Schemas makes it easier and more

efficient to exchange the XML documents with other
applications. Although you can accomplish many of the
same tasks with DTDs, XML Schemas offer many more
advantages than DTDs. In fact, XML Schemas are intended
to replace the use of DTDs.

INTRODUCING XML SCHEMAS

JAVA AND XML

106

Non-Standard Format

Programmers who are unfamiliar with Standardized
Generalized Markup Language (SGML) may find the
keywords, coding styles, and structure of DTDs
somewhat confusing. DTDs are unlike most programming
languages as well as XML, so beginners must learn a new
method of coding prior to creating XML documents if
they want to use DTDs with their XML documents. You
find this less likely with XML Schemas, which use a
standard XML coding style in their creation.

Inflexibility

You may find DTDs limited in their ability to describe
the actual content of the XML documents. For example,
you cannot use a DTD to limit the content of an element
to a numerical value. DTDs allow you to specify a
number of data types, which you can use to restrict the
type of content in an XML document, but you cannot
use DTDs to restrict data to more complex data types,
such as a string that consists of numbers. XML
Schemas give you much better control over the type of
information that you can place in an XML document.

Coexisting

You should know how to use, create, and modify both
DTDs and XML Schemas; you use both when creating
XML documents and both have valid methods for
constraining and attempting to ensure the integrity of
information in an XML document. For simpler XML
documents, you may find DTDs more than adequate.
For more complex documents, you may need to have
more control over the content and structure of XML
documents. For example, in XML documents that other
people modify, you may want to use the more
sophisticated aspects of an XML Schema to restrict the
modifications that they can make.

WHY NOT DTDS?

3683-4 ch06.F 5/24/02 9:02 AM Page 106

XML SCHEMAS 6

107

Strong Data Typing

XML Schemas allow you to specify the content of the
elements in an XML document. You can use XML
Schemas to specify that the content of an element be a
simple piece of data, such as a number, or you can even
specify a more complex data structure that contains
multiple elements, multiple data types, attributes, and
structures. You can also constrain values to lists, making
it harder for someone to inadvertently add incorrect
data.

Modular Design

XML Schemas enable you to work with data structures,
which you may find more familiar if you have previously
worked with object-oriented programming languages.
For example, XML Schemas allow you to modify, reuse,
and replace previously created objects. As in any
object-oriented programming language, modularity
promotes more efficient and effective use of data. It
also makes it much easier to modify, upgrade, or update
your XML documents, making your information more
extensible.

Namespaces Support

XML Schema fully supports the use of namespaces. Not
only does XML Schema support a single namespace, but
it also allows you to use multiple namespaces in a single
XML document. This makes it much easier to reuse
element definitions, freeing you from having to re-
create the element rules each time you want to use
them. As with namespaces in DTDs, you use prefixes to
distinguish elements from other elements by
referencing different namespaces.

Easy to Learn

Unlike DTDs, you create XML Schemas using XML tags.
This means that programmers learning to create XML
Schemas do not have to learn a new coding language at
the same time. They can focus solely on creating the
schemas themselves, and not on learning the syntax to
create the schemas. The XML syntax that creates XML
Schemas is the exactly same as the syntax you find in
any standard XML document.

Efficient Data Exchange

Using XML Schemas allows applications to describe the
information that they exchange with other applications.
This allows applications that share data to understand
this exchanged information. For example, XML Schema
makes it possible to identify date and time information,
which many applications also exchange. Before
accessing the information in the XML document, the
application can use the schema and determine where
the information in the document is located as well as the
format of the information within the XML document.

Fewer Errors

When using XML documents, including those that make
use of DTDs, you could consider the document well-
formed and valid, but you could still find errors in the
data itself. For example, a telephone number may have a
missing digit, or you may have omitted the address of a
company. In both of these cases, the XML document
reports any errors during validation. XML Schemas allow
much more control over what can make up the content
of an XML document, and this reduces the number of
errors in the information stored in the XML document.

ADVANTAGES OF XML SCHEMAS

3683-4 ch06.F 5/24/02 9:02 AM Page 107

⁄ Type the code that creates
the XML declaration.

¤ Create the XML Schema
start tag that also specifies the
namespace prefix.

‹ Create the XML Schema
end tag.

› Insert the xmlns attribute
into the start tag.

ˇ Type a colon and follow it
with the namespace prefix.

Á Type ="".

You can create an XML Schema to describe the
structure and content of an XML document. An XML
Schema consists of an XML document that you can

generate with XML syntax. You create the XML Schema
using a schema declaration, which has a schema element.
Because it uses XML syntax, the schema element must have
a start and an end tag.

The XML Schema start tag contains the xmlns attribute,
which targets the XML Schema namespace. The XML
Schema namespace consists of an XML Schema containing
the definitions for elements and attributes, which construct
the schema. The xmlns attribute also allows you to specify
the prefixes that identify the XML Schema namespace.

With namespaces, you can declare elements globally or
locally. To declare an element globally, you must do so
within the root element of the XML document. You declare
locally declared elements within the content of another
element, other than the root element.

You use the elementFormDefault attribute to mark a
namespace prefix both as a globally and locally declared
element. When you specify the value of the
elementFormDefault attribute as unqualified, only
global elements use the namespace prefix. Setting the
elementFormDefault value to qualified means that
you must use a namespace prefix for all elements within the
XML document, whether global or local.

Because an XML Schema is still an XML document, you
must include an XML declaration as the first line of the XML
Schema. You can save XML Schemas as plain text files,
typically with the extension .xsd. Once you have saved the
XML Schema file, you can reference it from within the XML
document that will use the XML Schema to constrain the
structure and data in that XML document.

CREATE AN XML SCHEMA DECLARATION

JAVA AND XML

108

CREATE AN XML SCHEMA DECLARATION

3683-4 ch06.F 5/24/02 9:02 AM Page 108

‡ Position the cursor
between the quotation marks.

° Type the name of the XML
Schema namespace.

· Insert the
elementFormDefault
attribute into the start tag.

‚ Assign the value
qualified to the
elementFormDefault
attribute.

— Save the XML Schema
file.

■ The XML Schema is saved
in a file.

XML SCHEMAS 6
You may find it difficult to visualize the finished XML Schema file.
An example of a simple XML Schema for a very basic XML
document might look like this:

Example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="description">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="priority" type="xs:string" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="owner" type="xs:string"/>

<xs:element name="task">

<xs:complexType>

<xs:sequence>

<xs:element ref="description"/>

<xs:element ref="owner"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

109

3683-4 ch06.F 5/24/02 9:02 AM Page 109

⁄ Open or create an XML
Schema file that contains the
XML Schema declaration.

Note: You can use the code from the
section "Create an XML Schema
Declaration."

¤ Position the cursor
between the start and end
tags of the schema element.

‹ Type the code that creates
an empty element tag.

You use elements, the most common type of items
within an XML document, to identify information. A
simple element consists of a start tag and an end tag

with the content of the elements between the tags.
Elements can also contain other elements; for more
information, see the section "Declare a Container Element"
in this chapter.

As with elements in DTDs and XML documents, you must
declare the elements in the XML Schema that you declare
within the XML document. A simple element declaration
within an XML Schema specifies the name of an element
and the type of data that you want the element to hold. You
specify the name of an element within the start and end
tags of that element in an XML document.

The element content’s data type constrains the element
content’s value within the XML document. When the
content of an element does not match the constraints as

specified in the XML Schema, the XML document fails
validation when you check it with a validation application.
For information about validating XML documents that use
an XML schema, refer to the section "Validate an XML
Document" in this chapter. You must use valid XML
documents when accessing XML documents from within a
Java application you create, regardless of whether the XML
document uses an XML Schema.

When specifying the data type of an element content that
consists solely of text, you can use the value string in the
element declaration. You must prefix the string value
with the namespace name you use for the XML Schema
namespace, previously defined within the same XML
Schema.

When converting an XML document using a DTD to an XML
document that utilizes an XML Schema, you can use a
string data type to replace data that have a CDATA type.

DECLARE AN ELEMENT

JAVA AND XML

110

DECLARE AN ELEMENT

3683-4 ch06.F 5/24/02 9:02 AM Page 110

› Type name="".

ˇ Position the cursor
between the quotation marks.

Á Type the name of the
element that you want in the
XML document.

■ This example uses an XML
document that has one
element, called "todo".

‡ Type type="".

° Position the cursor
between the quotation marks.

· Type the data type of the
element content.

‚ Save the XML Schema
file.

■ The XML Schema is saved
in a file.

XML SCHEMAS 6

If you use empty elements within your XML documents, you still must
declare those elements within an XML Schema. To declare an element
as 'empty' you must include the complexType element tag within
the element’s declaration. You do not have to specify the data type
for an empty element. You do not consider the whitespace within an
XML document between the element tags textual data.

XML Document
<todo>

</todo>

XML Schema
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="todo">

<xs:complexType/>

</xs:element>

</xs:schema>

111

3683-4 ch06.F 5/24/02 9:02 AM Page 111

⁄ Open or create a simple
XML document.

■ This example uses an XML
document with a single
element called "todo" that
contains textual data.

¤ Insert the xmlns attribute
into the start tag.

‹ Type ="".

Once you create an XML Schema file, you can assign it
to an XML document. To create an XML Schema file,
see the sections "Create an XML Schema

Declaration" and "Declare an Element." Assigning an XML
Schema to an XML document involves specifying the
location of the XML Schema file within the XML document.
You do this by specifying the XML Schema file within the
root element of the XML document that will utilize the XML
Schema file.

The root element also uses the xmlns attribute to reference
the location of the XML Schema namespace for instances.
You must use this namespace if you intend to utilize the
XML Schemas.

The prefix that you typically associate with the XML Schema
namespace for instances is xsi. Only more sophisticated
XML applications actually use the information in the xmlns
attribute to locate and access the XML Schema namespace
for instances. While most applications do not use the

information specified as the value for the xmlns attribute,
you must define the xmlns attribute in order for your XML
Schema and XML document to be valid. For information
about validating XML documents that use an XML Schema,
refer to the section "Validate an XML Document" in this
chapter.

The noNamespaceSchemaLocation attribute of
the XML Schema namespace for instances specifies
the name of the XML Schema file for the element. For
simple XML documents, only the root element uses
the noNamespaceSchemaLocation attribute. The
noNamespaceSchemaLocation attribute helps the XML
application to recognize that it references an XML Schema
file and not another namespace name.

You do not have to make any modifications that depend
upon which XML document uses the XML Schema file. In
this way, you can use the same XML Schema file with
multiple XML documents.

ASSIGN AN XML SCHEMA
TO AN XML DOCUMENT

JAVA AND XML

112

ASSIGN AN XML SCHEMA TO AN XML DOCUMENT

3683-4 ch06.F 5/24/02 9:02 AM Page 112

› Position the cursor
between the quotation marks.

ˇ Type the name of the XML
Schema namespace for
instances.

Á Insert the noNamespace
SchemaLocation attribute
into the start tag.

‡ Assign the name of the
XML Schema file to the
noNamespaceSchema
Location attribute.

° Save the XML document.

■ The XML Schema is saved
in a file.

XML SCHEMAS 6

You are not limited to using the xsi prefix when referring to the XML
Schema namespace for instances. You can use any prefix you want as
long as you use it consistently in the implementation of the prefix.
Because xsi is the most commonly used prefix, you should not change
it without good reason, as changing it may make your code harder to
read by others.

Example:
<?xml version="1.0"?>

<todo xmlns:xmlNxInst="http://www.w3.org/2001/XMLSchema-instance"

xmlNxInst:noNamespaceSchemaLocation="C:\Code\file.xsd">

<task priority="high">

<description>Backup Sales Data</description>

<owner>Andrew</owner>

</task>

<task priority="Low">

<description>Backup Accounting Data</description>

<owner>Andrew</owner>

</task>

</todo>

113

3683-4 ch06.F 5/24/02 9:02 AM Page 113

VALIDATE A VALID
XML DOCUMENT

⁄ Start your XML validation
application.

■ This example uses XML
Spy, available on the
companion CD-ROM.

¤ Open or create an XML
document that references an
XML Schema.

Note: You can use the code created
in the section "Assign an XML
Schema to an XML Document."

‹ Click the validate button. ■ A message displays
indicating that the document
is valid.

You can validate an XML document to ensure that the
contents of the referenced XML document conform to
the rules as you specify them in an XML Schema. If

the XML document contains information that does not
conform to the specified XML Schema document rules, you
consider the XML document invalid. During validation, the
XML validation application checks each element in the XML
document and compares it against the rules laid down for
that element within the XML Schema document.

You can install an XML validation application on your
computer. An XML validation application can check your
XML documents to ensure that they conform to the defined
rules in any previously created DTDs or XML Schema
documents. As well as validating an XML document, you can
also validate an XML Schema file itself. Because an XML

Schema document is also an XML document, it must conform
to the rules of well-formedness and validity that apply to
other XML documents. If your XML Schema document is not
valid, you cannot check your XML documents against the
XML Schema file for validity. When using an XML validation
application, you must ensure that the application has the
capability of validating documents using XML Schema
documents and not just the capacity of validating the XML
Schema documents themselves. Some older validation
applications can only validate XML documents against a DTD
and not an XML Schema document.

If the XML validation application finds an XML document
invalid, the application typically indicates when and where
the error occurred. You can use this information to correct
the errors in your document or XML Schema file.

VALIDATE AN XML DOCUMENT

JAVA AND XML

114

VALIDATE AN XML DOCUMENT

3683-4 ch06.F 5/24/02 9:02 AM Page 114

VALIDATE AN INVALID
XML DOCUMENT

⁄ Start your XML validation
application.

¤ Open or create an XML
document that references an
XML Schema.

‹ Ensure that the document
contains an error.

■ In this example, the XML
Schema defines that the
"todo" element must be
empty.

› Click the validate button.

■ A message displays
indicating that the document
is invalid.

■ In the example, XML Spy
highlights the location of the
error.

XML SCHEMAS 6

You can validate the actual XML Schema document by
submitting it to a validation service on the World Wide Web.
This enables you to create and check your XML Schema
documents without having to install an XML validation
application on your own computer. The most popular
schema validation service is available from the World Wide
Web Consortium, located at http://www.w3.org/2001/03/
webdata/xsv. When you create XML documents and their
related XML Schemas, or DTDS, an application called an
XML parser accesses the XML documents from within your
Java code. An XML parser can only process valid XML
documents and make the information in those valid XML
documents available to your Java application. To ensure
proper XML parser operation, if possible, you should check
your XML documents for validity before accessing them
from within your Java applications.

115

3683-4 ch06.F 5/24/02 9:02 AM Page 115

⁄ Create an XML document
that contains a root element
and two sub-elements.

¤ Save the XML document. ‹ Open or create an XML
Schema file.

Note: You can use the code from the
section "Create an XML Schema
Declaration."

› Type the code that
declares the root element
of the XML document.

ˇ Type the code that creates
the complexType tags.

Apart from textual data, as shown in the section
"Declare an Element," elements can also contain
other elements. Creating elements within other

elements allows you to build more complex XML document
structures that can better organize information. You declare
elements in an XML Schema that stipulates that the
elements can only contain other elements. You use the
complexType tag to declare the sub-elements of a
container element and to create complex groups of data
within an element.

You can specify in what order you want to create the sub-
elements of a container element. When specifying the
sequence of elements, you consider the XML document
invalid if the sequence of elements in the XML document
does not match the sequence of the elements in the XML
Schema file.

When declaring a container element, you do not have to
specify the element’s data type in the same manner as you

would the data type for an element that contains
information such as textual data. For more information
about declaring elements that have textual data, see
"Declare an Element" in this chapter.

The sequence of an element enforces the integrity of
information within the XML document. For example, if you
have an element that stores the address of a client, you can
ensure that the information stores in a certain sequence; for
example, you can specify the order: street, then city, and
finally ZIP Code. As with all elements in an XML document,
the sequence element must have a start and an end tag. For
more information about start and end tags, see Chapter 4.

When a container element contains sub-elements, you must
declare the sub-elements in the XML Schema. For simple
elements that have only textual content, you can declare
the elements with a data type of string. You must
include a declaration for each separate element in the
container element.

DECLARE A CONTAINER ELEMENT

JAVA AND XML

116

DECLARE A CONTAINER ELEMENT

3683-4 ch06.F 5/24/02 9:02 AM Page 116

Á Type the code that creates
the sequence start tag.

‡ Type the code that
declares the sub-elements
of the container element.

° Type the code that creates
the sequence end tag.

· Save the XML Schema file.

‚ Validate the XML
document in an XML
validation application.

■ A message displays
indicating that the XML
document is valid.

XML SCHEMAS 6

You use the sequence tag known as a compositor, to ensure that
you place the elements in an XML document in a precise order.
To create a container element that contains other elements that
you do not need to place in an ordered sequence, you use the 'all'
compositor instead of the 'sequence' compositor when declaring
the element. Unlike using DTDS, this feature makes XML Schemas
very versatile when it comes to defining the structure of elements.

Example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="todo">

<xs:complexType>

<xs:all>

<xs:element name="task" type="xs:string"/>

<xs:element name="status" type="xs:string"/>

</xs:all>

</xs:complexType>

</xs:element>

</xs:schema>

117

3683-4 ch06.F 5/24/02 9:02 AM Page 117

⁄ Open or create an XML
document that contains
elements.

Note: You can use the XML
document from the section
"Declare a Container Element."

¤ Open or create an XML
Schema document for the
XML document created in
step 1.

Note: You can use the XML Schema
document from the section "Declare
a Container Element."

‹ Create an element
declaration for an element
that does not exist in the XML
document.

You can declare elements in an XML Schema that you
may or may not have present in the XML documents.
When gathering data requirements for your XML

document, you may find that the values for certain
elements do not always exist at the time that you create the
XML document. For example, in the case of an XML
document that contains information about products, a
newly introduced product may not have complete
information about the product at the time of the product’s
introduction. Therefore, a product name and price might
exist, but information such as units sold or supplier names
may not. In cases such as these, you can define optional
elements that you can add to an XML document as more
information becomes available.

In the element declaration, you can use the minOccurs
attribute to specify the minimum amount of occurrences of

an element. You make the value of the minOccurs
attribute the minimum number of times that the elements
can appear, and express it as an integer. Although you use
the value of the attribute as a numerical value, you must
still enclose it, like all attribute values, in quotation marks.

When you specify a value of zero for the minOccurs
attribute, the element is understood to be optional. The
XML Schema sets the rule that the elements may appear in
the XML document, or may not appear at all.

You still consider an empty element in an XML document an
occurrence of an element, so an XML validation application
can check the minOccurs attributes both for elements that
have content, and elements that are empty. For more
information about empty elements, see Chapter 4.

DECLARE OPTIONAL ELEMENTS

JAVA AND XML

118

DECLARE OPTIONAL ELEMENTS

3683-4 ch06.F 5/24/02 9:02 AM Page 118

› Type the minOccurs
attribute into the element
declaration.

ˇ Type the code that sets the
value of the minOccurs
attribute to zero.

Á Save the XML Schema
document.

‡ Open an XML validation
application.

° Validate the XML
document created in step 1.

■ A message displays
indicating that the XML
document is valid.

XML SCHEMAS 6
You can specify the maximum amount of times that an element may
appear by defining a value for the maxOccurs attribute. You can
make the value for the maxOccurs attribute any positive integer
value other than zero. To specify that an optional element can occur
no more than once, set the maxOccurs attribute to one and the
minOccurs attribute to zero.

Example:
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="todo">

<xs:complexType>

<xs:sequence>

<xs:element name="task" type="xs:string"/>

<xs:element name="status" type="xs:string"/>

<xs:element maxOccurs="1" minOccurs="0"

name="priority" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

119

3683-4 ch06.F 5/24/02 9:02 AM Page 119

⁄ Open or create an XML
document that contains
string elements and uses
an XML Schema.

Note: You can use the XML
document from the section "Declare
a Container Element."

¤ Create an element that
contains a decimal number.

‹ Save the XML document.

› Open or create an XML
Schema document for the
XML document created in
step 1.

Note: You can use the XML Schema
document from the section "Declare
a Container Element."

ˇ Create an element
declaration for the element
that you created in step 2.

Á Save the XML Schema
document.

You can specify different data types for the content of
elements. You refer to the data types that you can
specify for an element as primitive data types. You can

use elements that contain primitive data types as the basis
for creating more complex data structures within your XML
documents.

The ability to specify the data types for an element is
another major advantage that using XML Schema
documents has over using a DTD. Specifying the data type
of the content of an element helps to ensure the integrity of
the data that enters into an XML document. For example,
you can set the data type of the content of an element as a
number; thus, if someone modifies your XML document
and inadvertently enters a string of text instead of a number
for that element, the XML document fails validation, and
the XML validation application should indicate the location

of the error. While most validation applications report the
location of any errors, some validation applications may
only report that an error occurred. If you create your own
programs to validate XML documents, you should always
generate as much information as possible about errors,
including their location, in the event that errors occur.

You specify the data type in the element declaration using
the type attribute. The value of the type attribute indicates
the data type of the content that allows for that element.
For textual data the data type is string. You have a
number of data types for numerical data including
decimal for decimal numbers and float for 32-bit
floating numbers. For a list of data types that you can use
when specifying the data type for an element, refer to
Appendix C.

SPECIFY DATA TYPES

JAVA AND XML

120

SPECIFY DATA TYPES

3683-4 ch06.F 5/24/02 9:02 AM Page 120

‡ Open the XML validation
application.

° Validate the XML
document.

■ A message displays
indicating that the document
is valid.

· Change the content of the
element declared as decimal
to text.

‚ Validate the document.

■ A message displays
indicating that the document
is invalid.

XML SCHEMAS 6

You can use XML documents to store many different types of
data; you can build even the most complex data structures in
XML documents using elements consisting of simple data
types. You have a wide range of data types that specify the
content of an element. For a more complete list of element
data types, please refer to Appendix C.

COMMON ELEMENT DATA TYPES

DATA TYPES DESCRIPTION

xs:string Textual data such as names, addresses, and
product descriptions

xs:decimal Decimal numbers such as 3.0 and 4.27

xs:integer Whole numbers like 27 and 502

xs:boolean A true or false value

xs:date A specific date such as 1998-09-19

xs:time The time of day such as 13:34:01

121

3683-4 ch06.F 5/24/02 9:02 AM Page 121

⁄ Create an XML Schema
file element for an XML
document that contains a
single element.

■ This example uses an XML
document with a root
element called "todo" that
will contain textual data.

¤ Type the code that creates
the opening and closing
simpleType tags.

‹ Type the code that creates
a restriction tag, which
imposes restrictions based
on the string data type.

› Type the code to specify
the minimum length of the
string content.

ˇ Type the code to specify
the maximum length of the
string content.

Á Save the XML Schema
document.

You can restrict the values of an element to ensure the
integrity of the data in an XML document. You can
define two types of information in an XML Schema:

complex and simple.

You can restrict the characteristics, or facets, of information
that become the content of an element. For example, in an
element that contains textual data, you may want to limit
the number of characters that make up that textual data,
such as a 50-character limit for the number of characters in
a person’s name. You can also restrict the minimum length
of characters of textual data; for instance, you may restrict
an element that stores country location information to a
minimum of two characters, thus ensuring that anyone
modifying or adding information to the XML document
stipulates at least an abbreviation for the country as the
content of the element.

You restrict the information in the element using a
simpleType definition. Once you create the simpleType
element, you create a restriction element that details the
restrictions on the type of data that makes up the content
of the element. The restriction tag uses the base attribute to
specify the data type of the element. Depending on the
data type of the element, you can then specify the different
kinds of restrictions that you want to apply to the data. Each
facet has its own tag, which specifies the facet’s name, as
well as a value attribute, which specifies the value of the
facet. For example, the string data type has a minimum
length facet that you set to a number, which becomes the
minimum required number of characters for the element in
an XML document. For a list of data types and the
applicable facets for those data types, refer to Appendix C.

CONSTRAIN ELEMENT VALUES

JAVA AND XML

122

CONSTRAIN ELEMENT VALUES

3683-4 ch06.F 5/24/02 9:02 AM Page 122

‡ Open an XML validation
application.

° Validate the XML
document.

■ A message displays
indicating that the document
is valid.

· Change the content of
the element to exceed the
maximum length allowed.

‚ Validate the document.

■ A message displays
indicating that the document
is invalid.

XML SCHEMAS 6

You can restrict the length of data of a string element to
a specific number of characters by using the length facet.
When using the length facet, be aware that any
whitespace, such as a new line, is counted as a character.

To restrict the textual data of an element to precisely five
characters, use the following code:

Example:
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="todo">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:length value="5"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:schema>

123

3683-4 ch06.F 5/24/02 9:02 AM Page 123

⁄ Open or create an XML
Schema file.

■ This example uses an XML
Schema file for an XML
document that has a single
element called "todo," which
contains textual data.

¤ Type the code that creates
the simpleType element.

‹ Type the code that creates
the restriction element,
setting the base data type
to string.

› Type the code that creates
an enumeration element.

ˇ Type the code that sets
the value of the value
attribute to a list option.

Á Repeat steps 4 and 5 for
each item in the list.

You can restrict the value of an element in an XML
document to a value that resides in a list, a capability
you may find useful when creating XML documents.

For example, you may constrain an element’s value to a list
of country codes, area codes, or product model numbers.
Constraining values of an element to a list efficiently ensures
the integrity of your data, particularly if a user may modify
or otherwise alter that data.

The first step in restricting an element to a choice of values
involves creating a simple type definition, which
characterizes the restrictions of the element. The restriction
element specifies the base data type of the element. If you
create an element that stores a value chosen from a list of
words, you define the base type, as specified in the
restriction element, as a string. You can set the base type
of the element to any valid type that allows you to specify
values from a list.

Within the restriction element, the enumeration element
specifies the actual values that you consider valid for that
element. The data type that you specify within the
enumeration element must match the data type as specified
in the restriction element.

If you specify a value for an element in an XML document,
and the value does not match any of the choices that the
enumeration element in the XML Schema document
indicates, the XML document will fail validation. The
validation application typically indicates the nature and
location of the error that causes the validation to fail. By
default, you consider any whitespace within the content of
the element as part of the textual data of the element.

CONSTRAIN ELEMENT VALUES TO A LIST

JAVA AND XML

124

CONSTRAIN ELEMENT VALUES TO A LIST

3683-4 ch06.F 5/24/02 9:02 AM Page 124

‡ Open an XML validation
application.

° Validate the XML
document.

■ A message displays
indicating that the document
is valid.

· Change the content of the
element to an option not
specified in steps 4 and 6.

‚ Validate the document.

■ A message displays
indicating that the document
is invalid.

XML SCHEMAS 6
You can declare the elements in an XML Schema so validation
applications can ignore any whitespace within the element. You often
use whitespace within XML documents to make the XML document
more readable. To specify that a validation application should ignore
whitespace within an element when comparing the element’s value
to an enumerated list, use the xs:whiteSpace element.

Example:
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="todo">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:whiteSpace value="collapse"/>

<xs:enumeration value="Backup data"/>

<xs:enumeration value="Print reports"/>

<xs:enumeration value="Update logs"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:schema>

125

3683-4 ch06.F 5/24/02 9:02 AM Page 125

⁄ Open or create an XML
document that uses an XML
Schema and contains an
element that has an attribute.

¤ Open the XML Schema
for the XML document you
created in step 1.

‹ Create the complexType
element for the element for
which you want to create the
attribute.

› Create the
simpleContent element
for the element you wish to
create the attribute for.

You can declare elements in an XML document so that
you can assign additional information to them in the
form of attributes. For more information about

element attributes, see Chapter 4. You can define elements
that contain only values and no attributes or other elements
as simple types. If you want to use attributes with elements
in an XML document, you have to declare those attributes
in the XML Schema document for that XML document.

Adding attributes to an element involves the creation of a
complex type using a complexType definition. You can use
complex types of data structures within an XML Schema to
contain attributes, elements, or other complex-type data
structures.

Each complex type must use a compositor element to
indicate the sequence of items within the complex type.
You can use the sequence compositor to specify the exact
order of items within the complex type. For more

information about the sequence compositor, see "Declare a
Container Element" in this chapter.

To define the attributes for an element, you must use the
simpleContent and extension elements within the
complexType element declaration.

You use the simpleContent element to indicate that the
element does not contain other elements, and only textual
data. The extension element indicates the data type of the
elements.

The attribute declaration itself is very similar to an element
declaration in that you must specify the data type of the
attributes. You can make the data type any standard schema
primitive data type. For textual values, you can specify the
string data type. The attribute declaration also includes
the name of the attribute as specified in the element tag
within the XML declaration.

DECLARE AN ATTRIBUTE

JAVA AND XML

126

DECLARE AN ATTRIBUTE

3683-4 ch06.F 5/24/02 9:02 AM Page 126

ˇ Type the code that creates
the extension element, which
specifies the element's data
type.

Á Type the code that creates
the attribute declaration,
which specifies the name and
data type of the attribute.

‡ Save the XML Schema
document.

° Open an XML validation
application.

· Validate the XML
document created in step 1.

■ A message displays
indicating that the XML
document is valid.

XML SCHEMAS 6
Just because you define an attribute in an XML Schema, does not mean you must
use it in an XML document. To force an element to use an attribute, you can specify
a value of required for the use attribute within the attribute’s declaration.

Example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="todo">

<xs:complexType>

<xs:sequence>

<xs:element name="task">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="priority"

type="xs:string" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

127

3683-4 ch06.F 5/24/02 9:02 AM Page 127

⁄ Open or create an XML
Schema for an XML document
that will contain an element,
which has an attribute.

■ In this example, the XML
document contains the
element "todo," with the
attribute named "priority."

¤ Type the code that creates
the attribute element, which
specifies the name of the
attribute.

‹ Type the code that creates
the simple type element for
that attribute.

› Type the code that creates
the restriction element, which
specifies the data type of the
attribute.

ˇ Type the code that creates
the elements, which restrict
the type of data that you can
use for the attribute.

■ This example restricts the
length of the attribute to five
characters.

Á Save the XML Schema
document.

You can place limits and restrictions on the type and
value of data that you use for an attribute in an
element. Restricting or limiting the type of

information of an attribute value helps to ensure the
integrity of the attribute data within an XML document.
When you use attribute values that do not meet the
constraints as laid out in the XML Schema, the XML
document fails validation when an XML validation
application attempts to validate it.

You define the restrictions on the attribute values within the
XML Schema document. As with any elements for which
you want to restrict the values, you must create a simple
type definition. The simple type definition allows you to
specify the attribute’s values.

When declaring an attribute with no restrictions, you
specify the data type of the attribute within the attribute

declaration. When creating restrictions on attributes, you
specify the data type of the attribute within the restriction
element. You specify the name of the attribute within the
attribute declaration.

The type of restrictions you place on an attribute value
depends on the type of data that becomes the value of the
attribute. For string values, you can use restrictions such
as maximum and minimum number of characters; for
example, you may want to limit the number of characters in
a person's name to no more than 30 characters. For
numerical values you can specify the number of decimal
places for a number, such as specifying two decimal places
for currency data. For more information about the types of
restrictions that you can apply to attribute data, refer to
Appendix C.

CONSTRAIN THE VALUES OF AN ATTRIBUTE

JAVA AND XML

128

CONSTRAIN THE VALUES OF AN ATTRIBUTE

3683-4 ch06.F 5/24/02 9:02 AM Page 128

‡ Open an XML validation
application.

° Validate the XML
document.

■ A message displays
indicating that the document
is valid.

· Change the value of the
attribute to exceed five
characters.

‚ Validate the document.

■ A message displays
indicating that the document
is invalid.

XML SCHEMAS 6
In many cases, you want to restrict the values of an attribute
to a predetermined list. As with elements, you can use the
enumeration element to restrict the choice to one of a given list.
You do this by defining the list of choices for the attribute values.

Example:
<xs:element name="task">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="priority">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="High"/>

<xs:enumeration value="Medium"/>

<xs:enumeration value="Low"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

129

3683-4 ch06.F 5/24/02 9:02 AM Page 129

⁄ Open or create an XML
document that uses an XML
Schema document.

■ This example uses a simple
XML document, which
contains a root element and
two sub-elements containing
text.

¤ Open the XML Schema
document for the XML
document referenced in
step 1.

‹ Type the code to create
the element declarations for
the elements that you want to
contain text.

› Type the code to create
the element declaration for
the container element.

You can reference an element declaration from another
section of an XML Schema. This allows you to group
your element declarations together in a single section

and simply reference those element declarations
throughout the XML Schema.

Using a reference is similar to creating an element
declaration. For more information about declaring elements
within an XML Schema, see Chapter 4. The element
declaration can contain an attribute called ref. You must
assign a value to the ref attribute, and that value must have
the name of the previously declared element. For example,
if you have already declared an element called todo, you
must make the value of the ref attribute in the element
declaration todo.

Global element declarations are element declarations that
you place within the start and end XML Schema tags, but

which other element declarations do not enclose. You can
place element declarations within other elements or type
definitions. You refer to these types of definitions as local
definitions. Typically, within an XML Schema, the types of
element declarations that you reference are either global or
local element declarations.

Even when you reference a global element, if you place the
element reference locally, that is, within an element or type
declaration, and not in the actual schema declaration, you
classify the referenced element as a local element
declaration, even though it references a previously defined
global element declaration.

You typically make references empty element declarations;
they usually consist of one unified start and end tag. For
more information about creating empty elements, see
Chapter 4.

REFERENCE PREDEFINED ELEMENTS

JAVA AND XML

130

REFERENCE PREDEFINED ELEMENTS

3683-4 ch06.F 5/24/02 9:02 AM Page 130

ˇ Type the code to create
the sequence element for the
container element.

Á Type the code that creates
the reference to a previously
declared element.

‡ Repeat step 6 for each
reference you wish to use.

° Save the XML Schema
document.

· Open an XML validation
application.

‚ Validate the XML
document.

■ A message displays
indicating that the document
is valid.

XML SCHEMAS 6
You can reference the same element declarations repeatedly throughout the XML
Schema. This prevents you from having to repeatedly use the same element
declarations, particularly when the declaration’s element has a complex data structure.
This example declares the status element once, and then references it twice.

Example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="status" type="xs:string"/>

<xs:element name="task">

<xs:complexType>

<xs:sequence>

<xs:element ref="status"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="todo">

<xs:complexType>

<xs:sequence>

<xs:element ref="task"/>

<xs:element ref="status"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

131

3683-4 ch06.F 5/24/02 9:02 AM Page 131

⁄ Open or create an XML
document that contains
multiple elements.

¤ Create the same attribute
for differing elements.

‹ Open the XML Schema file
for the document you created
in step 1.

› Type the code that creates
the attributeGroup
element declaration.

ˇ Type the code to create
the remaining declarations
for the elements in the XML
document, without creating
attribute declarations.

You can create a declaration that defines a group of
attributes to reduce the amount of typing you must
perform when creating XML schemas. Defining an

attribute group also allows for faster maintenance of XML
schemas, should you need to update the XML schemas in
the future.

You can create a group of attributes that multiple elements
within an XML document can use. You use an attribute
group element to declare which attributes you want to
include within the attribute group. Within the attribute
group element, the attribute declaration determines the
characteristics of the attribute. The attribute group
definition allows you to specify the name by which the
elements reference that group of attributes.

The attribute declaration within an attributeGroup
element is the same attribute declaration that you use when
you want to declare the attribute within the element
declaration. You may find creating an attributeGroup
declaration helpful if you use the same attributes for

different elements throughout an XML document. The
attributeGroup element allows you to specify the name
and the characteristics of an attribute once. You can then
simply reference that declaration when the element
declarations in the XML Schema require it. Once you define
the attributeGroup, you can reference it from within any
complex type definitions.

You can only place an attributeGroup definition within
the XML Schema element. You cannot nest it within another
element declared in the XML Schema.

You make the actual reference to the attributeGroup
with another attributeGroup element. The ref attribute
of that element must reference the name of the attribute
group. When using an attributeGroup element to
reference a matching attribute group, the element must
remain empty.

An attributeGroup definition can contain attribute
declarations and references to other attributeGroup
definitions.

CREATE A GROUP OF ATTRIBUTES

JAVA AND XML

132

CREATE A GROUP OF ATTRIBUTES

3683-4 ch06.F 5/24/02 9:02 AM Page 132

Á Type the code to create
the attribute declaration
within the attribute group
element.

‡ Type the code that
references the attribute group
definition.

° Repeat step 7 for each
attribute group reference that
you require in the XML
Schema.

· Save the XML Schema
document.

‚ Open an XML validation
application.

— Validate the XML
document.

■ A message displays
indicating that the document
is valid.

XML SCHEMAS 6
You may find
attributeGroup
definitions a useful
way to declare
multiple attributes
at the same time.
You can combine
different attribute
types with different
restrictions into
one attribute group
and then simply
reference them
throughout your
XML Schema as
required.

133

Example:
<xs:attributeGroup name="shared">

<xs:attribute name="updatedBy" type="xs:string" use="required"/>

<xs:attribute name="date" type="xs:string" use="required"/>

<xs:attribute name="version" type="xs:decimal" use="required"/>

</xs:attributeGroup>

<xs:element name="todo">

<xs:complexType>

<xs:sequence>

<xs:element name="task">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attributeGroup ref="shared"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attributeGroup ref="shared"/>

</xs:complexType>

</xs:element>

3683-4 ch06.F 5/24/02 9:02 AM Page 133

⁄ Open or create an XML
Schema for an XML
document.

■ This example uses an XML
Schema file for an XML
document that contains one
root element called "todo,"
which contains textual data.

¤ Create the restriction tags
for the element.

‹ Type any additional facets
to constrain the value of the
data.

■ This example uses
whitespace within the
element's content.

› Type the code that creates
the pattern element, which
specifies the regular expression.

■ This example uses the
regular expression "[A-Z,\s]*,"
which allows for a value that
contains only uppercase
characters and whitespaces,
and any number of characters.

ˇ Save the XML Schema
document.

You can specify that the value of the content of an
element must conform to an existing set of rules using
a regular expression. A regular expression is a series of

symbols that allows you to specify the make up, or pattern,
that a value must match. For example, you can use regular
expressions to specify that a value must have textual data
and that it must also have all uppercase characters. You can
also use regular expressions to specify more complex
patterns, for example, that a value must have a specific
number of characters, that it must contain spaces, and that
it must contain at least one space.

Many different programming languages have long used
regular expressions to constrain values to a preset pattern.
While each programming language may have slight
deviations on the use of regular expressions, if you have
previously used regular expressions with another
programming language, you should have no problem using

regular expressions to specify a pattern for a value of an
XML element.

The restriction element establishes the values that you want
to constrain using regular expressions. The pattern element,
within that element, then defines a regular expression that
the XML validation application matches to the value of the
data. You state the regular expression as a value of an
attribute of the pattern element.

Regular expressions may initially seem very cryptic, but it is
well worth the effort to understand how they work. When
you become familiar with regular expressions, you may find
yourself repeatedly using them to constrain the values of
the data in your XML documents. Despite their simple
implementation, you may find them a very powerful tool.
For more information on regular expressions, refer to
Appendix C.

CONSTRAIN VALUES USING
REGULAR EXPRESSIONS

JAVA AND XML

134

CONSTRAIN VALUES USING REGULAR EXPRESSIONS

3683-4 ch06.F 5/24/02 9:02 AM Page 134

Á Open an XML validation
application.

‡ Validate the XML
document.

■ A message displays
indicating that the document
is valid.

° Change the content of the
element to contain lowercase
characters.

· Validate the XML
document.

■ A message displays
indicating that the document
is invalid.

XML SCHEMAS 6

Not only can you restrict the value of elements
using regular expressions, you can also use regular
expressions to constrain the values of attributes.

Example:
<xs:element name="task">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="priority">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="[a-z]*"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

135

3683-4 ch06.F 5/24/02 9:02 AM Page 135

The SAX API allows the Java applications you create to
communicate with an XML parser so that you can
access XML documents from within your Java

applications. SAX is an Application Programming Interface,
or API, for XML parsers. The API consists of a set of rules
and instructions for writing code that details how two
applications communicate with each other. Originally
developed in 1998 to become one of the first widely used
XML parsers, the SAX API makes it easier for programmers
to work with XML documents using multiple programming
languages, such as Perl, C++, and Java.

SAX provides a way to communicate with an XML parser
from within your Java code using straightforward Java
instructions. Although not itself an XML parser, SAX contains
a collection of code that you utilize within your own Java

programs to access an XML parser of your choice. SAX only
defines what code you must use to communicate with the
XML parser. You can only use the XML parser, a separate
program, with the SAX API if you configure it to understand
and support the SAX API. An API allows you to create
programs that you do not have to exclusively tie to specific
applications. For example, if you use the SAX API to
communicate with an XML parser that uses the SAX API—a
SAX-compliant XML parser—you can upgrade the XML
parser or switch to one from another vendor as long as the
new XML parser can use the SAX API. You can make these
changes to the XML parser without having to change your
code. Using an API instead of communicating directly with
an application also makes your code easier to maintain and
troubleshoot.

AN INTRODUCTION TO THE SAX API

JAVA AND XML

136

The SAX API has two major versions, both commonly in
use: the older version 1.0, and the current version 2.0,
also known as SAX 2, which will eventually replace SAX
1.0. Unlike SAX 1.0, SAX 2.0 has the capability to work
with XML documents that use namespaces. If given a
choice, you should use SAX 2.0 along with an XML
parser that supports SAX 2.0. You can also work with

different versions, such as beta versions, released during
the development of the SAX API. For example, there is
presently a beta version of SAX called SAX 2.0 beta 2.
When obtaining the SAX API, you should ensure that
you have a current and stable release. If the SAX API
came with an XML parser, then you can be assured that
the accompanying XML parser supports the SAX API.

VERSIONS

When you parse an XML document, the XML parser
processes specific characteristics of the XML document,
such as the beginning of the document or the start and
end of an element within the XML document. You refer
to these characteristics as events. In an event-based
XML parser, Java applications that communicate with
the XML parser execute specific code when the XML
parser encounters one of these events. Because the SAX
API was developed for use with event-based parsers,
you refer to it as an event-based API. Using the SAX API
to develop your application allows you to create Java
code that can execute whenever a specific event

happens. The major benefit of event-based parsers
stems from their ability to work efficiently with very
large XML documents. Other types of parsers typically
access an XML document after placing the XML
document in memory. Event-based parsers that must
first load the entire XML document into memory can
easily run out of available memory, and run much
slower when accessing very large XML documents.

You usually have multiple types of XML parsers for a
Java application to use, depending on the nature of the
XML document and the task you require it to perform.

EVENTS

3683-4 ch07.F 5/24/02 9:03 AM Page 136

THE SAX API 7

137

You use event-based parsers, and in turn the SAX API,
to access the contents of an XML file sequentially. A
parser reads an XML document from its start through to
its end. Any actions that the parser must take when it
encounters specific content within an XML document
must wait until the parser processes the preceding

content of the XML document. This sequential access of
event-based parsers differs from other types of parsers,
which load the entire XML document into memory and
then allow a Java application to access the XML
document at random locations.

SEQUENTIAL

Because the files that make up the SAX API are public
domain software, anyone can access the SAX API free of
charge. The SAX API requires no licensing fee or other
remuneration for developing personal or commercial
applications. Some commercial products, which may

use and include the SAX API with the software
application, may have a cost. You can find many
applications, such as a wide range of SAX-compliant
XML parsers that include the SAX API, readily available
at no cost.

COST

Although not a parser itself, SAX consists of a collection
of Java classes and interfaces that you access within
your Java code and that allows you to access a SAX-
compliant XML parser. You must configure the XML
parser in a way that allows SAX classes and interfaces to
use it. Any XML parser that you can use with the SAX
API typically includes the SAX class and interface files

with the parser. Although the SAX file is available
separately, you should always use the SAX file that came
with your current XML parser. This allows you to avoid
compatibility or version conflicts between the SAX files
and the XML parser. You may have to configure your
computer to automatically locate the SAX class files
after you copy them to your computer.

CLASS FILES

As with any type of API, current, error-free
documentation on how to use the API is essential. If
you obtain the SAX API with an XML parser, the parser
almost always includes SAX documentation as well as
very helpful documentation and programming
examples that relate to using SAX with that particular
parser. If the documentation did not come with the

XML parser, you can still access the documentation via
the main SAX Web site at http://www.saxproject
.org. You should always ensure that the
documentation refers to your version of the SAX API.
For this reason, consider using the SAX documentation
that came with the SAX files and XML parser rather than
the documentation available on the Internet.

DOCUMENTATION

3683-4 ch07.F 5/24/02 9:03 AM Page 137

Accessories

All Programs

Windows Explorer

xerces

⁄ To start Windows Explorer,
click Start.

¤ Click All Programs.

‹ Click Accessories.

› Click Windows Explorer.

■ The Windows Explorer
window appears.

ˇ Type the name of the
folder that contains the
Xerces files and press Enter.

Á Click the xerces.jar
file.

Note: Depending on the display
configuration of Windows Explorer,
the file extension may not display.

The SAX API allows the Java applications you create to
communicate with an XML parser so that you can
access XML documents from within your Java

applications. The Xerces XML parser is a popular, SAX-
compliant parser that you can find on the companion
CD-ROM, or via the Internet at http://xml.apache.org/.
Once you obtain the Xerces XML parser, you can install it
on your computer so that you can access it from your Java
programs using the SAX API.

You can find the files that comprise the Xerces XML parser
together in a Java Archive (JAR) file called xerces.jar.
Placing the parser files into a single file makes it more
convenient and efficient to transfer and copy the large
amount of files that the Xerces XML parser requires. The
Java Development Kit (JDK) consists of the files needed to
create Java applications. The JDK can access any of the files
within a JAR file as long as you place the JAR file in a
directory that the JDK can access.

Installing the Xerces XML parser entails copying the
xerces.jar file to a folder that holds Java class files. The
process of copying the xerces.jar file varies depending
on the operating system in use. For computers that utilize
the Microsoft Windows operating system, you can copy files
with the Windows Explorer application.

The special directory to which you copy the xerces.jar
file holds class files that create Java programs. As a matter of
convenience, you can also use the same directory to store
any class files that you write or obtain elsewhere.

Once you copy the xerces.jar file to a class file
directory, you must ensure that you can access the
xerces.jar file and its contents from your Java programs
by setting the CLASSPATH environment variable. For more
information, refer to the section "Set the CLASSPATH
Environment Variable."

INSTALL THE XERCES XML PARSER

JAVA AND XML

138

INSTALL THE XERCES XML PARSER

3683-4 ch07.F 5/24/02 9:03 AM Page 138

classes

xerces

‡ Click Copy this file. ■ The Copy Items dialog box
appears.

° Click the folder that holds
the Java class files.

· Click Copy.

■ The Xerces XML parser
Java archive(s) is copied to
the classes folder.

THE SAX API 7
If you have a version of Xerces designed for use on the
Windows operating system, you usually find the Xerces
XML parser and its companion files packaged into a single
zip file. A zip file conveniently collects together multiple
files into one package and then compresses them to save
storage space. This saves you time when transferring the
files over a network, such as the Internet. It also conserves
storage space, an important consideration when you must
store the files on a medium with limited space, such as a
hard drive. To work with the files, you must first extract
them from the zip file.

Many operating systems, such as Windows XP, can work
directly with zip files, allowing you to easily extract some
or all of the files from the zip file. Older operating
systems, such as Windows 98, require you to install an
application specifically for the zip files.

You can download an evaluation version of WinZip, a very
popular application for working with zip files, from the
Internet at http://www.winzip.com. WinZip is available for
most versions of Windows.

139

3683-4 ch07.F 5/24/02 9:03 AM Page 139

My Computer

Properties

⁄ To set the CLASSPATH
environment variable, click
Start.

¤ Right-click My Computer.

‹ Click Properties.

■ The System Properties
dialog box appears.

› Click the Advanced tab.

ˇ Click Environment
Variables.

To allow the Xerces XML parser to communicate within
your Java code, you must change the CLASSPATH
environment variable to include the location of the

Xerces Java Archive (JAR) file. The computer’s operating
system uses an environment variable to hold a piece of
information. The most common environment variable, the
PATH environment variable, specifies where the operating
system looks for files when you do not specify a location
for a file. The CLASSPATH variable tells the Java
Development Kit where to look for class files that you
may require when creating your Java code.

The CLASSPATH environment variable usually indicates the
location of many class and JAR files. You can specify
different locations and JAR files within the CLASSPATH
environment variable by separating each particular location
with a semicolon (;) on Windows, or a colon (:) on UNIX.
You can use the CLASSPATH environment variable to
specify the location of JAR files, directories, or both JAR
files and directories.

When creating a new environment variable, you must
specify the name of the variable and a value that you want
to assign to the environment variable. You specify the name
of the environment variable in uppercase letters.

On Windows-based computers, you find user environment
variables and system environment variables. You can only
make user environment variables available to specific users,
while any user who logs onto the computer can access
system environment variables. Users typically create their
own environment variables as they need them. Normally,
you must log onto your computer as an administrator to
add or change system environment variables.

As well as the location of commonly accessed class and JAR
files, the CLASSPATH environment variable also specifies
the current directory in which the Java file resides. You can
accomplish this by specifying a path denoted by a single
period (.).

SET THE CLASSPATH
ENVIRONMENT VARIABLE

JAVA AND XML

140

SET THE CLASSPATH ENVIRONMENT VARIABLE

3683-4 ch07.F 5/24/02 9:03 AM Page 140

■ The Environment Variables
dialog box appears.

Á Click New.

■ The New User Variable
dialog box appears.

‡ Type CLASSPATH.

° Type the location of your
class file directory.

· Click OK.

‚ Click OK.

— Click OK in the System
Properties dialog box.

■ The CLASSPATH
environment variable
changes.

THE SAX API 7
You can also set the CLASSPATH environment variable
from the command prompt with the Windows set
command. You can then only access the CLASSPATH
environment variable within the Command Prompt
window where you set it. Opening another Command
Prompt window requires you to reset the CLASSPATH
environment variable.

Example:
set CLASSPATH =.;c:\jdk\classes\xerces.jar

For most Windows operating systems, you use the
Windows set command to set the CLASSPATH
environment variable for all Command Prompt windows.
To do so, place the set command in the autoexec.bat
file in the root directory of the computer, and then restart
the computer. The new CLASSPATH replaces the previously
specified CLASSPATH environment variable. You can
append a new location to the existing CLASSPATH
environment variable with %CLASSPATH% in the new
CLASSPATH environment value. Never replace the existing
content of the CLASSPATH environment variable, as it may
hinder the operation of other applications.

Example:
set CLASSPATH =%CLASSPATH%;.;c:\jdk\classes\xerces.jar

Depending on the operating system,
you may need to set the CLASSPATH
environment variable. Some operating
systems, such as UNIX, allow you to
separate the different locations within the
CLASSPATH environment variable, but you
separate each location with a colon rather
than the semicolon you use in Windows.
To determine the correct configuration
changes to make to your operating
system, and the syntax to set the
CLASSPATH environment variable, see the
installation documentation that came with
the XML parser for your operating system.

141

3683-4 ch07.F 5/24/02 9:03 AM Page 141

⁄ Type the code that imports
the org.xml.sax package.

¤ Type the code that creates
a class.

‹ Type the code that
implements the
ContentHandler interface.

Before you parse XML documents using the SAX API,
you must create a special class file. You do this
because using the SAX API to parse an XML document

requires that you create a class that implements an
interface. You use this interface much like a class.

The class that you want to use must implement the
ContentHandler interface. You typically refer to the class
you create as the event handler class, because the parser
uses the class to execute code in response to specific
events, such as when it encounters the end of an XML
document during processing.

Before you can use the ContentHandler interface, you
must import the org.xml.sax package, which contains
the interface, into your code. You must define each method
of an interface in any class that implements an interface. If
you do not define a method of an interface within the class
that extends the interface, your code generates an error
when you compile it.

The ContentHandler interface has 11 methods that you
must define in the class, which becomes the event handler
class. The methods are characters, endDocument,
endElement, endPrefixMapping,
ignorableWhitespace, processingInstruction,
setDocumentLocator, skippedEntity,
startDocument, startElement and
startPrefixMapping. For a list of the parameters for
each method, see Appendix A.

Once you create the event handler class, you can compile
your code to check for errors. You cannot perform any
work with the event handler class until you create the code
that actually parses an XML document. To use the event
handler class while parsing an XML document, refer to the
section "Parse an XML Document" in this chapter.

CREATE AN EVENT HANDLER CLASS

JAVA AND XML

142

CREATE AN EVENT HANDLER CLASS

3683-4 ch07.F 5/24/02 9:03 AM Page 142

› Create the required
methods of the event handler
class.

Note: For a list of parameters, see
Appendix A.

ˇ Save the file. Á Compile your Java code.

Note: For instructions on compiling,
see Chapter 2.

■ If you have no errors, the
code compiles.

THE SAX API 7

When compiling the Java code that defines the handler class, the Java
compiler may generate a message stating that you should declare your
class as abstract. This message appears when you do not define the
correct methods required in your handler class. If you receive a
message about declaring your class as abstract, recheck the method
names in your handler class to ensure that they are correct and that you
have specified the correct number and type of parameters.

The SAX API defines the interface and methods that you must use when
creating an event handler class. You can verify the required method
names and their parameters by checking the SAX API documentation.

Documentation about the SAX API and the methods of the handler
class are typically included with any SAX-compliant XML parser. If you
do not have access to the SAX API documentation on your own
computer, you can find it at http://www.saxproject.com. You should
ensure that any documentation you reference matches the version of
the SAX API that you are using.

143

3683-4 ch07.F 5/24/02 9:03 AM Page 143

⁄ Type the code for the main
class of your application.

¤ Type the code to import
the required packages.

‹ Type the code that creates
the XMLReader object.

› Type the code that
registers the event handler
class with the reader.

ˇ Type the code that starts
parsing a document.

Once you create the event handler class, you need to
associate it with the XML parser using the SAX API.
This process registers the handler with a reader, an

instance of the XMLReader interface that you find in the
org.xml.sax package and which you use to decipher the
actual XML document. The SAXParser class, part of the
org.apache.xerces.parsers package, allows the SAX
API to communicate with the Xerces XML parser.

Employing a series of callbacks, you use the XMLReader
interface to create an object that reads the information
within an XML document. A callback occurs when an
application calls the methods in your code. In this case, the
XML parser calls the methods in the event handler class that
you have created. The method that the parser calls depends
on the type of information it encounters within an XML
document. For more information about the methods that
you must create in your event handler class, refer to the
section "Create an Event Handler Class."

Once you create the XMLReader object, you must register
the event handler class with the setContentHandler
method. When you create the code that employs the
setContentHandler method, the method uses the
name of the event handler class as its only argument.

You use the parse method of the XMLReader object to
start the parsing of an XML document. The parse method
occurs when you specify the name of the XML document
that you want to parse.

The parser calls the methods in the event handler class
whenever it encounters the corresponding event. To make
a method useful, you must create the code that specifies
what you want the method to do. For testing purposes, you
can simply assign code that displays a message to the
startDocument method of the event handler class. This
code executes when the XMLReader detects the start of
the XML document.

PARSE AN XML DOCUMENT

JAVA AND XML

144

PARSE AN XML DOCUMENT

3683-4 ch07.F 5/24/02 9:03 AM Page 144

Á Type the name of the XML
document to parse.

‡ Add the code that defines
the event handler class.

Note: Make sure the name of the class
matches the name specified in step 4.

° Type the code that will
display a message when the
XML document parses.

· Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ A message displays
indicating that the document
was parsed.

THE SAX API 7
You can only access the org.apache.xerces.parsers package when
you use the Xerces SAX-compliant XML parser. If you use a different XML
parser, consult that parser’s documentation for instructions on how to
communicate with the parser using the SAX API. For more information
about obtaining and installing the Xerces XML parser, refer to the section
"Install the Xerces XML Parser" in this chapter. You must have a well-
formed XML document for the XML parser to parse it. For more
information about well-formed XML documents, see Chapter 4.

An Example of a Well-formed XML Document:
<?xml version="1.0"?>

<todo>

<task>

<description>Backup sales data for last month</description>

<owner>Andrew</owner>

<status>open</status>

<priority>low</priority>

</task>

<task>

<description>Complete end of month report</description>

<owner>Andrew</owner>

<status>closed</status>

<priority>medium</priority>

</task>

</todo>

145

3683-4 ch07.F 5/24/02 9:03 AM Page 145

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

¤ Type the code that you
want to display a message
when the parser starts to
parse the document.

‹ Type the code that displays
the element name when a
parser detects a start tag.

Element declarations make up the majority of content in
an XML document. Elements can have a start and an
end tag, and may or may not have some content

between the tags.

One of the first steps in processing an XML document in an
application involves locating specific elements in the XML
document. Once the parser detects an element in an XML
document, it makes a callback to the appropriate method
of the event handler class. You should place these methods
of the SAX handler class in the Java code that you want to
execute when the parser detects an element.

The parser calls the startElement method of the event
handler class whenever the XMLReader detects a tag that it
identifies as the start tag of an element. Likewise, the parser
calls the endElement method of the event handler class
whenever the XMLReader detects a tag that it identifies as
the end tag of an element. The name of the element to

which the tag belongs passes to the method as a string. You
can use this string value to determine the name of the
element in your code.

Note that the startElement and endElement methods of
the event handler class do not differentiate between a child
and a parent element. The parser calls the appropriate
method of the event handler class regardless of the position
of the element in the XML document. Therefore, for nested
elements, the parser may call the startElement method
repeatedly before it calls the endElement method. If you
have a situation where the parser must differentiate between
a child and a parent element, you must write the code that
makes that determination.

As with any document that you intend to parse, you should
make the XML document well-formed to ensure that it
processes. For more information about well-formed XML
documents, refer to Chapter 4.

DETECT ELEMENTS IN AN XML DOCUMENT

JAVA AND XML

146

DETECT ELEMENTS IN AN XML DOCUMENT

3683-4 ch07.F 5/24/02 9:03 AM Page 146

› Type the code that
displays the element name
when the parser detects an
end tag.

ˇ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ A message displays each
time the parser encounters a
start or end tag.

THE SAX API 7

You may have some empty elements in an XML document that omit the
closing element tag as long as the start tag ends with />. For example,
<name></name> is the same as <name />. The XML parser understands
this, and it still calls both the startElement and endElement methods
even if it sees only one tag. This is illustrated in the following example:

Process the XML document:
<?xml version="1.0"?>

<todo>

<task />

<task />

</todo>

RESULT:
Start

Start of element 'todo' encountered

Start of element 'task' encountered

End of element 'task' encountered

Start of element 'task' encountered

End of element 'task' encountered

End of element 'todo' encountered

147

3683-4 ch07.F 5/24/02 9:03 AM Page 147

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

¤ Type the code that you
want to display a message
when the parser starts to
parse the document.

‹ Type the code that displays
the element name when the
parser detects a start tag.

› Type the code that displays
the element name when the
parser detects an end tag.

You can use the event handler class file to extract the
content of elements in an XML document. The content
of an element consists of the data between the start

and end tags of the element. Text data typically comprises
the majority of the content of elements you find in an XML
document.

An XML parser can determine the text content of an
element and return the content to your Java code using
the SAX API. The parser returns the text data with the
character method of the event handler class.

The character method of the event handler class makes
the text data of an element available in the form of a
character array. Along with the character array, the
character method also passes the character location
within the array where the text data starts, and the number
of characters that make up the text data of the element.

Given the character array that contains the element’s
content, along with the start location and number of
characters, you can easily transfer the element data into
a String variable. Converting the text data to a String
makes the data easier to handle.

When working with an element’s content, you typically
identify the name of the element that contains the data.
When displaying the content of elements, you can use the
startElement and endElement methods of the event
handler class to place the corresponding start and end tags
on either side of the element’s content.

What happens to the text data that makes up the content
of an element in an XML document depends on what you
want your application to do with it. Some applications
may simply display or print the text data while other
applications may want to execute other code depending
on the actual content of the text data.

EXTRACT TEXTUAL ELEMENT CONTENT

JAVA AND XML

148

EXTRACT TEXTUAL ELEMENT CONTENT

3683-4 ch07.F 5/24/02 9:03 AM Page 148

ˇ Type the code that creates
a new String variable.

Á Type the code that assigns
the character array to the
String variable.

‡ Type the code that
displays the String
variable.

° Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The element content
displays along with the start
and end tags.

THE SAX API 7

The character method of the event handler class passes the data to
your application in the form of a character array. The character array
does contain data other than the actual textual content of the element.
The character method also returns the start location within the array
and the number of characters of the element content, which you can
use to extract the element content from the character array. You must
always use the start location and number of characters data to extract
the element content from the character array. If you try to access any
other data in the character array other than what the values of the
character method arguments specify, an error may occur.

In some cases the parser may call the character method of the event
handler class repeatedly for one element. The content of the element
passes to the character method in separate sequential sections. The
number of times that the parser calls the character method when it
retrieves element data depends on the type of XML parser in use, as
well as the type of computing environment. You should take this
repeated calling of the character method into account when
working with element data.

149

3683-4 ch07.F 5/24/02 9:03 AM Page 149

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

Note: You also need an XML document
that contains elements with attributes.
See Chapter 4 for more information.

¤ Type the code that
displays the name of the
element.

You can associate an attribute — an additional item of
information that provides more details about an
element or the element content — with an element.

For example, an element called 'fax' may have an attribute
called 'code' that you use to indicate the area code of the
fax number that makes up the content of the fax element.
You need to determine the number of attributes an element
contains in order to access the information in the attributes.

The first step in accessing the attributes of an element
involves determining the number of attributes an element
has. Elements may have multiple attributes or they may
have no attributes at all. Next, you can determine the name
of the attributes and any values associated with those
attributes. The XML parser encounters element attribute
information when it processes the start tag of an element.
Information about any attributes of an element passes as an
Attributes object to the startElement method of the
event handler class. You can easily create code in the

startElement method to determine the number of
attributes an element may have.

Because the Attributes interface is a part of the
org.xml.sax package, you must import the
org.xml.sax package into your program. For more
information about importing a package, see Chapter 3.

As with most other objects, you can use methods to
determine properties of an object. The method that
determines the number of attributes of an Attributes
object is the getLength method. The getLength method
returns the exact number of attributes that you have
specified for an element within an XML document.

Attributes of an element in an XML document may or may
not have a value assigned to them. Regardless of whether
you have specified the value for the attribute, the
getLength method of the Attributes object counts
the attribute.

DETERMINE THE NUMBER OF
ELEMENT ATTRIBUTES

JAVA AND XML

150

DETERMINE THE NUMBER OF ELEMENT ATTRIBUTES

3683-4 ch07.F 5/24/02 9:03 AM Page 150

‹ Type the code that
displays the number of
attributes.

› Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The name of each element
and the number of attributes
displays.

THE SAX API 7
If you want to access the attribute information from any method of the
event handler class, you must retrieve it from the startElement method.

151

TYPE THIS:

private Attributes atts;
public void startElement(String namespace, String name,

String qName, Attributes atts) {
this.atts=atts;

}
public void characters(char[] ch, int start, int length) {
String textData = new String(ch, start, length);
System.out.print("Element content: ");
System.out.println(textData);
System.out.println(atts.getLength() + " attributes\n");

}

RESULT:

Element content: Backup Sales Data
2 attributes

Element content: Andrew
0 attributes

Element content: Print sales report
2 attributes

Element content: Mark
0 attributes

3683-4 ch07.F 5/24/02 9:03 AM Page 151

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

Note: You also need an XML document
that contains elements with attributes.
See Chapter 4 for more information.

¤ Type the code that checks
for the existence of attributes.

‹ Type the code that
displays a message if the
element has attributes.

You can determine the name of attributes that you
specify for an element. As with all attribute details,
the way to access the information is by using an

Attributes object. The Attributes object passes to
the startElement method of a previously created event
handler class. For more information about event handlers,
see the section "Create an Event Handler Class" in this
chapter.

You use a specific method of the Attributes object
to retrieve the name of elements’ attributes. The
getLocalName method requires that you specify an index
number to indicate which attribute the name represents.
The index number becomes the sole argument of the
getLocalName method.

The getLength method determines the number of
attributes that an element has. Once you determine the
number of attributes, you typically use a loop to iterate
through the attribute names. For more information about
creating loops, see Chapter 3.

Before accessing the attributes of an element, you should
determine if the element has any attributes associated with
it. You can quickly check for the existence of attributes by
using an if statement to determine if the number of
attributes of an element is greater than zero. For more
information about the if statement, see "Using the if
Statement" in Chapter 3.

As the attribute information becomes available to the
startElement method of the event handler, you can
easily associate the correct element name with the
corresponding attributes.

As with most indexes of numbers in Java, the index of the
attributes starts with zero, not one, so that an element with
two attributes must access them using the index numbers
zero and one, not one and two. If you try to retrieve the
name of an out-of-range attribute, the return value
becomes a null value.

DETERMINE THE NAME OF ATTRIBUTES

JAVA AND XML

152

DETERMINE THE NAME OF ATTRIBUTES

3683-4 ch07.F 5/24/02 9:03 AM Page 152

› Type the code that loops
through the element
attributes.

ˇ Type the code that
displays the names of
the attributes.

Á Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The name of each element
and the name of the
element’s attributes display.

THE SAX API 7

The order in which a parser detects attributes is not necessarily the same
order in which they become available using the Attributes interface.
You should not write code that assumes a specific order for the
attributes, as the order may change over time and on different platforms.
Typically you create the code that reorders the attributes in a manner
that makes it easy to work with your code, such as alphabetical order.

For example, using the code in the steps below may report the attributes
of this element:
<priority ignore="no" checked="yes" level="3">medium</priority>.

First Parser
Element priority has attributes

ignore

checked

level

Second Parser
Element priority has attributes

level

ignore

checked

153

3683-4 ch07.F 5/24/02 9:03 AM Page 153

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

Note: You also need an XML document
that contains elements with attributes.
See Chapter 4 for more information.

¤ Type the code that checks
for the existence of attributes.

‹ Type the code that
displays a message if the
element has attributes.

› Type the code that
displays the name of the
attributes.

You can determine the value of an element in order to
retrieve the information from the element’s attributes.
An element’s attributes consist of an attribute name

and value. Once you determine the name of an attribute,
you can retrieve its value and associate the name to the
value. The Attribute object provides the getValue
method, which utilizes an index number to access the value
of an attribute. You can also use this same index number
with the getLocalName method, to retrieve the attribute’s
name. In this way, the index number matches the attribute’s
name with its value. As attributes do not necessarily follow
in the order that you specified them within the element, you
typically use both the getLocalName and the getValue
with the index number to access attribute values.

You can determine the number of attributes and values with
the getLength method. Once you determine the number
of attributes, you typically use a loop to iterate through the
attribute names and values.

Attribute values are always returned as a string, even if the
value of the attribute is a number. For example, if the
attribute age has a value of 36, then 36 is the actual
string value, not the number 36. Any mathematical
calculations you perform on the value result in an error.
To easily convert string data to numbers, see Chapter 3.

You must enclose the value of an attribute in single or
double quotes when you specify the attribute value in an
XML document. When the value passes to the event
handler, the XML parser returns the value, without the
quotes. For example, for the attribute name and value pair,
name="555-2230", only the text 555-2230 returns as the
value of the attribute name. If you try to retrieve an out-of-
range value of an attribute, then you receive the return
value of null.

DETERMINE THE VALUE OF ATTRIBUTES

JAVA AND XML

154

DETERMINE THE VALUE OF ATTRIBUTES

3683-4 ch07.F 5/24/02 9:03 AM Page 154

ˇ Type the code that
displays a message describing
the attribute value.

Á Type the code that
displays the value of the
attributes.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The name of each element,
the name of the element’s
attributes, and the attribute’s
values display.

THE SAX API 7

You can use the getType method of the Attributes interface to
determine the type of data of the attribute value. Unless you use a DTD
or schema with your XML document, the data type is always CDATA.

155

TYPE THIS:

public void startElement(String namespace, String name, String qName,
Attributes atts) {

if (atts.getLength()>0) {
System.out.println("\nElement " + name + " has the attributes ");
for(int i=0; i<atts.getLength(); i++) {
System.out.print(atts.getLocalName(i));
System.out.print(" which has a type of ");
System.out.println(atts.getType(i));
}

}
}

RESULT:

Element owner has the attributes
dept which has a type of CDATA

Element priority has the attributes
ignore which has a type of CDATA
checked which has a type of CDATA

3683-4 ch07.F 5/24/02 9:03 AM Page 155

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

¤ Type the code to create
the variable that represents
a Locator object with a
scope within the event
handler.

‹ Type the code that assigns
a Locator object to the
Locator object you created
in step 2.

You can determine which line of an XML document a
parser is currently processing when a specific event,
such as a processing instruction, occurs. You use the

Locator interface, part of the org.xml.sax package, to
create an object. The object contains the location at which
the XML parser is currently parsing in the XML document.
For more information about importing a package, see
Chapter 3.

The XML parser calls the setDocumentLocator method of
the event handler class whenever the XML parser makes a
callback to the event handler class, regardless of the type of
event that triggers the callback or whether the XML parser
intends to call any other method in the event handler. A
Locator object passes to the setDocumentLocator
method, which you can then use to determine the
location that the XML parser is accessing. You use the
getLineNumber method to return a value that represents
the line number that the parser is currently parsing.

Because you cannot guarantee its accuracy, you should not
access the Locator object outside of the event handler
class. The Locator object passes to the
setDocumentLocator method, and this limits its
usefulness to code located within the
setDocumentLocator method. To make it more useful,
you should make the Locator object more accessible to
other methods within the event handler class. The easiest
way to do this involves creating a Locator object with a
scope within the event handler class. This allows you to use
the Locator object in the other methods of your class.

The Locator object and its data are only valid for the
current event. As each event occurs, the data that a Locator
object makes available changes. When working with the line
numbers that the Locator object makes available, the line
numbers start with number one and not zero.

DETERMINE THE LINE
NUMBER BEING PARSED

JAVA AND XML

156

DETERMINE THE LINE NUMBER BEING PARSED

3683-4 ch07.F 5/24/02 9:03 AM Page 156

› Type the code that
displays the line number.

ˇ Type the code that
displays the name of the
element.

Á Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The name of each element,
and the line number of the
element in the XML
document display.

THE SAX API 7

You can also use the Locater interface to locate the
column number, the number of characters from the start
of the line, that the XML parser is currently processing.

157

TYPE THIS:

public void startElement(String namespace, String name, String qName,
Attributes atts) {

System.out.print("On line " + locator.getLineNumber());
System.out.print(" at column " + locator.getColumnNumber());
System.out.println(" Start of element '" + name + "' detected ");

}

RESULT:

On line 2 at column 7 Start of element 'todo' detected
On line 3 at column 9 Start of element 'task' detected
On line 4 at column 18 Start of element 'description' detected
On line 5 at column 12 Start of element 'owner' detected
On line 7 at column 13 Start of element 'status' detected
On line 8 at column 15 Start of element 'priority' detected
On line 10 at column 9 Start of element 'task' detected
On line 11 at column 18 Start of element 'description' detected
On line 12 at column 12 Start of element 'owner' detected
On line 13 at column 13 Start of element 'status' detected
On line 14 at column 15 Start of element 'priority' detected

3683-4 ch07.F 5/24/02 9:03 AM Page 157

⁄ Open or create an XML
document.

¤ Create a DTD that defines
an element that does not
contain textual data.

Note: For more information about
creating DTDs, see Chapter 5.

‹ Save the XML document.

› Open or create the code
that parses the XML
document saved in step 3.

Note: You can use the code created in
the section "Parse an XML Document."

ˇ Type the code that
displays a starting marker.

Á Type the code that
displays an ending marker.

You can have the XML parser detect ignorable
whitespace in your XML document to more efficiently
identify what information the parser does not require

when it processes an XML document. Most XML documents
contain whitespace, which consists of non-displayable items
such as a space character, tabs, or line breaks. Whitespace
may include valid information, such as the spaces in text
that compose an element’s content. When you have valid
whitespace as part of the textual content of an element, the
XML parser detects it and then passes it to the application
using the characters method of the event handler object.
In that context you can consider the whitespace an actual
part of the element content.

Some whitespace in an XML document may not form part
of the content. The XML parser must detect it before it can
perform a task, such as formatting an XML document for
printing. You call this kind of whitespace ignorable

whitespace because it may not constitute a necessary part
of the XML document, and therefore you can safely ignore
it. For example, you may insert a line break between the
end tag of one element and the start tag of the next
element in an XML document. While making the XML
document easier to read, the parser can safely ignore the
line break without affecting the validity or contents of the
XML document.

You detect ignorable whitespace with the
ignorableWhitespace method of the event handler
object. The ignorableWhitespace method works in
the same manner as the characters method, in that the
whitespace passes in a character array along with the
start location and the length of the data in the array. You
typically convert this character array into a string to make
the information easier to manage.

DETERMINE IGNORABLE
WHITESPACE IN AN ELEMENT

JAVA AND XML

158

DETERMINE IGNORABLE WHITESPACE IN AN ELEMENT

3683-4 ch07.F 5/24/02 9:03 AM Page 158

‡ Type the code that creates
a new string variable.

° Type the code that assigns
the character array to the
string variable.

· Type the code that
displays the variable
containing the whitespace.

‚ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The markers denoting the
start and end of the
whitespace characters
display.

THE SAX API 7
You must include a valid DTD to determine which parts of the XML document
constitute ignorable whitespace. The ignorableWhitespace method does
not work unless you use a document type definition. You can test this by
displaying a message whenever the parser detects ignorable whitespace.
Try to detect whitespace in an XML document as in the example:

Example:
<?xml version="1.0"?>

<todo>

<description>Backup sales data for last month</description>

</todo>

159

TYPE THIS:

public void ignorableWhitespace(char[] ch, int start, int length) {
System.out.print("Detected ignorable whitespace");

}

RESULT:

No Result!

3683-4 ch07.F 5/24/02 9:03 AM Page 159

⁄ Open or create an XML
document.

¤ Insert one or more
processing instructions.

Note: For more information about
creating processing instructions,
see Chapter 4.

‹ Save the XML document.

› Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

ˇ Type the code that
displays a message when the
application detects a
processing instruction.

You can use processing instructions to pass information
to a specific application accessing an XML document.
The application can then perform a task based on the

values within the processing instruction or, if necessary, take
no action at all.

Processing instructions in an XML document consist of two
parts, the target and the value. The target is the first word
of the processing instruction, while the value of the
processing instruction consists of the remaining characters.
Processing instructions within an XML document begin with
<? and end with ?>.

You target the processing instruction at a specific application.
For example, you may use <?Speller check=no?> as a
processing instruction that notifies a text parsing application
not to spell check the contents of the XML document.

Although you typically make the target name the name of
the application for which you intend the processing
instruction, you can also make it any valid word.

The XML parser detects processing instructions in an XML
document using the processingInstruction method of
the event handler class. The processingInstruction
method passes two parameters as string data: the target
name, and the value of the processing instructions as you
specify them in the XML document.

Processing instructions have no impact on the document
itself; an application only uses them when it processes the
XML document to perform a task. Multiple processing
instructions can exist in an XML document. If your
application does not look for processing instructions in the
XML document, then the application ignores any processing
instructions that it encounters.

You must write your application so that it recognizes the
processing instructions intended for it and then performs a
task depending on the value of the processing instructions.

WORK WITH PROCESSING INSTRUCTIONS

JAVA AND XML

160

WORK WITH PROCESSING INSTRUCTIONS

3683-4 ch07.F 5/24/02 9:03 AM Page 160

Á Type the code that
displays the processing
instruction’s target name.

‡ Type the code that
displays the processing
instruction’s value.

° Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ A message displays,
indicating that the
application found the
processing instruction,
followed by the target
and value.

THE SAX API 7

If your application expects processing instructions in the XML documents
that you process, you typically use multiple if statements to detect the
processing instructions and then perform a specific task depending on the
value in those instructions. If you include the processing instruction
<?myApp priority="high"?> in your XML document, then you can
change the code in the event handler’s processingInstruction method
to display a message when you flag an XML document as important.

161

TYPE THIS:

public void processingInstruction(String target, String data) {
if (target.equals("myApp") {
if (data.equals("priority=\"high\"")) {
System.out.println("This document is of high priority. Review carefully");

}
}

}

RESULT:

This document is of high priority. Review carefully.

3683-4 ch07.F 5/24/02 9:03 AM Page 161

⁄ Create an event handler
class that displays a message
at the start of the document.

¤ Type the code that
displays the name of the
event handler.

‹ Type the code that creates
another event handler class.

› Type a different name for
the second class.

ˇ Type the code that
indicates the name of the
second event handler.

Á Type the code that parses
an XML document.

In many cases, an application needs to parse multiple
XML documents. As with most Java objects, you can
reuse the pre-existing, application-created objects —

including objects created while parsing another
document — to minimize memory usage and limit the use
of resources on your computer. Reusing existing objects
increases your application’s efficiency, thereby improving
the performance of your application.

You create an XMLReader object to parse an XML
document using the SAX API. Once you create the
XMLReader objects, you can use them to parse multiple
XML documents. If possible, you should avoid creating a
new instance of an XMLReader object if you can reuse an
existing object.

Another advantage of reusing XMLReader objects involves
not having to continually register the reader with an event
handler class each time you want to parse an XML

document. Once you register the use of the event handler
class, the application calls the methods of that handler
class to correspond to the events that occur while the XML
document parses. You can use the specified event handler
on all subsequent parsed documents.

You can also reuse the XMLReader object to parse a
previously parsed document, this time using a different
event handler. For example, you may have one event
handler that primarily checks for errors; if you find an error-
free XML document, you can parse the document again,
this time using an event handler that prints the information
in the XML document.

Different APIs make use of reader objects like XMLReader.
If you use other APIs to parse an XML document at the
same time, you should ensure that you are using your SAX
API event handlers with the appropriate reader objects.

PARSE MULTIPLE XML DOCUMENTS
USING MULTIPLE EVENT HANDLERS

JAVA AND XML

162

PARSE MULTIPLE XML DOCUMENTS USING MULTIPLE EVENT HANDLERS

3683-4 ch07.F 5/24/02 9:03 AM Page 162

‡ Type the code that parses
a second XML document.

° Type the code that
registers the event handler
specified in step 4 with the
reader.

· Type the code that parses
the XML document specified
in step 6.

‚ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ A message displays
indicating which event
handler processed the XML
documents.

THE SAX API 7

Regardless of how many event handler classes you use in your code, all must
implement all the required methods of the ContentHandler interface, even if you
do not use all of the methods. For more information about the methods you need
when creating event handlers, see the section "Create an Event Handler Class."

While you can use the same XMLReader object to read multiple XML documents,
you cannot reuse the XMLReader object while it is in the process of parsing a
document. If you must parse two XML documents at the same time, you need to
create another instance of the XMLReader object.

If necessary, you can create multiple instances of the XMLReader object so that
each XMLReader object uses a different XML parser. You can then use the multiple
XMLReader objects to process a single XML document. You may find this useful if
you want to harness the benefits and strengths of individual parsers to process a
complex XML document. Depending on the operating system environment and the
file system that stores the XML document, you may only be allowed to access the
XML document with one XMLReader object at a time.

163

3683-4 ch07.F 5/24/02 9:03 AM Page 163

Note: To generate the required error,
you need to parse an XML document
that has an element with a missing
end tag.

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Parse an XML Document."

¤ Type the code that creates
the error handler class.

‹ Type the code that creates
the warning method.

› Type the code that creates
the error method.

ˇ Type the code that creates
the fatalError method.

You can use the SAX API to perform a specific task or
tasks whenever it encounters an error when parsing a
document. You can create code that can attempt to

recover from the error, commit the error to an error log, or
simply display a custom error message.

You can create an error handler class to handle SAX errors.
The error handler class you create must implement the
ErrorHandler interface of the org.xml.sax package.

In addition, it must also implement three methods:
warning, error, and fatalError.

The SAX API calls each method whenever it generates the
corresponding error while parsing an XML document. For
example, the application calls the fatalError method of
the error handler class whenever an error causes the XML
parser to cease parsing the document. A
SAXParseException object passes all methods of the error
handler class. You can use a SAXParseException object to

determine more information about the causes of an error.
For more information about SAXParseException, see the
section "Create a Custom Error Message" in this chapter.

Once you have created the error handler class, you must
register the error handler with the XMLReader object. You
register the error handler using the setErrorHandler
method of the XMLReader object.

Typically, you can include more that just the error-handling
object to detect errors in your code. You should always
develop applications that you create to handle any possible
errors that the application generates when it is executed. If
you do not have any error-handling capability built into
your applications, your applications may abruptly halt and
display a large amount of information upon encountering
errors; they may even cause data loss. You typically create
error handling code for all the methods in the error
handling class. For more information about handling errors
in Java code, refer to Chapter 3.

CREATE AN ERROR HANDLER

JAVA AND XML

164

CREATE AN ERROR HANDLER

3683-4 ch07.F 5/24/02 9:03 AM Page 164

Á Type the code that
displays a message when the
application encounters a fatal
error.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ A message displays stating
that the application
encountered an error.

■ Depending on your parser
and other error handling
code, more error information
may display.

THE SAX API 7
An application calls one of three required methods of the error handler class when it encounters the
corresponding type of error. The XML specification defines the types of errors that the XML parser
reports.

Warning

Warnings are errors that the error or fatalError methods do not catch. You can typically
continue parsing an XML document after a warning generates.

Error

The parser uses the error method with the type of errors from which it can often recover. For
example, the application calls this method if it finds the XML document an invalid XML document
while parsing it.

FatalError

A call to the fatalError method often means that the application cannot properly parse an XML
document, if, for example, the XML document does not have a required start or end element tag.

Fatal errors typically shut down any application that encounters them. To immediately terminate your
application, you should call the exit method of the System class with an argument of -1.

Example:
public void fatalError(SAXParseException exception) {

System.out.println("\n\n There has been a serious error\n\n");

System.exit(-1);

}

165

3683-4 ch07.F 5/24/02 9:03 AM Page 165

Note: To generate the required error,
you need to parse an XML document
that has an element with a missing
end tag.

⁄ Open or create the code
that parses an XML document
and uses an error handler.

Note: You can use the code created in
the section "Create an Error Handler."

¤ Type the code that displays
a description of the error.

You can create a custom error message to provide
more information about the type of error a parser
encounters. You can code this custom error message

to display on screen, log to a file, or go into a database.
Custom error messages make an application easier to
troubleshoot and maintain.

When a parser encounters an error during the parsing of
an XML document, it makes a call to a method in the error
handler class. The method the XML parser calls depends on
the type of error it encounters.

When the XML parser calls the method of the error handler,
a SAXParseException object passes into the method. As
with all exception errors, you commonly assign the name
exception to the SAXParseException object.

The SAXParseException object allows you to access
various methods to determine information about the error
that caused the call to the method of the error handler. The
getMessage method returns a string that may describe the
exact nature of the error.

To locate the error in an XML document, you need to know
the line at which the XML parser was parsing when it
encountered the error. The getLineNumber method of the
SAXParseException object determines this line. Similarly,
the getColumnNumber method returns the column
number at the time of the error. The column number is
the number of characters from the beginning of the
line. Because the values that the getLineNumber,
getColumnNumber, and getMessage methods return are
String values, you can easily display them. You typically
create error-handling code for all the methods in the error-
handling class.

The information passed to the SAXParseException
object, such as the text of error messages, may change
depending on the operating system environment, the XML
parser that you use, and the version of Java that created the
application.

CREATE A CUSTOM ERROR MESSAGE

JAVA AND XML

166

CREATE A CUSTOM ERROR MESSAGE

3683-4 ch07.F 5/24/02 9:03 AM Page 166

‹ Type the code that
displays the line number that
the parser was processing.

› Type the code that displays
the column number that the
parser was processing.

ˇ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ A detailed message
displays.

■ Depending on your parser
and other error handling
code, more error information
may display.

THE SAX API 7
You can use the getSystemId method of the SAXParseException object to access
the name of the XML document that the parser parsed at the time of an error.

167

TYPE THIS:

public void fatalError(SAXParseException exception) {
System.out.println("\n\n There has been a serious error\n");
System.out.println("Error message\n" + exception.getMessage());
System.out.println("\nAt Line: " + exception.getLineNumber());
System.out.println("\nAt Column: " + exception.getColumnNumber());
System.out.println("\nName: " + exception.getSystemId());
}

RESULT:

There has been a serious error

Error message
The element type "priority" must be terminated by the matching end-tag "</priority>".

At Line: 14

At Column: 9

Name: file:///C:/Code/file.xml

3683-4 ch07.F 5/24/02 9:03 AM Page 167

Note: To generate the required results,
you need to parse an XML document
that contains external entities.

⁄ Open or create the code
that parses an XML
document.

Note: You can use the code created in
the section "Create an Error Handler."

¤ Create the entity resolver
class.

‹ Create the main method
of the class.

› Type the code that
displays the name of the
referenced file.

An entity is a reference that allows you to use a string
to represent a large amount of data in an XML
document, thus saving you time when you write your

code; instead of typing the same code repeatedly, you can
simply insert a reference to an entity, which is a single line
of code.

You can insert entities when you re-use a section of the
same XML code within an XML document. For example, you
can insert a company’s address or a copyright warning
message multiple times in the same document.

You can have either internal or external entities. External
entities occur when you access information in a separate
file from within your XML document. From within your Java
code, you can determine what files resolve entities in the
XML document that an application parses.

To determine the file name of an external entity reference,
you create an entity resolver class file that implements the

EntityResolver interface. The EntityResolver
interface is part of the org.xml.sax package, which
you must import prior to using the interface. For more
information about importing a package, see Chapter 3.

The entity resolver class must implement one method,
called resolveEntity. The resolveEntity method has
two arguments, the public ID and the system ID of the file
the external entity references.

You can display the system ID string to determine the name
of any file that your computer uses to resolve external
entities in a parsed XML document.

The resolveEntity method has a return value of type
InputSource, so unless you intend on returning an
InputSource object for use elsewhere in your code, you
must return a value of null from the resolveEntity
method. For more information about return values, see
Chapter 3.

CREATE AN ENTITY RESOLVER

JAVA AND XML

168

CREATE AN ENTITY RESOLVER

3683-4 ch07.F 5/24/02 9:03 AM Page 168

ˇ Type the code that causes
the method to return a null
value.

Á Type the code that
registers the entity resolver
with the XMLReader object.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The names of any
referenced files display.

THE SAX API 7
If you use multiple entity resolvers, you can easily determine the
identification of the resolver registered with an XMLReader object by
using the getEntityResolver method of the XMLReader object.

169

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler(new Handler());
reader.setEntityResolver(new MyResolver());
reader.parse("file.xml");
System.out.print("The Current entity resolver is ");
System.out.println(reader.getEntityResolver());
}

}

RESULT:

Resolving entities using file:///C:/Code/who.xml
Resolving entities using file:///C:/Code/who.xml

The Current entity resolver is MyResolver@283b8a

3683-4 ch07.F 5/24/02 9:03 AM Page 169

⁄ Type the code that imports
the required packages.

¤ Type the code that creates
the event handler class.

‹ Type the code that creates
a method of the
ContentHandler interface.

› Type the code that creates
the main class of your code.

ˇ Type the code that causes
an application to parse an
XML document.

You can use a default handler class to speed up your
development of Java applications that you create with
the SAX API. Working with the SAX API and XML

parsers requires many different types of handler classes to
respond to many different events, such as errors and XML
document parsing. These handler classes implement
interfaces and may require that you define numerous
methods whether you intend to use the methods in your
application or not. The DefaultHandler class simplifies
and reduces the amount of code you need to create for the
various handler classes.

The DefaultHandler class implements many of the
interfaces in the org.xml.sax package, including the
ContentHandler, EntityResolver, and ErrorHandler
interfaces. If you use any or all of these interfaces in your
code, you can utilize the DefaultHandler class to create
one multi-use class that can perform a variety of tasks.
The DefaultHandler class is part of the org.xml
.sax.helpers package, which you must import prior to
using the class. For more information about importing a
package, see Chapter 3.

The most common use of the DefaultHandler
class involves replacing the classes that implement
the ContentHandler interface. To employ the
ContentHandler interface you must implement 11
methods, some of which you may not use. With the
DefaultHandler class, you only have to define the
methods that you actually intend to use.

As with any event handler class that implements the
ContentHandler interface, you must register the class
that extends the DefaultHandler class with the
XMLReader object if you want to use a class based on the
DefaultHandler class instead of the ContentHandler
interface. Registering the event handler class with the
XMLReader object enables the XMLReader object to call
the appropriate methods in the event handler class when
events occur, such as the detection of an element’s start tag
when an application parses an XML document.

USING THE DEFAULT HANDLER

JAVA AND XML

170

USING THE DEFAULT HANDLER

3683-4 ch07.F 5/24/02 9:03 AM Page 170

Á Type the code that
registers the event handler
with the XMLReader.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ A message displays
indicating that the
application parsed the XML
document.

THE SAX API 7

You can easily use the DefaultHandler class to implement
the EntityResolver and ContentHandler interfaces.

171

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler(new BigHandler());
reader.setEntityResolver(new BigHandler());
reader.parse("file.xml"); }

}
class BigHandler extends DefaultHandler {
public void startDocument() {System.out.println("\n\nStart of document\n");}
public InputSource resolveEntity (String publicId, String systemId) {
System.out.println("Resolving entities using " + systemId);
return null; }

}

RESULT:

Start of document

Resolving entities using file:///C:/Code/who.xml
Resolving entities using file:///C:/Code/who.xml

3683-4 ch07.F 5/24/02 9:03 AM Page 171

Note: To generate the required results,
you need to parse an XML document
that contains external entities.

⁄ Open or create the code
that parses an XML document
and implements an entity
resolver class.

Note: You can use the code created in
the section "Create an Entity Resolver."

¤ Type the code that assigns
a feature URI to a variable.

‹ Type the code that tests
the value of the feature.

XML parsers have their own settings, which you can
check to determine if you have a specific function or
feature available to your application. You refer to the

settings of an XML parser as the features and properties of
the parser.

The getFeature and getProperty methods of the
XMLReader object read the features and properties of the
parser. The getFeature and getProperty methods take
one argument, which becomes the name of the feature. The
name of the feature is usually a uniform resource identifier
(URI). To make long URIs easier to manage, you commonly
assign the URI to a string. Features return a boolean value,
while properties return an object.

One feature that you may want to check is the feature at
http://www.xml.org/sax/features/external-general-entities.
This feature indicates whether text entities resolve when an
XML parser parses an XML document that contains entities.

The SAX API specifies some features and properties
which all SAX-compliant XML parsers must support. Other
features and properties only become available when you
use the SAX API with a specific XML parser. Only the SAX-
specified features and properties are available on all SAX-
compliant parsers.

Normally you do not depend too heavily on features or
properties specific to one parser in your code. If you have
to change the parser or even change to a different version
of the same XML parser sometime in the future, you may
find that the features and properties available in one
version are not available in another. Other XML-parser-
independent features can alter the configuration of an XML
parser and achieve the same results as those that utilize
features and properties. Before using the features and
properties of an XML parser, refer to your specific XML
parser’s documentation for the best alternate methods.

DETERMINE FEATURE AND
PROPERTY SETTINGS

JAVA AND XML

172

DETERMINE FEATURE AND PROPERTY SETTINGS

3683-4 ch07.F 5/24/02 9:03 AM Page 172

› Type the code that
displays the name of the
feature.

ˇ Type the code that parses
the XML document.

Á Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The name of the feature
displays if the feature is
enabled.

THE SAX API 7
You can use the setFeature or setPropery methods of the XMLReader object to
modify values, but not all XML parsers allow you to modify all features and properties. The
XML parser may allow you to read, but not set, selected features and properties. If you
attempt to modify a value when the XML parser disallows it, the parser generates an error.

173

TYPE THIS:

String feature="http://xml.org/sax/features/external-general-entities";
if (reader.getFeature(feature))
{
System.out.print("The feature\n" + feature + "\nis enabled.\n\n");
System.out.print("Now turning it off..\n\n");
reader.setFeature(feature,false);

};

RESULT:

The feature
http://xml.org/sax/features/external-general-entities
is enabled.

Now turning it off..

Exception in thread "main" org.xml.sax.SAXNotSupportedException: http://xml.org/
sax/features/external-general-entities

at org.apache.xerces.framework.XMLParser.setExternalGeneralEntities(XML
Parser.java:486)

3683-4 ch07.F 5/24/02 9:03 AM Page 173

Note: To generate the required results,
you need to parse an XML document
that contains a notation declaration.

⁄ Open or create the code
that parses an XML
document.

¤ Type the code that creates
the DTD handler class.

‹ Type the code that creates
the notationDecl method.

› Type the code that creates
the unparsedEntityDecl
method.

You can use a notation declaration to tell an application
that an XML document contains information which an
external application needs to process. You use the

information in a notation declaration to determine what
data or application your Java application may need to
access and interpret the data. For example, if you parse an
XML document on computers using different operating
systems, you can access different image applications to
interpret image data in an XML document. In many cases,
the information indicates the actual file name of the
application that you can use to process the data, such as
spellcheck.exe for a spell-checking application. Or it
may only return the type of information, such as
image/gif. In cases where only the data type returns,
you can configure the operating system to choose the
application that best suits the date you want to process.
You must ensure that you create the code that correctly
processes the information.

You use the DTDHandler to access interface notation
information. You must create a DTD handler class that
implements the DTDHandler interface. Once you create
the DTD handler class, you register the class with the
XMLReader object, using the setDTDHandler method.

The DTDHandler interface requires you to define two
methods, the notationDecl method and the
unparsedEntityDecl method. The notationDecl
method accesses any declared notation in the DTD of an
XML document. When the notationDecl method finds
a notation declaration, it passes it to the name of the
notation, the public ID, and the system ID of the external
ID. For more information about notation declaration of
an external ID, see Chapter 5.

You can use notation declaration with processing
instructions to instruct your application to perform a
specific task.

DETECT NOTATION DECLARATIONS

JAVA AND XML

174

DETECT NOTATION DECLARATIONS

3683-4 ch07.F 5/24/02 9:03 AM Page 174

ˇ Type the code that
displays a message if the
XML parser finds a notation
declaration.

Á Type the code that
displays the notation
declaration information.

‡ Register the DTD handler
class with the XMLReader.

Note: For more information about
registering classes with an
XMLReader object, see "Parse an
XML Document."

° Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The name of the notation
declaration and its details
display.

THE SAX API 7
You can use the other method of the DTD handler class, unparsedEntityDecl, to
detect unparsed external entities, which you often use in conjunction with notation
declarations. Create a DTD that contains <!ENTITY owner SYSTEM "http://
127.0.0.1/who.xml" NDATA txt> and then type the following code.

175

TYPE THIS:

class Handler implements DTDHandler {
public void notationDecl(String name, String publicId, String systemId) {
}
public void unparsedEntityDecl(String name, String publicId, String systemId,

String notationName) {
System.out.println("An Unparsed external entity has been found");
System.out.println("Name " + name);
System.out.println("The public ID is " + publicId);
System.out.println("The system ID is " + systemId);
System.out.println("The notation name is " + notationName);

}
}

RESULT:

An Unparsed external entity has been found
Name owner
The public ID is null
The system ID is http://127.0.0.1/who.xml
The notation name is txt

3683-4 ch07.F 5/24/02 9:03 AM Page 175

⁄ Open or create the code
that parses an XML
document.

¤ Type the code that imports
the required packages.

Note: To generate the required results,
you need to parse an XML document
that includes element declarations.

‹ Type the code that creates
the declaration handler class.

› Type the code that creates
the methods of the
declaration handler class.

ˇ Type the code that
displays the information that
the XML parser passes to the
elementDecl method.

The DTD in an XML document contains declarations,
such as element declarations, that describe the
elements’ format within the XML document. You can

extract the information from the declarations in the DTD.
You may want to retrieve the data in a DTD concerning
declarations to reconstruct an XML document or to compile
an analysis of the elements in an XML document.

You must create a declaration handler class to handle the
callbacks that relate to declarations within the DTD. Each
time the XML parser encounters a declaration in the DTD,
the declaration handler makes a callback to a method. The
method that the declaration handler calls depends on the
type of declaration.

The declaration handler must implement the DeclHandler
interface in the org.xml.sax.ext package. The
org.xml.sax.ext package, which you must import prior
to using the interface, contains extensions for use with most
SAX-compliant XML parsers. The declaration handler that
implements the DeclHandler package must define four

methods: elementDecl, which reports element
declarations in the DTD; attributeDecl, which reports
about attribute declarations; and internalEntityDecl
and externalEntityDecl, which retrieve information
about internal and external declarations in the DTD. You
must define these four methods in the declaration handler
class, even if you do not use all of the methods. The
element declaration passes each method value that reflects
the information within the declaration. For example, the
element declaration in the DTD passes two string values
that represent the name and content type to the
elementDecl method.

You use the declaration handler in a slightly different manner
than other content handlers. To use the declaration handler,
a declaration handler object passes the setProperty
method of the XMLReader object as a value to the
http://www.xml.org/sax/properties/declaration-handler
property. As with other properties, you may find the URI of
the property quite long, so you should place it in a variable
to make the property easier to manage.

CREATE A DECLARATION HANDLER

JAVA AND XML

176

CREATE A DECLARATION HANDLER

3683-4 ch07.F 5/24/02 9:03 AM Page 176

Á Type the code that creates
a variable that stores the
name of the property.

‡ Type the code that passes
a declaration handler object
to the property.

° Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The information about
element declarations in the
DTD displays.

THE SAX API 7

You can also use the declaration handler to access information
about attributes that you have declared in the DTD.

177

TYPE THIS:

public void attributeDecl(String eName,String aName,String type,
String valueDefault,String value) {

System.out.println("Found Element Declaration: " + eName);
System.out.println("Attribute Name: " + aName);
System.out.println("Value: " + value);

}

RESULT:

Start of document
Found Element Declaration: task
Attribute Name: manager
Value: Andrew

3683-4 ch07.F 5/24/02 9:03 AM Page 177

⁄ Open or create the code
that parses an XML
document.

¤ Type the code that imports
the required packages.

Note: To generate the required results,
you need to parse an XML document
that contains comments.

‹ Type the code that creates
the lexical handler class.

› Type the code that creates
the required methods of the
lexical handler class.

ˇ Type the code that
displays the information
passed to the comment
method.

You can retrieve information from an XML document
that does not make up part of the content of the
XML document. For example, you can retrieve the

comments and entity declarations that you have present in
an XML document. You may find retrieving this type of
information useful if you want to reconstruct an XML
document or if you need to more closely examine the
information within an XML document.

You use a lexical handler to access information about lexical
events during the parsing of an XML document. As with
other event handlers, the lexical handler contains methods
that the XML parser calls when it encounters the
corresponding event. For example, the parser calls the
comment method of the lexical handler whenever it
encounters a comment while parsing an XML document.

The lexical handler must implement the LexicalHandler
interface as part of the org.xml.sax.ext package. The
org.xml.sax.ext package contains extensions to the

SAX API and you typically find it included with most SAX-
compliant parsers. The org.xml.sax.ext package must
be imported prior to using the interface. For more
information about importing a package, see Chapter 3.

The lexical handler must implement six methods: the
comment method reports comments; startCDATA and
endCDATA methods report the start and end of CDATA
sections; the startDTD and endDTD methods report the
start and end of the DTD; and the startEntity and
endEntity methods report the start and end of any
entities in the XML document.

You use the lexical handler by passing a lexical handler
object to the property using the setProperty method of
the XMLReader object. As with other properties, you may
find the URI of the property to be quite long, so you may
want to place it in a variable to make the property easier
to handle.

CREATE A LEXICAL HANDLER

JAVA AND XML

178

CREATE A LEXICAL HANDLER

3683-4 ch07.F 5/24/02 9:03 AM Page 178

Á Type the code that creates
a variable that stores the
name of the property.

‡ Type the code that passes
a lexical handler object to the
property.

° Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The comments in the XML
document display.

THE SAX API 7

You can see entities as an XML document uses them
in the startEntity method of the lexical handler.

179

TYPE THIS:

class LexHandler implements LexicalHandler {
public void comment(char[] ch, int start, int length) { }
public void endCDATA() { }
public void endDTD() { }
public void endEntity(String name) { }
public void startCDATA() { }
public void startDTD(String name,String publicId,String systemId) { }
public void startEntity(String name) {
System.out.println("Entity being used: " + name);

}
}

RESULT:

Entity being used: Copyright 2002
Entity being used: (905) 555 - 1234

3683-4 ch07.F 5/24/02 9:03 AM Page 179

Note: For this example, you need to
parse a non-valid XML document. For
information about XML document
validity, see Chapter 6.

⁄ Type the code that parses
an XML document.

Note: You can use the code from the
section "Parse an XML Document."

¤ Type the code that assigns
the name of the feature to a
variable.

One of the most useful features of an XML parser
involves checking the validity of XML documents.
Valid XML documents must conform to a specific

set of rules that governs their structure and make-up, thus
maintaining the proper organization of information within
XML documents. Validation also ensures the integrity of the
data within an XML document, especially if the XML
document makes use of XML Schemas. For more
information about XML Schemas, see Chapter 6.

You can have either a validating or a non-validating parser.
Non-validating parsers can verify the validity of an XML
document. A validating parser allows you to either turn
on or turn off the validating feature of the XML parser. By
default, most validating XML parsers do not have their
validating feature enabled.

With its validating feature enabled, the validating parser
detects a non-valid document, generates an error, and stops
parsing the XML document. In most cases, you check to

see if a parser considers an XML document valid before
attempting to process the XML document.

You can turn the validating feature of the parser on or off
by setting the http://www.xml.org/sax/features/validation
feature. Setting the feature to true turns on the validation
checking of XML documents, while setting this feature to
false turns off validation. You must set the feature before
you parse a document. You can turn the validation on for
some documents and off for others.

All SAX-compliant XML parsers must support the validation
feature, and they must all support the enabling and
disabling of validation by using the http://www.xml.org/sax/
features/validation feature setting. In addition to setting the
validation feature, XML parsers may have the ability to
enable or disable validation using other methods outside of
your Java application.

TURN ON VALIDATION

JAVA AND XML

180

TURN ON VALIDATION

3683-4 ch07.F 5/24/02 9:03 AM Page 180

‹ Type the code that enables
the parser's validation
feature.

› Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The parser generates an
error if it does not find the
XML document to be valid.

THE SAX API 7
You may find the error message that the XML parser produces when it
discovers a non-valid XML document to be very cryptic. You can provide
a more detailed message by using an error handler.

181

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler(new Handler());
reader.setErrorHandler(new MyErrHandler());
reader.parse("file.xml");}

}
class MyErrHandler implements ErrorHandler {
public void warning(SAXParseException exception) {
}
public void error(SAXParseException exception) {
}
public void fatalError(SAXParseException exception) {
System.out.println("\n\n There has been a serious error\n\n");
System.out.println(" Please ensure your XML document is valid\n\n");

}
}

RESULT:

There has been a serious error
Please ensure your XML document is valid

3683-4 ch07.F 5/24/02 9:03 AM Page 181

⁄ Open or create an XML
document.

¤ Ensure the document uses
namespaces.

Note: See Chapter 5 for more
information about namespaces.

‹ Save the XML document.

› Open or create the Java
code that displays element
attributes.

Note: You can use the code from the
section "Determine the Value of
Attributes."

Namespaces allow you to use tags in a single XML
document that you have defined in a multitude of
other documents. For example, you may have two

elements called name in your XML document, where each
name element belongs to a different namespace. For more
information about namespaces, refer to Chapter 5.

You can instruct the XML parser to use namespaces if you
use namespaces in your XML documents. You can set the
http://www.xml.org/sax/features/namespaces feature to
either true or false to turn the use of namespaces on
or off.

XML parsers should have the ability to process XML
documents that use namespaces, even if the parser does
not support namespaces. Because of the format of the
element names, the parser assumes that the namespace,
colon, and element name are a single element name.

When you use namespaces in XML documents, you use
xmlns declarations to indicate the location of the

namespace. For parsers that do not support namespaces,
the xmlns declaration appears as just another attribute of
an element.

You can turn the reporting of the xmlns declaration as
an attribute on or off. You typically want to turn off the
reporting of xmlns declarations as attributes when you
have enabled the support for namespaces in your XML
parser. You set the http://xml.org/sax/features/
namespace-prefixes feature to either true or
false to turn the prefix reporting on or off.

If you want to handle the namespaces within your own
code, consider enabling the namespace prefix reporting.
Older versions of SAX-compliant XML parsers do not
include support for namespaces. The SAX API version 2,
or simply SAX 2, supports the use of namespaces.

All SAX 2-compliant XML parsers support the enabling or
disabling of namespace processing and namespace prefix
reporting.

TOGGLE NAMESPACE AND PREFIX USAGE

JAVA AND XML

182

TOGGLE NAMESPACE AND PREFIX USAGE

3683-4 ch07.F 5/24/02 9:03 AM Page 182

ˇ Type the code that turns
on the reporting of
namespace prefixes.

Á Type the code that turns
on namespace processing.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions on
compiling and running Java programs.

■ The namespace prefix
reports as an attribute.

THE SAX API 7

You can parse an XML document repeatedly,
enabling or disabling namespace prefix reporting.

183

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
XMLReader reader = new SAXParser();
reader.setContentHandler(new Handler());
String feature="http://xml.org/sax/features/namespace-prefixes";
reader.setFeature(feature, false);
reader.parse("file.xml");
feature="http://xml.org/sax/features/namespace-prefixes";
reader.setFeature(feature, true);
reader.parse("file.xml");

}
}

RESULT:

Element task has the attributes
manager which has a value of Andrew

Element task has the attributes
corp which has a value of http://www.maran.com/corpns/2.3
manager which has a value of Andrew

3683-4 ch07.F 5/24/02 9:03 AM Page 183

You use the DOM, an Application Programming
Interface (API), with the Java programming language
and XML documents to allow communication

between a DOM-compliant parser and Java applications.
A specification developed by the World Wide Web
Consortium (W3C), the W3C Document Object Model,
or simply DOM, outlines a collection of interfaces which

creates the objects that represent an XML document. The
DOM API allows you to access XML documents, and, as
with all Java APIs, consists of a collection of classes and
interfaces that you access within your Java code. The DOM
API files typically come with the application that you use
with the XML documents. For example, most DOM-
compliant XML parsers include the Java DOM API files.

INTRODUCING THE DOM

JAVA AND XML

184

Although developed independently of XML, the DOM
works with XML, and other similar markup languages
like HTML. Originally conceived to permit the use of
dynamic HTML, the DOM specification allows you to
represent the structure of a Web page as objects. You
can then modify, enable, or disable these objects at any
time to create dynamic HTML. Not intended for

exclusive use with applications you create with Java,
DOM was developed for many different programming
languages. Because Java is an object-oriented
programming language, it works very efficiently with
the DOM. Programming language- and platform-
independent, the environment and operating system
have no bearing on the DOM specifications.

DYNAMIC HTML

You can use the DOM API to work with XML
documents, and also with similar documents such as
HTML, the code that creates Web pages. The DOM
works by creating a tree structure with a document that
you parse. For example, if you represent a Web page
that contains two paragraphs in a DOM tree structure,
DOM represents the Web page as a document object
with two branches representing two paragraphs, with

each paragraph containing one or more branches which
contain text. Although initially perplexing, you may find
representing documents and their contents as a tree
structure to be a very effective way to work with data,
particularly for large, complex documents. Utilizing a
tree structure to represent data also makes it easier to
manage your data when using an object-oriented
programming language, such as Java.

TREE STRUCTURE

Called nodes, you use the individual items within a
DOM tree structure to represent individual elements
you find within an XML document. For example, you
represent the text content of an element in an XML
document by its own node within the DOM tree
structure. Accessing and modifying the node
information allows you to modify and access the actual

text content of the elements within an XML document.
You can make the XML document a pre-existing and
previously parsed document, or a newly created XML
document, which you generate using the information in
a newly created DOM tree structure. For more
information about nodes, see the section "Work with
Nodes" in this chapter.

TREE NODES

3683-4 ch08.F 5/24/02 9:04 AM Page 184

THE DOM 8

185

Each API that you use to access or create XML
documents has its own strengths and weaknesses.
Which API you choose to utilize from within your Java
programs depends upon the type of application you
create, the type of XML documents you access, and the
size of those documents.

Analyzing XML documents involves parsing the
documents and then representing each document
as a tree structure. You must retrieve and analyze the
complete XML documents prior to working with them

in the DOM API. This can create limitations depending
on the available memory of the computer and the size
of the XML documents. Other APIs can read XML
documents sequentially from start to finish without
having to store the complete XML documents in
memory. Commonly, Java applications use multiple APIs
when working with XML documents. You can easily use
the DOM API alongside a different API, such as the SAX
API, from within the same Java application that you
create.

DIFFERENT APPROACHES

You use the DOM API to represent an XML document
in a tree-like structure that conforms to specific rules.
The DOM API does not specify how you use, save, or
otherwise work with the data in the tree structure. If
you want to save the information that a parser
generates, you must create the code that extracts the
data from the DOM tree, format that data, and save the

data to a file. The DOM allows you to work with
portions of XML documents. For example, you can use
the DOM API to read an XML document, then change a
single element in that document, and create and save a
new XML document containing the modified data. For
more information about creating XML documents, see
the section "Create an XML Document" in this chapter.

GENERATE XML DOCUMENTS

To use the DOM API, you need a DOM-compliant XML
parser and you need to create Java code that utilizes the
API to communicate with the parser. You can issue
instructions to, and receive information about, XML
documents from an XML parser using the DOM API.
While you have no specification that states that DOM-
compliant applications must represent data parsed from
an XML document as a tree structure, DOM-compliant
applications do so.

Of the many DOM-compliant XML parsers, you can
access one of the most popular ones, Xerces XML parser,
on the Internet at http://www.apache.org, as well as
through the companion CD-ROM to this book. For
information about obtaining and installing the Xerces
XML parser, refer to Chapter 7. The Xerces XML parser is
the XML parser that the examples throughout the
remainder of this chapter use. If you are using an XML
parser other than the Xerces XML parser and you
experience any difficulty with the examples in this
chapter, you should refer to that parser’s documentation.

DOM-COMPLIANT PARSERS

Many other programming languages, such as Perl, in
addition to Java use the DOM. Once you use the DOM
API with one programming language, you should find it
easy to use it with other programming languages. You

can download the DOM API separately, but you should
use the DOM API files included with your XML
application.

OTHER PROGRAMMING LANGUAGES

3683-4 ch08.F 5/24/02 9:04 AM Page 185

Note: To generate the required
results, you need to parse an XML
document that contains a root
element.

⁄ Type the code that
imports the required
packages.

¤ Type the code that creates
a DOMParser object.

‹ Type the code that
initiates the parsing of an
XML document.

› Type the code that creates
a document object based on
the parsed XML document.

ˇ Type the code that creates
an element object that
represents the root element.

To process an XML document, you must first determine
the name of the document’s root element. Because it
encompasses all the other elements and contents of

an XML document, you can only have one root element in a
document. You should not confuse the root element with
the XML declaration, which comprises the first line of every
XML document. For more information about XML
declarations, see Chapter 5.

To process an XML document, you create a DOMParser
object. You then use the parse method of the DOMParser
object to specify the name of the XML document to parse,
as well as to initiate the actual parsing of the XML
document. If you use the Xerces XML parser, the package
org.apache.xerces.parsers contains the DOMParser
class that creates DOMParser objects.

You must create a document object, which represents an
XML document as an object, to determine the name of the
root element. You can access almost all information about
an XML document via a document object. The document

interface is part of the package org.w3c.dom, which you
must import in order to use the document interface in your
Java code. For more information about importing packages,
see Chapter 3.

You create an element object to contain information about
an element. You can then access information about the
element, such as the element’s name.

The getDocumentElement method of the document
object returns an element object that represents the first
child node of the document. You must always make the
root element of an XML document the only child node of
the XML document, so the getDocumentElement method
can create an element object that represents the root
element.

You use the getTagName method of the element object
to create a String value that contains the name of the
element. This String value has the same name as the root
element.

RETRIEVE THE ROOT ELEMENT NAME

JAVA AND XML

186

RETRIEVE THE ROOT ELEMENT NAME

3683-4 ch08.F 5/24/02 9:04 AM Page 186

Á Type the code that assigns
the name of the root element
to a variable.

‡ Type the code that
displays the name of the root
element.

° Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The name of the root
element displays.

THE DOM 8

You can reuse document objects when parsing multiple XML documents. This
enables you to conserve resources when processing multiple XML documents.

187

TYPE THIS:

public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
Element root = doc.getDocumentElement();
String rootElementName = (root.getTagName());
System.out.println("The root element is " + rootElementName);
parser.parse("file2.xml");
doc= parser.getDocument();
root = doc.getDocumentElement();
rootElementName = (root.getTagName());
System.out.println("The root element is " + rootElementName);

}

RESULT:

The root element is task
The root element is todo

3683-4 ch08.F 5/24/02 9:04 AM Page 187

Note: To generate the required
results, you need to parse an XML
document that contains a root
element.

⁄ Open or create the code
that parses an XML document
and implements an entity
resolver class.

Note: You can use the code created
in the section "Retrieve the Root
Element Name."

¤ Create a switch
statement.

‹ Type case.

› Type the Node field name
and follow it with a colon.

ˇ Type break;.

Á Repeat steps 3 to 5 for
each remaining node type.

You can use nodes, the primary way of working with
information using the DOM API, to represent almost
all the individual parts of an XML document. For

example, you can represent an element, as well as the
textual content of that element, as a node. At this time, the
DOM tree structure does not contain a node that
represents the XML declaration within a parsed XML
document.

Because the type of information about a node changes
depending on the type of node, you need to determine
informational content. For example, if the current node
represents an element, then you can use the getNodeName
method to retrieve the name of the element. However, if the
node represents the textual content of an element, then the
getNodeName method simply returns the string #text,
regardless of the value of the textual content of the element.

You use the getNodeType method of the Node interface to
determine the type of node. The getNodeType method
returns a short value that changes depending on the type of
node. The Node interface defines a number of fields that
you can use as constants that match the type of node for
which you want to determine the node type. Because of the
number of different types of nodes, the most efficient
method for working with values that the getNodeType
method returns involves using the Java switch construct.
This construct allows you to execute a specific section of
code depending on the node type. For more information
about the switch construct, see Chapter 3.

You always make the root element of an XML document a
node that represents an element. Therefore, you always
make the node type value of the node representing the
root element Node.ELEMENT_NODE.

DETERMINE NODE TYPE

JAVA AND XML

188

DETERMINE NODE TYPE

3683-4 ch08.F 5/24/02 9:04 AM Page 188

‡ Type the code that
retrieves the node type for
the root element.

° Type the code that
executes if a node type is
an element.

· Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The name and type of the
node displays.

THE DOM 8
The DOM has 12 different types of nodes, each of which
are represented with a field of the Node interface.

189

FIELD TYPE

ATTRIBUTE_NODE The attributes of an element.

CDATA_SECTION_NODE A CDATA section.

COMMENT_NODE An XML comment.

DOCUMENT_FRAGMENT_NODE A portion of an XML document.

DOCUMENT_NODE The complete XML document.

DOCUMENT_TYPE_NODE A DOCTYPE declaration.

ELEMENT_NODE An XML document element.

ENTITY_NODE An entity.

ENTITY_REFERENCE_NODE A reference to an entity.

NOTATION_NODE A notation you declare in the DTD.

PROCESSING_INSTRUCTION_NODE A processing instruction.

TEXT_NODE Textual content within a tag.

3683-4 ch08.F 5/24/02 9:04 AM Page 189

⁄ Open or create the code
that parses an XML document
and displays the root element
name.

Note: You can use the code from the
section "Retrieve the Root Element
Name."

¤ Type the code that
creates a NodeList object
containing the child nodes
of the root node.

‹ Type the code that displays
the number of nodes in the
NodeList collection.

You create the nodes that represent an XML document
in a hierarchical manner. You do this because
information that you represent in a hierarchical

manner is easy to manage and access. Child nodes are
nodes that are contained underneath another node, known
as the parent node. In an XML document, the root element
contains all the other elements in the XML document. You
always represent the root element by a node that becomes
the parent node of the child nodes, which represents the
sub-elements of the root element in the XML document.
Multiple child nodes are children of the parent element.

You can use the children of the root element node in order
to access the elements and contents the root element
contains. Once you represent the root element as a node,
you can use the getChildNodes method to generate a
NodeList object, which contains information about all the
immediate child nodes of a node.

You use a NodeList object to create a collection of node
objects. The NodeList object has two methods,
getLength and item. The getLength method stores an
int value that indicates the number of nodes in the
NodeList. The item method allows you to access the
node objects by specifying an index number representing
the index of a node in a NodeList.

To transverse the nodes in a NodeList, you typically use a
for loop to access each node in order. For more
information about using a for loop, see Chapter 3.

As with any node object, you can use the node indicated by
an item method of the NodeList object to access the
name of the node using the getNodeName method. The
value that the getNodeName method retrieves depends on
the type of node.

WORK WITH NODES

JAVA AND XML

190

WORK WITH NODES

3683-4 ch08.F 5/24/02 9:04 AM Page 190

› Type the code that creates
a for loop that iterates
through the nodes in the
NodeList collection.

ˇ Type the code that
displays the name of each
child node.

Á Save your Java code.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The root element name
and the name of the child
elements display.

THE DOM 8

Depending on the structure of your XML document, elements
may report an additional node containing text, even though
the element does not contain textual data. This occurs because
the XML parser interprets the element as containing an
element, or elements, and whitespace, which it classifies as
textual data, and thus as a text node. For more information
about text nodes, see the section "Retrieve Text Information."

191

TYPE THIS:

<?xml version="1.0"?>
<todo>
<task>
<description>

Back up Data
</description>

</task>
</todo>

RESULT:

The root element is todo
It has 3 child nodes

#text
task
#text

3683-4 ch08.F 5/24/02 9:05 AM Page 191

Note: To generate the required
results, you need to parse an XML
document that contains multiple
elements.

⁄ Open or create the code
that parses an XML document
and creates an element
object representing the root
element.

Note: You can use the code created
in the section "Retrieve the Root
Element Name."

¤ Create a method that
accepts a node as an
argument.

‹ Type the code that
determines if the node
represents an element.

› Type the code that displays
the element name.

ˇ Type the code that
attempts to create a
NodeList of the node's
children.

When working with the DOM API, it converts an
XML document into a structure consisting of
multiple nodes. A very common task involves

transversing all the nodes of the XML document after you
parse it. Transversing the nodes of the documents allows
you to iterate through the information within the XML
document. As you transverse nodes, you can identify and
access specific information about the XML document and
the XML document’s contents. Because the primary item in
an XML document consists of elements, you commonly
transverse all the nodes of a document to identify which
nodes represent elements.

The first step in transversing the DOM element nodes
involves identifying the node that represents the root
element. You then transverse the children of the root
element as well as any child elements to determine if
they, too, have children. Using this method you can

gradually transverse all the nodes that represent the
elements of an XML document.

The easiest way to repeatedly transverse all the element
nodes involves creating a method that you pass to a node,
where the code within the method identifies if an element
node has previously passed to the method. The method can
then explore the child nodes of the node passed to it and
call itself on any other element nodes that it finds. You
access the information within the child nodes by creating
a list of type NodeList using the getChildNodes method
of the node object. Once you create the NodeList, you
access individual nodes using the item method and an index
number. If the method initially passes the node that
represents the root element of an XML document, then the
method eventually works its way through all the nodes of
the document, identifying each element node as it finds
them. Once you identify an element node, you can work
with the node, for example, displaying the node name.

TRANSVERSE ALL ELEMENT NODES
JAVA AND XML

192

TRANSVERSE ALL ELEMENT NODES

3683-4 ch08.F 5/24/02 9:05 AM Page 192

Á Type the code that iterates
through the child nodes.

‡ Type the code that
recursively calls the method
created in step 2 and passes it
to a child node.

° Type the code that passes
the method, created in step 3,
to the node representing the
root element.

· Save your Java code.

‚ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The names of the elements
in the XML document display.

THE DOM 8
You can easily alter your code to display an element’s start tag and end tag.
You can also indent the tags to provide a better layout of your code.

Example:
static int level=0;

"" exploreNode(root);

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {

for (int x=0;x<level;x++) {
System.out.print(" ");

}
System.out.println("<" + node.getNodeName() + ">");
NodeList children = node.getChildNodes();
for (int i=0;i<children.getLength();i++) {

level++;
exploreNode(children.item(i));

}
for (int x=0;x<level;x++) {

System.out.print(" ");
}
System.out.println("</" + node.getNodeName() + ">");

}
level—;

}
}

193

3683-4 ch08.F 5/24/02 9:05 AM Page 193

Note: To generate the required
results, you need to parse an XML
document that contains elements
that have attributes.

⁄ Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

¤ Type the code that creates
a NamedNodeMap object,
following the code with an =.

‹ Type the code that creates
the NamedNodeMap object
containing the element
node's attributes.

› Type the code that iterates
through the attributes of an
element node.

Note: For more information about
iterating through the attributes of
an element node, see the section
"Transverse All Element Nodes"
in this chapter.

ˇ Type the code that
displays a text message
describing the attribute.

You can use an attribute as an additional item of
information that you can associate with an element.
For example, an element called 'fax' may have an

attribute called 'code' that indicates the area code of the
fax number that makes up the content of the fax element. If
an element has an attribute, or attributes, you can access
the names of the attributes. You can use the attribute’s
name to identify the attribute and its value, or simply to
create other nodes using the same attributes. For more
information about creating nodes with attributes, see
the section "Add Attributes to an Element."

You represent the attributes of an element as nodes. To
access the nodes that represent each attribute, you must
create a NamedNodeMap object. An NamedNodeMap object
contains a collection of nodes, specifically the nodes that
represent attributes.

Similar to NodeList, the NamedNodeMap object uses the
getLength method to determine the number of nodes in
the collection, and hence the number of attributes that an

element has. The NamedNodeMap object also uses the item
method with an index number to access each of the nodes
in the collection.

You represent each attribute as a node in a NamedNodeMap
collection, so you can use the getNodeName method to
retrieve the name of the node, which becomes the name
of the attribute.

Before you can access element attributes, you must create
code that transverses the nodes of a document. For more
information about transversing through the nodes of a
DOM tree structure, see the section "Transverse All Element
Nodes." This allows you to identify element nodes, which
you can then use to access the attributes of that element.

You should note that the attributes do not appear in the
NamedNodeMap collection in any predefined order. This
means that the first attribute for an element may appear
as the last node in the NamedNodeMap collection.

DETERMINE NAMES OF ATTRIBUTES
JAVA AND XML

194

DETERMINE NAMES OF ATTRIBUTES

3683-4 ch08.F 5/24/02 9:05 AM Page 194

Á Type the code that creates
the println statement that
displays the attribute names.

‡ Type the code that
generates the names of the
attributes.

° Save your Java code.

· Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The names of the elements
and their attributes in the
XML document display.

THE DOM 8

You can easily use the getLength method of the NamedNodeMap object to
create an if statement to only display elements that have attributes.

195

TYPE THIS:

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {
NamedNodeMap attr = node.getAttributes();
if (attr.getLength() > 0) {
System.out.println("<" + node.getNodeName() + ">");
for (int x=0;x < attr.getLength();x++) {
System.out.print(" Attribute: ");
System.out.println(attr.item(x).getNodeName());

}
}
NodeList children = node.getChildNodes();
for (int i=0;i<children.getLength();i++) {
exploreNode(children.item(i));

}
}

}

RESULT:

<owner>
Attribute: employeeID
Attribute: managerID

<priority>
Attribute: ignore

3683-4 ch08.F 5/24/02 9:05 AM Page 195

Note: To generate the required
results, you need to parse an XML
document that contains elements
that have attributes.

⁄ Open or create the code
that parses an XML document
and displays the name of the
attributes.

Note: You can use the code created
in the section "Determine Name of
Attributes."

¤ Type the code that displays
a message about an attribute's
value.

Attributes that you specify for an element consist of
a name and a corresponding value. Once you
determine the names of the attributes associated with

an element in an XML document, you need to retrieve the
values for those attributes.

A DOM tree structure represents each attribute as a node in
a NamedNodeMap collection, so you can use the
getNodeName method to retrieve the name of the node,
which also becomes the name of the attribute. You use the
getNodeValue method to retrieve the value of an
attribute when you represent that attribute as a node in a
getNodeName collection.

You not only use the getNodeName and getNodeValue
methods to retrieve the names and values of element
attributes, but also to retrieve information about other

types of nodes. For example, the getNodeValue method
returns a comment if you make the node type a comment.
You should always ensure that you work with nodes that
represent attributes if that is the type of data you need to
access.

You may specify some attributes for an element that has a
name but has no value assigned to the attribute. In this
case, you can still retrieve the name of the attribute, but
when you attempt to retrieve the value of the attribute, the
getNodeValue method returns a null value. When
creating your own code to access the attributes and their
values, you need to check all the values that an attribute
returns to make sure they exist. If the returned value of the
attribute is not a null value, indicating that no value is
currently assigned to the attribute, the value of the attribute
returns as a String value.

DETERMINE THE VALUES OF ATTRIBUTES

JAVA AND XML

196

DETERMINE THE VALUES OF ATTRIBUTES

3683-4 ch08.F 5/24/02 9:05 AM Page 196

‹ Create the println
statement that displays the
attribute values.

› Type the code that
generates the value of the
attribute.

ˇ Save your Java code.

Á Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The names of the elements
and the attribute's names and
values display.

THE DOM 8

Once you determine the names and values of attributes, you can easily
generate an element’s start and end tag, including the attributes.

197

TYPE THIS:

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE) {
System.out.print("<" + node.getNodeName());
NamedNodeMap attr = node.getAttributes();
for (int x=0;x < attr.getLength();x++) {
System.out.print(" " +attr.item(x).getNodeName() + "=\"");
System.out.print(attr.item(x).getNodeValue() +"\"");

}
System.out.println("></" + node.getNodeName() + ">");
NodeList children = node.getChildNodes();
for (int i=0;i<children.getLength();i++) {
exploreNode(children.item(i));

}
}

}

RESULT:

<todo></todo>
<task></task>
<description></description>
<owner employeeID="none"↵
managerID="543"></owner>
<name></name>
<dept></dept>
<status></status>
<priority ignore="yes"></priority>

3683-4 ch08.F 5/24/02 9:05 AM Page 197

Note: To generate the required
results, you need to parse an XML
document that contains processing
instructions.

⁄ Open or create the code
that parses an XML document
and creates a Document
object.

¤ Create a method that
transverses the nodes of a
DOM.

Note: For more information about
transversing the nodes of a DOM,
see the section "Transverse All
Element Nodes."

‹ Type the code that passes
the Document object to the
method created in step 2.

› Type the code that checks
if a node represents a
processing instruction.

You place processing instructions in XML documents so
that an application can perform actions on those XML
documents. Processing instructions on their own do

not perform any action; you must create the code that can
detect the processing instruction and then perform specific
actions based on information in the processing instruction.
When transversing the nodes of an XML document, you
commonly start with the node that represents the root
element of the XML document and then recurse through all
the other nodes in the document from this starting point.
This approach works fine for nodes that the root element
node encompasses, but it does not transverse any nodes
outside of the root element, such as processing instructions.

Although you can include some processing instructions
within the body of an XML document, you place most
instructions after the XML declaration — the first line of
an XML document. When you include instructions in

this manner and represent them in a hierarchical way, the
processing instructions reside on the same level as the root
element.

If you have created code that recurses nodes, once it is given
a starting node, then you can recurse all nodes in the XML
document by using the Document object as the primary
node. The DOM treats items in an XML document as nodes,
and this includes the XML document itself. To be sure that
you recurse all nodes in an XML document, including all the
processing instruction nodes, recurse the node representing
the whole document as your starting point.

You can easily check a node to determine if it is a
processing instruction by using the Node.PROCESSING_
INSTRUCTION_NODE constant. Once you detect the
processing instruction node, you can use the getNodeName
method to retrieve the target and the getNodeValue
method to retrieve the text of the processing instruction.

WORK WITH PROCESSING INSTRUCTIONS

JAVA AND XML

198

WORK WITH PROCESSING INSTRUCTIONS

3683-4 ch08.F 5/24/02 9:05 AM Page 198

ˇ Type the code that
displays the target of the
processing instruction.

Á Type the code that
displays the data of the
processing instruction.

‡ Save your Java code.

° Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The processing instructions
in the XML document display.

THE DOM 8
If you plan to work extensively with processing instructions, you can use the
ProcessingInstruction interface to create objects that represent a processing
instruction. For more detailed information about the ProcessingInstruction
interface, refer to the DOM API documentation.

199

TYPE THIS:

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) {
ProcessingInstruction pi = (ProcessingInstruction) node;
System.out.print(pi.getTarget());
System.out.println(pi.getData());

}
NodeList children = node.getChildNodes();
for (int i=0;i<children.getLength();i++) {
exploreNode(children.item(i));

}
}

RESULT:

myAppprinting="enable"
myAppprint="on"
myAppprint="off"

3683-4 ch08.F 5/24/02 9:05 AM Page 199

Note: To generate the required
results, you need to parse an XML
document that contains general
entities.

⁄ Open or create the code
that parses an XML document
and iterates through the
nodes of a DOM tree.

¤ Ensure that iteration starts
with the document node.

‹ Type the code that checks
if a node represents an entity
reference.

An entity allows you to use a string to represent a large
amount of data in an XML document. You often use
entities when you want to recycle a section of the

same XML code within the document. For example, you
may have a company’s address or a copyright warning
message multiple times in the same XML document.

When an XML document parses, nodes represent the entity
references in the document, just as they represent most
other elements of the XML document. You can determine
the type of information that the node represents by
analyzing the numerical value of specific fields of the node
object. You can use the numerical constant
Node.ENTITY_REFERENCE_NODE to identify when a node
represents an entity reference in the collection of nodes
that make up a DOM API tree structure.

Once you identify an entity reference node, you can use the
getNodeValue method to determine the name for the

entity reference. The getNodeValue method returns a
String value that becomes the name of the entity.

You cannot directly retrieve the value that replaces the
entity reference in your XML document simply by accessing
the entity reference node. You determine the value of the
entity by examining the DTD’s contents — the location
where you define the entities. For more information about
viewing the entities in the DTD, see the section "Detect
General Entities in the DTD" in this chapter.

Some XML parsers may not return the names of entities
when you use the getNodeName method and may, instead,
return the value that the entity references. If you encounter
problems accessing entity references, check the parser
behavior in your XML parser documentation to determine
how to resolve entity references.

DETECT ENTITY REFERENCES

JAVA AND XML

200

DETECT ENTITY REFERENCES

3683-4 ch08.F 5/24/02 9:05 AM Page 200

› Type the code that
displays a message when it
detects an entity reference.

ˇ Type the code that
displays the name of the
entity reference.

Á Save your Java code.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The names of the entity
references in the XML
document display.

THE DOM 8

The getNodeName method returns the name of the entity. When you
use the entity in an XML document, you precede the name with an
ampersand and follow it with a semicolon. If you intend to output the
entity name to another XML document, you must add these characters.

201

TYPE THIS:

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ENTITY_REFERENCE_NODE) {
System.out.print("&");
System.out.print(node.getNodeName());
System.out.println(";");

}

RESULT:

&address;
&owner;
&owner;

3683-4 ch08.F 5/24/02 9:05 AM Page 201

⁄ Open or create a
document that parses an
XML document.

¤ Type the code that creates
a NamedNodeMap collection
of the nodes representing the
entities.

‹ Create a for loop to
iterate through the nodes.

› Type the code that
creates a node from the
NamedNodeMap collection.

ˇ Type the code that displays
the name of the node.

Á Type the code that creates
a NodeList of the child
nodes.

You use entities to insert repetitive information into
XML documents. You can define the information that
you ascribe to an entity within the DTD itself, or you

can link it to an external file. The entity declaration consists
of the entity name and the entity definition. You must
compose the name of the general entity out of a valid XML
name. This includes letters, numbers, underscores, and
colons, although programmers discourage the use of colons
because a parser may confuse them with the namespaces.

You can extract the entity definition information from the
DTD. You may want to extract the entity information to
modify the definition of the entity within your code, or
because the application that you utilize to access your XML
documents does not resolve entities; you may have to
resolve the entities yourself as you encounter them
throughout the XML document.

You assess entities with the getEntities method of the
DocumentType object. The getEntities method returns

a NamedNodeMap collection of nodes that correspond to
each entity definition within the DTD.

Once you create the NamedNodeMap collection, you can
determine the number of nodes in the NamedNodeMap
collection with the getLength method. Because the
number of nodes in a collection corresponds to the number
of entity definitions in the DTD, the value that the
getLength method returns reflects the number of general
entity definitions within the DTD.

The getNodeName method of the node object returns the
name of the entity. You store the entity definition
information itself as child nodes of the items in the
NamedNodeMap collection. To access the entity definitions,
you can retrieve the value of each of the child nodes. You
can use a simple for loop to iterate through the child
nodes to retrieve the values.

DETECT GENERAL ENTITIES IN THE DTD

JAVA AND XML

202

DETECT GENERAL ENTITIES IN THE DTD

3683-4 ch08.F 5/24/02 9:05 AM Page 202

‡ Create a for loop to
iterate through the child
nodes.

° Type the code that
displays the values of the
nodes in the NodeList.

· Save your Java code.

‚ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The names of the entity
references and the definitions
in the XML document display.

THE DOM 8
You can create an Entity object that accesses more information about an
entity. For example, the getSystemId method of the Entity object
displays the name of the file which an entity declaration references.

203

TYPE THIS:

for (int i=0;i<nm.getLength();i++) {
Node node=nm.item(i);
Entity ent=(Entity) nm.item(i);
System.out.println("\nEntity Name: " + node.getNodeName());
System.out.println("System ID:" + ent.getSystemId());
NodeList children = node.getChildNodes();
for (int x=0;x<children.getLength();x++) {
System.out.println("Definition: " +
children.item(x).getNodeValue());

}
}

RESULT:

Entity Name: address
sysid: who.xml
Definition: null

Entity Name: owner
sysid: null
Definition: Andrew

3683-4 ch08.F 5/24/02 9:05 AM Page 203

⁄ Open or create a program
that parses an XML
document.

¤ Type the code that creates
a DocumentType object.

‹ Type the code that displays
a descriptive message about
the name of the DTD.

› Type the code that
displays the name of the
DocumentType object.

You can access the information that the DTD of an XML
document contains. The DTD can contain a wide
variety of information. Accessing the information in

the DTD allows you to directly access DTD information
such as element and entity declarations.

When parsing an XML document, the parser creates a
DocumentType object that can access some of the
information available in the DTD. You can use the
getDoctype method of the Document object to create a
DocumentType object. Because the DocumentType
interface is part of the org.w3c.dom package, you must
import this package prior to using the DocumentType
interface in your Java code. For more information about
importing the package, see Chapter 3.

You can retrieve the name of a DTD — the same name as
that of the root element of the XML document. You use the
getName method of the DocumentType object to retrieve

the name of the DTD. The name of the DTD returns a
String value from the getName method.

The DocumentType object also allows you to retrieve the
rest of the information in the DTD. The information in the
DTD returns as a string value corresponding to the
information that you find in the DTD between the [and]
delimiters. The getInternalSubset method retrieves the
data.

Depending on the length of the information in the DTD and
the type of XML parser in use, you may find it impossible to
retrieve all the information in the DTD. You should not
depend on the values that the getInternalSubset
method returns, such as notation declarations, to retrieve
information, but should instead use another more
appropriate method to extract the information from the
DTD. The information in a DTD becomes available
regardless of whether the DTD you have is an inline DTD
or an external DTD.

RETRIEVE DTD INFORMATION

JAVA AND XML

204

RETRIEVE DTD INFORMATION

3683-4 ch08.F 5/24/02 9:05 AM Page 204

ˇ Type the code that
displays the remaining
information contained
within the DTD.

Á Save your Java code. ‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The name of the DTD and
the information it contains
display.

THE DOM 8

The getSystemId method can display the name of the DTD file if the DTD
is in an external file, as in <!DOCTYPE task SYSTEM "todo.dtd">.

205

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc= parser.getDocument();
DocumentType DocType = doc.getDoctype();
System.out.print("DTD File Name ");
System.out.println(DocType.getSystemId());

}
}

RESULT:

DTD File Name todo.dtd

3683-4 ch08.F 5/24/02 9:05 AM Page 205

⁄ Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

¤ Type the code that
determines if the first child
node of the element is a text
node.

You can retrieve the contents of elements that contain
text. Once you identify an element node, you can
access the information in the element. In most cases,

the type of content in an element of an XML document is
textual data.

When using the DOM to access an XML document, you
consider the content of an element node a child of the
node. This way of treating an element’s data maintains the
strict tree structure that you must enforce when using the
DOM API. Treating the textual content of an element node
as a child node may initially appear an awkward way of
organizing data, but in practice, it makes accessing this
textual content quite easy as you access all the information
in a DOM tree structure, regardless of information type, in
the same hierarchical manner.

When extracting textual data from an element, you can
identify the node as an element node. You can then check
the type of node that you identify as the first child node
of the element node to determine if it is a text node. You
use a text node to contain textual data, and you can verify
the type by checking the node type against the
Node.TEXT_NODE constant.

Typically, you iterate through all the nodes in a DOM tree,
and extract the text data from the nodes that contain text.

The information returned from the XML parser preserves all
whitespace, such as new lines and tabs, within the text data.
This also includes the whitespace that may surround child
elements of an element that contains both text and elements.
When creating code to retrieve text data, you probably want
the code to detect and remove excess whitespace.

RETRIEVE TEXT INFORMATION

JAVA AND XML

206

RETRIEVE TEXT INFORMATION

3683-4 ch08.F 5/24/02 9:05 AM Page 206

‹ Type the code that
displays the value of the text
node.

› Save your Java code. ˇ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The elements’ textual
content displays.

THE DOM 8
You can easily extract text data from only selected elements by
expanding the if argument to match the name of the node with
the name of the desired element.

207

TYPE THIS:

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.ELEMENT_NODE &&

node.getNodeName().equals("description")) {
if (node.getFirstChild().getNodeType() == Node.TEXT_NODE) {

System.out.println(node.getFirstChild().getNodeValue());
}

}
NodeList children = node.getChildNodes();
for (int i=0;i<children.getLength();i++) {
exploreNode(children.item(i));

}
}

RESULT:

Backup sales data for last month
Complete end of month report

3683-4 ch08.F 5/24/02 9:05 AM Page 207

⁄ Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

¤ Type the code that
determines if the first child
node of the element is a
comment node.

You can retrieve information from an XML document
that does not make up part of the content of the XML
document. You may find retrieving this type of

information useful if you want to reconstruct an XML
document, or if you need to examine the information
within an XML document more closely.

You often use comments to help explain a part of the XML
document or to simply provide more background
information, such as the name of the document’s author.
You may want to extract the comments from an XML
document to strip out unneeded information before saving
the XML document to a database or file system where
space is at a premium. Removing the comments from an
XML document does not affect the information or structure
of the XML document.

As with most other types of data in an XML document, the
parser creates a node that represents comments when it

finds a comment in an XML document. Locating all the
comments in an XML document involves iterating through
the nodes of the DOM tree and identifying the comment
nodes. You can easily identify comment nodes by
determining the node type of the current node and
checking the type against the Node.COMMENT_NODE
constant.

You retrieve the text that makes up the comment of a
comment node by using the getNodeValue method of
the node object. The getNodeValue method retrieves a
string value, which can contain whitespace, such as new
lines, spaces, and tabs.

While you can use information in comments for other
purposes, such as creating a placeholder for data or
passing information to an application, you should use more
appropriate methods, such as entities and processing
instructions, to accomplish these tasks.

EXTRACT COMMENTS

JAVA AND XML

208

EXTRACT COMMENTS

3683-4 ch08.F 5/24/02 9:05 AM Page 208

‹ Type the code that
displays a message describing
the following information.

› Type the code that
displays the value of the
comment node.

ˇ Save your Java code.

Á Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The comments contained
in the XML document display.

THE DOM 8

The comment tag’s start and end delimiters do not return with the comment.
If you generate an XML document, you can easily add the delimiters.

209

TYPE THIS:

static public void exploreNode(Node node) {
if (node.getNodeType() == Node.COMMENT_NODE) {
String beginCmt = "<!— ", endCmt= " —>";

System.out.println(beginCmt+node.getNodeValue()+endCmt);
}
NodeList children = node.getChildNodes();
for (int i=0;i<children.getLength();i++) {
exploreNode(children.item(i));

}
}

RESULT:

<!— Filename: file.xlm —>
<!— Created: April 2002 —>

3683-4 ch08.F 5/24/02 9:05 AM Page 209

⁄ Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

Note: You need to parse an XML
document that contains a CDATA
section.

¤ Type the code that
determines if the first child
node of the element is a
CDATA section node.

‹ Type the code that
displays a message indicating
the start of the CDATA section.

› Type the code that
displays a message indicating
the end of the CDATA section.

XML documents contain CDATA sections, into which
you can place textual data. A CDATA section can
contain any character. The character set, which the

XML document establishes, determines the characters that
you can use. You comprise the ending delimiter of a CDATA
section as the characters]]>. Any information in the
CDATA section except the ending delimiters is considered
valid. If other sources, such as the information that makes
up an image file, generate the information in a CDATA
section, you must check the information to ensure that the
ending delimiter does not appear as a valid part of the
information.

You typically use CDATA sections to store text that contains
markup tags, such as HTML code or fragments of XML
documents. Placing markup information in a CDATA section
prevents the XML parser from interpreting the tags in the
information as part of the XML document. You represent

the CDATA sections in an XML document as a CDATA
section node in the DOM tree structure.

You can determine a CDATA section by comparing the node
type against the constant Node.CDATA_SECTION_NODE.
You access the content of the CDATA section with the
getNodeValue method of the node object. The
getNodeValue method returns a string value. You do
not include the CDATA delimiters with the returned string.

The string, which the getNodeValue method returns,
includes any whitespace, such as new lines and tabs, that
comprises part of the CDATA section in the document.
Depending on the character set you use, the CDATA section
may also contain some non-displayable characters, for
which you may need to check, before you can store the
data in a file or other storage format.

EXTRACT CDATA SECTIONS

JAVA AND XML

210

EXTRACT CDATA SECTIONS

3683-4 ch08.F 5/24/02 9:05 AM Page 210

ˇ Type the code that
displays the value of the
CDATA section node.

Á Save your Java code. ‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The textual content of the
CDATA sections displays.

THE DOM 8

You can create a CDATASection object to work with CDATASection nodes, for
example, splitting the information in a node into two nodes. For more detailed
information about CDATASection objects, refer to the DOM API documentation.

211

TYPE THIS:

if (node.getNodeType() == Node.CDATA_SECTION_NODE) {
CDATASection node2 = (CDATASection) node;
Node node3=node2.splitText(10);
System.out.println("Start of CDATA Section");
System.out.println(node.getNodeValue());
System.out.println("End of CDATA Section");

}

RESULT:

Start of CDATA Section

Ba
End of CDATA Section
Start of CDATA Section
Complete <
End of CDATA Section

3683-4 ch08.F 5/24/02 9:05 AM Page 211

⁄ Open or create the code
that parses an XML
document.

¤ Type the code that creates
the DocumentType object.

‹ Type the code that creates
a NamedNodeMap collection
of notation nodes.

› Type the code that
displays the number of nodes
in the NamedNodeMap
collection.

ˇ Create a for loop
that iterates through the
NamedNodeMap collection.

Á Type the code that
creates a new Notation
node from an item in the
NamedNodeMap collection.

You can use a notation declaration to let an application
know that certain information within the XML
document may require an external application for

processing. You use the information in a notation
declaration to determine what data or application your Java
application may need to access to interpret the data in the
XML document. For example, if you parse an XML
document on computers that have different operating
systems, you may need to access different image
applications to interpret image data in the document.

You use the getDoctype method of the Document object
to create a DocumentType object. Once you create an
object, you can access defined entities in the DTD of an
XML document. The getNotations method retrieves a
collection of nodes that represent the notation declaration
in a DTD and places the nodes into a NamedNodeMap
collection.

You can iterate through a NamedNodeMap collection of
nodes by determining the number of nodes in the

collection and then iterating through each node with a
simple for loop. You determine the number of nodes in a
NamedNodeMap collection with the getLength method of
the NamedNodeMap object.

You access each node in the collection with the item
method of the NamedNodeMap object by specifying an
index number as the argument of the method. The
Notation interface, which represents a previously
declared notation in the DTD of an XML document, creates
a Notation object. You create a Notation object from
the nodes in the NamedNode collection.

Once you create a Notation object that represents
individual notation declarations, you can retrieve the name
of the notation with the getNodeName method. If the
notation declaration refers to a local application, you can
retrieve the specified name with the getSystemId method.

RETRIEVE NOTATION DECLARATIONS

JAVA AND XML

212

RETRIEVE NOTATION DECLARATIONS

3683-4 ch08.F 5/24/02 9:05 AM Page 212

‡ Type the code that
displays the name of the
notation node.

° Type the code that
displays the system ID of the
notation node.

· Save your Java code.

‚ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The number of notation
declarations and the
information contained in each
notation declaration display.

THE DOM 8
If you only want to access the name of the notation node, you do not have to
create a Notation object. The node object returns the name of the notation
using the getNodeName method of the node object.

213

TYPE THIS:

import org.apache.xerces.parsers.*;
import org.w3c.dom.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc = parser.getDocument();
DocumentType DocType = doc.getDoctype();
NamedNodeMap nm = DocType.getNotations();
System.out.println("Number of notation declarations: " + nm.getLength());
for (int i=0;i<nm.getLength();i++) {
System.out.println("\nName: " + nm.item(i).getNodeName());

}
}

}

RESULT:

Number of notation declarations: 2

Name: gif

Name: note

3683-4 ch08.F 5/24/02 9:05 AM Page 213

⁄ Open or create the code
that parses an XML document
and displays the root element
name.

Note: You can use the code created
in the section "Retrieve the Root
Element Name."

Note: In this example, you need an
XML document that contains a root
element and two child elements,
and that contains no whitespace.

¤ Type the code that creates
a node that represents the first
child node of the root
element.

‹ Type the code that
displays the name of the
child node.

The primary element of the DOM tree structure is a
node. You must navigate through the nodes in the tree
structure to efficiently access parts of an XML

document representation. You can use a number of node
object methods to move from node to node.

You use the getFirstChild method to create a node that
corresponds to the first child node of any known node.
For example, if you create a node that represents the root
element of an XML document, then you use the
getFirstChild method to access the first element in the
XML document other than the root element. Conversely,
you use the getLastChild method to create a node that
represents the last node — the child of the known node.

You use the getNextSibling method of the node object
to retrieve the next node on the same level as the current

node. The getPreviousSibling method retrieves
another node on the same level prior to the current node.
When viewing the tree structure, the DOM’s representation
of an XML document, you define the same level as a node
lateral to another node.

When using any of these methods to access nodes, you may
find that a node that you want to create does not exist. For
example, if an XML document only has a single element, the
root element, then that node does not have any child
nodes. Any attempt to navigate to a node that does not
exist may result in the node-creating navigation method
returning a null value. If you intend to navigate an XML
document of unknown structure, you should create some
checking code to determine that the nodes to which you
attempt to navigate actually do exist.

NAVIGATE NODES

JAVA AND XML

214

NAVIGATE NODES

3683-4 ch08.F 5/24/02 9:05 AM Page 214

› Type the code that creates
a node that represents the
sibling of the child node
you created in step 3.

ˇ Type the code that
displays the name of the
sibling node.

Á Save your Java code.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The root element name
and the name of its two
child elements display.

THE DOM 8

You can use the getParentNode method of the
node object to navigate to the previous node.

215

TYPE THIS:

public static void main (String[] args) throws Exception {
DOMParser parser = new DOMParser();
parser.parse("file.xml");
Document doc = parser.getDocument();
Element root = doc.getDocumentElement();
System.out.println("Root element: " + root.getTagName());
Node node1 = root.getFirstChild();
System.out.println("1st. child: " + node1.getNodeName());
Node node2 = node1.getParentNode();
System.out.println("Parent node of child: " + node2.getNodeName());

}

RESULT:

Root element: todo
1st. child: description
Parent node of child: todo

3683-4 ch08.F 5/24/02 9:05 AM Page 215

⁄ Create or open a Java
program that allows you to
work with the DOM API.

¤ Ensure that you import the
packages required to create
the files.

‹ Type the code that creates
a new FileWriter object.

› Type the code that writes
the XML declaration to a file.

ˇ Type the code that
prevents any more data
from writing to the file.

Á Save your Java code.

You can create XML documents from within your Java
applications, using the DOM API to construct the
documents. Creating XML documents allows you to

save information in a structured, easy-to-manage format.

You create a DOM tree structure and, in turn, you can
output the DOM tree to a file. You represent existing XML
documents with a DOM tree, modify them, and then write
them back to an XML file. You can easily take multiple XML
documents and, using the DOM API, merge these XML
documents into a single XML document.

The first step in creating an XML document involves writing
the XML declaration. Once you construct the declaration,
you can write it to a file and use it to create an XML
document. You must make the XML declaration the first line
of an XML document.

Unfortunately, the DOM API does not yet provide a way of
representing the XML declaration in a DOM tree structure.

To create an XML declaration, you must construct one from
a string.

You use the FileWriter class of the java.io package to
construct files from within Java code. You have to create a
FileWriter object and pass to it the name of the file to
create. XML documents should use the .xml file extension.
The write method of the FileWriter object allows you
to place information in the file. Once you finish working
with the file, you can use the close method of the
FileWriter object to close the file. You may not have
access to the XML document from other applications while
you still have the file open from within your Java code.

Once you save the XML document, you can view it using a
simple text editor or another XML application.

CREATE AN XML DOCUMENT

JAVA AND XML

216

CREATE AN XML DOCUMENT

3683-4 ch08.F 5/24/02 9:05 AM Page 216

‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

° Open the XML document. ■ The XML declaration is the
first line of the document.

THE DOM 8

Quite commonly, you use a String value to represent a new line when
creating data that you want to output. Using a String value to represent a
new line allows you to easily change the new line character and to avoid
using a multitude of escape sequences in your code.

217

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
FileWriter fw = new FileWriter("doc.xml");
String newLine="\n";
fw.write("<?xml version=\"1.0\"?>");
fw.write(newLine);
fw.write(newLine);
fw.write("<!— Created by Andrew —>");
fw.close();

}
}

RESULT:

<?xml version="1.0"?>

<!— Created by Andrew —>

3683-4 ch08.F 5/24/02 9:05 AM Page 217

⁄ Create or open the code
that can create an XML file
containing an XML
declaration.

Note: You can use the code created
in "Create an XML document."

¤ Type the code
that creates a new
DOMImplementation
object.

‹ Type the code that creates
a new document object.

› Type the code that creates
a new element node that
represents the root element
of the XML document.

You can create a DOM tree structure as if you had
created the DOM tree from a parsed XML document.
This enables you to create DOM tree structures from

within your code and then work with the information
within the structure using all the features of the DOM API.

You create a DOMImplementation object that facilitates
the creation of a new document, as represented by a DOM
tree structure. The DOMImplementationImpl class
produces the new DOMImplementation object. The
DOMImplementationImpl class is part of the
org.apache.xerces.dom package, which you must
import prior to using the DOMImplementationImpl class
in your Java code. For more information about importing
packages, see Chapter 3.

You use the createDocument method of the
DOMImplentation object to make the new Document
object. The createDocument method takes three
arguments. The first and third arguments consist of the
namespace of the document element and the document

type, respectively. For simple XML documents, you can
specify them as null. The second argument consists of the
name you use for the root element of the XML document.

You can easily verify that you have previously created the
root element of the XML document by making a new node
that represents the root element of the document.

You can create an XML document by writing an XML
declaration, and the root element start and end tags, to a
file. You create the root element’s start and end tags by
using the getNodeName method of the node object to
output the name of the root element. You must place the
start and end tag delimiters appropriately around the
element name.

Once you create the XML document, you can easily view it
with a simple text editor to confirm that you have created
the document properly and that you have named the root
element correctly.

CREATE A NEW DOM TREE
WITH A ROOT ELEMENT

JAVA AND XML

218

CREATE A NEW DOM TREE WITH A ROOT ELEMENT

3683-4 ch08.F 5/24/02 9:05 AM Page 218

ˇ Type the code that writes
the start tag of the root
element to the file.

Á Type the code that writes
the end tag of the root
element to the file.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

° Open the XML document.

■ The XML document
contains the root element.

THE DOM 8

You may generate a DOMException error if the root element name is invalid.
You can easily create a try and catch block to deal with the potential error.

219

TRY THIS:

public static void main (String[] args) throws Exception {
try {
DOMImplementation di = new DOMImplementationImpl();
Document doc = di.createDocument(null,"tas k",null);
Element root = doc.getDocumentElement();
FileWriter fw = new FileWriter("doc.xml");
fw.write("<?xml version=\"1.0\"?>\n");
fw.write("<" + root.getNodeName() + ">\n");
fw.write("</" + root.getNodeName() + ">\n");
fw.close();

} catch (DOMException e) {
System.out.println("Error detected: " + e.getMessage());

}

RESULT:

Error detected: DOM002 Illegal character

3683-4 ch08.F 5/24/02 9:05 AM Page 219

⁄ Open or create the code
that creates an element node
and creates an XML
document.

Note: You can use the code from the
section "Create a New DOM Tree
with a Root Element."

¤ Type the code that assigns
the attribute name and value
to the element node.

‹ Repeat step 2 for each
attribute you have to create.

Apart from the primary content of an element, such as
text or other elements, elements can contain more
information in the form of attributes. For example, an

element called 'fax' may have an attribute called 'code,'
which you use to indicate the area code of the fax number
that makes up the content of the fax element.

You must first create the node that you want to add to the
elements. You must make the node an element node, but
you can also include the root element of the XML
document. Once you create the element node, you can use
the setAttribute method of the node object to add an
attribute to an element.

The setAttribute method takes two arguments. The first
argument consists of the attribute’s name, and as with all
attribute names, you must make it an invalid XML name.
The second argument consists of the value that you want to
specify for the attribute. You can state both arguments in
the form of a string.

If you output an element and its associative attributes to an
XML document, you need to format the information
accordingly. For example, as with all attributes, you must
enclose the attribute value within quotation marks when
you save it in the XML document. You must also place the
'equals' symbol between the attribute name and the
attribute value.

As with all attributes, when creating XML documents, you
must place the attributes and their values within the start
tag of an element.

You can access the attributes of an element node via the
NamedNodeMap collection of nodes. When outputting the
attributes of an element to an XML file, you can create a
simple loop that iterates through the nodes in the
NamedNodeMap collection.

ADD ATTRIBUTES TO AN ELEMENT

JAVA AND XML

220

ADD ATTRIBUTES TO AN ELEMENT

3683-4 ch08.F 5/24/02 9:05 AM Page 220

› Type the code that
creates the NamedNodeMap
collection of nodes that
represent the attributes.

ˇ Type the code that creates
the loop that iterates through
the attributes.

Á Type the code that
outputs the attribute
information.

‡ Open the XML document. ■ The attributes appear in
the element start tag.

THE DOM 8
Whether you want to output element nodes to an XML document, the display, or a
database, you may find it more efficient to create a dedicated method that can output
the element information from any element node and not just from the root element.

221

TYPE THIS:

public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl();
Document doc = di.createDocument(null,"task",null);
Element root = doc.getDocumentElement();
root.setAttribute("owner", "Andrew");
root.setAttribute("priority", "high");
writeElement(root);

}
static void writeElement (Node node) {
System.out.print("<" + node.getNodeName());
NamedNodeMap attribs=node.getAttributes();
for (int i=0;i<attribs.getLength();i++) {
System.out.print(" "+ attribs.item(i).getNodeName());
System.out.print("=\""+ attribs.item(i).getNodeValue()+"\"");

}
System.out.print(">\n</" + node.getNodeName() + ">\n");

}

RESULT:

<task owner="Andrew" priority="high">
</task>

3683-4 ch08.F 5/24/02 9:05 AM Page 221

⁄ Open or create the code
that parses an XML document
and identifies the element
nodes.

Note: You can use the code created
in the section "Transverse All
Element Nodes."

¤ Type the code that creates
a new element.

■ This example creates an
element with the name
"todo."

You can create child element nodes for any node in a
DOM tree structure. You create child element nodes
to build DOM tree structures of nodes that represent

elements in an XML document. For example, you can create
multiple child element nodes that add children to the root
element of an XML document.

The first step in the process involves creating an element
node with the desired name. Once you do this, you can
append it to the node that becomes the parent node of the
child element node. You use the createElement method
to create a new node.

The parameter for the createElement method, a
string value, becomes the name of the node, which
also becomes the name of the element within the XML
document. You therefore make the name you specify in the
createElement method a valid element name within an
XML document.

Once you create the new node, you can perform any
operation on the node that you would on any other node,
such as the node of a parsed XML document. For example,
you can use the getNodeName method to retrieve the
name of the new node. Once you build the new element,
you can insert it into the DOM tree structure. You do this by
appending the child node to an existing node in the DOM
tree structure.

You use the appendChild method to append one node to
another. The appendChild method is the method of the
element object. The argument for the appendChild
method becomes the name of the newly created element
node.

When you append the new node, you can work with the
nodes in the DOM tree structure as you would a DOM tree
structure that a parsed XML document generates. In many
cases, you want to display or otherwise output the XML
document that the DOM tree structure represents.

ADD A CHILD ELEMENT

JAVA AND XML

222

ADD A CHILD ELEMENT

3683-4 ch08.F 5/24/02 9:05 AM Page 222

‹ Type the code that
appends the newly created
node to the root node of the
DOM tree structure.

› Save your Java code. ˇ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The parent and child
elements of the XML
document display.

THE DOM 8

Just as you can add attributes to the root element, you can add
attributes to any element node in a DOM tree structure.

223

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl();
Document doc = di.createDocument(null,"task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo");
todoElement.setAttribute("owner", "Andrew");
todoElement.setAttribute("priority", "high");
root.appendChild(todoElement);
exploreNode(root);

}

RESULT:

<task>
<todo owner="Andrew" priority="high">
</todo>

</task>

3683-4 ch08.F 5/24/02 9:05 AM Page 223

⁄ Open or create the code
that creates a root and child
element and then parses the
DOM tree structure and
identifies the element nodes
and their contents.

Note: You can use the code created
in the section "Add a Child Element."

¤ Type the code that
identifies if the child node
of an element contains text.

‹ Type the code that
displays the value of the
text node.

Atext node allows you to create elements that use
textual data as the content within an XML document.
Once you create an element node, you can generate a

text node that stores textual data in an element of an XML
document. For more information about creating element
nodes, see the section "Add a Child Element" in this chapter.

As with any other newly created node, you can append a
text node to another node. This is how you insert text
nodes into a DOM tree structure. In most cases, you
append text nodes to element nodes.

You use the createTextNode method, a method of the
document object, to create the new text node. You can
work with multiple documents within a single Java
application, but you must ensure that the new text node
uses the createTextNode method of the appropriate
object.

The createTextNode method takes one argument —
the textual content of the text node. When you create the
element in an XML document, you place the argument of
the createTextNode method between the start and end
tags of the element, which consists of the parent node of
the newly created text node.

Once you create text nodes, you typically write the code
that outputs all the elements in the DOM tree structure to
an XML document. You must create the specific code that
recognizes element nodes, determines if they have child
text nodes, retrieves the data from the nodes, formats it
accordingly, and then outputs the data to an XML
document. If you create an XML document that utilizes
multiple node types, such as comment nodes, you must
generate the code that identifies the node types and
formats the output appropriately.

CREATE A TEXT NODE

JAVA AND XML

224

CREATE A TEXT NODE

3683-4 ch08.F 5/24/02 9:05 AM Page 224

› Type the code that creates
a new text node.

ˇ Type the code that
appends the newly created
text node to an element
node.

Á Save your Java code.

‡ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The parent and child
elements of the XML
document display along
with the textual content
of the elements.

THE DOM 8

Once you create the text node, you can append it to multiple nodes.
For example, you can append text to element and root nodes.

225

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl();
Document doc = di.createDocument(null,"task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo");
Text todoText= doc.createTextNode("Backup Sales Data");
root.appendChild(todoText);
todoElement.appendChild(todoText);
root.appendChild(todoElement);
exploreNode(root);

}

RESULT:

<task>
<todo>
Backup Sales Data
</#text>
</todo>
</task>

3683-4 ch08.F 5/24/02 9:05 AM Page 225

⁄ Open or create the code
that creates a root and child
element and then parses the
DOM tree structure and
identifies the CDATA section
nodes.

■ This example adds a
CDATA section node to a
DOM tree structure.

¤ Type the code that creates
a new node object of the
desired type.

Different node types allow you to add differing
structural information and content to an XML
document that you create from a DOM tree

structure. Apart from element and text nodes, you have
many other types of nodes that you can create and insert
into the DOM tree structure. For more information about
creating text elements, refer to "Create a Text Node" in this
chapter.

You create nodes of types other than text and elements in
the same manner — by creating a method of the document
object. For example, the createCDATASection method
creates a new CDATA section node. The object type
corresponds to the type of node that you require; for
example, a CDATA section node requires the creation of a
CDATASection object.

Once you generate the node, you can insert it into the
DOM tree structure by appending it as the child node of
a pre-existing parent node in the DOM tree structure.

The arguments, which the node creation methods use,
correspond to the previously created node type. For
example, the createCDATASection method takes a
String as its sole argument, and the String becomes
the content of the CDATA section when it creates an XML
document.

When creating nodes that place information into an XML
document, you must create the code that formats the data
appropriately. For example, if you create nodes that insert
comments into an XML document, you must format the
information that is used for the comments so that it does
not contain the comment start or end delimiters. Once you
create a node, you insert it into the DOM tree structure.
The limitations of your computer’s available resources
determine the complexity and size of the DOM tree
structure and the XML document you generate from the
DOM tree structure.

CREATE OTHER NODE TYPES

JAVA AND XML

226

CREATE OTHER NODE TYPES

3683-4 ch08.F 5/24/02 9:05 AM Page 226

‹ Type the code that
appends the newly created
node to an existing node in
the DOM tree structure.

› Save your Java code. ˇ Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ The parent and
child elements of the XML
document display along with
the newly inserted content.

THE DOM 8

You can create many different types of
nodes within a DOM tree structure.

227

COMMONLY USED NODE CREATION METHODS

OBJECT METHOD NODE TYPE

Attr createAttribute(String) Element attributes

CDATASection createCDATASection(String) A CDATA section

Comment createComment(String) A comment

DocumentFragment createDocumentFragment() A fragment of an
XML document

Element createElement(String) An element

EntityReference createEntityReference(String) An entity reference

ProcessingInstruction createProcessingInstruction A processing instruction
(String target, String data) containing the target and data

Text createTextNode(String) A text node

3683-4 ch08.F 5/24/02 9:05 AM Page 227

⁄ Open or create the code
that creates a DOM tree
structure with a root element
and that can display the
elements in the DOM tree
structure.

¤ Type the code that creates
a node, which copies an
existing node.

You can copy nodes to rearrange the structure of an
existing DOM tree structure or to copy a node from
one DOM tree structure to another new or existing

DOM tree structure. You can create exact duplicates of
nodes that you may or may not have as part of the DOM
tree structure.

You can create exact duplicates of the node by using the
cloneNode method of a node object. The cloneNode
method returns the node object. The cloneNode method
takes one argument, a Boolean value that indicates
whether or not to copy the node’s underlying DOM tree
structure.

You commonly utilize the cloneNode method to copy
nodes between different DOM tree structures. Another use
involves parsing XML documents and then copying an
individual element from one XML document to another.

When copying nodes using the cloneNode method, you
also copy any associated attributes of that node. Once you
copy a node, you can append that node to another node in
a DOM tree structure. This enables you to rearrange the
XML documents with which you work. You can treat the
copy of a node as any other previously created node using
the DOM API. Once you make a copy of the node, you have
no relationship between the original and the copy node;
the copied node does not reflect any changes you make to
the original node.

Depending on the type of XML parser, you can create
copies of certain nodes using the cloneNode method. For
example, some XML parsers may allow you to make copies
of nodes that represent elements, but do not allow you to
make a copy of a node that represents a document object.
For more information about the types of nodes you can
copy with a particular XML parser, refer to the XML parser’s
documentation.

COPY NODES

JAVA AND XML

228

COPY NODES

3683-4 ch08.F 5/24/02 9:05 AM Page 228

‹ Type the code that
appends the original node to
the root node.

› Type the code that
appends the duplicate nodes
to the root node.

ˇ Save your Java code.

Á Compile and run your
program.

Note: See Chapter 2 for instructions
on compiling and running Java
programs.

■ Information about the
original and duplicate nodes
displays.

THE DOM 8
You can create a copy of the node and any of its children by
changing the argument of the cloneNode method to true.

229

TYPE THIS:

public static void main (String[] args) throws Exception {
DOMImplementation di = new DOMImplementationImpl();
Document doc = di.createDocument(null,"task",null);
Element root = doc.getDocumentElement();
Element todoElement = doc.createElement("todo");
Text todoText= doc.createTextNode("Backup Sales Data");
todoElement.appendChild(todoText);
Node nodeCopy = todoElement.cloneNode(true);
root.appendChild(todoElement);
root.appendChild(nodeCopy);
exploreNode(root);

}

RESULT:

<task>
<todo>Backup Sales Data</todo>
<todo>Backup Sales Data</todo>

</task>

3683-4 ch08.F 5/24/02 9:05 AM Page 229

Not actually an acronym for anything, JDOM is an
application program interface, or API, that enables a
Java application to communicate with an XML parser.

You can use JDOM to create, manipulate, save, and display
XML documents. As with all of the APIs that access XML
parsers from within Java applications, the JDOM API

consists of a number of classes and packages. Similar to the
DOM API, the JDOM API permits the representation of an
XML document as a tree structure. Despite the similar
names, do not confuse the JDOM API as a part of the DOM
API or vice versa. For more on the DOM API, see Chapter 8.

INTRODUCING JDOM

JAVA AND XML

230

The concepts you use when working with the Java
programming language are similar to those that you use
when working with JDOM. Therefore, any developer
familiar with Java has an easier task when learning and
using the JDOM API. Created specifically with Java in
mind, JDOM uses the very same object-oriented
approach to working with XML information. For example,
other APIs, such as SAX and DOM, provide their own
classes that allow for the collection of items, such as the

node list classes in the DOM API. Instead of developing
a specific list mechanism for people working with the
JDOM API, JDOM can work with Java collections, which
is a list mechanism that Java developers in other areas
use. This compatibility makes it easier for Java developers
to start using the JDOM API. In fact, the similarities
between Java and JDOM make not only lists, but also
other areas within the JDOM API, very easy to learn.

JAVA COMPATIBLE

230

An XML parser is an application that you use to process
XML documents in conjunction with Java programs that
you create. Not a parser itself, the JDOM is simply an
API that communicates with an XML parser. Many XML
parsers now include the JDOM API as part of the
package of files installed along with an XML parser.
Although the files that make up the JDOM API are
available as a separate package, if your XML parser
includes a version of the JDOM API files, you should use
this JDOM version when developing code to work with
that specific XML parser. Using the JDOM files that

accompanied your XML parser ensures full
compatibility between the version of the JDOM API you
use and your XML parser. This chapter uses the Xerces
parser when working with the JDOM API. If you want
to work with another XML parser, you must consult the
documentation that accompanied the XML parser for
instructions on configuring and setting up the JDOM
API to work with your particular parser. JDOM should
work with any SAX- or DOM-compliant XML parser.
For more information about installing the Xerces XML
parser, see Chapter 7.

XML PARSERS

Before you can use the JDOM API, you must install the
JDOM API files. If you acquired the JDOM API files with
an XML parser, you should install those particular API files
during the parser installation. The files that make up the
JDOM API install with the XML parser if the JDOM API
was included with the parser. If you acquired the JDOM
API files elsewhere, you may have to copy the files to a
specific directory on your computer, and adjust the

CLASSPATH environment variable for your operating
system. For more information about setting the
CLASSPATH environment variable on your computer, see
Chapter 7. For complete installation instructions for the
JDOM API, you should always refer to the installation
instructions for your operating system that accompanied
the JDOM API files. You can download the JDOM API files
from the main JDOM Web site, http://www.jdom.org.

INSTALLATION

3683-4 ch09.F 5/24/02 9:06 AM Page 230

JDOM 9

231

The Internet offers many resources and a wide range of
information for Java developers working with the JDOM
API, including newsgroups, mailing lists, and Web sites.
The most important of these resources is the primary
JDOM Web site, available at http://www.jdom.org.

Not only does this site contain the JDOM API for
download, it also contains a complete set of JDOM
API documentation, background articles, and other
relevant information.

RESOURCES

231

The JDOM API, which can process DOM tree structures,
is compatible with SAX- and DOM-compliant parsers.
You can also use SAX events with the JDOM API to
process an XML document. Although JDOM can use
a DOM-compliant parser to access XML documents,
typically you use only a SAX-compliant parser to read
XML documents, as SAX parsers process and read
XML documents more efficiently and faster than JDOM.
Allowing the JDOM API to work efficiently with
both SAX and DOM enables you to use the best
implementation of these technologies for any given
scenario.

Using JDOM with SAX and DOM enables you to
utilize the strengths of both the SAX and the DOM API
without having to deal with their weaknesses. SAX is a
great API for quickly reading an XML document, while
the DOM API is more efficient at modifying and
rearranging XML information. Using JDOM allows you
to combine these strengths when working with complex
XML documents. Although JDOM cannot replace the
use of SAX or DOM APIs, it makes them easier to use.
For more information about the SAX API, refer to
Chapter 7. For more information about the DOM API,
refer to Chapter 8.

SAX AND DOM

Due to constant development and revisions, JDOM
continually phases out or adds features. You must
always ensure that you use the latest version of the
JDOM API. This guarantees you have access to the latest
features and a longer life span for any applications that
you create. If you acquire the JDOM API files with your

XML parser, you can verify the XML parser
documentation to determine the version number of the
JDOM API included with the XML parser. To determine
the very latest version of the JDOM API, visit the main
JDOM Web site at http://www.jdom.org.

VERSIONS

As with most things related to XML and Java
development, the JDOM API is free to use. The JDOM
API is open-source software, enabling you to use and

implement the JDOM API in your applications. You can
also distribute those applications without charging a fee
for them.

COST

3683-4 ch09.F 5/24/02 9:06 AM Page 231

⁄ Create the class and main
method of a Java application.

¤ Type the code that imports
the required JDOM packages.

‹ Type the code that creates
a new Element object with
the root element name.

› Type the code that creates
a new document object using
the root element.

You can create a root element in order to start building
an XML document. The root element of an XML
document is the first element within the document.

Each XML document requires only one root element, which
contains all the other elements within the document. To
create the root element, you use an Element object, which
allows the creation of the root element within the JDOM
representation of an XML document. For more information
about creating objects, see Chapter 3. The Element object
is part of the main JDOM package called org.jdom, which
you import to create Element objects.

Once you have the root element object, you create a
document object using the root element as an argument
of the document class.

You can list the XML documents created with JDOM on the
display by using an XMLOutputter object. Once you create

the XMLOutputter object, you can use the output method
to send the document object to the display. The output
method of the XMLOutputter class takes two arguments.
The first argument consists of the document object’s name.
The second argument, System.out, displays the output
on the screen. The XMLOutputter class is part of the
org.jdom.output package; you must import this
package before creating XMLOutputter objects within
your application.

If the root element of the document is empty, the JDOM
generates a single element tag instead of separate start and
end tags. When generating the output derived from
the document object, JDOM automatically inserts the
XML declaration, which you must always make the first
line of any XML document.

CREATE THE ROOT ELEMENT

JAVA AND XML

232

CREATE THE ROOT ELEMENT

3683-4 ch09.F 5/24/02 9:06 AM Page 232

ˇ Type the code that
generates the XML document.

Á Save the Java file. ‡ Compile and run your
Java program.

■ The XML declaration and
root element appear.

JDOM 9

You can check if an element is a root element
by using the isRootElement method of the
Element object.

233

TYPE THIS:

import org.jdom.*;
import org.jdom.output.*;
public class ParseDoc {
public static void main (String[] args) throws Exception {
Element root = new Element ("todo");
Document doc = new Document(root);
if(root.isRootElement()){
System.out.println("Root element has been created");

}
}

RESULT:

Root element is
created.

3683-4 ch09.F 5/24/02 9:06 AM Page 233

⁄ Open or create a Java
application.

¤ Type the code that creates
a new element.

‹ Type the code that assigns
text content to the element.

› Type the code that creates
a new document object.

ˇ Type the code that
generates the XML document.

To create XML documents, you can create a root
element and add content to that element. You can
create root elements that have content using the

JDOM API. You can use root elements to contain textual
data. You can place textual data within an element by
using the addContent method of the Element object.
The addContent method takes as its argument a string
value. After adding content to an element, you can append
more textual data by calling the addContent method
again. Each time you call the addContent method, and
you have text for the argument of the addContent
method, the data simply appends to the existing textual
data of the element.

As with XML documents, you have no limitation, other
than system resources, on the amount of textual data that
you can place in any one element. For more information

about creating textual content for elements in an XML
document, see Chapter 4.

You create an element using a new instance of an Element
object and assigning the object the name of the element.
You can make the element itself the root element, or more
likely, you can make the element, which has text assigned to
it, a sub-element of the root element. For more information
about how to create child elements of the root element, see
the section "Creating Child Elements" in this chapter. Once
you assign textual data to the content of the root elements,
you can display the XML document that includes the root
element. You use the XMLOutputter class to display XML
documents on your screen. If required, you can also save
the XML document to a file. For more information, see
"Save an XML Document" in this chapter.

ADD CONTENT TO THE ROOT ELEMENT

JAVA AND XML

234

ADD CONTENT TO THE ROOT ELEMENT

3683-4 ch09.F 5/24/02 9:06 AM Page 234

Á Repeat step 3 for any
subsequent text you want to
add to the element.

‡ Compile and run your
Java program.

■ The XML declaration and
the root element appear with
its contents.

JDOM 9

You can use the setText method of the Element object to assign new
text to an element. The difference between the setText method and the
addContent method lies in the fact that the setText method replaces
any existing textual data that you have assigned to the element.

235

TYPE THIS:

public static void main (String[] args) throws Exception {
Element root = new Element ("todo");
root.addContent("Backup:"); and
root.addContent("Sales Data");
root.setText("Print Sales Reports");
Document doc = new Document(root);
XMLOutputter op = new XMLOutputter();
op.output(doc,System.out);

}

RESULT:

<?xml version="1.0" encoding="UTF-8"?>
<todo>Print Sales Reports</todo>

3683-4 ch09.F 5/24/02 9:06 AM Page 235

⁄ Open or create a Java
application.

¤ Type the code that creates
a new element.

‹ Type the code that assigns
textual data to the element.

› Repeat steps 2 and 3 for
each element you want to
create.

ˇ Type the code that creates
a new root element.

Á Type the code that assigns
the element you created in
step 2 as a child element of
the root.

‡ Repeat step 6 for each
element that you want to be
a child of the root element.

You can create child elements in order to build XML
documents that contain multiple items of information.
Apart from textual data, elements can also contain

other elements. The root element of an XML document
usually contains other elements. In this case, the root
element is known as a container element and the elements
that it contains are referred to as children, or child elements.
For more information about creating child elements for
an element in an XML document, see Chapter 4.

You can create elements and then assign them to a
container element. You can alter the characteristics of any
element before you make it a child element of another
element. For example, you can create an element called
"name" and assign it the text value of a person’s name, and
then assign that element as a child of an element called
"identity."

You assign elements to other elements in the same manner
that you add text to an element: You use the addContent
method of the Element object to assign the element to its
parent. For more information about adding textual content
to an element, see the sections "Create the Root Elements"
and "Add Content to the Root Element" in this chapter.

You can create multiple elements by using the addContent
method to append each element to a single parent element.

When creating child elements of the root element, you can
assign the elements to the root element and then create the
document specifying the name of the root element. You can
then create the XML document with the root element and
the root element’s child elements in place.

CREATE CHILD ELEMENTS

JAVA AND XML

236

CREATE CHILD ELEMENTS

3683-4 ch09.F 5/24/02 9:06 AM Page 236

° Type the code that creates
the new document object.

· Type the code that
generates the XML document.

‚ Save your Java file.

— Compile and run your
Java program.

■ The XML declaration,
root element, and its child
elements appear.

JDOM 9

You can format the output that the XMLOutputter object generates to
include an indent and new lines. You specify the characters for an indent
as the first argument. Making the second argument a true value indicates
that you want to use new lines when creating the XMLOutputter object.

237

TYPE THIS:

public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent("Backup sales data");
Element status = new Element ("status");
status.addContent("Open");
Element root = new Element ("root");
root.addContent(task);
root.addContent(status);
Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ",true);
op.output(doc,System.out);

}

RESULT:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<task>Backup sales data</task>
<status>Open</status>

</root>

3683-4 ch09.F 5/24/02 9:06 AM Page 237

Note: For this example you need a
valid XML document.

⁄ Type the code that imports
the required packages.

¤ Type the code that creates
the class and main method
of your application.

‹ Type the code that creates
the new SAXBuilder
object.

› Type the code that creates
a new document object using
the build method of the
SAXBuilder object.

You can use the JDOM API to read an XML document
and extract information from that XML document.
You can read XML documents and process them using

JDOM. You find the classes that you use to parse an XML
document in the package org.jdom.input. Before you
can parse an XML document, you need to import this
package. For more information about importing a package,
see Chapter 3.

The SAXBuilder class uses a SAX-compliant parser to
parse an XML document, and from that information, it
creates a JDOM document object. The arguments you use
when creating the SAXBuilder object depend on the XML
parser that you have. If you have the Xerces XML parser,
you do not have to specify any arguments to create a
SAXBuilder object. For more information about installing
the Xerces XML parser, see Chapter 7.

Once you create a new SAXBuilder object, you can use
the build method to specify the name of the XML

documents that you want to read. The build method of
a SAXBuilder object returns a JDOM document object,
which you can then access to display the contents of the
XML file.

To display the complete contents of the XML file, you can
use the XMLOutputter object to display the JDOM
document object. If required, you can also save the XML
document to a new file. For more information, see the
section "Save an XML Document" in this chapter.

Some XML parsers cannot process the XML declaration
within an XML document. When the JDOM document
object generates, the XML declaration, by default, becomes
<?xml version="1.0" encoding="UTF-8"?>. If you
read an XML document that contains a different XML
declaration, such as <?xml version="1.0"?>, JDOM
replaces the declaration when it appears.

READ AN XML DOCUMENT

JAVA AND XML

238

READ AN XML DOCUMENT

3683-4 ch09.F 5/24/02 9:06 AM Page 238

ˇ Type the code that
displays the XML document.

Á Save your XML file. ‡ Compile and run your
Java program.

■ The XML document
appears.

JDOM 9

You cannot perform the XML document validation before reading the XML
document. You can enable validation by using the Boolean value true
when creating a new SAXBuilder object. If you enable validation and
attempt to read an XML document that is not valid, an error generates.
If your code accesses XML documents whose validity you cannot verify,
you should create your own error-handling code.

239

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder(true);
Document doc = saxobj.build("file.xml");
XMLOutputter op = new XMLOutputter();
op.output(doc,System.out);

}

RESULT:

org.jdom.JDOMException: Error on line 19 of document ↵
file:///C:/Code/file.xml: Attribute "priority" with ↵
value "higher" must have a value from the list
"(low | high)".

3683-4 ch09.F 5/24/02 9:06 AM Page 239

Note: For this example, you must
create an XML document that has a
root element that contains textual data
and is called file.xml.

⁄ Open or create the code
that will read an XML
document.

¤ Type the code that creates
a new Element object from
the information within the
JDOM document object.

‹ Type the code that
retrieves the textual content
of the element.

You can extract the information, stored as plain text,
that an XML document contains. You can retrieve the
content of elements that contain text. The content of

an element consists of the data between the start and end
tags of the element. Text data typically comprises the
majority of content of elements you find in an XML
document.

To extract the textual content from an element, you can
create an Element object that represents the root element
of the XML document. You can easily create an Element
object from the root element of the XML document by
using the getRootElement method of the document
object.

Once you create an Element object, you can use the
getText method to extract the textual data from the

element. The value returned from the getText method is
a string value that also contains whitespace within the
textual content of the element.

When displaying element data, you may also want to
display the element’s name, which you find between the
start and end tags of the element within the XML data. The
getName method of the Element object returns the name
of the element as a string value.

What happens to the text data that makes up the contents
of an element in an XML document depends on what you
want your application to do with it. Some applications
may simply display or print the text data, while other
applications may want to execute other code depending
on the actual contents of the text data.

EXTRACT ELEMENT TEXT CONTENT

JAVA AND XML

240

EXTRACT ELEMENT TEXT CONTENT

3683-4 ch09.F 5/24/02 9:06 AM Page 240

› Type the code that
displays the name of the
element.

ˇ Type the code that
displays the textual content
retrieved from the element.

Á Save your Java file.

‡ Compile and run your
Java program.

■ The name and textual
content of the element
appear.

JDOM 9
You can use the getTextTrim method of the
Element object to clean up any unnecessary
white space that you may have within the textual
content of an element.

241

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder();
Document doc = saxobj.build("file.xml");
Element element = doc.getRootElement();
String todoText = element.getTextTrim();
System.out.println("Element '" + element.getName() + ↵

"' contains ");
System.out.println(todoText);

}
}

RESULT:

Element 'todo' contains
Backup Sales Data

3683-4 ch09.F 5/24/02 9:06 AM Page 241

⁄ Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

¤ Type the code that creates
the new comment object.

You often use comments in XML documents to help
explain a part of the document, or to simply provide
more background information such as the name of

the document’s author.

To insert an XML comment into a document, you must first
create a comment. You can specify the text string when
creating the comment object. The text string becomes the
string enclosed within the comment delimiters inside of
the XML document.

You input the opening comment delimiter within an XML
document as <!--. You input the ending delimiter as -->.
Do not include any characters that one may interpret as
the ending tags within the text you want to place within
the XML document’s comment.

When outputting the XML document using JDOM, the
comment start and end delimiters automatically appear
on either side of the text that makes up the comment. You
can add comments to an XML document as the content of

elements by using the addContent method of the
Element object. You can create child elements
by this same method.

While you may find it possible to use information
in comments for other purposes, such as creating
a placeholder for data or to pass information to an
application, consider using more appropriate methods,
for example, entities and processing instructions, to
accomplish these types of tasks. For more on entities,
see the section "Insert Pre-Defined Entity References" in
this chapter. For more on processing instructions, see the
section "Add Processing Instructions" in this chapter.

The processing applications and XML parsers ignore
comments you insert into XML documents unless you
specifically identify and extract the information from the
comments in the XML document. For more information
about extracting comments from XML documents, see
Chapter 8.

INSERT A COMMENT

JAVA AND XML

242

INSERT A COMMENT

3683-4 ch09.F 5/24/02 9:06 AM Page 242

‹ Type the code that adds
the comment object to the
contents of an element.

› Save your Java file. ˇ Compile and run your
Java program.

■ The XML document,
including the comment,
displays.

JDOM 9
You can adjust the placement of the comments in the XML document simply by
moving the content method that inserts the comments to the desired location.

243

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent("Backup sales data");
Element status = new Element ("status");
status.addContent("Open");
Element root = new Element ("root");
Comment comment = new Comment("Updated by Andrew");
root.addContent(task);
root.addContent(comment);
root.addContent(status);
Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ",true);
op.output(doc,System.out);

}
}

RESULT:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<task>Backup sales data</task>
<!—Updated by Andrew—>
<status>Open</status>

</root>

3683-4 ch09.F 5/24/02 9:06 AM Page 243

⁄ Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

¤ Type the code that creates
the new CDATA object.

‹ Type the code that creates
the element that you want to
contain the CDATA section.

The CDATA section enables you to incorporate large
blocks of text containing special characters into an
XML document without replacing each special

character with an entity reference. You often use CDATA
sections within an XML document to contain non-text
information such as the data that makes up an image.

Within an XML document, a CDATA section starts with the
characters <![CDATA[and ends with the characters
]]>.Within the tag, you can include any text that may
contain special characters. You can make the information
in the CDATA section almost anything. The information
can contain programming code, such as Java, or, more
commonly, HTML. Any information in the CDATA section
except the ending delimiters is considered valid, so you
must be careful to ensure that any data that you want to
place in a CDATA section does not contain the character

sequence]]>. You must create a CDATA object to add a
CDATA section to an XML document. When creating a
CDATA object, specify the content of the CDATA section
information.

You often include CDATA sections in an XML document as
the sole content of an element. You can use the Element
object to create the element for storing this CDATA section.
You can use the addContent method of the Element
object to add the CDATA section object to that element. You
use the addContent method of the Element object to
add a child element to a parent element. Once you create
the element with a CDATA section, you can insert it into the
XML document. To do so, you use the addContent method
of the element object that you want to make the parent
element containing the CDATA section in the XML
document.

INSERT A CDATA SECTION

JAVA AND XML

244

INSERT A CDATA SECTION

3683-4 ch09.F 5/24/02 9:06 AM Page 244

› Type the code that adds
the CDATA section to the
newly created element.

ˇ Type the code that inserts
the element into the
document.

Á Save your Java file.

‡ Compile and run your
Java program.

■ The XML document,
including the CDATA section,
displays.

JDOM 9
You can use the toString method of the
CDATA object to safely convert the information
in this CDATA section to text so that the
information can display.

245

TYPE THIS:

public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent("Backup sales data");
Element status = new Element ("status");
status.addContent("Open");
Element root = new Element ("root");
root.addContent(task);
root.addContent(status);
CDATA secure = new CDATA(" DFGvdsfsLFE!$ds ");
Element passElement = new Element("password");
passElement.addContent(secure);
root.addContent(passElement);
String message=secure.toString();
System.out.println(message);

}

RESULT:

[CDATA: <![CDATA[DFGvdsfsLFE!$ds]]>]

3683-4 ch09.F 5/24/02 9:06 AM Page 245

⁄ Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

¤ Type the code that
creates the new
ProcessingInstruction
object that you want to insert
into the document.

‹ Repeat step 2 for each
processing instruction you
want to create.

You use processing instructions to pass information to
a specific application accessing an XML document.
The application can then perform a task based on

the values within the processing instructions or, if required,
take no action at all.

Processing instructions consist of two parts. The target
is typically the name of the application that reads the
processing instruction. The value is a string that you may
use to contain instructions. For example, you can contain
a processing instruction called print with the value of yes
or no to specify whether to print the XML document when
your XML application processes it.

To add a processing instruction to your XML document, you
must first create a processing instruction object and then
add that object as the content of the document object. You
can insert a processing instruction object as the content of

other elements in the XML document. More typically, you
add processing instructions, as the content to the document
object, on the same level as the root element. You specify
two arguments, string values, when creating the
processing instruction object. The first argument is the
target and the second is the value of the processing
instruction.

You make the ending delimiter of a processing instruction a
question mark and you follow it with a greater-than symbol.
You should make sure that the values for the target and the
processing instruction do not contain these characters.

Processing instructions alone do not affect your XML
documents during parsing. You must write your applications
so that they recognize the processing instructions intended
for them and then perform a task depending on the value
of the processing instructions.

ADD PROCESSING INSTRUCTIONS

JAVA AND XML

246

ADD PROCESSING INSTRUCTIONS

3683-4 ch09.F 5/24/02 9:06 AM Page 246

› Type the code that adds
the processing instruction as
additional content of the
document object.

ˇ Repeat step 4 for each
processing instruction that
you want to add.

Á Save your Java file.

‡ Compile and run your
Java program.

■ The XML document
appears including the
processing instructions.

JDOM 9

If you have previously added a processing instruction to a document, you can move the
processing instruction to another location in the XML document. You can use the detach
method of the ProcessingInstruction object to remove the processing instruction from
the parent element. You can then attach the processing instruction to another element.

247

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent("Backup sales data");
Element status = new Element ("status");
status.addContent("Open");
Element root = new Element ("root");
root.addContent(task);
root.addContent(status);
Document doc = new Document(root);
ProcessingInstruction prPI=new ProcessingInstruction ↵
("print","yes");
root.addContent(prPI);
prPI.detach();
status.addContent(prPI);
XMLOutputter op = new XMLOutputter(" ",true);
op.output(doc,System.out);

}

RESULT:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<task>Backup sales data</task>
<status>

Open
<?print yes?>

</status>
</root>

3683-4 ch09.F 5/24/02 9:06 AM Page 247

⁄ Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

¤ Type the code that assigns
a new attribute and its value
to an element.

‹ Repeat step 2 for each
attribute that you want to add
to the same elements.

Most elements store data in the form of content,
placed between the start and end tags of the
element. As well as content, an element may also

have attributes associated with the element that can hold
data. Attributes provide additional information that you
may want to specify about an element’s content.

An attribute consists of the name and the value of the
attribute. You separate the attribute name and value with
the equal character and place them within the start tag of
the element.

The setAttribute method of the Element object assigns
an attribute to an element. The setAttribute method
can take two arguments. The first argument consists of the
attribute’s name, and the second argument consists of the
value you assign to the attribute. You must make both
values, which the setAttribute method uses, string

values. You can assign multiple attributes to the same
elements by simply recalling the setAttribute method
on the same elements.

You separate attributes from other attributes, and the
element name in the element’s start tag, with spaces.
You enclose the value of the attribute in quotes. When
you output elements with attributes, JDOM automatically
handles the spacing and quotation mark requirements.

You have no limits on the number of attributes that
you can assign to a single element. If you try to use the
setAttribute method to create an attribute with the
same name as an attribute that already exists for the same
elements, JDOM removes the existing attribute’s value
and specifies a new value. You can use attributes of the
same name with different elements with no conflict.

ADD ATTRIBUTES TO AN ELEMENT

JAVA AND XML

248

ADD ATTRIBUTES TO AN ELEMENT

3683-4 ch09.F 5/24/02 9:06 AM Page 248

› Repeat steps 2 and 3 for
each element in which you
want to assign attributes.

ˇ Save your Java file. Á Compile and run your
Java program.

■ The XML document
appears containing elements
and their attributes.

JDOM 9
You can delete attributes previously assigned to an element using
the removeAttribute method of the Element object.

249

TYPE THIS:

public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent("Backup sales data");
task.setAttribute("checked","yes");
task.setAttribute("owner","Andrew");
task.removeAttribute("owner");
Element status = new Element ("status");
status.addContent("Open");
status.setAttribute("checked","no");
status.removeAttribute("checked");
Element root = new Element ("root");
root.addContent(task);
root.addContent(status);
Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ",true);
op.output(doc,System.out);

}

RESULT:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<task checked="yes">Backup sales data</task>
<status>Open</status>

</root>

3683-4 ch09.F 5/24/02 9:06 AM Page 249

⁄ Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

¤ Type the code that
creates the Attribute
objects for each attribute
you want to use.

‹ Type the code that
changes the value of a
previously created
Attribute object.

› Type the code that creates
a duplicate Attribute
object from an existing
Attribute object.

You can create Attribute objects to work more
efficiently with attributes that you may have previously
assigned to elements in an XML document. Attribute

objects have their own methods that you can use to modify
and manipulate the attribute names and values, as well as
to create new Attribute objects.

You use Attribute objects to represent a name and value
pair of an attribute. The setAttribute method of the
Element object assigns the attribute name and value pair
to an element in an XML document. The setAttribute
method of the Element object takes as its argument the
name of an Attribute object.

You can create duplicate Attribute objects from existing
Attribute objects by using the clone method of the
Attribute object. You may find this useful if you want to
take an attribute name and value pair and then manipulate
and reassign them to another element. Making a duplicate

of an Attribute object is also helpful if you have
previously assigned an Attribute object to an element
and you want to use it with another element.

Once you create an Attribute object, you can assign a
new value to the Attribute object. When you assign
the new value, it erases any existing values you assigned
to the Attribute object, including the value assigned
upon the object’s creation. You use the setValue
method of the Attribute object to assign the new value
to the Attribute object.

As with any attribute, the name of an attribute must not
contain whitespaces. Using whitespaces in the attribute
name causes the code to generate an error when it
executes. If you choose attribute names that describe
the values the attributes contain, it will also help make
you XML documents easier to read. For example, use
the attribute name firstname as opposed to name1.

WORK WITH ATTRIBUTE OBJECTS

JAVA AND XML

250

WORK WITH ATTRIBUTE OBJECTS

3683-4 ch09.F 5/24/02 9:06 AM Page 250

ˇ Type the code that assigns
the Attribute objects to
the elements that will use the
attributes.

Á Save your Java file. ‡ Compile and run your
Java program.

■ The XML document
appears containing elements
and their attributes.

JDOM 9
You can use the setName method of the Attribute object to change the name of
the attribute after creating an Attribute object. Changing the name of the attribute
does not re-create the attribute or change the value. It simply changes the name of the
attribute as it appears within the start tag of the element within the XML document.

251

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
Element task = new Element ("task");
Attribute owner = new Attribute("owner","Andrew");
owner.setName("manager");
task.setAttribute("owner");
task.addContent("Backup sales data");
Element root = new Element ("root");
root.addContent(task);
Document doc = new Document(root);
XMLOutputter op = new XMLOutputter(" ",true);
op.output(doc,System.out);

}

RESULT:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<task manager="Andrew">Backup sales data</task>
</root>

3683-4 ch09.F 5/24/02 9:06 AM Page 251

⁄ Open or create the code
that constructs and displays
an XML document with
multiple elements.

Note: You can use the code from the
section "Creating Child Elements."

¤ To enable creation of a
FileWriter object, import
the java.io package.

‹ Type the code that
creates the new
XMLOutputter object.

› Type the code that creates
a new FileWriter object,
specifying the name of the
file you want to create.

ˇ Type the code that saves
the JDOM document to a file.

Á Type the code that closes
the file.

You can create XML documents from within your Java
applications, using the JDOM API to construct the
documents, and then using standard Java procedures

to save the information to a file. JDOM uses an
XMLOutputter object to generate XML documents that
you can save to a file.

To better format your XML documents, the XMLOutputter
object can take two arguments. You only use the first
argument to indent the code, and you typically make it
two spaces. The second argument is a Boolean value that
enables the inclusion of new lines; true enables new lines,
while false turns off new line inclusion.

You can use the FileWriter class of the java.io
package to create files from within Java code. Your Java
program creates a FileWriter object and passes it the
name of the file to create. XML documents should use
the .xml file extension. The write method of the

FileWriter object allows you to place information in the
file. Once you finish working with the file, you can use the
close method of the FileWriter object to close the file.
You generally cannot access the XML document from other
applications when you have the file open from within your
Java code.

Once you save the XML document, you can view the
XML document using a simple text editor or another
XML application.

Once you create a FileWriter object, it passes to the
XMLOutputter object along with the JDOM document
object that you want to save.

If the document which you want to create with the
FileWriter object already exists, the new document
overwrites the current document and you lose all the
contents of the old file.

SAVE AN XML DOCUMENT

JAVA AND XML

252

SAVE AN XML DOCUMENT

3683-4 ch09.F 5/24/02 9:06 AM Page 252

‡ Save your Java file.

° Compile and run your
Java program.

■ The XML document is
created.

· Open your text editor
application.

‚ Open the XML document
specified in step 4.

■ The content of the XML
document appears.

JDOM 9
You can easily output the same JDOM document to a file and to
your display simultaneously using the same XMLOutputter object.

253

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
Element task = new Element ("task");
task.addContent("Backup sales data");
Element status = new Element ("status1");
status.addContent("Open");
Element root = new Element ("root");
root.addContent(task);
root.addContent(status);
Document doc = new Document(root);
FileWriter fw = new FileWriter("doc.xml");
XMLOutputter op = new XMLOutputter(" ",true);
op.output(doc,fw);
op.output(doc,System.out);
fw.close();

}

RESULT:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<task>Backup sales data</task>
<status1>Open</status1>

</root>

3683-4 ch09.F 5/24/02 9:06 AM Page 253

⁄ Create an XML document
that reads an XML file and
creates an XMLOutputter
object.

Note: You can use the code created in
the section "Read an XML Document."

Note: In this example, you need to
access an XML document that
contains a root element and child
elements called task and
status. You should make the
contents of the status element
'Closed.'

¤ Type the code that
displays the XML document.

‹ Type the code that creates
a new Element object based
on the root element of the
XML document.

Container elements have some elements referred to
as children, or child elements. You can manipulate
the child element of an element if you know the

child element name.

You can delete child elements from the JDOM document in
order to delete the element from the resulting XML
document. This allows you to read an XML document,
manipulate the content of that document, and then
redisplay the XML document. If required, you can also save
the XML document to a file. For more information, see the
section "Save an XML Document" in this chapter.

You use the removeChild method of the Element object
to delete a sub-element. Once you remove the element,
you cannot access the element, the element’s attributes,
or any content that you previously stored in the element.

To determine which element you want to delete, you
can examine the content of an element and then make a
decision to remove it or not. To make a decision, you can
use an if statement to compare the content of an element
to a known value. If the values do not match, you can
remove the element. You may find this technique useful for
removing redundant or outdated information from an XML
document. For example, you may want to remove all
references to a model number of a discontinued item in an
XML document that stores the model numbers of items
currently in stock at a store. For more information about
using the if statement, see Chapter 3.

The getChild method of the Element object allows you
to access sub-elements given the element name. You can
access the textual data of a child element by using the
getText method of the Element object.

WORK WITH CHILD ELEMENTS

JAVA AND XML

254

WORK WITH CHILD ELEMENTS

3683-4 ch09.F 5/24/02 9:06 AM Page 254

› Type the code that
performs an action if the text
content of a specified
element matches a
predetermined value.

ˇ Type the code that
removes specific child
elements from the document.

Á Type the code that
displays the modified
version of the document.

‡ Save your Java file.

° Compile and run your
Java program.

■ The XML document
appears showing before and
after the elements are
removed.

JDOM 9

You can determine the parent of a child element by using the
getParent method of the Element object.

255

TYPE THIS:

public static void main (String[] args) throws Exception {
SAXBuilder saxobj = new SAXBuilder();
Document doc = saxobj.build("file.xml");
Element root=doc.getRootElement();
Element childElement=root.getChild("status");
System.out.print("The parent element of ");
System.out.print(childElement.getName() + " is ");
System.out.println(childElement.getParent().getName());

}

RESULT:

The parent element
of status is root.

3683-4 ch09.F 5/24/02 9:06 AM Page 255

⁄ Open or create the code
that saves an XML document.

Note: You can use the code created in
the section "Save an XML Document."

¤ Type the code that creates
the new entity reference
object using the name of a
pre-defined entity.

‹ Type the code that inserts
the entity reference object
into the content of an existing
element.

The XML applications processing your XML document
may incorrectly interpret some special characters that
you place into element content as XML markup tags.

For example, the text "is x < y" contains a less-than symbol
that the XML parser interprets as the opening delimiter of a
tag, even though the symbol is part of an element's content.
You can incorporate special characters into XML data using
predefined XML entities.

To enable you to define data containing special characters,
like angle brackets and ampersands, XML uses pre-defined
entities to differentiate between symbols that have special
meaning in XML, such as the left angle bracket, and those
same symbols embedded in a text string.

You can create a special EntityRef object and use it to
represent a pre-defined entity reference, which you can insert
into the content of an element within an XML document.

When you create the EntityRef object, you can specify
a single string argument to represent the name of the

entity reference. When you insert the entity reference name
into the XML document, you precede the name with an
ampersand and you follow it with a semicolon. When
creating the EntityRef object, you do not have to specify
the ampersand or the semicolon when you specify the
name of the entity reference. The application parsing the
XML document converts the pre-defined entity reference
into the appropriate symbol before processing or displaying
the XML document that contains that pre-defined entity
reference.

Once you create the EntityRef object, you can add it to
the content of an element using the addContent method
of the Element object.

When you view an XML document that contains a pre-
defined entity reference with Microsoft Internet Explorer,
the entity reference resolves into the symbol indicated by
the entity reference.

INSERT PRE-DEFINED ENTITY REFERENCES

JAVA AND XML

256

INSERT PRE-DEFINED ENTITY REFERENCES

3683-4 ch09.F 5/24/02 9:06 AM Page 256

› Compile and run the Java
code.

■ The XML document is
saved.

ˇ Open your XML viewing
application.

Note: This example uses Microsoft
Internet Explorer.

■ The pre-defined entity
reference symbol appears.

JDOM 9

XML supports five pre-defined entities. You precede each entity with
an ampersand and follow it with a semicolon when you place them
into an XML document. All XML parsers have the ability to recognize
pre-defined entities, also referred to as pre-defined internal entities.

PRE-DEFINED ENTITY DESCRIPTION EXAMPLE

< Less-than character (<) Is X < Y

> Greater-than character (>) Is X > Y

& Ampersand (&) Peaches & Cream

' Apostrophe (') Tom's Diner

" Quotation mark (") He said "Hi"

257

3683-4 ch09.F 5/24/02 9:06 AM Page 257

⁄ Open or create the code
that reads an XML document.

Note: In this example, you need to read
an XML document that contains a root
element and two child elements.

¤ Type the code that imports
the package required to
create a List.

‹ Type the code that creates
a List using the contents of
the root element.

› Type the code that iterates
through all the objects in the
List.

ˇ Type the code that
retrieves each object from the
List.

When using the JDOM API to analyze an XML
document or the contents of the JDOM tree, you
may want to identify what kind of content each

element stores. For example, when trying to locate the
occurrence of the processing instructions in the XML
document, you need to find element types that contain
processing instructions, and you can ignore all other
element types, such as text or comments.

The easiest way to examine element types is to place the
elements in a List. You use a List to store a sequence
of objects that you can easily iterate through using standard
Java procedures. You can import the java.util package
to create a List. The getContent method of the
Element object creates a List that stores the contents
of the element. You can then iterate through the contents
in the List, extracting each element as an object, and then
analyzing the object to determine what type of object it is.
For example, the contents of the root element are typically

child elements. When you create a List from the contents
of the root element, you can create a List that contains
items that you can use to create objects, which JDOM
interprets as Element objects. You can use the
instanceof keyword in a simple if statement to
determine the type of object and then to perform any
required code when JDOM finds an object of a specified
type.

If you intend to analyze all the contents of every element
in an XML document, you need to create the code that
transverses through the contents of the document, testing
each element to see what type it is and then performing
an action based on the type of element.

For more information about Java Lists and the methods
you use to manipulate the contents of a List, refer to the
Java API documentation.

DETERMINE ELEMENT TYPE

JAVA AND XML

258

DETERMINE ELEMENT TYPE

3683-4 ch09.F 5/24/02 9:06 AM Page 258

Á Type the code that
determines if the object is of
a specified type.

‡ Type the code that
performs an action if the
object is of a specified type.

° Save your Java file.

· Compile and run your
Java program.

■ A message appears
indicating the discovery of
specified element types.

JDOM 9

You can detect the presence of other types of content within
an XML document by using an else if construct.

259

TYPE THIS:

if (contentObj instanceof Element) {
System.out.println ("Element found");

} else if (contentObj instanceof Text) {
System.out.println ("Text content found");

} else if (contentObj instanceof EntityRef) {
System.out.println ("Entity Reference found");

} else if (contentObj instanceof ↵
ProcessingInstruction) {
System.out.println ("Processing Instruction found");

} else if (contentObj instanceof Comment) {
System.out.println ("Comment found");

} else if (contentObj instanceof CDATA) {
System.out.println ("CDATA Section found");

}

RESULT:

Processing Instruction found
Element found
Element found
Entity Reference found

3683-4 ch09.F 5/24/02 9:06 AM Page 259

⁄ Open or create the code
that creates a DOM tree
structure.

¤ Import the packages
required to work with the
JDOM API.

‹ Type the code that creates
a new DOMBuilder object.

› Type the code to convert a
DOM document to a JDOM
document.

When reading XML files and working with them
within JDOM, you can use a SAXBuilder class or
a DOMBuilder class to process XML documents

from files or other sources. In almost all cases you should
use a SAXBuilder class to process files because it is
much faster than a DOMBuilder class. You can use a
DOMBuilder class to process DOM tree structures that
already exist within your application using JDOM. It is not
unusual to use many different APIs, including both DOM
and JDOM, within the same application. You can easily
convert a DOM tree structure into a JDOM document that
you can work with using the JDOM API.

The JDOM API is more efficient at outputting formatted
XML documents than the DOM API, so you may find it
easier to convert a DOM tree structure to a JDOM

document and output it than to try and output formatted
XML documents using the DOM API.

After you use DOM to create a DOM tree, you must create
a DOMBuilder object to convert that DOM document
object to a JDOM document object. You create a JDOM
document object by using the build method of the
DOMBuilder object, which takes as its argument the DOM
document object. DOMBuilder is part of the org.jdom
.input package; therefore, to create DOMBuilder objects,
you must import the org.jdom.input package. For more
information about importing packages, see Chapter 3.

Once you convert a DOM document to a JDOM document,
you can work with the information using the JDOM API. For
example, you can very easily output that document to a file
or to the display.

OUTPUT A DOM TREE USING JDOM

JAVA AND XML

260

OUTPUT A DOM TREE USING JDOM

3683-4 ch09.F 5/24/02 9:06 AM Page 260

ˇ Type the code that
displays the JDOM
document.

Á Save your Java file. ‡ Compile and run your
Java program.

■ The information appears in
the DOM tree structure.

JDOM 9

You can also use the DOMBuilder object to convert elements in a
DOM tree structure to elements in a JDOM tree structure.

261

TYPE THIS:

public class ParseDoc {
public static void main (String[] args) throws Exception {
org.w3c.dom.DOMImplementation di = new ↵

DOMImplementationImpl();
org.w3c.dom.Document DOMdoc = ↵

di.createDocument(null,"task",null);
org.w3c.dom.Element root = DOMdoc.getDocumentElement();
org.w3c.dom.Element todoElement = DOMdoc. ↵

createElement("todo");
root.appendChild(todoElement);
DOMBuilder dBuilder = new DOMBuilder();
org.jdom.Document jdoc = dBuilder.build(DOMdoc);
org.w3c.dom.Element newElement = DOMdoc.↵

createElement("owner");
org.jdom.Element jElement = dBuilder.build(newElement);
jElement.detach();
Element jroot = jdoc.getRootElement();
jroot.addContent(jElement);
XMLOutputter op = new XMLOutputter();
op.output(jdoc,System.out);

}
}

RESULT:

<?xml version="1.0" encoding= ↵
"UTF-8"?>

<task><todo /><owner /></task>

3683-4 ch09.F 5/24/02 9:06 AM Page 261

The Java API for XML parsing, simply called JAXP, is an
API that allows your Java applications to communicate
with an XML parser so that the parser can read,

process, and generate XML documents. JAXP itself is not a
parser and it does not facilitate XML document parsing. You

must use JAXP with another API that facilitates XML parsing,
such as the SAX or the DOM API. The JAXP API allows you
to interact with another XML-parsing API. An XML parser
with which APIs, such as SAX, communicate still does the
actual parsing of an XML document.

INTRODUCING JAXP

JAVA AND XML

262

Frequently, the different levels of API usage make it
difficult to understand the purpose of using JAXP. The
benefit of JAXP stems from the fact that you can create
code that requires fewer changes should you make
changes to the underlying XML parsing structures of

your Java applications. Because you can think of JAXP as
working on top of another API, programmers often
refer to it as an abstraction layer, because it provides
another level of separation from the underlying API.

ABSTRACTION

JAXP requires access to either the DOM or SAX APIs.
Typically, JAXP accesses both SAX and DOM APIs for
most efficient use. Although JAXP is an API itself, you
must still install one of these two APIs and make them
accessible to JAXP before you can use the JAXP API with
an XML parser. Some installations of the DOM and SAX
APIs interact with the underlying XML parser in ways
specific to the accessed parser. Accessing the parser

using these types of proprietary methods can lead to
greater difficulty when you want to update or modify
your code or the underlying XML parser. Because JAXP
provides a method of interfacing with the DOM and
SAX APIs, it allows you to perform the same functions
without having to create proprietary techniques for
interacting with the parser.

SAX AND DOM

Many XML parsers now include the JAXP API with the
parser, and many XML parsers allow you to use the JAXP
API. The most popular XML parser that can work with
the JAXP API is the Xerces XML parser, available from
the Apache organization at http://www.apache.org. This
chapter uses the Xerces XML parser to generate its

examples. It is recommended to install the Xerces XML
parser prior to creating the examples and sample code
illustrated in this chapter. You can download the Xerces
XML parser, or you can install a copy from this book’s
companion CD-ROM. See Appendix D for more
information on the CD-ROM.

PARSERS FOR JAXP

3683-4 Ch10.F 5/24/02 9:07 AM Page 262

JAXP 10

263

You have several options for acquiring a copy of JAXP.
For the latest version of JAXP, you can download the
required files from Sun Microsystem’s main JAXP Web
site at http://java.sun.com/xml/jaxp/. The most common
way of acquiring JAXP files, however, is by using an XML
parser that includes the required JAXP installation files
with the parser. This is the best method for acquiring
JAX. You can safely assume that this version of JAXP is
completely compatible with the XML parser that you
access using JAXP. The companion CD-ROM with this
book has a copy of the JAXP API available. See
Appendix D for more information on the CD-ROM.

As well as the core JAXP API files, the JAXP has a
collection of documentation. Typically, this
documentation comes with the JAXP API files you
acquire. Depending on how you acquire the JAXP files,
you may find the API files separate from the
documentation. This separation facilitates ease of
transfer over networks.

You should always ensure that you have the correct
documentation for the version of JAXP files installed
on your computer. You have no better reference
for any API including JAXP than the authoritative
documentation that accompanies the JAXP API
installation.

ACQUIRING JAXP

A simple procedure, installing the JAXP API files involves
copying them to a specific directory on your computer,
typically within the directory structure of the Java SDK
installation. Once you copy the appropriate files to the
target destination, you may have to adjust the
CLASSPATH environment variable to reflect the location
of the installed JAXP files. For more information about
how to change the CLASSPATH environment variable in
your computer, see Chapter 7. If you have the JAXP API
files included with your XML parser, you can install the
required JAXP API files when you install the XML parser

itself. To ensure that you have the correct installation
method for your version of the JAXP API, and that you
place the files in the correct directories, you should
always consult the documentation for the proper
installation and configuration procedures. Although
most JAXP APIs install the same way, some parsers, or
associated XML applications, may require that you
install the JAXP API in a different location. For most
installations, you install the JAXP API files when you
install the Java API itself.

INSTALLATION

The first released version of the JAXP API was JAXP
version 1.0. Although the oldest version, you can still
routinely find JAXP version 1.0 in many installations.
When creating code using an existing JAXP installation,
you should not assume that the latest version of the JAXP
API has been installed. Currently the most popular
version of JAXP is 1.1, which includes some
improvements over JAXP 1.0, such as support for later
versions of the SAX and DOM APIs. When the API deals
with the reading, processing, and generating of XML
documents, you find very little difference between JAXP

1.0 and JAXP 1.1. Any code you create with JAXP 1.0
should work equally well when you use it with an
installation of JAXP 1.1. As with all APIs and
specifications, over time, you may encounter
improvements and modifications made to the API,
resulting in a changed version number. If possible, you
should always use the very latest version of the API to
have access to the complete functionality and advantages
that the JAXP API offers. To view a list of the differences
between JAXP API versions 1.0 and 1.1, visit Sun’s main
JAXP Web site at http://java.sun.com/xml/jaxp/.

VERSIONS

3683-4 Ch10.F 5/24/02 9:07 AM Page 263

⁄ Type the code that imports
the required packages.

¤ Create the main method
and class declarations for the
application.

Note: This example requires a
valid XML document. For more on
creating a valid XML document, see
Chapter 6.

‹ Type the code that creates
a new SAXParserFactory
object.

› Type the code that creates
the new SAXParser object.

Parsing an XML document is the process of reading the
XML document and extracting the content and
structural information from the XML document. You

can use JAXP to initiate the parsing of an XML document
and then to access the information in the XML document.

You can easily use JAXP to communicate with an underlying
SAX parser to parse an XML document with the SAXParser
object. The first step in using JAXP with a SAX-compliant
parser involves creating a SAXParserFactory object. Part
of the package javax.xml.parsers, a SAXParserFactory
object provides the method newSAXParser, which enables
you to create an instance of the SAX XML parser that you
can use to access an XML document. You use the
newInstance method of the SAXParserFactory
class to create the new SAXParserFactory object.

Once you create the SAXParser object, you can use the
parse method to start parsing an XML document.

The parse method has two arguments. The first argument
consists of the name of the XML document that you want to

parse. The second argument is an instance of a handler
class. You use that handler class to contain the methods
that are called when the SAX-compliant parser encounters
specific events during the parsing of an XML document.
The handler class extends the DefaultHandler class
when accessing the SAXParser using the SAX API. You
can find the DefaultHandler class in the org.xml.
sax.helpers package, which you must import prior to
creating the handler class. For more information about
extending classes and importing a package, see Chapter 3.

Within the handler class you can create a startDocument
method. The startDocument method executes code
when the parser encounters the start of an XML document.
The startDocument method displays a brief message,
which indicates when the parser started processing the
document. For more information about creating the
DefaultHandler class, see the section "Detect Events"
in this chapter.

PARSE AN XML DOCUMENT
JAVA AND XML

264

PARSE AN XML DOCUMENT

3683-4 Ch10.F 5/24/02 9:07 AM Page 264

ˇ Type the code that creates
a handler class, which can
generate a message when the
parser detects the start of the
XML document during parsing.

Á Type the code that
initiates the parsing of the
XML document.

‡ Save your Java file.

° Compile and run your
Java code.

■ A message displays
indicating that the parser
has parsed the document.

JAXP 10
Most XML parsers, such as Xerces, allow you to easily change the
underlying parser by using the SAXParserFactoryImpl class that
extends a SAXParserFactory object. You can access information
about the parser implementation you are using with the parser.
getClass().getName() method. The following example illustrates
how to use an implementation-specific SAX parser.

265

TYPE THIS:

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.apache.xerces.jaxp.*;

public class ParseDoc {
public static void main (String[] args) throws Exception {
SAXParserFactory factory = new SAXParserFactoryImpl();
SAXParser parser=factory.newSAXParser();
parser.parse("file.xml", new Handler());
System.out.println("Parser implementation;");
System.out.println(parser.getClass().getName());

}
}

RESULT:

Start of document detected
Parser implementation;
org.apache.xerces.jaxp.SAXParserImpl

3683-4 Ch10.F 5/24/02 9:07 AM Page 265

⁄ Open or create the code
that parses an XML document.

Note: You can use the code from the
section "Parse an XML Document."

¤ Type the code to create
the method you want to call
when the parser detects the
start of an element.

‹ Type the code you want
to execute when the parser
detects the start of an
element.

You can detect events to identify and extract information
from an XML document. When parsing an XML
document, the parser processes specific characteristics

of the XML document, such as the beginning of the
document or the start and end of an element. When an XML
parser encounters one of these specific characteristics, such
as the start tag of an element, you refer to it as an event. In
event-based XML parsing, the parser can execute specific
code when it encounters one of these events.

One of the first steps in processing an XML document in an
application involves locating specific elements in the XML
document. Once the parser detects an element in an XML
document, it makes a callback to the appropriate method
of the handler class. Once you register the event handler
object with the parser object, the parser object uses the

callback methods in the registered event handler class with
that instance of the parser.

You can create event callback methods within the event
handler class that display a message whenever the parser
encounters the start and end tags of an element when it
parses an XML document.

The XML parser calls the startElement method of the
event handler class whenever the XMLReader detects a tag
that it identifies as the start tag of an element. The XML
parser calls the endElement method of the event handler
class whenever the XMLReader detects a tag that it
identifies as the end tag of an element. For more detailed
information about events and how they work within event
handlers, refer to Chapter 7.

DETECT EVENTS

JAVA AND XML

266

DETECT EVENTS

3683-4 Ch10.F 5/24/02 9:07 AM Page 266

› Type the code to create the
method you want to call when
the parser detects the end tag
of an element.

ˇ Type the code you want
to execute when the parser
detects the end tag of an
element.

Á Save your Java code.

‡ Compile and run your
Java code.

■ A message displays
indicating that the parser
has detected the events.

JAXP 10
The parser detects many types of events when you use a
SAX-compliant parser under JAXP. You can add the
appropriate method to the event handler class to execute
code when the parser encounters certain XML document
characteristics in an XML document.

For more detailed information about handler methods and
how they work within event handlers, refer to Chapter 7.

METHOD PURPOSEMETHOD PURPOSE

characters Character data

endDocument End of an XML document

endElement End of an XML element

endPrefixMapping End of prefix mapping section

ignorableWhitespace Non-needed whitespace

processingInstruction A processing instruction

setDocumentLocator Locator object to determine parsing position

startDocument Start of an XML document

startElement Start of an XML element

startPrefixMapping Start of prefix mapping section

267

3683-4 Ch10.F 5/24/02 9:07 AM Page 267

⁄ Open or create the code
that parses an XML document.

Note: You can use the code from the
section "Parse an XML Document."

¤ Type the code that
configures the factory
object settings.

■ This example uses the
isValidating method to
enable the creation of
validating parsers.

Afactory is a class file that you use to create objects.
You can alter some of the characteristics of a factory
object, which then impact all the objects subsequently

created from that factory. For example, when using
JAXP to create a new SAXParser object using the
SAXParserFactory class, you can enable validation
of any XML documents that you want to parse by setting
a feature of the factory class prior to creating the new
SAXParser object. Enabling validation requires that you
make all XML documents, which your application parses
with the instance of the SAXParser, valid or your code will
generate an error.

Once you enable a feature with the factory class, any
objects you create using a factory class have those enabled
features. Commonly, you utilize a factory class to create
multiple related objects for use within the same application.
You can enable or disable most features of a factory class,

so you can enable a feature prior to creating some objects,
then disable a feature and continue to create objects using
the same factory class but with a feature now disabled.

Typically, the objects you create from a factory class have
a corresponding method to indicate whether you have
enabled or disabled the feature on the new object. For
example, to determine whether you have the validation
enabled on a new SAXParser object, the isValidating
method returns a value of true or false to indicate
whether the parser will or will not validate any XML
documents that it parses.

You can configure some settings for the factory class, such
as enabling namespaces, whether you use the DOM or the
SAX API with JAXP. For more information about the parser
features that you can access using JAXP, see Appendix A.

CONFIGURE FACTORY SETTINGS

JAVA AND XML

268

CONFIGURE FACTORY SETTINGS

3683-4 Ch10.F 5/24/02 9:07 AM Page 268

‹ Type code that checks
whether you have enabled the
feature for the newly created
parser object.

› Type the code that you
want to execute if you have
the feature enabled.

ˇ Save your Java file.

Á Compile and run your
Java code.

■ A message displays
indicating that the feature
is enabled for the parser.

JAXP 10

A namespace aware XML parser can correctly process
XML documents that make use of namespaces. For
more information about namespaces, see Chapter 5.

You can use the setNamespaceAware method to
enable parsers that you created with a factory to
be aware of namespaces in XML documents. You can
check to see if a parser is namespace-aware by using
the isNamespaceAware method of the parser object.

269

TYPE THIS:

public static void main (String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);
factory.setNamespaceAware(true);
SAXParser parser = factory.newSAXParser();

if (parser.isValidating()) {
System.out.println("Validation is enabled");

}
if (parser.isNamespaceAware()) {
System.out.println("Parser is namespace aware");

}
parser.parse("file.xml", new Handler());

}

RESULT:

Validation is enabled
Parser is namespace aware

Start of document detected

3683-4 Ch10.F 5/24/02 9:07 AM Page 269

⁄ Open or create the code
that parses an XML document.

Note: You can use the code from the
section "Parse an XML Document."

¤ Type the code that
enables a feature on the
underlying SAXParser.

‹ Type the code to declare a
boolean variable.

› Type the code that returns
a value, after checking that a
feature is set, and assigns the
value to a variable.

XML parsers have their own configuration choices,
which can help you determine if you can access a
specific function or feature of your application. You

refer to the settings of an XML parser as the features of the
parser.

Represented by URLs, features of an XML parser typically
consist of very long strings. The setFeature method of
the SAXParserFactory class allows you to enable or
disable a feature by specifying the URL of the feature. After
the URI, you place a boolean value of true or false.
Located at http://xml.org/sax/features/validation, one of the
more common features of SAX-compliant XML parsers
indicates whether you have enabled validation.

The getFeature method of the SAXParserFactory class
allows you to determine the value associated with a feature
of the parser. The getFeature method returns a value of
either true or false, indicating whether the feature is
enabled or not.

Not all XML parsers allow you to modify the features
available to a parser. The SAX API specifies some features
that all SAX-compliant XML parsers must support. You may
only have other features and properties available to you
when using the SAX API with a specific XML parser. You
have only the SAX-specified features and properties
available to you on all SAX-compliant parsers.

You should not depend too heavily on features or
properties specific to one parser in your code. If you have
to change the parser or even change to a different version
of the same XML parser at some time in the future, the
features available in one version may become unavailable in
another version of the same parser. One reason for using
JAXP stems from its ability to change the underlying parser
without you having to modify your code; you should avoid
using implementation-specific features of the parser
whenever possible.

SET SAXPARSER FEATURES

JAVA AND XML

270

SET SAXPARSER FEATURES

3683-4 Ch10.F 5/24/02 9:07 AM Page 270

ˇ Type the code that checks
if a feature is enabled.

Á Type the code that you
want to perform if the feature
is enabled.

‡ Save your Java code.

° Compile and run your
Java code.

■ A message displays if
the feature is enabled
successfully.

JAXP 10
If you try to set a feature of a SAXParser that
does not exist, a SAXNotRecognizedException
error may generate. You can use a simple try and
catch block to isolate the error and deal with the
failure of setting the feature.

271

TYPE THIS:

try {
factory.setFeature("http://xml.org/sax/features/edit", false);

} catch (SAXNotRecognizedException e) {
System.out.println("The feature ");
System.out.println(e.getMessage());
System.out.println("cannot be set. ");

}

RESULT:

The feature
http://xml.org/sax/features/edit
cannot be set.

3683-4 Ch10.F 5/24/02 9:07 AM Page 271

⁄ Import the JAXP API files.

¤ Import the required DOM
API files.

‹ Type the code that creates
the class and main method
of your application.

› Type the code that creates
the new factory object.

ˇ Type the code that creates
a new builder object from the
factory object.

Á Type the code that
initiates parsing of the XML
document.

Although SAX is typically the most popular API to use
with JAXP, you can just as easily use the DOM API to
interact with an underlying XML parser. The DOM API

provides you with another way of working with XML
documents, allowing you more flexibility when creating
your Java applications.

The first step involves creating a DocumentBuilderFactory
object, using the newInstance method of the
DocumentBuilderFactory class. Once you create
the DocumentBuilderFactory object, you can
utilize the newDocumentBuilder method to create a
DocumentBuilder object, which you use to parse a
document. The DocumentBuilder object allows you to
use the parse method to specify the name of the XML
document you want to parse. The return type of the parse
method is a DOM document type. Once you create a DOM

document object, you can use the DOM API to access the
information in that object. Before using the DOM API, you
must ensure that you import the appropriate DOM API
packages. For more information about working with the
DOM API, refer to Chapter 8.

Part of the reason you use the JAXP API stems from the
fact that it provides an additional level of abstraction
when you have different parsers. You can use both DOM-
and SAX-compliant parsers and access the parsers with
their respective APIs, while still using the same methods
to access that data. For example, the SAXParser class and
the DocumentBuilder class both use the parse method
to initiate the parsing of a document. By simply changing a
limited number of class files, you can completely change
the way your Java application interacts with an XML parser,
without having to completely rewrite your code.

PARSE A DOCUMENT USING DOM

JAVA AND XML

272

PARSE A DOCUMENT USING DOM

3683-4 Ch10.F 5/24/02 9:07 AM Page 272

‡ Create the code that uses
the DOM API to interact with
the XML document.

° Save your Java code. · Compile and run your
Java code.

■ Information extracted from
the DOM tree displays.

JAXP 10

Regardless of whether you use the SAX or DOM
API, JAXP still allows you to access similar methods
to set the same features. For example, the
setValidation and setNamespaceAware
settings are the same for both APIs.

273

TYPE THIS:

public static void main (String[] args) throws Exception {
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
factory.setNamespaceAware(true);
DocumentBuilder builder = factory.newDocumentBuilder();
if (builder.isValidating()) {
System.out.println("Validation is enabled");

}
if (builder.isNamespaceAware()) {
System.out.println("Parser is namespace aware");

}
Document doc = builder.parse("file.xml");
Element root = doc.getDocumentElement();
String rootElementName = (root.getTagName());
System.out.println("The root element name is " + rootElementName);

}

RESULT:

Validation is enabled
Parser is namespace aware
The root element name is todo

3683-4 Ch10.F 5/24/02 9:07 AM Page 273

Note: To generate the required error
for this example, you need to parse
an XML document that has an
element with a missing end tag.

⁄ Type or create the code
that uses JAXP and the DOM
API to parse a document.

Note: You can use the code from the
section "Parse a Document Using
DOM."

¤ Import the SAX files you
require to create the error
handler class.

‹ Create the error handler
class that displays a message
when the application
encounters a fatal error.

Note: You can use the code from
"Create a Custom Error Message"
in Chapter 7.

Even if you are using the DOM API with JAXP, you can
utilize the more efficient error handling capabilities of
the SAX API to handle the errors the XML parser

generates. When dealing with SAX API errors you must use
an error handler class to handle the errors. You can use the
setErrorHandler method of the DOM builder class to
register an error handler class with a DOM builder object.

The error handler class you create and register with the
DOM builder object must implement the ErrorHandler
interface of the org.xml.sax package. For more
information about creating a SAX error handling class, see
Chapter 7.

The error handler class you create must implement three
methods: warning, error, and fatalError.

The application calls each method whenever code in the
XML document generates the corresponding error. A call to

the fatalError method often means that the parser finds
it impossible to properly parse an XML document, if, for
example, you failed to include the required start or end
element tags in the XML document. Warnings are errors
that the error or fatalError methods do not catch. You
can typically continue parsing an XML document after the
application generates a warning. You use the error
method with the types of errors from which you commonly
recover. For example, the application calls this method if
the XML document is not a valid XML document.

You should always develop every application that you
create to handle whatever errors the application may
generate when it executes your code. You typically create
error-handling code for all of the methods in the error
handling class. For more information about handling errors
in Java code, see Chapter 3.

CREATE AN ERROR HANDLER
FOR USE WITH DOM

JAVA AND XML

274

CREATE AN ERROR HANDLER FOR USE WITH DOM

3683-4 Ch10.F 5/24/02 9:07 AM Page 274

› Type the code that registers
the error handler class with the
DOMBuilder object.

ˇ Save your Java code. Á Compile and run your
Java program.

■ An error message displays.

JAXP 10
The application may also generate SAXException errors which you can handle
using a simple try and catch block within your Java code.

275

TYPE THIS:

public static void main (String[] args) throws Exception {
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
builder.setErrorHandler(new MyErrHandler());
try {
Document doc = builder.parse("file.xml");
Element root = doc.getDocumentElement();
String rootElementName = (root.getTagName());
System.out.println("The root element name is " + rootElementName);

} catch (SAXException e) {
System.out.println("Program execution has been terminated");

}
}

RESULT:

There has been a serious error

Error message
The element type "status" must be terminated by the matching end-tag "</status>".

At Line: 12

At Column: 7
Program execution has been terminated

3683-4 Ch10.F 5/24/02 9:07 AM Page 275

The SAX API contains a complex array of interfaces,
classes, and methods. For detailed information about
the SAX API, always consult the documentation that

comes with your version of the SAX API. The following
tables give a quick reference for some of the more
commonly used features of the SAX API.

SAX API QUICK REFERENCE
APPENDIX

NAME DESCRIPTION

Attributes Accesses XML attributes.

ContentHandler Handles differing content in an XML document.

DTDHandler Accesses the declarations present in a DTD.

EntityResolver Resolves entities.

ErrorHandler Handles SAX errors.

Locator Locates a position in an XML document.

XMLFilter Use when employing XML filters.

XMLReader Use for accessing XML documents.

PRIMARY INTERFACES

RETURN TYPE METHOD DESCRIPTION

void error(SAXParseException exception) Receives notification of a recoverable error.

void fatalError(SAXParseException exception) Receives notification of a non-recoverable error.

void warning(SAXParseException exception) Receives notification of a warning.

THE ERRORHANDLER INTERFACE

RETURN
TYPE METHOD DESCRIPTION

int getIndex(String qName) Looks up the index of an attribute by XML 1.0 qualified name.

int getIndex(String uri, String localPart) Looks up the index of an attribute by namespace name.

int getLength() Returns the number of attributes in a list.

String getLocalName(int index) Looks up an attribute’s local name by index.

String getQName(int index) Looks up an attribute’s XML 1.0 qualified name by index.

String getType(int index) Looks up an attribute’s type by index.

String getType(String qName) Looks up an attribute’s type by XML 1.0 qualified name.

String getType(String uri, String localName) Looks up an attribute’s type by namespace name.

String getURI(int index) Looks up an attribute’s namespace URI by index.

String getValue(int index) Looks up an attribute’s value by index.

String getValue(String qName) Looks up an attribute’s value by XML 1.0 qualified name.

String getValue(String uri, String localName) Looks up an attribute’s value by namespace name.

THE ATTRIBUTE INTERFACE

276

43683-4 AppA.F 5/24/02 9:07 AM Page 276

API QUICK REFERENCE A

277

RETURN TYPE METHOD DESCRIPTION

ContentHandler getContentHandler() Returns the current content handler.

DTDHandler getDTDHandler() Returns the current DTD handler.

EntityResolver getEntityResolver() Returns the current entity resolver.

ErrorHandler getErrorHandler() Returns the current error handler.

boolean getFeature(String name) Looks up the value of a feature.

Object getProperty(String name) Looks up the value of a property.

void parse(InputSource input) Parses an XML document.

void parse(String systemId) Parses an XML document from a system identifier (URI).

void setContentHandler Allows an application to register a content event handler.
(ContentHandler handler)

void setDTDHandler(DTDHandler handler) Allows an application to register a DTD event handler.

void setEntityResolver Allows an application to register an entity resolver.
(EntityResolver resolver)

void setErrorHandler(ErrorHandler handler) Allows an application to register an error event handler.

void setFeature(String name, boolean value) Sets the state of a feature.

void setProperty(String name, Object value) Sets the value of a property.

THE XMLREADER INTERFACE

RETURN
TYPE METHOD DESCRIPTION

void characters(char[] ch, int start, int length) Receives notification of character data.

void endDocument() Receives notification of the end of a document.

void endElement(String namespaceURI, Receives notification of the end of an element.
String localName, String qName)

void endPrefixMapping(String prefix) Ends the scope of a prefix-URI mapping.

void ignorableWhitespace(char[] ch, Receives notification of ignorable whitespace in
int start, int length) element content.

void processingInstruction(String target, String data)Receives notification of a processing instruction.

void setDocumentLocator(Locator locator) Receives an object for locating the origin of SAX
document events.

void skippedEntity(String name) Receives notification of a skipped entity.

void startDocument() Receives notification of the beginning of a document.

void startElement(String namespaceURI, String Receives notification of the beginning of an element.
localName, String qName, Attributes atts)

void startPrefixMapping(String prefix, String uri)Begins the scope of a prefix-URI namespace mapping.

THE CONTENTHANDLER INTERFACE

43683-4 AppA.F 5/24/02 9:07 AM Page 277

The DOM API contains a complex array of interfaces,
classes, and methods. For detailed information about
the DOM API, you should always consult the

documentation that came with the version of the DOM API
you are using. The following tables give a quick reference for
some of the more commonly used features of the DOM API.

DOM API QUICK REFERENCE

APPENDIX

278

RETURN TYPE METHOD DESCRIPTION

Attr createAttribute(String name) Creates an Attr object of the given name.

Attr createAttributeNS(String Creates an attribute of the given qualified name
namespaceURI,String qualifiedName) and namespace URI.

CDATASection createCDATASection(String data)Creates a CDATASection node whose value is the
specified string.

Comment createComment(String data) Creates a Comment node given the specified string.

DocumentFragment createDocumentFragment() Creates an empty DocumentFragment object.

Element createElement(String tagName) Creates an element of the type specified.

Element createElementNS(String Creates an element of the given qualified name
namespaceURI, String qualifiedName)and namespace URI.

EntityReference createEntityReference(String name) Creates an EntityReference object.

ProcessingInstruction createProcessingInstruction Creates a ProcessingInstruction node given the
(String target, String data) specified name and data strings.

Text createTextNode(String data) Creates a Text node given the specified string.

DocumentType getDoctype() The Document Type Declaration associated with
this document.

Element getDocumentElement() This is a convenience attribute that allows direct
access to the child node that is the root element
of the document.

Element getElementById(String elementId) Returns the element whose ID is given by
elementId.

NodeList getElementsByTagName Returns a NodeList of all the elements with a given
(String tagname) tag name in the order in which they are encountered

in a preorder traversal of the document tree.

NodeList getElementsByTagNameNS(String Returns a NodeList of all the elements with a
namespaceURI, String localName)given local name and namespace URI in the order

in which they are encountered in a preorder
traversal of the Document tree.

DOMImplementation getImplementation() The DOMImplementation object that handles this
document.

Node importNode(Node importedNode, Imports a node from another document to this
boolean deep) document.

THE DOCUMENTTYPE INTERFACE

43683-4 AppA.F 5/24/02 9:07 AM Page 278

API QUICK REFERENCE A

279

RETURN TYPE METHOD DESCRIPTION

String getAttribute(String name) Retrieves an attribute value by name.

Attr getAttributeNode(String name) Retrieves an attribute node by name.

Attr getAttributeNodeNS(String Retrieves an Attr node by local name and
namespaceURI, String localName) namespace URI.

String getAttributeNS(String Retrieves an attribute value by local name and
namespaceURI, String localName) namespace URI.

NodeList getElementsByTagName(String name) Returns a NodeList of all descendant elements
with a given tag name, in the order in which they
are encountered in a preorder traversal of this
element tree.

NodeList getElementsByTagNameNS(String Returns a NodeList of all the descendant elements
namespaceURI, String localName) with a given local name and namespace URI in the

order in which they are encountered in a preorder
traversal of this element tree.

String getTagName() The name of the element.

boolean hasAttribute(String name) Returns true when an attribute with a given name
is specified on this element or has a default value,
false otherwise.

boolean hasAttributeNS(String Returns true when an attribute with a given local
namespaceURI, String localName) name and namespace URI is specified on this

element or has a default value, false otherwise.

void removeAttribute(String name) Removes an attribute by name.

Attr removeAttributeNode(Attr oldAttr) Removes the specified attribute node.

void removeAttributeNS(String Removes an attribute by local name and
namespaceURI, String localName) namespace URI.

void setAttribute(String Adds a new attribute.
name, String value)

Attr setAttributeNode(Attr newAttr) Adds a new attribute node.

Attr setAttributeNodeNS(Attr newAttr) Adds a new attribute.

void setAttributeNS(String namespaceURI,
String qualifiedName, String value) Adds a new attribute.

THE ELEMENT INTERFACE

43683-4 AppA.F 5/24/02 9:07 AM Page 279

DOM API QUICK REFERENCE (CONTINUED)

APPENDIX

RETURN TYPE METHOD DESCRIPTION

Node appendChild(Node newChild) Adds the node newChild to the end of the list of children of
this node.

Node cloneNode(boolean deep) Returns a duplicate of this node. For example, it serves as a
generic copy constructor for nodes.

NamedNodeMap getAttributes() A NamedNodeMap containing the attributes of this node (if it is
an element) or null otherwise.

NodeList getChildNodes() A NodeList that contains all children of this node.

Node getFirstChild() The first child of this node.

Node getLastChild() The last child of this node.

String getLocalName() Returns the local part of the qualified name of this node.

String getNamespaceURI() The namespace URI of this node, or null if it is unspecified.

Node getNextSibling() The node immediately following this node.

String getNodeName() The name of this node.

Short getNodeType() A code representing the type of the underlying object, as
defined above.

String getNodeValue() The value of this node.

Document getOwnerDocument() The Document object associated with this node.

Node getParentNode() The parent of this node.

String getPrefix() The namespace prefix of this node, or null if it is unspecified.

Node getPreviousSibling() The node immediately preceding this node.

Boolean hasAttributes() Returns whether this node (if it is an element) has any attributes.

Boolean hasChildNodes() Returns whether this node has any children.

Node insertBefore(Node Inserts the node newChild before the existing child node
newChild, Node refChild) refChild.

Boolean isSupported(String Tests whether the DOM implementation creates a specific
feature, String version) feature and whether that feature is supported by this node.

Node removeChild(Node oldChild) Removes the child node indicated by oldChild from the list of
children, and returns it.

Node replaceChild(Node Replaces the child node oldChild with newChild in the list
newChild, Node oldChild) of children, and returns the oldChild node.

THE NODE INTERFACE

280

43683-4 AppA.F 5/24/02 9:07 AM Page 280

API QUICK REFERENCE A

JDOM uses many packages and class files. For complete
details about the class files and their methods, fields, and

constructors, refer to the JDOM API documentation that
accompanies your JDOM installation.

JDOM QUICK REFERENCE

The org.jom package is the principal package of the JDOM API.

CLASS SUMMARY

CLASS NAME DESCRIPTION

Text Allows for the manipulation of textual data.

ProcessingInstruction Creates and manipulates processing instructions.

EntityRef Defines an entity reference.

Element Creates and manipulates elements of an XML document.

Document Allows representation of an XML document.

DocType Creates an XML docType object.

Comment Creates and manipulates XML document comments.

CDATA Creates and manipulates CDATA sections of an XML document.

Attribute Creates and manipulates element attributes.

PACKAGE ORG.JDOM

COMMONLY USED METHODS

RETURN TYPE METHOD DESCRIPTION

Document addContent(commentcomment) Adds a comment.

Document addContent(ProcessingInstructionpi) Inserts a processing instruction.

Object clone() Creates a copy of the document.

boolean equals(Objectob) Determines if documents are the same.

List getContent() Retrieves the content of the document.

DocType getDocType() Retrieves the DocType declaration.

Element getRootElement() Retrieves the root element.

boolean removeContent(Commentcomment) Deletes a comment.

boolean removeContent(ProcessingInstructionpi) Deletes a processing instruction.

Document setContent(ListnewContent) Creates content from a list.

Document setDocType(DocTypedocType) Sets the DocType declaration.

Document setRootElement(ElementrootElement) Sets the root element.

String toString() Converts the document to a string.

THE DOCUMENT CLASS

281

The Document class allows you to represent an XML
document as an object.

43683-4 AppA.F 5/24/02 9:07 AM Page 281

JDOM QUICK REFERENCE (CONTINUED).

APPENDIX

282

COMMONLY USED METHODS

RETURN TYPE METHOD DESCRIPTION

void append(StringstringValue) Appends textual data.

Object clone() Copies a text node.

boolean equals(Objectob) Determines if objects are the same.

Document getDocument() Retrieves the document to which the text belongs.

Element getParent() Retrieves the parent element.

String getValue() Retrieves the value of the text.

void getValue(StringstringValue) Sets the text value.

String toString() Converts the text information to a string.

THE TEXT CLASS

COMMONLY USED METHODS

RETURN TYPE METHOD DESCRIPTION

Element addContent(CDATAcdata) Adds a CDATA section.

Element addContent(Commentcomment) Adds a comment to the element.

Element addContent(Elementelement) Adds an element content to the element.

Element addContent(EntityRefentity) Adds an entity content to this element.

Element addContent(ProcessingInstructionpi) Adds a processing instruction to the element.

Element addContent(Stringtext) Adds a textual content to the element.

Object clone() Creates a copy of the element.

Element detach() Detaches the element from its parent.

Attribute getAttribute(Stringname) Retrieves an attribute.

List getAttributes() Retrieves a list of the elements attributes.

String getAttributeValue(Stringname) Retrieves the value of an attribute.

THE ELEMENT CLASS

The Element class is one of the most used and important
classes when working with the JDOM API. A wide range

of methods reflect the versatility and complexity of the
Element class.

You can use the Text class to represent textual
information, as it stores in an XML document.

43683-4 AppA.F 5/24/02 9:07 AM Page 282

API QUICK REFERENCE A

283

COMMONLY USED METHODS

RETURN
TYPE METHOD DESCRIPTION

Element getChild(Stringname) Retrieves the first child element.

List getChildren() Retrieves a list of all the child elements.

List getChildren(Stringname) Retrieves a list of all the specified child elements.

String getChildText(Stringname) Retrieves the text of a child element.

String getChildTextTrim(Stringname) Retrieves the trimmed text of a child element.

List getContent() Retrieves a list of the elements content.

Document getDocument() Retrieves the document the element belongs to.

String getName() The element name.

Element getParent() Retrieves the parent element.

String getText() Retrieves the textual content of the element.

String getTextNormalize() Retrieves the textual content of the element with the
whitespace condensed.

String getTextTrim() Retrieves the textual content of the element without
the whitespace.

boolean hasChildren() Determines if an element has children.

boolean isRootElement() Determines if an element is a root element.

boolean removeAttribute(Stringname) Removes an attribute.

boolean hasChild(Stringname) Deletes first child element.

boolean removeChildren() Deletes all child elements.

boolean removeChildren(Stringname) Removes specified child element.

boolean removeContent(CDATAcdata) Removes a CDATA section.

boolean removeContent(Commentcomment) Removes a comment.

boolean removeContent(Elementelement) Removes an element.

boolean removeContent(EntityRefentity) Removes an EnityRef.

boolean removeContent(ProcessingInstructionpi) Removes a ProcessingInstruction.

Element setAttribute(Attributeattribute) Sets an attribute for the element.

Element setAttribute(Stringname,Stringvalue) Sets an attribute value for the element.

Element setAttributes(Listattributes) Sets the attributes for an element from a list.

Element setChildren(Listchildren) Creates child elements from a list.

Element setContent(ListnewContent) Creates element content from a list.

Element setName(Stringname) Specifies the name of the element.

Element settext(Stringtext) Specifies textual content for the element

String toString() Converts element data into a string.

THE ELEMENT CLASS

43683-4 AppA.F 5/24/02 9:07 AM Page 283

The JAXP API contains various classes and methods that
you can use. For detailed information about the JAXP
API, always consult the documentation that comes

with the version of the SAX API you are using. This quick
reference gives some of the more commonly used features
of the JAXP API. The JAXP API is contained in the package
javax.xml.parsers.

JAXP QUICK REFERENCE
APPENDIX

CLASS NAME PURPOSE

DocumentBuilderFactory Creates DOM factory objects.

DocumentBuilder A parser object that uses DOM.

SAXParserFactory Creates SAX factory objects.

SAXParser A parser object that uses SAX.

CLASS SUMMARY

RETURN TYPE METHOD DESCRIPTION

DOMImplementation getDOMImplementation() Creates a DOM Implementation object.

boolean isNamespaceAware() Determines if a parser understands namespaces.

boolean isValidating() Determines if a parser will validate XML documents.

Document newDocument() Creates a new DOM Document object.

Document parse(file) Initiates the parsing of a file.

void setEntityResolver Sets the entity resolver that you want to use.
(EntityResolver er)

void setErrorHandler Sets the error handler resolver that you want to use.
(ErrorHandler eh)

DOCUMENTBUILDER METHOD SUMMARY

RETURN TYPE METHOD DESCRIPTION

Object getAttribute(java.lang. Retrieves attributes.
String name)

boolean isCoalescing() Determines if a parser coverts CDATA to text nodes.

boolean isExpandEntityReferences() Determines if a parser resolves entity references.

boolean isIgnoringComments() Determines if a parser ignores comments.

boolean isIgnoringElementContent Determines if a parser ignores whitespace.
Whitespace()

boolean isNamespaceAware() Determines if a parser recognizes namespace usage.

boolean isValidating() Determines if a parser validates XML documents.

DocumentBuilder newDocumentBuilder() Creates a new DocumentBuilder object.

DocumentBuilderFactory newInstance() Creates a new DocumentBuilderFactory object.

DOCUMENTBUILDERFACTORY METHOD SUMMARY

284

43683-4 AppA.F 5/24/02 9:07 AM Page 284

API QUICK REFERENCE A
DOCUMENTBUILDERFACTORY METHOD SUMMARY (CONTINUED)

RETURN TYPE METHOD DESCRIPTION

boolean getFeature(java.lang. Determines parser feature setting.
String name)

boolean isNamespaceAware() Determines if a parser to be created is aware of namespace usage.

boolean isValidating() Determines if a parser to be created will validate XML documents.

SAXParserFactory newInstance() Creates a new SAXParserFactory object.

SAXParser newSAXParser() Creates a new SAXParser object.

void setFeature(java.lang. Configures the features of new parsers.
String name, boolean value)

void setNamespaceAware Configures new parsers to be namespace aware.
(boolean awareness)

void setValidating(boolean Configure new parsers to validate XML documents.
validating)

SAXPARSERFACTORY METHOD SUMMARY

RETURN TYPE METHOD DESCRIPTION

Parser getParser() Creates a Parser object.

Object getProperty(java.lang.String name) Retrieves property objects.

XMLReader getXMLReader() Generates an XMLReader object.

boolean isNamespaceAware() Determines if parser recognizes namespace.

boolean isValidating() Determines if parser validates XML documents.

void parse(File, DefaultHandler dh) Parses a file and registers the default content
handler for callbacks.

void setProperty(java.lang.String Sets a parser’s property.
name, java.lang.Object value)

SAXPARSER METHOD SUMMARY

RETURN TYPE METHOD DESCRIPTION

void setAttribute(java.lang.String Sets parser attributes.
name,java.lang.Object value)

void setCoalescing(boolean coalescing) Configures new parsers to convert CDATA to text nodes.

void setExpandEntityReferences Configures new parsers to resolve entity references.
(boolean expandEntityRef)

void setIgnoringComments Configures new parsers to ignore comments.
(booleanignoreComments)

void setIgnoringElementContent Configures new parsers to ignore whitespace.
Whitespace(booleanwhitespace)

void setNamespaceAware(booleanawareness) Configures new parsers to recognize namespace.

void setValidating(booleanvalidating) Configures new parsers to validate XML documents.

285

43683-4 AppA.F 5/24/02 9:07 AM Page 285

This appendix contains some useful tabular information,
as well as a quick reference to control structures in Java.

JAVA QUICK REFERENCE

APPENDIX

286

JAVA KEYWORDS

INTEGRAL TYPES

TYPE SIZE IN BITS MAXIMUM VALUE MINIMUM VALUE

byte 8 127 -128

char 16 65535 0

short 16 32767 -32768

int 32 2147483647 -2147483648

long 64 9223372036854775807 -9223372036854775808

BUILT-IN TYPES

FLOATING-POINT TYPES

TYPE SIZE IN BITS MAXIMUM VALUE SMALLEST POSITIVE VALUE

float 32 3.403 x 10+38 1.401 x 10-45

double 64 1.798 x 10+308 4.900 x 10-324

abstract boolean break byte case

catch char class const* continue

default do double else extends

final finally float for goto*

if implements import instanceof int

interface long native new null

package private protected public return

short static strictfp super switch

synchronized this throw throws transient

try void volatile while

*const and goto are reserved but not used.

53683-4 AppB.F 5/24/02 9:07 AM Page 286

JAVA QUICK REFERENCE B

287

ESCAPE SEQUENCE MEANING

\b backspace

\f formfeed

\n newline

\r carriage return

\t tab

\" double quote

\' single quote

\\ backslash

\unnnn any Unicode character
(n are hexadecimal digits)

CHARACTER ESCAPE SEQUENCES

You can use these character escape sequences to
embed special characters in quoted strings.

COMPARISON AND BOOLEAN LOGIC

> < == <= >=

! ?: && || !=

instanceof

ARITHMETIC

+ - * / %

++ —

SHIFTS AND BITWISE LOGIC

& | ^ << >>>

>> ~

ASSIGNMENT

= &= |= ^= <<=

>>= >> += -= *=

/= %=

OTHER

. [] (typename) new

OPERATORS

The following tables list all the operators defined by the
Java language.

53683-4 AppB.F 5/24/02 9:07 AM Page 287

APPENDIX

288

The while loop
while (condition)

{

statement1;

statement2;

}

Java evaluates the
condition, and if it is
true, executes the
statements. It repeats
this process until the
condition becomes
false.

The do-while loop
do

{

statement1;

statement2;

...

}

while (condition);

Java executes the
statements while the
condition is true. It
always executes the
statements at least once.

CONTROL FLOW

The following sections describe each of the control
structures available in Java. You can choose the most
appropriate one for each programming situation.

The for loop
for (initialization; condition; advance)

{

statement1;

statement2;

...

}

Java executes the initialization statement, and then
evaluates the condition. If the condition is true,
Java executes the statements, and then the advance
clause. Java then re-evaluates the condition, and
if it is true, it executes the statements again,
then executes the advance clause. This sequence
continues until the condition evaluates to false.
Java may execute the statements zero or more times.

The switch statement
switch (integral-value)

{

case constant1:

statement1;

case constant2:

statement2;

...

default:

statementn;

}

Java evaluates the value, and if it matches one of the
constants, executes the statements starting with the
next one following that constant. If a case includes no
break statement, execution falls through to the next
statement, even if the code contains an intervening
label.

The if statement
if (condition)

{

statement1;

statement2;

...

}

[else

{

statement3;

statement4;

...

}]

Java evaluates the condition; if it is true, Java
executes the statements in the following block.
If the condition is false and the optional else
block is present, Java executes the statements in
the else block.

JAVA QUICK REFERENCE (CONTINUED)

53683-4 AppB.F 5/24/02 9:07 AM Page 288

JAVA QUICK REFERENCE B

289

The try/catch/finally
statement
try

{

statement1;

statement2;

...

}

catch (throwable1 t1)

{

statement3;

statement4;

...

}

catch (throwable2 t2)

{

statement5;

statement6;

...

}

finally

{

statement6;

statement7;

...

}

Java executes the statements in the
try block. If an exception occurs,
Java checks each catch block in
order until it finds a variable of the
given type to which it can assign a
value of the exception object’s type.
If such a block exists, Java executes
its statements. Regardless of
whether Java throws an exception,
after it can no longer execute
statements in the try block or any
catch block, Java executes the
statements in the finally block.

Zero or more catch blocks and
zero or one finally block may
follow a try block; at least one
catch or one finally block must
follow a try.

The break and continue
statements
break [label];

With no label, Java exits any
enclosing while, for, or switch
statement. With a label, Java exits
any number of nested do, while,
for, or switch statements until it
encounters the one labeled with
the corresponding name; Java
then continues execution with the
statement immediately after that
loop.

continue [label];

With no label, Java begins the
next iteration of the enclosing do,
while, or for loop by evaluating
the loop condition. With a label,
Java breaks out of any number of
enclosing do, while, or for loops
until it encounters the one that the
label names; Java continues by
evaluating the condition for that
loop.

CONTROL FLOW (CONTINUED)

www.javasoft.com

Java’s home page. From here, you can find Java software
and documentation, news, helpful hints, and a lot more.

www.javasoft.com/docs/books/tutorial/?frontpage

Sun’s online Java tutorial. A wealth of examples and
explanations are available here.

www.afu.com/javafaq.htm

The Java programming Frequently Asked Questions list.
A great resource when you have a “How do I . . . ?”
question.

www.javaworld.com

Java World, an online magazine for Java programmers.
This site has many useful technical articles.

www.alphaworks.ibm.com/

IBM’s AlphaWorks site. It offers a huge selection of
interesting Java tools for free trial and commercial
licensing.

www.10.software.ibm.com/developerworks/
opensource/jikes/project/

The home page for Jikes, IBM’s fast, compliant open-
source Java compiler.

www.sys-con.com/java/

The Web site for Java Developer’s Journal, another print
and online Java magazine.

USEFUL WEB SITES

53683-4 AppB.F 5/24/02 9:07 AM Page 289

While XML allows for the creation of large, complex
documents, the XML language itself is quite
compact and easy to learn. Here is a quick

reference of the XML language that you can use when
creating your XML documents and applications.

XML QUICK REFERENCE

APPENDIX

290

Syntax

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

version is the version of XML.

encoding is the character coding of the document, usually UTF-8, but it can also be:

UTF-16

EUC-JP

ISO10646-UCS2

standalone indicates if an external DTD is to be used. Can be "yes" or "no".

THE XML DECLARATION

Syntax

<!DOCTYPE docname External-ID [declarations] >

Starts with the word DOCTYPE. docname is the name of the document type. External-ID is the location of an
external file.

declarations is the optional DTD declarations.

THE DOCUMENT-TYPE DECLARATION

Syntax

<!NOTATION name External-ID >

Starts with the word NOTATION. name is the unique name of the format. External-ID identifies the notation.

THE NOTATION DECLARATION

63683-4 AppC.F 5/24/02 9:07 AM Page 290

XML QUICK REFERENCE C

291

Syntax

<-- comment -->

comment can be any string of characters, but must not contain '–'.

COMMENTS

Syntax

<?target value ?>

target is typically the name of the intended application. value is the textual data to pass to the target application.

PROCESSING INSTRUCTIONS

DESCRIPTION ENTITY SYMBOL VALUE

Ampersand & & &

Less than < < <

Greater than > > >

Apostrophe ' ' '

Quote " " "

PREDEFINED GENERAL ENTITIES

Syntax

<!ENTITY name " replacement text " >

Starts with the word ENTITY. name is the name of the entity. replacement text is the value of the entity.

INTERNAL ENTITIES

Syntax

<!ENTITY name External-ID NDATA notname >

Starts with the word ENTITY. name is the name of the entity. External-ID is the location of a file. notname is
the name of a notation.

EXTERNAL ENTITIES

63683-4 AppC.F 5/24/02 9:07 AM Page 291

XML QUICK REFERENCE (CONTINUED)

APPENDIX

292

Syntax

<!ENTITY % name " replacement text " >

Starts with the word ENTITY. name is the name of the entity. replacement text is the value of the entity.

INTERNAL PARAMETER ENTITIES

Syntax

<!ENTITY % name External-ID >

Starts with the word ENTITY. name is the name of the entity. External-ID is the location of a file.

EXTERNAL PARAMETER ENTITIES

Syntax

<![CDATA [textual data]]>

textual data can be any string of characters, but must not contain ']]'.

CDATA SECTIONS

Element with Content

<element>content</element>

element is the name of the element.

content is the content model of the element.

Empty Element

<element/ >

ELEMENT TAGS

63683-4 AppC.F 5/24/02 9:07 AM Page 292

XML QUICK REFERENCE C

293

<element name="value">content</element>

name is the name of the attribute.

value is the string value of the attribute. You can use double quotes, as this example shows, or, alternatively,
single quotes.

ELEMENT ATTRIBUTES

Syntax

<!ELEMENT name (content)>

Starts with the word ENTITY. name is the name of the element.

content is the type of data in the element; it can be:

ANY any type of data

EMPTY no data

#PCDATA parsed character data

ELEMENT DECLARATIONS

Syntax

<!ATTLIST element name value default >

Starts with the word ATTLIST. element is the name of the element. name is the name of the attribute. value
indicates the type of value; it can be:

CDATA character data

NMTOKEN single name token

NMTOKENS multiple name tokens

ID unique element identifier

ENTITY an entity reference

default is the default value for the attribute.

ATTRIBUTE DECLARATIONS

63683-4 AppC.F 5/24/02 9:07 AM Page 293

The CD-ROM included in this book contains many
useful files and programs. Before installing any of the
programs on the disc, make sure that you do not

already have a newer version of the program already
installed on your computer. For information on installing

different versions of the same program, contact the
program’s manufacturer. For the latest and greatest
information, please refer to the ReadMe file located at the
root level of the CD-ROM.

SYSTEM REQUIREMENTS
To use the contents of the CD-ROM, your computer must
have the following hardware and software:

• A PC with a Pentium or faster processor

• Microsoft Windows 95, 98, ME, NT 4.0, 2000, or XP

• At least 128MB of physical RAM installed on your
computer

• A double-speed (8x) or faster CD-ROM drive

• A monitor capable of displaying at least 256 colors or
grayscale

• A network card

AUTHOR’S SOURCE CODE
These files contain all the sample code from the book. You
can browse the files directly from the CD-ROM, or you can
copy them to your hard drive and use them as the basis for
your own projects. To find the files on the CD-ROM, open
the D:\Samples folder.

ACROBAT VERSION
The CD-ROM contains an e-version of this book that you
can view and search using Adobe Acrobat Reader. You
cannot print the pages or copy text from the Acrobat files.
The CD-ROM includes an evaluation version of Adobe
Acrobat Reader.

INSTALLING AND USING THE SOFTWARE
For your convenience, the software titles appearing on the
CD-ROM are listed alphabetically.

Acrobat Reader
For Windows 95/98/NT/2000 and Linux. Freeware.

Adobe Acrobat Reader allows you to view the online
version of this book. For more information on using
Acrobat Reader, see the section "Using the e-Version of this
Book" in this Appendix. For more information about
Acrobat Reader and Adobe Systems, see www.adobe.com.

Crimson
For all platforms. Open Source.

Crimson is a Java XML parser that you can access from
within the Java code you create. The Crimson XML
parser supports JAXP, SAX, and the DOM API. For more
information about the Crimson XML parser, see
http://xml.apache.org/crimson/.

GNU JAXP
For all platforms. GNU Public License.

GNU JAXP is a no-cost version of the standard XML
processing API, SAX, DOM, and JAXP, for Java. For more
information and updates, and for the latest version of GNU
JAXP, see http://www.gnu.org/software/classpathx/jaxp/.

WHAT’S ON THE CD-ROM

APPENDIX

294

73683-4 AppD.F 5/24/02 9:07 AM Page 294

WHAT’S ON THE CD-ROM D

Java 2 SDK, Standard Edition v1.3.1
For Windows 95/98/NT/2000/XP and Linux. Sun
Microsystems Public License.

You can use the standard edition of the Java 2 platform by
Sun Microsystems to create, execute, and assist in deploying
Java applications. For more information, see http://java.sun.
com/j2se/.

JDOM
For Windows 95/98/NT/2000/XP and Linux. Open Source.

JDOM is a programming API that accesses XML documents
from within your Java code. For more information and the
latest updates, see http://www.jdom.org/.

JPad Pro
For Windows 95/98/NT/2000/XP. Shareware.

JPad Pro is an integrated development environment that
creates, compiles, and executes Java applications. For more
information, see http://www.modelworks.com/products.
html.

UltraEdit
For Windows 95/98/NT/2000/XP. Shareware.

UltraEdit is a text editor that creates code in many
languages, including Java and XML. UltraEdit has many
features to make coding easier and more efficient. For
more information, see http://www.ultraedit.com/.

Xerces Java Parser
For all platforms. Open Source.

Xerces is an XML parser that you can access from within your
Java applications. Xerces is currently the most popular XML
parser for use with Java applications. For more information
and updates, see http://xml.apache.org/xerces-j/.

XML Pro
For Windows 95/98/NT/2000/XP. Shareware.

XML Pro is an XML editor that you can use to create
XML documents. As well as having a full range of editing
capabilities, XML Pro fully supports the Java SDK. For more
information, see http://www.vervet.com/demo.html.

XML Spy Suite
For Windows 95/98/NT/2000/XP. Shareware.

XML Spy is an application that creates and validates
XML documents including DTDs and schemas. For
more information, see http://www.xmlspy.com.

TROUBLESHOOTING
The programs on the CD-ROM should work on computers
with the minimum of system requirements. However, some
programs may not work properly.

The two most likely reasons for the programs not working
properly include not having enough memory (RAM) for
the programs you want to use, or having other programs
running that affect the installation or running of a program.
If you receive error messages such as Not enough
memory or Setup cannot continue, try one or more of
the methods below and then try using the software again:

• Turn off any anti-virus software

• Close all running programs

• In Windows, close the CD-ROM interface and run
demos or installations directly from Windows Explorer

• Have your local computer store add more RAM to your
computer

If you still have trouble installing the items from the
CD-ROM, call the Wiley Publishing Customer Service
phone number: 800-762-2974 (outside the U.S.:
317-572-3994). You can also contact Wiley Publishing
Customer Service by e-mail at techsupdum@wiley.com.

295

73683-4 AppD.F 5/24/02 9:07 AM Page 295

+

FLIP THROUGH PAGES

⁄ Click one of these options
to flip through the pages of a
section.

 First page

 Previous page

 Next page

 Last page

ZOOM IN

⁄ Click to magnify an
area of the page.

¤ Click the area of the page
you want to magnify.

■ Click one of these options
to display the page at 100%
magnification () or to fit
the entire page inside the
window ().

You can view Java and XML: Your visual blueprint for
creating Java-enhanced Web programs on your screen
using the CD-ROM included at the back of this book.

The CD-ROM allows you to search the contents of each
chapter of the book for a specific word or phrase. The
CD-ROM also provides a convenient way of keeping the
book handy while traveling.

You must install Adobe Acrobat Reader on your computer
before you can view the book on the CD-ROM. The

CD-ROM includes this program for your convenience.
Acrobat Reader allows you to view Portable Document
Format (PDF) files, which can display books and magazines
on your screen exactly as they appear in printed form.

To view the content of this book using Acrobat Reader,
display the contents of the CD-ROM. Double-click the
Book folder to display the contents of the folder. In the
window that appears, double-click the icon for the chapter
of the book you want to review.

USING THE E-VERSION OF THIS BOOK

APPENDIX

296

USING THE E-VERSION OF THE BOOK

73683-4 AppD.F 5/24/02 9:07 AM Page 296

FIND TEXT

⁄ Click to search for text
in the section.

■ The Find dialog box
appears.

¤ Type the text you want to
find.

‹ Click Find to start the
search.

■ The first instance of the
text is highlighted.

› Click Find Again to find
the next instance of the text.

WHAT’S ON THE CD-ROM D

To install Acrobat Reader, insert the CD-ROM into
a drive. In the screen that appears, click Software.
Click Acrobat Reader and then follow the
instructions on your screen to install the program.

You can make searching the book more
convenient by copying the PDF files to your
computer. To do this, display the contents of the
CD-ROM and then copy the Book folder from
the CD-ROM to your hard drive. This allows you
to easily access the contents of the book at any
time.

Acrobat Reader is a popular and useful program.
There are many files available on the Web that are
designed to be viewed using Acrobat Reader. Look for
files with the .pdf extension. For more information
about Acrobat Reader, visit the www.adobe.com/
products/acrobat/readermain.html Web site.

297

73683-4 AppD.F 5/24/02 9:07 AM Page 297

END-USER LICENSE AGREEMENT
READ THIS. You should carefully read these terms and
conditions before opening the software packet(s)
included with Java and XML: Your visual blueprint for
creating Java-enhanced Web programs. This is a license
agreement ("Agreement") between you and "Wiley
Publishing". By opening the accompanying software
packet(s), you acknowledge that you have read and
accept the following terms and conditions. If you do not
agree and do not want to be bound by such terms and
conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them from
for a full refund.

1. License Grant. Wiley Publishing grants to you (either
an individual or entity) a nonexclusive license to use one
copy of the enclosed software program(s) (collectively,
the "Software") solely for your own personal or business
purposes on a single computer (whether a standard
computer or a workstation component of a multi-user
network). The Software is in use on a computer when
it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disc, CD-ROM, or other
storage device). Wiley Publishing reserves all rights not
expressly granted herein.

2. Ownership. Wiley Publishing is the owner of all
right, title, and interest, including copyright, in and
to the compilation of the Software recorded on the
disc(s) or CD-ROM ("Software Media"). Copyright to
the individual programs recorded on the Software Media
is owned by the author, or other authorized copyright
owner of each program. Ownership of the Software and
all proprietary rights relating thereto remain with Wiley
Publishing and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software
to a single hard disc, provided that you keep the original
for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any

computer subscriber system or bulletin-board system, or
(iii) modify, adapt, or create derivative works based on
the Software.

(b) You may not reverse engineer, decompile, or
disassemble the Software. You may transfer the Software
and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies.
If the Software is an update or has been updated, any
transfer must include the most recent update and all
prior versions.

4. Restrictions on Use of Individual Programs. You must
follow the individual requirements and restrictions
detailed for each individual program in Appendix D of
this Book. These limitations are also contained in the
individual license agreements recorded on the Software
Media. These limitations may include a requirement that
after using the program for a specified period of time,
the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing
to abide by the licenses and restrictions for these
individual programs that are detailed in Appendix D
and on the Software Media. None of the material on
this Software Media or listed in this Book may ever
be redistributed, in original or modified form, for
commercial purposes.

5. Limited Warranty.

(a) Wiley Publishing warrants that the Software and
Software Media are free from defects in materials and
workmanship under normal use for a period of sixty (60)
days from the date of purchase of this Book. If Wiley
Publishing receives notification within the warranty
period of defects in materials or workmanship, Wiley
Publishing will replace the defective Software Media.

(b) WILEY PUBLISHING AND THE AUTHOR OF THE
BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT
TO THE SOFTWARE, THE PROGRAMS, THE SOURCE

APPENDIX

298

73683-4 AppD.F 5/24/02 9:07 AM Page 298

WHAT’S ON THE CD-ROM D

CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WILEY
PUBLISHING DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN THE SOFTWARE
WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights,
and you may have other rights that vary from jurisdiction
to jurisdiction.

6. Remedies.

(a) Wiley Publishing’s entire liability and your exclusive
remedy for defects in materials and workmanship shall
be limited to replacement of the Software Media, which
may be returned to Wiley Publishing with a copy of
your receipt at the following address: Software Media
Fulfillment Department, Attn.: Java and XML: Your visual
blueprint for creating Java-enhanced Web programs,
Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please
allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has
resulted from accident, abuse or misapplication. Any
replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30)
days, whichever is longer.

(b) In no event shall Wiley Publishing or the author be
liable for any damages whatsoever (including without
limitation damages for loss of business profits, business
interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to use
the Book or the Software, even if Wiley Publishing has
been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the
exclusion or limitation of liability for consequential or
incidental damages, the above limitation or exclusion
may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication,
or disclosure of the Software for or on behalf of the
United States of America, its agencies and/or

instrumentalities (the "U.S. Government") is subject to
restrictions as stated in paragraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause of
DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of
the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, and in similar clauses in the
NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire
understanding of the parties and revokes and
supersedes all prior agreements, oral or written,
between them and may not be modified or amended
except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement
shall take precedence over any other documents
that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise
unenforceable, each and every other provision shall
remain in full force and effect.

299

73683-4 AppD.F 5/24/02 9:07 AM Page 299

JAVATM END-USER LICENSE AGREEMENT

FORTE FOR JAVA, RELEASE 3.0,
COMMUNITY EDITION, ENGLISH

SUN MICROSYSTEMS, INC.
BINARY CODE LICENSE AGREEMENT
To obtain Forte for Java, release 3.0, Community Edition, English, you must
agree to the software license below.

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED
SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”)
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY
OPENING THE SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS
OF THIS AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE
ELECTRONICALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY
SELECTING THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE
UNUSED SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.

1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable
license for the internal use only of the accompanying software and
documentation and any error corrections provided by Sun (collectively
“Software”), by the number of users and the class of computer hardware for
which the corresponding fee has been paid.

2. RESTRICTIONS. Software is confidential and copyrighted. Title to
Software and all associated intellectual property rights is retained by Sun
and/or its licensors. Except as specifically authorized in any Supplemental
License Terms, you may not make copies of Software, other than a single
copy of Software for archival purposes. Unless enforcement is prohibited by
applicable law, you may not modify, decompile, or reverse engineer
Software. You acknowledge that Software is not designed, licensed or
intended for use in the design, construction, operation or maintenance of
any nuclear facility. Sun disclaims any express or implied warranty of fitness
for such uses. No right, title or interest in or to any trademark, service mark,
logo or trade name of Sun or its licensors is granted under this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90)
days from the date of purchase, as evidenced by a copy of the receipt, the
media on which Software is furnished (if any) will be free of defects in
materials and workmanship under normal use. Except for the foregoing,
Software is provided “AS IS”. Your exclusive remedy and Sun’s entire liability
under this limited warranty will be at Sun’s option to replace Software media
or refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT,
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW,
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event
will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this
Agreement. The foregoing limitations will apply even if the above stated
warranty fails of its essential purpose.

6. Termination. This Agreement is effective until terminated. You may
terminate this Agreement at any time by destroying all copies of Software.
This Agreement will terminate immediately without notice from Sun if you
fail to comply with any provision of this Agreement. Upon Termination, you
must destroy all copies of Software.

7. Export Regulations. All Software and technical data delivered under this
Agreement are subject to US export control laws and may be subject to

export or import regulations in other countries. You agree to comply strictly
with all such laws and regulations and acknowledge that you have the
responsibility to obtain such licenses to export, re-export, or import as may
be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or on
behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in Software and
accompanying documentation will be only as set forth in this Agreement; this
is in accordance with 48 CFR 227.7201 through 227.7202-4 (for Department
of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-
DOD acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any
jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be
unenforceable, this Agreement will remain in effect with the provision
omitted, unless omission would frustrate the intent of the parties, in which
case this Agreement will immediately terminate.

11. Integration. This Agreement is the entire agreement between you and
Sun relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, representations and warranties
and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification of this
Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

FORTE FOR JAVA, RELEASE 3.0,
COMMUNITY EDITION
SUPPLEMENTAL LICENSE TERMS
These supplemental license terms (“Supplemental Terms”) add to or modify
the terms of the Binary Code License Agreement (collectively, the
“Agreement”). Capitalized terms not defined in these Supplemental Terms
shall have the same meanings ascribed to them in the Agreement. These
Supplemental Terms shall supersede any inconsistent or conflicting terms in
the Agreement, or in any license contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the
terms and conditions of this Agreement, including, but not limited to Section
4 (Java Technology Restrictions) of these Supplemental Terms, Sun grants
you a non-exclusive, non-transferable, limited license to reproduce internally
and use internally the binary form of the Software complete and unmodified
for the sole purpose of designing, developing and testing your Java applets
and applications intended to run on the Java platform (“Programs”).

2. License to Distribute Software. Subject to the terms and conditions of this
Agreement, including, but not limited to Section 4 (Java Technology
Restrictions) of these Supplemental Terms, Sun grants you a non-exclusive,
non-transferable, limited license to reproduce and distribute the Software in
binary code form only, provided that (i) you distribute the Software complete
and unmodified and only bundled as part of, and for the sole purpose of
running, your Programs, (ii) the Programs add significant and primary
functionality to the Software, (iii) you do not distribute additional software
intended to replace any component(s) of the Software, (iv) for a particular
version of the Java platform, any executable output generated by a compiler
that is contained in the Software must (a) only be compiled from source code
that conforms to the corresponding version of the OEM Java Language
Specification; (b) be in the class file format defined by the corresponding
version of the OEM Java Virtual Machine Specification; and (c) execute
properly on a reference runtime, as specified by Sun, associated with such
version of the Java platform, (v) you do not remove or alter any proprietary
legends or notices contained in the Software, (v) you only distribute the
Software subject to a license agreement that protects Sun’s interests consistent
with the terms contained in this Agreement, and (vi) you agree to defend and
indemnify Sun and its licensors from and against any damages, costs, liabilities,
settlement amounts and/or expenses (including attorneys’ fees) incurred in
connection with any claim, lawsuit or action by any third party that arises or
results from the use or distribution of any and all Programs and/or Software.

3. License to Distribute Redistributables. Subject to the terms and
conditions of this Agreement, including but not limited to Section 4 (Java
Technology Restrictions) of these Supplemental Terms, Sun grants you a non-

APPENDIX

300

73683-4 AppD.F 5/24/02 9:07 AM Page 300

WHAT’S ON THE CD-ROM D
exclusive, non-transferable, limited license to reproduce and distribute the
binary form of those files specifically identified as redistributable in the
Software “RELEASE NOTES” file (“Redistributables”) provided that: (i) you
distribute the Redistributables complete and unmodified (unless otherwise
specified in the applicable RELEASE NOTES file), and only bundled as part of
Programs, (ii) you do not distribute additional software intended to
supersede any component(s) of the Redistributables, (iii) you do not remove
or alter any proprietary legends or notices contained in or on the
Redistributables, (iv) for a particular version of the Java platform, any
executable output generated by a compiler that is contained in the Software
must (a) only be compiled from source code that conforms to the
corresponding version of the OEM Java Language Specification; (b) be in the
class file format defined by the corresponding version of the OEM Java
Virtual Machine Specification; and (c) execute properly on a reference
runtime, as specified by Sun, associated with such version of the Java
platform, (v) you only distribute the Redistributables pursuant to a license
agreement that protects Sun’s interests consistent with the terms contained
in the Agreement, and (v) you agree to defend and indemnify Sun and its
licensors from and against any damages, costs, liabilities, settlement amounts
and/or expenses (including attorneys’ fees) incurred in connection with any
claim, lawsuit or action by any third party that arises or results from the use
or distribution of any and all Programs and/or Software.

4. Java Technology Restrictions. You may not modify the Java Platform
Interface (“JPI”, identified as classes contained within the “java” package or any
subpackages of the “java” package), by creating additional classes within the
JPI or otherwise causing the addition to or modification of the classes in the
JPI. In the event that you create an additional class and associated API(s) which
(i) extends the functionality of the Java platform, and (ii) is exposed to third
party software developers for the purpose of developing additional software
which invokes such additional API, you must promptly publish broadly an
accurate specification for such API for free use by all developers. You may not
create, or authorize your licensees to create, additional classes, interfaces, or
subpackages that are in any way identified as “java”, “javax”, “sun” or similar
convention as specified by Sun in any naming convention designation.

5. Java Runtime Availability. Refer to the appropriate version of the Java
Runtime Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code
which may be distributed with Java applets and applications.

6. Trademarks and Logos. You acknowledge and agree as between you and
Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related
trademarks, service marks, logos and other brand designations (“Sun
Marks”), and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks.
Any use you make of the Sun Marks inures to Sun’s benefit.

7. Source Code. Software may contain source code that is provided
solely for reference purposes pursuant to the terms of this Agreement.
Source code may not be redistributed unless expressly provided for in
this Agreement.

8. Termination for Infringement. Either party may terminate this Agreement
immediately should any Software become, or in either party’s opinion be
likely to become, the subject of a claim of infringement of any intellectual
property right.

For inquiries please contact: Sun Microsystems, Inc. 901

San Antonio Road, Palo Alto, California 94303

(LFI#91205/Form ID#011801)

TERMS AND CONDITIONS OF THE LICENSE &
EXPORT FOR JAVA 2 SDK, STANDARD EDITION
1.4.0 SUN MICROSYSTEMS, INC.
BINARY CODE LICENSE AGREEMENT
READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED
SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”)
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY
OPENING THE SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS
OF THIS AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE
ELECTRONICALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY
SELECTING THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE

UNUSED SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.

1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable
license for the internal use only of the accompanying software and
documentation and any error corrections provided by Sun (collectively
“Software”), by the number of users and the class of computer hardware for
which the corresponding fee has been paid.

2. RESTRICTIONS. Software is confidential and copyrighted. Title to
Software and all associated intellectual property rights is retained by Sun
and/or its licensors. Except as specifically authorized in any Supplemental
License Terms, you may not make copies of Software, other than a single
copy of Software for archival purposes. Unless enforcement is prohibited by
applicable law, you may not modify, decompile, or reverse engineer
Software. You acknowledge that Software is not designed, licensed or
intended for use in the design, construction, operation or maintenance of
any nuclear facility. Sun disclaims any express or implied warranty of fitness
for such uses. No right, title or interest in or to any trademark, service mark,
logo or trade name of Sun or its licensors is granted under this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90)
days from the date of purchase, as evidenced by a copy of the receipt, the
media on which Software is furnished (if any) will be free of defects in
materials and workmanship under normal use. Except for the foregoing,
Software is provided “AS IS”. Your exclusive remedy and Sun’s entire liability
under this limited warranty will be at Sun’s option to replace Software media
or refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT,
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW,
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event
will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this
Agreement. The foregoing limitations will apply even if the above stated
warranty fails of its essential purpose.

6. Termination. This Agreement is effective until terminated. You may
terminate this Agreement at any time by destroying all copies of Software. This
Agreement will terminate immediately without notice from Sun if you fail to
comply with any provision of this Agreement. Upon Termination, you must
destroy all copies of Software.

7. Export Regulations. All Software and technical data delivered under this
Agreement are subject to US export control laws and may be subject to
export or import regulations in other countries. You agree to comply strictly
with all such laws and regulations and acknowledge that you have the
responsibility to obtain such licenses to export, re-export, or import as may
be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or on
behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in Software and
accompanying documentation will be only as set forth in this Agreement; this
is in accordance with 48 CFR 227.7201 through 227.7202-4 (for Department
of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-
DOD acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any
jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be
unenforceable, this Agreement will remain in effect with the provision
omitted, unless omission would frustrate the intent of the parties, in which
case this Agreement will immediately terminate.

301

73683-4 AppD.F 5/24/02 9:07 AM Page 301

11. Integration. This Agreement is the entire agreement between you and
Sun relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, representations and warranties
and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification of this
Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

JAVATM 2 SOFTWARE DEVELOPMENT KIT (J2SDK),
STANDARD EDITION,VERSION 1.4.X
SUPPLEMENTAL LICENSE TERMS
These supplemental license terms (“Supplemental Terms”) add to or modify
the terms of the Binary Code License Agreement (collectively, the
“Agreement”). Capitalized terms not defined in these Supplemental Terms
shall have the same meanings ascribed to them in the Agreement. These
Supplemental Terms shall supersede any inconsistent or conflicting terms in
the Agreement, or in any license contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the terms
and conditions of this Agreement, including, but not limited to Section 4 (Java
Technology Restrictions) of these Supplemental Terms, Sun grants you a non-
exclusive, non-transferable, limited license to reproduce internally and use
internally the binary form of the Software complete and unmodified for the
sole purpose of designing, developing and testing your Java applets and
applications intended to run on the Java platform (“Programs”).

2. License to Distribute Software. Subject to the terms and conditions of this
Agreement, including, but not limited to Section 4 (Java Technology
Restrictions) of these Supplemental Terms, Sun grants you a non-exclusive,
non-transferable, limited license to reproduce and distribute the Software,
provided that (i) you distribute the Software complete and unmodified
(unless otherwise specified in the applicable README file) and only bundled
as part of, and for the sole purpose of running, your Programs, (ii) the
Programs add significant and primary functionality to the Software, (iii) you
do not distribute additional software intended to replace any component(s)
of the Software (unless otherwise specified in the applicable README file),
(iv) you do not remove or alter any proprietary legends or notices contained
in the Software, (v) you only distribute the Software subject to a license
agreement that protects Sun’s interests consistent with the terms contained
in this Agreement, and (vi) you agree to defend and indemnify Sun and its
licensors from and against any damages, costs, liabilities, settlement amounts
and/or expenses (including attorneys’ fees) incurred in connection with any
claim, lawsuit or action by any third party that arises or results from the use
or distribution of any and all Programs and/or Software. (vi) include the
following statement as part of product documentation (whether hard copy or
electronic), as a part of a copyright page or proprietary rights notice page, in
an “About” box or in any other form reasonably designed to make the
statement visible to users of the Software: “This product includes code
licensed from RSA Security, Inc.”, and (vii) include the statement, “Some
portions licensed from IBM are available at
http://oss.software.ibm.com/icu4j/”.

3. License to Distribute Redistributables. Subject to the terms and conditions of
this Agreement, including but not limited to Section 4 (Java Technology
Restrictions) of these Supplemental Terms, Sun grants you a non-exclusive, non-
transferable, limited license to reproduce and distribute those files specifically
identified as redistributable in the Software “README” file (“Redistributables”)
provided that: (i) you distribute the Redistributables complete and unmodified
(unless otherwise specified in the applicable README file), and only bundled as
part of Programs, (ii) you do not distribute additional software intended to
supersede any component(s) of the Redistributables (unless otherwise specified
in the applicable README file), (iii) you do not remove or alter any proprietary
legends or notices contained in or on the Redistributables, (iv) you only
distribute the Redistributables pursuant to a license agreement that protects
Sun’s interests consistent with the terms contained in the Agreement, (v) you
agree to defend and indemnify Sun and its licensors from and against any
damages, costs, liabilities, settlement amounts and/or expenses (including
attorneys’ fees) incurred in connection with any claim, lawsuit or action by any
third party that arises or results from the use or distribution of any and all
Programs and/or Software, (vi) include the following statement as part of
product documentation (whether hard copy or electronic), as a part of a
copyright page or proprietary rights notice page, in an “About” box or in any

other form reasonably designed to make the statement visible to users of the
Software: “This product includes code licensed from RSA Security, Inc.”, and (vii)
include the statement, “Some portions licensed from IBM are available at
http://oss.software.ibm.com/icu4j/”.

4. Java Technology Restrictions. You may not modify the Java Platform
Interface (“JPI”, identified as classes contained within the “java” package or any
subpackages of the “java” package), by creating additional classes within the
JPI or otherwise causing the addition to or modification of the classes in the
JPI. In the event that you create an additional class and associated API(s) which
(i) extends the functionality of the Java platform, and (ii) is exposed to third
party software developers for the purpose of developing additional software
which invokes such additional API, you must promptly publish broadly an
accurate specification for such API for free use by all developers. You may not
create, or authorize your licensees to create, additional classes, interfaces, or
subpackages that are in any way identified as “java”, “javax”, “sun” or similar
convention as specified by Sun in any naming convention designation.

5. Notice of Automatic Software Updates from Sun. You acknowledge that the
Software may automatically download, install, and execute applets,
applications, software extensions, and updated versions of the Software from
Sun (“Software Updates”), which may require you to accept updated terms and
conditions for installation. If additional terms and conditions are not presented
on installation, the Software Updates will be considered part of the Software
and subject to the terms and conditions of the Agreement.

6. Notice of Automatic Downloads. You acknowledge that, by your use of the
Software and/or by requesting services that require use of the Software, the
Software may automatically download, install, and execute software
applications from sources other than Sun (“Other Software”). Sun makes no
representations of a relationship of any kind to licensors of Other Software.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE
OTHER SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

7. Trademarks and Logos. You acknowledge and agree as between you and
Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related
trademarks, service marks, logos and other brand designations (“Sun
Marks”), and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks.
Any use you make of the Sun Marks inures to Sun’s benefit.

8. Source Code. Software may contain source code that is provided solely for
reference purposes pursuant to the terms of this Agreement. Source code
may not be redistributed unless expressly provided for in this Agreement.

9. Termination for Infringement. Either party may terminate this Agreement
immediately should any Software become, or in either party’s opinion be
likely to become, the subject of a claim of infringement of any intellectual
property right.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road,
Palo Alto, California 94303

(LFI#109998/Form ID#011801)

TERMS AND CONDITIONS OF THE LICENSE &
EXPORT FOR JAVA 2 MICRO EDITION WIRELESS
TOOLKIT 1.0.3 SUN MICROSYSTEMS, INC.
BINARY CODE LICENSE AGREEMENT
READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED
SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”)
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY
OPENING THE SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS
OF THIS AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE
ELECTRONICALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY
SELECTING THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE
UNUSED SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.

APPENDIX

302

73683-4 AppD.F 5/24/02 9:08 AM Page 302

WHAT’S ON THE CD-ROM D
1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable
license for the internal use only of the accompanying software and
documentation and any error corrections provided by Sun (collectively
“Software”), by the number of users and the class of computer hardware for
which the corresponding fee has been paid.

2. RESTRICTIONS. Software is confidential and copyrighted. Title to
Software and all associated intellectual property rights is retained by Sun
and/or its licensors. Except as specifically authorized in any Supplemental
License Terms, you may not make copies of Software, other than a single
copy of Software for archival purposes. Unless enforcement is prohibited by
applicable law, you may not modify, decompile, or reverse engineer Software.
You acknowledge that Software is not designed, licensed or intended for use
in the design, construction, operation or maintenance of any nuclear facility.
Sun disclaims any express or implied warranty of fitness for such uses. No
right, title or interest in or to any trademark, service mark, logo or trade
name of Sun or its licensors is granted under this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90)
days from the date of purchase, as evidenced by a copy of the receipt, the
media on which Software is furnished (if any) will be free of defects in
materials and workmanship under normal use. Except for the foregoing,
Software is provided “AS IS”. Your exclusive remedy and Sun’s entire liability
under this limited warranty will be at Sun’s option to replace Software media
or refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT,
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW,
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event
will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this
Agreement. The foregoing limitations will apply even if the above stated
warranty fails of its essential purpose.

6. Termination. This Agreement is effective until terminated. You may
terminate this Agreement at any time by destroying all copies of Software.
This Agreement will terminate immediately without notice from Sun if you
fail to comply with any provision of this Agreement. Upon Termination, you
must destroy all copies of Software.

7. Export Regulations. All Software and technical data delivered under this
Agreement are subject to US export control laws and may be subject to
export or import regulations in other countries. You agree to comply strictly
with all such laws and regulations and acknowledge that you have the
responsibility to obtain such licenses to export, re-export, or import as may
be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or on
behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in Software and
accompanying documentation will be only as set forth in this Agreement; this
is in accordance with 48 CFR 227.7201 through 227.7202-4 (for Department
of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-
DOD acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any
jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be
unenforceable, this Agreement will remain in effect with the provision
omitted, unless omission would frustrate the intent of the parties, in which
case this Agreement will immediately terminate.

11. Integration. This Agreement is the entire agreement between you and
Sun relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, representations and warranties

and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification of this
Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

JAVA DEVELOPMENT TOOLS J2ME WIRELESS
TOOLKIT (J2ME WTK),VERSION 1.0.X
SUPPLEMENTAL LICENSE TERMS
These supplemental license terms (“Supplemental Terms”) add to or modify
the terms of the Binary Code License Agreement (collectively, the
“Agreement”). Capitalized terms not defined in these Supplemental Terms
shall have the same meanings ascribed to them in the Agreement. These
Supplemental Terms shall supersede any inconsistent or conflicting terms in
the Agreement, or in any license contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the
terms and conditions of this Agreement, including, but not limited to Section
2 (Java Technology Restrictions) of these Supplemental Terms, Sun grants you
a non-exclusive, non-transferable, limited license to reproduce internally and
use internally the binary form of the Software complete and unmodified for
the sole purpose of designing, developing and testing your Java applets and
applications intended to run on the Java platform (“Programs”) provided that
any executable output generated by a compiler that is contained in the
Software must (a) only be compiled from source code that conforms to the
corresponding version of the OEM Java Language Specification; (b) be in the
class file format defined by the corresponding version of the OEM Java Virtual
Machine Specification; and (c) execute properly on a reference runtime, as
specified by Sun, associated with such version of the Java platform.

2. Java Technology Restrictions. You may not modify the Java Platform
Interface (“JPI”, identified as classes contained within the “java” package or
any subpackages of the “java” package), by creating additional classes within
the JPI or otherwise causing the addition to or modification of the classes in
the JPI. In the event that you create an additional class and associated API(s)
which (i) extends the functionality of the Java platform, and (ii) is exposed to
third party software developers for the purpose of developing additional
software which invokes such additional API, you must promptly publish
broadly an accurate specification for such API for free use by all developers.
You may not create, or authorize your licensees to create, additional classes,
interfaces, or subpackages that are in any way identified as “java”, “javax”,
“sun” or similar convention as specified by Sun in any naming convention
designation.

3. Java Runtime Availability. Refer to the appropriate version of the Java
Runtime Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code
which may be distributed with Java applets and applications.

4. Trademarks and Logos. You acknowledge and agree as between you and
Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related
trademarks, service marks, logos and other brand designations (“Sun Marks”),
and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks.
Any use you make of the Sun Marks inures to Sun’s benefit.

5. Source Code. Software may contain source code that is provided solely for
reference purposes pursuant to the terms of this Agreement. Source code
may not be redistributed unless expressly provided for in this Agreement.

6. Termination for Infringement. Either party may terminate this Agreement
immediately should any Software become, or in either party’s opinion be
likely to become, the subject of a claim of infringement of any intellectual
property right.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road,
Palo Alto, California 94303

(LFI#101620/Form ID#011801)

303

73683-4 AppD.F 5/24/02 9:08 AM Page 303

304

INDEX

A
abstract classes, 143
API (Application Programming Interface), 18
applications

overview, 13
XML validation, 114–115

arguments, 17, 40–43
arrays, 52–53
attributes

declarations, 79, 124–127, 293
elements

CDATA, 90–91
definition, 90–91
JDOM API, 248–249
SAX API, 150–151
XML, 72–73, 293

enumerated lists, 94–95
groups, 132–133
names, DOM API, 194–195
namespace attribute, 104–105
order, 153
tokens, 92–93
validation rules, 93
values list, 94–95

B
blocks

statement blocks, 44–45
variable scope leave, 65

C
calls, methods, 40–41, 43
case values, 50–51
CD-ROM, 294–295
CDATA attribute, 90–91
CDATA section, XML documents

defined, 292
extraction, DOM API, 210–211
JDOM API, 244–245
overview, 80–81

CDATA section object, 210–211
characters in strings, number of, 39
characters method, 142

child elements
DOM API, 222–223
JDOM API, 236–237, 254–255
overview, 70–71

child nodes, 190–191
class files

new operator, 32–33
SAX API, 137

class keyword, 22
classes

abstract, 143
declaration, object creation, 32
event handler, 142–143
extensions, 58–59
import operations, 56–57
instances, 16
Java, 22–23
Java class library, 18
JAXP API, 284
names, 23
overview, 5, 16, 18
packages, directories, 54–55
standard class library, 18
subclasses, 58–59
superclasses, 58–59

CLASSPATH environment variable
JAXP API, 263
JDOM API, 230
SAX API, 140–141

comment method, lexical handler, 178–179
comments

extraction, DOM API, 208–209
JDOM API, 242–243
statements, Java, 21
XML, 74–75, 291

compositor sequence tag, elements, 117
conditional statements, 44–45
conditions, 46–51
constraints, XML documents

attribute values, 128–129
element values, lists, 122–123
overview, 69
values, regular expressions, 134–135

constructors, object fields, 35
container elements, 86–87, 116–117
control flow, Java, 288–289
Crimson, 294

83683-4 Index.F 5/24/02 9:08 AM Page 304

305

Java and XML:
Your visual blueprint for creating

Java-enhanced Web programs

D
data exchange, XML schemas, 107
data hiding, 17
data types

arrays, 52–53
variables, 36–37, 42
XML schemas, 107

container elements, 116–117
elements, 120–121

declaration handlers, SAX API, 176–177
declarations

array variables, 52–53
attributes, 124–127
container elements, 86–87
elements, 110–111, 116–117
entities in attributes, 79
general entities, DTD, 96–97
global element, 130–131
notation, 98–99, 174–175
optional elements, XML schemas, 118–119
XML, 66–67, 290
XML schemas, 108–109

DHTML (dynamic HTML), 184
direct subclasses, 59
directories

classes, packages, 54–55
Java applications, 33
SDK installation, 14
xerces.jar file, 138–139

document type declaration, XML, 290
documents, standalone, 66–67
documents, XML

comments, 74–75
creation, DOM, 216–217
elements, 66–67, 70–71
overview, 7
processing instructions, 160–161
saved, JDOM API, 252–253
validation, 69, 114–115
well-formed, 68–69
XML schemas, assigning, 112–113

DOM API, 184–197, 200–231
DTDs (document type definitions)

element declarations, 82–85
general entities, 96–97

detection (DOM), 202–205

E
elements

arrays, 52–53
attributes, 90–91
child elements, 70–71

DOM API, 222–223
JDOM API, 236–237, 254–255

container elements
declaration, 86–87
XML schemas, 116–117

content, 88–89
data types, XML schemas, 120–121
declarations, 82–83, 110–111
detection, 146–147
empty, 88–89, 111
global element declarations, 130–131
JDOM, text content extraction, 240–241
local definitions, 130–131
name element, 102
nested, 86–87
optional, XML schemas, 118–119
parent elements, 70–71
predefined, references, 130–131
root element, 186–187, 232–235
simple types, 124–125
specific content, 88–89
structure definition, 88–89
textual, extraction (SAX API), 148–149
type determination, JDOM API, 258–259
values, 120–123
whitespace, ignorable, 158–159
XML, 70–73, 292–293

entities
general entities, 96–97
notations comparison, 99
pre-defined references, JDOM, 256–257
reference detection, DOM, 200–201

enumerated lists
attributes, 94–95
element values, 122–123
overview, 129

environment variables, 140–141
error handling

creation, SAX API, 164–165
DOM API, 274–275
overview, 60–63

83683-4 Index.F 5/24/02 9:08 AM Page 305

306

INDEX

errors
comments, XML documents, 75
error method, 165
SDK, 29
warnings, 165
XML documents, 66–67

escape sequence, 287
event-based parsers, 137
event handler classes, 142–145
events

detection, JAXP, 266–267
SAX API, 136

exception objects, 60–61
exceptions, 60–63
exclamation point (!), general entities, 100–101
expressions, 46–47, 50–51
extensibility, 12–13
extensions, classes, 58–59
external DTD files, 84–85
external entities, XML documents

general entities, 100–101
overview, 291
parameter entities, 292
SAX API, 168–169

F
factory classes, 268–269
false conditions, 46–47
fields, 16, 34–35
float data type, XML schemas, 120–121
floating-point types, Java, 286

G
general entities, 96–97, 100–101
global element declarations, 130–131
GNU JAXP, 294
groups, attributes, 132–133
GUIs (Graphical User Interfaces), 18

H
handler classes, default (SAX API), 170–171
handling errors. See error handling
helper applications, notations, 99
hierarchy, 5
HTML (Hypertext Markup Language), 6–7

I
IDE (Integrated Development Environment) package

directories, 55
import operations, 56–57
indirect subclasses, 59
infinite loops, 48–49
installation, CD-ROM, 294–295
instances, classes, 16
instatiation, 32–33
interfaces

DOM API, 278–280
method definitions, 142–143
SAX API, 276–277
XMLReader, 144–145

internal entities, XML documents, 79, 291–292
interoperability, Java and XML, 13

J
JAR (Java Archive) files, 18, 138
Java

control flow, 288–289
escape sequences, 287
history of, 2
keywords, 286
method creation, 24–25
objects, 32–33
operators, 287
SDK (Software Development Kit), 14–15
source file creation, 22–23
Web sites, 289
XML, 12–13

Java 2, Enterprise Edition, 294
Java 2 SDK, Standard Edition, 294
Java API. See JAXP API
Java class library, 18–19
Java XML pack, 295
javac compiler, 28–29
JAXP API

classes, 284
GNU, 294
overview, 262–263

JBuilder Personal, 295
JDK (Java Development Kit), 138
JDOM API, 230–281
JVM (Java Virtual Machine), 4, 30–31

83683-4 Index.F 5/24/02 9:08 AM Page 306

307

Java and XML:
Your visual blueprint for creating

Java-enhanced Web programs

K
keywords

definition, 17
Java, 286

L
lexical handlers, SAX API, 178–179
libraries, 18
license agreement, 8, 14–15, 298–303
lists

element constraints, 122–123
enumerated, attributes, 94–95

local definitions, elements, 130–131
local variables, 64–65
loops,

attribute names, 152–153
iterations, variables, 64–65
Java, semicolons, 20
overview, 46–49

M
main method, 32
markup languages, 6
member variables, 64–65
members, objects, 33
method modifiers, Java, 24–25
methods

arguments, 40–42
body, 32
calls, 40–43
interfaces, 142–143
overview, 3, 16

mobile programs, 3
modular design, XML schemas, 107
modules, 3

N
names

attributes
determination (SAX API), 152–153
DOM API, 194–195

classes, 23
container elements, 86–87

DTD files, XML documents, 84–85
elements, 71
import operations, 56–57
naming conflicts, 102

namespace-aware parsers, JAXP, 269
namespaces, 102–103
nested elements, 86–87
nested loops, 49
networks, XML, 10
nodes, DOM API and

child nodes, 190–193
copy, 228–229
navigation, 214–215
overview, 184, 190–191
text nodes, 224–225
types, 188–189, 226–227

non-XML data, 98–99
nonstandard text, XML documents, 80–81
notations, 98–99

O
object fields, 34–35
object-oriented languages, 3
object-oriented programming, 16–17
objects

defined, 3
exception objects, 60–61
fields, 16
overview 32–35
properties, 16, 150–151

operating systems, SDK, 15
optional element declarations, XML schemas, 118–119
override operations, superclass methods, 59

P
package statements, class files, 54–55
packages, 54–57
parent elements, 70–71
parsed XML documents, 144–145

DOM API, 272–273
JAXP, 264–265
line number being parsed, 156–157
SAX API, 144–145

83683-4 Index.F 5/24/02 9:08 AM Page 307

308

INDEX

parsers
DOM-compliant, 185
event-based parsers, 137
JAXP, 262
non-validating parsers, 180–181
validating parsers, 180–181

PATH environment variable, 140–141
Perl, DOM, 185
platform independence, 8
portability, 2
predefined elements, referencing, 130–131
predefined entities

defined, 78–79
JDOM, 256–257
overview, 291

prefixes, usage toggle (SAX API), 182–183
principle of least surprise, 2
processing instructions, XML documents

defined, 291
notations comparison, 99
overview, 76–77

program compiles, Java, 28–29
program executing, 30–31
programming languages, 3, 6
properties

objects, 16, 150–151
XML parsers, SAX API, 172–173

Q
quotes (”)

attributes, 72–73
general entities, 96–97

R
readers, event handlers, 144–145
regular expressions, value constraints, 134–135
return statements, 42–43
return types, methods, 24–25
return values, methods, 17
reusable code, 13
root element

DOM tree structure, 218–219
JDOM API, 232–235
name retreival, DOM, 186–187
overview, 70–71

S
safe programs, 3
SAX API

attribute interface, 276
attributes, 152–155
class files, 137
cost, 137
declaration handlers, 176–177
default handler, 170–171
documentation, 137
events, 136
overview, 136–137
versions, 136
Xerces XML parser, 138–139

SAX-compliant XML parser, 136
schemas. See XML schemas
scope, variables, 64–65
sequence compositor, 117
servers, 4
SGML (Standard Generalized Markup Language), 6–7
simple language, Java, 2
simple types, elements, 124–125
source code, Java, 28–29
source files creation, Java, 22–23
stability, 9
standalone documents, 66–67
standard class library, 18
statement blocks, 44–45
statements

break statement, 50–51
import statement, 56–57
Java, 20–21
package statements, class files, 54–55
return statements, 42–43

static methods, Java, 24–25, 41
string data type, XML schemas, 110–111, 120–121
String keyword, 38
strings, 38–39
structure, elements, 88–89
subclasses, 58–59
superclasses, 58–59
system environment variables, 140–141
system requirements, 294

83683-4 Index.F 5/24/02 9:08 AM Page 308

309

Java and XML:
Your visual blueprint for creating

Java-enhanced Web programs

T
tags, XML

DTDs, 82–83
overview, 6, 70–71
schemas, 108–109

throw exceptions, 62–63
tokens, attributes, 92–93
tree structure, DOM API and

nodes, 184
output, JDOM, 260–261
root element, 218–219

true conditions, 46–47
typed languages, 36–37

U
UltraEdit, 295
Unicode, 2
user input, exceptions, 61

V
validation, 114–115
values

attributes, 94–95
constraints, regular expressions, 134–135
data type conversion, 36–37
elements, 120–123
expressions, switch statement, 50–51
iterators, re-initialization expressions, 46–47
object fields, 34–35
primitive data types, 36–37
processing instructions, JDOM, 246–247
strings, quotation marks, 38–39

variables, 36–39, 63–65
views, 10
virtual machine architecture, 4
vocabularies, 82–83

W
Web sites, validation services, 115
well-formed XML documents, 68–69

whitespace
ignorable, SAX API, 158–159
statements, Java, 21
validation, 123

wildcards, imports, 56–57
WinZip, 139
words, tokens, 92–93

X
Xerces Java Parser, 295
Xerces XML Parser, installation, 138–139
XML declaration, 66–67, 290
XML (Extensible Markup Language). See also

documents, XML
Java, 12–13
license, 8
networks, 10
overview, 6
tags, 6, 70–71
versions, 8

XML parser
DTD files, 85
filenames, 85
JDOM API, 230
predefined entities, 78–79
properties, SAX API, 172–173
SAX-compliant, 270–271
Xerces, installation, 138–139

XML Pro, 295
XML schemas, 106–113, 116–121
XML specification, 68–69
XML Spy Suite, 295
XSL (Extensible Stylesheet Langauge), 9

Z
zip files, 139

83683-4 Index.F 5/24/02 9:08 AM Page 309

Over 10 million Visual books in print!

For experienced

computer users,

developers, network

professionals who

learn best visually.

Read Less – Learn More™

Title ISBN Price

Active Server™ Pages 3.0: Your visual blueprint for developing interactive Web sites 0-7645-3472-6 $26.99

ASP.NET: Your visual blueprint for creating Web
applications on the .NET Framework 0-7645-3617-6 $26.99

C#: Your visual blueprint for building .NETapplications 0-7645-3601-X $26.99

Excel Programming: Your visual blueprint for building
interactive spreadsheets 0-7645-3646-X $26.99

Flash™ ActionScript: Your visual blueprint for creating
Flash™-enhanced Web sites 0-7645-3657-5 $26.99

HTML: Your visual blueprint for designing effective Web pages 0-7645-3471-8 $26.99

Java™: Your visual blueprint for building portable Java programs 0-7645-3543-9 $26.99

Java™ and XML: Your visual blueprint for creating Java™

enhanced Web programs 0-765-36830-4 $26.99

JavaScript™: Your visual blueprint for building dynamic Web pages 0-7645-4730-5 $26.99

JavaServer™ Pages: Your visual blueprint for designing dynamic content with JSP 0-7645-3542-0 $26.99

Linux®: Your visual blueprint to the Linux platform 0-7645-3481-5 $26.99

Perl: Your visual blueprint for building Perl scripts 0-7645-3478-5 $26.99

PHP: Your visual blueprint for creating open source, server-side content 0-7645-3561-7 $26.99

Unix®: Your visual blueprint to the universe of Unix 0-7645-3480-7 $26.99

Visual Basic® .NET: Your visual blueprint for building versatile
programs on the .NET Framework 0-7645-3649-4 $26.99

Visual C++® .NET: Your visual blueprint for programming on
the .NET platform 0-7645-3664-3 $26.99

XML: Your visual blueprint for building expert Web pages 0-7645-3477-7 $26.99

“Apply It” and “Extra” provide ready-to-run code and useful tips.

New Series!

The visual alternative to learning
complex computer topics

93683-4 BoB.F 5/24/02 9:08 AM Page 310

Title ISBN Price
Master Active Directory™ VISUALLY™ 0-7645-3425-4 $39.99
Master Microsoft® Access 2000 VISUALLY™ 0-7645-6048-4 $39.99
Master Microsoft® Office 2000 VISUALLY™ 0-7645-6050-6 $39.99
Master Microsoft® Word 2000 VISUALLY™ 0-7645-6046-8 $39.99
Master Office 97 VISUALLY™ 0-7645-6036-0 $39.99
Master Photoshop® 5.5 VISUALLY™ 0-7645-6045-X $39.99
Master Red Hat® Linux® VISUALLY™ 0-7645-3436-X $39.99

Master VISUALLY™ Adobe® Photoshop®, Illustrator®,
Premiere®, and After Effects® 0-7645-3668-0 $39.99

Master VISUALLY™ Dreamweaver® 4 and Flash™ 5 0-7645-0855-5 $39.99
Master VISUALLY™ FrontPage® 2002 0-7645-3580-3 $39.99
Master VISUALLY™ HTML 4 & XHTML™ 1 0-7645-3454-8 $39.99
Master VISUALLY™ Microsoft® Windows® Me Millennium Edition 0-7645-3496-3 $39.99
Master VISUALLY™ Office XP 0-7645-3599-4 $39.99
Master VISUALLY™ Photoshop® 6 0-7645-3541-2 $39.99
Master VISUALLY™ Web Design 0-7645-3610-9 $39.99
Master VISUALLY™ Windows® 2000 Server 0-7645-3426-2 $39.99
Master VISUALLY™ Windows® XP 0-7645-3621-4 $39.99
Master Windows® 95 VISUALLY™ 0-7645-6024-7 $39.99
Master Windows® 98 VISUALLY™ 0-7645-6034-4 $39.99
Master Windows® 2000 Professional VISUALLY™ 0-7645-3421-1 $39.99

The Complete Visual Reference

The Visual™

series is available

wherever books are

sold, or call

1-800-762-2974.
Outside the US, call

317-572-3993

For visual learners

who want an all-in-one

reference/tutorial that

delivers more in-depth

information about a

technology topic.
“Master It” tips provide additional topic coverage.

with these two-color Visual™ guides

93683-4 BoB.F 5/24/02 9:08 AM Page 311

312

The CD-ROM included in this book contains many
useful files and programs. Before installing any of
the programs on the disc, make sure that you do

not already have a newer version of the program
already installed on your computer. For information

on installing different versions of the same program,
contact the program’s manufacturer. For the latest and
greatest information, please refer to the ReadMe file
located at the root level of the CD-ROM.

System Requirements

To use the contents of the CD-ROM, your computer
must have the following hardware and software:

• A PC with a Pentium or faster processor

• Microsoft Windows 95, 98, ME, NT 4.0, 2000, or XP

• At least 128MB of physical RAM installed on your
computer

• A double-speed (8x) or faster CD-ROM drive

• A monitor capable of displaying at least 256 colors
or grayscale;

• A network card.

For a full listing of the CD-ROM’s contents, the
e-Version of the book, troubleshooting instructions,
and End User Licensing Agreements, see Appendix D.

Java 2 Platform Installations

Use of the Java 2 Platform Micro Edition, Wireless
Toolkit 1.03, (J2ME), Java 2 Platform, Standard Edition
(J2SE) version 1.4 for Windows and Forte for Java are
subject to the Sun Microsystems, Inc. Binary Code
License agreement on pages 298-301 of the
accompanying book. Read this agreement carefully. By
opening the CD package, you are agreeing to be
bound by the terms and conditions of this agreement.

CD-ROM INSTALLATION INSTRUCTIONS

Java and XML:
Your visual blueprint for creating

Java-enhanced Web programs

993683-4 Install.F 5/24/02 9:08 AM Page 312

	JavaTM and XML: Your visual blueprint for creating Java-enhanced Web programs
	TABLE OF CONTENTS
	1) INTRODUCING JAVA AND XML
	INTRODUCING THE JAVA PHENOMENON
	INTRODUCING XML
	JAVA AND XML COMBINED

	2) JAVA BASICS
	INSTALL THE JAVA SDK
	OBJECT-ORIENTED PROGRAMMING CONCEPTS
	THE JAVA CLASS LIBRARY
	JAVA CONVENTIONS
	CREATE A SOURCE FILE
	CREATE A METHOD
	CREATE THE METHOD BODY
	COMPILE A JAVA PROGRAM
	EXECUTE A JAVA PROGRAM

	3) JAVA PROGRAMMING
	CREATE AN OBJECT
	WORK WITH OBJECT FIELDS
	SPECIFY THE DATA TYPE FOR A VARIABLE
	WORK WITH STRINGS
	CALL A METHOD
	USING RETURN VALUES AND ARGUMENTS
	USING THE IF STATEMENT
	USING THE FOR STATEMENT
	USING THE WHILE OR DO WHILE LOOP
	USING THE SWITCH STATEMENT
	CREATE AN ARRAY
	CREATE A PACKAGE
	IMPORT A PACKAGE
	EXTEND A CLASS
	CREATE AN EXCEPTION
	HANDLE ERRORS
	UNDERSTANDING VARIABLE SCOPE

	4) XML BASICS
	CREATE AN XML DOCUMENT
	VERIFY WELL-FORMEDNESS
	CREATE ELEMENTS
	ADD ATTRIBUTES
	ADD A COMMENT
	INCLUDE SPECIAL PROCESSING INSTRUCTIONS
	USING PREDEFINED XML ENTITIES
	INCLUDE NONSTANDARD TEXT

	5) XML DOCUMENT TYPE DEFINITIONS
	DECLARE A DTD
	CREATE AN EXTERNAL DTD FILE
	DECLARE A CONTAINER ELEMENT
	DEFINE THE STRUCTURE OF ELEMENTS
	DEFINE ELEMENT ATTRIBUTES
	DECLARE ATTRIBUTES AS WORDS
	RESTRICT ATTRIBUTES TO A LIST OF VALUES
	CREATE INTERNAL GENERAL ENTITIES
	CREATE A NOTATION
	CREATE EXTERNAL GENERAL ENTITIES
	USING NAMESPACES
	USING THE XML NAMESPACE ATTRIBUTE

	6) XML SCHEMAS
	INTRODUCING XML SCHEMAS
	CREATE AN XML SCHEMA DECLARATION
	DECLARE AN ELEMENT
	ASSIGN AN XML SCHEMA TO AN XML DOCUMENT
	VALIDATE AN XML DOCUMENT
	DECLARE A CONTAINER ELEMENT
	DECLARE OPTIONAL ELEMENTS
	SPECIFY DATA TYPES
	CONSTRAIN ELEMENT VALUES
	CONSTRAIN ELEMENT VALUES TO A LIST
	DECLARE AN ATTRIBUTE
	CONSTRAIN THE VALUES OF AN ATTRIBUTE
	REFERENCE PREDEFINED ELEMENTS
	CREATE A GROUP OF ATTRIBUTES
	CONSTRAIN VALUES USING REGULAR EXPRESSIONS

	7) THE SAX API
	AN INTRODUCTION TO THE SAX API
	INSTALL THE XERCES XML PARSER
	SET THE CLASSPATH ENVIRONMENT VARIABLE
	CREATE AN EVENT HANDLER CLASS
	PARSE AN XML DOCUMENT
	DETECT ELEMENTS IN AN XML DOCUMENT
	EXTRACT TEXTUAL ELEMENT CONTENT
	DETERMINE THE NUMBER OF ELEMENT ATTRIBUTES
	DETERMINE THE NAME OF ATTRIBUTES
	DETERMINE THE VALUE OF ATTRIBUTES
	DETERMINE THE LINE NUMBER BEING PARSED
	DETERMINE IGNORABLE WHITESPACE IN AN ELEMENT
	WORK WITH PROCESSING INSTRUCTIONS
	PARSE MULTIPLE XML DOCUMENTS USING MULTIPLE EVENT HANDLERS
	CREATE AN ERROR HANDLER
	CREATE A CUSTOM ERROR MESSAGE
	CREATE AN ENTITY RESOLVER
	USING THE DEFAULT HANDLER
	DETERMINE FEATURE AND PROPERTY SETTINGS
	DETECT NOTATION DECLARATIONS
	CREATE A DECLARATION HANDLER
	CREATE A LEXICAL HANDLER
	TURN ON VALIDATION
	TOGGLE NAMESPACE AND PREFIX USAGE

	8) THE DOM
	INTRODUCING THE DOM
	RETRIEVE THE ROOT ELEMENT NAME
	DETERMINE NODE TYPE
	WORK WITH NODES
	TRANSVERSE ALL ELEMENT NODES
	DETERMINE NAMES OF ATTRIBUTES
	DETERMINE THE VALUES OF ATTRIBUTES
	WORK WITH PROCESSING INSTRUCTIONS
	DETECT ENTITY REFERENCES
	DETECT GENERAL ENTITIES IN THE DTD
	RETRIEVE DTD INFORMATION
	RETRIEVE TEXT INFORMATION
	EXTRACT COMMENTS
	EXTRACT CDATA SECTIONS
	RETRIEVE NOTATION DECLARATIONS
	NAVIGATE NODES
	CREATE AN XML DOCUMENT
	CREATE A NEW DOM TREE WITH A ROOT ELEMENT
	ADD ATTRIBUTES TO AN ELEMENT
	ADD A CHILD ELEMENT
	CREATE A TEXT NODE
	CREATE OTHER NODE TYPES
	COPY NODES

	9) JDOM
	INTRODUCING JDOM
	CREATE THE ROOT ELEMENT
	ADD CONTENT TO THE ROOT ELEMENT
	CREATE CHILD ELEMENTS
	READ AN XML DOCUMENT
	EXTRACT ELEMENT TEXT CONTENT
	INSERT A COMMENT
	INSERT A CDATA SECTION
	ADD PROCESSING INSTRUCTIONS
	ADD ATTRIBUTES TO AN ELEMENT
	WORK WITH ATTRIBUTE OBJECTS
	SAVE AN XML DOCUMENT
	WORK WITH CHILD ELEMENTS
	INSERT PRE-DEFINED ENTITY REFERENCES
	DETERMINE ELEMENT TYPE
	OUTPUT A DOM TREE USING JDOM

	10) JAXP
	INTRODUCING JAXP
	PARSE AN XML DOCUMENT
	DETECT EVENTS
	CONFIGURE FACTORY SETTINGS
	SET SAXPARSER FEATURES
	PARSE A DOCUMENT USING DOM
	CREATE AN ERROR HANDLER FOR USE WITH DOM

	APPENDIX A
	SAX API QUICK REFERENCE
	DOM API QUICK REFERENCE
	JDOM QUICK REFERENCE
	JAXP QUICK REFERENCE

	APPENDIX B
	JAVA QUICK REFERENCE

	APPENDIX C
	XML QUICK REFERENCE

	APPENDIX D
	WHAT'S ON THE CD-ROM
	USING THE E-VERSION OF THIS BOOK
	END-USER LICENSE AGREEMENT

	INDEX
	CD-ROM INSTALLATION INSTRUCTIONS

