Kalman Filtering

Theory and Practice Using MATLAB

Mobinder 5. Grewal FI
Angus I? Andrews )

—w—t K, |—H- ., L
: ; y :
: gﬂw 5
: "'.l t—} {+:' -




Kalman Filtering



Kalman Filtering:
Theory and Practice

Using MATLAB

Second Edition

MOHINDER S. GREWAL

California State University at Fullerton

ANGUS P. ANDREWS

Rockwell Science Center

A Wiley-Interscience Publication
John Wiley & Sons, Inc.
NEW YORK ¢ CHICHESTER ¢ WEINHEIM ¢ BRISBANE ¢ SINGAPORE ¢ TORONTO



Copyright © 2001 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling,
recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third
Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008,

E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional
services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.

ISBN 0-471-26638-8.

This title is also available in print as ISBN 0-471-39254-5.

For more information about Wiley products, visit our web site at www.Wiley.com.



Contents

PREFACE
ACKNOWLEDGMENTS

1 General Information

1.1
1.2
1.3
1.4

On Kalman Filtering

On Estimation Methods

On the Notation Used in This Book
Summary

Problems

2 Linear Dynamic Systems

2.1
2.2
23
24
25
2.6
2.7

3.1
32
3.3

Chapter Focus

Dynamic Systems

Continuous Linear Systems and Their Solutions
Discrete Linear Systems and Their Solutions
Observability of Linear Dynamic System Models
Procedures for Computing Matrix Exponentials
Summary

Problems

Random Processes and Stochastic Systems

Chapter Focus
Probability and Random Variables
Statistical Properties of Random Variables

ix
xiii

25

25
26
30
41
42
48
50
53

56

56
58
66



vi

CONTENTS

3.4 Statistical Properties of Random Processes 68
3.5 Linear System Models of Random Processes and Sequences 76
3.6 Shaping Filters and State Augmentation 84
3.7 Covariance Propagation Equations 88
3.8 Orthogonality Principle 97
3.9 Summary 102
Problems 104
Linear Optimal Filters and Predictors 114
4.1 Chapter Focus 114
4.2 Kalman Filter 116
4.3 Kalman—Bucy Filter 126
4.4  Optimal Linear Predictors 128
4.5 Correlated Noise Sources 129
4.6 Relationships between Kalman and Wiener Filters 130
4.7 Quadratic Loss Functions 131
4.8 Matrix Riccati Differential Equation 133
4.9 Matrix Riccati Equation in Discrete Time 148
4.10 Relationships between Continuous and Discrete Riccati Equations 153
4.11 Model Equations for Transformed State Variables 154
4.12 Application of Kalman Filters 155
4.13  Smoothers 160
4.14 Summary 164
Problems 165
Nonlinear Applications 169
5.1 Chapter Focus 169
5.2 Problem Statement 170
5.3 Linearization Methods 171
5.4 Linearization about a Nominal Trajectory 171
5.5 Linearization about the Estimated Trajectory 175
5.6 Discrete Linearized and Extended Filtering 176
5.7 Discrete Extended Kalman Filter 178
5.8 Continuous Linearized and Extended Filters 181
5.9 Biased Errors in Quadratic Measurements 182
5.10 Application of Nonlinear Filters 184
5.11 Summary 198
Problems 200
Implementation Methods 202
6.1 Chapter Focus 202
6.2 Computer Roundoff 204
6.3 Effects of Roundoff Errors on Kalman Filters 209

6.4 Factorization Methods for Kalman Filtering 216



CONTENTS

6.5 Square-Root and UD Filters

6.6 Other Alternative Implementation Methods

6.7 Summary

Problems

7 Practical Considerations

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Chapter Focus

Detecting and Correcting Anomalous Behavior

Prefiltering and Data Rejection Methods
Stability of Kalman Filters

Suboptimal and Reduced-Order Filters
Schmidt-Kalman Filtering

Memory, Throughput, and Wordlength Requirements
Ways to Reduce Computational Requirements

Error Budgets and Sensitivity Analysis

Optimizing Measurement Selection Policies

Application to Aided Inertial Navigation
Summary
Problems

Appendix A MATLAB Software

Al
A2
A3
A4
A5
A6
AT
A8
A9

Notice

General System Requirements
Diskette Directory Structure
MATLAB Software for Chapter 2
MATLAB Software for Chapter 4
MATLAB Software for Chapter 5
MATLAB Software for Chapter 6
MATLAB Software for Chapter 7
Other Sources of Software

Appendix B A Matrix Refresher

B.1
B.2
B3
B4
B.5
B.6
B.7
B.8
B.9

Matrix Forms

Matrix Operations

Block Matrix Formulas

Functions of Square Matrices

Norms

Cholesky Decomposition

Orthogonal Decompositions of Matrices
Quadratic Forms

Derivatives of Matrices

REFERENCES

INDEX

Vii

238
252
265
266

270

270
271
294
298
299
309
316
326
332
336
342
346
347

350

350
350
351
351
351
352
352
353
353

355

355
359
363
366
370
373
375
377
379

381

395






Preface

The first edition of this book was published by Prentice-Hall in 1993. With this
second edition, as with the first, our primary objective is to provide our readers a
working familiarity with both the theoretical and practical aspects of Kalman
filtering by including “real-world” problems in practice as illustrative examples.
We are pleased to have this opportunity to incorporate the many helpful corrections
and suggestions from our colleagues and students over the last several years for the
overall improvement of the textbook. The book covers the historical background of
Kalman filtering and the more practical aspects of implementation: how to represent
the problem in a mathematical model, analyze the performance of the estimator as a
function of model parameters, implement the mechanization equations in numeri-
cally stable algorithms, assess its computational requirements, test the validity of
results, and monitor the filter performance in operation. These are important
attributes of the subject that are often overlooked in theoretical treatments but are
necessary for application of the theory to real-world problems.

We have converted all algorithm listings and all software to MATLAB®", so that
users can take advantage of its excellent graphing capabilities and a programming
interface that is very close to the mathematical equations used for defining Kalman
filtering and its applications. See Appendix A, Section A.2, for more information on
MATLAB.

The inclusion of the software is practically a matter of necessity, because Kalman
filtering would not be very useful without computers to implement it. It is a better
learning experience for the student to discover how the Kalman filter works by
observing it in action.

The implementation of Kalman filtering on computers also illuminates some of
the practical considerations of finite-wordlength arithmetic and the need for alter-

"MATLARB is a registered trademark of The Mathworks, Inc.

ix



X PREFACE

native algorithms to preserve the accuracy of the results. If the student wishes to
apply what she or he learns, then it is essential that she or he experience its workings
and failings—and learn to recognize the difference.

The book is organized for use as a text for an introductory course in stochastic
processes at the senior level and as a first-year graduate-level course in Kalman
filtering theory and application. It could also be used for self-instruction or for
purposes of review by practicing engineers and scientists who are not intimately
familiar with the subject. The organization of the material is illustrated by the
following chapter-level dependency graph, which shows how the subject of each
chapter depends upon material in other chapters. The arrows in the figure indicate
the recommended order of study. Boxes above another box and connected by arrows
indicate that the material represented by the upper boxes is background material for
the subject in the lower box.

Chapter 1 provides an informal introduction to the general subject matter by way
of its history of development and application. Chapters 2 and 3 and Appendix B
cover the essential background material on linear systems, probability, stochastic
processes, and modeling. These chapters could be covered in a senior-level course in
electrical, computer, and systems engineering.

Chapter 4 covers linear optimal filters and predictors, with detailed examples of
applications. Chapter 5 is devoted to nonlinear estimation by “extended” Kalman

1. GENERAL 2. LINEAR DYNAMIC SYSTEMS
INFORMATION l

3. RANDOM PROCESSES
& STOCHASTIC SYSTEMS

‘ }

r 4. OPTIMAL LINEAR FILTERS AND PREDICTORS !

. .
[ 5. NONLINEAR APPLICATIONS ]

[ 6. IMPLEMENTATION METHODS I

A

l 7. PRACTICAL CONSIDERATIONS |

I APPENDIX A: MATLAB SOFTWARE I




PREFACE Xi

filters. Applications of these techniques to the identification of unknown parameters
of systems are given as examples. Chapter 6 covers the more modern implementa-
tion techniques, with algorithms provided for computer implementation.

Chapter 7 deals with more practical matters of implementation and use beyond
the numerical methods of Chapter 6. These matters include memory and throughput
requirements (and methods to reduce them), divergence problems (and effective
remedies), and practical approaches to suboptimal filtering and measurement
selection.

Chapters 4—7 cover the essential material for a first-year graduate class in Kalman
filtering theory and application or as a basic course in digital estimation theory and
application. A solutions manual for each chapter’s problems is available.

PROF. MOHINDER S. GREWAL, PHD, PE
California State University at Fullerton

ANGUS P. ANDREWS, PHD

Rockwell Science Center, Thousand Oaks, California



Acknowledgments

The authors express their appreciation to the following individuals for their
contributions during the preparation of the first edition: Robert W. Bass, E. Richard
Cohen, Thomas W. De Vries, Reverend Joseph Gaffney, Thomas L. Gunckel II,
Dwayne Heckman, Robert A. Hubbs, Thomas Kailath, Rudolf E. Kalman, Alan J.
Laub, Robert F. Nease, John C. Pinson, John M. Richardson, Jorma Rissanen, Gerald
E. Runyon, Joseph Smith and Donald F. Wiberg. We also express our appreciation to
Donald Knuth and Leslie Lamport for TEX and LATEX, respectively.

In addition, the following individuals deserve special recognition for their careful
review, corrections, and suggestions for improving the second edition: Dean Dang
and Gordon Inverarity.

Most of all, for their dedication, support, and understanding through both
editions, we dedicate this book to Sonja Grewal and Jeri Andrews.

M. S. G, A. P A

Xiii



General Information

. the things of this world cannot be made known without mathematics.
—Roger Bacon (1220-1292), Opus Majus, transl. R. Burke, 1928

1.1 ON KALMAN FILTERING

1.1.1 First of All: What Is a Kalman Filter?

Theoretically the Kalman Filter is an estimator for what is called the linear-quadratic
problem, which is the problem of estimating the instantaneous “state” (a concept
that will be made more precise in the next chapter) of a linear dynamic system
perturbed by white noise—by using measurements linearly related to the state but
corrupted by white noise. The resulting estimator is statistically optimal with respect
to any quadratic function of estimation error.

Practically, it is certainly one of the greater discoveries in the history of statistical
estimation theory and possibly the greatest discovery in the twentieth century. It has
enabled humankind to do many things that could not have been done without it, and
it has become as indispensable as silicon in the makeup of many electronic systems.
Its most immediate applications have been for the control of complex dynamic
systems such as continuous manufacturing processes, aircraft, ships, or spacecraft.
To control a dynamic system, you must first know what it is doing. For these
applications, it is not always possible or desirable to measure every variable that you
want to control, and the Kalman filter provides a means for inferring the missing
information from indirect (and noisy) measurements. The Kalman filter is also used
for predicting the likely future courses of dynamic systems that people are not likely
to control, such as the flow of rivers during flood, the trajectories of celestial bodies,
or the prices of traded commodities.

From a practical standpoint, these are the perspectives that this book will
present:



2 GENERAL INFORMATION

e [t is only a tool. Tt does not solve any problem all by itself, although it can
make it easier for you to do it. It is not a physical tool, but a mathematical one.
It is made from mathematical models, which are essentially tools for the mind.
They make mental work more efficient, just as mechanical tools make physical
work more efficient. As with any tool, it is important to understand its use and
function before you can apply it effectively. The purpose of this book is to
make you sufficiently familiar with and proficient in the use of the Kalman
filter that you can apply it correctly and efficiently.

e [t is a computer program. It has been called “ideally suited to digital computer
implementation” [21], in part because it uses a finite representation of the
estimation problem—by a finite number of variables. It does, however, assume
that these variables are real numbers—with infinite precision. Some of the
problems encountered in its use arise from the distinction between finite
dimension and finite information, and the distinction between “finite” and
“manageable” problem sizes. These are all issues on the practical side of
Kalman filtering that must be considered along with the theory.

e [t is a complete statistical characterization of an estimation problem. It is much
more than an estimator, because it propagates the entire probability distribution
of the variables it is tasked to estimate. This is a complete characterization of
the current state of knowledge of the dynamic system, including the influence
of all past measurements. These probability distributions are also useful for
statistical analysis and the predictive design of sensor systems.

e [n a limited context, it is a learning method. It uses a model of the estimation
problem that distinguishes between phenomena (what one is able to observe),
noumena (what is really going on), and the state of knowledge about the
noumena that one can deduce from the phenomena. That state of knowledge is
represented by probability distributions. To the extent that those probability
distributions represent knowledge of the real world and the cumulative
processing of knowledge is learning, this is a learning process. It is a fairly
simple one, but quite effective in many applications.

If these answers provide the level of understanding that you were seeking, then there
is no need for you to read the rest of the book. If you need to understand Kalman
filters well enough to use them, then read on!

1.1.2 How It Came to Be Called a Filter

It might seem strange that the term “filter” would apply to an estimator. More
commonly, a filter is a physical device for removing unwanted fractions of mixtures.
(The word felt comes from the same medieval Latin stem, for the material was used
as a filter for liquids.) Originally, a filter solved the problem of separating unwanted
components of gas—liquid—solid mixtures. In the era of crystal radios and vacuum
tubes, the term was applied to analog circuits that “filter” electronic signals. These



1.1 ON KALMAN FILTERING 3

Kalman
filtering
Least .
mean Stoc{\astlc
squares systems
Least Probability Dynamic
squares theory systems

I I I I 1
Mathematical foundations
Fig. 1.1 Foundational concepts in Kalman filtering.

signals are mixtures of different frequency components, and these physical devices
preferentially attenuate unwanted frequencies.

This concept was extended in the 1930s and 1940s to the separation of “signals”
from “noise,” both of which were characterized by their power spectral densities.
Kolmogorov and Wiener used this statistical characterization of their probability
distributions in forming an optimal estimate of the signal, given the sum of the signal
and noise.

With Kalman filtering the term assumed a meaning that is well beyond the
original idea of separation of the components of a mixture. It has also come to
include the solution of an inversion problem, in which one knows how to represent
the measurable variables as functions of the variables of principal interest. In
essence, it inverts this functional relationship and estimates the independent
variables as inverted functions of the dependent (measurable) variables. These
variables of interest are also allowed to be dynamic, with dynamics that are only
partially predictable.

1.1.3 Its Mathematical Foundations

Figure 1.1 depicts the essential subjects forming the foundations for Kalman filtering
theory. Although this shows Kalman filtering as the apex of a pyramid, it is itself but
part of the foundations of another discipline—“modern” control theory—and a
proper subset of statistical decision theory.

We will examine only the top three layers of the pyramid in this book, and a little
of the underlying mathematics' (matrix theory) in Appendix B.

1.1.4 What It Is Used For

The applications of Kalman filtering encompass many fields, but its use as a tool is
almost exclusively for two purposes: estimation and performance analysis of
estimators.

"t is best that one not examine the bottommost layers of these mathematical foundations too carefully,
anyway. They eventually rest on human intellect, the foundations of which are not as well understood.



4 GENERAL INFORMATION

Role 1: Estimating the State of Dynamic Systems What is a dynamic system?
Almost everything, if you are picky about it. Except for a few fundamental
physical constants, there is hardly anything in the universe that is truly
constant. The orbital parameters of the asteroid Ceres are not constant, and
even the “fixed” stars and continents are moving. Nearly all physical systems
are dynamic to some degree. If one wants very precise estimates of their
characteristics over time, then one has to take their dynamics into considera-
tion.

The problem is that one does not always know their dynamics very precisely
either. Given this state of partial ignorance, the best one can do is express our
ignorance more precisely—using probabilities. The Kalman filter allows us to
estimate the state of dynamic systems with certain types of random behavior
by using such statistical information. A few examples of such systems are
listed in the second column of Table 1.1.

Role 2: The Analysis of Estimation Systems. The third column of Table 1.1 lists
some possible sensor types that might be used in estimating the state of the
corresponding dynamic systems. The objective of design analysis is to
determine how best to use these sensor types for a given set of design criteria.
These criteria are typically related to estimation accuracy and system cost.

The Kalman filter uses a complete description of the probability distribution of its
estimation errors in determining the optimal filtering gains, and this probability
distribution may be used in assessing its performance as a function of the “design
parameters” of an estimation system, such as

e the types of sensors to be used,

e the locations and orientations of the various sensor types with respect to the
system to be estimated,

TABLE 1.1 Examples of Estimation Problems

Application Dynamic System Sensor Types

Process control Chemical plant Pressure
Temperature
Flow rate
Gas analyzer
Flood prediction River system Water level
Rain gauge
Weather radar
Tracking Spacecraft Radar
Imaging system
Navigation Ship Sextant
Log
Gyroscope
Accelerometer
Global Positioning System (GPS) receiver




1.2 ON ESTIMATION METHODS 5

e the allowable noise characteristics of the sensors,

the prefiltering methods for smoothing sensor noise,

the data sampling rates for the various sensor types, and

the level of model simplification to reduce implementation requirements.

The analytical capability of the Kalman filter formalism also allows a system
designer to assign an “error budget” to subsystems of an estimation system and to
trade off the budget allocations to optimize cost or other measures of performance
while achieving a required level of estimation accuracy.

1.2 ON ESTIMATION METHODS

We consider here just a few of the sources of intellectual material presented in the
remaining chapters and principally those contributors® whose lifelines are shown in
Figure 1.2. These cover only 500 years, and the study and development of
mathematical concepts goes back beyond history. Readers interested in more
detailed histories of the subject are referred to the survey articles by Kailath [25,
176], Lainiotis [192], Mendel and Geiseking [203], and Sorenson [47, 224] and the
personal accounts of Battin [135] and Schmidt [216].

1.2.1 Beginnings of Estimation Theory

The first method for forming an optimal estimate from noisy data is the method
of least squares. Its discovery is generally attributed to Carl Friedrich Gauss
(1777-1855) in 1795. The inevitability of measurement errors had been recognized
since the time of Galileo Galilei (1564-1642) , but this was the first formal method
for dealing with them. Although it is more commonly used for linear estimation
problems, Gauss first used it for a nonlinear estimation problem in mathematical
astronomy, which was part of a dramatic moment in the history of astronomy. The
following narrative was gleaned from many sources, with the majority of the
material from the account by Baker and Makemson [97]:

On January 1, 1801, the first day of the nineteenth century, the Italian astronomer
Giuseppe Piazzi was checking an entry in a star catalog. Unbeknown to Piazzi, the
entry had been added erroneously by the printer. While searching for the “missing”
star, Piazzi discovered, instead, a new planet. It was Ceres—the largest of the minor
planets and the first to be discovered—but Piazzi did not know that yet. He was able to
track and measure its apparent motion against the “fixed” star background during 41
nights of viewing from Palermo before his work was interrupted. When he returned to
his work, however, he was unable to find Ceres again.

2The only contributor after R. E. Kalman on this list is Gerald J. Bierman, an early and persistent advocate
of numerically stable estimation methods. Other recent contributors are acknowledged in Chapter 6.



GENERAL INFORMATION

1500 1600 1700 1800 1900 2000
I e o S B S L B B o S AR m e
Cardano Legendre
Galileo _ Gauss
Fermat. Maxwell
Pascal Markov
_PE;Tgcns Cholesky
Newton __Wiener
Bernoulli Kolmogorov
Bayes Kalman
Laplace Bierman
lljllilllllllllllllll]l)]llll!llll!]l]]!l]llll
1500 1600 1700 1800 1900 2000

Fig. 1.2 Lifelines of referenced historical figures and R. E. Kalman.

On January 24, Piazzi had written of his discovery to Johann Bode. Bode is best
known for Bodes law, which states that the distances of the planets from the sun, in
astronomical units, are given by the sequence

d, =54 4+3x2") forn=-00,0,1,224,5,.... (1.1)

Actually, it was not Bode, but Johann Tietz who first proposed this formula, in 1772. At
that time there were only six known planets. In 1781, Friedrich Herschel discovered
Uranus, which fit nicely into this formula for n = 6. No planet had been discovered for
n=3. Spurred on by Bode, an association of European astronomers had been
searching for the “missing” eighth planet for nearly 30 years. Piazzi was not part of
this association, but he did inform Bode of his unintended discovery.

Piazzi’s letter did not reach Bode until March 20. (Electronic mail was discovered
much later.) Bode suspected that Piazzi’s discovery might be the missing planet, but
there was insufficient data for determining its orbital elements by the methods then
available. It is a problem in nonlinear equations that Newton, himself, had declared as
being among the most difficult in mathematical astronomy. Nobody had solved it and,
as a result, Ceres was lost in space again.

Piazzi’s discoveries were not published until the autumn of 1801. The possible
discovery—and subsequent loss—of a new planet, coinciding with the beginning of a
new century, was exciting news. It contradicted a philosophical justification for there
being only seven planets—the number known before Ceres and a number defended by
the respected philosopher Georg Hegel, among others. Hegel had recently published a
book in which he chastised the astronomers for wasting their time in searching for an
eighth planet when there was a sound philosophical justification for there being only
seven. The new planet became a subject of conversation in intellectual circles nearly
everywhere. Fortunately, the problem caught the attention of a 24-year-old mathema-
tician at Gottingen named Carl Friedrich Gauss.



1.2 ON ESTIMATION METHODS 7

Gauss had toyed with the orbit determination problem a few weeks earlier but had
set it aside for other interests. He now devoted most of his time to the problem,
produced an estimate of the orbit of Ceres in December, and sent his results to Piazzi.
The new planet, which had been sighted on the first day of the year, was found again—
by its discoverer—on the last day of the year.

Gauss did not publish his orbit determination methods until 1809.> In this
publication, he also described the method of least squares that he had discovered in
1795, at the age of 18, and had used it in refining his estimates of the orbit of Ceres.

Although Ceres played a significant role in the history of discovery and it still
reappears regularly in the nighttime sky, it has faded into obscurity as an object of
intellectual interest. The method of least squares, on the other hand, has been an
object of continuing interest and benefit to generations of scientists and technol-
ogists ever since its introduction. It has had a profound effect on the history of
science. It was the first optimal estimation method, and it provided an important
connection between the experimental and theoretical sciences: It gave experimen-
talists a practical method for estimating the unknown parameters of theoretical
models.

1.2.2 Method of Least Squares

The following example of a least-squares problem is the one most often seen,
although the method of least squares may be applied to a much greater range of
problems.

EXAMPLE 1.1: Least-Squares Solution for Overdetermined Linear Systems
Gauss discovered that if he wrote a system of equations in matrix form, as

hy hy hyo e hy, X1 2]
hyy hy hyy e hy, X2 Z
by hy by e hn, || X3 | = | 23 (1.2)
hy  hp hy - hy, Xn Zm
or
Hx =z, (1.3)

*In the meantime, the method of least squares had been discovered independently and published by
Andrien-Marie Legendre (1752-1833) in France and Robert Adrian (1775-1855) in the United States
[176]. [1t had also been discovered and used before Gauss was born by the German-Swiss physicist Johann
Heinrich Lambert (1728-1777).] Such Jungian synchronicity (i.e., the phenomenon of multiple, near-
simultaneous discovery) was to be repeated for other breakthroughs in estimation theory, as well—for the
Wiener filter and the Kalman filter.



8 GENERAL INFORMATION

then he could consider the problem of solving for that value of an estimate X
(pronounced “x-hat”) that minimizes the “estimated measurement error” Hx — z.
He could characterize that estimation error in terms of its Euclidean vector norm
|Hx — z|, or, equivalently, its square:

&(X) = |[Hx — z|? (1.4)
2
m n n
=y |:Zhijxj — z{| , (1.5)
i=1] j=1
which is a continuously differentiable function of the n unknowns X, X,, X3, ..., X,

This function &*(X) — oo as any component %, — Zoo. Consequently, it will
achieve its minimum value where all its derivatives with respect to the X, are
zero. There are n such equations of the form

P 2
0= (1.6)
Bxk
=2) hy |:Zhij5‘j - Zi:| (1.7)
=1 |j=1
for k =1,2,3,...,n Note that in this last equation the expression
hyx; —z; = {HX — z};, (1.8)

J=1

the ith row of HX — z, and the outermost summation is equivalent to the dot product
of the kth column of H with Hx — z. Therefore Equation 1.7 can be written as

0 =2H"[Hx —z] (1.9)
=2H"Hx —2H"z (1.10)
or
H'HY = H'z,

where the matrix transpose HT is defined as

hyy hy hyy - by
hiy hy  hsy -
HT = | hiz hy hy P3 (1.11)



1.2 ON ESTIMATION METHODS 9
The normal equation of the linear least squares problem. The equation
H'HY =H"z (1.12)

is called the normal equation or the normal form of the equation for the linear least-
squares problem. It has precisely as many equivalent scalar equations as unknowns.

The Gramian of the linear least squares problem. The normal equation has the
solution

= (H"H) 'H"z,
provided that the matrix
4 —=H'H (1.13)

is nonsingular (i.e., invertible). The matrix product ¥ = H'H in this equation is
called the Gramian matrix.* The determinant of the Gramian matrix characterizes
whether or not the column vectors of A are linearly independent. If its determinant is
zero, the column vectors of H are linearly dependent, and X cannot be determined
uniquely. If its determinant is nonzero, then the solution x is uniquely determined.

Least-squares solution. In the case that the Gramian matrix is invertible (i.e.,
nonsingular), the solution % is called the least-squares solution of the overdetermined
linear inversion problem. It is an estimate that makes no assumptions about the
nature of the unknown measurement errors, although Gauss alluded to that
possibility in his description of the method. The formal treatment of uncertainty
in estimation would come later.

This form of the Gramian matrix will be used in Chapter 2 to define the
observability matrix of a linear dynamic system model in discrete time.

Least Squares in Continuous Time. The following example illustrates how
the principle of least squares can be applied to fitting a vector-valued parametric
model to data in continuous time. It also illustrates how the issue of deferminacy
(i.e., whether there is a unique solution to the problem) is characterized by the
Gramian matrix in this context.

“Named for the Danish mathematician Jorgen Pedersen Gram (1850—1916). This matrix is also related to
what is called the unscaled Fisher information matrix, named after the English statistician Ronald Aylmer
Fisher (1890-1962). Although information matrices and Gramian matrices have different definitions and
uses, they can amount to almost the same thing in this particular instance. The formal statistical definition
of the term information matrix represents the information obtained from a sample of values from a known
probability distribution. It corresponds to a scaled version of the Gramian matrix when the measurement
errors in z have a joint Gaussian distribution, with the scaling related to the uncertainty of the measured
data. The information matrix is a quantitative statistical characterization of the “information” (in some
sense) that is in the data z used for estimating x. The Gramian, on the other hand, is used as an qualitative
algebraic characterization of the uniqueness of the solution.



10 GENERAL INFORMATION

EXAMPLE 1.2: Least-Squares Fitting of Vector-Valued Data in Continuous
Time Suppose that, for each value of time 7 on an interval ¢, <t < 1, z(¢) is an {-
dimensional signal vector that is modeled as a function of an unknown n-vector x by
the equation

z(t) = H(t)x,

where H(¢) is a known £ x n matrix. The squared error in this relation at each time ¢
will be

&(1) = |=(t) — H(t)x?
= x"[HT(O)H()x — 2xTHT (0)z(1) + |2(£) .

The squared integrated error over the interval will then be the integral

Iy
llell® =J & (t)dt

)

. [ J " o) dt:|x — 2t U" H' (0)2(0) dr} + r 201 d,

fy fo fo

which has exactly the same array structure with respect to x as the algebraic least-
squares problem. The least-squares solution for x can be found, as before, by taking
the derivatives of ||¢||> with respect to the components of x and equating them to
zero. The resulting equations have the solution

t -1 {
i= U’ HY(0)H(®) dt:| UfHT(r)z(t) dt},

provided that the corresponding Gramian matrix

G = J,/, HY(OH () dt

)

is nonsingular.
This form of the Gramian matrix will be used in Chapter 2 to define the
observability matrix of a linear dynamic system model in continuous time.

1.2.3 Gramian Matrix and Observability

For the examples considered above, observability does not depend upon the
measurable data (z). It depends only on the nonsingularity of the Gramian matrix
(%), which depends only on the linear constraint matrix (H) between the unknowns
and knowns.



1.2 ON ESTIMATION METHODS 11

Observability of a set of unknown variables is the issue of whether or not their
values are uniquely determinable from a given set of constraints, expressed as
equations involving functions of the unknown variables. The unknown variables are
said to be observable if their values are uniquely determinable from the given
constraints, and they are said to be unobservable if they are not uniquely determin-
able from the given constraints.

The condition of nonsingularity (or “full rank”) of the Gramian matrix is an
algebraic characterization of observability when the constraining equations are
linear in the unknown variables. It also applies to the case that the constraining
equations are not exact, due to errors in the values of the allegedly known parameters
of the equations.

The Gramian matrix will be used in Chapter 2 to define observability of the states
of dynamic systems in continuous time and discrete time.

1.2.4 Introduction of Probability Theory

Beginnings of Probability Theory. Probabilities represent the state of knowl-
edge about physical phenomena by providing something more useful than “I don’t
know” to questions involving uncertainty. One of the mysteries in the history of
science is why it took so long for mathematicians to formalize a subject of such
practical importance. The Romans were selling insurance and annuities long before
expectancy and risk were concepts of serious mathematical interest. Much later, the
Italians were issuing insurance policies against business risks in the early Renais-
sance, and the first known attempts at a theory of probabilities—for games of
chance—occurred in that period. The Italian Girolamo Cardano® (1501-1576)
performed an accurate analysis of probabilities for games involving dice. He
assumed that successive tosses of the dice were statistically independent events.
He and the contemporary Indian writer Brahmagupta stated without proof that the
accuracies of empirical statistics tend to improve with the number of trials. This
would later be formalized as a law of large numbers.

More general treatments of probabilities were developed by Blaise Pascal (1623—
1662), Pierre de Fermat (1601-1655), and Christiaan Huygens (1629-1695).
Fermat’s work on combinations was taken up by Jakob (or James) Bernoulli
(1654—1705), who is considered by some historians to be the founder of probability
theory. He gave the first rigorous proof of the law of large numbers for repeated
independent trials (now called Bernoulli trials). Thomas Bayes (1702—1761) derived
his famous rule for statistical inference sometime after Bernoulli. Abraham de
Moivre (1667-1754), Pierre Simon Marquis de Laplace (1749-1827), Adrien Marie
Legendre (1752-1833), and Carl Friedrich Gauss (1777-1855) continued this
development into the nineteenth century.

SCardano was a practicing physician in Milan who also wrote books on mathematics. His book De Ludo
Hleae, on the mathematical analysis of games of chance (principally dice games), was published nearly a
century after his death. Cardano was also the inventor of the most common type of universal joint found in
automobiles, sometimes called the Cardan joint or Cardan shaft.



12 GENERAL INFORMATION

Between the early nineteenth century and the mid-twentieth century, the prob-
abilities themselves began to take on more meaning as physically significant
attributes. The idea that the laws of nature embrace random phenomena, and that
these are treatable by probabilistic models began to emerge in the nineteenth century.
The development and application of probabilistic models for the physical world
expanded rapidly in that period. It even became an important part of sociology. The
work of James Clerk Maxwell (1831-1879) in statistical mechanics established the
probabilistic treatment of natural phenomena as a scientific (and successful)
discipline.

An important figure in probability theory and the theory of random processes in
the twentieth century was the Russian academician Andrei Nikolacovich Kolmo-
gorov (1903—1987). Starting around 1925, working with H. Ya. Khinchin and others,
he reestablished the foundations of probability theory on measurement theory, which
became the accepted mathematical basis of probability and random processes. Along
with Norbert Wiener (1894-1964), he is credited with founding much of the theory
of prediction, smoothing and filtering of Markov processes, and the general theory of
ergodic processes. His was the first formal theory of optimal estimation for systems
involving random processes.

1.2.5 Wiener Filter

Norbert Wiener (1894-1964) is one of the more famous prodigies of the early
twentieth century. He was taught by his father until the age of 9, when he entered
high school. He finished high school at the age of 11 and completed his under-
graduate degree in mathematics in three years at Tufts University. He then entered
graduate school at Harvard University at the age of 14 and completed his doctorate
degree in the philosophy of mathematics when he was 18. He studied abroad and
tried his hand at several jobs for six more years. Then, in 1919, he obtained a
teaching appointment at the Massachusetts Institute of Technology (MIT). He
remained on the faculty at MIT for the rest of his life.

In the popular scientific press, Wiener is probably more famous for naming and
promoting cybernetics than for developing the Wiener filter. Some of his greatest
mathematical achievements were in generalized harmonic analysis, in which he
extended the Fourier transform to functions of finite power. Previous results were
restricted to functions of finite energy, which is an unreasonable constraint for
signals on the real line. Another of his many achievements involving the generalized
Fourier transform was proving that the transform of white noise is also white noise.°

Wiener Filter Development. In the early years of the World War II, Wiener was
involved in a military project to design an automatic controller for directing
antiaircraft fire with radar information. Because the speed of the airplane is a

°He is also credited with the discovery that the power spectral density of a signal equals the Fourier
transform of its autocorrelation function, although it was later discovered that Einstein had known it
before him.



1.2 ON ESTIMATION METHODS 13

nonnegligible fraction of the speed of bullets, this system was required to “shoot into
the future.” That is, the controller had to predict the future course of its target using
noisy radar tracking data.

Wiener derived the solution for the least-mean-squared prediction error in terms
of the autocorrelation functions of the signal and the noise. The solution is in the
form of an integral operator that can be synthesized with analog circuits, given
certain constraints on the regularity of the autocorrelation functions or, equivalently,
their Fourier transforms. His approach represents the probabilistic nature of random
phenomena in terms of power spectral densities.

An analogous derivation of the optimal linear predictor for discrete-time systems
was published by A. N. Kolmogorov in 1941, when Wiener was just completing his
work on the continuous-time predictor.

Wiener’s work was not declassified until the late 1940s, in a report titled
“Extrapolation, interpolation, and smoothing of stationary time series.” The title
was subsequently shortened to “Time series.” An early edition of the report had a
yellow cover, and it came to be called “the yellow peril.” It was loaded with
mathematical details beyond the grasp of most engineering undergraduates, but it
was absorbed and used by a generation of dedicated graduate students in electrical
engineering.

1.2.6 Kalman Filter

Rudolf Emil Kalman was born on May 19, 1930, in Budapest, the son of Otto and
Ursula Kalman. The family emigrated from Hungary to the United States during
World War II. In 1943, when the war in the Mediterranean was essentially over, they
traveled through Turkey and Africa on an exodus that eventually brought them to
Youngstown, Ohio, in 1944. Rudolf attended Youngstown College there for three
years before entering MIT.

Kalman received his bachelor’s and master’s degrees in electrical engineering at
MIT in 1953 and 1954, respectively. His graduate advisor was Ernst Adolph
Guillemin, and his thesis topic was the behavior of solutions of second-order
difference equations [114]. When he undertook the investigation, it was suspected
that second-order difference equations might be modeled by something analogous to
the describing functions used for second-order differential equations. Kalman
discovered that their solutions were not at all like the solutions of differential
equations. In fact, they were found to exhibit chaotic behavior.

In the fall of 1955, after a year building a large analog control system for the E. I.
DuPont Company, Kalman obtained an appointment as lecturer and graduate student
at Columbia University. At that time, Columbia was well known for the work in
control theory by John R. Ragazzini, Lotfi A. Zadeh,” and others. Kalman taught at
Columbia until he completed the Doctor of Science degree there in 1957.

For the next year, Kalman worked at the research laboratory of the International
Business Machines Corporation in Poughkeepsie and for six years after that at the

"Zadeh is perhaps more famous as the “father” of fuzzy systems theory and interpolative reasoning.



14 GENERAL INFORMATION

research center of the Glenn L. Martin company in Baltimore, the Research Institute
for Advanced Studies (RIAS).

Early Research Interests. The algebraic nature of systems theory first became
of interest to Kalman in 1953, when he read a paper by Ragazzini published the
previous year. It was on the subject of sampled-data systems, for which the time
variable is discrete valued. When Kalman realized that linear discrete-time systems
could be solved by transform methods, just like linear continuous-time systems, the
idea occurred to him that there is no fundamental difference between continuous and
discrete linear systems. The two must be equivalent in some sense, even though the
solutions of linear differential equations cannot go to zero (and stay there) in finite
time and those of discrete-time systems can. That started his interest in the
connections between systems theory and algebra.

In 1954 Kalman began studying the issue of controllability, which is the question
of whether there exists an input (control) function to a dynamic system that will
drive the state of that system to zero. He was encouraged and aided by the work of
Robert W. Bass during this period. The issue of eventual interest to Kalman was
whether there is an algebraic condition for controllability. That condition was
eventually found as the rank of a matrix.® This implied a connection between algebra
and systems theory.

Discovery of the Kalman Filter. In late November of 1958, not long after
coming to RIAS, Kalman was returning by train to Baltimore from a visit to
Princeton. At around 11 PM, the train was halted for about an hour just outside
Baltimore. It was late, he was tired, and he had a headache. While he was trapped
there on the train for that hour, an idea occurred to him: Why not apply the notion of
state variables’ to the Wiener filtering problem? He was too tired to think much
more about it that evening, but it marked the beginning of a great exercise to do just
that. He read through Loéve’s book on probability theory [68] and equated
expectation with projection. That proved to be pivotal in the derivation of the
Kalman filter. With the additional assumption of finite dimensionality, he was able to
derive the Wiener filter as what we now call the Kalman filter. With the change to
state-space form, the mathematical background needed for the derivation became
much simpler, and the proofs were within the mathematical reach of many under-
graduates.

Introduction of the Kalman Filter. Kalman presented his new results in talks at
several universities and research laboratories before it appeared in print.'® His ideas
were met with some skepticism among his peers, and he chose a mechanical

8The controllability matrix, a concept defined in Chapter 2.

QAlthough function-space methods were then the preferred approach to the filtering problem, the use of
state-space models for time-varying systems had already been introduced (e.g., by Laning and Battin [67]
in 1956).

'%In the meantime, some of the seminal ideas in the Kalman filter had been published by Swerling [227] in
1959 and Stratonovich [25, 226] in 1960.



1.2 ON ESTIMATION METHODS 15

engineering journal (rather than an electrical engineering journal) for publication,
because “When you fear stepping on hallowed ground with entrenched interests, it is
best to go sideways.” '' His second paper, on the continuous-time case, was once
rejected because—as one referee put it—one step in the proof “cannot possibly be
true.” (It was true.) He persisted in presenting his filter, and there was more
immediate acceptance elsewhere. It soon became the basis for research topics at
many universities and the subject of dozens of doctoral theses in electrical
engineering over the next several years.

Early Applications. Kalman found a receptive audience for his filter in the fall of
1960 in a visit to Stanley F. Schmidt at the Ames Research Center of NASA in
Mountain View, California [118]. Kalman described his recent result and Schmidt
recognized its potential applicability to a problem then being studied at Ames—the
trajectory estimation and control problem for the Apollo project, a planned manned
mission to the moon and back. Schmidt began work immediately on what was
probably the first full implementation of the Kalman filter. He soon discovered what
is now called “extended Kalman filtering,” which has been used ever since for most
real-time nonlinear applications of Kalman filtering. Enthused over his own success
with the Kalman filter, he set about proselytizing others involved in similar work. In
the early part of 1961, Schmidt described his results to Richard H. Battin from the
MIT Instrumentation Laboratory (later renamed the Charles Stark Draper Labora-
tory). Battin was already using state space methods for the design and implementa-
tion of astronautical guidance systems, and he made the Kalman filter part of the
Apollo onboard guidance,'? which was designed and developed at the Instrumenta-
tion Laboratory. In the mid-1960s, through the influence of Schmidt, the Kalman
filter became part of the Northrup-built navigation system for the C5A air transport,
then being designed by Lockheed Aircraft Company. The Kalman filter solved the
data fusion problem associated with combining radar data with inertial sensor data to
arrive at an overall estimate of the aircraft trajectory and the data rejection problem
associated with detecting exogenous errors in measurement data. It has been an
integral part of nearly every onboard trajectory estimation and control system
designed since that time.

Other Research Interests. Around 1960, Kalman showed that the related notion
of observability for dynamic systems had an algebraic dual relationship with
controllability. That is, by the proper exchange of system parameters, one problem
could be transformed into the other, and vice versa.

Richard S. Bucy was also at RIAS in that period, and it was he who suggested to
Kalman that the Wiener—Hopf equation is equivalent to the matrix Riccati equa-

""The two quoted segments in this paragraph are from a talk on System Theory: Past and Present given by
Kalman at the University of California at Los Angeles (UCLA) on April 17, 1991, in a symposium
organized and hosted by A. V. Balakrishnan at UCLA and sponsored jointly by UCLA and the National
Aeronautics and Space Administration (NASA) Dryden Laboratory.

12 Another fundamental improvement in Kalman filter implementation methods was made soon after by
James E. Potter at the MIT Instrumentation Laboratory. This will be discussed in the next subsection.



16 GENERAL INFORMATION

tion—if one assumes a finite-dimensional state-space model. The general nature of
this relationship between integral equations and differential equations first became
apparent around that time. One of the more remarkable achievements of Kalman and
Bucy in that period was proving that the Riccati equation can have a stable (steady-
state) solution even if the dynamic system is unstable—provided that the system is
observable and controllable.

Kalman also played a leading role in the development of realization theory, which
also began to take shape around 1962. This theory addresses the problem of finding
a system model to explain the observed input—output behavior of a system. This line
of investigation led to a uniqueness principle for the mapping of exact (i.e.,
noiseless) data to linear system models.

In 1985, Kalman was awarded the Kyoto Prize, considered by some to be the
Japanese equivalent of the Nobel Prize. On his visit to Japan to accept the Kyoto
Prize, he related to the press an epigram that he had first seen in a pub in Colorado
Springs in 1962, and it had made an impression on him. It said:

Little people discuss other people.
Average people discuss events.
Big people discuss ideas.

His own work, he felt, had been concerned with ideas.

In 1990, on the occasion of Kalman’s sixtieth birthday, a special international
symposium was convened for the purpose of honoring his pioneering achievements
in what has come to be called mathematical system theory, and a Festschrift with that
title was published soon after [3].

Impact of Kalman Filtering on Technology. From the standpoint of those
involved in estimation and control problems, at least, this has to be considered the
greatest achievement in estimation theory of the twentieth century. Many of the
achievements since its introduction would not have been possible without it. It was
one of the enabling technologies for the Space Age, in particular. The precise and
efficient navigation of spacecraft through the solar system could not have been done
without it.

The principal uses of Kalman filtering have been in “modern” control systems, in
the tracking and navigation of all sorts of vehicles, and in predictive design of
estimation and control systems. These technical activities were made possible by the
introduction of the Kalman filter. (If you need a demonstration of its impact on
technology, enter the keyword “Kalman filter” in a technical literature search. You
will be overwhelmed by the sheer number of references it will generate.)

Relative Advantages of Kalman and Wiener Filtering
1. The Wiener filter implementation in analog electronics can operate at much
higher effective throughput than the (digital) Kalman filter.
2. The Kalman filter is implementable in the form of an algorithm for a digital
computer, which was replacing analog circuitry for estimation and control at



1.2 ON ESTIMATION METHODS 17

the time that the Kalman filter was introduced. This implementation may be
slower, but it is capable of much greater accuracy than had been achievable
with analog filters.

3. The Wiener filter does not require finite-dimensional stochastic process
models for the signal and noise.

4. The Kalman filter does not require that the deterministic dynamics or the
random processes have stationary properties, and many applications of
importance include nonstationary stochastic processes.

5. The Kalman filter is compatible with the state-space formulation of optimal
controllers for dynamic systems, and Kalman was able to prove useful dual
properties of estimation and control for these systems.

6. For the modern controls engineering student, the Kalman filter requires less
additional mathematical preparation to learn and use than the Wiener filter. As
a result, the Kalman filter can be taught at the undergraduate level in
engineering curricula.

7. The Kalman filter provides the necessary information for mathematically
sound, statistically-based decision methods for detecting and rejecting anom-
alous measurements.

1.2.7 Square-Root Methods and All That

Numerical Stability Problems. The great success of Kalman filtering was not
without its problems, not the least of which was marginal stability of the numerical
solution of the associated Riccati equation. In some applications, small roundoff
errors tended to accumulate and eventually degrade the performance of the filter. In
the decades immediately following the introduction of the Kalman filter, there
appeared several better numerical implementations of the original formulas. Many of
these were adaptations of methods previously derived for the least squares problem.

Early ad hoc Fixes. It was discovered early on'? that forcing symmetry on the
solution of the matrix Riccati equation improved its apparent numerical stability—a
phenomenon that was later given a more theoretical basis by Verhaegen and Van
Dooren [232]. It was also found that the influence of roundoff errors could be
ameliorated by artificially increasing the covariance of process noise in the Riccati
equation. A symmetrized form of the discrete-time Riccati equation was developed
by Joseph [15] and used by R. C. K. Lee at Honeywell in 1964. This “structural”
reformulation of the Kalman filter equations improved robustness against roundoff
errors in some applications, although later methods have performed better on some
problems [125].

3These fixes were apparently discovered independently by several people. Schmidt [118] and his
colleagues at NASA had discovered the use of forced symmetry and “pseudonoise” to counter roundoff
effects and cite R. C. K. Lee at Honeywell with the independent discovery of the symmetry effect.



18 GENERAL INFORMATION

Square-Root Filtering. These methods can also be considered as “structural”
reformulations of the Riccati equation, and they predate the Bucy—Joseph form. The
first of these was the “square-root” implementation by Potter and Stern [208], first
published in 1963 and successfully implemented for space navigation on the Apollo
manned lunar exploration program. Potter and Stern introduced the idea of factoring
the covariance matrix into Cholesky factors,'* in the format

P=CC", (1.14)

and expressing the observational update equations in terms of the Cholesky factor C,
rather than P. The result was better numerical stability of the filter implementation at
the expense of added computational complexity. A generalization of the Potter and
Stern method to handle vector-valued measurements was published by one of the
authors [130] in 1968, but a more efficient implementation—in terms of triangular
Cholesky factors—was published by Bennet in 1967 [138].

Square-Root and UD Filters. There was a rather rapid development of faster
algorithmic methods for square-root filtering in the 1970s, following the work at
NASA/JPL (then called the Jet Propulsion Laboratory, at the California Institute of
Technology) in the late 1960s by Dyer and McReynolds [156] on temporal update
methods for Cholesky factors. Extensions of square-root covariance and information
filters were introduced in Kaminski’s 1971 thesis [115] at Stanford University. The
first of the triangular factoring algorithms for the observational update was due to
Agee and Turner [106], in a 1972 report of rather limited circulation. These
algorithms have roughly the same computational complexity as the conventional
Kalman filter, but with better numerical stability. The “fast triangular” algorithm of
Carlson was published in 1973 [149], followed by the “square-root-free” algorithm
of Bierman in 1974 [7] and the associated temporal update method introduced by
Thornton [124]. The computational complexity of the square-root filter for time-
invariant systems was greatly simplified by Morf and Kailath [204] soon after that.
Specialized parallel processing architectures for fast solution of the square-root filter
equations were developed by Jover and Kailath [175] and others over the next
decade, and much simpler derivations of these and earlier square-root implementa-
tions were discovered by Kailath [26].

Factorization Methods. The square-root methods make use of matrix decom-
position'® methods that were originally derived for the least-squares problem. These

A square root S of a matrix P satisfies the equation P = SS (i.e., without the transpose on the second
factor). Potter and Stern’s derivation used a special type of symmetric matrix called an elementary matrix.
They factored an elementary matrix as a square of another elementary matrix. In this case, the factors were
truly square roots of the factored matrix. This square-root appellation has stuck with extensions of Potter
and Stern’s approach, even though the factors involved are Cholesky factors, not matrix square roots.
The term “decomposition” refers to the representation of a matrix (in this case, a covariance matrix) as a
product of matrices having more useful computational properties, such as sparseness (for triangular
factors) or good numerical stability (for orthogonal factors). The term “factorization” was used by
Bierman [7] for such representations.



1.2 ON ESTIMATION METHODS 19

include the so-called QR decomposition of a matrix as the product of an orthogonal
matrix (Q) and a “triangular”'® matrix (R). The matrix R results from the application
of orthogonal transformations of the original matrix. These orthogonal transforma-
tions tend to be well conditioned numerically. The operation of applying these
transformations is called the “triangularization” of the original matrix, and trian-
gularization methods derived by Givens [164], Householder [172], and Gentleman
[163] are used to make Kalman filtering more robust against roundoff errors.

1.2.8 Beyond Kalman Filtering

Extended Kalman Filtering and the Kalman-Schmidt Filter. Although it
was originally derived for a linear problem, the Kalman filter is habitually applied
with impunity—and considerable success—to many nonlinear problems. These
extensions generally use partial derivatives as linear approximations of nonlinear
relations. Schmidt [118] introduced the idea of evaluating these partial derivatives at
the estimated value of the state variables. This approach is generally called the
extended Kalman filter, but it was called the Kalman—Schmidt filter in some early
publications. This and other methods for approximate linear solutions to nonlinear
problems are discussed in Chapter 5, where it is noted that these will not be adequate
for all nonlinear problems. Mentioned here are some investigations that have
addressed estimation problems from a more general perspective, although they are
not covered in the rest of the book.

Nonlinear Filtering Using Higher Order Approximations. Approaches
using higher order expansions of the filter equations (i.e., beyond the linear terms)
have been derived by Stratonovich [78], Kushner [191], Bucy [147], Bass et al.
[134], and others for quadratic nonlinearities and by Wiberg and Campbell [235] for
terms through third order.

Nonlinear Stochastic Differential Equations. Problems involving nonlinear
and random dynamic systems have been studied for some time in statistical
mechanics. The propagation over time of the probability distribution of the state
of a nonlinear dynamic system is described by a nonlinear partial differential
equation called the Fokker—Planck equation. 1t has been studied by Einstein
[157], Fokker [160], Planck [207], Kolmogorov [187], Stratonovich [78], Baras
and Mirelli [52], and others. Stratonovich modeled the effect on the probability
distribution of information obtained through noisy measurements of the dynamic
system, an effect called conditioning. The partial differential equation that includes
these effects is called the conditioned Fokker—Planck equation. It has also been
studied by Kushner [191], Bucy [147], and others using the stochastic calculus of
Kiyosi Ito—also called the “Itd calculus.” It is a non-Riemannian calculus devel-
oped specifically for stochastic differential systems with noise of infinite bandwidth.
This general approach results in a stochastic partial differential equation describing

19ee Chapter 6 and Appendix B for discussions of triangular forms.



20 GENERAL INFORMATION

the evolution over time of the probability distribution over a “state space” of the
dynamic system under study. The resulting model does not enjoy the finite
representational characteristics of the Kalman filter, however. The computational
complexity of obtaining a solution far exceeds the already considerable burden of
the conventional Kalman filter. These methods are of significant interest and utility
but are beyond the scope of this book.

Point Processes and the Detection Problem. A point process is a type of
random process for modeling events or objects that are distributed over time or
space, such as the arrivals of messages at a communications switching center or the
locations of stars in the sky. It is also a model for the initial states of systems in many
estimation problems, such as the locations of aircraft or spacecraft under surveillance
by a radar installation or the locations of submarines in the ocean. The detection
problem for these surveillance applications must usually be solved before the
estimation problem (i.e., tracking of the objects with a Kalman filter) can begin.
The Kalman filter requires an initial state for each object, and that initial state
estimate must be obtained by detecting it. Those initial states are distributed
according to some point process, but there are no technically mature methods
(comparable to the Kalman filter) for estimating the state of a point process. A
unified approach combining detection and tracking into one optimal estimation
method was derived by Richardson [214] and specialized to several applications.
The detection and tracking problem for a single object is represented by the
conditioned Fokker—Planck equation. Richardson derived from this one-object
model an infinite hierarchy of partial differential equations representing object
densities and truncated this hierarchy with a simple closure assumption about the
relationships between orders of densities. The result is a single partial differential
equation approximating the evolution of the density of objects. It can be solved
numerically. It provides a solution to the difficult problem of detecting dynamic
objects whose initial states are represented by a point process.

1.3 ON THE NOTATION USED IN THIS BOOK

1.3.1 Symbolic Notation

The fundamental problem of symbolic notation, in almost any context, is that there
are never enough symbols to go around. There are not enough letters in the Roman
alphabet to represent the sounds of standard English, let alone all the variables in
Kalman filtering and its applications. As a result, some symbols must play multiple
roles. In such cases, their roles will be defined as they are introduced. It is sometimes
confusing, but unavoidable.

“Dot” Notation for Derivatives. Newton’s notation using /(¢), £ (¢) for the first
two derivatives of f* with respect to ¢ is used where convenient to save ink.



1.3 ON THE NOTATION USED IN THIS BOOK 21

TABLE 1.2 Standard Symbols of Kalman Filtering

Symbols
Symbol
12 e e Definition
F F A Dynamic coefficient matrix of continuous linear differential
equation defining dynamic system
/ B Coupling matrix between random process noise and state of
linear dynamic system
H M C Measurement sensitivity matrix, defining linear relationship
between state of the dynamic system and measurements
that can be made
K A K Kalman gain matrix
P P Covariance matrix of state estimation uncertainty
Q Q Covariance matrix of process noise in the system state
dynamics
R 0 Covariance matrix of observational (measurement)
uncertainty
X X State vector of a linear dynamic system
z y Vector (or scalar) of measured values
0] (0] State transition matrix of a discrete linear dynamic system

2 This book [1, 13, 16, 21]. ® Kalman [23, 179]. ¢ Other sources [4, 10, 18, 65].

Standard Symbols for Kalman Filter Variables. There appear to be two
“standard” conventions in technical publications for the symbols used in Kalman
filtering. The one used in this book is similar to the original notation of Kalman
[179]. The other standard notation is sometimes associated with applications of
Kalman filtering in control theory. It uses the first few letters of the alphabet in place
of the Kalman notation. Both sets of symbol usages are presented in Table 1.2, along
with the original (Kalman) notation.

State Vector Notation for Kalman Filtering. The state vector x has been
adorned with all sorts of other appendages in the usage of Kalman filtering. Table
1.3 lists the notation used in this book (left column) along with notations found in
some other sources (second column). The state vector wears a “hat” as the estimated
value, x, and subscripting to denote the sequence of values that the estimate assumes
over time. The problem is that it has two values at the same time: the a priori'’ value
(before the measurement at the current time has been used in refining the estimate)
and the a posteriori value (after the current measurement has been used in refining
the estimate). These distinctions are indicated by the signum. The negative sign (—)
indicates the a priori value, and the positive sign (4) indicates the a posteriori value.

""This use of the full Latin phrases as adjectives for the prior and posterior statistics is an unfortunate
choice of standard notation, because there is no easy way to shorten it. (Even their initial abbreviations are
the same.) If those who initiated this notation had known how commonplace it would become, they might
have named them otherwise.



22 GENERAL INFORMATION

TABLE 1.3 Special State-Space Notation

This Other
book sources Definition of Notational Usage
X X Vector
X
X
Xk The kth component of the vector x
X x[k] The kth element of the sequence
oy Xk_1» Xk Xy, - - - Of vectors
' E(x) An estimate of the value of x
X
X (=) Kk A priori estimate of x,, conditioned on all prior
X measurements except the one at time f,
X (+) Xk A posteriori estimate of x, conditioned
Xy on all available measurements at time
X X; Derivative of x with respect to t (time)
dx/dt

TABLE 1.4 Common Notation for Array Dimensions

Dimensions
Symbol Vector Name Dimensions Symbol Matrix Name Row Column
X System state n D State transition n n
w Process noise r G Process noise coupling n r
u Control input s Q Process noise covariance  r r
z Measurement 14 H Measurement sensitivity 14 n
v Measurement noise 14 R Measurement noise 14 14

covariance

Common Notation for Array Dimensions. Symbols used for the dimensions
of the “standard” arrays in Kalman filtering will also be standardized, using the
notation of Gelb et al. [21] shown in Table 1.4. These symbols are not used
exclusively for these purposes. (Otherwise, one would soon run out of alphabet.)
However, whenever one of these arrays is used in the discussion, these symbols will
be used for their dimensions.

1.4 SUMMARY

The Kalman filter is an estimator used to estimate the state of a linear dynamic
system perturbed by Gaussian white noise using measurements that are linear
functions of the system state but corrupted by additive Gaussian white noise. The
mathematical model used in the derivation of the Kalman filter is a reasonable
representation for many problems of practical interest, including control problems as



1.4 SUMMARY 23

well as estimation problems. The Kalman filter model is also used for the analysis of
measurement and estimation problems.

The method of least squares was the first “optimal” estimation method. It was
discovered by Gauss (and others) around the end of the eighteenth century, and it is
still much in use today. If the associated Gramian matrix is nonsingular, the method
of least squares determines the unique values of a set of unknown variables such that
the squared deviation from a set of constraining equations is minimized.

Observability of a set of unknown variables is the issue of whether or not they are
uniquely determinable from a given set of constraining equations. If the constraints
are linear functions of the unknown variables, then those variables are observable if
and only if the associated Gramian matrix is nonsingular. If the Gramian matrix is
singular, then the unknown variables are unobservable.

The Wiener—Kolmogorov filter was derived in the 1940s by Norbert Wiener
(using a model in continuous time) and Andrei Kolmogorov (using a model in
discrete time) working independently. It is a statistical estimation method. 1t
estimates the state of a dynamic process so as to minimize the mean-squared
estimation error. It can take advantage of statistical knowledge about random
processes in terms of their power spectral densities in the frequency domain.

The “state-space” model of a dynamic process uses differential equations (or
difference equations) to represent both deterministic and random phenomena. The
state variables of this model are the variables of interest and their derivatives of
interest. Random processes are characterized in terms of their statistical properties in
the time domain, rather than the frequency domain. The Kalman filter was derived as
the solution to the Wiener filtering problem using the state-space model for dynamic
and random processes. The result is easier to derive (and to use) than the Wiener—
Kolmogorov filter.

Square-root filtering is a reformulation of the Kalman filter for better numerical
stability in finite-precision arithmetic. It is based on the same mathematical model,
but it uses an equivalent statistical parameter that is less sensitive to roundoff errors
in the computation of optimal filter gains. It incorporates many of the more
numerically stable computation methods that were originally derived for solving
the least-squares problem.

PROBLEMS

1.1 Jean Baptiste Fourier (1768—1830) was studying the problem of approximating
a function f(0) on the circle 0 < 6 < 27 by a linear combination of trigono-
metric functions:

fO)~ay+ Zn: [a; cos( jO) + b; sin( j0)]. (1.15)
=1

j=



24 GENERAL INFORMATION

See if you can help him on this problem. Use the method of least squares to

demonstrate that the values
1 271
ay = — 0) do
iy =35 | roao,
1 2m
a; = —J 1(0)cos(j0)do,
TJo
N 1 27
b, :_J £(0)sin( j0) d0
T Jo
of the coefficients a; and b; for 1 <j <n give the least integrated squared
approximation error
£@b) =1/ —fa b,
2 2
- | o -s@] a

0

2m n 2
= J {ao + " la; cos(j0) + b; sin(j@)]} do
0 j=1

21 n
- 2J {ao + >_ tla; cos( jO) + b; sin( jO)] }f(@) do

0 j=1

21
+ J 720 do.
0

You may assume the equalities

21
J do =2n
0
21 0’ . k
J cos( j0) cos(kB) d = { /7
0 n, j=k,
21 0’ : k
J sin( j0) sin(k0) d0 = { s
0 n, j=k

27
Jcos(j@)sin(k@)dezo, 0<j=<n, l1<k=<n
0

as given.



Linear Dynamic Systems

What we experience of nature is in models, and all of nature’s models are so beautiful.!
R. Buckminster Fuller (1895-1983)

2.1 CHAPTER FOCUS

Models for Dynamic Systems. Since their introduction by Isaac Newton in the
seventeenth century, differential equations have provided concise mathematical
models for many dynamic systems of importance to humans. By this device,
Newton was able to model the motions of the planets in our solar system with a
small number of variables and parameters. Given a finite number of initial conditions
(the initial positions and velocities of the sun and planets will do) and these
equations, one can uniquely determine the positions and velocities of the planets
for all time. The finite-dimensional representation of a problem (in this example, the
problem of predicting the future course of the planets) is the basis for the so-called
state-space approach to the representation of differential equations and their
solutions, which is the focus of this chapter. The dependent variables of the
differential equations become state variables of the dynamic system. They explicitly
represent all the important characteristics of the dynamic system at any time.

The whole of dynamic system theory is a subject of considerably more scope than
one needs for the present undertaking (Kalman filtering). This chapter will stick to just
those concepts that are essential for that purpose, which is the development of the state-
space representation for dynamic systems described by systems of linear differential
equations. These are given a somewhat heuristic treatment, without the mathematical
rigor often accorded the subject, omitting the development and use of the transform
methods of functional analysis for solving differential equations when they serve no
purpose in the derivation of the Kalman filter. The interested reader will find a more
formal and thorough presentation in most upper-level and graduate-level textbooks on

'"From an interview quoted by Calvin Tomkins in “From in the outlaw area,” The New Yorker, January 8,

1966. 25



26 LINEAR DYNAMIC SYSTEMS

ordinary differential equations. The objective of the more engineering-oriented
treatments of dynamic systems is usually to solve the controls problem, which is the
problem of defining the inputs (i.e., control settings) that will bring the state of the
dynamic system to a desirable condition. That is not the objective here, however.

2.1.1 Main Points to Be Covered

The objective in this chapter is to characterize the measurable outputs of dynamic
systems as functions of the internal states and inputs of the system. (The italicized
terms will be defined more precisely further along.) The treatment here is determi-
nistic, in order to define functional relationships between inputs and outputs. In the
next chapter, the inputs are allowed to be nondeterministic (i.e., random), and the
objective of the following chapter will be to estimate the states of the dynamic
system in this context.

Dynamic Systems and Differential Equations. In the context of Kalman
filtering, a dynamic system has come to be synonymous with a system of ordinary
differential equations describing the evolution over time of the state of a physical
system. This mathematical model is used to derive its solution, which specifies the
functional dependence of the state variables on their initial values and the system
inputs. This solution defines the functional dependence of the measurable outputs on
the inputs and the coefficients of the model.

Mathematical Models for Continuous and Discrete Time. The principal
dynamic system models are summarized in Table 2.1.> For implementation in digital
computers, the problem representation is transformed from an analog model (func-
tions of continuous time) to a digital model (functions defined at discrete times).

Observability characterizes the feasibility of uniquely determining the state of a
given dynamic system if its outputs are known. This characteristic of a dynamic
system is determinable from the parameters of its mathematical model.

2.2 DYNAMIC SYSTEMS

2.2.1 Dynamic Systems Represented by Differential Equations

A system is an assemblage of interrelated entities that can be considered as a whole.
If the attributes of interest of a system are changing with time, then it is called a
dynamic system. A process is the evolution over time of a dynamic system.

Our solar system, consisting of the sun and its planets, is a physical example of a
dynamic system. The motions of these bodies are governed by laws of motion that
depend only upon their current relative positions and velocities. Sir Isaac Newton
(1642—1727) discovered these laws and expressed them as a system of differential equa-
tions—another of his discoveries. From the time of Newton, engineers and scientists
have learned to define dynamic systems in terms of the differential equations that
govern their behavior. They have also learned how to solve many of these differential
equations to obtain formulas for predicting the future behavior of dynamic systems.

These include nonlinear models, which are discussed in Chapter 5. The primary interest in this chapter
will be in linear models.



2.2 DYNAMIC SYSTEMS 27

TABLE 2.1 Mathematical Models of Dynamic Systems

Continuous Discrete
Time invariant
Linear x(t) = Fx(t) + Cu(t) X = Ox_1 + Tuy_4
General x(t) = f(x(t), u(t)) X = F(Xp_1, Ug_1)
Time varying
Linear x(t) = F(Hx(t) + C(Hhu(t) X = @p_1 X1 + Tp_qUp_4
General x(t) = f(t, x(1), u(t)) X = f(K, Xx_1, Ux_1)

EXAMPLE 2.1 (below, left): Newton’s Model for a Dynamic System of n
Massive Bodies For a planetary system with n bodies (idealized as point
masses), the acceleration of the ith body in any inertial (i.e., non-rotating and
non-accelerating) Cartesian coordinate system is given by Newton’s third law as the
second-order differential equation

d?r n mlr; —r
(PCD S L P,
dt j=1 |1, =1l
J#i

where 7; is the position coordinate vector of the jth body, m; is the mass of the jth
body, and C, is the gravitational constant. This set of n differential equations, plus
the associated initial conditions of the bodies (i.e., their initial positions and
velocities) theoretically determines the future history of the planetary system.

my

Example 2.1 Example 2.2

EXAMPLE 2.2 (above, right): The Harmonic Resonator with Linear
Damping Consider the accompanying diagram of an idealized apparatus with a
mass m attached through a spring to an immovable base and its frictional contact to
its support base represented by a dashpot. Let 6 be the displacement of the mass
from its position at rest, dé/dt be the velocity of the mass, and a(f) = d?d/d?? its
acceleration. The force F acting on the mass can be represented by Newton’s second
law as

F(t) = ma(f)
25
g

do
= —k(t) — ky ’r @),



28 LINEAR DYNAMIC SYSTEMS

where k, is the spring constant and £, is the drag coefficient of the dashpot. This
relationship can be written as a differential equation

d%s do
O ko -k,
e 0=k dt

in which time (¢) is the differential variable and displacement () is the dependent
variable. This equation constrains the dynamical behavior of the damped harmonic
resonator. The order of a differential equation is the order of the highest derivative,
which is 2 in this example. This one is called a /inear differential equation, because
both sides of the equation are linear combinations of ¢ and its derivatives. (That of
Example 2.1 is a nonlinear differential equation.)

Not All Dynamic Systems Can Be Modeled by Differential Equations.
There are other types of dynamic systems, such as those modeled by Petri nets or
inference nets. However, the only types of dynamic systems considered in this book
will be modeled by differential equations or by discrete-time linear state dynamic
equations derived from linear differential or difference equations.

2.2.2 State Variables and State Equations

The second-order differential equation of the previous example can be transformed
to a system of two first-order differential equations in the two dependent variables
x; = ¢ and x, = do/dt. In this way, one can reduce the form of any system of higher
order differential equations to an equivalent system of first-order differential
equations. These systems are generally classified into the types shown in Table
2.1, with the most general type being a time-varying differential equation for
representing a dynamic system with time-varying dynamic characteristics. This is
represented in vector form as

(1) = f(t, x(1), u()), 2.1

where Newton’s “dot” notation is used as a shorthand for the derivative with respect
to time, and a vector-valued function f to represent a system of n equations

Xy =1 X1, X0, X3y ooy Xy Uy, Uy, Uy ooy Uy, ),
Xy = ot X1, Xp, Xgs vy Xy Uy Uy, Usy oy Uy 1),
X3 = f3(t, X1, X0, X3y ooy Xpyy Uy, Uny Uy oo oy Uy, 1), 22)
X, = fo(ts X1, X0y X3y ooy Xpyy Uy Upy Uy ooy Upy T)

in the independent variable ¢ (time), » dependent variables {x;|1 <i < n}, and r
known inputs {u;|1 <i <r}. These are called the state equations of the dynamic
system.



2.2 DYNAMIC SYSTEMS 29

State Variables Represent the Degrees of Freedom of Dynamic
Systems. The variables x|, ..., x, are called the state variables of the dynamic
system defined by Equation 2.2. They are collected into a single n-vector

X0 =@ w0 x50 - xO (23)

called the state vector of the dynamic system. The rn-dimensional domain of the state
vector is called the state space of the dynamic system. Subject to certain continuity
conditions on the functions f; and u;, the values x;(¢;) at some initial time #, will
uniquely determine the values of the solutions x;(f) on some closed time interval
t € [ty, t;] with initial time #, and final time #; [57]. In that sense, the initial value of
each state variable represents an independent degree of freedom of the dynamic
system. The n values x,(%y), x,(2), x3(%), - - . , x,,(#,) can be varied independently, and
they uniquely determine the state of the dynamic system over the time interval

te [tO’ tj]

EXAMPLE 2.3: State Space Model of the Harmonic Resonator For the
second-order differential equation introduced in Example 2.2, let the state variables
x; = 60 and x, = J. The first state variable represents the displacement of the mass
from static equilibrium, and the second state variable represents the instantaneous
velocity of the mass. The system of first-order differential equations for this dynamic
system can be expressed in matrix form as

£|:x1(f)] _F |:x1(t)]
ARG N EN G

0 1
m m

where F, is called the coefficient matrix of the system of first-order linear differential
equations. This is an example of what is called the companion form for higher order
linear differential equations expressed as a system of first-order differential equa-
tions.

2.2.3 Continuous Time and Discrete Time

The dynamic system defined by Equation 2.2 is an example of a continuous system,
so called because it is defined with respect to an independent variable ¢ that varies
continuously over some real interval 7 € [f), #;]. For many practical problems,
however, one is only interested in knowing the state of a system at a discrete set
of times ¢ € {¢|, 15, 5, . . .}. These discrete times may, for example, correspond to the
times at which the outputs of a system are sampled (such as the times at which Piazzi
recorded the direction to Ceres). For problems of this type, it is convenient to order
the times #, according to their integer subscripts:

t0<t1 <t2<"'tk_1 <tk<tk+l < .-



30 LINEAR DYNAMIC SYSTEMS

That is, the time sequence is ordered according to the subscripts, and the subscripts
take on all successive values in some range of integers. For problems of this type, it
suffices to define the state of the dynamic system as a recursive relation,

X(ty1) =), ts tei), (2.4

by means of which the state is represented as a function of its previous state. This is
a definition of a discrete dynamic system. For systems with uniform time intervals At

Shorthand Notation for Discrete-Time Systems. It uses up a lot of ink if
one writes x(#,) when all one cares about is the sequence of values of the state
variable x. It is more efficient to shorten this to x;, so long as it is understood that it
stands for x(#;), and not the kth component of x. If one must talk about a particular
component at a particular time, one can always resort to writing x;(#,) to remove any
ambiguity. Otherwise, let us drop ¢ as a symbol whenever it is clear from the context
that we are talking about discrete-time systems.

2.2.4 Time-Varying Systems and Time-Invariant Systems

The term “physical plant” or “plant” is sometimes used in place of “dynamic
system,” especially for applications in manufacturing. In many such applications, the
dynamic system under consideration is literally a physical plant—a fixed facility
used in the manufacture of materials. Although the input u(f) may be a function of
time, the functional dependence of the state dynamics on u and x does not depend
upon time. Such systems are called time invariant or autonomous. Their solutions
are generally easier to obtain than those of time-varying systems.

2.3 CONTINUOUS LINEAR SYSTEMS AND THEIR SOLUTIONS

2.3.1 Input—Output Models of Linear Dynamic Systems

The block diagram in Figure 2.1 represents a linear continuous system with three
types of variables:

e Inputs, which are under our control, and therefore known to us, or at least
measurable by us. (In the next chapter, however, they will be assumed to be
known only statistically. That is, individual samples of u are random but with
known statistical properties.)

e State variables, which were described in the previous section. In most
applications, these are “hidden variables,” in the sense that they cannot
generally be measured directly but must be somehow inferred from what can
be measured.

e Outputs, which are those things that can be known through measurements.

These concepts are discussed in greater detail in the following subsections.



2.3 CONTINUOUS LINEAR SYSTEMS AND THEIR SOLUTIONS 31

INPUTS DYNAMICS OUTPUTS
U] ——e — <]
Uy — — 27
"3 &= Fx+ Cu 4
z = Hx + Du
Uy —— — 7,

Fig. 2.1 Block diagram of a linear dynamic system.

2.3.2 Dynamic Coefficient Matrices and Input Coupling Matrices

The dynamics of linear systems are represented by a set of n first-order linear
differential equations expressible in vector form as

d

#0) = (1)

= F(O)x(t) + C(0)u(t), 2.5)

where the elements and components of the matrices and vectors can be functions of
time:

(@ fo®) fia® - fiu®]
B0 Sa) ) - )
Fiy= | S0 o®) f@ - S0

L/ @) 2@ Juz (D - S

[ci1 () cp®) c3() -+ e (0)]

() cp(t) cp®) -+ clt)

C(t)= (1) cxp(t) ex() -0 c3,(0)
_Cnl(t) an(t) cn3(t) e Cnr(t) _

wn) =l (0 w(t) us@) - w0

The matrix F(¢) is called the dynamic coefficient matrix, or simply the dynamic
matrix. Its elements are called the dynamic coefficients. The matrix C(¢) is called the
input coupling matrix, and its elements are called input coupling coefficients. The
r-vector u is called the input vector.



32 LINEAR DYNAMIC SYSTEMS

EXAMPLE 2.4: Dynamic Equation for a Heating/Cooling System Consider
the temperature 7' in a heated enclosed room or building as the state variable of a
dynamic system. A simplified plant model for this dynamic system is the linear
equation

T(t) = =k [T(t) — T,(O] + kyu(d),

where the constant “cooling coefficient” k. depends on the quality of thermal
insulation from the outside, 7, is the temperature outside, 4, is the heating/cooling
rate coefficient of the heater or cooler, and u is an input function that is either u = 0
(off) or u =1 (on) and can be defined as a function of any measurable quantities.
The outside temperature 7,, on the other hand, is an example of an input function
which may be directly measurable at any time but is not predictable in the future. It is
effectively a random process.

2.3.3 Companion Form for Higher Order Derivatives

In general, the nth-order linear differential equation

d" (t) d"~y(t)

dl‘"71

to 02 o = @

+/1(0)

can be rewritten as a system of » first-order differential equations. Although the state
variable representation as a first-order system is not unique [56], there is a unique
way of representing it called the companion form.

Companion Form of the State Vector. For the nth-order linear dynamic
system shown above, the companion form of the state vector is

2 n—1 T
0=, o o0 . Gpol. e

Companion Form of the Differential Equation. The nth-order linear differ-
ential equation can be rewritten in terms of the above state vector x(¢) as the vector
differential equation

x1(7) 0 1 0 ) x,(f) 0
x(7) 0 0 1 o0 x,(7) 0

7 e : : R xz@ + | u.
x, 1(f) 0 0 0 e : 0
X, (1) @ L) —fa() o =AO D] x, () 1

2.8)



2.3 CONTINUOUS LINEAR SYSTEMS AND THEIR SOLUTIONS 33

When Equation 2.8 is compared with Equation 2.5, the matrices F(¢) and C(¢) are
easily identified.

The Companion Form is lll-conditioned. Although it simplifies the relation-
ship between higher order linear differential equations and first-order systems of
differential equations, the companion matrix is not recommended for implementa-
tion. Studies by Kenney and Liepnik [185] have shown that it is poorly conditioned
for solving differential equations.

2.3.4 Outputs and Measurement Sensitivity Matrices

Measurable Outputs and Measurement Sensitivities. Only the inputs and
outputs of the system can be measured, and it is usual practice to consider the
variables z; as the measured values. For linear problems, they are related to the state
variables and the inputs by a system of linear equations that can be represented in
vector form as

2(f) = H(t)x(t) + D(O)ul?), (2.9)

where

) =[a0 20 z0) - zZOl

[ 7y (1) hip(t) ks - hy(0)]

hyi () hyp(1)  hys(®) -+ o, (D)

H(t) = | 11 b)) hs(0) -+ By, (1)
| 2 (0) hpp(0) hys(B) - By, (D)
[dy (1) dyp(t) diy(t) - di(0)]]

dy () dyp(t) dn(t) -+ do(t)

D(t) = dy (1) dyp(t) dys(t) -+ ds (D)
| dp (D) dp() dp() - dy,()

The £-vector z(¢) is called the measurement vector, or the output vector of the
system. The coefficient /;(¢) represents the sensitivity (measurement sensor scale
factor) of the ith measured output to the jth internal state. The matrix H(#) of these
values is called the measurement sensitivity matrix, and D(t) is called the input—
output coupling matrix. The measurement sensitivities h;(t) and input/output
coupling coefficients di/-(t), 1 <i<{,1<j<r, are known functions of time. The
state equation 2.5 and the output equation 2.9 together form the dynamic equations
of the system shown in Figure 2.1.



34 LINEAR DYNAMIC SYSTEMS

2.3.5 Difference Equations and State Transition Matrices (STMs)

Difference equations are the discrete-time versions of differential equations. They
are usually written in terms of forward differences x(t; ) — x(t;) of the state variable
(the dependent variable), expressed as a function / of all independent variables or of
the forward value x(#; ) as a function ¢ of all independent variables (including the
previous value as an independent variable):

Mty1) — X(8) = Yty x(t), u(ty)),
or

X(ty1) = Pty x(8), u(ty)), (2.10)
Gt x(t), uty)) = x(t) + Y(ty, x(t), u(ty)).

The second of these (Equation 2.10) has the same general form of the recursive
relation shown in Equation 2.4, which is the one that is usually implemented for
discrete-time systems.

For linear dynamic systems, the functional dependence of x(#;, ;) on x(¢,) and
u(t,) can be represented by matrices:

x(t) — x(1) = P(1)x(1) + C(ruly),
X1 = Qpxp + Gy, (2.11)
(Dk = [ + lP(tk)v

where the matrices W and ® replace the functions ¥ and ¢, respectively. The matrix
@ is called the state transition matrix (STM). The matrix c is called the discrete-time
input coupling matrix, or simply the input coupling matrix—if the discrete-time
context is already established.

2.3.6 Solving Differential Equations for STMs

A state transition matrix is a solution of what is called the “homogeneous”> matrix
equation associated with a given linear dynamic system. Let us define first what
homogeneous equations are, and then show how their solutions are related to the
solutions of a given linear dynamic system.

Homogeneous Systems. The equation x(¢) = F(f)x(¢) is called the homoge-
neous part of the linear differential equation x(f) = F(¢)x(f) + C(t)u(t). The solution
of the homogeneous part can be obtained more easily than that of the full equation,
and its solution is used to define the solution to the general (nonhomogeneous) linear
equation.

3This terminology comes from the notion that every term in the expression so labeled contains the
dependent variable. That is, the expression is homogeneous with respect to the dependent variable.



2.3 CONTINUOUS LINEAR SYSTEMS AND THEIR SOLUTIONS 35

Fundamental Solutions of Homogeneous Equations. An n x n matrix-
valued function @(¢) is called a fundamental solution of the homogeneous equation
x(t) = F(t)x(¢) on the interval ¢ € [0, T if (i)(t) = F(6)®(¢) and ®(0) = [, the n x n
identity matrix. Note that, for any possible initial vector x(0), the vector
x(t) = ®(¢)x(0) satisfies the equation

) = 2[00 2.12)
d

- [E CD(t)]x(O) 2.13)

= [F(t)®(1)]x(0) (2.14)

— FO)[0()x(0)] 2.15)

— F(Ox(0). (2.16)

That is, x(f) = ®()x(0) is the solution of the homogeneous equation x = Fx with
initial value x(0).

EXAMPLE 2.5 The unit upper triangular Toeplitz matrix

r 1 1 1 T
1 ¢t = P —C
1-2-3 (n—1)
| %) 1 -2
0 1 ¢ 2t —
2 (n—2)!
1 n—3
o@n=|0 0 1 N P TR
1
0 0 0 1 —
(n—4)!
L0 0 O 0 1 i

is the fundamental solution of x = Fx for the strictly upper triangular Toeplitz
dynamic coefficient matrix

01 0 0

0 0 1 0
F=|: : ,

0 0 0 1

0 0 O 0

which can be verified by showing that ®(0) =/ and ® = F®. This dynamic
coefficient matrix, in turn, is the companion matrix for the nth-order linear
homogeneous differential equation (d/dt)"y(f) = 0.



36 LINEAR DYNAMIC SYSTEMS

Fig. 2.2 The STM as a composition of fundamental solution matrices.

Existence and Nonsingularity of Fundamental Solutions. If the elements
of the matrix F'(¢) are continuous functions on some interval 0 < ¢ < T, then the
fundamental solution matrix ®(¢) is guaranteed to exist and to be nonsingular on an
interval 0 < ¢ < 7 for some 7 > 0. These conditions also guarantee that ®(¢) will be
nonsingular on some interval of nonzero length, as a consequence of the continuous
dependence of the solution ®(¢) of the matrix equation on its (nonsingular) initial
conditions [®(0) = I] [57].

State Transition Matrices. Note that the fundamental solution matrix ®(¢)
transforms any initial state x(0) of the dynamic system to the corresponding state
x(?) at time ¢. If ®(f) is nonsingular, then the products ®~'(#)x(f) = x(0) and
®(t)® ! (1)x(f) = x(r). That is, the matrix product

O(1, 1) = D) (¢) (2.17)

transforms a solution from time ¢ to the corresponding solution at time 7, as
diagrammed in Figure 2.2. Such a matrix is called the state transition matrix* for the
associated linear homogeneous differential equation. The state transition matrix
®(7, 1) represents the transition to the state at time t from the state at time 7.

Properties of STMs and Fundamental Solution Matrices. The same
symbol (@) has been used for fundamental solution matrices and for state transition
matrices, the distinction being made by the number of arguments. By convention,
then,

®(z, 0) = (7).
Other useful properties of @ include the following:

1. O(z,7) =D(0) =1,

2. @7 (z, 1) = D(t, 1),

3. O(t, 0)D(0, t) = O(t, 1),

4. (9/00)D(t, t) = F(1)D(x, t),

“Formally, an operator ®(z, ty, X(ty)) such that x(f) = O(t, 1y, x(t,)) is called an evolution operator for a
dynamic system with state x. A state transition matrix is a linear evolution operator.



2.3 CONTINUOUS LINEAR SYSTEMS AND THEIR SOLUTIONS 37

and
5. (0/0)®(z, t) = —D(z, )F ().

EXAMPLE 2.6: Fundamental Solution Matrix for the Underdamped Harmo-
nic Resonator The general solution of the differential equation. In Examples 2.2
and 2.3, the displacement ¢ of the damped harmonic resonator was modeled by the

state equation
[
x=1|.1
| 0

The characteristic values of the dynamic coefficient matrix F are the roots of its
characteristic polynomial

k, . k
det(Al —F) = 2> +-4) 4=,
m m

which is a quadratic polynomial with roots

1 k K2 4k
=244 /24 s,
! 2< m+ m2  m
L (ke B
27 m m2 m)

The general solution for the displacement J can then be written in the form
5(t) = o’ + pe,
where o and f are (possibly complex) free variables.

The underdamped solution. The resonator is considered underdamped if the
discriminant

k2
_d_4_ks<0,
m:  m



38 LINEAR DYNAMIC SYSTEMS

in which case the roots are a conjugate pair of nonreal complex numbers and the
general solution can be rewritten in “real form” as

5(t) = ae™"/" cos(wt) + be" sin(wt),

2m
T=—,
kq
k k2
w = _S__d7
m  4m?

where @ and b are now real variables, 7 is the decay time constant, and o is the
resonator resonant frequency. This solution can be expressed in state-space form in
terms of the real variables a and b:

5() cos(wt) sin(wt) a
[ ; :| =e cos(wt) sin(wt) |: i|
I T

(1) — wsin(wt) o cos(wt) — b

Initial value constraints. The initial values
. a
0(0) = a, 0(0) = — - + wb

can be solved for a and b as
-1 V[
bl | — = []o0)]
0wt

This can then be combined with the solution for x(¢) in terms of @ and b to yield the
fundamental solution

x(2) = ®(6)x(0),

e/t |:r[a)‘c cos(wt) + sin(wt)] 2 sin(wt) ]

() =

ot | —(1+o*)sin(wr)  —[wr cos(wtf) + sin(w?)]

in terms of the damping time constant and the resonant frequency.



2.3 CONTINUOUS LINEAR SYSTEMS AND THEIR SOLUTIONS 39

2.3.7 Solution of Nonhomogeneous Equations

The solution of the nonhomogeneous state equation 2.5 is given by

xX(t) = O(t, t)x(ty) + Jt (¢, 71)C(t)u(t) dt (2.18)

= o)D" (to)x(ty) + D(2) r O~ (0)C()u(t) dr, (2.19)

)

where x(#,) is the initial value and ®(¢, #,) is the state transition matrix of the
dynamic system defined by F(¢). (This can be verified by taking derivatives and
using the properties of STMs given above.)

2.3.8 Closed-Form Solutions of Time-Invariant Systems

In this case, the coefficient matrix F is a constant function of time. The solution will
still be a function of time, but the associated state transition matrices ®(z, 7) will only
depend on the differences # — 7. In fact, one can show that

01, 7) = 79 (2.20)

Z(I_T)

(2.21)

where FO = I, by definition. The solution of the nonhomogeneous equation in this
case will be

x(t) = " Ix(1) + Jt ) Cu(o) do (2.22)

T

t
= " Ix(1) + eF’J e "7Cu(o)do. (2.23)

T

The following methods have been used for computing matrix exponentials:

1. The approximation of e/ by a truncated power series expansion is not a
recommended general-purpose method, but it is useful if the characteristic
values of Ft are well inside the unit circle in the complex plane.

2. 0(=e"=2"Y sl —F)"',1>0,where [isann x n identity matrix, &~
is the inverse Laplacian operator, and s is the Laplace transform variable.

3. The “scaling and squaring” method combined with a Pad¢ approximation is
the recommended general-purpose method. This method is discussed in
greater detail in Section 2.6.



40 LINEAR DYNAMIC SYSTEMS

4. Numerical integration of the homogeneous part of the differential equation,
d
7 D(t) = FO(2), (2.24)

with initial value ®(0) =/. (This method also works for time-varying
systems.)

There are many other methods,” but these are the most important.
EXAMPLE 2.7: Solution of the Damped Harmonic Resonator Problem with
Constant Driving Function Consider again the damped resonator model of

Examples 2.2, 2.3, and 2.6. The model can be written in the form of a second-
order differential equation

8(1) + 20w, 0(1) + w2d(t) = u(t),

where

: do « d?3 .k k,
o) = — o0 =—7 {=—4 wn:\/;.

di’ 2,/mk;’

The parameter { is a unitless damping coefficient and w, the “natural” (i.e.,
undamped) frequency of the resonator.

This second-order linear differential equation can be rewritten in a state-space
form, with states x; = é and x, = 0 = X, and parameters { and w,, as

dTx@07] [0 1 [x®] [0
ar I:xz(f)i| - [—wﬁ —2CWni||:xz(f)i| - [1]”@

with initial conditions
|:x 1(Zo) ]
x,(tp)

u(t) =1, w, =1, (=0.5,

e[

>See, for example, Brockett [56], DeRusso et al. [59], or Kreindler and Sarachik [189].

As a numerical example, let

so that the coefficient matrix



2.4 DISCRETE LINEAR SYSTEMS AND THEIR SOLUTIONS 41

Therefore,

)
(sI —F) = ,
1 s+1

(sI—F)_l— 1 |:s+1 1:|

IR = U R
D(r) = €
=2 s —F)!
s+ 1 1
_ gl S+s+1 s24+s5+1
—1 s
P24+s+1 s24s5+1
l\/gcos 1«/§t +lsin 1\/§t sin lx/gt
2012 | 2 2 2 2 2
VA (1 1 1 1. (1
J— — t — — R —
51n<2\/§) > 3cos<2\/§t> 2s1n<2\/§t>

2.3.9 Time-Varying Systems

If F(¢) is not constant, the dynamic system is called time-varying. If F(¢) is a
piecewise smooth function of ¢, the n x n homogeneous matrix differential equation
2.24 can be solved numerically by the fourth-order Runge—Kutta method.®

2.4 DISCRETE LINEAR SYSTEMS AND THEIR SOLUTIONS

2.4.1 Discretized Linear Systems
If one is only interested in the system state at discrete times, then one can use the

formula

2(t) = Dt ty (1) + J (1. 0)C(o)u(o) do (2.25)

l—1

to propagate the state vector between the times of interest.

“Named after the German mathematicians Karl David Tolme Runge (1856-1927) and Wilhelm Martin
Kutta (1867-1944).



42 LINEAR DYNAMIC SYSTEMS

Simplification for Constant u. If u is constant over the interval [¢,_, #;], then
the above integral can be simplified to the form

x(ty) = Oy, tr_)x(t—y) + Tt ulty_y) (2.26)

T, ) = r O(t,, 5)C(0) do. (2.27)

Tr—1

Shorthand Discrete-Time Notation. For discrete-time systems, the indices k in
the time sequence {#,} characterize the times of interest. One can save some ink by
using the shorthand notation:

def def def def
X = x(t), 7 = 2(t), ue = u(ty), H, = H(),

def def def
Dy = D(y), Dy = Oty ), T, S T()

for discrete-time systems, eliminating ¢ entirely. Using this notation, one can
represent the discrete-time state equations in the more compact form

e = Q11 + Dy, (2.28)

2.4.2 Time-Invariant Systems

For continuous time-invariant systems that have been discretized using fixed time
intervals, the matrices @, I', H, and D are independent of the discrete-time index as
well. In that case, the solution can be written in closed form as

k—1 )
xp = Oy + Zo Ty, (2.30)

where @ is the kth power of ®. The matrix ®* can also be computed as
O = 77 [(zl — D)2, (2.31)

where z is the z-transform variable and 2! is the inverse z-transform.

2.5 OBSERVABILITY OF LINEAR DYNAMIC SYSTEM MODELS

Observability is the issue of whether the state of a dynamic system is uniquely
determinable from its inputs and outputs, given a model for the dynamic system. It is
essentially a property of the given system model. A given linear dynamic system



2.5 OBSERVABILITY OF LINEAR DYNAMIC SYSTEM MODELS 43

model with a given linear input/output model is considered observable if and only if
its state is umiquely determinable from the model definition, its inputs, and its
outputs. If the system state is not uniquely determinable from the system inputs and
outputs, then the system model is considered unobservable.

How to Determine Whether a Given Dynamic System Model Is Obser-
vable. 1f the measurement sensitivity matrix is invertible at any (continuous or
discrete) time, then the system state can be uniquely determined (by inverting it) as
x = H~'z. In this case, the system model is considered to be completely observable
at that time. However, the system can still be observable over a time interval even if
H is not invertible at any time. In the latter case, the unique solution for the system
state can be defined by using the least-squares methods of Chapter 1, including those
of Sections 1.2.2 and 1.2.3. These use the so-called Gramian matrix to characterize
whether or not a vector variable is determinable from a given linear model. When
applied to the problem of the determinacy of the state of a linear dynamic system,
the Gramian matrix is called the observability matrix of the given system model.

The observability matrix for dynamic system models in continuous time has the
form

i
OH, F, 1y, t;) = J (I)T(t)HT(t)H(t)CI)(t) dt (2.32)

fy

for a linear dynamic system with fundamental solution matrix ®(f) and measurement
sensitivity matrix H(¢), defined over the continuous-time interval #, <t < I Note
that this depends on the interval over which the inputs and outputs are observed but
not on the inputs and outputs per se. In fact, the observability matrix of a dynamic
system model does not depend on the inputs u«, the input coupling matrix C, or the
input—output coupling matrix D—even though the outputs and the state vector
depend on them. Because the fundamental solution matrix ® depends only on the
dynamic coefficient matrix F, the observability matrix depends only on H and F.

The observability matrix of a linear dynamic system model over a discrete-time
interval z, <t < I has the general form

b [k=1 T k=1
O(H, @, 1 <k < k) = {Z[H(Dk—l} HIIHk|:H(Dk—ii| }’ (2.33)
=0 £

k=1L i=

where H, is the observability matrix at time ¢, and @, is the state transition matrix
from time #, to time #;,; for 0 < k < kf. Therefore, the observability of discrete-time
system models depends only on the values of H, and @, over this interval. As in the
continuous-time case, observability does not depend on the system inputs.

The derivations of these formulas are left as exercises for the reader.



44 LINEAR DYNAMIC SYSTEMS

2.5.1 Observability of Time-Invariant Systems

The formulas defining observability are simpler when the dynamic coefficient
matrices or state transition matrices of the dynamic system model are time invariant.
In that case, observability can be characterized by the rank of the matrices

M=[H" O'HT @"YH" ... @) 'HT (2.34)
for discrete-time systems and
M=[H" F'H" (F"YPH" ... (F"Y'H"] (2.35)

for continuous-time systems. The systems are observable if these have rank 7, the
dimension of the system state vector. The first of these matrices can be obtained by
representing the initial state of the linear dynamic system as a function of the system
inputs and outputs. The initial state can then be shown to be uniquely determinable if
and only if the rank condition is met. The derivation of the latter matrix is not as
straightforward. Ogata [38] presents a derivation obtained by using properties of the
characteristic polynomial of F.

Practicality of the Formal Definition of Observability. Singularity of the
observability matrix is a concise mathematical characterization of observability. This
can be too fine a distinction for practical application—especially in finite-precision
arithmetic—because arbitrarily small changes in the elements of a singular matrix
can render it nonsingular. The following practical considerations should be kept in
mind when applying the formal definition of observability:

e It is important to remember that the model is only an approximation to a real
system, and we are primarily interested in the properties of the real system, not
the model. Differences between the real system and the model are called model
truncation errors. The art of system modeling depends on knowing where to
truncate, but there will almost surely be some truncation error in any model.

e Computation of the observability matrix is subject to model truncation errors
and roundoff errors, which could make the difference between singularity and
nonsingularity of the result. Even if the computed observability matrix is close
to being singular, it is cause for concern. One should consider a system as
poorly observable if its observability matrix is close to being singular. For that
purpose, one can use the singular-value decomposition or the condition
number of the observability matrix to define a more quantitative measure of
unobservability. The reciprocal of its condition number measures how close the
system is to being unobservable.

e Real systems tend to have some amount of unpredictability in their behavior,
due to unknown or neglected exogenous inputs. Although such effects cannot
be modeled deterministically, they are not always negligible. Furthermore, the
process of measuring the outputs with physical sensors introduces some



2.5 OBSERVABILITY OF LINEAR DYNAMIC SYSTEM MODELS 45

amount of sensor noise, which will cause errors in the estimated state. It would
be better to have a quantitative characterization of observability that takes these
types of uncertainties into account. An approach to these issues (pursued in
Chapter 4) uses a statistical characterization of observability, based on a
statistical model of the uncertainties in the measured system outputs and the
system dynamics. The degree of uncertainty in the estimated values of the
system states can be characterized by an information matrix, which is a
statistical generalization of the observability matrix.

EXAMPLE 2.8 Consider the following continuous system:
] 0 1 0
x(t) = x(t) + u(t),
0 0 1
z(t) =1 0x().

The observability matrix, using Equation 2.35, is

1 0
M_|:0 1], rank of M = 2.

Here, M has rank equal to the dimension of x(¢). Therefore, the system is observable.

EXAMPLE 2.9 Consider the following continuous system:

0 1 0
x@:[ ]x(t)+[ }u(t),
0 0 1

2 =10 1.

The observability matrix, using Equation 2.35, is

M= |:(1) (1):|, rank of M = 1.

Here, M has rank less than the dimension of x(¢). Therefore, the system is not
observable.



46 LINEAR DYNAMIC SYSTEMS
EXAMPLE 2.10 Consider the following discrete system:

00 0 1
=10 0 0|x  +/|1 |u_,
110 0

Z=[0 0 1.

The observability matrix, using Equation 2.34, is

<
Il
- oo

1 0
1 0], rankof M =2.
0 0

The rank is less than the dimension of x;. Therefore, the system is not observable.

EXAMPLE 2.11 Consider the following discrete system:

1 -1 2
xk:|:1 1:|xk—l+|:l:|”k—1v
1 0
RN

The observability matrix, using Equation 2.34, is

M:|:(1) _ii| rank of M =2

The system is observable.

2.5.2 Controllability of Time-Invariant Linear Systems

Controllability in Continuous Time. The concept of observability in estima-
tion theory has algebraic relationships to the concept of controllability in control
theory. These concepts and their relationships were discovered by R. E. Kalman as
what he called the duality and separability of the estimation and control problems for
linear dynamic systems. Kalman’s’ dual concepts are presented here and in the next
subsection, although they are not issues for the estimation problem.

"The dual relationships between estimation and control given here are those originally defined by Kalman.
These concepts have been refined and extended by later investigators to include concepts of reachability
and reconstructibility as well. The interested reader is referred to the more recent textbooks on “modern”
control theory for further exposition of these other “-ilities.”



2.5 OBSERVABILITY OF LINEAR DYNAMIC SYSTEM MODELS 47

A dynamic system defined on the finite interval 7, < ¢ < 7, by the linear model
x(t) = Fx(t) + Cu(r), z(t) = Hx(t) + Du(t) (2.36)

and with initial state vector x(#,) is said to be controllable at time t = ¢, if, for any
desired final state x(¢,), there exists a piecewise continuous input function u(7) that
drives to state x(#,). If every initial state of the system is controllable in some finite
time interval, then the system is said to be controllable.

The system given in Equation 2.36 is controllable if and only if matrix S has n
linearly independent columns,

S=[C FC F*c -.- F"(]. (2.37)

Controllability in Discrete Time. Consider the time-invariant system model
given by the equations

xk = (ka—l + Fuk_l, (238)
Zk = ka —+ Duk. (239)

This system model is considered controllable® if there exists a set of control signals
u; defined over the discrete interval 0 < k < N that bring the system from an initial
state x,, to a given final state x,; in N sampling instants, where N is a finite positive
integer. This condition can be shown to be equivalent to the matrix

S=[ or @ ... oV (2.40)

having rank n.

EXAMPLE 2.12 Determine the controllability of Example 2.8. The controllabil-
ity matrix, using Equation 2.37, is

0 1
S—|:1 0], rank of § = 2.

Here, S has rank equal to the dimension of x(¢). Therefore, the system is controllable.

EXAMPLE 2.13 Determine the controllability of Example 2.10. The controll-
ability matrix, using Equation 2.40, is

1 0 0
S=1]1 0 0], rankof S=2.
02 0

The system is not controllable.

8This condition is also called reachability, with controllability restricted to xy =0.



48 LINEAR DYNAMIC SYSTEMS
2.6 PROCEDURES FOR COMPUTING MATRIX EXPONENTIALS

In a 1978 journal article titled “Nineteen dubious ways to compute the exponential
of a matrix” [205], Moler and Van Loan reported their evaluations of methods for
computing matrix exponentials. Many of the methods tested had serious short-
comings, and no method was considered universally superior. The one presented
here was recommended as being more reliable than most. It combines several ideas
due to Ward [233], including setting the algorithm parameters to meet a prespecified
error bound. It combines Padé approximation with a technique called “scaling and
squaring” to maintain approximation errors within prespecified bounds.

2.6.1 Padé Approximation of the Matrix Exponential

Padé approximations. These approximations of functions by rational functions
(ratios of polynomials) date from a 1892 publication [206] by H. Padé.’ They have
been used in deriving solutions of differential equations, including Riccati equa-
tions'® [69]. They can also be applied to functions of matrices, including the matrix
exponential. In the matrix case, the power series is approximated as a “matrix
fraction” of the form 2~'.4", with the numerator matrix (/") and denominator
matrix () represented as polynomials with matrix arguments. The “order” of the
Padé approximation is two dimensional. It depends on the orders of the polynomials
in the numerator and denominator of the rational function. The Taylor series is the
special case in which the order of the denominator polynomial of the Padé
approximation is zero. Like the Taylor series approximation, the Padé approximation
tends to work best for small values of its argument. For matrix arguments, it will be
some matrix norm of the argument that will be required to be small.

Padé approximation of exponential function. The exponential function with
argument z has the power series expansion

& =

»

[{agfc

x| —
[N}
kel

The polynomials ./,,(z) and Z,(z) such that
r k
Np(2) = 1;70 az",

q
2,2 = b,
k=0

D) — M@= Y g

k=p+q+1

Pronounced pah-DAY..
19The order of the numerator and denominator of the matrix fraction are reversed here from the order used
in linearizing the Riccati equation in Chapter 4.



2.6 PROCEDURES FOR COMPUTING MATRIX EXPONENTIALS 49

are the numerator and denominator polynomials, respectively, of the Padé approx-
imation of ¢*. The key feature of the last equation is that there are no terms of order
<p+gq on the right-hand side. This constraint is sufficient to determine the
coefficients a; and b, of the polynomial approximants, except for a common
constant factor. The solution (within a common constant factor) will be [69]

L _Peta—R  (=D'qp+q—h)
T T k(g — k)! '

Application to Matrix Exponential. The above formulas may be applied to
polynomials with scalar coefficients and square matrix arguments. For any n x n
matrix X,

_ (p+q i)! (p+q—1i)
J;q(X)—< 'Z — i)l (_X)> < ,;o ilp —i)! X)
~ r

is the Padé approximation of ¥ of order (p, q).

Bounding Relative Approximation Error. The bound given here is from
Moler and Van Loan [205]. It uses the oco-norm of a matrix, which can be

computed'" as
n
[Xloo = max | > |x;]
1<i<n =1 k

for any n x n matrix X with elements x;;. The relative approximation error is defined
as the ratio of the matrix co-norm of the approximation error to the matrix co-norm
of the right answer. The relative Padé approximation error is derived as an analytical
function of X in Moler and Van Loan [205]. It is shown in Golub and Van Loan [89]
that it satisfies the inequality bound

Il £ X)) — €l o X
—_— < 8(p, q’X)es(p,q, ),
lleX Il oo
123-r—4
e(p, g, X) = i X Nl oo -

(p+lp+q+1)

Note that this bound depends only on the sum p + g. In that case, the computational
complexity of the Padé approximation for a given error tolerance is minimized when
p = g, that is, if the numerator and denominator polynomials have the same order.

"!"This formula is not the definition of the co-norm of a matrix, which is defined in Appendix B. However,
it is a consequence of the definition, and it can be used for computing it.



50 LINEAR DYNAMIC SYSTEMS

Bounding the Argument. The problem with the Padé approximation is that the
error bound grows exponentially with the norm |X||,,. Ward [233] combined
scaling (to reduce || X| . and the Padé approximation error) with squaring (to
rescale the answer) to obtain an approximation with a predetermined error bound. In
essence, one chooses the polynomial order to achieve the given bound.

2.6.2 Scaling and Squaring

Note that, for any nonnegative integer N,

& = (&2
= {[(: P O PP

N squarings

Consequently, X can be “downscaled” by 27 to obtain a good Padé approximation
of ¢ "X, then “upscaled” again (by N squarings) to obtain a good approximation

to eX.

2.6.3 MATLAB Implementations

The built-in MATLAB function expm(M) is essentially the one recommended by
Moler and Van Loan [205], as implemented by Golub and Van Loan [89, Algorithm
11.3.1, page 558]. It combines scaling and squaring with a Padé approximation for
the exponential of the scaled matrix, and it is designed to achieve a specified
tolerance of the approximation error. The MATLAB m-file expml.m (Section A.4)
is a script implementation of expm.

MATLAB also includes the functions expm?2 (Taylor series approximation) and
expm3 (alternative implementation using eigenvalue—eigenvector decompositions),
which can be used to test the relative accuracies and speeds relative to expm of these
alternative implementations of the matrix exponential function.

2.7 SUMMARY

Systems and Processes. A system is a collection of interrelated objects treated
as a whole for the purpose of modeling its behavior. It is called dynamic if attributes
of interest are changing with time. A process is the evolution over time of a system.

Continuous and Discrete Time. Although it is sometimes convenient to model
time as a continuum, it is often more practical to consider it as taking on discrete
values. (Most clocks, for example, advance in discrete time steps.)

State Variables and Vectors. The state of a dynamic system at a given instant
of time is characterized by the instantaneous values of its attributes of interest. For



2.7 SUMMARY 51

the problems of interest in this book, the attributes of interest can be characterized
by real numbers, such as the electric potentials, temperatures, or positions of its
component parts—in appropriate units. A state variable of a system is the associated
real number. The state vector of a system has state variables as its component
elements. The system is considered closed if the future state of the system for all
time is uniquely determined by its current state. For example, neglecting the gravity
fields from other massive bodies in the universe, the solar system could be
considered as a closed system. If a dynamic system is not closed, then the exogenous
causes are called “inputs” to the system. This state vector of a system must be
complete in the sense that the future state of the system is uniquely determined by its
current state and its future inputs.'? In order to obtain a complete state vector for a
system, one can extend the state variable components to include derivatives of other
state variables. This allows one to use velocity (the derivative of position) or
acceleration (the derivative of velocity) as state variables, for example.

State-Space Models for Dynamic Systems. In order that the future state of a
system may be determinable from its current state and future inputs, the dynamical
behavior of each state variable of the system must be a known function of the
instantaneous values of other state variables and the system inputs. In the canonical
example of our solar system, for instance, the acceleration of each body is a known
function of the relative positions of the other bodies. The state-space model for a
dynamic system represents these functional dependencies in terms of first-order
differential equations (in continuous time) or difference equations (in discrete time).
The differential or difference equations representing the behavior of a dynamic
system are called its state equations. If these can be represented by linear functions,
then it is called a linear dynamic system.

Linear Dynamic System Models. The model for a linear dynamic system in
continuous time can be expressed in general form as a first-order vector differential
equation

%x(t) = F(t)x(t) + C(t)u(t)’

where x(f) is the n-dimensional system state vector at time ¢, F(f) is its n X n
dynamic coefficient matrix, u(t) is the r-dimensional system input vector, and C(¢) is
the n x r input coupling matrix. The corresponding model for a linear dynamic
system in discrete time can be expressed in the general form

X = Oy xpy + Dy,

">This concept in the state-space approach will be generalized in the next chapter to the “state of
knowledge” about a system, characterized by the probability distribution of its state variables. That is, the
future probability distribution of the system state variables will be uniquely determined by their present
probability distribution and the probability distributions of fiture inputs.



52 LINEAR DYNAMIC SYSTEMS
where x;_, is the n-dimensional system state vector at time #,_;, x; is its value a time
ty > t_y1, Dy_ is the n x n state transition matrix for the system at time 7, u; is the
input vector to the system a time #;, and I'; is the corresponding input coupling
matrix.

Time-Varying and Time-Invariant Dynamic Systems. If F and C (or ® and
() do not depend upon ¢ (or k), then the continuous (or discrete) model is called time

invariant. Otherwise, the model is time-varying.

Homogeneous Systems and Fundamental Solution Matrices. The equa-
tion

d
Sa(t) = Fla(0)
is called the homogeneous part of the model equation
d
Ex(t) = F()x(t) + C(H)u(?).
A solution ®(7) to the corresponding n X n matrix equation
L o0 = Fow
a7
on an interval starting at time ¢ = ¢, and with initial condition

®(ty) =1 (the identity matrix)

is called a fiundamental solution matrix to the homogeneous equation on that
interval. It has the property that, if the elements of F(¢) are bounded, then ®(¢)
cannot become singular on a finite interval. Furthermore, for any initial value x(z),

x(1) = ©(1)x(1)
is the solution to the corresponding homogeneous equation.
Fundamental Solution Matrices and State Transition Matrices. For a
homogenous system, the state transition matrix ®,_, from time #,_, to time #; can be
expressed in terms of the fundamental solution ®@(¢) as

O, = Ot)0™ : (t—1)

for times #, > t,_, > 1.



2.7 SUMMARY 53

Transforming Continuous-Time Models to Discrete Time. The model for
a dynamic system in continuous time can be transformed into a model in discrete
time using the above formula for the state transition matrix and the following
formula for the equivalent discrete-time inputs:

Uyt = ¢(rk>Jk O () C(u(x) dr.

Tj—1

Linear System Output Models and Observability. An output of a dynamic
system is something we can measure directly, such as directions of the lines of sight
to the planets (viewing conditions permitting) or the temperature at thermocouple. A
dynamic system model is said to be observable from a given set of outputs if it is
feasible to determine the state of the system from those outputs. If the dependence of
an output z on the system state x is linear, it can be expressed in the form

z = Hx,

where H is called the measurement sensitivity matrix. It can be a function of
continuous time [H(?)] or discrete time (H). Observability can be characterized by
the rank of an observability matrix associated with a given system model. The
observability matrix is defined as

t
[ O (0)H" (1) H (7)D(7) dt for continuous-time models,

Jt

m [ izl i-1 _\T
> |:( @,{)I-IITH,- ( I (D,{> :| for discrete-time models.
0 k=0

i=0 k=

(9:

The system is observable if and only if its observability matrix has full rank () for
some integer m > 0 or time ¢ > #,. (The test for observability can be simplified for
time-invariant systems.) Note that the determination of observability depends on the
(continuous or discrete) interval over which the observability matrix is determined.

Reliable Numerical Approximation of Matrix Exponential. The closed-
form solution of a system of first-order differential equations with constant
coefficients can be expressed symbolically in terms of the exponential function of
a matrix, but the problem of numerical approximation of the exponential function of
a matrix is notoriously ill-conditioned.

PROBLEMS

ay(t
2.1 What is a state vector model for the linear dynamic system % = u(?),

expressed in terms of y? (Assume the companion form of the dynamic
coefficient matrix.)



54

2.2

2.3
24

2.5

2.6

2.7

2.8

2.9

LINEAR DYNAMIC SYSTEMS

What is the companion matrix for the nth-order differential equation
(d/dt)"y(t) = 0? What are its dimensions?

What is the companion matrix of the above problem when n = 1? For n = 2?

What is the fundamental solution matrix of Exercise 2.2 when » = 1? When
n=2?

What is the state transition matrix of the above problem when n = 1? For
n=27

Find the fundamental solution matrix ®(¢) for the system

d|:xl(t)i|_|: 0 0]|:x1(t)]+[1]
dtlx,(t) | [—1 =2 [x0) 1
and also the solution x(¢) for the initial conditions

x(0)=1 and x,(0)=2.

Find the total solution and state transition matrix for the system

d [ x () [l 07 x,(t) 5
i) =L o 2t oL
with initial conditions x;(0) = 1 and x,(0) = 2.

The reverse problem: from a discrete-time model to a continuous-time model.
For the discrete-time dynamic system model

0 1 0
= afee )

find the state transition matrix for continuous time and the solution for the
continuous-time system with initial conditions

x(0) = [é]

Find conditions on ¢y, ¢,, iy, h, such that the following system is completely
observable and controllable:

dix(] [l 1][x() ¢
E[xzm] - [o 1][X2(f)] * |:02:|u(t)’
20) = [hy hz]l:XI(t)]-

x,(1)



2.7 SUMMARY 55

2.10

2.11

2.12

2.13

2.14

2.15

2.16

Determine the controllability and observability of the dynamic system model
given below:

dx@®7 _[1 07[x(@®) 1 0 [
E[xz(r)]‘[l 0][x2(r>]+[o —J[uj’
26) =0 1][x'(t)]

x,(1)

Derive the state transition matrix of the time-varying system

(1) = [ 6 (t)]x(t).

Find the state transition matrix for

0 1
[0 1]
For the system of three first-order differential equations
xl:.Xé, )’Cz = X3, X3:O

(a) What is the companion matrix F?
(b) What is the fundamental solution matrix ®(¢) such that (d/df)®(t) =
F®(t) and ®(0) = I?

Show that the matrix exponential of an antisymmetric matrix is an orthogonal
matrix.

Derive the formula of Equation 2.32 for the observability matrix of a linear
dynamic system model in continuous time. (Hint. Use the approach of
Example 1.2 for estimating the initial state of a system and Equation 2.19
for the state of a system as a linear function of its initial state and its inputs.)

Derive the formula of Equation 2.33 for the observability matrix of a dynamic
system in discrete time. (Hint: Use the method of least squares of Example
1.1 for estimating the initial state of a system, and compare the resulting
Gramian matrix to the observability matrix of Equation 2.33.)



Random Processes and
Stochastic Systems

A completely satisfactory definition of random sequence is yet to be discovered.
G. James and R. C. James, Mathematics Dictionary,
D. Van Nostrand Co., Princeton, New Jersey, 1959

3.1 CHAPTER FOCUS

The previous chapter presents methods for representing a class of dynamic systems
with relatively small numbers of components, such as a harmonic resonator with one
mass and spring. The results are models for deferministic mechanics, in which the
state of every component of the system is represented and propagated explicitly.

Another approach has been developed for extremely large dynamic systems, such
as the ensemble of gas molecules in a reaction chamber. The state-space approach
for such large systems would be impractical. Consequently, this other approach
focuses on the ensemble statistical properties of the system and treats the underlying
dynamics as a random process. The results are models for statistical mechanics, in
which only the ensemble statistical properties of the system are represented and
propagated explicitly.

In this chapter, some of the basic notions and mathematical models of statistical
and deterministic mechanics are combined into a stochastic system model, which
represents the state of knowledge about a dynamic system. These models represent
what we know about a dynamic system, including a quantitative model for our
uncertainty about what we know.

In the next chapter, methods will be derived for modifying the state of knowl-
edge, based on observations related to the state of the dynamic system.

56



3.1 CHAPTER FOCUS 57

3.1.1 Discovery and Modeling of Random Processes

Brownian Motion and Stochastic Differential Equations. The British
botanist Robert Brown (1773—-1858) reported in 1827 a phenomenon he had
observed while studying pollen grains of the herb Clarkia pulchella suspended in
water and similar observations by earlier investigators. The particles appeared to
move about erratically, as though propelled by some unknown force. This phenom-
enon came to be called Brownian movement or Brownian motion. It has been studied
extensively—both empirically and theoretically—by many eminent scientists
(including Albert Einstein [157]) for the past century. Empirical studies demon-
strated that no biological forces were involved and eventually established that
individual collisions with molecules of the surrounding fluid were causing the
motion observed. The empirical results quantified how some statistical properties of
the random motion were influenced by such physical properties as the size and mass
of the particles and the temperature and viscosity of the surrounding fluid.
Mathematical models with these statistical properties were derived in terms of
what has come to be called stochastic differential equations. P. Langevin (1872—
1946) modeled the velocity v of a particle in terms of a differential equation of the
form

dv
7= —pv + a(?), (3.1

where f§ is a damping coefficient (due to the viscosity of the suspending medium)
and a(?) is called a “random force.” This is now called the Langevin equation.

Idealized Stochastic Processes. The random forcing function a(#) of the
Langevin equation has been idealized in two ways from the physically motivated
example of Brownian motion: (1) the velocity changes imparted to the particle have
been assumed to be statistically independent from one collision to another and (2)
the effective time between collisions has been allowed to shrink to zero, with the
magnitude of the imparted velocity change shrinking accordingly. This model
transcends the ordinary (Riemann) calculus, because a “white-noise” process is
not integrable in the ordinary calculus. A special calculus was developed by Kiyosi
1t6 (called the It6 calculus or the stochastic calculus) to handle such functions.

White-Noise Processes and Wiener Processes. A more precise mathema-
tical characterization of white noise was provided by Norbert Weiner, using his
generalized harmonic analysis, with a result that is difficult to square with intuition.
It has a power spectral density that is uniform over an infinite bandwidth, implying
that the noise power is proportional to bandwidth and that the total power is infinite.
(If “white light” had this property, would we be able to see?) Wiener preferred to
focus on the mathematical properties of v(¢), which is now called a Wiener process.
Its mathematical properties are more benign than those of white-noise processes.



58 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

3.1.2 Main Points to Be Covered

The theory of random processes and stochastic systems represents the evolution over
time of the uncertainty of our knowledge about physical systems. This representation
includes the effects of any measurements (or observations) that we make of the
physical process and the effects of uncertainties about the measurement processes
and dynamic processes involved. The uncertainties in the measurement and dynamic
processes are modeled by random processes and stochastic systems.

Properties of uncertain dynamic systems are characterized by statistical param-
eters such as means, correlations, and covariances. By using only these numerical
parameters, one can obtain a finite representation of the problem, which is important
for implementing the solution on digital computers. This representation depends
upon such statistical properties as orthogonality, stationarity, ergodicity, and Marko-
vianness of the random processes involved and the Gaussianity of probability
distributions. Gaussian, Markov, and uncorrelated (white-noise) processes will be
used extensively in the following chapters. The autocorrelation functions and power
spectral densities (PSDs) of such processes are also used. These are important in the
development of frequency-domain and time-domain models. The time-domain
models may be either continuous or discrete.

Shaping filters (continuous and discrete) are developed for random-constant,
random-walk, and ramp, sinusoidally correlated and exponentially correlated
processes. We derive the linear covariance equations for continuous and discrete
systems to be used in Chapter 4. The orthogonality principle is developed and
explained with scalar examples. This principle will be used in Chapter 4 to derive the
Kalman filter equations.

3.1.3 Topics Not Covered

It is assumed that the reader is already familiar with the mathematical foundations of
probability theory, as covered by Papoulis [39] or Billingsley [53], for example. The
treatment of these concepts in this chapter is heuristic and very brief. The reader is
referred to textbooks of this type for more detailed background material.

The It6 calculus for the integration of otherwise nonintegrable functions (white
noise, in particular) is not defined, although it is used. The interested reader is
referred to books on the mathematics of stochastic differential equations (e.g., those
by Arnold [51], Baras and Mirelli [52], It6 and McKean [64], Sobczyk [77], or
Stratonovich [78]).

3.2 PROBABILITY AND RANDOM VARIABLES

The relationships between unknown physical processes, probability spaces, and
random variables are illustrated in Figure 3.1. The behavior of the physical processes
is investigated by what is called a statistical experiment, which helps to define a
model for the physical process as a probability space. Strictly speaking, this is not a



3.2 PROBABILITY AND RANDOM VARIABLES 59

RANDOM FROBABILITY
VARIABLE DISTRIBUTION
Figp—=® Prixy=p{f " eoxi))
R

R TR m oEm mmjEm e o e = - SaeE,mEmm_—_—_——— b
i |
b |
. | |

o8 Ol SAMPLE SIGMA |

FOR OUR I 5A L SlGM , r _—

STATE OF I SPACE & ALGEBRA o R EABURE. !
KNOWLEDGE <4 1 OF ALL - OF SUBSETS — - NN
ABOUT THE 1 POSSIBLE &5 prgf =011 |

PHYSICAL | OUTCOMES CALLED 1

PROCESS " De EVENTS i

I |

| I

| PROBABLLITY | SPACE !

| VY S ———— e T T . e o

) ING F———— === s m s - m - - = - - 1
F?F:slf‘;'[f?éll):.’ﬁii— L STATISTICAL | EXPERIMENT J

UNKNOWN PHYSICAL PROCESS

Fig. 3.1 Conceptual model for a random variable.

model for the physical process itself, but a model of our own understanding of the
physical process. It defines what might be called our “state of knowledge” about the
physical process, which is essentially a model for our uncertainty about the physical
process.

A random variable represents a numerical attribute of the state of the physical
process. In the following subsections, these concepts are illustrated by using the
numerical score from tossing dice as an example of a random variable.

3.2.1 An Example of a Random Variable

EXAMPLE 3.1: Score from Tossing a Die A die (plural of dice) is a cube with
its six faces marked by patterns of one to six dots. It is thrown onto a flat surface
such that it tumbles about and comes to rest with one of these faces on top. This can
be considered an unknown process in the sense that which face will wind up on top
is not reliably predictable before the toss. The tossing of a die in this manner is an
example of a statistical experiment for defining a statistical model for the process.
Each toss of the die can result in but one outcome, corresponding to which one of the
six faces of the die is on top when it comes to rest. Let us label these outcomes ¢,
Oy, Oy Oy, O, Oy. The set of all possible outcomes of a statistical experiment is
called a sample space. The sample space for the statistical experiment with one die is
the set & = {C,, O, O, Oy, C,, O}.



60 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

A random variable assigns real numbers to outcomes. There is an integral
number of dots on each face of the die. This defines a “dot function” d : ¥ — R on
the sample space ., where d(() is the number of dots showing for the outcome ¢/ of
the statistical experiment. Assign the values

d((Qa) =1, d(@c) =3, d((Qe) =3,
dC) =2,  dO)=4  d)=6.

This function is an example of a random variable. The useful statistical properties of
this random variable will depend upon the probability space defined by statistical
experiments with the die.

Events and sigma algebras. The statistical properties of the random variable d
depend on the probabilities of sets of outcomes (called events) forming what is
called a sigma algebra' of subsets of the sample space .. Any collection of events
that includes the sample space itself, the empty set (the set with no elements), and the
set unions and set complements of all its members is called a sigma algebra over the
sample space. The set of all subsets of & is a sigma algebra with 2° = 64 events.

The probability space for a fair die. A die is considered “fair” if, in a large
number of tosses, all outcomes tend to occur with equal frequency. The relative
frequency of any outcome is defined as the ratio of the number of occurrences of that
outcome to the number of occurrences of all outcomes. Relative frequencies of
outcomes of a statistical experiment are called probabilities. Note that, by this
definition, the sum of the probabilities of all outcomes will always be equal to 1. This
defines a probability p(&) for every event & (a set of outcomes) equal to

)
W)

(&)

where #(&) is the cardinality of &, equal to the number of outcomes O € &. Note
that this assigns probability zero to the empty set and probability one to the sample
space.

The probability distribution of the random variable d is a nondecreasing function
P,(x) defined for every real number x as the probability of the event for which the
score is less than x. It has the formal definition

Py(0) € p(d~" (00, x))),

d™" (=00, ) €{01d(0) < x}.

'Such a collection of subsets &; of a set & is called an algebra because it is a Boolean algebra with respect
to the operations of set union (&, U &,), set intersection (&; Né&,), and set complement (¥\&)—
corresponding to the logical operations or, and, and not, respectively. The “sigma” refers to the
summation symbol X, which is used for defining the additive properties of the associated probability
measure. However, the lowercase symbol ¢ is used for abbreviating “sigma algebra” to “g-algebra.”



3.2 PROBABILITY AND RANDOM VARIABLES 61

For every real value of x, the set {(|d(() < x} is an event. For example,

Py(1) = p(d~' (=00, 1))
=p({01d(0) < 1})
=p({}) (the empty set)
=0,

P,(1.0---01) = p(d~'((—00, 1.0 ---01)))
= p({01d(0) < 1.0---01})
=p({0,) = ¢,

Py6.0---01) = p() = 1,

as plotted in Figure 3.2. Note that P, is not a continuous function in this particular
example.

3.2.2 Probability Distributions and Densities

Random variables fare required to have the property that, for every real a and b such
that —oo < a < b < 400, the outcomes (@ such that a < f() < b are an event
& € o/. This property is needed for defining the probability distribution function Py
of fas

def

P(x) = p(f™ (=00, X)), (3-2)

(00, ) €0 € 71 £(0) < x). (3.3)

Piix) A p(n!'" ((—co. _J.'}})

5 10
SCORE x=d (@)

Fig. 3.2 Probability distribution of scores from a fair die.



62 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

The probability distribution function may not be a differentiable function. However,
if it is differentiable, then its derivative

d
prx) = Epf(x) (3.4)

is called the probability density function of the random variable, f, and the
differential

pr(x) dx = dPr(x) (3.5)

is the probability measure of f defined on a sigma algebra containing the open
intervals (called the Borel® algebra over N).

A vector-valued random variable is a vector with random variables as its
components. An analogous derivation applies to vector-valued random variables,
for which the analogous probability measures are defined on the Borel algebras over
N

3.2.3 Gaussian Probability Densities

The probability distribution of the average score from tossing n dice (i.e., the total
number of dots divided by the number of dice) tends toward a particular type of
distribution as n — oo, called a Gaussian distribution.® It is the limit of many such
distributions, and it is common to many models for random phenomena. It is
commonly used in stochastic system models for the distributions of random
variables.

Univariate Gaussian Probability Distributions. The notation .4"(%, ¢%) is used to
denote a probability distribution with density function

-2
exp[—l@], (3.6)

1
px) = s
where
x = E{x) 3.7

is the mean of the distribution (a term that will be defined later on, in Section 3.4.2)
and ¢? is its variance (also defined in Section 3.4.2). The “.4"” stands for “normal,”

*Named for the French mathematician Félix Borel (1871-1956).

3It is called the Laplace distribution in France. It has had many discoverers besides Gauss and Laplace,
including the American mathematician Robert Adrian (1775-1843). The physicist Gabriel Lippman
(1845-1921) is credited with the observation that “mathematicians think it [the normal distribution] is a
law of nature and physicists are convinced that it is a mathematical theorem.”



3.2 PROBABILITY AND RANDOM VARIABLES 63

another name for the Gaussian distribution. Because so many other things are called
normal in mathematics, it is less confusing if we call it Gaussian.

Gaussian Expectation Operators and Generating Functions. Because the
Gaussian probability density function depends only on the difference x — Xx, the
expectation operator

E{ 1oy = r:f(X)p(X) dx (3.8)
1 +oo =25 2

== Lo f(x)e= 6D/ gy (3.9)
1 +0o0 2 2

= Lo fx+x)e ™% dx (3.10)

has the form of a convolution integral. This has important implications for problems
in which it must be implemented numerically, because the convolution can be
implemented more efficiently as a fast Fourier transform of f, followed by a
pointwise product of its transform with the Fourier transform of p, followed by an
inverse fast Fourier transform of the result. One does not need to take the numerical
Fourier transform of p, because its Fourier transform can be expressed analytically in
closed form. Recall that the Fourier transform of p is called its generating function.
Gaussian generating functions are also (possibly scaled) Gaussian density functions:

) Y .
p(w) = EJ px)e’ ™ dx (3.11)
—00
1 00 e—x2/262 )
= EJ \/57_-[_& e’“’x dx (3 12)
—00
= = (3.13)

a Gaussian density function with variance ¢~2. Here we have used a probability-
preserving form of the Fourier transform, defined with the factor of 1/4/27 in front
of the integral. If other forms of the Fourier transform are used, the result is not a
probability distribution but a scaled probability distribution.

3.2.3.1 Vector-Valued (Multivariate) Gaussian Distributions. The formula
for the n-dimensional Gaussian distribution .A"(x, P), where the mean x is an n-
vector and the covariance P is an n X n symmetric positive-definite matrix, is

PO = D) (3.14)



64 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

The multivariate Gaussian generating function has the form

e(l/Z)wTPm i (3 1 5)

1
po) = V@2n)"det P!

where w is an n-vector. This is also a multivariate Gaussian probability distribution
A7(0, P71) if the scaled form of the Fourier transform shown in Equation 3.11 is
used.

3.2.4 Joint Probabilities and Conditional Probabilities

The joint probability of two events &, and &, is the probability of their set
intersection p(&,N &},), which is the probability that both events occur. The joint
probability of independent events is the product of their probabilities.

The conditional probability of event &, given that event &, has occurred, is
defined as the probability of & in the “conditioned” probability space with sample
space & .. This is a probability space defined on the sigma algebra

ANE,={ENEE € ) (3.16)

of the set intersections of all events & € .o/ (the original sigma algebra) with the
conditioning event & . The probability measure on the “conditioned” sigma algebra
/| &, is defined in terms of the joint probabilities in the original probability space by
the rule

pENE,)

p(&1&,) :W,

(3.17)

where p(6 N &) is the joint probability of & and & . Equation 3.17 is called Bayes’
rule®.

EXAMPLE 3.2: Experiment with Two Dice Consider a toss with two dice in
which one die has come to rest before the other and just enough of its face is visible
to show that it contains either four or five dots. The question is: What is the
probability distribution of the score, given that information?

The probability space for two dice. This example illustrates just how rapidly the
sizes of probability spaces grow with the “problem size” (in this case, the number of
dice). For a single die, the sample space has 6 outcomes and the sigma algebra has
64 events. For two dice, the sample space has 36 possible outcomes (6 independent
outcomes for each of two dice) and 23 = 68, 719, 476, 736 possible events. If each

“Discovered by the English clergyman and mathematician Thomas Bayes (1702-1761). Conditioning on
impossible events is not defined. Note that the conditional probability is based on the assumption that &,
has occurred. This would seem to imply that &, is an event with nonzero probability, which one might
expect from practical applications of Bayes’ rule.



3.2 PROBABILITY AND RANDOM VARIABLES 65

5 1]
(a) Two dice without conditioning

Filx|0;€{0g.0.})

L

510

(b) Two dice with conditioning

Fig. 3.3 Probability distributions of dice scores.

die is fair and their outcomes are independent, then all outcomes with two dice have
probability (%) X (%) = % and the probability of any event is the number of outcomes
in the event divided by 36 (the number of outcomes in the sample space). Using the
same notation as the previous (one-die) example, let the outcome from tossing a pair
of dice be represented by an ordered pair (in parentheses) of the outcomes of the first
and second die, respectively. Then the score s((C;, O))) = d(C;) + d(C;), where O;
represents the outcome of the first die and (; represents the outcome of the second
die. The corresponding probability distribution function of the score x for two dice is
shown in Figure 3.3a.

The event corresponding to the condition that the first die have either four or five
dots showing contains all outcomes in which ¢; = ¢, or (,, which is the set

Ee =04 Co), (g, Op), (4, Oc), (O, Og): (Ug, Cp), (O, O)
((Qe’ 0(1)9 ((Qe’ (/ﬂb)’ ((Qw (QC), ((De’ (Qd)v ((Ow (Qe)’ ((Qe’ (Qf)}s

12

of 12 outcomes. It has probability p(&,) =12 = 5.



66 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

By applying Bayes’ rule, the conditional probabilities of all events corresponding
to unique scores can be calculated as shown in Figure 3.4. The corresponding
probability distribution function for two dice with this conditioning is shown in
Figure 3.3b.

3.3 STATISTICAL PROPERTIES OF RANDOM VARIABLES

3.3.1 Expected Values of Random Variables

Expected values. The symbol E is used as an operator on random variables. It is
called the expectancy, expected value, or average operator, and the expression

f (x)) is used to denote the expected value of the function f applied to the
ensemble of possible values of the random variable x. The symbol under the £
indicates the random variable (RV) over which the expected value is to be evaluated.
When the RV in question is obvious from context, the symbol underneath the E will
be eliminated. If the argument of the expectancy operator is also obvious from
context, the angular brackets can also be disposed with, using Ex instead of E(x), for
example.

Moments. The nth moment of a scalar RV x with probability density p(x) is
defined by the formula

(o]

;1,,()c)d§f § (x™) défJ X"'p(x) dx. (3.18)

THE SCORING EVENTS IN A SAMPLE COND,

SPACE OF OUTCOMES (0+.0)) SCORE  PROB.

CONDITIONED ON (0, £(0,.0.] PEE
- ) ,
({} - - 2 0
| { } e — 3 0o
STATISTICAL { } : . 4 0
EXPERIMENT {00 O 5 o,
. {04 Op) (O O5)} & 12
6“)/ = {00 O) Oy Op)) ———————e ———e 7 12
2} {(O4:04) (0. O)}) 8 212
{04 O) (O O4)} —- 9 12
H(Om@; ). {(9.“(9,,)} _ = 12
{(Oe> O;)} — 5 112
l\_{ } — - 12 o

Fig. 3.4 Conditional scoring probabilities for two dice.



3.3 STATISTICAL PROPERTIES OF RANDOM VARIABLES 67

The nth central moment of x is defined as

10,0 & E(x — Ex)" (3.19)
o0
= J (x — Ex)"p(x) dx. (3.20)
The first moment of x is called its mean’:
n =Ex= J xp(x) dx. (3.21)
—00
In general, a function of several arguments such as f(x,),z) has first moment
o0
Ef(x,y,2z) = JJ J f(x, v, 2)p(x,y,z) dx dy dz. (3.22)
—00

Array Dimensions of Moments. The first moment will be a scalar or a vector,
depending on whether the function f(x, y, z) is scalar or vector valued. Higher order
moments have tensorlike properties, which we can characterize in terms of the
number of subscripts used in defining them as data structures. Vectors are singly
subscripted data structures. The higher order moments of vector-valued variates are
successively higher order data structures. That is, the second moments of vector-
valued RVs are matrices (doubly subscripted data structures), and the third-order
moments will be triply subscripted data structures.

These definitions of a moment apply to discrete-valued random variables if we
simply substitute summations in place of integrations in the definitions.

3.3.2 Functions of Random Variables

A function of RV x is the operation of assigning to each value of x another value, for
example y, according to rule or function. This is represented by

y=f), (3.23)

where x and y are usually called input and output, respectively. The statistical
properties of y in terms of x are, for example,

Ey— J Fp() dx,

—00

(3.24)

By = J LA T'p(x) dx

when y is scalar. For vector-valued functions y, similar expressions can be shown.

SWe here restrict the order of the moment to the positive integers. The zeroth-order moment would
otherwise always evaluate to 1.



68 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

The probability density of y can be obtained from the density of x. If Equation
3.23 can be solved for x, yielding the unique solution

x=g). (3.25)
Then we have
p) = oD (3.26)
ox  lx=g()

where p,(y) and p,(x) are the density functions of y and x, respectively. A function of
two RVs, x, y is the process of assigning to each pair of x, y another value, for
example, z, according to the same rule,

z=f(y,x), (3.27)

and similarly functions of » RVs. When x and y in Equation 3.23 are n-dimensional
vectors and if a unique solution for x in terms of y exists,

x=g@), (3.28)
Equation 3.26 becomes
() zp"[g(y)], (3.29)
=g

where the Jacobian |J| is defined as the determinant of the array of partial derivatives
f;/0x;:

T Y T
ax;  0xp ox,,

| = det| ™1 9% o, | (3.30)
_3x1 8x2 an_

3.4 STATISTICAL PROPERTIES OF RANDOM PROCESSES

3.4.1 Random Processes (RPs)

A RV was defined as a function x(s) defined for each outcome of an experiment
identified by s. Now if we assign to each outcome s a time function x(¢, s), we obtain



3.4 STATISTICAL PROPERTIES OF RANDOM PROCESSES 69

a family of functions called random processes or stochastic processes. A random
process is called discrete if its argument is a discrete variable set as

x(k,s), k=1,2.... (3.31)

It is clear that the value of a random process x(#) at any particular time ¢ = #,, namely
x(ty, s), is a random variable [or a random vector if x(¢), s) is vector valued].

3.4.2 Mean, Correlation, and Covariance
Let x(f) be an n-vector random process. Its mean
o0

Ex(t) = J x(O)p[x(2)] dx(1), (3.32)

—00

which can be expressed elementwise as

o¢]

Ex;(t) = J x;(Oplx, ()] dx(t), i=1...n.

—00

For a random sequence, the integral is replaced by a sum.
The correlation of the vector-valued process x(?) is defined by

Ex(t)xi(6)) -+ EQn(1)x,(1)
E(x(t)x"(t,)) = : : , (3.33)
Ex,(t)x(5)) -+ Elx,(1)x,(1))
where
Ex,(t,)x1y) = J: in(tl)xj(tz)p[xi(tl), x(1)] dx(ty) (1) (3.34)

The covariance of x(t) is defined by

E([x(t,) — Ex(t)]lx(1y) — Ex(t,)]")

(3.35)
= E(x(t)x" (1)) — E(x(t ) E(x (1)
When the process x(f) has zero mean (i.e., Ex(¢) = 0 for all #), its correlation and
covariance are equal.
The correlation matrix of two RPs x(?), an n-vector, and y(¢), an m-vector, is given
by an n X m matrix

Ex(t)y" (1), (3.36)



70 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

where

ee]

Ext)yy(ty) = j jxi(rl>yj<rz>p[xi<rl>,yj(rz)] dxi(ty) dy,(t,) (3.37)

—00

Similarly, the cross-covariance #n X m matrix is

E([x(t,) — Ex(t)]l¥(t,) — Ex(t)]"). (3.38)

3.4.3 Orthogonal Processes and White Noise

Two RPs x(f) and y(¢) are called uncorrelated if their cross-covariance matrix is
identically zero for all ¢, and #,:

E([x(t,) — Ex(t))n(ty) — Ep(6,))]'] = 0. (3.39)

The processes x(f) and y(¢) are called orthogonal if their correlation matrix is
identically zero:

E(x(1)y"(1,)) = 0. (3.40)
The random process x() is called uncorrelated if

E([x(t) = E(0))]x(6) — E(@)]') = Oty )8(1; — 1), (3.41)

where §(7) is the Dirac delta “function”®

by

(actually, a generalized function), defined

r {1 if a<0<b,
o(t) dt = (3.42)

a 0 otherwise.

Similarly, a random sequence x; is called uncorrelated if
E{lx = Ete)lly; — E(p)]") = O(k.j) Atk — ), (3.43)
where A(-) is the Kronecker delta function’, defined by

{1 ifk=0
A(k) = (3.44)

0 otherwise.

A white-noise process or sequence is an example of an uncorrelated process or
sequence.

“Named for the English physicist Paul Adrien Maurice Dirac (1902-1984).
"Named for the German mathematician Leopold Kronecker (1823—1891).



3.4 STATISTICAL PROPERTIES OF RANDOM PROCESSES 71

A process x(¢) is considered independent if for any choice of distinct times

t, ty, ...t,, the random variables x(t,), x(#,), . .., x(z,) are independent. That is,
n
Pxtty)s -+ - s Pt (S15 - 5p) = Hl D) (50)- (3.45)
1=

Independence (all of the moments) implies no correlation (which restricts attention
to the second moments), but the opposite implication is not true, except in such
special cases as Gaussian processes (see Section 3.2.3). Note that whifeness means
uncorrelated in time rather than independent in time (i.e., including all moments),
although this distinction disappears for the important case of white Gaussian
processes (see Chapter 4).

3.4.4 Strict-Sense and Wide-Sense Stationarity

The random process x(f) (or random sequence x,) is called strict-sense stationary if
all its statistics (meaning p[x(¢,), x(%,), ...]) are invariant with respect to shifts of the
time origin:

POy xg, o Xty ty)

(3.46)
:p(xl,X2,...,xn, tl +8,t2 +8,...,tn+8)

The random process x(¢) (or x;) is called wide-sense stationary (WSS) (or “weak-
sense” stationary) if

E{x(t)) = ¢ (a constant) (3.47)

and

E(x(t)x' (1)) = Ot — 1) = O(0), (3.48)

where Q is a matrix with each element depending only on the difference ¢, — ¢, = 1.
Therefore, when x(¢) is stationary in the weak sense, it implies that its first- and
second-order statistics are independent of time origin, while strict stationarity by
definition implies that statistics of all orders are independent of the time origin.

3.4.5 Ergodic Random Processes

A process is considered ergodic8 if all of its statistical parameters, mean, variance,
and so on, can be determined from arbitrarily chosen member functions. A sampled
function x(¢) is ergodic if its time-averaged statistics equal the ensemble averages.

¥The term ergodic came originally from the development of statistical mechanics for thermodynamic
systems. It is taken from the Greek words for energy and path. The term was applied by the American
physicist Josiah Willard Gibbs (1839-1903) to the time history (or path) of the state of a thermodynamic
system of constant energy. Gibbs had assumed that a thermodynamic system would eventually take on all
possible states consistent with its energy. It was shown to be impossible from function-theoretic
considerations in the nineteenth century. The so-called ergodic hypothesis of James Clerk Maxwell
(1831-1879) is that the temporal means of a stochastic system are equivalent to the ensemble means. The
concept was given firmer mathematical foundations by George David Birkhoff and John von Neumann
around 1930 and by Norbert Wiener in the 1940s.



72 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

3.4.6 Markov Processes and Sequences

An RP x(7) is called a Markov process’ if its future state distribution, conditioned on
knowledge of its present state, is not improved by knowledge of previous states:

pRx@)x(); T <t} = ple@) (41}, (3.49)

where the times t;, < t, <t; <--- <,
Similarly, a random sequence (RS) x; is called a Markov sequence if

p(xilxg; k <i—1)=plxlx_}. (3.50)

The solution to a general first-order differential or difference equation with an
independent process (uncorrelated normal RP) as a forcing function is a Markov
process. That is, if x(f) and x;, are n-vectors satisfying

x(t) = F(O)x(t) + G()w(r) (3.51)
or

X = Qx4 + Gy Wiy, (3.52)

where w(f) and w;_; are r-dimensional independent random processes and
sequences, the solutions x(f) and x;, are then vector Markov processes and sequences,
respectively.

3.4.7 Gaussian Processes

An n-dimensional RP x(7) is called Gaussian (or normal) if its probability density
function is Gaussian, as given by the formulas of Section 3.2.3, with covariance
matrix

P = E{|x(t) — E{x(t))|[x(t) — E{x(t))]") (3.53)

for the random variable x.
Gaussian random processes have some useful properties:

A Gaussian RP x(¢) is WSS—and stationary in the strict sense.
Orthogonal Gaussian RPs are independent.
Any linear function of jointly Gaussian RP results in another Gaussian RP.

bl

All statistics of a Gaussian RP are completely determined by its first- and
second-order statistics.

Defined by Andrei Andreevich Markov (1856-1922).



3.4 STATISTICAL PROPERTIES OF RANDOM PROCESSES 73

3.4.8 Simulating Multivariate Gaussian Processes

Cholesky decomposition methods are discussed in Chapter 6 and Appendix B.
We show here how these methods can be used to generate uncorrelated pseudo-
random vector sequences with zero mean (or any specified mean) and a specified
covariance P.

There are many programs that will generate pseudorandom sequences of
uncorrelated Gaussian scalars {si|i = 1,2, 3, ...} with zero mean and unit variance:

E(s;) € /°(0,1) for all i, (3.54)
0 if i#j,

Elssy) = (3.55)
1 if i=j

These can be used to generate sequences of Gaussian n-vectors x; with mean zero
and covariance 1,:

UWe = [Suks1 Swks2 Swksz o Sn(k+1)]T7 (3.56)
E(u) =0, (3.57)
E(uul) =1,. (3.58)

These vectors, in turn, can be used to generate a sequence of n-vectors w; with zero
mean and covariance P. For that purpose, let

cct=p (3.59)

be a Cholesky decomposition of P, and let the sequence of n-vectors w; be generated
according to the rule

Then the sequence of vectors {wo, Wy, Wy, ...} will have mean

E(w,) = CE{u) (3.61)
-0 (3.62)

(an n-vector of zeros) and covariance

E{wywi) = E(Cuy(Cuy)") (3.63)
= CI,C" (3.64)
=P. (3.65)



74 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

The same technique can be used to obtain pseudorandom Gaussian vectors with a
given mean v by adding v to each w;. These techniques are used in simulation and

Monte Carlo analysis of stochastic systems.

3.4.9 Power Spectral Density

Let x(¥) be a zero-mean scalar stationary RP with autocorrelation (1),

E(x()x(t + 1)) = ¥.(7)

The power spectral density (PSD) is defined as

¥ (0) = J ¥ ()e 7" dr
—o0o
and the inverse transform as
1 (* )
O =5 | e do
2n ) _o

The following are properties of autocorrelation functions:

1. Autocorrelation functions are symmetrical ( “even” functions).

2. An autocorrelation function attains its maximum value at the origin.

3. Its Fourier transform is nonnegative (greater than or equal to zero).

These properties are satisfied by valid autocorrelation functions.
Setting T = 0 in Equation 3.68 gives

loe]

E (2()) = ,(0) = %J ¥ () doo.

Because of property 1 of the autocorrelation function,
‘Px(w) = lP)c(_('u)v

that is, the PSD is a symmetric function of frequency.

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)



3.4 STATISTICAL PROPERTIES OF RANDOM PROCESSES 75
EXAMPLE 3.3 If y (1) = o%e ", find the associated PSD:

0 00
Y. (o) = J ol et dt + J o’e et dt
—00 0

2( 1 1 )
=0 —+ -
o—jw o+ jw

262
T w402’

EXAMPLE 3.4 This is an example of a second-order Markov process generated

by passing WSS white noise with zero mean and unit variance through a second-

order “shaping filter” with the dynamic model of a harmonic resonator. (This is the

same example introduced in Chapter 2 and will be used again in Chapters 4 and 5.)
The transfer function of the dynamic system is

as+b

H)=——F7——.
) 2+ 20w,s + w?

Definitions of {, w,,, and s are the same as in Example 2.7. The state-space model of
H(s) is given as

D e Py
- + wio),
X, (2) —w?2 20w, || x,(0) b —2alw,

z(t) = x,(¢) = x(2).

The general form of the autocorrelation is

2
Y (1) = Cgﬁe*gw’"” cos<\/ 1— w1 — 9).

In practice, a2, 0, (, and w, are chosen to fit empirical data (see Problem 3.13). The
PSD corresponding to the i, () will have the form

a*w? + b?
WA 2w2(20% — D)w? 4+ wh

¥, (0) =

(The peak of this PSD will not be at the “natural” (undamped) frequency w,,, but at
the “resonant” frequency defined in Example 2.6.)
The block diagram corresponding to the state-space model is shown in Figure 3.5.



76 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

vl b-2alw, a
+ J
_ X (1) + X (1)
< I :|—+®‘ I
28w,
2
o,

Fig. 3.5 Diagram of a second-order Markov process.

The mean power of a scalar random process is given by the equations

T
B = lim sz(t) dt 3.71)
1 o0
== J_oolyx(w) do (3.72)
= (3.73)

The cross power spectral density between an RP x and an RP y is given by the
formula

00

Yy (w) = J t//xy(r)e’j“” dt (3.74)

3.5 LINEAR SYSTEM MODELS OF RANDOM PROCESSES
AND SEQUENCES

Assume that a linear system is given by

o0

W) = J x(7)h(t, 1) dr, (3.75)

—0Q
where x(?) is input and (%, 7) is the system weighting function (see Figure 3.6). If the
system is time invariant, then Equation 3.75 becomes

oo}

W)= | ko)t — t)dx. (3.76)
0

x0) | HGo) | ya)
h@)

Fig. 3.6 Block diagram representation of a linear system.



3.5 LINEAR SYSTEM MODELS OF RANDOM PROCESSES AND SEQUENCES 77

This type of integral is called a convolution integral. Manipulation of Equation 3.76
leads to relationships between autocorrelation functions of x(¢) and y(f),

%ﬁﬁ=LdﬁhmﬂgﬁﬂMﬂ%ﬁ+n—hl (3.77)

wgﬂ=LMm%a—mml (3.78)

and PSD relationships

¥y (o) = H(jo)¥ (), (3.79)
¥,(0) = [H(jo) P (o), (3.80)

where H is the system transfer function shown in Figure 3.6, defined in Laplace
transform notation as

H(s) = J:oh(‘t)e"‘T dr, (3.81)

where s = jo.

3.5.1 Stochastic Differential Equations
for Random Processes

A Note on the Calculus of Stochastic Differential Equations. Differential
equations involving random processes are called stochastic differential equations.
Introducing random processes as inhomogeneous terms in ordinary differential
equations has ramifications beyond the level of rigor that will be followed here,
but the reader should be aware of them. The problem is that random processes are
not integrable functions in the conventional (Riemann) calculus. The resolution of
this problem requires foundational modifications of the calculus to obtain many of
the results presented. The Riemann integral of the “ordinary” calculus must be
modified to what is called the /#6 calculus. The interested reader will find these
issues treated more rigorously in the books by Bucy and Joseph [15] and It6 [113].

A linear stochastic differential equation as a model of an RP with initial
conditions has the form

x(t) = F(O)x(t) + G(t)w(r) + C(t)u(?),

(3.82)
z(t) = H(H)x(t) + v(t) + D(t)u(t),



78 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

where the variables are defined as

x(f) = n x 1 state vector,

z(t) = £ x 1 measurement vector,

u(t) = r x 1 deterministic input vector,

F(f) = n x n time-varying dynamic coefficient matrix,

C(¢) = n x r time-varying input coupling matrix,
H(f) = £ x n time-varying measurement sensitivity matrix,

D(t) = £ x r time-varying output coupling matrix,

G(t) = n x r time-varying process noise coupling matrix,

w(t) = r x 1 zero-mean uncorrelated “plant noise” process,

v(t) = € x 1 zero-mean uncorrelated “measurement noise” process

and the expected values as

E(w(1) =

E(v(t)) =
Ew(t)w' (1)) = Q(f1)5(f2 — 1),
E(o(t)v (1)) = R(1)d(ty — 1y).
E(w(t)v (1)) = M(t)8(t, — 1y).

The symbols O, R, and M represent r x r, £ x £, and r x £ matrices, respectively,
and o represents the Dirac delta “function” (a measure). The values over time of
the variable x(¢) in the differential equation model define vector-valued Markov
processes. This model is a fairly accurate and useful representation for many real-
world processes, including stationary Gaussian and nonstationary Gaussian
processes, depending on the statistical properties of the random variables and the
temporal properties of the deterministic variables. [The function u(f) usually
represents a known control input. For the rest of the discussion in this chapter, we
will assume that u(f) = 0.]

EXAMPLE 3.5 Continuing with Example 3.3, let the RP x(f) be a zero-mean
stationary normal RP having autocorrelation

Y (1) = e, (3.83)
The corresponding power spectral density is

2020

—_. 3.84
w? + o2 ( )

¥ (w) =



3.5 LINEAR SYSTEM MODELS OF RANDOM PROCESSES AND SEQUENCES 79

This type of RP can be modeled as the output of a linear system with input w(?), a
zero-mean white Gaussian noise with PSD equal to unity. Using Equation 3.80, one
can derive the transfer function H(jw) for the following model:

20 20
v G H(jo)H(—jo) = 0. X227
—— H(jo) (o—— o+jo o—jo
Y (w)=1 Y.(o)
¥, (1)=0(7) ¥ (%)

Take the stable portion of this system transfer function as

200
H(s) = , 3.85
() =32 (3:85)
which can be represented as
x(s) 200
J , 3.86
w(s) s+a (3.86)

By taking the inverse Laplace transform of both sides of this last equation, one can
obtain the following sequence of equations:

x(t) + ax(f) = V200w(?),
(1) = —ox(t) + v 2a0w(1),
2(1) = x(1),

with 62(0) = ¢2. The parameter 1/o is called the correlation time of the process.

The block diagram representation of the process in Example 3.5 is shown in Table
3.1. This is called a shaping filter. Some other examples of differential equation
models are also given in Table 3.1.

3.5.2 Discrete Model of a Random Sequence

A vector discrete-time recursive equation for modeling a random sequence (RS) with
initial conditions can be given in the form

X = QX + Groywimy + gy
Zp = Hkxk + Uy + Dkuk' (387)



TABLE 3.1 System Models of Random Processes

Random Process Autocorrelation Shaping State-Space
Function and Filter Formulation
Power Spectral Diagram
Density
White noise V() = 625%(7) None Always treated as
V(@) = 02 measurement noise
Random walk W, (x) = (undefined) wol X x=w(t)
Yy(@) o 0? /o 7%(0) =0
Random constant Wy (7) = 6? None =0
(@) = 210%5(w) 7%(0) = ¢

Sinusoid

Exponentially correlated

Yy(t) = a2 COS(mqgT)

P, (0) = 16%5(w — wg)
+1a25(w + wq)

l//)((‘L') = 0_297“‘1‘
20%a
o) =

1 . .
— = correlation time
o

. [ 0o 1
r= —wg ol

@ 0
P(O):[O 0]

X = —ox + o/ 2aw (£)

75(0) = ¢®

08

SWILSAS OILSYHOOLS ANV S3SS300Hd WOANYH



3.5 LINEAR SYSTEM MODELS OF RANDOM PROCESSES AND SEQUENCES 81

This is the complete model with deterministic inputs u; as discussed in Chapter 2,
Equations 2.28 and 2.29, and random sequence noise w; and v, as described in
Chapter 4 equations:

x; = n x | state vector

z;; = £ x 1 measurement vector

u; = r x | deterministic input vector
®,_, = n x n time varying matrix
G,_; = n X r time varying matrix

H, = ¢ x n time varying matrix

D, = £ x r time varying matrix

I',_; = n x r time varying matrix

EXAMPLE 3.6 Let the {x;} be a zero-mean stationary Gaussian RS with
autocorrelation

W (ky — ky) = ge Rhl,

This type of RS can be modeled as the output of a linear system with input w; being
zero-mean white Gaussian noise with PSD equal to unity.
A difference equation model for this type of process can be defined as

X, =Ox;_ +Gwi_y, z =X (3.88)

In order to use this model, we need to solve for the unknown parameters ® and G as
functions of the parameter «. To do so, we first multiply Equation 3.38 by x,_; on
both sides and take the expected values to obtain the equations

E(xpxi_y) = PE(X_1x3_1) + GE(Wi_1x_1),

Ze ™ = Og?,

assuming the w; are uncorrelated and E(wg) = 0, so that E{(w,_;x;,_;) = 0. One
obtains the solution

O=e". (3.89)



82 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

Next, square the state variable defined by Equation 3.88 and take its expected value:

E(x}) = ®*E(x,_1x4_) + G*E(w_ywy_y)s (3.90)
o’ = d*®* + G, (3.91)

because the variance E(w?_,) = 1 and the parameter G = ov/1 — e~2%
The complete model is then

Xy =e "x_ oVl —e 2w,

with E{w;) = 0 and E{w; wy,) = Alk, — ky).

The dynamic process model derived in Example 3.6 is called a shaping filter.
Block diagrams of this and other shaping filters are given in Table 3.2, along with
their difference equation models.

3.5.3 Autoregressive Processes and Linear Predictive Models

A linear predictive model for a signal is a representation in the form

n

Xppt = D %1 + Uy, (3.92)

i=

where 1w, is the prediction error. Successive samples of the signal are predicted as
linear combinations of the »n previous values.

An autoregressive process has the same formulation, except that i, is a white
Gaussian noise process. Note that this formula for an autoregressive process can be
rewritten in state transition matrix (STM) form as

Xpyl Ca;, ay - a,, a, |[ % 7| T[a]
X 1 0 - 0 0 E 0
Yo o|={0 1 - 0 0| %2 |[4[0], (393
| X pp] LO O e 10N, ] LO
Xy = Ox;p + uy, (3.94)

where the “state” is the n-vector of the last » samples of the signal and the
covariance matrix Q, of the associated process noise u; will be filled with zeros,
except for the term Q,, = E(ii3).



TABLE 3.2 Stochastic System Models of Discrete Random Sequences

Process Type

Autocorrelation

Block Diagram

State-Space Model

Random Wy (kg — k) = 62 X = Xy_1
constant o Delay foe Xet 02(0) = ¢?
Random — 400 w Xk = Xy_1 + Wi_1
walk X k- X 72(0) =0
Xp Delay
Exponentially Yy (ks — ky) = a?e~kehl dwit X = €% X4
correlated — +ov1 — e 2w,
noise 1-em 7%(0) = o®

SJONINO3S ANV SISSIO0Hd WOANVYYH 40 STIAON WILSAS HY3INIT S€

£8



84 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

3.6 SHAPING FILTERS AND STATE AUGMENTATION

Shaping Filters. The focus of this section is nonwhite models for stationary
processes. For many physical systems encountered in practice, it may not be justified
to assume that all noises are white Gaussian noise processes. It can be useful to
generate an autocorrelation function or PSD from real data and then develop an
appropriate noise model using differential or difference equations. These models are
called shaping filters. They are driven by noise with a flat spectrum (white-noise
processes), which they shape to represent the spectrum of the actual system. It was
shown in the previous section that a linear time-invariant system (shaping filter)
driven by WSS white Gaussian noise provides such a model. The state vector can be
“augmented” by appending to it the state vector components of the shaping filter,
with the resulting model having the form of a linear dynamic system driven by white
noise.

3.6.1 Correlated Process Noise Models
Shaping Filters for Process Noise. Let a system model be given by
x(t) = F(tx(t) + G(O)w (1),  z(t) = H()x(t) + v(?) (3.95)

where w; () is nonwhite, for example, correlated Gaussian noise. As given in the
previous section, w(f) is a zero-mean white Gaussian noise. Suppose that w,(¢) can be
modeled by a linear shaping filter'®:

xgp(t) = Fgp(txgp(t) + Ggp(t)w, (1)
wy(#) = Hgp(H)xsp(?)

(3.96)

where SF denotes the shaping filter and w,(#) is zero mean white Gaussian noise.
Now define a new augmented state vector

X (1) = [x(t) xsp (0] (3.97)

Equations 3.95 and 3.96 can be combined into the matrix form

[ (1) } [F(t) G(t)HSF(t):||: x(1) } [ 0 }
= + wa(t),  (3.98)
Xsp(?) 0 Fsp(2) xsp(t) Gse(1)

X (1) = Fr(0X(0) + Gr(w, (1), (3.99)

19See Example in Section 3.7 for WSS processes.



3.6 SHAPING FILTERS AND STATE AUGMENTATION 85

and the output equation can be expressed in compatible format as

x(7)

(1) = [H(?) 0][ } e (3.100)
xgp(t

= Hp ()X (?) + v(@). (3.101)

This total system given by Equations 3.99 and 3.101 is a linear differential equation
model driven by white Gaussian noise. (See Figure 3.7 for a nonwhite-noise model.)

3.6.2 Correlated Measurement Noise Models

Shaping Filters for Measurement Noise. A similar development is feasible
for the case of time-correlated measurement noise v, (#):

x(t) = F(Hx(t) + G(H)w(t),

(3.102)
z(t) = H(t)x(t) + v, (2).

In this case, let v,(f) be zero-mean white Gaussian noise and let the measurement
noise v; () be modeled by

Xgp(?) = Fgp(D)xgp(?) + Ggp()v,(2),

(3.103)
v1(t) = Hgp(t)xgp(?).

w, (f) Xk wy ()

Gsr ‘(‘*E ) j Hgp
Fgp

SHAPING FILTER

v(t)

\

z(1)

F —|
PHYSICAL SYSTEM
AUGMENTED SYSTEM

Fig. 3.7 Shaping filter model for nonwhite noise.



86 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

The total augmented system is given by

[ x(?) } [F(t) 0 ][ x(%) } [G(r) 0 :||:w(t)]
= + . (3.104)
xsr(?) 0 Fsp(t) ] xs(®) 0 Gsp(®) | (D)

x(1)
(1) = [H(?) Hsp(f)][ }

xsr(?)

This is in the form of a linear system model driven by white Gaussian noise and
output equation with no input noise.

These systems can be specialized to the WSS process for continuous and discrete
cases as by shaping filters shown in Tables 3.1 and 3.2.

EXAMPLE 3.7 The “midpoint acceleration” error for an acceleration sensor
(accelerometer) is defined as the effective acceleration error at the midpoint of the
sampling period. The associated error model for an accelerometer in terms of
unknown parameters of the sensor is as follows:

Ap =B ® L+ by + hyB,, + Bu(FI1 — FX1) + 3B,
where

Ayg,, = the midpoint acceleration error

® = the cross product (for 3 — vectors)

]

{ = a3 x 1 vector representing attitude alignment errors between “platform’
axes and computational axes
b, = a3 x 1 vector of unknown accelerometer biases, normalized to the
magnitude of gravity

Si 0 O3
hy=1|0 S8 0y
0 0 S,



3.6 SHAPING FILTERS AND STATE AUGMENTATION 87

and

S; = unknown accelerometer scale factor errors (i = 1, 2, 3)

0;; = unknown accelerometer axes nonorthogonalities

0ff = other error terms, some of which are observable; for reason of practicality
in our example they are not estimated, only compensated with
factory-calibrated values

FI1 = a3 x | unknown acceleration-squared nonlinearity for acceleration along
the accelerometer input axis

FX1 = a3 x 1 unknown acceleration-squared nonlinearity for acceleration normal
to the accelerometer input axis

B, = a3 x lvector (f;, B, [33)T of midpoint components of acceleration in
platform coordinates

B2 0 0
=10 B 0
0 0 A

The 12 x 1 accelerometer state vector x* is composed of the components

?;T 3x1

The 12 unknown parameters will be modeled as random walks (see Table 3.1) for the
parameter identification problem to be discussed in Chapter 5 (Example 5.4).

EXAMPLE 3.8 A gyroscope drift error model is given as follows:
. 1
¢ =by +hyo + U+ K, + [|0l]Ty + bg,t + UgtB,

where

by = a3 x 1 vector of unknown gyroscope fixed drift parameters
h, = a3 x 3 matrix containing unknown scale factor (S,) and linear axes
alignment errors (A;;) as components (i,j = 1, 2, 3)

Sei A Ag
Ay S Ay
Az Az Sy

T, = a3 x 1 vector of unknown nonlinear gyroscope torquer scale factor errors,
with elements 05,



88 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

[lw]] = a 3 x 3 diagonal matrix composed of absolute values of the components of
o (platform inertial angular rate) on the corresponding diagonal element

U, = a3 x 3 matrix of unknown gyroscope mass unbalance parameters (dy ;)

d[ 1 dOl dS 1
dS 2 d] 2 d 02
d03 dS 3 dl 3

indices 7, 0, and S denoting input, output, and spin axes, respectively, for
each gyroscope 1, 2 and 3.
K, = a3 x 6 matrix of unknown gyroscope compliance (g-squared) errors ky;

g
k[Il kOOl kSSl 1[01 k[Sl kSOl
kSS 2 k[] 2 k002 k[S 2 kS 02 k[ 02
k003 kSS 3 k[] 3 kS 03 k] 03 k[S 3

by =3 x 1 vector of unknown gyroscope fixed-drift trend parameters

Uy = 3 x 6 matrix of unknown gyroscope mass unbalance trend parameters
p =3 x 1 vector of vertical direction cosines (normalized gravity) (8, f,, f3)

ﬁl = 6 x 1 vector with components (ﬁ%, ﬁ%, ﬁ%, BB, B1 b3, ﬁ2ﬁ3)T

T

(1) [3xl 9x1 9x1 15x1 3x1 3x1 6XI]T
= 1 1 1 1

by hy Ug K T, by Uy
The 48 unknown parameters will be modeled as random walks and random ramps

(see Table 3.1) for the parameter identification problem to be discussed in Chapter 5
(Example 5.4).

3.7 COVARIANCE PROPAGATION EQUATIONS

The second moments of the state x(f) (a random process) and forcing function w(¢)
(another random process) can be described in terms of covariance matrices. Let us
define the n x n covariance matrix

P(1) = E([x(t) — E(x(0)]x(1) — Ex())]). (3.105)

If we replace E(x(¢)) with the estimate of x(7) defined by x(¢) in Chapter 4, then P(2)
will be called the error covariance matrix.



3.7 COVARIANCE PROPAGATION EQUATIONS 89

3.7.1 Propagation in Continuous Time
Let
x = F(tx + G(Ow(t), Ew()) =0,

. (3.106)
Ew(t)w' (1)) = O(ty, t)0(t, — ;).

The solution of this equation with x(z,) as initial condition and ®(z, ¢,) as state
transition matrix has been discussed in Chapter 2,

x(t) = O, ty)x(ty) + Jz d(t, 1)G(Tt)w(1) dr. (3.107)

)

Take the expected value

E{x(1)) = O(2, ty)E(x(ty)) + J (¢, 1)G()E(w(n)) dt. (3.108)
Then

(1) — Ex(0)] = O, to)lx(ty) — E(xlty)] + J O, DGEW() dr (3.109)

)

The covariance matrix P(¢) is given by

P(t) = E{[x(t) — Bx())][x(t) — E{x(t))]")

= E< |:CD(t, to)lx(ty) — E{x(to))] + J O(t, 7)G(t)w(t) dr:|

0

t

T
x [‘D(E 10)[x(ty) — E{x(19))] + J O, )G(1)w(7) dl} >

= O(1, to)E([x(ty) — E(x(to))][x(ty) — E (x(te))]") O (2, £,)

1@, %)j E(x(ty) — E(ig) @1 G007 (1, ) de

)

4 j (1, )G E (w(Oix(tg) — Etx(t))OT (0, 1) de

4 j J (1, 1)) E(w(z () G (20T (1, 1) dy .



90 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

The underlined quantities are zero since w(f) and x(#,) are uncorrelated for ¢ > ¢,

P(t) = ©(t, 1)P(1o)®" (¢, 1o)

4 J j 1, 11)G(e)03(ts — 1)G" ()07 (1. 73) d, dr

/1

= B(1. 1o) P(1p) D" (1, 1))

+ Jl O(1, 1)G(1) QG (1)® (¢, 1) dr.

f

The double integral reduces to a single integral, due to the J-function (see Equation
3.42). We can use the fact that @(z, 7)) = F(£)®(¢, t;) and apply Leibniz’s rule to
differentiate the integral:

P(1) = d(t, t)P(1o) D" (¢, 1y) + (¢, fo)P(fo)d)T(t» t)

+ %J O(1, 7)G(1) QG ()D (¢, 1) dt

fy

= F()®D(t, 10)P(1o) " (¢, 1y) + D1, 1) P(10) D" (¢, 16)F " (1)

+ Jl [D(¢, 1)G(1)OG (1)@ (¢, 7) + D(z, 1)G(7)OG  ()D" (¢, 7)] d

fy

+ G(H)OG (v).

When terms containing F or F'! as a factor are collected in square brackets, as shown
below, they can be recognized as being equal to P():

t

@) = F(2) [cb(n P (1. 1) + J

fy

(1, 1)G(1) QG (1) DT (¢, 7) d‘E:|

t

+ |:(D(t, 10)P(ty)® (2, 1) +J O(1, 7)G(1) QG (1) DT (¢, 7) dr:|FT(t) +G(H)OG (1)

fo

= F(OP(1) + P()F () + G(HOGT (b).

Furthermore, if F and G are constant, the so-called steady-state equation P = 0 is an
algebraic matrix equation:

0 = FP(c0) + P(c0)F' + GOGT, (3.110)

which may fail to have a nonnegative definite solution. (See Problem 3.35.)



3.7 COVARIANCE PROPAGATION EQUATIONS 91

EXAMPLE 3.9: Steady-State Solution of the State Covariance Equation for the
Harmonic Resonator Model Consider the stochastic system model

(1) = Fx(t) + w(1),
Ew(t)w' (1)) = d(t, — 1,)0,
0 0 0
=10 4
for a harmonic resonator driven by white acceleration noise w(f). That is, the
additive process noise on the resonator velocity is zero.
It is of interest to find the covariance of the process x(¢) at steady state. (It could
be infinite, but in this example it will be finite.)

Recall that the state-space model for the harmonic resonator from Examples 2.2,
2.3, 2.6, and 2.7 has as its dynamic coefficient matrix the 2 x 2 matrix

0 1
=1 Kk K
L m m
[0 1
e 2]

where the alternate model parameters

kR
Vo "

2m
T:k—d,

are the resonant frequency, the damping time constant, and the damping frequency,
respectively. The state covariance equation

d
EP(t) = FP(t) + P()FT + Q
has the steady-state form
) d
0= tl_l)rgo (%X(t))
= FP(c0) + P(c0)F" + Q,

which is a linear equation in the unknown elements p;,, P52, P21, P2n 0f P(00).



92 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

Because this is a symmetric 2 x 2 matrix equation, it is equivalent to three scalar
linear equations:

2 2

0= kX:lflkpkl +kZ:1P1kfk1 + 411,
2 2

0= kzlflkpkz + kzlplksz + 412,

2 2
0="> fubr+ 2 Putio + q22>

k=1 k=1
with known parameters
911 =0, 912 =0, 92 =49,
/u=0, So=1,

== =&, fn=-2¢

However, because the unknown matrix P(co) is a symmetric 2 x 2 matrix, it has
only three independent elements (p;, = p,;). Therefore, the above linear system of
equations can be reduced to the nonsingular 3 x 3 system of equations

0 0 2 0
2 P
—(@* + 172 —— 1
0= ( ) T P2
4
9 0 2w +172) —— |LP2
T
with solution
_ gt
Pu 4(w? +172)
P | = 0 )
qr
p -
22 i 4
_pll P12
P(00) = }
LP12 P22

. 1 0
_4(a)2+r—2) 0 (602+T_2) ’

"'"The dimensionless quantity 27wz is called the quality factor, Q-factor, or simply the Q of a resonator. It
equals the number of cycles that the unforced resonator will go through before its amplitude falls to
1/e =~ 37 % of its initial amplitude.



3.7 COVARIANCE PROPAGATION EQUATIONS 93

Note that the steady-state state covariance depends linearly on the process noise
covariance ¢g. The steady-state covariance of velocity also depends linearly on the
damping time constant 7."!

3.7.2 Covariance Propagation in Discrete Time

Recall that the equations for the state and its first moment (expected value) with
Gy, =1 are

X = Qp_1 X1 + Wiy
Elxp) = Op 1 E{xp_y) + E{wi_y),
=0, 1 E{x;_q),

respectively (because E(w;_;) = 0). The corresponding equations for the second
moment (covariance) of the state can then be derived as follows:

Py = E{x; — E(co)]lee — E(x)]")
= E{([@;_[x_1 — E{xp_1)] +wy_q]

< (D[ — Efg_ )]+ w1
= E(® i[5 — E(ve_ )y — B )]0,
+ Oy [ — Edn_)wi—
Wil — Efq_ 1]T‘Dk |+ Wil W)
=& Bl — () — E@g_ )] &,
Py

+ O Elvemy — Ebg)Iwiy)
+ E(wi_ [y — EQ_)NOL, + E{wi_ywi_y)
e e
O
=0, P Dp_ + Oy, (3.111)

which is the evolution equation for P. When @ and Q are constant, the corresponding
steady-state equation P, = P,_, is also an algebraic matrix equation

Py = 0P 0" + 0, (3.112)

which can fail to have a finite solution. (See Problem 3.36.) An example with a finite
solution is provided in the next subsection (Example 3.11).



94 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

3.7.3 Dependence of Q, on Q(t)

The process noise covariance Q(f) in continuous time is related to the equivalent
discrete-time process noise covariance Q, by the matrix differential equation

d
= &) =F(00,() + O(OF (1) + GG (1)

with initial condition

Ox(t1) =0
and final condition

O = Q1)

defining the equivalent discrete-time process noise covariance. See Section 4.10.
Initial-Condition Solution. If

x = F()x + G()w(?), (3.113)
then the covariance equation is

P = F(f)P + PF"(t) + G(1) QG (¥), (3.114)
P(ti_y) = Py, (3.115)

and solution of the above differential equation with ¢t = ¢, and 7, = #;,_; is

x(t) = Ot e x(t,_,) + J/‘ D(t,, 1)G()w(t) d. (3.116)

li-1
Then the difference equation is
xk = q)k_lxk_l +Wk_1. (3117)
Observe that x; is equal to w;,_; if x,_; = 0. Hence, the covariance of w;,_; is equal

to the covariance of x, when the covariance of x,_; is zero. This covariance is
determined by the stated procedure.

EXAMPLE 3.10: Discrete-Time Process Noise Covariance for the Harmonic
Resonator Model Consider the problem of determining the covariance matrix
QO;_, for the equivalent discrete-time model

X = Qx5 + Wiy,

E(wi_wiy) = Opy



3.7 COVARIANCE PROPAGATION EQUATIONS 95

for a harmonic resonator driven by white acceleration noise, given the variance g of
the process noise in its continuous-time model

d
Ex(t) = Fx(t) + w(?),

E(w(t)w'(t,)) = 8(t, — 1,)0,

0 0
0= ,
0 ¢

where o is the resonant frequency, t is the damping time constant, & is the
corresponding damping “frequency” (i.e., has frequency units), and ¢ is the process
noise covariance in continuous time. [This stochastic system model for a harmonic
resonator driven by white acceleration noise w(¢) is derived in Examples 3.4 and
3.9.]

Following the derivation of Example 2.6, the fundamental solution matrix for the
unforced dynamic system model can be expressed in the form

O(r) =
S(f) + C(Hwr S(1)
e ot o
B S()(1 4+ w?2)  —S(t) + C(Hwr
B wt? Wt

S(t) = sin(wt),
C(t) = cos(wt),

in terms of its resonant frequency @ and damping time-constant 7. Its matrix inverse

o= [r[mas)—S(s)] 0 ]

o | (14 w?*®)S6)  t[wtC(s) + S(s)]

at time # = s. Consequently, the indefinite integral matrix

t 0 0
Y() = J (I)_l(s)|: }@T—l(s) ds
0 0 0
- Z‘CZ Jt 728(s)? —1S(s)[wtC(s) + S(5)] 20 g

0 —2S(s)[wtC(s) + S(s)] [wtC(s) + S(s)]



96 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

gr{—w*? + [28()* — 2C(H)wS(f)t + w*2](%) —gS(1)* ¢
B 40*(1 + w??) 20?2
S0 gl=0?2 + 250 + 20008y + ) |
20?2 42t
Cz et/r.

The discrete-time covariance matrix (J;_; can then be evaluated as (see Section
4.10.)

Oy = O(ANF(ANDT(Ar)

_|:5111 412:|
q21 492

gt{w??(1 — e 287) — 28(AH)e 227 [S(AY) + a)rC(At)]}

= 402(1 + w?7?)
B qeizAZ/TS(At)z
qi2 = 2
921 = 912>
s — g{@?t?(1 — e 227y — 28(Af)e M7 [S(A) — wTtC(AD)]}
2=

4?1

Note that the structure of the discrete-time process noise covariance Q,_; for this
example is quite different from the continuous-time process noise Q. In particular,
QOr_; is a full matrix, although Q is a sparse matrix.

First-order approximation of Q, for constant F and G. The justification of a
truncated power series expansion for O, when F and G are constant is as follows:

© Q' Ar
O, = z; 1 (3.118)
Consider the Taylor series expansion of O, about #;,_;, where
i _d'0
=G ’

0 = FQ, + O,F" + GO(1)G",
0 = 0(1,_1) = GG since Q1) = 0,
0% = 0(t,_)) = FO(_y) + Ot _)F”,
=FO" + QFT,

Q(l) FQ(I 1)+Q(’ I)FT i=1,2,3,....



3.8 ORTHOGONALITY PRINCIPLE 97
Taking only first-order terms in the above series,

0, ~ GO(G At (3.119)
This is not always a good approximation, as is shown in the following example.

EXAMPLE 3.11: First-Order Approximation of O, for the Harmonic Reso-
nator Let us see what happens if this first-order approximation

O~ QAt

is applied to the previous example of the harmonic resonator with acceleration noise.
The solution to the steady-state “state covariance” equation (i.e., the equation of
covariance of the state vector itself, not the estimation error)

P, =®P 0"+ OAs
has the solution (for 0 = 27f,csonance /fsampling)

(Pt = g Ate 2 sin(0)*(e A" 4 1)/D,
D= wZ(e—ZAt/f _ 1)
x (e72M* — 2e7M/ cos(0) + 1)(e /™ 4 274/ cos(0) + 1)

for its upper-left element, which is the steady-state mean-squared resonator
displacement. Note, however, that

(P}, =0 if sin(6) =0,

which would imply that there is no displacement if the sampling frequency is twice
the resonant frequency. This is absurd, of course. This proves by contradiction that

O # OAt

in general—even though it may be a reasonable approximation in some instances.

3.8 ORTHOGONALITY PRINCIPLE

3.8.1 Estimators Minimizing Expected Quadratic Loss Functions

A block diagram representation of an estimator of the state of a system represented
by Equation 3.82 is shown in Figure 3.8. The estimate x(¢) of x(¢) will be the output
of a Kalman filter.



98 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

SYSTEM SENSOR
ERROR ERROR A PRIORI
SOURCES SOURCES STATISTICS
l SYSTEM l OBSER- l STATE
SYSTEM STATE SENSOR VATIONS KALMAN | ESTIMATE
MODEL x(t) MODEL I40) FILTER @)

Fig. 3.8 Block diagram of estimator model.

The estimation error is defined as the difference between the “true” value of a
random variable x(¢) and an “estimate” x(¢).
A quadratic “loss” function of the estimation error has the form

() = 3] MIx(0) = X(1)], (3.120)
where M is an n X n symmetric, positive-definite “weighting matrix.”

An “optimal” estimator for a particular quadratic loss function is defined as that
estimate X(f) minimizing the expected value of the loss, with the probabilities
conditioned on the observation z(#). It will be shown that the optimal estimate of x(¢)
(minimizing the average of a quadratic cost function) is the conditional expectation

of x(f) given the observation z(f):

X = E{x(¢)|z(t)) minimizes

E([x(t) — ()] Mx(t) — X(0)]|z(1)). (3.121)

Let z(¢), 0 <t <1t,, be the observed quantity and it is desired to estimate x(#) at
t = t,. Then Equation 3.121 assumes the form

ilty) = E(x(t)|=(0,0 < 1 < 1,) (3.122)
and the corresponding equation for a similar discrete model is
Y, = EQRylz, 200 000 z)s 1 <k <Ky (3.123)
Let
J = E(x(0) = (0] MIx() = 0)]|z(0)- (3.124)

Recall that X(¢) is a nonrandom function of the observations

0= (3.125)
dx
= —2ME({[x(f) — x(1)]|z(¢)), (3.126)

EG(0)1z(0)) = x(t) = E(x()]1)). (3.127)



3.8 ORTHOGONALITY PRINCIPLE 99

This proves the result of Equation 3.121. If x(f) and z(r) are jointly normal
(Gaussian), the nonlinear minimum variance and linear minimum variance estima-
tors coincide:

ky
E(xk2|21,22,...,zkl> =Y oz (3.128)
i=1

and

1

E(b)l(0),0 <t < 1)) = JO] ot 7)(7) dr. (3.129)

Proof for the Discrete Case: Recall the properties of jointly Gaussian processes
from Section 3.2.3. Let the probability density

Pl 12,1 (3.130)
be Gaussian and let oy, oy, ..., o, satisfy
ky
E<|:xk2—2aizij|z}>20, J=1,...,k, (3.131)
i=1
and
k] < kz, kl = kz, or k] > kz. (3132)

The existence of vectors o; satisfying this equation is guaranteed because the
covariance [z;, z;] is nonsingular.
The vectors

[xkz -y a,.z,.] (3.133)

and z; are independent. Then it follows from the zero-mean property of the sequence
X that
ky
E |:xk2 — Zl O(izij|
i=

kl
E(xk2|21,22, e ’Zkl) = ZOC,-Z,-.
i=1

i+1

kl
Zly e ’Zk1> :E<xk2 — ZO([Z[>

:0’

The proof of the continuous case is similar.
The linear minimum variance estimator is unbiased, that is,

E(x(f) — %(t)) = 0, (3.134)



100 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

where
X(t) = E{x(t)|z(2)). (3.135)

In other words, an unbiased estimate is one whose expected value is the same as that
of the quantity being estimated.

3.8.2 Orthogonality Principle

The nonlinear solution E(x|z) of the estimation problem is not simple to evaluate. If
x and z are jointly normal, then E(x|z) = o,z + 0.

Let x and z be scalars and M be a 1 x 1 weighting matrix. The constants o, and o,
that minimize the mean-squared (MS) error

e:E([x—(ocO—i-oclz)]z):J J [x — (o9 + o, 2)*p(x, 2) dx dz (3.136)

oo J oo

are given by

)

ro
o = =
ag

z
%y = E{x) — o E{z),
and the resulting minimum mean-squared error e,;, is

emin = 03 (1 — 1), (3.137)

where the ratio

(3.138)

is called the correlation coefficient of x and z, and o, ¢, are standard deviations of x
and z, respectively.
Suppose «, is specified. Then

d

dT%E([x —oy—oyz) =0 (3.139)

and
oy = E{x) — o0 E(z). (3.140)



3.8 ORTHOGONALITY PRINCIPLE 101
Substituting the value of o, in E{[x — oy — oclz]z) yields

E{[x — o —oclz] y=F

x> — )z — E@))
(@ —E@)—a(z—EE)F)
E([x — E@T) + i E(z — E()]°)
- 2 (x— (= — E(2)))

(e —
E(

9

and differentiating with respect to «; as

0= diE([x— o — 0,2
= 20,E((z — E(2))*) — 2E{(x — E(x))(z — E(2))), (3.141)
" E((x — E(x)(z _ZE(Z>)>
E((z— E{2))")
10,0,
o?
=0 (3.142)
UZ
Crin = a —2¢? a + rzoi

=a2(1 —r).
Note that, if one assumes that x and z have zero means,
E{(x) =E({z) =0; (3.143)
then we have the solution

o = 0. (3.144)

Orthogonality Principle. The constant o, that minimizes the mean-squared error
e=E(x —o,z]") (3.145)
is such that x — o,z is orthogonal to z. That is,
E{x —oyz]z) =0, (3.1406)
and the value of the minimum mean-squared error is given by the formula

e, = E{(x — o;z)x). (3.147)



102 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

x X — 042

4
> >
> >

o2

Fig. 3.9 Orthogonality diagram.

3.8.3 A Geometric Interpretation of Orthogonality

Consider all random variables as vectors in abstract vector spaces. The inner product
of x and z is taken as the second moment E(xz). Thus

E(x*) = E(x"x) (3.148)

is the square of the length of x. The vectors x, z, oz, and x — o,z are as shown in
Figure 3.9.

The mean-squared error E{(x — oclz)z) is the square of the length of x — «;z. This
length is minimum if x — o,z is orthogonal (perpendicular) to z,

E((x — 0,2)z) = 0. (3.149)

We will apply the orthogonality principle to derive Kalman estimators in Chapter 4.

3.9 SUMMARY

3.9.1 Important Points to Remember

Probabilities are measures. That is, they are functions whose arguments are
sets of points, not individual points. The domain of a probability measure P is a
sigma algebra of subsets of a given set S, called the measurable sets of S. The sigma
algebra of measurable sets has an algebraic structure under the operations of set
union and set complement. The measurable sets always include the empty set { }
and the set S, and the probability P(S) =1, P({}) =0, PAUB)+ P(ANB) =
P(A) + P(B) for all measurable sets 4 and B. A probability space is characterized by
a set S, a sigma algebra of its measurable subsets, and a probability measure defined
on the measurable subsets.

Events Form a Sigma Algebra of Outcomes of an Experiment. A
statistical experiment is an undertaking with an uncertain outcome. The set of all
possible outcomes of an experiment is called a sample space. An event is said to
occur if the outcome of an experiment is an element of the event.



3.9 SUMMARY 103

Independent Events. A collection of events is called mutually independent if the
occurrence or nonoccurrence of any finite number of them has no influence on the
possibilities for occurrence or nonoccurrence of the others.

Random Variables Are Functions. A scalar random variable is a real-valued
function defined on the sample space of a probability space such that, for every open
interval (a, b), —00 < a < b < 400, the set

[, b)) = (s € Sla < f(5) < b}

is an event (i.e., is in the sigma algebra of events). A vector-valued random variable
has scalar random variables as its components. A random variable is also called a
variate.

Random processes (RPs) are functions of time with random variables as their
values. A process is the evolution over time of a system. If the future state of the
system can be predicted from its initial state and its inputs, then the process is
considered deterministic. Otherwise, it is called nondeterministic. If the possible
states of a nondeterministic system at any time can be represented by a random
variable, then the evolution of the state of the system is a random process, or a
stochastic process. Formally, a random or stochastic process is a function f defined
on a time interval with random variables as its values f(¢).

A random process is called:

A Bernoulli process, or independent, identically distributed (i.i.d.) process if the
probability distribution of its values at any time is independent of its values at
any other time.

A Markov process if, for any time ¢, the probability distribution of its state at any
time T > ¢, given its state at time ¢, is the same as its probability distribution
given its state at all times s < .

A Gaussian process if the probability distribution of its possible values at any
time is a Gaussian distribution.

Stationary if certain statistics of its probability distributions are invariant under
shifts of the time origin. If only its first and second moments are invariant, it is
called wide-sense stationary or weak-sense stationary. If all its statistics are
invariant, it is called strict sense stationary.

Ergodic if the probability distribution of its values at any one time, over the
ensemble of sample functions, equals the probability distribution over all time
of the values of randomly chosen member functions.

Orthogonal to another random process if the expected value of their pointwise
product is zero.



104 RANDOM PROCESSES AND STOCHASTIC SYSTEMS

3.9.2 Important Equations to Remember

The density function of an n-vector-valued (or multivariate) Gaussian probability
distribution A" (x, P) has the functional form

p(x) = ;67(1/2)(%2)%*'(#})’

where x is the mean of the distribution and P is the covariance matrix of deviations
from the mean.

A linear stochastic process in continuous time with state x and state covariance P
has the model equations

x(1) = F()x(t) + G(t)w(1),
2(t) = H(t)x(t) + v(2),
P(t) = F()P(t) + POF" (1) + GOOWDG (1),

where Q(7) is the covariance of zero-mean plant noise w(t). A discrete-time linear
stochastic process has the model equations

X =Q x5 + Gy Wi,
zp = Hixp + v,
Py =@ Py @ + G 104Gl

where x is the system state, z is the system output, w is the zero-mean uncorrelated
plant noise, Q,_, is its covariance of w;_,, and v is the zero-mean uncorrelated
measurement noise. Plant noise is also called process noise. These models may also
have known inputs. Shaping filters are models of these types that are used to
represent random processes with certain types of spectral properties or temporal
correlations.

PROBLEMS

3.1 Let a deck of 52 cards be divided into four piles (labeled North, South, East,
West). Find the probability that each pile contains exactly one ace. (There are

four aces in all.)
n+1 n n
= + .
k+1 k+1 k

3.2 Show that



PROBLEMS 105

33

34

3.5

3.6

3.7

3.8

3.9

How many ways are there to divide a deck of 52 cards into four piles of 13
each?

If a hand of 13 cards are drawn from a deck of 52, what is the probability that
exactly 3 cards are spades? (There are 13 spades in all.)

If the 52 cards are divided into four piles of 13 each, and if we are told that
North has exactly three spades, find the probability that South has exactly three
spades.

A hand of 13 cards is dealt from a well-randomized bridge deck. (The deck

contains 13 spades, 13 hearts, 13 diamonds, and 13 clubs.)

(a) What is the probability that the hand contains exactly 7 hearts?

(b) During the deal, the face of one of the cards is inadvertently exposed and it
is seen to be a heart. What is now the probability that the hand contains
exactly 7 hearts?

You may leave the above answers in terms of factorials.

The random variables X;, X,, ..., X, are independent with mean zero and the
same variance ¢%. We define the new random variables Y, Y,, ..., Y, by
n
Y,=)X.
J=1

Find the correlation coefficient » between Y,_; and ¥,,.

The random variables X and Y are independent and uniformly distributed
between 0 and 1 (rectangular distribution). Find the probability density
function of Z = |[X — Y.

Two random variables X and Y have the density function

Cy—x+1), 0<y<x<l,
Pir(x.y) = { 0, elsewhere,
where the constant C < 0 is chosen to normalize the distribution.
(a) Sketch the density function in the x, y plane.
(b) Determine the value of C for normalization.
(¢) Obtain two marginal density functions.
(d) Obtain E(Y|x).
(e) Discuss the nature and use of the relation y = E(Y|x).

3.10 The random variable X has the probability density function

2x, 0<x<1,

Jxx) =

0, elsewhere.



106

3.11

3.12

3.13.

RANDOM PROCESSES AND STOCHASTIC SYSTEMS

Find the following:

(a) The cumulative function Fy(x).
(b) The median.

(¢) The mode.

(d) The mean, E(X).

(e) The mean-square value E(X?).
(f) The variance ¢?[X].

An amplitude-modulated signal is specified by
(1) = [1 + mx(£)] cos(Qt + A).

Here x(f) is a wide sense stationary random process independent of 4, which
is a random variable uniformly distributed over [0, 27]. We are given that

1

®) = 5

(a) Verify that (1) is an autocorrelation.
(b) Let x(¢) have the autocorrelation given above. Using the direct method for
computing the spectral density, calculate ‘P,

Let R(7) be an arbitrary autocorrelation function for a mean-square contin-
uous stochastic process x(¢) and let ¥(w) be the power spectral density for the
process x(¢). Is it true that

lim ¥(w) = 0?

|w|— 00

Justify your answer.

Find the state-space models for longitudinal, vertical, and lateral turbulence
for the following PSD of the “Dryden” turbulence model:

_ o2 !
q“w)‘*’<nV><1+«Lw/Vf)

where

o = frequency in radians per second
¢ = root-mean-square (RMS) turbulence intensity
L = scale length in feet

V' = airplane velocity in feet per second (290 ft/sec)



PROBLEMS 107

3.14

3.15

3.16

317

(a) For longitudinal turbulence:

L =600 ft

g, = 0.15 mean head wind or tail wind (knots)

(b) For vertical turbulence:

L =300ft
g,, = 1.5knots

(¢) For lateral turbulence:

L =600 ft
g, = 0.15mean cross-wind (knots)

Consider the random process
x(t) = cos(wyt + 0)) cos(wyt + 0,),

where 0, and 0, are independent random variables uniformly distributed
between 0 and 27.

(a) Show that x(¢) is wide-sense stationary.
(b) Calculate () and ¥ (w).
(¢) Discuss the ergodicity of x(¢).

Let i (7) be the autocorrelation of a wide-sense stationary random process. Is
the real part of . (7) necessarily also an autocorrelation? If your answer is
affirmative, prove it; if negative, give a counterexample.

Assume x(f) is wide-sense stationary:
W(t) = x(t) cos(wt + 6),

where o is a constant and 6 is a uniformly distributed [0, 27] random phase.
Find ¥, (2).

The random process x(f) has mean zero and autocorrelation function

Yo (1) =e .
Find the autocorrelation function for
t

() = J x(u) du, t>0.
0



108

3.18

3.19

3.20

3.21

3.22

RANDOM PROCESSES AND STOCHASTIC SYSTEMS
Assume x(7) is wide-sense stationary with power spectral density

I, —a<w<=<a,

‘Px(w) = {

0, otherwise.

Sketch the spectral density of the process
W(t) = x(t) cos(Qt + 0),

where 0 is a uniformly distributed random phase and Q > a.

(a) Define a wide-sense stationary random process.
(b) Define a strict-sense stationary random process.
(¢) Define a realizable linear system.

(d) Is the following an autocorrelation function?

It| < 1,

otherwise,

-
vo=1

Explain.

Assume x(7) is a stationary random process with autocorrelation function

—-1<7<1,

otherwise.

-
nO=1

Find the spectral density ‘¥',(w) for

y(t) = x(f) cos(wyt + 1)
when m, is a constant and / is a random variable uniformly distributed on the
interval [0, 27].

A random process x(?) is defined by
x(t) = cos(t + 0),

where 0 is a random variable uniformly distributed on the interval [0, 27].
Calculate the autocorrelation function (%, s) for

t

w(t) = J x(u) du.

0

Let i, and y/, be two arbitrary continuous, absolutely integrable autocorrela-
tion functions. Are the following necessarily autocorrelation functions?



PROBLEMS 109

3.23

3.24

3.25

3.26

Briefly explain your answer.

@ ¥, -y,

) ¥+,

© v, — ¥,

(d) Y, *, (the convolution of , with ¥r,)

Give a short reason for each answer:

(a) If F(T) and G(T) are autocorrelation functions, f2(f) + g(f) is (necessa-
rily, perhaps, never) an autocorrelation function.

(b) As in (a), f2(t) — g(¢) is (necessarily, perhaps, never) an autocorrelation
function.

(c) If x(¢) is a strictly stationary process, x*(f) + 2x(t — 1) is (necessarily,
perhaps, never) strictly stationary.

(d) The function

cosT, —3m<T =3,

w(t) = [

0 otherwise,

(is, is not) an autocorrelation function.

(e) Let x(f) be strictly stationary and ergodic and o be a Gaussian random
variable with mean zero and variance one and « is independent of x(¢).
Then y(f) = ax(¢) is (necessarily, perhaps, never) ergodic.

Which of the following functions is an autocorrelation function of a wide-
sense stationary process? Give a brief reason for each answer.

(@ e d) e lsint
() e Mlcost (e) %e"f‘ — e
© TI'(= { B’ :;: i Z () 2720 — el

Discuss each of the following:
(a) The distinction between stationarity and wide-sense stationarity.

(b) The periodic character of the cross-correlation function of two processes
that are themselves periodic with periods mT and n7, respectively.

A system transfer function can sometimes be experimentally determined by
injecting white noise n(f) and measuring the cross correlation between the
system output and the white noise. Here we consider the following system:

S() P

,Ln 0)
q F (w) } Fy(w) ¥

N/

Gw)




110

3.27

3.28

3.29

RANDOM PROCESSES AND STOCHASTIC SYSTEMS
We assume Wg(w) known, S(7) and n(f) independent, and ¥, (w) = 1. Find

W),(w). Hint: Write y(1) = y(t) + y,(¢), where yg and y, are the parts of the
output due to S and #, respectively.

Let S(¢) and n(f) be real stationary uncorrelated random processes, each with

mean Zero.
B
{ H

H,

S(z)+r

a2 I

5 y@®

Here, H,(j2n®), H,(j2nw), and H;( j2nw) are transfer functions of time-
invariant linear systems and S(7) is the output when n(?) is zero and ny(?) is
the output when S(¥) is zero. Find the output signal-to-noise ratio, defined as

E(S3(1))/E{n}(1)).

A single random data source is measured by two different transducers, and
their outputs are suitably combined into a final measurement y(¢). The system
is as pictured below:

(1)

4 1
() i 3 FILTER # 1
nH(f vt
DATA /L H (1) y(1)
.\b FILTER #2

Assume that n,(¢) and n,(¢) are uncorrelated random processes, data and
noises are uncorrelated, filter 1 has transfer function Y(s)/s, and filter 2 has
transfer function 1 — Y(s). Suppose that it is desired to determine the mean
square error of measurement, where the error is defined by e(r) = x(t) — ¥(¢).
Calculate the mean-square value of the error in terms of Y(s) and the spectral
densities ¥, ¥, , and 'Y, .

Let x(¢) be the solution of
X+ x = n(1),

where n(f) is white noise with spectral density 27.

(a) Assuming that the above system has been operating since t = —oo, find
V. (t,1,). Investigate whether x(f) is wide-sense stationary, and if so,
express Y/, accordingly.

(b) Instead of the system in (a), consider

) n(t), t=>0,
X+x=
0, t <0,

where x(0) = 0. Again, compute (¢, t,).



PROBLEMS 111

(¢) Lety(r) = fofx(r) dt. Find ¢, (¢, 1,) for both of the systems described in
(a) and (b).

(d) It is desired to predict x(f + «) from x(f), that is, a future value of the
process from its present value. A possible predictor X(¢ + «) is of the form

x(t + o) = ax(z).

Find that a that will give the smallest mean-square prediction error, that
is, that minimizes

E(I3(t + o) — x(t + 0)|?),

where x(?) is as in part (a).

3.30 Let x(¢) be the solution of

3.31

X+ x = n(t)

with initial condition x(0) = x,. It is assumed that n(¢) is white noise with
spectral density 27 and is turned on at #+ = 0. The initial condition x; is a
random variable independent of n(f) and with zero mean.

(a) If x, has variance o2, what is ¥ (¢, t,)? Derive the result.

(b) Find that value of ¢ (call it o) for which (¢, t,) is the same for all
t > 0. Determine whether, with ¢ = o, ¥, (¢, ;) is a function only of
t—t.

(c) If the white noise had been turned on at 1 = —oo and the initial condition
has zero mean and variance ¢ as above, is x(f) wide-sense stationary?
Justify your answer by appropriate reasoning and/or computation.

Let

x(t) = F(t)x(t) + w(r),

x(a)=x, t>a,
where x, is a zero-mean random variable with covariance matrix P, and

Ew() =0 Vi,
Ew(Ow'(s)) = 0(0)d(t —s) Vi,
E(x(@w (1)) =0 V.

(a) Determine the mean m(f) and covariance P(¢, t) for the process x(%).
(b) Derive a differential equation for P(t, f).



112

3.32

3.33

3.34

3.35

3.36

3.37

3.38

RANDOM PROCESSES AND STOCHASTIC SYSTEMS

Find the covariance matrix P(f) and its steady-state value P(co) for the
following continuous systems:

. [-1 0 1 ooy [1 0
@s=|5 o[y o o= ]

b._—l() 5 PO_IO
()x_[<> —Jx+[JW@’ ()_[0 J

where w € A7(0, 1) and white.

Find the covariance matrix P; and its steady-state value P, for the following
discrete system:

Xe+1 = Xk Wi 0= )
—% 2 1 0 1

where w;, € A47(0, 1) and white.

Find the steady-state covariance for the state-space model given in Example
3.4.

Show that the continuous-time steady-state algebraic equation
0 = FP(00) + P(00)FT + GOG"

has no nonnegative solution for the scalar case with F = Q0 = G = 1. (See
Equation 3.110.)

Show that the discrete-time steady-state algebraic equation
P, =®P ®"4+Q

has no solution for the scalar case with ® = Q = 1. (See Equation 3.112.)
Find the covariance of x; as a function of k and its steady-state value for the
system

X = =2 W
where Ew;_; =0 and E(w,w;) = e”*7/I. Assume the initial value of the
covariance (P,) is 1.

Find the covariance of x(7) as a function of ¢ and its steady-state value for the
system

x(¢) = —2x(t) + w(2),

where Ew(f) = 0 and E(w(r,)w(t,)) = e”11~"!. Assume the initial value of the
covariance (P,) is 1.



PROBLEMS 113

3.39 Suppose that x(#) has autocorrelation function vy (t) = e~*l. It is desired to
predict x(f + o) on the basis of the past and present of x(¢), that is, the
predictor may use x(s) for all s < 1.

(a) Show that the minimum mean-square error linear prediction is
x(t + o) = e “x(0).

(b) Find the mean-square error corresponding to the above. Hint: Use the
orthogonality principle.



Linear Optimal Filters
and Predictors

Prediction is difficult—especially of the future.
Attributed to Niels Henrik David Bohr (1885-1962)

4.1 CHAPTER FOCUS

4.1.1 Estimation Problem

This is the problem of estimating the state of a linear stochastic system by using
measurements that are linear functions of the state.

We suppose that stochastic systems can be represented by the types of plant and
measurement models (for continuous and discrete time) shown as Equations 4.1-4.5
in Table 4.1, with dimensions of the vector and matrix quantities as shown in Table
4.2. The symbols A(k — £) and o(t — s) stand for the Kronecker delta function and
the Dirac delta function (actually, a generalized function), respectively.

TABLE 4.1 Linear Plant and Measurement Models

Model Continuous Time Discrete Time Equation Number
Plant x(t) = F(t)x(t) + w(t) X = Dp_1 Xp_1 + Wy_q (4.1)
Measurement z(t) = H(tx(t) + v(t) Z = Hexpe + v (4.2)
Plant noise E(w(t)) =0 E(w,) =0 (4.3)
Ew(hwT(s)) = 3(t — 9)Q(t)  E(ww) = Atk — QO (4.4)
Observation noise  E(v(t)) =0 E(v,)=0
E(vt)v(s) = o(t = 9)R(t)  E(vevT) = Atk — )Ry (4.5)

114



4.1 CHAPTER FOCUS 115

TABLE 4.2 Dimensions of Vectors and Matrices in Linear Model

Symbol Dimensions Symbol Dimensions
X,w nxi D, Q nxn
z,v ¢x1 H £xn
R ex e A0 scalar

The measurement and plant noise v; and w;, are assumed to be zero-mean
Gaussian processes, and the initial value x, is a Gaussian variate with known mean
X, and known covariance matrix P,. Although the noise sequences w; and v, are
assumed to be uncorrelated, the derivation in Section 4.5 will remove this restriction
and modify the estimator equations accordingly.

The objective will be to find an estimate of the # state vector x;, represented by X;,
a linear function of the measurements z,, . . ., z;, that minimizes the weighted mean-
squared error

Elx, — %] " Mlx, — %], (4.6)

where M is any symmetric nonnegative-definite weighting matrix.

4.1.2 Main Points to Be Covered

Linear Quadratic Gaussian Estimation Problem. We are now prepared to
derive the mathematical forms of optimal linear estimators for the states of linear
stochastic systems defined in the previous chapters. This is called the linear
quadratic Gaussian (LQG) estimation problem. The dynamic systems are linear,
the performance cost functions are quadratic, and the random processes are
Gaussian.

Filtering, Prediction, and Smoothing. There are three general types of
estimators for the LQG problem:

e Predictors use observations strictly prior to the time that the state of the
dynamic system is to be estimated:

t

obs<t

est*

e Filters use observations up to and including the time that the state of the
dynamic system is to be estimated:

tops = 1,

obs est*



116 LINEAR OPTIMAL FILTERS AND PREDICTORS

e Smoothers use observations beyond the time that the state of the dynamic
system is to be estimated:

t

0bs>t

est®

Orthogonality Principle. A straightforward and simple approach using the
orthogonality principle is used in the derivation' of estimators. These estimators
will have minimum variance and be unbiased and consistent.

Unbiased Estimators. The Kalman filter can be characterized as an algorithm
for computing the conditional mean and covariance of the probability distribution
of the state of a linear stochastic system with uncorrelated Gaussian process and
measurement noise. The conditional mean is the unique unbiased estimate. It is
propagated in feedback form by a system of linear differential equations or by the
corresponding discrete-time equations. The conditional covariance is propagated by
a nonlinear differential equation or its discrete-time equivalent. This implementation
automatically minimizes the expected risk associated with any quadratic loss
function of the estimation error.

Performance Properties of Optimal Estimators. The statistical performance
of the estimator can be predicted a priori (that is, before it is actually used) by
solving the nonlinear differential (or difference) equations used in computing the
optimal feedback gains of the estimator. These are called Riccati equations,” and the
behavior of their solutions can be shown analytically in the most trivial cases. These
equations also provide a means for verifying the proper performance of the actual
estimator when it is running.

4.2 KALMAN FILTER

Observational Update Problem for System State Estimator. Suppose that
a measurement has been made at time #, and that the information it provides is to be

"For more mathematically oriented derivations, consult any of the references such as Anderson and Moore
[1], Bozic [9], Brammer and Siffling [10], Brown [11], Bryson and Ho [14], Bucy and Joseph [15], Catlin
[16], Chui and Chen [18], Gelb et al. [21], Jazwinski [23], Kailath [24], Maybeck [30, 31], Mendel [34,
35], Nahi [36], Ruymgaart and Soong [42], and Sorenson [47].

*Named in 1763 by Jean le Rond D’Alembert (1717—1783) for Count Jacopo Francesco Riccati (1676—
1754), who had studied a second-order scalar differential equation [213], although not the form that we
have here [54, 210]. Kalman gives credit to Richard S. Bucy for showing him that the Riccati differential
equation is analogous to spectral factorization for defining optimal gains. The Riccati equation also arises
naturally in the problem of separation of variables in ordinary differential equations and in the
transformation of two-point boundary-value problems to initial-value problems [155].



4.2 KALMAN FILTER 117

applied in updating the estimate of the state x of a stochastic system at time #,. It is
assumed that the measurement is linearly related to the state by an equation of the
form z;, = Hx; + v,, where H is the measurement sensitivity matrix and vy is the
measurement noise.

Estimator in Linear Form. The optimal linear estimate is equivalent to the
general (nonlinear) optimal estimator if the variates x and z are jointly Gaussian (see
Section 3.8.1). Therefore, it suffices to seek an updated estimate X;(+)—based on
the observation z,—that is a linear function of the a priori estimate and the
measurement z:

2(+) = Kif(—) + Kz, 4.7)

where X;,(—) is the a priori estimate of x;, and x,(+) is the a posteriori value of the
estimate.

Optimization Problem. The matrices K} and K are as yet unknown. We seek
those values of K] and K, such that the new estimate %,(+) will satisfy the
orthogonality principle of Section 3.8.2. This orthogonality condition can be written
in the form

E(x, =% (P)zH =0, i=1,2,.... k-1, (4.8)
0 4.9
If one substitutes the formula for x; from Equation 4.1 (in Table 4.1) and for x,(+)
from Equation 4.7 into Equation 4.8, then one will observe from Equations 4.1 and
4.2 that the data z|, . .., z; do not involve the noise term w;. Therefore, because the
random sequences w, and v, are uncorrelated, it follows that Ew,z] =0 for
1 <i < k. (See Problem 4.5.)
Using this result, one can obtain the following relation:
E[(® 1%y + Wiy — Kz (—) = Kiz)zl 1 =0, i=1,....,k—1. (4.10)
But because z;, = Hx; + vy, Equation 4.10 can be rewritten as
E[®, x5, — K& (=) —KHpx, —Koplz2f =0, i=1,....k—1. (4.11)
We also know that Equations 4.8 and 4.9 hold at the previous step, that is,

E(xy_y =X (Pl =0, i=1,.... k-1,

and



118 LINEAR OPTIMAL FILTERS AND PREDICTORS

Then Equation 4.11 can be reduced to the form

Oy Exy_yz] — K{EX(=)z — KHy @y Exy_yz} — KiEvgzl =0,
O Exy_yz — K/lE)Afk(—)ZiT - Zka(Dk—lExk—lz;r =0,
E{lx, — KiHyx, — Kix] — Ki(8(—) —x))z =0,
[l — K} —K,H]Ex;z] =0. (4.12)
Equation 4.12 can be satisfied for any given x; if

Kl =1-K.H,. (4.13)

Clearly, this choice of K} causes Equation 4.7 to satisfy a portion of the condition
given by Equation 4.8, which was derived in Section 3.8. The choice of K, is such
that Equation 4.9 is satisfied.

Let the errors

- A A
X () =% () — % (4.14)
~ A o
(=) =x(=) — xz (4.15)
- Aa
L =4(=)—z
= Hk.;fk(—) — Zp. (4.16)
Vectors X,(+) and x,(—) are the estimation errors after and before updates,
respectively.
The parameter X; depends linearly on x;, which depends linearly on z;. Therefore,
from Equation 4.9
Elx — %(H)ei (=) =0 (4.17)
and also (by subtracting Equation 4.9 from Equation 4.17)
Elx, — %, () = 0. (4.18)
Substitute for x;, X;(+) and Z, from Equations 4.1, 4.7, and 4.16, respectively. Then
E[®_ 131 +wiy — Ki (=) = Kz JlHiy (-) — 7] = 0.
However, by the system structure
Ewzi = Ew3i(+) =0,

E[®,_1x_ — KiZx(—) — KizilH & (=) — 2] = 0.

3The symbol ~ is officially called a zilde but often called a “squiggle.”



4.2 KALMAN FILTER 119

Substituting for K}, z;, and X,(—) and using the fact that EX;(—)vf = 0, this last
result can be modified as follows:

0 = E([@y_yx4—1 — X4 (=) + KHi Xy (=) — K Hpx, — Koy
[Hi&(—) — Hx — v]")
= E([(xy — 34(=) = Ky Hy (o, — (=) — Ko J[H X (—) — Uk]T>
= E([(—%,(—) + KeHiZ (<) — Ko lH % (<) — v,

By definition, the a priori covariance (the error covariance matrix before the
update) is

Py(=) = Eq(—)x; ().
It satisfies the equation
[ — KiHP(—)Hy — KR =0,
and therefore the gain can be expressed as
Ky = PU()HHP(-H] + R (4.19)

which is the solution we seek for the gain as a function of the a priori covariance.
One can derive a similar formula for the a posteriori covariance (the error
covariance matrix after update), which is defined as

Pi(+) = E{x(H)x; (H)])- (4.20)
By substituting Equation 4.13 into Equation 4.7, one obtains the equations
X(+) = (I — K H)x(-) + Kz,
Xe(H) = 3(=) + Kilz, — HiZ(5))- (4.21)
Subtract x; from both sides of the latter equation to obtain the equations
X () = 2 = (=) + KpHoxy + Ko — KHid (=) — X,
X () = X (=) = KeHi % (=) + Ky,
X () = (I = KeH)R(—) + Koy (4.22)
By substituting Equation 4.22 into Equation 4.20 and noting that £X,(—)v; = 0, one
obtains
. - — — —T
Py(+) = E{ll = KH G (D5 (O — K HlT + KooKy )
- — —= o =T
= (I — KeH)PH(—)I — K Hy)' + KR K. (4.23)



120 LINEAR OPTIMAL FILTERS AND PREDICTORS

This last equation is the so-called “Joseph form” of the covariance update equation
derived by P. D. Joseph [15]. By substituting for K, from Equation 4.19, it can be put
into the following forms:

P(+) = Py(—) — K H Pr(—)
— P(—)H[R, + K HP(-)HK; +ERE,
= (I — KeH)Py(-) - PU-)H[K,
+ K (H P (—)H] + Ry) EZ
Py(—)H]

= ([ - Eka)Pk(—)’ (4-24)

the last of which is the one most often used in computation. This implements the
effect that conditioning on the measurement has on the covariance matrix of
estimation uncertainty.

Error covariance extrapolation models the effects of time on the covariance
matrix of estimation uncertainty, which is reflected in the a priori values of the
covariance and state estimates,

Pr(=) = E[x(=)x (5],
(=) = Qp_ 1 X1 (), (4.25)

respectively. Subtract x;, from both sides of the last equation to obtain the equations

X (=) = X = Oy Xy () — x;,
X (=) = O [X—y () — x4 ] — Wiy
=@ 1 Xy () — Wiy

for the propagation of the estimation error, X. Postmultiply it by X; (—) (on both sides
of the equation) and take the expected values. Use the fact that EX,_w]_, =0 to
obtain the results

P(—) € EF (R ()]

=@, E[x_ (D)X (D]D;_; + E[wi_ wi_]
=&, PO + 0, (4.26)

which gives the a priori value of the covariance matrix of estimation uncertainty as a
function of the previous a posteriori value.



4.2 KALMAN FILTER 121

4.2.1 Summary of Equations for the Discrete-Time Kalman Estimator

The equations derived in the previous section are summarized in Table 4.3. In this
formulation of the filter equations, G has been combined with the plant covariance
by multiplying G,_, and G}_,, for example,

O 1 = Gy E(wy_ywi )G}
= Gk—le—lGl{—l'

The relation of the filter to the system is illustrated in the block diagram of Figure
4.1. The basic steps of the computational procedure for the discrete-time Kalman
estimator are as follows:

1. Compute P,(—) using P,_,(+), ®;_;, and O, _,.

2. Compute K, using P;(—) (computed in step 1), H,, and R,.

3. Compute P,(+) using K, (computed in step 2) and P,(—) (from step 1).

4. Compute successive values of X;(+) recursively using the computed values of
K, (from step 3), the given initial estimate X, and the input data z;.

TABLE 4.3 Discrete-Time Kalman Filter Equations

System dynamic model:
Xie = Dpe_1 X1 + Wy
wy ~ N(0, Q)

Measurement model:

Initial conditions:

Independence assumption:
E(kajT> =0 forallkandj

State estimate extrapolation (Equation 4.25):

X(=) = @p_1 351 (+)
Error covariance extrapolation (Equation 4.26):

Pi(=) = Dp_q Py (1)Df_y + Q_y
State estimate observational update (Equation 4.21):

X(+) = Xi(—) + K[z — Hiki(—)]
Error covariance update (Equation 4.24):

Pi(+) = [l = K H]Pi(-)
Kalman gain matrix (Equation 4.19):

K = Pu()H}[HP(—)H] + R




122 LINEAR OPTIMAL FILTERS AND PREDICTORS

Discrete system Measurement Discrete Kalman filter

_______________ - B e ittt

Xp

Copy of
discrete system

______'______

Dy 4 < Delay
Zp_q(+)

________________________________________________

Fig. 4.1 Block diagram of system, measurement model, and discrete-time Kalman filter.

Step 4 of the Kalman filter implementation [computation of Xx,(4+)] can be
implemented only for state vector propagation where simulator or real data sets
are available. An example of this is given in Section 4.12.

In the design trade-offs, the covariance matrix update (steps 1 and 3) should be
checked for symmetry and positive definiteness. Failure to attain either condition is a
sign that something is wrong—either a program “bug” or an ill-conditioned
problem. In order to overcome ill-conditioning, another equivalent expression for
P,(+) is called the “Joseph form,”* as shown in Equation 4.23:

— — — T
Pu(+) = [ = K H P — K H " + K RK,.

Note that the right-hand side of this equation is the summation of two symmetric
matrices. The first of these is positive definite and the second is nonnegative definite,
thereby making P, (+) a positive definite matrix.

There are many other forms® for K; and P,(+) that might not be as useful for
robust computation. It can be shown that state vector update, Kalman gain, and error
covariance equations represent an asymptotically stable system, and therefore, the
estimate of state X; becomes independent of the initial estimate X,, P, as k is
increased.

Figure 4.2 shows a typical time sequence of values assumed by the ith component
of the estimated state vector (plotted with solid circles) and its corresponding
variance of estimation uncertainty (plotted with open circles). The arrows show the
successive values assumed by the variables, with the annotation (in parentheses) on
the arrows indicating which input variables define the indicated transitions. Note that
each variable assumes two distinct values at each discrete time: its a priori value

“after Bucy and Joseph [15].
Some of the alternative forms for computing K, and P,(+) can be found in Jazwinski [23], Kailath [24],
and Sorenson [46].



4.2 KALMAN FILTER 123

|
{Zp(+)}; @
State T enK) (@)
; iy
estimate (¢m A o G 10,
hd {xk(_)}i (Zk+17Ek+1)
‘ {& 4+ 1(+)} T (@, 1)
T =
(Pp_ 1, Qr—1) O POk
Covariance
matrix (Hp, R)) QP 1}
(Hk + 1 Rk +1 )
(D, Q)
{Pk(+)}ii Q /
{Py (1)}, O (Pr 1, @r 4 1)
ty, 7

Discrete time

Fig. 4.2 Representative sequence of values of filter variables in discrete time.

corresponding to the value before the information in the measurement is used, and
the a posteriori value corresponding to the value affer the information is used.

EXAMPLE 4.1 Let the system dynamics and observations be given by the
following equations:

X = X1 + Wiy, Zp = X+ Vs
E(v;) = Ew, =0,
E(v vy,) = 2A(k, — ky),  E(wywy,) = Ak, — ky),
z; =2, z, =3,
E(x(0)) =%, =1,
E{[x(0) — %][x(0) — %,]") = Py = 10.

The objective is to find X3 and the steady-state covariance matrix P.,. One can use
the equations in Table 4.3 with

d=1=H, Q=1 R=2,



124 LINEAR OPTIMAL FILTERS AND PREDICTORS

for which
P(=) =P (H+ 1,
T Pi(—) :Pk71(+) +1
TR+ P +3
Py_y(+) + 1j|
P(+H)=|1————|(P_(+)+ 1),
() [ Pk71(+)+3(k1( )+ 1)
2P (H)+ 1)
Py4) =0
P (+)+3
() =% (H) + Kz — 5 (1) |-
Let
P.(+) =P,_(+) = P (steady-state covariance),
2
p_2APED
P+3
PP+P—-2=0,
P =1, positive-definite solution.
Fork =1
~ ~ Py+1 n 11 24
= 2— =1+—=Q2-1)=—
X (+) =Xy +Po+3( Xo) +13( ) 3

Following is a table for the various values of the Kalman filter:

k Pi(-) Pi(+) Ky Xi(+H)
1 11

a5
2 23

1 24
13
49
20

o wlnd
w0

9'\1 2N
|
I3
@

4.2.2 Treating Vector Measurements with Uncorrelated Errors as
Scalars

In many (if not most) applications with vector-valued measurement z, the corre-
sponding matrix R of measurement noise covariance is a diagonal matrix, meaning
that the individual components of v, are uncorrelated. For those applications, it is



4.2 KALMAN FILTER

125

advantageous to consider the components of z as independent scalar measurements,

rather than as a vector measurement. The principal advantages are as follows:

1. Reduced Computation Time. The number of arithmetic computations
required for processing an ¢-vector z as £ successive scalar measurements is
significantly less than the corresponding number of operations for vector
measurement processing. (It is shown in Chapter 6 that the number of
computations for the vector implementation grows as ¢, whereas that of

the scalar implementation grows only as £.)

2. Improved Numerical Accuracy. Avoiding matrix inversion in the implemen-
tation of the covariance equations (by making the expression HPH' +R a
scalar) improves the robustness of the covariance computations against

roundoff errors.

The filter implementation in these cases requires ¢ iterations of the observational
update equations using the rows of H as measurement “matrices” (with row
dimension equal to 1) and the diagonal elements of R as the corresponding
(scalar) measurement noise covariance. The updating can be implemented iteratively

as the following equations:

1 [i—1] g liIT
HOP g 4 g

Ky =

I
& = -1 gy, — FPRE,
fori=1,2,3,...,¢, using the initial values
Pl[cO] = P(-), )ACECO] = X(-);
intermediate variables

RE:] = ith diagonal element of the £ x ¢ diagonal matrix R,

H,Ei] = ith row of the £ x n matrix H,;
and final values

PI=Pu). =%

4.2.3 Using the Covariance Equations for Design Analysis

It is important to remember that the Kalman gain and error covariance equations are
independent of the actual observations. The covariance equations alone are all that is
required for characterizing the performance of a proposed sensor system before it is



126 LINEAR OPTIMAL FILTERS AND PREDICTORS

actually built. At the beginning of the design phase of a measurement and estimation
system, when neither real nor simulated data are available, just the covariance
calculations can be used to obtain preliminary indications of estimator performance.
Covariance calculations consist of solving the estimator equations with steps 1-3 of
the previous subsection, repeatedly. These covariance calculations will involve the
plant noise covariance matrix (J, measurement noise covariance matrix R, state
transition matrix @, measurement sensitivity matrix H, and initial covariance matrix
P,—all of which must be known for the designs under consideration.

4.3 KALMAN-BUCY FILTER

Analogous to the discrete-time case, the continuous-time random process x(f) and
the observation z(¢) are given by

x(t) = F(H)x(t) + G(H)w(r), (4.27)
z(t) = H()x(t) + v(1), (4.28)

Ew(t) = Ev(t) =0,
Ew(t)w' (1) = Q(0)d(t, — 1), (4.29)
Ev(t,)v" (1) = R(1)(t, — 1y), (4.30)
Ew(®)o"(n) =0, (4.31)

where F(f), G(f), H(t), O(t), and R(f) are n xn, nxn, [ xn, nxn, and [ x [
matrices, respectively. The term J(¢, — ¢,) is the Dirac delta. The covariance matrices
QO and R are positive definite.

It is desired to find the estimate of n state vector x(¢) represented by x(¢) which is a
linear function of the measurements z(¢), 0 < ¢t < T, which minimizes the scalar
equation

E[x(f) — 2(O)]"M[x(7) — 2(1)]. (4.32)

where M is a symmetric positive-definite matrix.

The initial estimate and covariance matrix are X, and P.

This section provides a formal derivation of the continuous-time Kalman
estimator. A rigorous derivation can be achieved by using the orthogonality principle
as in the discrete-time case. In view of the main objective (to obtain efficient and
practical estimators), less emphasis is placed on continuous-time estimators.

Let At be the time interval [f, —#,_;]. As shown in Chapters 2 and 3, the
following relationships are obtained:

O(t,, t,_) = O, =1 + F(t,_)At + 0(Ar>),



4.3 KALMAN—-BUCY FILTER 127

where 0(A7?) consists of terms with powers of At greater than or equal to two. For
measurement noise

_ R(t;)
= A

and for process noise

O = G(t)Q(1)G" (1) At.

Equations 4.24 and 4.26 can be combined. By substituting the above relations, one
can get the result

P(=) = + F(AAI — K;_H, 1P, (—)
x [I + FOA]" + G()Q()G (1) At, (4.33)

Pi(=) = P (=)

AL = F(OP_ (=) + Py (—)F (1)

+ GG (1) - ’_fk—lHk—Alth-l(—)

— F()K_ Hy_ Py ()F (1) At
+ higher order terms. (4.34)

The Kalman gain of Equation 4.19 becomes, in the limit,

- [K,_ . _
Alt1£>n0|: gtl] = Altlino{Pk—l(_)H;—I[Hk—lpk—l(_)H];r—l At+ R}
= PH"R™' = K(»). (4.35)

Substituting Equation 4.35 in 4.34 and taking the limit as Az — 0, one obtains the
desired result

P(1) = F()P(t) + P()F (1) + G(t)O() G (1)
— P(HT (R~ (0)H(1)P(2) (4.36)
with P(#,) as the initial condition. This is called the matrix Riccati differential

equation. Methods for solving it will be discussed in Section 4.8. The differential
equation can be rewritten by using the identity

POH (R (OROR™ (OH()P(t) = KORDK  (£)
to transform Equation 4.36 to the form

P(t) = F(t)P(t) + POF (1) + G()O()G (1) — KORDK  (8). (4.37)



128 LINEAR OPTIMAL FILTERS AND PREDICTORS

In similar fashion, the state vector update equation can be derived from Equations
4.21 and 4.25 by taking the limit as A — 0 to obtain the differential equation for the
estimate:

() = F(OR(t) + KO[(t) — HOR(0)] (4.38)

with initial condition X(0). Equations 4.35, 4.37, and 4.38 define the continuous-time
Kalman estimator, which is also called the Kalman—Bucy filter [27, 179, 181, 182].

4.4 OPTIMAL LINEAR PREDICTORS

4.4.1 Prediction as Filtering

Prediction is equivalent to filtering when the measurement data are not available or
are unreliable. In such cases, the Kalman gain matrix K, is forced to be zero. Hence,
Equations 4.21, 4.25, and 4.38 become

() = D1 Xy () (4.39)
and
() = F(OR(). (4.40)

Previous values of the estimates will become the initial conditions for the above
equations.

4.4.2 Accommodating Missing Data

It sometimes happens in practice that measurements that had been scheduled to
occur over some time interval (f, < <7 ) are, in fact, unavailable or unreliable.
The estimation accuracy will suffer from the missing information, but the filter can
continue to operate without modification. One can continue using the prediction
algorithm given in Section 4.4 to continually estimate x; for k£ > k; using the last
available estimate )%kl until the measurements again become useful (after k = k).

It is unnecessary to perform the observational update, because there is no
information on which to base the conditioning. In practice, the filter is often run
with the measurement sensitivity matrix A = 0 so that, in effect, the only update
performed is the temporal update.



4.5 CORRELATED NOISE SOURCES 129
4.5 CORRELATED NOISE SOURCES

4.5.1 Correlation between Plant and Measurement Noise
We want to consider the extensions of the results given in Sections 4.2 and 4.3,
allowing correlation between the two noise processes (assumed jointly Gaussian).
Let the correlation be given by
Ewy, U,IZ = Cy A(ky — k) for the discrete-time case,
Ew(t))v'(ty) = C(1)0(t, — t;) for the continuous-time case.
For this extension, the discrete-time estimators have the same initial conditions and
state estimate extrapolation and error covariance extrapolation equations. However,
the measurement update equations in Table 4.3 have been modified as
Ky = [P()H] + CIHP(H + Ry + H G+ CLHTT,
Pi(+) = Pi(—) — K [H, P (=) + Cf ],
3 () = (=) + Kz, — Hidy (5]

Similarly, the continuous-time estimator algorithms can be extended to include the
correlation. Equation 4.35 is changed as follows [146, 222]:

K(t) = [POH" () + C(OIR™ ().

4.5.2 Time-Correlated Measurements

Correlated measurement noise v; can be modeled by a shaping filter driven by white
Gaussian noise (see Section 3.6). Let the measurement model be given by

2z = Hix + vy,
where
Vg = A1Vt + Mgy (4.41)
and #, is zero-mean white Gaussian.

Equation 4.1 is augmented by Equation 4.41, and the new state vector
X, =[x, v]" satisfies the difference equation:

k = _—— = |- - - — - - - —_—— —_—— - .
U 0 Ay Ur—1 Ni—1

Zk = [szlle-



130 LINEAR OPTIMAL FILTERS AND PREDICTORS

The measurement noise is zero, R, = 0. The estimator algorithm will work as long
as H,P,(—)H! + R, is invertible. Details of numerical difficulties of this problem
(when R, is singular) are given in Chapter 6.

For continuous-time estimators, the augmentation does not work because
K() = P()H" (H)R™'(¢) is required. Therefore, R~!(f) must exist. Alternate tech-
niques are required. For detailed information see Gelb et al. [21].

4.6 RELATIONSHIPS BETWEEN KALMAN AND WIENER FILTERS

The Wiener filter is defined for stationary systems in continuous time, and the
Kalman filter is defined for either stationary or nonstationary systems in either
discrete time or continuous time, but with finite-state dimension. To demonstrate the
connections on problems satisfying both sets of constraints, take the continuous-time
Kalman—Bucy estimator equations of Section 4.3, letting F, G, and H be constants,
the noises be stationary (Q and R constant), and the filter reach steady state (P
constant). That is, as # — oo, then P(f) — 0. The Riccati differential equation from
Section 4.3 becomes the algebraic Riccati equation

0 = FP(c0) + P(c0)FT 4+ GOGT — P(00)HTR™'HP(00)

for continuous-time systems. The positive-definite solution of this algebraic equation
is the steady-state value of the covariance matrix, [P(co)]. The Kalman—Bucy filter
equation in steady state is then

3(f) = F5 + K(0o)[z(t) — HX(?)].

Take the Laplace transform of both sides of this equation, assuming that the initial
conditions are equal to zero, to obtain the following transfer function:

[sI — F + KH]x(s) = Kz(s),
where the Laplace transforms £x(z) = x(s) and L£z(z) = z(s). This has the solution
3(s) = [sI — F + KH] 'Kz(s),
where the steady-state gain
K = P(co)H™R7!.

This transfer function represents the steady-state Kalman—Bucy filter, which is
identical to the Wiener filter [30].



4.7 QUADRATIC LOSS FUNCTIONS 131
4.7 QUADRATIC LOSS FUNCTIONS

The Kalman filter minimizes any quadratic loss function of estimation error. Just the
fact that it is unbiased is sufficient to prove this property, but saying that the estimate
is unbiased is equivalent to saying that ¥ = E(x). That is, the estimated value is the
mean of the probability distribution of the state.

4.7.1 AQuadratic Loss Functions of Estimation Error

A loss function or penalty function® is a real-valued function of the outcome of a
random event. A loss function reflects the value of the outcome. Value concepts can
be somewhat subjective. In gambling, for example, your perceived loss function for
the outcome of a bet may depend upon your personality and current state of
winnings, as well as on how much you have riding on the bet.

Loss Functions of Estimates. In estimation theory, the perceived loss is
generally a function of estimation error (the difference between an estimated
function of the outcome and its actual value), and it is generally a monotonically
increasing function of the absolute value of the estimation error. In other words,
bigger errors are valued less than smaller errors.

Quadratic Loss Functions. If x is a real n-vector (variate) associated with the
outcome of an event and X is an estimate of x, then a quadratic loss function for the
estimation error x — x has the form

LG—x)=@G—0)"ME—x), (4.42)

where M is a symmetric positive-definite matrix. One may as well assume that M is
symmetric, because the skew-symmetric part of M does not influence the quadratic
loss function. The reason for assuming positive definiteness is to assure that the loss
is zero only if the error is zero, and loss is a monotonically increasing function of the
absolute estimation error.

4.7.2 Expected Value of a Quadratic Loss Function

Loss and Risk. The expected value of loss is sometimes called risk. It will be
shown that the expected value of a quadratic loss function of the estimation error

“These are concepts from decision theory, which includes estimation theory. The theory might have been
built just as well on more optimistic concepts, such as “gain functions,” “benefit functions,” or “reward
functions,” but the nomenclature seems to have been developed by pessimists. This focus on the negative
aspects of the problem is unfortunate, and you should not allow it to dampen your spirit.



132 LINEAR OPTIMAL FILTERS AND PREDICTORS

X —x is a quadratic function of X — E{x), where E(x) = E(x). This demonstration
will depend upon the following identities:

XI—x=x—E{x)—(x—E{&x), (4.43)

E{x— E(x)) =0, (4.44)
E{(x — E(x))"M(x — E(x)))

= E(trace[(x — E(x))"M(x — E(x)))) (4.45)

= E(trace[M (x — E(x))(x — E{x))"]) (4.46)

= trace[ME((x — E{x))(x — E(x))'] (4.47)

= trace[MP] (4.48)

E{(x— EQ)(x —E(x)"). (4.49)

Risk of a Quadratic Loss Function. In the case of the quadratic loss function
defined above, the expected loss (risk) will be

R() = E(LG - x)) (4.50)
= E((& —x)' MG —x)) (4.51)
= E((x — E{(x)) — (x— DI'M[(E — E(x) — (x — E(x)])  (4.52)
= E((k — E()" MG — E(x) + (v — E() M(x — E(x))

—E(&—E )TM(x— X))+ (x — E(x)'M@E—E(x)))  (4.53)
=@&—E x)M(x— )+E(x— () M (x — E(x)))
— & — E(x))'ME((x — E(x))) — E((x — E@))"ME — E(x))  (4.54)
=& — Ex)"M@E — E(x)) + trace[MP], (4.55)

which is a quadratic function of ¥ — E(x) with the added nonnegative’ constant
trace[ MP].

4.7.3 Unbiased Estimates and Quadratic Loss

The estimate X = E{(x) minimizes the expected value of any positive-definite
quadratic loss function. From the above derivation,

R(x) > trace[MP] (4.56)

"Recall that M and P are symmetric and nonnegative definite, and the matrix trace of any product of
symmetric nonnegative definite matrices is nonnegative.



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 133

and
R(x) = trace[MP] (4.57)

only if
X = E{x), (4.58)

where it has been assumed only that the mean E(x) and covariance
E{x—Ex)x—E (x))T) are defined for the probability distribution of x. This
demonstrates the utility of quadratic loss functions in estimation theory: They always
lead to the mean as the estimate with minimum expected loss (risk).

Unbiased Estimates. An estimate X is called unbiased if the expected estimation
error E . (x —x) = 0. What has just been shown is that an unbiased estimate
minimizes the expected value of any quadratic loss function of estimation error.

4.8 MATRIX RICCATI DIFFERENTIAL EQUATION

The need to solve the Riccati equation is perhaps the greatest single cause of anxiety
and agony on the part of people faced with implementing a Kalman filter. This
section presents a brief discussion of solution methods for the Riccati differential
equation for the Kalman—Bucy filter. An analogous treatment of the discrete-time
problem for the Kalman filter is presented in the next section. A more thorough
treatment of the Riccati equation can be found in the book by Bittanti et al. [54].

4.8.1 Transformation to a Linear Equation

The Riccati differential equation was first studied in the eighteenth century as a
nonlinear scalar differential equation, and a method was derived for transforming it
to a linear matrix differential equation. That same method works when the dependent
variable of the original Riccati differential equation is a matrix. That solution method
is derived here for the matrix Riccati differential equation of the Kalman—Bucy filter.
An analogous solution method for the discrete-time matrix Riccati equation of the
Kalman filter is derived in the next section.

Matrix Fractions. A matrix product of the sort AB~! is called a matrix firaction,
and a representation of a matrix M in the form

M = 4B™!
will be called a fraction decomposition of M. The matrix A4 is the numerator of the

fraction, and the matrix B is its denominator. It is necessary that the matrix
denominator be nonsingular.



134 LINEAR OPTIMAL FILTERS AND PREDICTORS

Linearization by Fraction Decomposition. The Riccati differential equation
is nonlinear. However, a fraction decomposition of the covariance matrix results in a
linear differential equation for the numerator and denominator matrices. The
numerator and denominator matrices will be functions of time, such that the pro-
duct A(t)B~'(¢) satisfies the matrix Riccati differential equation and its boundary
conditions.

Derivation. By taking the derivative of the matrix fraction 4(f)B~'(¢) with respect
to ¢ and using the fact® that

d __, _ pling —1
EB ) = =B ®OB(B7 (1),

one can arrive at the following decomposition of the matrix Riccati differential
equation, where GOGT has been reduced to an equivalent Q:

A0B™' (&) — A(OB~ ()B(t)B~' (1)

_4d -1
= {A@®)B~ (1)} (4.59)
d
=~ P (4.60)
= F(t)P(t) + P(t)F(t)
— P()H ()R (ODH(H)P(t) + O(1) (4.61)

= F()A()B~'(t) + A(OB~ (1) F (1)
—AOB '\ OHT (R (H(DAMNB™ (1) + O(),  (4.62)
A(r) — A()B~ ()B(1) = F()A(t) + A@)B~ (1)F" (1)B(¢)

— AWOB\(OHT ()R (1) H(H)A(1) + O()B(1), (4.63)
A(t) — A(DB™ (1){B(1)} = F()A(1) + Q(1)B(t) — A(1)B™ (1)
x {HY )R~V ()H()A(t) — FT(£)B(1)}, (4.64)
A(r) = F()A(t) + O(1)B(?), (4.65)
B(t) = H'(OR™' ()H()A(t) — FT(1)B(?), (4.66)
d [A(t)] _ [ F(1) o() } [A(t) } 4.67)
dt | B(?) HTORY(HH(E) —FT(@¢) || B®)

The last equation is a linear first-order matrix differential equation. The dependent
variable is a 2n x n matrix, where 7 is the dimension of the underlying state variable.

8This formula is derived in Appendix B, Equation B.10.



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 135

Hamiltonian Matrix. This is the name’ given the matrix

(4.68)

W - [ F(@) o) }

H'ORYHH() —F (1)
of the matrix Riccati differential equation.

Boundary Constraints. The initial values of A(f) and B(f) must also be
constrained by the initial value of P(f). This is easily satisfied by taking
A(ty) = P(t,) and B(t,) = 1, the identity matrix.

4.8.2 Time-Invariant Problem

In the time-invariant case, the Hamiltonian matrix ¥ is also time-invariant. As a
consequence, the solution for the numerator 4 and denominator B of the matrix
fraction can be represented in matrix form as the product

A(t) _w P(0)
Bt | I |

¥t is a 2n x 2n matrix.

where e

4.8.3 Scalar Time-Invariant Problem

For this problem, the numerator 4 and denominator B of the “matrix fraction” AB~!
will be scalars, but ¥ will be a 2 x 2 matrix. We will here show how its exponential
can be obtained in closed form. This will illustrate an application of the linearization
procedure, and the results will serve to illuminate properties of the solutions—such
as their dependence on initial conditions and on the scalar parameters F, H, R, and Q.

Linearizing the Differential Equation. The scalar time-invariant Riccati differ-
ential equation and its linearized equivalent are

P(1) = FP(t) + P(t)F — P()yHR™'HP(1) + O,

A7) F 0 N[ 4@

B | |HR'H -F|| B0
respectively, where the symbols F, H, R, and Q represent scalar parameters
(constants) of the application, ¢ is a free (independent) variable, and the dependent

variable P is constrained as a function of 7 by the differential equation. One can solve

°After the Trish mathematician and physicist William Rowan Hamilton (1805-1865).



136 LINEAR OPTIMAL FILTERS AND PREDICTORS

this equation for P as a function of the free variable ¢ and as a function of the
parameters F, H, R, and Q.

Fundamental Solution of Linear Time-Invariant Differential Equation.
The linear time-invariant differential equation has the general solution

A(f) o[ PO
= e .
B(1) 1

Fo0
Y= H2

— _F

R

This matrix exponential will now be evaluated by using the characteristic vectors of
W, which are arranged as the column vectors of the matrix

-0 -0
M=|F+¢ F—¢ |, ¢=,/F2+%,
1

1

with inverse

_H2 HZQ
vl | 26R 2HQ+2FR—2F$R
| H? H?Q ’

2¢R 2H?Q+2F2R + 2F$R

by which it can be diagonalized as

20
M'WM = ,
; H?Q+ F’R ; H?Q+ F’R
() = ‘1 =

OR oR

with the characteristic values of ¥ along its diagonal. The exponential of the
diagonalized matrix, multiplied by ¢, will be

M1WMr e 0
e = T
O e/L]t



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 137

Using this, one can write the fundamental solution of the linear homogeneous time-
invariant equation as

v 21 Ik
e —kgogt

= M(i l[M‘“PM]")M‘l
i=ok!

— MeMil\PMtM_l

et 0
=M M
0 Mt

PO+ 1)+ F(@) - 1) o1 — (1)

" 2e04 H*((1) = 1)

R F(I =) + ¢(1 + (1)

v = &

and the solution of the linearized system as

A0 _ W[PO
B(t) | 1
oy —1)

POXGW () + 1)+ Fp(0) = DI = =

— WO+ 1D —-FW@®—-1)

1
269 | POYH2(Y(r) — 1)
R

General Solution of Scalar Time-Invariant Riccati Equation. The general
solution formula may now be composed from the previous results as

P(t) = A(1)/B(1)

_ Np(?)
Dp(t)’

N p(t) = RIP(O)(¢ + F) + O] + RIP(0)( — F) — Qle "

:R[P(O)( F? +1%+F) + Q}
+ R[P(O) (1 [F2 + % — F) — Q} e 20 (4.70)

(4.69)



138 LINEAR OPTIMAL FILTERS AND PREDICTORS

Dp(t) = [H*P(0) + R(¢p — F)] — [H*P(0) — R(F + $)]e >

o sf 2]

2Q B
— | H*P(0) — R F2+—+F e 2, (4.71)

Singular Values of Denominator. The denominator Dp(f) can easily be shown
to have a zero for 7, such that

H?[P(0)$ + Q] + FR(¢p — F)

“200 — | 2— )
¢ + H2P2(0) — 2FRP(0) — OR

However, it can also be shown that #, < 0 if
P(0) > ——(¢> F),

which is a nonpositive lower bound on the initial value. This poses no particular
difficulty, however, since P(0) > 0 anyway. (We will see in the next section what
would happen if this condition were violated.)

Boundary values. Given the above formulas for P(¢), its numerator N (), and its
denominator D(¢), one can easily show that they have the following limiting values:

HZ
lim A (1) = 2P(0)R, | F2 + "o
t—0 R
lim Dp(7) = 2R,/ F? L0
t—0 P B R ’

lim P(1) = P(0),

lim P(1) = % <F +,/F? + %) (4.72)

4.8.4 Parametric Dependence of the Scalar Time-Invariant Solution

The previous solution of the scalar time-invariant problem will now be used to
illustrate its dependence on the parameters F, H, R, O, and P(0). There are two
fundamental algebraic functions of these parameters that will be useful in char-



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 139

acterizing the behavior of the solutions: the asymptotic solution as # — oo and the
time constant of decay to this steady-state solution.

Decay Time Constant. The only time-dependent terms in the expression for P(¢)
are those involving e~2#’. The fundamental decay time constant of the solution is
then the algebraic function

t(F,H,R, Q) =2,/F2+ % (4.73)

of the problem parameters. Note that this function does not depend upon the initial
value of P.

Asymptotic and Steady-State Solutions. The asymptotic solution of the
scalar time-invariant Riccati differential equation as t — oo is given in Equation
4.72. 1t should be verified that this is also the solution of the corresponding steady-
state differential equation

P =0,
P*(00)H?R™! — 2FP(00) — 0 = 0,
which is also called the algebraic'® Riccati equation. This quadratic equation in

P(00) has two solutions, expressible as algebraic functions of the problem param-
eters:

FR + /H20OR + F2R?
H? '

P(o0) =

The two solutions correspond to the two values for the signum (£). There is no cause
for alarm, however. The solution that agrees with Equation 4.72 is the nonnegative
one. The other solution is nonpositive. We are only interested in the nonnegative
solution, because the variance P of uncertainty is, by definition, nonnegative.

Dependence on Initial Conditions. For the scalar problem, the initial condi-
tions are parameterized by P(0). The dependence of the solution on its initial value is
not continuous everywhere, however. The reason is that there are two solutions to the
steady-state equation. The nonnegative solution is stable in the sense that initial
conditions sufficiently near to it converge to it asymptotically. The nonpositive

1080 called because it is an algebraic equation, not a differential equation. That is, it is constructed from
the operations of algebra, not those of the differential calculus. The term by itself is ambiguous in this
usage, however, because there are two entirely different forms of the algebraic Riccati equation. One is
derived from the Riccati differential equation, and the other is derived from the discrete-time Riccati
equation. The results are both algebraic equations, but they are significantly different in structure.



140 LINEAR OPTIMAL FILTERS AND PREDICTORS

solution is unstable in the sense that infinitesimal perturbations of the initial
condition cause the solution to diverge from the nonpositive steady-state solution
and converge, instead, to the nonnegative steady-state solution.

Convergent and Divergent Solutions. The eventual convergence of a solution
to the nonnegative steady-state value may pass through infinity to get there. That is,
the solution may initially diverge, depending on the initial values. This type of
behavior is shown in Figure 4.3, which is a multiplot of solutions to an example of
the Riccati equation with

F =0, H=1, R=1, o=1,

for which the corresponding continuous-time algebraic (quadratic) Riccati equation

P(c0) =0,

2
2rpioe) PO Lo,
1 —[P(c0)? =0

has the two solutions P(co) = %1. The Riccati differential equation has the closed-
form solution

_ (14 PO)] —[1 - PO)]
P(t) = eX[1 + P(0)] +[1 — P(0)]

in terms of the initial value P(0). Solutions of the initial-value problem with different
initial values are plotted over the time interval 0 < ¢ < 2. All solutions except the
one with P(0) = —1 appear to converge eventually to P(co) = 1, but those that

4
\ \ \\\ Parameters: F =0
3+ H=1
N \\\\ P
2k N NN Q=1
\\\\\\\
1F Stable
//:::;;// solution
P(t) 0 == =
— 1T 1 ¢ Convergent o
-1 — 4 1 Unstable
:\\\\ Divergent % solution
-2 \\\\ \
-3 _\\\ \ \ ~— Solution going from —eo {0 +o
\\ \ \ as denominator passes through zero
_4 -

Fig. 4.3 Solutions of the scalar time-invariant Riccati equation.



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 141

disappear off the bottom of the graph diverge to —oo, then converge to P(co) = +1
from the top of the graph. The vertical Lines on the plot are the times at which
solutions starting with P(0) < —1 pass through P(f) = oo on their way to
P(00) = 1. This phenomenon occurs at the zeros of the denominator in the
expression for P(#), which occur at time

o PO
= OB\ P0) + 1

for P(0) < —1. Solutions with P(0) > —1 converge without this discontinuous
behavior.

Convergent and Divergent Regions. The line at P = —1 in Figure 4.3
separates initial values into two regions, characterized by the stability of solutions
to the initial-value problem. Solutions with initial values above that line converge to
the positive steady-state solution. Solutions starting below that line diverge.

4.8.5 Convergence Issues

It is usually risky to infer properties of high-order systems from those of lower order.
However, the following general trends are apparent in the behavior of the closed-
form solution of the scalar time-invariant Riccati differential equation:

1. The solution eventually converges exponentially to the nonnegative steady-
state solution. The decay time constant varies as (F> +H2Q/R)1/ 2, which
increases with |F|, |H|, and Q and decreases as R increases (for R > 0 and
0 > 0).

2. Solutions are not uniformly exponentially convergent, however. The initial
value does not influence the asymptotic decay rate, but it can influence the
initial response. In particular, convergence for initial values nearer the unstable
steady-state solution is hampered initially.

3. The stable asymptotic solution is

P(c0) =%<F+,/F2+%>,

which is influenced by both the sign and magnitude of F but only by the
magnitudes of H, R, and Q.
Stability properties of general (higher order) systems have been proved by Potter
[119].

Even Unstable Dynamic Systems Have Convergent Riccati Equations.
Note that the corresponding equation for the variance of the state

d
EP(I) =FP+PF"4+Q



142 LINEAR OPTIMAL FILTERS AND PREDICTORS

has the general solution

_ (eZFt _ I)Q 1

in the scalar case. This dynamic system is unstable if ' > 0, because the solution
P(f) > 400 as t — oco. However, the corresponding Riccati equation (with the
conditioning term) approaches a finite limit.

4.8.6 Closed-Form Solution of the Algebraic Riccati Equation

We have seen in the previous subsections the difficulty of obtaining a solution of the
general Riccati differential equation in “closed form” (i.e., as a formula in the
parameters of the model), even for the simplest (scalar) problem. The following
example illustrates the difficulty of obtaining closed-form solutions for the algebraic
Riccati equation, as well, for a simple model.

EXAMPLE 4.2: Solving the Algebraic Riccati Equation in Continuous-Time
for the Harmonic Resonator Problem The problem is to characterize the
asymptotic uncertainty in estimating the state (position and velocity) of a damped
harmonic resonator driven by Gaussian noise, given noisy measurements of position.
The system model for this problem has been derived in Examples 2.2, 2.3, 2.6, 2.7,
3.9, 3.10, and 3.11. The resulting algebraic Riccati equation for this problem in
continuous-time has the form

0=FP+PF" — PH'R"'HP + 0,

B 0 1
F= 1+ w?? =2 |

L 72 T
H=[1 0],

[0 0
0= ,

10 ¢

which is equivalent to the three scalar equations

0= —pi, + 2Rpy,,
0 = —R(1 + *t)p); — 2R1p;, — ©°py1p1y + ROpy,
0 = —1°p?, — 2R(1 + w*t*)p,, — 4R1p,, + Rq°.



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 143

The first and last of these can be solved as linear equations in the variables p;, and
P2

ot
279oR
Rqt?> — rzpfz —2R(1 + *t)py,
Pn =
4Rt

in terms of p,,. Substitution of these expressions into the middle scalar equation
yields the following quartic equation in py;:

0 = T°p1; + 8R*p3, + 20R*1(5 + w*t?)pl, + 16R*(1 + w*t*)py, — 4R*q7>.

This may appear to be a relatively simple quartic equation, but its solution is a rather
laborious and tedious process. It has four solutions, only one of which yields a
nonnegative covariance matrix P:
R(1 —b)
bu = -
R(1 — b)?
P2 = T2

R
P =3 (—6+ 20°7% — da + (4 + a)b),

2, 97
a=,/(1 + w?1?) +7, b =21 — 0?12 +a).

Because there is no general formula for solving higher order polynomial equations
(i.e., beyond quartic), this relatively simple example is at the limit of complexity for
finding closed-form solutions to algebraic Riccati equations by purely algebraic
means. Beyond this relatively low level of complexity, it is necessary to employ
numerical solution methods. Numbers do not always provide us as much insight into
the characteristics of the solution as formulas do, but they are all we can get for most
problems of practical significance.

4.8.7 Newton—Raphson Solution of the Algebraic Riccati Differential
Equation

The Newton—Raphson solution of n differentiable functional equations

0 =/f1(x1, %9, X3, ..., X,),
0 :fé(xl,xZ,x:;, .. .xn),

0 Zﬁ(xlax25x37 e 7-xn)v

0 =/,001, %0, %3, ...,%,)



144 LINEAR OPTIMAL FILTERS AND PREDICTORS

in n unknowns x;, x,, X3, . .., X, is the iterative vector procedure
x <—x—F 'f(x) (4.74)
using the vector and matrix variables
x=1[x x5 x3 - X,

J@=1/® L&) A& - L@
AR I

ox;  0x, Oxz ox,,
axl 3x2 3d3 3x,,
F=|% &% o
ax;  Ox, Ox3 ox,,

ax;  0x, Oxz ax,, |

Application of this vector-oriented procedure to matrix equations is generally done
by “vectorizing” the matrix of unknowns and using Kronecker products to
“matricize” F from what would otherwise be four-dimensional data structures.
However, the general approach does not take advantage of the symmetry constraints
in the matrix Riccati differential equation. There are two such constraints: one on the
symmetry of the Riccati equation itself and another on the symmetry of the solution,
P. Therefore, in solving the steady-state n x n matrix Riccati differential equation,
there are effectively only n(n 4 1)/2 independent scalar equations in n(n + 1)/2
scalar unknowns. The n(n 4+ 1)/2 scalar unknowns can be taken as the upper
triangular elements of P, and the n(n + 1)/2 scalar equations can be taken as
those equating upper triangular terms of the matrix equation. We will first describe
the equations by which the matrix equation and the matrix unknown can be
vectorized, then show the form that the variables of the Newton—Raphson solution
will take for this vectorization.

Vectorizing Formulas. 1f one lets the indices i and ;j stand for the row and
column, respectively, of the terms in the matrix Riccati equation, then the respective



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 145

elements of the upper triangular parts of the matrix equation can be vectorized by
the single index p, where

1 <j=<n,
1 <i<j,
p=3(j—D+i,
lgpfén(n—l—l).

Similarly, the upper triangular part of P can be mapped into a singly subscripted
array x with index ¢, according to the rules

1 <¢<n,
1<k<y¢,
=100 —1)+k,
l<g<jinn+1),

whereby P, is mapped into x,.

Values of Variables for Newton—Raphson Solution of Steady-State
Matrix Riccati Differential Equation. The solution is an implementation of
the recursion formula 4.74 with

=2 (4.75)
Z =FP+PF' — PH'R"'HP + Q, (4.76)
X, = Py, 4.77)
p=1iG—1+i, (4.78)
g=1et—1)+k, (4.79)
_%
prq axq
_ 92,
aPy,
= Ay S + Ap Sy, (4.80)
S=F—PH'R'H, (4.81)
1 if a=0>,
A, (4.82)
0 if a#b.

The least obvious of these is Equation 4.80, which will now be derived.



146 LINEAR OPTIMAL FILTERS AND PREDICTORS

“Dot” Notation for Row and Column Submatrices. For any matrix M, let
the notation M, [with a dot (-) where the row index should be] stand for the jth
column of M. When this notation is applied to the identity matrix /, /; will equal a
column vector with 1 in the jth row and zeros elsewhere. As a vector, it has the
property that

for any conformable matrix M.

Matrix Partial Derivatives. With this notation, one can write matrix partial
derivatives as follows:

P
— 1,1, (4.83)
Py, ¢
Az P 9P P P
—— =F—+—F'— —H'R'HP —PH'R"'H—  (4.84)
OP,, 0Py, 0P P, P,
39
= FI I} + [ I F" — [kIVH'R™'HP — PHTR*IHaT (4.85)
ke
= F L)+ 1, FY —I,My — M} (4.86)
= (F = M), I} +1,(F—M), (4.87)
=S4l + 1,5, (4.88)
S=F—-M, (4.89)
M =PH'R'H. (4.90)

Note that, on the right-hand side of Equation 4.88, the first term (S, /}) has only one
nonzero column—the £th column. Similarly, the other term (/. kSIg) has only one
nonzero row—its kth row. Consequently, the element in the ith row and jth column of
this matrix will be the expression given in Equation 4.80. This completes its
derivation.

Computational Complexity. The number of floating-point operations per itera-
tion for this solution method is dominated by the inversion of the n(n+ 1)/
2 x n(n + 1)/2 matrix F, which requires somewhat more than n°/8 flops.

4.8.8 MacFarlane—Potter—Fath Eigenstructure Method

Steady-State Solution of Time-Invariant Matrix Riccati Differential
Equation. 1t was discovered independently by MacFarlane [197], Potter [209],



4.8 MATRIX RICCATI DIFFERENTIAL EQUATION 147

and Fath [158] that the solution P(c0) of the continuous-time form of the steady-
state matrix Riccati differential equation can be expressed in the form

P(c0) = AB7!,

A
5 =le; e, e - ¢l

where the matrices 4 and B are n x n and the 2n-vectors e, are characteristic vectors
of the continuous-time system Hamiltonian matrix

F Q
Y=l wpy e |

This can be formalized in somewhat greater generality as a lemma:

LEMMA 1| If 4 and B are n x n matrices such that B is nonsingular and

A A
TAEAL @50

for an n x n matrix D, then P = AB~! satisfies the steady-state matrix Riccati
differential equation

0=FP+PF" — PH'R™'HP + Q.

Proof: Equation 4.91 can be written as two equations,
AD =FA+QB, BD=H'R'HA—-F'B.

If one multiplies both of these on the right by B~! and the last of these on the left by
AB~!, one obtains the equivalent equations

ADB™' = FAB™' 4+ Q,
ADB™' = AB"'H'R'HAB™' — AB~'FT,

or, taking the differences of the left-hand sides and substituting P for AB~!,
0=FP+PF" — PH'R™'HP + 0,
which was to be proved.

In the case that 4 and B are formed in this way from »n characteristic vectors of
Y., the matrix D will be a diagonal matrix of the corresponding characteristic



148 LINEAR OPTIMAL FILTERS AND PREDICTORS

values. (Check it out for yourself.) Therefore, to obtain the steady-state solution of
the matrix Riccati differential equation by this method, it suffices to find »
characteristic vectors of W, such that the corresponding B-matrix is nonsingular.
(As will be shown in the next section, the same trick works for the discrete-time
matrix Riccati equation.)

4.9 MATRIX RICCATI EQUATION IN DISCRETE TIME

4.9.1 Linear Equations for Matrix Fraction Propagation

The representation of the covariance matrix as a matrix fraction is also sufficient to
transform the nonlinear discrete-time Riccati equation for the estimation uncertainty
into a linear form. The discrete-time problem differs from the continuous-time
problem in two important aspects:

1. The numerator and denominator matrices will be propagated by a 2n x 2n
transition matrix and not by differential equations. The approach is otherwise
similar to that for the continuous-time Riccati equation, but the resulting
2n x 2n state transition matrix for the recursive updates of the numerator and
denominator matrices is a bit more complicated than the coefficient matrix for
the linear form of the continuous-time matrix Riccati equation.

2. There are two distinct values of the discrete-time covariance matrix at any
discrete-time step—the a priori value and the a posteriori value. The a priori
value is of interest in computing Kalman gains, and the a posteriori value is of
interest in the analysis of estimation uncertainty.

The linear equations for matrix fraction propagation of the a priori covariance matrix
are derived below. The method is then applied to obtain a closed-form solution for

the scalar time-invariant Riccati equation in discrete time and to a method for
exponential speedup of convergence to the asymptotic solution.

4.9.2 Matrix Fraction Propagation of the a priori Covariance
LEMMA 2 If the state transition matrices @, are nonsingular and

Pi(—) = A, By (4.93)
is a nonsingular matrix solution of the discrete-time Riccati equation at time #;, then

Piyi(=) = 4,1 Bi (4.93)



4.9 MATRIX RICCATI EQUATION IN DISCRETE TIME 149

is a solution at time #,;, where

Agsy (O, [T o [HR'H, 1[4
+ _ k k*Yk k (4.94)
By " 0 o I 0 || By
_ [ O, + 0,0 T HIR!'H, 0@ [ 4] 4.95)
O "H{R;'Hy o LB ] '

Proof: The following annotated sequence of equalities starts with the product
Ay HB,;EI as defined, and proves that it equals P, :

A1 Bl = ([0 + 0,0 TH TR HA, + 0D By}

x {®; "[HIR;'H A, By + 11B,} ! (definition)
= {[Q; + O, "H{ R HJA, + 0,0 "By}
x By {HI R 'H A, By + 1} ®df (factor B,)
= {[®; + O, H{ R, THA, B + 0D,
x (HIR ' H A B 4 1) '@} (distribute B,)
= {[®; + O, H R H 1P (—) + 0,0}
X (HIR;'H Py (—) + 1)@} (definition)
= {0, P(—) + O, O [H{ R ' H Py (—) + 1T}
X (HIR, "H,P(—) + 1) '@ (regroup)

= O P (—)H{ R "HyPi(=) + 1) O + O, " ® (distribute)
= OH R Hy + Py 4+ O
= O {Py(—) — P(—)H[[H,P(—)H] + R;]™"

X H Py (—)}0; + O, (Hemes)
= Pra(-), (Riccati),

where the “Hemes inversion formula” is given in Appendix B. This completes the
proof.

This lemma is used below to derive a closed-form solution for the steady-state
Riccati equation in the scalar time-invariant case and in Chapter 7 to derive a fast
iterative solution method for the matrix time-invariant case.

4.9.3 Closed-Form Solution of the Scalar Time-Invariant Case

Because this case can be solved in closed form, it serves to illustrate the application
of the linearization method derived above.



150 LINEAR OPTIMAL FILTERS AND PREDICTORS
Characteristic Values and Vectors. The linearization will yield the following

2 x 2 transition matrix for the numerator and denominator matrices representing the
covariance matrix as a matrix fraction:

. (O, T[T o [ HIR'H, I
L o]l 0o o I 0

H*Q O
pLr—= =
_ +(I)R @
H? 1

@R @

This matrix has characteristic values

; _HQ+R@®*+1)+0 ; _HQ4+R@®*+1)—0

! 20R ’ 2 20R ’
g = 0-10-2,
o, = \/H2Q+R((I>+ 1)%, o, :\/H2Q+R(<D— 17,
with ratio
!
p="52
gl
Y —[H?0+R(® + Do
202R?
<1

’

Y = [H?O + R(D* + 1)]* — 2R*®?
= H*Q? + 2H*QR + 2H*®*OR + R* + ®*R%.

The corresponding characteristic vectors are the column vectors of the matrix

—20R —20R
M= | H?QR(®* —1)+0¢ H?QR(®*—1)—0 |,
1 1




4.9 MATRIX RICCATI EQUATION IN DISCRETE TIME 151

the inverse of which is

H?>  H?Q—R+®*R+ 0,0,
0,0 20201

M=
H*>  —(H?Q)+R— R+ 0,0,

0,0 20,0,
1 17, 20R1,
~ 40Ra,0, —717, —20R7, 7

1, =HQ+R®* —1)+0, 1,=H’Q+R® —1)—o0.

Closed-Form Solution. This will have the form
P, = A4;B;"

for

This can be expressed in the form

_ (Pyty +20R) — (Pyt; + 20R)p*
e (QH?*Py — 11) — (2H?Py — 1y)pk’

which is similar in structure to the closed-form solution for the scalar time-invariant
Riccati differential equation. In both cases, the solution is a ratio of linear functions
of an exponential time function. In the discrete-time case, the discrete-time power p*
serves essentially the same function as the exponential function e~2% in the closed-
form solution of the differential equation. Unlike the continuous-time solution,
however, this discrete-time solution can “skip over” zeros of the denominator.

4.9.4 MacFarlane—Potter—Fath Eigenstructure Method

Steady-State Solution of Time-Invariant Discrete-Time Matrix Riccati
Equation. The method presented in Section 4.8.8 for the steady-state solution of
the time-invariant matrix Riccati differential equation (i.e., in continuous time) also



152 LINEAR OPTIMAL FILTERS AND PREDICTORS

applies to the Riccati equation in discrete time. As before, it is formalized as a
lemma:

LEMMA 3 If 4 and B are n x n matrices such that B is nonsingular and

‘Pd[é} - [;‘}D (4.96)

for an n x n nonsingular matrix D, then P, = AB~! satisfies the steady-state
discrete-time matrix Riccati equation

P, =®{P, — P, H'[HP. H" + R|"'HP_}®" + Q.

Proof: If P, = AB™!, then it was shown in Lemma 2 that P, =AB~", where

|:Ai| _ |:((Dk + OO TH{ R, Hy) Qk‘DkTi| |:A:|

B ®;"HIR,'H, o7 || B
A
=V,
B
A
= D
B
AB
=1 |
Consequently,
Py =AB™!
= (4D)(BD)™"
= ADD™'B™!
=AB™!
= Pk’

That is, AB~! is a steady-state solution, which was to be proved.
In practice, 4 and B are formed from » characteristic vectors of ¥';. The matrix D
will be a diagonal matrix of the corresponding nonzero characteristic values.



4.10 RELATIONSHIPS BETWEEN CONTINUOUS AND DISCRETE RICCATI EQUATIONS 153

4.10 RELATIONSHIPS BETWEEN CONTINUOUS AND DISCRETE
RICCATI EQUATIONS

4.10.1 Relationship between Q(t) and Qy

Some of the mathematical relationships between the covariance matrices of the
continuous-time and discrete-time process noise models were examined in Chapter
3. They will now be reexamined from a slightly different perspective.

The process noise covariance matrices appearing in the continuous and discrete
Riccati equations have the same symbol (Q) but different physical units. They are
not identical but they are related. The relationship can be derived from the
propagation equation for the estimation error, ¥ = X — x. Between discrete observa-
tions, it is propagated according to the equations

d
L3O = FOR(@) +w(@),

lit1
Xppr = QX + J Oty 11, s)W(s) ds,

I
O, P + Op = Py

~ =T
= E(Xj1%41)

ti1 (lht
= EEENO]+ [ |0 9B 0O 1) s e

[N

Ty

+1
= CDkPk(I)I + J Oty 1, T)Q(T)CI)T(tk+1, 1) dt,

7

k

from which

0, = J Bty 1. DOy, 1. 7) d.

T

Here, the symbol O, on the left of the equal sign is the one for the discrete-time
Riccati equation and the function O(t) on the right is for the Riccati differential
equation.

This relationship has special forms in special cases:

e In problems with constant states

F=0 and ®=1,

the solution is

Or = (i1 — )0,

where Q is the time-averaged value of Q(t) on the interval 7, <1 < #, Tl



154 LINEAR OPTIMAL FILTERS AND PREDICTORS

e In the general time-invariant case,
At . .
QAI‘ — eFAt — J e*F‘L’QTefF ‘Cd,E eF At7
0

where Q, is the constant covariance of process noise for continuous time, and
Q,, 18 its constant counterpart for discrete-time intervals equal to At.

4.10.2 Relationship between R(t) and Ry

This depends upon the way that the discrete-time sensor processes the noise. If it is
an integrating sensor, then

Iy
vy = J v(t) dt, (4.97)
Tk—1
R, =R (4.98)
1 T
_ 7J RQ) dt, (4.99)
=t )y

where R is the time-averaged value of R(f) over the interval t, | <t <1,.

4.11 MODEL EQUATIONS FOR TRANSFORMED STATE VARIABLES

The question to be addressed here is what happens to the Kalman filter model
equations when the state variables and measurement variables are redefined by linear
transformations? The answer to this question can be derived as a set of formulas,
giving the new model equations in terms of the parameters of “old” model equations
and the linear transformations relating the two sets of variables. In Chapter 7, these
formulas will be used to simplify the model equations.

4.11.1 Linear Transformations of State Variables
These are changes of variables by which the “new” state and measurement variables
are linear combinations of the respective old state and measurement variables. Such
transformations can be expressed in the form
)Zk :Akxk, (4100)
ék :Bka, (4101)

where x and z are the old variables and x and Z are the new state vector and
measurement, respectively.



4.12 APPLICATION OF KALMAN FILTERS 155

Matrix Constraints. One must further assume that for each discrete-time index £,
Ay is a nonsingular n x n matrix. The requirements on B, are less stringent. One
need only assume that it is conformable for the product B, H,, that is, that By is a
matrix with £ columns. The dimension of Z, is arbitrary, and can depend on £.

4.11.2 New Model Equations

With the above assumptions, the corresponding state, measurement, and state
uncertainty covariance equations of the Kalman filter model are transformed to
the following forms:

X1 = D5 + Vi, (4.102)

£ = Hy + iy, (4.103)

Py(+) = Pu(=) = P H L PU(DH] + RIHP(-),  (4.104)
Pii (=) = O P(H)D; + O (4.105)

where the new model parameters are

b, = 4,0,4;", (4.106)
H, = BHA; ', (4.107)
Or = Egi) (4.108)
= 4,0 AL, (4.109)

R = E(6,0}) (4.110)
= B,R,Bj, (4.111)

and the new state estimation uncertainty covariance matrices are

P(£) = A, P (£)A]. (4.112)

4.12 APPLICATION OF KALMAN FILTERS

The Kalman filter has been applied to inertial navigation [15, 45, 167], sensor
calibration [168], radar tracking [18], manufacturing [47], economics [30], signal
processing [47], and freeway traffic modeling [166]—to cite a few examples. This
section shows some applications of the programs provided on the companion floppy
diskette. A simple example of a second-order underdamped oscillator is given here
to illustrate the application of the equations in Table 4.3. This harmonic oscillator is
an approximation of a longitudinal dynamics of an aircraft short period [8].



156 LINEAR OPTIMAL FILTERS AND PREDICTORS

EXAMPLE 4.3 Consider a linear, underdamped, second-order system with dis-
placement x,(¥), rate x,(¢), damping ratio { and (undamped) natural frequency of 5
rad/sec, and constant driving term of 12.0 with additive white noise w(f) normally
distributed. The second-order continuous-time dynamic equation

%) + 20w, (£) + 0*x, () = 12 + w(f)

can be written in state space form via state-space techniques of Chapter 2:

501 [o 1 ] xe] [o 0
|:5c2(t):| - |:—cu2 —2Cw:| |:x2(t):| + [1}%” [12}'

The observation equation is
2(1) = x, (1) + v(0).

Generate 100 data points with plant noise and measurement noise equal to zero.
Then estimate %;(¢) and x,(z) with the following initial condition and parameter

values:
x1(0) 0 ft
[mm} - [0 ft/s:|’

2 0
0 2

0 =447(ft/s)*, R =0.01(ft)%,
{=0.2, o=>5rad/s.

Equations 4.21, 4.24, 4.25, and 4.26 were programmed in MATLAB on a PC (see
Appendix A). Figure 4.4 shows the resulting estimates of position and velocity using
the noise-free data generated from simulating the above second-order equation.
Figure 4.5 shows the corresponding RMS uncertainties in position and velocity (top
plot), correlation coefficient between position and velocity (middle plot), and
Kalman gains (bottom plot). These results were generated from the accompanying
MATLAB program exam 43.m described in Appendix A with sample time = 1 sec.

EXAMPLE 4.4 This example is that of a pulsed radar tracking system. In this
system, radar pulses are sent out and return signals are processed by the Kalman
filter in order to determine the position of maneuvering airborne objects [137]. This
example’s equations are drawn from IEEE papers [219, 200].



4.12 APPLICATION OF KALMAN FILTERS 157

True and estimated states without noise

1
c
o
= 0.5 — True
c - e Est.
0 s . . .
0 0.2 0.4 0.6 0.8 1
Time (sec)
2 v -
Z2 0
o
o
S 2t
-4 " s " 4
0 0.2 0.4 0.6 0.8 1
Time (sec)

Fig. 4.4 Estimated position (ft) and velocity (ft/s) versus time (s).

Difference equations of dynamics equations in state-space formulation are

1T 00 0 07 -0 T
01 1000 0
00 p 00 0 wh_,

=10 001 7 ol | o
0000 1 1 0
(000 00 0 r] w2,

The discrete-time observation equation is given by

tooooo) [d
““looo 10 of*T|a2)

where

T . | / 2
xe = o U 0y 0y Uil
r, = range of the vehicle at time k
7, = range rate of the vehicle at time k
U} = maneuvering correlated state noise

0, = bearing of the vehicle at time &



158 LINEAR OPTIMAL FILTERS AND PREDICTORS

Uncertainties and Kalman Gains

=2
5]
Qo
St i )
2 Velocity
z, Position
0 0.2 0.4 0.6 0.8 1
. 1 v
5
o
© 0.5F
0 . + *
0 0.2 0.4 0.6 0.8 1
4 -
[%2] .~
c AN
© . ~
o 2 R Velocity ]
<  K__ Position
0
0 0.2 0.4 0.6 0.8 1

Time (sec)

Fig. 4.5 RMS uncertainties, position and velocity, correlation coefficient, and Kalman gain.

0, = bearing rate of the vehicle at time &
U? = maneuvering-correlated state noise
T = sampling period in seconds.
wi =[w} w?] zero-mean white-noise sequences and covariance of o2 and 63,
respectively
T 1 2 . . .
vy = [vx  vi] sensor zero mean white noise sequence and covariance of

af and aé, respectively,

and w;, and v;, are uncorrelated :

1
1-AT T<-
. E[UU,_ — A
p = correlation coefficient = # = )1 ,
o
" 0 T > -
Ji

where 2, is the maneuver variance and / the inverse of average maneuver duration.
The shaping filter for whitening the maneuver noise is given by

Ui = pUi_y +wiy,



4.12 APPLICATION OF KALMAN FILTERS 159
which drives the range rate (7;) state of the vehicle, and
2 2 2
Uk = PUk—l +Wk—l’

which drives the bearing rate (0,) state of the vehicle. The derivation of the discrete-
time shaping filter is given in Section 3.6 with examples. The range, range rate,
bearing, and bearing rate equations have been augmented by the shaping filter
equations. The dimension of the state vector is increased from 4 x 1 to 6 x 1.

Covariance and gain plots for this system are produced using the Kalman filter
program of Appendix A. The following initial covariance (P,), plant noise (Q), and
measurement noise (R) are used to generate the covariance results:

_ ) _
T 0 0
o T
o 20?2 )
? ?4'0'1 0 0 0 0
0 0 af 0 0 0
P(): N
o2
0 0 0 o} 2 0
T
2 2
o; 203 )

0 0 0 7 F‘FJZ 0
| 0 0 0 0 a%_
[0 0 0 0 0 0]

0O 0 0 0 0 O
0 0 a% 0 0 0

Q: 9
0O 0 0 0 0 O
00 0 0 0 O
L1000 0 0 0 a%_
(62 0

R = , |
0 oy

Here p = 0.5 and T =5, 10, 15, respectively. Also,

o2 = (1000my%, ¢} = (0.017 rad)?,
o> =(103/3, 2=13x10"%



160 LINEAR OPTIMAL FILTERS AND PREDICTORS

Some parts of this example are discussed in [100]. Results of covariances and
Kalman gain plots are shown in Figures 4.6—4.8. Convergence of the diagonal
elements of the covariance matrix is shown in these figures for intervals (5, 10, 15s).
Selected Kalman gain values are shown in the following figures for various values of
sampling times. These results were generated using the accompanying MATLAB
program exam 44.m described in Appendix A.

4.13 SMOOTHERS

A smoother estimates the state of a system at time ¢ using measurements made
before and after time t. The accuracy of a smoother is generally superior to that of a
filter, because it uses more measurements for its estimate. Smoothers are usually
divided into three types:

1. Fixed-interval smoothers use all the measurements over a fixed interval to
estimate the system state at all times in the same interval. This type of
smoother is most often used for off-line processing to get the very best
estimate of the system state over the entire time interval.

2. Fixed-point smoothers estimate the system state at a fixed time in the past,
given the measurements up to the current time. This type of smoother is used
when the state estimate is needed at only one time in the interval, such as for
estimating the miss distance between two objects that are being tracked by
radar.

x 10

—_
o

15 sec

5 sec
5 sec . : 5 sec
0 50 100 150 50 100 150

Time (sec) Time (sec)
x107°

Range covariance
N
Range rate covariance
[4)]

o
o

0.5 r
5 sec

Bearing covariance

0 L secC L I
0 50 100 150 0 50 100 150

Time (sec) Time (sec)

Bearing rate covariance
N

Fig. 4.6 Covariances.



4.13

SMOOTHERS

Range rate noise

Fig. 4.8 Kalman gains.

x1078
1600—5sec——— 1.8 5 sec
(0]
15 sec z
® ® 15 sec
21400 S 16
2 B
© ]
81200 2514
©
[0
@ 1.2 .
1000 100 200 "o 100 200
Time (sec) Time (sec)
0.2
15 sec
[
©
()}
.% o
o 0.6 S 0.1h
[0) 5 sec o
2 Iy § 5 sec
© ©
o o 15 sec
1
100 200 O0 100 200
Time (sec) Time (sec)
Fig. 4.7 Covariances and Kalman gains.
1 0.2
£
(= (0]
= o
S o
205 15 sec i 0.1 5 sec
g 5 sec £
@ g
i}
0 1 0 15 sei T
0 100 200 0 100 200
Time (sec) Time (sec)
x10~ x 10
3 £ 3 15 sec
g )
o 15 sec o
2 of 3 2|
<]
c 5 sec < 5 sec
o 2
® o
S 1|-
S 2
S I
€ o - @ 0
0 100 200 0 100 200
Time (sec) Time (sec)

161



162 LINEAR OPTIMAL FILTERS AND PREDICTORS

3. Fixed-lag smoothers estimate the system state at a fixed time interval lagging
the time of the current measurement. This type of smoother trades off estimate
latency for more accuracy.

These can all be derived from the Kalman filter model. The general derivation
methodology uses the Kalman filter for measurements up to each time ¢ that the state
is to be estimated, combined with another algorithm derived from the Kalman filter
for the measurements beyond that time. This second algorithm can be derived by
running the Kalman filter backward from the last measurement to the measurement
just past z, then optimally combining the two independent estimates (forward and
backward) of the state at time ¢ based on the two independent sets of measurements.
The resulting formulas generally need to be modified for more efficient and robust
implementation.

Smoothers derived in this way appeared in the technical literature soon after the
introduction of the Kalman filter. We present here a smoother implementation of
each type. These are not necessarily in the best forms for implementation. Deriva-
tions of these and more numerically stable implementations (including “square-
root” and “information” forms) can be found in many textbooks on the general
subject of estimation (e.g., Anderson and Moore [1], Bierman [7], Gelb et al. [21]).

Both the fixed-lag smoother and the fixed-point smoother can be implemented in
real time, as the measurements are made. The fixed-interval smoother can be
implemented by a forward (filtering) pass through all the measurements, followed
by a backward (smoothing) pass.

4.13.1 Rauch-Tung-Striebel Two-Pass Smoother

This fixed-interval smoother implementation was derived by H. Rauch, K. Tung, and
C. Striebel and published in 1965 [21]. The first (forward) pass uses a Kalman filter
but saves the intermediate results X,(—), X,(+), P;(—), and P,(+) at each measure-
ment time #,. The second pass runs backward in time in a sequence from the time
of the last measurement, computing the smoothed state estimate from the inter-
mediate results stored on the forward pass. The smoothed estimate (designated by
the subscript [s]) is initialized with the value

A

X ~
T %,(4), (4.113)

then computed recursively by the formulas

X = X () + A Qg — X1 (5))s (4.114)
Ay = Py(HQi P (). (4.115)



4.13 SMOOTHERS 163

The covariance of uncertainty of the smoothed estimate can also be computed on the
second pass:

P = Pi(+) + Au(Piy1 — P (F)AL, (4.116)

although this is not a necessary part of the smoother implementation. It should be
computed only if it is of sufficient interest.

The MATLAB m-file RTSvsKF.m, described in Appendix A, demonstrates the
relative performance of this smoother and the Kalman filter.

4.13.2 A Fixed-Point Smoother

This type of smoother includes a Kalman filter to estimate the state at the current
time #, using the measurements up to time #,, then adds the following equations to
obtain a smoothed estimate of the state at a fixed time #; < #;:

Xk = X1 + BiKi(z — Hx (), (4.117)
By = B, Py (D)1 Py (), (4.118)

where the subscript notation [s]i|k refers to the smoothed estimate of the state at time
t;, given the measurements up to time #,. (A derivation and application of this
technique to the analysis of inertial navigation system test data may be found in
[169].) The values of %(—), K, z;, H, P, and P are computed in the Kalman filter and
the initial value B; = I, the identity matrix. The covariance of uncertainty of the
smoothed estimate can also be computed by the formula

Pk = Pgii—1 + Bi(Pr(+) — Pr(—))B;, (4.119)

although this is not a necessary part of the smoother implementation.

4.13.3 A Fixed-Lag Smoother

The fixed-lag smoother estimates the system state at time #,_,, given the measure-
ments up to time 7, (usually, the current time). The fixed positive integer £ is the
fixed lag, equal to the number of discrete time steps between the time at which the
state is to be estimated and the time of the last measurement used in estimating it.
The memory requirements for fixed-lag smoothers increase with ¢, because the
intermediate Kalman filter values for x,(+), P,(+), ®;, and Q; must be saved for
k — € < i < k. [For time-invariant systems, only x,(+) and P;,(4+) need to be saved,
and the steady state-value of P,(4+) may suffice.] In addition to a Kalman filter



164 LINEAR OPTIMAL FILTERS AND PREDICTORS

implementation for the state estimate at time #;, the following equations must be
implemented to obtain the smoothed estimate of the state at time #,_,:

Ripri—e = Pp_Zigp—e + Okt Qi o Pr—o(H)Gpp—e — 4—e(+))
+ B 1 K1 @1 — Hy @p i (1)), (4.120)
Biyy = By P(H) L Pty (—). (4.121)

The first ¢ steps of a fixed-lag smoother must be implemented as a fixed-point
smoother, with the fixed point at the initial time. This procedure also initializes B;.
For time-invariant systems, the steady-state values of the gainlike expressions
Q4 ®L_,P;_,(+) and B, K., can be used with the stored values of % (+).

4.14 SUMMARY

4,141 Points to Remember

The optimal linear estimator is equivalent to the general (nonlinear) optimal
estimator if the random processes x and z are jointly normal. Therefore, the
equations for the discrete-time and continuous-time linear optimal estimators can
be derived by using the orthogonality principle of Chapter 3. The discrete-time
estimator (Kalman filter) has been described, including its implementation equations
and block diagram description. The continuous-time estimator (Kalman—Bucy filter)
is also described.

Prediction is equivalent to filtering when measurements (system outputs) are not
available. Implementation equations for continuous-time and discrete-time predic-
tors have been given, and the problem of missing data has been discussed in detail.
The estimator equations for the case that there is correlation between plant and
measurement noise sources and correlated measurement errors were discussed.
Relationships between stationary continuous-time and Kalman filter and Wiener
filters were covered.

Methods for solving matrix Riccati differential equations have been included.
Examples discussed include the applications of the Kalman filter to (1) estimating
the state (phase and amplitude) of a harmonic oscillator and (2) a discrete-time
Kalman filter implementation of a five-dimensional radar tracking problem.

An estimator for the state of a dynamic system at time ¢, using measurements
made after time t, is called a smoother.

4.14.2 Important Equations to Remember
Kalman Filter. The discrete-time model for a linear stochastic system has the form

X = Qo1 x5 + G Wiy,

Zy = Hpxp + vy,



PROBLEMS 165

where the zero-mean uncorrelated Gaussian random processes {w;} and {v;} have
covariances Q, and Ry, respectively, at time #,. The corresponding Kalman filter
equations have the form

(=) = Q13 (),
Py(=) = O P ()P + G141 Gl
3(4) = (=) + Kz — HZ (),
K, = Py(—)H} (HP(-)H + B,
Py(+) = Pi(—) — K H Py(—),
where the (—) indicates the a priori values of the variables (before the information in
the measurement is used) and the (4) indicates the a posteriori values of the

variables (after the information in the measurement is used). The variable K is the
Kalman gain.

Kalman—Bucy Filter. The continuous-time model for a linear stochastic system
has the form

d
%x(t) = F(t)x(t) + G(t)w(t),
z(t) = H()x(t) + v(2),
where the zero-mean uncorrelated Gaussian random processes {w(¢)} and {v(¢)} have
covariances O(f) and R(?), respectively, at time 7. The corresponding Kalman—Bucy

filter equations for the estimate X of the state variable x, given the output signal z, has
the form

d, N - N
200 = FOx0) + K@O)lz(0) — HOX(0)],
K@) = POH" (DR (1),

%P(t) = F({)P(t) + P()F™(t) — E(t)R(t)ET(t) + GG (1).

PROBLEMS
4.1 A scalar discrete-time random sequence x; is given by

ka = O.SXk + Wk’
Exy=0, Exj=1 Ewi=1, Ew,=0,



166

4.2

4.3

4.4

LINEAR OPTIMAL FILTERS AND PREDICTORS

where w, is white noise. The observation equation is given by
Zy = X -+ Uy

Ev, =0, Ev? = 1, and v, is also white noise. The terms x,, wy, and v;, are all
Gaussian. Derive a (nonrecursive) expression for

Elx1zp, 21, 25]

For the system given in Problem 4.1:

(a) Write the discrete-time Kalman filter equations.

(b) Provide the correction necessary if z, was not received.

(c) Derive the loss in terms of the estimate x; due to missing z,.
(d) Derive the filter for £ — oo (steady state).

(e) Repeat (d) when every other observation is missed.

In a single-dimension example of a radar tracking an object by means of track-
while-scan, measurements of the continuous-time target trajectory at some
discrete times are made. The process and measurement models are given by

x(H) = —0.5x(t) + w(t), zpr = X3 + Ui,
where T is the intersampling interval (assume 1s for simplicity):

Ev, = Ew(t) =0,
Ew(t)w(ty) = 10(t; — 1),
Ev ot = 1A(k, — k),
E(vw") =0.

Derive the minimum mean-squared-filter of x(#) for all .

In Problem 4.3, the measurements are received at discrete times and each
measurement is spread over some nonzero time interval (radar beam width
nonzero). The measurement equation of Problem 4.3 can be modified to

Zkran = Xkran + Uiz
where
k=0,1,2,...,0 <n <n,.

Let T =1s, 5, =0.1 (radar beam width) and v(f) be a zero-mean white
Gaussian process with covariance equal to 1. Derive the minimum mean-
squared filter of x(¢) for all ¢.



PROBLEMS 167

4.5

4.6

4.7

4.8

4.9

Prove the condition in the discussion following Equation 4.9 that Ew,z] = 0
fori=1, ...k when w, and v, are uncorrelated and white.

In Example 4.4, use white noise as a driving input to range rate (i) and
bearing rate (0,) equations instead of colored noise. This reduces the dimen-
sion of the state vector from 6 x 1 to 4 x 1. Formulate the new observation
equation. Generate the covariance and Kalman gain plots for the same values
of Py, O, R, 62, 6}, 67, and 43.

For the same problem as Problem 4.6, obtain values of the plant covariance O
for the four-state model such the associated mean-squared estimation uncer-
tainties for range, range rate, bearing, and bearing rate are within 5-10 % of
those for the six-state model. (Hint: This should be possible because the plant
noise is used to model the effects of linearization errors, discretization errors,
and other unmodeled effects or approximations. This type of suboptimal
filtering will be discussed further in Chapter 7.)

For the estimation problem modeled by the equations

X = Xp_1 + Wiy,
w;, ~ N(0, 30) and white,

Zy = Xp + Uy,
v, ~ N(0, 20) and white,
Py = 150,

calculate the values of P,(+), P,(—), and K fork = 1,2, 3,4 and P (+) (the
steady-state value).

Parameter estimation problem. Let x be a zero-mean Gaussian random variable
with covariance P,, and let z; = x 4 v, be an observation of x with noise
v, ~ N(0, R).

(a) Write the recursion equations for Py(+), Pi(—), K, and %,.

(b) What is the value of x; if R = 0?

(¢) What is the value of x; if R = +00?

(d) Explain the results of (b) and (c) in terms of measurement uncertainty.

4.10 Assume a stochastic system in continuous time modeled by the equations

x(1) = —x(1) + w(?),
w(t) ~ N(0, 30),
2(#) = x(t) + v(2),
u(t) ~ N0, 20).

(a) Derive the values of the mean-squared estimation error P(f) and Kalman
gain K(¢) for time t = 1,2, 3, 4.
(b) Solve for the steady state value of P.



168 LINEAR OPTIMAL FILTERS AND PREDICTORS
4.11 Show that the matrices P, and P(f) of Equations 4.23 and 4.37 are symmetric.
That is, P} = P, and P'(r) = P().

4.12 Derive the observability matrices for Example 4.4 and Problem 4.6 and
determine whether these systems are observable.

4.13 A vector discrete-time random sequence x; is given by

1 1
Xy = [0 1:|xkl + Wi

wy, ~ N(0, 1) and white.
The observation equation is given by

zr=[1 0]y +u,
v, ~ NT0,2 + (—1)"] and white.

Calculate the values of P (+), P,(—) and K for k =1,...,10 and P (+)
(the steady-state value) with
10 0
Py = |: 0 10}'



Nonlinear Applications

The principal uses of linear filtering theory are for solving nonlinear problems.
Harold W. Sorenson, in a private conversation

5.1 CHAPTER FOCUS

5.1.1 Nonlinear Estimation Problems

Linear estimators for discrete and continuous systems were derived in Chapter 4.
The combination of functional linearity, quadratic performance criteria, and Gaus-
sian statistics is essential to this development. The resulting optimal estimators are
simple in form and powerful in effect.

Many dynamic systems and sensors are not absolutely linear, but they are not far
from it. Following the considerable success enjoyed by linear estimation methods on
linear problems, extensions of these methods were applied to such nonlinear
problems. In this chapter, we investigate the model extensions and approximation
methods used for applying the methodology of Kalman filtering to these “slightly
nonlinear” problems. More formal derivations of these nonlinear filters and
predictors can be found in references [1, 21, 23, 30, 36, 75, 112].

5.1.2 Main Points to Be Covered

e Many estimation problems that are of practical interest are nonlinear but
“smooth.” That is, the functional dependences of the measurement or state
dynamics on the system state are nonlinear, but approximately linear for small
perturbations in the values of the state variables.

e Methods of linear estimation theory can be applied to such nonlinear
problems by linear approximation of the effects of small perturbations in
the state of the nonlinear system from a “nominal” value.

169



170 NONLINEAR APPLICATIONS

e For some problems, the nominal values of the state variables are fairly well
known beforehand. These include guidance and control applications for which
operational performance depends on staying close to an optimal trajectory. For
these applications, the estimation problem can often be effectively linearized
about the nominal trajectory and the Kalman gains can be precomputed to
relieve the real-time computational burden.

e The nominal trajectory can also be defined “on the fly” as the current best
estimate of the actual trajectory. This approach is called extended Kalman
filtering. Tt has the advantage that the perturbations include only the state
estimation errors, which are generally smaller than the perturbations from
any predefined nominal trajectory and therefore better conditioned for
linear approximation. The major disadvantage of extended Kalman filtering
is the added real-time computational cost of linearization about an
unpredictable trajectory, for which the Kalman gains cannot be computed
beforehand.

e Extensions of the linear model to include quadratic terms yield optimal filters
of greater applicability but increased computational complexity.

5.2 PROBLEM STATEMENT

Suppose that a continuous or discrete stochastic system can be represented by
nonlinear plant and measurement models as shown in Table 5.1, with dimensions of
the vector and matrix quantities as shown in Table 5.2 and where the symbols
A(k — ¢) stand for the Kronecker delta function and the symbols §(¢ — s) stand for
the Dirac delta function (actually, a generalized function).

The function f is a continuously differentiable function of the state vector x, and
the function % is a continuously differentiable function of the state vector.

Whereas affine (i.e., linear and additive) transformations of Gaussian RVs have
Gaussian distributions, the same is not always true in the nonlinear case. Conse-
quently, it is not necessary that w and v be Gaussian. They may be included as
arguments of the nonlinear functions f* and 4, respectively. However, the initial value

TABLE 5.1 Nonlinear Plant and Measurement Models

Model Continuous Time Discrete Time
Plant X = f(x, t) + w(t) X = (X1, K — 1) + Wy_4
Measurement z(t) = h(x(t), t) + v(t) Z = h(Xg, K) + v
Plant noise E(w(t)=0 E{(w,) =0
E(w(w'(s)) = d(t — 8)Q() Eiww) = Ak — ) Q,
Measurement noise E(v(t)) =0 E(v,)=0
)=

E(v(tvT(s)) = o(t — S)R() E{(vev]y = Ak — )Ry




5.4 LINEARIZATION ABOUT A NOMINAL TRAJECTORY 171

TABLE 5.2 Dimensions of Vectors and Matrices in Nonlinear Model

Symbol Dimensions Symbol Dimensions
x, f,w nx z,h v £ x1
Q nxn R ext

A, 0 Scalars

X, may be assumed to be a Gaussian random variate with known mean and known
n X n covariance matrix Py.

The objective is to estimate x; or x(¢) to satisfy a specified performance criterion
as given in Chapter 4.

5.3 LINEARIZATION METHODS

Applying linearization techniques to get simple approximate solutions to nonlinear
estimation problems requires that f and 4 be twice-continuously differentiable [112,
133].

5.4 LINEARIZATION ABOUT A NOMINAL TRAJECTORY

5.4.1 Nominal Trajectory

A trajectory is a particular solution of a stochastic system, that is, with a particular
instantiation of the random variates involved. The trajectory is a vector-valued
sequence {x; |k =0,1,2,3,...} for discrete-time systems and a vector-valued
function x(¢), 0 < ¢, for continuous-time systems.

The term “nominal” in this case refers to that trajectory obtained when the
random variates assume their expected values. For example, the sequence {x}°"}
obtained as a solution of the equation

ot = 02 k= 1) (CRY

with zero process noise and with the mean x{°" as the initial condition would be a
nominal trajectory for a discrete-time system.

5.4.2 Perturbations about a Nominal Trajectory

The word “perturbation” has been used by astronomers to describe a minor change
in the trajectory of a planet (or any free-falling body) due to secondary forces, such
as those produced by other gravitational bodies. Astronomers learned long ago that
the actual trajectory can be accurately modeled as the sum of the solution of the two-
body problem (which is available in closed form) and a linear dynamic model for the



172 NONLINEAR APPLICATIONS

perturbations due to the secondary forces. This technique also works well for many
other nonlinear problems, including the problem at hand. In this case, the perturba-
tions are due to the presence of random process noise and errors in the assumed
initial conditions.

If the function f in the previous example is continuous, then the state vector
X; at any instant on the trajectory will vary smoothly with small perturbations of
the state vector x;_; at the previous instant. These perturbations are the result of
“off-nominal” (i.e., off-mean) values of the random variates involved. These
random variates include the initial value of the state vector (x;), the process
noise (wy), and (in the case of the estimated trajectory) the measurement noise
(V).

If f is continuously differentiable infinitely often, then the influence of the
perturbations on the trajectory can be represented by a Taylor series expansion about
the nominal trajectory. The likely magnitudes of the perturbations are determined by
the variances of the variates involved. If these perturbations are sufficiently small
relative to the higher order coefficients of the expansion, then one can obtain a good
approximation by ignoring terms beyond some order. (However, one must usually
evaluate the magnitudes of the higher order coefficients before making such an
assumption.)

Let the symbol 6 denote perturbations from the nominal,

nom
5xk =X — X

8z, = z, — h(xI™, k),

so that the Taylor series expansion of f(x, kK — 1) with respect to x at x = x> is

e =flg_, k—=1) (5.2)

==+ TEED
+ higher order terms . (5.3)

=x"" 4+ w _— x4y
+ higher order terms, (5.4)
or
ox, = x, — x°" (5.5)
_ kbl
ox o ytiom

k-1

+ higher order terms. (5.6)



5.4 LINEARIZATION ABOUT A NOMINAL TRAJECTORY 173

If the higher order terms in dx can be neglected, then
ox = O S| 4wy, (5.7)

where the first-order approximation coefficients are given by

of (x, k—1)
o}, = (5.8)
x=x;1
oo o ]
ax;  Ox, Ox ax,,
ax;  Ox, Ox ax,,
=% % % % : (5.9)
ox;  ox, 0x3 ox,,
| Ox;  Oxy  Ox; X,y ||, nom

k-1

an n X n constant matrix.

5.4.3 Linearization of h about a Nominal Trajectory

If h is sufficiently differentiable, then the measurement can be represented by a
Taylor series:

h(xy, k) = h(™", k)

oh(x, k
+ % 0x;, + higher order terms, (5.10)
x nom
x=x,f
or
oh(x, k
0z, = x, k) ox; + higher order terms. (5.11)
x:x;:""‘

If the higher-order terms in this expansion can be ignored, then one can represent the
perturbation in z; as

oz, = HMox,, (5.12)



174 NONLINEAR APPLICATIONS

where the first-order variational term is

oh(x, k
gl = o (5.13)
k ox

x:xll'c\()n‘l
ax;  Ox, Oxz ox,,
ax;  Ox, Oxz ox,,
o I L S L : (5.14)
ax;  Ox, Oxg ax,,
o, Ox, Ox3 ox, nom

- m A lx=x}

which is an £ x n constant matrix.

5.4.4 Summary of Perturbation Equations in the Discrete Case

From Equations 5.7 and 5.12, the linearized equations about nominal values are

5Xk = (I)E{Ill(sxk_l + Wi_1, (515)
oz = HMox; + v (5.16)

If the problem is such that the actual trajectory x, is sufficiently close to the nominal

trajectory x}°™ so that the higher order terms in the expansion can be ignored, then

this method transforms the problem to a linear problem.

5.4.5 Continuous Case

In the continuous case, the corresponding nonlinear differential equations for plant
and observation are

x(t) = f(x(2), 1) + G(H)w(r), (5.17)
z(t) = h(x(?), 1) + v(?), (5.18)

with the dimensions of the vector quantities the same as in the discrete case.



5.5 LINEARIZATION ABOUT THE ESTIMATED TRAJECTORY 175

Similar to the case of the discrete system, the linearized differential equations can
be derived as

ox(f) = (W ) ox(t) + G(H)yw(r) (5.19)
X(t) x(¢)=xhom
= FUsx(t) + G(t)w(?), (5.20)
(o), 1)
oz(t) = (Tx ® x(f)ﬂﬂﬂ) ox(t) + v(?) (5.21)
= HYox(t) + v(o). (5.22)

Equations 5.20 and 5.22 represent linearized continuous model equations. The
variables dx(¢) and dz(¢) are the perturbations about the nominal values as in discrete
case.

5.5 LINEARIZATION ABOUT THE ESTIMATED TRAJECTORY

The problem with linearization about the nominal trajectory is that the deviation of
the actual trajectory from the nominal trajectory tends to increase with time. As the
deviation increases, the significance of the higher order terms in the Taylor series
expansion of the trajectory also increases.

A simple but effective remedy for the deviation problem is to replace the nominal
trajectory with the estimated trajectory, that is, to evaluate the Taylor series
expansion about the estimated trajectory. If the problem is sufficiently observable
(as evidenced by the covariance of estimation uncertainty), then the deviations
between the estimated trajectory (along which the expansion is made) and the actual
trajectory will remain sufficiently small that the linearization assumption is valid
[112, 113].

The principal drawback to this approach is that it tends to increase the real-time
computational burden. Whereas ®, H, and K for linearization about a nominal
trajectory may have been precomputed off-line, they must be computed in real time
as functions of the estimate for linearization about the estimated trajectory.

5.5.1 Matrix Evaluations for Discrete Systems

The only modification required is to replace x}7 by X;_, and x}°™ by X; in the
evaluations of partial derivatives. Now the matrices of partial derivatives become

of (x, k)

oz, k) = 5
X

(5.23)

x=X4(—)



176 NONLINEAR APPLICATIONS

and

HYG, k) = Bhix k) (5.24)

o x=%(-) .

5.5.2 Matrix Evaluations for Continuous Systems

The matrices have the same general form as for linearization about a nominal
trajectory, except for the evaluations of the partial derivatives:

) 1),
FU](,) — M (5.25)
ax(t) x=3(f)
and
oh(x(2), t
HU(@) = D), 1) . (5.26)
8x(l‘) X=)Ac(t)
5.5.3 Summary of Implementation Equations
For discrete systems linearized about the estimated state,
5)Ck = (Dgclll 5xk_1 + Wi_1, (527)
5Zk = HIEI] 5xk + Uk. (528)
For continuous systems linearized about the estimated state,
5.(5) = FI(1) ox(f) + G()w(?), (5.29)
oz(f) = HY ox(f) + v(). (5.30)

5.6 DISCRETE LINEARIZED AND EXTENDED FILTERING

These two approaches to Kalman filter approximations for nonlinear problems yield
decidedly different implementation equations. The linearized filtering approach
generally has a more efficient real-time implementation, but it is less robust against
nonlinear approximation errors than the extended filtering approach.

The real-time implementation of the linearized version can be made more
efficient by precomputing the measurement sensitivities, state transition matrices,



5.6 DISCRETE LINEARIZED AND EXTENDED FILTERING 177

and Kalman gains. This off-line computation is not possible for the extended
Kalman filter, because these implementation parameters will be functions of the
real-time state estimates.

Nonlinear Approximation Errors. The extended Kalman filter generally has
better robustness because it uses linear approximation over smaller ranges of state
space. The linearized implementation assumes linearity over the range of the
trajectory perturbations plus state estimation errors, whereas the extended Kalman
filter assumes linearity only over the range of state estimation errors. The expected
squared magnitudes of these two ranges can be analyzed by comparing the solutions
of the two equations

1 1T
X1 = CDEC ]qu)gc] + Oy,
1 _
Py = (DEC]{Pk — Py H{[H,PLH! + R, IHkPk}(DE{I]T + O

The first of these is the equation for the covariance of trajectory perturbations, and
the second is the equation for the a priori covariance of state estimation errors. The
solution of the second equation provides an idea of the ranges over which the
extended Kalman filter uses linear approximation. The sum of the solutions of the
two equations provides an idea of the ranges over which the linearized filter assumes
linearity. The nonlinear approximation errors can be computed as functions of
perturbations (for linearized filtering) or estimation errors (for extended filtering) dx
by the formulas

& =f(x+ ox) —f(x)—%éx,

e = I_{<h(x + 0x) — h(x) — %5)6),

where ¢, is the error in the temporal update of the estimated state variable due to
nonlinearity of the dynamics and ¢, is the error in the observational update of the
estimated state variable due to nonlinearity of the measurement. As a rule of thumb
for practical purposes, the magnitudes of these errors should be dominated by the
RMS estimation uncertainties. That is, |¢|> < trace P for the ranges of dx expected
in implementation.

5.6.1 Linearized Kalman Filter

The block diagram of Figure 5.1 shows the data flow of the estimator linearized
about a nominal trajectory of the state dynamics. Note that the operations within the
dashed box have no inputs. These are the computations for the nominal trajectory.
Because they have no inputs from the rest of the estimator, they can be precomputed
off-line.



178 NONLINEAR APPLICATIONS

&y (-)

Fig. 5.1 Estimator linearized about a “nominal” state.

The models and implementation equations for the linearized discrete Kalman
filter that were derived in Section 5.4 are summarized in Table 5.3. Note that the last
three equations in this table are identical to those of the “standard” Kalman filter.

5.7 DISCRETE EXTENDED KALMAN FILTER

The essential idea of the extended Kalman filter was proposed by Stanley F.
Schmidt, and it has been called the “Kalman—Schmidt” filter [122, 123, 136].

The models and implementation equations of the extended Kalman filter that
were derived in Section 5.5 are summarized in Table 5.4. The last three equations in
this table are the same as those for the “standard” Kalman filter, but the other
equations are noticeably different from those of the linearized Kalman filter in
Table 5.3.

EXAMPLE 5.1 Consider the discrete-time system

Xp = Xi_t + Wit
Z =X + v,
Ev, = FEw, =0,
Evg v, = 2A(k, — ky),
Ewiwy, = Ak, — ky),
Ex(0) =%, =2,
o = 2,
Py(+) =1,



5.7 DISCRETE EXTENDED KALMAN FILTER

TABLE 5.3 Discrete Linearized Kalman Filter Equations

Nonlinear nominal trajectory model:

nom __ nom
X = i (XK

Linearized perturbed trajectory model:

def
ox & x — xnom

of,_ .
Oxp ~ 1 OXy_1 + Wi_y
X=X
W, ~ N0, Q)
Nonlinear measurement model:
2z = hy(Xi) + vy, v ~ N0, Ry)

Linearized approximation equations:
Linear perturbation prediction:

() =0 ox_y (), ol ~ =kt

Conditioning the predicted perturbation on the measurement:

x4 (+) = Xk (=) + K[z — h(xfo™) — H o, ()]

on,

H[1] ~
k7 ax

X=xpom
Computing the a priori covariance matrix:
Pi(=) = O P (DO + Oy
Computing the Kalman gain:
Ki = P HTTH PUHT + R
Computing the a posteriori covariance matrix:

Pe(+) = {1 = Kk HP(—)

179



180 NONLINEAR APPLICATIONS

TABLE 5.4 Discrete Extended Kalman Filter Equations

Nonlinear dynamic model:
X = fr_1(Xe_1) + Wy_q, w, ~ N(0, Q)
Nonlinear measurement model:
2z = (X)) + vk, v ~ N, Ry)

Nonlinear implementation equations:
Computing the predicted state estimate:

X(=) = fiea Ke_q ()
Computing the predicted measurement:
2 = h((-)

Linear approximation equations:

Conditioning the predicted estimate on the measurement:

on

() = () + Kz — 20, HI~ =

X=%,(=)
Computing the a priori covariance matrix:
Pi(=) = O P (DO, + O
Computing the Kalman gain:
Ky = P HTTHI P HT + Ry
Computing the a posteriori covariance matrix

Pi(+) = (I = Kk H Pi(-)




5.8 CONTINUOUS LINEARIZED AND EXTENDED FILTERS 181

for which one can use the “nominal” solution equations from Table 5.3,

allgem) = L)

=4,

x=xhom

nom a
HIGm) = = ()

x=xnom

=12,

to obtain the discrete linearized filter equations

() = oxp(+) + 2,
oxp(+) = 0%, (+) + KLz — 8 — 480x,_, (H)],
Pu(=) = 16P,_;(+) + 1,
Pu(+) = [1 — 12K, ]P,(-),
= lZPk(—)
KT 144P(—) 4+ 2)

Given the measurements z;, k = 1, 2, 3, the values for Pi(—), K, Pi(+), and X(+),
can be computed. If z; are not given, then P,(—), K, and P,(+) can be computed
for covariance analysis results. For large k£ with very small Q and R, the difference

X — x3°™ will not stay small, and the results become meaningless.

This situation can be improved by using the extended Kalman filter as discussed
in Section 5.7:

() =X (H) + Kz — [5‘1((—)]3},
Pi(—) = 4[551{71(—)]2101;71(4‘) +1,
T, — 3P (-3 ()1
k — Ara ) 5
Y (D' Pr(—) +2
Pi(+) = {1 = 3K [%(—)P}Pu(—).

These equations are now more complex but should work, provided O and R are
small.

5.8 CONTINUOUS LINEARIZED AND EXTENDED FILTERS

The essential equations defining the continuous form of the extended Kalman filter
are summarized in Table 5.5. The linearized Kalman filter equations will have x"°™
in place of X as the argument in the evaluations of nonlinear functions and their
derivatives.



182 NONLINEAR APPLICATIONS

TABLE 5.5 Continuous Extended Kalman Filter Equations

Nonlinear dynamic model:

x(t) = f(x(t), h + w(t)  w(t) ~ N0, Q)
Nonlinear measurement model:

z(t) = h(x(t), t) + v(b) v(t) ~ N(O, R(t))

Implementation equations:
Differential equation of the state estimate:

X(t) = (D). 1) + K(t)[z(t) — 2()]
Predicted measurement:
2(t) = h(x(t). t)
Linear approximation equations:

Fil(t) ~ 8f('x, t)

ox

X=X(t)

oh(x, t)

Hil) ~ ax

x=X(t)
Kalman gain equations:
Pty = FO(P(t) + POFITT (1) + GHQHGT (1) — K(HRMKT (1)

Kt = PHH'T(HR (1)

5.8.1 Higher Order Estimators

The linearized and extended Kalman filter equations result from truncating a Taylor
series expansion of f(x, f) and A(x, t) after the linear terms. Improved model fidelity
may be achieved at the expense of an increased computational burden by keeping the
second-order terms as well [21, 31, 75].

5.9 BIASED ERRORS IN QUADRATIC MEASUREMENTS

Quadratic dependence of a measurement on the state variables introduces an
approximation error ¢ when the expected value of the measurement is approximated
by the formula z = A(x) + & ~ h(x). It will be shown that the approximation is biased
(i.e., E{g) # 0) and how the expected error E(e) can be calculated and compensated
in the Kalman filter implementation.



5.9 BIASED ERRORS IN QUADRATIC MEASUREMENTS 183

Quadratic Measurement Model. For the sake of simplicity, we consider the
case of a scalar measurement. (The resulting correction can be applied to each
component of a measurement vector, however.) Suppose that its dependence on the
state vector can be represented in the form

z = h(x) (5.31)
= Hx +x Hyx + v, (5.32)

where H, represents the linear (first-order) dependence of the measurement
component on the state vector and H, represents the quadratic (second-order)
dependence. The matrix H; will then be a 1 x n-dimensioned array and H, will
be an n x n-dimensioned array, where » is the dimension of the state vector.

Quadratic Error Model. 1f one defines the estimation error as ¥ = x — x, then the
expected measurement

2 = E(h(x)) (5.33)

= E(H,x + x"H,x) (5.34)

= E(H,(} — %) + & — ) Hy(% — %)) (5.35)

= H\% + 3TH,% + E(X"H,) (5.36)

= h(X) + E(trace [X' H,7]) (5.37)

= h(X) + E (trace [H,(3X")]) (5.38)

= h(x) + trace [H,P(—)] (5.39)

= h(¥) + e, (5.40)

& = trace [H,P(—)], (5.41)
P(—) = EEX), (5.42)

where P(—) is the covariance matrix of a priori estimation uncertainty. The quadratic
error correction should be added in the extended Kalman filter implementation.

EXAMPLE 5.2 Quadratic measurement functions commonly occur in the cali-
bration of linear sensors for which the scale factor s (the ratio between variations of
its output z and variations of its input y) and bias b (the value of the output when the
input is zero) are also part of the system state vector, along with the input y itself:

x=[s b y], (5.43)
z=h(x)+v (5.44)
=sy+b+v. (5.45)

The measurement is proportional to the product of the two states x; = s and x; = y.
The quadratic form of the second-order measurement model in this example is:



184 NONLINEAR APPLICATIONS

H—lazh() (5.406)
27 2aa =0 ’

" Ph Ph Fh

a2 0sob  dsdy
1| ®h  *h  h

=zl — = — 5.47
2| 3sdb  3b*> by (547)
#h @ P
L dsdy  obdy v d g
0 0 1
=10 0 Of, (5.48)
100
and the correct form for the expected measurement is
00 1
Z="h(x)+trace | 0 0 0 [P(—) (5.49)
7 00
=5+ b+pi3(-), (5.50)

where p;(—) is the a priori covariance between the scale factor uncertainty and the
input uncertainty.

5.10 APPLICATION OF NONLINEAR FILTERS

EXAMPLE 5.3: Damping Parameter Estimation This example uses Example
4.3 from Chapter 4. Assume that { (damping coefficient) is unknown and is a
constant. Therefore, the damping coefficient can be modeled as a state vector and its
value is estimated via linearized and extended Kalman estimators.

The conversion from a parameter estimation problem to a state estimation
problem shown in Example 4.3 results in a nonlinear problem.

Let

x(t) = ¢ (5.51)
and

X3(6) =0 (5.52)



5.10 APPLICATION OF NONLINEAR FILTERS 185

Then the plant equation of Example 4.3 becomes

() % 0 0
xZ(t) = _a)le — ZXZX3(D + 1 W(t) + 12 . (553)
(1) 0 0 0

The observation equation is
2(t) = x1() + v(?) (5.54)

One hundred data points were generated with plant noise and measurement noise set
equal to zero, { = 0.1, w = 5 rad/s, and initial conditions

x,(0) [ 0ft
x0) | = | 0ft/s |,

x3(0) | 0
(2 0 0

PO)=|0 2 0],

(0 0 2
0 = 4.47(fs),

R =0.01ft%.

The discrete nonlinear plant and linear observation equations for this model are

xllf :lef_l +Tx’2‘_', (5.55)
x5 = —25Tf " + (1 — 107~ + 127 + Ty, (5.56)
k=, (5.57)
2=kt (5.58)

The relevant equations from Table 5.3 (discrete linearized Kalman filter equations)
and Table 5.4 (discrete extended Kalman filter equations) have been programmed in
MATLAB as exam53.m on the accompanying diskette. 7' is sampling interval.

Figure 5.2 shows the estimated position, velocity, and damping factor states (note
non-convergence due to vanishing gain) using the noise-free data generated from
simulating the second-order equation (the same data as in Example 4.1). Figure 5.3
shows the corresponding RMS uncertainties from the extended Kalman filter. (See
Appendix A for descriptions of exam53.m and modified versions.)

For the noise-free data, the linearized and extended Kalman filter (EKF) results
are very close. But for noisy data, convergence for the discrete linearized results is



186

Position [ft]

NONLINEAR APPLICATIONS

True and estimated states

Damp. Factor Velocity [fps]
&

0 0.2 0.4 0.6 0.8 1
0.2
01 L
0 LN . N
0 0.2 0.4 0.6 0.8 1
Time (sec)

Fig. 5.2 State variables estimated by extended Kalman filter.

not as fast, compared to convergence for the extended filter. Results are a little better
with the EKF [122, 196, 200, 202, 211].

EXAMPLE 5.4

Inertial reference systems maintain a computational reference

frame, which is a set of orthogonal reference axes defined with respect to the inertial
sensors (gyroscopes and accelerometers). The attitude error of an inertial reference
system is a set of rotations about these axes, representing the rotations between
where the system thinks these axes are and where they really are.

RMS estimation uncertainties

—_ 2
E
S 1
.“§
£ o
0 0.2 0.4 0.6 0.8 1
15
1t
"0 0.2 0.4 0.6 0.8 1

Damp. Factor Velocity [fps]
o
[6)]

1M

a4

0

0.2 0.4 0.6 0.8 1
Time (sec)

Fig. 5.3 RMS uncertainties in estimates.



5.10 APPLICATION OF NONLINEAR FILTERS 187

Gyroscope Filter. This error can be represented by a model of the form
Y=¥YQou+e, (5.59)

where

W =3 x 1 vector containing the attitude alignment errors between the sensor
axes frame and the computational reference frame

® = vector cross-product operator

o = 3 x 1 vector of platform inertial angular rate from the trajectory generator

& =3 x 1 vector of composite gyroscope drift rates (algebraic sum of all error
sources)

This attitude error model can be augmented by a 48-state model of the gyroscope
parameters (see the beginning paragraphs of Chapter 3) as random walks and
random ramps. The first-order vector differential equation in a state-space form for
the augmented 51 x 1 state vector is

X5(f) = F(Oxs() + W, (v), (5.60)

where the 51-component state vector x8(f) is composed of the nonredundant
components of the following arrays:

Symbol ¥ b, hy Ug K, T, by, Uy,
Dimension 3x1 3x1 3x3 3x3 3x6 3Ix1 3x1 3x6

Subvector 3x1 3x1 9x1 9x1 I5x1 3x1 3x1 6x1
x—Indices 1—3 4—6 7—15 16—24 25—-39 40—42 43 —45 46—51
(5.61)

The symbol at the top is the array name, with its dimensions shown below it, and the
bottom dimension refers to the dimension of the corresponding subvector of its non-
redundant terms in the system state vector, shown at the bottom. The matrices
hg, Ug, Kg, and Ug, are defined as follows:

h, is a 3 x 3 matrix containing unknown scale factor (S,,) and linear axes

alignment errors (A;) as components (i,j = 1, 2, 3):

Se1 A Ag
Ay Sy Ay (5.62)

Asi Az Sg



188 NONLINEAR APPLICATIONS

U, is a 3 x 3 matrix of unknown gyroscope mass unbalance parameters d ;:

dpy dg dg
dsy dp dpy (5.63)
dys ds3 dp

K, is a 3 x 6 matrix of unknown gyroscope compliance (g-squared) errors (ky;;):

k[[ 1 kOOl kSSl k[ 01 le 1 kS 01
kSS 2 kI[ 2 kOOZ k[S 2 kS 02 k[ 02 (5 . 64)

koos  kss3 ki ksos Koz i
U, is a 3 x 6 matrix of unknown gyroscope mass unbalance trend parameters.
h§, U,, kg, Uy, have been redimensioned rowwise to form column vectors
1 1 1
hg, Ug, Ky, and Uy,.
b, is a 3 x 1 vector of unknown gyroscope fixed-drift rate parameters.

T, is a 3 x 1 vector of unknown nonlinear gyroscope torquer scale factor errors,
with elements 0S,;.

bg is a 3 x 1 vector of unknown gyroscope fixed-drift trend parameters.

In expanded form,

v 2

b [Fu Fuo Fi3 Fiu Fis Fig Fi; Figl [ we(0) 7]
& 0 0 0 0 0 0 Fpy O by Wig (1)
hg o 0 0 0 0 0 o0 0|4 Wi (0)
Uyl |0 0 0 0 0 0 0 Fgl|lU R0
Krf o o o o o0 0 0 0 K} wig(®) |’
T, 0o 0 0 0 0O 0 0 0 T, Wi (1)
by O 0 0 0 O 0 0 0 by Wigi(£)
oy b 0 0 0 0 0o 0 0 0Jlu,| Lwgu®.
(5.65)
where

wi(t) = [Wp(t) Wh(t) Wig(t) Wig(t) Wig(t) Wi (t)  Wig(t)  whg (D]

(5.66)
is a noise vector of unmodeled effects and
0 w3 —, 1 00
Fll = _(l)3 0 (l)l N F]z = 0 1 0 ) (5.67)
W, —m 0 0 0 1



5.10 APPLICATION OF NONLINEAR FILTERS 189

w; w w30 0 070 0 0

Fy=[0 0 0|lo; o w3/0 0 0 |, (5.68)
0 0 010 0 Olw w o
By By B0 O 010 0 O

Fiy= |: 0 0 OB B B3/0 0 O :|, (5.69)
0 0 0 0 01p B PBs

0 0 0 0 O

B Bn Bra Pz P
0 0 0 0 O

0 0 0 0 O
0o 0 0 0 O

B Bss Bz Bis P 0 0 0 0 O
Fis= 0O 0 0 0 0|,

ﬁ22 ﬁ33 ﬂlZ :Bl3 B23

(5.70)
ﬁijdéfﬁ,»ﬁ<, (5.71)
|| 0 0
Fig=1 0 ol 0 |, (5.72)
0 0 o)
1 00
Fi;=10 1 0|1, (5.73)
0 0 1
By B O 0O 0 0
0 0 0 0 B, fs
1 00
Fyp=10 1 0], (5.75)
0 0 1



190 NONLINEAR APPLICATIONS

1 000 0O
0 000 0O
01 00 0O
001 0 0O
Fg=10 0 0 1 0 0], (5.76)
0000 0O
0000 0O
0000 10
|00 0 0 0 1]
pis a 3 x 1 vector of vertical direction cosines (normalized gravity)
ﬁ:([))lv [))27 [))3)Ts (577)
B' is a (6 x 1) with products of p; as components
(B1 B2, B3. B1 B2 BiBs- BaBs), (5.78)

and w; and f5; are time dependent. Thus a different system description matrix is
computed in each filter cycle.
The corresponding difference equation of continuous Equation 5.60,

X5(t) = F(O)x5(t) + wy (1), (5.79)
is
(5.80)

where the gyroscope state transition matrix <D§ -1 is approximated by the first two
terms of the power series expansion of the exponential function,

2

t
o =I1+Ft +F25+ higher order terms (5.81)

JJ=

and wf is normally distributed white noise with zero mean and covariance Q and
accounts for gyroscope modeling and truncation errors,

wi ~ N(0, Q). (5.82)

The scalar ¢ is the filter cycle time.
The gyro observation equation is

2x1 51x1

5 4 o, (5.83)



5.10 APPLICATION OF NONLINEAR FILTERS 191

where

T

Hg:[oC

'))T ][q)ll(DIZ(DB(DM(DIS(DIG(DU(D]S]

2x51 2x3 3x51

o is north direction cosine vector (3 x 1), y is west direction cosine vector (3 x 1),
and @,,(m=1,2,3,4,5,6,7, 8) are the appropriate submatrices of the gyroscope
state transition matrix <Dﬁ 1 and v}g ~ N(0, R), which includes noise and errors
from sensors.

Accelerometer filter. The difference equation for the accelerometers is

Xt =af Xt +wly, (5.84)
where
o =1 (5.85)

The 12 x 1 accelerometer state vector $* is composed of
XY =[b,8,61,5, 61362 S5 (FX1T — FI1T)] (5.86)

where b,, FX1, and FI1 are 3 x | vectors as defined:

b, is a 3 x 1 vector of unknown accelerometer biases, normalized to the
magnitude of gravity;

FI1 is a 3 x 1 unknown acceleration-squared nonlinearity for acceleration along
the accelerometer input axis; and

FX1 is a 3 x 1 unknown acceleration-squared nonlinearity for acceleration
normal to the accelerometer input axis.

Here, S|, 05, 5,, 013, 053, S; are elements of matrix 4.
Twelve unknown parameters are modeled as random walk and w;' ~ N(0, Q) and
white noise includes accelerometer modeling and truncation errors:

Sl 512 513
hA - 0 S2 523 N (587)
0 0 S

where

S; =unknown accelerometer scale factor errors (i = 1, 2, 3)

0

; = unknown accelerometer axes nonorthogonalities (misalignments) (1, - 1)



192 NONLINEAR APPLICATIONS

Here, f,, is a 3-vector (8, B, [33)T of midpoint components of acceleration in
platform coordinates,

g2 0 0

2 ! 2

Bn=10 p5 0 [ (5.88)
0 0 B

The accelerometer observation equation is
A _ prdyA 4
Z; =H'X +V/, (5.89)
where

HY = [By, B3, B By Bas Bu. B3s 3. Ba. B3y B3, (1 = BBy, (1 = BBy, (1 — B3)Bs]

(5.90)
and VJ-A is ~ N(0, R) and white, including sensor noise.
The dimension of the observation vector
Z=(z8 7N (5.91)

is 3 x 1. The EKF equations of Section 5.4.2 are applied to Equations 5.80 and 5.83
to obtain gyroscope estimates. The EKF equations are applied to Equations 5.84 and
5.89 to obtain accelerometer estimates.

Typical plots of gyroscope fixed-drift, accelerometer fixed-drift, and scale factor
estimates are shown in Figures 5.4, 5.5, and 5.6, respectively. Innovation sequence
plots for accelerometer and gyroscope are shown in Figures 5.7 and 5.8, respectively.
The results are completely described in reference [170].

_1.60x10°"}

<

R

’_

o

o

S 159107

1]

S

[T

o

T

O 158x10°"}
1 | | | | |
10 20 30 40 50 60

HOURS

Fig. 5.4 Gyro fixed-drift rate estimates.



5.10 APPLICATION OF NONLINEAR FILTERS 193

F

ACCELEROMETER FIXED DRIFT (s/s)

-8.2 L l I ! | I
10 20 30 40 50 60

HOURS

Fig. 5.5 Accelerometer fixed drift estimates.

1.007004

- ——

1.007006

ACCELEROMETER SCALE
FACTOR (UNITLESS)

1.007008

10 20 30 40 50 60
HOURS

Fig. 5.6 Accelerometer scale factor estimates.

EXAMPLE 5.5 This is an application of a discrete-time, extended Kalman filter
to estimate the parameters in a macroscopic freeway traffic model [166].
A dynamic equation is given by

n
ul! —ul

n
+1 _ J J
Py = pf)

p} Ax

n
+w;

1 n n
—T|% —a—bp; +



194 NONLINEAR APPLICATIONS

1.0x 10

-1 x 1()‘1 1 1 L 1 L L
10 20 30 40 50 60

HOURS

ACCELEROMETER RESIDUAL (ASEC)

Fig. 5.7 Accelerometer residuals.

+2

GYRO RESIDUAL (ASEC)
o
o

| l 1 ] |
10 20 30 40 50 60
HOURS

|
\V]

Fig. 5.8 Gyroscope residuals.

Define

Ax; = freeway section length (miles)
P} = p(x;, x;45nAr),j=0,...,N — 1 (vehicles per unit length in the section
between x; and x;, at time n At)
ul = u(x;, x;;nA1),j=0,---, N — 1 (average of speeds of the vehicles in the
section between x; and x;,, at time n At)
T =reaction time
At = discrete time interval



5.10 APPLICATION OF NONLINEAR FILTERS 195

a =parameter
b = parameter
u,(pj) = a+bp;
v = sensitivity factor
q; =4qlx; (n—1)At,nAf],j=0,1,...,N (vehicles per unit time passing the
location x; between (n — 1) Az and n Af)

The observation equation

Z=uj + v}

The objective is to estimate the parameters 1/T, v, b, a, where a and b are estimated
by least-squares curve filtering to speed and density data, as shown in Figure 5.9.
Then, the remaining unknown parameters are 1/7 and v. The technique of state
augmentation is applied. The parameters 1/7 and v/T are modeled by constants as
shown. Let

v
x’{/ T’ X’zf/ = T
Then
+1 +1
X=X, Xy =
The nonlinear dynamic equation becomes
ntl At 5 At At , P
u; uj”—E(u]”) —I—Eu}’u]’ll—Atx'l’j(u]’?—a—bpf)—Exgj o —1 1
xn-.‘rl _ 7 +10 |w?
1j - x’llj J:
n+1
X5, o 0
The observation equation is
n
U
F=0 0 0 [+,
xgj

where wf, v} are zero-mean white Gaussian with covariance O and R, respectively.

A four-lane, 6000-ft-long section of freeway with no on or off ramps and no
accidents was simulated on an IBM 360-44 computer. Using a digital simulation
of a microscopic model, eight files of data sets (high flow cases), each
containing 20 min of data, section mean speed, and density at 1.5-s intervals

were generated.



196

To demonstrate the application and performance of the methodology of
identifying parameters, results from a digital simulation are shown. It has been
observed that speed bears a fairly consistent relationship to density. The equili-
brium speed—density relationship u,(p) is taken as a least-squares fit by a straight
line to the above data and is shown in Figure 5.9. Two parameters, a and b, are

NONLINEAR APPLICATIONS

estimated by this procedure.

The extended Kalman filter algorithm is applied to estimate 1/7 and v/T from
the above data. For purposes of numerical computation, it is convenient to define
dimensionless variables through the use of nominal values. The nominal values used

in the parameter identification algorithm are as follows:

The time step size Az =4.5s and the space step size Ax; = 0.5 miles are chosen
from the stability considerations. Figures 5.10 and 5.11 show the typical normal-
ized values of 1/T and v/T for the middle (jth) section of a piece of freeway.
Actual values of the parameters can be computed by using the above nominal

values.

65.1

62.6

60.0
57.5
54.9
52.4
49.8

47.3

e Speed (Mph) ee——

44.7

42.2

39.6

Nominal section mean speed (z) = 40 mph,

Nominal value of reaction time (7)) = 30 s,

Nominal value of sensitivity factor (v) = 4.0mi*/h.

® wyeo
"o o I o o
sou el s

v.(p) = 68.2 - 0.108p .
o,=1.98 min

1 1 1 1 1 1 1 1 1

35

52 69 86 103 120 137 154 172 189
— Density (vehicles/mi) =

Fig. 5.9 Speed—density relationship.

206



5.10 APPLICATION OF NONLINEAR FILTERS 197

3.88 T JRPETT T IV Y PY T TP YLT I Ty
3.59 | T_
e Value of parameter (1/7)
3.31 o
\E 3.02
S :
g 274f i
£ Reaction time (7) = 8.0 sec
& 245}
el o
Q :
N 8
= 247F
£
S 188f
1.60 }=
1.31 :
1.03 -:l 1 1 1 1 1 1 1 1 1

01 144 278 412 546 6.8 814 948 10.82 12.16 13.5
Time (MiN) —p

Fig. 5.10 Estimation of reaction time.

1.83 A
174 | Y
T 1.64 R
peeees sedd ]
R O S SRSy g Y N
>~ 154 | : L
k] s Value of parameter (%)
§ 1.44 1 o Sensitivity factor (v) = 1.5 mi%/h
3 135 | :
°©
[0}
N 125
©
€
S 115 [0
z g :
1.05 F &
0.957 |-
0861 1 1 1 1 1 1 1 1 1

0.1 1.44 278 412 546 6.8 8.14 9.48 10.82 12.16 13.5
Time in Minutes ——

Fig. 5.11 Estimation of sensitivity factor.



198 NONLINEAR APPLICATIONS

To test the resultant model as a predictor of future traffic conditions, the
estimated values of 1/7,v/T,a, and b are used in the model equation. Section
density p/ and output flow q}’jll are computed from the flow. The final model is
used to predict density and speed of the middle section by using the available
data from the adjoining sections, that is ”}’717 Pﬁp pﬁl, and q}’“. This model is
particularly effective in predicting speed of traffic flow and density in one
section of the freeway over 15-min intervals. This time interval is adequate for
traffic responsive control. The single-section density prediction results from the
model and actual density are shown in Figure 5.12. The single-section speed
prediction results from the model and actual section speed are shown in Figure
5.13. These results show that the final model with the parameter values
estimated by the above procedures predicts the traffic conditions (density and
speed) satisfactorily.

5.11 SUMMARY

Discrete-time and continuous-time estimators derived in Chapter 4 can be applied to
nonlinear problems using the following approaches:

1. Linearization of nonlinear plant and observation models about a fixed nominal
trajectory. See Table 5.3 for the discrete-time linearized Kalman filter using
this approach.

200.0

190.0

Section density predicted by the model

180.0

170.0

160.0

150.0

140.0

Section density in vehiCles/mi e

130.0 ~¢— Actual section density
120.0 |-

110.0 -

100.0 ! ! J | 1 1 1 J 1 1
0.1 144 278 412 546 68 8.14 9.48 10.82 12.16 13.5

Time in minutes  =———-

Fig. 5.12 Single-section density prediction.



5.11 SUMMARY 199

Actual section mean speed
60.0

58.0
56.0
54.0
52.0 F
50.0
48.0

46.0

Section mean speed in mi/h ———=—

44.0

420k Section mean speed predicted by the model

40.0 ! ! ! ! ! ! ! !
01 144 278 412 546 68 814 9481082 12.16 135

= Time in minutes =——

Fig. 5.13 Single-section speed prediction.

2. Extended Kalman filtering, which requires linearization of plant and observa-
tion equations about the estimated trajectory at every time step [X,(—)]). See
Tables 5.4 and 5.5 for the filter equations.

3. Higher order estimators, which are outside the scope of the treatment in this
chapter, although references are provided.

The parameter identification problem is a common nonlinear estimation problem. It
is the problem of estimating a model parameter that occurs as a coefficient of a
dynamic system state variable—either as a dynamic coefficient or as a measurement
sensitivity. When this estimation problem is solved simultaneously with the state
estimation problem (via state vector augmentation), the linear model becomes
nonlinear. As an example, the state estimation problem for a harmonic oscillator
(Example 4.3) is extended to a problem in which the parameter { (oscillator damping
coefficient) is also unknown. The system model equations are augmented with the
damping coefficient as an additional state variable. Further large-dimensional
examples include the problems of calibration and alignment of an inertial measuring
unit (IMU) and the identification of the parameters of a freeway traffic model.



200 NONLINEAR APPLICATIONS

PROBLEMS

5.1 A scalar stochastic sequence x; is given by
xk = _O'I'Xk—l +COSxk_1 +Wk_1, Zk =Xi+vk,
Ewk =0= Evk, COVW, = A(k2 - kl)’ COV U = 0.5 A(k2 - kl)’
ExOZO, P():l, x}:omzl.
Determine the linearized and extended Kalman estimator equations.
5.2 A scalar stochastic process x(#) is given by
x(f) = —0.5x%(t) + w(?),
2(t) = (1) + (1),
Ew(t) =FEv(t) =0
covw, = 0(t; — t,), covu(t) = 0.5(¢; — 1),
EXOZO, POZI, x;:omzl.
Determine the linearized and extended Kalman estimator equations.

5.3 (a) Verify the results of Example 5.3 (noise-free simulation data).
(b) Estimate the states from a noisy data.
(¢) Compare the results of linearized and extended Kalman filters.

Assume that the plant noise is normally distributed with mean zero and
covariance 0.2 and measurement noise is normally distributed with mean zero
and covariance 0.001.

5.4 Derive the linearized and EKF equation for the following equations:

Xy =f (-1, k— 1)+ Gwy_y, zp = h(x,, k) + ;.

5.5 Given the following plant and measurement model for a scalar dynamic
system:

x(t) = ax(t) + w(z), z(t) = x(t) + v(¢),
w(t) ~ N(0, 1), v(f) ~ N(0, 2)

Ex(0) =1
Ewv() =0
P(0) =2,

Assume an unknown constant parameter a and derive an estimator for a,
given z(1).

5.6 Let r represent the position vector to a magnet with dipole moment vector m.
The magnetic field vector H at the origin of the coordinate system in which r is



5.11 SUMMARY 201

5.7

5.8

5.9

measured is given by the formula

_ Ko
4n|r|

(3rr’ — |r]*Ilm (5.92)

in ST units.

(a) Derive the measurement sensitivity matrix for H as the measurement and
m as the state vector.

(b) Derive the sensitivity matrix for r as the state vector.

(c) If r is known but m is to be estimated from measurements of B, is the
estimation problem linear?

Generate the error covariance results for the plant and measurement models
given in Example 5.3 with the appropriate values of process and measurement
noise covariance, and initial state estimation error covariance.

Generate the error covariance results for the plant and measurement models
given in Example 5.4 with the appropriate values of process and measurement
noise covariance and initial state estimation error covariance.

This problem is taken from reference [46]. The equations of motion for the
space vehicle are given below:

P —r0* + =m0, 0 + 210 = wy(1),

where r is range, 0 is bearing angle, k is a constant, and w,(f) and wy(?) are small
random forcing functions in the » and 6 directions.
The observation equation is given by

sin”! &
z(t) = r |,
oy — 0

where R, = earth radius and o is a constant.
Linearize these equations about rpom = Ry and 0,,,, = wyt.



Implementation Methods

There is a great difference between theory and practice.
Giacomo Antonelli (1806—1876)"

6.1 CHAPTER FOCUS

Up to this point, we have discussed what Kalman filters are and how they are
supposed to behave. Their theoretical performance has been shown to be character-
ized by the covariance matrix of estimation uncertainty, which is computed as the
solution of a matrix Riccati differential equation or difference equation.

However, soon after the Kalman filter was first implemented on computers, it was
discovered that the observed mean-squared estimation errors were often much larger
than the values predicted by the covariance matrix, even with simulated data. The
variances of the filter estimation errors were observed to diverge from their
theoretical values, and the solutions obtained for the Riccati equation were observed
to have negative variances, an embarrassing example of a theoretical impossibility.
The problem was eventually determined to be caused by computer roundoff, and
alternative implementation methods were developed for dealing with it.

This chapter is primarily concerned with

1. how computer roundoff can degrade Kalman filter performance,

2. alternative implementation methods that are more robust against roundoff
errors, and

3. the relative computational costs of these alternative implementations.

'In a letter to the Austrian Ambassador, as quoted by Lytton Strachey in Eminent Victorians [101].
Cardinal Antonelli was addressing the issue of papal infallibility, but the same might be said about the
infallibility of numerical processing systems.

202



6.1 CHAPTER FOCUS 203

6.1.1

Main Points to Be Covered

The main points to be covered in this chapter are the following:

1.

Computer roundoff errors can and do seriously degrade the performance of
Kalman filters.

. Solution of the matrix Riccati equation is a major cause of numerical

difficulties in the conventional Kalman filter implementation, from the
standpoint of computational load as well as from the standpoint of computa-
tional errors.

. Unchecked error propagation in the solution of the Riccati equation is a major

cause of degradation in filter performance.

. Asymmetry of the covariance matrix of state estimation uncertainty is a

symptom of numerical degradation and a cause of numerical instability, and
measures to symmetrize the result can be beneficial.

. Numerical solution of the Riccati equation tends to be more robust against

roundoff errors if Cholesky factors or modified Cholesky factors of the
covariance matrix are used as the dependent variables.

. Numerical methods for solving the Riccati equation in terms of Cholesky

factors are called factorization methods, and the resulting Kalman filter
implementations are collectively called square-root filtering.

. Information filtering is an alternative state vector implementation that

improves numerical stability properties. It is especially useful for problems
with very large initial estimation uncertainty.

6.1.2 Topics Not Covered

1.

Parametric Sensitivity Analysis. The focus here is on numerically stable

implementation methods for the Kalman filter. Numerical analysis of all errors
that influence the performance of the Kalman filter would include the effects of
errors in the assumed values of all model parameters, such as Q, R, H, and ©.
These errors also include truncation effects due to finite precision. The sensitiv-
ities of performance to these types of modeling errors can be modeled mathe-
matically, but this is not done here.

2.

Smoothing Implementations. There have been significant improvements

in smoother implementation methods beyond those presented in Chapter 4. The
interested reader is referred to the surveys by Meditch [201] (methods up to 1973)
and McReynolds [199] (up to 1990) and to earlier results by Bierman [140] and
by Watanabe and Tzafestas [234].



204 IMPLEMENTATION METHODS

3. Parallel Computer Architectures for Kalman Filtering. The operation
of the Kalman filter can be speeded up, if necessary, by performing some
operations in parallel. The algorithm listings in this chapter indicate those
loops that can be performed in parallel, but no serious attempt is made to
define specialized algorithms to exploit concurrent processing capabilities. An
overview of theoretical approaches to this problem is presented by Jover and
Kailath [175].

6.2 COMPUTER ROUNDOFF

Roundoff errors are a side effect of computer arithmetic using fixed- or floating-
point data words with a fixed number of bits. Computer roundoff is a fact of life for
most computing environments.

EXAMPLE 6.1: Roundoff Errors In binary representation, the rational numbers
are transformed into sums of powers of 2, as follows:

LR S SO S U
37416 64 256

=0,0101010101010101010101010... .,

where the subscript “b” represents the “binary point™ in binary representation (so as
not to be confused with the “decimal point” in decimal representation). When 1 is
divided by 3 in an IEEE/ANSI standard [107] single-precision floating-point
arithmetic, the 1 and the 3 can be represented precisely, but their ratio cannot.
The binary representation is limited to 24 bits of mantissa.> The above result is then
rounded to the 24-bit approximation (starting with the leading “1”):

~ 0,0101010101010101010101011

11184811
33554432
o1
3 100663296

W | =

giving an approximation error magnitude of about 108 and a relative approximation
error of about 3 x 1078, The difference between the true value of the result and the
value approximated by the processor is called roundoff error.

“The mantissa is the part of the binary representation starting with the leading nonzero bit. Because the
leading significant bit is always a “1,” it can be omitted and replaced by the sign bit. Even including the
sign bit, there are effectively 24 bits available for representing the magnitude of the mantissa.



6.2 COMPUTER ROUNDOFF 205

6.2.1 Unit Roundoff Error

Computer roundoff for floating-point arithmetic is often characterized by a single
parameter &,,,,q0fr> Called the unit roundoff error, and defined in different sources as
the largest number such that either

1 + &,oundofr =1 1n machine precision (6.1)

or
1 + &oundofr/2 = 1 in machine precision. (6.2)
The name “eps” in MATLAB is the parameter satisfying the second of these

equations. Its value may be found by typing “eps(RETURN)” (i.e., typing “eps”
without a following semicolon, followed by hitting the RETURN or ENTER key) in
the MATLAB command window. Entering “-log2(eps)” should return the number of
bits in the mantissa of the standard data word.

6.2.2 Effects of Roundoff on Kalman Filter Performance

Many of the roundoff problems discovered in the earlier years of Kalman filter
implementation occurred on computers with much shorter wordlengths than those
available in most MATLAB implementations and less accurate implementations of
bit-level arithmetic than the current ANSI standards.

However, the next example (from [156]) demonstrates that roundoff can still be a
problem in Kalman filter implementations in MATLAB environments and how a
problem that is well-conditioned, as posed, can be made ill-conditioned by the filter
implementation.

EXAMPLE 6.2 Let I, denote the n x n identity matrix. Consider the filtering
problem with measurement sensitivity matrix

1 1 1
H =
1 1 1490
and covariance matrices

Py=1I and R=0d1

where 6% < Eroundoft DUt O > Eoundofr- 10 this case, although H clearly has rank =2 in
machine precision, the product HPyH" with roundoff will equal

[ 3 3+5}
345 3425/



206 IMPLEMENTATION METHODS

which is singular. The result is unchanged when R is added to HP,H". In this case,
then, the filter observational update fails because the matrix HPyH' + R is not
invertible.

Sneak Preview of Alternative Implementations. Figure 6.1 illustrates how
the standard Kalman filter and some of the alternative implementation methods
perform on the variably ill-conditioned problem of Example 6.2 (implemented as
MATLAB m-file shootout.m on the accompanying diskette) as the conditioning
parameter 6 — 0. All solution methods were implemented in the same precision (64-
bit floating point) in MATLAB. The labels on the curves in this plot correspond to
the names of the corresponding m-file implementations on the accompanying
diskette. These are also the names of the authors of the corresponding methods,
the details of which will be presented further on.

For this particular example, the accuracies of the methods labeled “Carlson” and
“Bierman” appear to degrade more gracefully than the others as  — ¢, the machine
precision limit. The Carlson and Bierman solutions still maintain about 9 digits
(~ 30 bits) of accuracy at § ~ /¢, when the other methods have essentially no bits
of accuracy in the computed solution.

This one example, by itself, does not prove the general superiority of the Carlson
and Bierman solutions for the observational updates of the Riccati equation. The full
implementation will require a compatible method for performing the temporal
update, as well. (However, the observational update had been the principal source
of difficulty with the conventional implementation.)

10° v . .
\ Swerling
/oseph
o | 4
a 10
g
5 m M
=) 0w
43} Z %
2| 5= ;
= [~ -
< 8 o~ Bierman
n 5 E
= ol Carlson,
“lo0f = 1
CONDITIONING
WORSE BETTER
— —
log, (eps) =-52 sqrt (eps)
1071 1. " } L
10720 1075 10710 107 10°

delta

Fig. 6.1 Degradation of Riccati equation observational updates with problem conditioning.



6.2 COMPUTER ROUNDOFF 207

6.2.3 Terminology of Numerical Error Analysis

We first need to define some general terms used in characterizing the influence of
roundoff errors on the accuracy of the numerical solution to a given computation
problem.

Robustness and Numerical Stability. These terms are used to describe
qualitative properties of arithmetic problem-solving methods. Robustness refers to
the relative insensitivity of the solution to errors of some sort. Numerical stability
refers to robustness against roundoff errors.

Precision versus Numerical Stability. Relative roundoff errors can be
reduced by using more precision (i.e., more bits in the mantissa of the data
format), but the accuracy of the result is also influenced by the accuracy of the
initial parameters used and the procedural details of the implementation method.
Mathematically equivalent implementation methods can have very different numer-
ical stabilities at the same precision.

Numerical Stability Comparisons. Numerical stability comparisons can be
slippery. Robustness and stability of solution methods are matters of degree, but
implementation methods cannot always be totally ordered according to these
attributes. Some methods are considered more robust than others, but their relative
robustness can also depend upon intrinsic properties of the problem being solved.

llI-Conditioned and Well-Conditioned Problems. In the analysis of numer-
ical problem-solving methods, the qualitative term “conditioning” is used to
describe the sensitivity of the error in the output (solution) to variations in the
input data (problem). This sensitivity generally depends on the input data and the
solution method.

A problem is called well-conditioned if the solution is not “badly” sensitive to the
input data and ill-conditioned if the sensitivity is “bad.” The definition of what is
bad generally depends on the uncertainties of the input data and the numerical
precision being used in the implementation. One might, for example, describe a
matrix 4 as being “ill-conditioned with respect to inversion” if 4 is “close” to being
singular. The definition of “close” in this example could mean within the
uncertainties in the values of the elements of A4 or within machine precision.

EXAMPLE 6.3: Condition Number of a Matrix The sensitivity of the solution
x of the linear problem 4Ax = b to uncertainties in the input data (4 and b) and
roundoff errors is characterized by the condition number of A, which can be defined
as the ratio

max, || 4x||/]1x||

d(4) =
cond() = i, /Il

(6.3)



208 IMPLEMENTATION METHODS

if 4 is nonsingular and as oo if 4 is singular. It also equals the ratio of the largest and
smallest characteristic values of 4. Note that the condition number will always be
>1 because max > min. As a general rule in matrix inversion, condition numbers
close to I are a good omen, and increasingly larger values are cause for increasing
concern over the validity of the results.

The relative error in the computed solution ¥ of the equation Ax = b is defined as
the ratio ||x — x||/||x|| of the magnitude of the error to the magnitude of x.

As a rule of thumb, the maximum relative error in the computed solution is
bounded above by ¢, &.undgorrcOnNd(4), Where & ngorr 1S the unit roundoff error in
computer arithmetic (defined in Section 6.2.1) and the positive constant ¢, depends
on the dimension of 4. The problem of computing x, given 4 and b, is considered ill-
conditioned if adding 1 to the condition number of 4 in computer arithmetic has no
effect. That is, the logical expression 1 + cond(4) = cond(4) evaluates to true.

Consider an example with the coefficient matrix

N

Il
o o -
S = b~
- &~ o

where

L= 264
= 18,446,744,073,709,551,616,

which is such that computing L? would cause overflow in ANSI standard single-
precision arithmetic.
The condition number of 4 will then be

cond(4) ~ 3.40282 x 10%.

This is about 31 orders of magnitude beyond where the rule-of-thumb test for ill-
conditioning would fail in this precision (=2 x 107). One would then consider 4
extremely ill-conditioned for inversion (which it is) even though its determinant
equals 1.

Programming note: For the general linear equation problem Ax = b, it is not
necessary to invert 4 explicitly in the process of solving for x, and numerical stability
is generally improved if matrix inversion is avoided. The MATLAB matrix divide
(using x = A\b) does this.

6.2.4 llI-Conditioned Kalman Filtering Problems

For Kalman filtering problems, the solution of the associated Riccati equation should
equal the covariance matrix of actual estimation uncertainty, which should be



6.3 EFFECTS OF ROUNDOFF ERRORS ON KALMAN FILTERS 209

optimal with respect to all quadratic loss functions. The computation of the Kalman
(optimal) gain depends on it. If this does not happen, the problem is considered ill-
conditioned. Factors that contribute to such ill-conditioning include the following:

1. Large uncertainties in the values of the matrix parameters ®, O, H, or R. Such
modeling errors are not accounted for in the derivation of the Kalman filter.

2. Large ranges of the actual values of these matrix parameters, the measure-
ments, or the state variables—all of which can result from poor choices of
scaling or dimensional units.

3. Ill-conditioning of the intermediate result R* = HPHT + R for inversion in the
Kalman gain formula.

4. Tll-conditioned theoretical solutions of the matrix Riccati equation—without
considering numerical solution errors. With numerical errors, the solution may
become indefinite, which can destabilize the filter estimation error.

5. Large matrix dimensions. The number of arithmetic operations grows as the
square or cube of matrix dimensions, and each operation can introduce
roundoff errors.

6. Poor machine precision, which makes the relative roundoff errors larger.

Some of these factors are unavoidable in many applications. Keep in mind that they
do not necessarily make the Kalman filtering problem hopeless. However, they are
cause for concern—and for considering alternative implementation methods.

6.3 EFFECTS OF ROUNDOFF ERRORS ON KALMAN FILTERS

Quantifying the Effects of Roundoff Errors on Kalman Filtering.
Although there was early experimental evidence of divergence due to roundoff
errors, it has been difficult to obtain general principles describing how it is related to
characteristics of the implementation. There are some general (but somewhat weak)
principles relating roundoff errors to characteristics of the computer on which the
filter is implemented and to properties of the filter parameters. These include the
results of Verhaegen and Van Dooren [232] on the numerical analysis of various
implementation methods in Kalman filtering. These results provide upper bounds on
the propagation of roundoff errors as functions of the norms and singular values of
key matrix variables. They show that some implementations have better bounds than
others. In particular, they show that certain “symmetrization” procedures are
provably beneficial and that the so-called square-root filter implementations have
generally better error propagation bounds than the conventional Kalman filter
equations.

Let us examine the ways that roundoff errors propagate in the computation of the
Kalman filter variables and how they influence the accuracy of results in the Kalman
filter. Finally, we provide some examples that demonstrate common failure modes.



210 IMPLEMENTATION METHODS

6.3.1 Roundoff Error Propagation in Kalman Filters

Heuristic Analysis. We begin with a heuristic look at roundoff error propagation,
from the viewpoint of the data flow in the Kalman filter, to show how roundoff errors
in the Riccati equation solution are not controlled by feedback like roundoff errors in
the estimate. Consider the matrix-level data flow diagram of the Kalman filter that is
shown in Figure 6.2. This figure shows the data flow at the level of vectors and

Fo-TETTTEE ST EEEEEESEEEEEEE A S A A Em 1
: K E
' z - H&O K(z - HzO) $ '
O —D— s
1 1
1 OI
' HiO) O
1 PI
H 1 1
. F) I
T [ G|
O — Transpose At
' | 2o I
: T N
' PPHOT | pigT Lt
1
T o'
Ged’ ® 3
1
P
! (Riccati o P :
1 equation () :
: solution) ,
' :
1 —
: 03 KHPO) :
1
- I
! HP®) 1
: ' 3¢ !
! 1
1 j— 1
! K
: | Transpose | :
- :
! POHT '
. — :
! 1
! 1
! 1
1
' (HPOHT + R)"
! HPOHT -
1
R — @ |_| Inverse | '
! HP-HT+R 1

Fig. 6.2 Kalman filter data flow.



6.3 EFFECTS OF ROUNDOFF ERRORS ON KALMAN FILTERS 211

matrices, with operations of addition (&), multiplication (®), and inversion (/).
Matrix transposition need not be considered a data operation in this context, because
it can be implemented by index changes in subsequent operations. This data flow
diagram is fairly representative of the straightforward Kalman filter algorithm, the
way it was originally presented by Kalman, and as it might be implemented in
MATLAB by a moderately conscientious programmer. That is, the diagram shows
how partial results (including the Kalman gain, K) might be saved and reused. Note
that the internal data flow can be separated into two, semi-independent loops within
the dashed boxes. The variable propagated around one loop is the state estimate. The
variable propagated around the other loop is the covariance matrix of estimation
uncertainty. (The diagram also shows some of the loop “shortcuts” resulting from
reuse of partial results, but the basic data flows are still loops.)

Feedback in the Estimation Loop. The uppermost of these loops, labeled EST.
LOOP, is essentially a feedback error correction loop with gain (K) computed in the
other loop (labeled GAIN LOOP). The difference between the expected value HX of
the observation z (based on the current estimate x of the state vector) and the
observed value is used in correcting the estimate X. Errors in X will be corrected by
this loop, so long as the gain is correct. This applies to errors in X introduced by
roundoff as well as those due to noise and a priori estimation errors. Therefore,
roundoff errors in the estimation loop are compensated by the feedback mechanism,
so long as the loop gain is correct. That gain is computed in the other loop.

No Feedback in the Gain Loop. This is the loop in which the Riccati equation is
solved for the covariance matrix of estimation uncertainty (P), and the Kalman gain
is computed as an intermediate result. It is not stabilized by feedback, the way that
the estimation loop is stabilized. There is no external reference for correcting the
“estimate” of P. Consequently, there is no way of detecting and correcting the
effects of roundoff errors. They propagate and accumulate unchecked. This loop also
includes many more roundoff operations than the estimation loop, as evidenced by
the greater number of matrix multiplies (®) in the loop. The computations involved
in evaluating the filter gains are, therefore, more suspect as sources of roundoff error
propagation in this “conventional” implementation of the Kalman filter. It has been
shown by Potter [209] that the gain loop, by itself, is not unstable. However, even
bounded errors in the computed value of P may momentarily destabilize the
estimation loop.

EXAMPLE 6.4 An illustration of the effects that negative characteristic values
of the computed covariance matrix P can have on the estimation errors is shown
below:



212 IMPLEMENTATION METHODS

Roundoff
causes gain
to change sign
momentarily

a1

2>

Exponential
divergence

Rapid
- convergence

Slow
convergence

Roundoff errors can cause the computed value of P to have a negative characteristic
value. The Riccati equation is stable, and the problem will eventually rectify itself.
However, the effect on the actual estimation error can be a more serious problem.

Because P is a factor in the Kalman gain K, a negative characteristic value of P
can cause the gain in the prediction error feedback loop to have the wrong sign.
However, in this transient condition, the estimation loop is momentarily destabilized.
In this illustration, the estimate X converges toward the true value x until the gain
changes sign. Then the error diverges momentarily. The gain computations may
eventually recover with the correct sign, but the accumulated error due to divergence
is not accounted for in the gain computations. The gain is not as big as it should be,
and convergence is slower than it should be.

6.3.1.1 Numerical Analysis. Because the a priori value of P is the one used in

computing the Kalman gain, it suffices to consider just the error propagation of that

value. It is convenient, as well, to consider the roundoff error propagation for x(—).
A first-order roundoff error propagation model is of the form

Oxg 11 (=) = f1(0x (=), 0P(=)) + Ay g, (6.4)
0P (=) =f2(0P(=)) + APy (=), (6.5)

where the ¢ term refers to the accumulated error and the A term refers to the added
roundoff errors on each recursion step. This model ignores higher order terms in the
error variables. The forms of the appropriate error propagation functions are given in
Table 6.1. Error equations for the Kalman gain are also given, although the errors in
K, depend only on the errors in x and P—they are not propagated independently.
These error propagation function values are from the paper by Verhaegen and Van



6.3 EFFECTS OF ROUNDOFF ERRORS ON KALMAN FILTERS 213

TABLE 6.1 First-Order Error Propagation Models

Error Model (by Filter Type)

Roundoff Error

in Filter Variable Conventional Implementation Square-Root Covariance
0Xyey1(—) Aq[0X4 (=) + 0P (—)Ax(Z2 — HXi(—))] + AXiyq
oK A6Py(—)
0Py (=) AiOP()AT + APy..4 AOP(DAT
+DBP (=) — dPL(—)DT +AP,

— D(OP(—) — SPL(-)A]

Notes: Ay = ® — K H; Ay = HT[HPHT + R ™".

Dooren [232]. (Many of these results have also appeared in earlier publications.)
These expressions represent the first-order error in the updated a prior variables on
the (k + 1)th temporal epoch in terms of the first-order errors in the kth temporal
epoch and the errors added in the update process.

Roundoff Error Propagation. Table 6.1 compares two filter implementation types,
in terms of their first-order error propagation characteristics. One implementation
type is called “conventional.” That corresponds to the straightforward implementa-
tion of the equations as they were originally derived in previous chapters, excluding
the “Joseph-stabilized” implementation mentioned in Chapter 4. The other type is
called “square root,” the type of implementation presented in this chapter. A further
breakdown of these implementation types will be defined in later sections.

Propagation of Antisymmetry Errors. Note the two terms in Table 6.1 involving
the antisymmetry error 6P (—) — SP}(—) in the covariance matrix P, which tends to
confirm in theory what had been discovered in practice. Early computers had very
little memory capacity, and programmers had learned to save time and memory by
computing only the unique parts of symmetric matrix expressions such as ®P®T,
HPH™, HPH™ + R, or (HPH" + R)™". To their surprise and delight, this was also
found to improve error propagation. It has also been found to be beneficial in
MATLAB implementations to maintain symmetry of P by evaluating the MATLAB
expression P =.5*%(P 4 P’) on every cycle of the Riccati equation.

Added Roundoff Error. The roundoff error (A) that is added on each cycle of the
Kalman filter is considered in Table 6.2. The tabulated formulas are upper bounds on
these random errors.

The important points which these tables demonstrate are the following:

1. These expressions show the same first-order error propagation in the state
update errors for both filter types (covariance and square-root forms). These



214

IMPLEMENTATION METHODS

include terms coupling the errors in the covariance matrix into the state
estimate and gain.

. The error propagation expression for the conventional Kalman filter includes

aforementioned terms proportional to the antisymmetric part of P. One must
consider the effects of roundoff errors added in the computation of x, K and P
as well as those propagated from the previous temporal epoch. In this case,
Verhaegen and Van Dooren have obtained upper bounds on the norms of the
added errors Ax, AK, and AP, as shown in Table 6.2. These upper bounds give
a crude approximation of the dependence of roundoff error propagation on the
characteristics of the unit roundoff error (¢) and the parameters of the Kalman
filter model. Here, the bounds on the added state estimation error are similar
for the two filter types, but the bounds on the added covariance error AP are
better for the square-root filter. (The factor is something like the condition
number of the matrix E.) In this case, one cannot relate the difference in
performance to such factors as asymmetry of P.

The efficacy of various implementation methods for reducing the effects
of roundoff errors have also been studied experimentally for some applications.
The paper by Verhaegen and Van Dooren [232] includes results of this type as
well as numerical analyses of other implementations (information filters and
Chandrasekhar filters). Similar comparisons of square-root filters with conventional
Kalman filters (and Joseph-stabilized filters) have been made by Thornton and
Bierman [125].

TABLE 6.2 Upper Bounds on Added Roundoff Errors

Upper Bounds (by Filter Type)

Norm of
Roundoff Errors Conventional Implementation Square-Root Covariance
AX1 (I e1 (1A 11X ()] + [Kcl12i]) ea(1A 11X + (Kl 12i])
HAKI(HI1 X ()] + 12i1) HAKIHI X ()] + 12i])
|AK | e (R Kl esk(R)m (R Cp )|
+IKyCpe| + A3l /24(R)]
AP 1 (5] e3k2 (R Pyyr ()] eg[1 + K(R)]|Pyyq|1A5]
[Cpks)]
Notes: ¢, ..., & are constant multiples of ¢, the unit roundoff error; A; = ® — K H; Ay = [(KxCg-)|Crys1)l;

R* = HP(-)H™ + R; R* = Cg. C},. (triangular Cholesky decomposition); Py,.1(—) = Cp1) Chk1, (triangular
Cholesky decomposition); 4;(R*) > /,(R*)>---> 1,(R*)>0 are the characteristic values of R*;
k(R*) = 44(R*)/An,(R*) is the condition number of R*.



6.3 EFFECTS OF ROUNDOFF ERRORS ON KALMAN FILTERS 215

6.3.2 Examples of Filter Divergence

The following simple examples show how roundoff errors can cause the Kalman
filter results to diverge from their expected values.

EXAMPLE 6.5: Roundoff Errors Due to Large a Priori Uncertainty If users
have very little confidence in the a priori estimate for a Kalman filter, they tend to
make the initial covariance of estimation uncertainty very large. This has its
limitations, however.

Consider the scalar parameter estimation problem (0 =7, 0 =0,¢{ =n=1) in
which the initial variance of estimation uncertainty P, > R the variance of
measurement uncertainty. Suppose that the measurement sensitivity H = 1 and
that P, is so much greater than R that, in the floating-point machine precision, the
result of adding R to Py—with roundoff—is P,. That is, R < ¢P,. In that case, the
values computed in the Kalman filter calculations will be as shown in the table and
plot below:

Value
Observation
Number Expression Exact Rounded
1 PyHT Po Po
1 HPHT Po Po
1 HP,H™ + R Py +R Py
1 Ky = PyH'(HPH™ + R~ Po 1
Py+R
1 P, = P, — K HP, PR 0
Py +R
k K= Pi_yH (HP_{H" + R)™ P 0
kP, + R
Py = Py — KHPy_4 i 0
kP, + R

The rounded value of the calculated variance of estimation uncertainty is zero
after the first measurement update, and remains zero thereafter. As a result, the
calculated value of the Kalman gain is also zero after the first update. The exact
(roundoff-free) value of the Kalman gain is ~ 1/k, where k is the observation
number. After 10 observations,



216 IMPLEMENTATION METHODS

10F ® Legend
L e Without roundoff
08| O With roundoff
0.6
K = L]

0.4+

02} e

0.0 100000000
2 4 6 8 10

Observation number

1. the calculated variance of estimation uncertainty is zero;

2. the actual variance of estimation uncertainty is PyR/(Py + R) ~ R (the value
after the first observation and after which the computed Kalman gains were
zeroed), and

3. the theoretical variance in the exact case (no roundoff) would have been
PyR/(10P; + R) ~ {5 R.

The ill-conditioning in this example is due to the misscaling between the a priori
state estimation uncertainty and the measurement uncertainty.

6.4 FACTORIZATION METHODS FOR KALMAN FILTERING

Basic methods for factoring matrices are described in Sections B.6 and 6.4.2. This
section describes how these methods are applied to Kalman filtering.

6.4.1 Overview of Matrix Factorization Tricks

Matrix Factoring and Decomposition. The terms decomposition and factoring
(or factorization) are used interchangeably to describe the process of transforming a
matrix or matrix expression into an equivalent product of factors.’

3The term decomposition is somewhat more general. It is also used to describe nonproduct representa-
tions, such as the additive decomposition of a square matrix into its symmetric and antisymmetric parts:

A=Y A+ AT) + 14— 47).

Another distinction between decomposition and factorization is made by Dongarra et al. [84], who use the
term factorization to refer to an arithmetic process for performing a product decomposition of a matrix in
which not all factors are preserved. The term friangularization is used in this book to indicate a OR
factorization (in the sense of Dongarra et al.) involving a triangular factor that is preserved and an
orthogonal factor that is not preserved.



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 217

Applications to Kalman Filtering. The more numerically stable implementa-
tions of the Kalman filter use one or more of the following techniques to solve the
associated Riccati equation:

1. Factoring the covariance matrix of state estimation uncertainty P (the
dependent variable of the Riccati equation) into Cholesky factors (see Section
B.6) or into modified Cholesky factors (unit triangular and diagonal factors).

2. Factoring the covariance matrix of measurement noise R to reduce the
computational complexity of the observational update implementation.
(These methods effectively “decorrelate” the components of the measurement
noise vector.)

3. Taking the symmetric matrix square roots of elementary matrices. A
symmetric elementary matrix has the form I — gvv", where I is the n x n
identity matrix, ¢ is a scalar, and v is an n-vector. The symmetric square root
of an elementary matrix is also an elementary matrix with the same v but a
different value for a.

4. Factoring general matrices as products of triangular and orthogonal matrices.
Two general methods are used in Kalman filtering:

(a) Triangularization (OR decomposition) methods were originally developed
for more numerically stable solutions of systems of linear equations. They
factor a matrix into the product of an orthogonal matrix Q and a triangular
matrix R. In the application to Kalman filtering, only the triangular factor
is needed. We will call the QR decomposition triangularization, because Q
and R already have special meanings in Kalman filtering. The two
triangularization methods used in Kalman filtering are:

i. Givens rotations [164] triangularize a matrix by operating on one
element at a time. (A modified Givens method due to Gentleman [163]
generates diagonal and unit triangular factors.)

ii. Householder transformations triangularize a matrix by operating on
one row or column at a time.

(b) Gram—Schmidt orthonormalization is another general method for factor-
ing a general matrix into a product of an orthogonal matrix and a
triangular matrix. Usually, the triangular factor is not saved. In the
application to Kalman filtering, only the triangular factor is saved.

5. Rank 1 modification algorithms. A “rank 1 modification” of a symmetric
positive-definite # x n matrix M has the form M =+ vvT, where v is an n-vector
(and therefore has matrix rank equal to 1). The algorithms compute a
Cholesky factor of the modification M + vv", given v and a Cholesky factor
of M.

6. Block matrix factorizations of matrix expressions in the Riccati equation. The
general approach uses two different factorizations to represent the two sides of



218 IMPLEMENTATION METHODS

an equation, such as

CCT = 44" + BBT

=[4 B][;i].

The alternative Cholesky factors C and [4 B] must then be related by
orthogonal transformations (triangularizations). A QR decomposition of
[A B] will yield a corresponding solution of the Riccati equation in terms
of a Cholesky factor of the covariance matrix.

In the example used above, [4 B] would be called a “1 x 2” block
partitioned matrix, because there are one row and two columns of blocks
(matrices) in the partitioning. Different block dimensions are used to solve
different problems:

(a) The discrete-time temporal update equation is solved in “square-root”
form by using alternative 1 x 2 block-partitioned Cholesky factors.

(b) The observational update equation is solved in square-root form by using
alternative 2 x 2 block-partitioned Cholesky factors and modified
Cholesky factors representing the observational update equation.

(¢c) The combined temporal/observational update equations are solved in
square-root form by using alternative 2 x 3 block-partitioned Cholesky
factors of the combined temporal and observational update equations.

The different implementations of the Kalman filter based on these approaches are
presented in Sections 6.5.2—6.6.2 and 6.6. They make use of the general numerical
procedures presented in Sections 6.4.2-6.4.5.

6.4.2 Cholesky Decomposition Methods and Applications

Symmetric Products and Cholesky Factors. The product of a matrix C with its
own transpose in the form CCT = M is called the symmetric product of C, and C is
called a Cholesky factor of M (Section B.6). Strictly speaking, a Cholesky factor is
not a matrix square root, although the terms are often used interchangeably in the
literature. (A matrix square root S of M is a solution of M = SS = S?, without the
transpose.)

All symmetric nonnegative definite matrices (such as covariance matrices) have
Cholesky factors, but the Cholesky factor of a given symmetric nonnegative definite
matrix is not unique. For any orthogonal matrix 7 (i.e., such that 7.7 ' =), the
product I' = C7 satisfies the equation

IT"=c777C" = cCc" =M.

That is, I' = C7 is also a Cholesky factor of M. Transformations of one Cholesky
factor into another are important for alternative Kalman filter implementations.



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 219

Applications to Kalman Filtering. Cholesky decomposition methods produce
triangular matrix factors (Cholesky factors), and the sparseness of these factors
can be exploited in the implementation of the Kalman filter equations. These
methods are used for the following purposes:

1. in the decomposition of covariance matrices (P, R, and Q) for implementation
of square-root filters;

2. in “decorrelating” measurement errors between components of vector-valued
measurements, so that the components may be processed sequentially as
independent scalar-valued measurements (Section 6.4.2.2);

3. as part of a numerically stable method for computing matrix expressions
containing the factor (HPHT + R)71 in the conventional form of the Kalman
filter (this matrix inversion can be obviated by the decorrelation methods,
however); and

4. in Monte Carlo analysis of Kalman filters by simulation, in which Cholesky
factors are used for generating independent random sequences of vectors with
pre-specified means and covariance matrices (see Section 3.4.7).

6.4.2.1 Cholesky Decomposition Algorithms

Triangular Matrices. Recall that the main diagonal of an n x m matrix C is the set
of elements {C;; | 1 < i < min(m, n)} and that C is called triangular if the elements
on one side of its main diagonal are zero. The matrix is called upper triangular if its
nonzero elements are on and above its main diagonal and lower triangular if they are
on or below the main diagonal.

A Cholesky decomposition algorithm is a procedure for calculating the elements
of a triangular Cholesky factor of a symmetric, nonnegative definite matrix. It solves
the Cholesky decomposition equation P = CC" for a triangular matrix C, given the
matrix P, as illustrated in the following example.

EXAMPLE 6.6 Consider the 3 x 3 example for finding a lower triangular
Cholesky factor P = CCT for symmetric P:

- T
P11 P Pz cp 0 0 e 0 0
P Pn Pn|=|¢1 ¢m 0 G p 0
P31 P32 P33 LC31 C32 C33 C31 C3p C33
roo2
1 C11621 C11631
_ 2 2
= | ¢t Cy T €131 + CC3
ciic Cy1C31 + CyrC A+t + 3
LC11631  €21€31 203 031 32 33

The corresponding matrix elements of the left- and right-hand sides of the last matrix
equation can be equated as nine scalar equations. However, due to symmetry, only



220 IMPLEMENTATION METHODS

six of these are independent. The six scalar equations can be solved in sequence,
making use of previous results. The following solution order steps down the rows
and across the columns:

Six Independent Solutions Using
Scalar Equations Prior Results
P = C%l ¢ =P
P21 = €116y ¢ =Ppa/cn
P =65 + 65 cn = Pn — 3
P31 = €163 c31 = p3i/en
P32 = €31€31 +€23C3 3 = (P32 — c21631)/
P33 =63 5+ 3 33 = /P33 — €3 — 3

A solution can also be obtained by stepping across the rows and then down the rows,
in the order ¢y, ¢, €31, C23, C32, C33.

The general solutions can be put in the form of algorithms looping through the
rows and columns of C and using prior results. The example above suggests two
algorithmic solutions, one looping in row—column order and one looping in column—
row order. There is also the choice of whether the solution C should be lower
triangular or upper triangular.

Algorithmic solutions are given in Table 6.3. The one on the left can be
implemented as C = chol(M)’, using the built-in MATLAB function chol. The
one in the right column is implemented in the m-file chol2.m.

Programming note: MATLAB automatically assigns the value zero to all the
unassigned matrix locations. This would not be necessary if subsequent processes
treat the resulting Cholesky factor matrix C as triangular and do not bother to add or
multiply the zero elements.

6.4.2.2 Modified Cholesky (UD) Decomposition Algorithms

Unit Triangular Matrices. An upper triangular matrix U is called wunit upper
triangular if its diagonal elements are all 1 (unity). Similarly, a lower triangular
matrix L is called unit lower triangular if all of its diagonal elements are unity.

UD Decomposition algorithm. The modified Cholesky decomposition of a
symmetric positive-definite matrix M is a decomposition into products M =
UDUT such that U is unit upper triangular and D is diagonal. It is also called
UD decomposition.



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 221

TABLE 6.3 Cholesky Decomposition Algorithms

Given an m x m symmetric positive definite matrix M, a triangular matrix C such that M = CCT
is computed.

Lower Triangular Result Upper Triangular Result
for j=1:m, for j=m:-1:1,
for i=1:3, for i=j:-1:1,
sigma=M(i,7); sigma=M(i,J);
for k=1:j-1, for k=j+1:m,
sigma=sigma-C(i,k)*C(j,k); sigma=sigma-C(i,k)*C(j,k);
end; end;
if i==j if i==j
C(i,j)=sgrt(sigma) ; C(i,j)=sqgrt(sigma) ;
else else
C(i,j)=sigma/C(j,J) C(i,j)=sigma/C(3j,J)
end; end;
end; end;
end; end;

Computational complexity: (‘—Sm(m —1)(m+4) flops + m_ /.

A procedure for implementing UD decomposition is presented in Table 6.4. This
algorithm is implemented in the m-file modchol.m. It takes M as input and returns U
and D as output. The decomposition can also be implemented in place, overwriting
the input array containing M with D (on the diagonal of the array containing M) and
U (in the strictly upper triangular part of the array containing M). This algorithm is
only slightly different from the upper triangular Cholesky decomposition algorithm
presented in Table 6.3. The big difference is that the modified Cholesky decom-
position does not require taking square roots.

6.4.2.3 Decorrelating Measurement Noise. The decomposition methods
developed for factoring the covariance matrix of estimation uncertainty may also
be applied to the covariance matrix of measurement uncertainty, R. This operation
redefines the measurement vector (via a linear transform of its components) such
that its measurement errors are uncorrelated from component to component. That is,
the new covariance matrix of measurement uncertainty is a diagonal matrix. In that
case, the components of the redefined measurement vector can be processed serially
as uncorrelated scalar measurements. The reduction in the computational complex-
ity* of the Kalman filter from this approach will be covered in Section 6.6.1.
Suppose, for example, that

z=Hx+v (6.6)

“The methodology used for determining the computational complexities of algorithms in this chapter is
presented in Section 6.4.2.6.



222 IMPLEMENTATION METHODS

TABLE 6.4 UD Decomposition Algorithm

Given M, a symmetric, positive-definite m x m matrix, U and D, modified Cholesky factors of M,
are computed, such that U is a unit upper triangular matrix, D is a diagonal matrix, and
M= UDU'.

for j=m:-1:1,
for i=j:-1:1,
sigma=M(i,]);
for k=j+1:m,
sigma=sigma-U(i,k)*D(k,k)*U(7j,k);

end;

if i==j
D(j,j)=sigma;
U(j,j)=l;

else
U(i,j)=sigma/D(],]);

end;

end;

end;

Computational complexity: 1gm(m —1)(m + 4) flops.

is an observation with measurement sensitivity matrix H and noise v that is
correlated from component to component of v. That is, the covariance matrix

E(w!) =R (6.7)

is not a diagonal matrix. Then the scalar components of z cannot be processed
serially as scalar observations with statistically independent measurement errors.
However, R can always be factored in the form

R =UDUT, (6.8)

where D is a diagonal matrix and U is an upper triangular matrix. Unit triangular
matrices have some useful properties:

e The determinant of a unit triangular matrix is 1. Unit triangular matrices are,
therefore, always nonsingular. In particular, they always have a matrix inverse.

e The inverse of a unit triangular matrix is a unit triangular matrix. The inverse of
a unit upper triangular matrix is unit upper triangular, and the inverse of a unit
lower triangular matrix is a unit lower triangular matrix.

It is not necessary to compute U~ to perform measurement decorrelation, but it is
useful for pedagogical purposes to use U~! to redefine the measurement as

;=Uz (6.9)
= U Y(Hx+v) (6.10)
= (U 'Hx+ (U ) (6.11)

= Hx + 7. (6.12)



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 223

That is, this “new” measurement Z has measurement sensitivity matrix # = U~'H
and observation error v = U~'v. The covariance matrix R’ of the observation error v
will be the expected value

R =E(w") (6.13)
=E(U'w(Uuwh (6.14)
=EWU 'wTu™ (6.15)
= U 'EmhUuT! (6.16)
=U"'RU™! (6.17)
= U~ (upuhHuT! (6.18)
=D. (6.19)

That is, this redefined measurement has uncorrelated components of its measure-
ment errors, which is what was needed for serializing the processing of the
components of the new vector-valued measurement.

In order to decorrelate the measurement errors, one must solve the unit upper
triangular system of equations

Ut =z (6.20)
UH=H (6.21)

for 7 and H. , given z, H, and U. As noted previously, it is not necessary to invert U to
solve for z and H.

Solving Unit Triangular Systems. Tt was mentioned above that it is not necessary
to invert U to decorrelate measurement errors. In fact, it is only necessary to solve
equations of the form UX = Y, where U is a unit triangular matrix and X and Y
have conformable dimensions. The objective is to solve for X, given Y. It can be
done by what is called “back substitution.” The algorithms listed in Table 6.5
perform the solutions by back substitution. The one on the right overwrites ¥ with
U~'Y. This feature is useful when several procedures are composed into one special-
purpose procedure, such as the decorrelation of vector-valued measurements.

Specialization for Measurement Decorrelation. A complete procedure for
measurement decorrelation is listed in Table 6.6. It performs the UD decomposition
and upper triangular system solution in place (overwriting H with U~'H and z with
U~'z), after decomposing R as R = UDU" in place (overwriting the diagonal of R
with R = D and overwriting the strictly upper triangular part of R with the strictly
upper triangular part of U™!).

6.4.2.4 Symmetric Positive-Definite System Solution. Cholesky decom-
position provides an efficient and numerically stable method for solving equations of



224

IMPLEMENTATION METHODS

TABLE 6.5 Unit Upper Triangular System Solution

Input: U, m x m unit upper triangular matrix;
Y, m x p matrix
Output: X := U~'Y

Input: U, m x m unit upper triangular matrix;
Y, m x p matrix
Output: Y :=U"'Y

for j=1:p,

for i=m:-1:1,
X(1i,3)=Y(i,3);
for k=i+1l:m,

for j=1:p,
for i=m:-1:1,
for k=i+1l:m,
Y(i,3)=Y(1i,3)-U(i,k)*Y(k,]);

X(1i,3)=X(1,3)-0(1i,k)*xX(k,]j); end;
end; end;
end; end;
end;

Computational complexity: pm(m — 1)/2 flops.

the form AX = Y when A4 is a symmetric, positive-definite matrix. The modified
Cholesky decomposition is even better, because it avoids taking scalar square roots.
It is the recommended method for forming the term [HPH™ +R]™'H in the
conventional Kalman filter without explicitly inverting a matrix. That is, if one
decomposes HPH' + R as UDUT, then

[UDUT[HPH" + R|™'"H = H. (6.22)
It then suffices to solve

UDU'X =H (6.23)

TABLE 6.6 Measurement Decorrelation Procedure

The vector-valued measurement z = Hx + v, with correlated components of the measurement error
E(w") = R, is transformed to the measurement Z = Hx + v with uncorrelated components of the
measurement error v [E(vVT) = D, a diagonal matrix], by overwriting H with H = U~"H and z with
2 = U2, after decomposing R to UDUT, overwriting the diagonal of R with D.

Symbol Definition

R Input: ¢ x £ covariance matrix of measurement uncertainty
Output: D (on diagonal), U (above diagonal)

H Input: ¢ x n measurement sensitivity matrix
Output: overwritten with H = U~'H

z Input: measurement ¢-vector
Output: overwritten with Z2 = U~z

Procedure:

1. Perform UD decomposition of R in place.
2. Solve Uz = z and UH = H in place.

Computational complexity: £ £(¢ — 1)(€ + 4) + 3 £(¢ — 1)(n + 1) flops.




6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 225

for X. This can be done by solving the three problems

UXyy = H for Xy, (6.24)
D)([z] = )([1] for ,Xv[zl, (625)
U'X = Xy for X. (6.26)

The first of these is a unit upper triangular system, which was solved in the previous
subsection. The second is a system of independent scalar equations, which has a
simple solution. The last is a unit lower triangular system, which can be solved by
“forward substitution”—a simple modification of back substitution. The computa-
tional complexity of this method is m?p, where m is the row and column dimension
of A and p is the column dimension of X and Y.

6.4.2.5 Transforming Covariance Matrices to Information Matrices. The
information matrix is the inverse of the covariance matrix—and vice versa. Although
matrix inversion is generally to be avoided if possible, it is just not possible to avoid
it forever. This is one of those problems that require it.

The inversion is not possible unless one of the matrices (either P or Y) is positive
definite, in which case both will be positive-definite and they will have the same
condition number. If they are sufficiently well conditioned, they can be inverted in
place by UD decomposition, followed by inversion and recomposition in place. The
in-place UD decomposition procedure is listed in Table 6.4. A procedure for
inverting the result in place is shown in Table 6.7. A matrix inversion procedure
using these two is outlined in Table 6.8. It should be used with caution, however.

6.4.2.6 Computational Complexities. Using the general methods outlined in
[85] and [89], one can derive the complexity formulas shown in Table 6.9 for
methods using Cholesky factors.

TABLE 6.7 Unit Upper Triangular Matrix Inversion

Input/output: U, an m x m unit upper triangular matrix (U is overwritten with U~")

for i=m:-1:1,
for j=m:-1:i+1,
U(i,3)=-0(i,3);
for k=i+1:j-1,
U(ilj):U(ilj)_U(ilk)*U(klj);
end;
end;
end;

Computational complexity: m(m — 1)(m — 2)/6 flops.




226 IMPLEMENTATION METHODS

TABLE 6.8 Symmetric Positive-Definite Matrix Inversion Procedure?

Symbol Description

M Input: m x m symmetric positive definite matrix
Output: M is overwritten with M~

Procedure: 1. Perform UD decomposition of M in place.
2. Invert U in place (in the M-array).
3. Invert D in place: for i =1: m, M(i, i) = 1/M(i, i); end;
4. Recompose M~ = (U TD-")U" in place:

for i=m:-1:1,
for j=1:i-1,
M(1,3)=M(J,1)*M(F,]);

end;
for j=m:-1:1,
if 143
M(i,j)=M(i,j)*M(i,1);
end;

for k=1:1i-1,
M(i,3)=M(i,3j)+M(k,])*M(1i,k);
end;
M(j,i):M(i,j);
end;
end;

Computational complexity: m® +1m? + 1 m flops.

4nverts a symmetric positive-definite matrix in place.

6.4.3 Kalman Implementation with Decorrelation

It was pointed out by Kaminski [115] that the computational efficiency of the
conventional Kalman observational update implementation can be improved by
processing the components of vector-valued observations sequentially using the
error decorrelation algorithm in Table 6.6, if necessary. The computational savings
with the measurement decorrelation approach can be evaluated by comparing the
rough operations counts of the two approaches using the operations counts for the
sequential approach given in Table 6.10. One must multiply by ¢, the number of
operations required for the implementation of the scalar observational update
equations, and add the number of operations required for performing the decorrela-
tion.
The computational advantage of the decorrelation approach is

16 =102+ 70— tn+20*n + tn* flops.

That is, it requires that many fewer flops to decorrelate vector-valued measurements
and process the components serially.

6.4.4 Symmetric Square Roots of Elementary Matrices

Historical Background. Square-root filtering was introduced by James Potter [5]
to overcome an ill-conditioned Kalman filtering problem for the Apollo moon



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 227

TABLE 6.9 Computational Complexity Formulas

Cholesky decomposition of an m x m matrix:

(gChoIesky = i |:m - ./ + i(m - f):|

j=1 i=f

—1m3 1 _5
=im+im?—-3m

UD decomposition of an m x m matrix:

mi{mniami)}

j=1 i=f
_2 1m2 _7
=Z2m*+im*—im

Inversion of an m x m unit triangular matrix:

m-1 m . .
Cutiny = 2 G=i=1
=1 j=it1
18 _1m2 4 1
=im—Im*+im

Measurement decorrelation (¢ x n H-matrix):

=1 ¢

Cbecor = Cup + Z Z (n+1)
i=1 k=i+1

— 23 2 5 142 1

Inversion of an m x m covariance matrix:

m
Ccoviny = Cup + Cutinv + M+ X% L= D)m—i+1)]

i=

=mP+imP +1im

project. The mission used an onboard sextant to measure the angles between stars
and the limb of the earth or moon. These are scalar measurements, and Potter was
able to factor the resulting measurement update equations of the Riccati equation
into Cholesky factors of the covariance matrix and an elementary matrix of the type
used by Householder [172]. Potter was able to factor the elementary matrix into a
product of its square roots using the approach presented here. Potter’s application of
this result to Kalman filtering is presented in Section 6.6.1.3.

Elementary Matrices. An clementary matrix is a matrix of the form / — svw?,
where / is an identity matrix, s is a scalar, and v, w are column vectors of the same
row dimension as /. Elementary matrices have the property that their products are
also elementary matrices. Their squares are also elementary matrices, with the same
vector values (v, w) but with different scalar values (s).



228 IMPLEMENTATION METHODS

TABLE 6.10 Operations for Sequential Processing of Measurements

Operation Flops
H x P(—) 2
H x [HP(-)]" + R n
{HIHP(I" + R 1
(HIHPOIT + R) ™" x [HP(=)] n
P(=) = [HP(=)] x {HIHP(=)]" + Ry '[HP(-)] e +1n
Total (per component) x¢ components Gr*+3n+1)x¢
+ decorrelation complexity 263 +¢2—-5¢+%2n—Len
Total 208 42 — 20+ 1¢%n+2¢ + nlen?

Symmetric Elementary Matrices. An elementary matrix is symmetric if v = w.
The squares of such matrices have the same format:

(I —ow)? =1 — ovwh(I — ow) (6.27)
=1 —20w' +a?|v]*w' (6.28)

=1— 20— |v)w' (6.29)

=1 —svv' (6.30)

s = (26 — *|v]?). (6.31)

Symmetric Square Root of a Symmetric Elementary Matrix. One can also
invert the last equation above and take the square root of the symmetric elementary
matrix (I — svv?). This is done by solving the scalar quadratic equation

s =20 — a*|v|*, (6.32)
AV —20+5=0 (6.33)
to obtain the solution
- sva)l/2 =1—ow', (6.34)
oo L VIV (6.35)

2
vl



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 229
In order that this square root be a real matrix, it is necessary that the radicand

1 —s|v]> > 0. (6.36)

6.4.5 Triangularization Methods

Triangularization Methods for Least-Squares Problems. These techniques
were originally developed for solving least-squares problems. The overdetermined
system

Ax=1D>
can be solved efficiently and relatively accurately by finding an orthogonal matrix 7
such that the product B = T4 is a triangular matrix. In that case, the solution to the
triangular system of equations

Bx=1Tb

can be solved by backward substitution.

Triangularization (QR Decomposition) of A. 1t is a theorem of linear algebra that
any general matrix 4 can be represented as a product’

A4=Cp (9T (6.37)
of a triangular matrix C;(—) and an orthogonal matrix 7. This type of decom-

position is called QR decomposition or triangularization. By means of this
triangularization, the symmetric matrix product factorization

Piy(—) =44" (6.38)
= [Crr1 (DTN iy (DT (6.39)
= G (DTTTCL () (6.40)
= G (NTTNCL4(-) (6.41)
= Cr(5)CL () (6.42)

SThis is the so-called “QR” decomposition in disguise. It is customarily represented as A = QR (whence
the name), where Q is orthogonal and R is triangular. However, as mentioned earlier, we have already
committed the symbols O and R to play other roles in this book. In this instance of the OR decomposition,
it has the transposed form AT = TTC} +1(=), where T T is the stand-in for the original Q (the orthogonal
factor) and CATH(—) is the stand-in for the original R (the triangular factor).



230 IMPLEMENTATION METHODS

also defines a triangular Cholesky decomposition of C;;(—) of P, (—). This is the
basis for performing temporal updates of Cholesky factors of P.

Uses of Triangularization in Kalman Filtering. Matrix triangularization methods
were originally developed for solving least-squares problems. They are used in
Kalman filtering for

e temporal updates of Cholesky factors of the covariance matrix of estimation
uncertainty, as described above;

e observational updates of Cholesky factors of the estimation information
matrix, as described in Section 6.6.3.5; and

e combined updates (observational and temporal) of Cholesky factors of the
covariance matrix of estimation uncertainty, as described in Section 6.6.2.

A modified Givens rotation due to W. Morven Gentleman [163] is used for the
temporal updating of modified Cholesky factors of the covariance matrix.

In these applications, as in most least-squares applications, the orthogonal matrix
factor is unimportant. The resulting triangular factor is the intended result, and
numerically stable methods have been developed for computing it.

Triangularization Algorithms. Two of the more stable methods for matrix trian-
gularization are presented in the following subsections. These methods are based on
orthogonal transformations (matrices) that, when applied to (multiplied by) general
matrices, reduce them to triangular form. Both were published in the same year
(1958). Both define the requisite transformation as a product of “elementary”
orthogonal transformations:

T:T1T2T3"'7‘m. (6.43)

These elementary transformations are either Givens rotations or Householder
reflections. In each case, triangularization is achieved by zeroing of the nonzero
elements on one side of the main diagonal. Givens rotations zero these elements one
by one. Householder reflections zero entire subrows of elements (i.e., the part of a
row left of the triangularization diagonal) on each application. The order in which
such transformations may be applied must be constrained so that they do not
“unzero” previously zeroed elements.

6.4.5.1 Triangularization by Givens Rotations. This method for triangular-
ization, due to Wallace Givens [164], uses a plane rotation matrix T;(0) of the



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING

following form:

1 0 0 0 0 0

0 1 0 0 0 0 0

jl10 0 cos() O - 0 sin(6) 0

0 0 1 0 0 0

Tg/(g) =

0O -~ 0 0 0 1 0 0

ilo 0 —sin(@) 0 0 cos(d) O

0 --- 0 0 0 0 0 1

0 --- 0 0 0 0 0 0

231

(6.44)

It is also called a Givens rotation matrix or Givens transformation matrix. Except for
the ith and jth rows and columns, the plane rotation matrix has the appearance of an
identity matrix. When it is multiplied on the right-hand side of another matrix, it
affects only the ith and jth columns of the matrix product. It rotates the ith and jth
elements of a row or column vector, as shown in Figure 6.3. It can be used to rotate
one of the components all the way to zero, which is how it is used in triangular-

ization.

Triangularization of a matrix 4 by Givens rotations is achieved by successive
multiplications of 4 on one side by Givens rotation matrices, as illustrated by the

following example.

Jj® vector

component

th

Fig. 6.3 Component transformations by plane rotation.

i™ vector component



232 IMPLEMENTATION METHODS

EXAMPLE 6.7 Consider the problem of upper triangularizing the 2 x 3 symbolic
matrix

A:[an ap 013] (6.45)
dyp dpyy dy

by multiplying with Givens rotation matrices on the right. The first product
A'(0) = AT5;(0)

10 0
a a a
| " 13:| 0 cos(f) sin(H)
a a a

ST B0 Zsin(0)  cos(0)

_a” a12 COS(O) — 013 Sln(O) alz Sln(()) + (113 COS(O):|

ay, ’azz cos(0) — ax sin(@)‘ ay, sin(0) + a,; cos(0)

The framed element in the product will be zero if a3, +a3; =0, and if
a3, + a3, > 0, the values

cos(l) = =2, sin(0) = -2

2 2 "
ay, + a3 Vay + ay;

will force it to zero. The resulting matrix A can be multiplied again on the right by
the Givens rotation matrix 7}5(60) to yield yet a second intermediate matrix form

A(0) = ATy(0)T15(0)

_ .- cos(é) sin(é)
ap 4 dis
= 0 1 0

ay 0 ay , ,
" L—sin(@) 0 cos(6)

for O such that

a1
2 2
Vay + ays

cos(é) =93 sin(é) =

3 7 ’
Va3 +ay;



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 233

A third Givens rotation yields the final matrix form

A(0) = ATy5(0)Ty5(0)T,5(0)
cos(@) sin(@) 0

_ ay  ap  ap Lo N
—|: 0 0 &23i| —sin(f) cos(0) 0

0 1
_ 0 a, ap;
0 0 ay
for 0 such that
, aj, . ay
cos(f)) = ————=, sin(0) = ——==.
aj, + ai, Vai, +ai,

The remaining nonzero part of this final result is an upper triangular submatrix right
adjusted within the original array dimensions.

The order in which successive Givens rotation matrices are applied is constrained
to avoid “unzeroing” elements of the matrix that have already been zeroed by
previous Givens rotations. Figure 6.4 shows the constraints that guarantee such
noninterference. If we suppose that the element to be annihilated (designated by x in
the figure) is in the ith column and kth row and the corresponding diagonal element
of the soon-to-be triangular matrix is in the jth column, then it is sufficient if the
elements below the kth rows in those two columns have already been annihilated by
Givens rotations. The reason for this is simple: the Givens rotations can only form
linear combinations of row elements in those two columns. If those row elements are
already zero, then any linear combination of them will also be zero. The result: no
effect.

Matrix to be triangularized Givens rotation matrix T,(6)

-7 n - r+n >
[ ] 1 A
1
1
cos(0) sin(0)
k | x| || 1 . r+n
0 0 _ 1
—sin(0) cos(0)
. 1
[ l
J 1
1]y

Fig. 6.4 Constraints on Givens triangularization order.



234 IMPLEMENTATION METHODS

A Givens Triangularization Algorithm. The method used in the previous example
can be generalized to an algorithm for upper triangularization of an n x (n +r)
matrix, as listed below:

Input: A, an-by(n+r) matrix

Output: A is overwritten by an upper triangular matrix C,
right-adjusted inthearray, suchthat outputvalueof
CC’" equals input value of AA’.

for i=n:-1:1,
for j=l:r+i,
rho=sqrt (A(i,r+i) "2+A(1i,3)"2);
s=A(i,3j) / rho;
c=A(i,r+i)/rho;
for k=1:1,
x =c*A(k,j)-s*A(k,r+1i);
A(k,r+i)=s*A(k,j)+c*A(k,r+1i);
A(k,j)=x;
end;
end;
end;

In this particular form of the algorithm, the outermost loop (the loop with index 7 in
the listing) zeros elements of 4 one row at a time. An analogous algorithm can be
designed in which the outermost loop is by columns.

6.4.5.2 Triangularization by Householder Reflections. This method of
triangularization was discovered by Alston S. Householder [172]. It uses an
elementary matrix of the form

2
T()=1——w, (6.46)
vy

where v is a column vector and / is the identity matrix of the same dimension. This
particular form of the elementary matrix is called a Householder reflection, House-
holder transformation, or Householder matrix.

Note that Householder transformation matrices are always symmetric. They are
also orthogonal, for

TWTT(v) = <1 — % WT) (1 — v%v WT> (6.47)
=1- %VVT + Ty vvTvp! (6.48)

— I (6.49)



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 235

T(v)x

Fig. 6.5 Householder reflection of a vector x

They are called “reflections” because they transform any matrix x into its “mirror
reflection” in the plane (or hyperplane®) normal to the vector v, as illustrated in
Figure 6.5 (for three-dimensional v and x). By choosing the proper mirror plane, one
can place the reflected vector T(v)x along any direction whatsoever, including
parallel to any coordinate axis.

EXAMPLE 6.8: Householder Reflection Along One Coordinate Axis Let x be
any n-dimensional row vector, and let

(0 00 - 010 - 0)

be the kth row of the n x n identity matrix. If the vector v of the Householder
reflection 7'(v) is defined as

v=x"+ ocez,
where o is a scalar, then the inner products

viv = |x|2 + 2000, + o2,

xXv = |x|2 + axy,

The dimension of the hyperplane normal to the vector v will be one less than the dimension of the space
containing v. When, as in the illustration, v is a three-dimensional vector (i.e., the space containing v is
three-dimensional), the hyperplane normal to v is a two-dimensional plane.



236 IMPLEMENTATION METHODS

where x; is the kth component of x. The Householder reflection x7'(v) of x will be

2
xT(v) :x(l —TVVT>
vy
2
=x(/——— = T
x( xTx 4 20x;, + o? v )
2
e — XV T
|x|” + 200, + o2
2(|x1” + o)

= XxX———(xF e
|x|2+20cxk+oc2( 2

_ [1 2 o) ]x _ [ 20([x|” + ) ]e

x| + 200, + o2 x| + 200, 4 o2

_ |: o? — |x|? }x— |: 20(|x|* 4 o) }e
x| + 2000, + o2 x|? + 200, + o2 k

Consequently, if one lets
o = Flx|, (6.50)
then
xT(v) = |x|e;. (6.51)

That is, xT'(v) is parallel to the kth coordinate axis.
If, in the above example, x were the last row vector of an n x (n + r) matrix

w=17%]

and letting £ = 1, then

|:ZT(v):|
MT(v) = (6.52)
xT(v)
ZT
:[ v ] 653
00 0 --- 0 Ix

the first step in upper triangularizing a matrix by Householder reflections.

Upper Triangularization by Successive Householder Reflections. A single
Householder reflection can be used to zero all the elements to the left of the diagonal



6.4 FACTORIZATION METHODS FOR KALMAN FILTERING 237

in an entire row of a matrix, as shown in Figure 6.6. In this case, the vector x to be
operated upon by the Householder reflection is a row vector composed of the first £
components of a row of a matrix. Consequently, the dimension of the Householder
reflection matrix 7(v) need only be &, which may be strictly less than the number of
columns in the matrix to be triangularized. The “undersized” Householder matrix is
placed in the upper left corner of the transformation matrix, and the remaining
diagonal block is filled with an (appropriately dimensioned) identity matrix /, such
that the row dimension of the resulting transformation matrix equals the column
dimension of the matrix to be triangularized. The resulting composite matrix will
always be orthogonal, so long as T(v) is orthogonal.

There are two important features of this construction. The first is that the presence
of the identity matrix has the effect of leaving the columns to the right of the kth
column undisturbed by the transformation. The second is that the transformation
does not “unzero” previously zeroed rows below. Together, these features allow the
matrix to be triangularized by the sequence of transformations shown in Figure 6.7.
Note that the size of the Householder transformation shrinks with each step.

I T(v) ol T _‘_LLl
0 L, : 0

Fig. 6.6 Zeroing one subrow with a Householder reflection.

INPUT MATRIX
oCp | GCq
SEQUENCE OF HOUSEHOLDER REFLECTIONS
T T )
1 1
T(vm)' 0
1 1 m
T(v;) ,0 !
10) 3
T(v) TOo) : e
1 R R 0 !
et et | BT !
SEQUENCE OF PARTIAL RESULTS FINAL RESULT
0
—— ) S | B 0

Fig. 6.7 Upper triangularization by Householder reflections.



238 IMPLEMENTATION METHODS

Householder Triangularization Algorithm. The algorithm listed below performs
upper triangularization of a rectangular matrix #n X (n+r) 4 in place using a
scratchpad (n + r)-vector v. The result is an upper triangular » x n matrix, right
adjusted in the array 4.

This algorithm includes a rescaling computation (involving the absolute value
function abs) for better numerical stability. It is modified after the one given by
Golub and Van Loan [89] for Householder triangularization. The modification is
required for applying the Householder transformations from the right, rather than
from the left, and for the particular form of the input matrix used in the Kalman filter
implementation. Further specialization of this algorithm for Kalman filtering is
presented later in Table 6.14.

for k=n:-1:1,

sigma=0;

for j=1l:r+k,
sigma=sigma+A(k,j) "2;

end;

a=sqrt(sigma) ;

sigma=0;

for j=1l:r+k,
if j==r+k

v(j)=a(k,j)-a;
else
v(j)=A(k,j);

end;
sigma=sigma+v(j) " 2;

end;

a=2/sigma;

for i=1:k,

sigma=0;

for j=1l:r+k,
sigma=sigma+A(i,J)*v(j);

end;

b=a*sigma;

for j=1l:r+k,
A(i1,]j)=A(i,3)-b*v(]);

end;

end;
end;

6.5 SQUARE-ROOT AND UD FILTERS

Square-root filtering uses a reformulation of the Riccati equations such that the
dependent variable is a Cholesky factor (or modified Cholesky factor) of the state
estimation uncertainty matrix P. We present here just two of the many forms of
square-root Kalman filtering, with other forms presented in the following section.
The two selected forms of square-root filtering are



6.5 SQUARE-ROOT AND UD FILTERS 239

1. Carlson—Schmidt square-root filtering, which uses Cholesky factors of P, and
2. Bierman—Thornton UD filtering, which uses modified Cholesky factors of P.

These are perhaps the more favored implementation forms (after the conventional
Kalman filter), because they have been used extensively and successfully on many
problems that would be too poorly conditioned for conventional Kalman filter
implementation. The UD filter, in particular, has been used successfully on problems
with thousands of state variables.

This does not necessarily imply that these two methods are to be preferred above
all others, however. It may be possible that the Morf-Kailath combined square-root
filter (Section 6.6.2), for example, performs as well or better, but we are currently not
aware of any comparable experience using that method.

6.5.1 Carlson—Schmidt Square-Root Filtering

This is a matched pair of algorithms for the observational and temporal update of the
covariance matrix P in terms of its Cholesky factors. If the covariance matrices R
(measurement noise) and Q (dynamic process noise) are not diagonal matrices, the
implementation also requires UD or Cholesky factorization of these matrices.

6.5.1.1 Carlson ““Fast Triangular’’ Update. This algorithm is implemented in
the MATLAB m-file carlson.m on the accompanying diskette. The algorithm is due
to Neal A. Carlson [149]. It generates an upper triangular Cholesky factor W for the
Potter factorization and has generally lower computational complexity than the
Potter algorithm. It is a specialized and simplified form of an algorithm used by
Agee and Turner [106] for Kalman filtering. It is a rank 1 modification algorithm,
like the Potter algorithm, but it produces a triangular Cholesky factor. It can be
derived from Problem 6.14.

In the case that m = j, the summation on the left-hand side of Equation 6.157 has
but one term:

VV
WW,=A; — 6.54
yoau y R+Zk lvk ( )

which can be solved in terms of the elements of the upper triangular Cholesky factor
W:

0, i>],
R+ Y 1Vk =
Wy =1V R+ 3w (6.55)
—V;V;

iV
R+ VDR + Y v

Given the above formula for the elements of ¥, one can derive the formula for the
elements of C(4+) = C(—)W, the upper triangular Cholesky factor of the a posteriori

i<j.



240 IMPLEMENTATION METHODS

covariance matrix of estimation uncertainty P(+), given C(—), the upper triangular
Cholesky factor of the a priori covariance matrix P(—).

Because both C and W are upper triangular, the elements C;, = 0 for k¥ < i and
the elements Wy, = 0 for k > j. Consequently, for I <i <j < n, the element in the
ith row and jth column of the matrix product C(—)W = C(+4) will be

J
Cy(+) = kX_: Cy(—)W); + terms with zero factors (6.56)
j=1
= Cij(_)Wjj + kZ: C[k(_)ij (6.57)
— Clj(_) R+ Zk lvk
VR+ Y v
Jj-1 2 (—)VLV;
- ;1”‘( VY (6.58)
i= (R + VDR + 30y vi)
, ~1/2
J
=1

j 1
/ ,( )

This is a general formula for the upper triangular a posteriori Cholesky factor of the
covariance matrix of estimation uncertainty, in terms of the upper triangular a priori
Cholesky factor C(—) and the vector v = CTHT, where H is the measurement
sensitivity matrix (a row vector). An algorithm implementing the formula is given in
Table 6.11. This algorithm performs the complete observational update, including
the update of the state estimate, in place. [Note that this algorithm forms the product
v = CT'(—)H" internally, computing and using the components ¢ = v; as needed,
without storing the vector v. It does store and use the vector w = C(—)v, the
unscaled Kalman gain, however.]

It is possible—and often desirable—to save array space by storing triangular
matrices in singly subscripted arrays. An algorithm (in FORTRAN) for such an
implementation of this algorithm is given in Carlson’s original paper [149].

6.5.1.2 Schmidt Temporal Update

Nonsquare, Nontriangular Cholesky Factor of P,(—). If Cp is a Cholesky factor
of P,_;(+) and C, is a Cholesky factor of Oy, then the partitioned n x (n + ¢)
matrix

=[G,Cy | BCpl (6.60)



6.5 SQUARE-ROOT AND UD FILTERS 241

TABLE 6.11 Carlson’s Fast Triangular Observational Update

Symbol Definition

Value of scalar measurement

Variance of scalar measurement uncertainty

Scalar measurement sensitivity vector (1 x n matrix)
Cholesky factors of P(—) (input) and P(+) (output)
State estimates x(—) (input) and x(+) (output)
Unscaled Kalman gain (internal)

ExXO0OIT TN

alpha=R;
delta=z;
for j=1:n,
delta=delta-H(j)*x(j);
sigma=0;
for i=1:3j,
sigma=sigma+C(i,j)*H(1);
end;
beta=alpha;
alpha=alpha+sigma”2;
gamma=sqrt (alpha*beta) ;
eta=beta / gamma;
zeta=sigma,/ gamma;
w(j)=0;
for i=1:3,
tau=C(i,J);
C(i,j)=eta*C(i,j)-zeta*w(i);
w(i)=w(i)+tau*sigma;
end;
end;
epsilon=delta / alpha;
for i=1:n,
x(i)=x(i)+w(i)*epsilon;
end;

Computational complexity: (2n* +7n + 1) flops + n /-

has the n x n symmetric matrix product value

AAT =[Gy, Cyl Dy, Cpl[Gy_, Col Dy, Cpl" (6.61)
=0, CpCp®;_, + G, CoCHGY, (6.62)
=&, P (DD + G_10,_,Gi_, (6.63)

= Py(-) (6.64)



242 IMPLEMENTATION METHODS

That is, 4 is a nonsquare, nontriangular Cholesky factor of P,(—). If only it were
square and triangular, it would be the kind of Cholesky factor we are looking for. It
is not, but fortunately there are algorithmic procedures for modifying A4 to that
format.

Programming note: Computation of GCy and ®Cp in place. This should be
attempted only if memory limitations demand it. The product ®Cp can be computed
in place by overwriting @ with the product ®Cp. This is not desirable if @ is
constant, however. (It is possible to overwrite Cp with the product ®Cp, but this
requires the use of an additional n-vector of storage. This option is left as an exercise
for the truly needy.) Similarly, the product GCy can be computed in place by
overwriting G with the product GCy if r < n. Algorithms for doing the easier in-
place operations when the Cholesky factors C, and Cp are upper triangular are
shown in Table 6.12. Note that these have roughly half the computational complex-
ities of the general matrix products.

Triangularization using Givens Rotations. The Givens triangularization algo-
rithm is presented in Section 6.4.5. The specialization of this algorithm to use GC,
and ®C5, in place, without having to stuff them into a common array, is shown in
Table 6.13.

The computational complexity of Givens triangularization is greater than that of
Householder triangularization, which is covered next. There are two attributes of the
Givens method that might recommend it for certain applications, however:

1. The Givens triangularization procedure can exploit sparseness of the matrices
to be triangularized. Because it zeros elements one at a time, it can skip over
elements that are already zero. (The procedure may “unzero” some elements
that are already zero in the process, however.) This will tend to decrease the
computational complexity of the application.

TABLE 6.12 Algorithms Performing Matrix Products in Place

Overwriting ® by ®Cp Overwriting G by GCq
for j=n:-1:1, for j=r:-1:1,
for i=1:n, for i=1:n,
sigma=0; sigma=0;
for k=1:73, for k=1:7,
sigma=sigma+Phi(i,k)*CP(k,Jj); sigma=sigma+G(i,k)*CQ(kj);
end; end;
Phi(i,j)=sigma; G(i,j)=sigma;
end; end;
end; end;

Computational complexities
nP(n+1)/2 nr(r+1)/2




6.5 SQUARE-ROOT AND UD FILTERS 243

TABLE 6.13 Temporal Update by Givens Rotations

Symbol Description
A Input: GxCq,, an n x r matrix.

Output: A is overwritten by intermediate results.
B Input: @, Cp, (+), an n x n matrix.

Output: B is overwritten by the upper triangular matrix Cp, _ (-).

for i=n:-1:1,
for j=1:r,
rho=sqrt(B(i,i) "2+A(i,])"2);
s=A(i,j)/rho;
c=B(i,i)/rho;
for k=1:1,
tau=c*A(k,j)-s*B(k,1);
B(k,i)=s*A(k,j)+c*B(k,1i);
A(k,j)=tau;
end;
end;
for j=1:i-1,
rho=sqrt(B(i,1) "2+B(1i,3)"2);
s=B(1i,j)/rho;
c=B(i,i)/rho;
for k=1:1,
tau=c*B(k,j)-s*B(k,1);
B(k,1)=s*B(k,j)+c*B(k,1);
B(k,j)=tau;
end;
end;
end;

Computational complexity: §n2(2n +3r+6)+6nr+ % nflops +n(n+2r+ N/~

2. The Givens method can be “parallelized” to exploit concurrent processing
capabilities, if they are available. The parallelized Givens method has no data
contention among concurrent processes—they are working with data in
different parts of the matrix as it is being triangularized.

Schmidt Temporal Updates Using Householder Reflections. The basic House-
holder triangularization algorithm (see Section 6.4.5.2) operates on a single
n x (n+r) matrix. For the method of Dyer and McReynolds, this matrix is
composed of two blocks containing the matrices GCy(n x r) and ®P(n x n).

The specialization of the Householder algorithm to use the matrices GCy and ®P
directly, without having to place them into a common array first, is described and
listed in Table 6.14. Algorithms for computing GC, and ®@P in place were given in
the previous subsection.



244 IMPLEMENTATION METHODS

TABLE 6.14 Schmidt—Householder Temporal Update Algorithm

This modification of the Householder algorithm performs upper triangularization of the partitioned
matrix [®Cp(+), GCq] by modifying ®Cp(+) and GCq, in place using Householder transformations of
the (effectively) partitioned matrix.

Input Variables

Symbol Description
A n x n matrix ®Cp(+)
B n x r matrix GCq
Output Variables
A Array is overwritten by upper triangular result Cp(—) such
that Cp(—)Ch(~) = DCp(+)CH(H)DT + GCoCLG".
B Array is zeroed during processing.
Intermediate Variables
o, f,o Scalars
v Scratchpad n-vector
w Scratchpad n + r-vector

for k=n:-1:1,
sigma=0;
for j=1l:r,
sigma=sigma+B(k,j) "2;
end;
for j=1:k,
sigma=sigma+A(k,j)"2;
end;
alpha=sqrt(sigma) ;
sigma=0;
for j=1:r,
w(j)=B(k,J);
sigma=sigma+w(3j) "2;
end;
for j=1:k,
if j==
v(j)=A(k,j)-alpha;
else
v(j)=A(k,3);
end;
sigma=sigma+v(j)"2;
end;
alpha=2/sigma;
for i=1:k,
sigma=0;
for j=1:r,
sigma=sigma+B(i,j)*w(j);
end;
for j=1:k,
sigma=sigma+A(i,j)*v(j);
end;
beta=alpha*sigma;
for j=1:r,
B(i,j)=B(i,j)-beta*w(j);
end;
for j=1:k,
A(i,j)=A(i,j)-beta*v(]);
end;
end;
end;

Computational complexity: n*r +%(n+1)°r +5 +1(2n+ 1) flops.



6.5 SQUARE-ROOT AND UD FILTERS 245

6.5.2 Bierman—Thornton UD Filtering

This is a pair of algorithms, including the Bierman algorithm for the observational
update of the modified Cholesky factors U and D of the covariance matrix
P = UDUT, and the corresponding Thornton algorithm for the temporal update of
U and D.

6.5.2.1 Bierman UD Observational Update. Bicrman’s algorithm is one of
the more stable implementations of the Kalman filter observational update. It is
similar in form and computational complexity to the Carlson algorithm but avoids
taking scalar square roots. (It has been called “square-root filtering without square
roots.”) The algorithm was developed by the late Gerald J. Bierman (1941-1987),
who made many useful contributions to optimal estimation theory, especially in
implementation methods.

Partial UD Factorization of Covariance Equations. In a manner similar to the
case with Cholesky factors for scalar-valued measurements, the conventional form of
the observational update of the covariance matrix

P(—)H"HP(-)

PO =PO) = T mp oyt

can be partially factored in terms of UD factors:

P(-) € U(-)DUT(-), (6.65)
P(+) & UEDHHUT (), (6.66)
UH)D(H)UT(+) = U(-)D(—)U"(-) (6.67)

_ U(=)D(-)UT(=)HTHU(=)D(-)
R+ HU(—)D(—)UT(—)HT
U(=)D(=)wW'D(-)UT(-)

U'(-)

= U(=)D(=)U'(-) — (6.68)

R+VID(—)v
~ )| D) - %] (), (6.69)
where
v=UY(—)H" (6.70)

is an n-vector and # is the dimension of the state vector.



246 IMPLEMENTATION METHODS
Equation 6.69 contains the unfactored expression
D(=) — D(=)V[V'D(=)v + R]"'vID(-).
If one were able to factor it with a unit triangular factor B in the form
D(=) — D(=)V[V'D(=)v + R]"'v'D(—) = BD(+)B", (6.71)
then D(+4) would be the a posteriori D factor of P because the resulting equation

U(+)D(+)UT(+) = U(-){BD(+)B"}UT(-) (6.72)
= {U(-)BD(+){U(-)B} (6.73)

can be solved for the a posteriori U factor as
UH)=U(-)B. (6.74)

Therefore, for the observational update of the UD factors of the covariance matrix P,
it suffices to find a numerically stable and efficient method for the UD factorization
of a matrix expression of the form D — Dv[v'Dv + R]"'v'D, where v = U"H" is a
column vector. Bierman [7] found such a solution, in terms of a rank 1 modification
algorithm for modified Cholesky factors.

Bierman UD Factorization. Derivations of the Bierman UD observational update
can be found in [7]. It is implemented in the accompanying MATLAB m-file
bierman.m.

An alternative algorithm implementing the Bierman UD observational update in
place is given in Table 6.15. One can also store w over v, to save memory
requirements. It is possible to reduce the memory requirements even further by
storing D on the diagonal of U, or, better yet, storing just the strictly upper triangular
part of U in a singly-subscripted array. These programming tricks do little to
enhance readability of the algorithms, however. They are best avoided unless one is
truly desperate for memory.

6.5.2.2 Thornton UD Temporal Update. This UD factorization of the
temporal update in the discrete-time Riccati equation is due to Catherine Thornton
[124]. It is also called modified weighted Gram—Schmidt (MWGS) orthogonaliza-
tion.” It uses a factorization algorithm due to Bjorck [141] that is actually quite
different from the conventional Gram—Schmidt orthogonalization algorithm and

"Gram-Schmidt orthonormalization is a procedure for generating a set of “unit normal” vectors as linear
combinations of a set of linearly independent vectors. That is, the resulting vectors are mutually
orthogonal and have unit length. The procedure without the unit-length property is called Gram—Schmidt
orthogonalization. These algorithmic methods were derived by Jorgen Pedersen Gram (1850-1916) and
Erhard Schmidt (1876—1959).



6.5 SQUARE-ROOT AND UD FILTERS 247

TABLE 6.15 Bierman Observational Update

Symbol Definition

z Value of scalar measurement

R Variance of scalar measurement uncertainty

H Scalar measurement sensitivity vector (1 x n matrix)
u,bD UD factors of P(—) (input) and P(+) (output)

X State estimates x(—) (input) and x(+) (output)

v scratchpad n-vector

w scratchpad n-vector

delta=z;
for j=1:n,
delta=delta-H(3)*x(j);
v(j)=H(3);
for i=1:j-1,
v(j)=v(3)+U(i,7)*H(1);
end;
end;
sigma=R;
for j=1:n,
nu=v(j);
v(j)=v(3)*D(3,3);
w(j)=nu;
for i=1:3-1,
tau=U(1i,7J)*nu;
U(i,j)=U(i,Jj)-nu*w(i)/sigma;
w(i)=w(i)+tau;
end;
D(j,j)=D(j,j)*sigma;
sigma=sigma+nu*v(j);
D(j,3j)=D(j,j)*sigma;
end;
epsilon=delta / sigma;
for i=1:n,
x(1)=x(i)+v(i)*epsilon;
end;

Computational complexity: (2n? +7n+ 1) flops.

more robust against roundoff errors. However, the algebraic properties of Gram—
Schmidt orthogonalization are useful for deriving the factorization.
Gram—Schmidt orthogonalization is an algorithm for finding a set of » mutually

orthogonal m-vectors by, b,, bs, ..., b,, that are linear combinations of a set of n
linearly independent m-vectors a,, a,, as, ..., a,,. That is, the inner products
b,* if =,
T i
bib; = (6.75)

0 if i)



248 IMPLEMENTATION METHODS

The Gram—Schmidt algorithm defines a unit lower® triangular n x » matrix L such
that 4 = BL, where

A=[a;, ay a3 --- a,] (6.76)

=BL (6.77)
r10 0 0]
6 10 0

=[b, by by --- b,J| b1 & 1 -0 (6.78)
Ll b by oo 1

where the vectors b; are column vectors of B and the matrix product

1B, 0 0 -~ 0
0 b 0 -~ 0
B'B=| 0 0 b -~ 0 (6.79)
. 0 0 0 - b,
= diag, ;- {16’} (6.80)
= Dy, (6.81)

a diagonal matrix with positive diagonal values f3;, = |b,~|2.

Weighted Gram—Schmidt Orthogonalization. The m-vectors x and y are said to

be orthogonal with respect to the weights wy, w,, ws, ..., w,, if the weighted inner
product
m
Y xwy; =x'D,y (6.82)
i=1
=0, (6.83)

where the diagonal weighting matrix

D,, = diag,_;,{w:}- (6.84)

8In its original form, the algorithm produced a unit upper triangular matrix U by processing the a; in the
order i = 1,2,3, ..., n. However, if the order is reversed, the resulting coefficient matrix will be lower
triangular and the resulting vectors b; will still be mutually orthogonal.



6.5 SQUARE-ROOT AND UD FILTERS 249

The Gram—Schmidt orthogonalization procedure can be extended to include ortho-
gonality of the column vectors b; and b; with respect to the weighting matrix D,,:

p;>0 if i =,
b/D,b; = T (6.85)
0 if i #j.

The resulting weighted Gram—Schmidt orthogonalization of a set of n linearly
independent m-vectors a,, a,, a3, ..., a, Wwith respect to a weighting matrix D,,
defines a unit lower triangular n x n matrix L,, such that the product AL,, = B,, and

BlDwa = diaglfifn{ﬁi}v (686)
where D,, = I for conventional orthogonalization.

Modified Weighted Gram—Schmidt Orthogonalization. The standard Gram—
Schmidt orthogonalization algorithms are not reliably stable numerical processes
when the column vectors of 4 are close to being linearly dependent or the weighting
matrix has a large condition number. An alternative algorithm due to Bjorck has
better overall numerical stability. Although L is not an important result for the
orthogonalization problem (B is), its inverse turns out to be more useful for the UD
filtering problem.

The Thornton temporal update for UD factors uses triangularization of the Q
matrix (if it is not already diagonal) in the form QO = GDQGT, where Dy, is a
diagonal matrix. If we let the matrices

B [ UE_1(+)<DE} 657
Gl ’ '
|:Dk—1 + 0 :|
D, = , (6.88)
0 Do,

then the MWGS orthogonalization procedure will produce a unit lower triangular
n x n matrix L~! and a diagonal matrix Dy such that

A=BL, (6.89)
L'DyL = L"B"D,BL (6.90)
= (BL)'D,BL (6.91)

=A"D, 4 (6.92)



250 IMPLEMENTATION METHODS

Diy(+) 0 [ UL (Hdf,
= [ Ui () Gpy] T (6.93)
0 DQk—l Gk—l
= O Ui (DD (DU (DO + G Dy, Gy (6.94)
=0, Py (DD + Op (6.95)
— Py(—). (6.96)
Consequently, the factors
U(—) =L", (6.97)
Dy(—) =Dy (6.98)

are the solutions of the temporal update problem for the UD filter.

Diagonalizing Q. 1t is generally worth the effort to “diagonalize” Q (if it is not
already a diagonal matrix), because the net computational complexity is reduced by
this procedure. The formula given for total computational complexity of the
Thornton algorithm in Table 6.16 includes the computational complexity for the
UD decomposition of Q as UpQUj; for Q diagonal [¢p(p — 1)(p + 4) flops] plus
the computational complex1ty for multiplying G by the resulting p X p unit
upper triangular factor UQ [2 np(p — 1) flops] to obtain G.

_ The algorithm listed in Table 6.16 operates with the matrix blocks ®U, G, D, and
O by name and not as submatrices of some larger matrix. It is not necessary to
physically relocate these matrices into larger arrays in order to apply the Bjorck
orthogonalization procedure. The algorithm is written to find them in their original
arrays. (It makes the listing a little longer, but the computational complexity is the
same.)

Multiplying ®U in Place. The complexity formulas in Table 6.16 also include the
computations required for forming the product ®U of the n x n state transition
matrix ® and the » x n unit upper triangular matrix U. This matrix product can be
performed in place—overwriting ® with the product ®U—by the following
algorithm:

for i=1:n,
for j=n:-1:1,
sigma=Phi(i,Jj);
for k=1:j-1,
sigma=sigma+Phi(i,k)*U(k,J);
end; Phi(i,j)=sigma;
end;
end;



6.5 SQUARE-ROOT AND UD FILTERS 251

TABLE 6.16 Thornton UD Temporal Update Algorithm?

Symbol Description
Inputs
D The n x n diagonal matrix. Can be stored as an n-vector.
U Matrix product of n x n state transition matrix ® and n x n unit upper triangular

matrix U such that UDUT = P(+), the covariance matrix of a posteriori state
estimation uncertainty.

G = GU,. The modified n x p process noise coupling matrix, where
Q = UQDQ U(-:r)

Dqo Diagonalized p x p covariance matrix of process noise. Can be stored as a p-
vector.

Outputs
u Is overwritten by intermediate results.
Is overwritten by intermediate results.
The n x n diagonal matrix. Can be stored as an n-vector.
The n x n unit upper triangular matrix such that UDUT = ®UDUT®" + GQG'.

[«NwNoNC)

for i=n:-1:1,
sigma=0;
for j=1:n,
sigma=sigma+PhiU(i,j) "2*D(3,J);
end;
for j=1:p,
sigma=sigma+G(i,j) "2 *DQ(J,]);
end;
D(i,i)=sigma;
U(i,i)=1
for j=1:1i-1,
sigma=0;
for k=1:n,
sigma=sigma+PhiU(i,k)*D(k,k)*PhiU(], k) ;
end;
for k=1:p,
sigma=sigma+G(i,k)*DQ(k,k)*G(j,k);
end;
U(j,i)=sigma / D(i,1i);
for k=1:n,
PhiU(j,k)=PhiU(]j,k)-U(J,1)*PhiU(1i,k);
end;
for k=1:p,
G(j,k)=G(3,k)-U(]j,1)*G(i,k);
end;
end;
end;

Computational Complexity Breakdown (in flops)

Matrix product U m(n—1)/2

Solve UgDQUL = Q,G=GUy  p(p—1)Bn+p+4)/6

Thornton algorithm 3n(n—1)(n+p)/2

Total n(n—1)4n+3p—1)/2+p(pP—-1)Bn+p+4)/6

@Performs the temporal update of the modified Cholesky factors (UD factors) of the covariance matrix of state
estimation uncertainty for the Kalman filter.



252 IMPLEMENTATION METHODS

The computational complexity of this specialized matrix multiplication algorithm
is n?(n — 1)/2, which is less than half of the computational complexity of the
general n x n matrix product (#). Performing this multiplication in place also frees
up the array containing U,(4) to accept the updated value U, (—). In some
applications, @ will have a sparse structure that can be exploited to reduce the
computational requirements even more.

6.6 OTHER ALTERNATIVE IMPLEMENTATION METHODS

The main thrust of this chapter is the square-root filtering methods presented in the
previous section. Although factorization methods are probably the most numerically
stable implementation methods currently available, there are other alternative
methods that may perform adequately on some applications, and there are some
earlier alternatives that bear mentioning for their historical significance and for
comparisons with the factorization methods.

6.6.1 Earlier Implementation Methods

6.6.1.1 Swerling Inverse Formulation. This is not recommended as an
implementation method for the Kalman filter, because its computational complexity
and numerical stability place it at a disadvantage relative to the other methods. Its
computational complexity is derived here for the purpose of demonstrating this.

Recursive Least Mean Squares. This form of the covariance update for recursive
least mean squares estimation was published by Peter Swerling [227]. Swerling’s
estimator was essentially the Kalman filter but with the observational update
equation for the covariance matrix in the form

PH) =[P (=) +H"R'H] ",

This implementation requires three matrix inversions and two matrix products. If the
observation is scalar valued (m = 1), the matrix inversion R~! requires only one
divide operation. One can also take advantage of diagonal and symmetric matrix
forms to make the implementation more efficient.

Computational Complexity of Swerling Inverse Formulation.® For the case that
the state dimension » = 1 and the measurement dimension £ = 1, it can be done
with 4 flops. In the case that n > 1, the dependence of the computational complexity

°See Section 6.4.2.6 for an explanation of how computational complexity is determined.



6.6 OTHER ALTERNATIVE IMPLEMENTATION METHODS 253

TABLE 6.17 Operation Summary for Swerling Inverse Formulation

Operation Flops
R Gl tleitesA,
1ife=1
(R"YHH ne?
H'(R™"H) e +3ne
P (=) +(HTR'H) m+im4+1n

[P (=) +H R H]™ m+im+1in
Total 2r¥ + P+ n+inPe+ne® +ine+ 68 +302 40

on ¢ and n is shown in Table 6.17.'" This is the most computationally intensive
method of all. The number of arithmetic operations increases as #*. The numbers of
operations for the other methods increase as n%¢ + £3, but usually n > £ in Kalman
filtering applications.

6.6.1.2 Kalman Formulation

Data Flows. A data flow diagram of the implementation equations defined by
Kalman [179] is shown in Figure 6.8. This shows the points at which the
measurements (z) and model parameters (H, R, ®, and Q) are introduced in the
matrix operations. There is some freedom to choose exactly how these operations
shown will be implemented, however, and the computational requirements can be
reduced substantially by reuse of repeated subexpressions.

Reuse of Partial Results. In this “conventional” form of the observational update
equations, the factor {HP} occurs several times in the computation of K and P:

K = P(—)H'[HP(—)H" +R]' (6.99)
= {HP(—=)} [{HP(-)}H" + R]"", (6.100)
P(+) = P(—) — K{HP(—)}. (6.101)

The factored form shows the reusable partial results [HP(—)] and K (the Kalman
gain). Using these partial results where indicated, the implementation of the factored

!There is an alternative matrix inversion method (due to Strassen [228]) that reduces the number of
multiplies in an 7 x n matrix inversion from n® to n'°27 but increases the number of additions
significantly.



254 IMPLEMENTATION METHODS

PO — ~(+ )~ P() —»@—»@-»Q—»p

T

®T O~ o —»é)—‘

= O%-
5&_ T T + 3?5+ —»5&—
Srs i p ()q>(:)7ﬁﬂ )

Y Observational Temporal

Fig. 6.8 Data flows of Kalman update implementations.

form requires four matrix multiplies and one matrix inversion. As in the case of the
Swerling formulation, the matrix inversion can be accomplished by a divide if the
dimension of the observation (£) is 1, and the efficiency of all operations can be
improved by computing only the unique elements of symmetric matrices. The
number of floating-point arithmetic operations required for the observational update
of the Kalman filter, using these methods, is summarized in Table 6.18. Note that the
total number of operations required does not increase as >, as was the case with the

Swerling formulation.

6.6.1.3 Potter Square-Root Filter. The inventor of square-root filtering is

James E. Potter. Soon after the introduction of the Kalman filter, Potter introduced

the idea of factoring the covariance matrix and provided the first of the square-root

methods for the observational update (see Battin [5, pp. 338-340] and Potter [208]).
Potter defined the Cholesky factor of the covariance matrix P as

P(=) E C(-)C" (), (6.102)
P(+) ¥ cyeH)T, (6.103)
TABLE 6.18 Operation Summary for Conventional Kalman Filter
Operation Flops
H x P(-) n?e
Hx [HP(-)]" + R 1ne2 +1ne
(HIHP(I" + Ry €436 +5¢
HIHP(I" + R)™" x [HP(-)] ne?
P(=) = [HP(=)] x {HIHP()]" + R} [HP(-)] anme+gne
Total SrPe+3ne®+ne+ 63+ 502 +1e




6.6 OTHER ALTERNATIVE IMPLEMENTATION METHODS 255

so that the observational update equation
P(+) = P(=) = P(-)H"[HP(-)H" + R HP(-) (6.104)
could be partially factored as
C(HC(+) = C(=-)CT (=)
— C(=)CY(=)HTHC(=)CY(=)HT + R 7' HC(-)CT(-)  (6.105)

= C(=)CY (=) = (=Y + RV CT(-) (6.106)
= C()I, —V[IV'V + RV CT(—), (6.107)
where
I, = n x n identity matrix
V = CY(—)HT" is an n x £ general matrix
n = dimension of state vector

£ = dimension of measurement vector

Equation 6.107 contains the unfactored expression {/, — V[V'TV + R]™'V7}. For the
case that the measurement is a scalar (£ = 1), Potter was able to factor it in the form

L=V + RV = wwT, (6.108)

so that the resulting equation
C(HCH)" = C(=)wwT ' (-) (6.109)
= {CWHC(HW)! (6.110)

could be solved for the a posteriori Cholesky factor of P(+) as
C(H) =C(—)w. (6.111)

When the measurement is a scalar, the expression to be factored is a symmetric
elementary matrix of the form'!

VVT

I, ——, 6.112
" R4|VP ( )

where R is a positive scalar and v = CT(—)HT is a column n-vector.

"!"This expression—or something very close to it—is used in many of the square-root filtering methods for
observational updates. The Potter square-root filtering algorithm finds a symmetric factor /¥, which does
not preserve triangularity of the product C(—)#. The Carlson observational update algorithm (in Section
6.5.1.1) finds a triangular factor ¥, which preserves triangularity of C(+) = C(—)W if both factors C(+)
and W are of the same triangularity (i.e., if both C(—) and W are upper triangular or both lower
triangular). The Bierman observational update algorithm uses a related UD factorization. Because the rank
of the matrix vv' is 1, these methods are referred to as rank 1 modification methods.



256 IMPLEMENTATION METHODS

The formula for the symmetric square root of a symmetric elementary matrix is
given in Equation 6.35. For the elementary matrix format in 6.112, the scalar s of
Equation 6.35 has the value

1
= , 6.113
R+ v} ( )
so that the radicand
v|?

1—sv?=1- 6.114
R+ v} (6.114)

R
=—— 6.115
R+ |v|? ( )
>0 (6.116)

because the variance R > 0. Consequently, the matrix expression 6.112 will always
have a real matrix square root.

Potter Formula for Observational Updates. Because the matrix square roots of
symmetric elementary matrices are also symmetric matrices, they are also Cholesky
factors. That is,

(I —swh) = —owh(I —owh) (6.117)
= —owh(I —awh. (6.118)

Following the approach leading to Equation 6.111, the solution for the a posteriori
Cholesky factor C(+) of the covariance matrix P can be expressed as the product

C(H)C'(+) =P(+) (6.119)
= C(—)I —swhHCT(-) (6.120)
= C(=)I — ovwh(I — ow")'CT(-), (6.121)

which can be factored as'?

C(+) = C(=)I — owvh) (6.122)

2Note that, as R — 0o (no measurement), ¢ — 2/|v|> and I — o' becomes a Householder matrix.



6.6 OTHER ALTERNATIVE IMPLEMENTATION METHODS 257

with
141 —sv?
o= 1 V1-sv (6.123)
V]
1+ VR/R+ |[v]?)
- P i (6.124)
A\

Equations 6.122 and 6.124 define the Potter square-root observational update
formula, which is implemented in the accompanying MATLAB m-file potter.m.
The Potter formula can be implemented irn place (i.e., by overwriting C).

This algorithm updates the state estimate x and a Cholesky factor C of P in place.
This Cholesky factor is a general #» x n matrix. That is, it is not maintained in any
particular form by the Potter update algorithm. The other square-root algorithms
maintain C in triangular form.

6.6.1.4 Joseph-Stabilized Implementation. This variant of the Kalman filter
is due to Joseph [15], who demonstrated improved numerical stability by rearranging
the standard formulas for the observational update (given here for scalar measure-
ments) into the formats

=Rz (6.125)

H =?H, (6.126)

K = (HP(=)H" + 1) 'P(—)H", (6.127)
P(+) = (I — KH)P(—)I —KH)" +KK", (6.128)

taking advantage of partial results and the redundancy due to symmetry. The
mathematical equivalence of Equation 6.128 to the conventional update formula
for the covariance matrix was shown as Equation 4.23. This formula, by itself, does
not uniquely define the Joseph implementation, however. As shown, it has ~n?
computational complexity.

Bierman Implementation. This is a slight alteration due to Bierman [7] that
reduces computational complexity by measurement decorrelation (if necessary) and
the parsimonious use of partial results. The data flow diagram shown in Figure 6.9 is
for a scalar measurement update, with data flow from top (inputs) to bottom
(outputs) and showing all intermediate results. Calculations at the same level in
this diagram may be implemented in parallel. Intermediate (temporary) results are
labeled as 7, 75, ..., Ty, where I, = K, the Kalman gain. If the result (left-hand
side) of an m x m array is symmetric, then only the %m(m + 1) unique elements
need be computed. Bierman [7] has made the implementation more memory
efficient by the reuse of memory locations for these intermediate results. Bierman’s
implementation does not eliminate the redundant memory from symmetric arrays,
however.



258 IMPLEMENTATION METHODS

x(=) z

H P(-)

N
w
1l
n
|
N
2
<
N
|
=
£
N
-

To=T4lTs
A Y Y
x(+) =x(-) +773 T =P(-)-TgT,

x(+) P(+)

Fig. 6.9 Data flow of Bierman—Joseph implementation.

The computational complexity of this implementation grows as 3¢n(3n 4+ 5)/2
flops, where 7 is the number of components in the state vector and £ is the number of
components in the measurement vector [7]. However, this formulation does require
that R be a diagonal matrix. Otherwise, an additional computational complexity of
(463 4 £> — 10¢ + 30?1 — 34n)/6 flops for measurement decorrelation is incurred.

De Vries Implementation. This implementation, which was shown to the authors
by Thomas W. De Vries at Rockwell International, is designed to reduce the
computational complexity of the Joseph formulation by judicious rearrangement
of the matrix expressions and reuse of intermediate results. The fundamental
operations—and their computational complexities—are summarized in Table 6.19.



6.6 OTHER ALTERNATIVE IMPLEMENTATION METHODS 259

TABLE 6.19 De Vries—Joseph Implementation of Covariance Update

Operation Complexity

Without Using Decorrelation
T4 = P(—)H" P
Tp,=H7+R nee +1)/2
UGU =T e(e + 1)(¢ + 2) (UD factorization)

2
AU K" =T ] £2n [to solve for K]
Ty=3KT =T, 2(n+1)
T4=T4K" en?
PH)=P(=)+ T4+ T} (included above)
153 32 1 1 5p2 2
Total g7 +35° +at +3tn+3°n+24n
Using Decorrelation
Decorrelation 2 42 -S¢—Len+1en
¢ repeats:
€ x {
Ty =P()H" n
.72 = H,71 +R n
K=7,/T, n
T3 =3KT o — T4 n+1
T4=T3KT P
PH)=P(-)+ T4+ 7, (included above)}
Total 208 + 02 — 20+ 3en+3%n+2¢?

Negative Evaluations of Joseph-Stabilized Implementation. In comparative
evaluations of several Kalman filter implementations on orbit estimation problems,
Thornton and Bierman [125] found that the Joseph-stabilized implementation failed
on some ill-conditioned problems for which square-root methods performed well.

6.6.2 Morf—Kailath Combined Observational/Temporal Update

The lion’s share of the computational effort in Kalman filtering is spent in solving
the Riccati equation. This effort is necessary for computing the Kalman gains.
However, only the a priori value of the covariance matrix is needed for this purpose.
Its a posteriori value is only used as an intermediate result on the way to computing
the next a priori value.

Actually, it is not necessary to compute the a posteriori values of the covariance
matrix explicitly. It is possible to compute the a priori values from one temporal
epoch to the next temporal epoch, without going through the intermediate a
posteriori values. This concept, and the methods for doing it, were introduced by
Martin Morf and Thomas Kailath [204].



260 IMPLEMENTATION METHODS

6.6.2.1 Combined Updates of Cholesky Factors. The direct computation of
Cpet1)(—), the triangular Cholesky factor of Py (—), from Cp)(—), the triangular
Cholesky factor of P,(—), can be implemented by triangularization of the
(n+ m) x (p + n + m) partitioned matrix

GCppy ®,C 0
Ag=| o0 TR , (6.129)
0 HiCpyy  Cray

where Cpy is a Cholesky factor of R, and Cy is a Cholesky factor of Q. Note that
the (n 4+ m) x (n 4+ m) symmetric product

O, P, (—)D! + G,0,GI  ®,P,(—)H}
I ()P + chQk . Oelr(—) kT ' (6.130)
H Pi(—) Dy H P (—)H,
Consequently, if 4, is upper triangularized in the form
0 Cpurny Wi
= (6.132)
|:0 0 Crey

by an orthogonal transformation 7', then the matrix equation
C,Cl = 4,4}

implies that the newly created block submatrices Cg), Wy, and Cp ) satisfy the
equations

CrwyChuy = HiP(—)H] + Ry (6.133)

= £, (6.134)

VWi = O, Py (—)H] E; ' HiPy(—) Dy, (6.135)

¥ = O P(—)H] Crihys (6.136)

Cppr) Cras1y = QuPL(-)D; + GO, GL — Y, ¥ (6.137)
=P (-), (6.138)

and the Kalman gain can be computed as
Ky =¥, Crgp)- (6.139)

The computation of C;, from 4, can be done by Householder or Givens triangular-
ization.



6.6 OTHER ALTERNATIVE IMPLEMENTATION METHODS 261

6.6.2.2 Combined Updates of UD Factors. This implementation uses the UD
factors of the covariance matrices P, R, and Q,

Py = Upgoy Dy Upip- (6.140)

Ri = UrgyDrao Uraty» (6.141)
— T

O« = UpwyDouw Youw: (6.142)

in the partitioned matrices

(GUyy OUpey O
on © , (6.143)

L 0 HUpgy U
[ Doy 0 0
Di=| 0 Dpy 0 |, (6.144),

which satisfy the equation

B,D,Bf = [ (6.145)

O, P ()} + GO, Gl Oy Py(—)H]
H P (—)D} H P (—)H}

The MWGS orthogonalization of the rows of B, with respect to the weighting matrix
D, will yield the matrices

. UP k+1 U‘P k

By = ey 1, (6.146)
0 UE(k)

, Dpjes 0

b=| Y , (6.147)
0 DE(k)

where Up;11y and Dpy are the UD factors of Py (—), and

Uy = O P (—)H] Uy Dy (6.148)

Consequently, the Kalman gain

can be computed as a by-product of the MWGS procedure, as well.



262 IMPLEMENTATION METHODS

6.6.3 Information Filtering

6.6.3.1 Information Matrix of an Estimate. The inverse of the covariance
matrix of estimation uncertainty is called the information matrix'>:

def

Yy = Pl (6.151)

Implementations using Y (or its Cholesky factors) rather than P (or its Cholesky
factors) are called information filters. (Implementations using P are also called
covariance filters.)

6.6.3.2 Uses of Information Filtering

Problems without Prior Information. Using the information matrix, one can
express the idea that an estimation process may start with no a priori information
whatsoever, expressed by

Y, =0, (6.152)

a matrix of zeros. An information filter starting from this condition will have
absolutely no bias toward the a priori estimate. Covariance filters cannot do this.

One can also represent a priori estimates with no information in specified
subspaces of state space by using information matrices with characteristic values
equal to zero. In that case, the information matrix will have an eigenvalue—
eigenvector decomposition of the form

Yo=Y Aee;, (6.153)
i

where some of the eigenvalues 4, =0 and the corresponding eigenvectors e;
represent directions in state space with zero a priori information. Subsequent
estimates will have no bias toward these components of the a priori estimate.

Information filtering cannot be used if P is singular, just as covariance filtering
cannot be used if Y is singular. However, one may switch representations if both
conditions do not occur simultaneously. For example, an estimation problem with
zero initial information can be started with an information filter and then switched to
a covariance implementation when Y becomes nonsingular. Conversely, a filtering
problem with zero initial uncertainty may be started with a covariance filter, then
switched to an information filter when P becomes nonsingular.

3This is also called the Fisher information matrix, named after the English statistician Ronald Aylmer
Fisher (1890—-1962). More generally, for distributions with differentiable probability density functions, the
information matrix is defined as the matrix of second-order derivatives of the logarithm of the probability
density with respect to the variates. For Gaussian distributions, this equals the inverse of the covariance
matrix.



6.6 OTHER ALTERNATIVE IMPLEMENTATION METHODS 263

Robust Observational Updates. The observational update of the uncertainty
matrix is less robust against roundoff errors than the temporal update. It is more
likely to cause the uncertainty matrix to become indefinite, which tends to
destabilize the estimation feedback loop.

The observational update of the information matrix is more robust against
roundoff errors. This condition is the result of a certain duality between information
filtering and covariance filtering, by which the algorithmic structures of the temporal
and observational updates are switched between the two approaches. The downside
of this duality is that the temporal update of the information matrix is less robust
than the observational update against roundoff errors and is a more likely cause of
degradation. Therefore, information filtering may not be a panacea for all condition-
ing problems, but in those cases for which the observational update of the
uncertainty matrix is the culprit, information filtering offers a possible solution to
the roundoff problem.

Disadvantages of Information Filtering. The greatest objection to information
filtering is the loss of “transparency” of the representation. Although information is
a more practical concept than uncertainty for some problems, it can be more difficult
to interpret its physical significance and to use it in our thinking. With a little
practice, it is relatively easy to visualize how ¢ (the square root of variance) is related
to probabilities and to express uncertainties as “3¢” values. One must invert the
information matrix before one can interpret its values in this way.

Perhaps the greatest impediment to widespread acceptance of information
filtering is the loss of physical significance of the associated state vector compo-
nents. These are linear combinations of the original state vector components, but the
coefficients of these linear combinations change with the state of informa-
tion/uncertainty in the estimates.

6.6.3.3 Information States. Information filters do not use the same state vector
representations as covariance filters. Those that use the information matrix in the
filter implementation use the information state

d % yx, (6.154)
and those that use its Cholesky factors Cy such that
CyCr=vY (6.155)

use the square-root information state

s ¥ oy, (6.156)



264 IMPLEMENTATION METHODS

6.6.3.4 Information Filter Implementation. The implementation equations
for the “straight” information filter (i.e., using Y, rather than its Cholesky factors)
are shown in Table 6.20. These can be derived from the Kalman filter equations and
the definitions of the information matrix and information state. Note the similarities
in form between these equations and the Kalman filter equations, with respective
observational and temporal equations switched.

6.6.3.5 Square-Root Information Filtering. The square-root information
filter is usually abbreviated as SRIF. (The conventional square root filter is often
abbreviated as SRCF, which stands for square-root covariance filter.) Like the SRCF,
the SRIF is more robust against roundoff errors than the “straight” form of the filter.

Historical note: A complete formulation (i.e., including both updates) of the
SRIF was developed by Dyer and McReynolds [156], using the square-root least-
squares methods (triangularization) developed by Golub [165] and applied to
sequential least-squares estimation by Lawson and Hanson [91]. The form devel-
oped by Dyer and McReynolds is shown in Table 6.21.

TABLE 6.20 Information Filter Equations

Observational update:
d(+) = d(—) + Hi Ry 2
Yi(H) = Yi(=) + H{ R Hy

Temporal update:

AE O TY (o
Yir1(—) = {/ — AGUGLAGK + Q'] GZ}AK

d1(-) = {1 - AGGIAG + O "1 G |0 dh(+)

TABLE 6.21 Square-Root Information Filter Using Triangularization

Observational update:

{Cyk(—) HZCHKJ 7[cyk(+) 0]
obs —

8(-)  Z{Cp S+ e
Temporal update:

0 @ Cy, (4) I Gy,

Co —G®; " Cy, (+) 6] 0
Ttemp = T o
0 S1(+) T Skn(5)

Note: Ty,s and Ty, are orthogonal matrices (composed of Householder or Givens transformations), which
lower triangularize the left-hand-side matrices. The submatrices other than s and Cy on the right-hand sides
are extraneous.



6.7 SUMMARY 265

6.7 SUMMARY

Although Kalman filtering has been called “ideally suited to digital computer
implementation” [21], the digital computer is not ideally suited to the task. The
conventional implementation of the Kalman filter—in terms of covariance
matrices—is particularly sensitive to roundoff errors.

Many methods have been developed for decreasing the sensitivity of the Kalman
filter to roundoff errors. The most successful approaches use alternative representa-
tions for the covariance matrix of estimation uncertainty, in terms of symmetric
products of triangular factors. These fall into three general classes:

1. Square-root covariance filters, which use a decomposition of the covariance
matrix of estimation uncertainty as a symmetric product of triangular
Cholesky factors:

P=CC".

2. UD covariance filters, which use a modified (square-root-free) Cholesky

decomposition of the covariance matrix:
P=UDU".

3. Square root information filters, which use a symmetric product factorization
of the information matrix, P~!.

The alternative Kalman filter implementations use these factors of the covariance
matrix (or it inverse) in three types of filter operations:

1. temporal updates,
2. observational updates, and
3. combined updates (temporal and observational).

The basic algorithmic methods used in these alternative Kalman filter implementa-
tions fall into four general categories. The first three of these categories of methods
are concerned with decomposing matrices into triangular factors and maintaining the
triangular form of the factors through all the Kalman filtering operations:

1. Cholesky decomposition methods, by which a symmetric positive-definite
matrix M can be represented as symmetric products of a triangular matrix C:

M=CC" or M=UDU".
The Cholesky decomposition algorithms compute C (or U and D), given M.

2. Triangularization methods, by which a symmetric product of a general matrix
A can be represented as a symmetric product of a triangular matrix C:

AAT = cCT or 4DA" = UDUT.



266 IMPLEMENTATION METHODS
These methods compute C (or U and D), given A (or A and b).

3. Rank 1 modification methods, by which the sum of a symmetric product of a
triangular matrix C and scaled symmetric product of a vector (rank 1 matrix) v
can be represented by a symmetric product of a new triangular matrix C:

foloa +svww =CCT or UDU" +svv' = UDUT.

These methods compute C (or U and D), given c (or U and é), s, and v.

The fourth category of methods includes standard matrix operations (multi-
plications, inversions, etc.) that have been specialized for triangular matrices.

These implementation methods have succeeded where the conventional Kalman
filter implementation has failed.

It would be difficult to overemphasize the importance of good numerical methods
in Kalman filtering. Limited to finite precision, computers will always make
approximation errors. They are not infallible. One must always take this into account
in problem analysis. The effects of roundoff may be thought to be minor, but
overlooking them could be a major blunder.

PROBLEMS

6.1 An n x n Moler matrix M has elements
i if i=j,
P |\ minG, j) ifi#j.
Calculate the 3 x 3 Moler matrix and its lower triangular Cholesky factor.

6.2 Write a MATLAB script to compute and print out the #» x n Moler matrices
and their lower triangular Cholesky factors for 2 < n < 20.

6.3 Show that the condition number of a Cholesky factor C of P = CCT is the
square root of the condition number of P.

6.4 Show that, if 4 and B are n x n upper triangular matrices, then their product
AB is also upper triangular.

6.5 Show that a square, triangular matrix is singular if and only if one of its
diagonal terms is zero. (Hint: What is the determinant of a triangular matrix?)

6.6 Show that the inverse of an upper (lower) triangular matrix is also an upper
(lower) triangular matrix.

6.7 Show that, if the upper triangular Cholesky decomposition algorithm is

applied to the matrix product
H'H HT
('l =)= |

ZTH Z'z



6.7 SUMMARY 267

6.8

6.9

6.10

6.11

6.12

6.13

6.14

and the upper triangular result is similarly partitioned as [ g £ i|, then the

solution X to the equation Ux =y (which can be computed by back
substitution) solves the least-squares problem Hx ~ z with root summed
square residual |HX — z|| = ¢ (Cholesky’s method of least squares).

The singular-value decomposition of a symmetric, nonnegative-definite
matrix P is a factorization P = EDE" such that E is an orthogonal matrix
and D = diag(d,,d,,ds,...,d,) is a diagonal matrix with nonnegative
elements d;>0,1<i<n For D?=diag(d,”*,d)* &y, ... dy">),
show that the symmetric matrix C = ED'/2ET is both a Cholesky factor of
P and a square root of P.

Show that the column vectors of the orthogonal matrix £ in the singular value
decomposition of P (in the above exercise) are the characteristic vectors
(eigenvectors) of P, and the corresponding diagonal elements of D are the
respective characteristic values (eigenvalues). That is, for 1 <i <mn, if ¢; is
the i column of E, show that Pe, = d.e;.

Show that, if P = EDET is a singular-value decomposition of P (defined
above), then P = )" die;e!, where ¢; is the ith column vector of E.

Show that, if C is an n x n Cholesky factor of P, then, for any orthogonal
matrix 7, CT is also a Cholesky factor of P.

Show that (I —w")? = (I —w") if v> =1 and that (/ —w")? =1 if
v)? = 2.

Show that the following formula generalizes the Potter observational update
to include vector-valued measurements:

C(H) = C()N - VMM +F)"'v"],

where V = C'(=)H" and F and M are Cholesky factors of R and R + V'V,
respectively.

Prove the following lemma: If W is an upper triangular # x » matrix such that

wwT =1 _L
R4V
then'*
J v,V
WaWoie = Biny — —=—— 6.157)
kgﬂ . R+ vt (

forall i,m,jsuchthat 1 <i<m<j<n.

“Kronecker’s delta (Ay) is defined to equal 1 only if its subscripts are equal (i =) and to equal zero
otherwise.



268

6.15

6.16

6.17

6.18
6.19

6.20

6.21

6.22

6.23

6.24

IMPLEMENTATION METHODS

Prove that the Bjorck “modified” Gram—Schmidt algorithm results in a set of
mutually orthogonal vectors.

Suppose that

[ R R I
o N O =
a OO -

where ¢ is so small that 1+ ¢ (but not 1+ ¢) rounds to 1 in machine
precision. Compute the rounded result of Gram—Schmidt orthogonalization
by the conventional and modified methods. Which result is closer to the
theoretical value?

Show that, if 4 and B are orthogonal matrices, then
4 0
0 B

What is the inverse of the Householder reflection matrix 7 — 2wv! /vTv?

is an orthogonal matrix.

How many Householder transformations are necessary for triangularization
of an n x ¢ matrix when n < ¢? Does this change when n = ¢?

(Continuous temporal update of Cholesky factors.) Show that all differenti-
able Cholesky factors C() of the solution P(¢) to the linear dynamic equation
P = F(t)P(t) + P()FT(¢) + G(1)O(1)G" (), where Q is symmetric, are solu-
tions of a nonlinear dynamic equation C(t) =F@)C@) + %[G(T YO(H)G' (1)
+A(H)]CT(¢), where A(t) is a skew-symmetric matrix [130].

Prove that the condition number of the information matrix is equal to the
condition number of the corresponding covariance matrix in the case that
neither of them is singular. (The condition number is the ratio of the largest
characteristic value to the smallest characteristic value.)

Prove the correctness of the triangularization equation for the observational
update of the SRIF. (Hint: Multiply the partitioned matrices on the right by
their respective transposes.)

Prove the correctness of the triangularization equation for the temporal update
of the SRIF.

Prove to yourself that the conventional Kalman filter Riccati equation

P(+) = P(—) — P(=)H"[HP(-)H" + R]"'HP(-)



6.7 SUMMARY 269

6.25

6.26

6.27

for the observational update is equivalent to the information form
P+ =P Y =) +H'R'H

of Peter Swerling. (Hint: Try multiplying the form for P(+) by the form for
P~'(4) and see if it equals /, the identity matrix.)

Show that, if C is a Cholesky factor of P (i.e., P = CCT), then C-T = (C~1)"
is a Cholesky factor of ¥ = P~!, provided that the inverse of C exists.
Conversely, the transposed inverse of any Cholesky factor of the information
matrix Y is a Cholesky factor of the covariance matrix P, provided that the
inverse exists.

Write a MATLAB script to implement Example 4.4 using the Bierman—
Thornton UD filter, plotting as a function of time the resulting RMS
estimation uncertainty values of P(+) and P(—) and the components of K.
(You can use the scripts bierman.m and thornton., but you will have to
compute UDUT and take the square roots of its diagonal values to obtain
RMS uncertainties.)

Write a MATLAB script to implement Example 4.4 using the Potter square-
root filter and plotting the same values as in the problem above.



Practical Considerations

“The time has come,” the Walrus said,

“To talk of many things:

Of shoes—and ships—and sealing wax—

Of cabbages—and kings—

And why the sea is boiling hot—

And whether pigs have wings.”

From “The Walrus and the Carpenter,” in Through the Looking Glass, 1872
Lewis Carroll [Charles Lutwidge Dodgson] (1832—1898)

7.1 CHAPTER FOCUS

The discussion turns now to what might be called Kalman filter engineering, which
is that body of applicable knowledge that has evolved through practical experience
in the use and misuse of the Kalman filter. The material of the previous two chapters
(extended Kalman filtering and square-root filtering) has also evolved in this way
and is part of the same general subject. Here, however, the discussion includes many
more matters of practice than nonlinearities and finite-precision arithmetic.

7.1.1  Main Points to Be Covered

1. Roundoff errors are not the only causes for the failure of the Kalman filter to
achieve its theoretical performance. There are diagnostic methods for identi-
fying causes and remedies for other common patterns of misbehavior.

2. Prefiltering to reduce computational requirements. If the dynamics of the
measured variables are “slow” relative to the sampling rate, then a simple
prefilter can reduce the overall computational requirements without sacrificing
performance.

270



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 271

3. Detection and rejection of anomalous sensor data. The inverse of the matrix
(HPH™ + R) characterizes the probability distribution of the innovation
z — HX and may be used to test for exogenous measurement errors, such as
those resulting from sensor or transmission malfunctions.

4. Statistical design of sensor and estimation systems. The covariance equations
of the Kalman filter provide an analytical basis for the predictive design of
systems to estimate the state of dynamic systems. They may also be used to
obtain suboptimal (but feasible) observation scheduling.

5. Testing for asymptotic stability. The relative robustness of the Kalman filter
against minor modeling errors is due, in part, to the asymptotic stability of the
Riccati equations defining performance.

6. Model simplifications to reduce computational requirements. A dual-state
filter implementation can be used to analyze the expected performance of
simplified Kalman filters, based on simplifying the dynamic system model
and/or measurement model. These analyses characterize the trade-offs
between performance and computational requirements.

7. Memory and throughput requirements. These computational requirements are
represented as functions of “problem parameters” such as the dimensions of
state and measurement vectors.

8. Offline processing to reduce on-line computational requirements. Except in
extended (nonlinear) Kalman filtering, the gain computations do not depend
upon the real-time data. Therefore, they can be precomputed to reduce the
real-time computational load.

9. Application to aided inertial navigation, in which the power of Kalman
filtering is demonstrated on a realistic problem (see also [22]).

7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR

7.2.1 Convergence, Divergence, and “Failure to Converge”

Definitions of Convergence and Divergence. A sequence {1, |k =1,2,3,...}
of real vectors 1, is said to converge to a limit 1, if, for every ¢ > 0, for some #, for all
k > n, the norm of the differences ||, — |l < &. Let us use the expressions

klim g =Moo OF My = Mg
—00

to represent convergence. One vector sequence is said to converge to another vector
sequence if their differences converge to the zero vector, and a sequence is said to
converge! if, for every ¢ > 0, for some integer n, for all k, £ > n, ||n, —n,ll <.

'Such sequences are called Cauchy sequences, after Augustin Louis Cauchy (1789—1857).



272 PRACTICAL CONSIDERATIONS

Divergence is defined as convergence to co: for every ¢ > 0, for some integer n, for
all k > n, || > e. In that case, |5, || is said to grow without bound.

Nonconvergence. This is a more common issue in the performance of Kalman
filters than strict divergence. That is, the filter fails because it does not converge to
the desired limit, although it does not necessarily diverge.

Dynamic and Stochastic Variables Subject to Convergence or Diver-
gence. The operation of a Kalman filter involves the following sequences that may
or may not converge or diverge:

X, the sequence of actual state values;

E(x;x{ ), the mean-squared state;

X , the estimated state;

X (=) = X(—) — x;., the a priori estimation error;

X (+) = %(+) — x;., the a posteriori estimation error;
P,(—), the covariance of a priori estimation errors;
P,(+), the covariance of a posteriori estimation errors.

One may also be interested in whether or not the sequences {P,-} and {P,w}
computed from the Riccati equations converge to the corresponding true covariances
of estimation error.

7.2.2 Use of Riccati Equation to Predict Behavior

The covariance matrix of estimation uncertainty characterizes the theoretical
performance of the Kalman filter. It is computed as an ancillary variable in the
Kalman filter as the solution of a matrix Riccati equation with the given initial
conditions. It is also useful for predicting performance. If its characteristic values are
growing without bound, then the theoretical performance of the Kalman filter is said
to be diverging. This can happen if the system state is unstable and unobservable, for
example. This type of divergence is detectable by solving the Riccati equation to
compute the covariance matrix.

The Riccati equation is not always well conditioned for numerical solution and
one may need to use the more numerically stable methods of Chapter 6 to obtain
reasonable results. One can, for example, use eigenvalue—eigenvector decomposition
of solutions to test their characteristic roots (they should be positive) and condition
numbers. Condition numbers within one or two orders of magnitude of ¢! (the
reciprocal of the unit roundoff error in computer precision) are considered probable
cause for concern and reason to use square-root methods.



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 273

7.2.3 Testing for Unpredictable Behavior

Not all filter divergence is predictable from the Riccati equation solution. Sometimes
the actual performance does not agree with theoretical performance.

One cannot measure estimation error directly, except in simulations, so one must
find other means to check on estimation accuracy. Whenever the estimation error is
deemed to differ significantly from its expected value (as computed by the Riccati
equation), the filter is said to diverge from its predicted performance. We will now
consider how one might go about detecting divergence.

Examples of typical behaviors of Kalman filters are shown in Figure 7.1, which is
a multiplot of the estimation errors on 10 different simulations of a filter imple-
mentation with independent pseudorandom-error sequences. Note that each time the
filter is run, different estimation errors Xx(#) result, even with the same initial
condition x(0). Also note that at any particular time the average estimation error
(across the ensemble of simulations) is approximately zero,

N
= 0 =000~ i) = x(00) = 0 (7.1)
where N is the number of simulation runs and X,(#;) — x(#,) is the estimation error at
time #, on the ith simulation run.

Monte Carlo analysis of Kalman filter performance uses many such runs to test
that the ensemble mean estimation error is unbiased (i.c., has effectively zero mean)
and that its ensemble covariance is in close agreement with the theoretical value
computed as a solution of the Riccati equation.

Convergence of Suboptimal Filters. In the suboptimal filters discussed in
Section 7.5, the estimates can be biased. Therefore, in the analysis of suboptimal
filters, the behavior of P(¢) is not sufficient to define convergence. A suboptimal
filter is said to converge if the covariance matrices converge,

tl_ifg[trace(Psub—opt - Popt)] =0, (72)

+26 LIMITS

Fig. 7.1 Dispersion of multiple runs.



274 PRACTICAL CONSIDERATIONS

and the asymptotic estimation error is unbiased,

lim E[¥(0)] = 0. (7.3)

Example 7.1: Some typical behavior patterns of suboptimal filter convergence are
depicted by the plots of P(¢) in Figure 7.2a, and characteristics of systems with these
symptoms are given here as examples.

Case A: Let a scalar continuous system equation be given by

x(t) = Fx(t), F >0, (7.4)
in which the system is unstable, or
x(t) = Fx(t) + w(t) (7.5)

in which the system has driving noise and is unstable.
Case B: The system has constant steady-state uncertainty:

lim P(t) = 0. (7.6)

Case C: The system is stable and has no driving noise:
x(t) = —Fx(t), F > 0. (7.7

Example 7.2: Behaviors of Discrete-Time Systems Plots of P, are shown in
Figure 7.2b for the following system characteristics:

Case A: Effects of system driving noise and measurement noise are large relative
to Py(#) (initial uncertainty).

Case B: Py = P, (Wiener filter).

Case C: Effects of system driving noise and measurement noise are small relative
to Py(?).

P, L A
u .................... B
----- Y
(a) Continuous Time ! (b) Discrete Time X "
By ] ]
- T - ""'1~~-~1 .....
to ty ty fz fy Is g

(c) Discrete Measurments with Continuous Dynamics

Fig. 7.2 Asymptotic behaviors of estimation uncertainties.



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 275

Example 7.3: Continuous System with Discrete Measurements A scalar exam-
ple of a behavior pattern of the covariance propagation equation (P,(—), P(z)) and
covariance update equation P (+),

x(t) = Fx(t) + w(t), F <O,
z(t) = x(t) + v(t),

is shown in Figure 7.2c.
The following features may be observed in the behavior of P(¢):

Processing the measurement tends to reduce P.

Process noise covariance (Q) tends to increase P,

Damping in a stable system tends to reduce P,

Unstable system dynamics (F > 0) tend to increase P,

. With white Gaussian measurement noise, the time between samples (7') can be
reduced to decrease P.

I

The behavior of P represents a composite of all these effects (1-5) as shown in
Figure 7.2c¢.

Causes of Predicted Nonconvergence. Nonconvergence of P predicted by
the Riccati equation can be caused by

1. “natural behavior” of the dynamic equations or
2. nonobservability with the given measurements.

The following examples illustrate these behavioral patterns.

Example 7.4: The “natural behavior” for P in some cases is for

tlim P(f) = P, (a constant). (7.8)

For example,

xX=w, cov(w) = Q

z=x4wv, cov(v)=R
Applying the continuous Kalman filter equations from Chapter 4, then

P =FP+PF' +GOG" —KRK'



276 PRACTICAL CONSIDERATIONS

and

K = PH'R™!
become

P=0 — KR

and
or

. P?

P=0- z

The solution is

P, cosh(fr) + o sinh(ﬁﬁ) (7.10)

PO = a(PO sinh(fit) 4+ o cosh(ft)

where

«=+/RQO, p=+O/R (7.11)
Note that the solution of the Riccati equation converges to a finite limit:

1. Ilim P(t) = « > 0, a finite, but nonzero, limit. (See Figure 7.3a.)
— 00

2. This is no cause for alarm, and there is no need to remedy the situation if the
asymptotic mean-squared uncertainty is tolerable. If it is not tolerable, then the
remedy must be found in the hardware (e.g., by attention to the physical
sources of R or O—or both) and not in software.

R0
P,0)

i

~

(a) Convergent to finite limit (b) Convergent to Infinite limit

Fig. 7.3 Behavior patterns of P.



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 277

Example 7.5: Divergence Due to “Structural” Unobservability The filter is
said to diverge at infinity if its limit is unbounded:

lim P(¢) = oo. (7.12)
—>00

As an example in which this occurs, consider the system

XIZW,
)‘CZZO,
Z=X, + 0,

cov(w) = 0,
cov(v) =R, (7.13)

with initial conditions

[ o] _[Pu@ 0
%_hCJ_[O %®} (.14

The continuous Kalman filter equations

P =FP+PF' + GOG" —KRK ",
K = PH'R™!

can be combined to give

P =FP+ PF' + GOG" — PH'R'HP, (7.15)
or
P%z P12b» P%z
P11=Q—7, Po=—"p"" Pn == (7.16)

the solution to which is

P2(0)

—_— 7.17
T PGV

() =p;(0) + O, pi() =0, Pt =

as plotted in Figure 7.3b. The only remedy in this example is to alter or add
measurements (sensors) to achieve observability.

Example 7.6: Nonconvergence Due to “Structural” Unobservability Parameter
estimation problems have no state dynamics and no process noise. One might
reasonably expect the estimation uncertainty to approach zero asymptotically as
more and more measurements are made. However, it can still happen that the filter
will not converge to absolute certainty. That is, the asymptotic limit of the estimation



278 PRACTICAL CONSIDERATIONS

uncertainty

0 < lim P, < o0 (7.18)

k—o00

is actually bounded away from zero uncertainty.
Parameter estimation model for continuous time. Consider the two-dimensional
parameter estimation problem

a}0) 0

x; =0, x, =0, P, =
! ? 0 [o a3(0)

], H=][1 1],
(7.19)
z:H|:x1:| + v, cov(v) = R,
X2
in which only the sum of the two state variables is measurable. The difference of the
two state variables will then be unobservable.

Problem in discrete time. This example also illustrates a difficulty with a
standard shorthand notation for discrete-time dynamic systems: the practice of
using subscripts to indicate discrete time. Subscripts are more commonly used to
indicate components of vectors. The solution here is to move the component indices
“upstairs” and make them superscripts. (This approach only works here because the
problem is linear. Therefore, one does not need superscripts to indicate powers of the
components.) For these purposes, let xi denote the ith component of the state vector
at time ;. The continuous form of the parameter estimation problem can then be
“discretized” to a model for a discrete Kalman filter (for which the state transition
matrix is the identity matrix; see Section 4.2):

xt =x;_, (x'is constant), (7.20)
x? =x;_, (x*is constant), (7.21)
x
z=1[1 1] + v (7.22)
X
Let
)’E/'O - O.

The estimator then has two sources of information from which to form an optimal
estimate of x;:

1. the a priori information in %, and P, and
2. the measurement sequence z; = x} +x3 + v, fork=1,2,3, ...

In this case, the best the optimal filter can do with the measurements is to “average
out” the effects of the noise sequence vy, ..., v;. One might expect that an infinite
number of measurements (z,) would be equivalent to one noise-free measurement,
that is,

z; = (x} +x}), where v, > 0 and R = cov(v;) — 0. (7.23)



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 279

Estimation uncertainty from a single noise-free measurement. By using the
discrete filter equations with one stage of estimation on the measurement z;, one
can obtain the gain in the form

a1(0)
2 2
I_<1 _ (07(0) +2‘72(0) +R) . (7.24)
5(0)

d3(0) + d3(0) + R

The estimation uncertainty covariance matrix can then be shown to be

3(0)53(0) + Ra}(0) —62(0)63(0)
200+ a2(0)+ R 2(0) + 62(0) + R
Py(+) = 7 - 7 ” = |:p11 p12:|’ (7.25)
—a}(0)a3(0)  ¢3(0)a3(0) + Ro}(0) P Px

63(0) + 03(0) + R 63(0) + 03(0) + R

where the correlation coefficient (defined in Equation 3.138) is

iy = P2 _ —a1(0)a3(0) , (7.26)
VPiPn  /[63(0)a3(0) + Ra3(0)][03(0)a3(0) + Ra%(0)]
and the state estimate is
% =x%,(0)+ K[z, — H%,(0)] = [I — K,H]%,(0) + K,z,. (7.27)
However, for the noise-free case,
v; =0, R=cov(v)) =0,
the correlation coefficient is
P =—1, (7.28)

and the estimates for x,(0) = 0,
2
S| 1(0) ) 1 2
X\ =|————=)Ix; +x7),
‘ (a%m) +a3) )

. 2(0
5= (a%(ojzi ()r%w)) i+ ).

are totally insensitive to the difference x} —x?. As a consequence, the filter will
almost never get the right answer! This is a fundamental characteristic of the



280 PRACTICAL CONSIDERATIONS

problem, however, and not attributable to the design of the filter. There are two
unknowns (x} and x}) and one constraint:

z; = (x% +x%). (7.29)

Conditions for serendipitous design. The conditions under which the filter will
still get the right answer can easily be derived. Because x} and x? are constants, their
ratio constant

2

def X

éj (7.30)
1

will also be a constant, such that the sum

X +x =140

1+C
(2

Then
2 2
.l ai(0) | " ) ai(0)(1 +C)
=|——"%—|0+C = ly if —————u—"=
X <0%(0) n o-%(O)) [( + )xl] x; onlyi 0_%(0) n 05(0) ,
2(0) 1+C a3(0)(1 4 C)
2= 75( 2_ 2 : 2 _
o +ao) e JaTa it e oo !
1(0) + 03(0) [01(0) + 63(0)](C)
Both these conditions are satisfied only if
2 2
a5(0) X7
=Cc=2>0, 7.31
a0~ THz (730

because ¢%(0) and ¢3(0) are nonnegative numbers.
Likelihood of serendipitous design. For the filter to obtain the right answer, it
would be necessary that

1. x! and x} have the same sign and
2. it is known that their ratio C = x3/x}.

Since both of these conditions are rarely satisfied, the filter estimates would rarely be
correct.

What can be done about it. The following methods can be used to detect
nonconvergence due to this type of structural unobservability:

e Test the system for observability using the “observability theorems” of Section
2.5.

e Look for perfect correlation coefficients (p = 1) and be very suspicious of
high correlation coefficients (e.g., |p| > 0.9).



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 281

e Perform eigenvalue—eigenvector decomposition of P to test for negative
characteristic values or a large condition number. (This is a better test than
correlation coefficients to detect unobservability.)

e Test the filter on a system simulator with noise-free outputs (measurements).
Remedies for this problem include

e attaining observability by adding another type of measurement or
e defining X = x! +x? as the only state variable to be estimated.

Example 7.7: Unobservability Caused by Poor Choice of Sampling Rate The
problem in Example 7.6 might be solved by using an additional measurement—or
by using a measurement with a time-varying sensitivity matrix. Next, consider what
can go wrong even with time-varying measurement sensitivities if the sampling rate
is chosen badly. For that purpose, consider the problem of estimating unknown
parameters (constant states) with both constant and sinusoidal measurement sensi-
tivity matrix components:

H() =[1 cos(wt)],
as plotted in Figure 7.4. The equivalent model for use in the discrete Kalman filter is

1
'x’
1 1 2 2
X = Xp_1, X = Xk—_1, Hk :H(kT), Zy :Hk|: 2:|+Vk,
X
k

where T is the intersample interval.

What happens when Murphy's law takes effect. With the choice of intersampling
interval as 7 = 2n/w and #, = kT, the components of the measurement sensitivity
matrix become equal and constant:

H, =1 cos(wkT)]
=[1 cos(2mk)]

(1 1],

as shown in Figure 7.4 (This is the way many engineers discover “aliasing.”) The
states x! and x? are unobservable with this choice of sampling interval (see Figure

| | 3
>

0 1 2 k

Fig. 7.4 Aliased measurement components.



282 PRACTICAL CONSIDERATIONS

7.4). With this choice of sampling times, the system and filter behave as in the
previous example.

Methods for detecting and correcting unobservability include those given in
Example 7.6 plus the more obvious remedy of changing the sampling interval T to
obtain observability, for example,

T

7= (7.32)
[0)]

is a better choice.
Causes of unpredicted nonconvergence. Unpredictable nonconvergence may be
caused by

1. bad data,
2. numerical problems, or
3. mismodeling.

Example 7.8: Unpredicted Nonconvergence Due to Bad Data “Bad data” are
caused by something going wrong, which is almost sure to happen in real-world
applications of Kalman filtering. These verifications of Murphy’s law occur princi-
pally in two forms:

e The initial estimate is badly chosen, for example,
|%(0) — x|> = X|* > trace P,. (7.33)

e The measurement has an exogenous component (a mistake, not an error) that is
excessively large, for example,

[v]? > trace R. (7.34)

Asymptotic recovery from bad data. In either case, if the system is truly linear, the
Kalman filter will (in theory) recover in finite time as it continues to use measure-
ments z;, to estimate the state x. (The best way is to prevent bad data from getting
into the filter in the first place!) See Figure 7.5.

Practical limitations of recovery. Often, in practice, the recovery is not adequate
in finite time. The interval (0, T') of measurement availability is fixed and may be too

K>~ Bad data

K@)

Y

E ¢

Fig. 7.5 Asymptotic recovery from bad data.



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 283

short to allow sufficient recovery (see Figure 7.6). The normal behavior of the gain
matrix K may be too rapidly converging toward its steady-state value of K = 0. (See
Figure 7.7.)

Remedies for “heading off”’ bad data:
e Inspection of P(t) and K(f) is useless, because they are not affected by data.

o Inspection of the state estimates x(¢) for sudden jumps (affer a bad measure-
ment has already been used by the filter) is sometimes used, but it still leaves
the problem of undoing the damage to the estimate after it has been done.

e Inspection of the “innovations” vector [z — HX] for sudden jumps or large
entries (before bad measurement is processed by the filter) is much more
useful, because the discrepancies can be interpreted probabilistically, and the
data can be discarded before it has spoiled the estimate (see Section 7.3).

The best remedy for this problem is to implement a “bad data detector” to reject the
bad data before it contaminates the estimate. If this is to be done in real time, it is
sometimes useful to save the bad data for off-line examination by an “exception
handler” (often a human, but sometimes a second-level data analysis program) to
locate and remedy the causes of the bad data that are occurring.

Artificially increasing process noise covariance to improve bad data recovery. If
bad data are detected after they have been used, one can keep the filter “alive” (to
pay more attention to subsequent data) by increasing the process noise covariance QO
in the system model assumed by the filter. Ideally, the new process noise covariance
should reflect the actual measurement error covariance, including the bad data as
well as other random noise.

) S Bad data

Seao

Z

Fig. 7.6 Failure to recover in short period.

K=~ Bad data

Seeo

K@)

=Y
-

Fig. 7.7 Failure to recover due to gain decay.



284 PRACTICAL CONSIDERATIONS

Example 7.9: Nonconvergence Due to Numerical Problems This is sometimes
detected by observing impossible P, behavior. The terms on the main diagonal of P,
may become negative, or larger, immediately after a measurement is processed than
immediately before, that is, a(4+) > a(—). A less obvious (but detectable) failure
mode is for the characteristic values of P to become negative. This can be detected
by eigenvalue—eigenvector decomposition of P. Other means of detection include
using simulation (with known states) to compare estimation errors with their
estimated covariances. One can also use double precision in place of single precision
to detect differences due to precision. Causes of numerical problems can sometimes
be traced to inadequate wordlength (precision) of the host computer. These problems
tend to become worse with larger numbers of state variables.

Remedies for numerical problems. These problems have been treated by many
“brute-force” methods, such as using higher precision (e.g., double instead of
single). One can try reducing the number of states by merging or eliminating
unobservable states, eliminating states representing “small effects,” or using other
suboptimal filter techniques such as decomposition into lower dimensional state
spaces.

Possible remedies include the use of more numerically stable methods (to obtain
more computational accuracy with the same computer precision) and the use of
higher precision. The latter approach (higher precision) will increase the execution
time but will generally require less reprogramming effort. One can sometimes use a
better algorithm to improve the accuracy of matrix inverse (HPH T+ R)71 (e.g., the
Cholesky decomposition method shown in Chapter 6), or eliminate the inverse
altogether by diagonalizing R and processing the measurements sequentially (also
shown in Chapter 6).

7.2.4 Effects Due to Mismodeling

Lying to the Filter. The Kalman gain and the covariance matrix P are correct if
the models used in computing them are correct. With mismodeling, the P matrix can
be erroneous and of little use in detecting nonconvergence, or P can even converge
to zero while the state estimation error X is actually diverging. (It happens.)

The problems that result from bad initial estimates of x or P have already been
addressed. There are four other types that will now be addressed:

1. unmodeled state variables of the dynamic system,

2. unmodeled process noise,

3. errors in the dynamic coefficients or state transition matrix, and
4. overlooked nonlinearities.

Example 7.10: Nonconvergence Caused by Unmodeled State Variables Consi-
der the following example:



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 285

Real World (Creeping State) Kalman Filter Model (Constant State)

% =0 H=0
5('2 :xl Z:xZ+U (735)
Z=Xy,+0

= x,(1) = x,(0) + x;(0)¢ = x(1) = x,(0)

for which, in the filter model, the Kalman gain K(f) — 0 as ¢t — oo. The filter is
unable to provide feedback for the error in the estimate of x,(¢) as it grows in time
(even if it grows slowly). Eventually X,(¢) = X,(f) — x,(¢) diverges as shown in
Figure 7.8.

Detecting unmodeled state dynamics by Fourier analysis of the filter innovations.
It is difficult to diagnose unmodeled state variables unless all other causes for
nonconvergence have been ruled out. If there is high confidence in the model being
used, then simulation can be used to rule out any of the other causes above. Once
these other causes have been eliminated, Fourier analysis of the filter innovations (the
prediction errors {z;, — H,x;}) can be useful for spotting characteristic frequencies of
the unmodeled state dynamics. If the filter is modeled properly, then the innovations
should be uncorrelated, having a power spectral density (PSD) that is essentially flat.
Persistent peaks in the PSD would indicate the characteristic frequencies of
unmodeled effects. These peaks can be at zero frequency, which would indicate a
bias error in the innovations.

Remedies for unmodeled state variables. The best cure for nonconvergence
caused by unmodeled states is to correct the model, but this not always easy to
do. As an ad hoc fix, additional “fictitious” process noise can be added to the system
model assumed by the Kalman filter.

Example 7.11: Adding “Fictitious” Process Noise to the Kalman Filter
Model Continuing with the continuous-time problem of Example 7.10, consider
the alternative Kalman filter model

L) =w@),  20) =x00) + ().

“Dipe-1 servo” behavior. The behavior of this filter can be analyzed by applying
the continuous Kalman filter equations from Chapter 4, with parameters

F=0, H=1, G=1,

xa(t)
0] I X,(t) _
e v k(1)
et 2,(0)
>t >
t

Fig. 7.8 Divergence due to mismodeling.



286 PRACTICAL CONSIDERATIONS
transforming the general Riccati differential equation
P =FP+ PF' — PH'R"'HP + GOG"

—_p?
= t°

to a scalar equation with steady-state solution (to P = 0)

P(c0) = /RQ.

The steady-state Kalman gain

K(oo) = —2 = |2, (7.36)

The equivalent steady-state model of the Kalman filter can now be formulated as
follows?:

%, = F%, + K[z — H3]. (7.37)
Here, F=0, H=1, K =K(00), ¥=%,, so that
%, + K(00)%, = K(00)z. (7.38)

The steady-state response of this estimator can be determined analytically by taking
Laplace transforms:

[s + K(00)Jz,(s) = K(00)z(s) (7.39)

() _ K(0)
z2(s) s+ K(00)

(7.40)

Figure 7.9a shows a “type 1 servo”. Its steady-state following error (even in the
noise-free case) is not zero in the real-world case:

z() = x,(f) = x,(0) +x;(0)t  with v = 0.
Taking the Laplace transform of the equation yields

50) 510

25) = xyf9) =2 = 4T

2This steady-state form is the Wiener filter discussed in Chapter 4.



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 287

z + N T —
ATGT-)_» >3 5=~y OVE(=)
t

(a) )

X
<

@ ‘

Fig. 7.9 Type 1 servo (a) and estimates (b).

The error in x,(?) is
%, (t) = %,(1) — x,(0).

Taking the Laplace of the equation and substituting the value of x,(s) from Equation
7.40 give

K()
s + K(00)

N
= [— S7_+_ K(Oo)] Xz(S).

Applying the final-value theorem, one gets

X(s) = X(5) — x5(s)

%(00) = [$2(00) = x(00)] = lim s[tr(s) = ,(9)]
. N
~ty| e

T _ S x(0) | x,(0)
_!%s[ s+1_<(oo)i|[ s F s2:|

_ x1(0)
~ K(c0)

(a bias).

This type of behavior is shown in Figure 7.95.

If the steady-state bias in the estimation error is unsatisfactory with the approach
in Example 7.11, one can go one step further by adding another state variable and
fictitious process noise to the system model assumed by the Kalman filter.

Example 7.12: Effects of Adding States and Process Noise to the Kalman Filter
Model Suppose that the model of Example 7.11 was modified to the following



288 PRACTICAL CONSIDERATIONS

form:

Real World Kalman Filter Model

: . (7.41)
Xy = X1 Xy = X1
Z=X,+ 0 Z=X,+0

That is, x,(¢) is now modeled as an “integrated random walk.” In this case, the
steady-state Kalman filter has an additional integrator and behaves like a “type 2
servo” (see Figure 7.10a). The type 2 servo has zero steady-state following error to a
ramp. However, its transient response may become more sluggish and its steady-state
error due to noise is not zero, the way it would be with the real world correctly
modeled. Here,

F:[(l) 8]’ G=|:(l)} H=1[0 1], 0 = cov(w), R = cov (v)

(7.42)
P =FP+ PF" + GOG" — PH'"R"'HP and K = PH'R™! (7.43)
become in the steady state
P12(00) = VRO,
pll = —pi =0 pzz(OO) = \/E(R3Q)l/47
1127121722 pi(o0) = V2Q*R)'A,
D, = — =0 .
P12 =P R = 0 B (7.44)
Do = 2p1a —p—%zzo K(o0) = K = [gliwﬂy
R 00
\/E 4 Q 2
R
and these can be Laplace transformed to yield
3(s) = [s] — F + K(co)H] 'K (00)z(s). (7.45)

Z<s)—><?-> L H Rets+Er

(@) ()

Fig. 7.10 Type 2 servo (a) and servo estimates (b).



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 289

In component form, this becomes:

Ry(s) = (Kys +K))/s?

14+ (Kys+K,)/s? ). (7.46)

The resulting steady-state following error to a ramp (in the noise-free case) is easily
determined:

2(t) = x(1) = x(0) +x,(0)r, 0 =0,

2

%2(s) = Ba(s) — 1a(s) = — (S—>x2 (5).

52+E25+E1
~ . _Sz xZ(O) xl(O)
xZ(oo)_sl‘EI(l)s(sz—i-I_(zs—}-fl)( s T g >_0'

This type of behavior is shown in Figure 7.105.

Example 7.13: Statistical Modeling Errors Due to Unmodeled System Driving
Noise With the models

Real World Kalman Filter Model

=W % =0 (7.47)
Xy = X Xy = X
Z=Xp)+0 z=Xx,+0
the Kalman filter equations yield the following relationships:
. -1,
pu=—7">P —
HeRPE pp=0 K=PH'R' =0,
Pio="rn —l% = in the steady state: p,, =0, X, = const,
2 =0 X, = ramp.
)% Pn="Y 2 p
P2 =2ppp — %
(7.48)

Since x; is not constant (due to the driving noise w), the state estimates will not
converge to the states, as illustrated in the simulated case plotted in Figure 7.11. This
figure shows the behavior of the Kalman gain K, the estimated state component %,
and the “true” state component x; in a discrete-time simulation of the above model.
Because the assumed process noise is zero, the Kalman filter gain K, converges to
zero. Because the gain converges to zero, the filter is unable to track the errant state
vector component x;, a random-walk process. Because the filter is unable to track the
true state, the innovations (the difference between the predicted measurement and the
actual measurement) continue to grow without bound. Even though the gains are



290 PRACTICAL CONSIDERATIONS

« Kalman gain K, ()
P

° --%
°° “ll-n-m 4

° ®e® . .
el et 000t oo ve ceses®tte o 00
eoe

°"°.,_ \Actual state x,(f)
*e., , Estimated state X0

®o
°o
%00
°
®oe
ALTTY
LI
°°°°°°°°
LTS
©000
®00o
LLTYY
°

Y

Fig. 7.11 Diverging estimation error due to unmodeled process noise.

converging to zero, the product of the gain and the innovations (used in updating the
state estimate) can be significant.

In this particular example, 0')2(1 @) = 0)2(1 (0) + o2¢t. That is, the variance of the
system state itself diverges. As in the case of unmodeled states, the innovations
vector [z — Hx] will show effects of the “missing” system driving noise.

Example 7.14: Parametric Modeling Errors Having the wrong parameters in the
system dynamic coefficients F; state transition matrix @, or output matrix H can and
does bring about nonconvergence of the filter. This type of nonconvergence can be
demonstrated by an example with the wrong period of a sinusoid in the output
matrix:

Real World Kalman Filter Model
X X
X X2
' x| . x| (7.49)
z = [sin Q¢| cos Q] + v z = [sin wt| cos wt] +v
X X2
v = white noise v = white noise

No a priori information exists ~ No a priori information exists

In this case, the optimum filter is the “least-squares” estimator acting over the
measurement interval (0, 7). Since this is a continuous case,

T
J= L (z — HY)'(z — HR) dt (7.50)



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 291

is the performance index being minimized.? Its gradient

aJ

T T
§=0 = ozzj HTza’t—ZJ(HTH)fcdt, (7.51)
X

0 0

where X is unknown but constant. Therefore,

T “lrer
= U H'H dt] U H'z dti|, (7.52)
0 0
where
X
H = [sin wt| cos wf]; z = [sin Q¢] cos Q] |: ! :| +v (7.53)
X2
and
2
w=2nf = ?”, (7.54)

where p is the period of the sinusoid. For simplicity, let us choose the sampling time
as T = Np, an integer multiple of the period, so that

N -1 (M 2 W
i/ J sin(wt)z(¢) dt — J z(t) sin wt dt
A 2 0 Np Jo
x= = . (7.55)
Np Np 2 (W
0 o J cos(wi)z(t) dt — J z(t) cos wt dt
0 Np Jo

Concentrating on the first component X, one can obtain its solution as
t=Np

X1
=0
t=Np

X2
=0

o ) 2 [sinfw—Q)t  sin(w+ Q)t
= JTp[z(w—Q) - 2(c0+Q)]

2 [—cos(w —Q)t cos(w + Q)t
" Np[ 20-0)  20t+9) ]

2 (Y
+— J v(¢) sin wt dt.
Np Jo

3See Chapter 3.



292 PRACTICAL CONSIDERATIONS

By setting v =0 (ignoring the estimation error due to measurement noise), one
obtains the result

. 2 |:sin(cu —Q)Np  sin(w + Q)Npi|
- 1

T 20-0) 20+ 9)

2 [1—cos(w—Q)Np 1—cos(w+ Q)¢
+@[ 20 —9) 20 +9) ]2

For the case that w — Q,

sno-ONp _Npsinal Ny )
0-Q 2 x|, 27
S+ QN _siltrpN]
2w+ Q) T 20 - } (7.56)
1 —cos(w—Q)Np 1 —cosx —0 .
2(('0 - Q) B X x—0 -
1 —cos(w +Q)Np 1 — cos[(4n/p)Np] 0
2o+ 20

and X, = x,. In any other case, X, would be a biased estimate of the form
)’Z‘l = Yl X1 + Yz Xy, where Yl # 1, Yz # 0. (757)

Similar behavior occurs with X,.

Wrong parameters in the system and/or output matrices may not cause the filter
covariance matrix or state vector to look unusual. However, the innovations vector
[z — Hx] will generally show detectable effects of nonconvergence.

This can only be cured by making sure that the right parameter values are used in
the filter model. In the real world, this is often impossible to do precisely, since the
“right” values are not known and can only be estimated. If the amount of
degradation obtained is unacceptable, consider letting the questionable parameters
become state variables to be estimated by extended (linearized nonlinear) filtering.

Example 7.15: Parameter Estimation This reformulation provides an example of
a nonlinear estimation problem:

).Cz = O, X3 = Q. (758)



7.2 DETECTING AND CORRECTING ANOMALOUS BEHAVIOR 293

Here, something is known about Q, but it is not known precisely enough. One must
choose

X;(0) = “best guess” value of Q,

P3;(0) = a)%}(O) = a measure of uncertainty in x;(0).

Nonlinearities in the real-world system also cause nonconvergence or even diver-
gence of the Kalman estimates.

7.2.5 Analysis and Repair of Covariance Matrices

Covariance matrices must be nonnegative definite. By definition, their characteristic
values must be nonnegative. However, if any of them are theoretically zero—or even
close to zero—then there is always the risk that roundoff will cause some roots to
become negative. If roundoff errors should produce an indefinite covariance matrix
(i.e., one with both positive and negative characteristic values), then there is a way to
replace it with a “nearby” nonnegative-definite matrix.

Testing for Positive Definiteness. Checks that can be made for the definite-
ness of a symmetric matrix P include the following:

o If a diagonal element a; < 0, then the matrix is not positive definite, but the
matrix can have all positive diagonal elements and still fail to be positive
definite.

o If Cholesky decomposition P = CCT fails due to a negative argument in a
square root, the matrix is indefinite, or at least close enough to being indefinite
that roundoff errors cause the test to fail.

e If modified Cholesky decomposition P = UDUT produces an element d; < 0
in the diagonal factor D, then the matrix is not positive definite.

o Symmetric eigenvalue—eigenvector decomposition yields all the characteristic
values and vectors of a symmetric matrix.

The first of these tests is not very reliable unless the dimension of the matrix is 1.
Example 7.16: The following two 3 x 3 matrices have positive diagonal values

and consistent correlation coefficients, yet neither of them is positive definite and the
first is actually indefinite:



294 PRACTICAL CONSIDERATIONS

Matrix Correlation Matrix Singular Values
343.341 248.836 320.379 1. 0.73172  0.844857
248.836 336.83 370.217 0.73172 1. 0.985672 {1000, 100, —1}
320.379 370.217 418.829 || 0.844857 0.985672 1.

343.388 248.976 320.22 1. 0.731631 0.843837
248.976 337.245 369.744 || 0.731631 1. 0.983178 |{1000, 100, 0}
320.22 369.744 419.367 || 0.843837 0.983178 1.

Repair of indefinite covariance matrices. The symmetric eigenvalue—eigenvector
decomposition is the more informative of the test methods, because it yields the
actual eigenvalues (characteristic values) and their associated eigenvectors (char-
acteristic vectors). The characteristic vectors tell the combinations of states with
equivalent negative variance. This information allows one to compose a matrix with
the identical characteristic vectors but with the offending characteristic values
“floored” at zero:

P =TDT" (symmetric eigenvalue—eigenvector decomposition), (7.59)
D = diag;{d,}, (7.60)
diyzdyz2dy = - =d, (7.61)
If
d, <0. (7.62)
then replace P with
Pt — D TT, (7.63)
D* = diag,{d;}, (7.64)
d; if d; >0,
df = (7.65)
0 ifd <O.

7.3 PREFILTERING AND DATA REJECTION METHODS

Prefilters perform data compression of the inputs to Kalman filters. They can be
linear continuous, linear discrete, or nonlinear. They are beneficial for several
purposes:



7.3 PREFILTERING AND DATA REJECTION METHODS 295

1. They allow a discrete Kalman filter to be used on a continuous system without
“throwing away” information. For example, the integrate-and-hold prefilter
shown in Figure 7.12 integrates over a period 7, where T is a sampling time
chosen sufficiently small that the dynamic states cannot change significantly
between estimates.

2. They attenuate some states to the point that they can be safely ignored (in a
suboptimal filter).

3. They can reduce the required iteration rate in a discrete filter, thereby saving
computer time [170].

4. They tend to reduce the range of the dynamic variables due to added noise, so
that the Kalman filter estimate is less degraded by nonlinearities.

7.3.1 Continuous (Analog) Linear Filters

Example 7.17: Continuous linear filters are usually used for the first three
purposes and must be inserted before the sampling process. An example of the
continuous linear prefilter is shown in Figure 7.13. An example of such a prefilter is
a digital voltmeter (DVM). A DVM is essentially a time-gated averager with sampler
and quantizer.

Thus the input signal is continuous and the output discrete. A functional
representation is given in Figures 7.14-7.16, where

AT = sampling interval
& = dead time for re-zeroing the integrator

AT — ¢ = averaging time

()
x() _7( kT _7(
w(t)—>| System >»|Measurements —> z(t)dt T-—»z

T T Ja_yr

Fig. 7.12 Integrate-and-hold prefilter.

=>

w(?) x(1) (1) . _7( z; Discrete | X,
—>{ System > H —>@—> Continuous — Kalman —>

prefilter Sampler filter
v(1)

Fig. 7.13 Continuous linear prefiltering and sampling.




296 PRACTICAL CONSIDERATIONS

2o(6) Continuous filter 21(t)_ A z4(ty) _7( 25(ty)
—> L / & z(B)f(t) dt e—— Quantizer —
0

AT —¢

T f(¢) = Gating and reset pulse

Fig. 7.14 Block diagram of DVM.

l tk tk+1 ?

Fig. 7.15 DVM gating waveform.

AHw)
AN
/ \
/ \
! \
! \
/ \
N antN
§’/—\\’/ \ll \‘l \ ,’~\‘, -

Fig. 7.16 DVM frequency response.

and the output

) = Jf’ =) dt. (7.66)

AT —¢ 1,—AT+e

It can be shown that the frequency response of the DVM is:

_|sino[(AT —¢)/2]

GOl == aT —o)/2]

and  0(jw) = - (AT - F) (7.67)

With white-noise continuous input, the output is a white-noise sequence (since the

averaging intervals are non overlapping). With an exponentially correlated random
continuous input with correlation time 7, and autocovariance

[//Z(‘[) = o'gefqﬂ/fc)’ (768)



7.3 PREFILTERING AND DATA REJECTION METHODS 297

the variance and autocorrelation function of the output random sequence can be
shown to be

AT — ¢
U= ,
T.

c

o4 =..(0) = f(u)o?,

2
WG —i) = g(u)oe U0 Sw) = ;(e‘” +u—1) } (7.69)
) ’ e'+e -2

g0 ="

7.3.2 Discrete Linear Filters

These can be used effectively for the attenuation of the effects of some of the state
variables to the point that they can be safely ignored. (However, the sampling rate
input to the filter must be sufficiently high to avoid aliasing.)

Note that discrete filters can be used for the third purpose to reduce the discrete
filter iteration rate. The input sampling period can be chosen shorter than the output
sampling period. This can greatly reduce the computer (time) load (see Figure 7.17).

Example 7.18: For the simple digital averager shown in Figure 7.18, let

i

o), i =T, (7.70)

1
Zl(til) =— :

N j—iZN+1

which is the average of N adjacent samples of z(,). Note that z'(#/) and z'(#}, ) use
nonoverlapping samples of z(;). Then it can be shown that the frequency response is

. |sin(NwT/2)] . (N-1
IH(Jw)l—m, 0(jow) = (—2 )wT. (7.71)

’ . ‘ ) _7( 2 Discrete | #
w( )' System x( )' H b 2(¢) X _| Discrete ol Kaiman  —t
prefilter filter
TU(L‘)

Fig. 7.17 Discrete linear prefilter.

I(g.
2(t) 7( z(t)) N-point z(t) 2t)
—>| digital averaging —
r filter T'=NT

Fig. 7.18 Discrete linear averager.



298 PRACTICAL CONSIDERATIONS

If adequate knowledge of the innovations vector [z — HX] exists, nonlinear “data
rejection filters” can be implemented. Some simple examples are cited below.

Example 7.19: Data Rejection Filters For excess amplitude:

If |(z— HX);| > Apax, then reject data. (7.72)

For excess rate (or change):

If |(z—HX);yy — (z— Hx);| > 4 then reject data. (7.73)

max’
Many other ingenious techniques have been used, but they usually depend on the
specifics of the problem.

7.4 STABILITY OF KALMAN FILTERS

The dynamic stability of a system usually refers to the behavior of the state variables,
not the estimation errors. This applies as well to the behavior of the homogeneous
part of the filter equations. However, the mean-squared estimation errors may remain
bounded, even if the system is unstable.*

If the actual measurement processing in the Kalman filter state equations is
neglected, then the resulting equations characterize the stability of the filter itself. In
the continuous case, these equations are

i(1) = [F() — K(OH(0)] 5(0), (7.74)
and in the discrete case,

() =0 X (H) — KeHy @ 1% (4)
= [ — K H] ©_ 13- (). (7.75)

The solution of the filter equation 7.74 or 7.75 is uniformly asymptotically stable,
which means bounded input-bounded output (BIBO) stability. Mathematically, it
implies that

lim [|X(¢)] = 0 (7.76)
=00
or
kl_i)ngo % (Il =0, (7.77)

4 See, for example, Gelb et al. [21], pp. 22, 31, 36, 53, 72, or Maybeck [30], p. 278.



7.5 SUBOPTIMAL AND REDUCED-ORDER FILTERS 299

no matter what the initial conditions are. In other words, the filter is uniformly
asymptotically stable if the system model is stochastically controllable and obser-
vable. See Chapter 4 for the solution of the matrix Riccati equation P(¢) or P.(+)
uniformly bounded from above for large ¢ or K independent of P(0). Bounded O, R
(above and below) and bounded F (or ®@) will guarantee stochastic controllability
and observability.

The most important issues relating to stability are described in the sections on
unmodeled effects, finite wordlength, and other errors (Section 7.2).

7.5 SUBOPTIMAL AND REDUCED-ORDER FILTERS

Suboptimal Filters. The Kalman filter has a reputation for being robust against
certain types of modeling errors, such as those in the assumed values of the
statistical parameters R and Q. This reputation is sometimes tested by deliberate
simplification of the known (or, at least, “believed”) system model. The motive for
these actions is usually to reduce implementation complexity by sacrificing some
optimality. The result is called a suboptimal filter.

7.5.1 Rationale for Suboptimal Filtering

It is often the case that real hardware is nonlinear but, in the filter model,
approximated by a linear system. The algorithms developed in Chapters 4—-6 will
provide suboptimal estimates. These are

1. Kalman filters (linear optimal estimate),
2. linearized Kalman filters, and
3. extended Kalman filters.

Even if there is good reason to believe that the real hardware is truly linear, there
may still be reasons to consider suboptimal filters. Where there is doubt about the
absolute certainty of the model, there is always a motivation to meddle with it,
especially if meddling can decrease the implementation requirements. Optimal filters
are generally demanding on computer throughput, and optimality is unachievable if
the required computer capacity is not available. Suboptimal filtering can reduce the
requirements for computer memory, throughput, and cost. A suboptimal filter design
may be “best” if factors other than theoretical filter performance are considered in
the trade-offs.

7.5.2 Techniques for Suboptimal Filtering

These techniques can be divided into three categories:

1. modifying the optimal gain K, or K(¢),



300 PRACTICAL CONSIDERATIONS

2. modifying the filter model, and
3. other techniques.

Techniques for Evaluating Suboptimal Filters. The covariance matrix P
may not represent the actual estimation error and the estimates may be biased. In the
following section, the dual-state technique for evaluating performance of linear
suboptimal filters will be discussed.

Modification of K(t) or K, Consider the system

x = Fx+ Gw, = cov(w),
© ) (7.78)
z=Hx+v, R = cov(v),

with state transition matrix O.
The state estimation portion of the optimal linear estimation algorithm is then, for
the continuous case,

X=F2+ K@)z — HZ] with 2(0) =%, (7.79)
and for the discrete case,
() = O Xy (1) + Ky lzg — Hy (D134 (4))] (7.80)

with initial conditions X.

Schemes for retaining the structure of these algorithms using modified gains
include the Wiener filter and approximating functions.

First, consider the Wiener filter, which is a useful suboptimal filtering method
when the gain vector K(¢) is time varying but quickly reaches a constant nonzero
steady-state value. Typical settling behaviors are shown in Figure 7.19.

A Wiener filter results from the approximation

K(1) ~ K(c0). (7.81)

-

Fig. 7.19 Settling of Kalman gains.



7.5 SUBOPTIMAL AND REDUCED-ORDER FILTERS 301

If, in addition, the matrices F' and H are time invariant, the matrix of transfer
functions characterizing the Wiener filter can easily be computed:

3= F% + K(c0)[z — H3] (7.82)
= ) _ [s] — F + K(co)H] . (7.83)
=(s)
The corresponding steady-state sinusoidal frequency response matrix is
ol _ I[(jo)I — F +K(oo)H]!|. (7.84)
|2(jw)l

Among the advantages of the Wiener filter are that—its structure being identical to
conventional filters—all the tools of pole-zero, frequency response, and transient
response analysis using Laplace transforms can be employed to gain “engineering
insight” into the behavior of the filter. Among the disadvantages of this approach is
that it cannot be used if K(oo) # constant or K(co) = 0. The typical penalty is
poorer transient response (slower convergence) than with optimal gains.

The second scheme for retaining the structure of the algorithms using modified
gains is that of approximating functions. The optimal time-varying gains K p(¢) are
often approximated by simple functions.

For example, one can use piecewise constant approximation, K

pwe» @ piecewise
linear approximation, K, or a curve fit using smooth functions K¢, as shown
in Figure 7.20:

ECF(t) = Cle_a]t + C2(1 - e_azt). (785)

The advantages of approximating functions over the Wiener filter are that this can
handle cases where K(oo) is not constant or K(oo) = 0. A result closer to optimal
performance is obtained.

Modification of the Filter Model. Let the real-world model (actual system S) be
linear,

)’CS =sts+GSwS, Zngsxs+US

t | 3
Piecewise constant Piecewise linear Piecewise continuous

Fig. 7.20 Approximating time-varying Kalman gains.



302 PRACTICAL CONSIDERATIONS

The filter model of the system will, in general, be (intentionally or unintentionally)
different:

)'CF :FFXF+GFW17, ZF :HFxF+UF

Usually, the intent is to make the filter model less complex than the actual system.
This can be done by ignoring some states, prefiltering to attenuate some states,
decoupling states, or with frequency domain approximations. Ignoring some states
reduces model complexity and provides a suboptimal design. Often, however, little
performance degradation occurs.

Example 7.20: In this example, one combines two nonobservable states with
identical propagation into z.

From: x; = —ax,,
Xy = —ax,, To: x!' = —ax!,
N (7.86)
1
z=1[2 3] +, z=x"+u,
X2

Of course, x! = 2x, + 3x, and the a priori information must be represented as

31(0) = 2%,(0) + 3%,(0),
Px‘x‘ (O) = 4'Px1x1 (O) + 12Px1x2(0) + 9Px2x2 (0)

Example 7.21: Continuing where Example 7.101 left off, one can combine two
states if they are “close functions” over the entire measurement interval:

From: x, =0,
%, =0, To: x' =0,

X (7.87)
z=[t|sint]|: :|+v, z=t' 4o,
X2

where the a priori information on x! must be formulated and where z is available on
the interval (0, w/20.)

Example 7.22: Ignoring Small Effects

From: x; = —ax, .
X To: Xy, = _b)C2,
Xy, = _bXZ, (788)
Z=X,+ 0,
z=x;+x,+v on (0, T),
with

E(3) =0.1, E(x3) = 10.0, desired Py (T) =1.0. (7.89)



7.5 SUBOPTIMAL AND REDUCED-ORDER FILTERS 303

Example 7.23: Relying on Time Orthogonality of States

.7.(:1 == O,
‘).CZ = 0,
. xl TO: ).Cz = 0,
From: z=/[l]|sin{] +v, ) (7.90)
X, z=(sint)x, + v,

z available on(0, T) with T large
P,,(0) = large,

Prefiltering to Simplify the Model. A second technique for modifying the filter
model of the real world is to ignore states after prefiltering to provide attenuation.
This is illustrated in Figure 7.21.

Of course, prefiltering has deleterious side effects, too. It may require other
changes to compensate for the measurement noise v becoming time correlated after
passing through the prefilter and to account for some “distortion” of those states in
the passband of the prefilter (e.g., amplitude and phase of sinusoidals and wave
shape of signals). The filter may be modified as shown in Figure 7.22 to compensate
for such effects. Hopefully, the net result is a smaller filter than before.

DYNAMIC g, () e INTERESTING __ \)N|NTERESTING STATES—>-
SYSTEM PN 2N
L4 WITH

ng+ n, S S

STATES o

>~

(2]

H
[5 (EFFECTS OF n STATES ELIMINATED BY PRE- FILTERING)

(Y |
h ————Qz STATES ADDED TO MODEL THE FILTER .
1 1
: GAIN 4 :
TN
| LOW '
| PASS 1
: FILTER !k . :
1 @, 2] |
1 !

KALMAN @3 (@) SIMPLIFIED STATE SPECTRUM

FILTER
WITH : .

ng+ n, z Sy -
STATES @, P

Fig. 7.21 Low-pass prefiltering for model simplification.



304 PRACTICAL CONSIDERATIONS

P e ——— L]
: : Vx| Mot
w1 |"o-STATE -STATE | | STATE |
== SYSTEM D+ PRE-FILTER KALMANEL
1{| MODEL v MODEL | WITH
] | R~(
b oo e o - - - ——— &4

Fig. 7.22 Modified system model for low-pass prefiltering.

Example 7.24: Consider the second-order system with coupling coefficient t
represented by the equations

HEE MR
HENEN:

If 7 is sufficiently small, one can treat the system as two separate uncoupled systems
with two separate corresponding Kalman filters:

Xp = —ox; +wy, Xy = =Xy + Wy, (7.91)

21=x1—|-1)1, 22=x2+02'

The advantage of this decoupling method is a large reduction in computer load.
However, the disadvantage is that the estimation error has increased variance and can
be biased.

Frequency-domain approximations. These can be used to formulate a suboptimal
filter for a system of the sort

x = Fx + Gw, z=Hx+v.
Example 7.25: Often, some of the states are stationary random processes whose

power spectral densities can be approximated as shown in Figure 7.23.
A filter designed for the approximate spectrum may well use fewer states.

()

/_ﬁ Approximate
/
Actual 7 /\

Fig. 7.23 Frequency-domain approximation.



7.5 SUBOPTIMAL AND REDUCED-ORDER FILTERS 305

Example 7.26: Sometimes the general structure of the random process model is
known, but the parameters are not known precisely:

x=-—-ox+w and g, are “uncertain.” (7.92)

Replacing this model by a random walk
xX=w (7.93)

in conjunction with “sensitivity studies” will often allow a judicious choice for a,,
with small sensitivity to o uncertainties and small degradation in filter performance.

Example 7.27: White-Noise Approximation of Broadband Noise If the system-
driving noise and measurement noise are “broadband” but with sufficiently flat
PSDs, they can be replaced by “white-noise” approximations, as illustrated in
Figure 7.24.

Least-Squares Filters. Among the other techniques used in practice to inten-
tionally suboptimize linear filters is least-squares estimation. It is equivalent to
Kalman filtering if there are no state dynamics (F =0 and Q = 0) and is often
considered as a candidate for a suboptimal filter if the influence of the actual values
of O and F (or @) on the values of the Kalman gain is small.

Observer Methods. These simpler filters can be designed by choosing the
eigenvalues of a filter of special structure. The design of suboptimal filters using
engineering insight is often possible. Ingenuity based on physical insights with
regard to design of suboptimal filters is considered an art, not a science, by some
practitioners.

7.5.3 Dual-State Evaluation of Suboptimal Filters

Dual-State Analysis. This form of analysis takes its name from the existence of
two views of reality:

1. The so-called system model (or “truth model”) of the actual system under
study. This model is used to generate the observations input to the suboptimal
filter. It should be a reasonably complete model of the actual system under
consideration, including all known phenomena that are likely to influence the
performance of the estimator.

¥, (w) Approximate

.
"
..

Fig. 7.24 White-noise approximation of broadband noise.



306 PRACTICAL CONSIDERATIONS

2. The filter model, which is a reduced-order version of the system model, it is
usually constrained to contain all the states in the domain of the measurement
sensitivity matrix (i.e., the states that contribute to the measurement) and
possibly other state components of the system model as well. The filter model
is to be used by a proposed filter implementation with significantly reduced
computational complexity, but (hopefully) not greatly reduced fidelity. The
performance of the reduced-order filter implementation is usually measured by
how well its estimates agree with those of the actual system state. It may not
estimate all of the components of the state vector of the system model,
however. In that case, the evaluation of its estimation accuracy is restricted to
just the common state vector components.

Performance analysis of suboptimal filter errors requires the simultaneous consid-
eration of both (system and filter) state vectors, which are combined into one dual-
state vector.

Notation. Let us use a superscript notation to distinguish between these models. A
superscript S will denote the system model, and a superscript F’ will denote the filter
model, as illustrated later in Figure 7.30.> There are two commonly used definitions
for the dual-state vector:

¥
1. x%“al =1 k (concatenation of the two vectors) and
()

2. i — [”z”)}, B = () — 5.
x5

In the second definition, the filter state vector x’ may have lower dimension than the
system state vector x°—due to neglected state components of the system in the
suboptimal filter model. In that case, the missing components in x” can be padded
with zeros to make the dimensions match.

In dual-state analysis for evaluating suboptimal filters, let the following defini-
tions apply:

Actual System Filter Model
XS = FSxS —+ GSWS )‘CF = FFxF + GFWF (794)
25 = HexS + 08 2 = Hpxl" +oF
=25, Hp = Hj, o =05, (7.95)
1 ]
n = J D(t, — 1)Gg(t)W (1) d, (7.96)
k-1

R(+) = Opff_ | (4) + Ky lzf — Hr®p3f_ ()],
®g = System state transition matrix,

@, = State transition matrix of filter model,
Qg = cov(n®),

Or = cov(wh),

5 The “system” model is called the “truth” model in the figure. That nomenclature here would lead us to
use a superscript T, however, and that notation is already in use to denote transposition.




7.5 SUBOPTIMAL AND REDUCED-ORDER FILTERS 307

Let I', = (I — K, Hy), and let

O  Op — Dy
A= , (7.97)
L O Dy
T 0
B= (7.98)
| 0 I
Let the “prediction” estimation error be
B =5+ —x (7.99)
and let the “filtered” estimation error be
() =X () — X (7.100)

Then the prediction error equation is

~S0 =S s
[x"(s )} —4 [x"sl(“} + [ Z"l} (7.101)
Xk Xr—1 k-1

and the filtered error equation is

X (H) _3 )Nc‘lf—l(_) + ?k_l"lf—l ) (7.102)
X Xy 0

Taking the expected value E and the covariance of Equations 7.101 and 7.102 yields
the following recursive relationships:

Ey=A-Py, AT +cov L
P, =B-E,, BT +covP

cov

} (covariance propagation), (7.103)

EDX:A'PDX

(bias propagation), (7.104)
Ppx = B - Epx }



308 PRACTICAL CONSIDERATIONS

where the newly introduced symbols are defined as follows:

(=)
E.., = cov |: g (predicted dual-state vector),
k
s
-
cov L = cov |: Sk lj|,
Mek—1
Hoa() .
P, = cov (filtered covariance),
k-1
covP =

Ky "}5—1
cov ,
0

— —T
kalcov(v;j_l)Kk,l 0
, (7.105)

0 0

X ()
Ppx =F = (expected value of filtered dual-state vector),
s
Xi—1
H(-)

Epx =F |: ] (expected value of predicted dual-state vector).

Xk

The suboptimal estimate X can be biased. The estimation error covariance can
depend on the system state covariance. To show this, one can use the dual-state
equations. The bias propagation equations

EDX:A'PDX’ PDX:B'EDX

become
(=) 54
E = AE (7.106)
x,f Xffl
and
5o+ 500
E — BE . (7.107)



7.6 SCHMIDT-KALMAN FILTERING 309

Clearly, if E[%(+)] # 0, then the estimate becomes biased. If

D, #£ Oy (7.108)
and

E(x%) #0, (7.109)

which often is the case (for example, x* may be a deterministic variable, so that
E(x%) = x5 # 0, ¥ may be a random variable with nonzero mean). Similarly, an
examination of the covariance propagation equations

E.p = APy )AT + covL
P, = B(E,,,)B" + covP

cov cov

show that cov [¥§(—)] depends on cov (x}). (See Problem 7.5.)
If

Dy £ Oy (7.110)
and

cov(x%) # 0, (7.111)

which often is the case with the suboptimal filter, the estimate X is unbiased and the
estimation error covariance is independent of the system state.

7.6 SCHMIDT-KALMAN FILTERING

7.6.1 Historical Background

Stanley F. Schmidt was an early and successful advocate of Kalman filtering. He was
working at NASA Ames Laboratory in Mountain View, California, when Kalman
presented his results there in 1959. Schmidt immediately began applying it to a
problem then under study at Ames, which was the space navigation problem (i.e.,
trajectory estimation) for the upcoming Apollo project for manned exploration of the
moon. (In the process, Schmidt discovered what is now called extended Kalman
filtering.) Schmidt was so impressed with his results that he set about proselytizing
his professional colleagues and peers to try Kalman filtering.

Schmidt also derived and evaluated many practical methods for improving the
numerical stability of the procedures used and for reducing the computational
requirements of Kalman filtering. Many of these results were published in journal
articles, technical reports, and books. In [45] Schmidt presents an approach (now
called Schmidt-Kalman filtering) for reducing the computational complexity of
Kalman filters by eliminating some of the computation for “nuisance variables,”



310 PRACTICAL CONSIDERATIONS

which are state variables that are of no interest for the problem at hand—except that
they are part of the system state vector.

Schmidt’s approach is suboptimal, in that it sacrifices estimation performance for
computational performance. It enabled Kalman filters to be approximated so that
they could be implemented in real time on the computers of that era (the mid-1960s).
However, it still finds useful application today for implementing Kalman filters on
small embedded microprocessors.

The types of nuisance variables that find their way into the Kalman filter state
vector include those used for modeling correlated measurement noise (e.g., colored,
pastel, or random-walk noise). We generally have no interest in the memory state of
such noise. We just want to filter it out.

Because the dynamics of measurement noise are generally not linked to the other
system state variables, these added state variables are not dynamically coupled to the
other state variables. That is, the elements in the dynamic coefficient matrix linking
the two state variable types (states related to correlated measurement noise and states
not related to correlated measurement noise) are zero. In other words, if the ith state
variable is of one type and the jth state variable is of the other type, then the element
J;; in the ith row and jth column of the dynamic coefficient matrix F* will always
be zero.

Schmidt was able to take advantage of this, because it means that the state
variables could be reordered in the state vector such that the nuisance variables
appear last. The resulting dynamic equation then has the form

d ) = F@ 0 t { 7.112
EX()_[O Fv(t)]X()JrW() (7.112)

such that F, represents the dynamics of the nuisance variables and F, represents the
dynamics of the other state variables.

It is this partitioning of the state vector that leads to the reduced-order, suboptimal
filter called the Schmidt—Kalman filter.

7.6.2 Derivation

Partitioning the Model Equations. Let®

n = n, + n, be the total number of state variables,

n, be the number of essential variables, whose values are of interest for the
application, and

n, be the number of nuisance variables, whose values are of no intrinsic interest
and whose dynamics are not coupled with those of the essential state variables.

SThis derivation follows that in [12].



7.6 SCHMIDT-KALMAN FILTERING 311

Then the state variables can be reordered in the state vector such that the essential
variables precede the nuisance variables:

X1
RY)

X3 essential variables

X= (7.113)

Xn,+3 nuisance variables

XS
_ _}7 (7.114)

where the state vector has been partitioned into a subvector x, of the essential state
variables and a subvector x, of nuisance variables.

Partitioning of State Dynamic Models. We know that these two state variable
types are not linked dynamically, so that the system dynamic model has the form

d [ %0 F@ |0 (0 w, (1)
= = + (7.115)
sl Lo | rollsol Lwo
in continuous time, where the process noise vectors w, and w, are uncorrelated. That
is, the covariance matrix of process noise

Q&S 0
0= [ } (7.116)
0 O

for the continuous-time model (as well as for the discrete-time model). That is, the
cross-covariance block Q,, = 0.




312 PRACTICAL CONSIDERATIONS

Partitioned Covariance Matrix. The covariance matrix of estimation uncer-
tainty (the dependent variable of the Riccati equation) can also be partitioned as

P&‘I PBV
P= : (7.117)
PVS PVV

where

the block P,, is dimensioned n, x n,,
the block P,, is dimensioned n, X n,),
the block P, is dimensioned n, x n,, and
the block P,, is dimensioned n, X n,.

Temporal Covariance Update in Discrete Time. The corresponding state
transition matrix for the discrete-time model will then be of the form

D, 0
O, = . (7.118)
0 D,
e}
D, =exp J F.(adt|, (7.119)
I
Tkt
@, = exp J F,()dt |, (7.120)
I

and the temporal update of P will have the partitioned form

|_Pesk+lf | Psvk+1:|

|_vak+1— | vak-H—
. |:(I)sk | 0 :||:P£sk+ | Psvk+:||:q)zk | 0 :|
B 0 (I) k vs k+ ‘ P, k+ 0 | (Dv K

[QSE }
n (7.121)




7.6 SCHMIDT-KALMAN FILTERING 313

or, in terms of the individual blocks,

Pojp1- = OuPy ®5 + O, (7.122)
Popsi— = QP k7, (7.123)
Pogii- = QP O, (7.124)
Pos1- = P, O K +0,,. (7.125)

Partitioned Measurement Sensitivity Matrix. With this partitioning of the
state vector, the measurement model will have the form

x,(1)
z=[H, H || =—=|+v 7.126
AR ol 7120
= Hx, + Hx, + v . (7.127)
essential correlated  Uncorrelated
State noise noise
dependence

7.6.2.1 Schmidt—Kalman Gain

Kalman Gain. The Schmidt-Kalman filter does not use the Kalman gain matrix.
However, we need to write out its definition in partitioned form to show how its
modification results in the Schmidt-Kalman gain.

The Kalman gain matrix would be partitionable conformably, such that

_ K(
K=|— (7.128)
PE& Pev H(T
P, | P, LH]

P(( P(V HET -
{[He \ H‘,]|: :||:—:|+R} (7.129)
Pve va HT

v

and the individual blocks

{p.H+P, HIC, (7.130)

€e"Te

K, =
K, ={P,H' +P, HIC (7.131)

Vv



314 PRACTICAL CONSIDERATIONS

where the common factor

PEE PE\’ HéT -
c={[H | H,] +R (7.132)
Pvr va H\T

H' +HP HI +R}™.  (7.133)

= {HePaH(T +H(PevH;r + H,P

ve

However, the Schmidt—Kalman filter will, in effect, force K, to be zero and redefine
the upper block (no longer the K, of the Kalman filter) to be optimal under that
constraint.

Suboptimal Approach. The approach will be to define a suboptimal filter that does
not estimate the nuisance state variables but does keep track of the influence they
will have on the gains applied to the other state variables.

The suboptimal gain matrix for the Schmidt-Kalman filter has the form

=l

K SK
suboptimal — 0 ’ (7 1 34)

where Kgi is the n, x £ Schmidt-Kalman gain matrix.

This suboptimal filter effectively ignores the nuisance states.

However, the calculation of the covariance matrix P used in defining the gain Kgx
must still take into account the effect that this constraint has on the state estimation
uncertainties and must optimize Kgi for that purpose. Here, Kg will effectively be
optimal for the constraint that the nuisance states are not estimated. However, the
filter will still be suboptimal in the sense that filter performance using both Kalman
gain blocks (K, and K,) would be superior to that with Kgi alone.

The approach still propagates the full covariance matrix P, but the observational
update equations are changed to reflect the fact that (in effect) K, = 0.

Suboptimal Observational Update. The observational update equation for arbi-
trary gain K, can be represented in the form

Pu(+) = (I, — K H ) Po(=) (I, — KoHy) +KRK ", (7.135)

where 7 is the dimension of the state vector, 7, is the n x n identity matrix, £ is the
dimension of the measurement, H, is the £ x n measurement sensitivity matrix, and
Ry is the £ x ¢ covariance matrix of uncorrelated measurement noise.



7.6 SCHMIDT-KALMAN FILTERING 315

In the case that the suboptimal gain K, has the partitioned form shown in
Equation 7.134, the partitioned observational update equation for P will be

Pewr | Pors | Iy, | 0 3 Ksk [Hop | Hox]
Pve,kJr va,k+ a 0 | [n\‘ 0 6k v,k
I T
X ne | O B KSK,k [Hé . Hv ]
0 | In‘. 0 ’ ’

KSK,k
+ [ i|Rk[KSTK_k 0]. (7.136)

0

The summed terms in parentheses can be combined into the following form for
expansion:

[n, - KSK,kH(,k | _KSK,kHv,k Pee,kf P(v,kf
= X
0 | In‘. Pv(,k— va,k—

I, —H K&, 0 Ky (R KS 0
x|: 2 , , | :|+|: NSNS :|’ (7.137)

“HNKY | I 0 0

which can then be expanded to yield the following formulas for the blocks of P
(with annotation showing intermediate results that can be reused to reduce the
computation):

Pee,k+ = ([”[ - KSK,kHe,k) Péé,k— (In( - KSK,kHe,k)T

A AT
A
e e
T T
— (5, — Ksg il i) Pyc j—Hy 1 Ks i
B
BT

- KSK,kHv,kav,k—([n[ - KSK,ka,k)T
+ Ksi i RiKsi (7.138)



316 PRACTICAL CONSIDERATIONS

A
At
Pev,kJr = (In( - KSK,kHe,k> Pev,kf - [<SK,kI—]v,kav,kf7 (7139)
Pyjr = Ploiss (7.140)
va,k+ = va,k—' (7.141)

Note that P,, is unchanged by the observational update because x, is not updated.

This completes the derivation of the Schmidit—Kalman filter. The temporal
update of P in the Schmidt—Kalman filter will be the same as for the Kalman filter.
This happens because the temporal update only models the propagation of the state
variables, and the propagation model is the same in both cases.

7.6.3 Implementation Equations

We can now summarize just the essential equations from the derivation above, as
listed in Table 7.1. These have been rearranged slightly to reuse intermediate results.

7.6.4 Computational Complexity

The purpose of the Schmidt-Kalman filter was to reduce the computational
requirements over those required for the full Kalman filter. Although the equations
appear to be more complicated, the dimensions of the matrices involved are smaller
than the matrices in the Kalman filter.

We will now do a rough operations count of those implementation equations, just
to be sure that they do, indeed, decrease computational requirements.

Table 7.2 is a breakdown of the operations counts for implementing the equations
in Table 7.1. The formulas (in angular brackets) above the matrix formulas give the
rough operations counts for implementing those formulas. An “operation” in this
accounting is roughly equivalent to a multiply-and-accumulate. The operations
counts are expressed in terms of the number of measurements (¢, the dimension
of the measurement vector), the number of essential state variables (r,), and the
number of nuisance state variables (n,).

These complexity formulas are based on the matrix dimensions listed in
Table 7.3.

A MATLAB implementation of the Schmidt-Kalman filter is in the m-file
KFvsSKF.m on the accompanying diskette.

7.7 MEMORY, THROUGHPUT, AND WORDLENGTH REQUIREMENTS

These may not be important issues for off-line implementations of Kalman filters on
mainframe scientific computers, but they can become critical issues for real-time
implementations in embedded processors, especially as the dimensions of the state



7.7 MEMORY, THROUGHPUT, AND WORDLENGTH REQUIREMENTS 317

TABLE 7.1 Implementation Equations of Schmidt—Kalman Filter

Observational update:
C= {H[k(Pak—Hka + P[vk—H\-'rk)
+ Hyk Pk HY + P Hl) + "?kr1

Kskk = {Peek—Hlx + Pevk-Hik}C
Xeks = Xek— + Kok {2k = HokXen- )

A=l — Ksk kHex

B = AP, H K i
Peeks = AP«,k—AT -B-B"+ KSK,kRkKsTK,k
Pesy = APk — Ksk ko i Pov k-

_ pT
P'(,k+ - P(v,k+

v

P = Pk
Temporal update:
Xe k- = P Xkt
Pokst- = PkPsr @k + Q.

T

P(vk+1— = (D(kPwk+(ka
T

Pl'lk+1— = Fak+1-

P\'vk+1— = (kavalH»(DIk + O\'v

vector or measurement become larger. We present here some methods for assessing
these requirements for a given application and for improving feasibility in marginal
cases. These include order-of-magnitude plots of memory requirements and compu-
tational complexity as functions of the dimensions of the state vector and measure-
ment vector. These plots cover the ranges from 1 to 1000 for these dimensions,
which should include most problems of interest.

7.7.1 Wordlength Problems

Precision Problems. Wordlength issues include precision problems (related to
the number of significant bits in the mantissa field) and dynamic range problems
(related to the number of bits in the exponent field). The issues and remedies related
to precision are addressed in Chapter 6.



318 PRACTICAL CONSIDERATIONS

TABLE 7.2 Operations Counts for Schmidt—Kalman Filter

Scalar Operation Counts for Matrix Operations Totals by Rows
(ne2) (r2e) (n.n,0) n? +n?t+n.nt
C= szX P((k—Hek+P(\‘k—Hvk
Lk ek | akm vk

(used again below)

(ne2) [ (nne) (n2e) n02 + n.n + n2e
—_—— | m——— —
+ H\-k X Pve k— H(Tk + P\'v k— H\Tk

G ¢
+ Ry (matrix inverse)

(already computed above) (n£2) n(£2

T T\~
Kskk =\ Peck—H.x + Poyk—H p xC

(n.t) (n.t) 2n(£
i ——
X ki = Xe ko + Kok k X {2k — H kX k)

(r2e) n?e
——~—
A=, — Kskk Hox

(n2n,) inn,6) 2n2n, + n.n,¢
- > T T
B=AxP,, xH  xKgxx
(nZn,)
T T 373 4 1,2
Péé,k+ = 'APu,kf'A -B-B §n( +§n6

(ne+gn, 2+4n,6)

—
+ Kok [Hoks Povic— i + Rid K i S+ nte+ine®+5nk +5ne

(In2e+n 2+5n.e)

(rén) (o) (o) r2n, + n.n,t +
—— — — ——
P(\r,k+ =Ax P(\r',kf - KSK,k X Hv.kf Xva.kf

P\"Lk‘# = P<Tv.k+ 0
P\r\',K+ = P\'v,k— 0
Total for Observational Update 3n,.02 + Sn2e+4nn.e

+8n,02 +2n20 + ¢
+3n.¢+3n2n,

+1in+nn?



7.7 MEMORY, THROUGHPUT, AND WORDLENGTH REQUIREMENTS 319

TABLE 7.2 (continued)

Scalar Operation Counts for Matrix Operations Totals by Rows

Temporal Update

)A({,k+17 =D X s n(2

Pokit- = PkPoir @k + Q. §nd +3n?

Pokyr-= (Dsszkar(DIk nﬁn‘z, + nvnf

Preks1- = P(Tvk+1— 0

Pkt = PP Ol + Q,, gn +5n?

Total for Temporal Update Sm+3n+nn?+nn, +3nd+5n?
Total for Schmidt—Kalman Filter 3n.02 +3n2¢ +4n.n,¢

+3n2 +2n2¢+ 3 +3ne
+4nZn, +3n +3m +5n,e

+3nm +3im +ine+2nn?

Scaling Problems. Underflows and overflows are symptoms of dynamic range
problems. These can often be corrected by rescaling the variables involved. This is
equivalent to changing the units of measure, such as using kilometers in place of
centimeters to represent length. In some cases, but not all cases, the condition
number of a matrix can be improved by rescaling. For example, the two covariance
matrices

1 0 1|14+ 1-¢
) and =
0 ¢ 21 1= 14¢é

have the same condition number (1/¢2), which can be troublesome for very small
values of ¢. The condition number of the matrix on the left can be made equal to 1 by
simply rescaling the second component by 1/e.

7.7.2 Memory Requirements

In the early years of Kalman filter implementation, a byte of memory cost about as
much as a labor hour at minimum wage. With these economic constraints,
programmers developed many techniques for reducing the memory requirements
of Kalman filters. A few of these techniques have been mentioned in Chapter 6,
although they are not as important as they once were. Memory costs have dropped



320 PRACTICAL CONSIDERATIONS

TABLE 7.3 Array Dimensions

Symbol Rows Columns
A n, n,
B n, n,
C 0 £
I-I{ e n{
H, 14 n,

KS K n, V4
P( € n( n(
P( v n( n\'
Pv( n, v n(
P\' v n\' n\7
OE € né nE
O\'V n\' n‘,
R £ £
(D( n( n(
D, n, n,
X, n, 1
z £ 1

dramatically since these methods were developed. The principal reason for paying
attention to memory requirements nowadays is to determine the limits on problem
size with a fixed memory allocation. Memory is cheap, but still finite.

Program Memory versus Data Memory. In the “von Neumann architecture”
for processing systems, there is no distinction between the memory containing the
algorithms and that containing the data used by the algorithms. In specific
applications, the program may include formulas for calculating the elements of
arrays such as ® or H. Other than that, the memory requirements for the algorithms
tend to be independent of application and the “problem size.” For the Kalman filter,
the problem size is specified by the dimensions of the state (#), measurement (¢), and
process noise (p). The data memory requirements for storing the arrays with these
dimensions is very much dependent on the problem size. We present here some
general formulas for this dependence.

Data Memory and Wordlength. The data memory requirements will depend
upon the data wordlengths (in bits) as well as the size of the data structures. The data
requirements are quoted in “floating-point words.” These are either 4- or 8-byte
words (in IEEE floating-point standard formats) for the examples presented in this
book.

Data Memory Requirements. These are also influenced somewhat by program-
ming style, particularly by the ways that data structures containing partial results are
reused.



7.7 MEMORY, THROUGHPUT, AND WORDLENGTH REQUIREMENTS 321

The data memory requirements for a more-or-less “conventional” implementa-
tion of the Kalman filter are listed in Table 7.4 and plotted in Figure 7.25. This is the
Kalman filter implementation diagrammed in Figure 6.2, which reuses some partial
results. The array dimensions are associated with the results of matrix subexpres-
sions that they contain. These are divided into three groups:

1. those arrays common to both the Riccati equation (for covariance and gain
computations) and the linear estimation computations;

2. the additional array expressions required for solving the Riccati equation,
which provides the Kalman gain as a partial result; and

3. the additional array expressions required for linear estimation of the state
variables, given the Kalman gains.

Expressions grouped together by curly braces are assumed to be kept in the same
data structures. This implementation assumes that

o the product GOGT is input and not computed (which eliminates any depen-
dence on p, the dimension of Q);

e given ®P, ®, and GOG", the operation P < ®P®' + GOG" is performed in
place;

TABLE 7.4 Array Requirements for “Conventional” Kalman Filter Implementation

Functional Matrix Array Total
Grouping Expression Dimensions Memory?
Riccati equation P nxn
oP nxn
GQG" nxn 3r?
HP £xn +¢n
PHT
R £x e
HPH™ + R ex¢ +2¢2
[HPH™ + R
Common o nxn n
ﬂ £xn
K nx{ +2¢n
Linear Estimation 4 L L
z— Hx
X n
DOx n +2n

4n units of floating-point data words.



322 PRACTICAL CONSIDERATIONS

1000 ' ' v 10004 o o ! Lot
.................... ) .. .. ios
10° . :
.................... .. -: . _.- 1-0.5 3
100 103 - 1003 . -
.............. ) . : . it :
£ 1o* 2 .. B :
""""" . B : : 10? B : :
10 10’ . : :o- 104 % : : -
e . : : : o2 . : :
10? ! :
A : . 1. < . . .
| B : : . Do 1 10! < : . . N
1 10 100 1000 1 10 100 1000
n n
(a) Complete Implementation (b) Without Gain Calculations

Fig. 7.25 Conventional filter memory requirements (in words) versus state dimension (n) and
measurement dimension (¢).

e computations involving the subexpression PH' can be implemented with HP
by changing the indexing;

e HPHT + R can be computed in place (from HP, H, and R) and inverted in
place;

e z — Hx can be computed in place (in the z array); and

e the state update computation x < (®x) + K[z — H(®x)] requires additional
memory only for the intermediate result (®x).

Figure 7.25 illustrates the numerical advantage of precomputing and storing the
Kalman gains in bulk memory. It saves about a factor of 4 in data memory
requirements for small dimensions of the measurement relative to the state and
even more for larger measurement dimensions.

Eliminating Data Redundancy. Reuse of temporary arrays is not the only way
to save memory requirements. It is also possible to save data memory by eliminating
redundancies in data structures. The symmetry of covariance matrices is an example
of this type of redundancy. The methods discussed here depend on such constraints
on matrices that can be exploited in designing their data structures. They do require
additional programming effort, however, and the resulting run time program code
may require slightly more memory and more processing time. The difference will be
primarily from index computations, which are not the standard ones used by
optimizing compilers. Table 7.5 lists some common constraints on square matrices,
the minimum memory requirements (as multiples of the memory required for a
scalar variable), and corresponding indexing schemes for packing the matrices in
singly subscripted arrays. The indexing schemes are given as formulas for the single



7.7 MEMORY, THROUGHPUT, AND WORDLENGTH REQUIREMENTS

323

TABLE 7.5 Minimum Memory Requirements for n x n Matrices?®

Minimum Indexing
Matrix Type Memory® k(i, j)
Symmetric nn+1) i dU=n
2 2

@n—ni-1 .

2
Upper triangular "(”2"‘1) i+/(!2— 1)
Unit upper triangular n(n2+ 1 i+w
Strictly upper triangular —n(nz— 1 it (/_1)2&
Diagonal n i
Toeplitz n i+j—1

“Note: n is the dimension of the matrix; /i and j are the indices of a two-
dimensional array; k is the corresponding index of a one-dimensional array;

b1 units of data words.

subscript (k) corresponding to the row (i) and column (j) indices of a two-
dimensional array. The two formulas given for symmetric matrices correspond to

the two alternative indexing schemes:

(1 2 4 %n(n—l)+l_
35 In(n—1)+2
6 ... %n(n—l)—i—?,

%n(n—i— 1)

1 2 3 n 7]
n+1 n+2 2n—1

or 2n ... 3n-=3 |

i gn(n+1) |

where the element in the ith row and jth column is k(7, ).

Just by exploiting symmetry or triangularity, these methods can save about a
factor of 2 in memory with a fixed state vector dimension, or allow about a factor of
V2 increase in the state vector dimension (about 40% increase in the dimension)

with the same amount of memory.

Arrays Can Be Replaced by Algorithms. In special cases, data arrays can be
eliminated entirely by using an algorithm to compute the matrix elements “on the



324 PRACTICAL CONSIDERATIONS

fly.” For example, the companion form coefficient matrix (') and the corresponding
state transition matrix (®) for the differential operator d"/dt" are

010 0
0 0 1 0
F=|: @ > | (7.142)
0 1
O(r) = (7.143)
— 1 —
1 ¢ 12 EE——
2 (n—1)
1
1 ¢ 2
0 (n—=2)!
= 1 , (7.144)
0 0 1 — 3
(n—3)!
[0 0 0 1 i

where ¢ is the discrete-time interval. The following algorithm computes the product
M = ®P, with @ as given in Equation 7.144, using only P and #:

for i=1:n,
for 3j=1:n,
s=P(n,]j);
m=n-1;
for k=n-1:1:1,
s=P(k,J)+s*t/m;

m=m-1;
end;
M(i,])=s;
end;
end;

It requires about half as many arithmetic operations as a general matrix multiply and
requires no memory allocation for one of its matrix factors.



7.7 MEMORY, THROUGHPUT, AND WORDLENGTH REQUIREMENTS 325

7.7.3 Throughput, Processor Speed, and Computational Complexity

Influence of Computational Complexity on Throughput. The “through-
put” of a Kalman filter implementation is related to how many updates it can
perform in a unit of time. This depends upon the speed of the host processor, in
floating-point operations (flops) per second, and the computational complexity of the
application, in flops per filter update:

throughput updates _ pfocessor speeq (flops/s) .
] computational complexity (flops/update)

The numerator of the expression on the right-hand side depends upon the host
processor. Formulas for the denominator, as functions of the application problem
size, are derived in Chapter 6. These are the maximum computational complexities of
the implementation methods listed in Chapter 6. The computational complexity of
an application can be made smaller if it includes sparse matrix operations that can be
implemented more efficiently.

Conventional Kalman Filter. The maximum computational complexity of the
conventional Kalman filter implementation is plotted versus problem size in Figure
7.26. This implementation uses all the shortcuts listed in Section 7.7.2, and also
eliminates redundant computations in symmetric matrix products. The right hand
plot assumes that the matrix Riccati equation for the Kalman gain computations has
been solved off-line, as in a gain-scheduled or steady-state implementation.

10003 --c-en-- Poveeenna. ool ¢ 10009 -t .o S
.................... 1o . o
EEREETEPEE PP . 1'03f -i‘05

100G ceeenmnennnn, | I-OZ .. i 1004 . . p -
......... e it . io?

m 1T csos oot m ] -

.......... LRI S
104-..... L R ' k -
N 3 10?
A A i)
1 SO S S S R S P — 2 et : >
| 10 100 1000 1 10 100 1000
n n
(a) Complete (b) Wihout Riccati Equation

Fig. 7.26 Contour plots of computational complexity (in flops per measurement) of the Kalman
filter as a function of state dimension (n) and measurement dimension (m).



326 PRACTICAL CONSIDERATIONS

1000£l .......... Joeeoeennad Yeenll, (3 10004 ' ' -t
...................... 10? 10°
................... 0 108 :
1004+ v vvnnnnnnnn.,, 07 Y- 1004 10’ -
............. 10° : L0
L IO o5 ST 103
10 104 - 104 ro* = -
.1_93 E 1 103
02 - : 10?
1 B : — - —— . . 1 . — . et . e
1 10 n 100 1000 1 10 " 100 1000
(a) Full Q and R Matrices (b) Diagonal Q and R Matrices

Fig. 7.27 Contour plots of computational complexity (in flops per measurement) of the
Bierman—Thornton implementation as a function of state dimension (n) and measurement
dimension (m).

Bierman-Thornton Square Root Implementation. The corresponding
dependence of computational complexity on problem size for the UD filter
implementation is plotted in Figure 7.27a. These data include the computational
cost of diagonalizing Q and R on each temporal and observational update,
respectively. The corresponding results for the case that Q and R are already
diagonal are displayed in Figure 7.27b.

7.7.4 Programming Cost versus Run Time Cost

The computational complexity issue in Kalman filtering is usually driven by the need
to execute in real time. The computational complexity grows so fast with the
problem size that it will overwhelm even the fastest processors for sufficiently large
system models. For that reason, the issue of computational complexity is one that
must be addressed early on in the filter design cycle.

Another trade-off in the design of Kalman filters is between the one-time cost of
programming the implementation and the recurring cost of running it on a computer.
As computers grow less expensive compared to programmers, this trade-off tends to
favor the most straightforward methods, even those that cause numerical analysts to
wince. Keep in mind, however, that this is a low-cost/high-risk approach. Remember
that the reason for the development of better implementation methods was the failure
of the straightforward programming solutions to produce acceptable results.

7.8 WAYS TO REDUCE COMPUTATIONAL REQUIREMENTS

7.8.1 Reducing Complexities of Matrix Products

Implementing Products of Two Matrices. The number of flops required to
compute the product of general £ x m and m x n matrices is £m*n. This figure can be



7.8 WAYS TO REDUCE COMPUTATIONAL REQUIREMENTS 327

reduced substantially for matrices with predictable patterns of zeros or symmetry
properties. These tricks can be used to advantage in computing matrix products that
are symmetric and for products involving diagonal or triangular factors. They should
always be exploited whenever H or @ is a sparse matrix.

Implementing Products of Three Matrices. It is of considerable practical
importance that associativity of matrix multiplication does not imply invariance of
computational complexity. The associativity of matrix multiplication is the property
that

M, x (M2 X M3) = (M, x M,) x Mj (7.145)

for conformably dimensioned matrices M;, M,, and M;. That is, the result is
guaranteed to be independent of the order in which the two matrix multiplications
are performed. However, the effort required to obtain the result is not always
independent of the order of multiplication. This distinction is evident if one assigns
conformable dimensions to the matrices involved and evaluates the number of scalar
multiplications required to compute the result, as shown in Table 7.6. The number of
flops depends on the order of multiplication, being n, (n§ + nlnz)n4 in one case and
ny(n3 + n3ny)ny in the other case. The implementation M, x (M, x M) is favored
if nlng(m — n3) < (ny —ny)m3n,, and the implementation (M; x M,) x M; is
favored if the inequality is reversed. The correct selection is used to advantage in
the more practical implementations of the Kalman filter, such as the De Vries
implementation (see Section 6.6.1.4).

7.8.2 Off-Line versus On-Line Computational Requirements

The Kalman filter is a “real-time” algorithm, in the sense that it calculates an
estimate of the current state of a system given measurements obtained in real time. In
order that the filter be implementable in real time, however, it must be possible to
execute the algorithm in real time with the available computational resources. In this

TABLE 7.6 Computational Complexities of Triple Matrix Product

Attribute Value
Implementation M; x| My x Ms My x My | x My
—— —— —— —— —— ——
nyxny NMoyxNg  N3xny NyixNy  Nyxng N3 XNy
Number of flops
First multiply nanén, nyn3n,
Second multiply nynan, nnén,

Total na(nS + nyny)ny ny(N3 + Nany)ng




328 PRACTICAL CONSIDERATIONS

assessment, it is important to distinguish between those parts of the filter algorithm
that must be performed “on-line” and those that can be performed “off-line” (i.e.,
carried out beforehand, with the results stored in memory, including bulk media,
such as magnetic tape or CDROM, and read back in real time’). The on-line
computations are those that depend upon the measurements of the real-time system.
Those calculations cannot be made until their input data become available.

It is noted in Chapter 4 that the computations required for calculating the Kalman
gains do not depend upon the real-time data, and for that reason they can be executed
off-line. It is repeated here for emphasis and to formalize some of the practical
methods used for implementation.

The most straightforward method is to precompute the gains and store them for
retrieval in real time. This is also the method with the most general applicability.
Some methods of greater efficiency (but less generality) are discussed in the
following subsections. Methods for performance analysis of these suboptimal
estimation methods are discussed in Section 7.5.

7.8.3 Gain Scheduling

This is an approximation method for estimation problems in which the rate of
change of the Kalman gains is very slow compared to the sampling rate. Typically,
the relative change in the Kalman gain between observation times may be a few
percent or less. In that case, one value of the Kalman gain may be used for several
observation times. Each gain value is used for a “stage” of the filtering process.

This approach is typically used for problems with constant coefficients. The gains
in this case have an asymptotic constant value but go through an initial transient due
to larger or smaller initial uncertainties than the steady-state uncertainties. A few
“staged” values of the gains during that transient phase may be sufficient to achieve
adequate performance. The values used may be sampled values in the interior of the
stage in which they are used or weighted averages of all the exact values over the
range.

The performance trade-off between the decreased storage requirements (for using
fewer values of the gains) and the increased approximation error (due to differences
between the optimal gains and the scheduled gains) can be analyzed by simulation.

7.8.4 Steady-State Gains for Time-Invariant Systems

This is the limiting case of gain scheduling—with only one stage—and it is one of
the more common uses of the algebraic Riccati equation. In this case, only the
asymptotic values of the gains are used. This requires the solution of the algebraic
(steady-state) matrix Riccati equation.

In assessing the real-time implementation requirements, one must trade off the time to read these
prestored values versus the time required to compute them. In some cases, the read times may exceed the
computation times.



7.8 WAYS TO REDUCE COMPUTATIONAL REQUIREMENTS 329

There are several methods for solving the steady-state matrix Riccati equation in
the following subsections. One of these (the doubling method) is based on the
linearization method for the Riccati equation presented in Chapter 4. Theoretically, it
converges exponentially faster than the serial iteration method. In practice, however,
convergence can stall (due to numerical problems) before an accurate solution is
attained. However, it can still be used to obtain a good starting estimate for the
Newton—Raphson method (described in Chapter 4).

7.8.4.1 Doubling Method for Time-Invariant Systems. This is an iterative
method for approximating the asymptotic solution to the time-invariant Riccati
equation, based on the formula given in Lemma 2 in Chapter 4. As in the continuous
case, the asymptotic solution should equal the solution of the steady-state equation:

P, = (I)[Poo — P H(HP HT + R)_lHPOO](I)T +0, (7.146)

although this is not the form of the equation that is used. Doubling methods generate
the sequence of solutions

Py(=), Py(=), Py(=). Py(=), - Py =), Py (=), -

of the nonalgebraic matrix Riccati equation as an initial-value problem—by
doubling the time interval between successive solutions. The doubling speedup is
achieved by successive squaring of the equivalent state transition matrix for the time-
invariant Hamiltonian matrix

O+ Q0 THR'HT) 007"
¥ = |:( © ) Q . (7.147)
O TR! o7
The pth squaring of ¥ will then yield ¥ and the solution
Pyy(—) = Ay By (7.148)

for

Ay [ 4
7w 0 (7.149)
3217 BO

Davison—M%ki—Friedlander—Kai/ath Squaring Algorithm. Note that if one
expresses W2 in symbolic form as
g2 |:A1Tv+CNAX/lBN CNAJTII:|

(7.150)
Ay'By Ay



330 PRACTICAL CONSIDERATIONS

then its square can be put in the form

g2 (AL +Cy A By Oy Ay (7.151)
Ay'By Ay
_ _-AJTV+1 + CN+1-AXIL13N+1 CN+1A1§£r1 :|’ (7.152)
Ay By A
Ay = Ay(I + BNCN)A-AN’ (7.153)
Byi1 = By + Ay(I +ByCy)~ By Ay, (7.154)
Cr1 = Cy + AVCy (I 4+ ByCy) ™' Ay. (7.155)

The last three equations define an algorithm for squaring ‘PZN, starting with the
values of Ay, By, and Cy for N = 0, given by Equation 7.147:

A, =0, (7.156)
By=H'R'H, (7.157)
Co = 0. (7.158)

Initial Conditions. If the initial value of the Riccati equation is with Py = 0, the
zero matrix, it can be represented by Py = 4By for 4, = 0 and any nonsingular B,
Then the Nth iterate of the doubling algorithm will yield

AzN N A
—p? [ 0} (7.159)
BzN BO
AL+ CyAV'By CyAV T O
- [ N flv N Nflv (7.160)
AN BN AN Bl
CyAY'B
=[ NN 1}, (7.161)
AV'B,
Py = AwB5y (7.162)
= CyAy' B (Ay'B) ™ (7.163)
—Cy. (7.164)

That is, after the Nth squaring step, the submatrix

Cy = Pv. (7.165)



7.8 WAYS TO REDUCE COMPUTATIONAL REQUIREMENTS

TABLE 7.7 Davison—Maki—Friedlander—Kailath Squaring Algorithm

Initialization Iteration (N times)
A=0" A< Al +Bo) AT
B=H"R'H B <« B+ A(l+Bc) ' BAT
C=Q=P) c«c+Aci+B0)y A
Termination
Pon=C
nxn data arrays (T}, T, , T3 are temporary)
An Bnw Cn T T, I
(1 +BNCN )_1
CNT,
" Al
Cn+ T; Ay
An T,
T,By
. 4 .
—e By + T; AIZ;
T, Ay
]
y 3
AN +1 By +1 CnN+1

Fig. 7.28 Data array usage for doubling algorithm.

331

The resulting algorithm is summarized in Table 7.7. It has complexity O(r? log k)
flops for computing P, requiring one nxn matrix inverse and 8 nxn matrix
products per iteration®. An array allocation scheme for performing the squaring

algorithm using only 6 nxn arrays is shown in Figure 7.28.

8The matrices By and Cy and the matrix products (I + ByCy) ' By and Cy(I + ByCy)™' are symmetric.
That fact can be exploited to eliminate 2n?(n — 1) flops per iteration. With these savings, this algorithm
requires slightly fewer flops per iteration than the straightforward squaring method. It requires about one-
fourth less memory than straightforward squaring, also.



332 PRACTICAL CONSIDERATIONS

Numerical Convergence Problems. Convergence can be stalled by precision
limitations before it is complete. The problem is that the matrix A is effectively
squared on each iteration and appears quadratically in the update equations for 3 and
C. Consequently, if || Ay|| < 1, then the computed values of By and Cy, may become
stalled numerically as ||.Ay|| — 0 exponentially. The value of .4, can be monitored
to test for this stall condition. Even in those stall situations, the doubling algorithm is
still an efficient method for getting an approximate nonnegative definite solution.

7.9 ERROR BUDGETS AND SENSITIVITY ANALYSIS

7.9.1 Design Problem for Statistical Performance Requirements

This is the problem of estimating the statistical performance of a sensor system that
will make measurements of some dynamic and stochastic process and estimate its
state. Statistical performance is defined by mean-squared errors at the “system
level”; these depend on mean-squared errors at the subsystem level; and so on down
to the level of individual sensors and components. The objective of this activity is to
be able to justify the apportionment of these lower level performance requirements.

This type of performance analysis is typically performed during the preliminary
design of estimation systems. The objective of the analysis is to evaluate the
feasibility of an estimation system design for meeting some prespecified acceptable
level of uncertainty in the estimates that will be obtained.

The Kalman filter does not design sensor systems, but it provides the tool for
doing it defensibly. That tool is the model for estimation uncertainty. The covariance
propagation equations derived from the model can be used in characterizing
estimation uncertainty as a function of the “parameters” of the design. Some of
these parameters are statistical, such as the noise models of the sensors under
consideration. Others are deterministic. The deterministic parameters may also be
discrete valued—such as the sensor type—or continuous—such as the sensor
location.

One of the major uses of Kalman filtering theory is in the design of sensor
systems:

1. Vehicle navigation systems containing some combination of sensors, such as:

(a) Attitude and attitude rate sensors

i. Magnetic compass (field sensor)

ii. Displacement gyroscopes

iii. Star trackers or sextants

iv. Rate gyroscopes

v. Electric field sensors (for earth potential field)
(b) Acceleration sensors (accelerometers)
(c) Velocity sensors (e.g., onboard Doppler radar)



7.9 ERROR BUDGETS AND SENSITIVITY ANALYSIS 333

(d) Position sensors
i. Global Positioning System (INS) (navigation satellite)
ii. Terrain-mapping radar
iii. Long-range navigation (LORAN)
iv. Instrument Landing System (ILS)

2. Surface-based, airborne, or spaceborne tracking systems
(a) Range and Doppler radar
(b) Imaging sensors (e.g., visible or infrared cameras)

In the design of these systems, it is assumed that a Kalman filter will be used in
estimating the dynamic state (position and velocity) of the vehicle. Therefore, the
associated covariance equations can be used to estimate the performance in terms of
the covariance of estimation uncertainty.

7.9.2 Error Budgeting

Large systems such as spacecraft and aircraft contain many sensors of many types,
and the Kalman filter provides a methodology for the integrated design of such
systems. Error budgeting is a specialized form of sensitivity analysis. It uses the
error covariance equations of the Kalman filter to formalize the dependence of
system accuracy on the component accuracies of its individual sensors. This form of
covariance analysis is significantly more efficient than Monte Carlo analysis for this
purpose, although it does depend upon linearity of the underlying dynamic
processes.

Error budgeting is a process for trading off performance requirements among
sensors and subsystems of a larger system for meeting a diverse set of overall
performance constraints imposed at the “system level.” The discussion here is
limited to the system-level requirements related to accuracy, although most
system requirements include other factors related to cost, weight, size, and
power.

The error budget is an allocation of accuracy requirements down through the
hierarchy of subsystems to individual sensors, and even to their component parts. It
is used for a number of purposes, such as:

1. Assessing theoretical or technological performance limits by determining
whether the performance requirements for a given application of a given
system are achievable within the performance capabilities of available,
planned, or theoretically attainable sensor subsystems.

2. Determining the extent of feasible design space, which is the range of
possible sensor types and their design parameters (e.g., placement, orienta-
tion, sensitivity, and accuracy) for meeting the system performance
requirements.



334 PRACTICAL CONSIDERATIONS

3. Finding a feasible apportionment of individual subsystem or sensor accuracies
for meeting overall system accuracy requirements.

4. Identifying the critical subsystems, that is, those for which slight degradation
or derating of performance would most severely affect system performance.
These are sometimes called “the long poles in the tent,” because they tend to
“stick out” in this type of assessment.

5. Finding feasible upgrades and redesigns of existing systems for meeting new
performance requirements. This may include relaxation of some requirements
and tightening of others.

6. Trading off requirements among subsystems. This is done for a number of
reasons:

(a) Reapportionment of error budgets to meet a new set of requirements (item
5, above).

(b) Relaxing accuracy requirements where they are difficult (or expensive) to
attain and compensating by tightening requirements where they are easier
to attain. This approach can sometimes be used to overcome sensor
problems uncovered in concurrent development and testing.

(c) Reducing other system-level performance attributes, such as cost, size,
weight, and power. This also includes such practices as suboptimal
filtering methods to reduce computational requirements.

7.9.3 Error Budget

Multiple Performance Requirements. System-level performance require-
ments can include constraints on the mean-squared values of several error types at
several different times. For example, the navigational errors of a space-based
imaging system may be constrained at several points corresponding to photographic
missions or planetary encounters. These constraints may include errors in pointing
(attitude), position, and velocity. The error budget must then consider how each
component, component group, or subsystem contributes to each of these perfor-
mance requirements. The budget will then have a two-dimensional breakout—like a
spreadsheet—as shown in Figure 7.29. The rows represent the contributions of major
sensor subsystems, and the columns represent their contributions to each of the
multiple system-level error constraints. The formulas determining how each error
source contributes to each of the system-level error categories are more complex
than those of the usual spreadsheet, however.

7.9.4 Error Sensitivity Analysis and Budgeting

Nonlinear Programming Problem. The dependence of mean-squared system-
level errors on mean-squared subsystem-level errors is nonlinear, and the budgeting
process seeks a satisfactory apportionment or the subsystem-level error covariances
by a gradientlike method. This includes sensitivity analysis to determine the



7.9 ERROR BUDGETS AND SENSITIVITY ANALYSIS 335

ERROR BUDGET

ERROR SYSTEM ERRORS
SOURCE T
GROUP E, E, E; E,

G

G

G

TOTAL

Fig. 7.29 Error budget breakdown.

gradients of the various mean-squared system-level errors with respect to the mean-
squared subsystem-level errors.

Dual-State System Model. Errors considered in the error budgeting process
may include known “modeling errors” due to simplifying assumptions or other
measures to reduce the computational burden of the filter. For determining the effects
that errors of this type will have on system performance, it is necessary to carry both
models in the analysis: the “truth model” and the “filter model.” The budgeting
model used in this analysis is diagrammed in Figure 7.30. In sensitivity analysis,
equivalent variations of some parameters must be made in both models. The
resulting variations in the projected performance characteristics of the system are
then used to establish the sensitivities to the corresponding variations in the
subsystems. These sensitivities are then used to plan how one can modify the

\ . LINEAR PROJECTED
EI‘})%TE‘E L COVARIANCE L SYSTEM
EQUATIONS PERFORMANCE

K, (KALMAN GAIN)

FILTER MODEL

74 T T -1
0=Q X Wy K,=PH[[H EH[+R,] FILTER-
st ——— INDICATED
7 =Hx+v fi("):("’?ka)’i(—) PERFORMANCE

Fig. 7.30 Error budgeting model.



336 PRACTICAL CONSIDERATIONS

current “protobudget” to arrive at an error budget allocation that will meet all
performance requirements. Often, this operation must be repeated many times,
because the sensitivities estimated from variations are only accurate for small
changes in the budget entries.

There Are Two Stages of the Budgeting Process. The first stage results in a
“sufficing” error budget. It should meet system-level performance requirements and
be reasonably close to attainable subsystem-level performance capabilities. The
second stage includes “finessing” these subsystem-level error allocations to arrive at
a more reasonable distribution.

7.9.5 Budget Validation by Monte Carlo Analysis

It is possible to validate some of the assumptions used in the error budgeting process
by analytical and empirical methods. Although covariance analysis is more efficient
for developing the error budget, Monte Carlo analysis is useful for assessing the
effects of nonlinearities that have been approximated by variational models. This is
typically done after the error budget is deemed satisfactory by linear methods.
Monte Carlo analysis can then be performed on a dispersion of actual trajectories
about some nominal trajectory to test the validity of the results estimated from the
nominal trajectory. This is the only way to test the influence of nonlinearities, but it
can be computationally expensive. Typically, very many Monte Carlo runs must be
made to obtain reasonable confidence in the results.

Monte Carlo analysis has certain advantages over covariance analysis, however.
The Monte Carlo simulations can be integrated with actual hardware, for example, to
test the system performance in various stages of development. This is especially
useful for testing filter performance in onboard computer implementations using
actual system hardware as it becomes available. Sign errors in the filter algorithms
that may be unimportant in covariance analysis will tend to show up under these test
conditions.

7.10 OPTIMIZING MEASUREMENT SELECTION POLICIES

7.10.1 Measurement Selection Problem

Relation to Kalman Filtering and Error Budgeting. You have seen how
Kalman filtering solves the optimization problem related to the use of data obtained
from a measurement and how error budgeting is used to quantify the relative merits
of alternative sensor designs. However, there is an even more fundamental optimiza-
tion problem related to the selection of those measurements. This is not an
estimation problem, strictly speaking, but a decision problem. 1t is usually consid-
ered to be a problem in the general theory of optimal control, because the decision to
make a measurement is considered to be a generalized control action. The problem



7.10 OPTIMIZING MEASUREMENT SELECTION POLICIES 337

can also be ill-posed, in the sense that there may be no unique optimal solution
[131].

Optimization with Respect to a Quadratic Loss Function. The Kalman
filter is optimal with respect to all quadratic loss functions defining performance as a
function of estimation error, but the measurement selection problem does not have
that property. It depends very much on the particular loss function defining
performance.

We present here a solution method based on what is called “maximum marginal
benefit.” It is computationally efficient but suboptimal with respect to a given
quadratic loss function of the resulting estimation errors x—x:

2

N
L= Z; (ZACACO =] (7.166)

where the given matrices A, transform the estimation errors to other “variables of
interest,” as illustrated by the following examples:

1. If only the final values of the estimation errors are of interest, then 4y, = 7 (the
identity matrix) and 4, = 0 (a matrix of zeros) for £ < N.

2. If only a subset of the state vector components are of interest, then the 4, will
all equal the projection onto those components that are of interest.

3. If any linear transformation of the estimation errors is of interest, then the 4,
will be defined by that transformation.

4. If any temporally weighted combination of linear transformations of the
estimation errors is of interest, then the corresponding A, will be the weighted
matrices of those linear transformations. That is, 4, = f,B,, where 0 <, is
the temporal weighting and the B, are the matrices of the linear transforma-
tions.

7.10.2 Marginal Optimization

The loss function is defined above as a function of the a posteriori estimation errors
following measurements. The next problem will be to represent the dependence of
the associated risk® function on the selection of measurements.

Parameterizing the Possible Measurements. As far as the Kalman filter is
concerned, a measurement is characterized by H (its measurement sensitivity matrix)

°The term “risk” is here used to mean the expected loss.



338 PRACTICAL CONSIDERATIONS

and R (its covariance matrix of measurement uncertainty). A sequence of measure-
ments is then characterized by the sequence

{H#. R} {Hy Ry} {Hs RS ), ... {Hy, Ry }}

of pairs of these parameters. This sequence will be called marginally optimal with
respect to the above risk function if, for each k, the kth measurement is chosen to
minimize the risk of the subsequence

HH, R} {Hy Ry} {Hs RS ), L {Hy Ry
That is, marginal optimization assumes that:

1. The previous selections of measurements have already been decided.
2. No further measurements will be made after the current one is selected.

Admittedly, a marginally optimal solution is not necessarily a globally optimal
solution. However, it does yield an efficient suboptimal solution method.

Marginal Risk. Risk is the expected value of loss. The marginal risk function
represents the functional dependence of risk on the selection of the kth measure-
ment, assuming that it is the last. Marginal risk will depend only on the a posteriori
estimation errors after the decision has been made. It can be expressed as an implicit
function of the decision in the form

Re(Pi(1) = E{ z 4, () - x,) |<2}, (7.167

where P, (+) will depend on the choice for the kth measurement and, for k < £ <N,
X () = X (5), (7.168)
Xen () — Xy = Oy (5%(+) - xe) — Wy, (7.169)

so long as no additional measurements are used.

Marginal Risk Function. Before proceeding further with the development of a
solution method, it will be necessary to derive an explicit representation of the
marginal risk as a function of the measurement used. For that purpose, one can use a
trace formulation of the risk function, as presented in the following lemma.

LEMMA 4 For 0 <k < N, the risk function defined by Equation 7.167 can be
represented in the form

Ri(Py) = trace {P,W, + V. }, (7.170)



7.10 OPTIMIZING MEASUREMENT SELECTION POLICIES 339

where
Wy = AyAy, (7.171)
Vy =0, (7.172)
and, for £ < N,
W, = O, Wy, ®, + A 4,, (7.173)
Ve=0We + Vi (7.174)

Proof: A formal proof of the equivalence of the two equations requires that each be
entailed by (derivable from) the other. We give a proof here as a reversible chain of
equalities, starting with one form and ending with the other form. This proof is by
backward induction, starting with £ = N and proceeding by induction back to any
k < N. The property that the trace of a matrix product is invariant under cyclical
permutations of the order of multiplication is used extensively.

Initial step: The initial step of a proof by induction requires that the statement of
the lemma hold for £ = N. By substituting from Equations 7.171 and 7.172 into
Equation 7.170, and substituting N for k, one can obtain the following sequence of
equalities:

Ry (Py) = trace{Py Wy + Vy}
= trace{PyAnAy + 0,5}
= trace{dyPyAy}
= trace{AyE((ty —xy)(y —xy) )4y
= trace{E(dy Ry — xy)(Ey — xy) A1)}
= trace{E([4y (% — xy)][Ay Gy —xy)]")
= trace{E([4y Gy — xy)]" Ay Gy —x)]))

= E(l4y Gy —xy)I)-

The first of these is Equation 7.170 for kK = N, and the last is Equation 7.167 for
k = N. That is, the statement of the lemma is true for £ = N. This completes the
initial step of the induction proof.

Induction step: One can suppose that Equation 7.170 is equivalent to
Equation 7.167 for k =£+ 1 and seek to prove from that it must also be the



340 PRACTICAL CONSIDERATIONS

case for k = £. Then start with Equation 7.167, noting that it can be written in the
form

Re(Pe) = Rep(Peya) + E(14,Gy — x)11P)
= Ry (Peyr) + trace{E([14,(R, — x,) 1)}
= R (Peyr) + trace{E([4, (%, — x)]' [4,&, — x)])}
= Ry (Peyr) + trace{E([4, (% — x)[4,&, — x)]"))
= R (Peyy) + trace{d,E((&, — x,)&, — x,)") 4]}
= Ry (Pyyy) + trace{d, Py} }
= Rey(Pe) + trace{P, A} A,}.
Now one can use the assumption that Equation 7.170 is true for k = ¢+ 1 and

substitute the resulting value for R, into the last equation above. The result will be
the following chain of equalities:

R(Py) = trace{Pp Wy + Vi) + trace(P 4} A4,
= trace{Ppy Wy + Ve + PeAi Ay}
= trace{[® P Oy + OIWepy + Viys + PeAiAy)
= trace{® P, D) Wy, + O, Wy + Viyy + PiALA,)
= trace{P, @y Wy By + O Wy + Vg + PoAiAy)
= trace{Py[®f Wi @y + A[ A+ [Q Wit + Venl)
= trace{P,[W,] + [V,]},

where the Equations 7.173 and 7.174 were used in the last substitution. The last
equation is Equation 7.170 with k£ = £, which was to be proved for the induction
step. Therefore, by induction, the equations defining the marginal risk function are
equivalent for & < N, which was to be proved.

Implementation note: The last formula separates the marginal risk as the sum of
two parts. The first part depends only upon the choice of the measurement and the
deterministic state dynamics. The second part depends only upon the stochastic state
dynamics and is unaffected by the choice of measurements. As a consequence of this
separation, the decision process will use only the first part. However, an assessment
of the marginal risk performance of the decision process itself would require the
evaluation of the complete marginal risk function.

Marginal Benefit from Using a Measurement. The marginal benefit resulting
from the use of a measurement will be defined as the associated decrease in the



7.10 OPTIMIZING MEASUREMENT SELECTION POLICIES 341

marginal risk. By this definition, the marginal benefit resulting from using a
measurement with sensitivity matrix A and measurement uncertainty covariance R
at time 7, will be the difference between the a priori and a posteriori marginal risks:

B(H, R) = Ry (Pr(—)) — Ry(Pr(+)) (7.175)
= trace{[P,(—) — P, ()W} (7.176)
= trace{[P,(—)H (HP{(—)H" + R ' HP.(—)IW,}  (7.177)
= trace{(HP,(—)H" + R)"'HP,(—)W,P,(—)H"} (7.178)

This last formula is in a form useful for implementation.

7.10.3 Solution Algorithm for Maximum Marginal Benefit

1. Compute the matrices W, using the formulas given by Equations 7.171 and
7.173.

2. Select the measurements in temporal order: for k =0,1,2,3,..., N:

(a) For each possible measurement, using Equation 7.178, evaluate the
marginal benefit that would result from the use of that measurement.

(b) Select the measurement that yields the maximum marginal benefit.

Again, note that this algorithm does nof use the matrices ¥, in the “trace
formulation” of the risk function. It is necessary to compute the V, only if the
specific value of the associated risk is of sufficient interest to warrant the added
computational expense.

7.10.3.1 Computational Complexity

Complexity of Computing the W,. Complexity will depend upon the dimensions
of the matrices 4,. If each matrix 4, is p x n, then the products 4} 4, require O(pn*)
operations. The complexity of computing O(N) of the W, will then be
O(Nr?(p + n)).

Complexity of Measurement Selection. The computational complexity of
making a single determination of the marginal benefit of a measurement of
dimension m is summarized in Table 7.8. On each line, the complexity figure is
based on reuse of partial results from computations listed on lines above. If all
possible measurements have the same dimension ¢ and the number of such
measurements to be evaluated is u, then the complexity of evaluating all of
them!® will be O(ul(€* + n?)). If this is repeated for each of O(N) measurement
selections, then the total complexity will be O(N ul(£? + n?)).

19AIthough the intermediate product P, (=)W,.P,(—) [of complexity O(*)] does not depend on the choice
of the measurement, no reduction in complexity would be realized even if it were computed only once and
reused for all measurements.



342 PRACTICAL CONSIDERATIONS

TABLE 7.8 Complexity of Determining the Marginal Benefit of a Measurement

Operation Complexity
HP,(-) o(n?)
HP(—)H" +R O(?n)
[HP(=)H + R o(e3)
HP(—) W, On?)

HP (=)W, P (—)HT o?n)
trace{(HP(=)HT + R) ™' HP, (=)W, P, (—)HT} O(£?)

Total O(L(€% + n?))

Note: ¢ is the dimension of the measurement vector; n is the dimension of the state vector.

7.11 APPLICATION TO AIDED INERTIAL NAVIGATION

This section will demonstrate the use of the UD-formulated extended Kalman filter
for a full-scale example of aiding an inertial system with data provided by the Global
Positioning System (GPS) of navigation satellites. For more examples and discus-
sion, see reference [22]. There are two general approaches to this application:

1. INS-aided GPS and
2. GPS-aided INS (Inertial Navigation System).

In the first approach, the INS is being aided by GPS. That is, additional data to
aid the INS implementation will be provided by GPS. These independent data may
be used to correct inertial sensor scale factor and/or bias errors, for example. It may
be robust against loss of GPS data, however. The aided system may even lose the
GPS data for some periods of time, but the INS will continue to provide the position
and velocity information.

The second approach provides a more conservative and robust design from the
standpoint of dependence on inertial sensor performance. It essentially uses the
inertial system to estimate otherwise undetectable perturbations in the propagation
delays of GPS signals or to smooth over short-term zero-mean perturbations. It may
also use an INS model with a minimum of Kalman filter states and use an inertial
system of lowest allowable quality (which may not always be available). In this case,
the GPS continues to provide the position and velocity information.

We will discuss the first in detail with models (process and measurement). If the
user has an INS, its position indication and the satellite ephemeris data can be used
to compute an INS—indicated range to the satellite. The difference of these two range
indicators, called the pseudorange, serves as an input to a Kalman filter to yield an
integrated GPS-aided INS. Another measurement is called delta pseudorange
measurement and is in error by an amount proportional to the relative frequency
error between the transmitter and receiver clocks.



7.11 APPLICATION TO AIDED INERTIAL NAVIGATION 343

7.11.1 Dynamic Process Model

The basic nine-state error model has three position errors, three velocity errors and
three platform tilt errors—all specified by a 9 x 9 dynamic coefficient matrix, shown
below (for values, see Table 7.9 later):

T
—kiee’ Lz 034

F() = A 28 C | (7.179)
03><3 03><3 B
A= (30} —k)ee" — il (7.180)
T 0 Q0
B=|-Q 0 o], (7.181)
L 0 0 0
0 - A
c=\| A 0 —f |, (7.182)
L~ h O

where

e = unit vector in vertical direction

f = specific force vector

@, = Schuler frequency

Q = earth spin rate

k; = vertical-channel position loop gain

k, = vertical-channel velocity loop gain

7.11.2 Measurement Model
As given in reference [184], the GPS pseudorange (PR) from a satellite is defined as

PR = [(Xg — Xp)* + (Y5 — Yp)* + (Zs — Zp)"1"* + bc, (7.183)



344 PRACTICAL CONSIDERATIONS

where

(Xy, Y, Zg) = satellite position coordinates at the time of transmission
(Xg, Yg, Zy) = receiver position coordinates at the time of reception
b = receiver clock bias error

¢ = carrier speed (speed of light)
The linearized observation equation implemented in the extended Kalman filter is
5PR = HPRX + VPR’ (7.184)

where X is the state vector with its states (three position errors, three velocity errors,
and three platform tilt errors); Vpy is the additive measurement noise; and Hpg, the
pseudorange observation matrix, is obtained by linearizing the pseudorange equation
with respect to the filter states (Jacobian matrix):

_ 9PR
PR — ax it

=[-U, —-U,, —-U,, 0, 0, 0, 0, 0, 0], (7.185)

where (U,, U,, U,) is the user-to-satellite line-of-sight unit vector.
The GPS delta pseudorange is defined as the difference between two pseudo-
ranges separated in time,

DR = PR(t) — PR(t)), 1, > 1. (7.186)

Since the delta pseudorange represents the Doppler integrated over a finite time
interval, any point within the integration interval can be chosen as the reference time
at which the measurement is valid. In practice, either the beginning or end of the
interval is selected as the reference time.

If the interval stop time is chosen as the reference, the linearized measurement
model can be written as

SDR = HppX + Vg, (7.187)

where the measurement noise Vg, not only accounts for the very small additive
tracking error in the highly accurate carrier loop but also includes the integrated



7.11 APPLICATION TO AIDED INERTIAL NAVIGATION 345

dynamics effects representing unmodeled jerk and higher order terms over the
integration interval and

DR = % e (7.188)
= —[AU,, AU,, AU., AtU,, AtU,;, AtU,,
%Afz(fz U, —f3Up), IAR( /Uy —f1U),
LAR(A U, = U] (7.189)
with
At = delta pseudorange integration interval
U, Uy, U, = user-to-satellite line-of-sight vector at

delta pseudorange start time
AU,, AU,, AU, = line-of-sight vector change over delta pseudorange

integration interval [184]

7.11.3 Kalman Filter State Configuration

Figure 7.31 shows a block diagram representation of an integrated navigation system
using inertial and satellite information. The integrated GPS-aided inertial system
provides the estimated position and velocity during GPS signal availability and
extends the period of acceptable operation subsequent to the loss of GPS signals. As
proposed by Bletzacker et al. [142], an important part of the filter design process
involves the selection of a state configuration that can satisfy the performance
requirements within existing throughput constraints. Other than the basic nine states

Im_artla_ll __ Instrument error
Navigation estimates
System
Velocity Attitude
Y Y
Pseudorange
GPS range rate Navigation | position estimate
receiver Satellite Implementation . . >
and T > and Velocity estimate
process Kalman >
controller [~ Satellite filter Attitude estimate
selection -

Fig. 7.31 Integrated GPS/INS navigation system.



346 PRACTICAL CONSIDERATIONS

(position, velocity, and platform error angles) required in any aided mechanization,
the remaining states are chosen from the suite of inertial sensor error parameters.
The effect that these parameters have on system performance depends critically upon
whether the INS is gimbaled or strapdown. For example, errors in gyroscope scale
factor, scale factor asymmetry, and nonorthogonality will be more important in a
strapdown system, where the gyroscopes are exposed to a much higher level of
dynamics, and their effect on system performance is reduced significantly. For this
reason, all of the inertial sensor errors considered for inclusion as states, except for
gyroscope drift, are related to the accelerometers. The selection process included a
trade-off study involving options ranging from 9 (position, velocity, and platform
tilts) to 24 (position, velocity, platform tilts, accelerometer bias, gyroscope drifts,
accelerometer scale factor and scale factor asymmetry, and accelerometer nonortho-
gonality) states. The ultimate decision was based upon considerations of throughput,
performance requirements, sensor characteristics, and mission applications. The
result of this study was the selection of a 15-state Kalman filter with states of
position, velocity, platform error angles, gyroscope drift, and accelerometer bias
[142].1

The INS is a 0.5 nautical mile/hour (CEP rate) system. The INS vertical channel
is controlled by an ideal barometric altimeter. The GPS pseudorange and delta
pseudorange measurement errors are 0.6 meters and 2.0 centimeters, respectively.
The INS vertical channel is controlled by an ideal barometric altimeter, with
position, velocity, and acceleration loop gains of 0.03, 0.0003, and 0.000001,
respectively [126]. The GPS control and space segments are assumed to have
biased type errors of 5 meters. The GPS receiver clock has no G-sensitivity. All
lever-arm effects have been omitted. The 18 satellite constellation is assumed to be
operational with a GDOP between 3 and 4 continuously available. The flight profile
includes a take-off and climb to 7 km with an acceleration (5m/s/s) to a speed of
300 m/s. The aircraft then flies a race track with 180 km straight legs and 7m/s/s
turns [142]. The GPS is assumed to be available for the first 5000 seconds.

Table 7.9 gives typical error source characteristics for this application. A typical
set of results is shown in Figure 7.32. The error growth in the receiver position and
velocity estimates is caused by the inertial reference tilt errors while GPS data are
lost (after 5000s). The improved tilt estimation provided by the Kalman filter
implementation may provide an order-of-magnitude improvement in the resulting
(integrated) navigation solution.

7.12 SUMMARY

This chapter discussed methods for the design and evaluation of estimation systems
using Kalman filters. Specific topics addressed include the following:

"Other investigators have evaluated filters with 39, 12, and 14 states. Maybeck [31] has mentioned a 96-
state error state vector. In this example, we give the results of a 15-state filter.



7.12 SUMMARY 347

TABLE 7.9 Inertial Sensor Error Sources (10)

Accelerometer

G-insensitive
Bias stability
Scale factor stability
Scale factor asymmetry
Nonorthogonality
White noise
Correlated noise
Correlation time

G-sensitive
Nonlinearity
Cross axis coupling

40 G

100 ppm

100 ppm
1.140-6 arc-sec
5uG/Hz'?
4G

20 min

5uG/G?
5uG/G?

Gyroscope

G-Insensitive
Bias stability
Scale factor stability
Scale factor asymmetry
Nonorthogonality
White noise
Correlated noise

0.001 deg/hr

100 ppm

100 ppm

1.149-6 arc-sec
0.002 deg/hr/Hz'"2
0.004 deg/hr

Correlation time 20 min
G-Sensitive

Mass unbalance 0.008 deg/hr/G

Quadrature 0.008deg/hr/G

Anisoelastic 0.001 deg/hr/G?

1. methods for detecting and correcting anomalous behavior of estimators,
2. predicting and detecting the effects of mismodeling and poor unobservability,

3. evaluation of suboptimal filters (using dual-state filters) and sensitivity
analysis methods,

4. comparison of memory, throughput, and worldlength requirements for alter-
native implementation methods,

5. methods for decreasing computational requirements,

6. methods for assessing the influence on estimator performance of sensor
location and type and the number of sensors,

7. methods for top-down hierarchical system-level error budgeting, and

8. demonstration of the application of square-root filtering techniques to an INS-
aided GPS navigator.

PROBLEMS

7.1 Show that the final value of the risk obtained by the marginal optimization
technique of Section 7.10 will equal the initial risk minus the sum of the
marginal benefits of the measurements selected.



348

PRACTICAL CONSIDERATIONS

50 o 50 K
E - ':" ’E - "'
w - ’ = - ’
c '.;_A / L R
2 0 N 7 s 0 ~
'Dg_ - \“ .§ - \\‘
LY A )
= \ = L \
6 B ‘\ © ‘\
4 . w \
-500 1 1 I » 1 -500 1 1 1 » 1
0 2000 4000 6000 8000 10,000 0 2000 4000 6000 8000 10,000
Time in Seconds Time in Seconds
0.5

- Seeao
RS

North Velocity Error [m/s]

~

East Velocity Error [m/s]
o

.-
.-

-~
Seecew

-0.5 1 1 1 1 ] -0.5 1 1 1 1 1
0 2000 4000 6000 8000 10,000 0 2000 4000 6000 8000 10,000
Time in Seconds Time in Seconds
+1 +1
0 szszzo==-== goszzooco-

North Tilt Error [mrad]

-1 1 1 ! 1

-1

East Tilt Error [mrad]
o

1 1 1 1 1

0 2000 4000
Time in Seconds

6000 8000 10,000

0

2000 4000 6000 8000 10,000
Time in Seconds

Fig. 7.32 Integrated GPS/INS simulation results.

7.2 Develop the equations for the dual-state error propagation by substituting
Equations 7.90 and 7.91 into Equations 7.94 and 7.95 using Equation 7.97,

explicitly.

7.3 Obtain the dual-state vector equation for the covariances of the system and
error, where x; is a ramp plus random walk and x, is constant:

5 =0,

=

’

using as the filter model a random walk

i =wh

1
Zy = Xy +Uk,

Zx :x£+l)k.



7.12

7.4
7.5
7.6

1.7

7.8

7.9

SUMMARY 349

Derive the results of Example 7.4.
Prove that cov[x}] depends upon cov(x}).

Prove the results shown for Hpp in Equation 7.185 and for Hpi in Equation
7.188.

Rework Problem 4.6 for the UDUT formulation and compare your results with
those of Problem 4.6.

Rework Problem 4.7 for the UDU" formulation and compare your results with
those of Problem 4.7.

Formulate the GPS plant model with three position errors, three velocity errors,
and three acceleration errors and the corresponding measurement model with
pseudorange and delta pseudorange as measurements.

7.10 Do Problem 4.6 with the Schmidt—Kalman filter (Section 7.6) and compare

the results with Example 4.4.



Appendix A

MATLAB Software

The accompanying diskette contains MATLAB functions and scripts for implemen-
tating the Kalman filter and demonstrating its use. The ASCII file README.1ST in
the root directory should be read before starting to use any of the software. It
describes the current contents and directory structure of the files on the diskette.

A.1 NOTICE

This software is intended for demonstration and instructional purposes only. The
authors and publishers make no warrranty of any kind, expressed or implied, that
these routines meet any standards of mercantibility for commercial purposes. These
routines should not be used as-is for any purpose or application that may result in
loss or injury, and the publishers and authors shall not be liable in any event for
incidental or consequential damages in connection with or arising out of the
Sfurnishing, performance, or use of these programs.

A.2 GENERAL SYSTEM REQUIREMENTS

The diskette and MATLAB scripts are designed for MATLAB environments on
“WINtel” IBM-compatible systems (i.e., on an Intel-class processor operating under
the Microsoft Windows operating system). Information on MATLAB can be
obtained from

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760 USA

Tel: 508-647-7000

Fax: 508-647-7101

E-mail: info@mathworks.com
Web: www.mathworks.com

350



A.5 MATLAB SOFTWARE FOR CHAPTER 4 351

You may also use the MATLAB editor to modify these scripts as needed. Comments
in the listings contain additional information on the calling sequences and array
dimensions.

A.3 DISKETTE DIRECTORY STRUCTURE

The diskette directories are organized by the chapters in which the supporting
concepts are presented. The ASCII file WHATSUPDOC in the root directory
describes any changes made in the directory structure or software after printing. It
should also be read before starting to use any of the software.

A.4 MATLAB SOFTWARE FOR CHAPTER 2

The directory CHAPTER2 contains expml.m, referred to in Chapter 2, Section
2.6.3.

A.5 MATLAB SOFTWARE FOR CHAPTER 4

The directory CHAPTER4 contains software implementing the algorithms defined
in Chapter 4. See the file WHATSUP.DOC in the root directory for descriptions of
any changes.

The file demol.m is a MATLAB script for demonstrating the effects of process
noise and observations of the probability distribution of a single state variable as a
function of time. The plots show the evolution of the probability density function
while observations are made at discrete times.

The file exam43.m is a MATLAB script for demonstrating Example 4.3 in
MATLAB.

The file exam44.m is a MATLAB script for demonstrating Example 4.4 in
MATLAB.

The file obsup.m is a MATLAB script implementation of the Kalman filter
observational update, including the state update and the covariance update (Riccati
equation).

The file timeup.m is a MATLAB script implementation of the Kalman filter
temporal update, including the state update and the covariance update (Riccati
equation).

The file RTSvsKFE.m is a MATLAB script for demonstrating the solutions to an
estimation problem using

1. Kalman filtering, which uses only data up to the time of the estimate, and
2. Rauch-Tung—Striebel smoothing, which uses all the data.



352 MATLAB SOFTWARE

A MATLAB implementation of a Rauch—Tung—Striebel smoother is included in the
script, along with the corresponding Kalman filter implementation.

A.6 MATLAB SOFTWARE FOR CHAPTER 5

The file exam53.m is a MATLAB script implementation of Example 5.3.

A.7 MATLAB SOFTWARE FOR CHAPTER 6

The Matlab m-file shootout.m provides a demonstration of the relative fidelity of
nine different ways to perform the covariance correction on Example 6.2.

To test how different solution methods perform as conditioning worsens, the
observational update is performed for 10?3 < § < 10%¢?*/3 using nine different
implementation methods:

1. the conventional Kalman filter, as published by R. E. Kalman;

2. Swerling inverse implementation, published by P. Swerling before the Kalman
filter;

Joseph-stabilized implementation as given by P. D. Joseph;
Joseph-stabilized implementation as modified by G. J. Bierman,;
Joseph-stabilized implementation as modified by T. W. DeVries;
the Potter algorithm (due to J. E. Potter);

the Carlson “triangular” algorithm (N. A. Carlson);

the Bierman “UD” algorithm (G. J. Bierman); and

the closed-form solution for this particular problem.

O 0N kW

The first, second, and last methods are implemented within the m-file shootout.m.
The others are implemented in m-files listed below.

The results are plotted as the RMS error in the computed value of P relative to the
closed-form solution. In order that all results, including failed results, can be plotted,
the value NaN (not a number) is interpreted as an underflow and set to zero, and the
value Inf is interpreted as the result of a divide-by-zero and set to 10%.

This demonstration should show that, for this particular problem, the accuracies
of the Carlson and Bierman implementations degrade more gracefully than the
others as 6 — ¢. This might encourage the use of the Carlson and Bierman methods
for applications with suspected roundoff problems, although it does not necessarily
demonstrate the superiority of these methods for all applications:

bierman.m performs the Bierman UD implementation of the Kalman filter
measurement update and

carlson.m performs the Carlson “fast triangular” implementation of the Kalman
filter measurement update.



A.9 OTHER SOURCES OF SOFTWARE 353

There are several forms of this Riccati equation corrector implementation, which
helps to preserve symmetry of P, among other things:

joseph.m performs the Joseph-stabilized implementation of the Kalman filter
measurement update, as proposed by Peter Joseph [15];

josephb.m performs the Joseph-stabilized implementation of the Kalman filter
measurement update, as modified by G. J. Bierman;

josephdv.m performs the Joseph-stabilized implementation of the Kalman filter
measurement update, as modified by T. W. DeVries;

potter.m performs the Potter “square-root” implementation of the Kalman filter
measurement update; and

utchol.m performs upper triangular Cholesky factorization for initializing the
Carlson fast triangular implementation of the Kalman filter measurement
update.

A.8 MATLAB SOFTWARE FOR CHAPTER 7

The file KFvsSKF.m includes MATLAB implementations of the Schmidt—
Kalman filter and Kalman filter for a common problem, implements both,
and plots the results for comparison.

The file thornton.m implements the Thornton temporal update compatible with
the Bierman observational update using modified Cholesky factors of P.

The file schmidt.m performs the Schmidt temporal update compatible with the
Carlson observational update using triangular Cholesky factors of P.

A.9 OTHER SOURCES OF SOFTWARE

Controls Toolbox. Available from The Mathworks, Controls Toolbox includes
MATLAB routines for numerical solution of the algebraic Riccati equation for the
Kalman filtering problem for linear time-invariant systems. These essentially provide
the steady-state Kalman gain (Wiener gain).

Software for Kalman Filter Implementation. There are several sources of
good up-to-date software specifically designed to address the numerical stability
issues in Kalman filtering. Scientific software libraries and workstation environments
for the design of control and signal processing systems typically use the more robust
implementation methods available. In addition, as a noncommercial source of
algorithms for Kalman filtering, the documentation and source codes of the collected
algorithms from the Tramsactions on Mathematical Software (TOMS) of the
Association for Computing Machinery are available at moderate cost on electronic
media. The TOMS collection contains several routines designed to address the



354 MATLAB SOFTWARE

numerical stability issues related to Kalman filter implementation, and these are
often revised to correct deficiencies discovered by users.

Utilities for Monte Carlo Simulation. The TOMS collection also contains
several routines designed for pseudorandom number generation with good statistical
properties. In addition, most reputable libraries contain good pseudorandom number
generators, and many compilers include them as built-in functions. There are also
several books (e.g., [93] or [90]) that come with the appropriate code on machine-
readable media.



Appendix B

A Matrix Refresher

This overview of the notation and properties of matrices as data structures and
algebras is for readers familiar with the general subject of linear algebra but whose
recall may be a little rusty. A more thorough treatment can be found in most college-
level textbooks on linear algebra and matrix theory.

B.1 MATRIX FORMS

B.1.1 Notation for Real Matrices

Scalars. For the purposes of this book, scalars are real numbers, although in
computer implementations they must be approximated by floating-point numbers,
which are but a finite subset of the rational numbers. We will use parentheses to
denote open intervals (intervals not including the designated endpoints) on the real
line, so that (—oo, +00) denotes the set of all real numbers. We will use square
brackets to denote closed ends (ends including the designated endpoint) of intervals,
so that [0, +00) denotes the nonnegative real numbers.

Real Matrices. For positive integers m and n, an m-by-n real matrix A4 is a two-
dimensional rectangular array of scalars, designated by the subscript notation a;; and
usually displayed in the following format:

ap dip a3 ot 4
dyy Ay Gzt dyy
A= | %1 a3 4z - 43y
A App A3 Ay

355



356 APPENDIX B

The scalars a;; are called the elements of A. We will use upper case letters to denote
matrices and the corresponding lowercase letters to denote scalar elements of the
associated matrices.

Indices and Subscripts. The first subscript (i) on the element a; refers to the
row in which the element occurs, and the second subscript ( ;) refers to the column in
which a;; occurs in this format. The integers i and j in this notation are also called
indices of the elements. The first index is called the row index, and the second index
is called the column index of the element. The term (if)th position in the matrix A4
refers to the position of a;, and a;; is called the (ij)th element of 4.

If juxtaposition of subscripts leads to confusion, they may be separated by
commas. The element in the eleventh row and first column of the matrix 4 would
then be denoted by ay; ;, not ay;.

Dimensions. The positive integers m and n are called the dimensions of A: m is
called the row dimension of A and n is called the column dimension of A. The
dimensions of 4 may also be represented as m x n, which is to be read “m by n”.
The symbol “x” in this notation does not indicate multiplication. (The number of
elements in the matrix 4 equals the product mn, however, and this is important for
determining memory requirements for data structures to hold 4.)

B.1.2 Special Matrix Forms

Square Matrices and Diagonal Matrices. A matrix is called square if it has
the same row and column dimensions. The main diagonal of a square matrix 4 is the
set of elements a;; for which i = j. The other elements are called off-diagonal. 1f all
the off-diagonal elements of a square matrix 4 are zero, 4 is called a diagonal
matrix. This and other special forms of square matrices are illustrated in Figure B.1."!

Sparse and Dense Matrices. A matrix with a “significant fraction” (typically,
half or more) of zero elements is called sparse. Matrices that are decidedly not
sparse are called dense, although both sparsity and density are matters of degree.
Except for the Toeplitz and Hankel matrix,? the forms shown in Figure B.1 are
sparse, although sparse matrices do not have to be square. Sparsity is an important
characteristic for implementation of matrix methods because it can be exploited to
reduce computer memory and computational requirements.

'"The matrix forms in the third row of Figure B.1 belong to both forms in the column above. That is,
diagonal matrices are both upper triangular and lower triangular, identity matrices are both unit upper
triangular and unit lower triangular, and square zero matrices are both strictly upper triangular and strictly
lower triangular.

2Although a Toeplitz matrix is fully dense, it can be represented by the 21 — 1 distinct values of its
elements.



B.1 MATRIX FORMS 357

UNIT STRICTLY
UPPER TRIANGULAR UPPER TRIANGULAR UPPER TRIANGULAR
aypp dp a3z o A L oap, az - ay 0 ap o Ay,
0 ay ap - ay 0 1 ayp - a, 0 0 azz Tt Oy
0 0 033 s a3n 0 0 . (13,,

0 0 1 - a

STRICTLY
LOWER TRIANGULAR

UNIT

LOWER TRIANGULAR LOWER TRIANGULAR

a; 0 0 -« 01 0 0 -~ 0J[0 0 0 -0
dyy Ay 0 ce 0 ay 1 0 0 Ay 0 0 - 0
ay ayp 1 - O0f|lay ap 0 - 0

ay; axp ay - 0

| {

nl Q2 Qy3y o Ay ayy App Apz o 1 Ay Gyy Gyz v 0
DIAGONAL IDENTITY ZERO

[d, 0 0 -+ OF1 0 0 --- 0770 0 0 07
0 d 0 - 0lo 1 0 ollo o o 0
0 0 d - 0flo o 1 ollo o o 0

L0 0 0 a [Lo o o 11Lo 0 o 0.

TOEPLITZ HANKEL

[ dy dy d, o d,|[di, o dy dy o dg
ddy d_y - ody, || dy 0 dy dy dy
dZ dl dO e d3—n d3—n e dO dl dZ

_dnfl dn72 dn73 e dO dO e dn73 dn72 dnfl n

Fig. B.1 Special forms of square matrices

Zero Matrices. The ultimate sparse matrix is a matrix in which all elements are 0
(zero). It is called a zero matrix, and it is represented by the symbol “0” (zero). The
equation 4 = 0 indicates that 4 is a zero matrix. Whenever it is necessary to specify
the dimensions of a zero matrix, they may be indicated by subscripting: 0,,,,, will
indicate an m x n zero matrix. If the matrix is square, only one subscript will be
used: 0, will mean an n x n zero matrix.

Identity Matrices. The identity matrix will be represented by the symbol /. If it is
necessary to denote the dimension of 7 explicitly, it will be indicated by subscripting
the symbol: /, denotes the n x n identity matrix.



358 APPENDIX B

B.1.3 Vectors

Vectors and Matrices. A vector is essentially a matrix®> in which one of the
dimensions is 1. If the column dimension is 1, it is called a column vector. If the row
dimension is 1, it is called called a row vector.* Once it is understood which of the
dimensions is 1, the index for that dimension can be dropped from the notation. The
other dimension may be prefixed to “-vector” to shorten the notation: the term
n-vector refers to a matrix for which one dimension is 1 and the other is n.

Representational Differences. Although vectors may share many mathemati-
cal properties with matrices, they are used in this book to represent quite different
concepts. To a considerable degree, vectors are used to represent physically
measurable properties of dynamic systems, and matrices are used to represent
transformations of those properties performed by sensors or by the passage of time.
In order to make the distinction between vectors and matrices more apparent, we
shall use lowercase letters to denote vectors and scalars and uppercase letters to
denote matrices. However, as data structures, vectors are not fundamentally different
from matrices or other arrays.

Row Vector Notation. Commas can be used for separating the elements of a row
vector:

X =[x, X0, X3, ..., X,,],

where the notation “x;” refers to the element in the ith column of x. (We will return
to a related issue— the compositional efficiency of row vector notation — after the
matrix transpose is defined.)

Column Vector Default. Whenever a vector x is not defined to be a row vector, it
is implied that it is a column vector.

B.1.4 Conformable Matrix Dimensions

Syntax of Mathematical Expressions. Syntax is a set of rules governing the
formation of patterns of symbols in a language. In mathematics, these symbols may
stand for data structures such as scalars and matrices, operators such as addition and
multiplication, or delimiters such as parentheses and brackets. Patterns of these
symbols satisfying the rules of syntax are called expressions. Within the constraints
imposed by syntax, an expression of a particular type (e.g., a scalar or a matrix
expression) can be substituted for a symbol of that type, and vice versa.

*Defining a vector as a special case of a matrix is not the customary approach, but it obviates the need for
separate definitions of “inner” and “outer” products.
“And if both dimensions are 1, it is called a scalar, not a “1-vector.”



B.2 MATRIX OPERATIONS 359

Syntax for Matrix Dimensions. For matrix expressions, there are additional
rules of syntax related to the dimensions of the matrices. For example, whenever we
write a matrix equation as 4 = B, we assume that the matrices (or matrix expres-
sions) represented by the symbols 4 and B have the same dimensions.

Implied Conformability of Matrix Dimensions. Additional rules of syntax for
matrix operations will be introduced with the operators. Matrices whose dimensions
conform to these rules for a position in a particular expression are said to be
conformable for that position in that expression. Whenever a symbol for a matrix
appears in a matrix expression, it is implied that the matrix represented by that
symbol is conformable for its position in that expression.

B.2 MATRIX OPERATIONS

B.2.1 Transposition

Transpose of a Matrix. All matrices are conformable for transposition. The
transpose of A is the matrix AT (with the superscript “T” denoting the transpose
operation), obtained from 4 by interchanging rows and columns:

— =T — -

an dip ai o A any dpp 4azp o Ay

dyr dypy Qy3 o0y dip Ay Az o Qyp

dz; d3p 43z 0 Az, | = | 413 dp3 A3z A3
L A1 Qpp Qs R - | L ay, Gy, das, R ¢ S |

The transpose of an m X n matrix is an n X m matrix.

Transpose of a Vector. The transpose of a row vector is a column vector, and
vice versa. It makes more efficient use of space on the page if we express a column
vector v as the transpose of a row vector:
T
v =1[vy, 0y, V3, ...,0,] .
Symmetric Matrices. A matrix 4 is called symmetric if A" = A4, and skew
symmetric (or antisymmetric) if AT = —A. Only square matrices can be symmetric

or skew symmetric. Therefore, whenever a matrix is said to be symmetric or skew
symmetric, it is implied that it is a square matrix.

B.2.2 Extracting Elements of Matrix Expressions

Subscripted Expressions. Subscripts represent an operation on a matrix that
extracts the designated matrix element. Subscripts may also be applied to matrix



360 APPENDIX B

expressions. The element in the (ij)th position of a matrix expression can be
indicated by subscripting the expression, as in

Ty
iy = g

Here, we have used braces { } to indicate the scope of the expression to which the
subscripting applies. This is a handy device for defining matrix operations.

B.2.3 Multiplication by Scalars

All matrices are conformable for multiplication by scalars, either on the left or on the
right. Multiplication is indicated by juxtaposition of symbols or by infix notation
with the multiplication symbol (x). Multiplication of a matrix 4 by a scalar s is
equivalent to multiplying every element of 4 by s:

{As},»j = {sA},]« = sa;.

B.2.4 Addition and Multiplication of Conformable Matrices

Addition of Conformable Matrices Is Associative and Commutative.
Matrices are conformable for addition if and only if they share the same dimensions.
Whenever matrices appear as sums in an expression, it is implied that they are
conformable. If 4 and B are conformable matrices, then addition is defined by
adding corresponding elements:

Addition of matrices is commutative and associative. That is, A+ B = B + A and
A+B+C)=A+B)+C.

Additive Inverse of a Matrix. The product of a matrix 4 by the scalar —1 yields
its additive inverse —A:

(—DA=-A4, A+(—A)=A—A4=0.

Here, we have followed the not uncommon practice of using the symbol “—” both as
a unary (additive inverse) and binary (subtraction) operator. Subtraction of a matrix
A from a matrix B is equivalent to adding the additive inverse of 4 to B:

B—A=B+(—A).

Multiplication of Conformable Matrices Is Associative But Not Commu-
tative. Multiplication of an m x n matrix 4 by a matrix B on the right-hand side of
A, as in the matrix product AB, is defined only if the row dimension of B equals the
column dimension of A. That is, we can multiply an m x n matrix 4 by a p x ¢
matrix B in this order only if n» = p. In that case, the matrices 4 and B are said to be



B.2 MATRIX OPERATIONS 361

conformable for multiplication in that order, and the matrix product is defined
element by element by

def &
{AB}U = Zaikbkj,
k=1

the result of which is an m x ¢ matrix. Whenever matrices appear as a product in an
expression, it is implied that they are conformable for multiplication.

Inner and Outer Products. There are special names given to products of vectors
that are otherwise adequately defined as matrix products. The inner product or dot
product of conformable column vectors x and y is the matrix product x"y = yTx. (For
row vectors, the format is xyT = yxT.) The outer products have the transpose on the
other vector, and the vectors need not have the same dimensions. If the vectors are
treated as matrices, these products can be used without special treatment.

Products with Identity Matrices. Multiplication of any m x n matrix 4 by a
conformable identity matrix yields the original matrix A as the product:

Al, =4, 1,A=A.

n m

B.2.5 Powers of Square Matrices

Square matrices are conformable with multiplication by themselves, and the
resulting matrix products are again conformable for multiplication. Consequently,
one can define the pth power of a square matrix 4 as

AP =AxAxAXx---xA4.

p elements

B.2.6 Matrix Inverses

Inverses of Nonsingular Square Matrices. If A and B are square matrices of
the same dimension and such that their product

AB =1,

then B is the matrix inverse of A and A is the matrix inverse of B. (It turns out that
BA = AB = I in this case.) The inverse of a matrix A4 is unique, if it exists, and is
denoted by 4. Not all matrices have inverses. Matrix inversion is the process of
finding a matrix inverse, if it exists. If the inverse of a matrix 4 does not exist, 4 is
called singular. Otherwise, it is called nonsingular.



362 APPENDIX B

Generalized Inverses. Even nonsquare or singular matrices can have general-
ized inverses. The Moore—Penrose generalized inverse of an m x n matrix A4 is the
n x m matrix A" such that

AAtA =4,  ATA4t = 47,
(AAN)T = 447, AtA)" = 4t 4.

B.2.7 Orthogonality

Orthogonal Vectors. For vectors, orthogonality is a pairwise property. Vectors x
and y are called orthogonal or normal if their inner product is zero. If the inner
product of a vector x with itself is 1, x is called a unit vector. Orthogonal unit vectors
are called orthonormal.’

Orthogonal Matrices. A matrix A is called orthogonal if AT = A~!. These
matrices have several useful properties:

e Orthogonality of a matrix 4 implies that the row vectors of 4 are jointly
orthonormal, and the column vectors of 4 are also jointly orthonormal.

e The dot products of vectors are invariant under multiplication by a conform-
able orthogonal matrix. That is, if 4 is orthogonal, then xTy = (4x)"(4y) for all
conformable x and y.

e Products and inverses of orthogonal matrices are orthogonal.

As a rule, multiplications by orthogonal matrices tend to be numerically well
conditioned — compared to general matrix multiplications. (The inversion of ortho-
gonal matrices is obviously extremely well conditioned.)

B.2.8 Square Matrix Subalgebras

Certain subclasses of n x n (square) matrices have the property that their products
belong to the same class. Orthogonal matrices, for example, have the property that
their products are also orthogonal matrices. These are said to form a multiplicative
subalgebra of n x n matrices. Subalgebras have the property that their set intersec-
tions are also subalgebras. Upper triangular matrices and lower triangular matrices
are two subalgebras of the square matrices that are used in implementing the Kalman
filter. Their intersection is the set of diagonal matrices— another subalgebra. A
lattice (partially ordered by set inclusion) of such multiplicative subalgebras is
diagrammed in Figure B.2.

>The term “normal” has many meanings in mathematics. Its use here is synonymous with “of unit
length”. It is also used to mean “orthogonal”.



B.3 BLOCK MATRIX FORMULAS 363

SQUARE

UNITL.T| 7 JUNITU.T,

D
IA UPPER
¢ | TRIANGULAR
LOWER <
TRIANGULAR | ‘A
L

STRICTLY o [|STRICILY|
L.T. U.T.

Fig. B.2 Subalgebras of square matrices.

B.3 BLOCK MATRIX FORMULAS

B.3.1 Submatrices, Partitioned Matrices, and Blocks

For any m x n matrix 4 and any subset S, < {1, 2,3, ..., m} of the row indices
and subset S, € {1,2,3, ..., n} of the column indices, the subset of elements

A4 = {alj|l € Srows?j € Scols}

is called a submatrix of A.
A partitioning of an integer n is an exhaustive collection of contiguous subsets
S, of the form

S, S, S,

1,23, 6, (G + D G (G + D)

The collection of submatrices formed by partitionings of the row and column
dimensions of a matrix is called a partitioning of the matrix, and the matrix is said to
be partitioned by that partitioning. Each submatrix of a partitioned matrix A is called
a partitioned submatrix, partition, submatrix block, subblock, or block of A. Each
block of a partitioned matrix 4 can be represented by a conformable matrix
expression, and 4 can be displayed as a block matrix:

B C D --- F
G H J --- L
4=|M N P .. R
v w X -.- Z
where B, C, D, ... stand for matrix expressions. Whenever a matrix is displayed as

a block matrix, it is implied that all block submatrices in the same row have the same



364 APPENDIX B

row dimension and that all block submatrices in the same column have the same
column dimension.
A block matrix of the form

400 0
0 B 0 0
00 C 0|,
00 0 M

in which the off-diagonal block submatrices are zero matrices, is called a block
diagonal matrix, and a block matrix in which the block submatrices on one side of
the diagonal are zero matrices is called a block triangular matrix.

Columns and Rows as Blocks. There are two special partitionings of matrices
in which the block submatrices are vectors. The column vectors of an m x n matrix
A are the block submatrices of the partitioning of 4 for which all column dimensions
are 1 and all row dimensions are m. The row vectors of A are the block submatrices
of the partitioning for which all row dimensions are 1 and all column dimensions are
n. All column vectors of an m x n matrix are m-vectors, and all row vectors are
n-vectors.

B.3.2 Rank and Linear Dependence

A linear combination of a finite set of n-vectors {v;} is a summation of the sort
> a;v; for some set of scalars {a;}. If some linear combination ) a;v; = 0 and at
least one coefficient a; # 0, the set of vectors {v;} is called linearly dependent.
Conversely, if the the only linear combination for which ) a,v; = 0 is the one for
which all the a; = 0, then the set of vectors {v;} is called linearly independent.

The rank of a n x m matrix 4 equals the size of the largest collection of its
column vectors that is linearly independent. Note that any such linear combination
can be expressed in the form Aa, where the nonzero elements of the column
m-vector a are the associated scalars of the linear combination, and the number of
nonzero components of a is the size of the collection of column vectors in the linear
combination. The same value for the rank of a matrix is obtained if the test is applied
to its row vectors, where any linear combination of row vectors can be expressed in
the form a"4 for some column n-vector a.

An n x n matrix is nonsingular if and only if its rank equals its dimension 7.



B.3 BLOCK MATRIX FORMULAS 365

B.3.3 Conformable Block Operations

Block matrices with conformable partitionings may be transposed, added, subtracted,
and multiplied in block format. For example,
T

A B 4T T

c o] |8 D
4 B [E F| [A+E B+F
¢ | 6 u| |ctG piu|
A B E F| [AE+BG AF+BH
c p|*|G u| |cE+DG cF+DH

B.3.4 Frobenius—Schur Inversion Formula

The inverse of a partitioned matrix with square diagonal blocks may be represented

in block form as®
4 Bl [E F
cC D| |G HI

E=A"4+47'BHCA™",
F=—A"'BH,

G =—-HCA™!,
H=[D—CA™'BI"".

where

This formula can be proved by multiplying the original matrix times its alleged
inverse and verifying that the result is the identity matrix.

B.3.5 Inversion Formulas for Matrix Expressions

Sherman—Morrison Formula.” A “rank 1” modification of a square matrix 4 is
a sum of the form A + bcT, where b and ¢ are conformable column vectors.® Its

“This formula has had many discoverers. Bodewig [55] cites nine such discoverers but gives credit to the
German mathematicians Georg Ferdinand Frobenius (1849-1917) and Issai Shur (1875-1941) as the
earliest discovers of record.

"The naming of this and the next formula follows the convention of Golub and Van Loan [89], which is at
odds with the references of Henderson and Searle [76].

8A finite set of vectors {x,, X,, X3, ..., x,} is said to be linearly independent if there is no linear
combination ), a;x; = 0 with no coefficient @, = 0. The rank of a set of vectors is defined as the size of
the maximum subset of them that is linearly independent. The rank of the row vectors of a matrix is called
its row rank, and the rank of its column vectors is called its column rank. For a square matrix, the row rank
equals the column rank. An n X n square matrix is nonsingluar if and only if its (row or column) rank is 7.
Obviously, the rank of a single vector is 1.



366 APPENDIX B

inverse is given by the formula

A 1bcTA™!

A+b T =gt A
[4+be’] 1+ 45

Sherman—Morrison—-Woodbury Formula. This is the generalization of the
above formula for conformable matrices in place of vectors:

[A4+BCT ' =47 — 47 "Bl + CTA7'B ' T4,

Hemes Inversion Formula. A further generalization of this formula (used in the
derivation of the Kalman filter equations) includes an additional conformable square
matrix factor in the modification’

[A+BC'D' ' =47 — 47 'B[C+ D47 'B"'DT47".

B.4 FUNCTIONS OF SQUARE MATRICES

B.4.1 Determinants and Characteristic Values

Elementary Permutation Matrices. An elementary permutation matrix is
formed by interchanging rows or columns of an identity matrix 7,

i J
1 0 0 0
o 0 1 0
Py =
Jjlo 1 0 0
0 -« 0 - 0 - 1

Multiplication of a vector x by P};; permutes the ith and jth elements of x. Note that
Py 1s an orthogonal matrix and that P; = I,, the identity matrix.

°This is yet another formula with many discoverers. Fortmann [161] cites several of them. Bodewig [55,
page 218] credits H. Hemes for its discovery, although Henderson and Searle [76] cite an earlier reference.



B.4 FUNCTIONS OF SQUARE MATRICES 367

Determinants of Elementary Permutation Matrices. The determinant of an
elementary permutation matrix Pp;; is defined to be —1, unless i = (i.e., P = 1,):

def | =1, i#],
det(P[ii])é{+1 lij

Permutation Matrices. A permutation matrix is any product of elementary
permutation matrices. These are also orthogonal matrices. Let £, denote the set
of all distinct » x n permutation matrices. There are n! =1 x2 x3 x --- x n of
them, corresponding to the n! permutations of # indices.

Determinants of Permutation Matrices. The determinant of a permutation
matrix can be defined by the rule that the determinant of a product of matrices is the
product of the determinants:

det(AB) = det(4) det(B).

Therefore, the determinant of a permutation matrix will be either +1 or —1. A
permutation matrix is called “even” if its determinant is +1 and “odd” if its
determinant equals —1.

Determinants of Square Matrices. The determinant of any n x n matrix 4 can
be defined as follows:

def

det(4) & 3 det(P)[T{4P},
i=1

Pe?,

This formula has ((n x n!) computational complexity (for a sum over n! products of
n elements each).

Characteristic Values of Square Matrices. For a free variable A, the
polynomial

2. & det [4 — A1

is called the characteristic polynomial of A. The roots of p,(A) are called the
characteristic values (or eigenvalues) of A. The determinant of 4 equals the
product of its characteristic values, with each characteristic value occurring as
many times in the product as the multiplicity of the associated root of the
characteristic polynomial.



368 APPENDIX B
Definiteness of Symmetric Matrices. 1f A is symmetric, all its characteristic

values are real numbers, which implies that they can be ordered. They are usually
expressed in descending order:

M) Z Ap(A) = 43(4) = -+ = 4,(A4).

A real square symmetric matrix 4 is called

positive definite if ,(4) > 0,

non—negative definite if 4,(4) > 0,

indefinite if 2/(4) > 0 and 4,(4) <O,
non—positive definite  if 4;(4) < 0, and

negative definite if 1,(4) <O.

Non-negative—definite matrices are also called positive semidefinite, and non—
positive—definite matrices are also called negative semidefinite.

Characteristic Vectors. For each real characteristic value 1;(4) of a real
symmetric 4, there is a corresponding characteristic vector (or eigenvector) e;(A)
such that e;,(4) # 0 and 4e;(4) = 1,(A)e;(4). The characteristic vectors correspond-
ing to distinct characteristic values are mutually orthogonal.

B.4.2 Matrix Trace

The trace of a square matrix is the sum of its diagonal elements. It also equals the
sum of the characteristic values and has the property that the trace of the product of
conformable matrices is independent of the order of multiplication—a very useful
attribute:

trace (AB) = Y {4B}; (B.1)
- Z::%:AUBﬁ (B.2)
=YY B;d, (B.3)
= t;acle(BA). (B.4)

Note the product 4B is conformable for the trace function only if it is a square
matrix, which requires that 4 and BT have the same dimensions. If they are m x n (or
n x m), then the computation of the trace of their product requires mn multi-
plications, whereas the product itself would require m?n (or mn?) multiplications.



B.4 FUNCTIONS OF SQUARE MATRICES 369

B.4.3 Algebraic Functions of Matrices

An algebraic function may be defined by an expression in which the independent
variable (a matrix) is a free variable, such as the truncated power series

fAl) = 3 B,

k=—n

where the negative power 4™ = {47!} = {47}, In this representation, the matrix
A is the independent (free) variable and the other matrix parameters (B,) are assumed
to be known and fixed.

B.4.4 Analytic Functions of Matrices

An analytic function is defined in terms of a convergent power series. It is necessary
that the power series converge to a limit, and the matrix norms defined in Section B.5
must be used to define and prove convergence of a power series. This level of rigor is
beyond the scope of this book, but we do need to use one particular analytic
function—the exponential function.

Exponential Function. The power series

1

P SN
12)1.2.3...1(

does converge'® for all square matrices 4. It defines the exponential function of the
matrix A. This definition is sufficient to prove some elementary properties of the
exponential function for matrices, such as:

o ¢ =1 for 0, the n x n zero matrix.

o el =el, for I, the n x n identity matrix.
o A = ().

(d/dt)et = Ae! = et A.

The exponential of a skew-symmetric matrix is an orthogonal matrix.

e The characteristic vectors of A are also the characteristic vectors of e?.
e If / is a characteristic value of 4, then ¢* is a characteristic value of e4.

However, convergence is not fast enough to make this a reasonable general-purpose formula for
approximating the exponential of 4. More reliable and efficient methods can be found in the book by
Golub and Van Loan [89].



370 APPENDIX B

B.4.5 Similarity Transformations and Analytic Functions

For any n x n nonsingular matrix 4, the transform X — 4~'X4 is called a similarity
transformation of the n x n matrix X. It is a useful transformation for analytic
functions of matrices

JX) =Y a X",
k=0
because
S k
fATIXA) = Y a(47'X4)
k=0
o0
=47" (Zaka)A
k=0
=A"'f(X)A.
If the characteristic values of X are distinct, then the similarity transform performed

with the characteristic vectors of X as the column vectors of 4 will diagonalize X
with its characteristic values along the main diagonal:

A7'XA = diag{/,},
4
fA™'x4) = difg{F(iz)},
f(X) = Adiag{F(7,)}4~".
4

(Although this is a useful analytical approach for demonstrating functional depen-
dencies, it is not considered a robust numerical method.)

B.5 NORMS

B.5.1 Normed Linear Spaces

Vectors and matrices can be considered as elements of linear spaces, in that they can
be added and multiplied by scalars. A norm is any nonnegative real-valued function
| - || defined on a linear space such that, for any scalar s and elements x and y of the
linear space (vectors or matrices),

lx =0 iff x=0,

Ix|| >0 if x#0,

llsxll = Is] llxl,

llx +xll < llxll + 1yl
where iff stands for “if and only if”. These constraints are rather loose, and many
possible norms can be defined for a particular linear space. A linear space with a

specified norm is called a normed linear space. The norm induces a fopology on the
linear space, which is used to define continuity and convergence. Norms are also



B.5 NORMS 371

used in numerical analysis for establishing error bounds, and in sensitivity analysis
for bounding sensitivities. The multiplicity of norms is useful in these applications,
because the user is free to pick the one that works best for her or his particular
problem.

We define here many of the more popular norms, some of which are known by
more than one name.

B.5.2 Holder Norms
The inner product of a column n-vector x with itself is

xTx = trace xx"

n
= E x?
i=1

def 2
= lxllz,

the square of the Euclidean norm of x. This is but one of a class of norms called
Hélder norms,"! ¢, norms,'* or simply p-norms:

1/p
def | &
lIxll, = [leil”} ,
i=1

and in the limit (as p — o0) as the sup'® norm, or co-norm:
def
Irlloe < max ;.

These norms satisfy the Holder inequality:

1
X"yl < Ixll,lyll, for —+—=1.
P q

They are also related by inequalities such as
[Xlloe < lIxllg < Xl < 2llx]l-

The Euclidean norm (2-norm) is the default norm for vectors. When no other norm
is identified, the implied norm is the Euclidean norm.

B.5.3 Matrix Norms

Many norms have been defined for matrices. Two general types are presented here.
Both are derived from vector norms, but by different means.

""Named for the German mathematician Otto Ludwig Hélder (1859-1937).

"2This “little £” notation is used for infinite-dimensional normed vector spaces (sequences), which include
finite-dimensional normed vector spaces as a subclass.

Besup” (sounds like “soup™) stands for supremum, a mathematical term for the least upper bound of a set
of real numbers. The maximum (max) is the supremum over a finite set.



372 APPENDIX B

Generalized Vector Norms. Vector norms can be generalized to matrices by
treating the matrix like a doubly subscripted vector. For example, the Holder norms
for vectors can be generalized to matrices as

m n l/p
il = {ZZ"‘LJ‘"’} '
i=1j=1

The matrix (2)-norm defined in this way is also called the Euclidean norm, Schur
norm, or Frobenius norm. We will use the notation || - ||z in place of || - |, for the
Frobenius norm.

The reason for putting the parentheses around the subscript p in the above
definition is that there is another way that the vector p-norms are used to define
matrix norms, and it is this alternative definition that is usually allowed to wear an
unadorned p subscript. These alternative norms also have the following desirable
properties.

Desirable Multiplicative Properties of Matrix Norms. Because matrices can
be multiplied, one could also apply the additional constraint that

4By < 14llas 1Bllas

for conformable matrices 4 and B and a matrix norm || - ||;,. This is a good property
to have for some applications. One might also insist on a similar property with
respect to multiplication by vector x, for which a norm || - ||, may already be
defined:

IAx[ly, < [l 4llallxlly, -

This property is called compatibility between the matrix norm || - ||, and the vector
norms || - |y, and || - |l;,. (Note that there can be two distinct vector norms
associated with a matrix norm: one in the normed linear space containing x, and
one in the space containing Ax.)

Matrix Norms Subordinate to Vector Hélder Norms. There is a family of
alternative matrix “p-norms” [but not ( p)-norms] defined by the formula

o ldxl,

41, =

9
[Ix]I£0 ||x||p

where the norms on the right-hand side are the vector Holder norms and the induced
matrix norms on the left are called subordinate to the corresponding Holder norms.
The 2-norm defined in this way is also called the spectral norm of A. It has the
properties

I diag {2;}1l, = max [4;]  and  [l4x]ly < (141 [lxll>-

The first of these properties implies that ||/||, = 1. The second property is
compatibility between the spectral norm and the vector Euclidean norm. (Subordi-



B.6. CHOLESKY DECOMPOSITION 373

nate matrix norms are guaranteed to be compatible with the vector norms used to
define them.) All matrix norms subordinate to vector norms also have the property
that ||| = 1.

Computation of Matrix Hélder Norms. The following formulas may be used
in computing 1-norms and co-norms of m x n matrices A4:

oo S0,

1<j<n

141l

1<i<m j

[4]loc = max {Zla,,l}

The norm ||4||, can be computed as the square root of the largest characteristic value
of ATA, which takes considerably more effort.

Default Matrix Norm. When the type of norm applied to a matrix is not specified
(by an appropriate subscript), the default will be the spectral norm (Holder matrix 2-
norm). It satisfies the following bounds with respect to the Frobenius norm and the
other matrix Holder norms for m x n matrices A:

41l < 141l < V/n |14l

1
—=ll4ll; = 41, = VnllAll;,

A/ M

1
\/—EIIAIIOQ =< 4l = VmlAll oo
1malx la;| < 4]l < ~/mn 1max laj;|.
1<j<n 1<j<n

B.6. CHOLESKY DECOMPOSITION

This decomposition is named after André Louis Cholesky, a French'* geodesist and
artillery officer and a casualty of World War 1. He discovered a method for solving
linear least-squares problems that uses a method for factoring a symmetric, positive-
definite matrix P as a product of triangular factors. He was perhaps not the first
discoverer'® of the factoring technique, but his use of the method for solving least-
squares problems was unique. His results were published posthumously by a fellow
officer, Commendant Benoit [139], and credited to Cholesky.

“Because Cholesky was French, his name should perhaps be pronounced “Show-less-KEY” with the
accent on the last syllable.

'SZurmithl [80] cites an earlier discovery by M. H. Doolittle, published in a U.S. Coast and Geodetic
Report in 1878.



374 APPENDIX B

Choleksy decomposition is used in several ways for implementing Kalman filters.

B.6.1 Matrix Square Roots and Cholesky Factors

A square root of a matrix M is a matrix S such that M = §? = SS. The matrix square
root is sometimes confused with a Cholesky factor, which is not the same thing.

A Cholesky factor of a symmetric positive-definite matrix P is a matrix C such
that

ccT =p. (B.5)

Note that it does not matter whether we write this equation in the alternative form
FTF = P, because the two solutions are related by F = CT.

Cholesky Factors Are Not Unique. 1f C is a Cholesky factor of P, then for any
conformable orthogonal matrix M, the matrix

A% cm

satisfies the equation

A4" = cM(cMm)!
=CMM'C"
=cc’
=P.

That is, 4 is also a legitimate Cholesky factor.

The ability to transform one Cholesky factor into another using orthogonal
matrices turns out to be very important in square-root filtering (in Section 6.5).

B.6.2 Cholesky Factoring Algorithms

There are two possible forms of Cholesky factorization, corresponding to two
possible forms of the defining equation:

P=LLI =UU (B.7)
= U,U; =131, (B.8)

where the Cholesky factors U,, U, are upper triangular and their respective
transposes L, L, are lower triangular.

The first of these is implemented by the built-in MATLAB function chol(P), with
argument P a symmetric positive-definite matrix. The call chol(P) returns an upper
triangular matrix U, satisfying Equation B.7. The MATLAB m-file utchol.m on the
accompanying diskette implements the solution to Equation B.8. The call utchol(P)
returns an upper triangular matrix U, satisfying Equation B.8.



B.7 ORTHOGONAL DECOMPOSITIONS OF MATRICES 375

There are also two possible forms for each of the two factoring algorithms,
depending on whether the second level of the indexing loop is by rows or columns,
but this detail has no significant effect on the result.

B.6.3 Modified Cholesky Factorization

The algorithm for Cholesky factorization of a matrix requires taking square roots,
which can be avoided by using a modified Cholesky factorization in the form

P=UDU", (B.9)

where D is a diagonal matrix with positive diagonal elements and U is a unit
triangular matrix (i.e., U has ls along its main diagonal). This algorithm is
implemented in the file modchol.m on the accompanying diskette.

B.6.4 Rank 1 Modifications of Cholesky Factors

A “rank 1 modification” of a Cholesky factor C, such that C,C§ = 4 is a Cholesky
factor of 4 4 vv", where v is a column vector and voT is a rank 1 matrix. The built-in
MATLAB function cholupdate.m performs that function, given C, and v, for
factorization in the form CgyyCouput = CiflputCinpm +ov" (ie., transposing the
first factor, rather than the second factor). The MATLAB rank 1 Cholesky factor
modification functions potter.m, carlson.m, and bierman.m on the accompanying
diskette are specialized for application to Kalman filtering, as described in Chapter

6.

B.7 ORTHOGONAL DECOMPOSITIONS OF MATRICES

Decompositions are also called factorizations of matrices. They are formulas for
representing a matrix as a product of matrix factors with useful properties. The two
factorizations described here have either triangular or diagonal factors in addition to
orthogonal factors.

Decomposition methods are algorithms for computing the factors, given the
matrix to be “decomposed”.

B.7.1 QR Decomposition (Triangularization)
The QR decomposition of a matrix A4 is a representation in the form
A= QOR,

where Q is an orthogonal matrix and R is a triangular matrix. Methods for the QR
decomposition of a matrix are described in Chapter 6.



376 APPENDIX B

B.7.2 Singular-Value Decomposition

The singular-value decomposition of an m x n matrix 4 is a representation in the
form 4 = T,,DT,, where T,, and T, are orthogonal matrices (with square dimensions
as specified by their subscripts) and D is an m x n matrix filled with zeros
everywhere except along the main diagonal of its maximal upper-left square
submatrix. This decomposition will have either of the three forms:

NI
l

= T m>n,

depending on the relative values of m and n. The middle matrix D has the block form

HHH
1}

[diagi{ﬂi}lomx(,,_m)] if m <n,

diag,{o;} if m = n,

| T diag{o}
if m>n,

O(m—n)xn

0120,2032---20,=0,

p =min(m, n).

That is, the diagonal nonzero elements of D are in descending order and non-
negative. These are called the singular values of A. For a proof that this decom-
position exists, and an algorithm for computing it, see the book by Golub and Van
Loan [89].

The singular values of a matrix characterize many useful matrix properties, such
as:

41l = 71(4).
rank (4) = r such that ¢, > 0 and either 6, | = 0 or » = p. (The rank of a matrix
is defined in Section B.3.2.)

The condition number of 4 equals o, /0,

The condition number of the matrix 4 in the linear equation Ax = b bounds the
sensitivity of the solution x to variations in b and the sensitivity of the solution to
roundoff errors in determining it. The singular-value decomposition may also be
used to define the “pseudorank” of A4 as the smallest singular value o, such that
0; > ¢0,, where ¢ is a processor- and precision-dependent constant such that
0<ex .



B.8 QUADRATIC FORMS 377

These relationships are useful for the analysis of state transition matrices ® of
Kalman filters, which can be singular or close enough to being singular that
numerical roundoff can cause the product ®P®" to be essentially singular.

B.7.3 Eigenvalue—Eigenvector Decompositions of Symmetric
Matrices

Symmetric QR Decomposition. The so-called symmetric QR decomposition of an
n x n symmetric real matrix 4 has the special form 4 = TDTT, where the right
orthogonal matrix is the transposed left orthogonal matrix and the diagonal matrix

D = diag,{/,}.

That is, the diagonal elements are the characteristic values of the symmetric matrix.
Furthermore, the column vectors of the orthogonal matrix 7 are the associated
characteristic vectors e; of 4:

A=TDTT
n
= Ziieiej’
i=1
T=1[e, e e --- el

These relationships are useful for the analysis of covariance matrices, which are
constrained to have nonnegative characteristic values, although their numerical
values may stray enough in practice (due to computer roundoff errors) to develop
negative characteristic values.

B.8 QUADRATIC FORMS

Bilinear and Quadratic Forms. For a matrix 4 and all conformable column
vectors x and y, the functional mapping (x, y) — x4y is called a bilinear form. As a
function of x and y, it is linear in both x and y and hence bilinear. In the case that
x = y, the functional mapping x — x'Ax is called a quadratic form. The matrix 4 of
a quadratic form is always a square matrix.

B.8.1 Symmetric Decomposition of Quadratic Forms

Any square matrix 4 can be represented uniquely as the sum of a symmetric matrix
and a skew-symmetric matrix:

A=3A+A4A")+14—-47),



378 APPENDIX B

where § (4 + A7) is called the symmetric part of 4 and (4 — 4") is called the skew-
symmetric part of 4. The quadratic form x"4x depends only on the symmetric part
of A:

xTAx = xT {% 4+ AT)}x.

Therefore, one can always assume that the matrix of a quadratic form is symmetric,
and one can express the quadratic form in summation form as

n n
T gy —
X Ax = E E ax;x;

i=1 j=I

= 2 :aijxix.f + 2 :aijxixj
i=j

i

n
2
= E a;x; —i-ZE a;x;x;
i=1

i<j

for symmetric 4.

Ranges of Quadratic Forms. The domain of a quadratic form for an n x n
matrix is n-dimensional Euclidean space, and the range is in (—oo, +00), the real
line. Assume that x # 0. Then:

If A is positive definite, the range of x — xTA4x is (0, +00),

If 4 is non—negative definite, the range of x — x'Ax is [0, +00),
If A is indefinite, the range of x — xT4x is (—o0, +00),

If 4 is non—positive definite, the range of x — xT4x is (—o0, 0],
If 4 is negative definite, the range of x — xTA4x is (—oo, 0).

If x"x = 1, then A,(4) < x"4x < 4,(4). That is, the quadratic form maps the unit n-
sphere onto the closed interval [1,(4), 4,(4)].



B.9 DERIVATIVES OF MATRICES 379
B.9 DERIVATIVES OF MATRICES

B.9.1 Derivatives of Matrix-Valued Functions

The derivative of a matrix with respect to a scalar is the matrix of derivatives of its
elements:

[/ S fiz() - fi(D) 7]
@) @ 3@ - fu(0)
F(t) = £ oD f3O) 0 f(0)

—fml(t) fm2(t) fm}(t) fmn(t)—

[ d d d d . ]

Efu(f) Efu(l) Efm(t) o Efln(t)
d d d d

) G Tha0) S0 e 0
_| 4 d d d

al D= 2RO TR0 S0 e 20
A d. . d. d .

_Efml(t) Ef;nZ(t) Ejfnﬁ(t) e Efmn(t) i

The rule for the derivative of a product applies also to matrix products:
d d d
—[A@®)B(t)] = | —A@) |B(t) + A(t)| — B(t
4 o) [dt ()] 0+ ()[dt ()]

provided that the order of the factors is preserved. If F(¢) is square and nonsingular,
then F(f)F~'(f) = I, a constant. As a consequence, its derivative will be zero. This
fact can be used to derive the formula for the derivative of a matrix inverse:

d
=27

dt
_4d
Tdt

d B d
_ [EF(t)}F Y0+ F() [EF 1(0},

0

[F(DF!(T)]

d _ |4 _
= ()= -F I[EF(t)}F I (B.10)



380 APPENDIX B

B.9.2 Gradients of Quadratic Forms

If f(x) is a differentiable scalar-valued function of an n-vector x, then the vector

g_[af g9 @’]T

x| ax, ox, a7 ox,

is called the gradient of f with respect to x. In the case that f* is a quadratic form with
symmetric matrix 4, then the ith component of its gradient will be

9 of )
(xTAx)i| = a;x; + 2> agxx
|:8x Lo X]: i jg( (Laiiads

= <2aiixi + 23 agx, +23 ajixj>

i<k Jj<i
= | 2a;x; +2)_ ayx;
ik
=2 Z Aij Xk
k=1
= (24x),,

That is, the gradient vector can be expressed as

d
— (xTAx) = 24x.
ox



References

Books

Books on Kalman Filtering and Its Applications

1.

B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs,
NJ, 1979.

2. R. N. Ansher, Ed., Physics and Beyond, Harper & Row, New York, 1971.
3. A. C. Antoulas, Ed., Mathematical System Theory, The Influence of R. E. Kalman,

Springer-Verlag, Berlin, 1991.

4. A. V. Balakrishnan, Kalman Filtering Theory, Optimization Software, New York, 1987.

10.
11.

12.

. R. H. Battin, Astronautical Guidance, McGraw-Hill, New York, 1964.
. R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics,

American Institute of Aeronautics and Astronautics, New York, 1987.

. G. ]. Bierman, Factorization Methods for Discrete Sequential Estimation, Academic,

New York, 1977.

. J. H. Blakelock, Automatic Control of Aircraft and Missiles, Wiley, New York, 1965.
. S. M. Bozic, Digital and Kalman Filtering: An Introduction to Discrete-Time Filtering

and Optimal Linear Estimation, Wiley, New York, 1979.
K. Brammer and G. Siffling, Kalman-Bucy Filters, Artech House, Norwood, MA, 1989.

R. G. Brown, Introduction to Random Signal Analysis and Kalman Filtering, Wiley,
New York, 1983.

R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman
Filtering, 2nd ed., Wiley, New York, 1992.

381



382

13.

14.
15.

16.

17.

18.

19.
20.
21.

22.

23.
24.
25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

REFERENCES

R. G. Brown and P. Y. C. Hwhang, Introduction to Random Signals and Applied Kalman
Filtering: With MATLAB Exercises and Solutions, 3rd ed., Wiley, New York, 1997.

A. E. Bryson, Jr. and Y.-C. Ho, Applied Optimal Control, Blaisdell, Waltham, MA, 1969.
R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processes, with Applications to
Guidance, Wiley, New York, 1968.

D. E. Catlin, Estimation, Control, and the Discrete Kalman Filter, Springer-Verlag,
New York, 1989.

H. E Chen, Recursive Estimation and Control for Stochastic Systems, Wiley, New York,
1985.

C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, Springer-Verlag,
New York, 1987.

K. L. Chung, 4 Course in Probability Theory, Harcourt Brace, New York, 1968.

M. H. A. Davis, Linear Estimation and Stochastic Control, Halsted, New York, 1977.
A. Gelb, J. F. Kasper, Jr., R. A. Nash, Jr., C. E. Price, and A. A. Sutherland, Jr., Applied
Optimal Estimation, MIT Press, Cambridge, MA, 1974.

M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial
Navigation and Integration, Wiley, New York, 2000.

A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic, New York, 1970.
T. Kailath, Lectures on Weiner and Kalman Filtering, Springer-Verlag, New York, 1981.
T. Kailath, Linear Least Squares Estimation, Dowden, Hutchinson and Ross, Strouds-
burg, PA, 1977.

T. Kailath, “State-space modelling: Square root algorithms,” in Systems and Control
Encyclopedia (M. G. Singh, Ed.), Pergamon, Elmsford, NY, 1984.

H. Kwaknernaak and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.
C. T. Leondes, Ed., Control and Dynamic Systems, Vols. 19-21: Nonlinear and Kalman
Filtering Techniques, Parts 1-3, Academic, New York, 1983-1984.

F. H. Lewis, Optimal Estimation with an Introduction to Stochastic Control Theory,
Wiley, New York, 1986.

P. S. Maybeck, Stochastic Models, Estimation, and Control, Vol. 1, Academic, New York,
1979.

P. S. Maybeck, Stochastic Models, Estimation, and Control, Vol. 2, Academic, New York,
1982.

J. L. Melsa and D. L. Cohen, Decision and Estimation Theory, McGraw-Hill, New York,
1978.

J. M. Mendel, Discrete Techniques of Parameter Estimation: The Equation Error
Formulation, Marcel Dekker, New York, 1973.

J. M. Mendel, Lessons in Digital Estimation Techniques, Prentice-Hall, Englewood
Cliffs, New Jersey, 1987.

J. M. Mendel, “Kalman filtering and other digital estimation techniques.” in [EEE
Individual Learning Package, New York, 1987.

N. E. Nahi, Estimation Theory and Applications, Wiley, New York, 1969; reprinted by
Krieger, 1975.

M. B. Nevelson and R. Z. Hazminskii, Stochastic Approximation and Recursive
Estimation, American Mathematical Society., Transl. Math. Mono., No. 47, Chicago,
1971.



REFERENCES 383

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

K. Ogata, State Space Analysis of Control Systems, Prentice-Hall, Englewood Cliffs, NJ,
1967.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
New York, 1988.

E. Parzen, Stochastic Processes, Holden-Day, San Francisco, 1962.

J. C. Pinson, “Inertial guidance for cruise vehicles,” in Guidance and Control of
Aerospace Vehicles (C. T. Leondes, Ed.), McGraw-Hill, New York, 1963.

P. A. Ruymgaart and T. T. Soong, Mathematics of Kalman-Bucy Filtering, Springer-
Verlag, Berlin, 1988.

G. T. Schmidt, “Linear and nonlinear filtering techniques,” in Control and Dynamic
Systems (C. T. Leondes, Ed.), Vol. 12, Academic, New York, 1976.

D. G. Schultz and J. L. Melsa, State Functions and Linear Control Systems, McGraw-
Hill, New York, 1967.

S. F Schmidt, “Applications of state-space methods to navigation problems,” in
Advances in Control Systems (C. T. Leondes, Ed.), Vol. 3, Academic, New York, 1966.
H. W. Sorenson, “Kalman filtering techniques,” in Advances in Control Systems, Vol. 3,
Academic, New York, 1966, pp. 219-292.

H. W. Sorenson, Ed., Kalman Filtering: Theory and Application, IEEE Press, New York,
1985.

R. E Stengel, Stochastic Optimal Control: Theory and Application, Wiley, New York,
1986.

A. S. Willsky, Digital Signal Processing and Control and Estimation Theory: Points of
Tangency, Areas of Intersection, and Parallel Directions, MIT Press, Cambridge, MA,
1979.

P. C. Young, Recursive Estimation and Time Series, Springer-Verlag, New York, 1984.

Books on Mathematical Foundations for the Kalman Filter

51.

52.

53.
54.

55.
56.
57.

58.

59.

60.

L. Amold, Stochastic Differential Equations: Theory and Applications, Wiley, New York,
1974.

J. Baras and V. Mirelli, Recent Advances in Stochastic Calculus, Springer-Verlag,
New York, 1990.

P. Billingsley, Probability and Measure, Wiley, New York, 1986.

S. Bittanti, A. J. Laub, and J. C. Willems, Eds., The Riccati Equation, Springer-Verlag,
New York, 1991.

E. Bodewig, Matrix Calculus, North-Holland, Amsterdam, 1959.

R. W. Brockett, Finite Dimensional Linear Systems, Wiley, New York, 1970.

E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-
Hill, New York, 1955.

W. D. Davenport and W. L. Root, Random Signals and Noise, McGraw-Hill, New York,
1958.

P. M. DeRusso, R. J. Roy, and C. M. Close, State Variables for Engineers, Wiley,
New York, 1965.

R. C. Dubes, The Theory of Applied Probability, Prentice-Hall, Englewood Cliffs, NJ,
1968.



384

61.

62.
63.
64.

65.
66.

67.

68.
69.

70.

71.

72.
73.

74.
75.
76.
71.

78.

79.
80.

REFERENCES

R. V. Gamkrelidze, Ser. Ed., Encyclopedia of Mathematical Sciences, Vol. 3: Dynamical
Systems Il (V. 1. Arnold, Ed.), Springer-Verlag, Berlin, 1988.

F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1990.
B. Harris, Theory of Probability, Addison-Wesley, Reading, MA., 1966.

K. It6 and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths, Academic,
New York, 1965.

T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag,
New York, 1991.

J. H. Laning, Jr., and R. H. Battin, Random Processes in Automatic Control, McGraw-
Hill, New York, 1956.

M. Loeve, Probability Theory, 3rd ed., Van Nostrand Reinhold, New York, 1963.

Y. L. Luke, The Special Functions and Their Approximations, Vol. 2, Academic,
New York, 1969.

P. Masani, Ed., Norbert Weiner: Collected Works, Vols. 1-4, MIT Press, Cambridge,
MA, 1976, 1979, 1981, 1985.

P. Masani, “The life and work of Norbert Wiener,” in Norbert Wiener: Collected Works,
Vol. 4, MIT Press, Cambridge, MA, 1985.

K. S. Miller, Some Eclectic Matrix Theory, Krieger, Malabar, FL, 1987.

M. M. Rao, “Probability,” in Encyclopedia of Physical Science and Technology,
Academic, New York, 1987.

W. T. Reid, Riccati Differential Equations, Academic, New York, 1972.
F. C. Schweppe, Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, NJ, 1973.
S. R. Searle, Linear Models, Wiley, New York, 1971.

K. Sobezyk, Stochastic Differential Equations with Applications to Physics and Engi-
neering, Kluwer Academic, Dordrecht, 1991.

R. L. Stratonovich, Topics in the Theory of Random Noise, (R. A. Silverman, Ed.),
Gordon & Breach, New York, 1963.

L. A. Zadeh and C. A. Desoer, Linear System Theory, McGraw-Hill, New York, 1963.
R. Zurmiihl, Matrizen, Academic Press, Orlando, FL., 1961.

Books on Numerical Methods

81.

82.

83.

84.

85.

F. S. Acton, Numerical Methods That Usually Work, Mathematical Association of
America, Washington DC, 1991 (revision of 1970 edition published by Harper &
Rowe, New York).

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbvaum,
S. Hammerling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1992.

G. Dahlquist and A. Bjorck, Numerical Methods, (N. Anderson, Trans.), Prentice-Hall,
Englewood Cliffs, NJ, 1974.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1979.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.



REFERENCES 385

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

C. E Gauss, Theory of Motion of the Heavenly Bodies (English translation), Dover
Publications, New York, 1963.

C. F. Gauss, Abhandlungen zur Methode der kleinsten Quadrate (German translation by
A. Borsch and P. Simon), P. Stankiewicz, Berlin, 1887.

W. C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, NJ, 1971.

G. H. Golub and C. E. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins
University Press, Baltimore, MD, 1989.

D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall,
Englewood Cliffs, NJ, 1974.

J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function
Minimization, Adam Hilger, Bristol, 1990.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes in
FORTRAN, Cambridge University Press, Cambridge, UK, 1987.

A. Ralston and P. Rabinowitz, 4 First Course in Numerical Analysis, McGraw-Hill,
New York, 1978.

J. Stoer and R. Bulirsh, Introduction to Numerical Analysis, Springer-Verlag, New York,
1980.

S. Van Huffel and J. Vanderwalle, The Total Least Squares Problem: Computational
Aspects and Analysis, Society for Industrial and Applied Mathematics, Philadelphia, PA,
1991.

Miscellaneous Books

97

98.

99.

100.

101.
102.
103.

104
105

. R. M. L. Baker and M. W. Makemson, 4n Introduction to Astrodynamics, Academic,

New York, 1960.
G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, Holden-Day, San
Francisco, 1968.

T. Kailath, “Equations of Wiener-Hopf type in filtering theory and related applications,”
in Norbert Weiner: Collected Works (P. Masani, Ed.), Vol. 3, MIT Press, Cambridge, MA,
1981.

M. Schwartz and L. Shaw, Signal Processing, Discrete Spectral Analysis, Detection, and
Estimation, McGraw-Hill, New York, 1975.

L. Strachey, Eminent Victorians, Penguin Books, London, 1988.

D. I. Struik, 4 Concise History of Mathematics, Dover, New York, 1987.

N. Wiener, Time Series, MIT Press, Cambridge, MA, 1964 (originally published in 1949
as Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineer-
ing Applications).

. N. Wiener, Ex-Pridigy: My Childhood and Youth, MIT Press, Cambridge, MA, 1964.

. N. Wiener, I Am a Mathematician, MIT Press, Cambridge, MA, 1964.



386 REFERENCES

Theses and Reports

106. W. S. Agee and R. H. Turner, Triangular Decomposition of a Positive Definite Matrix
Plus a Symmetric Dyad, with Applications to Kalman Filtering, White Sands Missile
Range Tech. Rep. No. 38, Oct. 1972.

107. ANSI/IEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, The
Institute of Electrical and Electronics Engineers, New York, 1985.

108. J. L. Center, J. A. D’Appolito, and S. 1. Marcus, Reduced-Order Estimators and Their
Application to Aircraft Navigation, Tech. Rep., TASC TR-316-4-2, The Analytic
Sciences Corporation, Reading, MA, Aug. 1974.

109. E. Eskow and R. B. Schnabel, “Algorithm 695: Software for a new modified Cholesky
factorization,” Collected Algorithms of the ACM, Association for Computing Machinery,
New York, 1991.

110. R. C. DiPietro and F. A. Farrar, Comparative Evaluation of Numerical Methods for
Solving the Algebraic Matrix Riccati Equation, Rep. No. R76-140268-1, United
Technologies Research Center, East Hartford, CT, 1976.

111. R. M. DuPlessis, Poor Man's Explanation of Kalman Filtering, or How I Stopped
Worrying and Learned to Love Matrix Inversion, Rep. No. QN014239, North American
Rockwell, Autonetics Division, Anaheim, CA, 1967.

112. M. S. Grewal and A. P. Andrews, Application of Kalman Filtering to GPS, INS, &
Navigation (Notes), Kalman Filtering Consulting Associates, Anaheim, CA, 2000.

113. K. 1t6, Lectures on Stochastic Processes, Tata Institute of Fundamental Research,
Bombay, India, 1961.

114. R. E. Kalman, Phase-Plane Analysis of Nonlinear Sampled-Data Servomechanisms,
S.M. thesis, Dept. of Electrical Engineering, Massachusetts Institute of Technology,
Cambridge, MA, 1954.

115. P. G. Kaminski, Square Root Filtering and Smoothing for Discrete Processes, Ph.D.
thesis, Stanford University, 1971.

116. C. T. Leondes, Ed., Theory and Applications of Kalman Filtering, AGARDograph No.
139, NATO Advisory Group for Aerospace Research and Development, London, Feb.
1970.

117. C. T. Leondes, Ed., Advances in the Techniques and Technology of the Application of
Nonlinear Filters and Kalman Filters, AGARDograph No. 256, NATO Advisory Group
for Aerospace Research and Development, Paris, 1982.

118. L. A. McGee and S. F. Schmidt, Discovery of the Kalman Filter as a Practical Tool for
Aerospace and Industry, National Aeronautics and Space Administration, Technical
Memorandum 86847, Nov. 1985.

119. J. E. Potter, A Matrix Equation Arising in Statistical Estimation Theory, Report No.
CR-270, 1965, National Aeronautics and Space Administration, 1965.

120. J. M. Rankin, Kalman Filtering Approach to Market Price Forecasting, Ph.D. Thesis,
Iowa State University, Ames, 1A, 1986.

121. J. M. Richardson and K. A. Marsh, “Nonlinear filtering theory and its applications,”
Rockwell International First Annual Signal Processing Conference Proceedings, 1988,
pp- 266-279.

122. G.T. Schmidt, Ed., Practical Aspects of Kalman Filtering Implementation, AGARD-LS—
82, NATO Advisory Group for Aerospace Research and Development, London, May
1976.



REFERENCES 387

123.

124.

125.

126.

127.

S. F. Schmidt, “Computational techniques in Kalman filtering,” in Theory and Applica-
tions of Kalman Filtering, AGARDograph 139, NATO Advisory Group for Aerospace
Research and Development, London, Feb. 1970.

C. L. Thomton, Triangular Covariance Factorizations for Kalman Filtering, Ph.D.
Thesis, University of California at Los Angeles, School of Engineering, 1976.

C. L. Thornton and G. J. Bierman, A Numerical Comparison of Discrete Kalman
Filtering Algorithms: An Orbit Determination Case Study, JPL Technical Memorandum
33-771, Pasadena, 1976.

W. S. Widnall and P. A. Grundy, Inertial Navigation System Error Models, Tech. Rep.
TR-03-73, Intermetrics, Cambridge, MA, May 1973.

M. A. Woodbury, Inverting Modified Matrices, Memorandum Report 42, Statistical
Research Group, Princeton University, Princeton, NJ, 1950.

Journal Articles and Conference Papers

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

D. W. Allan, “Statistics of atomic frequency standards,” /IEEE Proceedings, Vol. 54, pp.
221-230, 1966.

B. D. O. Anderson, “Second-order convergent algorithms for the steady-state Riccati
equation,” International Journal of Control, Vol. 28, pp. 295-306, 1978.

A. Andrews, “A square root formulation of the Kalman covariance equations,” A/44
Journal, Vol. 6, pp. 1165-1166, 1968.

A. Andrews, “Marginal optimization of observation schedules,” AIAA Journal of
Guidance and Control, Vol. 5, pp. 95-96, 1982.

R. B. Asher, P. S. Maybeck, and R. A. K. Mitchell, “Filtering for precision pointing and
tracking with application for aircraft to satellite tracking,” in Proceedings of the IEEE
Conference Decision and Control, Houston, TX, 1975, pp. 439-446.

M. Athans et al., Guest Eds., “Special issue on linear-quadratic-Gaussian problem,”
IEEE Transactions on Automatic Control, Vol. AC-16, 1971.

R. W. Bass, V. D. Norum, and L. Schwartz, “Optimal multichannel nonlinear filtering,”
Journal of Mathematical Analysis and Applications, 1966.

R. H. Battin, “Space guidance evolution—a personal narrative,” AIAA Journal of
Guidance and Control, Vol. 5, pp. 97-110, 1982.

J. E. Bellantoni and K. W. Dodge, “A square root formulation of the Kalman-Schmidt
filter,” AIAA Journal, Vol. 5, pp. 1309-1314, 1967.

T. R. Benedict and G. W Bordner, “Synthesis of an optimal set of radar track-while scan
smoothing equation,” IEEE Transactions on Automatic Control, Vol. AC-7, pp. 27-32,
1962.

J. M. Bennet, “Triangular factors of modified matrices,” Numerische Mathematik, Vol. 7,
pp. 217-221, 1963.

Commandant Benoit, “Sur une méthode de résolution des équations normales provenant
de I’application de la méthode des moindes carrés a un systeme d’équations linéaires en
numbre inférieur a celui des inconnues—application de la méthode a la resolution d’un
systeme defini d’équations linéaires (Procédé du Commandant Cholesky),” Bulletin
Géodésique et Géophysique Internationale, Vol. 2, Toulouse, pp. 67-77, 1924.

G. J. Bierman, “A new computationally efficient fixed-interval discrete time smoother,”
Automatica, Vol. 19, pp. 503561, 1983.



388 REFERENCES

141. A. Bjorek, “Solving least squares problems by orthogonalization,” BIT, Vol. 7, pp. 1-21,
1967.

142. F. R. Bletzacker et al., “Kalman filter design for integration of Phase III GPS with an
inertial navigation system,” Computing Applications Software Technology Technical
Papers, Los Alamitos, CA, 1988.

143. H. W. Bode and C. E. Shannon, “A simplified derivation of linear least-squares
smoothing and prediction,” IRE Proceedings, Vol. 48, pp. 417425, 1950.

144. J.-L. Botto and G. V. Moustakides, “Stabilizing the fast Kalman filter algorithms,” /EEE
Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-37, pp. 1342—
1348, 1989.

145. K. Brodie, D. Eller and G. Seibert, “Performance analysis of integrated navigation
systems,” in Proceedings of the 1985 Winter Simulation Conference (D. Gantz, G. Glais,
and S. Solomon, Eds.), pp. 605-609, San Francisco, CA., 1985.

146. A. E. Bryson, Jr., and D. E. Johansen, “Linear filtering for time-varying systems using
measurements containing colored noise,” IEEE Transactions on Automatic Control, Vol.
AC-10, pp. 4-10, 1965.

147. R. S. Bucy, “Nonlinear filtering theory,” IEEE Transactions on Automatic Control, Vol.
AC-10, pp. 198-206, 1965.

148. R. S. Bucy, “Optimal filtering for correlated noise.” Journal of Mathematical Analysis
Applications, Vol. 20, pp. 1-8, 1967.

149. N. A. Carlson, “Fast triangular formulation of the square root filter,” AIAA4 Journal, Vol.
11, No. 9, pp. 1259-1265, 1973.

150. G. Chen and C. K. Chui, “A modified adaptive Kalman filter for real-time applications,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, pp. 149-154, 1991.

151. C.Y. Choe and B. D. Tapley, “A new method for propagating the square root covariance
in triangular form,” 4144 Journal, Vol. 13, pp. 681-683, 1975.

152. C. H. Choi and A. J. Laub, “Efficient matrix-valued algorithms for solving stiff
differential Riccati equations,” IEEE Transactions on Automatic Control, Vol. AC-35,
pp. 770-776, 1990.

153. H. Cox, “On the estimation of state variables and parameters for noisy dynamic systems,”
IEEE Transactions on Automatic Control, Vol. AC-9, pp. 5-12, 1964.

154. E. J. Davison and M. C. Maki, “The numerical solution of the matrix Riccati differential
equation,” [EEE Transactions on Automatic Control, Vol. AC-19, pp. 71-73, 1973.

155. L. Dieci, “Numerical integration of the differential Riccati equation and some related
issues,” SIAM Journal of Numerical Analysis, Vol. 29, pp. 781-815, 1992.

156. P. Dyer and S. McReynolds, “Extension of square-root filtering to include process noise,”
Journal of Optimization Theory and Applications, Vol. 3, pp. 444-458, 1969.

157. A. Einstein, “Uber die von molekularkinetischen Theorie der Wirme geforderte
Bewegung von in ruhenden Fliissigkeiten suspendierten Teilchen,” Annelen der
Physik, Vol. 17, pp. 549-560, 1905.

158. A. F. Fath, “Computational aspects of the linear optimal regulator problem,” [EEE
Transactions on Automatic Control, Vol. AC-14, pp. 547-550, 1969.

159. R. J. Fitzgerald, “Divergence of the Kalman filter,” [EEE Transactions on Automatic
Control, Vol. AC-16, pp. 736-743, 1971.

160. A. D. Fokker, “Die mittlerer Energie rotierender elektrischer Dipole im Strahlungsfeld,”
Annelen der Physik, Vol. 43, pp. 810-820, 1914.



REFERENCES 389

161

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

T. E. Fortmann, “A matrix inversion identity,” IEEE Transactions on Automatic Control,
Vol. AC-15, p. 599, 1970.

F. M. Gaston and G. W. Irwin, “Systolic Kalman filtering: An overview,” IEE Proceed-
ings, Vol. 137, pp. 235-244, 1990.

W. M. Gentleman, “Least squares computations by Givens transformations without
square roots,” Journal of the Institute for Mathematical Applications, Vol. 12, pp. 329—
336, 1973.

W. Givens, “Computation of plane unitary rotations transforming a general matrix to
triangular form,” Journal of the Society for Industrial and Applied Mathematics, Vol. 6,
pp. 26-50, 1958.

G. H. Golub, “Numerical methods for solving linear least squares problems,” Numer-
ische Mathematik, Vol. 7, pp. 206-216, 1965.

M. S. Grewal and H. J. Payne, “Identification of parameters in a freeway traffic model,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-6, pp. 176185, 1976.
M. S. Grewal, “Application of Kalman filtering to the calibration and alignment of
inertial navigation systems,” in Proceedings of PLANS ’'86—Position Location and
Navigation Symposium, Las Vegas, NV, Nov. 4-7, 1986, IEEE, New York, 1986.

M. S. Grewal and R. S. Miyasako, “Gyro compliance estimation in the calibration and
alignment of inertial measurement units,” in Proceedings of Eighteenth Joint Services
Conference on Data Exchange for Inertial Systems, San Diego, CA, Oct. 28-30, 1986,
IEEE Joint Services Data Exchange, San Diego, CA, 1986.

M. S. Grewal, R. S. Miyasako and J. M. Smith, “Application of fixed point smoothing to
the calibration, alignment, and navigation data of inertial navigation systems,” in
Proceedings of IEEE PLANS ’'88—Position Location and Navigation Symposium,
Orlando, FL, Nov. 29-Dec. 2, 1988, pp. 476 479, IEEE, New York, 1988.

M. S. Grewal, V. D. Henderson, and R. S. Miyasako, “Application of Kalman filtering to
the calibration and alignment of inertial navigation systems,” IEEE Transactions on
Automatic Control, Vol. AC-38, pp. 4-13, 1991.

H. Heffes, “The effects of erroneous models on the Kalman filter response,” [EEE
Transactions on Automatic Control, Vol. AC-11, pp. 541-543, 1966.

A. S. Householder, “Unitary triangularization of a nonsymmetric matrix,” Journal of the
Association for Computing Machinery, Vol. 5, pp. 339-342, 1958.

J. R. Huddle and D. A. Wismer, “Degradation of linear filter performance due to
modeling error,” IEEE Transactions on Automatic Control, Vol. AC-13, pp. 421-423,
1968.

T. L. Jordan, “Experiments on error growth associated with some linear least-squares
procedures,” Mathematics of Computation, Vol. 22, pp. 579-588, 1968.

J. M. Jover and T. Kailath, “A parallel architecture for Kalman filter measurement update
and parameter update,” Automatica, Vol. 22, pp. 783-786, 1986.

T. Kailath, “A view of three decades of linear filtering theory,” IEEE Transactions on
Information Theory, Vol. IT-20, No. 2, pp. 146-181, 1974.

T. Kailath, “An innovations approach to least squares estimation, Part I: Linear filtering in
additive white noise,” IEEE Transactions on Automatic Control, Vol. AC-13, pp. 646—
655, 1968.

T. Kailath and R. A. Geesey, “An innovations approach to least squares estimation—Part



390 REFERENCES

IV: Recursive estimation given lumped covariance functions,” [EEE Transactions on
Automatic Control, Vol. AC-16, pp. 720-726, 1971.

179. R. E. Kalman, “A new approach to linear filtering and prediction problems,” ASMFE
Journal of Basic Engineering, Vol. 82, pp. 34-45, 1960.

180. R. E. Kalman, “New methods and results in linear prediction and filtering theory,” in
Proceedings of the Symposium on Engineering Applications of Random Function Theory
and Probability, Wiley, New York, 1961.

181. R. E. Kalman and Richard S. Bucy, “New results in linear filtering and prediction theory,”
ASME Journal of Basic Engineering, Series D, Vol. 83, pp. 95-108, 1961.

182. R. E. Kalman, “New methods in Wiener filtering,” in Proceeding of the First Symposium
on Engineering Applications of Random Function Theory and Probability, Wiley,
New York, 1963.

183. P. G. Kaminski, A. E. Bryson, Jr., and S. F. Schmidt, “Discrete square root filtering: A
survey of current techniques,” IEEE Transactions on Automatic Control, Vol. AC-16,
pp. 727-736, 1971.

184. M. H. Kao and D. H. Eller, “Multiconfiguration Kalman filter design for high-
performance GPS navigation,” [EEE Transactions on Automatic Control, Vol. AC-28,
1983.

185. C. S. Kenney and R. B. Liepnik, “Numerical integration of the differential matrix Riccati
equation,” IEEFE Transactions on Automatic Control, Vol. AC-30, pp. 962-970 1985.

186. D. W. Klein, “Navigation software design for the user segment of the NAVSTAR GPS,”
paper presented at the AIAA Guidance and Control Conference, San Diego, CA, Aug.
1976.

187. A. A. Kolmogorov, Uber die analytichen Methoden in der Wahrscheinlichkeitsrech-
nung,” Mathematische Annelen, Vol. 104, pp. 415458, 1931.

188. M. M. Konstantinov and G. B. Pelova, “Sensitivity of the solutions to differential matrix
Riccati equations,” IEEE Transactions on Automatic Control, Vol. AC-36, pp. 213-215,
1991.

189. E. Kreindler and P. E. Sarachik, “On the concepts of controllability and observability of
linear systems,” IEEE Transactions on Automatic Control, Vol. AC-9, pp. 129-136,
1964.

190. L. R. Kruczynski, “Aircraft navigation with the limited operational phase of the Navstar
Global Positioning System,” Journal of the Institute of Navigation, Vol. 1, Global
Positioning System: Papers Published in Navigation, Institute of Navigation, Alexandria,
VA, 1980.

191. H.J. Kushner, “On the differential equations satisfied by conditional probability densities
of Markov processes,” SIAM Journal on Control, Ser. A, Vol. 2, pp. 106—119, 1964.

192. D. G. Lainiotis, “Estimation: A brief survey,” Information Sciences, Vol. 7, pp. 191-202,
1974.

193. A.J. Laub, “A Schur method for solving algebraic Riccati equations,” IEEE Transactions
on Automatic Control, Vol. AC-19, pp. 913-921, 1979.

194. A. M. Legendre, “Methode de moindres quarres, pour trouver le milieu de plus probable
entre les resultats des differentes obvservations,” Memoires Institute de France, pp. 149—
154, 1810.

195. N. Levinson, “Wiener’s Life,” Bulletin of the American Mathematical Society, Vol. 72,
No. 1, Pt. II, pp. 1-32, 1966.



REFERENCES 391

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

L. Ljung, “Asymptotic behavior of the extended Kalman filter as a parameter estimator
for linear systems,” IEEE Transactions on Automatic Control, Vol. AC-24, pp. 36-50,
1979.

A. G. J. MacFarlane, “An eigenvector solution of the optimal linear regulator,” Journal of
Electronic Control, Vol. 14, pp. 643—654, 1963.

G. Matchett, “GPS-aided shuttle navigation,” paper presented at the IEEE National
Aerospace and Electronics Conference, 1978.

S. R. McReynolds, “Fixed interval smoothing: Revisited,” AIAA4 Journal of Guidance,
Control, and Dynamics, Vol. 13, pp. 913-921, 1990.

P. S. Maybeck, J. G. Reid, and R. N. Lutter, “Application of an extended Kalman filter to
an advanced fire control system,” in Proceedings of the IEEE Conference on Decision
and Control, New Orleans, LA, 1977, pp. 1192-1195.

J. S. Meditch, “A survey of data smoothing for linear and nonlinear systems,”
Automatica, Vol. 9, pp. 151-162, 1973.

R. K. Mehra, “A comparison of several nonlinear filters for reentry vehicle tracking,”
IEEE Transactions on Automatic Control, Vol. AC-16, pp. 307-319, 1971.

J. M. Mendel and D. L. Geiseking, “Bibliography on the linear-quadratic-Gaussian
problem,” I[EEE Transactions on Automatic Control, Vol. AC-16, pp. 847-869, 1971.
M. Morf and T. Kailath, “Square root algorithms for least squares estimation,” [EEE
Transactions on Automatic Control, Vol. AC-20, pp. 487-497, 1975.

C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of a
matrix,” SIAM Review, Vol. 20, pp. 801-836, 1978.

H. Padé, “Sur la réprésentation approchée d’une fonction par des fractions rationelle,”
Annals d’écoles Vol. 9s Suppl., 1892.

M. Planck, Uber einen Satz der statistischen Dynamik und seine Erweiterung in der
Quantentheorie,” Sitzungsberichte d. Konig. Preussischen Akademie der Wissenschaft,
pp. 324-341, 1917.

J. E. Potter and R. G. Stern, “Statistical filtering of space navigation measurements,” in
Proceedings of 1963 AIAA Guidance and Control Conference, AIAA, New York, 1963.
J. E. Potter, “Matrix quadratic solutions,” SIAM Journal of Applied Mathematics, Vol. 14,
pp. 496501, 1966.

M.-A. Poubelle, I. R. Petersen, M. R. Gevers, and R. R. Bitmead, “A miscellany of results
on an equation of Count J. F. Riccati,” [EEE Transactions on Automatic Control, Vol.
AC-31, pp. 651-654, 1986.

C. F. Price and R. S. Warren, “An analysis of the divergence problem in the Kalman
filter,” IEEE Transactions on Automatic Control, Vol. AC-13, pp. 699-702, 1968.

H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of linear
dynamic systems,” AIAA Journal, Vol. 3, pp. 1445-1450, 1965.

J. F. Riccati, “Animadversationnes in aequationes differentiales secundi gradus,” Acta
Eruditorum Quae Lipside Publicantur Supplementa, Vol. 8, pp. 6673, 1724.

J. M. Richardson and K. A. Marsh, “Point process theory and the surveillance of many
objects,” in Proceedings of the 1991 Symposium on Maximum Entropy and Bayesian
Methods, Seattle University, 1991.

F. H. Schlee, C. J. Standish, and N. F. Toda, “Divergence in the Kalman filter,” 4744
Journal, Vol. 5, pp. 1114-1120, 1967.



392

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

REFERENCES

S. E Schmidt, “The Kalman filter: Its recognition and development for aerospace
applications,” AIAA Journal of Guidance and Control, Vol. 4, pp. 4-7, 1981.

F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” /EEE
Transactions on Information Theory, Vol. IT-11, pp. 61-70, 1965.

J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix corresponding to a
change in one element of a given matrix,” Annals of Mathematical Statistics, Vol. 21,
pp. 124-127, 1950.

R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering
targets,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-6, pp. 473—
483, 1970.

R. A. Singer and K. W. Behnke, “Real-time tracking filter evaluation and selection for
tactical applications,” IEEE Transactions on Aerospace and Electronic Systems, Vol.
AES-7, pp. 100-110, 1971.

R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering
targets,” IEEE Transactions on Aerospace Electronic Systems, Vol. AES-6, 1970.

D. Slepian, “Estimation of signal parameters in the presence of noise,” IRE Transactions
on Information Theory, Vol. IT-3, pp. 68—69, 1954.

H. W. Sorenson, “On the error behavior in linear minimum variance estimation
problems,” IEEE Transactions on Automatic Control, Vol. AC-12, pp. 557-562, 1967.

H. W. Sorenson, “Least-squares estimation: From Gauss to Kalman,”/EEE Spectrum,
pp. 63-68, 1970.

H. W. Sorenson, “On the development of practical nonlinear filters,” Information
Sciences, Vol. 7, pp. 253-270, 1974.

R. L. Stratovovich, “Application of the theory of Markoff processes in optimal signal
discrimination,” Radio Engineering and Electronic Physics, Vol. 1, pp. 1-19, 1960.

P. Swerling, “First order error propagation in a stagewise differential smoothing
procedure for satellite observations,” Journal of Astronautical Sciences, Vol. 6,
pp. 46-52, 1959.

V. Strassen, “Gaussian elimination is not optimal,” Numerische Matematik, Vol. 13,
p. 354, 1969.

S. I. Sudharsanan and M. K. Sundhareshan, “Neural network computational algorithms
for least squares estimation problems,” in Proceedings of a Joint Conference on Neural
Networks, Washington DC, IEEE, New York, June 1989.

T. M. Upadhyay and J. G. Damoulakis, “Sequential piecewise recursive filter for GPS low
dynamics navigation,” IEEE Transactions on Aerospace Electronics Systems, Vol. AES-
16, pp. 481491, 1980.

M. Vanbegin, P. Van Dooren, and M. Verhaegen, “Algorithm 675: FORTRAN sub-
routines for computing the square root covariance filter and square root information
filter in dense or Hessenberg forms,” ACM Transactions on Mathematical Software,
Vol. 15, pp. 243-256, 1988.

M. Verhaegen and P. Van Dooren, “Numerical aspects of different Kalman filter
implementations,” /EEE Transactions on Automatic Control, Vol. AC-31, pp. 907—
917, 1986.

R. C. Ward, “Numerical computation of the matrix exponential with accuracy estimate,”
SIAM Journal of Numerical Analysis, Vol. 14, pp. 600-611, 1977.



REFERENCES 393

234. K. Watanabe and S. G. Tzafestas, “New computationally efficient formula for backward-
pass fixed interval smoother and its UD factorization algorithm, ”/EE Proceedings, Vol.
136D, pp. 73-78, 1989.

235. D. M. Wiberg and L. A. Campbell, “A discrete-time convergent approximation of the
optimal recursive parameter estimator,” in Proceedings of the IFAC Identification and
System Parameter Identification Symposium, Vol. 1, pp. 140-144, 1991.

236. W. S. Widnall and P. K. Sinha, “Optimizing the gains of the baro-inertial vertical
channel,” AIAA4 Journal of Guidance and Control, Vol. 3, pp. 172—178, 1980.

237. L. A. Zadeh and J. R. Ragazzini, “An extension of Wiener’s theory of prediction,”
Journal of Applied Physics, Vol. 21, pp. 645-655, 1950.






Accelerometer, 86

error, 86
Adrian, R., 7, 62
Agee, W. S, 18, 239
Antisymmetric matrix, 359
Antonelli, G., 202
A posteriori, 21
A priori, 21
Autocorrelation, 77-78, 83

Bacon, R., 1
Bad data, 282283
Baker, R., 5
Balakrishnan, A. V., 14
Bass, R. W, xviii, 14, 19
Battin, r. H., 5, 14-15
Bayes, T., 6, 11, 64, 66
Bayes’ rule, 64
Benefit function, 329
Bennet, J. M., 18
Bernoulli, J., 6, 11
Bernoulli trials, 11
Bierman, G. J., 5-6, 187, 214, 245, 231, 246,
257, 259, 353-353
Bilinear form, 377
Birkhoff, G. D., 71
Bjorcek, J., 246
Bletzacker, F. R., 333
Block matrix, 218, 363

Index

Bode, J., 6

Bode’s Law, 6

Bohr, N. H. D., 107

Borel, F., 62

Brahmagupta, 11

Brown, R., 57

Brownian motion, 57
Bryson, A., E., Jr., 257
Bucy, R. S., 15, 18-19, 126

Cardano, G., 7, 11
Carlson, N. A., 18, 206, 239-240, 252
Carroll, Lewis, 270
Cauchy, A. L., 271
Cholesky, A.-L., 6, 373
Cholesky decomposition, 73, 218, 373
algorithm, 220-222
applications, 219
MATLAB chol, 374
modchol, 375
modified, 222, 375
utchol, 353, 374
Cholesky factor, 18, 218, 373-374
modified, 220, 222, 375
non uniqueness, 218, 374
rank-one modification, 217
triangular, 219
Cholesky matrix inversion method, 219,
223-225
Cholupdate.m, 375

395



396

Coefficient matrix, 29, 31
Cohen, E. R., xii
Companion matrix, 32
Complete observability, 43
Computational complexity, 225-228, 241-
244, 247, 251, 253-254, 259, 318-319,
325-327
Computer roundoft, 204
Controllability, 14, 46
Convolution integral, 77
Correlated noise, 129
Correlation time, 79-80
Covariance analysis, 125
Covariance filter, 262
Covariance matrix, 63, 69
Covariance propagation, 88, 120, 126-127
continuous, 89
discrete, 90, 93, 120
Cross spectral density, 76

D’Alembert, J. R., 116
Dang, D., xiii
Data rejection filter, 298
De Moivre, A., 11
De Vries, T. W., xviii, 258, 327, 352-353
Decomposition, matrix, 216
Decomposition
additive, 216
Cholesky, 73, 218, 373
eigenvalue—eigenvector, 377
fraction, 133, 148
symmetric, 377
symmetric—antisymmetric, 216
Decorrelation, 217, 221-223
Derivative of matrix, 379
Determinant, 367
Diagonal of matrix, 356, 375
Difference equation, 34
Dimensions of matrix, 356
Dirac, P. A. M., 70
Dirac ¢ function, 70, 114, 170
Discrete time, 30
Divergence of the Kalman filter, 209, 271—
272,277
Divide by marix, 208
Dongarra, J. J., 216
Dot derivatives, 20
Doubling method, 329
Dual state analysis, 335
Dyer, P, 18, 243, 264
Dynamic coefficient matrix, 29, 31
Dynamic system, 4, 26
homogeneous, 34

INDEX

Einstein, A., 12, 19, 57
Elementary matrix, 217, 227
Eps (MATLAB), 205
Ergodic process, 71
Error
overflow, 352
roundoff, 204-205
underflow, 352
Error budget, 332
Estimator
linear, 117
optimal, 116
unbiased, 116
Exception handler, 283
Expected value, 66
Exponential of matrix, 48, 369
Extended Kalman filter, 15, 19, 170,
175-176, 180
nonconvergence, 272

Factorization, 18, 216
Feedback loop, 211
Fermat, P. de, 6, 11
Filter
Chandrasekhar, 214
convergence, 271
data rejection, 298
divergence, 272
extended Kalman, 15, 19, 170, 175-176,
180
information, 262
Kalman, 116, 121
divergence, 209-212, 217
extended, 15, 19, 170, 175-176, 180
nonlinear, 169
stabilized, 214
Kalman—Bucy, 126-128
Kalman—Schmidt, 19, 178
Kolmorogov, 23
Schmidt-Kalman, 309
shaping, 58, 75, 84-85, 104, 129
square root, 17-19, 23, 238
suboptimal, 299
unbiased, 116
Wiener, 23, 300
Fisher, R. A., 9, 262
Fisher information matrix, 262
Fokker—Planck equation, 19
Fourier, J. B., 23
Fourier transform, 12
Freeway model, 123
Frobenius, G. F.,, 365
Fuller, R. B., 25



INDEX

Gaftney, Rev. J., xviii

Galileo, 5-6

Gauss, C. F, 5-8, 23, 62

Gaussian distribution, 62, 104
multivariate, 63, 104

Gaussian processes, 72

Gelb, A., 22, 130

Generating function, 63

Gentleman, W. M., 19, 217, 230

Gibbs, J. W, 71

Givens, W., 19, 217, 230

Givens Rotation, 230

Golub, G., 49, 238, 264

Gram, J. P, 9, 246

Gram—Schmidt orthogonalization, 217, 246
modified, 246

Gramian, 9-10, 23, 43

Guillemin, E. A., 13

Gunckel, T. L. II, xviii

Gyroscope drift, 87

Hamilton, W. R., 135

Hanson, R. J., 264

Harmonic resonator, 27-29, 3741, 91, 94,
97, 142, 194

Heckman, D. W., xviii

Hegel, G., 6

Herschel, F., 6

Hélder, O. L., 371

Holder norm, 371

Householder, A.S., 19, 227, 234

Householder decomposition, 236238

Householder transformation, 230, 234

Hubbs, R. A., xviii

Huygens, C., 6, 11

Identity matrix, 357

Ill-conditioning, 207-208

Indefinite matrix, 359, 378

Information filter, 262
advantages, 263
disadvantages, 263

Information matrix, 45, 225, 262
Fisher, 262

Information states, 263

Input coupling matrix, 31, 34

INS, 342

Instability of the Kalman filter, 209, 271—

272, 298

Inverarity, G., xviii

Inverse of matrix, 208, 361
derivative, 379
Moore—Penrose, 362

397

Ito, K., 19, 57
1t6 calculus, 19, 58, 77

Jacobian matrix, 344

Jazwinski, A. H., 122

Joseph, P. D., 17-18, 120, 257, 352, 353
Joseph stabilized filter, 119-120, 122

Kailath, T., xviii, 5, 18, 122, 259
Kalman, R. E., xviii, 5-6, 13, 352
Kalman filter
computer requirements, 326
convergence, 271
correlated noise, 129
divergence, 272
essential equations, 121
extended, 15, 19, 170, 175-176
feedback, 211
ill-conditioned, 205
memeory requirements, 316, 319
mis-modeling, 284
nonconvergence, 275
notation, 21-22
origins, 2
precision requirements, 317
scaling problems, 319
serial processing, 124
stability, 298
throughput, 325
versus Wiener, 16, 130
wordlength, 317
Kalman—Bucy filter, 126—128
Kalman gain
off-line, 327
scheduling, 328
Kalman—Schmidt filter, 19, 178, 309-316
Kaminski, P. G., 18, 226
Khinchin, H. Ya., 12
Knuth, D. E., xviii
Kolmogorov, A. N., 3, 6, 12-13
Kronecker, L., 70
Kronecker A function, 70
Kutta, W. M., 41

Lainiotis, D. G., 5

Lambert, J. H., 7

Lamport, L., xviii

Langevin, P, 57

Lanning, J. H., 14

Laplace, P. S., Marquis de, 6, 11, 62
Laub, A. J., xviii

Lawson, C. H., 264



398

Least squares, 5, 7, 9, 23
Lee, R. C. K., 17

Legendre, A.-M., 6-7, 11
Linear dynamic system, 51
Linear stochastic process, 104
Lippman, G., 62

Loss function, 131

Makemson, M. W,, 5
Mantissa, 204
Marginal benefit, 340
Margianl optimization, 337-338, 341
Marginal risk., 338
Markov, A. A., 6, 72
Mathworks, The, ix
MATLAB, ix
Matrix, 356
antisymmetric, 359
block, 218, 363
characteristic
polynomial, 367
value, 367
vector, 368
Cholesky factor, 73, 218, 373
coefficient, 29, 31
companion, 32
condition number, 207
covariance, 63, 69
indefinite, 294, 359
propagation, 88, 121
decomposition, 133, 216
additive, 216
Cholesky, 73, 218, 373
eigenvalue—eigenvector, 377
fraction, 133, 148
symmetric, 377
symmetric—antisymmetric, 216
derivative, 379
determinant, 367
diagonal, 356, 375
dimensions, 356
divide, 208
dynamic coefficient, 29, 31
elementary, 217, 221
exponential, 48, 369
factorization, 18
fraction, 133, 148
Gramian, 23, 43
Holder norm, 371
identity, 357
indefinite, 359, 378
information, 45, 225, 262

input coupling, 31, 34

inverse, 208, 361
derivative, 379
Moore—Penrose, 362

Jacobian, 344

INDEX

measurement sensitivity, 33, 53, 117

Moler, 266
Moore—Penrose inverse, 362
negative definite, 359, 378
non-negative definite, 359, 378
non-positive definite, 359, 378
nonsingular, 361
norm, 371

compatible, 372

Euclidean, 372

Frobenius, 372

Holder, 372-373

Shur, 372

spectral, 372

subordinate, 372
notation, 355
observability, 10, 23, 4244, 53
orthogonal, 362
partitioned, 363
permutation, 366367
positive definite, 359, 378
pseudorank, 376
QR decomposition, 229, 375
rank, 364-365, 376

rank-one modificiation, 217, 255, 365

semidefinite, 359

similarity transform, 370

singular, 361

singular value, 376
decomposition, 376

skew symmetric, 359

sparse, 356

square, 356

square root, 18, 218, 374

state transition, 34, 36

symmetric, 359

symmetric product, 318

Toeplitz, 357

trace, 359

transpose, 8, 359

triangular, 18, 219, 357
unit, 357, 375

triangularization, 216-217

unit triangular, 220, 357, 375

zero, 357

Maxwell, J. C., 6, 11-12, 71
Maybeck, P. S., 298, 346

McReynolds, S. R., 18, 203, 243, 264



INDEX 399

Mean, 67, 69 Observability, 10, 42—44
Measurement complete, 43
noise, 78, 85, 104 matrix, 10, 23, 42-44, 53
sensitivity, 33, 53, 117 Ogata, K., 44
vector, 33 Orthogonal matrix, 362
Measurement sensitivity matrix, 33, 53, Orthogonality principle, 97, 100-102, 116
117 Overflow, 352

Meditch, J. S., 203
Memory requirements, 319-323

Mendel, J., 5 Pad{:, H., 48. .

Modified Cholesky factor, 220, 222, 375 Padé approximation, 43

Moler, C. B., 4849 Partitioned matrix, 363

Moler matrix, 266 Pascal, B, 6, 11 .

Monte Carlo analysis, 219, 273, 333, 336, Performance analysis, 125
354 Permutation matrix, 366—367

Morf, M., 18, 259 Piazzi, G., 5, 29

Murphy’s Law, 281-282 Pinson, J. C., xviii

MWGS algorithm, 246-252 Planck, M. K. E. L., 19

Plant noise, 104
Point process, 20
Positive definite matrix, 359, 378

Nease, R. F., xviii
Potter, J. E., 15, 18, 141, 146, 211, 226, 239,

Negative definite matrix, 359, 378

Newton, 1., 6, 25-26 352 .

Newton, I. Powe_:r spectral density, 58, 74, 77
dot notation, 20, 28 Predictor, 115, 128

Newton, I. Prentlcc.a-.Hall, ix
Second Law, 27 Probability

Newton, I. cond.ltlonal, 63-64
Third Law, 27 density, 61

Newton—Raphson solution, 143 dlstnbut%on, 61

Noise . _Gau551an, 62, 104
correlated, 129 joint, 6364
decorrelated, 129 Process noise, 104

PSD, 58, 74, 77

Gaussian, 72 ]
Pseudorank of matrix, 376

measurement, 78, 85, 104

plant, 104

process, 104 Q factor, 92

wh}te, 70—71 . QR decomposition, 19, 229
Nonlinear estimation, 169 Quadratic form, 377
Nonlinear filtering, 169 gradient, 380
Non-negative definite matrix, 359, 378 Quadratic loss function, 131

Non-positive definite matrix, 359, 378
Nonsingular matrix, 361

Norm of matrix, 371 Ragazzini, J. R., 13-14
compatible, 372 Random process, 68, 103
Euclidean, 372 autocorrelation, 77-78, 80 81, 83
Frobenius, 372 autoregressive, 82
Holder, 372-373 Bernoulli, 103
Shur, 372 correlated, 69
spectral, 372 correlation, 69
subordinate, 372 covariance, 69

Normal equation, 9 cross spectral density, 76

Numerical stability, 205 discrete, 69



400

Random process (Continued)
ergodic, 71, 103
Gaussian, 72, 103
iid., 103
linear models, 80, 83—-84
linear predictive model, 82
Markov, 72, 103

mean, 69
orthogonal, 70, 103
PSD, 58, 74, 77

shaping filter for, 75, 80, 82, 84
simulating, 73
stationary, 71, 84, 103
stochastic differential equations, 77, 80
white, 70-71
WSS, 71-72, 84
Random sequence, 79, 83
Random variable, 58
expected value, 66
mean, 66
Rank of matrix, 364-365, 376
Rank one modification, 217, 255, 365
Rauch, H. E., 162
Resonator, 27-29, 37-41, 91, 94, 97, 142,
194
RIAS, 14
Riccati, J. F., 116
Riccati equation, 15, 88-89, 116, 127, 133
algebraic, 139, 142
convergence, 141
differential, 127, 133, 142
discrete, 148
doubling method, 329
linearizing, 133
Newton-Raphson solution, 143
numerical stability, 17
scalar, 135, 141, 149-151
Richardson, J. M., xviii, 20
Risk, 131, 337
marginal, 338
trace formulation, 339
Rissanen, J., xviii
Robustness, 207
Roundoff error, 204-214
unit, 205, 214
MATLAB, 205
RP (random process), 68
RS (random sequence), 79
Runge, K. D. T, 41
Runyon, G. E., xviii
RV (random variable), 66
Sampling frequency, 97
Schmidt, E., 246

INDEX

Schmidt, S. E, 5, 15, 17, 19, 178, 309
Schmidt-Kalman filter, 309-317
complexity, 316
derivation, 310
equations, 317
history, 309
Schmidt—Kalman gain, 313
Semidefinite matrix, 359
Shaping filter, 58, 75, 84-85, 104, 129
Singular matrix, 361
Singular value, 376
decomposition, 376
Skew symmetric matrix, 359
Smith, J., xviii
Smoother, 116, 160
fixed-interval, 160, 162
fixed-lag, 162, 164
fixed-point, 160, 163
Rauch—Tung—Striebel, 162
Sorenson, H. W., 5, 122, 169
Sparse matrix, 356
Square matrix, 356
Square root filter, 17-19, 23, 238
Bierman-Thornton, 245
Carlson—Schmidt, 238
Morf-Kailath, 259
Potter, 256
Square root matrix, 18, 218, 228, 374
State space, 23, 25
State transition matrix, 34, 36
State variables, 25, 28
State vector, 29
STM (state transition matrix), 34, 36
Stochastic calculus, 19, 77
Strachey, L., 202
Strassen, V., 253
Stratonovich, R. L., 14, 19
Striebel, C. T., 162
Sup, 371
Supremum, 371
Swerling, P, 14, 252, 269, 352
Symmetric matrix, 359
Symmetric product, 218

Thornton, C., 18, 214, 246, 259
Throughput, 325

Tietz, J., 6

Time-invariant systems, 30, 44, 52
Time-varying systems, 30, 41, 52
Toeplitz matrix, 357

Trace of matrix, 359

Transpose of matrix, 8, 359



INDEX

Triangular matrix, 18, 219, 357
unit, 357, 375

Triangularization, 19, 216-217, 229-238
Givens, 230-234
Householder, 234-238

Tung, K., 162

Turner, R. H., 18, 239

Type 1 servo, 285

Type 2 servo, 288

UD factorization, 220
Underflow, 352
Unit roundoff error, 205, 214
Unit triangular matrix, 219-220, 357, 375
Van Dooren, P, 17, 209, 212-214
Van Loan, C., 48-49, 228
Vector, 358

dot product, 361

inner product, 361

outer product, 361

norm, 370

Euclidean, 371

401

Holder, 371
orthogonal, 362
orthonormal, 362
state, 29
unit, 362
Verhaegen, M., 17, 209, 212-214
Von Neumann, J., 71

Ward, R., C., 48, 51
Watanabe, K., 203

Well conditioned problem, 207
White noise, 70-71

Wiberg, D. E., xviii—19
Wiener filter, 12, 130

Winer, N, 3, 6, 12, 57, 71
Wordlength, 320

WSS, 71-72

Zadeh, L. A., 13
Zero matrix, 357
Zurmiih, R., 373



	Kalman Filtering (2nd Ed.)
	Copyright
	Contents
	Preface
	Acknowledgments
	Ch1 General Information
	Ch2 Linear Dynamic Systems
	Ch3 Random Processes & Stochastic Systems
	Ch4 Linear Optimal Filters & Predictors
	Ch5 Nonlinear Applications
	Ch6 Implementation Methods
	Ch7 Practical Considerations
	AppA MatLab Software
	AppB Matrix Refresher
	References
	Index


