
32

JSP

J avaServer Pages (JSP) is technology developed by
Sun Microsystems that is used to create powerful
and dynamic Web sites.

INTRODUCTION TO JAVASERVER PAGES

JAVA BASICS 1

FEATURES OF JAVASERVER PAGES

Create Dynamic Web Sites

Dynamic Web sites contain Web pages that
display constantly changing content. Using
JavaServer Pages, you can determine the content
a Web page displays, depending on many
different factors. For example, you can have a
page automatically present different content to
users depending on the current date or the user's
location. Dynamic Web pages are more useful
to each individual user than static Web pages.

Create Interactive Web Sites

Interactive Web sites contain Web pages that
exchange information between the Web site
and the user. JavaServer Pages allows Web
developers to easily create Web pages that
process information from a user and then
generate content depending on the information
submitted by the user. Interactive Web sites
allow Web developers to tailor the content
of Web pages to better appeal to the user.

Increased Security

Because JavaServer Pages code is processed on
the Web server, the user cannot access the code
used to create a JSP page. This makes it safer to
work with sensitive data, such as login names
and passwords. If a user views the source code
of a JSP page within a Web browser, all the user
will see is the HTML code that was generated
by the Web server to create the page, not the
JavaServer Pages code itself.

Work With Databases

An important feature of JavaServer Pages is the
ability to connect to a database. JSP pages can
be used to make information stored in a database
available to the users who visit a Web site. Using
databases to store information and JSP pages to
access the information is an efficient method of
displaying up-to-date information in a Web site.

JavaServer Pages can also allow users to manipulate
the data in a database. For example, a JSP page can
be used to add, delete or edit records in a database.

Using JavaBeans

JavaBeans are re-usable components that allow
Web developers to keep the Java code for a JSP
page separate from the HTML code for the page.
This helps prevent the code on a JSP page from
becoming long and difficult to work with and
allows Web developers to share and re-use Java
code. JavaBeans also enable specialization when
developing a Web site by allowing experts in Web
page design to work with the HTML content for
a page while programmers develop the Java code
for the page.

Using Custom Tags

JavaServer Pages technology allows Web developers
to create their own custom tags that perform
specific tasks. Like JavaBeans, tag libraries are
re-usable components that help keep the Java
code for a JSP page separate from the HTML code
for the page. Once a tag library containing the
code for a custom tag has been created, the
custom tag can be used in JSP pages.

Web Servers

You do not require a dedicated Web server to
publish the JSP pages you create. You can simply
install Web server software on your own computer.
A popular example of Web server software that
includes support for JavaServer Pages is Tomcat.
The Tomcat Web server is commonly used by Web
developers who create JSP pages.

You do not require any special development tools
to create and view JSP pages. All you need is a text
editor and a Web browser.

Versions

JavaServer Pages 1.1 is the current version of
JavaServer Pages, although the specification for a
newer version 1.2 has been proposed. On average,
a new version of JavaServer Pages is produced each
year. Each new version offers more features than
previous versions of the technology. The Web
server you are running will determine the version
of JavaServer Pages you can use and the tasks you
can perform.

Programming Languages

The Java programming language forms the basis
of JavaServer Pages technology. The version of
Java you use depends on the Web server you
are running and the version of JavaServer Pages
technology you are using.

Servlet Technology

JavaServer Pages is based on servlet technology,
which allows Web developers to use Java code
to create dynamic Web pages. JavaServer Pages
simplifies the process of creating dynamic pages
using Java.

Server-side Processing

JavaServer Pages uses a JSP engine that is part of
the Web server, so the processing of JSP code takes
place on the server. When a user requests a JSP
page, the JSP engine processes the page and then
sends the result as HTML code to the user's Web
browser. This allows JSP pages to be viewed by
every Web browser.

JSP Implicit Objects

JSP includes implicit objects that can be used to
perform specific tasks. For example, the session
object can be used to store session information
about a client computer as the client navigates
a Web site. Other commonly used implicit
objects include the response object, which sends
information to a client, and the request object,
which retrieves and controls information sent
from a client to the Web server.

54

JSP

J ava is a programming language used to create
applications for the World Wide Web. Java was
originally developed by Sun Microsystems in

1991 for use in consumer electronics such as handheld
computers and television sets, but the language was
later modified for use on the Web. Java is now a
full-featured programming language that is easy to
use and understand.

Java is the main programming language used in
JavaServer Pages. While in-depth knowledge of Java is
not required, in order to effectively use JavaServer Pages
you need to understand the basics of the language. A
thorough understanding of Java will enable you to create
more sophisticated, versatile and efficient JSP pages.

You can also utilize your knowledge of Java to work
with other Java-based technologies, such as JavaBeans.

The popularity of JavaServer Pages is partly due to the
fact that people who are already familiar with the Java
programming language do not need to learn a new
programming language in order to use JavaServer Pages.
Since JavaServer Pages uses Java code to create Web
pages, programmers can use their existing knowledge
of Java to create JSP pages. JavaServer Pages also uses
programming code that is unique to JavaServer Pages
and is not strictly Java code.

INTRODUCTION TO JAVA

JAVA BASICS 1

Features

Java includes a number of features that make the
language ideal for use on the Web. Java programs
transfer quickly over the Web since the language
was created to be portable and file sizes are small.
In addition, Java is platform independent. This means
that a Java program can be run on any computer that
has a Java virtual machine, regardless of the operating
system the computer uses. This feature is invaluable
for use on the Web, where computers using various
languages and environments must interact.

Object-Oriented

Java is an object-oriented programming language,
so if you understand the fundamentals of how
Java works, you will understand the fundamental
concepts of object-oriented programming.
Object-oriented programming is a type of
programming that treats separate pieces of code
as distinct modules, or objects. It is often easier
to learn object-oriented programming if you do
not have vast experience with programming
languages that are non-object-oriented. Despite
its apparent initial complexity, object-oriented
programming is easy to learn.

Security

Java provides a number of advanced security
features, such as access controls, which are not
offered by many other programming languages.
Java programs may contain viruses or code that
can cause computer problems. Java’s access
controls allow programmers to use untrusted
Java code in their programs without putting
their systems at risk.

Bytecode

When a Java program is compiled, the program is not
immediately translated into machine code, which are
instructions specific to a particular operating system.
Instead, it is compiled into an intermediate language,
called bytecode, that can be interpreted by a Java
virtual machine. When the Java program is run on a
computer that has the Java virtual machine, the Java
interpreter translates the bytecode into code that the
computer running the program can understand.

PROGRAMS FOR CREATING JAVA CODE

The first step in creating Java programs is to select the
method you want to use to create the Java programming
code, or source code.

Text Editors

Since all Java source code is plain text, you can
use a simple text editor to create the source code.

Notepad

Microsoft Notepad is a simple text editor available
on all computers running the Windows operating
system. Most operating systems contain a text
editor similar to Notepad. While very basic,
Notepad is more than adequate for creating
source code and is widely used by programmers.

UltraEdit

UltraEdit is a sophisticated text editor popular
with many programmers. UltraEdit’s advanced
features include syntax highlighting, which
highlights the Java code to make the code easier
to read, and the ability to save Web pages directly
to a Web server. UltraEdit is a shareware program
available at www.ultraedit.com.

For Non-Windows Operating Systems

There are many text editors that can be used to create
Java source code on UNIX computers. Most UNIX
computers have multiple text editors installed by default.
Text-based editors such as vi and Emacs are very popular
and can be configured to suit your needs. If your UNIX
system has a graphical interface, like GNOME, then
you should already have access to graphical text editors,
such as gnotepad+.

On the Macintosh operating system, you can use the
SimpleText text editor included with the system.

HTML Editors

HTML editors are programs specifically designed to
help you create Web pages. Compared to text editors,
HTML editors usually offer more advanced features
to help you work with HTML and Java code.

HomeSite

Allaire's HomeSite is a comprehensive HTML
editor designed for creating Web pages on the
Windows operating system. HomeSite is suitable
for beginners creating a small number of Web
pages and for experienced Web masters producing
complicated Web pages and Web sites. HomeSite
includes syntax coloring for JavaServer Pages code
and allows you to view the results generated by
the code within HomeSite. HomeSite is available
at www.allaire.com.

BBEdit

BBEdit is a sophisticated HTML editor for the
Macintosh operating system. BBEdit makes it
easy to create JavaServer pages and is available
at www.barebones.com.

Integrated Development Environments

Instead of a text editor, you can use a Java Integrated
Development Environment (IDE). An IDE is a program
that allows you to create, execute, test and organize your
source code. IDEs often contain additional features such
as sample code, reusable components and troubleshooting
capabilities. IDEs are commonly used to create larger
applications and to enable multiple programmers to work
on a single project at the same time.

JBuilder

Borland’s JBuilder is one of the more popular
Java IDEs. JBuilder is a sophisticated, full-featured
IDE that can be used to create JSP pages and
complex Java applications. JBuilder is also available
for various UNIX operating systems. JBuilder is
available at www.borland.com/jbuilder.

76

JSP

J ava shares many concepts with other object-oriented
programming languages, such as C++ and Perl. While
object-oriented programming languages use the same

concepts, the terminology and coding systems sometimes
differ. For example, in Perl, a single value in an object is
referred to as a property. In Java, this is referred to as a field.

The amount of object-oriented programming a Web site
requires depends on the size and scope of the Web site.
It also depends on where you store the Java code. Storing
the Java code in the JSP pages themselves requires much
less object-oriented programming than storing the Java
code in external modules, referred to as JavaBeans.

OBJECT-ORIENTED PROGRAMMING CONCEPTS

JAVA BASICS 1

JAVA CONCEPTS

Classes

A class is the Java code that serves as a template or
plan for creating objects, which are the core features
of object-oriented programming. A single class can
be used to create many objects. For example, a class
containing code for generating messages can be
used to create an object that displays a welcome
message at the top of each Web page. The same
class can be used to create another object that
displays copyright information at the bottom of a
page. Classes can be used and shared by more than
one Java program and therefore help programmers
avoid having to constantly rewrite the same type of
code.

Fields

Fields, also known as data fields, are the properties or
attributes associated with an object. In comparison to
other programming languages, fields can be thought
of as variables of the class. Fields can store different
types of data, such as strings of text, integers and
references to other objects.

Changing the value of an object's fields usually affects
the behavior of the object. For example, in an object
used to display a changing message on a Web page,
a field may be used to specify how often the message

changes. With a field value of 1, the message will be
updated once every minute. When the field value is
changed to 60, the message will be updated once an
hour.

When multiple objects are created using the same
class, it is typical for the objects to be the same except
for the values held in the objects' fields.

Objects

An object is a package of code that is
composed of data and procedures that make
use of the data. Objects have two primary
functions–to store information and to perform
tasks. Objects contain fields, which are used
to store information, and methods, which are
used to perform tasks. Objects can be created
to perform a single task or a range of related
tasks. Multiple objects can be created using the
same class. When an object is created, it is said
to be an instance of the class used to create the
object.

Methods

Methods are code that objects use to perform
a specific task. A class used to create objects
can contain multiple methods. The methods
in a class usually perform related tasks.
For example, in a class used to format text
information on Web pages, one method may
be used to generate the code needed to format
the headers of paragraphs. Another method
may be used to format information in a table.
The behavior of methods may be influenced
by the values stored in the fields of the object.

Object Relationships

The following diagram shows how a single class can be
used to create multiple objects, each with its own distinct
fields and methods.

Data Hiding

Data hiding makes classes easier to use
by hiding the fields and methods of the
classes from other parts of the program.
The program then has to know only
how to access the class, not the internal
workings of the class. Data hiding is
often used in programs to protect classes
from tampering and to ensure that the
methods of the classes are used as
originally intended. A programmer can
modify and maintain the code within the
class without affecting the programs that
use the class. This also helps ensure that
objects developed by multiple people are
compatible.

Arguments

One or more values, called arguments, may be passed
to a method to provide the method with input data or
additional information about how to perform a task.
For example, when using a method that creates tables
on a Web page, you may need to pass the number of
rows and columns for a table to the method. Some
methods do not require any arguments.

Return Values

A method may return a value after performing a
specific task. The return value may indicate the result
of a calculation or it could indicate whether or not
the task was performed successfully. For example,
a method that writes information may return a
true or false value, which the program can use to
determine the next code that should be executed.

CLASS

OBJECTS

FIELDS FIELDS

METHODS METHODS

Car

myCar

Create Instance Create Instance

yourCar

Color: Blue
Speed: 60 mph

Color: Red
Speed: 80 mph

Start Engine
Accelerate

Start Engine
Accelerate

98

JSP

T he Java class library is a collection of predefined
classes that you can use in your programs. The Java
class library is also known as the standard class library

or the Java Applications Programming Interface (Java API).

THE JAVA CLASS LIBRARY

JAVA BASICS 1

Classes

Some predefined classes are used often in Java
programs, such as those used to display output,
while other classes are used infrequently, such
as the classes used to create Graphical User
Interfaces (GUIs). The classes included in the Java
class library are available to every Java program
you create. Using the predefined classes in the
Java class library saves you time and effort when
creating programs.

Packages

The classes that make up the Java class library
are organized into packages. A package is a set
of related classes stored in a separate directory.
For example, classes that are used to generate
output are stored in a different package than
classes used to process data from a database.
Generally, classes stored in the same package
can easily access each other.

Package names are based on the directory
structure that stores the classes in the package.
For example, the classes in the java.util
package are stored in the util subdirectory
of the java directory.

Import Packages

You can import a package from the Java class library
into a Java program. This allows you to efficiently
use all the classes in the package. The java.lang
package is automatically imported into every Java
program you create. For more information about
importing a package, see page 52.

Create Packages

In addition to using predefined classes from Java class
library packages, you can author your own classes and
store them in packages you create. For example, if you
create three classes to work with a Web site, you could
store these classes in a package named website. You
could then use the classes from the package when
creating other Java applications. For more information
about creating packages, see page 50.

Java Class Library Installation

The Java class library is installed automatically
when the Java Software Development Kit is
installed on a computer. The Java class library is
stored in a Java archive file named rt.jar in the lib
subdirectory of the jre directory. The jre directory
is located in the main Java SDK directory. You do
not need to adjust any settings on your computer
to specify the location of the Java class library
before using a class from the library in your code.

Commonly Used Java Class Library Packages

The Java class library contains more than 70 packages.
The following is a list of some of the most commonly
used packages in the library.

java.io

Contains classes that allow Java programs
to perform data input and output tasks.

java.lang

Contains the fundamental classes of the Java
programming language and is automatically
loaded by the Java compiler.

java.math

Contains classes that allow Java programs
to perform arbitrary-precision arithmetic.

java.lang.ref

Contains classes that allow Java programs
to interact with the garbage collector, which
performs memory management tasks.

java.lang.reflect

Contains classes that allow Java programs
to obtain information about the variables
and methods of loaded classes.

java.security

Contains classes that allow Java programs
to carry out security procedures, such as
controlling access and encrypting data.

java.sql

Contains classes that allow Java programs
to access and process data from a database.

java.text

Contains classes that allow a Java program
to manipulate strings, dates, numbers and
characters.

java.util

Contains utility classes that allow Java programs
to perform various tasks such as date and time
operations and random number generation.

java.util.jar

Contains utility classes that allow Java programs
to read and write Java ARchive (JAR) files.

java.util.zip

Contains utility classes that allow Java programs
to read and write ZIP files.

javax.swing

Contains classes for creating Swing Graphical
User Interface (GUI) components. Swing GUI
components can be used on all platforms.

1110

JSP

T o use the Java programming language effectively, there
are several conventions you should know. For more
information about the conventions used in Java, you

can consult the Java SDK documentation.

JAVA CONVENTIONS

JAVA BASICS 1

White Space

White space is the term used to describe
characters that are not displayed or printed,
such as spaces, tabs and newlines. Using white
space in your Java code can greatly improve
the readability of your code. For example,
x + 1 / age is easier to read than x+1/age.
The Java compiler ignores white space. This
means that using white space will not affect
the speed at which your Java code is compiled.

Comments

You can include comments in your Java code
to explain important or difficult sections of
code. Adding comments to your code is a good
programming practice and can help make the code
easier to understand. Comments are particularly
useful if you or someone else will need to modify
or troubleshoot the code in the future. For more
information about adding comments to your Java
code, see page 15. Using descriptive names for
items such as classes, methods and variables can
also make your code easier to understand.

Keywords

The Java programming language includes many
keywords. A keyword is a word reserved for use
only by Java. You cannot use keywords as variable
names or values in your code. If you use a Java

keyword inappropriately, the Java compiler will
usually detect the error and stop compiling the
code. The following table displays a listing of
Java keywords:

abstract

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

extends

false

final

finally

float

for

goto

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

Semicolons

Most Java statements end with a semicolon (;). Java
statements that include a block of code, known as the
body of the statement, are the exception. Examples of
these types of statements include methods, conditional
statements and statements that create a loop. The Java
compiler will stop compiling code and report an error if
a required semicolon is missing or a semicolon is used

where one is not needed. When an error occurs due to
the omission or misplacement of a semicolon, the Java
compiler may indicate that the error is in the statement
following the actual location of the error. To avoid these
types or errors, you should always review your Java
code carefully before compiling the code.

Indenting

When working with a Java statement that includes a
body, you should always indent the code in the body.
Indenting makes your code easier to read. Tabs or
spaces can be used to indent code. To keep your
Java programs consistent, you should use the same
indenting style in all your code.

Code without indents:
public static void main(String[] args)
{
int counter = 1;
while (counter <= 5)
{
System.out.println(counter);
counter++;
}
}

Code with indents:
public static void main(String[] args)
{

int counter = 1;
while (counter <= 5)
{

System.out.println(counter);
counter++;

}
}

Braces

Java statements that include a body use braces {} to
indicate the beginning and the end of the body. A body
often contains several statements. If a statement block
contains only one statement, braces are typically not
required. There are two accepted formats that you can
use when including braces in your Java code. You should
choose one format and then use that format consistently
throughout your code.

The most widely used format places the opening brace
on the same line as the Java statement. The closing brace
is placed on its own line and in the same column as the
first character of the Java statement that uses the braces.

Example:
public static void main(String[] args) {

System.out.println("Hello.");
System.out.println("My name is Bob.");

}

The second format places each brace on its own line.
The braces are in the same column as the first character
of the Java statement that uses the braces. This format
is easier to read, but adds more lines to your Java code.

Example:
public static void main(String[] args)
{

System.out.println("Hello.");
System.out.println("My name is Mary.");

}

� A dialog box appears
when the installation is
complete. Click Finish
to close the dialog box
and then restart your
computer.

Program Files 27514 K

The Java SDK installation program is over
20 megabytes (MB) in size. If you are
using a modem to connect to the Internet,
the program can take a few hours to
download. For convenience, you may want
to start the download and let it continue
through the night.

If you already have a previous release of
the Java SDK installed on your computer,
it is recommended that you uninstall the
previous release before upgrading to the
latest release of the Java SDK.

The Java SDK documentation can be
downloaded separately from the Java Web site.
It is recommended that you install and review
the Java SDK documentation, particularly if you
will be creating your own Java applications.

After installing the Java Software Development Kit,
you may want to add the location of the Java SDK
programs to the path variable of your computer's
operating system. Setting the path variable will
allow you to run your Java programs from any
folder on the computer without having to type the
full path to the Java compiler and interpreter. Refer
to the documentation that came with the Java SDK
and your operating system documentation for
information about changing the path variable.

� This area displays the
folder where the Java SDK
will be installed.

� You can click Browse
to install the Java SDK in
a different folder.

› Click Next to
continue.

� Each component in this area
that displays a check mark ()
will be installed. You can click the
box beside a component you do not
want to install (changes to).

ˇ Click Next to install the Java SDK
components on your computer.

INSTALL THE JAVA SOFTWARE DEVELOPMENT KIT

⁄ Double-click the icon for the
Java SDK installation program
to start installing the kit.

� A setup window appears
on the screen and a welcome
dialog box is displayed.

� This area displays
information about the
Java SDK installation
program.

¤ Click Next to
continue.

� This area displays the
license agreement you
must read and accept
before continuing.

‹ Click Yes to accept the
agreement and continue.

T he Java Software Development Kit (SDK) is a
collection of programs used to compile and execute
Java programs. You need to install the Java SDK in

order to install the Tomcat Web server, which allows you
to create and test JavaServer Pages.

The Java Software Development Kit is constantly being
updated. A recent release of the Java SDK for Windows is
included on the CD-ROM disc that accompanies this book,
but you should make sure you use the latest release of the
kit. More information about the latest release of the Java
SDK is available on the Java Web site at java.sun.com.
The Java SDK is also currently available for the Sun Solaris
and Red Hat Linux platforms. Downloading and installation
instructions are available at the Java Web site.

On the Windows platform, the Java SDK is installed using
a standard Windows installation program. The Java SDK

installation program selects a folder where the kit will
be installed for you. It is recommended that you accept
this folder. During the installation, you can select which
components of the Java SDK you want to install, such as
demos. It is recommended that you install all the available
components.

The installation program allows you to choose to view a
README file that contains information about the release
of the Java Software Development Kit you installed and
any last minute changes to the documentation. If you
choose to display the file, it will open when the installation
is complete. You should carefully review the README file
for any new release of the Java SDK you install.

Once the Java SDK has been installed, you should restart
your computer, particularly if you are upgrading from an
older release of the Java SDK.

INSTALL THE JAVA SOFTWARE
DEVELOPMENT KIT

1312

JSP JAVA BASICS 1

15

Note: To declare methods for
the class you created, see
page 16.

› Type an opening brace
to mark the beginning of
the body of the class.

ˇ Press Enter to create
blank lines where you
will type the body of the
class.

Á Type a closing brace
to mark the end of the
body of the class.

14

JSP

DECLARE A CLASS

⁄ Start the text editor
you will use to create a
Java program.

¤ Type class. ‹ Type the name of the
class you want to create.

A fter installing the Java Software Development Kit,
you can begin creating Java programs. When creating
Java programs, the first step is to declare a class. A

class is the smallest unit of Java code that can be run and
is the fundamental structure that Java applications use to
group together related code. For example, a class called
CheckText may contain all the code required to analyze and
validate a string of text. The CheckText class can be used
on its own in a program or used in conjunction with other
classes. All Java applications must include at least one class.

Java classes are declared using the keyword class
followed by the class name. The class name should be easy
to understand and should indicate the purpose of the class.
The class name is followed by a pair of braces {}. All
methods and Java code in the class must be placed
between the braces. The code between the braces is
referred to as the body of the class and is made up of

methods, which are structures that contain the Java code
for specific actions. For more information about declaring
a method, see page 16.

The class name you choose must be the same as the
filename with which the program is saved. For example,
if the class in your Java program is called DisplayText, the
program must be saved with the filename DisplayText.java.
It is also important to note that Java is a case-sensitive
language. If the program is saved with the filename
displaytext.java, an error may occur when you attempt
to compile the program.

DECLARE A CLASS

JAVA BASICS 1

Class names can begin with any letter, an
underscore (_) or the symbol $, £ or Y. Class
names cannot begin with a number or contain
any punctuation, such as a period or a comma.
Class names also cannot be the same as any of
the Java reserved words, such as do, while or
public. These naming rules also apply to the
naming of methods, fields and parameters in
Java code.

You should always include comments to
make your Java code easier to understand.
Comments are helpful if you or other people
need to modify or troubleshoot the code.
Any code you write should include comments
that indicate the author's name and the main
purpose of the program. Comments are
preceded by // and can be included at the
end of a line of code or on a separate line.

Example:
// Author: Martine Edwards
class DisplayWelcome // A welcome message
{

// The body of the class
}

You may want to add comments that span
multiple lines to your Java code. To do so,
type /* before the first line of the comment
and */ after the last line of the comment.

Example:
/*
This Java application
displays a welcome message when
the program is executed
*/

__

17

� To create the body
of the method, see
page 18.

The name of the method should indicate the
purpose of the method. A method name can
consist of multiple words. To make the name
easier to read, you can capitalize the first
letter of each word, such as DisplayMyName.

You can use different access modifiers when
declaring a method, depending on how the
method will be accessed. The public access
modifier indicates that the method can be
accessed by any class and subclass within any
package. The protected access modifier
indicates the method can be accessed by any
class within the same package and any subclass
of the class that contains the method within a
different package. The private access modifier
indicates the method can be accessed only by
the class that contains the method.

A method can generate a result which is
returned to the code. The return type for
a method that returns a value can be any
valid data type in Java, such as String,
byte or boolean. The body of a method
that returns a value must also include a
return statement. An error may occur if
the data type of the value that is returned
does not match the return type specified
in the method declaration.

Every main method must include the
public, static and void method
modifiers. If one or more of the method
modifiers are entered in a different order,
the code may generate an error message.

› Between the parentheses,
type any arguments the
method requires.

Note: The arguments of a
main method must be
String[] args.

ˇ Type the opening and
closing braces that will
contain the body of the
method.

16

JSP

DECLARE A METHOD

⁄ In the body of a class,
type the method modifiers
for the method you want
to declare.

Note: A main method must
include the public and
static method modifiers.

¤ Type the return type
of the method.

Note: A method that does not
return a value must include the
void return type.

‹ Type the name of the
method followed by ().

O nce a class has been declared, methods can be
declared for the class. Methods are similar to
subroutines and functions that are found in other,

non-object-oriented programming languages. Methods
contain lines of code that perform a specific task, such
as displaying an invoice or calculating the final total of
an invoice.

Using methods makes it easy to re-use sections of code
and allows you to group lines of code into smaller, more
manageable sections. This makes it easier for people to
understand and troubleshoot the code.

You can use method modifiers, such as public and
static, to tell Java how a method is to be used. The
public method modifier is an access modifier that
indicates that this method can be used by other classes
that you create. A static method modifier indicates that
the method can be used by any program without having
to create an object of the class that declares the method.

A method declaration should also include a return type.
A return type specifies the type of value the method returns.
If a method does not return a value to the code, the return
type should be void. For more information about return
values in methods, see page 38.

The name of a method is followed by parentheses, such as
DisplayInvoice().

Every Java application must have a method called main,
in which all the other methods required to run the program
are called. The argument String[] args must be placed
within the parentheses at the end of the method name for
a main method. This argument indicates that the method
can accept strings passed from the command line when
the Java program is executed.

The method declaration ends with a pair of braces. The
code that makes up the body of the method is placed
inside the braces.

DECLARE A METHOD

JAVA BASICS 1

19

� You may need to place
quotation marks around
the name of the file.

� You are now ready to
compile the Java code.
See page 20 to compile
Java code.

My Documents

Desktop

History

My Computer

My Network Pl...

‹ Type any arguments
the code requires.

� String arguments must
be enclosed in quotation
marks.

SAVE JAVA CODE

⁄ Save the Java code as a text file.

� The name of the file must be
exactly the same as the name of
the first class in the code. The
filename must also have the .java
extension. 18

JSP

CREATE THE METHOD BODY

⁄ Enter the code that
declares the class and the
method you want to use.

¤ In the body of the method,
type the code for the task you
want to perform.

� In this example,
System.out.print
is used to display
output.

T he body of a method contains the Java code that is
used to perform a task and must be created within
the method's braces {}.

The code in the body of a method is often used to call, or
access, another method. The called method can be declared
in the same class or in a different class. Re-using methods
saves you time and effort when writing Java programs. For
example, if you create a method that displays your name
and e-mail address, the same method can be used in any
Java application you create.

The Java Software Development Kit includes many classes
and methods that can be used to perform a wide variety
of common tasks. For example, the Java SDK includes a
class called math. The math class contains several methods
that perform mathematical calculations. For example, to
determine the square root of a number, you can simply
call the sqrt method from the math class.

Methods can be used to display information on a user's
screen. To display information, System.out.print
can be used. The System object is included in the Java
SDK and is created automatically when a Java program
is executed. The out field is used to send information
to the standard output device, typically the screen.
The print member takes an argument that must be
enclosed in parentheses. System.out.print can
be used to display any type of data used in Java. When
using System.out.print to display a string of text,
the string must be enclosed in quotation marks.

Once you have finished creating the code for your Java
program, save the code as a text file with the .java
extension. The name of the file must be exactly the
same as the name of the first class defined in the code.

CREATE THE METHOD BODY

JAVA BASICS 1

System.out.println can also be used
to start a new line.

Example:
System.out.println("The Java program has been executed.");
System.out.println("Have a good day.");

The classes and methods included with the Java
Software Development Kit are collectively known
as the Java class library, also called the Java
Application Programming Interface or Java API.
The Java SDK documentation describes all the
classes and methods available in the Java class
library. If you have not already installed the
Java SDK documentation, you can obtain the
documentation on the Web at java.sun.com.

To start a new line at the end of a line of text, you can
use the escape sequence \n. Using the escape sequence
\n allows you to display text over multiple lines.

class MyIntroduction
{

public static void main(String[] args)
{

System.out.print("My name is Martine Edwards." + "\n");
System.out.print("This is my first Java Program." + "\n");

}
}

My name is Martine Edwards.
This is my first Java Program.

TYPE THIS: RESULT:

21

C:\WINDOWS>cd\java

C:\java>javac Displaywelcome.java

C:\WINDOWS>cd\java

C:\java>javac Displaywelcome.java

C:\java>

Note: If an error message
appears, the Java code was
not successfully compiled.

When compiling Java source code, there are
two main types of errors that can occur.

Java SDK Errors

If your operating system cannot locate the Java
compiler, a problem may have occurred when
the Java SDK was installed. Java SDK errors
usually result in an error message such as "bad
command or file name." To correct this type of
error, first determine the correct path to the
compiler. If you cannot locate the Java compiler,
try re-installing the Java SDK. If you were able
to confirm the path to the compiler, ensure that
you have not made any typing mistakes in the
path.

Source Code Errors

A wide variety of errors can occur in Java source
code. When the Java compiler finds an error in source
code, the compiler displays an error message that
usually specifies the error type and where the error
was detected. For example, the error "Program.java:5:
invalid method declaration" indicates that an error
involving a method declaration was generated at line
5 in the Program.java file. It is important to note that
the line number indicates the line that the compiler
was processing when the error was detected, which
is not necessarily the line that contains the error.

› Type the name of the file
that stores the Java code you
want to compile, including
the .java extension.

ˇ Press Enter to compile
the Java code.

� If the Java code was
successfully compiled, the
command prompt re-appears.

� The Java program is now
ready to be executed. See
page 22 to execute a Java
program.20

JSP

C:\WINDOWS>cd\java

C:\java>javac

COMPILE JAVA CODE

C:\WINDOWS>cd\java

⁄ Open the window that
allows you to work at the
command prompt.

¤ Move to the directory
that stores the Java code
you want to compile.

‹ To compile the Java
code using the javac
compiler, type javac.

� If you have not added
the location of the javac
compiler to your operating
system's path variable, you
will need to type the full
path to the javac program.

C ompiling Java code converts the source code into
bytecode. Bytecode contains instructions that the
Java interpreter executes.

A Java compiler is required to compile Java code. The Java
Software Development Kit includes a Java compiler called
javac. The javac compiler can only be executed from the
command prompt. If you are using a Windows operating
system, you will need to open an MS-DOS Prompt or
Command Prompt window to use javac.

To compile Java source code, you enter the name of the
Java compiler, such as javac, at the command prompt,
followed by the name of the file that stores the code
you want to compile. The filename must have the .java
extension. Depending on whether you have added the
location of the Java SDK programs to your operating
system's path variable, you may need to specify the
full path to the Java compiler, which is typically

c:\jdk1.3\bin\javac. For information about setting the path
variable, refer to the Java SDK installation instructions or
your operating system's documentation.

Before compiling Java code, the Java compiler checks the
code for errors. If an error is found, the code will not be
compiled and an error message will be displayed.

If the Java code is successfully compiled, the resulting
bytecode will be saved in a new file with the .class
extension. The name of the new file is taken from the
name of the file that stores the Java source code. For
example, when the code in a file named Program.java
is compiled, the bytecode is saved in a file called
Program.class. The filenames of Java programs are
case sensitive on most platforms.

Once Java source code has been compiled, the Java
program is ready to be executed.

COMPILE JAVA CODE

JAVA BASICS 1

23

C:\WINDOWS>cd\java

C:\java>java DisplayWelcome

C:\WINDOWS>cd\java

C:\java>java DisplayWelcome
The Java program has been executed. Have a good day.
C:\java>

How Java Code Is Processed

› Type the name of the file
that stores the bytecode for
the Java program you want
to execute.

ˇ Press Enter to
execute the program.

� The results of the
program are displayed
on the screen.

22

JSP

C:\WINDOWS>cd\java

C:\java>java

EXECUTE A JAVA PROGRAM

C:\WINDOWS>cd\java

⁄ Open the window that
allows you to work at the
command prompt.

¤ Move to the directory
that stores the bytecode
for the Java program you
want to execute.

‹ To execute the instructions
in the bytecode using the Java
interpreter, type java.

� If you have not added
the location of the Java
interpreter to your
operating system's path
variable, you will need
to type the full path to
the Java interpreter.

O nce the Java compiler has converted the
source code for a Java program into bytecode,
the program can be executed.

Bytecode must be processed by the Java interpreter
before the code can be executed. When you execute a
Java program, the Java interpreter first checks the bytecode
to ensure the code is safe to execute and then it interprets
and executes the instructions contained within the bytecode.

The instructions in the bytecode are executed by the Java
interpreter in what is called the Java Virtual Machine, or
JVM. The Java virtual machine enables Java programs to
be executed in a controlled environment. This environment
may also protect your computer from harmful code that
may be included in Java programs.

The Java interpreter that comes with the Java SDK is called
java and is typically stored in the c:\jdk1.3\bin directory.

Like the Java compiler, the Java interpreter must be run at
the command prompt. The Java interpreter is a stand-alone
program, but the interpreter can also be integrated into
other programs, such as Web browsers. This allows you
to execute your Java programs on different platforms.

To evoke the Java interpreter, type the name of the
interpreter followed by the name of the bytecode file.
You should not type the .class extension. For example,
to execute the instructions in the Program.class file,
type java Program.

If the Java program executes successfully, the results
of the program will be displayed. If the Java interpreter
encounters any errors, it will stop executing the program.
Most errors encountered at this stage are usually related
to the use of incorrect filenames or paths.

EXECUTE A JAVA PROGRAM

JAVA BASICS 1

Notepad 011011110000101
100110001111010
010110011011101
011101101001110
111011010011001

Java Virtual Machine

0

1 2 3

4 5 6 +

7 8 9 -

C

285.24

= / *

. =

Application

Source Code Java Compiler Bytecode

25

� The results of using
the object are displayed.

C:\WINDOWS>cd\java

C:\java>javac go.java

C:\java>java go
me@myhost.com
C:\java>

The directory you should use to store files
you create for Java programs depends on the
setup of your computer. In most cases, you
should have a specific folder dedicated to
Java program development. Regardless of the
location you choose, you should always store
the class file that defines an object and the
file that instantiates the object in the same
directory.

It is very rare that an object will be made up
of only a single method. In most cases, objects
are more complex, containing a wide range
of related methods and fields that dictate the
behavior of the object.

The fields and methods of an object are
also referred to as members. Fields and
methods that are available when an object
is instantiated and are unique to that object
are called instance members.

The ability to create objects is an important
feature of JavaServer Pages. JavaServer Pages
technology makes use of JavaBeans, which
are a form of class file used to create objects.
While it is possible to create JSP pages
without knowing how to create objects,
the flexibility and efficiency of your pages
will be limited.

° Type new.

· Type the name of the
class you created in step 1,
followed by ().

‚ To access the method of
the object, type the name
of the object followed by a
period. Then type the name
of the method you created
in step 1, followed by ().

— Type the code that uses
the object.

± Compile the Java
code and then execute
the program.

24

JSP

CREATE AN OBJECT

DEFINE THE OBJECT

⁄ To create a class that
will serve as a template for
an object, enter the code
that defines the class and
method you want to use.

Note: This class does not need
to use the main method.

¤ In the body of the
method, type the code that
defines the object you want
to use.

‹ Save the class as a text
file with the .java extension.

› Compile the Java code.

INSTANTIATE THE OBJECT

ˇ To create a stand-alone
program that will instantiate
the object, enter the code
that defines the class and
method you want to use.

Á In the body of the
method, type the name
of the class you created
in step 1.

‡ Type a name for the
object, followed by =.

O bjects are created using classes. An object usually
contains at least one method that specifies the
behavior of the object. Objects may also contain

fields. For information about fields, see page 26.

The first step in creating an object is to create a class that
will serve as a template for the object. In its simplest form,
this type of class contains a class declaration, a method
declaration and a method body. The method body contains
code defining specifications for the object, such as the
tasks the object will perform. This type of class is not
executed as a stand-alone program and therefore does
not need to use the main method. Before the class can
be used to create an object, you must compile the code
for the class.

Once you have created and compiled the class that serves
as a template for an object, you can use a stand-alone

program to create, or instantiate, the object. To instantiate
an object, you must assign the object a name, which is
used to access the object. You then use the new operator
and the name of the class that defines the object to create
the object. You can create multiple instances of an object
within a program.

After creating an object, you can access a method of the
object. This allows the object to take on the characteristics
defined in the class. To access a method, you enter the
name of the object and the name of the method, separated
by a dot. For example, if you create an object named
'employee' that contains a method called DisplayName,
you would access the method by entering
employee.DisplayName.

CREATE AN OBJECT

JAVA BASICS 1

27

� The results of using the
object field are displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayName.java

C:\java>java DisplayName
<h3>sandman@myhost.com</h3>

C:\java>

You can set a default value for an object field by using
a constructor. A constructor is a special type of method
that is always executed each time the class is accessed
and an object is created. This makes constructors useful
for performing initialization tasks for new objects, such
as setting up a connection to a database. A constructor
method must have the same name as the class for which
it is the constructor.

Example:
class AuthorInformation
{

public int headerLevel;

public AuthorInformation()
{

headerLevel = 3;
}

public String EmailAddress()
{

String message = "<h" + headerLevel +
">sandman@myhost.com</h" + headerLevel + ">";
return message;

}
}

‡ To assign a value to an
object field, type the name
of the object followed by
a dot. Then type the name
of the field.

° Type = followed by
the value you want to
assign to the object field.

· Type the code that
uses the object field.

‚ Compile the Java
code and then execute
the program.

26

JSP

WORK WITH OBJECT FIELDS

CREATE A FIELD

⁄ Create a class that will serve
as a template for an object.

¤ In the body of the class,
type the access modifier and
data type for the object field
you want to create.

‹ Type the name of
the object field.

› Save the class as a
text file with the .java
extension and then
compile the Java code.

USE AN OBJECT FIELD

ˇ To create a stand-alone
Java program, enter the
code that declares the
class and main method.

Á In the body of the
main method, type
the code to create an
object using the class
you created in step 1.

Y ou can create an object field, also referred to as
data field, to hold information about an object.
The information contained in an object's fields

determines the properties and attributes of the object.

When objects of the same class are created, the objects
have the same methods, but some or all of the object
fields may hold different information. For example, each
object created from the Employee class may have an object
field called empNumber that stores the unique employee
number for each object.

Object fields must be declared in the class body, outside
of any methods. This allows the field to be used as soon
as the object is created. You must specify an access
modifier for an object field you create, as well as the
data type that the field will store. For information about
access modifiers, see page 16. For information about
data types, see page 30.

Most object fields are created with an initial value. You
can later change the value of an object field as you would
change the value of a variable. Changing the value of an
object field may change the way some of the methods
of the object behave. Object fields may also hold constant
data which cannot be changed.

You can use the dot operator (.) to access an object field
in a program. When specifying the object field, the field
name is separated from the object name by a dot, such
as object.field. The object name is the name that was
given to the object when it was created.

Unlike methods, object field names are not followed
by parentheses. It is possible to have object fields and
methods that share the same name in a program.

WORK WITH OBJECT FIELDS

JAVA BASICS 1

29

� The result of using the
variables is displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayVariables.java

C:\java>java DisplayVariables
50
10
20

C:\java>

If you have not yet determined the value for
a variable, you can create a variable without
assigning a value. Java will assign a default
value to the variable, but you can later assign
a value in a separate statement.

Example:
int firstValue;
System.out.println("Welcome to my program.");
firstValue = 10;

When selecting a variable name, choose a
name that describes the value of the variable.
For example, employeeNumber is more
descriptive than variable1. Also keep in
mind that variable names are case sensitive.
This means the variable AGE will be different
than the variable age or Age.

Any method you use to determine variable names
is acceptable if it makes sense to you and is easy for
other people to interpret. You should consistently
use the style you choose to make your script easier
to understand.

Typing mistakes are a common source of errors in
Java code. If the Java compiler displays error messages
that refer to undeclared or missing variables, you
should first check to make sure you typed each
variable name the same way throughout your code.

If the name of a variable is not self-explanatory,
you may want to add a comment to the variable
declaration to explain the purpose of the variable.

Example:
int minutes; //Minutes to display welcome message

Á Type the code that
uses the variables.

‡ Compile the Java
code and then execute
the program.

28

JSP

DECLARE A VARIABLE

⁄ To declare a variable,
type the keyword for the
data type you want to use.

¤ Type a name for the
variable you want to create.

‹ Type = followed by
the value you want to
assign to the variable.

DECLARE MULTIPLE VARIABLES

› To declare multiple
variables, type the keyword
for the data type of the
variables.

ˇ Type the name and
value of each variable
you want to create,
separated by a comma.

A variable is a name that represents a value. For
example, you could have the variable myAge represent
the value 29. Variables can be used to perform many

types of calculations. Before a variable can be used in a Java
program, you must declare the variable. Declaring a variable
tells the computer to set aside an area of memory to store
information.

A variable can hold only a specific type of data, such as a
text character or a number. When you declare a variable,
you specify the type of data the variable can store. For
example, to specify that a variable will hold only a whole
number that is not a fraction, you would use an integer
data type. To declare a variable that will hold an integer,
place the keyword int before the variable name. For
more information about variable data types, see page 30.

A variable name can consist of multiple words. You can use
a lowercase first letter and then capitalize the first letter of
each of the following words to make the name easy to read.
The underscore character (_) can also be used to separate
the words in the name, such as my_age.

When you declare a variable, you can assign an initial value
to the variable. To assign a value to a variable, you use the
assignment operator (=). For information about operators,
see page 34.

If you have multiple variables of the same type, you can
declare all the variables on the same line by separating
each variable name with a comma.

Once a variable has been declared, it can be used within
the method in which it was created. If the variable was
created outside of a method, it can be used by any code
within the class. Variables declared outside of a method
should be declared at the top of the class body. For
information about declaring variables in the class body,
see page 56.

DECLARE A VARIABLE

PROGRAMMING WITH JAVA 2

31

� The results of using the
variables are displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayVariables.java

C:\java>java DisplayVariables
The double value is 1.1
The integer value is 1

C:\java>

‡ Type the code that
uses the values of the
variables you created.

� In this example, we
display the values of the
firstValue and
secondValue variables.

° Compile the Java
code and then execute
the program.

30

JSP

SPECIFY THE DATA TYPE FOR A VARIABLE

⁄ To specify a data type
for a variable you want to
create, type the name of
the data type in the body
of the method.

¤ Type the code that
names the variable and
assigns it a value.

Note: If you do not assign a
value, the variable will use the
default value for its data type.

CONVERT A VALUE TO A
DIFFERENT DATA TYPE

‹ Type the code that declares
a variable that will store the
converted value.

› Type the name of the
variable you created in step 3,
followed by =.

ˇ Type the data type
you want to convert the
value to, enclosed in
parentheses.

Á Type the name of
the variable that stores
the value you want to
convert.

J ava is a 'strongly typed language', which means that
you must specify a data type for each variable you use
in a Java program. This distinguishes Java from many

other programming languages, such as Perl, which do not
require variables to have assigned data types.

There are eight basic data types, called primitive types,
that variables can use. The data type you specify for a
variable determines the range of values that the variable
can store and the amount of memory, measured in bits,
that the variable requires. For example, a variable with
the byte data type can store a number between -128
and 127 and requires 8 bits of memory.

Each primitive data type has a default value. If you declare
a variable without assigning a value, the default value for
the variable's data type will be assigned to the variable.

The specifications for data types in Java, such as memory
requirements and default values, are not affected by the

operating system or compiler that is used. This ensures
that a data type will have the same meaning when a
program is executed on different computers.

Specifying the data type for a variable requires that you
know in advance the types of values that will be stored in
the variable throughout your program. Once you declare a
variable, you cannot change the data type for the variable.
If you want to convert the value stored in a variable to a
different data type, you must assign the value to a new
variable that uses the desired data type. This process is
called casting. When converting a value to a new data
type, make sure that the conversion will not result in
an unintended loss of data. For example, converting the
number 13.56 to an integer value will result in a new
value of 13.

SPECIFY THE DATA TYPE FOR A VARIABLE

PROGRAMMING WITH JAVA 2

Primitive Data Types

TYPE: SIZE IN BITS: DEFAULT VALUE: POSSIBLE VALUES:

boolean 8 false 'true' or 'false'
char 16 \u0000 Unicode character, '\u0000' to 'uFFFF'
byte 8 0 -128 to 127
short 16 0 -32,768 to 32,767
int 32 0 -2,147,483,648 to 2,147,483,647
long 64 0 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
float 32 0.0 ±1.4E-45 to ±3.4028235E+38
double 64 0.0 ±4.9E-324 to ±1.7976931348623157E+308

33

� The result of using
strings is displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayTemperature.java

C:\java>java Display Temperature
Current Temperature
The temperature is 34 degrees.

C:\java>

CONCATENATE VARIABLES

ˇ To join the string with
other variables or values, type
the concatenation operator (+)
between each variable or
value you want to join.

Á Type the code that
uses the concatenated
variables.

‡ Compile the Java
code and then execute
the program.

32

JSP

WORK WITH STRINGS

⁄ To declare a string
variable, type String
followed by a name
for the variable.

¤ Type = followed by "". ‹ Between the quotation
marks, type the text you
want the string to contain.

› Type the code that
uses the string variable.

A string is a collection of characters, which can
contain any combination of letters, numbers
and special characters, such as $, & or #.

Before a string variable can be used in a Java program, you
must declare the string variable. The process of declaring
a string variable is similar to that of declaring other types
of variables. To declare a string variable, use the keyword
String followed by the variable name. The capital S at
the beginning of the keyword String indicates that a
string variable is an object of the String class. The
String class is part of the java.lang package that is
available to all Java programs as part of the standard class
library. For information about the Java standard class
library, see page 8.

After a string variable has been declared, a value can
be assigned to the variable. To assign a value to a string
variable, you use the assignment operator (=). A string

value must be enclosed in double quotation marks (" "),
which identify the beginning and end of the string and
allow Java to work with the string as one piece of
information.

You can use the concatenation operator (+) to join
multiple strings together. The concatenation operator can
also be used to join other types of variables and values
together.

If you installed the documentation package available for
the Java Software Development Kit, you can find more
information about the String class under the main JDK
directory at \docs\api\java\lang\String.html. You can also
find documentation for the Java SDK at the java.sun.com
Web site.

WORK WITH STRINGS

PROGRAMMING WITH JAVA 2
You can determine the number of characters a
string contains by using the length method of
the String class.

String message = "The temperature is ";
System.out.print("The length of the string is ");
System.out.print(message.length());

The length of the string is 19

You can insert instructions you want Java to
interpret into a string. These instructions begin
with the backslash symbol (\) and are called
escape sequences. Escape sequences allow
you to include special characters, such as tabs,
newlines and backspaces in a string. Escape
sequences are often used to format text that
will be displayed on a screen or stored in a file.

TYPE THIS:

RESULT:

You can use the equals method of the String
class to compare two strings and determine if the
strings are the same.

String message = "weather";
System.out.print(message.equals("temperature"));

false

TYPE THIS:

RESULT:

\b Insert a backspace

\t Insert a tab

\n Start a new line

\f Insert a form feed

\r Insert a carriage return

\" Insert a double quotation mark

\' Insert a single quotation mark

\\ Insert a backslash

3534

JSP

J ava provides numerous operators that can be used to
assign values to variables, perform calculations and create
complex expressions. There are several general categories

of operators, including assignment, relational, arithmetic,
logical, conditional and shift.

WORKING WITH OPERATORS

PROGRAMMING WITH JAVA 2

Operator Type Category Associativity

() parentheses miscellaneous left
[] array subscript miscellaneous left
. member selection miscellaneous left
++ unary postfix arithmetic right
-- unary postfix arithmetic right
++ unary prefix arithmetic right
-- unary prefix arithmetic right
+ unary plus arithmetic right
- unary minus arithmetic right
! unary negation conditional right
~ bitwise complement logical right
new creation miscellaneous right
(type) unary cast miscellaneous right
* multiplication arithmetic left
/ division arithmetic left
% modulus arithmetic left
+ addition arithmetic left
- subtraction arithmetic left
<< bitwise left shift left
>> bitwise right with sign extension shift left
>>> bitwise right with zero extension shift left
< less than relational left
<= less than or equal to relational left
> greater than relational left
>= greater than or equal to relational left
instanceof type comparison miscellaneous left
== is equal to relational left
!= is not equal to relational left
& bitwise AND logical left
^ bitwise XOR logical left
| bitwise OR logical left
&& logical AND conditional left
|| logical OR conditional left
?: ternary conditional miscellaneous right
= assignment assignment right
+= addition assignment right
-= subtraction assignment right
*= multiplication assignment right
/= division assignment right
%= modulus assignment right
&= bitwise AND assignment right
^= bitwise XOR assignment right
|= bitwise OR assignment right
<<= bitwise left shift assignment right
>>= bitwise right shift with sign extension assignment right
>>>= bitwise right shift with zero extension assignment right

TYPES OF OPERATORS

A Java operator can be classified by the number of operands
it accepts. An operand is an argument used by an operator.
An expression is a sequence of operands separated by one
or more operators that produces a result.

The following table shows the order of precedence from the highest
to the lowest, type, category and associativity of operators.

Unary

A unary operator accepts a single operand. All unary
operators support prefix notation, which means the
operator appears before the operand. A commonly
used unary operator is !, which indicates 'not.' For
example, !0 would be used to indicate a value that
is not zero.

The increment (++) and decrement (--) operators
also support the postfix notation, which means
the operator can be placed after the operand. For
example, both ++hitCounter and hitCounter++
increment the operand by one.

Binary

The most common type of operator is the binary
operator. A binary operator performs calculations based
on two operands, with the operator placed between the
operands. For example, the expression 2 + 3 contains
the operands 2 and 3, separated by the operator, +.

Ternary

The ternary operator ?: accepts three operands. The ?:
operator tests the first operand and then returns the value
of the second or third operand, depending on the result.
If the result of the first operand is true, the expression
returns the value of the second operand. If the result of
the first operand is false, the expression returns the value
of the third operand.

PRECEDENCE AND ASSOCIATIVITY

Order of Precedence

When an expression contains several operators, such
as 4 - 5 + 2 * 2, Java processes the operators in a
specific order, known as the order of precedence. The
order of precedence ranks operators from highest to
lowest precedence. Operators with higher precedence
are evaluated before operators with lower precedence.

Associativity

When an expression contains multiple operators that
have the same precedence, the associativity of the
operators determines which part of the expression will
be evaluated first. Operators can have left associativity
or right associativity.

If operators have left associativity, then the leftmost
operator is processed first. For example, the result
of the expression 5 - 3 + 2 is 4 rather than 0. The
opposite holds true for operators that have right
associativity.

Parentheses

Regardless of the precedence and associativity of operators,
you can use parentheses to dictate the order in which Java
should process operators. In an expression, Java processes
operators and operands enclosed in parentheses first.

37

� The result of executing
the code in the method is
displayed.

C:\WINDOWS>cd\java

C:\java>javac PersonalInformation.java

C:\java>java PersonalInformation
My Personal Details
Mary Corder

C:\java>

If a method you want to call is declared in a different
class, you must specify the class that contains the
method you want to call. You use the dot operator (.)
to link the class name and the method name. Any
methods called from another class should be created
with the public access modifier.

Example:
public class PersonalInformation
{

public static void DisplayMyName()
{

System.out.println("David Gregory");
}

}

public class CallingClassMethods
{

public static void main(String[] args)
{

System.out.println("My Personal Details");

PersonalInformation.DisplayMyName();
}

}

› In the body of the
main method, type the
name of the method you
want to call, followed by
a set of parentheses.

ˇ Compile the Java
code and then execute
the program.

36

JSP

CALL A METHOD

⁄ Create a class file
with a main method.

¤ Declare the method
you want to call.

‹ Create the body of
the method you want
to call.

O nce you have created a method, you need to
call the method to tell Java to access and execute
the code in the method. The code included in a

method will not be executed until the method is called.

To call a method in the same class it was declared in,
you type the name of the method followed by a set of
parentheses where you want to execute the code specified
in the method. You must be sure to type the method
name exactly as it was typed in the code that declares the
method. Some methods require you to include arguments
within the parentheses that follow the method name. For
information about passing arguments to methods, see
page 38.

When a method is called, the code included in the method
is executed as if the code was typed in the location where
you called the method. Once Java has finished processing
the code in the method, Java continues execution from the
line following the method call.

In some programs, you may need to call a method that
is declared in a different class. The access modifiers used
in method declaration determine the locations from which
you can call the method. For more information about
access modifiers, see page 16.

Classes that contain methods can also be grouped into
a package. You may need to specify the package that
contains the method you want to call. For more
information about packages, see page 50.

In addition to calling methods you have created, you can
also call methods provided in the Java class library. For
example, System.out.println() calls a Java class
library method which is used to display data. For more
information about the Java class library, see page 8.

CALL A METHOD

PROGRAMMING WITH JAVA 2

39

PersonalInformation.java - Notepad

� The result of passing
arguments to a method
and using a return value
is displayed.

C:\WINDOWS>cd\java

C:\java>javac PersonalInformation.java

C:\java>java PersonalInformation
My Personal Information
My name is: Sandy Rodrigues

C:\java>

CALL A METHOD USING
ARGUMENTS

Á In the body of the
main method, type
the code that calls
the method you want
to use.

‡ Between the parentheses
following the method name,
type the arguments you want
to pass to the method.

� String arguments must be
enclosed in quotation marks.

Note: When passing multiple arguments, the
arguments must be separated by a comma.

° Compile the Java
code and then execute
the program.

38

JSP

PersonalInformation.java - Notepad

USING RETURN VALUES AND ARGUMENTS IN METHODS

PersonalInformation.java - Notepad

CREATE A RETURN STATEMENT

⁄ Type the code that declares
the method you want to use.

� The data type of the value
the method will return must
be specified in this code.

¤ Type the code for
the body of the method.

‹ In the body of the
method, type return
followed by the
information you want
the method to return.

PREPARE A METHOD TO
ACCEPT ARGUMENTS

› Between the parentheses
following the method name
in the method declaration,
specify the data type of the
argument that the method
will accept.

ˇ Type the name of the
variable that will store the
value of the argument.

Note: When preparing a method
to accept multiple arguments,
each data type and variable pair
must be separated by a comma.

Y ou can have a method return a value to the code.
A return value may be the result of a calculation or
procedure or may indicate whether a process was

successfully completed.

The data type of a return value for a method must be
specified when the method is declared. Return values
can be any valid data type in Java, such as String, byte
or boolean. An error may occur if the data type of the
value that is returned does not match the return type
specified in the method declaration.

Information is returned from a method using the keyword
return. Once the return statement is executed in
a method, the processing of the method ends and the
value specified in the return statement is passed back
to the calling statement.

A method with a return value can be used as if it were
a variable. For example, you could display the value

returned by a method using the System.out.print
command. You could also assign the value returned by
a method to a variable.

You can also pass one or more values, called arguments,
to a method you have created. Passing arguments to a
method allows you to use one method throughout a
program to process different data.

To pass an argument to a method, you include a data type
and variable name in the parentheses at the end of the
method name in a method declaration. When you call
the method, you include the data you want to pass in
the parentheses following the method name.

You can pass any type of data to a method, but the type
of data must match the data type specified in the method
declaration. For example, if a method expects an integer
value to be passed for calculation, passing a string value
to the method would cause an error to occur.

USING RETURN VALUES AND
ARGUMENTS IN METHODS

PROGRAMMING WITH JAVA 2

A method can have more than one return statement.
This is commonly found in methods that use conditional
statements. Although a method can have more than one
return statement, only one return statement will be
executed. When a return statement is encountered,
the execution of the method is terminated.

class MakeList
{

public static void main(String[] args)
{

System.out.println(CheckAge(29));
}
static String CheckAge(int age)
{

if (age > 21)
{

return "You may take the survey";
}
else
{

return "You are too young to take the survey";
}

}
}

TYPE THIS:

You may take the survey

RESULT:

41

� The result of testing
the condition is displayed
on the screen.

C:\WINDOWS>cd\java

C:\java>javac WeatherProgram.java

C:\java>java WeatherProgram
88 degrees. It's hot.

C:\java>

ˇ To use the else
statement, type else.

Á Type the code you want
to execute if the condition
you specified is false.
Enclose the code in braces.

‡ Compile the Java
code and then execute
the program.

40

JSP

USING THE IF STATEMENT

⁄ Type the code that
declares the variables
and assigns their values.

¤ Type if.

‹ Type the condition you
want to test. Enclose the
condition in parentheses.

› Type the code you want
to execute if the condition
you specified is true. Enclose
the code in braces.

U sing an if statement allows you to test a condition
to determine whether the condition is true or false.
The condition can be as complex as necessary, but

it must always produce a value that evaluates to either true
or false. When the condition is true, the section of code
directly following the if statement is executed. For example,
you can create a program that displays a Good Morning
message when a user runs the program between 5:00 AM
and 11:59 AM. If the condition is false, no code from the
if statement will be executed.

A section of code you want to be executed must be
enclosed in braces {} and is referred to as a statement
block. The condition for an if statement must be enclosed
in parentheses ().

If you want an if statement to execute a block when a
condition is false, you must include an else statement.
Using an if statement with an else statement allows you
to execute one of two sections of code, depending on the

outcome of testing the condition. If the condition is true,
the statement block directly following the if statement
is executed. If the condition is false, the statement block
directly following the else statement is executed. Using
an else statement ensures that a section of code is executed
regardless of the outcome of testing the condition. For
example, you can have a program display a Good Morning
message or a Good Evening message, depending on the
time set on the computer that executes the program.

To make your code easier to read and understand, you
should always indent the statement block that contains the
code to be executed. Many programmers also use spaces
within statements to make the statements easier to read.
White-space characters, such as tabs and blank lines, are
ignored by the Java compiler, so using these characters will
not affect the function or performance of your Java program.

USING THE IF STATEMENT

PROGRAMMING WITH JAVA 2

If you are going to execute only one line of code based
on a condition being true, you can place the code to be
executed on the same line as the if statement.

if (currentTemp > hot)
{

System.out.println("It’s hot.");
}

if (currentTemp > hot) System.out.println("It’s hot.");

FOR EXAMPLE: CAN BE TYPED AS:

Nested if statements allow you to specify
multiple conditions for an if statement at the
same time. Each if statement will be evaluated
only if the previous if statement is true. If all

the if statements are true, a section of code
is executed. If any of the if statements are
false, no code from the if statements will be
executed.

int hot = 80, veryHot = 85, currentTemp = 88;
if (currentTemp > hot)
{

System.out.print(currentTemp + " degrees. It's ");
if (currentTemp > veryHot)
{

System.out.print("very, very ");
}
System.out.println("hot.");

}

88 degrees. It’s very, very hot.

TYPE THIS: RESULT:

43

� The result of using
the for statement is
displayed.

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyJavaProgram
0
1
2
3
4

C:\java>

A loop can still be executed even if one
or more expressions are omitted from the
for statement. However, any expressions
you omit from the for statement must
be specified elsewhere in the code. For
example, if you specify the starting value
of the iterator in another part of your code,
you do not need to include an initialization
expression in the for statement. Keep
in mind that you must still include all the
necessary semicolons in the for statement.

Example:
int loopCounter = 3;
for (; loopCounter < 5; loopCounter++)
{

System.out.println(loopCounter);
}

If a for statement does not include a condition
and no condition is specified in the body of the loop,
Java assumes that the condition is always true and an
infinite loop is created. You should be careful not to
accidentally create an infinite loop.

Example:
int loopCounter;
for (loopCounter = 1; ; loopCounter++)
{

System.out.println(loopCounter);
}

If the body of a for loop is composed of a single line
of code, you do not have to enclose the line in braces.
Although the braces are optional in this situation, most
programmers use the braces to keep their code
consistent.

Example:
for (loopCounter = 0; loopCounter < 10; loopCounter++)

System.out.println(loopCounter);

ˇ Type the re-initialization
expression that will modify
the value of the iterator each
time the loop is executed.

Á Type the code you
want to execute as long
as the specified condition
is true. Enclose the code
in braces.

‡ Compile the Java code
and execute the program.

42

JSP

USING THE FOR STATEMENT

⁄ In the body of the
method, declare a variable
that will be used as the
iterator.

¤ Type for (). ‹ Type the initialization
expression that specifies the
starting value of the iterator
followed by a semicolon.

› Type the condition
that evaluates the value
of the iterator followed
by a semicolon.

P rogrammers often need to execute the same
statement or block of statements several times.
The for statement allows you to create a loop that

repeats the execution of code a specific number of times.
For example, you may want to create five line breaks on
a Web page. Instead of typing the code that creates a line
break five times, you can create a loop that executes the
code to create a line break and then repeats the loop until
the value of a counter reaches 5.

When creating a for statement, you usually use a
variable, called an iterator, that acts as a counter for
the loop. You use an initialization expression to specify
a starting value for the iterator.

You must also specify a condition that evaluates the
value of the iterator. If the condition is true, the loop is
executed and a block of code you specify is processed.
If the condition is false, the block of code is not executed
and the loop is ended.

The re-initialization expression is used to modify the value
of the iterator. For example, if you use the increment
operator (++) in the re-initialization expression, the value
of the iterator will be incremented by one each time the
loop is executed. The expression i++ functions the same
as i = i + 1.

The block of code you want to execute is placed between
braces {} and is known as the body of the loop. You
should indent the code in the body of a loop to make the
code easier to read and understand. The code in the body
of a for loop can include any valid Java statements, such
as calls to other methods. You may also place another
loop within the body of a for loop. This is referred to as
nesting. You should avoid having too many nested loops
because it makes the program difficult to read and
troubleshoot.

USING THE FOR STATEMENT

PROGRAMMING WITH JAVA 2

45

� The result of using
the while statement
is displayed.

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyJavaProgram
This is line number 1
This is line number 2
This is line number 3
This is line number 4
This is line number 5
C:\java>

› Type the code you
want to execute as long
as the specified condition
is true. Enclose the code
in braces.

ˇ In the body of the
loop, type the code that
will alter the value of the
iterator each time the
loop is executed.

Á Compile the Java
code and then execute
the program.

44

JSP

USING THE WHILE STATEMENT

⁄ In the body of the
method, type the code
that creates an iterator
and assigns it a value.

¤ Type while (). ‹ Type the condition
you want to evaluate.

T he while statement allows you to create a
conditional loop that will execute a section
of code as long as a specified condition is true.

Conditions often test the value of an iterator. For
example, you may want to process a pay statement
for each of the 100 employees in a company. Instead
of typing the code that processes a pay statement
100 times, you could create a loop to process the pay
statement for each employee. The condition would
check how many pay statements have been processed.
After the 100th pay statement has been processed,
the condition would be evaluated as false and the
loop would end.

The body of a while loop is enclosed in braces {}
and contains the section of code to be executed. If the
condition tests the value of an iterator, the loop body
will also contain code to alter the value of the iterator.
The value of an iterator can be increased or decreased.

When the condition is true, the section of code in the
body of the loop is executed. When Java reaches the
end of the loop body, the condition is re-evaluated.
If the condition is still true, the section of code is
executed again. If the condition is false, the section
of code in the loop body is not executed and the
loop ends.

When creating a loop using the while statement,
you must ensure that the condition being tested will
be evaluated as false at some time. If the condition is
always true, the code in the loop body will be executed
indefinitely. This kind of never-ending loop is known as
an infinite loop. If an infinite loop is created, you will
have to forcibly stop the execution of the Java program.

USING THE WHILE STATEMENT

PROGRAMMING WITH JAVA 2

A do-while statement can be used to test
a condition after the code in the loop body
has been executed. This is useful if you have
a section of code that you want to execute at
least once, regardless of how the condition
is evaluated.

int loopCounter = 0;
do
{

System.out.println("This is line number "
+ loopCounter);

loopCounter++;
} while (loopCounter < 0);

This is line number 0

TYPE THIS:

RESULT:

You can place another loop within the body of
a do-while loop to create a nested loop.

int loopCounter = 0, dotCounter;
do
{

System.out.print("This is line number");
for (dotCounter = 0; dotCounter < 8; dotCounter++)
{

System.out.print(".");
}
System.out.println(loopCounter);
loopCounter++;

} while (loopCounter < 3);

This is line number........0
This is line number........1
This is line number........2

TYPE THIS:

RESULT:

47

� The result of using
the switch statement
is displayed.

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyJavaProgram
Very Important

C:\java>

You can execute one section of code
for multiple case statements. Each case
statement you want to match must be
followed by a colon.

Example:
switch (gender)
{

case M: case m:
System.out.println("Male");
break;

case F: case f:
System.out.println("Female");
break;

}

You can include a default statement in a
switch statement if you want to execute specific
code when none of the other case values match
the specified expression. The default statement
is usually placed last in the switch statement
structure.

Example:
switch (priority)
{

case 1:
System.out.println("Urgent");
break;

case 2:
System.out.println("Not Important");
break;

default:
System.out.println("Ignore");

}

° Type break to prevent
the switch statement from
testing the remaining case
values after a section of
code is executed.

· Repeat steps 5 to 8
for each value the
expression may contain.

‚ Compile the Java
code and then execute
the program.

46

JSP

USING THE SWITCH STATEMENT

⁄ Create the expression
you want to use in the
switch statement.

¤ Type switch.

‹ Type the name of the
expression, enclosed in
parentheses.

› Type a pair of braces to
hold the case statements.

ˇ Type case followed by a
value the expression may
contain.

Á Type : to complete the
case statement.

‡ Type the statements
you want to execute if the
case value matches the
expression you specified
in step 1.

T he switch statement allows you to execute a
section of code, depending on the value of an
expression you specify. When a switch statement

is executed, the value of the expression is compared to
a number of possible choices, called case values. If the
value of the expression matches a case value, the section
of code following the case value is executed. For example,
you can create a switch statement that displays a specific
message, depending on information entered by a user.

To use the switch statement, you must first specify the
expression you want to use. The value of the expression
must have a char, byte, short or int data type. After
specifying the expression, you must create the case
values that the expression will be compared to. The
expression must match the case value exactly. You
cannot use an indefinite expression, such as x > 10,
for a case value.

The switch statement compares the value of the
expression to each case value in order, from top to
bottom. The case statements can be in any order,
but to make your program more efficient, you should
place the most commonly used case values first.

To prevent the switch statement from testing the
remaining case values after a match has been made, you
should use the break statement to skip the remaining
case statements and continue processing the code after
the closing brace of the switch statement. The break
statement should be used as the last statement for each
case statement. Although the last case statement does
not require a break statement, some programmers
include it to be consistent. This can help prevent you
from forgetting to include the break statement if you
later add another case statement to the switch
statement.

USING THE SWITCH STATEMENT

PROGRAMMING WITH JAVA 2

49

� The results of creating
an array and accessing
elements are displayed.

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyjavaProgram
Items on hand = 953

C:\java>

Á To create an element
in the array, type the
name of the array,
followed by the index
number of the element
enclosed in brackets.

‡ Type = followed by
the value for the element.

� If the value for the element
is a string, you must enclose
the string in quotation marks.

° Repeat steps 6 and 7 for
each element in the array.

· Type the code that
accesses elements in the array.

‚ Compile the Java code
and then execute the
program.

48

JSP

CREATE AN ARRAY

⁄ To declare an array
variable, type the data
type of the values that
will be stored in the
array, followed by [].

¤ Type a name for the
array variable.

‹ To define the array, type
the name of the array variable,
followed by =.

› Type new to create the
new array, followed by the
data type for the array.

ˇ Type the number of
elements the array will
contain, enclosed in
brackets.

A n array stores a set of related values, called
elements, that are of the same data type. For
example, an array could store the name of each

day of the week. Using an array allows you to work
with multiple values at the same time.

The first step in creating an array is to declare an array
variable. To declare an array variable, you specify the data
type of the values that the array will store, followed by
brackets []. For more information about data types, see
page 30. You must also give the array a name. Array names
use the same naming conventions as other variables.

Once you have declared the array variable, you can define
the array. The new operator is used to define an array and
indicates that you want to set aside space in memory for
the new array. When defining an array, you must also
specify the number of elements the array will store.

Each element in an array is uniquely identified by an index
number. Index numbers in an array start at 0, not 1. For
example, an array defined as items = new int[6] would
contain six elements indexed from 0 to 5.

You can specify the values you want each element to store.
String values must be enclosed in quotation marks.

To access an individual element in an array, you use the
name of the array followed by the index number for the
element enclosed in brackets. When brackets are used
in this context, they are referred to as the array access
operator. You can use an array element in a Java program
as you would use a variable. Changing the value of an
element will not affect the other elements in the array.

CREATE AN ARRAY

PROGRAMMING WITH JAVA 2
Unlike most other programming languages, Java
treats arrays as objects. The length member of the
array object allows you to determine the number
of elements in an array.

class ArrayLength
{

public static void main(String[] args)
{

int[] items;
items = new int[3];

items[0] = 331;
items[1] = 324;
items[2] = 298;

int total = items.length;
System.out.print("Number of items = " + total);

}
}

Number of items = 3

TYPE THIS:

RESULT:

You can use code that creates a loop, such
as a for statement, to work with all the
elements in an array at once.

class MyArray
{
public static void main(String[] args)
{

int[] items;
items = new int[3];

items[0] = 331;
items[1] = 324;
items[2] = 298;
int total = items.length;

for (int i = 0; i < total; i++)
System.out.println(items[i]);

}
}

331
324
298

TYPE THIS:

RESULT:

51

� The result of using
a class stored in a
package is displayed.

C:\WINDOWS>cd\jdk1.3\lib

C:\jdk1.3\lib>javac TestPackage.java

C:\jdk1.3\lib>java TestPackage
My email address is tom@abc.com

C:\jdk1.3\lib>

A class always belongs to a package, even
when no package is specified. If a package is
not specified for a class, the class will belong
to the default package, which is the empty
string "".

If you are using a Java development tool,
such as an Integrated Development
Environment (IDE), package directories
may already be set up for you within a
main class directory. You can usually change
the configuration of the program to specify
another directory as the main class directory.

The method you use to create directories
will depend on the type of operating system
installed on your computer. If you are using
a UNIX-based operating system, such as
Linux, you might use the mkdir command
to create directories in a terminal window.
If you are using an operating system with
a Graphical User Interface (GUI), such as
Macintosh or Windows, you would use
the graphical tools provided to create
directories.

When you use a class stored in a package,
you must specify the name of the package
in addition to the class name. To avoid
having to specify the package name each
time you want to use the class, you can
import the package into your program.

USE A CLASS STORED
IN A PACKAGE

⁄ To use a class
stored in a package you
created, type the name
of the package followed
by a dot.

¤ Type the name of
the class you want to
use from the package,
followed by a dot.

‹ Type the name of
the method you want
to access.

› Compile the Java code
and then execute the
program.

50

JSP

CREATE A PACKAGE

⁄ Create a directory on
your computer that will
store classes for the package.

� In this example, a
directory named myapps is
created in the lib directory.
The lib directory is located in
the main Java SDK directory.

¤ On the first line of code
in a class file, type package
followed by the name of the
package you want to create.

Note: The package name must
be the same as the name of the
directory you created in step 1.

‹ Enter the code that
declares a class and a
method that you want to
use in other Java programs.

› In the body of the
method, type the code
for the task you want to
perform.

ˇ Save the code with
the .java extension in the
directory you created in
step 1.

I f your Java program contains a large number of class
files, you can organize the files by grouping them into
packages. A package stores a collection of related classes.

For example, all the shipping-related classes in a program
could be grouped into a package called shipping.

Packages allow you to use classes with identical names in
the same Java program. Using classes with the same name
in one program is normally not permitted in Java. However,
when you place classes with the same name in different
packages, the classes can be used in a single application
without conflict.

When creating a package, you must create a directory to
store all the classes for the package. Package directories
must always be created in the default class directory that
was specified when the Java Software Development Kit
was installed on your computer. The lib directory, which
is located in the main Java SDK directory, is usually the
default class directory.

The name of the directory you create should describe the
classes the package will store. All the classes belonging
to a package must be saved in the same directory.

You add a package statement to a class file to specify the
name of the package you want the class to belong to. The
package statement must be the first line of code in the
class file. If the package name consists of multiple words,
the words are separated by dots. Each word in the name
must represent an actual directory on your computer.
For example, classes that are placed in a package called
myapps.internet would be stored in a directory called
internet, located within the myapps directory.

To use a class stored in a package in an application,
you specify the package name and the class name.

CREATE A PACKAGE

PROGRAMMING WITH JAVA 2

53

� The result of using a
class from an imported
package is displayed.

C:\WINDOWS>cd\jdk1.3\lib

C:\jdk1.3\lib>javac TestPackage.java

C:\jdk1.3\lib>java TestPackage
My email address is tom@abc.com

C:\jdk1.3\lib>

You can use the wildcard character * to have
Java import all the classes a package contains.
This is useful if you want to access several
classes in a package. In the following example,
the package is named myapps.webutils.

Example:

import myapps.webutils.*

When using the wildcard character *, it is
important to note that only the classes in
the named package will be imported. For
example, the import myapps.webutils.*
statement will only import the classes
found in the myapps.webutils package and
will not import any classes found in the
myapps.webutils.text package. To import
classes from the myapps.webutils.text
package, you must use the import
myapps.webutils.text.* statement.

Java may not import every class a package
contains when you use the wildcard
character *. When you compile your code,
Java searches the code and imports only
the classes that are used. This prevents
your bytecode from becoming too large.

Java can automatically import certain
packages when you compile code. The
java.lang package, which is part of the
Java class library, is automatically imported
whenever you compile code. If your code
contains classes that do not belong to a
package, Java imports the default package " "
and assigns the classes to that package.
If your Java code contains a package
statement, the named package is also
automatically imported.

ˇ In the body of the
method, type the code for
the task you want to perform.

Á To use the imported class,
type the name of the class
followed by a dot.

‡ Type the name of
the method you want
to access.

° Compile the Java
code and then execute
the program.

52

JSP

IMPORT A PACKAGE

⁄ To import a package,
type import in the first line
of code.

‹ Type the name of the
class you want to import.

› Enter the code that
declares the class and
the method you want
to use.

Y ou can import a class from a package you have created
into a Java program. This is useful if you plan to use the
class several times in the program. Once a package and

a class have been imported, you do not need to specify the
name of the package each time you want to access the class.

The import statement is used to import a package and
is usually placed at the beginning of your Java program.
If your program contains a package statement, the import
statement must be placed after the package statement.
You can import several packages and classes into one Java
program. Each package you want to import must have its
own import statement. You should not import two classes
with the same name into one program.

You must first create the package you want to import. For
more information about creating a package, see page 50.

To help ensure an error is not generated when you compile
the code for your program, you must ensure that the package
directory and the class you want to import are available.
In most situations this is not a concern, but it becomes
important if you are developing programs on different
computers or different platforms.

When importing a class from a package, you must specify
the name of the class you want to import. You should only
import class files you intend to use. Imported class files
increase the size of the bytecode created when you compile
Java code.

In addition to packages and classes that you create, you
can import packages and classes that are part of the Java
class library. You can refer to page 8 for more information
about the packages included in the Java class library.

IMPORT A PACKAGE

PROGRAMMING WITH JAVA 2

¤ Type the name of
the package you want to
import followed by a dot.

55

� The results of instantiating
the object of a sub-class and
accessing methods of the
sub-class and super-class
are displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayMessage.java

C:\java>java DisplayMessage
Copyright<i>1999, 2000, 2001.</i>

C:\java>

As with methods, fields within a super-class will
also be available to a sub-class, depending on the
access modifier a field uses. A field that uses the
private access modifier will not be accessible
to any sub-classes, while a field that uses the
public access modifier will be available to all
sub-classes.

When creating a sub-class, you can override a
method in the super-class that you do not want to be
available when the sub-class is accessed. To override
a method in the super-class, create a method in the
sub-class that has the same name as the method you
want to override. The access modifier of the method
in the sub-class must be the same or less restrictive
than the access modifier of the method in the super-
class. When an object is created using the sub-class,
the method in the sub-class will be available instead
of the method in the super-class.

A class you created as a sub-class can be
used as the super-class of another class. This
allows you to create a chain of sub-classes
and super-classes. A class that extends
directly from a super-class is called a direct
sub-class of the super-class. A class that is
an extension of another sub-class is called a
non-direct sub-class of the super-class. There
is no limit to the number of sub-classes that
can be created from other sub-classes.

USING AN EXTENDED CLASS

⁄ To create a class that
will instantiate an object of
the sub-class you created,
type the code that defines
the class and method you
want to use.

¤ In the body of the
method, type the code
that creates the object.

‹ Type the code that
accesses methods from
the sub-class and the
super-class.

› Compile the Java code
and then execute the
program.

54

JSP

EXTEND A CLASS

CREATE THE SUPER-CLASS

⁄ Type the code that
defines a class you want
to be able to extend to
another class.

¤ Compile the Java code
for the class.

CREATE THE SUB-CLASS

⁄ Type the code that
defines a class you want
to use as an extension
of another class.

¤ In the method
declaration, type extends
followed by the name
of the class you want to
use as the super-class.

‹ Compile the Java
code for the class.

I f a class you are creating is related to a class you have
previously created, you can make the new class an
extension of the original class. For example, you can

make a new class that performs tasks using a database an
extension of the class that connects to the database. This
allows you to re-use Java code in the original class without
having to retype the code in the new class.

When you extend a class, the original class is usually
referred to as the super-class, while the new class is
called the sub-class.

When declaring a class you want to use as a sub-class,
you must use the extends keyword to specify the name
of the class that will act as the super-class. The class you
specify using the extends keyword must be a valid class
that will be accessible to the sub-class when the sub-class
is compiled.

Whether or not a method within a super-class will be
accessible to a sub-class depends on the access modifier

the method uses. A method that uses the public
access modifier will be accessible to any sub-class,
while a method that uses the private access modifier
will not be accessible to sub-classes. A method that
does not have an access modifier specified will be
accessible only to sub-classes that are stored in the
same package as the super-class.

Once you have created a sub-class as an extension of a
super-class, you can create a new class that accesses the
sub-class. For example, a new class can create an object
using the sub-class. The class information from both the
sub-class and the super-class will be combined to form a
single object, with methods from both the sub-class and
the super-class available to the object.

Many of the classes included with the Java SDK extend to
other classes. For information about the Java SDK classes,
refer to the Java SDK documentation.

EXTEND A CLASS

PROGRAMMING WITH JAVA 2

57

� The value of the
member variable and
the value of the local
variable are displayed.

C:\WINDOWS>cd\java

C:\java>javac ShowScope.java

C:\java>java ShowScope
This is the value of the local variable x: 55
This is the value of the member variable x: 10

C:\java>

The scope of a variable is restricted to the block
of code that contains the variable declaration. If
you declare a variable in a block of code created
by an if statement or a statement that produces
a loop, the variable will be a local variable.

Example:

boolean go = true;

if (go)
{

int x = 3;
}

System.out.print(x);

Produces this error message when compiled:

Scope.java:12: cannot resolve symbol
symbol : variable x
location: class Scope

System.out.print(x);
^

1 error

‡ Type the code that
declares another method.

° In the body of the
method, type the code
that displays the value
of the member variable.

· In the body of the
main method, type the
code that calls each
method.

‚ Compile the Java
code and then execute
the program.

56

JSP

UNDERSTANDING VARIABLE SCOPE

⁄ To create a member
variable, type static in
the body of the class.

¤ Type the code that
declares the member
variable.

‹ Type the code that
declares a main method.

› Type the code that
declares a method.

ˇ To create a local
variable, type the code
that declares a variable in
the body of the method.

� Give the local variable
the same name as the
member variable, but
a different value.

Á Type the code that
displays the value of
the local variable.

T he scope of a variable determines the part of a
program that can access the variable and use its
value. In Java, there are strict guidelines governing

variable scope. These guidelines are referred to as
scoping rules.

The scope of a variable is determined by the position of
the variable declaration within a block of code. An opening
brace and a closing brace denote a block of code. The
scope of a variable is from the line of code containing
the variable declaration to the closing brace of the block.

If you declare a variable in the body of a class, outside
of any method, the variable will be accessible to all the
methods in the class. A variable declared in a class body
is referred to as a member variable.

When using the Java interpreter to execute a class file,
methods and variables created in the body of the class
file must be declared using the static access modifier.

A variable declared within a method is referred to as
a local variable. A local variable is accessible only within
the method in which it was declared. Other blocks of code
created within the method can access the local variable.

You can use the same name to declare a member
variable and a local variable in one class. When you
use the same name to declare two variables of different
scope, Java treats the variables as distinct. Although
variables with different scopes can have the same name,
using unique variable names will make your code easier
to understand. For example, instead of using a variable
named counter for all your counting functions, you should
use variations of the name, such as loopCounter for
counting loop iterations or processCounter for counting
the number of times a particular process is executed.

UNDERSTANDING VARIABLE SCOPE

PROGRAMMING WITH JAVA 2

5958

JSP

Y ou must have access to a JSP-compatible Web server
before beginning to develop JavaServer Pages code.
There are several JSP-compatible Web servers to choose

from and most of the server software is available in both
Windows and UNIX versions. Some of the available Web
servers are written in the Java programming language and
can be installed on any computer that has a Java Runtime
Environment installed.

A computer running a Windows operating system with the
Tomcat Web server installed was used to process the JSP
pages created in this book.

JSP-COMPATIBLE WEB SERVERS

GETTING STARTED WITH JAVASERVER PAGES 3

CHOOSING A WEB SERVER

Cost

Web server software is often available free of charge
for development purposes, but you may have to pay
for the software if it will be used in a commercial
application. Some Web servers can be used free of
charge for a specific period of time, after which a fee
must be paid to continue using the Web server.

Terms and Conditions

Each Web server has its own specific terms and
conditions of use. Prior to using any Web server
software, you should carefully review the terms and
conditions to ensure that the way you intend to use
the software complies with the conditions of use.

Feature List

Some Web servers support a wider range of features
than other Web servers. For example, some Web servers
support detailed logging and error reporting, while
others do not. You should examine the feature list for a
Web server to determine whether the server meets your
current and future needs.

When choosing a Web server, you should evaluate the
strengths and weaknesses of several Web servers to
determine which server best suits your needs and
meets your level of expertise. For example, while a
Web server may be capable of processing thousands
of JSP pages per hour, the server may be very
complicated to set up.

POPULAR JSP-COMPATIBLE WEB SERVERS

Jigsaw

Jigsaw is a Java-based Web server developed by the
World Wide Web Consortium (W3C), which is the
body responsible for many Web standards. The Jigsaw
Web server is better suited to development than
deployment. For more information about the Jigsaw
Web server, visit the www.w3c.org/Jigsaw Web site.

LiteWebServer

LiteWebServer is a small, robust Web server developed
by Gefion Software. This Web server is suitable for
developing JSP pages and for making pages available on
an intranet. For more information about LiteWebServer,
visit the www.gefionsoftware.com Web site.

The following are examples of JSP-compatible Web servers.

JSP-COMPATIBLE WEB SERVERS (Continued)

Nexus

Nexus is written entirely in Java and can be used either
as a stand-alone Web server or as part of a larger
application. To download the Nexus Web server, visit
the www-uk.hpl.hp.com/people/ak/java/nexus Web site.

Orion Application Server

Orion Application Server is a popular JSP-compatible
Web server that is suitable for most commercial needs.
Orion Application Server supports clustering, which
allows a large Web site to be stored on multiple Web
servers. To learn more about Orion Application Server,
visit the www.orionserver.com Web site.

Servertec Internet Server

Servertec Internet Server is an easy-to-use Web server
that can be used as a stand-alone Web server or can
be integrated with the Apache Web server. Apache
is the most popular Web server on the Internet.
Servertec Internet Server is written entirely in the Java
programming language. For more information about
Servertec Internet Server, visit the www.servertec.com
Web site.

Tomcat

The Tomcat Web server can be used as a stand-alone
Web server or can be integrated with the Apache Web
server. The Tomcat Web server is available at the
jakarta.apache.org Web site. For information about
installing the Tomcat Web server, see page 60.

WebSphere Application Server

WebSphere Application Server is a Java-based Web
server developed by IBM that can be used to develop
JSP pages and deploy large-scale e-business applications.
For more information about WebSphere Application
Server, visit the www-4.ibm.com/software/webservers
Web site.

WEB HOSTING SERVICES

If you do not want to install your own Web server
software to develop JSP pages, you can use a Web
hosting service that offers JSP-compatible Web servers.
A Web hosting service is a company that allows
individuals to store Web sites they create on the
hosting service's Web servers. A Web hosting service
may also offer access to other technologies related to
JSP, such as JDBC, the Java technology used to enable
JSP pages to retrieve information from a database.

Web hosting fees are typically inexpensive, making a
Web hosting service an affordable alternative to
installing a Web server on your own computer. A Web
hosting service usually charges a monthly fee for their
services. The fees vary depending on the amount of
space, bandwidth and other resources required by the
Web site.

When developing JSP pages using a Web hosting service,
you will need a text editor to write the code and an ftp
program to transfer your pages to the Web hosting
service's Web servers.

Examples of Web hosting services that offer JSP-compatible
Web servers include:

SpinWeb
www.spinweb.net

iMagine Internet Services
www.imagineis.com

MyServletHosting.com
www.myservlethosting.com

Reinvent Technologies, Inc.
www.reinventinc.com

Colossus, Inc.
www.colossus.net

61

� If the Tomcat Web server
is not working properly, the
Web browser will display an
error message.

TEST TOMCAT

‹ Start the Web browser
you want to use to test the
Tomcat Web server.

› Click this area to highlight
the current Web page
address and then type http://.

ˇ Type the name or IP
number of your computer
followed by a colon.

Á Type the Tomcat port
number and then press
Enter.

� The Web browser
displays a Web page
generated by the Tomcat
Web server.

60

JSP

INSTALL THE TOMCAT WEB SERVER

INSTALL TOMCAT

⁄ Copy the Tomcat
Web server files to
your computer.

� In this example, we copy
the Tomcat Web server files
to the C: drive. The files are
stored in a directory called
Tomcat.

START TOMCAT

⁄ Display the contents of the
bin directory, which is located
in the Tomcat directory.

¤ Double-click the
appropriate startup file to start
the Tomcat Web server.

Note: The startup.bat file
is used to start Tomcat on
Windows platforms. The
startup.sh file is used to start
Tomcat on non-Windows
platforms.

� A command prompt
window appears.

B efore you can create interactive and dynamic JSP
pages, you must install a Web server that can
interpret and process JavaServer Pages code.

Tomcat is a fully-functional Web server that you can
install on your computer to create and test JSP pages.

You need to install the Java Software Development Kit
before installing the Tomcat Web server. You may need
to change certain Tomcat settings to specify the location
of the Java SDK. Consult the documentation included with
Tomcat for information about changing these settings.

Tomcat is constantly being updated. A recent release of
the Tomcat Web server is included on the CD-ROM disc
that accompanies this book, but you should make sure you
install the latest version of the server. The latest version of
Tomcat is available at the jakarta.apache.org/tomcat Web site.

The version of Tomcat you install may be an unfinished,
or beta, version. Although Tomcat is a very stable
application, some difficulties, such as system crashes,
should be expected when using any beta software.

To install Tomcat, you simply copy the Tomcat Web server
files to your computer. Once Tomcat is installed, it can be
started using a program called startup, which is located in
the bin directory. The bin directory also stores the shutdown
program, which you can execute to stop Tomcat when you
have finished displaying Web and JSP pages.

To confirm that Tomcat has been installed and started
properly, you can have the server display a page in a
Web browser. After starting the Web browser you want
to use, you enter the name or IP number of your computer,
as well as the port number used by Tomcat. The default
port number used by Tomcat is 8080. If you do not know
the IP number of your computer, you can use 127.0.0.1,
which is the IP number that computers running TCP/IP
use to refer to themselves.

A Web hosting service may also allow you to access their
Web server to test your JSP pages. For a list of Web hosting
services, see page 59.

INSTALL THE TOMCAT WEB SERVER

GETTING STARTED WITH JAVASERVER PAGES 3

When the Tomcat Web server is installed, several
directories are automatically created. These
directories can be found in the main Tomcat directory.

DIRECTORY NAME: DESCRIPTION:

bin Stores programs for starting and shutting down the Tomcat Web server.
conf Stores configuration files for the Tomcat Web server.
doc Stores miscellaneous documents.
lib Stores JAR (Java ARchive) files. The JAR file format is used to compress

all the components of a Java program into a single file.
logs Stores log files.
src Stores the servlet Application Program Interface (API) source files used

by the Tomcat Web server.
webapps Stores sample Web applications.
work Stores intermediate files, such as compiled JSP files. This directory

may not have been created when you installed the Tomcat Web server.

63

My Documents

Desktop

History

My Computer

My Network Pl...

The configuration settings for the Tomcat
Web server are stored in the server.xml
file located in the conf subdirectory of the
main Tomcat directory. You can adjust the
settings for Tomcat by changing or adding
information to the server.xml file. To edit
the file, you can open the file in a text
editor. You should consult the user
documentation included with Tomcat
before changing any settings in the
server.xml file.

By default, the port number used by Tomcat is 8080. You must
specify this number in the addresses you type when accessing pages
generated by Tomcat. To change the port number used by Tomcat,
open the server.xml file and look for the following section of code:
<Connector className="org.apache.tomcat.service.SimpleTcpConnector">
<Parameter name="handler"
value="org.apache.tomcat.service.http.HttpConnectionHandler"/>
<Parameter name="port" value="8080"/>

</Connector>

In the line that specifies the port number, replace the existing port
number with the port number you want to use. After you change the
port number, you must specify the new number in Web page addresses.

You can create your own directory within the webapps
directory and then store pages you want to display in that
directory. Creating your own directories is useful when
you want to use Tomcat to make your pages available to
others. Before you can display pages saved in a directory
you created, you must change settings in the server.xml
file. For example, if you created a directory named pages,
you would add the following code to the server.xml file
between the <ContextManager> tags:
<Context path="/pages" docBase="/pages" debug="0"
reloadable="true" >
</Context>

ˇ If the Web page is
stored in a subdirectory of
the root directory, type /
followed by the name of
the subdirectory that
stores the page.

Á Type / followed by the
filename of the Web page
and then press Enter.

� The Web page appears
in the Web browser.

62

JSP

DISPLAY A WEB PAGE USING TOMCAT

CREATE A WEB PAGE

⁄ In a text editor, create
a Web page.

¤ Save the Web page in
the Tomcat root directory
or one of its subdirectories.

Note: In this example, we
save the Web page in the
C:\Tomcat\webapps\examples
directory.

� The filename must have
the .html extension and
may need to be enclosed
in quotation marks.

VIEW A WEB PAGE

⁄ Start the Web browser you
want to use to display a Web
page.

¤ Click this area to highlight
the current Web page address
and then type http://.

‹ Type the name or IP
number of your computer
followed by a colon.

› Type the Tomcat port
number.

A fter installing the Tomcat Web server, you can create
a Web page and store the page on the server. You
can then use a Web browser to display the Web

page. Displaying a Web page allows you to confirm that
Tomcat is installed properly and that you are storing pages
in the correct directory.

Make sure you add the .html extension to the name of
a Web page you save. Some text editors do not recognize
the .html extension, so you may have to enclose the Web
page name in quotation marks, such as "index.html".

When installed on a Windows platform, Tomcat uses the
webapps directory as the root directory. All of the Web and
JSP pages you want to display must be stored in the root
directory or its subdirectories. When a Web server receives
a request for a Web page, the server looks for the page in
the root directory if no other directory is specified in the
request. If another directory is specified, the Web server
expects it to be a subdirectory of the root directory. For

example, when a Web server with a root directory named
docs receives the request www.server.com/work/sale.html,
the server displays the document sale.html stored in the
C:\docs\work directory.

If Tomcat is installed on a computer running a non-Windows
operating system, such as Linux, the root directory may be
different. The root directory could also change with newer
versions of Tomcat. Always check the documentation
included with Tomcat to verify the name and location
of the root directory.

The webapps directory contains a number of directories
that can be used to store your Web pages. If you are only
using the Tomcat Web server to test Web and JSP pages,
you may want to store the pages in the examples directory.

Before displaying Web pages, you must ensure that the
Tomcat Web server is running. To start the Tomcat Web
server, see page 60.

DISPLAY A WEB PAGE USING TOMCAT

GETTING STARTED WITH JAVASERVER PAGES 3

65

� The HTML comment
is included in the HTML
source code, but the
hidden comment does
not appear.

My JSP Page - Microsoft Internet ExplorerMy JSP Page - Microsoft Internet Explorer

‡ Save the page with
the .jsp extension and
then display the page
in a Web browser.

� The comments do not
affect the display of the
JSP page.

° Display the source
code of the JSP page.

64

JSP

ADD A COMMENT TO A JSP PAGE

⁄ To add an HTML
comment, type <!--.

¤ Type the comment.

› To add a hidden
comment, type <%--.

ˇ Type the comment.

Á Type --%> to complete
the hidden comment.

A dding comments to your HTML or JSP code is
good programming practice and can help clarify
the code. For example, you may use a variable

named totalCost in your code. You could use a comment
to explain whether the variable stores the total cost of all
the products in a database or only some of the products.
Comments can also contain information such as the
author's name or the date the code was created. You
can also use comments for debugging a program or
as reminders to remove or update sections of code.

You can include HTML comments within the HTML code
of a JSP page by enclosing the comments between the
<!-- and --> delimiters. Any text enclosed in these
delimiters will be sent to the Web browser, but will
not be displayed on the page. The information may be
displayed by users who view the HTML source code
however.

You can also add comments within the HTML code of a
JSP page using the hidden comment tags, <%-- and --%>.

Any code or information within the hidden comment tags
will be discarded before any processing of the JSP page
takes place on the Web server and will not be sent to the
Web browser.

You can add comments to JSP code the same way you add
comments to a Java application. The // notation can be
used to create single-line comments and the /* and */
delimiters can be used to create multi-line comments.
For information about adding comments to Java code,
see page 15.

You should be very careful about where you place
comments in a JSP page, especially when the comments
are placed within the JSP code. The Web server expects
to find only valid Java code within your JSP expressions,
scriptlets and declarations. Any HTML comments or
hidden comments in the JSP code will cause an error
to occur.

ADD A COMMENT TO A JSP PAGE

GETTING STARTED WITH JAVASERVER PAGES 3

You may include JSP code within an HTML comment. This
allows you to include dynamically generated comments in
your JSP page. Embedding JSP code within HTML comments
can help you to determine the state of various aspects of
your JSP code without affecting the display of the Web page
and can be a useful troubleshooting technique.

<%! String siteName = "My Web Site"; %>
<html>
<head>
<!-- The variable siteName has a value of
"<%= siteName %>" -->
<title>My JSP Page</title>
</head>
<body>
<% siteName = "* " + siteName + " *"; %>
<!-- The variable siteName has a value of
"<%= siteName %>" -->
Welcome to <%= siteName %>

</body>
</html>

<html>
<head>
<!-- The variable siteName has a value of
"My Web Site" -->
<title>My JSP Page</title>
</head>
<body>

<!-- The variable siteName has a value of
"* My Web Site *" -->
Welcome to * My Web Site *

</body>
</html>

TYPE THIS: HTML SOURCE CODE:

‹ Type --> to complete
the HTML comment.

67

� The Web browser
displays the results of
processing the expressions.

› Repeat steps 1 to 3
for each expression you
want to create.

ˇ Save the page with the
.jsp extension and display
the JSP page in a Web
browser.

66

JSP

CREATE AN EXPRESSION

⁄ Type <%= where you
want to insert an expression
in the JSP page.

¤ Type %> where you
want the expression to end.

‹ Between the opening and
closing delimiters (<%= and %>),
type the code to be evaluated
and included in the HTML code.

A n expression is a scripting element that allows
you to generate output on a JSP page. You can
use expressions to insert information into a Web

page rather than using scriptlets with out.print()
or out.println() statements. This reduces the
amount of code you have to type and can make your
scripts easier to read.

The Web server processes the code within the expression
and converts the results to a string. The results of the
expression are then inserted into the HTML code in
the same manner as the result of out.print() and
out.println() statements in scriptlets.

A simple expression can be used to display a string
enclosed in quotation marks or the value of a variable.
The Web server simply inserts the string or value into
the HTML code. Variables must be declared and initialized
in scriptlets or declarations in the same JSP page.

You can also use calculations and method calls in your
expressions. The expression processes the calculation

or method and inserts the result into the HTML code.
Methods used in expressions must be declared in the
same JSP page and return a printable value. If a method
does not return a value, the Web server displays an
error message.

You can use string concatenation to join
different types of information in a single expression.
For example, you can create an expression such as
<%= "Date of Birth: " + getDOB() %>, which generates
a string followed by the value returned by a method.

An expression cannot end with a semicolon, as is
customary with most Java statements. If a semicolon
is included in an expression, an error will occur.

Users viewing the source code of the Web page from
within a Web browser will not be able to view the
contents of the expression. They will see only the
information generated by the expression.

CREATE AN EXPRESSION

GETTING STARTED WITH JAVASERVER PAGES 3

If you need to include the " or \ character in a string, you
will have to place a backslash (\) before the character. The
" and \ characters have special meanings in Java and can be
misinterpreted by the Web server, causing errors to occur.

<%
String fontFace = "comic";
%>

<%= "My Web Page" %>
<%= "
c:\\Tomcat" %>

My Web Page

c:\Tomcat

TYPE THIS:

HTML SOURCE CODE:

69

� The Web browser
displays the result of
using the variable or
method you defined
in the declaration.

› Type the code that
uses the variable or
method.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

68

JSP

CREATE A DECLARATION

⁄ Type <%! where you
want to add a declaration
to a JSP page.

¤ Type %> where you
want the declaration to end.

‹ Between the opening
and closing delimiters
(<%! and %>), type the
code that defines a
variable or method.

A declaration is a scripting element that allows you
to define variables and methods that will be used
throughout a JSP page. You must define variables

and methods in a JSP page before you can use the variables
and methods in the page. Although variables can also
be defined within a scriptlet, using a declaration is the
preferred method for defining variables.

To create a declaration, you place the code for the
declaration between the <%! opening delimiter and the
%> closing delimiter. Although a JSP page can include
multiple declarations, this is not typically required. There
is no limit to the amount of code you can include in a
declaration, so you can define multiple variables and
methods within the same declaration. Each line of code
in a declaration must end with a semicolon, if a semicolon
is required according to Java programming syntax.

Since declarations do not generate any output, they can
be placed anywhere on a JSP page without interfering with
the HTML code. Declarations are typically placed at the
top of a page.

When defining a method in a declaration, you can use
the public, private or protected access modifier
to specify how the method will be accessed. For more
information about access modifiers, see page 17. The
access modifier you use becomes important when you
import class files and other JSP pages into your code.
For more information about including external files in
a JSP page, see page 76.

If a declaration you want to add to a JSP page will contain
many variables and methods, you may want to use another
method of including the code, such as JavaBeans. JavaBeans
allow you to store code in an external file so the source
code of your JSP page is easier to understand and manage.
For information on JavaBeans, see page 122.

CREATE A DECLARATION

GETTING STARTED WITH JAVASERVER PAGES 3

Using a declaration to define a method within a JSP
page is similar to defining a method within a Java
class. Once you define a method, you can access
the contents of the method from anywhere in the
JSP page. For example, you can use a scriptlet in
the body of the page to pass a value to the method.

<%!
String siteName = "My Web Server";
public String stars(int x)
{

String message = "*";
for (int i = 0; i < x; i++)

message = message + "*";
return message;

}
%>

<html>
<body>
Welcome to <%= siteName %>

<%= stars(22) %>
</body>
</html>

Welcome to My Web Server

TYPE THIS: RESULT:

71

Untitled - Notepad

� The Web browser
displays the result of
generating text using
a scriptlet.

› Between the parentheses,
type the text you want to
output, enclosed in quotation
marks.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

70

JSP

Untitled - Notepad

GENERATE TEXT USING SCRIPTLETS

Untitled - Notepad

⁄ Type <% where you
want to add a scriptlet
to a JSP page.

¤ Type %> where you
want the scriptlet to end.

‹ Between the opening and
closing delimiters (<% and %>),
type out.print() or out.println()
to generate text on the page.

Y ou can use scriptlets to generate text on a JSP page.
A scriptlet is a block of code embedded within
a page. The code for a scriptlet is almost always

written in the Java programming language, though some
Web servers support scriptlets written in other languages.
A page containing a scriptlet is often referred to as a
template.

To add a scriptlet to a page, you place the code you
want to embed in the page between the <% opening
delimiter and the %> closing delimiter. A scriptlet can
be used to generate text ranging from a simple message
to the entire content of a JSP page.

Within a scriptlet, you can use the out object with the
print or println member to generate text for a JSP
page. The out object sends output to a Web browser,
while the print and println members generate the
text that is to be inserted into the page.

The placement of a scriptlet within a JSP page is important.
If a scriptlet is used to generate output, it must be placed
in the body of the page rather than in an area that does
not display content, such as between the <head> and
</head> tags.

Before a JSP page containing scriptlets is generated, a Web
server processes the code in the scriptlets. The information
generated by the code is inserted into the page before the
page is displayed. Users who visit the JSP page will not
be able to see the code for a scriptlet, even if they display
the source code for the page, since the source code
will contain only the output generated by the scriptlet.
Although scriptlets are relatively secure, you should
avoid including sensitive information, such as passwords,
in the code.

GENERATE TEXT USING SCRIPTLETS

GETTING STARTED WITH JAVASERVER PAGES 3

When you use the print member with the out object, the text
you output does not include any line breaks. If you use the print
member several times in a row, all the text you enter will appear
on one long line in the source code. If you want to split text into
separate lines, you can use the println member. The println
member inserts a line break at the end of each line of text.

<%
out.print("<h1>");
out.print("Welcome to my Web Page");
out.print("</h1>");
out.print("<hr>");
%>

<h1>Welcome to my Web Page</h1><hr>

TYPE THIS:

SOURCE CODE:

<%
out.println("<h1>");
out.println("Welcome to my Web Page");
out.println("</h1>");
out.println("<hr>");
%>

<h1>
Welcome to my Web Page
</h1>
<hr>

TYPE THIS:

SOURCE CODE:

73

� The Web browser
displays the results of
processing the scriptlets.

› Repeat steps 1 to 3 for
each scriptlet you want to
add to your Web page.

ˇ Save the page with
the .jsp extension and
then display the page
in a Web browser.

72

JSP

WORK WITH MULTIPLE SCRIPTLETS

⁄ Type <% where you
want to add a scriptlet
to a JSP page.

¤ Type %> where you
want the scriptlet to end.

‹ Between the opening
and closing delimiters
(<% and %>), type the
code for the scriptlet.

� In this example, code
that assigns a value to a
variable is inserted.

Y ou can use multiple scriptlets within a single JSP
page. This enables you to place dynamically created
information in multiple locations throughout your

Web page.

Any code used in one scriptlet can be accessed by other
scriptlets in the same JSP page. For example, you can
declare a variable in one scriptlet and then access the
variable in another scriptlet that is in the same JSP page.
Scriptlets will be processed in the order they appear
on the JSP page, so you should consider the order of
processing when creating scriptlets that use information
from other scriptlets. For example, a scriptlet at the top
of a JSP page will not be able to access variables declared
in a scriptlet further down the page.

You must ensure that only valid Java code is included
between the <% and %> delimiters. When using multiple
scriptlets within HTML code, it is a common mistake to

leave some HTML code between the scriptlet delimiters.
HTML code included between the scriptlet delimiters must
be included in valid Java statements so the Web server can
dynamically generate the HTML code. If the Web server
finds any raw HTML code in a scriptlet, an error will occur.

Using many large scriptlets in a JSP page can cause your
code to be difficult to read and troubleshoot, should an
error occur. Scriptlets are suitable for small amounts of
code and for development and learning purposes. For
other purposes, you should convert your scriptlets into
a more manageable format, such as JavaBeans. For
information about creating JavaBeans, see page 122.

WORK WITH MULTIPLE SCRIPTLETS

GETTING STARTED WITH JAVASERVER PAGES 3

As well as displayable content for Web pages, scriptlets can also be
used to generate non-displayable elements, such as attributes for
HTML tags. This is useful if you also want to dynamically format
your page. Before the HTML code is sent to the Web browser, the
Web server replaces any scriptlets with the information generated
by the scriptlets. As long as the combination of scriptlet output
and HTML code in the page is valid, no errors will be generated.

<%
int fontSize = 5;
String fontColor = "blue";
String fontFace = "Courier";
%>

<font face="<%
out.print(fontFace);

%>" size="<%
out.print(fontSize);

%>" color="<%
out.print(fontColor);

%>">My Web Page

<font face="Courier" size="5"
color="blue">My Web Page

TYPE THIS: HTML SOURCE CODE:

My Web Page
WEB BROWSER:

75

Note: Some Web browsers
may automatically display
a plain-text JSP page as a
Web page.

If you do not use any directives in a JSP
page, the Web server's JSP engine will use
its own default settings when processing
the page. For example, if you do not use
the page directive with the contentType
attribute to specify how you want the
information in a JSP page to be generated,
a JSP engine will automatically display the
information as a Web page.

Some JSP engines do not support all of
the attributes and values offered by the
page directive. Before using the page
directive, you should view the latest
documentation for your Web server to
determine whether the JSP engine will
support the attributes and values you
want to use.

Although you can add more than one page
directive to a JSP page and each directive
can contain more than one attribute, you
usually cannot use the same attribute more
than once on a page. For example, you
cannot use the contentType attribute
several times on a JSP page, since the
information in the JSP page can only be
generated one way at a time.

DISPLAY A JSP PAGE
AS PLAIN TEXT

⁄ In the first line of
code in the JSP page, type
<%@ page contentType="" %>.

¤ To specify that you
want to display the JSP
page as plain text, type
text/plain between the
quotation marks.

‹ Save the page with the .jsp
extension and then display the
JSP page in a Web browser.

� The Web browser displays
the result of using the page
directive to display the JSP
page as plain text.

74

JSP

USING THE PAGE DIRECTIVE

DISPLAY A JSP PAGE
AS A WEB PAGE

⁄ In the first line of
code in the JSP page, type
<%@ page contentType="" %>.

¤ To specify that you
want to display the JSP
page as a Web page,
type text/html between
the quotation marks.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web browser
displays the result of
using the page directive
to display the JSP page
as a Web page.

D irectives provide information about a JSP page to
the software that processes the page. This software
is often referred to as a JSP engine and is part of

a Web server. Directives are sometimes called JSP engine
directives. Directives do not produce visible output, but
rather provide instructions and settings that determine
how a JSP page is processed.

There are three JSP directives available–page, include
and taglib. Each directive has attributes that can be
assigned specific values. For example, the page directive
offers the autoFlush attribute, which can be assigned a
value of true or false. For a complete list of attributes
that can be used with each directive, see page 241.

To add a directive to a JSP page, you place the directive
statement between the <%@ opening delimiter and the
%> closing delimiter. The directive statement includes
the name of the directive, followed by the attribute and

value pairs you want to use. An attribute and its
corresponding value are separated by an equal sign.
A directive will only affect the JSP page containing the
directive.

The page directive is the most commonly used directive.
The page directive allows you to specify information
about the configuration of a JSP page, such as the type
of content you want the page to display. For example,
you can use the contentType attribute with the
text/plain value to specify that you want the
information generated by a JSP page to be displayed
as plain text.

A JSP page can contain multiple page directives. It is
good programming practice to place page directives
at the beginning of a JSP page, before any HTML or
JavaServer Pages code on the page.

USING THE PAGE DIRECTIVE

GETTING STARTED WITH JAVASERVER PAGES 3

77

� The Web browser
displays the result of
using the include
directive.

My Documents

Desktop

History

My Computer

My Network Pl...

The include directive allows you to include a file that is
stored in the same directory as the JSP page that includes
the file or in a subdirectory of that directory. In this example,
the JSP page is stored in a directory called test and the
footer.html file is stored in a subdirectory called test/pages.

Example:
<%@ include file="pages/footer.html" %>

You can also include a file that is located in the parent
directory of the directory that stores the JSP page. To do so,
you use the double dot notation to represent the name of the
parent directory. In this example, the JSP page is instructed
to look for the welcome.html file in the parent directory.

Example:
<%@ include file="../welcome.html" %>

Using the include directive allows you to break code into
manageable sections and then include the code in JSP pages
as needed. Each include file should contain code specific to
only one task. If you create a file that contains code for many
tasks, the JSP pages may not use all the code and the Web
server's resources will be wasted.

‹ Between the quotation
marks, type the name of the
file you want to include.

› Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

76

JSP

USING THE INCLUDE DIRECTIVE

CREATE A FILE TO INCLUDE

⁄ In a text editor, create
the file you want to include
in several JSP pages.

¤ Save the file.

Note: If the file contains plain
text, save the file with the .txt
extension. If the file contains
HTML code, save the file with
the .html extension.

INCLUDE A FILE

⁄ Display the code for
the JSP page in which you
want to include a file.

¤ Between the <body>
and </body> tags, type
<%@ include file="" %>.

T he include directive allows you to use one file in
several different JSP pages. This can save you time
when you need to include the same information in

multiple pages. For example, if you have a copyright notice
you want to display on all your JSP pages, you can create
a file that contains the copyright notice and then use the
include directive to include the information on all your
pages. The file must be stored on the Web server and be
accessible from all the JSP pages that you want to include
the file.

You must first create the file you want to include. The
file can contain plain text or HTML code, such as a table,
header or footer. If the file contains plain text, you can
save the file with the .txt extension. If the file contains
HTML code, you can save it with the .html extension.
The include file should not contain any JavaServer Pages
code. The Web server will ignore any JavaServer Pages
code included in the file.

To include a file in a JSP page, you add an include
statement to the page. The include statement must be
enclosed between the <%@ opening delimiter and the %>
closing delimiter. The filename specified in the include
statement must be enclosed in quotation marks. The
filename must be a fixed value, such as "footer.html".
You cannot use a variable that represents the name
of a file in an include statement.

If you change the code in the file, all of the JSP pages
that include the file will be updated. You may have to
clear the Web server's buffer before your JSP pages will
display the changes made to the file. For information
about clearing the Web server's buffer, see page 92.

USING THE INCLUDE DIRECTIVE

GETTING STARTED WITH JAVASERVER PAGES 3

7978

JSP

I mplicit objects are created automatically when a
Web server processes a JSP page. The available
implicit objects include application, config,

exception, out, page, pageContext, request,
response and session. Each object is used to
perform a specific task, such as handling errors,

sending text generated by a JSP page to a Web browser
or interpreting information submitted by a form on a
Web page.

Implicit objects are available for use in every JSP page
you create. You do not have to write code that imports
or instantiates an implicit object.

INTRODUCTION TO IMPLICIT OBJECTS

WORK WITH JSP IMPLICIT OBJECTS 4

Object Scope

The scope of an object determines where the
object can be accessed in an application. For
example, the session object has session
scope, which means that the object can be
accessed by any JSP page processed during
a session. Most implicit objects have page
scope. When an object has page scope, the
object can be accessed only in the JSP page in
which the object was created. You can access
implicit objects only from within scriptlets or
expressions on a JSP page. Implicit objects are
not available for use in directives, such as the
page directive.

Class Files

Since JSP pages use the
underlying servlet technology
of the Web server, implicit
objects are usually derived
from class files that are part of
the servlet packages. For more
information about implicit
objects and the servlet
packages, you can consult the
Java SDK documentation.

OBJECT: SCOPE:

application application

config page

exception page

out page

page page

pageContext page

request request

response page

session session

OBJECT: CLASS:

application javax.servlet.ServletContext

config javax.servlet.ServletConfig

exception java.lang.Throwable

out javax.servlet.jsp.JspWriter

page java.lang.Object

pageContext javax.servlet.jsp.PageContext

request javax.servlet.ServletRequest

response javax.servlet.ServletResponse

session javax.servlet.http.HttpSession

IMPLICIT OBJECTS

application

The application object is used to store
information about an application. An application
is a collection of JSP pages stored in a specific
directory and its subdirectories on a Web server.

config

The config object is used to store information
about the configuration of the environment in
which a JSP page is processed on a Web server.

exception

The exception object is used to handle errors
that may occur when a JSP page is processed.
The exception object also stores error
information.

out

The out object is used to send output generated
by a JSP page to a client's Web browser.

page

The page object is used to store information
about a JSP page while the page is being
processed. The page object is not typically
accessed from within a JSP page.

pageContext

The pageContext object is used to access
the characteristics of a JSP page that are
specific to the Web server processing the
page.

request

The request object is used to store
information supplied by a client, such as
data submitted in a form or the IP number
and name of the client computer.

response

The response object is used to store
information generated by a Web server
before the information is sent to a client.

session

The session object is used to store
information associated with a session. A
sessions starts when a client requests a JSP
page from a Web site and ends when the
client does not request another page for a
specific period of time or the session is
abandoned.

8180

JSP

form.jsp - Notepad

CREATE A FORM

form.jsp - Notepad

⁄ Type <form action=""
where you want to add
a form to a Web page.

¤ Between the quotation
marks, type the location
and name of the JSP page
that will process the data
entered into the form.

‹ Type method="">.

› Between the quotation
marks, type the method
the form will use to pass
data to the JSP page.

ˇ Type </form> where
you want to end the form.

� You can now add
elements to the form.

A dding a form to a Web page allows you to gather
data from users who visit the page. A form can
be placed anywhere between the <body> and

</body> tags in an HTML document. The body of your
Web page can include as many forms as you need.

You use the <form> tag to create a form and the action
attribute to specify the location and name of the JSP page
that will process the data entered into the form. If the
JSP page is stored in the same directory as the Web page
containing the form, you only have to specify the name
of the JSP page. If the JSP page is not stored on the same
Web server as the Web page containing the form, you
must specify the full URL of the JSP page.

You must also specify which method the form will use
to pass data to the JSP page. There are two methods the

form can use–get and post. The method you should
use depends on the amount of data that will be passed.
The get method sends data to the JSP page by appending
the data to the URL of the page. The post method sends
the data and the URL separately. The get method is faster
than the post method and is suitable for small forms. The
post method is suitable for large forms that will send more
than 2000 characters to the JSP page.

Unlike other technologies used to process form information,
JavaServer Pages can automatically determine whether a
form is submitting data using the get or post method
and then retrieve the information.

For information about creating a JSP page that processes
data from a form, see page 84.

CREATE A FORM

ADD ELEMENTS TO A FORM

⁄ To add a text box to a
form, type <input type="text"
name=""> between the
<form> and </form> tags.

¤ Between the quotation
marks, type a word that
describes the text box.

‹ To add a submit button
to the form, type <input
type="submit" name="">.

› Between the quotation
marks, type a word that
describes the button.

ˇ Display the Web page
in a Web browser.

� The Web browser
displays the text box
and submit button.

E lements are areas in a form where users can enter
data and select options. The most commonly used
element is a text box, which allows users to enter

a single line of data into a form. Text boxes are often used
for entering names, addresses and other short responses.

Elements you add to a form must be placed between the
<form> and </form> tags. A form can contain as many
elements as you need.

There are many different types of elements you can add
to a form, such as text areas and check boxes. Text areas
allow users to enter several lines or paragraphs of text,
while check boxes let users select options on a form. For
information about commonly used elements, see page 82.

Each form element has attributes, such as name, type
and size, which offer options for the element. The name

attribute allows you to provide a name for an element.
The name you specify is used by the JSP page that
processes the form to identify the element and access
the information in the element. A name can contain
letters and numbers, but should not contain spaces or
punctuation. If you want to include spaces in a name,
use an underscore character (_) instead.

You must add a submit button to every form you create.
The submit button allows users to send the data they
entered into the form to the Web server. When the Web
server receives data from a form, the server transfers the
data to the JSP page that will process the data. The JSP
page can then perform an action with the data, such as
storing the data in a database or displaying the information
in a Web browser.

ADD ELEMENTS TO A FORM

WORK WITH JSP IMPLICIT OBJECTS 4

COMMONLY USED ELEMENTS

8382

JSP

A n element is an area in a form where users can
enter data or select options. There are several
different types of elements you can add to a form.

Most elements require you to specify attributes that
determine how the element will appear on a Web page.

You can find more information about form elements
and attributes at the
www.w3.org/TR/1999/REC-html401-19991224/interact/forms
Web site.

FORM ELEMENTS

WORK WITH JSP IMPLICIT OBJECTS 4

COMMONLY USED ELEMENTS

COMMONLY USED ATTRIBUTES

Type

The type attribute allows
you to specify the kind of
element you want to use.

Password Box

A password box allows users to enter private data. When
a user types data into a password box, an asterisk (*)
appears for each character, which prevents others from
viewing the data on the screen. A password box does not
protect the data from being accessed as it is transferred
over the Internet. You must set the type attribute to
password and use the name attribute to create a
password box. You may also want to use the value,
maxlength and size attributes.

Password Please <input type="password"
name="secretWord" value="password" maxlength="20">

Drop-Down List

The select element displays a drop-down list that
allows users to select an option from a list of several
options. For example, a drop-down list can be used to
allow users to select one of three shipping methods.
You must use the name attribute to create a drop-down
list. You use the <option> tag with the value attribute
to add options to the list.

How would you like your products shipped?
<select name="shipMethod">
<option value="air">Air</option>
<option value="land">Land</option>
<option value="sea">Sea</option>
</select>

Name

The name attribute allows you to specify
a name for an element. The JSP page that will
process data from the element uses the name
attribute to identify the data. Element names
can contain more than one word, but should
not contain spaces or special characters.

Value

The value attribute allows you
to specify a value for an element.
If an element displays a button,
you can use the value attribute
to specify the text that will
appear on the button.

Maxlength

The maxlength attribute
allows you to restrict the
number of characters a user
can enter into an element.

Size

The size attribute allows you to
specify the width of an element.

Checked

The checked attribute allows
an element to display a selected
option by default.

Text Box

A text box allows users to enter a single line of text, such
as a name or telephone number. You must set the type
attribute to text and use the name attribute to create a
text box. You may also want to use the maxlength and
size attributes.

First Name <input type="text" name="firstName" maxlength="20">

Text Area

The textarea element displays a large text area that
allows users to enter several lines or paragraphs of text.
A large text area is ideal for gathering comments or
questions from users. You must use the name attribute
to create a text area.

Questions? <textarea name="userQuestions"></textarea>

Submit Button

A submit button allows users to send data in the form to
the JSP page that will process the data. You must add a
submit button to each form you create. You must set the
type attribute to submit to create a submit button. You
may also want to use the name and value attributes.

<input type="submit" name="submit" value="Submit Now">

Reset Button

A reset button allows users to clear the data they
entered into a form. A user cannot redisplay data that
has been cleared. Reset buttons are commonly used
in forms that have many text boxes. You must set
the type attribute to reset to create a reset button.
You may also want to use the value attribute.

<input type="reset" value="Click to Reset">

Check Box

Check boxes allow users to select one or more options. For
example, check boxes can be used to allow users to specify
which states they have visited. You must set the type attribute
to checkbox and use the name and value attributes to create
a check box. You may also want to use the checked attribute.

Which states have you visited in the past year?

New York <input type="checkbox" name="states" value="New York" checked>
California <input type="checkbox" name="states" value="California">
Texas <input type="checkbox" name="states" value="Texas">

Radio Button

Radio buttons allow users to select only one of several options.
For example, radio buttons can be used to allow users to specify
if they are male or female. You must set the type attribute to
radio and use the name and value attributes to create a radio
button. You may also want to use the checked attribute.

What is your gender?

Female <input type="radio" name="gender" value="female" checked>
Male <input type="radio" name="gender" value="male">

Password Please ********

Air

Sea
Land

AirHow would you like your products shipped?

First Name

Submit Now

Questions?

Click to Reset

Which states have you visited in the past year?
New York California Texas

What is your gender?
Female Male

85

PROCESS FORM INFORMATION

⁄ In a Web browser, display
the Web page containing the
form you want to process.

¤ Enter data into the form.

‹ Click the submit button
to pass the data in the form
to the JSP page.

� The Web browser
displays the result of
using the getParameter
method to process data
from the form.

84

JSP

USING THE GETPARAMETER METHOD

⁄ In the JSP page you want
to process data from a form,
type request.getParameter("").

¤ Between the quotation
marks, type the name of
the form element you
want to access.

‹ Type the code that
uses the data from the
form element.

› Repeat steps 1 to 3
for each form element
you want to process.

ˇ Save the page with
the .jsp extension.

A fter creating a form on a Web page, you can create a
JSP page that will process data submitted in the form.
The getParameter method of the request object

allows a JSP page to access form data.

You must specify the name of the form element you want
to access using the getParameter method. The name
you specify must be exactly the same as the name that
was assigned to the element when it was created. If the
element name you specify does not exist in the form,
the getParameter method will return a null value.

Once a JSP page has accessed data from a form element,
the page can perform a task, such as storing the data in
a file or a database. While JSP pages that process data
from forms do not need to generate any output, these
pages typically produce an acknowledgement message
or redirect a client to another page.

Some Web servers require JSP pages that process data
from a form to be saved in a specific directory. You should

check the latest documentation for your Web server to
determine where you should save a JSP page that processes
form information. If your Web server does not require the
JSP page to be saved in a specific directory, you may want
to save the page in the same directory as the form it
processes.

After saving the JSP page, you should review the code
for the Web page that contains the form to verify that
the action attribute displays the correct filename and
location for the JSP page.

Although the getParameter method is still commonly
used, the method is deprecated. This means that the
getParameter method is no longer recommended
and will eventually become obsolete. The
getParameterValues method is now the preferred
method for accessing information in a form element.
For more information about the getParameterValues
method, see page 86.

PROCESS DATA FROM A FORM
Using the getParameter Method

WORK WITH JSP IMPLICIT OBJECTS 4

When you use the getParameter method of the
request object to access data from a form, the data
is retrieved as a string value that can be assigned to
a variable and then used in your code.

<%
String id = request.getParameter("userName");
String locale = request.getParameter("region");
String message = "Login Name:" + id + "
";
message = message + "Location:" + locale;
%>
<html>
<head><title>Thank You</title></head>
<body>
Your information has been processed.<hr>
<%= message %>
</body>
</html>

Your information has been processed.
--
Login Name:Barry
Location:Texas

TYPE THIS:

RESULT:

87

Sales

PROCESS FORM INFORMATION

⁄ In a Web browser, display
the Web page containing the
form you want to process.

¤ Enter data into the
form.

‹ Click the submit
button to pass the data in
the form to the JSP page.

� The Web browser
displays the result of using
the getParameterValues
method to process data
from the form.

86

JSP

USING THE GETPARAMETERVALUES METHOD

⁄ In the JSP page you want to
process data from a form, type
request.getParameterValues("").

¤ Between the quotation
marks, type the name of
the form element you
want to access.

‹ Type the code that
assigns the data from the
form element to an array
variable.

› Type the code that
uses the data from the
form element.

ˇ Save the page with
the .jsp extension.

WORK WITH JSP IMPLICIT OBJECTS 4

T he getParameterValues method of the request
object can be used to access the data passed by a
form. The getParameterValues method is the

preferred method for accessing form data, although the
getParameter method can also be used. For information
about the getParameter method, see page 84.

The getParameterValues method is particularly useful
for accessing a form element that can contain multiple
values. For example, some drop-down lists allow users to
select more than one option. The getParameterValues
method returns the data in a form element as an array of
string values.

You must specify the name of the form element you want
to access using the getParameterValues method. The
name you specify must be exactly the same as the name
that was assigned to the element when it was created. If the
element name you specify does not exist in the form, the
getParameterValues method will return a null value.

You can assign the data returned by the
getParameterValues method to an array variable.
This allows you to work with the data in the form element.
For example, you can use a for loop to display each value
stored in the element.

When saving a JSP page that processes data from a form,
you should check the latest documentation for your Web
server to determine where you should save the page. Some
Web servers require you to save JSP pages that process
form data in a specific directory. If your Web server does
not specify the directory you should use, you may want
to save the JSP page in the same directory as the form it
processes.

After saving the JSP page, you should review the code
for the Web page that contains the form to verify that the
action attribute displays the correct filename and location
for the JSP page.

PROCESS DATA FROM A FORM
Using the getParameterValues Method

When processing data from a form, you should include
code in your JSP page that checks the validity of data a user
submits in the form. For example, if you want users to select
at least two options from a drop-down list, you can add
error-checking code that ensures two selections were made.

Please select at least 2 items.

FORM:

<%
String[] names = request.getParameterValues("info");
if (names.length > 1)
{

for (int x = 0; x < names.length; x++)
out.print(names[x] + "
");

}
else
{

out.print("Please select at least 2 items");
}
%>

IN THE JSP PAGE, TYPE: RESULT:

Please select at least two catergories you would like more information about:
Products

Contact Information
Order Information

Shipping Information
Employment

SubmitSubmitSubmit

89

° In a Web browser,
display the form whose
elements you want to
determine.

· Click the submit
button to pass the form
information to the JSP
page.

‚ The Web browser
displays the name of each
element in the form.

88

JSP

DETERMINE THE ELEMENTS IN A FORM

⁄ In the first line of code in
the JSP page, type <%@ page
import="java.util.Iterator" %>
to import the Iterator
interface from the
java.util package.

¤ To create a loop that will
process each element name
in a form, type for ().

‹ To create the initialization
expression for the for
statement, type Iterator
followed by a name for the
element names in a form.

› Type = followed by (Iterator)
request.getParameterNames(); to
cast the element names retrieved
by the getParameterNames
method as a collection.

ˇ To create a condition for the
for statement, type the name
of the collection followed by
.hasNext();.

Á Type the code that
will process each element
in the collection. Enclose
the code in braces.

‡ Save the page with
the .jsp extension.

T he getParameterNames method of the request
object can be used to retrieve the name of each
element a form contains. You may want to determine

the names of elements in a form to verify that the form
contains the correct elements. Being able to determine the
names of form elements also allows you to create a single
JSP page that can process data from several different forms.

Form elements do not have to contain data in order to be
included in the list retrieved by the getParameterNames
method. If you gave the submit button on your form a
name, the name will be included in the list of element
names.

An efficient way to work with the element names retrieved
by the getParameterNames method is to cast the
names as a collection, or iteration, that can be used by
the Iterator interface. An interface is a set of method
declarations that offers the same functionality as a class.

You must use the page directive with the import attribute
to import the Iterator interface from the java.util
package. For more information about the page directive,
see page 74. For more information about the Iterator
interface and the java.util package, you can refer to
the Java SDK documentation.

A for statement can be used to create a loop that will
process each element name in the collection. The next
method of the Iterator interface controls the loop,
so a re-initialization expression is not required in the
for statement.

When you create the code for the form whose elements
you want to determine, the action attribute of the
<form> tag must specify the name and location of
the JSP page you set up to process form information.

DETERMINE THE ELEMENTS IN A FORM

WORK WITH JSP IMPLICIT OBJECTS 4

The Iterator interface includes three methods that
can be used to work with a collection of elements.

NAME: DESCRIPTION:

hasNext This method is used to determine if there are any elements left to
process in the collection. The hasNext method returns a boolean
value of true if the collection has another element that can be
accessed. If there are no more elements in the collection, a value
of false is returned.

next This method returns the next element in the collection. If there
are no more elements in the collection, an error is generated.

remove This method discards the last element returned by the next method.
If the next method is not used before the remove method, an error
is generated.

91

� The Web browser
displays the results of
accessing client information.

ˇ To access the port
number for a client request,
type request.getServerPort().

Á Type the code that
uses the port number.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

90

JSP

ACCESS CLIENT INFORMATION

⁄ To access the IP address
of a client computer, type
request.getRemoteAddr().

¤ Type the code that
uses the IP address.

‹ To access the name
of a client computer, type
request.getRemoteHost().

› Type the code that
uses the name.

A JSP page can access information about a client
computer, such as the IP address and name of the
computer. Accessing information about a client

computer is useful if you want to verify the identity of a
client or perform an administrative task, such as creating
a log that documents Web site usage.

Every computer connected to a network using the TCP/IP
protocol has a unique IP address. The getRemoteAddr
method of the request object is used to access a client
computer's IP address and return the IP address as a string
value.

The getRemoteHost method of the request object
allows a JSP page to access the name of a client computer.
This method returns a string value containing the full
domain name of the client, such as computer2.abccorp.com.
The getRemoteHost method retrieves the name of
a client from your Web server, which uses a

Domain Name System (DNS) server to determine the
name based on the client computer's IP address. This means
that your Web server must be able to communicate with
a DNS server before the getRemoteHost method can
access the name of a client. If the method cannot access
the name of a client, it will return the client's IP address.

A JSP page can use the getServerPort method of
the request object to access the port number a client is
using for a request. This method returns an integer that
indicates which server port received the request. Using
the getServerPort method is useful when your server
uses different ports for different types of programs. For
example, if administrative programs use a specific port on
your server, accessing the port number lets you determine
whether a client is an administrator or a regular user.
This allows you to customize the content of a JSP page
depending on the type of client accessing the page.

ACCESS CLIENT INFORMATION

WORK WITH JSP IMPLICIT OBJECTS 4
Once you have accessed the IP address of a client computer,
you can use this information to grant or deny the client
access to your JSP page. You can use the indexOf method
to compare an IP address you specify to a client computer's
IP address. In the following example, a welcome message
appears when a client with an IP address beginning with
127.0.0 accesses the JSP page.

<%
String ipNumber = request.getRemoteAddr();
int postion = ipNumber.indexOf("127.0.0");

if (postion == 0)
{

out.print("Welcome to my Web site");
}
else
{

out.print("You are not authorized to continue");
}

%>

Welcome to my Web site

TYPE THIS:

RESULT:

93

� The Web browser displays
the information from the JSP
page. Any information that
was added to the buffer after
the last flush method does
not appear.

⁄ Type the code you
want to execute to
display information in
a user's Web browser.

¤ Type out.clearBuffer()
where you want to delete
the contents of the buffer.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

92

JSP

SEND CONTENTS OF BUFFER TO WEB BROWSER DELETE BUFFER CONTENTS

⁄ Type the code you
want to execute to
display information in
a user's Web browser.

¤ Type out.flush() directly
below the information you want
to send to a user's Web browser.

‹ Repeat step 2 for each
section of code you want to
send to a user's Web browser
at a time.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The result of sending
the contents of the buffer
to the Web browser is
displayed.

T he buffer is a section of the Web server's memory
where a JSP page can be stored temporarily. When
a JSP page is being processed, the data for the page

is stored in the buffer instead of being sent directly to a
user's Web browser. When the buffer is full or the entire
JSP page has been generated, the Web server automatically
sends the contents of the buffer to the Web browser.

The flush method of the out object forces the Web server
to send the contents of the buffer to the Web browser.
This allows you to control when a user will see information
from your JSP page. For example, if your JSP page displays
a banner image followed by a large amount of data from a
database, you can use the flush method to force the JSP
page to display the banner first.

When you use the flush method, all the information in
the buffer is immediately sent to the user's browser and

the buffer is emptied. The next time the flush method
is called, the contents of the buffer will include only the
information processed since the flush method was
last used.

You can use the clearBuffer method of the out object
to clear information from the buffer before the information
is sent to a user's Web browser. The Web server deletes
any information that was processed and added to the buffer
since the clearBuffer method was last called or since
the beginning of the JSP page.

Deleting the contents of the buffer is useful when an error
occurs in a JSP page. For example, if there is information in
the buffer and the JSP page detects an error, you can clear
the information in the buffer and display an error message
in the user's Web browser.

WORK WITH THE BUFFER

WORK WITH JSP IMPLICIT OBJECTS 4

The size allocated for the buffer on the Web
server depends on a number of parameters,
such as the type of Web server you are using.
On Windows platforms, the default size of the
Tomcat Web server's buffer is 8 KB, or 8192
bytes. You can verify the size of the buffer on
your Web server using the getBufferSize
method of the response object.

The current size of the buffer, in bytes, is:
<%= response.getBufferSize() %>

The current size of the buffer, in bytes, is: 8192

TYPE THIS:

You can turn off buffering for specific JSP pages
using the page directive. This is useful for JSP
pages that require a small amount of processing.
When the buffer is turned off, the Web server
will send information to a user's Web browser as
the information is generated from the JSP code.
The page directive should be placed before any
HTML code in a JSP page. You may not be able
to turn off buffering for some Web servers, such
as the Tomcat Web server.

<%@ page buffer = "none" %>

TYPE THIS:

RESULT:

95

� The location or address
box displays the URL of
the JSP page, with the
appended session ID.

Employee Phone Numbers - Microsoft Internet Explorer

Cookies can be disabled in most browsers by modifying
the Web browser security or file settings. Many Web sites
offer reduced features and functionality if cookies are not
supported by the client Web browser.

The sendRedirect method of the response object is used
to redirect users to another Web page automatically. If you need
to keep track of a client session when redirecting the user to
another Web page, you should use the sendRedirect method
in conjunction with the encodeRedirectURL method of the
response object. The encodeRedirectURL method appends
the session ID to the redirect URL when necessary, ensuring that
session information is maintained even for users with browsers
that do not support cookie technology.

Example:

response.sendRedirect(response.encodeRedirectURL("errorPage.jsp"));

ˇ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser that
does not support cookie
technology.

� The Web browser
displays the page with
the encoded URLs.

Á Click a link to display
another JSP page in the
Web site.

� The linked JSP page
is displayed.

94

JSP

ENCODE A URL

⁄ To encode a URL, type
response.encodeURL("").

¤ Between the quotation
marks, type the URL you
want to be rewritten when
cookie technology is not
supported.

‹ Type the code that
uses the encoded URL.

› Repeat steps 1 to 3
for each URL you want
to encode in the HTML
code.

A session is started for each user who requests a JSP
page from your Web site. When a session is created,
a session ID is assigned to identify each user. By

default, the session ID is stored on the user's computer
using a cookie. Unfortunately, many users disable the Web
browser's cookie features or use Web browsers that do
not support cookie technology. Filtering software can also
prevent the exchange of cookie information between clients
and servers.

URL encoding, or rewriting, is the process of adding the
session ID to a URL in a JSP page. This process allows the
Web server to keep track of a client session when cookie
technology is not supported. You use the encodeURL
method of the response object to modify a URL in
a page.

The encodeURL method first determines if the client
supports the use of cookies. If the client does not support

the use of cookies, the encodeURL method adds the
session ID to the end of the URL that is passed to the
method as an argument. If the encodeURL method
determines that the client supports the use of cookies,
the URL that is passed to the method is inserted into
the HTML code without any modifications.

You should use the encodeURL method to generate any
URL in the HTML code. If a client that does not support
cookies accesses a URL that has not been rewritten, a
new session will be created and the information from
the previous session will be lost.

You can easily verify that URL encoding is being performed
by viewing the URL of the Web page, which is typically
displayed in the location or address box of the Web browser.

ENCODE A URL

WORK WITH JSP IMPLICIT OBJECTS 4

9796

JSP

ACCESS THE SESSION ID

⁄ Type session.getId()
where you want to
access a session ID.

¤ Type the code that will
display the session ID in
a Web browser.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web browser
displays the result of
accessing the session ID.

A session is started for each user who requests a
JSP page from your Web site. Sessions enable a
Web server to collect and use information entered

by a user while the user accesses different resources on
the Web server. For example, if a user specifies a user
name on the main page of a Web site, this user name
can be used by the Web server to personalize any other
Web pages the user requests during that session. The
Web server keeps track of each session by assigning
a session ID that identifies each current user.

To access the session ID number, you can use the getId
method of the session object. You cannot change a
session ID you access. The format of the session ID will
be different depending on the Web server you are using.

When a user requests a JSP page from your Web site, the
Web server stores a session ID as a cookie on the user's
computer. When the user requests another page from the
site, the user's Web browser sends the session ID to the

Web server to identify the user. If the user's Web browser
or computer does not support cookies, you can use URL
encoding to append the session ID to the URLs accessed
by the user. For information about encoding URLs, see
page 94.

A session ends when the user does not request another JSP
page for a specific amount of time or when the session is
abandoned. Any information that the Web server collected
from the user during a session will be discarded when the
session ends.

You should not use the session ID as the primary key in
a database, as the session ID may not always be unique.
For example, if the Web server is restarted, the server may
assign a user a session ID that was previously assigned to
a different user.

ACCESS THE SESSION ID

ABANDON A SESSION

⁄ Type session.invalidate()
where you want to abandon
a session.

¤ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web server
abandons the session.

D uring a session, information is saved on the Web
server and the client computer. As a result, each
session requires the use of Web server resources,

such as computer memory. If information for a session is
no longer required, the session can be abandoned to free
up resources on the Web server. This can improve the
efficiency of a busy Web server.

The invalidate method of the session object
allows you to immediately end a session for one user
and erase the information associated with the session. The
information for the session will be permanently removed
from the Web server. If you want to be able to later access
the session information, you should write the information
to a file or store the information in a database before
abandoning the session.

Abandoning a session is useful when an error occurs or
when a user performs an action that indicates they no
longer need the session information, such as logging out

of the Web site. If the session was not abandoned, the Web
server would keep the session information in memory until
the session timed out. Abandoning a session also allows
users to perform tasks such as clearing their Web site
preferences or logging into your Web site using a different
user name.

Abandoning a session does not stop the Web server from
processing the JSP page, but does make session
information generated before the session was abandoned
unavailable to the page. An attempt to access session
information after the session has been abandoned may
generate an error.

Abandoning a session does not usually remove the cookie
that stores session information on the client computer.
The cookie will usually remain on the client until it is
deleted by the Web browser, which typically occurs after
the cookie expires or when a new session is started
between the client and the Web server.

ABANDON A SESSION

WORK WITH JSP IMPLICIT OBJECTS 4

99

� You can now read
the information stored
in the session values.
See page 100 to read
session values.

You can turn off the use of session information for a JSP page
by using the page directive. Turning off the use of session
information does not produce any noticeable improvement in
speed on the Web server, but it may offer increased security to
JSP pages that do not use session information. If you try to use
session values when session handling is turned off, an error will
occur when the JSP page is viewed.

The page directive should be placed before any HTML code in
a JSP page. To once again allow the use of session information
in the JSP page, simply remove the page directive from the code.

Example:
<%@ page session = "false" %>
<html>
<head>
<title>Home Page</title>
</head>
<body>
<%
session.setAttribute("userName", "Tim");
session.setAttribute("preferredColor", "blue");
%>
</body>
</html>

‹ Type the information you
want to store in the session
value.

� If you are storing a string,
enclose the information in
quotation marks.

› Repeat steps 1 to 3
for each session value
you want to create.

ˇ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

98

JSP

CREATE SESSION VALUES

⁄ Type session.setAttribute()
where you want to create a
session value.

¤ Between the parentheses,
type a name for the session
value followed by a comma.

� The name of the session
value must be enclosed in
quotation marks.

A s a user moves through the pages in your Web site,
the user may be asked to enter information such as
a user name, password or preferences to display

each page. Creating session values allows you to store this
information and make the information available to all the
pages viewed by the user in your Web site. This saves the
user from having to repeatedly enter the same information
to display each page during a session.

You use the setAttribute method of the session
object to create a session value. When creating a session
value, you need to specify the name of the value and the
information to be stored. A null value will be assigned
if you do not specify any information for the session
value. The information stored in a session value cannot
be a primitive data type, such as boolean or int.
For information on primitive data types, see page 30.

The information stored in a session value can come from
sources such as forms, databases and cookies. The use of
session values is an effective way of collecting and accessing
information across multiple pages on a Web site and is more
secure and easier to maintain than hidden fields or cookies.

All session values and the information stored in them will
be discarded when the session ends or is terminated. If
necessary, you can use cookies or a database to save the
information stored in a session value.

After creating session values, the information stored in the
session values can be accessed using the getAttribute
method. For information about the getAttribute
method, see page 100.

CREATE SESSION VALUES

WORK WITH JSP IMPLICIT OBJECTS 4

101

� If the session values
have been created, the Web
browser displays the result
of reading the session values.

ˇ Repeat steps 1 to 4
for each session value
you want to read and
assign to a variable.

Á Type the code that uses
the variables you created
to store the information in
the session values.

‡ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

100

JSP

READ SESSION VALUES

⁄ Type the code that
declares a variable
you want to store the
information in a session
value.

¤ To cast the information
in the session value as a
specific data type, enter the
data type you want to use,
enclosed in parentheses.

‹ To read a session variable,
type session.getAttribute().

› Between the parentheses,
type the name of the session
value you want to read,
enclosed in quotation marks.

I f a JSP page in your Web site creates session values for
a user, other JSP pages viewed by the user in the Web
site can read and process the information stored in the

session values until the session times out or is terminated.
For information about creating session values, see page 98.

A Web server can personalize each JSP page in a Web site
according to the user information saved in session values.
For example, if a user prefers not to view images on Web
pages, each page that the user visits in the Web site will read
the session information for the user and display only text.

A JSP page reads the information stored in a session value
using the getAttribute method of the session object.
The JSP page that reads the information stored in a session
value does not usually modify the information.

In most cases, the information stored in a session value
is assigned to a variable. You can then use the variable to
display the session information on the screen or to perform
a more complex action, such as locating information in a
database. You may have to cast the information stored in
a session value as a data type that is compatible with the
variable to which it is assigned. For information about
casting, see page 30.

It is also important to note that variables can be accessed
only by the JSP page on which they are created. If you want
to use the same variable on another JSP page, you will have
to recreate the variable and re-assign the information stored
in the session value to the variable.

READ SESSION VALUES

WORK WITH JSP IMPLICIT OBJECTS 4

In most cases, you know which session value you want to retrieve
information from, but there may be times when you are required
to find out which session values are available. You can use the
getAttributeNames method of the session object to generate
a list of the names of all the session values that are available during
a session. You must cast the names as a collection that can be used
by the Iterator interface. To use the Iterator interface, you
must first import the interface from the java.util package.

<body>
<%@ page import="java.util.Iterator" %>
Session values for this session:

<%
Iterator sessionValues = (Iterator) session.getAttributeNames();

while (sessionValues.hasNext())
out.print("" + sessionValues.next() + "");

%>

</body>

Session values for this session:

• login
• memberLevel
• region

TYPE THIS: RESULT:

103

� If you do not request
a new page in the Web
site or refresh the page
within the new timeout
period, the Web server
will erase your session
information.

‹ Between the parentheses,
type the number of seconds
you want the Web server to
wait for activity before closing
the session.

› Save the page with the .jsp
extension and then display the
JSP page in a Web browser.

� The Web browser displays
the JSP page in which the
session timeout is adjusted.

102

JSP

ADJUST THE SESSION TIMEOUT

⁄ Type the code you
want to execute to display
information in a Web
browser.

¤ Type session.setMaxInactiveInterval()
where you want to adjust the session
timeout period for the JSP page.

T he setMaxInactiveInterval method of the
session object allows you to set the session
timeout for a JSP page, in seconds. The session

timeout determines how long a user's session information
is stored on the Web server after the user last refreshes
a page or requests a page in the Web site.

A session allows the Web server to identify a client
computer as the user moves from page to page within
a Web site. This is useful for applications such as shopping
carts, when you need to be able to track the items a
user has selected throughout your Web site. For more
information about session information, see pages 96
to 101.

Typically, a user's session information is stored on the
Web server for 30 minutes and is available to the JSP
pages that the user views in your Web site. The session

information created for a user will be available to the
JSP pages in the Web site even if the user visits another
Web site and then returns to your site within the timeout
period. If the user returns to your Web site after the timeout
period, the session information for the client will no longer
be available.

The session timeout that you set for a JSP page applies
to every client that accesses the JSP page.

Adjusting the session timeout period can help make your
Web site more secure. For example, if you have a Web site
that requires a user to log in, a short timeout period will
help to prevent other users from accessing your site if the
user leaves the computer while logged in. Keep in mind,
however, that setting the session timeout too short may
lead to the inadvertent loss of session information.

ADJUST THE SESSION TIMEOUT

WORK WITH JSP IMPLICIT OBJECTS 4

The session object has many methods that can be used to alter or
obtain information about the current session. Some methods and values
of the session object can be accessed only during the session in which
they were created. When the session ends, the items no longer exist.
When another session starts, the items are recreated for that session.

Popular Session Object Methods

METHOD: DESCRIPTION:
getCreationTime Returns the time the session started, measured in

milliseconds since January 1, 1970.
getId Returns the session ID.
getLastAccessedTime Returns the last time the client sent a request during the

session, measured in milliseconds since January 1, 1970.
setMaxInactiveInterval(interval) Sets the session timeout, in seconds.
getMaxInactiveInterval Returns the session timeout, in seconds.
invalidate Closes the session.
isNew Returns true if the Web server has created a session,

but the client computer has not yet accepted a session ID.
getAttribute(name) Returns the information stored in a session value.
getAttributeNames Returns a list of all session values.
setAttribute(name, value) Creates a session value.
removeAttribute(name) Removes a session value.

105

� The Web browser
displays the result of
accessing the application
value.

⁄ Type
application.getAttribute()
where you want to
access an application
value.

¤ Between the parentheses,
type the name of the application
value you want to access,
enclosed in quotation marks.

‹ Type the code that uses the
application value.

› Save the page with the .jsp
extension and then display the
JSP page in a Web browser.

Note: You must save the page in the
same directory that stores the JSP
page in which the application value
was created.104

JSP

CREATE AN APPLICATION VALUE ACCESS AN APPLICATION VALUE

⁄ Type
application.setAttribute()
where you want to
create an application
value.

¤ Between the parentheses,
type a name for the application
value, enclosed in quotation
marks.

‹ Type a comma followed by
the information you want the
application value to use.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web server
activates the application
value. You can now access
the information stored in
the application value.

J avaServer Pages allows you to define a Web site or
part of a Web site as an application. An application
is a collection of JSP pages stored in a specific directory

and its subdirectories on the Web server. For example,
if you have 10 JSP pages stored in the same directory,
those pages would make up an application.

All the JSP pages in an application typically must be stored
in the same virtual directory on the Web server. The type
of Web server you use will determine how the virtual
directory and applications are created. For more information
about creating virtual directories, refer to your Web server
documentation.

You use the setAttribute method of the application
object to create an application value. When using the
setAttribute method, you must specify the name of the
application value and the information the value will contain.
The information stored in an application value cannot be a

primitive data type, such as boolean or int. For
information about primitive data types, see page 30.

All the JSP pages in an application can access the information
stored in an application value. For example, if you create an
application value that stores a counter, the number of people
who have used your application could be displayed at the
bottom of each page in the application.

You access an application value in your JSP pages using the
getAttribute method of the application object. If a
JSP page tries to access an application value that does not
exist, the getAttribute method will return a value of null.

An application starts when the first user requests a JSP page
from the application and ends when the Web server shuts
down or restarts. Application values are discarded when the
application ends.

USING APPLICATION VALUES

WORK WITH JSP IMPLICIT OBJECTS 4

You can delete an existing application value using
the removeAttribute method. You should delete
any application values that you no longer need. If a
JSP page tries to access an application value that has
been removed, a null value will be generated.

Welcome to the
<%= application.getAttribute("siteName") %>
 Web site.

<% application.removeAttribute("siteName"); %>
Application value deleted.

Welcome to the
<%= application.getAttribute("siteName") %>
 Web site.

Welcome to the Testing and Development Web site.
Application value deleted.
Welcome to the null Web site.

TYPE THIS:

RESULT:

You can change the information stored in an
application value. If the application value has not
yet been created, changing the information stored
in the value will create the value.

Old Web site name:
<%= application.getAttribute("siteName") %>

<% application.setAttribute("siteName",
"ABC Corporation"); %>
New Web site name:
<%= application.getAttribute("siteName") %>

Old Web site name: Testing and Development
New Web site name: ABC Corporation

TYPE THIS:

RESULT:

107

� The Web browser
displays the result of
determining the path
of a file.

‹ Type the code that
will display the path
information in a Web
browser.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

106

JSP

DETERMINE THE PATH OF A FILE

⁄ Type application.getRealPath()
where you want to find the path
of a file.

¤ Between the parentheses,
type a slash (/) followed by
the name of the file whose
path you want to determine,
enclosed in quotation marks.

T he getRealPath method of the application
object allows you to identify where a file, such as a
Web page or JSP page, is stored on the Web server.

A Web server can store files in many different directories. The
directory that stores a page is not always apparent in the URL
of the page. For example, a JSP page named login.jsp stored
in the directory C:\Tomcat\webapps\public\sign_in could have
the URL http://www.abccorp.com/sign_in/login.jsp. When
a JSP page needs to access a page on the Web server, such
as when using the include directive to access information
from a Web page, the JSP page may need to know the exact
location of the page, not the URL of the page.

To identify the path of a page, you must know the filename
of the page. The getRealPath method uses the filename
of the page, enclosed in quotation marks, as its argument.

Regardless of the operating system you use, you should use
slashes (/) within the path of the page you want to locate.
When the path to the page starts with a slash (/), the path
will be determined starting at the document root directory
of the current Web application. The document root directory
is the parent directory that contains all the documents and
applications on a Web server. The location of the document
root directory depends on the configuration of the Web
server. On Web servers that host multiple Web sites, the
document root directory will be different for each Web site.

The result returned by the getRealPath method is a
string value. You can assign this value to a variable and
then use the variable in your code.

The getRealPath method shows where a page is located
on the Web server but does not verify that the page or the
directories actually exist.

DETERMINE THE PATH OF A FILE

WORK WITH JSP IMPLICIT OBJECTS 4
You can determine the path of the current JSP page by
using a single slash enclosed in quotation marks as the
argument for the getRealPath method. Identifying
the path of the current page is useful when you are
creating a JSP page for different Web applications and
you need to make sure the directory structure is the
same for each application.

<html>
<head>
<title>My Web Site</title>
</head>
<body>
This JSP page is stored in
<%
String docPath = application.getRealPath("/");
out.print(docPath);
%>

</body>
</html>

This JSP page is stored in C:\Tomcat\webapps\examples\

TYPE THIS:

RESULT:

109

� The source code displays
the result of generating
newline characters.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� Generating newline
characters does not affect
the way a JSP page appears
in a Web browser.

Á Display the source
code for the JSP page.

108

JSP

GENERATE A NEWLINE CHARACTER

⁄ Type <% where you
want the scriptlet that
will generate a newline
character to begin.

¤ Type %> where you
want the scriptlet to end.

‹ Type the code that will
generate HTML source
code for the JSP page.

› Type out.newLine()
where you want to generate
a newline character.

A newline character instructs a processing program to
stop placing output on the current line and begin a
new line. The newLine method of the out object

can be used in a JSP page to generate a newline character.
Newline characters are sometimes called line separators.

To generate a newline character, you create a scriptlet
that contains the out.newLine statement. Scriptlets
are processed by the Web server and a newline character
generated by a scriptlet is inserted into the source code
for a JSP page before the page is displayed.

Since Web browsers ignore extra spaces and new lines
in source code, the line break you add using a newline
character will not appear on a JSP page when the page
is displayed in a Web browser. To view the results of
generating a newline character, you must display the

source code for your JSP page. Most Web browsers allow
users to easily view the source code for a page. A new line
will begin in the source code where you added the newline
character. To have a new line appear on your JSP page when
it is displayed in a Web browser, use the HTML tag
.

Using newline characters is particularly useful when a
JSP page generates HTML source code. HTML code that
does not contain any new lines can be difficult to read and
troubleshoot. By inserting new lines into the code, you can
separate the various elements on the page, making the page
easier to understand. For example, a page containing images
and text can have newline characters after each paragraph
and image. Newline characters are typically inserted after
closing HTML tags, such as the </p> and tags.

GENERATE A NEWLINE CHARACTER

WORK WITH JSP IMPLICIT OBJECTS 4

The actual character or characters a computer uses for
a new line depends on the operating system installed on
the computer. For example, a new line may be created
by a carriage return, a newline character or both. Because
these characters are not displayable, you cannot view
them. You can, however, use the Java getBytes method
to view the ASCII code for the characters.

The ASCII codes for the characters used to create new lines on this computer are:

<%
String lineSeparator = System.getProperties().getProperty("line.separator");
byte[] array = lineSeparator.getBytes();

for (int x = 0; x < array.length; x++)
out.print(array[x] + "
");

%>

The ASCII codes for the characters used to create new lines on this computer are:
13
10

TYPE THIS:

RESULT:

111

� The Web browser displays
the result of determining the
operating system running on
the computer.

ˇ Between the parentheses,
type the name of the
operating system you want
to check for, enclosed in
quotation marks.

Á Type the code that
uses the information
retrieved by the
getProperties and
getProperty methods.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

110

JSP

DETERMINE THE OPERATING SYSTEM

⁄ Type the code that
declares a variable you
want to store the name
of the operating system.

¤ Type System.getProperties().
getProperty("os.name") to
determine the name of the
operating system.

‹ To match the content of
the variable that stores the
name of the operating system
with the name of a specific
operating system, type the
name of the variable followed
by a dot.

› Type indexOf() == 0.

Y ou can use the getProperties and getProperty
methods of the System object to determine the
operating system being used on the computer running

your JSP pages.

JSP code should not have problems running on different
operating systems, but the way JSP interacts with the
computer may differ depending on the operating system.
For example, you may develop JSP pages on a computer
using a Windows operating system and then transfer the
JSP pages to an Internet Web server that uses the Linux
operating system. When JSP pages run on a computer using
a Windows operating system, the JSP pages will attempt to
find files, such as include files, in a specific directory. When
the JSP pages run on a computer using the Linux operating
system, errors may occur because the required files may be
located in a different directory. Instead of creating two sets
of JSP pages, you could simply set the JSP page to determine
which operating system is running on the computer and
then automatically alter the path required to access the files.

The getProperties method returns all of the system
properties that are specific to the computer running the
JSP pages. The system properties that are available depend
on the operating system running on the computer.

You use the getProperty method to specify the name
of a specific property you wish to access. The property
name used to identify the current operating system is
os.name.

The value returned by the getProperties and
getProperty methods is a String data type and
can be assigned to a variable, which can then be used
in your code. You can use the indexOf method to match
the content of the variable with the name of a specific
operating system. Refer to the Java SDK documentation
for more information about using the indexOf method.

DETERMINE THE OPERATING SYSTEM

WORK WITH JSP IMPLICIT OBJECTS 4

The following is a list of some of the other system properties
you may determine using the getProperty method:

PROPERTY NAME: RETURNS:

java.home The directory where Java is installed

java.class.path The path where the classes are loaded from

java.version The version of the Java API implementation

java.vendor The vendor of the Java API implementation

java.class.version The version of the Java class file format

os.arch The architecture of the operating system

os.version The version of the operating system

user.name The account name of the current user

user.home The home directory of the current user

user.dir The current working directory

113

� The Web browser
displays the results of
forwarding control to
another JSP page.

The <jsp:param> tag can be used to pass additional information
to the request object before transferring control to the other
JSP page. For example, you can use the <jsp:param> tag to
create a parameter that stores the name of the page that forwarded
the request object. This allows the page that will receive
control to use the getParameter method of the request
object to determine where the request object originated. The
<jsp:param> tag is placed between the <jsp:forward> and
the </jsp:forward> tags.

Type this in the original JSP page:
<jsp:forward page="logout.jsp">
<jsp:param name="callingPage" value="index.jsp"/>
</jsp:forward>

Type this in the page control is being transferred to:
You are now logged out.

You have been forwarded to this page from the JSP page:

<%= request.getParameter("callingPage") %>

Result:
You are now logged out.
You have been forwarded to this page from the JSP page:
index.jsp

› Type <jsp:forward page=
where you want to transfer
control to another page.

ˇ Type the expression that
generates the name of the
page you want to transfer
control to, enclosed in
quotation marks.

Note: You can also type the
path of the page or a string
literal.

Á Type /> to complete
the tag.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

112

JSP

FORWARD TO ANOTHER JSP PAGE

CREATE A JSP PAGE YOU
WANT TO FORWARD TO

⁄ In a text editor, create
the JSP page you want to
transfer control to.

¤ Save the page on the
Web server with the .jsp
extension.

FORWARD TO
ANOTHER JSP PAGE

⁄ Display the page
in which you want
to transfer control
to another JSP page.

¤ To create a variable that
will store the parameter for the
JSP page you want to transfer
control to, type String, followed
by a name for the variable.

‹ Type = followed by a value
for the variable, enclosed in
quotation marks.

T he <jsp:forward> tag is used to instruct a Web
server to stop processing the current JSP page and
start processing another page. For example, when

an error occurs during the processing of a JSP page, you can
use the <jsp:forward> tag to transfer control to another
JSP page that handles errors and displays help information
for the user. The <jsp:forward> tag is also useful for
transferring control to a different JSP page depending on the
value of a variable, such as a user name or the time of day.

When using the <jsp:forward> tag, you assign a value
to the page attribute. The value can be a string literal, a
value generated by an expression or the relative path of
the JSP page that control will be transferred to.

When the Web server processes a JSP page that contains
a <jsp:forward> tag, the server stops processing the
page and executes the code in the JSP page specified in the
tag. The Web server does not return to the original page.

You should use the <jsp:forward> tag early in your
code. No information should be sent to the client before
the <jsp:forward> tag is executed or an error will be
generated. Any data currently in the buffer when the
<jsp:forward> tag is encountered will be deleted.

Any information available to the original JSP page will also
be available to the JSP page that control is transferred to.
Information available to the controlling JSP page includes
application values, session values and any data stored in
a request object, such as values submitted to a form.
The JSP page control is transferred to can access this
information even if the page is not part of the same
application as the original JSP page.

FORWARD TO ANOTHER JSP PAGE

WORK WITH JSP IMPLICIT OBJECTS 4

115

Although some people consider cookies
to be a security risk, there has never been
a report of a virus being transmitted by
creating or reading a cookie. Cookies are
text files, so unlike executable programs,
they do not transmit viruses.

You can create many cookies to store
information about a user, but keep in mind
that Web browsers limit the number of
cookies a Web site can store on a user's
computer. Most Web browsers allow each
domain to store a maximum of 20 cookies.
Cookies created by your Web site should
not exceed 4 KB in size.

The setDomain method of the Cookie
object lets you specify the domain name
that the cookies you create belong to.
When used with the setPath method,
the setDomain method increases
the security of cookies you create by
preventing unauthorized JSP pages
from accessing the cookies.

Example:
myCookie.setDomain("www.abccorp.com");
myCookie.setPath("/jsppages");

° To specify the location
of the pages that can
access the cookie, type
the name of the Cookie
object followed by a dot.

· Type setPath().

‚ Between the
parentheses, type the
relative path of the
JSP pages enclosed
in quotation marks.

— To send the cookie to
a user's computer, type
response.addCookie().

± Between the parentheses,
type the name of the Cookie
object.

114

JSP

CREATE A COOKIE

⁄ To create a cookie,
type Cookie followed by
the name of the Cookie
object you want to create.

¤ Type = new Cookie().

‹ Between the parentheses,
type the name for the cookie
enclosed in quotation marks.

› Type a comma followed
by the value you want to
assign to the cookie enclosed
in quotation marks.

ˇ To specify when the
cookie will expire, type
the name of the Cookie
object followed by a dot.

Á Type setMaxAge().

‡ Between the
parentheses, specify
when the cookie will
expire, in seconds.

Y ou can create a cookie with your JSP page. When a
user views the page, the cookie is stored as a small
text file on the user's computer. Cookies are often

used to personalize a JSP page. For example, a cookie can
store a user's name. The next time the user accesses the
JSP page, the page can use the value stored in the cookie
to display the user's name.

A cookie consists of a key, which indicates the name of the
cookie, and a value, which is the information stored in the
cookie. To create a cookie, you must create a Cookie object
and then assign the key and value of the cookie to the object.

You should also specify when the cookie will expire. By
default, a cookie will be deleted when the user closes their
Web browser. Setting an expiry time for a cookie allows
the cookie to store information for longer periods of time.
The setMaxAge method of the Cookie object is used
to set the expiry time, in seconds, for a cookie.

The setPath method of the Cookie object allows you
to specify a path for the cookie. Only the pages stored in
the specified directory will be able to read the cookie.

When all of the cookie information has been set, the
addCookie method of the response object is used
to send the cookie information to a user's computer.

The scriptlet containing the code that creates the cookie
should be placed before any other code on the JSP page.
If HTML code is sent before the scriptlet, an error may
occur.

After creating a cookie, you can have a JSP page read
the cookie. For information about reading a cookie,
see page 116.

CREATE A COOKIE

WORK WITH COOKIES 5

¡ Save the page with the
.jsp extension.

� When a user accesses
the JSP page, the cookie
will be stored on the user's
computer. To read the
cookie information,
see page 116.

117

� The Web browser
displays the results
of reading a cookie.

To verify that at least one cookie exists, you can
use the length method to check if the array
of Cookie objects contains any information.
An error may occur if you attempt to access
elements of an array that do not exist.

Example:
<%
if (cookiesFromClient.length > 0)
{

out.print("Name:");
out.print(cookiesFromClient[0].getName());
out.print("
Value:");
out.print(cookiesFromClient[0].getValue());

}
%>

The equals method allows you to evaluate a string
value so you can then perform an action based on the
evaluation. This is useful for working with the names
and values of cookies returned by the getName and
getValue methods. For example, you can compare
the value of a cookie returned from a user's computer
to a string you specify and display a customized
message depending on the value.

Example:
<%
if (cookiesFromClient[0].getName().equals("beenHere") &&

cookiesFromClient[0].getValue().equals("yes"))
out.print("Welcome Back!");

else
out.print("Welcome to my Web site.");

%>

Á To retrieve the value
of the cookie stored in
the first element of the
array, type the name of
the array followed by [0]
and a dot.

‡ Type getValue() to
retrieve the value.

° Type the code that
uses the value of the
cookie.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

116

JSP

READ A COOKIE

⁄ Type Cookie[] followed
by the name of an array
you want to use to store
all the cookies on a user's
computer.

¤ Type = request.getCookies()
to retrieve the cookies stored
on a user's computer and
place the values in the array.

‹ To retrieve the name
of the cookie stored in
the first element of the
array, type the name of
the array followed by [0]
and a dot.

› Type getName() to
retrieve the name.

ˇ Type the code that
uses the name of the
cookie.

A JSP page can read a cookie stored on a user's
computer. Reading a cookie allows the page to
access the information in the cookie, such as the

user's name or location.

When a user visits a JSP page that sets a cookie, the cookie
is stored as a small text file on the user's computer. The
location where a cookie is stored depends on the type of
Web browser being used.

The getCookies method of the request object is used
to read all the cookies that can be accessed by your JSP
page. You can create an array to store all the cookie
information retrieved from a user's computer and then
access the specific cookie information you want.

The array element with an index number of 0 contains the
information for the first cookie stored on a user's computer.
If the server has session tracking enabled, the first cookie

in the array may contain information about the session ID.
You may need to access the next array element to read
the other cookie values. For information about reading
multiple cookies, see page 118.

Once the cookies have been retrieved from a user's
computer, you use the getName and getValue methods
to retrieve the name and value stored in a cookie. The
getName and getValue methods return string values.
You can use an expression to display the name and value
returned by the methods in the JSP page.

When working with cookies, keep in mind that a Web
browser may be configured to reject cookies or may be
located behind a security firewall that filters out cookie
information. In such cases, you will not be able to read
a cookie on a user's computer.

READ A COOKIE

WORK WITH COOKIES 5

119

� The Web browser displays
the results of reading multiple
values from a cookie.

Any information retrieved from a cookie
should be validated before it is used. For
example, if you are reading a ZIP code
from a cookie, you may want to check that
the ZIP code contains the proper number
of digits and does not contain any letters.
Since invalid data may cause an error
during the processing of the JSP page, you
may want to add code to handle invalid
cookie values passed to your JSP page.

When creating multiple cookies, you need to
create a new Cookie object for each cookie
you want to set. Even though multiple cookies
are being created, only one cookie file will be
created on the user's computer.

Example:
<%
Cookie firstCookie = new Cookie("UserName", "Tom");
firstCookie.setMaxAge(3600);
firstCookie.setPath("/examples");
response.addCookie(firstCookie);

Cookie secondCookie = new Cookie("UserAge", "26");
secondCookie.setMaxAge(3600);
secondCookie.setPath("/examples");
response.addCookie(secondCookie);
%>

Á To retrieve the value
of a cookie stored in an
element of the array, type
the name of the array
followed by [x].getValue().

‡ Type the code that
uses the value of the
cookie.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

118

JSP

READ MULTIPLE VALUES FROM A COOKIE

⁄ Type Cookie[] followed
by the name of an array
you want to use to store
all the cookies on a user's
computer.

¤ Type = request.getCookies()
to retrieve the cookies stored
on a user's computer and
place the values in the array.

‹ Type the code to create a
loop that will cycle through all
the elements in the array. For
information about creating a
for loop, see page 42.

› To retrieve the name
of a cookie stored in an
element of the array, type
the name of the array
followed by [x].getName().

ˇ Type the code that
uses the name of the
cookie.

T he getCookies method of the request object is
used to retrieve all the cookies stored on a user's
computer and returns an array of Cookie objects.

After the cookies have been assigned to an array, the
length method can be used to determine the number
of elements in the array, which allows you to determine
the number of cookies retrieved from the user's computer.

Keep in mind that some users may have disabled the
exchange of cookies on their Web browsers. This is often
done out of concern for privacy. Since no cookies can
be stored on the user's computer, any attempt to read
a cookie will indicate that no cookies exist and may
result in an error. You should also keep in mind that
you will not be able to retrieve a cookie from a user's
computer if the cookie has reached its expiry time.
If no cookies exist on the user's computer, the value
returned by the length method will be 0.

Once it has been determined that cookies exist, a loop
can then be used to examine each cookie and retrieve
the names and values of the cookies.

Even if no cookies have been explicitly stored on a user's
computer from a JSP page, there may still be cookies
available to read, such as the cookie that stores the session
ID. For information about the session ID, see page 96.

If your Web server uses JSP in combination with other
technologies, such as ASP and PHP, your JSP pages will
also be able to read the cookies created by ASP and PHP
pages.

READ MULTIPLE VALUES FROM A COOKIE

WORK WITH COOKIES 5

121120

JSP

REMOVE A COOKIE

⁄ Type Cookie followed
by the name of a Cookie
object. Then type
= new Cookie().

¤ Between the parentheses,
type the name of the cookie
you want to remove enclosed
in quotation marks. Then type
,"" for the value of the cookie.

‹ Type the name of the
Cookie object followed by a
dot. Then type setMaxAge(0).

› Type the name of the
Cookie object followed
by a dot. Then type setPath().

ˇ Between the parentheses,
type the relative path of the
pages that can access the
cookie enclosed in quotation
marks.

Á Type response.addCookie().

‡ Between the parentheses,
type the name of the Cookie
object.

° Save the page with the
.jsp extension. When a user
accesses the JSP page, the
cookie stored on the user's
computer will be deleted.

J avaServer Pages allows you to delete a cookie before
it expires. This is useful if you no longer need the
information in the cookie. For example, you may want

to delete a cookie that contains user registration information
if the user cancels their registration to your Web site. It
may also be necessary to remove cookies if the size of
your cookies exceeds the size limit for cookies in your
Web site, which is usually 4 KB.

To remove a cookie, you create a new cookie with the
same name as the cookie you want to remove, except you
set the expiry time for the new cookie to zero seconds.
This will cause the cookie to expire immediately. The value
you assign to the cookie can be an empty string. If you
specified a path when you created the original cookie,

you should also specify the same path when deleting the
cookie to ensure that the correct cookie is removed. For
more information about creating a cookie, see page 114.

Working with cookies is not always a simple task. While
almost all Web browsers accept cookies, many Web
browsers may return different information about cookies,
such as different version numbers. Web servers and JSP
engines also do not always work with cookies in the same
way. For example, some Web servers will not allow a cookie
to be removed from the client computer until the cookie
reaches its original expiry time. When creating JSP code
to work with cookies, you should thoroughly test your
code on all Web browsers and client software you expect
to access your JSP page.

REMOVE A COOKIE

WORK WITH COOKIES 5

COOKIE METHODS

Method Description

Object clone() Overrides the standard java.lang.Object.clone()method to
create a copy of the cookie.

void setComment Includes a comment that describes the purpose of the cookie.
(String purpose)

String getComment() Returns a comment. Returns null if there is no comment.

void setDomain Specifies the domain or server that the cookie belongs to.
(String pattern)

String getDomain() Returns the domain name for the cookie.

void setMaxAge Specifies the expiry time of the cookie, in seconds. By default, a cookie will
(int expiry) expire when the Web browser shuts down.

int getMaxAge() Returns the expiry time of the cookie, in seconds. Returns -1 if no expiry time
was specified.

String getName() Returns the name assigned to the cookie.

void setPath Specifies the location of the pages on the Web server that can access the cookie.
(String uri)

String getPath() Returns the location of the pages on the Web server that can access the cookie.

void setSecure Specifies whether the Web browser needs to send the cookie using a secure
(boolean flag) protocol, such as HTTPS or SSL.

boolean getSecure() Returns true if the Web browser must send the cookie over a secure protocol.

void setValue Sets or changes the value for the cookie.
(String newValue)

String getValue() Returns the value assigned to the cookie.

void setVersion Specifies the version number of the cookie protocol.
(int v)

int getVersion() Returns the version number of the protocol the cookie can use.

There are several useful methods of the Cookie
object that you can use to manipulate and examine
the contents of a cookie. Before using any of the
following methods in your JSP code, you should
check your Web server documentation to verify
whether the Web server supports the method
you want to use.

123

The JavaBeans you create for your JSP pages
are platform independent. This means that
a JavaBean created on a computer with a
UNIX-based operating system, such as Linux,
can be used on a computer running a different
operating system, such as Windows.

There are many JavaBeans available on the
Internet that you can use with your JSP pages.
If you need a JavaBean to perform a specific
task but do not want to create the JavaBean
yourself, you may be able to purchase a
ready-made JavaBean or have a programmer
create a custom JavaBean according to your
specifications.

JavaBeans were originally developed as
a way for Java programmers to easily
create and share re-usable portions of
code for Java programs. If you want to create
JavaBeans for use with your own stand-alone
Java applications, you should obtain the
Beans Development Kit (BDK). The BDK is
available for download free of charge at the
java.sun.com/products/javabeans Web site.

Integrated Development Environments (IDEs)
are specialized programs used to create Java
applications. Most Java IDEs can also be used
to create JSP pages and JavaBeans. If you
intend to create many JavaBeans for use
with your JSP pages, you should consider
purchasing an IDE.

‡ Type the opening and
closing braces that will
contain the body of the
method.

° Type the code for
the task you want the
method to perform.

· Repeat steps 4 to 8 for each
method you want the JavaBean
to contain.

‚ Save the file with the .java
extension and then compile the
source code for the file. For
information about compiling
Java code, see page 20.122

JSP

CREATE A JAVABEAN

⁄ If you want to store
the JavaBean in a package,
type package followed by
the name of the package
directory you created on
the Web server.

¤ To declare a class in the
JavaBean, type public class
followed by a name for the
class.

‹ Type the opening and
closing braces that will
contain the body of the
class.

› To declare a method,
type public followed by the
return type of the method.

ˇ Type the name of the
method followed by ().

Á Between the
parentheses, type any
arguments the method
requires.

A JavaBean is a class file that stores Java code for a JSP
page. Although you can use a scriptlet to place Java
code directly into a JSP page, it is considered better

programming practice to store the code in a JavaBean.

JavaBeans offer several advantages. Using a JavaBean
allows you to keep the Java code for a JSP page separate
from the HTML code for the page, which can help keep
the code from becoming long and difficult to work with.
In addition, one JavaBean can be used with multiple JSP
pages, which saves you from having to retype the same
Java code in several pages.

JavaBeans also enable specialization when developing
a Web site. For example, experts in Web page design
can work with the HTML content of a JSP page, while
programmers develop the Java code that will make the
page dynamic. This allows both types of professionals
to concentrate on their own areas of expertise.

You create a JavaBean as you would create any class file.
JavaBeans can contain one or more methods. After creating

the Java source code for a JavaBean, you must compile
the code.

Once the JavaBean code has been compiled, you must
copy the JavaBean to the appropriate directory on your
Web server. On the Tomcat Web server, JavaBeans are
usually stored in a directory named classes. Consult the
documentation for your Web server to determine which
directory you should use to store your JavaBeans.

You can organize your JavaBeans by storing them in
packages. A package is a set of related class files stored
together in a directory. To create a package for your
JavaBeans, create a subdirectory within the directory
that stores JavaBeans on your Web server and then store
your JavaBeans in that subdirectory. Packages you create
for JavaBeans are similar to packages that store class files
in the Java SDK. For information about creating packages
in the Java SDK, see page 50.

CREATE A JAVABEAN

HARNESSING JAVABEANS 6

— Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now set up a JSP
page to use the JavaBean.

125

� You can now use
the JSP page to access
a JavaBean.

When the JSP engine encounters the <jsp:useBean> tag, it uses
the information specified in the tag to locate or create an instance
of the JavaBean. If an instance already exists, the <jsp:useBean>
tag is not processed. To ensure that code is processed only if a new
instance of a JavaBean is created, you can place the code between
an opening <jsp:useBean> tag and a closing </jsp:useBean>
tag. For example, using the <jsp:setProperty> tag between the
<jsp:useBean> tags allows you to initialize properties only when
a new instance of the JavaBean is created.

Example:
<jsp:useBean class="mybeans.lineBean" id="lineBeanId" scope="session">

<jsp:setProperty name="lineBeanId" property="counter" value="0" />
</jsp:useBean>

When creating an instance of a JavaBean, the <jsp:useBean> tag may
insert an additional method into the JavaBean instance that does not exist
in the original JavaBean. This method, called a constructor, is a special
method that has the same name as the class and is processed when the
JavaBean instance is first created. Constructors are often used to initialize
values. It is good programming practice to include a constructor in
your JavaBean code, even if you do not plan to use the constructor.
If a JavaBean does not include a constructor, the <jsp:useBean>
tag will automatically create an empty constructor for you.

Example:
public void lineBean
{
}

Á Type scope=. ‡ Type the scope for
the JavaBean instance,
enclosed in quotation
marks.

° Type /> to close the tag.

· Save the page with the
.jsp extension.

124

JSP

SET UP A JSP PAGE TO USE A JAVABEAN

⁄ To locate or create an
instance of the JavaBean,
type <jsp:useBean.

¤ Type class=.

‹ Type the full class
name of the JavaBean,
enclosed in quotation
marks.

› Type id=. ˇ Type a name that
will identify the JavaBean
instance, enclosed in
quotation marks.

O nce you have created a JavaBean, you can use the
<jsp:useBean> tag to set up a JSP page to access
the JavaBean.

The <jsp:useBean> tag associates the JSP page with a
specific JavaBean. This tag has several attributes that you
must use in order to ensure that the correct JavaBean is used
and that the JSP page can access the JavaBean. The class
attribute allows you to specify the full class name of the
JavaBean you want the JSP page to use. If the JavaBean is
stored in a package, the full name will consist of the name
of the package and the name of the class, separated by
a dot.

The id attribute allows you to specify a case-sensitive
name that identifies the JavaBean instance. If an instance
of the JavaBean already exists, the id attribute identifies
the instance. If the JavaBean does not already exist, a new
instance is created.

The scope attribute allows you to specify when the JavaBean
instance will be available. If you want the JavaBean instance
to be available to a client only on the page in which the
instance is created, you can specify the page value. This
is the default value of the scope attribute. The request
value allows you to make the JavaBean instance accessible
to a client during a single request.

The session and application values of the scope
attribute allow you to make a JavaBean available within any
JSP page in the application. The session attribute makes
the JavaBean available to a single client for the duration of
the session, while the application attribute makes the
JavaBean available to multiple clients for the duration of
the application.

SET UP A JSP PAGE TO USE A JAVABEAN

HARNESSING JAVABEANS 6

127

� The Web browser displays
the results of accessing a
JavaBean method.

One of the features of JavaBeans is its ability to access
methods that share the same name but accept different data
types as arguments, referred to as method overloading. For
example, you can create two methods with the same name,
but one method may use an int data type as an argument
and the other method may use a String data type.

To create a JavaBean, type:
public String stars(int x)
{

String text = "
";
for (int i = 0; i < x; i++)

text = text + "*";
return text + "
";

}
public String stars(String x)
{

return "
* * " + x + " * *
";
}

To use the methods declared in the JavaBean, type:
<%= lineBeanId.stars(30) %>
<%= lineBeanId.stars("Welcome") %>

Result:

* * Welcome * *

› If necessary, specify
any arguments required
by the method within the
parentheses.

ˇ Type the code that
processes the method
call in the JSP page.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

126

JSP

ACCESS A JAVABEAN METHOD

⁄ Type the code that
sets up the JSP page to
use a JavaBean.

¤ To access a method in the
JavaBean, type the name of the
JavaBean followed by a dot.

� The name of the JavaBean
must be the same as the value
assigned to the id attribute of the
<jsp:useBean> tag in step 1.

‹ Type the name of
the method you want
to access, followed by
a set of parentheses.

Once you have created a JavaBean, you can add the
code that will access the methods in the JavaBean
to your JSP page.

Before accessing a JavaBean method, you must add the
<jsp:useBean> tag to the JSP page. This tag and its
attributes ensure that the correct JavaBean will be used
and that the JSP page has access to the JavaBean. For
more information about setting up a JSP page to use a
JavaBean, see page 124.

To access a method in a JavaBean, you create a scriptlet that
includes the name of the JavaBean, followed by the name of
the method you want to call. The name of the JavaBean is
specified in the id attribute of the <jsp:useBean> tag.
The name is case-sensitive and must be typed in the code
that calls the method exactly as it was typed in the tag.

You can also include any arguments that the method may
require in the scriptlet. If a method returns a result that
can be displayed on a JSP page, you can use an expression
to display the returned value.

Prior to accessing a method in a JavaBean, you should
make sure that the JavaBean source code you created
has been compiled and that the Web server has access
to the JavaBean class files. JavaBeans are usually stored
in a directory called classes on the server. For example,
when using a Tomcat Web server, you must save the
class files in the classes subdirectory of the main Tomcat
directory. If the classes subdirectory does not exist,
you should create the subdirectory. To determine which
directory you should use to store your JavaBeans, consult
the documentation for your Web server.

ACCESS A JAVABEAN METHOD

HARNESSING JAVABEANS 6

129

A getter method can be used to return various types
of data, including a boolean value of true or false.
When declaring a getter method that returns a boolean
value, the method name can be prefixed by is instead
of get. This can help make your code easier to read
and understand. If you choose to use is when
returning a boolean value, you should do so
consistently throughout your code.

For example:
public boolean getJobStatus()

{
return jobStatus;

}

Can be typed as:
public boolean isJobStatus()

{
return jobStatus;

}

You should declare the method that assigns a property
an initial value in the body of the class. If you declare
the method elsewhere, such as in another method, the
getter method may not be able to access the value.

‡ To declare a getter
method that will return
the value of the property,
type public followed by
the data type of the value.

° To name the method,
type get immediately
followed by the name of
the property, beginning
with a capital letter. Then
type ().

· Type return followed by
the name of the property.
Enclose the code in braces.

‚ Save the file with the
.java extension and then
compile the source code
for the file. 128

JSP

CREATE A JAVABEAN PROPERTY

⁄ Type the code that
creates a JavaBean. For
information about creating
a JavaBean, see page 122.

¤ To create a property for
the JavaBean, type private
followed by the data type
of the value the property
will store.

‹ Type a name for the
property.

› Declare a method to
assign the property an
initial value.

ˇ In the body of the
method, type the name of
the property followed by =.

Á Type an initial value
for the property.

Y ou can create a property to store information about
a JavaBean. Properties are fields that define the
behavior of a JavaBean.

After creating the code for a JavaBean, you can specify a
property you want the JavaBean to contain. To do so, you
specify the data type of the value the property will store
and a name for the property. You can then create a method
that assigns the property an initial value.

JavaBean properties are private or protected fields, which
means they cannot be directly accessed by a JSP page. In
order to access the value of a property, you must create a
special method, called a getter method. A getter method,
also referred to as an accessor method, returns the value
of a property.

There are specific rules that must be followed when
declaring a getter method. The access modifier of the
method must be set to public and the data type of the
value to be returned must be specified. The name of the

method is the same as the name of the property, but
begins with a capital letter and is prefixed by the word
get. For example, if you want to return the value of the
loginTime property, you would create a getter method
called getLoginTime. The name of a getter method is
followed by parentheses.

The body of a getter method includes a return statement
that specifies the name of the property whose value you
want to return.

When you finish creating the JavaBean source code, you
must compile the code and store the resulting class file in
the appropriate directory on your Web server. If you are
using the Tomcat Web server, the class file should be saved
in the classes directory located in the main Tomcat directory.
If the JavaBean is part of a package, the class file would be
stored in the appropriate package directory within the
classes directory.

CREATE A JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

— Copy the compiled
class file to the appropriate
directory on your Web server.

� You can now access the
JavaBean property in a JSP
page.

131

� The Web browser
displays the result of
accessing a JavaBean
property.

› Type property= followed
by the name of the property
you want to access, enclosed
in quotation marks.

ˇ Type /> to close
the tag.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

130

JSP

ACCESS A JAVABEAN PROPERTY

⁄ Type the code that sets
up the JSP page to use a
JavaBean. For information
about setting up a JSP
page, see page 124.

¤ To access a property
in the JavaBean, type
<jsp:getProperty.

‹ Type name= followed by
the name of the JavaBean
that contains the property
you want to access, enclosed
in quotation marks.

� The value you assign
to the name attribute
must be the same as
the value you assigned
to the id attribute of
the <jsp:useBean> tag
in step 1.

T he <jsp:getProperty> tag can be used in a
JSP page to access a property of a JavaBean. When
the <jsp:getProperty> tag retrieves the value

of a property, the tag converts the value to a string and
then inserts the value into the JSP page output.

Before accessing a JavaBean property, you must add the
<jsp:useBean> tag to the JSP page. This tag and its
attributes ensure that the correct JavaBean is used and
that the JSP page has access to the JavaBean.

The <jsp:getProperty> tag must be embedded
in the HTML code of a JSP page. You cannot place the
<jsp:getProperty> tag in Java code that generates
HTML code. The tag must also be placed in an area of
a page that can be displayed in a Web browser, such
as within the <body> tag.

The <jsp:getProperty> tag has two required
attributes. The name attribute allows you to specify the
name of the JavaBean that contains the property you want
to access. The value you assign to the name attribute must
be the same as the value you assigned to the id attribute
of the <jsp:useBean> tag.

You use the property attribute to specify the name of
the property you want to access. You should be careful
to use the correct uppercase and lowercase letters when
typing the name of the property you want to access.
If you do not enter the name of the property correctly,
the <jsp:getProperty> tag will not be able to locate
the property in the JavaBean and will return an error
message.

ACCESS A JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

JavaServer Pages code is processed by the Web server and
then sent to the Web browser as HTML code. People can
view the HTML source code for a JSP page, but they will not
be able to view the JavaServer Pages code. This means that
users viewing the source code for a JSP page that contains
the <jsp:getProperty> tag will not see the actual tag.
Instead, they will see the value returned by the tag.

The source code viewed in a Web browser: The actual code of the JSP page:

133

� The Web browser
displays the result of
setting a JavaBean
property.

USE A JSP PAGE TO SET A
JAVABEAN PROPERTY

⁄ Type the code that sets up
the JSP page to use a JavaBean.

¤ Type <jsp:setProperty name=
followed by the name of the
JavaBean that contains the
property you want to set,
enclosed in quotation marks.

‹ Type property= followed
by the name of the property
you want to set, enclosed in
quotation marks.

› Type value= followed
by a value for the property,
enclosed in quotation
marks.

ˇ Type /> to close the tag.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

132

JSP

SET A JAVABEAN PROPERTY

DECLARE A SETTER
METHOD

⁄ Type the code that
creates a JavaBean and
include any properties
you want the JavaBean
to contain.

¤ To declare a setter method
that will change the value of
a property, type public void.

‹ To name the method, type
set immediately followed by
the name of the property you
want to change, beginning with
a capital letter. Then type ().

› Between the parentheses,
type the data type of the
property followed by a
variable.

ˇ Type the name of the
property followed by = and
the variable. Enclose the
code in braces.

Á Save the file with the
.java extension and then
compile the source code
for the file.

‡ Copy the compiled
class file to the appropriate
directory on your Web
server.

A JSP page can be used to change the initial value of
a JavaBean property. Changing the value of a property
will affect how the JavaBean works.

To change the value of a JavaBean property, you must
declare a setter method in the code for the JavaBean.
Setter methods are often referred to as accessor methods.
A setter method can work with a getter method. When
used together, they allow a JSP page to write and read
the value of a JavaBean property. For more information
about getter methods, see page 128.

The access modifier of a setter method must be set to
public and the return type set to void, since the method
does not return a value. The name of the method is the
same as the name of the property to be changed, but begins
with a capital letter and is prefixed by the word set. The

parentheses at the end of the setter method name enclose
the data type of the property and a variable to store the
value passed by a JSP page.

The <jsp:useBean> tag must be included in the JSP
page you want to use to access a JavaBean. For information
about this tag, see page 124. The <jsp:setProperty>
tag and its attributes can then be used to change the value
of a JavaBean property.

The name attribute allows you to specify the name of
the JavaBean that contains the property you want to set.
The value you assign to the name attribute must be the
same as the value you assigned to the id attribute of the
<jsp:useBean> tag. The property attribute specifies
the name of the property whose value you want to set.
The value attribute specifies the value for the property.

SET A JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

Before you can change or retrieve a JavaBean
property, the JSP engine must examine the
JavaBean to determine if the property exists.
A JSP engine is Web server software that
processes JSP pages. When a JSP page
attempts to access a JavaBean property, the JSP
engine uses a process called introspection to
examine the JavaBean. If the JSP engine finds
a getter method, setter method or both for
the property, then the property exits and can
be accessed. A property without an accessor
method does not exist. This is why the naming
conventions for accessor methods are so rigid.

When the <jsp:getProperty> tag retrieves the value
of a property, the value is converted to a string and then
inserted into the JSP page output. If the value retrieved is
a string, then no data conversion is required. Otherwise,
the JSP engine will automatically convert the data using
the appropriate class of the java.lang package.

boolean java.lang.Boolean.valueOf(string)

byte java.lang.Byte.valueOf(string)

char java.lang.Character.valueOf(string)

double java.lang.Double.valueOf(string)

int java.lang.Integer.valueOf(string)

float java.lang.Float.valueOf(string)

long java.lang.Long.valueOf(string)

VALUE DATA TYPE: DATA CONVERSION CLASS:

135

In a JavaBean, you may want to declare a
getter method that allows the JSP page to
retrieve the value of a single element of
an indexed property. You can use this
getter method to display the value of a
single element from an indexed property
instead of having to display all the values
of an indexed property at one time. You
can have more than one getter method
with the same name in a JavaBean.

Example:
public String getSections(int x)
{

return sections[x];
}

You can declare a setter method that
allows the JSP page to change all the
values stored in an indexed property
in a JavaBean. Changing all the values
stored in an indexed property at once is
more efficient that using a setter method
to change the value of each element of
an indexed property individually.

Example:
public void setSections(String[] i)
{

for (int x = 0; x < i.length; x++)
sections[x] = i[x];

}

DECLARE A SETTER
METHOD

Á Type public void.

‡ Type set immediately
followed by the name of
the indexed property,
beginning with a capital
letter. Then type ().

° Between the parentheses,
type int x, followed by the
data type of the indexed
property and a variable name.

· Type the name of the
indexed property followed
by [x] =. Then type the
variable and enclose the
code in braces.

134

JSP

WORK WITH AN INDEXED JAVABEAN PROPERTY

CREATE AN INDEXED
JAVABEAN PROPERTY

⁄ Type the code that
creates a JavaBean. For
information about creating
a JavaBean, see page 122.

¤ Type the code that creates
an array to be used as an
index property and specifies
the values you want to store
in the array. For information
about creating an array, see
page 48.

DECLARE A GETTER METHOD

‹ Type public followed by
the data type of the return
value of the method.

› Type get immediately
followed by the name of the
method, beginning with a
capital letter. Then type ().

ˇ Type the code that will
access and return the values
from the indexed property.

Y ou can create an indexed property to store a collection
of related information about a JavaBean. To create an
indexed property, you first specify an array of values

the indexed property will store. For information about
creating arrays, see page 48.

In order to allow a JSP page to access the values of an
indexed property, you must declare a getter method in the
JavaBean. The access modifier of the getter method must be
set to public and the data type of the return value must be
specified. The name of the method is the same as the name
of the indexed property, but begins with a capital letter and
is prefixed by the word get. The body of a getter method
includes a return statement that returns the values stored
in the indexed property.

To allow a JSP page to change the values stored in an indexed
property, you must declare a setter method in the JavaBean.

The access modifier of a setter method must be set to
public and the return value set to void. The name of the
method is the same as the name of the indexed property but
begins with a capital letter and is prefixed by the word set.
The parentheses at the end of the setter method name must
contain two arguments. The first argument represents the
index of the element that is to be changed in an indexed
property, while the second argument represents the new
value to be placed in the element.

When you finish creating the JavaBean source code, you
must compile the code and store the resulting class file in
the appropriate directory on your Web server. If the JavaBean
is part of a package, the class file must be stored in the
appropriate package directory within the class file directory.

CREATE AN INDEXED JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

‚ Save the file with the .java
extension and compile the
source code. Then copy the
compiled class file to the
appropriate directory on your
Web server.

� You can now access the
indexed JavaBean property
in a JSP page.

137

� The Web browser
displays the results
of using the getter
and setter methods
to access an indexed
property in a JavaBean.

If you declared a getter method in your
JavaBean that allows you to retrieve the value
of a single element of an indexed property, you
can call the method in your JSP page. When
retrieving all the values of an indexed property,
you usually do not need to pass any arguments
to the getter method, however, if you want to
retrieve the value of a single element, you must
pass the index number of the element. Keep
in mind that the first element of an indexed
property has an index number of 0. This means
that if you want to retrieve the third element of
an indexed property, you must pass an index
number of 2.

Example:
<%= myBeanId.getSections(2) %>

If you declared a setter method in your JavaBean
that allows you to change all the values stored in
an indexed property, you can call the method in
your JSP page. When changing all the values of an
indexed property, you pass an array containing all
the new values to be stored in the indexed property
as an argument.

Example:
<%
String[] t = {"Accounting", "Operations", "Transport"};
myBeanId.setSections(t);
%>

CALL A SETTER METHOD

ˇ Type the name of the
JavaBean that contains the
indexed property you want
to access followed by a dot.

Á Type the name of the
setter method followed by
a set of parentheses.

‡ Between the parentheses,
type the index number of the
element you want to change
followed by a comma. Then
type the new value you want
to assign to the element.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

136

JSP

ACCESS AN INDEXED JAVABEAN PROPERTY

⁄ Type the code that sets
up the JSP page to use a
JavaBean. For information
about setting up a JSP
page to use a JavaBean,
see page 124.

CALL A GETTER METHOD

¤ Type the name of the
JavaBean that contains the
indexed property you want
to access followed by a dot.

� The name of the JavaBean
must be the same as the value
assigned to the id attribute of
the <jsp:useBean> tag in
step 1.

‹ Type the name of the
getter method followed
by a set of parentheses.

› Type the code that
uses the method call.

A fter creating a JavaBean that has an indexed property,
you can access the values stored in the indexed
property from your JSP page.

First, you must set up the JSP page to use a JavaBean.
To set up a JSP page, you must add the <jsp:useBean>
tag to the page. This tag and its attributes ensure that the
correct JavaBean is used and that the JSP page has access
to the JavaBean. See page 124 for more information about
setting up a JSP page to use a JavaBean.

You should make sure that the name of the JavaBean you
specify in the <jsp:useBean> tag is the JavaBean that
contains the indexed property you want to access. A
JavaBean must also contain the accessor methods that
allow the JSP page to retrieve and alter the values of the
indexed property.

To display the values of an indexed property, you add code
that calls a getter method to your JSP page. Since a getter
method usually returns a value, you can use an expression
to display the returned value.

You can change the value of an element of an indexed
property by calling a setter method declared in the
JavaBean. A setter method is called from within a scriplet
in your JSP page and usually does not return any value.
To change the value of an element using the setter method,
you must pass the index number of the element and the
new value to the method as arguments.

After changing the value of an element of an indexed
property, you may want to once again call the getter
method to display the values. This is an easy way to
confirm that the setter method is working properly.

ACCESS AN INDEXED JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

139

Data can also be passed to a JSP page by a query string. A query
string is one or more name and value pairs appended to the URL of
a page. To create a query string, you enter the URL of the JSP page in
a Web browser, followed by a question mark. You then enter a name
followed by an equal sign and a value for the name. To enter multiple
name and value pairs, separate each pair with an ampersand (&).
A query string should not exceed 2000 characters and should not
contain spaces.

Example:
http://www.abccorp.com/processform.jsp?userName=Ernest&location=USA

You can create a JavaBean that will store data submitted by a query
string just as you would create a JavaBean to store data from a form.
The JavaBean should contain a property for each name and value
pair that will be submitted. The property names should match the
names submitted by the query string. For example, if the name and
value pair userName=Ernest will be submitted by a query string,
the JavaBean should contain a property called userName.

· Type the code that
declares a getter method.
The getter method will
return the value of the
specified property.

‚ In the body of the
getter method, type
return followed by the
name of the property.

— Repeat steps 9 and 10
for each getter method
you want to declare.

± Save the file with the
.java extension and then
compile the source code
for the file.

138

JSP

CREATE A JAVABEAN TO STORE FORM DATA

⁄ Type the code that creates
a JavaBean.

¤ To create a property that
will store a value from a form
element, type private followed
by the data type of the value
the property will store.

‹ Type a name for the
property. The name should
match the name of the
corresponding form element.

› Repeat steps 2 and 3 for
each property you want to
create.

ˇ Type the code that declares
a setter method. The setter
method will assign a form
value to the specified property.

Á Between the parentheses
at the end of the setter method
name, type the data type of the
property followed by a variable.

‡ In the body of the
setter method, type the
name of the property
followed by = and the
variable.

° Repeat steps 5 to 7
for each setter method
you want to declare.

J avaBeans can be used to help a JSP page process data
submitted by a form. For example, a JavaBean can store
the values submitted by a form and allow the JSP page

to retrieve and manipulate the values. Using a JavaBean to
manage the data submitted by a form can make the data
easier to work with.

While simple forms can be processed entirely by scriptlets
within a JSP page, complex forms that contain many
elements are best handled using JavaBeans. Using
JavaBeans helps make the code that processes a form
easier to manage, maintain and modify.

A JavaBean that will manage data submitted by a form
should contain a property for each element in the form.
The properties will store the values from the form elements.
The names of the JavaBean properties should match the
names of the form elements. For example, a property that
will store the value of a text box named username should
be called username.

You must declare a setter method for each property you
create. If you want the JSP page to be able to retrieve the
values stored in the properties, you must also declare a
getter method for each property. These methods are often
referred to as accessor methods. A setter method allows
you to assign a value from a form to a JavaBean property.
A getter method returns the value of a property. The
conventions you must use when declaring setter and
getter methods are very strict. For information about
declaring a setter method, see page 135. For information
about declaring a getter method, see page 134.

Once you have created the JavaBean source code, you
must compile the code and store the resulting class file
in the appropriate directory on your Web server.

PROCESS FORM DATA USING A JAVABEAN

HARNESSING JAVABEANS 6

CONTINUED

¡ Copy the compiled
class file to the appropriate
directory on your Web server.

� You can now set up a JSP
page to use the JavaBean
when processing
form data.

141

If the names of the properties in the JavaBean
do not match the names of the elements in
the form, you must set the value of each
property individually. To set the value of a
property, use the property attribute to
specify the name of the property and the
param attribute to specify the name of its
corresponding form element. For example,
the following line of code assigns the value
of a form element named clientName to a
property called userName.

Example:
<jsp:setProperty name="processFormBean"
property="userName" param="clientName"/>

A form does not have to be submitted
directly to the JSP page that will process
the form data. The form can be submitted
to a JSP page and then forwarded to
another JSP page. For example, form
data can be submitted to a JSP page that
verifies data before being forwarded to
the JSP page that will process the data.
The <jsp:forward> tag can be used
to pass form data from one JSP page to
another.

Example:
<jsp:forward page="process.jsp"/>

⁄ In a Web browser, display
the Web page containing the
form you want to process.

¤ Enter data into the form.

‹ Click the submit
button to pass the data in
the form to the JSP page.

� The Web browser displays
the result of using a JavaBean
to process data from the form.

140

JSP

SET UP A JSP PAGE TO PROCESS FORM DATA PROCESS FORM INFORMATION

⁄ Type the code that
sets up the JSP page
to use a JavaBean.

¤ To set the JavaBean
properties with values
from a form, type
<jsp:setProperty.

‹ Type name= followed by
the name of the JavaBean that
contains the properties you want
to set, enclosed in quotation
marks.

� The value you assign to the
name attribute must be the
same as the value you assigned
to the id attribute of the
<jsp:useBean> tag in step 1.

› Type property="*" />.

ˇ Type the code that
will access the JavaBean
properties.

Á Save the page with
the .jsp extension.

T he JSP page you want to process form data using
a JavaBean must be set up to use the JavaBean.
The JSP page can simply pass form data to the

JavaBean and then retrieve and display the data. A JSP
page and JavaBean can also be used to perform a more
complicated task, such as storing the data in a database.

The <jsp:useBean> tag allows you to associate
the JSP page with the JavaBean you created to manage
form data. This tag must appear in the JSP page before
the <jsp:setProperty> tag, which is used to set
JavaBean properties. The property attribute of the
<jsp:setProperty> tag allows you to specify the
properties you want to set. If the names of the properties
match the names of the elements in the form, you can
quickly set all the properties in the JavaBean using
the * wildcard character.

When a form is submitted to the JSP page, the
<jsp:setProperty> tag will pass the form values

from the JSP page to the JavaBean, assigning the values
to the appropriate properties. The values are assigned
during the process of introspection, in which the
JavaBean is examined and its properties detected.

The <jsp:getProperty> tag allows the JSP page
to access a property of the JavaBean. This tag retrieves
the value of a property and automatically inserts the
value into the output of the JSP page. You must use a
<jsp:getProperty> tag for each property you want
to access.

In the code for the form the JSP page will process,
the action attribute of the <form> tag must specify
the correct filename and location of the JSP page. The
method attribute can specify either get or post.
The JSP page will be able to process the form regardless
of the method used to pass information to the page.

PROCESS FORM DATA USING A JAVABEAN

HARNESSING JAVABEANS 6

143142

JSP

O ne of the most important features of JavaServer
Pages technology is the ability to connect to a
database. Databases store and efficiently manage

large collections of information. JSP pages can be used
to make this information available to the users who visit
your Web site or to store information submitted by users.

Instead of storing information in text files or static Web
pages, a JSP page can be set up to retrieve, format and

display data from a database. When a user accesses the JSP
page, the information displayed by the page will be created
from the current information in the database. A JSP page
can also allow users to manipulate the data in a database.

Using databases to store information and using JSP pages to
access the information is an efficient method of displaying
up-to-date information in a Web site.

INTRODUCTION TO DATABASES

WORK WITH DATABASES 7

DATABASE PROGRAMS

There are several different programs available that
you can use to create a database. The two most
popular database programs used when working
with Windows-based systems are Microsoft Access
and Microsoft SQL Server. Microsoft Access is
useful for creating relatively small databases, while
Microsoft SQL Server is useful for creating large
databases, such as a database used to provide
information to a busy e-commerce Web site.

For information about Microsoft Access and Microsoft SQL
Server, you can visit the www.microsoft.com/office/access
and www.microsoft.com/sql Web sites.

Two popular database programs used when working
with UNIX-based systems are MySQL and PostgreSQL.
Information about these database programs is available
at the www.mysql.com and www.postgresql.org Web sites.

DATABASE STRUCTURE

A database is made up of one or more tables. A table
contains records that store the information entered
into the table. For example, a record could store the
information for one customer. Each record is divided
into fields. A field is a specific piece of information
in a record, such as the first name of a customer.

Great care should be taken when initially planning and
designing the structure of a database. A well-planned
database ensures that tasks, such as adding or deleting
records, can be performed efficiently and accurately.
Poor database design may cause problems if the
database needs to be changed in the future.

CONNECT TO A DATABASE

Before a JSP page can access a database, you must
create a connection to the database. On Windows-based
systems, you can first create a Data Source Name (DSN)
for the database to tell your JSP pages what kind of
database you want to connect to and where the database
is located. You can then use the DSN with the java.sql

package in a JSP page to connect the page to the
database.

Once connected, you can easily access the database
to add, modify and delete records, as well as administer
the database.

SQL STATEMENTS

STRUCTURED QUERY LANGUAGE

Although SQL is made up of many statements and
clauses, you will need to be familiar with only a
few to perform the examples in this chapter.

In order for a JSP page to work with the records in a
database, the page must be able to communicate with the
database. You use the Structured Query Language (SQL)
in a JSP page you want to communicate with a database.

SELECT

The SELECT statement specifies
the data you want to retrieve from
a database. The SELECT statement
uses the FROM clause to specify
the name of the table that stores
the data you want to retrieve. The
WHERE clause specifies exactly
which data you want to retrieve.

Example:

SELECT Total
FROM invoiceNumbers
WHERE Total > '$100'

SQL FEATURES

Standardized

SQL is the industry standard language for
managing and manipulating data in a database.
SQL can be used to work with many types of
databases, which makes it easy to upgrade
from one database program to another. For
example, a small Web site might start out using
a Microsoft Access database, but then grow
large enough to require a database created
using Microsoft SQL Server. You need to learn
only one language to have your JSP pages
communicate with both types of databases.

Easy to Use

SQL is a very simple language to work with and uses
many easy-to-understand commands. For example,
SQL uses the INSERT statement to add information
to a database. These plain-language commands make
it easy for you to read code created using SQL and
determine the purpose of the code.

Powerful

Although SQL is easy to use, it is a very powerful
language. As well as being suitable for retrieving data
from a database and performing simple tasks such
as adding and deleting records, SQL can be used to
perform complicated procedures, such as compiling
different types of data from multiple data sources.

INSERT

The INSERT statement allows you to
add data to a database. The INSERT
statement uses the INTO clause to
specify the name of the table to which
you want to add data and the names
of the fields that store the data in the
table. The VALUES clause specifies the
values that you are adding.

Example:

INSERT INTO invoiceNumbers (INVOICE, TOTAL)
VALUES (12843, '$34.56')

DELETE

The DELETE statement is used to
remove data from a database. The
DELETE statement uses the FROM
clause to specify the name of the
table that stores the data you want
to delete. The WHERE clause
contains information that uniquely
identifies the data you want to
delete.

Example:

DELETE FROM invoiceNumbers
WHERE year < 1996

145

My DocumentsMy Documents

Employees.mdb

Employees.mdb

WEBSERVER

directory
\\LOCALHOST

\\W...\directory\

My Documents

Microsoft Access Driver (*.mdb)

My Documents

TYPES OF DATA SOURCE NAMES

There are three main types of data source names
available on computers running a Windows operating
system. The types of data source names differ in where
the information about a database is stored and who
can use the DSN. The administrator of the Web server
usually specifies the type of DSN that must be used.

System DSN

The information in a
system DSN is stored
in the registry of the
Web server. Any user
that has access to the
server will be able to
use a system DSN to
access the database.

User DSN

The information in a user DSN
is stored in the registry of the
Web server, but only a specific
user account can use the DSN.
User data source names are
often used when developing
intranet Web applications that
require secure access to a
database.

File DSN

The information in a file DSN is
stored in a text file on the Web
server. File data source names
make it easy to transfer databases
and data source names between
different Web servers. Any user
who has access to the Web
server will be able to use a file
DSN to access the database.

‡ Type the data source
name you want to use for
the database.

° Click Select to display the
Select Database dialog box.

· Select the database
you want to create a data
source name for.

‚ Click OK in the Select
Database dialog box.

— Click OK in the ODBC
Microsoft Access Setup
dialog box.

� The new data source
name appears in this area.

144

JSP

CREATE A DATA SOURCE NAME

⁄ In the Control Panel,
double-click Administrative
Tools to display the
Administrative Tools window.

¤ Double-click Data Sources.

� The ODBC Data Source
Administrator dialog box
appears.

� The Create New Data
Source dialog box appears.

ˇ Click Microsoft Access
Driver.

Á Click Finish.

� The ODBC Microsoft
Access Setup dialog box
appears.

I f a Web server running a Windows operating system
will be used to access a database you created, you must
assign a Data Source Name (DSN) to the database.

A DSN stores information that tells Web applications how
to access a specific database. You include the data source
name in the JSP pages you want to connect to the database.

You only have to create a DSN once for a database. You
do not have to create a new data source name when you
change or update the structure of the database.

The data source name must be created on the Web server
that will access both the database and the JSP pages that
use the database. If a Web hosting service is storing your
database and JSP pages, the Web hosting service will
usually create the DSN for you.

To create a data source name, you specify the driver for the
program you used to create the database, such as Microsoft
Access or SQL Server. You then specify the DSN you want to
use and the location of the database. The data source name
does not have to be the same as the name of the database.
You should use a short, descriptive DSN.

The steps below create a system DSN for a Microsoft Access
database that will be accessed by a Web Server running the
Windows 2000 operating system. Windows 2000 computers
use a program labeled Data Sources to control DSN
configuration. The name and location of the program used to
create a DSN on your computer may be different, depending
on the operating system you are using. For more information
about how to create a DSN on your computer, refer to the
computer's operating system documentation.

CREATE A DATA SOURCE NAME

WORK WITH DATABASES 7

‹ Click the System
DSN tab.

› Click Add to create
a data source name.

± Click OK to close
the ODBC Data Source
Administrator dialog box.

147

You must load a driver to connect a JSP page to
a database even if the database uses the JDBC
specification and does not require the use of
the JDBC-ODBC bridge driver. Many database
programs come with their own JDBC drivers.
You may be able to load a database program's
driver simply by specifying the name of the
driver in the Class.forName statement.
You should consult the documentation for the
database program to determine which drivers
are offered and how to load and use the drivers.

There is more than one version of the JDBC
specification available. Version 2.0 is the latest
version and includes features that are not found
in older versions. You must ensure that your
database is compatible with the JDBC version
you intend to use. The Java SDK includes JDBC
version 2.0.

Specifying a login name and password in a JSP
page for a database connection can present a
security risk, since anyone who has access to
the JSP code will be able to determine this
sensitive information. You may be able to use
security features provided by your database
program to minimize the security risk. For
example, if the information in a database will
only be retrieved, you may want to set up
read-only access to the database. Consult the
documentation for your database program for
information on the available security features.

ˇ To specify the location
of the database you want the
JSP page to connect to, type
DriverManager.getConnection().

Á Between the parentheses,
type "jdbc:odbc: immediately
followed by the DSN of the
database. Then type ".

‡ If the connection
requires a login name and
password, type a comma
followed by the login name
enclosed in quotation
marks. Then type a comma
followed by the password
enclosed in quotation
marks.

° To close the conection to
the database, type the name
of the Connection object
followed by a dot. Then type
close().

146

JSP

CONNECT TO A DATABASE

⁄ To import the java.sql
package, type <%@ page
import="java.sql.*" %>.

� The java.sql package
contains the Connection
interface.

‹ To create a Connection
object that allows the JSP page
to connect to a Windows
database, type Connection.

› Type a name for the
Connection object
followed by =.

O nce a Data Source Name (DSN) has been created
for a database, you can set up a connection to the
database in a JSP page. You can then use the JSP

page to access the database. For example, the JSP page
can be used to retrieve information from the database.

In order to set up a connection to a database, a driver
that enables the JSP page to communicate with the
database must be loaded. JavaServer Pages technology
uses the Java DataBase Connectivity (JDBC) specification
to access databases, while most databases created on
computers using the Windows platform use the Open
DataBase Connectivity (ODBC) specification. The Java
SDK includes a JDBC-ODBC bridge driver that allows JSP
pages to communicate with these Windows databases.

To load a driver in a JSP page, you use the
Class.forName statement to specify the name
of the driver. The name of the JDBC-ODBC bridge
driver is sun.jdbc.odbc.JdbcOdbcDriver.

Once the driver has been loaded, a Connection
object can be created that will allow the JSP page

to connect to the database. Before a Connection object
can be created, you must use the page directive to import
the java.sql package. The java.sql package contains
the Connection interface and is part of the Java class
library. For more information about the page directive,
see page 74.

The DriverManager.getConnection statement is
used to specify the location of the database you want the
JSP page to connect to. For connections created using the
JDBC-ODBC bridge driver, the location will begin with
jdbc:odbc: and be immediately followed by the DSN
of the database. The DriverManager.getConnection
statement also allows you to specify a login name and
password if this information is required to establish a
connection to the database.

The close method of the Connection object should
be used to close a database connection when the
connection is no longer needed.

CONNECT TO A DATABASE

WORK WITH DATABASES 7

· Save the page with the
.jsp extension.

� You can now use the JSP
page to access a Windows
database.

¤ To load the bridge driver
that allows the JSP page to
communicate with a Windows
database, type Class.forName
("sun.jdbc.odbc.JdbcOdbcDriver").

149

You can use any name you want for your
database objects. However, there are some
names that are usually used for certain common
objects. For example, the Connection object
is often named con and the name stmt is
often used for the Statement object. The
ResultSet object is usually named rs.

Depending on the size, speed and location of the
database, it may take a long time for a JSP page
to pass a SELECT statement to the database,
process the statement and then retrieve the
results generated from the database. You should
take this time into account when designing your
JSP pages. For example, if your JSP page displays
a banner image followed by a large amount of
data from a database, you can use the flush
method of the out object to force the JSP page
to display the banner first, while the database
information is being retrieved.

In order to minimize delays when
communicating with a database, you
should design your SQL statements to be
efficient. For example, if you require data
only from a particular field in a database,
the SELECT statement should retrieve
only the relevant information. It is much
more efficient to retrieve only the data
you need from the database than to
retrieve unnecessary information and
then filter the results.

ˇ To create a ResultSet
object to store the results
returned from the database,
type ResultSet followed by
a name for the ResultSet
object.

Á Type = and the name
for the Statement object
followed by dot.

‡ Type executeQuery("").

° Between the quotation
marks, type SELECT * FROM
followed by the name of the
table in the database from
which you want to retrieve
information.

148

JSP

CREATE A RESULT SET

⁄ Type the code that
creates a connection to the
database from which you
want to retrieve information.

¤ To create the Statement
object that will retrieve
information from the database,
type Statement followed by a
name for the Statement
object.

‹ Type = and the name
for the Connection
object followed by a dot.

› Type createStatement().

A fter setting up a connection to a database in
a JSP page, you can create a result set to store
information you retrieve from the database.

Before a JSP page can retrieve data from a database,
the page must have permission to access the database.
Permission to access a database from a JSP page is usually
controlled by your operating system or database program.
For information about access permissions, you should
consult the documentation included with your software.

Before creating a result set, you must first create a
Statement object that will retrieve information from
a database. To create a Statement object, you use
the createStatement method of the Connection
object created when the database connection was
set up. The Statement interface that is used to create
the Statement object is part of the java.sql package.

Once the Statement object has been created, the
results retrieved by the object must then be assigned
to a ResultSet object. This object will be used to
store the results returned from the database in a result
set. To use the ResultSet object, you must create an
instance of the object and assign it a name.

When the ResultSet object has been created, you
can specify the information you want to place in the
result set. To do this, you use the executeQuery
method of the Statement object to issue a SELECT
statement to the database. The SELECT statement allows
you to specify the data you want to retrieve from a table
in the database. You can specify the data you want to
retrieve by name or use an asterisk (*) to retrieve all the
data in the table. The SELECT statement uses the FROM
clause to specify the name of the table that stores the
information you want to retrieve.

CREATE A RESULT SET

WORK WITH DATABASES 7

· Save the page with
the .jsp extension.

� To retrieve the data
from the result set, see
page 150.

151

In addition to string data, a result set can
also contain other types of data such as
objects and primitive data types. Different
methods of the ResultSet object are
used to access different data types.

Example:

int numberOfItems = rs.getInt("quantity");
double itemPrice = rs.getDouble("price");

If multiple columns in the same result set
have the same name, the method used to
retrieve the data from the result set will
retrieve the data from the first column that
has the common name. Although it is not
recommended, it is possible to have multiple
columns with the same name in a database.

You can also use a column number instead
of a field name to retrieve information from
a row of data. In a result set, the first
column of information has a column
number of 1, not 0 as some programmers
might expect.

Example:

while (rs.next())
{

String employeeId = rs.getString(1);
String employeeName = rs.getString(2);
String employeeExt = rs.getString(3);

}

ˇ In the body of the
while loop, type String
followed by the name of
a variable you want to
assign the string data to.

Á Type = and the name
of the ResultSet object
followed by a dot.

‡ To retrieve string
information from the row,
type getString("").

° Between the quotation
marks, type the name of
the field that holds the
information you want to
retrieve.

· Repeat steps 5 to 8 to
retrieve the information you
want from the result set.

150

JSP

RETRIEVE DATA FROM A RESULT SET

⁄ Type the code that
creates a connection to
the database from which
you want to retrieve
information.

¤ Type the code to create
a Statement object that
retrieves information from
a database and to create a
result set that stores the
results returned from the
database.

‹ To create a while
loop to cycle through the
rows of data in the result
set, type while ().

› Between the
parentheses, type the
name of the ResultSet
object followed by .next().

O nce information has been retrieved from a database
and placed in a result set, you can retrieve the data
from the result set. A result set consists of rows

which store information generated by the database when
an SQL statement is processed.

Information may be accessed in the result set one row at
a time. An imaginary indicator, called a cursor, is used to
identify which row can currently be accessed. When the
rows of data are initially placed in a result set, the cursor
is placed just above the first row of data. To access the
first row of data in a result set, you must call the next
method of the ResultSet object to move the cursor
to the first row.

If a result set contains multiple rows, a loop is typically
used to retrieve information from each row. The next
method of the ResultSet object is usually used in
conjunction with a while loop to move the cursor

through the rows of data in the result set, one at a time.
The next method returns a boolean value which indicates
if another row to which the cursor can be moved to exists.
If the next method returns a true value, the loop continues
and the next row of data is processed.

When the cursor is positioned in a particular row of data,
a method of the ResultSet object can be used to retrieve
information from that row. For example, the getString
method can be used to retrieve string information from a
row of data. When using the getString method, you
must specify the name of the field from which you want
to retrieve data. You can assign the value returned by the
getString method to a variable, which allows you to
use the value in a process or to display the value in a Web
browser.

RETRIEVE DATA FROM A RESULT SET

WORK WITH DATABASES 7

‚ Save the page with the
.jsp extension.

� To format the retrieved
data for display in a Web
browser, see page 152.

153

� The Web browser
displays the formatted
information retrieved
from a database.

Á Between the parentheses, type
the name of the variable that stores
the information you want to display.

‡ To generate a cell in the table,
type the required HTML tags,
enclosed in quotation marks.
Separate each tag and variable
with the concatenation operator.

° Repeat steps 5
to 7 for each item
of information you
want to display.

· Save the page with
the .jsp extension and
then display the page
in a Web browser.

152

JSP

FORMAT DATA FOR DISPLAY

⁄ Type the code that
creates a connection to
a database and retrieves
information from the
database.

¤ To display the information
you retrieve from the result
set in a table, type the HTML
code that sets up the table.

‹ Type the code that creates
a loop that will process one
row of the result set at a time.

› Type the code that retrieves
the data you want to display
from the result set.

ˇ To display an item
of information, type
out.print().

O nce information has been retrieved from a
database and accessed from the result set,
the information can be formatted for display

on a JSP page. When displaying information retrieved
from a database, you can use HTML tags to format the
information. For example, HTML tags can be used to
place the information in a list or table.

If a result set contains multiple rows, a loop is typically
used to retrieve information from each row, one at a time.
The next method of the ResultSet object is usually
used in conjunction with a while loop to move the
cursor through the rows of data.

When the cursor is positioned in a particular row of
data, a method of the ResultSet object can be used
to retrieve information from that row. For example,
the getString method can be used to retrieve string
information from a field you specify in the current row.

Assigning the value of the getString method to a
variable can make it easier to work with the data. You
can use the print method of the out object to display
the contents of the variable on a JSP page. When using
the print method, different types of data, such as
variables and string literals, can be joined together
using the concatenation operator, +.

You can incorporate any HMTL code you want to use
into the loop that accesses each row of data so that with
each iteration of the loop, a row of data and the HTML
code used to format the data will be sent to the client.

FORMAT DATA FOR DISPLAY

WORK WITH DATABASES 7

Many Web pages on the Internet are not
static pages, but rather are made up of
information retrieved from databases. This
information is assembled on a page each
time a client views the page. For example,
the home page of a news organization
may contain information retrieved from a
news database, a weather database and an
advertising database. The information from
each database is formatted with HTML tags
and the separate sections are all joined
together to create a single, seamless page.

If the information you want to display from
a database is relatively simple, you can use
an expression to display the information
directly from the result set, without first
assigning the information to variables.

Example:

<table>
<tr>
<td><%= rs.getString("employee_id") %></td>
<td><%= rs.getString("name") %></td>
<td><%= rs.getString("extension") %></td>
</tr>
</table>

When formatting information retrieved from
a database for display on a JSP page, you
should first sketch out the desired layout
of the page to ensure proper placement of
information. If the amount of information
retrieved from the database will vary with
each query, you must take this into account
when laying out the page.

155

� The Web browser displays
the result of positioning the
cursor in a result set. The
first, last and third rows in
the result set are displayed.

Á To create a method
that moves the cursor
to a specific row in the
result set, type the name
of the ResultSet object
followed by a dot. Then
type absolute().

‡ Between the parentheses,
type the number of the row you
want to move the cursor to.

° Type the code that retrieves
and displays information from
each row you specified in the
result set.

· Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

154

JSP

POSITION THE CURSOR IN A RESULT SET

⁄ Type the code that
creates a connection
to a database and
retrieves information
from the database.

¤ Between the parentheses for
the createStatement method
of the Connection object, type
ResultSet.TYPE_SCROLL_SENSITIVE
followed by a comma to specify
the result set type.

‹ Type ResultSet.CONCUR_UPDATABLE
to specify the concurrency type.

› To create a method that
moves the cursor to the first
row in the result set, type
the name of the ResultSet
object followed by a dot.
Then type first().

ˇ To create a method
that moves the cursor to
the last row in the result
set, type the name of
the ResultSet object
followed by a dot. Then
type last().

T he ResultSet object provides several methods
that can be used to move the cursor to a particular
row in a result set.

Initially, the cursor is positioned above the first row in
a result set, so there is no current row. You must call a
method of the ResultSet object to move the cursor
to the row you want to make current. The values in the
current row are affected by any methods that are called.

If the next method of the ResultSet object is used to
move the cursor forward through each row in a result set,
a new result set would have to be created to revisit a row
or iterate through the entire result set a second time.
Most new JDBC drivers allow you to create a scrollable
result set. You can move the cursor forward, backward
and to a specific row in a scrollable result set.

To make a result set scrollable, you must specify the
result set type as TYPE_SCROLL_INSENSITIVE or

TYPE_SCROLL_SENSITIVE. If you want to be able to
change information in the result set, you must also specify
the concurrency type as CONCUR_UPDATABLE. The result
set type and concurrency type are specified as arguments
of the createStatement method. The values available
for both of these types are constants determined by the
ResultSet interface.

After setting the result set type and concurrency type,
you can call a ResultSet method to position the cursor
at the row you want to make the current row. Calling the
first method moves the cursor to the first row in the
result set. Calling the last method moves the cursor to
the last row. To position the cursor at a specific row, you
use the absolute method to specify the number of the
row you want to make current.

POSITION THE CURSOR IN A RESULT SET

WORK WITH DATABASES 7
You can display the result set type and
concurrency type of a result set in a
JSP page. To do so, use the getType
and getConcurrency methods of
the ResultSet object in the JSP page,
such as <%= rs.getType() %>

and <%= rs.getConcurrency() %>.
When the JSP page is displayed in a Web
browser, a numerical value appears,
representing the result set type and
concurrency type.

Result Set Types

VALUE: DESCRIPTION:

1003 TYPE_FORWARD_ONLY The result set is not scrollable. The cursor can move
forward from top to bottom only.

1004 TYPE_SCROLL_INSENSITIVE The result set is scrollable. Any changes made to the
database while the result set is open are not reflected
in the result set.

1005 TYPE_SCROLL_SENSITIVE The result set is scrollable. Any changes made to the
database are immediately reflected in the result set.

Concurrency Types

VALUE: DESCRIPTION:

1007 CONCUR_READ_ONLY The information in the result set cannot be modified.

1008 CONCUR_UPDATABLE The information in the result set can be updated.

157

� The Web browser
displays the results of
adding a record to a
table in a database.

Insert Records - Microsoft Internet Explorer

http://127.0.0.1:8080/examples/addrecord.jsp

789

888

444

437

Sandra

Barry

Johanne

Peter

121

777

222

456

ID Number Name Extension

In order to add a record to a table in a database, the database
driver must support the insertRow method. If errors occur
when calling the insertRow method, you should check
whether a version of the database driver that supports the
method is available for your database program.

If you do not want to use the update methods of the ResultSet
object to add a record, you can use the SQL INSERT command
instead. You issue the INSERT command to a database using the
executeUpdate method of the Statement object.

Example:

stmt.executeUpdate("INSERT INTO employees VALUES(4347, 'Peter', 456)");

You can access other rows in a result set to which you are
adding a new row. When you finish inserting a row, you can
move the cursor to any row in the result set. For example, you
can use the moveToCurrentRow method of the ResultSet
object to reposition the cursor at the last row accessed before
you inserted the new record. To avoid losing the information
you added to the insert row, you should move the cursor only
after calling the insertRow method.

Example:

updRs.insertRow();
updRs.moveToCurrentRow();

Á Repeat steps 4 and 5
for each value you want
to insert for the record.

‡ To insert the record
into the result set and the
database, type the name
of the ResultSet object
followed by .insertRow().

° Type the code that
displays the information
from the database.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

156

JSP

ADD A RECORD

⁄ Type the code that
creates a connection to
a database to which you
want to add a record.

¤ Type the code that retrieves
information from the table
where you want to add a record
and allows you to update the
database.

‹ To position the cursor at the
insert row, type the name of the
ResultSet object followed by
.moveToInsertRow().

› To specify a value for a
column in the new record, type
the name of the ResultSet
object followed by a dot. Then
type the update method you
want to use followed by ().

ˇ Between the parentheses,
type the name or number
of the column to which you
want to add data followed
by a comma. Then type the
value you want the column
to contain.

� String arguments must be
enclosed in quotation marks.

T he ResultSet object provides methods you
can use to insert records into a table in a
database.

You insert a record into a table by inserting a new row
into the result set that contains information retrieved
from the database. The result set must contain all the
columns in the table that are to be given values for a
record. A column that is not included in the result set
will be given a null value when the record is inserted
into the table. If the column does not accept null
values, an error will occur.

Before you can add a record, you must first use the
moveToInsertRow method of the ResultSet object
to position the cursor at the insert row. The insert row
allows you to create a new row in a result set.

Once the cursor is positioned at the insert row, you
can specify the values you want to add to each
column in the row using special update methods

of the ResultSet object. The method name you use
depends on the type of data to be used for the value.
For example, if you want to specify a string value for
a column, you use the updateString method. To
specify an integer value, you use the updateInt
method.

Each update method requires two arguments. The first
argument specifies the name or number of the column
you want to contain the data. The number of the first
column in the table is 1. The second argument specifies
the value that will be inserted into the column. The data
type of the value must match the update method you
specified.

Once the values have been specified for each column
in the table, you can call the insertRow method of
the ResultSet object to add the new record to the
result set and to the table in the database.

ADD A RECORD

WORK WITH DATABASES 7

159

· Type the name of
the Statement object
followed by a dot. Then
type executeUpdate().

‚ Between the parentheses,
type the variable name that
stores the SQL INSERT
statement.

— Save the page with
the .jsp extension.

± In a Web browser, display
the form you created to add
records to the database.

¡ Enter data into the form.

158

JSP

ADD FORM DATA TO A DATABASE

⁄ Type the code that
accesses information passed
to the JSP page by a form.

¤ Type the code that creates
a connection to the database
you want to add records to
and creates a result set.

‹ Type the code that
creates a variable to store
the SQL INSERT statement
followed by ="".

› Between the quotation
marks, type INSERT INTO.

ˇ Type the name of the
table in the database that
you want to add records
to followed by ().

Á Between the parentheses,
type the name of each field
in the table, separated by a
comma.

‡ Type VALUES().

° Between the parentheses,
type the code that uses the
information passed by the
form.

A JSP page that contains a connection to a database
can be used to add records to the database. Records
are commonly added using data submitted by forms.

Forms provide an easy-to-use interface for working with a
database.

The getParameter method of the request object can
be used in a JSP page to access data passed by a form.
For more information about the getParameter method,
see page 84.

When creating a result set to add a record to a database,
you must set the result set type and concurrency type.
For information about setting the result set type and
concurrency type, see page 154.

The SQL INSERT statement allows you to add a record to
a database. The INSERT statement uses the INTO clause
to specify the name of the database table you want to add a

record to and the names of the fields that store information
in the table. The VALUES clause specifies the field values
that make up the record you are adding to the database.
You may have to enclose the field values in single or double
quotation marks, depending on your database program.

It is common programming practice to store an SQL
INSERT statement in a variable. Using variables can
help make your code easier to read and update.

The SQL INSERT statement is executed by the
executeUpdate method of the Statement object
to add data to the database.

When creating the code for a form that will be used to
add records to a database, you must specify the name
of the JSP page that connects to the database in the
action attribute of the <form> tag.

ADD FORM DATA TO A DATABASE

WORK WITH DATABASES 7

Using an if statement allows you to confirm
that information has been submitted by a form
before the JSP page connects to the database
that stores the form data. For example, you can

ensure that a user name entered into a form
contains at least one character before the JSP
page sends any information to the database.

if (userName.length()>0)
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection("jdbc:odbc:mydatabase");
Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,ResultSet.CONCUR_UPDATABLE);

String sqlStatement = "INSERT INTO Employees(employee_id,name,extension) VALUES
("+employeeID+",'"+userName+"',"+phoneExtension+")";
stmt.executeUpdate(sqlStatement);
}
else
{
out.print("Please enter a user name.");
}

Please enter a user name.

TYPE THIS:

RESULT:

™ Click the submit button
to pass the data in the form
to the JSP page.

� The JSP page that adds
the record will appear and
the record will be added
to the database.

161

� The Web browser
displays the result of
updating a row in a
database.

If you do not want to use the update
methods of the ResultSet object to
update a record, you can use the SQL
UPDATE statement instead. You issue the
UPDATE command to a database using
the executeUpdate method of the
Statement object.

Example:

stmt.executeUpdate("UPDATE Employees SET
name = 'Pete' WHERE (name = 'Peter')");

You can also use column numbers instead
of column names to specify the columns
you want to update in a record. In SQL,
column numbers start at column 1, not 0
like many other indexing systems used in
programming.

Example:

updRs.next();
updRs.updateString(2, "Pete");
updRs.updateInt(3, 456);
updRs.updateRow();

You can cancel updates to a database by
using the cancelRowUpdates method.
The cancelRowUpdates method can
be called after any update methods are
used, but before the updateRow method
is called. Canceling updates is useful if
the JSP code detects invalid data or a
database access error.

Example:

updRs.updateString("name", "Pete");
updRs.cancelRowUpdates();

Á Repeat steps 4 and 5 for
each column you want to
update.

‡ To change the information
in the database, type the name
of the ResultSet object
followed by .updateRow().

° Type the code that
displays the information
in the database.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

160

JSP

UPDATE A RECORD

⁄ Type the code that
creates a connection to
a database in which you
want to update records.

¤ Type the code that
retrieves a record from the
table you want to update
and allows you to update
the database.

‹ Type the code that
moves the cursor to the
row you want to update.

› To specify a new value for
a column in the record you
want to update, type the name
of the ResultSet object
followed by a dot. Then type
the update method you want
to use followed by ().

ˇ Between the parentheses,
type the name of the column
you want to update followed
by a comma. Then type the
new value you want the
column to contain.

� String arguments must be
enclosed in quotation marks.

O nce you establish a connection with a database,
you can edit the information contained in the
database. Editing the information in a database

allows you to keep the information up-to-date.

If you want to update a single record, you can use the
WHERE clause with the SQL SELECT command to create
a result set that stores only the row of data you want to
update.

When a result set is created, the cursor is positioned above
the first row of data. Before information in the result set
can be modified, you must use the next method of the
ResultSet object to move the cursor to the row that
is to be updated, even if the result set contains only a
single row.

You can specify the values you want to change for
the current row using special update methods of the

ResultSet object. The method name you use depends
on the type of data to be used for the value. For example,
if you want to specify a string value, you use the
updateString method. To specify an integer value,
you use the updateInt method.

Each update method requires two arguments. The first
argument specifies the name of the column you want to
contain the data. The second argument specifies the value
that will be inserted into the column. The data type of the
value must match the update method you specified.

Once the update methods have been used to specify the
data you want to change in the current record, you can
call the updateRow method of the ResultSet object
to update the information in the database.

UPDATE A RECORD

WORK WITH DATABASES 7

163

� The Web browser
displays the result of
making a batch update.

You should make sure that the database
driver used to communicate with the
database program is able to perform batch
operations before using the executeBatch
method. If the database driver does not
support batch operations, you should check
if a newer version of the driver is available.

After using the commit method of the
Connection object to make your changes
to a database permanent, you may need
to re-enable the auto-commit mode of the
Connection object. To do so, you must
set the parameter of the setAutoCommit
method of the Connection object to
true.

Example:

updStmt.executeBatch();
con.commit();
con.setAutoCommit(true);

‡ To send the batch update to
the database program, type the
name of the Statement object
followed by .executeBatch().

° To make any changes to
the database permanent, type
the name of the Connection
object followed by .commit().

· To re-enable the
auto-commit mode of the
Connection object, type
con.setAutoCommit(true).

‚ Type the code that
retrieves information from
the updated database and
displays the information
on the JSP page.

— Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

162

JSP

MAKE A BATCH UPDATE

⁄ Type the code that
creates a connection to
the database to which
you want to make a
batch update.

¤ To disable the
auto-commit mode of the
Connection object, type
con.setAutoCommit(false).

‹ Type the code that
creates a Statement
object for the batch.

› To add an SQL statement
to the batch, type the name
of the Statement object
followed by .addBatch("").

ˇ Between the quotation
marks, type a valid SQL
statement.

Á Repeat steps 4 and 5
for each SQL statement
you want to add to the
batch.

S QL statements are usually sent to a database program
one at a time and the program processes each SQL
statement as it is received. In most cases, this is an

acceptable way of processing SQL statements. However,
for some larger databases, it may be more efficient to
combine individual SQL statements together in a batch
that is sent at one time. This is especially useful when
sending multiple update statements to a database program.

When a connection to a database is established, the
connection is usually configured to send each SQL
statement to the database program as it is created. To
make batch updates, you must set up the Connection
object so the connection will wait for a specific instruction
before sending the SQL statements to the database
program. To do this, you must set the parameter of
the setAutoCommit method of the Connection
object to false.

An SQL statement is added to a batch using the addBatch
method of the Statement object. The argument of
the addBatch method must be a valid SQL statement,
although the statement cannot return a result set. Once
all the SQL statements you want to send to the database
program have been added to the batch, the batch can be
sent to the database program using the executeBatch
method of the Connection object.

After the executeBatch method is called, you must
also call the commit method of the Connection object
to make any changes to the database permanent. If the
commit method is not called, the changes made by the
batch update will still be reflected in the result set, but the
changes will not be permanently written to the database.

MAKE A BATCH UPDATE

WORK WITH DATABASES 7

The executeBatch method returns an array of integers
that indicates the number of records affected by each SQL
statement in a batch. The value of the first element in the
array corresponds to the first SQL statement in the batch,
and so forth.

updStmt.addBatch("DELETE FROM Employees WHERE name='Martine'");
updStmt.addBatch("DELETE FROM Employees WHERE name='Tom'");
int[] returnValues = updStmt.executeBatch();
for (int x = 0; x < returnValues.length; x++)
{

out.print("SQL statement #" + (x+1) + " deleted ");
out.print(returnValues[x] + " record(s)");

}

SQL statement #1 deleted 1 record(s)
SQL statement #2 deleted 1 record(s)

TYPE THIS:

RESULT:

165

� The Web browser
displays the results
of using a prepared
statement to send SQL
statements to a database.

When using the executeQuery method, a result set is
generated to store the results of the query. The execute method
of the PreparedStatement object can be used instead of the
executeQuery method to execute a prepared statement that does
not return a result. For example, you may use the execute method
for an SQL statement that removes a table from a database.

Example:
PreparedStatement pstmt = con.prepareStatement("DROP TABLE Employee");
pstmt.execute();

Like the Statement object, the PreparedStatement object can
use the execute, executeQuery and executeUpdate methods to
execute SQL statements. These methods do not require any arguments
when used with a PreparedStatement object because the SQL
statement is specified when the PreparedStatement object is
created. When the same methods are used with a Statement object
however, an SQL statement is usually passed to the methods as an
argument. For more information about the methods supported by
the Statement and PreparedStatement objects, refer to the
java.sql package documentation.

Á To create a
ResultSet object
to store the results
returned from the
database, type ResultSet
followed by a name for
the ResultSet object.

‡ Type = and the name of the
PreparedStatement object
followed by .executeQuery().

° Type the code that retrieves
the data from each row of the
result set and formats the data
for display.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

164

JSP

CREATE A PREPARED STATEMENT

⁄ Type the code
that creates a
connection to the
database to which
you want to send a
prepared statement.

¤ To create a PreparedStatement
object, type PreparedStatement
followed by a name for the
PreparedStatement object.

‹ Type = and the name of the
Connection object followed by
.prepareStatement("").

› Between the quotation
marks, type the SQL
statement to be precompiled.

ˇ If necessary, type the
code that specifies the result
set type and concurrency
type for the ResultSet
object that will store the
results returned from the
database.

B efore a database program can execute an SQL
statement sent from a JSP page, the SQL statement
is compiled into a form that is understood by the

inner workings of the database program. Compiling an SQL
statement can be a relatively lengthy process, but you can
create a prepared statement to save time in accessing the
database after the initial query is processed.

A prepared statement is an SQL statement that is
precompiled by a database program. A prepared statement
needs to be compiled only once, so it is very useful in cases
where the same SQL statement will be sent to the database
program numerous times.

You use a PreparedStatement object to send an SQL
statement that you want to precompile to a database
program. A PreparedStatement object is created using
the prepareStatement method of the Connection
object. The prepareStatement method takes the SQL
statement you want to precompile as an argument.

You use the executeQuery method of the
PreparedStatement object to instruct the database
program to process the SQL statement that has been
precompiled. The result generated when a prepared
statement is processed is usually assigned to a ResultSet
object.

Depending on the SQL statement you are precompiling,
you may need to specify the result set type and concurrency
type of the result set in the prepareStatement method.
For information about specifying result set and concurrency
types, see page 154.

If the SQL statement you want to precompile requires
parameters, you must set up the prepared statement
to accept parameters. For information about using
parameters in a prepared statement, see page 166.

CREATE A PREPARED STATEMENT

WORK WITH DATABASES 7

167

� The Web browser displays
the results of using parameters
in a prepared statement. The
information in the database is
also updated.

‡ Repeat steps 5 and 6 for
each parameter you want to
specify.

° To execute the prepared
statement, type the name for
the PreparedStatement
object followed by .execute().

· Type the code that
retrieves the data from
the database and formats
the data for display.

‚ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

166

JSP

USING PARAMETERS IN A PREPARED STATEMENT

⁄ Type the code that
connects the JSP page to the
database to which you want
to send a prepared statement.

¤ Type the code that creates
the PreparedStatement
object and allows you to
update the database.

‹ Between the parentheses
of the prepareStatement
method, type the names of
the fields in the table to which
you want to add information.
Separate each name with a
comma.

› Type VALUES(?, ?, ?).

ˇ To create a method
that will store a value for a
question mark, type the name
for the PreparedStatement
object followed by a dot. Then
type the set method you want
to use followed by ().

Á Between the parentheses,
type the number that
indicates the position of the
question mark in the SQL
statement, followed by a
comma and the value for
the question mark.

� String values must be
enclosed in quotation marks.

P repared statements are ideal for repeatedly sending
the same SQL statements to a database. Typically,
prepared statements are used with SQL statements

that have parameters. For example, an SQL statement can
be used to add records to a database. The structure of the
SQL statement remains the same for each record that is
added, but the values of the parameters change each time
the statement is executed.

The PreparedStatement object is used to issue an
SQL statement that contains one or more parameters to
a database. When creating a prepared statement that uses
parameters, you use question marks to indicate where
you want to place parameter values in the SQL statement.
There is no limit to the number of question marks you can
use in an SQL statement.

Before the SQL statement can be executed, the values for
the question marks must be specified using special set

methods of the PreparedStatement object. The method
name you use depends on the type of data to be used for
the value. For example, if you want to specify a string value
for a question mark, you use the setString method.
To specify an integer value, you use the setInt method.

Each set method requires two arguments. The first argument
specifies the position of the question mark in the SQL
statement. The position of the first question mark in an
SQL statement is 1. The second argument specifies the
value that will replace the question mark in the SQL
statement. The data type of the value must match the
set method you specified.

Once the values have been specified for the SQL
statement, you can use the execute method of the
PreparedStatement object to process the SQL
statement using the parameters you set.

USING PARAMETERS IN
A PREPARED STATEMENT

WORK WITH DATABASES 7

The following table displays the set methods commonly used to
specify parameter values for specific data types. For a complete
list of set methods and data types that can be used with prepared
statements, refer to the java.sql package documentation.

METHOD: DATA TYPE:

setArray Array

setBigDecimal Large decimal number

setBlob Database blob type

setBoolean Boolean value

setByte Byte value

setBytes Array of bytes

setDate Date

setDouble Double value

METHOD: DATA TYPE:

setFloat Float value

setInt Integer value

setLong Long value

setNull Null value

setObject Object

setShort Short value

setString String value

setTime Time

169

� The Web browser
displays the results of
calling a stored procedure.

Call Stored Procedure - Microsoft Internet Explorer

http://127.0.0.1:8080/examples/stored.jsp

789

888

444

Sandra

Barry

Johanne

1212

7777

2222

You can create a stored procedure by using a JSP
page to issue SQL commands to the database
server. You use the execute method of the
Statement object to issue the SQL statements
to the database server. When naming a stored
procedure, you can use a lowercase first letter
and then capitalize the first letter of each of the
following words to make the name easy to read.
For example, a stored procedure used to retrieve
records in an employee database with extension
numbers of more than three digits may be called
getLargeExt.

Example:

Statement stmt = con.createStatement();
stmt.execute("CREATE PROCEDURE getLargeExt AS
SELECT * FROM Employees WHERE extension > 999")

You can create a stored procedure directly on your
database server. The SQL statements and methods you
use to create a stored procedure on a database server
depend on the database program you are using. You
should consult your database program's documentation
for information.

Example:

CREATE PROCEDURE getLargeExt AS SELECT * FROM Employees
WHERE extension > 999

Á To create a ResultSet
object to store the results
returned from the database,
type ResultSet followed by a
name for the ResultSet object.

‡ Type = and the name of the
CallableStatement object
followed by dot.

° Type executeQuery().

· Type the code that
uses the results of the
stored procedure.

‚ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

168

JSP

CALL A STORED PROCEDURE

⁄ Type the code that
creates the connection to
the database that contains
the stored procedure.

¤ To create the
CallableStatement object
that will allow you to call a stored
procedure, type CallableStatement
followed by a name for the
CallableStatement object.

‹ Type = and the name
of the Connection
object followed by a dot.

› Type prepareCall("{}").

ˇ Between the braces, type
call followed by the name
of the stored procedure you
want to use.

A stored procedure is a set of instructions that are
stored on a database server. A stored procedure can
be as simple as an SQL statement that returns all

the information in a table, but stored procedures are most
often used to increase the efficiency of performing complex
queries on a database. For example, stored procedures are
ideal for tasks such as retrieving information based on a
number of parameters. Using stored procedures tends
to be more efficient than repeatedly using complex SQL
statements because the stored procedures are compiled
and executed within the database engine itself.

In order to use a stored procedure, the database program
must support stored procedures and the stored procedure
must be saved on the database server. Stored procedures
are usually supported by large database programs such
as Microsoft SQL Server and Oracle. Smaller database
programs such as Microsoft Access often do not support
stored procedures. You should consult the documentation
included with your software to determine whether your
database program supports stored procedures.

Before calling a stored procedure, you must first create a
CallableStatement object that will retrieve the stored
procedure from the database server. CallableStatement
objects are commonly named cstmt. To create a
CallableStatement object, you use the prepareCall
method of the Connection object created when the
database connection was set up. When using the
prepareCall method, you use the call keyword
followed by the name of the stored procedure you want
to call. The name must match the name of a stored
procedure already saved on the database server.

Once the CallableStatement object is created,
the executeQuery method is used to generate a
ResultSet object that will contain the results generated
by the database using the stored procedure.

CALL A STORED PROCEDURE

WORK WITH DATABASES 7

171

• getALL;1
• getBig;1
• getExt;1
• getLarge;1
• getNow;1

170

JSP

GET DATABASE INFORMATION

⁄ To retrieve information
about the database to which a
connection has been created,
type DatabaseMetaData
followed by a name for the
DatabaseMetaData object.

¤ Type = and the name of
the Connection object
followed by .getMetaData().

‹ To create a result
set, type ResultSet
followed by a name for
the ResultSet object.

› Type = and the name
of the DatabaseMetaData
object followed by
.getProcedures(). Between
the parentheses, type the
arguments for the method.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web browser
displays the result of
retrieving information
about a database.

T he DatabaseMetaData object allows you to
determine information about a database. Information
you can determine using the DatabaseMetaData

object includes a database program's configuration, the
features the database supports and information about
data stored in the database.

To determine information about a database, you
first create a DatabaseMetaData object using the
getMetaData method of the Connection object
created when the connection was set up.

Once you create a DatabaseMetaData object, there
are several methods of the object that you can use to
determine specific information about the database to
which you are connected.

One common use of the DatabaseMetaData object
is to determine if a specific stored procedure exists on a
database server. Stored procedures allow you to perform
efficient queries on a database by storing and executing
the instructions for the queries on the database server

itself. You use the getProcedures method of the
DatabaseMetaData object to retrieve the names of
stored procedures available to the JSP page connected
to the database. Using three null values as the arguments
of the getProcedures method will retrieve a list of all
the available stored procedures.

The information returned from the database using the
DatabaseMetaData object is usually stored in a result set.
Once information has been retrieved from a database and
placed in a result set, you can retrieve the data from the
result set. For information about retrieving information
from a result set, see page 150.

Not all databases or database drivers will support all of
the methods available to the DatabaseMetaData object.
Typically, if a database or a database driver does not support
a method implemented by the DatabaseMetaData object,
an exception error will be generated. For information about
error handling, see page 174.

GET DATABASE INFORMATION

WORK WITH DATABASES 7

COMMONLY USED METHODS OF THE DatabaseMetaData OBJECT

METHOD: DATA TYPE:

boolean allProceduresAreCallable() Determines whether a user can call all the procedures returned
by the getProcedures method.

ResultSet getCatalogs() Returns the catalog names that the database contains.

Connection getConnection() Returns the ID of the connection that produced the
DatabaseMetaData object.

String getDatabaseProductName() Returns the name of the database program.

String getDatabaseProductVersion() Returns the version number of the database program.

String getDriverVersion() Returns the version number of the JDBC driver.

int getMaxColumnNameLength() Returns the maximum length allowed for column headings.

int getMaxConnections() Returns the maximum number of active connections the
database can support at one time.

int getMaxRowSize() Returns the maximum length allowed for a row.

int getMaxStatementLength() Returns the maximum length allowed for an SQL statement.

ResultSet getProcedures(String Returns the stored procedures available in the database.
catalog, String schemaPattern,
String procedureNamePattern)

String getSQLKeywords() Returns a comma-separated list of all the SQL keywords from
the database.

ResultSet getTableTypes() Returns the table types available in the database.

String getUserName() Returns the user name used to access the database.

boolean isReadOnly() Indicates whether the database is in read-only mode.

boolean supportsBatchUpdates() Indicates whether the driver supports batch updates.

boolean supportsMultipleResultSets() Indicates whether you can create multiple result sets at once.

boolean supportsNonNullableColumns() Indicates whether you can specify that columns must
contain data.

boolean supportsOuterJoins() Indicates whether outer joins are supported.

boolean supportsStoredProcedures() Indicates whether you can use stored procedures with
the database.

boolean usesLocalFiles() Indicates whether the database stores tables in a local file.

There are several methods of the DatabaseMetaData
object that you can use to determine information
about a database. For a complete list of the methods
supported by the DatabaseMetaData object, consult
the java.sql package documentation. Before using

any of the following methods in your JSP code, you
should check your database program's documentation
to verify whether the program supports the method
you want to use.

173

° Create a try block
and a catch block that
will handle any exceptions
that may be thrown when
retrieving information
from the database.

· Type the code that
creates the getter method
that will retrieve information
from the record set and
return the value of a
property specified in step 2.

‚ Create a try block and a
catch block that will handle
any exceptions that may be
thrown while accessing the
database.

— Save the file with the .java
extension and then compile
the source code for the file.

172

JSP

USING A JAVABEAN TO ACCESS A DATABASE

⁄ Type the code that imports
the java.sql package and
creates a JavaBean class.

¤ Type the code that declares a
ResultSet object and declares
a property for each column in
the database you want to be
able to access from a JSP page.

ˇ Create a try block and a
catch block that will handle any
exceptions that may be thrown
when loading the bridge driver.

Á Type the code that creates
a Connection object that
specifies the location of the
database you want to connect to.

‡ Type the code that
retrieves information
from the database and
stores it in a result set.

A ccessing a database from a JSP page requires large
amounts of Java code. You can use a JavaBean to
separate the code that performs this task from the

HTML code in the JSP page.

The code required to create a JavaBean that accesses a
database is similar to that used to access a database directly
from a JSP page. To retrieve information from a database, you
must set up a connection to the database and then create a
result set to store the retrieved information.

You can create a constructor method to perform initialization
tasks in the JavaBean. A constructor method has the same
name as the class and is executed when the JavaBean is
instantiated. The constructor method for a JavaBean that
accesses a database may load the appropriate drivers and
connect to the database. You use the Class.forName
statement to specify the name of the driver you want to load.
A Connection object in the constructor method allows the

JavaBean to connect to the database. The constructor method
should also include the code to retrieve information from the
database and store the information in a result set.

Retrieving information from a result set must be done using
JavaBean properties. You can create a property and getter
method for each column in the database you want to be
made available through the JavaBean. For more information
about getter methods, see page 128. You should declare the
ResultSet object and properties in the body of the class.
If you declare the object and properties elsewhere, such as
within a method of the class, the getter methods may not
be able to access the result set or the properties.

When using a JavaBean to access a database, errors may
occur. You should ensure that the JavaBean includes try
blocks and catch blocks to handle any errors.

USING A JAVABEAN TO ACCESS A DATABASE

WORK WITH DATABASES 7
To use a JavaBean you created to access a database, you use
the property attribute of the <jsp:getProperty> tag to
specify which column in the database you want to access. The
JavaBean will then make the connection to the database and
use the appropriate getter method of the JavaBean required to
retrieve the information.

<html>
<head>
<jsp:useBean id="DbBean" scope="session" class="GetDbInfo" />
<jsp:setProperty name="DbBean" property="*" />
</head>
<body>
The first three names in the database are:

<%
for (int x = 0; x < 3; x++)
{
%>

<jsp:getProperty name="DbBean" property="name" />
<%
}
%>

</body>
</html>

The first three names in the database are:

� James
� Steven
� Marcia

TYPE THIS: RESULT:

‹ Type the code that
creates the constructor
method for the JavaBean.

› Type the code that
loads the bridge driver.

± Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now use the
JavaBean to access a
database in your JSP pages.

175

Although exception errors can arise from a wide
variety of situations, the situations can be grouped
into three general categories.

Logical Errors
Logical errors are the most common type of errors
and usually result when a programmer has not
validated parameters or values before performing
an action. An example of a common logical error
is dividing a number by zero.

Standard Errors
Most of the methods that make up the Java class
library contain code that will generate errors when
certain situations arise. For example, an error will
result if you use a number where a string is expected
or assign a value to an array element that does not
exist.

Program Errors
Problems with the Java Virtual Machine or a Web
server that processes Java code can cause errors to
occur. Applications that are not yet stable, such as
beta releases, are more likely to generate errors.

174

JSP

RUNTIMEEXCEPTION ERRORS

� A RuntimeException
error is typically generated
by an error in the code for
a JSP page.

� In this example, the JSP
page contains code that
divides a number by zero.

� When the JSP page is
displayed in a Web browser,
a message appears displaying
information about the
RuntimeException error.

ERROR EXCEPTION ERRORS

� An Error exception
error is typically
generated by a problem
with the environment
that processes a JSP page.

� In this example, the
JSP page contains code
that attempts to access
a JavaBean that does
not exist.

� When the JSP page
is displayed in a Web
browser, a message
appears displaying
information about the
Error exception error.

A n exception error occurs when a problem is
encountered during the processing of a JSP page.
When an exception error occurs, an object that

stores information about the error is created. Error
handling is achieved by accessing the properties of
this object.

The two main types of exception errors are
RuntimeException errors and Error exception errors.
RuntimeException and Error are the names of the
classes that create objects when one of these types of
errors is encountered.

RuntimeException errors are the most common type of
exception error. These errors can arise from a variety
of problems ranging from simple mathematical errors,
such as dividing a number by zero, to more complex
programming errors, such as specifying an incorrect
type when attempting to cast an object.

Error exception errors occur when a problem related
to the processing environment arises. For example,

a problem with the Java Virtual Machine or a problem with
a supporting file that is required by a JSP page will generate
an Error exception.

Encountering an exception error does not necessarily mean
that the processing of a JSP page must stop. Some errors
can be handled within the code for the page. For example,
you can create a try block and a catch block to handle
exception errors that could potentially arise when a section
of code is processed. This allows your code to recover from
an exception error. For information about creating a try
block and catch block, see page 176.

Some exception errors cannot be recovered from. For
example, an Error exception error generated by a problem
with the Java Virtual Machine cannot be fixed within the
code for a JSP page. In such cases, the object can be
accessed to determine valuable information about the
error and how it may have been caused.

INTRODUCTION TO EXCEPTION ERRORS

HANDLING ERRORS 8

177

� The Web browser
displays the result of
creating a try block
and catch block.

As with any Java code, there are strict rules governing the
scope of variables used in try and catch blocks. Variables
declared in a try block are not available for use in the
catch block. In the following example, the locationMessage
variable is not available in the catch block.

Example:
try
{

String locationMessage = "determining item cost";
int itemCost = itemGrossCost / itemQuantity;
out.print("Each item costs " + itemCost);

}
catch(ArithmeticException e)
{

out.print("Error has occurred at " + locationMessage);
}

The above code can easily be rewritten to change the scope
of the locationMessage variable so that it is available to both
the try and catch blocks.
String locationMessage = "";
try
{

locationMessage = "determining item cost";
int itemCost = itemGrossCost / itemQuantity;
out.print("Each item costs " + itemCost);

}
catch(ArithmeticException e)
{

out.print("Error has occurred at " + locationMessage);
}

‡ Type the code you
want to execute when the
catch block is processed.
Enclose the code in braces.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

176

JSP

CREATE A TRY BLOCK AND CATCH BLOCK

⁄ Type the code
that will generate
an exception error.

¤ To create a try block,
enclose the code that will
generate an exception error
in braces.

‹ On the line directly above
the opening brace, type try.

› To create a catch block, type
catch() on the line immediately
following the try block.

ˇ Between the parentheses, type
the class of the exception error that
will be thrown by the try block.

Á Type a name for
the object that will
be created when an
exception error is
thrown.

I f a section of code in a JSP page may generate an
exception error, you can create a try block and
a catch block to handle the error.

A try block detects if an exception error has occurred
in a section of code. To create a try block, use the
keyword try and surround the code that may cause
an exception error in braces.

A catch block contains the code that is executed when
the try block detects an error. The catch block must
immediately follow the try block. To create a catch
block, use the keyword catch and enclose the code you
want to execute in braces. The catch keyword is followed
by a parameter enclosed in parentheses. The parameter
specifies the class of the exception error and a name for
the object that is created when the error occurs.

A catch block can only catch the type of exception error
specified by the parameter. If the try block generates a

different type of exception error, the code in the catch
block will not be executed.

When an exception error occurs in a line of code, the line
of code is said to throw an error. When a line of code in
a try block throws an error, the processing of code in the
try block stops immediately and any remaining statements
in the try block are not executed. The catch block
catches the error thrown by the try block and processing
continues on the first line of code in the catch block.

The code in a catch block can display a customized error
message to notify a user that an error has occurred. The
customized error message should be specific to the error
and easy to understand. When a try block and catch
block are not used to handle errors, Java generates cryptic
error messages that can be difficult to comprehend.

CREATE A TRY BLOCK AND CATCH BLOCK

HANDLING ERRORS 8

179

� The Web browser
displays the result
of catching multiple
exception errors.

When using multiple catch blocks, you may want to add
a finally block to your code. A finally block executes
a section of code regardless of which catch block is processed.
The finally block must immediately follow the last catch block.

Example:

for(int x = 0; x < itemQuanity.length; x++)
{

try
{

itemCost[x] = itemGrossCost[x] / itemQuanity[x];
out.print("
Item " + x + " costs " + itemCost[x]);

}
catch(ArithmeticException e)
{

out.print("
An ArithmeticException error has occurred.");
}
catch(ArrayIndexOutOfBoundsException e)
{

out.print("
An ArrayIndexOutOfBoundsException error");
out.print(" has occurred.");

}
finally
{

out.print("<hr>");
}

}

› Type the code that creates
a catch block to handle
exception errors of the
ArrayIndexOutOfBounds
Exception class.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

178

JSP

CATCH MULTIPLE EXCEPTION ERRORS

⁄ Type the code that
will generate multiple
exception errors.

¤ Type the code that
creates a try block.

‹ Type the code that creates
a catch block to handle
exception errors of the
ArithmeticException
class.

A lthough a try block may be capable of throwing
different types of exception errors, a catch block
can catch only one specific type of exception error.

You can create multiple catch blocks to catch different
types of exception errors.

When a catch block is created, the exception error class
the block can handle is specified. If the try block throws
an exception error of a different class, the code in the
catch block will not be executed. A try block that
contains a complex section of code may throw different
types of exception errors. Creating multiple catch blocks
allows a section of code to be executed for each type of
exception error the try block throws.

The first catch block must immediately follow the try
block and each subsequent catch block must be placed
one right after the other. There cannot be any lines of code

between the try block and the first catch block. You also
cannot place lines of code between any of the subsequent
catch blocks.

When using multiple catch blocks, the order of the catch
blocks is important. For example, since the Exception
class is a superclass of the RuntimeException class, a
catch block that uses the Exception class will catch most
of the exception errors thrown by a try block. If you place
a catch block that uses the Exception class before other
catch blocks in your code, the code in the other catch
blocks may never be executed. As a rule, you should place
catch blocks that handle exception error subclasses before
catch blocks that have a broader scope.

CATCH MULTIPLE EXCEPTION ERRORS

HANDLING ERRORS 8

181

� The Web browser
displays the result of
using a finally block.

ˇ Type the code you
want to execute when
the finally block is
processed. Enclose the
code in braces.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

180

JSP

CREATE A FINALLY BLOCK

⁄ Type the code that will
generate an exception error.

¤ Type the code that
creates a try block.

‹ Type the code that
creates a catch block.

› To create a finally
block, type finally on the
line immediately following
the catch block.

W hen a try block throws an exception error,
the processing of code in the try block stops
and any remaining statements in the try

block are not executed. This can cause problems if
the try block contains code that is important to the
execution of your JSP page. To ensure important code
is executed regardless of whether an exception error is
thrown, you can place the code in a finally block.

To create a finally block, use the keyword finally
and enclose the code you want to execute in braces.
A finally block is useful for performing tasks that
'tidy up' a JSP page. For example, it is common for a
finally block to contain code that closes a connection
to a database or finishes writing data to a file.

There are strict rules governing the scope of variables
used in try, catch and finally blocks. Variables
declared in a try or catch block are not available
for use in a finally block.

When a try block uses a finally block, a catch
block is not required. If a catch block is used, the
finally block must immediately follow the catch
block. If a catch block is not used, the finally block
must immediately follow the try block. There can be
no lines of code between a finally block and a catch
or try block.

When a JSP page containing a finally block is processed,
the code in the try block is executed first. If an error is
thrown, the code in the appropriate catch block is then
executed. The code in the finally block is executed
last. The finally block is executed whether or not an
exception error occurs and regardless of the type of
exception error thrown.

CREATE A FINALLY BLOCK

HANDLING ERRORS 8
Although the main purpose of a try block is to identify code
that may generate an exception error, a try block can also
be used with a finally block to save you time when typing
code. For example, if a series of if statements will all have
the same result, you can place the if statements in a try
block and the result in a finally block. This saves you
from having to type the same result for each if statement.

try
{

if (winningScore > 10)
return 10;

if (winningScore > 20)
return 20;

if (winningScore > 30)
return 30;

}
finally
{

out.print("The winning number has been determined.");
}

The winning number has been determined.

TYPE THIS:

RESULT:

183

� The Web browser
displays the result of
redirecting to an error
page.

On most Web servers, the default value for the
autoFlush attribute of the page directive is
true, which means that the buffer is set to
automatically flush when it is full. When the buffer
is flushed, information in the buffer is sent to a
client's Web browser. If the buffer is flushed before
a JSP page is redirected to the error page, an
additional error will be generated. To avoid this,
you can set the value of the autoFlush attribute
to false when using the errorPage attribute.

Example:
<@ page autoFlush="false" errorPage="error.jsp" %>

Information available to the JSP page,
such as application values, session values
and data stored in a request object, will
not be available to the error page. For
example, if the JSP page processes data
from a form, the error page will not be
able to access the form information.

When an exception error occurs in a JSP
page that uses an error page, the Web
server stops processing the JSP page,
executes the page directive and processes
the code in the error page. The Web server
does not return to the JSP page.

‹ Type the code that
will generate an error.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

182

JSP

REDIRECT TO AN ERROR PAGE

CREATE AN ERROR PAGE

⁄ In a text editor, create
the page you want to
display when an error
occurs.

¤ Save the page on
the Web server.

REDIRECT A JSP PAGE
TO AN ERROR PAGE

⁄ On the first line of code
in a JSP page you want to
redirect to an error page, type
<%@ page errorPage="" %>.

¤ Between the quotation
marks, type the URL of
the error page.

T here are many types of exception errors that can be
generated by the JSP pages in a Web site. Instead
of trying to catch each specific type of exception

error that could occur, you can configure the JSP pages to
redirect to another page when an error occurs. The error
page can be a JSP page or other type of Web document,
such as an HTML document.

When an exception error occurs in a JSP page, the Web
server stops processing the page and sends an error
message to the Web browser to notify the client about the
error. The type of exception error that occurs determines
the information displayed in the error message. While the
error information generated by the server may be useful
to someone troubleshooting the JSP page, the information
is usually not helpful to clients. Creating an error page
allows you to determine the information that a client sees

when an exception error occurs. For example, you may
want to display a user-friendly page that provides clients
with helpful instructions.

To redirect a JSP page to another page in the event of an
exception error, you use the errorPage attribute of the
page directive. For more information about the page
directive, see page 74. The errorPage attribute takes
the URL of the error page, enclosed in quotation marks,
as its value. The URL of the error page must be a relative
URL. This means that the JSP page and error page must
be stored on the same Web server.

Multiple JSP pages can use the same error page. You
must include the redirection instructions on each JSP
page you want to use the error page.

REDIRECT TO AN ERROR PAGE

HANDLING ERRORS 8

185

� The Web browser
displays the result of
redirecting to a detailed
error page.

The exception object is only available to the detailed error
page. However, there are techniques you can use to make
the information in the exception object available to other
JSP pages. For example, in the detailed error page, you can
use the setAttribute method of the session object to
store the error message as a session value.

Example:

<%
session.setAttribute("errorMessage", exception.getMessage());
%>

The toString method of the
exception object can be used to
display the class name of an exception
error. The result of the toString
method may also contain the information
returned by the getMessage method.

Example:

<%= exception.toString() %>

Returns:
java.lang.ArithmeticException: / by zero

You may be able to use the getLocalizedMessage
method of the exception object to access even more
detailed information about an exception error. However,
in most cases, the getLocalizedMessage method
returns the same information as the getMessage method.

Example:

<%= exception.getLocalizedMessage() %>

REDIRECT A JSP PAGE TO
A DETAILED ERROR PAGE

⁄ On the first line of code
in a JSP page, type the code
that redirects the page to
the detailed error page.

¤ Type the code that
will generate an error.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

184

JSP

CREATE A DETAILED ERROR PAGE

⁄ On the first line of
code in the error page, type
<%@ page isErrorPage="true" %>
to access the exception object.

¤ Type exception.getMessage()
where you want to access an
error message.

‹ Type the code that
displays the error message
on the detailed error page.

› Save the page on the
Web server with the .jsp
extension.

Y ou can create an error page that accesses detailed
information about an exception error that has occurred
in a JSP page. Accessing detailed information can help

you troubleshoot the page. You can choose to simply display
the detailed information about an exception error or you can
log the information in a file or database.

When a JSP page generates an exception error of the
Exception class, an exception object is created. The
object holds information about the exception error. You
can access the exception object in an error page to
find detailed information about the error that occurred.

To make the exception object available to an error page,
you use the isErrorPage attribute of the page directive.
For more information about the page directive, see page 74.
The isErrorPage attribute can have a value of either true
or false. A value of true will make the exception object
available to an error page. False is the default value of the
isErrorPage attribute.

The getMessage method of the exception object can be
called to access an error message that describes the type of
error that has occurred. You can use an expression to display
the information returned by the getMessage method. Some
exception errors do not have an error message associated
with them. In this case, the getMessage method will return
a null value. For more information about the methods of the
exception object, refer to the Java SDK documentation.

To redirect a JSP page to a detailed error page in the event
of an error, you use the errorPage attribute of the page
directive. The errorPage attribute takes the URL of the
detailed error page, enclosed in quotation marks, as its value.
The URL of the detailed error page must be a relative URL.

CREATE A DETAILED ERROR PAGE

HANDLING ERRORS 8

187

� The Web browser
displays the results of
determining whether a
file and directory exist.

Permissions may have been set for a file, affecting
the types of tasks you can perform while working with
the file. For example, a file's permissions can regulate
whether you will be able to read or write to the file.
To determine whether you have permission to read
a file, use the canRead method of the File object.
To determine whether you have permission to write
to a file, use the canWrite method of the File
object. If you attempt to read or write to a file that
you do not have permission to work with, an error
will usually be generated.

Example:

if (fileObject.canRead())
out.print("You can read the file " + fileName);

if (fileObject.canWrite())
out.print("You can write to the file " + fileName);

When specifying the path to a file or
directory for the argument of a File
object, you can use a relative or absolute
path. A relative path specifies the location
of the file or directory relative to the
current directory. For example, the relative
path ../file.txt refers to a file named
file that is located in the parent directory
of the current directory. An absolute path
specifies the location of a file or directory
in relation to the root directory of the
storage system in which the file is stored,
such as c:/data/examples/file.txt.

‡ Type the code that
uses the File object.

° To verify if a directory
exists and is a directory,
repeat steps 2 to 7 for
the directory, except use
the .isDirectory()
method in step 6.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

186

JSP

VERIFY THAT A FILE OR DIRECTORY EXISTS

⁄ To import the java.io package,
type <%@ page import = "java.io.*" %>.

¤ To store the path of a file you
want to check in a variable, type
the code that assigns the path
to the variable.

‹ To create a File
object for the file, type
File followed by a
name for the File
object. Then type
= new File().

› Between the parentheses,
type the name of the variable
that stores the path of the file
you want to check.

ˇ To determine whether the
file exists, type the name of
the File object, immediately
followed by .exists().

Á To determine whether
the file is a file, type the
name of the File object,
immediately followed by
.isFile().

W hen working with files and directories, it is often
necessary to verify that a file or directory exists
before performing an action. For example, you

should verify that a file exists before deleting the file. This
is particularly important when working with files and
directories located on a network, since events beyond
your control can make the files and directories unavailable.

To verify that a file or directory exists, you create a File
object that uses the path of the file or directory as its
argument. The class that is used to create a File object
is located in the java.io package. You must use the page
directive to import the java.io package before you can
create a File object.

You may want to store the path of the file or directory you
want to check in a variable and then use the variable as the
argument for the File object. A path can also be submitted
by a form or retrieved from a database. When specifying
the path of a file or directory, you should use slashes (/).

Once you have created a File object for a file or directory,
you can use methods of the object to determine information
about the file or directory. You use the exists method to
determine if the file or directory exists on the current system.
The exists method returns a value of true if the file or
directory exists and a value of false if the file or directory
does not exist.

The isFile method of the File object allows you to verify
whether a file or directory represented by a File object is a
file, while the isDirectory method lets you verify whether
the item is a directory. These methods return a value of
true or false, depending upon the type of the item.

VERIFY THAT A FILE OR DIRECTORY EXISTS

WORK WITH FILES 9

189

� The new file is created
in the specified directory.
You can open the file with
the appropriate program to
view its contents or use a
JSP page to read the file.

· To write information to
the file, type the name of the
DataOutputStream object
followed by a dot. Then type
the write method you want
to use followed by ().

‚ Between the parentheses,
type the information you
want to write to the file.

— Repeat steps 9 and 10
until you have specified all
the information you want
to write to the file.

± To close the output
stream, type the name of
the DataOutputStream
object followed by a dot.
Then type close().

¡ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

188

JSP

CREATE AND WRITE TO A FILE

⁄ Type the code that
imports the java.io
package and creates a
File object.

¤ To create the new
file, type the name
of the File object
followed by a dot. Then
type createNewFile().

‹ To create an output
stream to write to the file,
type FileOutputStream
followed by a name for the
FileOutputStream object.

› Type = new FileOutputStream().

ˇ Between the parentheses, type
the name of the File object.

Á To write primitive
data types to the file,
type DataOutputStream
followed by a name for the
DataOutputStream object.

‡ To associate the
DataOutputStream object with
the FileOutputStream object,
type = new DataOutputStream().

° Between the parentheses,
type the name of the
FileOutputStream object.

A JSP page can be used to create a new file and then
write information to the file. A file could be created to
track how many times the JSP page has been accessed

or store data retrieved from a database. You can also use a
JSP page to create and write other JSP files.

You create a File object to specify a name and location for
the new file. You can then use the createNewFile method
of the File object to create the new file. You must use the
page directive to import the java.io package from the
Java class library before creating a new file.

Information is written to a file using an output stream. Stream
is the term typically used to describe one continuous line of
data. You use a FileOutputStream object to create an
output stream and specify the name of the File object that
represents the file you want to write to.

In order to write primitive data types to the output stream,
a DataOutputStream object must be created. You then

associate the DataOutputStream object with the
FileOutputStream object.

You use a write method of the DataOutputStream object
to write information to the file. The method you should use
depends on the type of data you want to write to the file.
For example, if you want to write an integer value, you would
use the writeInt method.

After all the information has been written to the file, you can
use the close method of the DataOutputStream object
to close the output stream.

When you display the JSP page in a Web browser, the file
will be created and the information you specified will be
written to the file. You can open the file with the appropriate
program or use a JSP page to read the file.

CREATE AND WRITE TO A FILE

WORK WITH FILES 9
The DataOutputStream object offers several
methods that can be used to write information
to a file. Each method writes a different primitive
data type or string value to the output stream.

WRITE METHOD: DESCRIPTION:

writeBoolean(boolean value) Writes a boolean value to the output stream.
writeByte(int value) Writes a byte value to the output stream.
writeBytes(String value) Writes a string of byte values to the output stream.
writeChar(int value) Writes a char value to the output stream.
writeChars(String value) Writes a string of char values to the output stream.
writeDouble(double value) Converts the double argument to a long value and

writes the long value to the output stream.
writeFloat(float value) Converts the float argument to an int value and

writes the int value to the output stream.
writeInt(int value) Writes an int value to the output stream.
writeLong(long value) Writes a long value to the output stream.
writeShort(int value) Writes a short value to the output stream.

191

� The Web browser
displays the result of
reading a file.

You can adjust the size of the input buffer used to process the
character stream that is read from a file. The default input buffer
size is determined by the Web server and may differ from one
system to another. For example, on a Windows platform using
the Tomcat Web server, the default input buffer size is typically
512 KB, which is adequate for most needs. However, depending
on the size and configuration of the files that are being read,
adjusting the size of the input buffer may improve efficiency.

Example:
File fileObject = new File("c:/db/data.txt");
FileReader fileRead = new FileReader(fileObject);
BufferedReader buffFileIn = new BufferedReader(fileRead, 1024);

If the FileReader object does not already exist, you can
pass the object creation code for the FileReader object
as an argument when creating the BufferedReader object.

Example:
File fileObject = new File("c:/db/data.txt");
FileReader fileRead = new FileReader(fileObject);
BufferedReader buffFileIn = new BufferedReader(fileRead);

Can be typed as:
File fileObject = new File("c:/db/data.txt");
BufferedReader buffFileIn = new BufferedReader(new FileReader(fileObject));

° To read a line from the
file, type the name of the
BufferedReader object
followed by .readLine().

· Type the code that will
use each line of data read
from the file.

‚ To close the file, type the
name of the FileReader
object followed by .close().

— Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

190

JSP

READ A FILE

⁄ Type the code that
imports the java.io
package and creates a
File object.

¤ To create a FileReader
object to make the information
in the file available to the JSP page,
type FileReader followed by a name
for the FileReader object.

‹ Type = new FileReader().

› Between the parentheses,
type the name of the File object.

ˇ To create a
BufferedReader object
to buffer the information
read from the file, type
BufferedReader followed
by a name for the
BufferedReader object.

Á Type = new BufferedReader().

‡ Between the parentheses,
type the name of the
FileReader object.

A JSP page can be used to read information from a
specific file. The first step in reading information from
a file is to create a File object that is used to specify

the path and the name of the file to be read. Once a File
object has been created, a FileReader object that works
with the File object must be created. The FileReader
object is used to convert the information in the file and make
it available to the JSP page.

When reading information from a file using a FileReader
object, the information should be buffered so that it can be
read more efficiently. A BufferedReader object is used to
buffer the information read from a file. For more information
about the BufferedReader and FileReader objects,
refer to the java.io package information in the Java API
specification.

The readLine method of the BufferedReader object is
used to read a single line from a file. The newline character
usually indicates the end of a line in a file. A loop is often
used to process each line in a file. With each iteration of
the loop, the information retrieved from the file using the
readLine method can be assigned to a variable and
displayed to the client using the print method of the
out object.

After reading information from a file, you should close the
file using the close method of the FileReader object.

As with other operations involving accessing a file, the proper
permissions must be in place that allows the file to be read.
Permissions are typically controlled by the operating system.
For information about permissions, you should consult your
operating system's documentation.

READ A FILE

WORK WITH FILES 9

193

� The Web browser
displays the result of
reading a file randomly.

Before you start accessing a file randomly, you may want to
determine the length of the file. You can determine the length of
a file by using the length method of the RandomAccessFile
object.

Example:
The length of the file is
<%
File fileObject = new File("c:/db/names.txt");
RandomAccessFile myFile = new RandomAccessFile(fileObject, "r");
out.print(myFile.length());
%>
 bytes.

The RandomAccessFile class is part
of the java.io package. You can refer
to the Java SDK documentation for
more information about the java.io
package and the methods of the
RandomAccessFile object.

You can also use the RandomAccessFile object to write data
to a file. To be able to read and write to a file, you must specify an
access mode of rw when creating the RandomAccessFile object.

Example:
<%
File fileObject = new File("c:/db/names.txt");
RandomAccessFile myFile = new RandomAccessFile(fileObject, "rw");
myFile.seek(40);
myFile.writeBytes("Barry...");
%>

‡ To read up to the next
newline character, type the name
of the RandomAccessFile
object followed by a dot. Then
type readLine().

° Type the code that will use
a line of data read from the file.

· Repeat steps 5 to 8
for each line of data you
want to read.

‚ To close the file,
type the name of the
RandomAccessFile
object followed by a dot.
Then type close().

— Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

192

JSP

READ A FILE RANDOMLY

⁄ Type the code that imports the
java.io package and creates a
File object.

¤ To create a RandomAccessFile
object to read the file randomly, type
RandomAccessFile followed by a name
for the RandomAccessFile object.
Then type = new RandomAccessFile().

‹ Between the
parentheses, type the
name of the File
object followed by
a comma.

› To specify the
access mode is read
only, type r enclosed
in quotation marks.

ˇ To position the
pointer where you want
to start reading the file,
type the name of the
RandomAccessFile
object followed by a dot.
Then type seek().

Á Between the parentheses,
type the number of bytes
from the beginning of the
file where you want to start
reading.

A JSP page typically reads and processes a file one
line at a time until the entire file is processed. This
method of reading a file is referred to as sequential

access and is an effective way of working with small text
files, but can be inefficient when working with larger files.

You can access a specific area of a file without having
to start at the beginning and read each line in the file.
Accessing a file at a specific location is referred to as
random access. Random access is useful for working
with large files that have a set structure, such as files
that have the same number of characters in every line.

Once a File object that specifies the path and the
name of the file to be accessed randomly has been
created, a RandomAccessFile object must be created.
A RandomAccessFile object is used to read a file
randomly and requires two arguments. The first argument
is the name of the File object. The second argument is
the access mode. Specifying a value of r for the access
mode indicates the file is read only.

Random access is achieved by positioning an imaginary
pointer in the file. The pointer location is measured by the
number of bytes the pointer is from the beginning of the
file. This distance is known as the offset. The seek method
of the RandomAccessFile object is used to position the
pointer. Using the seek method, the pointer can be moved
forward or backward through a file. When positioning the
pointer, you should keep in mind that the carriage return
character and the newline character each count as one byte.

When using random access to read data from a file,
information is read starting from the location of the pointer.
For example, if the seek method is set to 13, the data
starting at the 13th byte in the file will be read. You can use
the readLine method to read data up to the next newline
character.

READ A FILE RANDOMLY

WORK WITH FILES 9

195

� The Web browser
displays the results of
creating a directory.

Á To create the method
that will create the
directory, type the name of
the File object followed
by a dot. Then type mkdir().

‡ Type the code that
will verify whether the
directory was created.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

194

JSP

CREATE A DIRECTORY

⁄ To import the java.io package,
type <%@ page import="java.io.*" %>.

¤ To store the name
or path of the directory
you want to create
in a variable, type the
code that assigns the
information to the
variable.

‹ To create a File object
for the directory you want to
create, type File followed by
a name for the File object.

› Type = new File().

ˇ Between the parentheses,
type the name of the variable
that stores the name of the
directory you want to create.

� You can also type the path
or name of the directory,
enclosed in quotation marks.

J avaServer Pages allows you to create a directory from
within a JSP page. You may want to create a directory
in a JSP page to help organize files or to store temporary

files that will be used by the JSP page.

To create a directory, you must create a File object that
specifies the name of the directory you want to create. In
this case, the File object represents a directory, not a file.
The name of the new directory is included as the argument
of the File object. You may want to store the name of
the directory in a variable and then use the variable as the
argument for the File object.

Once the File object has been created, you use the mkdir
method to create the directory. The mkdir method will
return a boolean value of true or false, depending on
whether or not the command to create the directory was
successful. You may not be able to use the mkdir command
to create directories if proper permissions are not in place.

You must have permission to access the parent directory
in which you want to create the new directory. You must
also have permission to create directories in the JSP page.
Permission to create directories is usually controlled by the
operating system. For information about access permissions,
you should consult your operating system's documentation.

After you create a directory, you can create files and store
them in the new directory. For information about creating
files, see page 188.

It is good programming practice to verify that a directory
was created successfully before using the directory. For
information about verifying that a directory exists, see
page 186.

CREATE A DIRECTORY

WORK WITH FILES 9

You can delete a directory you no longer need.
This is useful if you frequently create and use
temporary directories within your JSP pages.
You cannot delete a directory from within a
JSP page if the directory contains files. Before
deleting a directory, you should remove all
the files in the directory.

Using the mkdirs method instead of the
mkdir method allows you to create multiple
directories at the same time. When you use
the mkdirs method to create a directory, any
directories you specify in the path will also
be created if they do not currently exist. For
example, if the path specified for the directory
is /temp/data and the temp directory does not
exist, the Web server will create the temp
directory and then the data subdirectory.

The directory c:/databases has been deleted.

RESULT:

File dirObject= new File("/temp/data");
dirObject.mkdirs();

TYPE THIS:

<%!
String dirName = "c:/databases";
%>
<%
File dirObject = new File(dirName);
dirObject.delete();

if (!dirObject.exists())
out.print("The directory " + dirName
+ " has been deleted.");

%>

TYPE THIS:

197

� The Web browser
displays the results of
using the listFiles
method to display a
directory listing.

While working on a computer connected to a
network, you may want to access a directory
located on another computer on the network
and display the contents of the directory in
a directory listing. On a Microsoft Windows
network, the convention for indicating a
computer within a path is to prefix the computer
name with two backslashes (\\). Since you must
escape backslashes you use in the argument of
a File object, you must use four backslashes
when specifying the computer name. You must
also escape backslashes you use before directory
names on a Windows network.

Example:
File dataDir = new File("\\\\Server\\data");

You can delete a file you no longer need from
a directory. Deleting files allows you to free up
resources on a computer and is useful when you
want to delete a directory, since all the files in a
directory must be deleted before the directory
can be removed. To delete a file, create a File
object for the file and then use the delete
method of the File object to delete the file.

Example:
File fileObject = new File("c:/Data/file.txt);
fileObject.delete();

Á To retrieve the files
and subdirectories in the
directory, type the name of
the File object followed by
a dot. Then type listFiles().

‡ Type the code that
creates a for loop that
will process the elements
in the array.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

196

JSP

DISPLAY A DIRECTORY LISTING

⁄ To import the java.io package,
type <%@ page import = "java.io.*" %>.

¤ To create a
File object for the
directory you want
to display a directory
listing for, type File
followed by a name
for the File object.

‹ Type = new File().

› Between the parentheses,
type the path of the directory
you want to display a directory
listing for, enclosed in
quotation marks.

ˇ To create an array
that will store the files
and subdirectories in the
directory as an array of
File objects, type File[]
followed by a name for
the array. Then type =.

A JSP page can be used to examine a directory and
retrieve the names of the files and subdirectories
stored in the directory. Displaying a directory listing

is useful when you want to verify that certain support files,
such as database files, exist before a JSP page continues
processing.

To retrieve the names of the files and subdirectories in a
directory, you first create a File object that represents
the directory. The directory must be accessible from the
computer you use to create the File object.

The directory you specify as the argument for the File
object must be a valid directory. If the directory does
not exist, an error may be generated when the JSP page
is displayed. You may want to use the exists method
of the File object to verify that a directory exists before
attempting to display the contents of the directory. For
more information about the exists method, see page 186.

To retrieve the names of the files and subdirectories stored
in the directory, you use the listFiles method of the
File object. The listFiles method returns an array of
File objects that represent the files and subdirectories in
the directory. You can then use a for loop to display the
contents of each File object on the JSP page. The path for
the files and subdirectories in the directory will be displayed.

The directory listing you display may not contain all the
files in the directory, since the listFiles method will
not return files that the JSP page does not have permission
to access. If permissions have been set that prevent the
JSP page from reading or listing a file, the file will not
appear in the directory listing.

DISPLAY A DIRECTORY LISTING

WORK WITH FILES 9

199

Before creating tag handlers, you need to
install the Java Servlet API class files, which
contain the packages that must be imported
when you compile the Java code used to create
tag handlers. The Java Servlet API class files are
available at the java.sun.com/products/servlet
Web site. Make sure you store the Java Servlet
API class files in the appropriate directory on
your computer. For example, on the Windows
platform, the Java Servlet API class files are
stored in the c:\jdk1.3\jre\lib\ext directory. You
should check the Java Servlet API specification
documentation for installation instructions
specific to your operating system.

Custom tags can enable specialization when
developing a Web site. For example, Web page
designers can work with the HTML content of
a JSP page, while programmers develop the Java
code that will make the Web page dynamic. This
allows both types of professionals to concentrate
on their own areas of expertise.

In addition to the value SKIP_BODY, the
doStartTag method may return two other
values. The value EVAL_BODY_INCLUDE is
returned when the body of the custom tag needs
to be processed. If the body of the custom tag
must be processed using a BodyContent object,
the value EVAL_BODY_TAG is returned.

› To extend the TagSupport
class, type extends
javax.servlet.jsp.tagext.TagSupport.

ˇ To create the
doStartTag method,
type public int doStartTag().

198

JSP

CREATE THE TAG HANDLER

⁄ To import the
javax.servlet.jsp
package, type import
javax.servlet.jsp.*.

‹ To create a class for the
custom tag, type public class
followed by a name for the
class.

S imilar to JavaBeans, custom tags provide a way for
you to easily work with complex Java code in your
JSP pages. You can create your own custom tags to

suit your needs.

Using custom tags can help make the code in a JSP page
easier to work with by allowing you to separate the Java
code from the HTML code. Since custom tags can be used
in multiple JSP pages, using custom tags also saves you
from having to retype the same Java code over and over.

The first step in creating a custom tag is to create a tag
handler class file, which stores the methods that perform
specific actions when the custom tags are processed. A
tag handler must import the javax.servlet.jsp and
javax.servlet.jsp.tagext packages in order to
access the classes found in these packages. You can refer
to the Java SDK documentation for more information about
these packages. A tag handler may need to extend the
classes found in these packages, such as the TagSupport

class of the javax.servlet.jsp.tagext package.
For information about extending a class, see page 54.

A simple tag handler must have a doStartTag method
that contains the code to be executed when the start tag
of the custom tag is processed. The access modifier of
the doStartTag method must be specified as public
in order for the method to be accessed as part of a tag
handler.

The doStartTag method must return a value to indicate
whether the custom tag will include information that must
be processed between the start and end tags, called a body.
A body is not required for a simple tag handler, so the
doStartTag method returns the value SKIP_BODY.
SKIP_BODY is a constant and is defined in the imported
javax packages. SKIP_BODY contains an integer value
so the return type of the doStartTag method must be
specified as int.

CREATE THE TAG HANDLER

CREATE CUSTOM TAGS 10

CONTINUED

¤ To import the
javax.servlet.jsp.tagext
package, type import
javax.servlet.jsp.tagext.*.

Á In the body of the
doStartTag method,
type return SKIP_BODY.

201

The tag handler class file you create must be stored in a
specific directory on your Web server. For example, if you
are using the c:\tomcat\webapps\examples directory to
store your JSP pages on a Windows platform using the
Tomcat Web server, you would store your tag handler class
files in the c:\tomcat\webapps\examples\WEB-INF\classes
directory. You can refer to your Web server documentation
to determine the proper directory to store your tag handler
class files.

The doStartTag method is called when the start
tag of a custom tag is processed. The start tag is
the opening tag. For example, in the HTML code
<title>My Web Page</title>, the start tag is <title>
and the end tag is </title>. The phrase "My Web Page"
is the body of the tag.

When a tag does not require a
body, the start and end tags can be
combined into one tag in a JSP page.

Example:
<mytag></mytag>

Can be written as:
<mytag />

‚ Between the second
set of parentheses, type
the message you want the
tag to display, enclosed in
quotation marks.

— On the line immediately
following the try block, type
the code that creates a catch
block.

± In the body of the catch
block, type throw new
JspTagException(e.getMessage()).

¡ Save the file with the .java
extension and then compile the
source code for the file.200

JSP

CREATE THE TAG HANDLER (CONTINUED)

‡ To specify that the
doStartTag method may
throw a JSP related exception
error, type throws JspException
on the same line as the
method declaration.

° Type the code that
creates a try block in the
body of the doStartTag
method.

· In the body of the try block,
type pageContext.getOut().print().

A simple tag handler can be created to generate
a message, such as copyright information or a
greeting, which you want to display on several JSP

pages in your Web site. You can then simply insert a
custom tag into each JSP page where you want to display
the message. Using a custom tag can make it easier to
update the message in each JSP page where it is used.

After you create the tag handler class and declare the
doStartTag method, you can use methods of the
PageContext object to generate output for the tag.
The PageContext object is used by an object to
determine the kind of environment in which the
object is contained. Once the object's environment is
determined, the tag handler will use the PageContext
object to help perform the requested actions.

The getOut method of the PageContext object
determines the method being used to send information
to a client. For a tag handler that displays a message,
you can use the print method of the PageContext
object to generate a text message that the JSP page
will send to a Web browser when the custom tag is
processed. To display the information for the tag, you
use the print method and the getOut method of
the PageContext object together.

Using the print method of the PageContext object
may throw an IOException error. To handle any errors
that occur, you should enclose the code that generates
a message in a try block and create a catch block to
catch any exception errors. For more information about
error handling, see pages 174 to 185.

CREATE THE TAG HANDLER

CREATE CUSTOM TAGS 10

™ Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file.

203

Á Type <shortname> followed
by a name that will reference
the tag library descriptor file
from a JSP page. Then type
</shortname>.

‡ Type <info> followed by a
description of the tag library
descriptor file. Then type
</info>.

° Type <tag> to begin
specifying information
about a custom tag you
are creating.

· Type <name> followed
by the name of the custom
tag. Then type </name>.

‚ Type <tagclass>
followed by the name of
the tag handler class file.
Then type </tagclass>.

— Type </tag> to
complete the information
about the custom tag.

202

JSP

CREATE THE TAG LIBRARY DESCRIPTOR FILE

⁄ To create the XML
header for the tag library
descriptor file, type
<?xml version="1.0"
encoding="ISO-8859-1" ?>.

¤ Type <!DOCTYPE taglib
PUBLIC "-//Sun Microsystems,
Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/
web-jsptaglibrary_1_1.dtd">.

‹ To create the main body
of the tag library descriptor
file, type <taglib>.

› Type <tlibversion>
followed by the version
number of the tag library
descriptor file. Then type
</tlibversion>.

ˇ Type <jspversion>
followed by the version
number of JavaServer
Pages required to use the
tag library descriptor file.
Then type </jspversion>.

O nce you have created a tag handler for a custom
tag, you must create a Tag Library Descriptor (TLD)
file that will tell the Web server where to locate

the tag handler when the custom tag is used in a JSP page.
Tag library descriptor files are XML documents that can be
created and edited using a simple text editor.

When creating a tag library descriptor file, you must begin
the file with an XML header that specifies information about
the file. The XML header consists of the <?xml?> tag and
the <!DOCTYPE> tag. The information in the XML header
is a standard requirement of XML documents and will be the
same for every tag library descriptor file you create. For more
information about XML documents, visit the www.xml.org
Web site.

The <taglib> and </taglib> tags are used to enclose the
main body of a tag library descriptor file. There are several
tags you must use in the main body of the file. For example,

you must use the <jspversion> tag to specify the version
of JavaServer Pages that the tag library descriptor file uses.

A tag library descriptor file can contain information about
multiple custom tags. To provide information about a custom
tag you are creating, use the <tag> and </tag> tags to
enclose the information. To specify the name of a custom tag,
use the <name> tag. The name you specify must be the same
as the name you will use for the tag in a JSP page. To specify
the name of the tag handler class file for a custom tag, use
the <tagclass> tag. You do not need to include the .class
extension when specifying the name.

Tag library descriptor files should be saved with the .tld
extension. When using version 3.1 of the Tomcat Web server,
the name and location of the tag library descriptor file must
be specified in the web.xml configuration file. To configure
the web.xml configuration file, see page 204.

CREATE THE TAG LIBRARY DESCRIPTOR FILE

CREATE CUSTOM TAGS 10
The following tags must also be included in the main
body of all the tag library descriptor files you create.

If you are not using version 3.1 of the Tomcat
Web server, you should use the <uri> tag in
the main body of the tag library descriptor file
to provide a unique identifier for the file, such
as <uri>www.maran.com/taglib</uri>
or <uri>MyTagLibrary</uri>. A JSP page
that uses the tag library will contain the same
identifier, linking the JSP page to the tag library
descriptor file. In this situation, you do not
need to configure the web.xml file.

The tag handler class file for a custom tag may be stored in a
package. Grouping tags into packages is a common practice that
allows you to easily organize and work with a large number of
tags. When using the <tagclass> tag to specify the name of
a tag handler class file that is stored in a package, prefix the
name of the class file with the name of the package, separating
the names with a dot. For example, a tag handler class file
called SimpleTag.class that is part of the mytags.web.text
package can be indicated in the tag descriptor file using the code
<tagclass>mytags.web.text.SimpleTag</tagclass>.

TAG: DESCRIPTION:

<tlibversion> The version of the tag library
descriptor file.

<shortname> A name that will be used
to reference the tag library
descriptor file from a JSP page.

<info> A description of the tag library
descriptor file.

± Type </taglib> to complete
the main body of the tag library
descriptor file.

¡ Save the file with the .tld
extension.

� You can now configure the
web.xml file to work with your
tag library descriptor file.

205

� You can now use the
custom tag in your JSP
pages.

You must configure the appropriate web.xml
file in order to use custom tags with version
3.1 of the Tomcat Web server. Other Web
servers, as well as other versions of the
Tomcat Web server, may not require any
alteration of the configuration file. Carefully
consult your Web server documentation to
determine what, if any, changes need to be
made to the server's configuration files prior
to using custom tags.

The web.xml file conforms to the XML
specification for document structure and,
therefore, should be very easy to read and
edit. Text information, such as the label and
location of the tag descriptor file, does not
have to be enclosed in quotation marks.

In addition to the specific web.xml files for
each application on your Web server, there
is also a default web.xml file located in the
\conf directory within the main Tomcat
directory. This default web.xml file stores
information such as the server's basic
configuration. If you want all your JSP
pages in any Web application to have
access to a custom tag, you can add the
<taglib> tag for the custom tag to the
default web.xml file. Both the default
web.xml file and the application-specific
web.xml file will be accessed by a JSP page
that uses a custom tag.

Á To specify the location
of the tag library descriptor
file, type <taglib-location>.

‡ Type the location of the
tag library descriptor file.

° Type </taglib-location>
to close the
<taglib-location> tag.

· Type </taglib> to close
the <taglib> tag.

‚ Save the web.xml file.

204

JSP

CONFIGURE THE WEB.XML FILE

⁄ Open the web.xml file
you want to configure in
a text editor.

¤ To enable the Web
application to use custom
tags, type <taglib>.

� If the web.xml file already
contains <taglib> tags,
place the new <taglib>
tag on the line immediately
following the existing
<taglib> tags.

‹ To create a label for
the tag library descriptor
file, type <taglib-uri>.

› Type the label for the
tag library descriptor file.

ˇ Type </taglib-uri> to close
the <taglib-uri> tag.

I f you are using version 3.1 of the Tomcat Web server,
you must configure a Web application's web.xml file
before using custom tags in the application. This task

can be completed once you have created the tag handler
class and the tag library descriptor file.

Each Web application on your Web server may have its
own web.xml file. The web.xml files may be automatically
created by the Web server. If you are storing your JSP
pages in the \webapps\examples directory under the
main Tomcat directory, then the web.xml file you should
configure is located in the \webapps\examples\WEB-INF
directory under the main Tomcat directory.

The web.xml file defines the setup of certain features of
your Web application, such as session tracking and the file
name of the default home page. To enable JSP pages in
your Web application to use custom tags, you must use

the <taglib> tag to configure the web.xml file. If the
web.xml file already contains <taglib> tags, you can add
a new <taglib> tag immediately following the existing
<taglib> tags. If there are currently no <taglib> tags
in the web.xml file, the new <taglib> tag can be inserted
anywhere between the <web-app> and </web-app>
tags. You can consult the Web server documentation for
more information about the web.xml file.

Within the <taglib> and </taglib> tags, you must
include the <taglib-uri> and <taglib-location>
tags. The <taglib-uri> tag specifies a label, which
will be used in your JSP pages to refer to the tag library
descriptor file. The label can be an address, such as
www.xyzcorp.com, or a word, such as mytags. The
<taglib-location> tag specifies the location of
the tag library descriptor file on the Web server.

CONFIGURE THE WEB.XML FILE

CREATE CUSTOM TAGS 10

207

� The Web browser
displays the result of
using a custom tag.

The custom tag examples in this chapter were
created using Tomcat Web server version 3.1.
This version of Tomcat uses a label, known as
the URI, to map to the tag library descriptor file.
Other Web servers, as well as other versions of
the Tomcat Web server, may require a different
format when using the taglib directive. You
should consult your Web server documentation
for information about using the taglib
directive.

Custom tags that display information can be
enclosed within HTML tags or other custom
tags that will format or organize the information
the tag will display.

Example:
<myTags:SimpleTag />

Result:
Welcome to my Web site.

If any information in the required
supporting files for the custom tag,
such as the web.xml file, is incorrect,
an error may be generated when the
taglib directive or the custom tag
is processed by the Web server. To
prevent problems with the JSP page,
you should ensure that the tag handler
class file includes error handling
processes, such as a try block and
a catch block.

ˇ To use the custom tag, type <>.

Á Between the angle brackets,
type the prefix you specified in
the taglib directive, followed
by a colon. Then type the name
you specified for the custom tag
in the tag library descriptor file.

‡ To close the custom
tag, type </ >. Then
repeat step 6.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

206

JSP

USING A CUSTOM TAG

⁄ To specify the location of
the tag library descriptor file
for the custom tag you want
to use in the JSP page, type
<%@ taglib uri="" %>.

¤ Between the quotation
marks, type the identifier of
the tag library descriptor file.

‹ To specify the prefix
you want to use for the
tag library, type prefix="".

› Between the quotation
marks, type the prefix you
want to use.

O nce you have compiled the tag handler class file,
created the tag library descriptor file and configured
the web.xml file for a custom tag, you can use the

custom tag in a JSP page.

You must first include the taglib directive in the JSP page
to identify the tag library descriptor file that contains the tag
you want to use. To add the taglib directive to a JSP page,
you place the directive statement between the <%@ opening
delimiter and the %> closing delimiter.

The taglib directive uses the uri attribute to specify an
identifier for the tag library descriptor file. The identifier must
be the same identifier specified for the tag library descriptor
file in the web.xml file.

Within the taglib directive, you must also specify a prefix
you want to use to reference the tag library that contains the
custom tag information. Each tag library requires a different

prefix, so you can use different prefixes to work with custom
tags that have the same name but are stored in different tag
libraries.

To use a custom tag in a JSP page, you type the prefix and
the name you assigned to the tag in the tag library descriptor
file, separated by a colon. Like HTML tags, the start tag is
enclosed in angle brackets. The end tag is also enclosed in
angle brackets and begins with a forward slash. For simple
tags that do not contain a body, or information between the
start and end tags, the start and end tags can be combined
into one tag, such as <myTags:SimpleTag />.

USING A CUSTOM TAG

CREATE CUSTOM TAGS 10

209

You can create multiple attributes for each tag. You must
create a variable and a setter method for each attribute.

Example:
private String message = "No message specified.";
private String boldText = "b";
public int doStartTag() throws JspException
{

try
{

String output="<" + boldText + ">" + message + "</" +
boldText + ">";
pageContext.getOut().print(output);

}
catch(Exception e)
{

throw new JspTagException(e.getMessage());
}
return SKIP_BODY;

}
public void setMessage(String text)
{

message = text;
}
public void setBoldText(String text)
{

boldText = text;
}

Á To declare a setter method
that will convert the value of
the attribute to the variable you
created in step 4, type public void.

‡ To name the method, type
set immediately followed by the
name of the variable, beginning
with a capital letter. Then type ().

° Between the
parentheses, type the
data type of the variable
followed by a name for
the variable that will
pass the value to the
setter method.

· Type the name of the
variable that represents the
attribute followed by = and
the variable you specified in
step 8. Enclose the code in
braces.

‚ Save the file with the .java
extension and then compile
the source code for the file. 208

JSP

CREATE THE TAG HANDLER FOR A TAG WITH AN ATTRIBUTE

⁄ Type the code that imports the
javax.servlet.jsp and the
javax.servlet.jsp.tagext
packages.

› To create a variable to
represent an attribute that
will be specified in a JSP
page, type private String
followed by a name for the
variable. Then type = "".

ˇ Between the quotation
marks, type a default value
for the variable.

A custom tag can be set up to support attributes that are
specified when the tag is used in a JSP page. This adds
flexibility to the tag and allows you to customize the

tag's behavior. For example, you can have a tag that displays
a heading accept an attribute that specifies the color of the
heading.

An attribute for a custom tag is represented by a variable in
a tag handler class file. When you create the variable that will
represent an attribute, you can assign a default value to the
variable. The tag handler will use this value for the attribute
if a value is not specified when the custom tag is used.

When the custom tag is used with an attribute in the JSP
page, the value specified for the attribute is passed to the tag
handler as a variable. In order to convert a value specified for
an attribute in a JSP page to a variable, you must use a setter
method. The access modifier of a setter method must be set

to public and the return type set to void, since the
method does not return a value. The name of the method
is the same as the name of the variable that stores the value
for the attribute, but begins with a capital letter and is
prefixed by the word set. The parentheses at the end of
the setter method name enclose the data type of the variable
and the variable used to pass the value to the method. The
argument is then assigned to the variable used to store the
attribute value.

The variable that represents the attribute value is typically
declared in the class body of the tag handler. This allows
the variable to be accessed by any method in the tag
handler class file.

CREATE THE TAG HANDLER
FOR A TAG WITH AN ATTRIBUTE

CREATE CUSTOM TAGS 10

¤ Type the code that
creates a class for a
custom tag.

‹ Type the code that
creates a doStartTag
method.

— Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file.

211

� You can now use
the custom tag with
an attribute.

You can specify as many attributes as
required by your custom tag. To add an
additional attribute, you can simply use
another set of <attribute> tags.

Example:
<tag>

<name>AttributeTag</name>
<tagclass>AttributeTag</tagclass>
<attribute>

<name>message</name>
<required>false</required>

</attribute>
<attribute>

<name>length</name>
<required>true</required>

</attribute>
</tag>

When using a custom tag with an attribute,
you can have the value of the attribute be
determined at runtime by a section of JSP
code, such as an expression, by adding an
<rtexprvalue> tag and assigning it a
value of true.

Example:
<tag>

<name>AttributeTag</name>
<tagclass>AttributeTag</tagclass>
<attribute>

<name>message</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

› To specify if the attribute
is required when the custom
tag is used, type <required>
followed by true or false.
Then type </required>.

ˇ Type </attribute> to end
the attribute specification.

Á Save the tag library
descriptor file with a .tld
extension.

210

JSP

CREATE THE TAG LIBRARY DESCRIPTOR FILE FOR A TAG WITH AN ATTRIBUTE

⁄ Type code that creates
a tag library descriptor file.
See page 202 for information
about creating a tag library
descriptor file.

¤ To specify an attribute
for a custom tag, type
<attribute> following the
<tagclass> tag.

‹ To specify the name of
the attribute, type <name>
followed by the name of
the attribute. Then type
</name>.

Y ou need to add an <attribute> tag to a tag library
descriptor file for each attribute of a custom tag. An
<attribute> tag allows you to specify details about

an attribute of a custom tag and is placed following the
<tagclass> tag in a tag library descriptor file.

The name of the attribute is specified using the <name> tag,
which is placed following the <attribute> tag. The name
specified with the <name> tag must match the name that
will be used when the custom tag is used on a JSP page. The
name of the attribute specified with the <name> tag is case
sensitive. Most attribute names use only lower case letters.

After the name of the attribute is specified, a <required>
tag is used to specify if the attribute is required when the
custom tag is used on a JSP page. If a value of false is
specified for a <required> tag, the use of the attribute

is optional when the custom tag is used. If a value of true
is specified, the attribute must be included each time the
custom tag is used.

When you specify that an attribute is not required, you
should ensure that the tag handler class file for the custom
tag contains the code that specifies a default value for the
attribute in the event that the attribute is left out when the
custom tag is used. This code can be part of the method in
the tag handler that is used to set the value of the attribute
when the attribute is included when the custom tag is used.
For more information about creating a tag handler for a tag
with an attribute, see page 208.

CREATE THE TAG LIBRARY DESCRIPTOR
FILE FOR A TAG WITH AN ATTRIBUTE

CREATE CUSTOM TAGS 10

213

� The Web browser
displays the result of
using a custom tag
with an attribute.

Attribute values can be enclosed within single or double
quotation marks.

Example:
<mt:AttributeTag message="This is a tag with an attribute" / >

Can be typed as:
<mt:AttributeTag message='This is a tag with an attribute' / >

If the <rtexprvalue> tag is set to true in the tag library descriptor
file, you can use a JSP expression in the JSP page to determine the
value of an attribute. This allows you to include dynamically generated
attribute values in your custom tags. If the <rtexprvalue> tag is not
specified or is set to false, then the attribute value must be a string.

Example:
<mt:AttributeTag message="<%= Session.getAttribute.("userName") %>" />

You can use more than one attribute in a tag if the tag handler class
file and the tag library descriptor file support multiple attributes.

Example:
<mt:AttributeTag message="Welcome to my Web page" encloseText="h1" />

ˇ To add an attribute to the
custom tag, type the name of
the attribute followed by ="".

Á Between the quotation
marks, type the value to be
assigned to the attribute.

‡ To close the
custom tag, type </ >.
Then repeat step 4.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

212

JSP

USING A CUSTOM TAG WITH AN ATTRIBUTE

⁄ Create the taglib
directive that specifies the
location of the tag library
descriptor file for the custom
tag you want to use in the
JSP page.

‹ To use the custom
tag, type <>.

› Between the angle brackets,
type the prefix you specified in
the taglib directive, followed
by a colon. Then type the name
of the custom tag.

T o use a custom tag with an attribute, you must
include a taglib directive in the JSP page to
identify the tag library descriptor file that contains

the tag you want to use.

As with any other custom tag that you wish to use in
a JSP page, you must specify the prefix and the name
you assigned to the tag in the tag library descriptor file,
separated by a colon. To add an attribute to the custom
tag, you type the name of the attribute and a value to be
assigned to the attribute, separated by an equal sign. The
value of the attribute must be enclosed in quotation marks.

When using custom tags with an attribute, you can use the
common notation, which uses both an start and a end tag,
or the shortened notation, which combines the start and
end tags into one tag. When using the common notation,

the attribute must be specified in the start tag of the custom
tag. When using the shortened notation, the attribute
should be specified within the tag, such as <mt:AttributeTag
message="Welcome to my Web page." />.

The tag library descriptor file indicates whether an attribute
is required or not. For information about specifying required
attributes in the tag library descriptor file, see page 210.
If an attribute is optional, you should ensure that the tag
handler class file can process the custom tag when an
attribute is not specified. This may be done by assigning a
default value to be used in case the attribute is not specified
in the custom tag. For information about assigning default
attribute values in the tag handler class file, see page 208.

USING A CUSTOM TAG WITH AN ATTRIBUTE

CREATE CUSTOM TAGS 10

¤ In the taglib
directive, type the code
that specifies the prefix
you want to use for the
tag library.

215

You can create versatile custom tags that can use attributes and
the information in the tag body at the same time. For example,
you can modify a custom tag to apply a header level specified by
an attribute of the tag to the information in the body of the tag.

Example:
private String level = "2";
public int doStartTag() throws JspException
{

try
{

pageContext.getOut().print("<h" + level + "> * * ");
}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_BODY_INCLUDE;

}
public int doEndTag() throws JspException
{

try
{

pageContext.getOut().print(" * * </h" + level + ">");
}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_PAGE;

}
public void setLevel(String text)
{

level = text;
}

° On the line immediately
following the try block,
type the code that creates
a catch block that throws
a JspTagException
exception.

· In the body of the
doEndTag method, type
return followed by the return
value that specifies if the Web
server should process the
remainder of the JSP page.

‚ Save the file with the .java
extension and then compile
the source code for the file.214

JSP

CREATE THE TAG HANDLER FOR A TAG WITH A BODY

⁄ Type the code that imports
the javax.servlet.jsp and
the javax.servlet.jsp.tagext
packages.

¤ Type the code that creates
a class for a custom tag.

‹ Type the code that
creates a doStartTag
method.

› In the body of the
doStartTag method, type
return EVAL_BODY_INCLUDE
to allow the tag to process
the information in the tag
body.

ˇ To create the doEndTag
method and specify that it may
throw a JSP related exception
error, type public int doEndTag()
throws JspException.

Á Type the code that creates
a try block in the body of the
doEndTag method.

‡ In the body of the
try block, type the
code that performs an
action after the tag
body is processed.

T he body of a tag is the information enclosed within
the start and end tags. The tag body can consist
of plain text or any JSP code, including scriptlets,

expressions and directives. You can create a tag handler
class file to use the information contained in the body
of a custom tag. The tag handler class file required for
a custom tag with a body is similar to that of a simple
custom tag.

As with a tag handler class for a simple tag, a
doStartTag method must be included. The
doStartTag method is processed when the start tag
of a custom tag is encountered in a JSP page. The
doStartTag method of a tag handler for a tag with
a body must return the value EVAL_BODY_INCLUDE,
which instructs the Web server to process the information
contained in the tag body. When the doStartTag
method has finished processing and the

EVAL_BODY_INCLUDE value has been returned,
the Web server includes the information in the tag
body in the results that are sent to the client.

The tag handler class file for a custom tag with a body
should also include a method called doEndTag. The
doEndTag method contains the code to be executed
after the body is processed. This method is executed when
the end tag of the custom tag is encountered in the JSP
page. The doEndTag method must also return a value.
The return value determines whether or not the remainder
of the JSP page must be processed. In most cases, you
will use the EVAL_PAGE return value, which indicates
to the Web server that the rest of the JSP page should be
processed. If you want the Web server to stop processing
the JSP page and ignore the remainder of the code in
the JSP page, use the SKIP_PAGE return value.

CREATE THE TAG HANDLER
FOR A TAG WITH A BODY

CREATE CUSTOM TAGS 10

— Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file.

217

� You can now use the
custom tag with a body.

To be consistent in your code, you should
include a <bodycontent> tag in the tag
library descriptor file even for custom tags
you create or update that do not include a
body. You can specify that a tag does not
use a body by indicating the value empty
as the content type of the tag.

Example:
<bodycontent>empty</bodycontent>

When you specify JSP as the content type
of the <bodycontent> tag, you are not
restricted to using only JSP code in the body
of the tag. You can also use HTML tags,
plain text, other custom tags and any other
valid Web page content in the body of your
custom tag.

If you want to use non-JSP information, such
as an SQL statement, as the body of your custom
tag, you should specify the value tagdependent
as the content type of the tag. When using the
tagdependent content type, you must ensure
that the code in the tag handler class file is capable
of properly interpreting the body content specified
in the custom tag.

Example:
<bodycontent>tagdependent</bodycontent>

› Type </bodycontent>
to end the body content
specification.

ˇ Save the tag library
descriptor file with the
.tld extension.

216

JSP

CREATE THE TAG LIBRARY DESCRIPTOR FILE FOR A TAG WITH A BODY

⁄ Type the code that creates
a tag library descriptor file.
See page 202 for information
about creating a tag library
descriptor file.

‹ To specify the content
type of the tag body,
enter the content type
the tag will use.

A fter you create a tag handler class file for a custom
tag, you should include an entry in the tag library
descriptor file that indicates whether the tag will

include a body. The body of a custom tag is the information
that is enclosed by the start and end tags of the custom tag.

You use the <bodycontent> tag in the tag library
descriptor file to indicate that a custom tag will contain
a body. Using the <bodycontent> tag does not usually
affect how a custom tag operates, since the processing
of the tag is performed mainly by the tag handler. The
<bodycontent> tag is used primarily for providing
information about the custom tag itself. You should always
include a <bodycontent> tag, especially if you are
creating tag libraries that you intend to share with other
people.

In the tag library descriptor file, the <bodycontent>
tag must be located between the <tag> and </tag> tags
that contain detailed information about the custom tag.
Only one body content entry can exist for each custom tag.

You specify the content type of the custom tag by
inserting a value between the <bodycontent> and
</bodycontent> tags. If no content type is specified,
the custom tag will assume the default value of JSP, which
allows the custom tag to use JSP code as the body of the
tag. It is good programming practice to specify JSP as the
content type for any custom tag that will use a body.

If you are using version 3.1 of the Tomcat Web server,
you must specify the name and location of the tag library
descriptor file for a custom tag with a body in the web.xml
configuration file. For more information, see page 204.

CREATE THE TAG LIBRARY DESCRIPTOR
FILE FOR A TAG WITH A BODY

CREATE CUSTOM TAGS 10

¤ To specify that
the custom tag will
include a body,
type <bodycontent>
following the
<tagclass> tag.

219

� The Web browser
displays the result of using
a custom tag with a body.

The information that is placed
in the body of a custom tag
does not have to be on one
line. If the tag handler is simply
returning the body of the
custom tag to the JSP page, the
information in the source code
of the JSP page will have the
same format as the information
in the body of the tag.

Example:
<pre>
<myTag:SimpleBodyTag>
Welcome

To
My

Web Page
</myTag:SimpleBodyTag>
</pre>

ˇ Type the information
you want to use as the
body of the custom tag.

Á To close the custom
tag, type </ >. Then
repeat step 4.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

218

JSP

USING A CUSTOM TAG WITH A BODY

⁄ Create the taglib
directive that specifies the
location of the tag library
descriptor file for the
custom tag you want
to use in the JSP page.

‹ To use the custom
tag, type <>.

› Between the angle brackets,
type the prefix you specified in
the taglib directive, followed
by a colon. Then type the name
of the custom tag.

A fter a tag handler that uses information contained in
the body of a tag has been created, the tag library
descriptor file has been configured to indicate that

the custom tag will process the body and the web.xml file
has been configured for the Tomcat Web server if necessary,
the custom tag that makes use of a body can be employed
on a JSP page.

As with all custom tags, the taglib directive must be
placed in the JSP page before the custom tag can be used.
The uri attribute and a prefix you want to use to reference
the custom tag that uses a body must be specified in the
taglib directive.

Using a custom tag with a body makes it easy to generate
data that will surround the information found in the body.
For example, a custom tag can create specific HTML tags

to enclose the body of the tag specified in the JSP page.
You can use a custom tag to apply simple formatting options,
such as bolding or changing the font of text, to text supplied
in the body of the tag. A custom tag can also be used to
place the information in the body within more complex
HTML structures, such as tables or lists.

You should not use the short form of writing a tag for a tag
that processes a body, since the tag must use start and end
tags to denote the start and end of the body content. If the
short form of writing a tag is used for a custom tag that uses
a body, an empty body will be passed to the tag handler.

USING A CUSTOM TAG WITH A BODY

CREATE CUSTOM TAGS 10

Since the body is returned directly to the JSP page by the tag handler,
the body of a custom tag can also include valid HTML code.

<myTag:SimpleBodyTag><i>Welcome To My Web Page</i></myTag:SimpleBodyTag>

* * Welcome to My Web Page * *

TYPE THIS:

RESULT:

JSP expressions and scriptlets can also be placed in the body of a
custom tag. The JSP code will be evaluated and the information
generated by the JSP code will be passed to the tag handler.

<myTag:SimpleBodyTag><%= new java.util.Date() %></myTag:SimpleBodyTag>

* * Wed Apr 18 12:00:00 EST 2001 * *

TYPE THIS:

RESULT:

¤ In the taglib directive,
type the code that specifies
the prefix you want to use
for the tag library.

221

‚ Between the second set
of parentheses, type the
code that manipulates the
body.

— On the line immediately
following the try block,
type the code that creates
a catch block.

± In the body of the
catch block, type
System.out.println("").

¡ Between the quotation
marks, type the information
you want to display if an
error occurs.

™ On the line immediately
following the catch block,
type return SKIP_BODY.

£ Save the file with the .java
extension and then compile
the source code for the file.

220

JSP

CREATE THE TAG HANDLER FOR A TAG THAT MANIPULATES A BODY

⁄ Type the code that imports
the javax.servlet.jsp and the
javax.servlet.jsp.tagext
packages.

¤ Type the code that creates a
class for a custom tag, followed
by extends BodyTagSupport.

Á Type the code that
creates a try block
in the body of the
doAfterBody method.

‡ Type the code that
creates a string variable
that will store the content
of the body.

° Type = followed by the
name of the BodyContent
object. Then type .getString().

· To display the result
of manipulating the body,
type the name of the
BodyContent object followed
by .getEnclosingWriter().print().

A tag handler that receives a body passed from a custom
tag may simply return the body back to a JSP page
without making any changes. You can, however, create

a tag handler for a custom tag that can manipulate a body
and then return the manipulated body back to a JSP page. For
example, a tag handler may change the formatting of the text
within the body or use the information in a body to perform
other tasks, such as retrieving information from a database.

A tag handler used to manipulate the body of a custom tag
must extend the BodyTagSupport class, which in turn
extends the TagSupport class and contains special methods
used for processing the body of a custom tag.

A doAfterBody method must be used to process the
body of a custom tag. Within the doAfterBody method,
the getBodyContent method is used to create a

BodyContent object. This object stores information about
the body of the custom tag passed to the tag handler.

The getString method of the BodyContent object is
used to retrieve the body and returns a string that can be
assigned to a variable. The string variable can then be
manipulated. For example, you can use the toUpperCase
method of the String object to convert all the text in the
string to uppercase. When generating output to be passed
back to a JSP page, the getEnclosingWriter method
of the BodyContent object is used.

You should include a try block and catch block in the
doAfterBody method to catch any exception errors that
may occur. After the doAfterBody method has finished
manipulating the body of a custom tag, the method should
return the value SKIP_BODY.

CREATE THE TAG HANDLER FOR A
TAG THAT MANIPULATES A BODY

CREATE CUSTOM TAGS 10
In addition to the doAfterBody method, other methods, such as
the doStartTag and doEndtag methods, can be used to perform
certain actions, such as producing HTML code that is processed
before and after the body is manipulated. Since the body of the
custom tag is processed using a BodyContent object, the return
value of the doStartTag method should be EVAL_BODY_TAG.

Example:
public int doStartTag() throws JspException
{

try
{

pageContext.getOut().print("The following text" +
" will be in uppercase.
");

}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_BODY_TAG;

}
public int doEndTag() throws JspException
{

try
{

pageContext.getOut().print("<hr>Thank You");
}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_PAGE;

}

‹ To create the
doAfterBody method,
type public int doAfterBody().

› To create a
BodyContent object that
will store information about
the body, type BodyContent
followed by a name for the
BodyContent object.

ˇ Type = getBodyContent().

¢ Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the tag
handler class to a tag library
descriptor file. For more
information see page 216.

223

� The Web browser
displays the result of
using a custom tag that
manipulates a body.

Uppercase Text - Microsoft Internet Explorer

ˇ Type the information
you want to use as the
body of the custom tag.

Á To close the custom
tag, type </ >. Then repeat
step 4.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

222

JSP

USING A CUSTOM TAG THAT MANIPULATES A BODY

⁄ Create the taglib
directive that specifies the
location of the tag library
descriptor file for the custom
tag you want to use in the
JSP page.

‹ To use the custom
tag, type < >.

› Between the angle
brackets, type the prefix
you specified in the
taglib directive, followed
by a colon. Then type the
name of the custom tag.

U sing a custom tag that manipulates the content of
a body is similar to using any other custom tag that
contains information between the start and end

tags. The difference is that the tag handler can modify the
body before it is returned to the JSP page. The information
returned to a JSP page depends on the process contained in
the tag handler class itself. A tag handler may simply change
the formatting of the text within the body or may take the
information in a body and use it to perform other tasks,
such as retrieving information from a database or sending
an e-mail message.

It may take some time for a tag handler that manipulates
the body of a custom tag to process the information, such
as when using a tag handler to retrieve information from a
database. If you are using a custom tag that may take some
time to process, it is important to thoroughly test the tag

to evaluate how the tag will perform when used on a Web
site under real-world conditions. While a custom tag may
perform well under developmental conditions, it may easily
malfunction when multiple users of a Web site use the
custom tag, as is common when different users are trying
to access the same database. If an error occurs within a tag
handler while it processes the body content, a server error
may be generated and the remainder of the JSP page may
not be processed.

The body of a custom tag can be either plain text or be
generated by other methods, such as Java code contained
within a scriptlet or an expression.

As with other custom tags and tag handlers, changes to
the tag library descriptor file and the web.xml file may
need to be made before the custom tag can be used.

USING A CUSTOM TAG
THAT MANIPULATES A BODY

CREATE CUSTOM TAGS 10

Although a custom tag is usually inserted into the HTML
portion of a JSP page, it is possible to re-use a custom tag
using JSP code by integrating scriptlets with the custom tag.

<%
String[] days = {"mon", "tue", "wed", "thr", "fri", "sat", "sun"};
for (int x = 0; x <= 6; x++)
{
%>
<myTag:MakeUpperCase><%= days[x] %></myTag:MakeUpperCase>

<%
}
%>

MON
TUE
WED
THR
FRI
SAT
SUN

TYPE THIS: RESULT:

¤ In the taglib
directive, type the
code that specifies the
prefix you want to use
for the tag library.

225

· Type the code that
creates a connection to
the database.

‚ Type the code that
retrieves information
from the database and
stores it in a result set.

— Type the code that retrieves
the information from the result
set and then type the code that
uses the retrieved information.

± Type the name of the
BodyContent object followed
by .getEnclosingWriter().print().
Between the second set of
parentheses, type any arguments
the method requires.

¡ Create try and catch
blocks that will handle any
exceptions thrown while
accessing the information
from the database.

™ Save the file with the
.java extension and then
compile the source code
for the file.

224

JSP

USING A CUSTOM TAG TO ACCESS A DATABASE

⁄ Type the code that
imports the packages
required by the custom tag.

¤ Type the code that creates
the tag handler class and the
doAfterBody method.

‹ In the body of the method,
type return SKIP_BODY.

› Type the code that creates
a variable that will store the
value you want to retrieve
from the database.

ˇ To create a BodyContent
object, type BodyContent
followed by a name for
the object. Then type
= getBodyContent().

Á Type the code that creates
a string variable that will store
the content of the body.

‡ To retrieve the
content of the body,
type = followed by
the name of the
BodyContent object.
Then type .getString().

° Type the code that
loads the bridge driver.

W hile custom tags are often used for relatively
simple tasks, such as formatting text, they are
also ideally suited for performing more complex

tasks, such as retrieving information from a database.

You must first create a tag handler for the custom tag. The
tag handler for a tag that accesses a database is very similar
to the tag handler for a custom tag that manipulates a body.
For more information, see page 220. To use the body of a
custom tag to locate information in a database, you include
the same Java code used to work with databases from within
a JSP page in the tag handler class file. For information about
working with databases, see pages 142 to 153.

You must load the driver for the database, create a
connection to the database and create a result set that stores
the information you will access in the database. When you
use the custom tag in a JSP page, the tag handler retrieves

the information from the database and then uses the
getEnclosingWriter method of the BodyContent
object to send the retrieved information back to the
JSP page.

When using a tag handler to work with a database, you can
place most of your code in the body of the doAfterBody
method that processes the body of the custom tag. If you
are using other methods in the custom tag, you can place
parts of the code in the body of the other methods. For
example, you can place the code that opens a connection
to the database in the body of the doStartTag method.

To prevent problems when the JSP page is processed,
you need to include try and catch blocks to handle
any errors that may occur.

USING A CUSTOM TAG TO ACCESS A DATABASE

CREATE CUSTOM TAGS 10

You can use a custom tag that accesses a database as you would
use a custom tag that manipulates a body. In your JSP page, you
must include the taglib directive to specify the uri attribute
and the prefix you want to use to reference the custom tag. In
the body of the tag, you should include the information that
specifies the data you want to retrieve from the database.

<%@ taglib uri="http://www.maran.com/taglib" prefix="myTag" %>
<html>
<head>
<title>Phone Numbers</title>
</head>
<body bgcolor="#FFFFFF">
Phone Numbers

<myTag:Phone>Hannah</myTag:Phone>

<myTag:Phone>Paul</myTag:Phone>
</body>
</htmL>

Phone Numbers
Hannah is at extension 678
Paul is at extension 456

TYPE THIS: RESULT:

£ Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file as
you would for any custom
tag with a body.

227226

JSP

A servlet is a module of Java code that adds functionality
to a Web server. Servlets use text to communicate with
a Web server and have no graphical user interface.

INTRODUCTION TO SERVLETS

DEMYSTIFYING SERVLETS 11

SERVLETS AND CGI PROGRAMMING

Servlets provide an alternative to more traditional
Common Gateway Interface (CGI) programming. While
both servlets and CGI programs add functionality to a
Web server, servlets give a Web server more control over
the processing of information.

With CGI programming, a Web server does not have
control over the way a CGI program processes
information. When information is passed to the Web
server, the server simply passes the information on to the
CGI program and then waits for the program to finish
processing the information. When the CGI program
completes its tasks, the program passes the information
back to the Web server, typically in the form of HTML
code that is then sent to the client.

Servlets are more tightly integrated with a Web server
than CGI programs, allowing more communication
between the Web server and a servlet. This gives a Web
server more control over the processing of information
and allows for more advanced processing features, such
as maintaining session information across multiple
servlets.

SERVLETS AND JSP PAGES

Since JavaServer Pages technology is built on
servlet technology, JSP pages and servlets are
closely related. When a JSP page is processed,
the page is converted into a servlet by the JSP
engine on the Web server. The Web server can
use the servlet generated from the JSP page as
it would use any servlet. A Web server must
support servlets before it can process JSP
pages.

The translation of a JSP page into a servlet is
transparent to the developer. Although it is an
asset, developers do not need to understand
servlet programming in order to work with
JSP pages.

The relationship between JSP pages and servlets:

The Java Servlet API

The construction of servlets is governed by a rigid
specification. This specification is known as the Java
Servlet Application Programming Interface, or more
simply, the Java Servlet API. Detailed information
about the Java Servlet API can be found at the
java.sun.com Web site.

The Java Class Library

Servlets have access to all the class files that make
up the Java class library, which is also called the Java
API. This enables servlets to perform a wide variety of
complex tasks, such as working with databases, reading
and writing to files on local and remote computers and
manipulating data passed by forms.

Object-Oriented Programming

Servlets make use of the object-oriented approach to
programming. Object-oriented programming provides
increased flexibility when maintaining and modifying
code. While beginners may not benefit greatly from the
object-oriented approach, this style of programming
is vital to developers of large, complex Web sites.

Portable

Since servlets have to conform to the rigid Java Servlet
API, a Web server that supports this specification will
be able to run any servlet, regardless of the platform
the servlet was developed on. This allows the same
servlet to run on a Web server that uses the Windows
operating system and a Web server that uses the UNIX
operating system.

Efficient

When a servlet is used for the first time, the servlet
is compiled into bytecode. Bytecode is a set of
instructions that a Web server can use to perform
the tasks specified in the servlet. Once a servlet is
compiled into bytecode, the bytecode is retained
in the Web server's memory. When the servlet is
requested again, the Web server can use the bytecode
stored in memory, without having to recompile the
servlet. This dramatically speeds up the processing
of servlets. A servlet will only need to be recompiled
if it is modified.

Dynamic Content

Servlets can be used to enable a Web server to
generate dynamic content. Dynamic content is
Web page content that is generated depending
on a set of changing parameters. For example,
a servlet can generate a Web page that displays
weather information obtained from a database.
Each time the Web page is requested by a client,
the servlet instructs the Web server to retrieve the
latest weather information from the database and
place the information in the Web page.

Multitasking

Servlets are able to handle multiple processes at
once. As a result, servlets are useful for creating
complex multi-user applications, such as chat room
programs and file swapping programs. Besides
handling multiple instructions at once, servlets
can, when necessary, locate and use other servlets
to share the workload. HTML

page

JSP
engine

JSP
page

Servlet

WEB SERVER

Servlet

229

Servlets are platform independent. This means that
a servlet you create can be stored and processed by
any Web server that supports servlets, regardless of
the platform on which you developed the servlet.
Most Web servers that are capable of running Java
programs are also able to run servlets.

The first time you attempt to display the results of
using a servlet you created, the results may take a
few moments to appear in the Web browser. This
delay will occur only the first time the servlet is
accessed. When a client requests a servlet for the
first time, the Web server processes the servlet and
then stores the servlet in memory. Subsequent
requests for the servlet will be much faster, since
the servlet will not need to be processed each time.

JavaServer Pages technology is built on
servlet technology. JSP pages you create
are converted into servlet code by the JSP
engine on a Web browser when the pages
are processed. A familiarity with servlet
programming can help improve your ability
to develop JSP pages, since you will have
an increased understanding of how JSP
pages are processed by a Web server.

° To create a PrintWriter
object you can use to generate
text that will be output to the
client, type PrintWriter followed
by a name for the object. Then
type =.

· Type the name of the
HttpServletResponse
object followed by a dot.
Then type getWriter().

‚ Type the code that
uses the PrintWriter
object to generate text
output.

228

JSP

CREATE A SERVLET

⁄ Type the code that imports
the javax.servlet and
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

‹ To declare the class
for the servlet, type
public class followed by
a name for the class.

› To make the class
a sub-class of the
HttpServlet class,
type extends HttpServlet.

ˇ To create a doGet method,
type public void doGet().

Á Between the parentheses,
type HttpServletRequest
followed by a name for the
HttpServletRequest object.
Then type HttpServletResponse
followed by a name for the
HttpServletResponse object.

‡ To specify the
exception errors that
may be thrown by the
method, type throws
ServletException,
IOException.

Y ou can create a simple servlet that uses Java to
generate text that will be displayed in a Web
browser.

To create a servlet, you must first import the
javax.servlet and javax.servlet.http servlet
packages. Before the servlet packages can be imported,
they must be installed on your computer and accessible
to your Web server software. The packages are located
in the Java Servlet API class files, which are available at
the java.sun.com/products/servlet Web site. For more
information about obtaining and installing the Java Servlet
API class files, see the top of page 199.

You will also need to import any additional packages
needed by the servlet you want to create. For example,
a servlet that will output text requires the java.io
package.

You can make a servlet you create a sub-class of the
HttpServlet class, which contains the code a Web
server needs to run servlets. This saves you from

having to type all the code needed by a Web server in
each servlet. The HttpServlet class is part of the
javax.servlet package.

The doGet method is the main method of a servlet.
This method is processed each time a client uses a
Web browser to connect to a servlet. The doGet
method takes two arguments. The first argument is
an HttpServletRequest object, which will contain
information passed from the client. The second argument
is an HttpServletResponse object, which will contain
information to be sent to the client. The doGet method
may also throw two errors––ServletException and
IOException.

To generate text that will be sent to the client, you must
create a PrintWriter object using the getWriter
method of the HttpServletResponse object. The
methods of the PrintWriter object can then be used
to generate output.

CREATE A SERVLET

DEMYSTIFYING SERVLETS 11

— Save the servlet with
the .java extension.

� You can now compile
and execute the servlet.

231

� The Web browser
displays the results of
executing the servlet.

C:\WINDOWS>cd c:\tomcat\webapps\examples

C:\Tomcat\webapps\examples>javac SimpleServlet.java

C:\Tomcat\webapps\examples>copy SimpleServlet.class c:\tomcat\webapps\examples\web-inf\classes

C:\WINDOWS>cd c:\tomcat\webapps\examples

C:\Tomcat\webapps\examples>javac SimpleServlet.java

C:\WINDOWS>cd c:\tomcat\webapps\examples

If you use the Tomcat Web server version 3.1, the URL you enter
to execute a servlet will be determined by the settings in the
web.xml file. You must edit the web.xml configuration file to
specify information about a servlet you want to execute. If you
use the examples directory for development, the web.xml file
you must edit is located in the examples/WEB-INF directory.

To edit the web.xml file, you enter tags that specify information
about the servlet between the <web-app> and </web-app>
tags. The <servlet> tag allows you to specify the class name of
the servlet, while the <servlet-mapping> tag lets you specify
the URL that will be used to execute the servlet. For example, to
edit the web.xml file for a servlet named SimpleServlet that you
want to access by typing /SimpleServlet in the URL, enter the
following code after the <web-app> tag in the web.xml file.

Example:
<servlet>

<servlet-name>SimpleServlet</servlet-name>
<servlet-class>SimpleServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>SimpleServlet</servlet-name>
<url-pattern>/SimpleServlet</url-pattern>

</servlet-mapping>

� If the Java code was
successfully compiled,
the command prompt
re-appears.

Á Type the code that
copies the servlet class
file to the appropriate
directory on your Web
server.

‡ In a Web browser
window, enter the URL
of the servlet you want
to execute.

230

JSP

COMPILE AND EXECUTE A SERVLET

⁄ Open the window that
allows you to work at the
command prompt.

¤ Move to the directory
that stores the servlet you
want to compile.

‹ To compile the servlet
using the javac compiler,
type javac.

› Type the name of
the servlet you want to
compile, including the
.java extension.

ˇ Press Enter to
compile the Java code.

O nce you have created a servlet, you can compile
the Java code for the servlet. A servlet must be
compiled before it can be executed.

A Java compiler is required to compile a servlet. The
Java SDK includes a Java compiler called javac. The javac
compiler can only be executed from the command prompt.
If you are using a Windows operating system, you will need
to open an MS-DOS Prompt or Command Prompt window
to use javac. For more information about using javac, see
page 20.

Before a servlet is compiled, the Java compiler checks
the servlet code for errors. If an error is found, an error
message will be generated. If no errors are found, the code
will be successfully compiled and stored in a class file.
The class file will have the same name as the source file,
but will use the .class extension.

Once a servlet has been compiled, the resulting class file
must be copied to the appropriate directory on the Web
server. Consult the documentation for your Web server to
determine where to save servlets. Most Web servers require
executable files to be stored in a specific directory. For
example, if you are using the Tomcat Web server version 3.1
and you use the examples directory for development, you
should store your servlets in the examples/WEB-INF/classes
directory.

Depending on the configuration of your Web server and
the operating system you use, you may need to modify the
permissions for a servlet class file. Refer to your Web server
and operating system documentation for information about
setting servlet permissions.

To execute a servlet, enter the URL of the servlet in a Web
browser window.

COMPILE AND EXECUTE A SERVLET

DEMYSTIFYING SERVLETS 11

233

You can split long strings of data over multiple
lines by using the concatenation operator (+)
to break up the strings into multiple parts.

Example:
out.print("<!doctype html public" +

" \"-//w3c//dtd html 4.0 " +
"transitional//en\">" +
"<html><head>" +
"<title>Servlet Generated Web Page</title>" +
"</head><body>" +
"<h1>Servlet Generated Web Page</h1>" +
"</body></html>");

° To generate HTML
code, type out.print("").

· Between the quotation
marks, type the HTML
code you want to use for
the Web page.

‚ Repeat steps 8 and 9
to generate the HTML
code needed to render
the Web page.

� You can use variables,
methods and objects to
generate dynamic HTML
code.

— Save the file with the
.java extension and then
compile the source code
for the file.

± Copy the compiled
class file to the appropriate
directory on your Web
server.

232

JSP

GENERATE A WEB PAGE USING A SERVLET

⁄ Type the code that imports
the javax.servlet and the
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

ˇ Type the code that creates
a PrintWriter object from
the getWriter method of
the response object.

Á To send a document type
declaration to the client
application, type out.print("").

‡ Between the quotation
marks, type the appropriate
document type declaration
for the version of the HTML
specification the Web
browser should use to
render the Web page.

A servlet can be used to generate HTML code that is
rendered as a Web page when viewed in a Web
browser. Generating HTML code from a servlet allows

you to use features of the Java programming language, such
as variables, methods and objects to create Web pages.
Information for the Web pages can be retrieved from files,
databases or other Web pages. To generate Web pages from
a servlet, you simply send strings of data containing valid
HTML code to the client using the print method of the
out object.

Before sending HTML data to a client, the response
object can be instructed to send an HTTP header. HTTP
headers provide instructions and information to the client
application, usually a Web browser. For example, the
setContentType method of the response object can
be used to specify the content type of information to be
sent to the client. The "text/html" argument can be
passed to the setContentType method to inform the
client to expect HTML information.

HTML pages typically start with a document type
declaration. The document type declaration allows the
Web browser to determine what type of document is
being viewed by specifying which version of the HTML
specification the Web browser should use to render the
Web page. While most browsers will display Web pages
that do not have a document type declaration, some
applications, such as search engines, rely on the document
type declaration to better classify Web pages. You can find
information about the document type declaration for the
version of HTML you use at the www.w3.org Web site.

When generating a Web page using a servlet, the
setContentType method and the document type
declaration should be sent before any other HTML
code is sent to the client.

GENERATE A WEB PAGE USING A SERVLET

DEMYSTIFYING SERVLETS 11

You can use the setContentType method
to indicate that a page contains other types of
content besides HTML information. This chart
displays the most common content types.

CONTENT TYPE: DESCRIPTION:

text/html Page contains HTML code.
text/plain Page contains only plain text.
audio/basic Page contains an audio file.
video/mpeg Page contains a video file.
image/gif Page contains a GIF image.
image/jpeg Page contains a JPEG image.
application/pdf Page contains a PDF file.
application/msword Page contains a Word

document.

‹ Type the code that
creates the servlet class
and the doGet method.

› To specify that the
document will contain
HTML information, type
response.setContentType
("text/html").

¡ Display the servlet
in a Web browser.

� The Web browser
displays the Web page
generated by the servlet.

235

CGI Variables - Microsoft Internet Explorer

‡ To access information
about the Web server, type
getServletContext().getServerInfo().

° Type the code that
uses the information
from the CGI variable.

· Save the file with the .java
extension and then compile
the source code for the file.

‚ Copy the compiled class
file to the appropriate directory
on your Web server.

234

JSP

CREATE A SERVLET THAT ACCESSES CGI VARIABLES

⁄ Type the code that imports
the javax.servlet and
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

ˇ To access the address
of the client that made
a request, type
request.getRemoteAddr().

Á Type the code that
uses the information
from the CGI variable.

T he Common Gateway Interface (CGI) is a standard
used to create interactive Web sites. Servlets are often
used to replace CGI applications on a Web server.

Like the CGI applications they replace, servlets often need
to determine information about the environment in which
the servlet is running. For example, a servlet may need to
determine the type of Web server on which it is running
before performing an action such as writing to a database.
Information about the environment is typically stored in
CGI, or environment, variables, which store information
about the computer, Web server and operating system
that is running the servlet.

When you create servlets to replace CGI applications,
the servlets will need to access the CGI variables. Because
servlets are created using the Java programming language,
which was not developed specifically for use on Web

servers, servlets do not contain a built-in method for
accessing CGI variables. Servlets can access CGI variables
only by using objects, such as the HttpServletRequest
object, to retrieve information.

Methods of the HttpServletRequest object, which
handles the request information passed between a client
and a servlet, are the most common methods used to
access CGI variable information. For example, to access
the address of the client that made a request, you use
the getRemoteAddr() method of the
HttpServletRequest object.

Methods of the ServletContext object, such as the
getServerInfo() method, can be used to obtain
information about the Web server on which the servlet is
running, such as the name and version of the Web server
software and the operating system running on the server.

CREATE A SERVLET THAT
ACCESSES CGI VARIABLES

DEMYSTIFYING SERVLETS 11

The following is a list of some commonly used CGI variables
and the methods used to access the variables in a servlet.

CGI VARIABLE: METHOD REQUIRED:

AUTH_TYPE request.getAuthType()

CONTENT_TYPE request.getContentType()

DOCUMENT_ROOT getServletContext().getRealPath("/")

PATH_INFO request.getPathInfo()

QUERY_STRING request.getQueryString()

REMOTE_ADDR request.getRemoteAddr()

REMOTE_HOST request.getRemoteHost()

REMOTE_USER request.getRemoteUser()

SCRIPT_NAME request.getServletPath()

SERVER_NAME request.getServerName()

SERVER_PORT request.getServerPort()

SERVER_SOFTWARE getServletContext().getServerInfo()

‹ Type the code that
creates the servlet class
and the doGet method.

› Type the code that sends
HTML data to the client. For
information about generating
a Web page, see page 232.

— Display the servlet in
a Web browser.

� The Web browser displays
the result of accessing CGI
variable information using
the servlet.

237

There are two methods a form can use to pass
information to a servlet––get and post. The
get method is faster than the post method
and is suitable for small forms. The post
method is suitable for large forms that will send
more than 2000 characters to the servlet. When

the post method is used by a form, a doPost
method must be created in the servlet. You can
then pass the information from the doPost
method to the doGet method. This creates
a servlet that can handle information passed
using either the post or get method.

Example:
public void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.print("<!doctype html public \"-//w3c//dtd html 4.0 ");
out.print("transitional//en\">");
out.print("<html>");
out.print("<head><title>Process Form Data</title></head>");
out.print("<body>");
out.print("Welcome to my Web page");
out.print(request.getParameter("userName"));
out.print("</body></html>");

}
public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

doGet(request, response);
}

PROCESS FORM DATA

⁄ In a Web browser,
display the Web page
containing the form
you want to process.

¤ Enter data into the form.

‹ Click the submit button
to pass the data in the form
to the servlet.

� The Web browser displays
the result of processing form
data using a servlet.

236

JSP

PROCESS FORM DATA USING A SERVLET

⁄ Type the code that imports
the javax.servlet and
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

› Type the code that sends
HTML data to the client. For
information about generating
a Web page, see page 232.

ˇ Type the code that accesses
data passed by a form.

Á Save the file with the
.java extension and then
compile the source code
for the file.

‡ Copy the compiled
class file to the appropriate
directory on your Web
server.

U sing a servlet is a very effective method of processing
data passed by a form. Servlets process data faster
and are more efficient than CGI applications.

In addition to data passed by a form, a servlet can also be
used to process data submitted by a query string. A query
string is one or more name and value pairs appended to
a URL. To submit a query string to a servlet, you enter the
URL of the servlet in a Web browser, followed by a question
mark. You then enter a name followed by an equal sign and
a value for the name. To enter multiple name and value
pairs, separate each pair with an ampersand (&), such as
?userName=Martine&id=123. A query string should not
contain spaces.

In order for a servlet to process data passed by a form using
the get method or a query string, a doGet method must be
created in the servlet. The getParameter method of the
HttpServletRequest object can be used in the doGet

method to access form or query string data. The argument
for the getParameter method is the name of the form
element you want to access or a name specified in the
query string.

Once the servlet has retrieved the data from a form or a
query string, the data can be displayed in a Web browser
or stored in a variable for later use. A servlet may also
perform a more complex task, such as placing the data
in a database or writing the data to file.

Before the servlet file can be used to process form data,
the file must be saved with the .java extension and then
compiled. After saving the servlet, you should review the
code for the form to verify that the action attribute of
the <form> tag displays the correct filename and location
of the servlet.

PROCESS FORM DATA USING A SERVLET

DEMYSTIFYING SERVLETS 11

‹ Type the code that
creates the servlet
class and the doGet
method.

PRIMITIVE DATA TYPES

T he Java programming language includes many
keywords reserved for use only by Java. You cannot
use keywords as variable names or values in your

code. If you use a Java keyword inappropriately, the Java
compiler will usually detect the error and stop compiling
the code. The following is a list of Java reserved keywords.

JAVA ESSENTIALS

byte
Holds an integer value
ranging from -128 to 127.

char
Holds a single Unicode
character.

double
Holds a 64-bit floating-point value
ranging from ±4.9E-324 to
±1.7976931348623157E+308.

boolean
Holds the value true
or false.

int
Holds a 32-bit integer value
ranging from -2,147,483,648
to 2,147,483,647.

long
Holds a 64-bit integer value ranging
from -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807.

short
Holds a 16-bit integer
value ranging from
-32,768 to 32,767.

float
Holds a 32-bit floating-point
value ranging from ±1.4E-45
to ±3.4028235E+38.

EXCEPTION HANDLING

finally
Defines a block of code that
is executed in a try-catch
structure whether an
exception is thrown or not.

throw
Exits a method and passes
control to the block of
code that handles the
thrown exception.

throws
Defines the
exceptions that
a method may
throw.

try
Defines a block
of code that
may throw an
exception.

catch
Defines a block of
code that handles
exceptions thrown by
a try block of code.

FLOW CONTROL

break
Exits the flow of a loop or switch
and continues execution from the
line following the loop or switch.

case
Defines an option within a switch
statement and the block of code that
should be executed for that option.

continue
Exits the flow of a loop and
re-evaluates the loop condition.

default
Defines a default option within a
switch statement and the block of
code that should be executed when
there is no matching case statement.

do
Defines a block of code that is
executed once and repeats as long
as a condition is true.

else
Defines a block of code that is
executed if a condition is false in
an if statement.

for
Defines a block of code that repeats
depending on the value of a counter.

if
Defines a block of code that is
executed if a condition is true.

switch
Defines a variable or field whose current value
may induce the execution of the block of code
defined by a matching case statement.

while
Defines a block of code that
repeats as long as a condition is
true.

return
Exits a method and returns control
to the calling method, possibly
returning a value.

MODIFIERS

abstract
Indicates that a method's functionality
should be implemented by a subclass
of the class that contains the method.
Also, indicates that a class has such
methods.

final

Indicates that a
class, method or
field cannot be
modified.

native

Declares a Java method
which is written in
another language.

private

Indicates that a method or
field can be accessed only
by the class that contains it.

protected

Indicates that a method or field can
be accessed only by the class that
contains it or by a subclass of the
class that contains it.

synchronized
Indicates that a method cannot be executed by
two threads at the same time and cannot be
interrupted during execution. Also, indicates
an object that can be accessed by only one
synchronized block of code at a time.

void
Indicates a method that
does not return a value.

volatile
Indicates that a field
may be changed by
multiple threads.

public

Indicates that a
method or field
can be accessed
by any class.

static

Indicates that a method
or field is a class
member and can be
instantiated only in the
class that contains it.

strictfp
Indicates that a method or
class stores intermediate
results using strict
floating-point guidelines set
by the IEEE 754 standard.

OBJECTS

class
Defines a block of code
that outlines the methods
and fields of a class.

extends
Specifies which class
a subclass inherits
methods and fields
from.

implements
Specifies interfaces from
which a class implements
methods and fields.

interface
Indicates a block of
code that defines an
interface.

PACKAGES

import
Specifies packages to be
used by the source file.

package
Specifies which package
the classes of a source file
belong to.

MISCELLANEOUS RESERVED WORDS

In addition to the keywords above, you
also may not use const, false, goto,
null, transient and true as names
in your JSP code.

REFERENCE TYPES

instanceof
Tests an object to determine
if the object is an instance
of a particular data type or
class.

new
Creates a new object
in memory and calls
the constructor
method.

super
Refers to the parent
class of an object.

this
Refers to the current
object.

239238

JSP REFERENCE 12

241240

JSP

JAVASERVER PAGES ESSENTIALS

REFERENCE 12

Legend: plain text = required bold = default
italics = user-defined | = or
[] = optional {} = required choice
... = list of items + = can repeat

COMMENTS

HTML Comment

An HTML comment is sent to the Web browser,
but is not displayed. The information may be viewed
by users who view the HTML source code.

Syntax:

<!-- comment [<%= expression %>] -->

Example:

<!-- Session ID: <%= session.getId() %> -->

Hidden Comment

A hidden comment is discarded before any processing
of the JSP page takes place and is not sent to the Web
browser.

Syntax:

<%-- comment --%>

Example:

<%-- Page created by: Jade Williams --%>

SCRIPTING ELEMENTS (CONTINUED)

Scriptlet

A scriptlet is a block of code embedded within a JSP
page, which performs tasks such as generating output.

Syntax:

<% code_fragment %>

Example:

<% out.println("ABC Corporation Web site") %>

DIRECTIVES

Include Directive

The include directive allows you to use one file in
several different JSP pages.

Syntax:

<%@ include file="relativeURL" %>

Example:

<%@ include file="pages/footer.html" %>

Taglib Directive

The taglib directive allows you to define a tag
library and a prefix that can be used to reference
the custom tags.

Syntax:

<%@ taglib uri="tagLibURI" prefix="tagPrefix" %>

Example:

<%@ taglib uri="http://www.mysite.com/chart"
prefix="barchart" %>

Page Directive

The page directive allows you to specify information
about the configuration of a JSP page.

Syntax:

<%@ page [language="java"] [extends="package.class"]
[import="{package.class|package.*}, ..."]
[isThreadSafe="true|false"]
[session="true|false"] [info="text"]
[buffer="none|8kb|sizekb"] [autoFlush="true|false"]
[errorPage="relativeURL"] [isErrorPage="true|false"]
[contentType="{mimeType[; charset=characterSet]

|text/html; charset=iso-8859-1}"] %>

Example:

<%@ page isErrorPage="true" contentType="text/plain" %>

SCRIPTING ELEMENTS

Declaration

A declaration allows you to define variables and
methods that will be used throughout a JSP page.

Syntax:

<%! declaration; [declaration;]+ ... %>

Example:

<%! String siteName = "ABC Corporation"; %>

Expression

An expression allows you to generate output on
a JSP page.

Syntax:

<%= expression %>

Example:

<%= request.getAttribute("firstName") %>

JAVASERVER PAGES ESSENTIALS

243242

JSP

CUSTOM TAGS

Custom Tag

A custom tag invokes custom actions included in a tag
library. Custom actions are re-usable modules that may
create and access objects and affect the output stream.

Syntax:

<tagPrefix:name attribute="value"+ ... />

or
<tagPrefix:name attribute="value"+ ... >
JSPContent
</tagPrefix:name>

Example:

<barchart:Vertical values="1, 4, 3" />

ACTIONS

<jsp:forward> Action

The <jsp:forward> action instructs a Web server
to stop processing the current JSP page and start
processing another.

Syntax:

<jsp:forward page="{relativeURL|<%= expression %>}" />

or
<jsp:forward page="{relativeURL|<%= expression %>}" >

<jsp:param name="parameterName"
value="{parameterValue|<%= expression %>}" />+

</jsp:forward>

Example:

<jsp:forward page="/search" />

<jsp:setProperty> Action

The <jsp:setProperty> action sets the value or
values of a property in a JavaBean.

Syntax:

<jsp:setProperty name="beanID"
{property="*"
|property="propertyName" [param="parameterName"]
|property="propertyName"
value="{string|<%= expression %>}"} />

Example:

<jsp:setProperty name="lineBean" property="color"
value="red" />

ACTIONS (CONTINUED)

<jsp:getProperty> Action

The <jsp:getProperty> action accesses a property
of a JavaBean and can display the property in a JSP page.

Syntax:

<jsp:getProperty name="beanID" property="propertyName" />

Example:

<jsp:getProperty name="movieBean" property="title" />

<jsp:plugin> Action

The <jsp:plugin> action generates HTML code to
display an applet or JavaBean using a Java plug-in in a
Web browser. The plug-in is downloaded from a
specified location if the Web browser is not capable of
displaying the applet or JavaBean.

Syntax:

<jsp:plugin type="bean|applet" code="fileName.class"
codebase="classURL"
[name="instanceName"] [archive="archiveURI, ..."]
[align="bottom|top|middle|left|right"]
[height="hPixels"] [width="wPixels"]
[hspace="horPixels"] [vspace="verPixels"]
[jreversion="JREVersionNumber|1.1"]
[nspluginurl="PluginURL"] [iepluginurl="PluginURL"] >
[<jsp:params>

[<jsp:param name="parameterName"
value="{parameterValue|<%= expression %>}" />]+

</jsp:params>]
[<jsp:fallback> alternateText </jsp:fallback>]

</jsp:plugin>

Example:

<jsp:plugin type="applet" code="fireworks.class"
codebase="/java" height=250 width=187>
<jsp:fallback> Unable to load applet </jsp:fallback>

</jsp:plugin>

<jsp:include> Action

The <jsp:include> action includes a file, such as
an HTML or JSP page, in the current JSP page.

Syntax:

<jsp:include page="{relativeURL|<%= expression %>}"
flush="true" />

or
<jsp:include page="{relativeURL|<%= expression %>}"

flush="true" >
<jsp:param name="parameterName"

value="{parameterValue|<%= expression %>}" />+
</jsp:include>

Example:

<jsp:include page="welcome.jsp" flush="true" />

<jsp:useBean> Action

The <jsp:useBean> action associates a JSP page
with a specific JavaBean.

Syntax:

<jsp:useBean id="beanID"
scope="page|request|session|application"
{class="package.class" [type="package.class"]
|[beanName="{package.class|<%= expression %>}"]
type="package.class"}/>

or
<jsp:useBean id="beanID"

scope="page|request|session|application"
{class="package.class" [type="package.class"]
|[beanName="{package.class|<%= expression %>}"]
type="package.class"} >

otherElements
</jsp:useBean>

Example:
<jsp:useBean id="lineBean" scope="session"

class="myBeans.lnBean" />

REFERENCE 12

245244

JSP

JSP IMPLICIT OBJECTS QUICK REFERENCE

REFERENCE 12

REQUEST OBJECT
The request object retrieves and controls information sent
from a client to the Web server. The request object is a
subclass of the javax.servlet.ServletRequest class.

RESPONSE OBJECT
The response object sends and controls information
from the Web server to a client. The response object is a
subclass of the javax.servlet.ServletResponse class.

METHODS

Object getAttribute(String name)

Returns the value of an attribute of the request object.

Enumeration getAttributeNames()

Returns a list of names of available attributes in the
request object.

String getCharacterEncoding()

Returns the name of the character set used by the
request object.

int getContentLength()

Returns the length of the content body for the request
object, in bytes.

String getContentType()

Returns the content type of the request object.

ServletInputStream getInputStream()

Uses a ServletInputStream object to retrieve
a request as binary data.

Locale getLocale()

Returns the preferred regional setting in which the
client computer accepts information.

Enumeration getLocales()

Returns a list of regional settings in which the client
computer accepts information, in decreasing order
of preference.

String getParameter(String name)

Returns the value of a parameter in the request object.

Enumeration getParameterNames()

Returns a list of names of parameters contained in the
request object.

String[] getParameterValues(String name)

Returns an array containing all the values of a parameter.

String getProtocol()

Returns the name and version of the protocol used by the
request object.

BufferedReader getReader()

Uses a BufferedReader object to retrieve a request as
character data.

String getRealPath(String virtualPath)

Returns the real path that corresponds to a virtual path.
Deprecated. Use String ServletContext.
getRealPath(String virtualPath) instead.

String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client
computer that made the request.

String getRemoteHost()

Returns the name or IP address of the client computer
that made the request.

METHODS (Continued)

RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object to be used with
the resource located at the specified path.

String getScheme()

Returns the scheme used to make the request, such
as http, https or ftp.

String getServerName()

Returns the name of the server that received the
request.

int getServerPort()

Returns the number of the server port the request was
received on.

boolean isSecure()

Returns a boolean value indicating whether the request
was made through a secure channel.

void removeAttribute(String name)

Removes an attribute from the request object.

void setAttribute(String name, Object attribute)

Adds an attribute to the request object.

METHODS

void flushBuffer()

Sends information stored in the buffer to a client
immediately.

int getBufferSize()

Returns the buffer size of the response object, in bytes.

String getCharacterEncoding()

Returns the name of the character set used by the
response object.

Locale getLocale()

Returns the regional setting assigned to the response
object.

ServletOutputStream getOutputStream()

Returns a ServletOutputStream object that allows
the response object to write binary data to the client.

PrintWriter getWriter()

Returns a PrintWriter object that allows the
response object to write character data to the client.

boolean isCommitted()

Returns a boolean value indicating if the response
object has written the status code and headers.

void reset()

Clears information, status code and headers from
the buffer.

247246

JSP

JSP IMPLICIT OBJECTS QUICK REFERENCE

REFERENCE 12

METHODS (Continued)

void setBufferSize(int size)

Sets the buffer size for the response object, in bytes.

void setContentLength(int len)

Sets the length of the content body for the response
object, in bytes.

void setContentType(String type)

Sets the content type of the response object.

void setLocale(Locale loc)

Sets the regional setting for the response object.

RESPONSE OBJECT (CONTINUED)

FIELDS

String APPLICATION

Stores the application object in the name table
of the pageContext object.

int APPLICATION_SCOPE

Indicates that a reference has application scope.

String CONFIG

Stores the config object in the name table of the
pageContext object.

String EXCEPTION

Stores an uncaught exception in the attribute list
of the request object and in the name table of the
pageContext object.

String OUT

Stores the out object in the name table of the
pageContext object.

String PAGE

Stores the Servlet object in the name table of
the pageContext object.

PAGECONTEXT OBJECT
A pageContext object provides access to the
namespaces associated with a JSP page, page
attributes and implementation details. The
pageContext object is a subclass of the
javax.servlet.jsp.PageContext class.

FIELDS (Continued)

int PAGE_SCOPE

Indicates that a reference has page scope.

String PAGECONTEXT

Stores the pageContext object in its own name table.

String REQUEST

Stores the request object in the name table of the
pageContext object.

int REQUEST_SCOPE

Indicates that a reference has request scope.

String RESPONSE

Stores the response object in the name table of the
pageContext object.

String SESSION

Stores the session object in the name table of the
pageContext object.

int SESSION_SCOPE

Indicates that a reference has session scope.

METHODS

Object findAttribute(String name)

Searches for an attribute in all valid scopes and returns
the value.

void forward(String relativeUrlPath)

Forwards the current request and response objects
to another resource found at the specified path.

Object getAttribute(String name)

Returns the value of an attribute in the page scope.

Object getAttribute(String name, int scope)

Returns the value of an attribute in the specified scope.

Enumeration getAttributeNamesInScope(int scope)

Returns a list of names of the available attributes in the
specified scope.

int getAttributesScope(String name)

Returns the scope of an attribute.

Exception getException()

Returns any exception object that was passed to the
JSP page.

JspWriter getOut()

Returns the out object that is being used for client
response.

249248

JSP REFERENCE 12

JSP IMPLICIT OBJECTS QUICK REFERENCE

METHODS (Continued)

Object getPage()

Returns the Servlet associated with the
pageContext object.

ServletRequest getRequest()

Returns the request object associated with the
pageContext object.

ServletResponse getResponse()

Returns the response object associated with the
pageContext object.

ServletConfig getServletConfig()

Returns the config object associated with the
pageContext object.

ServletContext getServletContext()

Returns the application object associated with the
pageContext object.

HttpSession getSession()

Returns the session object associated with the
pageContext object.

void handlePageException(Exception exception)

Executes code when a specific error is encountered.

void include(String relativeUrlPath)

Processes the resource found at the specified path as
part of the request and response objects currently
being processed.

void initialize(Servlet servlet, ServletRequest
request, ServletResponse response, String
errorPageURL, boolean needsSession, int
bufferSize, boolean autoFlush)

Initializes a pageContext object.

JspWriter popBody()

Returns the previous out object saved by the previous
call of the pushBody method and updates the value of
the OUT attribute in the page scope of the
pageContext object.

BodyContent pushBody()

Returns a new BodyContent object, saves the current
out object and updates the value of the OUT attribute in
the page scope of the pageContext object.

void release()

Resets the pageContext object.

void removeAttribute(String name)

Removes an attribute.

void removeAttribute(String name, int scope)

Removes an attribute in the specified scope.

void setAttribute(String name, Object attribute)

Adds an attribute with page scope.

void setAttribute(String name, Object attribute,
int scope)

Adds an attribute with the specified scope.

PAGECONTEXT OBJECT (CONTINUED)

SESSION OBJECT
The session object stores session information
about a client computer as the client navigates a
Web site. The session object is a subclass of the
javax.servlet.http.HttpSession class.

METHODS

Object getAttribute(String name)

Returns the information stored in a session value
of the session object.

Enumeration getAttributeNames()

Returns a list of all session values available in the
session object.

long getCreationTime()

Returns the time the session started, measured
in milliseconds since January 1, 1970.

String getId()

Returns the session ID.

long getLastAccessedTime()

Returns the last time the client sent a request during the
session, measured in milliseconds since January 1, 1970.

int getMaxInactiveInterval()

Returns the session timeout, in seconds.

HttpSessionContext getSessionContext()

Deprecated. This method will be removed in a future
version of the Java Servlet API.

Object getValue(String name)

Returns the information stored in a session value
of the session object.
Deprecated. Use Object getAttribute(String name)
instead.

String[] getValueNames()

Returns a list of all session values available in the
session object.
Deprecated. Use Enumeration getAttributeNames()
instead.

void invalidate()

Terminates the current session.

boolean isNew()

Returns true if the client computer has not yet
joined the session.

void putValue(String name, Object value)

Creates a session value for the session object.
Deprecated. Use void setAttribute(String name,
Object attribute) instead.

void removeAttribute(String name)

Removes a session value from the session object.

void removeValue(String name)

Removes a session value from the session object.
Deprecated. Use void removeAttribute(String name)
instead.

void setAttribute(String name, Object attribute)

Creates a session value for the session object.

void setMaxInactiveInterval(int interval)

Sets the session timeout, in seconds.

251250

JSP

JSP IMPLICIT OBJECTS QUICK REFERENCE

REFERENCE 12

APPLICATION OBJECT
The application object stores and shares
information for use during an active application.
The application object is a subclass of the
javax.servlet.ServletContext class.

METHODS

Object getAttribute(String name)

Returns the value of an attribute of the application
object.

Enumeration getAttributeNames()

Returns a list of names of available attributes in the
application object.

ServletContext getContext(String path)

Returns a ServletContext object to be used with
the resource located at the specified path.

String getInitParameter(String name)

Returns the value of an initialization parameter of the
application object.

Enumeration getInitParameterNames()

Returns a list of names of available initialization
parameters in the application object.

int getMajorVersion()

Returns the major version of the Java Servlet API that
the server supports.

String getMimeType(String file)

Returns the MIME type of a file.

int getMinorVersion()

Returns the minor version of the Java Servlet API that
the server supports.

RequestDispatcher getNamedDispatcher(String name)

Returns a RequestDispatcher object to be used
by the named application object.

String getRealPath(String virtualPath)

Returns the real path that corresponds to the specified
virtual path.

RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object to be used
with the resource located at the specified path.

URL getResource(String path)

Returns a URL to the resource that is mapped to the
specified path.

InputStream getResourceAsStream(String path)

Returns the resource located at the specified path
as an InputStream object.

String getServerInfo()

Returns information about the server on which the servlet
is running.

METHODS (Continued)

Servlet getServlet(String name)

Deprecated. This method will be removed in a future
version of the Java Servlet API.

Enumeration getServletNames()

Deprecated. This method will be removed in a future
version of the Java Servlet API.

Enumeration getServlets()

Deprecated. This method will be removed in a future
version of the Java Servlet API.

void log(Exception exception, String msg)

Writes an explanatory error message to the servlet log file.
Deprecated. Use void log(String msg,
Throwable throwable) instead.

void log(String msg)

Writes a message to a servlet log file.

void log(String msg, Throwable throwable)

Writes an explanatory message and a stack trace to the
servlet log file for a given error.

void removeAttribute(String name)

Removes an attribute from the application object.

void setAttribute(String name, Object attribute)

Creates an attribute for the application object.

FIELDS

boolean autoFlush

Indicates whether the buffer flushes automatically.

int bufferSize

Stores the buffer size used by the out object, in bytes.

int DEFAULT_BUFFER

Indicates that the out object is buffered and is using
the default buffer size.

int NO_BUFFER

Indicates that the out object is not buffered.

int UNBOUNDED_BUFFER

Indicates that the out object is buffered and is using
an unlimited buffer size.

OUT OBJECT
The out object is a buffered output stream that sends
output to the client. The out object is a subclass of the
javax.servlet.jsp.JspWriter class.

253252

JSP REFERENCE 12

JSP IMPLICIT OBJECTS QUICK REFERENCE

METHODS

void clear()

Clears the buffer. If the buffer has been flushed, this
method causes an error to occur.

void clearBuffer()

Clears the buffer. This method does not cause an error
if the buffer has been flushed.

void close()

Flushes the buffer and closes the output stream.

void flush()

Flushes the buffer.

int getBufferSize()

Returns the buffer size used by the out object, in bytes.

int getRemaining()

Returns the size of the unused area in the buffer, in
bytes.

boolean isAutoFlush()

Returns true if the buffer flushes automatically.

void newLine()

Writes the line separator string to start a new line
in the output stream.

void print(boolean b)

Prints a boolean value.

void print(char c)

Prints a character.

void print(char[] s)

Prints an array of characters.

void print(double d)

Prints a double-precision floating-point number.

void print(float f)

Prints a floating-point number.

void print(int i)

Prints an integer.

METHODS (Continued)

void print(long l)

Prints a long integer.

void print(Object obj)

Prints an object.

void print(String s)

Prints a string.

void println()

Writes the line separator string to terminate the
current line.

void println(boolean b)

Prints a boolean value and then terminates the line.

void println(char c)

Prints a character and then terminates the line.

void println(char[] s)

Prints an array of characters and then terminates
the line.

void println(double d)

Prints a double-precision floating-point number and
then terminates the line.

void println(float f)

Prints a floating-point number and then terminates
the line.

void println(int i)

Prints an integer and then terminates the line.

void println(long l)

Prints a long integer and then terminates the line.

void println(Object obj)

Prints an object and then terminates the line.

void println(String s)

Prints a string and then terminates the line.

OUT OBJECT (CONTINUED)

JSP IMPLICIT OBJECTS QUICK REFERENCE

255254

JSP REFERENCE 12

CONFIG OBJECT
The config object contains information
about the servlet configuration. The
config object is a subclass of the
javax.servlet.ServletConfig class.

METHODS

String getInitParameter(String name)

Returns the value of the initialization parameter of the
servlet.

Enumeration getInitParameterNames()

Returns a list of names of the servlet's initialization
parameters.

ServletContext getServletContext()

Returns a reference to the application object
in which the servlet is executing.

String getServletName()

Returns the name of the current servlet. EXCEPTION OBJECT
The exception object contains information about
a runtime error and is available only in an error page.
An error page must contain the isErrorPage=true
attribute in the page directive. The exception object
is a subclass of the java.lang.Throwable class.

METHODS

Throwable fillInStackTrace()

Fills the exception object with current error
information.

String getLocalizedMessage()

Returns an error message according to regional settings.

String getMessage()

Returns the error message describing the exception.

void printStackTrace()

Prints information about the exception object to
the standard error stream.

void printStackTrace(PrintStream s)

Prints information about the exception object
to the specified print stream.

void printStackTrace(PrintWriter s)

Prints information about the exception object
to the specified print writer.

String toString()

Returns a short description of this exception
object.

PAGE OBJECT
The page object refers to the JSP page
itself. The page object is a subclass of
the java.lang.Object class.

METHODS

Object clone()

Creates and returns a copy of the page object.

boolean equals(Object obj)

Indicates whether another object is the same as
the page object.

void finalize()

Performs cleanup tasks when there are no more
references to the page object.

Class getClass()

Returns the runtime class of the page object.

int hashCode()

Returns a hash code value for the page object.

void notify()

Wakes up a single thread that is waiting on the
page object's monitor.

METHODS (Continued)

void notifyAll()

Wakes up all threads that are waiting on the page
object's monitor.

String toString()

Returns a string representation of the page object.

void wait()

Causes the current thread to wait until another
thread awakens the page object.

void wait(long timeout)

Causes the current thread to wait until another
thread awakens the page object or the specified
amount of time, measured in milliseconds, has
elapsed.

void wait(long timeout, int nanos)

Causes the current thread to wait until another
thread awakens the page object, another thread
interrupts the current thread or the specified amount
of time, measured in nanoseconds, has elapsed.

JAVA.SQL QUICK REFERENCE
The java.sql package provides interfaces
and classes that allow Java programs to access
and manipulate information in a database. The
java.sql package is also known as the Java
DataBase Connectivity 2.0 core Application
Program Interface, or JDBC 2.0 core API.

INTERFACES

Array

Provides methods for handling data in an SQL ARRAY
type.

Blob

Provides methods for handling data in an SQL BLOB
type.

CallableStatement

Provides methods for executing SQL stored procedures.

Clob

Provides methods for handling data in an SQL CLOB
type.

Connection

Provides methods for controlling a connection to a
database.

DatabaseMetaData

Provides comprehensive information about a database.

Driver

This interface must be implemented by every driver
class.

PreparedStatement

Provides methods for handling precompiled SQL
statements.

Ref

Provides a method for retrieving the SQL name of
a data structure type referenced by the Ref object and
SQL REF.

ResultSet

Provides methods for handling the information
generated by the execution of a statement that queries
a database.

ResultSetMetaData

Provides methods for obtaining information about the
columns in a ResultSet object.

SQLData

Provides methods for manipulating SQL user-defined
types.

INTERFACES (Continued)

SQLInput

Provides methods for manipulating data in an input
stream.

SQLOutput

Provides methods for writing data back to a database.

Statement

Provides methods for executing an SQL statement
and obtaining the results.

Struct

Provides methods for retrieving information about
an SQL structured type.

257256

JSP REFERENCE 12

CLASSES

Date

Provides methods for manipulating an SQL DATE,
which is measured in milliseconds since January 1,
1970.

DriverManager

Provides methods for managing a set of JDBC
drivers.

DriverPropertyInfo

Provides methods for discovering and supplying
properties for database connections.

SQLPermission

Holds the name of the permission that is checked by
the SecurityManager when there is a call to one
of the setLogWriter methods.

Time

Provides methods for manipulating an SQL TIME
value, which is the time of day, based on the
number of milliseconds since January 1, 1970.

Timestamp

Provides methods for manipulating an SQL
TIMESTAMP value, which is the time of day
and a nanosecond component. The time of day
is based on the number of milliseconds since
January 1, 1970.

Types

Defines the constants that represent generic SQL
types.

259258

JSP

A ctive Server Pages (ASP) is an alternative technology
for generating dynamic Web pages. ASP, developed
by Microsoft, and JSP have many similarities. Both

technologies allow programmers to insert dynamic Web
content into HTML pages using special tags, access
information in databases, store information about a client
computer throughout a session and use encapsulated
components, such as ActiveX in ASP and JavaBeans in JSP.

There are many differences between the two technologies
as well. ASP pages are processed almost exclusively by
Microsoft Web servers––Internet Information Server (IIS)
or Personal Web Server, while JSP pages can be processed
by any server that supports Java servlets.

ASP code is usually written using VBScript or JScript,
which are Microsoft proprietary scripting languages. JSP
code, however, is written using Java, which is platform
independent and can run on any computer that has a
Java virtual machine. Java has more flexibility and fewer
limitations than the scripting languages used in ASP.

There are also differences in the way JSP and ASP pages
are processed by Web servers. Every time an ASP page
is requested by a client, the code in the ASP page is
interpreted by the Web server and the results are then
sent to the Web browser. The first time a JSP page is
requested, the code in the JSP page is compiled into a
servlet by the Web server. The server then processes the
servlet to generate the HTML code which is sent to the
Web browser. The Web server keeps a copy of the servlet
for future requests. The next time the page is requested,
the precompiled servlet can simply be processed.
Processing precompiled servlets is faster than re-interpreting
the code in ASP pages each time a page is requested.

The following pages illustrate the differences between JSP
and ASP implicit objects and their most common functions,
as well as other JSP and ASP features, such as scripting
elements and comments.

JAVASERVER PAGES AND ACTIVE SERVER PAGES

REFERENCE 12

REQUEST OBJECT

Function JSP ASP

Object name request Request

Retrieve certification N/A ClientCertificate
information (String key[String field])

Retrieve cookies getCookies() Cookies(String name)
[(String key)]

Retrieve form data getParameter(String name), Form(String element)
getParameterNames() [(int index)]
and
getParameterValues(String name)

Retrieve query data getParameter(String name) QueryString(String element)
and [(int index)]
getQueryString()

Retrieve HTTP headers getHeaderNames(), ServerVariables(String serverVar)
getHeader(String name),
getIntHeader(String name)
and
getDateHeader(String name)

RESPONSE OBJECT

Function JSP ASP

Object name response Response

Enable or disable The JSP response object does not support Buffer = True|False
buffering this function, but this can be done using the

<%@ page buffer="sizekb|none" %>
directive.

Enable or disable setHeader("Cache-Control", CacheControl = Public|Private
proxy server caching "no-cache")

Create a cookie addCookie(Cookie name) Cookies(String name)[(String
key).attribute] = value

Add an HTTP header setHeader(String name, String AddHeader String Name, String
value) Value

Load a new page sendRedirect(String AbsURL) Redirect String url
This function needs an encoded URL from
encodeRedirectURL(String url)
if URL rewriting is being used to track a
session.

Send an error to client sendError(int code, String msg) N/A

Encode a URL encodeURL(String url) The ASP Response object does not
This function appends the session ID to support this function, but this can be done
the URL if URL rewriting is being used to using the Server.URLencode(String
track a session. url) method.

Set the MIME type setContentType(String mimeType) ContentType = String mimeType

PAGECONTEXT OBJECT

Function JSP ASP

Object name pageContext No similar object

JAVASERVER PAGES AND ACTIVE SERVER PAGES

261260

JSP REFERENCE 12

SESSION OBJECT

Function JSP ASP

Object name session Session

Terminate a session invalidate() Abandon

Create a session variable setAttribute(String name, Session(String name) =
Object attribute) "Variable Data"

Create a session object setAttribute(String name, Set Session(String name) =
Object attribute) Server.CreateObject(String name)

Retrieve a session getAttribute(String name) My_Variable = Session(String name)
variable

Retrieve a session object getAttribute(String name) Set My_Object = Session(String
name)

Remove a session removeAttribute(String name) Contents.Remove(String name)
variable or object

Retrieve session variable getAttributeNames() For Each Key in
or object names Session.Contents

Response.Write(Key & " : " &
Session(Key) & "
")

Next

Retrieve the session ID getId() SessionID

Set the session timeout setMaxInactiveInterval(int Timeout(int Minutes)
seconds)

Retrieve the session getMaxInactiveInterval() N/A
timeout

Retrieve the preferred The JSP session object does not support LCID
regional setting in which this function, but this can be done using
the client computer the request.getLocale() method.
accepts information

Disable the session This function can be done using the This function can be done using the
<%@ page session="false" %> <%@ EnableSessionState=False %>
directive. directive.

APPLICATION OBJECT

Function JSP ASP

Object name application Application

Create a variable setAttribute(String name, Application(String name) =
Object object) "Variable Data"

Create an object setAttribute(String name, Set Application(String name) =
Object object) Server.CreateObject(String name)

Retrieve a variable getAttribute(String name) My_Variable =
Application(String name)

Retrieve an object getAttribute(String name) Set My_Object =
Application(String name)

Remove a variable removeAttribute(String name) Contents.Remove(String name)
or object

Retrieve variable or getAttributeNames() For Each Key in
object names Application.Contents

Response.Write(Key & " : " &
Application(Key) & "
")

Next

Lock and unlock The JSP application object does Lock and Unlock
variables not support this function, but this

can be done using thread control.

Retrieve information getServerInfo() N/A
about the server

Determine the getMajorVersion() and N/A
servlet API version getMinorVersion()

Write to the servlet log(String msg) The ASP Application object
log file does not support this function,

but this can be done using the
Response.AppendToLog(String msg)
method.

Determine the MIME getMimeType(String file) N/A
type of a file

Find a virtual path's getRealPath(String virtualpath) The ASP Application object
corresponding real path does not support this function,

but this can be done using the
Server.MapPath(String path)
method.

Find the URL to a getResource(String path) N/A
resource

JAVASERVER PAGES AND ACTIVE SERVER PAGES
OUT OBJECT

Function JSP ASP

Object name out Response

Write to the print(data) Write(data)
output buffer

Write binary data The JSP out object does not support BinaryWrite(data)
this function, but this can be done
using the OutputStream.write
(Byte[] buffer) method.

Clear the buffer clearBuffer() Clear()

Flush the buffer flush() Flush()

Close the output close() End()
stream This method stops the processing of the

current page.

263262

JSP REFERENCE 12

ERROR OBJECT

Function JSP ASP

Object name exception ASPError

Retrieve an error getMessage() Description()
message

Retrieve a detailed toString() ASPDescription()
error description

Print information printStackTrace(PrintStream s) N/A
about an error or

printStackTrace(PrintWriter s)

Determine the N/A Line and Column
position of an error
in the source file

SERVER OBJECT

Function JSP ASP

Object name No similar object, but other JSP implicit Server
objects have methods that support most
functions of the ASP Server object.

Create an object To create an object, use standard Java CreateObject(Object id)
syntax.

Apply HTML encoding N/A HTMLEncode(String s)
to a string

Find a virtual path's This function can be done using the MapPath(String virtualPath)
corresponding real path application.getRealPath(String

virtualPath) method.

Encode a URL This function can be done using the URLEncode(String url)
response.encodeURL(String url)
method.

Forward control This function can be done using the Transfer(String path)
to a new page <jsp:forward page="String path" />

action.

Set the amount of N/A ScriptTimeout = int Seconds
time a script can run
on the server before
it is terminated

CONFIG OBJECT

Function JSP ASP

Object name config No similar object

Determine the name getServletName() N/A
of the current servlet

Return a reference to getServletContext() N/A
the application object

Retrieve the names of getInitParameterNames() N/A
the servlet's initialization
parameters

Retrieve the value of an getInitParameter(String name) N/A
initialization parameter

PAGE OBJECT

Function JSP ASP

Object name page No similar object

JAVASERVER PAGES AND ACTIVE SERVER PAGES

SCRIPTING ELEMENTS

Element JSP ASP

Declarations: define <%! <%
functions, methods and Method and variable Function and variable
variables that will be declarations declarations
used by the scriptlets %> %>
in a Web page.

Expressions: generate <%= <%=
output directly to a Variable name or call to Variable name or call to
Web page. a method a function

%> %>

Scriptlets: embed blocks <% <%
of code within a Web JSP code ASP code
page to perform tasks %> %>
such as generating
output.

265264

JSP REFERENCE 12

INCLUDE COMMANDS

Include Type JSP ASP

Static includes: <%@ include file="String url" %> <!--#include
include files before the or file="String relativePath"-->
processing of a page. <jsp:include file="String url" or

flush="true" > <!--#include
<jsp:param name="String name" virtual="String virtualPath"-->
value="String value" />

</jsp:include>

Dynamic includes: <%@ include page="String url" %> Server.Execute("String url")
include a file during or
the processing of <jsp:include page="String url"
a page. flush="true" >

<jsp:param name="String name"
value="String value" />

</jsp:include>

FILE REDIRECTION

Redirection Type JSP ASP

Server redirection: <jsp:forward page="String path" /> Server.Transfer(String path)
stops the execution of or
the current page and <jsp:forward page="String path" >
transfers control to a <jsp:param name="String name"
new page. value="String value" />

</jsp:forward>

SCRIPTING COMMENTS

Comment Type JSP ASP

Scriptlet comments: // a single-line comment ' a single-line comment
add information to or
the scriptlet code. /* a multiple-line comment */

Hidden comments: <%-- a hidden comment --%> N/A
add information to the
server-side file and are
not sent to the Web
browser.

	1 - Java Basics
	2 - Programming with Java
	3 - GETTING STARTED WITH JAVASERVER PAGES
	4 - WORK WITH JSP IMPLICIT OBJECTS
	5 - WORK WITH COOKIE
	6 - HARNESSING JAVABEANS
	7 - WORK WITH DATABASES
	8 - HANDLING ERRORS
	9 - WORK WITH FILES
	10 - CREATE CUSTOM TAGS
	11 - DEMYSTIFYING SERVLETS
	12 - REFERENCE

