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I N T R O D U C T I O N  

The data warehousing industry certainly has matured since Ralph Kimball pub-
lished the first edition of The Data Warehouse Toolkit (Wiley) in 1996. Although 
large corporate early adopters paved the way, since then, data warehousing 
has been embraced by organizations of all sizes. The industry has constructed 
thousands of data warehouses. The volume of data continues to grow as we 
populate our warehouses with increasingly atomic data and update them with 
greater frequency. Vendors continue to blanket the market with an ever-
expanding set of tools to help us with data warehouse design, development, 
and usage. Most important, armed with access to our data warehouses, busi-
ness professionals are making better decisions and generating payback on 
their data warehouse investments. 

Since the first edition of The Data Warehouse Toolkit was published, dimen-
sional modeling has been broadly accepted as the dominant technique for data 
warehouse presentation. Data warehouse practitioners and pundits alike have 
recognized that the data warehouse presentation must be grounded in sim-
plicity if it stands any chance of success. Simplicity is the fundamental key that 
allows users to understand databases easily and software to navigate data-
bases efficiently. In many ways, dimensional modeling amounts to holding the 
fort against assaults on simplicity. By consistently returning to a business-
driven perspective and by refusing to compromise on the goals of user under-
standability and query performance, we establish a coherent design that 
serves the organization’s analytic needs. Based on our experience and the 
overwhelming feedback from numerous practitioners from companies like 
your own, we believe that dimensional modeling is absolutely critical to a suc-
cessful data warehousing initiative. 

Dimensional modeling also has emerged as the only coherent architecture for 
building distributed data warehouse systems. When we use the conformed 
dimensions and conformed facts of a set of dimensional models, we have a 
practical and predictable framework for incrementally building complex data 
warehouse systems that have no center. 

For all that has changed in our industry, the core dimensional modeling tech-
niques that Ralph Kimball published six years ago have withstood the test of 
time. Concepts such as slowly changing dimensions, heterogeneous products, 

xvii 
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factless fact tables, and architected data marts continue to be discussed in data 
warehouse design workshops around the globe. The original concepts have 
been embellished and enhanced by new and complementary techniques. We 
decided to publish a second edition of Kimball’s seminal work because we felt 
that it would be useful to pull together our collective thoughts on dimensional 
modeling under a single cover. We have each focused exclusively on decision 
support and data warehousing for over two decades. We hope to share the 
dimensional modeling patterns that have emerged repeatedly during the 
course of our data warehousing careers. This book is loaded with specific, 
practical design recommendations based on real-world scenarios. 

The goal of this book is to provide a one-stop shop for dimensional modeling 
techniques. True to its title, it is a toolkit of dimensional design principles and 
techniques. We will address the needs of those just getting started in dimen-
sional data warehousing, and we will describe advanced concepts for those of 
you who have been at this a while. We believe that this book stands alone in its 
depth of coverage on the topic of dimensional modeling. 

Intended Audience 

This book is intended for data warehouse designers, implementers, and man-
agers. In addition, business analysts who are active participants in a ware-
house initiative will find the content useful. 

Even if you’re not directly responsible for the dimensional model, we believe 
that it is important for all members of a warehouse project team to be comfort-
able with dimensional modeling concepts. The dimensional model has an 
impact on most aspects of a warehouse implementation, beginning with the 
translation of business requirements, through data staging, and finally, to the 
unveiling of a data warehouse through analytic applications. Due to the broad 
implications, you need to be conversant in dimensional modeling regardless 
whether you are responsible primarily for project management, business 
analysis, data architecture, database design, data staging, analytic applica-
tions, or education and support. We’ve written this book so that it is accessible 
to a broad audience. 

For those of you who have read the first edition of this book, some of the famil-
iar case studies will reappear in this edition; however, they have been updated 
significantly and fleshed out with richer content. We have developed vignettes 
for new industries, including health care, telecommunications, and electronic 
commerce. In addition, we have introduced more horizontal, cross-industry 
case studies for business functions such as human resources, accounting, pro-
curement, and customer relationship management. 
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The content in this book is mildly technical. We discuss dimensional modeling 
in the context of a relational database primarily. We presume that readers have 
basic knowledge of relational database concepts such as tables, rows, keys, 
and joins. Given that we will be discussing dimensional models in a non-
denominational manner, we won’t dive into specific physical design and 
tuning guidance for any given database management systems. 

Chapter Preview 

The book is organized around a series of business vignettes or case studies. We 
believe that developing the design techniques by example is an extremely 
effective approach because it allows us to share very tangible guidance. While 
not intended to be full-scale application or industry solutions, these examples 
serve as a framework to discuss the patterns that emerge in dimensional mod-
eling. In our experience, it is often easier to grasp the main elements of a 
design technique by stepping away from the all-too-familiar complexities of 
one’s own applications in order to think about another business. Readers of 
the first edition have responded very favorably to this approach. 

The chapters of this book build on one another. We will start with basic con-
cepts and introduce more advanced content as the book unfolds. The chapters 
are to be read in order by every reader. For example, Chapter 15 on insurance 
will be difficult to comprehend unless you have read the preceding chapters 
on retailing, procurement, order management, and customer relationship 
management. 

Those of you who have read the first edition may be tempted to skip the first 
few chapters. While some of the early grounding regarding facts and dimen-
sions may be familiar turf, we don’t want you to sprint too far ahead. For 
example, the first case study focuses on the retailing industry, just as it did in 
the first edition. However, in this edition we advocate a new approach, mak-
ing a strong case for tackling the atomic, bedrock data of your organization. 
You’ll miss out on this rationalization and other updates to fundamental con-
cepts if you skip ahead too quickly. 

Navigation Aids 
We have laced the book with tips, key concepts, and chapter pointers to make 
it more usable and easily referenced in the future. In addition, we have pro-
vided an extensive glossary of terms. 
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Purpose of Each Chapter 

You can find the tips sprinkled throughout this book by flipping through the chapters 
and looking for the lightbulb icon. 

We begin each chapter with a sidebar of key concepts, denoted by the key icon. 

Before we get started, we want to give you a chapter-by-chapter preview of the 
concepts covered as the book unfolds. 

Chapter 1: Dimensional Modeling Primer 
The book begins with a primer on dimensional modeling. We explore the com-
ponents of the overall data warehouse architecture and establish core vocabu-
lary that will be used during the remainder of the book. We dispel some of the 
myths and misconceptions about dimensional modeling, and we discuss the 
role of normalized models. 

Chapter 2: Retail Sales 
Retailing is the classic example used to illustrate dimensional modeling. We 
start with the classic because it is one that we all understand. Hopefully, you 
won’t need to think very hard about the industry because we want you to 
focus on core dimensional modeling concepts instead. We begin by discussing 
the four-step process for designing dimensional models. We explore dimen-
sion tables in depth, including the date dimension that will be reused repeat-
edly throughout the book. We also discuss degenerate dimensions, 
snowflaking, and surrogate keys. Even if you’re not a retailer, this chapter is 
required reading because it is chock full of fundamentals. 

Chapter 3: Inventory 
We remain within the retail industry for our second case study but turn our 
attention to another business process. This case study will provide a very vivid 
example of the data warehouse bus architecture and the use of conformed 
dimensions and facts. These concepts are critical to anyone looking to con-
struct a data warehouse architecture that is integrated and extensible. 
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Chapter 4: Procurement 
This chapter reinforces the importance of looking at your organization’s value 
chain as you plot your data warehouse. We also explore a series of basic and 
advanced techniques for handling slowly changing dimension attributes. 

Chapter 5: Order Management 
In this case study we take a look at the business processes that are often the 
first to be implemented in data warehouses as they supply core business per-
formance metrics—what are we selling to which customers at what price? We 
discuss the situation in which a dimension plays multiple roles within a 
schema. We also explore some of the common challenges modelers face when 
dealing with order management information, such as header/line item con-
siderations, multiple currencies or units of measure, and junk dimensions with 
miscellaneous transaction indicators. We compare the three fundamental 
types of fact tables: transaction, periodic snapshot, and accumulating snap-
shot. Finally, we provide recommendations for handling more real-time ware-
housing requirements. 

Chapter 6: Customer Relationship Management 
Numerous data warehouses have been built on the premise that we need to bet-
ter understand and service our customers. This chapter covers key considera-
tions surrounding the customer dimension, including address standardization, 
managing large volume dimensions, and modeling unpredictable customer 
hierarchies. It also discusses the consolidation of customer data from multiple 
sources. 

Chapter 7: Accounting 
In this totally new chapter we discuss the modeling of general ledger informa-
tion for the data warehouse. We describe the appropriate handling of year-to-
date facts and multiple fiscal calendars, as well as the notion of consolidated 
dimensional models that combine data from multiple business processes. 

Chapter 8: Human Resources Management 
This new chapter explores several unique aspects of human resources dimen-
sional models, including the situation in which a dimension table begins to 
behave like a fact table. We also introduce audit and keyword dimensions, as 
well as the handling of survey questionnaire data. 
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Chapter 9: Financial Services 
The banking case study explores the concept of heterogeneous products in 
which each line of business has unique descriptive attributes and performance 
metrics. Obviously, the need to handle heterogeneous products is not unique 
to financial services. We also discuss the complicated relationships among 
accounts, customers, and households. 

Chapter 10: Telecommunications and Utilities 
This new chapter is structured somewhat differently to highlight considera-
tions when performing a data model design review. In addition, we explore 
the idiosyncrasies of geographic location dimensions, as well as opportunities 
for leveraging geographic information systems. 

Chapter 11: Transportation 
In this case study we take a look at related fact tables at different levels of gran-
ularity. We discuss another approach for handling small dimensions, and we 
take a closer look at date and time dimensions, covering such concepts as 
country-specific calendars and synchronization across multiple time zones. 

Chapter 12: Education 
We look at several factless fact tables in this chapter and discuss their impor-
tance in analyzing what didn’t happen. In addition, we explore the student 
application pipeline, which is a prime example of an accumulating snapshot 
fact table. 

Chapter 13: Health Care 
Some of the most complex models that we have ever worked with are from the 
health care industry. This new chapter illustrates the handling of such com-
plexities, including the use of a bridge table to model multiple diagnoses and 
providers associated with a patient treatment. 

Chapter 14: Electronic Commerce 
This chapter provides an introduction to modeling clickstream data. The con-
cepts are derived from The Data Webhouse Toolkit (Wiley 2000), which Ralph 
Kimball coauthored with Richard Merz. 
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Chapter 15: Insurance 
The final case study serves to illustrate many of the techniques we discussed 
earlier in the book in a single set of interrelated schemas. It can be viewed 
as a pulling-it-all-together chapter because the modeling techniques will be 
layered on top of one another, similar to overlaying overhead projector 
transparencies. 

Chapter 16: Building the Data Warehouse 
Now that you are comfortable designing dimensional models, we provide a 
high-level overview of the activities that are encountered during the lifecycle 
of a typical data warehouse project iteration. This chapter could be considered 
a lightning tour of The Data Warehouse Lifecycle Toolkit (Wiley 1998) that we 
coauthored with Laura Reeves and Warren Thornthwaite. 

Chapter 17: Present Imperatives and Future Outlook 
In this final chapter we peer into our crystal ball to provide a preview of what 
we anticipate data warehousing will look like in the future. 

Glossary 
We’ve supplied a detailed glossary to serve as a reference resource. It will help 
bridge the gap between your general business understanding and the case 
studies derived from businesses other than your own. 

Companion Web Site 

You can access the book’s companion Web site at www.kimballuniversity.com. 
The Web site offers the following resources: 

�� Register for Design Tips to receive ongoing, practical guidance about 
dimensional modeling and data warehouse design via electronic mail on a 
periodic basis. 

�� Link to all Ralph Kimball’s articles from Intelligent Enterprise and its 
predecessor, DBMS Magazine. 

�� Learn about Kimball University classes for quality, vendor-independent 
education consistent with the authors’ experiences and writings. 
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The goal of this book is to communicate a set of standard techniques for 
dimensional data warehouse design. Crudely speaking, if you as the reader 
get nothing else from this book other than the conviction that your data ware-
house must be driven from the needs of business users and therefore built and 
presented from a simple dimensional perspective, then this book will have 
served its purpose. We are confident that you will be one giant step closer to 
data warehousing success if you buy into these premises. 

Now that you know where we are headed, it is time to dive into the details. 
We’ll begin with a primer on dimensional modeling in Chapter 1 to ensure that 
everyone is on the same page regarding key terminology and architectural 
concepts. From there we will begin our discussion of the fundamental tech-
niques of dimensional modeling, starting with the tried-and-true retail industry. 



Dimensional Modeling 

1 

I

C H A P T E R  

n this first chapter we lay the groundwork for the case studies that follow. 
We’ll begin by stepping back to consider data warehousing from a macro per-

Primer

spective. Some readers may be disappointed to learn that it is not all about 
tools and techniques—first and foremost, the data warehouse must consider 
the needs of the business. We’ll drive stakes in the ground regarding the goals 
of the data warehouse while observing the uncanny similarities between the 
responsibilities of a data warehouse manager and those of a publisher. With 
this big-picture perspective, we’ll explore the major components of the ware-
house environment, including the role of normalized models. Finally, we’ll 
close by establishing fundamental vocabulary for dimensional modeling. By 
the end of this chapter we hope that you’ll have an appreciation for the need 
to be half DBA (database administrator) and half MBA (business analyst) as 
you tackle your data warehouse. 

Chapter 1 discusses the following concepts: 

�� Business-driven goals of a data warehouse 
�� Data warehouse publishing 
�� Major components of the overall data warehouse 
�� Importance of dimensional modeling for the data 

warehouse presentation area 
�� Fact and dimension table terminology 
�� Myths surrounding dimensional modeling 
�� Common data warehousing pitfalls to avoid 

1 



2 C H A P T E R  1  

Different Information Worlds

One of the most important assets of any organization is its information. This 
asset is almost always kept by an organization in two forms: the operational 
systems of record and the data warehouse. Crudely speaking, the operational 
systems are where the data is put in, and the data warehouse is where we get 
the data out. 

The users of an operational system turn the wheels of the organization. They 
take orders, sign up new customers, and log complaints. Users of an opera-
tional system almost always deal with one record at a time. They repeatedly 
perform the same operational tasks over and over. 

The users of a data warehouse, on the other hand, watch the wheels of the orga-
nization turn. They count the new orders and compare them with last week’s 
orders and ask why the new customers signed up and what the customers 
complained about. Users of a data warehouse almost never deal with one row 
at a time. Rather, their questions often require that hundreds or thousands of 
rows be searched and compressed into an answer set. To further complicate 
matters, users of a data warehouse continuously change the kinds of questions 
they ask. 

In the first edition of The Data Warehouse Toolkit (Wiley 1996), Ralph Kimball 
devoted an entire chapter to describe the dichotomy between the worlds of 
operational processing and data warehousing. At this time, it is widely recog-
nized that the data warehouse has profoundly different needs, clients, struc-
tures, and rhythms than the operational systems of record. Unfortunately, we 
continue to encounter supposed data warehouses that are mere copies of the 
operational system of record stored on a separate hardware platform. While 
this may address the need to isolate the operational and warehouse environ-
ments for performance reasons, it does nothing to address the other inherent 
differences between these two types of systems. Business users are under-
whelmed by the usability and performance provided by these pseudo data 
warehouses. These imposters do a disservice to data warehousing because 
they don’t acknowledge that warehouse users have drastically different needs 
than operational system users. 

Goals of a Data Warehouse 

Before we delve into the details of modeling and implementation, it is helpful 
to focus on the fundamental goals of the data warehouse. The goals can be 
developed by walking through the halls of any organization and listening to 
business management. Inevitably, these recurring themes emerge: 
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�� “We have mountains of data in this company, but we can’t access it.”

�� “We need to slice and dice the data every which way.”

�� “You’ve got to make it easy for business people to get at the data directly.”

�� “Just show me what is important.”

�� “It drives me crazy to have two people present the same business metrics
at a meeting, but with different numbers.” 

�� “We want people to use information to support more fact-based decision 
making.” 

Based on our experience, these concerns are so universal that they drive the 
bedrock requirements for the data warehouse. Let’s turn these business man-
agement quotations into data warehouse requirements. 

The data warehouse must make an organization’s information easily acces-
sible. The contents of the data warehouse must be understandable. The 
data must be intuitive and obvious to the business user, not merely the 
developer. Understandability implies legibility; the contents of the data 
warehouse need to be labeled meaningfully. Business users want to sepa-
rate and combine the data in the warehouse in endless combinations, a 
process commonly referred to as slicing and dicing. The tools that access the 
data warehouse must be simple and easy to use. They also must return 
query results to the user with minimal wait times. 

The data warehouse must present the organization’s information consis-
tently. The data in the warehouse must be credible. Data must be carefully 
assembled from a variety of sources around the organization, cleansed, 
quality assured, and released only when it is fit for user consumption. 
Information from one business process should match with information 
from another. If two performance measures have the same name, then they 
must mean the same thing. Conversely, if two measures don’t mean the 
same thing, then they should be labeled differently. Consistent information 
means high-quality information. It means that all the data is accounted for 
and complete. Consistency also implies that common definitions for the 
contents of the data warehouse are available for users. 

The data warehouse must be adaptive and resilient to change. We simply 
can’t avoid change. User needs, business conditions, data, and technology 
are all subject to the shifting sands of time. The data warehouse must be 
designed to handle this inevitable change. Changes to the data warehouse 
should be graceful, meaning that they don’t invalidate existing data or 
applications. The existing data and applications should not be changed or 
disrupted when the business community asks new questions or new data 
is added to the warehouse. If descriptive data in the warehouse is modi-
fied, we must account for the changes appropriately. 
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The data warehouse must be a secure bastion that protects our information 
assets. An organization’s informational crown jewels are stored in the data 
warehouse. At a minimum, the warehouse likely contains information 
about what we’re selling to whom at what price—potentially harmful 
details in the hands of the wrong people. The data warehouse must effec-
tively control access to the organization’s confidential information. 

The data warehouse must serve as the foundation for improved decision 
making. The data warehouse must have the right data in it to support deci-
sion making. There is only one true output from a data warehouse: the deci-
sions that are made after the data warehouse has presented its evidence. 
These decisions deliver the business impact and value attributable to the 
warehouse. The original label that predates the data warehouse is still the 
best description of what we are designing: a decision support system. 

The business community must accept the data warehouse if it is to be 
deemed successful. It doesn’t matter that we’ve built an elegant solution 
using best-of-breed products and platforms. If the business community has 
not embraced the data warehouse and continued to use it actively six 
months after training, then we have failed the acceptance test. Unlike an 
operational system rewrite, where business users have no choice but to use 
the new system, data warehouse usage is sometimes optional. Business 
user acceptance has more to do with simplicity than anything else. 

As this list illustrates, successful data warehousing demands much more than 
being a stellar DBA or technician. With a data warehousing initiative, we have 
one foot in our information technology (IT) comfort zone, while our other foot 
is on the unfamiliar turf of business users. We must straddle the two, modify-
ing some of our tried-and-true skills to adapt to the unique demands of data 
warehousing. Clearly, we need to bring a bevy of skills to the party to behave 
like we’re a hybrid DBA/MBA. 

The Publishing Metaphor 
With the goals of the data warehouse as a backdrop, let’s compare our respon-
sibilities as data warehouse managers with those of a publishing editor-in-
chief. As the editor of a high-quality magazine, you would be given broad
latitude to manage the magazine’s content, style, and delivery. Anyone with
this job title likely would tackle the following activities:

�� Identify your readers demographically.

�� Find out what the readers want in this kind of magazine.

�� Identify the “best” readers who will renew their subscriptions and buy
products from the magazine’s advertisers. 
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�� Find potential new readers and make them aware of the magazine. 

�� Choose the magazine content most appealing to the target readers. 

�� Make layout and rendering decisions that maximize the readers’ pleasure. 

�� Uphold high quality writing and editing standards, while adopting a 
consistent presentation style. 

�� Continuously monitor the accuracy of the articles and advertiser’s claims. 

�� Develop a good network of writers and contributors as you gather new 
input to the magazine’s content from a variety of sources. 

�� Attract advertising and run the magazine profitably. 

�� Publish the magazine on a regular basis. 

�� Maintain the readers’ trust. 

�� Keep the business owners happy. 

We also can identify items that should be nongoals for the magazine editor-in-
chief. These would include such things as building the magazine around the 
technology of a particular printing press, putting management’s energy into 
operational efficiencies exclusively, imposing a technical writing style that 
readers don’t easily understand, or creating an intricate and crowded layout 
that is difficult to peruse and read. 

By building the publishing business on a foundation of serving the readers 
effectively, your magazine is likely to be successful. Conversely, go through 
the list and imagine what happens if you omit any single item; ultimately, your 
magazine would have serious problems. 

The point of this metaphor, of course, is to draw the parallel between being a 
conventional publisher and being a data warehouse manager. We are con-
vinced that the correct job description for a data warehouse manager is pub-
lisher of the right data. Driven by the needs of the business, data warehouse 
managers are responsible for publishing data that has been collected from a 
variety of sources and edited for quality and consistency. Your main responsi-
bility as a data warehouse manager is to serve your readers, otherwise known 
as business users. The publishing metaphor underscores the need to focus out-
ward to your customers rather than merely focusing inward on products and 
processes. While you will use technology to deliver your data warehouse, the 
technology is at best a means to an end. As such, the technology and tech-
niques you use to build your data warehouses should not appear directly in 
your top job responsibilities. 

Let’s recast the magazine publisher’s responsibilities as data warehouse man-
ager responsibilities: 
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�� Understand your users by business area, job responsibilities, and com-
puter tolerance. 

�� Determine the decisions the business users want to make with the help of 
the data warehouse. 

�� Identify the “best” users who make effective, high-impact decisions using 
the data warehouse. 

�� Find potential new users and make them aware of the data warehouse. 

�� Choose the most effective, actionable subset of the data to present in the 
data warehouse, drawn from the vast universe of possible data in your 
organization. 

�� Make the user interfaces and applications simple and template-driven, 
explicitly matching to the users’ cognitive processing profiles. 

�� Make sure the data is accurate and can be trusted, labeling it consistently 
across the enterprise. 

�� Continuously monitor the accuracy of the data and the content of the 
delivered reports. 

�� Search for new data sources, and continuously adapt the data warehouse 
to changing data profiles, reporting requirements, and business priorities. 

�� Take a portion of the credit for the business decisions made using the data 
warehouse, and use these successes to justify your staffing, software, and 
hardware expenditures. 

�� Publish the data on a regular basis. 

�� Maintain the trust of business users. 

�� Keep your business users, executive sponsors, and boss happy. 

If you do a good job with all these responsibilities, you will be a great data 
warehouse manager! Conversely, go down through the list and imagine what 
happens if you omit any single item. Ultimately, your data warehouse would 
have serious problems. We urge you to contrast this view of a data warehouse 
manager’s job with your own job description. Chances are the preceding list is 
much more oriented toward user and business issues and may not even sound 
like a job in IT. In our opinion, this is what makes data warehousing interesting. 

Components of a Data Warehouse 

Now that we understand the goals of a data warehouse, let’s investigate the 
components that make up a complete warehousing environment. It is helpful 
to understand the pieces carefully before we begin combining them to create a 
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data warehouse. Each warehouse component serves a specific function. We 
need to learn the strategic significance of each component and how to wield it 
effectively to win the data warehousing game. One of the biggest threats to 
data warehousing success is confusing the components’ roles and functions. 

As illustrated in Figure 1.1, there are four separate and distinct components to 
be considered as we explore the data warehouse environment—operational 
source systems, data staging area, data presentation area, and data access tools. 

Operational Source Systems 
These are the operational systems of record that capture the transactions of the 
business. The source systems should be thought of as outside the data ware-
house because presumably we have little to no control over the content and for-
mat of the data in these operational legacy systems. The main priorities of the 
source systems are processing performance and availability. Queries against 
source systems are narrow, one-record-at-a-time queries that are part of the nor-
mal transaction flow and severely restricted in their demands on the opera-
tional system. We make the strong assumption that source systems are not 
queried in the broad and unexpected ways that data warehouses typically are 
queried. The source systems maintain little historical data, and if you have a 
good data warehouse, the source systems can be relieved of much of the 
responsibility for representing the past. Each source system is often a natural 
stovepipe application, where little investment has been made to sharing com-
mon data such as product, customer, geography, or calendar with other opera-
tional systems in the organization. It would be great if your source systems 
were being reengineered with a consistent view. Such an enterprise application 
integration (EAI) effort will make the data warehouse design task far easier. 

Operational Data 
Source Staging 
Systems Area 

Data Data 
Presentation Access 

Area Tools 

Extract Services: Load Data Mart #1
Clean, combine, DIMENSIONAL

and standardize Atomic and Ad Hoc Query Tools Conform summary data 
dimensions Based on a single Report Writers NO USER QUERY business process 

Access 

Extract 
SERVICES Analytic 

ApplicationsData Store:
Flat files and

Load AccessData Mart #2 ... 
(Similarly designed) 

DW Bus: 
Conformed 

facts & 
dimensions 

Modeling:relational tables Forecasting 
ScoringProcessing: 

Extract 

Data miningSorting and
sequential
processing

Figure 1.1 Basic elements of the data warehouse. 
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Data Staging Area 
The data staging area of the data warehouse is both a storage area and a set of 
processes commonly referred to as extract-transformation-load (ETL). The data 
staging area is everything between the operational source systems and the 
data presentation area. It is somewhat analogous to the kitchen of a restaurant, 
where raw food products are transformed into a fine meal. In the data ware-
house, raw operational data is transformed into a warehouse deliverable fit for 
user query and consumption. Similar to the restaurant’s kitchen, the backroom 
data staging area is accessible only to skilled professionals. The data ware-
house kitchen staff is busy preparing meals and simultaneously cannot be 
responding to customer inquiries. Customers aren’t invited to eat in the 
kitchen. It certainly isn’t safe for customers to wander into the kitchen. We 
wouldn’t want our data warehouse customers to be injured by the dangerous 
equipment, hot surfaces, and sharp knifes they may encounter in the kitchen, 
so we prohibit them from accessing the staging area. Besides, things happen in 
the kitchen that customers just shouldn’t be privy to. 

The key architectural requirement for the data staging area is that it is off-limits to 
business users and does not provide query and presentation services. 

Extraction is the first step in the process of getting data into the data ware-
house environment. Extracting means reading and understanding the source 
data and copying the data needed for the data warehouse into the staging area 
for further manipulation. 

Once the data is extracted to the staging area, there are numerous potential 
transformations, such as cleansing the data (correcting misspellings, resolving 
domain conflicts, dealing with missing elements, or parsing into standard for-
mats), combining data from multiple sources, deduplicating data, and assign-
ing warehouse keys. These transformations are all precursors to loading the 
data into the data warehouse presentation area. 

Unfortunately, there is still considerable industry consternation about whether 
the data that supports or results from this process should be instantiated in 
physical normalized structures prior to loading into the presentation area for 
querying and reporting. These normalized structures sometimes are referred 
to in the industry as the enterprise data warehouse; however, we believe that this 
terminology is a misnomer because the warehouse is actually much more 
encompassing than this set of normalized tables. The enterprise’s data ware-
house more accurately refers to the conglomeration of an organization’s data 
warehouse staging and presentation areas. Thus, throughout this book, when 
we refer to the enterprise data warehouse, we mean the union of all the diverse 
data warehouse components, not just the backroom staging area. 
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The data staging area is dominated by the simple activities of sorting and 
sequential processing. In many cases, the data staging area is not based on 
relational technology but instead may consist of a system of flat files. After you 
validate your data for conformance with the defined one-to-one and many-to-
one business rules, it may be pointless to take the final step of building a full-
blown third-normal-form physical database. 

However, there are cases where the data arrives at the doorstep of the data 
staging area in a third-normal-form relational format. In these situations, the 
managers of the data staging area simply may be more comfortable perform-
ing the cleansing and transformation tasks using a set of normalized struc-
tures. A normalized database for data staging storage is acceptable. However, 
we continue to have some reservations about this approach. The creation of 
both normalized structures for staging and dimensional structures for presen-
tation means that the data is extracted, transformed, and loaded twice—once 
into the normalized database and then again when we load the dimensional 
model. Obviously, this two-step process requires more time and resources for 
the development effort, more time for the periodic loading or updating of 
data, and more capacity to store the multiple copies of the data. At the bottom 
line, this typically translates into the need for larger development, ongoing 
support, and hardware platform budgets. Unfortunately, some data ware-
house project teams have failed miserably because they focused all their 
energy and resources on constructing the normalized structures rather than 
allocating time to development of a presentation area that supports improved 
business decision making. While we believe that enterprise-wide data consis-
tency is a fundamental goal of the data warehouse environment, there are 
equally effective and less costly approaches than physically creating a normal-
ized set of tables in your staging area, if these structures don’t already exist. 

It is acceptable to create a normalized database to support the staging processes; 
however, this is not the end goal. The normalized structures must be off-limits to 
user queries because they defeat understandability and performance. As soon as a 
database supports query and presentation services, it must be considered part of the 
data warehouse presentation area. By default, normalized databases are excluded 
from the presentation area, which should be strictly dimensionally structured. 

Regardless of whether we’re working with a series of flat files or a normalized 
data structure in the staging area, the final step of the ETL process is the load-
ing of data. Loading in the data warehouse environment usually takes the 
form of presenting the quality-assured dimensional tables to the bulk loading 
facilities of each data mart. The target data mart must then index the newly 
arrived data for query performance. When each data mart has been freshly 
loaded, indexed, supplied with appropriate aggregates, and further quality 
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assured, the user community is notified that the new data has been published. 
Publishing includes communicating the nature of any changes that have 
occurred in the underlying dimensions and new assumptions that have been 
introduced into the measured or calculated facts. 

Data Presentation 
The data presentation area is where data is organized, stored, and made avail-
able for direct querying by users, report writers, and other analytical applica-
tions. Since the backroom staging area is off-limits, the presentation area is the 
data warehouse as far as the business community is concerned. It is all the 
business community sees and touches via data access tools. The prerelease 
working title for the first edition of The Data Warehouse Toolkit originally was 
Getting the Data Out. This is what the presentation area with its dimensional 
models is all about. 

We typically refer to the presentation area as a series of integrated data marts. 
A data mart is a wedge of the overall presentation area pie. In its most sim-
plistic form, a data mart presents the data from a single business process. 
These business processes cross the boundaries of organizational functions. 

We have several strong opinions about the presentation area. First of all, we 
insist that the data be presented, stored, and accessed in dimensional schemas. 
Fortunately, the industry has matured to the point where we’re no longer 
debating this mandate. The industry has concluded that dimensional model-
ing is the most viable technique for delivering data to data warehouse users. 

Dimensional modeling is a new name for an old technique for making data-
bases simple and understandable. In case after case, beginning in the 1970s, IT 
organizations, consultants, end users, and vendors have gravitated to a simple 
dimensional structure to match the fundamental human need for simplicity. 
Imagine a chief executive officer (CEO) who describes his or her business as, 
“We sell products in various markets and measure our performance over 
time.” As dimensional designers, we listen carefully to the CEO’s emphasis on 
product, market, and time. Most people find it intuitive to think of this busi-
ness as a cube of data, with the edges labeled product, market, and time. We 
can imagine slicing and dicing along each of these dimensions. Points inside 
the cube are where the measurements for that combination of product, market, 
and time are stored. The ability to visualize something as abstract as a set of 
data in a concrete and tangible way is the secret of understandability. If this 
perspective seems too simple, then good! A data model that starts by being 
simple has a chance of remaining simple at the end of the design. A model that 
starts by being complicated surely will be overly complicated at the end. 
Overly complicated models will run slowly and be rejected by business users. 
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Dimensional modeling is quite different from third-normal-form (3NF) mod-
eling. 3NF modeling is a design technique that seeks to remove data redun-
dancies. Data is divided into many discrete entities, each of which becomes a 
table in the relational database. A database of sales orders might start off with 
a record for each order line but turns into an amazingly complex spiderweb 
diagram as a 3NF model, perhaps consisting of hundreds or even thousands of 
normalized tables. 

The industry sometimes refers to 3NF models as ER models. ER is an acronym 
for entity relationship. Entity-relationship diagrams (ER diagrams or ERDs) are 
drawings of boxes and lines to communicate the relationships between tables. 
Both 3NF and dimensional models can be represented in ERDs because both 
consist of joined relational tables; the key difference between 3NF and dimen-
sional models is the degree of normalization. Since both model types can be 
presented as ERDs, we’ll refrain from referring to 3NF models as ER models; 
instead, we’ll call them normalized models to minimize confusion. 

Normalized modeling is immensely helpful to operational processing perfor-
mance because an update or insert transaction only needs to touch the data-
base in one place. Normalized models, however, are too complicated for data 
warehouse queries. Users can’t understand, navigate, or remember normal-
ized models that resemble the Los Angeles freeway system. Likewise, rela-
tional database management systems (RDBMSs) can’t query a normalized 
model efficiently; the complexity overwhelms the database optimizers, result-
ing in disastrous performance. The use of normalized modeling in the data 
warehouse presentation area defeats the whole purpose of data warehousing, 
namely, intuitive and high-performance retrieval of data. 

There is a common syndrome in many large IT shops. It is a kind of sickness 
that comes from overly complex data warehousing schemas. The symptoms 
might include: 

�� A $10 million hardware and software investment that is performing only a 
handful of queries per day 

�� An IT department that is forced into a kind of priesthood, writing all the 
data warehouse queries 

�� Seemingly simple queries that require several pages of single-spaced 
Structured Query Language (SQL) code 

�� A marketing department that is unhappy because it can’t access the sys-
tem directly (and still doesn’t know whether the company is profitable in 
Schenectady) 

�� A restless chief information officer (CIO) who is determined to make some 
changes if things don’t improve dramatically 
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Fortunately, dimensional modeling addresses the problem of overly complex 
schemas in the presentation area. A dimensional model contains the same infor-
mation as a normalized model but packages the data in a format whose design 
goals are user understandability, query performance, and resilience to change. 

Our second stake in the ground about presentation area data marts is that they 
must contain detailed, atomic data. Atomic data is required to withstand 
assaults from unpredictable ad hoc user queries. While the data marts also 
may contain performance-enhancing summary data, or aggregates, it is not 
sufficient to deliver these summaries without the underlying granular data in 
a dimensional form. In other words, it is completely unacceptable to store only 
summary data in dimensional models while the atomic data is locked up in 
normalized models. It is impractical to expect a user to drill down through 
dimensional data almost to the most granular level and then lose the benefits 
of a dimensional presentation at the final step. In Chapter 16 we will see that 
any user application can descend effortlessly to the bedrock granular data by 
using aggregate navigation, but only if all the data is available in the same, 
consistent dimensional form. While users of the data warehouse may look 
infrequently at a single line item on an order, they may be very interested in 
last week’s orders for products of a given size (or flavor, package type, or man-
ufacturer) for customers who first purchased within the last six months (or 
reside in a given state or have certain credit terms). We need the most finely 
grained data in our presentation area so that users can ask the most precise 
questions possible. Because users’ requirements are unpredictable and con-
stantly changing, we must provide access to the exquisite details so that they 
can be rolled up to address the questions of the moment. 

All the data marts must be built using common dimensions and facts, which 
we refer to as conformed. This is the basis of the data warehouse bus architec-
ture, which we’ll elaborate on in Chapter 3. Adherence to the bus architecture 
is our third stake in the ground regarding the presentation area. Without 
shared, conformed dimensions and facts, a data mart is a standalone stovepipe 
application. Isolated stovepipe data marts that cannot be tied together are the 
bane of the data warehouse movement. They merely perpetuate incompatible 
views of the enterprise. If you have any hope of building a data warehouse 
that is robust and integrated, you must make a commitment to the bus archi-
tecture. In this book we will illustrate that when data marts have been 
designed with conformed dimensions and facts, they can be combined and 
used together. The data warehouse presentation area in a large enterprise data 
warehouse ultimately will consist of 20 or more very similar-looking data 
marts. The dimensional models in these data marts also will look quite similar. 
Each data mart may contain several fact tables, each with 5 to 15 dimension 
tables. If the design has been done correctly, many of these dimension tables 
will be shared from fact table to fact table. 
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Using the bus architecture is the secret to building distributed data warehouse 
systems. Let’s be real—most of us don’t have the budget, time, or political 
power to build a fully centralized data warehouse. When the bus architecture 
is used as a framework, we can allow the enterprise data warehouse to 
develop in a decentralized (and far more realistic) way. 

Data in the queryable presentation area of the data warehouse must be dimen­
sional, must be atomic, and must adhere to the data warehouse bus architecture. 

If the presentation area is based on a relational database, then these dimen-
sionally modeled tables are referred to as star schemas. If the presentation area 
is based on multidimensional database or online analytic processing (OLAP) 
technology, then the data is stored in cubes. While the technology originally 
wasn’t referred to as OLAP, many of the early decision support system ven-
dors built their systems around the cube concept, so today’s OLAP vendors 
naturally are aligned with the dimensional approach to data warehousing. 
Dimensional modeling is applicable to both relational and multidimensional 
databases. Both have a common logical design with recognizable dimensions; 
however, the physical implementation differs. Fortunately, most of the recom-
mendations in this book pertain, regardless of the database platform. While 
the capabilities of OLAP technology are improving continuously, at the time of 
this writing, most large data marts are still implemented on relational data-
bases. In addition, most OLAP cubes are sourced from or drill into relational 
dimensional star schemas using a variation of aggregate navigation. For these 
reasons, most of the specific discussions surrounding the presentation area are 
couched in terms of a relational platform. 

Contrary to the original religion of the data warehouse, modern data marts 
may well be updated, sometimes frequently. Incorrect data obviously should 
be corrected. Changes in labels, hierarchies, status, and corporate ownership 
often trigger necessary changes in the original data stored in the data marts 
that comprise the data warehouse, but in general, these are managed-load 
updates, not transactional updates. 

Data Access Tools 
The final major component of the data warehouse environment is the data 
access tool(s). We use the term tool loosely to refer to the variety of capabilities 
that can be provided to business users to leverage the presentation area for 
analytic decision making. By definition, all data access tools query the data in 
the data warehouse’s presentation area. Querying, obviously, is the whole 
point of using the data warehouse. 
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A data access tool can be as simple as an ad hoc query tool or as complex as a 
sophisticated data mining or modeling application. Ad hoc query tools, as 
powerful as they are, can be understood and used effectively only by a small 
percentage of the potential data warehouse business user population. The 
majority of the business user base likely will access the data via prebuilt 
parameter-driven analytic applications. Approximately 80 to 90 percent of the 
potential users will be served by these canned applications that are essentially 
finished templates that do not require users to construct relational queries 
directly. Some of the more sophisticated data access tools, like modeling or 
forecasting tools, actually may upload their results back into operational 
source systems or the staging/presentation areas of the data warehouse. 

Additional Considerations 
Before we leave the discussion of data warehouse components, there are sev-
eral other concepts that warrant discussion. 

Metadata 

Metadata is all the information in the data warehouse environment that is not 
the actual data itself. Metadata is akin to an encyclopedia for the data ware-
house. Data warehouse teams often spend an enormous amount of time talk-
ing about, worrying about, and feeling guilty about metadata. Since most 
developers have a natural aversion to the development and orderly filing of 
documentation, metadata often gets cut from the project plan despite every-
one’s acknowledgment that it is important. 

Metadata comes in a variety of shapes and forms to support the disparate 
needs of the data warehouse’s technical, administrative, and business user 
groups. We have operational source system metadata including source 
schemas and copybooks that facilitate the extraction process. Once data is in 
the staging area, we encounter staging metadata to guide the transformation 
and loading processes, including staging file and target table layouts, trans-
formation and cleansing rules, conformed dimension and fact definitions, 
aggregation definitions, and ETL transmission schedules and run-log results. 
Even the custom programming code we write in the data staging area is meta-
data. 

Metadata surrounding the warehouse DBMS accounts for such items as the 
system tables, partition settings, indexes, view definitions, and DBMS-level 
security privileges and grants. Finally, the data access tool metadata identifies 
business names and definitions for the presentation area’s tables and columns 
as well as constraint filters, application template specifications, access and 
usage statistics, and other user documentation. And of course, if we haven’t 
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included it already, don’t forget all the security settings, beginning with source 
transactional data and extending all the way to the user’s desktop. 

The ultimate goal is to corral, catalog, integrate, and then leverage these dis-
parate varieties of metadata, much like the resources of a library. Suddenly, the 
effort to build dimensional models appears to pale in comparison. However, 
just because the task looms large, we can’t simply ignore the development of a 
metadata framework for the data warehouse. We need to develop an overall 
metadata plan while prioritizing short-term deliverables, including the pur-
chase or construction of a repository for keeping track of all the metadata. 

Operational Data Store 

Some of you probably are wondering where the operational data store (ODS) 
fits in our warehouse components diagram. Since there’s no single universal 
definition for the ODS, if and where it belongs depend on your situation. ODSs 
are frequently updated, somewhat integrated copies of operational data. The 
frequency of update and degree of integration of an ODS vary based on the 
specific requirements. In any case, the O is the operative letter in the ODS 
acronym. 

Most commonly, an ODS is implemented to deliver operational reporting, 
especially when neither the legacy nor more modern on-line transaction pro-
cessing (OLTP) systems provide adequate operational reports. These reports 
are characterized by a limited set of fixed queries that can be hard-wired in a 
reporting application. The reports address the organization’s more tactical 
decision-making requirements. Performance-enhancing aggregations, signifi-
cant historical time series, and extensive descriptive attribution are specifically 
excluded from the ODS. The ODS as a reporting instance may be a stepping-
stone to feed operational data into the warehouse. 

In other cases, ODSs are built to support real-time interactions, especially in cus-
tomer relationship management (CRM) applications such as accessing your 
travel itinerary on a Web site or your service history when you call into customer 
support. The traditional data warehouse typically is not in a position to support 
the demand for near-real-time data or immediate response times. Similar to the 
operational reporting scenario, data inquiries to support these real-time interac-
tions have a fixed structure. Interestingly, this type of ODS sometimes leverages 
information from the data warehouse, such as a customer service call center 
application that uses customer behavioral information from the data warehouse 
to precalculate propensity scores and store them in the ODS. 

In either scenario, the ODS can be either a third physical system sitting between 
the operational systems and the data warehouse or a specially administered hot 
partition of the data warehouse itself. Every organization obviously needs 
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operational systems. Likewise, every organization would benefit from a data 
warehouse. The same cannot be said about a physically distinct ODS unless the 
other two systems cannot answer your immediate operational questions. 
Clearly, you shouldn’t allocate resources to construct a third physical system 
unless your business needs cannot be supported by either the operational data-
collection system or the data warehouse. For these reasons, we believe that the 
trend in data warehouse design is to deliver the ODS as a specially adminis-
tered portion of the conventional data warehouse. We will further discuss hot-
partition-style ODSs in Chapter 5. 

Finally, before we leave this topic, some have defined the ODS to mean the 
place in the data warehouse where we store granular atomic data. We believe 
that this detailed data should be considered a natural part of the data ware-
house’s presentation area and not a separate entity. Beginning in Chapter 2, we 
will show how the lowest-level transactions in a business are the foundation 
for the presentation area of the data warehouse. 

Dimensional Modeling Vocabulary 

Throughout this book we will refer repeatedly to fact and dimension tables. 
Contrary to popular folklore, Ralph Kimball didn’t invent this terminology. As 
best as we can determine, the terms dimensions and facts originated from a joint 
research project conducted by General Mills and Dartmouth University in the 
1960s. In the 1970s, both AC Nielsen and IRI used these terms consistently to 
describe their syndicated data offerings, which could be described accurately 
today as dimensional data marts for retail sales data. Long before simplicity 
was a lifestyle trend, the early database syndicators gravitated to these con-
cepts for simplifying the presentation of analytic information. They under-
stood that a database wouldn’t be used unless it was packaged simply. 

It is probably accurate to say that a single person did not invent the dimensional ap­
proach. It is an irresistible force in the design of databases that will always result 
when the designer places understandability and performance as the highest goals. 

Fact Table 
A fact table is the primary table in a dimensional model where the numerical 
performance measurements of the business are stored, as illustrated in Figure 
1.2. We strive to store the measurement data resulting from a business process 
in a single data mart. Since measurement data is overwhelmingly the largest 
part of any data mart, we avoid duplicating it in multiple places around the 
enterprise. 
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Daily Sales Fact Table 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Quantity Sold 
Dollar Sales Amount 

Figure 1.2 Sample fact table. 

We use the term fact to represent a business measure. We can imagine standing 
in the marketplace watching products being sold and writing down the quan-
tity sold and dollar sales amount each day for each product in each store. A 
measurement is taken at the intersection of all the dimensions (day, product, 
and store). This list of dimensions defines the grain of the fact table and tells us 
what the scope of the measurement is. 

A row in a fact table corresponds to a measurement. A measurement is a row in a 
fact table. All the measurements in a fact table must be at the same grain. 

The most useful facts are numeric and additive, such as dollar sales amount. 
Throughout this book we will use dollars as the standard currency to make the 
case study examples more tangible—please bear with the authors and substi-
tute your own local currency if it doesn’t happen to be dollars. 

Additivity is crucial because data warehouse applications almost never 
retrieve a single fact table row. Rather, they bring back hundreds, thousands, 
or even millions of fact rows at a time, and the most useful thing to do with so 
many rows is to add them up. In Figure 1.2, no matter what slice of the data-
base the user chooses, we can add up the quantities and dollars to a valid total. 
We will see later in this book that there are facts that are semiadditive and still 
others that are nonadditive. Semiadditive facts can be added only along some 
of the dimensions, and nonadditive facts simply can’t be added at all. With 
nonadditive facts we are forced to use counts or averages if we wish to sum-
marize the rows or are reduced to printing out the fact rows one at a time. This 
would be a dull exercise in a fact table with a billion rows. 

The most useful facts in a fact table are numeric and additive. 

We often describe facts as continuously valued mainly as a guide for the 
designer to help sort out what is a fact versus a dimension attribute. The dol-
lar sales amount fact is continuously valued in this example because it can take 
on virtually any value within a broad range. As observers, we have to stand 
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out in the marketplace and wait for the measurement before we have any idea 
what the value will be. 

It is theoretically possible for a measured fact to be textual; however, the con-
dition arises rarely. In most cases, a textual measurement is a description of 
something and is drawn from a discrete list of values. The designer should 
make every effort to put textual measures into dimensions because they can be 
correlated more effectively with the other textual dimension attributes and 
will consume much less space. We do not store redundant textual information 
in fact tables. Unless the text is unique for every row in the fact table, it belongs 
in the dimension table. A true text fact is rare in a data warehouse because the 
unpredictable content of a text fact, like a free text comment, makes it nearly 
impossible to analyze. 

In our sample fact table (see Figure 1.2), if there is no sales activity on a given 
day in a given store for a given product, we leave the row out of the table. It is 
very important that we do not try to fill the fact table with zeros representing 
nothing happening because these zeros would overwhelm most of our fact 
tables. By only including true activity, fact tables tend to be quite sparse. 
Despite their sparsity, fact tables usually make up 90 percent or more of the 
total space consumed by a dimensional database. Fact tables tend to be deep in 
terms of the number of rows but narrow in terms of the number of columns. 
Given their size, we are judicious about fact table space utilization. 

As we develop the examples in this book, we will see that all fact table grains 
fall into one of three categories: transaction, periodic snapshot, and accumu-
lating snapshot. Transaction grain fact tables are among the most common. We 
will introduce transaction fact tables in Chapter 2, periodic snapshots in Chap-
ter 3, and accumulating snapshots in Chapter 5. 

All fact tables have two or more foreign keys, as designated by the FK notation 
in Figure 1.2, that connect to the dimension tables’ primary keys. For example, 
the product key in the fact table always will match a specific product key in the 
product dimension table. When all the keys in the fact table match their respec-
tive primary keys correctly in the corresponding dimension tables, we say that 
the tables satisfy referential integrity. We access the fact table via the dimension 
tables joined to it. 

The fact table itself generally has its own primary key made up of a subset of 
the foreign keys. This key is often called a composite or concatenated key. Every 
fact table in a dimensional model has a composite key, and conversely, every 
table that has a composite key is a fact table. Another way to say this is that in 
a dimensional model, every table that expresses a many-to-many relationship 
must be a fact table. All other tables are dimension tables. 
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Fact tables express the many-to-many relationships between dimensions in dimen­
sional models. 

Only a subset of the components in the fact table composite key typically is 
needed to guarantee row uniqueness. There are usually about a half dozen 
dimensions that have robust many-to-many relationships with each other and 
uniquely identify each row. Sometimes there are as few as two dimensions, 
such as the invoice number and the product key. Once this subset has been 
identified, the rest of the dimensions take on a single value in the context of the 
fact table row’s primary key. In other words, they go along for the ride. In most 
cases, there is no advantage to introducing a unique ROWID key to serve as 
the primary key in the fact table. Doing so makes your fact table larger, while 
any index on this artificial ROWID primary key would be worthless. However, 
such a key may be required to placate the database management system, espe-
cially if you can legitimately, from a business perspective, load multiple iden-
tical rows into the fact table. 

Dimension Tables 
Dimension tables are integral companions to a fact table. The dimension tables 
contain the textual descriptors of the business, as illustrated in Figure 1.3. In a 
well-designed dimensional model, dimension tables have many columns or 
attributes. These attributes describe the rows in the dimension table. We strive 
to include as many meaningful textlike descriptions as possible. It is not 
uncommon for a dimension table to have 50 to 100 attributes. Dimension 
tables tend to be relatively shallow in terms of the number of rows (often far 
fewer than 1 million rows) but are wide with many large columns. Each 
dimension is defined by its single primary key, designated by the PK notation 
in Figure 1.3, which serves as the basis for referential integrity with any given 
fact table to which it is joined. 

Dimension attributes serve as the primary source of query constraints, group-
ings, and report labels. In a query or report request, attributes are identified as 
the by words. For example, when a user states that he or she wants to see dol-
lar sales by week by brand, week and brand must be available as dimension 
attributes. 

Dimension table attributes play a vital role in the data warehouse. Since they 
are the source of virtually all interesting constraints and report labels, they are 
key to making the data warehouse usable and understandable. In many ways, 
the data warehouse is only as good as the dimension attributes. The power of 
the data warehouse is directly proportional to the quality and depth of the 
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dimension attributes. The more time spent providing attributes with verbose 
business terminology, the better the data warehouse is. The more time spent 
populating the values in an attribute column, the better the data warehouse is. 
The more time spent ensuring the quality of the values in an attribute column, 
the better the data warehouse is. 

Dimension tables are the entry points into the fact table. Robust dimension attrib­
utes deliver robust analytic slicing and dicing capabilities. The dimensions imple­
ment the user interface to the data warehouse. 

The best attributes are textual and discrete. Attributes should consist of real 
words rather than cryptic abbreviations. Typical attributes for a product 
dimension would include a short description (10 to 15 characters), a long 
description (30 to 50 characters), a brand name, a category name, packaging 
type, size, and numerous other product characteristics. Although the size is 
probably numeric, it is still a dimension attribute because it behaves more like 
a textual description than like a numeric measurement. Size is a discrete and 
constant descriptor of a specific product. 

Sometimes when we are designing a database it is unclear whether a numeric 
data field extracted from a production data source is a fact or dimension 
attribute. We often can make the decision by asking whether the field is a mea-
surement that takes on lots of values and participates in calculations (making 
it a fact) or is a discretely valued description that is more or less constant and 
participates in constraints (making it a dimensional attribute). For example, 
the standard cost for a product seems like a constant attribute of the product 
but may be changed so often that eventually we decide that it is more like a 
measured fact. Occasionally, we can’t be certain of the classification. In such 
cases, it may be possible to model the data field either way, as a matter of 
designer’s prerogative. 

Product Key (PK) 
Product Description 
SKU Number (Natural Key) 
Brand Description 

Department Description 

Package Size 
Fat Content Description 

Shelf Height 
Shelf Depth 
... and many more 

Category Description 

Package Type Description 

Diet Type Description 
Weight 
Weight Units of Measure 
Storage Type 
Shelf Life Type 
Shelf Width 

Product Dimension Table 

Figure 1.3 Sample dimension table. 
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We strive to minimize the use of codes in our dimension tables by replacing 
them with more verbose textual attributes. We understand that you may have 
already trained the users to make sense of operational codes, but going for-
ward, we’d like to minimize their reliance on miniature notes attached to their 
computer monitor for code translations. We want to have standard decodes for 
the operational codes available as dimension attributes so that the labeling on 
data warehouse queries and reports is consistent. We don’t want to encourage 
decodes buried in our reporting applications, where inconsistency is 
inevitable. Sometimes operational codes or identifiers have legitimate busi-
ness significance to users or are required to communicate back to the opera-
tional world. In these cases, the codes should appear as explicit dimension 
attributes, in addition to the corresponding user-friendly textual descriptors. 
We have identified operational, natural keys in the dimension figures, as 
appropriate, throughout this book. 

Operational codes often have intelligence embedded in them. For example, the 
first two digits may identify the line of business, whereas the next two digits 
may identify the global region. Rather than forcing users to interrogate or fil-
ter on the operational code, we pull out the embedded meanings and present 
them to users as separate dimension attributes that can be filtered, grouped, or 
reported on easily. 

Dimension tables often represent hierarchical relationships in the business. In 
our sample product dimension table, products roll up into brands and then 
into categories. For each row in the product dimension, we store the brand and 
category description associated with each product. We realize that the hierar-
chical descriptive information is stored redundantly, but we do so in the spirit 
of ease of use and query performance. We resist our natural urge to store only 
the brand code in the product dimension and create a separate brand lookup 
table. This would be called a snowflake. Dimension tables typically are highly 
denormalized. They are usually quite small (less than 10 percent of the total 
data storage requirements). Since dimension tables typically are geometrically 
smaller than fact tables, improving storage efficiency by normalizing or 
snowflaking has virtually no impact on the overall database size. We almost 
always trade off dimension table space for simplicity and accessibility. 

Bringing Together Facts and 
Dimensions 

Now that we understand fact and dimension tables, let’s bring the two build-
ing blocks together in a dimensional model. As illustrated in Figure 1.4, the 
fact table consisting of numeric measurements is joined to a set of dimension 
tables filled with descriptive attributes. This characteristic starlike structure is 
often called a star join schema. This term dates back to the earliest days of rela-
tional databases. 



Date Key (FK) 
Date Attributes... 

Date Dimension 

Date Key (PK) 
Product Key (FK) 
Store Key (FK) 
Facts... 

Daily Sales Facts 

Product Key (PK) 
Product Attributes... 

Product Dimension 

Store Key (PK) 
Store Attributes... 

Store Dimension 
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Figure 1.4 Fact and dimension tables in a dimensional model. 

The first thing we notice about the resulting dimensional schema is its sim-
plicity and symmetry. Obviously, business users benefit from the simplicity 
because the data is easier to understand and navigate. The charm of the design 
in Figure 1.4 is that it is highly recognizable to business users. We have 
observed literally hundreds of instances where users agree immediately that 
the dimensional model is their business. Furthermore, the reduced number of 
tables and use of meaningful business descriptors make it less likely that mis-
takes will occur. 

The simplicity of a dimensional model also has performance benefits. Data-
base optimizers will process these simple schemas more efficiently with fewer 
joins. A database engine can make very strong assumptions about first con-
straining the heavily indexed dimension tables, and then attacking the fact 
table all at once with the Cartesian product of the dimension table keys satis-
fying the user’s constraints. Amazingly, using this approach it is possible to 
evaluate arbitrary n-way joins to a fact table in a single pass through the fact 
table’s index. 

Finally, dimensional models are gracefully extensible to accommodate change. 
The predictable framework of a dimensional model withstands unexpected 
changes in user behavior. Every dimension is equivalent; all dimensions are 
symmetrically equal entry points into the fact table. The logical model has no 
built-in bias regarding expected query patterns. There are no preferences for 
the business questions we’ll ask this month versus the questions we’ll ask next 
month. We certainly don’t want to adjust our schemas if business users come 
up with new ways to analyze the business. 

We will see repeatedly in this book that the most granular or atomic data has 
the most dimensionality. Atomic data that has not been aggregated is the 
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most expressive data; this atomic data should be the foundation for every 
fact table design in order to withstand business users’ ad hoc attacks where 
they pose unexpected queries. With dimensional models, we can add com-
pletely new dimensions to the schema as long as a single value of that 
dimension is defined for each existing fact row. Likewise, we can add new, 
unanticipated facts to the fact table, assuming that the level of detail is con-
sistent with the existing fact table. We can supplement preexisting dimension 
tables with new, unanticipated attributes. We also can break existing dimen-
sion rows down to a lower level of granularity from a certain point in time 
forward. In each case, existing tables can be changed in place either simply 
by adding new data rows in the table or by executing an SQL ALTER TABLE 
command. Data would not have to be reloaded. All existing data access 
applications continue to run without yielding different results. We’ll 
examine this graceful extensibility of our dimensional models more fully in 
Chapter 2. 

Another way to think about the complementary nature of fact and dimension 
tables is to see them translated into a report. As illustrated in Figure 1.5, 
dimension attributes supply the report labeling, whereas the fact tables supply 
the report’s numeric values. 

Finally, as we’ve already stressed, we insist that the data in the presentation 
area be dimensionally structured. However, there is a natural relationship 
between dimensional and normalized models. The key to understanding the 
relationship is that a single normalized ER diagram often breaks down into 
multiple dimensional schemas. A large normalized model for an organization 
may have sales calls, orders, shipment invoices, customer payments, and 
product returns all on the same diagram. In a way, the normalized ER diagram 
does itself a disservice by representing, on a single drawing, multiple business 
processes that never coexist in a single data set at a single point in time. No 
wonder the normalized model seems complex. 

If you already have an existing normalized ER diagram, the first step in con-
verting it into a set of dimensional models is to separate the ER diagram into 
its discrete business processes and then model each one separately. The second 
step is to select those many-to-many relationships in the ER diagrams that con-
tain numeric and additive nonkey facts and designate them as fact tables. The 
final step is to denormalize all the remaining tables into flat tables with single-
part keys that join directly to the fact tables. These tables become the dimen-
sion tables. 
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Product Dimension Daily Sales Facts 

Date Key (PK) 
Date 
Day of Week 
Month 
Year 
... and more 

Date Dimension 
Date Key (PK) 
Product Key (FK) 
Store Key (FK) 
Quantity Sold 
Dollar Sales Amount 

Product Key (PK) 
Product Description... 
SKU Number (Natural Key) 
Brand Description 
Subcategory Description 
Category Description 
... and more 

Store Key (PK) 
Store Number 
Store Name 
Store Address 
Store City 
Store State 
Store Zip 
Store District 
Store Region 
... and more 

Store Dimension 

SumSum SumSum

District Brand Dollar Sales Amount Quantity Sold 
Atherton Clean Fast 1,233 1,370 
Atherton More Power 2,239 2,035 
Atherton Zippy 848 707 
Belmont Clean Fast 2,097 2,330 
Belmont More Power 2,428 2,207 
Belmont Zippy 633 527 

Figure 1.5 Dragging and dropping dimensional attributes and facts into a simple report. 

Dimensional Modeling Myths 

Despite the general acceptance of dimensional modeling, some mispercep-
tions continue to be disseminated in the industry. We refer to these miscon-
ceptions as dimensional modeling myths. 

Myth 1. Dimensional models and data marts are for summary data only. This first 
myth is the root cause of many ill-designed dimensional models. Because 
we can’t possibly predict all the questions asked by business users, we 
need to provide them with queryable access to the most detailed data so 
that they can roll it up based on the business question at hand. Data at the 
lowest level of detail is practically impervious to surprises or changes. Our 
data marts also will include commonly requested summarized data in 
dimensional schemas. This summary data should complement the granu-
lar detail solely to provide improved performance for common queries, but 
not attempt to serve as a replacement for the details. 

A related corollary to this first myth is that only a limited amount of histor-
ical data should be stored in dimensional structures. There is nothing 
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about a dimensional model that prohibits the storage of substantial history. 
The amount of history available in data marts must be driven by the busi-
ness’s requirements. 

Myth 2. Dimensional models and data marts are departmental, not enterprise, solu-
tions. Rather than drawing boundaries based on organizational depart-
ments, we maintain that data marts should be organized around business 
processes, such as orders, invoices, and service calls. Multiple business 
functions often want to analyze the same metrics resulting from a single 
business process. We strive to avoid duplicating the core measurements in 
multiple databases around the organization. 

Supporters of the normalized data warehouse approach sometimes draw 
spiderweb diagrams with multiple extracts from the same source feeding 
into multiple data marts. The illustration supposedly depicts the perils of 
proceeding without a normalized data warehouse to feed the data marts. 
These supporters caution about increased costs and potential inconsisten-
cies as changes in the source system of record would need to be rippled to 
each mart’s ETL process. 

This argument falls apart because no one advocates multiple extracts from 
the same source. The spiderweb diagrams fail to appreciate that the data 
marts are process-centric, not department-centric, and that the data is 
extracted once from the operational source and presented in a single place. 
Clearly, the operational system support folks would frown on the multiple-
extract approach. So do we. 

Myth 3. Dimensional models and data marts are not scalable. Modern fact tables 
have many billions of rows in them. The dimensional models within our 
data marts are extremely scalable. Relational DBMS vendors have 
embraced data warehousing and incorporated numerous capabilities into 
their products to optimize the scalability and performance of dimensional 
models. 

A corollary to myth 3 is that dimensional models are only appropriate for 
retail or sales data. This notion is rooted in the historical origins of dimen-
sional modeling but not in its current-day reality. Dimensional modeling 
has been applied to virtually every industry, including banking, insurance, 
brokerage, telephone, newspaper, oil and gas, government, manufacturing, 
travel, gaming, health care, education, and many more. In this book we use 
the retail industry to illustrate several early concepts mainly because it is 
an industry to which we have all been exposed; however, these concepts 
are extremely transferable to other businesses. 

Myth 4. Dimensional models and data marts are only appropriate when there is a 
predictable usage pattern. A related corollary is that dimensional models 
aren’t responsive to changing business needs. On the contrary, because of 
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their symmetry, the dimensional structures in our data marts are extremely 
flexible and adaptive to change. The secret to query flexibility is building 
the fact tables at the most granular level. In our opinion, the source of 
myth 4 is the designer struggling with fact tables that have been prema-
turely aggregated based on the designer’s unfortunate belief in myth 1 
regarding summary data. Dimensional models that only deliver summary 
data are bound to be problematic. Users run into analytic brick walls when 
they try to drill down into details not available in the summary tables. 
Developers also run into brick walls because they can’t easily accommo-
date new dimensions, attributes, or facts with these prematurely summa-
rized tables. The correct starting point for your dimensional models is to 
express data at the lowest detail possible for maximum flexibility and 
extensibility. 

Myth 5. Dimensional models and data marts can’t be integrated and therefore lead 
to stovepipe solutions. Dimensional models and data marts most certainly 
can be integrated if they conform to the data warehouse bus architecture. 
Presentation area databases that don’t adhere to the data warehouse bus 
architecture will lead to standalone solutions. You can’t hold dimensional 
modeling responsible for the failure of some organizations to embrace one 
of its fundamental tenets. 

Common Pitfalls to Avoid 
While we can provide positive recommendations about dimensional data 
warehousing, some readers better relate to a listing of common pitfalls or traps 
into which others have already stepped. Borrowing from a popular late-night 
television show, here is our favorite top 10 list of common errors to avoid while 
building your data warehouse. These are all quite lethal errors—one alone 
may be sufficient to bring down your data warehouse initiative. We’ll further 
elaborate on these in Chapter 16; however, we wanted to plant the seeds early 
on while we have your complete attention. 

Pitfall 10. Become overly enamored with technology and data rather than 
focusing on the business’s requirements and goals. 

Pitfall 9. Fail to embrace or recruit an influential, accessible, and reasonable 
management visionary as the business sponsor of the data warehouse. 

Pitfall 8. Tackle a galactic multiyear project rather than pursuing more man-
ageable, while still compelling, iterative development efforts. 

Pitfall 7. Allocate energy to construct a normalized data structure, yet run 
out of budget before building a viable presentation area based on dimen-
sional models. 
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Pitfall 6. Pay more attention to backroom operational performance and ease 
of development than to front-room query performance and ease of use. 

Pitfall 5. Make the supposedly queryable data in the presentation area overly 
complex. Database designers who prefer a more complex presentation 
should spend a year supporting business users; they’d develop a much 
better appreciation for the need to seek simpler solutions. 

Pitfall 4. Populate dimensional models on a standalone basis without regard 
to a data architecture that ties them together using shared, conformed 
dimensions. 

Pitfall 3. Load only summarized data into the presentation area’s dimen-
sional structures. 

Pitfall 2. Presume that the business, its requirements and analytics, and the 
underlying data and the supporting technology are static. 

Pitfall 1. Neglect to acknowledge that data warehouse success is tied directly 
to user acceptance. If the users haven’t accepted the data warehouse as a 
foundation for improved decision making, then your efforts have been 
exercises in futility. 

Summary 

In this chapter we discussed the overriding goals for the data warehouse and 
the differences between data warehouses and operational source systems. We 
explored the major components of the data warehouse and discussed the per-
missible role of normalized ER models in the staging area, but not as the end 
goal. We then focused our attention on dimensional modeling for the presen-
tation area and established preliminary vocabulary regarding facts and 
dimensions. Stay tuned as we put these concepts into action in our first case 
study in the next chapter. 
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The best way to understand the principles of dimensional modeling is to work 
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Retail Sales

through a series of tangible examples. By visualizing real cases, we can hold 
the particular design challenges and solutions in our minds much more effec-
tively than if they are presented abstractly. In this book we will develop exam-
ples from a range of businesses to help move past one’s own detail and come 
up with the right design. 

To learn dimensional modeling, please read all the chapters in this book, even if 
you don’t manage a retail business or work for a telecommunications firm. The 
chapters are not intended to be full-scale solution handbooks for a given indus-
try or business function. Each chapter is a metaphor for a characteristic set of 
dimensional modeling problems that comes up in nearly every kind of busi-
ness. Universities, insurance companies, banks, and airlines alike surely will 
need the techniques developed in this retail chapter. Besides, thinking about 
someone else’s business is refreshing at times. It is too easy to let historical 
complexities derail us when we are dealing with data from our own compa-
nies. By stepping outside our own organizations and then returning with a 
well-understood design principle (or two), it is easier to remember the spirit of 
the design principles as we descend into the intricate details of our businesses. 

29 
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Chapter 2 discusses the following concepts: 

�� Four-step process for designing dimensional models 
�� Transaction-level fact tables 
�� Additive and non-additive facts 
�� Sample dimension table attributes 
�� Causal dimensions, such as promotion 
�� Degenerate dimensions, such as the transaction ticket number 
�� Extending an existing dimension model 
�� Snowflaking dimension attributes 
�� Avoiding the “too many dimensions” trap 
�� Surrogate keys 
�� Market basket analysis 

Four-Step Dimensional Design Process

Throughout this book we will approach the design of a dimensional database 
by consistently considering four steps in a particular order. The meaning of 
these four steps will become more obvious as we proceed with the various 
designs, but we’ll provide initial definitions at this time. 

1. Select the business process to model. A process is a natural business activ-
ity performed in your organization that typically is supported by a source 
data-collection system. Listening to your users is the most efficient means 
for selecting the business process. The performance measurements that 
they clamor to analyze in the data warehouse result from business mea-
surement processes. Example business processes include raw materials 
purchasing, orders, shipments, invoicing, inventory, and general ledger. 

It is important to remember that we’re not referring to an organizational 
business department or function when we talk about business processes. 
For example, we’d build a single dimensional model to handle orders 
data rather than building separate models for the sales and marketing 
departments, which both want to access orders data. By focusing on busi-
ness processes, rather than on business departments, we can deliver con-
sistent information more economically throughout the organization. If we 
establish departmentally bound dimensional models, we’ll inevitably 
duplicate data with different labels and terminology. Multiple data flows 
into separate dimensional models will make us vulnerable to data incon-
sistencies. The best way to ensure consistency is to publish the data once. 
A single publishing run also reduces the extract-transformation-load 
(ETL) development effort, as well as the ongoing data management and 
disk storage burden. 
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2. Declare the grain of the business process. Declaring the grain means speci-
fying exactly what an individual fact table row represents. The grain con-
veys the level of detail associated with the fact table measurements. It 
provides the answer to the question, “How do you describe a single row 
in the fact table?” 

Example grain declarations include:

�� An individual line item on a customer’s retail sales ticket as measured
by a scanner device

�� A line item on a bill received from a doctor

�� An individual boarding pass to get on a flight

�� A daily snapshot of the inventory levels for each product in a
warehouse

�� A monthly snapshot for each bank account

Data warehouse teams often try to bypass this seemingly unnecessary 
step of the process. Please don’t! It is extremely important that everyone 
on the design team is in agreement regarding the fact table granularity. 
It is virtually impossible to reach closure in step 3 without declaring the 
grain. We also should warn you that an inappropriate grain declaration 
will haunt a data warehouse implementation. Declaring the grain is a crit-
ical step that can’t be taken lightly. Having said this, you may discover in 
steps 3 or 4 that the grain statement is wrong. This is okay, but then you 
must return to step 2, redeclare the grain correctly, and revisit steps 3 and 
4 again. 

3. Choose the dimensions that apply to each fact table row. Dimensions fall 
out of the question, “How do businesspeople describe the data that results 
from the business process?” We want to decorate our fact tables with a 
robust set of dimensions representing all possible descriptions that take 
on single values in the context of each measurement. If we are clear about 
the grain, then the dimensions typically can be identified quite easily. 
With the choice of each dimension, we will list all the discrete, textlike 
attributes that will flesh out each dimension table. Examples of common 
dimensions include date, product, customer, transaction type, and status. 

4. Identify the numeric facts that will populate each fact table row. Facts are 
determined by answering the question, “What are we measuring?” Business 
users are keenly interested in analyzing these business process performance 
measures. All candidate facts in a design must be true to the grain defined in 
step 2. Facts that clearly belong to a different grain must be in a separate fact 
table. Typical facts are numeric additive figures such as quantity ordered or 
dollar cost amount. 
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Throughout this book we will keep these four steps in mind as we develop 
each of the case studies. We’ll apply a user’s understanding of the business to 
decide what dimensions and facts are needed in the dimensional model. 
Clearly, we need to consider both our business users’ requirements and the 
realities of our source data in tandem to make decisions regarding the four 
steps, as illustrated in Figure 2.1. We strongly encourage you to resist the 
temptation to model the data by looking at source data files alone. We realize 
that it may be much less intimidating to dive into the file layouts and copy-
books rather than interview a businessperson; however, they are no substitute 
for user input. Unfortunately, many organizations have attempted this path-
of-least-resistance data-driven approach, but without much success. 

Retail Case Study 

Let’s start with a brief description of the retail business that we’ll use in this 
case study to make dimension and fact tables more understandable. We begin 
with this industry because it is one to which we can all relate. Imagine that we 
work in the headquarters of a large grocery chain. Our business has 100 gro-
cery stores spread over a five-state area. Each of the stores has a full comple-
ment of departments, including grocery, frozen foods, dairy, meat, produce, 
bakery, floral, and health/beauty aids. Each store has roughly 60,000 individ-
ual products on its shelves. The individual products are called stock keeping 
units (SKUs). About 55,000 of the SKUs come from outside manufacturers and 
have bar codes imprinted on the product package. These bar codes are called 
universal product codes (UPCs). UPCs are at the same grain as individual SKUs. 
Each different package variation of a product has a separate UPC and hence is 
a separate SKU. 

Business
Requirements

Dimensional Model 
1. Business Process
2. Grain
3. Dimensions
4. Facts

Data 
Realities 

Figure 2.1 Key input to the four-step dimensional design process. 
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The remaining 5,000 SKUs come from departments such as meat, produce, 
bakery, or floral. While these products don’t have nationally recognized UPCs, 
the grocery chain assigns SKU numbers to them. Since our grocery chain is 
highly automated, we stick scanner labels on many of the items in these other 
departments. Although the bar codes are not UPCs, they are certainly SKU 
numbers. 

Data is collected at several interesting places in a grocery store. Some of the 
most useful data is collected at the cash registers as customers purchase prod-
ucts. Our modern grocery store scans the bar codes directly into the point-of-
sale (POS) system. The POS system is at the front door of the grocery store 
where consumer takeaway is measured. The back door, where vendors make 
deliveries, is another interesting data-collection point. 

At the grocery store, management is concerned with the logistics of ordering, 
stocking, and selling products while maximizing profit. The profit ultimately 
comes from charging as much as possible for each product, lowering costs for 
product acquisition and overhead, and at the same time attracting as many 
customers as possible in a highly competitive pricing environment. Some of 
the most significant management decisions have to do with pricing and pro-
motions. Both store management and headquarters marketing spend a great 
deal of time tinkering with pricing and promotions. Promotions in a grocery 
store include temporary price reductions, ads in newspapers and newspaper 
inserts, displays in the grocery store (including end-aisle displays), and 
coupons. The most direct and effective way to create a surge in the volume of 
product sold is to lower the price dramatically. A 50-cent reduction in the price 
of paper towels, especially when coupled with an ad and display, can cause 
the sale of the paper towels to jump by a factor of 10. Unfortunately, such a big 
price reduction usually is not sustainable because the towels probably are 
being sold at a loss. As a result of these issues, the visibility of all forms of pro-
motion is an important part of analyzing the operations of a grocery store. 

Now that we have described our business case study, we’ll begin to design the 
dimensional model. 

Step 1. Select the Business Process 
The first step in the design is to decide what business process(es) to model by 
combining an understanding of the business requirements with an under-
standing of the available data. 

The first dimensional model built should be the one with the most impact—it should 
answer the most pressing business questions and be readily accessible for data 
extraction. 
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In our retail case study, management wants to better understand customer 
purchases as captured by the POS system. Thus the business process we’re 
going to model is POS retail sales. This data will allow us to analyze what 
products are selling in which stores on what days under what promotional 
conditions. 

Step 2. Declare the Grain 
Once the business process has been identified, the data warehouse team faces 
a serious decision about the granularity. What level of data detail should be 
made available in the dimensional model? This brings us to an important 
design tip. 

Preferably you should develop dimensional models for the most atomic information 
captured by a business process. Atomic data is the most detailed information col-
lected; such data cannot be subdivided further. 

Tackling data at its lowest, most atomic grain makes sense on multiple fronts. 
Atomic data is highly dimensional. The more detailed and atomic the fact 
measurement, the more things we know for sure. All those things we know for 
sure translate into dimensions. In this regard, atomic data is a perfect match 
for the dimensional approach. 

Atomic data provides maximum analytic flexibility because it can be con-
strained and rolled up in every way possible. Detailed data in a dimensional 
model is poised and ready for the ad hoc attack by business users. 

Of course, you can always declare higher-level grains for a business process 
that represent an aggregation of the most atomic data. However, as soon as we 
select a higher-level grain, we’re limiting ourselves to fewer and/or poten-
tially less detailed dimensions. The less granular model is immediately vul-
nerable to unexpected user requests to drill down into the details. Users 
inevitably run into an analytic wall when not given access to the atomic data. 
As we’ll see in Chapter 16, aggregated summary data plays an important role 
as a performance-tuning tool, but it is not a substitute for giving users access 
to the lowest-level details. Unfortunately, some industry pundits have been 
confused on this point. They claim that dimensional models are only appro-
priate for summarized data and then criticize the dimensional modeling 
approach for its supposed need to anticipate the business question. This mis-
understanding goes away when detailed, atomic data is made available in a 
dimensional model. 

In our case study, the most granular data is an individual line item on a POS 
transaction. To ensure maximum dimensionality and flexibility, we will proceed 
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with this grain. It is worth noting that this granularity declaration represents a 
change from the first edition of this text. Previously, we focused on POS data, but 
rather than representing transaction line item detail in the dimensional model, 
we elected to provide sales data rolled up by product and promotion in a store 
on a day. At the time, these daily product totals represented the state of the art 
for syndicated retail sales databases. It was unreasonable to expect then-current 
hardware and software to deal effectively with the volumes of data associated 
with individual POS transaction line items. 

Providing access to the POS transaction information gives us with a very 
detailed look at store sales. While users probably are not interested in analyz-
ing single items associated with a specific POS transaction, we can’t predict all 
the ways that they’ll want to cull through that data. For example, they may 
want to understand the difference in sales on Monday versus Sunday. Or they 
may want to assess whether it’s worthwhile to stock so many individual sizes 
of certain brands, such as cereal. Or they may want to understand how many 
shoppers took advantage of the 50-cents-off promotion on shampoo. Or they 
may want to determine the impact in terms of decreased sales when a com-
petitive diet soda product was promoted heavily. While none of these queries 
calls for data from one specific transaction, they are broad questions that 
require detailed data sliced in very precise ways. None of them could have 
been answered if we elected only to provide access to summarized data. 

A data warehouse almost always demands data expressed at the lowest possible 
grain of each dimension not because queries want to see individual low-level rows, 
but because queries need to cut through the details in very precise ways. 

Step 3. Choose the Dimensions 
Once the grain of the fact table has been chosen, the date, product, and store 
dimensions fall out immediately. We assume that the calendar date is the date 
value delivered to us by the POS system. Later, we will see what to do if we 
also get a time of day along with the date. Within the framework of the pri-
mary dimensions, we can ask whether other dimensions can be attributed to 
the data, such as the promotion under which the product is sold. We express 
this as another design principle: 

A careful grain statement determines the primary dimensionality of the fact table. It 
is then often possible to add more dimensions to the basic grain of the fact table, 
where these additional dimensions naturally take on only one value under each 
combination of the primary dimensions. If the additional dimension violates the 
grain by causing additional fact rows to be generated, then the grain statement must 
be revised to accommodate this dimension. 
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Figure 2.2 Preliminary retail sales schema.
“TBD” means “to be determined.”

In our case study we’ve decided on the following descriptive dimensions: 
date, product, store, and promotion. In addition, we’ll include the POS trans-
action ticket number as a special dimension. More will be said on this later in 
the chapter. 

We begin to envision the preliminary schema as illustrated in Figure 2.2. 
Before we delve into populating the dimension tables with descriptive attrib-
utes, let’s complete the final step of the process. We want to ensure that you’re 
comfortable with the complete four-step process—we don’t want you to lose 
sight of the forest for the trees at this stage of the game. 

Step 4. Identify the Facts 
The fourth and final step in the design is to make a careful determination of 
which facts will appear in the fact table. Again, the grain declaration helps 
anchor our thinking. Simply put, the facts must be true to the grain: the indi-
vidual line item on the POS transaction in this case. When considering poten-
tial facts, you again may discover that adjustments need to be made to either 
our earlier grain assumptions or our choice of dimensions. 

The facts collected by the POS system include the sales quantity (e.g., the num-
ber of cans of chicken noodle soup), per unit sales price, and the sales dollar 
amount. The sales dollar amount equals the sales quantity multiplied by the unit 
price. More sophisticated POS systems also provide a standard dollar cost for 
the product as delivered to the store by the vendor. Presuming that this cost fact 
is readily available and doesn’t require a heroic activity-based costing initiative, 
we’ll include it in the fact table. Our fact table begins to take shape in Figure 2.3. 

Three of the facts, sales quantity, sales dollar amount, and cost dollar amount, 
are beautifully additive across all the dimensions. We can slice and dice the fact 
table with impunity, and every sum of these three facts is valid and correct. 
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POS Transaction Number 

POS Retail Sales Transaction Fact 

Figure 2.3 Measured facts in the retail sales schema. 

We can compute the gross profit by subtracting the cost dollar amount from 
the sales dollar amount, or revenue. Although computed, this gross profit is 
also perfectly additive across all the dimensions—we can calculate the gross 
profit of any combination of products sold in any set of stores on any set of 
days. Dimensional modelers sometimes question whether a calculated fact 
should be stored physically in the database. We generally recommend that it 
be stored physically. In our case study, the gross profit calculation is straight-
forward, but storing it eliminates the possibility of user error. The cost of a user 
incorrectly representing gross profit overwhelms the minor incremental stor-
age cost. Storing it also ensures that all users and their reporting applications 
refer to gross profit consistently. Since gross profit can be calculated from adja-
cent data within a fact table row, some would argue that we should perform 
the calculation in a view that is indistinguishable from the table. This is a rea-
sonable approach if all users access the data via this view and no users with ad 
hoc query tools can sneak around the view to get at the physical table. Views 
are a reasonable way to minimize user error while saving on storage, but the 
DBA must allow no exceptions to data access through the view. Likewise, 
some organizations want to perform the calculation in the query tool. Again, 
this works if all users access the data using a common tool (which is seldom 
the case in our experience). 

The gross margin can be calculated by dividing the gross profit by the dollar 
revenue. Gross margin is a nonadditive fact because it can’t be summarized 
along any dimension. We can calculate the gross margin of any set of products, 
stores, or days by remembering to add the revenues and costs before dividing. 
This can be stated as a design principle: 

Percentages and ratios, such as gross margin, are nonadditive. The numerator and 
denominator should be stored in the fact table. The ratio can be calculated in a data 
access tool for any slice of the fact table by remembering to calculate the ratio of 
the sums, not the sum of the ratios. 
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Unit price is also a nonadditive fact. Attempting to sum up unit price across any 
of the dimensions results in a meaningless, nonsensical number. In order to ana-
lyze the average selling price for a product in a series of stores or across a period 
of time, we must add up the sales dollars and sales quantities before dividing the 
total dollars by the total quantity sold. Every report writer or query tool in the 
data warehouse marketplace should automatically perform this function cor-
rectly, but unfortunately, some still don’t handle it very gracefully. 

At this early stage of the design, it is often helpful to estimate the number of 
rows in our largest table, the fact table. In our case study, it simply may be a 
matter of talking with a source system guru to understand how many POS 
transaction line items are generated on a periodic basis. Retail traffic fluctuates 
significantly from day to day, so we’ll want to understand the transaction activ-
ity over a reasonable period of time. Alternatively, we could estimate the num-
ber of rows added to the fact table annually by dividing the chain’s annual 
gross revenue by the average item selling price. Assuming that gross revenues 
are $4 billion per year and that the average price of an item on a customer ticket 
is $2.00, we calculate that there are approximately 2 billion transaction line 
items per year. This is a typical engineer’s estimate that gets us surprisingly 
close to sizing a design directly from our armchairs. As designers, we always 
should be triangulating to determine whether our calculations are reasonable. 

Dimension Table Attributes 

Now that we’ve walked through the four-step process, let’s return to the 
dimension tables and focus on filling them with robust attributes. 

Date Dimension 
We will start with the date dimension. The date dimension is the one dimen-
sion nearly guaranteed to be in every data mart because virtually every data 
mart is a time series. In fact, date is usually the first dimension in the underly-
ing sort order of the database so that the successive loading of time intervals of 
data is placed into virgin territory on the disk. 

For readers of the first edition of The Data Warehouse Toolkit (Wiley 1996), this 
dimension was referred to as the time dimension in that text. Rather than stick-
ing with that more ambiguous nomenclature, we use the date dimension in this 
book to refer to daily-grained dimension tables. This helps distinguish the date 
and time-of-day dimensions, which we’ll discuss later in this chapter. 

Unlike most of our other dimensions, we can build the date dimension table in 
advance. We may put 5 or 10 years of rows representing days in the table so 
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that we can cover the history we have stored, as well as several years in the 
future. Even 10 years’ worth of days is only about 3,650 rows, which is a rela-
tively small dimension table. For a daily date dimension table in a retail envi-
ronment, we recommend the partial list of columns shown in Figure 2.4. 

Each column in the date dimension table is defined by the particular day that 
the row represents. The day-of-week column contains the name of the day, such 
as Monday. This column would be used to create reports comparing the busi-
ness on Mondays with Sunday business. The day number in calendar month 
column starts with 1 at the beginning of each month and runs to 28, 29, 30, or 
31, depending on the month. This column is useful for comparing the same day 
each month. Similarly, we could have a month number in year (1, ... , 12). The 
day number in epoch is effectively a Julian day number (that is, a consecutive 
day number starting at the beginning of some epoch). We also could include 
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Figure 2.4 Date dimension in the retail sales schema. 
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absolute week and month number columns. All these integers support simple 
date arithmetic between days across year and month boundaries. For reporting, 
we would want a month name with values such as January. In addition, a year-
month (YYYY-MM) column is useful as a report column header. We likely also 
will want a quarter number (Q1, ... , Q4), as well as a year quarter, such as 2001-
Q4. We would have similar columns for the fiscal periods if they differ from 
calendar periods. 

The holiday indicator takes on the values of Holiday or Nonholiday. Remem-
ber that the dimension table attributes serve as report labels. Simply populat-
ing the holiday indicator with a Y or an N would be far less useful. Imagine a 
report where we’re comparing holiday sales for a given product versus non-
holiday sales. Obviously, it would be helpful if the columns had meaningful 
values such as Holiday/Nonholiday versus a cryptic Y/N. Rather than decod-
ing cryptic flags into understandable labels in a reporting application, we pre-
fer that the decode be stored in the database so that a consistent value is 
available to all users regardless of their reporting environment. 

A similar argument holds true for the weekday indicator, which would have a 
value of Weekday or Weekend. Saturdays and Sundays obviously would be 
assigned the Weekend value. Of course, multiple date table attributes can be 
jointly constrained, so we can easily compare weekday holidays with week-
end holidays, for example. 

The selling season column is set to the name of the retailing season, if any. 
Examples in the United States could include Christmas, Thanksgiving, Easter, 
Valentine’s Day, Fourth of July, or None. The major event column is similar to 
the season column and can be used to mark special outside events such as 
Super Bowl Sunday or Labor Strike. Regular promotional events usually are 
not handled in the date table but rather are described more completely by 
means of the promotion dimension, especially since promotional events are 
not defined solely by date but usually are defined by a combination of date, 
product, and store. 

Some designers pause at this point to ask why an explicit date dimension table 
is needed. They reason that if the date key in the fact table is a date-type field, 
then any SQL query can directly constrain on the fact table date key and use 
natural SQL date semantics to filter on month or year while avoiding a sup-
posedly expensive join. This reasoning falls apart for several reasons. First of 
all, if our relational database can’t handle an efficient join to the date dimen-
sion table, we’re already in deep trouble. Most database optimizers are quite 
efficient at resolving dimensional queries; it is not necessary to avoid joins like 
the plague. Also, on the performance front, most databases don’t index SQL 
date calculations, so queries constraining on an SQL-calculated field wouldn’t 
take advantage of an index. 
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In terms of usability, the typical business user is not versed in SQL date seman-
tics, so he or she would be unable to directly leverage inherent capabilities 
associated with a date data type. SQL date functions do not support filtering 
by attributes such as weekdays versus weekends, holidays, fiscal periods, sea-
sons, or major events. Presuming that the business needs to slice data by these 
nonstandard date attributes, then an explicit date dimension table is essential. 
At the bottom line, calendar logic belongs in a dimension table, not in the 
application code. Finally, we’re going to suggest that the date key is an integer 
rather than a date data type anyway. An SQL-based date key typically is 8 bytes, 
so you’re wasting 4 bytes in the fact table for every date key in every row. More 
will be said on this later in this chapter. 

Figure 2.5 illustrates several rows from a partial date dimension table. 

Data warehouses always need an explicit date dimension table. There are many 
date attributes not supported by the SQL date function, including fiscal periods, 
seasons, holidays, and weekends. Rather than attempting to determine these non-
standard calendar calculations in a query, we should look them up in a date dimen-
sion table. 

If we wanted to access the time of the transaction for day-part analysis (for 
example, activity during the evening after-work rush or third shift), we’d han-
dle it through a separate time-of-day dimension joined to the fact table. Date 
and time are almost completely independent. If we combined the two dimen-
sions, the date dimension would grow significantly; our neat date dimension 
with 3,650 rows to handle 10 years of data would expand to 5,256,000 rows if 
we tried to handle time by minute in the same table (or via an outrigger). Obvi-
ously, it is preferable to create a 3,650-row date dimension table and a separate 
1,440-row time-of-day by minute dimension. 

In Chapter 5 we’ll discuss the handling of multiple dates in a single schema. 
We’ll explore international date and time considerations in Chapters 11 
and 14. 

Date 
Key Date 

Full Date 
Description Day of Week 

Calendar 
Month 

Calendar 
Year 

Fiscal Year-
Month 

Holiday 
Indicator 

Weekday 
Indicator 

1 01/01/2002 January 1, 2002 Tuesday January 2002 F2002-01 Holiday Weekday 
2 01/02/2002 January 2, 2002 Wednesday January 2002 F2002-01 Non-Holiday Weekday 
3 01/03/2002 January 3, 2002 Thursday January 2002 F2002-01 Non-Holiday Weekday 
4 01/04/2002 January 4, 2002 Friday January 2002 F2002-01 Non-Holiday Weekday 
5 01/05/2002 January 5, 2002 Saturday January 2002 F2002-01 Non-Holiday Weekend 
6 01/06/2002 January 6, 2002 Sunday January 2002 F2002-01 Non-Holiday Weekend 
7 01/07/2002 January 7, 2002 Monday January 2002 F2002-01 Non-Holiday Weekday 
8 01/08/2002 January 8, 2002 Tuesday January 2002 F2002-01 Non-Holiday Weekday 

Figure 2.5 Date dimension table detail. 
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Product Dimension 
The product dimension describes every SKU in the grocery store. While a typ-
ical store in our chain may stock 60,000 SKUs, when we account for different 
merchandising schemes across the chain and historical products that are no 
longer available, our product dimension would have at least 150,000 rows 
and perhaps as many as a million rows. The product dimension is almost 
always sourced from the operational product master file. Most retailers 
administer their product master files at headquarters and download a subset 
of the file to each store’s POS system at frequent intervals. It is headquarters’ 
responsibility to define the appropriate product master record (and unique 
SKU number) for each new UPC created by packaged goods manufacturers. 
Headquarters also defines the rules by which SKUs are assigned to such items 
as bakery goods, meat, and produce. We extract the product master file into 
our product dimension table each time the product master changes. 

An important function of the product master is to hold the many descriptive 
attributes of each SKU. The merchandise hierarchy is an important group of 
attributes. Typically, individual SKUs roll up to brands. Brands roll up to 
categories, and categories roll up to departments. Each of these is a many-to-
one relationship. This merchandise hierarchy and additional attributes are 
detailed for a subset of products in Figure 2.6. 

For each SKU, all levels of the merchandise hierarchy are well defined. Some 
attributes, such as the SKU description, are unique. In this case, there are at 
least 150,000 different values in the SKU description column. At the other 
extreme, there are only perhaps 50 distinct values of the department attribute. 
Thus, on average, there are 3,000 repetitions of each unique value in the 
department attribute. This is all right! We do not need to separate these 
repeated values into a second normalized table to save space. Remember that 
dimension table space requirements pale in comparison with fact table space 
considerations. 

Product 
Key Product Description 

Brand 
Description 

Category 
Description 

Department 
Description Fat Content 

1 Baked Well Light Sourdough Fresh Bread Baked Well Bread Bakery Reduced Fat 
2 Fluffy Sliced Whole Wheat Fluffy Bread Bakery Regular Fat 
3 Fluffy Light Sliced Whole Wheat Fluffy Bread Bakery Reduced Fat 
4 Fat Free Mini Cinnamon Rolls Light Sweeten Bread Bakery Non-Fat 
5 Diet Lovers Vanilla 2 Gallon Coldpack Frozen Desserts Frozen Foods Non-Fat 
6 Light and Creamy Butter Pecan 1 Pint Freshlike Frozen Desserts Frozen Foods Reduced Fat 
7 Chocolate Lovers 1/2 Gallon Frigid Frozen Desserts Frozen Foods Regular Fat 
8 Strawberry Ice Creamy 1 Pint Icy Frozen Desserts Frozen Foods Regular Fat 
9 Icy Ice Cream Sandwiches Icy Frozen Desserts Frozen Foods Regular Fat 

Figure 2.6 Product dimension table detail. 



Retail  Sales 43 

Product Dimension POS Retail Sales Transaction Fact 

Date Dimension 

Store Dimension 

Promotion Dimension 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Promotion Key (FK) 

Sales Quantity 
Sales Dollar Amount 
Cost Dollar Amount 
Gross Profit Dollar Amount 

Product Key (PK) 
Product Description 
SKU Number (Natural Key) 
Brand Description 

Department Description 

Package Size 
Fat Content 

Shelf Height 
Shelf Depth 
… and more 

POS Transaction Number Category Description 

Package Type Description 

Diet Type 
Weight 
Weight Units of Measure 
Storage Type 
Shelf Life Type 
Shelf Width 

Figure 2.7 Product dimension in the retail sales schema. 

Many of the attributes in the product dimension table are not part of the mer-
chandise hierarchy. The package-type attribute, for example, might have values 
such as Bottle, Bag, Box, or Other. Any SKU in any department could have one 
of these values. It makes perfect sense to combine a constraint on this attribute 
with a constraint on a merchandise hierarchy attribute. For example, we could 
look at all the SKUs in the Cereal category packaged in Bags. To put this another 
way, we can browse among dimension attributes whether or not they belong to 
the merchandise hierarchy, and we can drill up and drill down using attributes 
whether or not they belong to the merchandise hierarchy. We can even have 
more than one explicit hierarchy in our product dimension table. 

A recommended partial product dimension for a retail grocery data mart 
would look similar to Figure 2.7. 

A reasonable product dimension table would have 50 or more descriptive 
attributes. Each attribute is a rich source for constraining and constructing row 
headers. Viewed in this manner, we see that drilling down is nothing more 
than asking for a row header that provides more information. Let’s say we 
have a simple report where we’ve summarized the sales dollar amount and 
quantity by department. 

Department Sales Dollar 
Description Amount Sales Quantity 

Bakery $12,331 5,088 
Frozen Foods $31,776 15,565 
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If we want to drill down, we can drag virtually any other attribute, such as 
brand, from the product dimension into the report next to department, and we 
automatically drill down to this next level of detail. A typical drill down within 
the merchandise hierarchy would look like this: 

Department Brand Sales Dollar Sales 
Description Description Amount Quantity 

Bakery 
Bakery 
Bakery 
Frozen Foods 
Frozen Foods 
Frozen Foods 
Frozen Foods 
Frozen Foods 

Baked Well 
Fluffy 
Light 
Coldpack 
Freshlike 
Frigid 
Icy 
QuickFreeze 

$3,009 
$3,024 
$6,298 
$5,321 

$10,476 
$7,328 
$2,184 
$6,467 

1,138 
1,476 
2,474 
2,640 
5,234 
3,092 
1,437 
3,162 

Or we could drill down by the fat-content attribute, even though it isn’t in the 
merchandise hierarchy roll-up. 

Department Sales Dollar Sales 
Description Fat Content Amount Quantity 

Bakery Non-Fat $6,298 2,474 
Bakery Reduced Fat $5,027 2,086 
Bakery Regular Fat $1,006 528 
Frozen Foods Non-Fat $5,321 2,640 
Frozen Foods Reduced Fat $10,476 5,234 
Frozen Foods Regular Fat $15,979 7,691 

We have belabored the examples of drilling down in order to make a point, 
which we will express as a design principle. 

Drilling down in a data mart is nothing more than adding row headers from the 
dimension tables. Drilling up is removing row headers. We can drill down or up on 
attributes from more than one explicit hierarchy and with attributes that are part of 
no hierarchy. 

The product dimension is one of the two or three primary dimensions in 
nearly every data mart. Great care should be taken to fill this dimension with 
as many descriptive attributes as possible. A robust and complete set of 
dimension attributes translates into user capabilities for robust and complete 
analysis. We’ll further explore the product dimension in Chapter 4, where 
we’ll also discuss the handling of product attribute changes. 
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Store Dimension 
The store dimension describes every store in our grocery chain. Unlike the 
product master file that is almost guaranteed to be available in every large 
grocery business, there may not be a comprehensive store master file. The 
product master needs to be downloaded to each store every time there’s a 
new or changed product. However, the individual POS systems do not 
require a store master. Information technology (IT) staffs frequently must 
assemble the necessary components of the store dimension from multiple 
operational sources at headquarters. 

The store dimension is the primary geographic dimension in our case study. 
Each store can be thought of as a location. Because of this, we can roll stores up 
to any geographic attribute, such as ZIP code, county, and state in the United 
States. Stores usually also roll up to store districts and regions. These two dif-
ferent hierarchies are both easily represented in the store dimension because 
both the geographic and store regional hierarchies are well defined for a single 
store row. 

It is not uncommon to represent multiple hierarchies in a dimension table. Ideally, 
the attribute names and values should be unique across the multiple hierarchies. 

A recommended store dimension table for the grocery business is shown in 
Figure 2.8. 

Store Dimension POS Retail Sales Transaction Fact 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Promotion Key (FK) 

Sales Quantity 
Sales Dollar Amount 
Cost Dollar Amount 
Gross Profit Dollar Amount 

Date Dimension 

Product Dimension 

Promotion Dimension 

Store Key (PK) 
Store Name 
Store Number (Natural Key) 
Store Street Address 
Store City 
Store County 
Store State 
Store Zip Code 
Store Manager 
Store District 
Store Region 

Selling Square Footage 

First Open Date 
Last Remodel Date 
… and more 

POS Transaction Number 

Floor Plan Type 
Photo Processing Type 
Financial Service Type 

Total Square Footage 

Figure 2.8 Store dimension in the retail sales schema. 
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The floor plan type, photo processing type, and finance services type are all 
short text descriptors that describe the particular store. These should not be 
one-character codes but rather should be 10- to 20-character standardized 
descriptors that make sense when viewed in a pull-down list or used as a 
report row header. 

The column describing selling square footage is numeric and theoretically 
additive across stores. One might be tempted to place it in the fact table. How-
ever, it is clearly a constant attribute of a store and is used as a report constraint 
or row header more often than it is used as an additive element in a summa-
tion. For these reasons, we are confident that selling square footage belongs in 
the store dimension table. 

The first open date and last remodel date typically are join keys to copies of the 
date dimension table. These date dimension copies are declared in SQL by the 
VIEW construct and are semantically distinct from the primary date dimen-
sion. The VIEW declaration would look like 

CREATE VIEW FIRST_OPEN_DATE (FIRST_OPEN_DAY_NUMBER, FIRST_OPEN_MONTH ...)

AS SELECT DAY_NUMBER, MONTH, ... 

FROM DATE

Now the system acts as if there is another physical copy of the date dimension 
table called FIRST_OPEN_DATE. Constraints on this new date table have 
nothing to do with constraints on the primary date dimension table. The first 
open date view is a permissible outrigger to the store dimension. Notice that 
we have carefully relabeled all the columns in the view so that they cannot be 
confused with columns from the primary date dimension. We will further dis-
cuss outriggers in Chapter 6. 

Promotion Dimension 
The promotion dimension is potentially the most interesting dimension in our 
schema. The promotion dimension describes the promotion conditions under 
which a product was sold. Promotion conditions include temporary price 
reductions, end-aisle displays, newspaper ads, and coupons. This dimension 
is often called a causal dimension (as opposed to a casual dimension) because 
it describes factors thought to cause a change in product sales. 

Managers at both headquarters and the stores are interested in determining 
whether a promotion is effective or not. Promotions are judged on one or more 
of the following factors: 

�� Whether the products under promotion experienced a gain in sales during 
the promotional period. This is called the lift. The lift can only be measured 
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if the store can agree on what the baseline sales of the promoted products 
would have been without the promotion. Baseline values can be estimated 
from prior sales history and, in some cases, with the help of sophisticated 
mathematical models. 

�� Whether the products under promotion showed a drop in sales just prior 
to or after the promotion, canceling the gain in sales during the promotion 
(time shifting). In other words, did we transfer sales from regularly priced 
products to temporarily reduced-priced products? 

�� Whether the products under promotion showed a gain in sales but other 
products nearby on the shelf showed a corresponding sales decrease (can-
nibalization). 

�� Whether all the products in the promoted category of products experi-
enced a net overall gain in sales taking into account the time periods 
before, during, and after the promotion (market growth). 

�� Whether the promotion was profitable. Usually the profit of a promotion 
is taken to be the incremental gain in profit of the promoted category over 
the baseline sales taking into account time shifting and cannibalization, as 
well as the costs of the promotion, including temporary price reductions, 
ads, displays, and coupons. 

The causal conditions potentially affecting a sale are not necessarily tracked 
directly by the POS system. The transaction system keeps track of price reduc-
tions and markdowns. The presence of coupons also typically is captured with 
the transaction because the customer either presents coupons at the time of 
sale or does not. Ads and in-store display conditions may need to be linked 
from other sources. 

The various possible causal conditions are highly correlated. A temporary 
price reduction usually is associated with an ad and perhaps an end-aisle 
display. Coupons often are associated with ads. For this reason, it makes 
sense to create one row in the promotion dimension for each combination of 
promotion conditions that occurs. Over the course of a year, there may be 
1,000 ads, 5,000 temporary price reductions, and 1,000 end-aisle displays, 
but there may only be 10,000 combinations of these three conditions affect-
ing any particular product. For example, in a given promotion, most of 
the stores would run all three promotion mechanisms simultaneously, but 
a few of the stores would not be able to deploy the end-aisle displays. In 
this case, two separate promotion condition rows would be needed, one for 
the normal price reduction plus ad plus display and one for the price reduc-
tion plus ad only. A recommended promotion dimension table is shown in 
Figure 2.9. 
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Promotion Dimension POS Retail Sales Transaction Fact 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Promotion Key (FK) 

Sales Quantity 
Sales Dollar Amount 
Cost Dollar Amount 
Gross Profit Dollar Amount 

Date Dimension 

Product Dimension 

Store Dimension 

Promotion Key (PK) 
Promotion Name 

Ad Media Name 
Display Provider 
Promotion Cost 
Promotion Begin Date 
Promotion End Date 
… and more 

POS Transaction Number 

Price Reduction Type 
Promotion Media Type 
Ad Type 
Display Type 
Coupon Type 

Figure 2.9 Promotion dimension in the retail sales schema. 

From a purely logical point of view, we could record very similar information 
about the promotions by separating the four major causal mechanisms (price 
reductions, ads, displays, and coupons) into four separate dimensions rather 
than combining them into one dimension. Ultimately, this choice is the 
designer’s prerogative. The tradeoffs in favor of keeping the four dimensions 
together include the following: 

�� Since the four causal mechanisms are highly correlated, the combined sin-
gle dimension is not much larger than any one of the separated dimen-
sions would be. 

�� The combined single dimension can be browsed efficiently to see how the 
various price reductions, ads, displays, and coupons are used together. 
However, this browsing only shows the possible combinations. Browsing 
in the dimension table does not reveal which stores or products were 
affected by the promotion. This information is found in the fact table. 

The tradeoffs in favor of separating the four causal mechanisms into distinct 
dimension tables include the following: 

�� The separated dimensions may be more understandable to the business 
community if users think of these mechanisms separately. This would be 
revealed during the business requirement interviews. 

�� Administration of the separate dimensions may be more straightforward 
than administering a combined dimension. 

Keep in mind that there is no difference in the information content in the data 
warehouse between these two choices. 
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Typically, many sales transaction line items involve products that are not being 
promoted. We will need to include a row in the promotion dimension, with its 
own unique key, to identify “No Promotion in Effect” and avoid a null promo-
tion key in the fact table. Referential integrity is violated if we put a null in a 
fact table column declared as a foreign key to a dimension table. In addition to 
the referential integrity alarms, null keys are the source of great confusion to 
our users because they can’t join on null keys. 

You must avoid null keys in the fact table. A proper design includes a row in the 
corresponding dimension table to identify that the dimension is not applicable 
to the measurement. 

Promotion Coverage Factless Fact Table 

Regardless of the handling of the promotion dimension, there is one important 
question that cannot be answered by our retail sales schema: What products 
were on promotion but did not sell? The sales fact table only records the SKUs 
actually sold. There are no fact table rows with zero facts for SKUs that didn’t 
sell because doing so would enlarge the fact table enormously. In the relational 
world, a second promotion coverage or event fact table is needed to help 
answer the question concerning what didn’t happen. The promotion coverage 
fact table keys would be date, product, store, and promotion in our case study. 
This obviously looks similar to the sales fact table we just designed; however, 
the grain would be significantly different. In the case of the promotion cover-
age fact table, we’d load one row in the fact table for each product on promo-
tion in a store each day (or week, since many retail promotions are a week in 
duration) regardless of whether the product sold or not. The coverage fact 
table allows us to see the relationship between the keys as defined by a pro-
motion, independent of other events, such as actual product sales. We refer to 
it as a factless fact table because it has no measurement metrics; it merely cap-
tures the relationship between the involved keys. To determine what products 
where on promotion but didn’t sell requires a two-step process. First, we’d 
query the promotion coverage table to determine the universe of products that 
were on promotion on a given day. We’d then determine what products sold 
from the POS sales fact table. The answer to our original question is the set dif-
ference between these two lists of products. Stay tuned to Chapter 12 for more 
complete coverage of factless fact tables; we’ll illustrate the promotion cover-
age table and provide the set difference SQL. If you’re working with data in a 
multidimensional online analytical processing (OLAP) cube environment, it is 
often easier to answer the question regarding what didn’t sell because the cube 
typically contains explicit cells for nonbehavior. 
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Degenerate Transaction Number 
Dimension 

The retail sales fact table contains the POS transaction number on every line 
item row. In a traditional parent-child database, the POS transaction number 
would be the key to the transaction header record, containing all the informa-
tion valid for the transaction as a whole, such as the transaction date and store 
identifier. However, in our dimensional model, we have already extracted this 
interesting header information into other dimensions. The POS transaction 
number is still useful because it serves as the grouping key for pulling together 
all the products purchased in a single transaction. 

Although the POS transaction number looks like a dimension key in the fact 
table, we have stripped off all the descriptive items that might otherwise fall in 
a POS transaction dimension. Since the resulting dimension is empty, we refer 
to the POS transaction number as a degenerate dimension (identified by the DD 
notation in Figure 2.10). The natural operational ticket number, such as the 
POS transaction number, sits by itself in the fact table without joining to a 
dimension table. Degenerate dimensions are very common when the grain of 
a fact table represents a single transaction or transaction line item because the 
degenerate dimension represents the unique identifier of the parent. Order 
numbers, invoice numbers, and bill-of-lading numbers almost always appear 
as degenerate dimensions in a dimensional model. 

Degenerate dimensions often play an integral role in the fact table’s primary 
key. In our case study, the primary key of the retail sales fact table consists of 
the degenerate POS transaction number and product key (assuming that the 
POS system rolls up all sales for a given product within a POS shopping cart 
into a single line item). Often, the primary key of a fact table is a subset of the 
table’s foreign keys. We typically do not need every foreign key in the fact 
table to guarantee the uniqueness of a fact table row. 

Operational control numbers such as order numbers, invoice numbers, and bill-of-
lading numbers usually give rise to empty dimensions and are represented as degen-
erate dimensions (that is, dimension keys without corresponding dimension tables) 
in fact tables where the grain of the table is the document itself or a line item in the 
document. 

If, for some reason, one or more attributes are legitimately left over after all the 
other dimensions have been created and seem to belong to this header entity, 
we would simply create a normal dimension record with a normal join. How-
ever, we would no longer have a degenerate dimension. 
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Date Dimension Product Dimension 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Promotion Key (FK) 

Sales Quantity 
Sales Dollar Amount 
Cost Dollar Amount 
Gross Profit Dollar Amount 

Product Key (PK) 
Product Description 
SKU Number 
Brand Description 

Department Description 

Fat Content 

… and more 

Snacks 

2002 

Boston 

Promotion Key (PK) 
Promotion Name 

Promotion Begin Date 
Promotion End Date 
… and more 

Promotion Dimension 

Date Key (PK) 
Date 

Calendar Month 

Calendar Quarter 

Holiday Indicator 
… and more 

Store Dimension 

Store Key (PK) 
Store Name 
Store Number 
Store District 
Store Region 
First Open Date 
Last Remodel Date 
… and more 

POS Transaction Number (DD) 

POS Retail Sales Transaction Fact 

Subcategory Description 
Category Description 

Package Type 

Diet Type 

January 

Promotion Media Type 

Day of Week 
Calendar Week Ending Date 

Calendar Year - Month 

Calendar Year - Quarter 
Calendar Half Year 
Calendar Year 

Figure 2.10 Querying the retail sales schema. 

Retail Schema in Action 

With our retail POS schema designed, let’s illustrate how it would be put to use 
in a query environment. A business user might be interested in better under-
standing weekly sales dollar volume by promotion for the snacks category dur-
ing January 2002 for stores in the Boston district. As illustrated in Figure 2.10, 
we would place query constraints on month and year in the date dimension, 
district in the store dimension, and category in the product dimension. 

If the query tool summed the sales dollar amount grouped by week-ending 
date and promotion, the query results would look similar to those below. You 
can plainly see the relationship between the dimensional model and the asso-
ciated query. High-quality dimension attributes are crucial because they are 
the source of query constraints and result set labels. 

Calendar Week Sales 
Ending Date Promotion Name Dollar Amount 

January 6, 2002 No Promotion 22,647 
January 13, 2002 No Promotion 4,851 
January 20, 2002 Super Bowl Promotion 7,248 
January 27, 2002 Super Bowl Promotion 13,798 

If you are using a data access tool with more functionality, the results may 
appear as a cross-tabular report. Such reports are more appealing to business 
users than the columnar data resulting from an SQL statement. 
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Super Bowl No Promotion 
Calendar Week Promotion Sales Sales Dollar 
Ending Date Dollar Amount Amount 

January 6, 2002 0 22,647 
January 13, 2002 0 4,851 
January 20, 2002 7,248 0 
January 27, 2002 13,793 0 

Retail Schema Extensibility 

Now that we’ve completed our first dimensional model, let’s turn our atten-
tion to extending the design. Assume that our retailer decides to implement a 
frequent shopper program. Now, rather than knowing that an unidentified 
shopper had 26 items in his or her shopping cart, we’re able to see exactly what 
a specific shopper, say, Julie Kimball, purchases on a weekly basis. Just imag-
ine the interest of business users in analyzing shopping patterns by a multi-
tude of geographic, demographic, behavioral, and other differentiating 
shopper characteristics. 

The handling of this new frequent shopper information is relatively straight-
forward. We’d create a frequent shopper dimension table and add another 
foreign key in the fact table. Since we can’t ask shoppers to bring in all 
their old cash register receipts to tag our historical sales transactions with 
their new frequent shopper number, we’d substitute a shopper key corre-
sponding to a “Prior to Frequent Shopper Program” description on our his-
torical fact table rows. Likewise, not everyone who shops at the grocery store 
will have a frequent shopper card, so we’d also want to include a “Frequent 
Shopper Not Identified” row in our shopper dimension. As we discussed 
earlier with the promotion dimension, we must avoid null keys in the fact 
table. 

As we embellished our original design with a frequent shopper dimension, we 
also could add dimensions for the time of day and clerk associated with the 
transaction, as illustrated in Figure 2.11. Any descriptive attribute that has a 
single value in the presence of the fact table measurements is a good candidate 
to be added to an existing dimension or be its own dimension. The decision 
regarding whether a dimension can be attached to a fact table should be a 
binary yes/no based on the declared grain. If you are in doubt, it’s time to 
revisit step 2 of the design process. 
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Frequent Shopper Dimension 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Promotion Key (FK) 
Frequent Shopper Key (FK) 
Clerk Key (FK) 

Sales Quantity 
Sales Dollar Amount 
Cost Dollar Amount 
Gross Profit Dollar Amount 

Frequent Shopper Key (PK) 
Frequent Shopper Name 
Frequent Shopper Address 
Frequent Shopper City 
Frequent Shopper State 
Frequent Shopper Zip Code 
Frequent Shopper Segment 
… and more 

Clerk Dimension 

Clerk Key (PK) 
Clerk Name 
Clerk Job Grade 

Date of Hire 
… and more 

Time of Day Key (FK) 
POS Transaction Number (DD) 

POS Retail Sales Transaction Fact 

Clerk Supervisor 

Time Of Day Dimension 

Date Dimension 

Product Dimension 

Store Dimension 

Promotion Dimension 

Hour 
AM/PM Indicator 
Shift 
Day Part Segment 
… and more 

Time of Day Key (PK) 
Time 

Figure 2.11 Embellished retail sales schema. 

Our original schema gracefully extends to accommodate these new dimen-
sions largely because we chose to model the POS transaction data at its most 
granular level. The addition of dimensions that apply at that granularity did 
not alter the existing dimension keys or facts; all preexisting applications con-
tinue to run without unraveling or changing. If we had declared originally that 
the grain would be daily retail sales (transactions summarized by day, store, 
product, and promotion) rather than at transaction line detail, we would not 
have been able to easily incorporate the frequent-shopper, time-of-day, or clerk 
dimensions. Premature summarization or aggregation inherently limits our 
ability to add supplemental dimensions because the additional dimensions 
often don’t apply at the higher grain. 

Obviously, there are some changes that can never be handled gracefully. If a 
data source ceases to be available and there is no compatible substitute, then 
the data warehouse applications depending on this source will stop working. 
However, the predictable symmetry of dimensional models allow them to 
absorb some rather significant changes in source data and/or modeling 
assumptions without invalidating existing applications. We’ll describe several 
of these unexpected modification categories, starting with the simplest: 
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New dimension attributes. If we discover new textual descriptors of a prod-
uct, for example, we add these attributes to the dimension as new columns. 
All existing applications will be oblivious to the new attributes and con-
tinue to function. If the new attributes are available only after a specific 
point in time, then “Not Available” or its equivalent should be populated 
in the old dimension records. 

New dimensions. As we just illustrated in Figure 2.11, we can add a dimen-
sion to an existing fact table by adding a new foreign key field and popu-
lating it correctly with values of the primary key from the new dimension. 

New measured facts. If new measured facts become available, we can add 
them gracefully to the fact table. The simplest case is when the new facts 
are available in the same measurement event and at the same grain as the 
existing facts. In this case, the fact table is altered to add the new columns, 
and the values are populated into the table. If the ALTER TABLE statement 
is not viable, then a second fact table must be defined with the additional 
columns and the rows copied from the first. If the new facts are only avail-
able from a point in time forward, then null values need to be placed in the 
older fact rows. A more complex situation arises when new measured facts 
occur naturally at a different grain. If the new facts cannot be allocated or 
assigned to the original grain of the fact table, it is very likely that the new 
facts belong in their own fact table. It is almost always a mistake to mix 
grains in the same fact table. 

Dimension becoming more granular. Sometimes it is desirable to increase 
the granularity of a dimension. In most cases, the original dimension 
attributes can be included in the new, more granular dimension because 
they roll up perfectly in a many-to-one relationship. The more granular 
dimension often implies a more granular fact table. There may be no alter-
native but to drop the fact table and rebuild it. However, all the existing 
applications would be unaffected. 

Addition of a completely new data source involving existing dimensions 
as well as unexpected new dimensions. Almost always, a new source of 
data has its own granularity and dimensionality, so we create a new fact 
table. We should avoid force-fitting new measurements into an existing 
fact table of consistent measurements. The existing applications will still 
work because the existing fact and dimension tables are untouched. 

Resisting Comfort Zone Urges 

With our first dimensional design behind us, let’s directly confront several of the 
natural urges that tempt modelers coming from a more normalized background. 
We’re consciously breaking some traditional modeling rules because we’re 
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focused on delivering business value through ease of use and performance, not 
on transaction processing efficiencies. 

Dimension Normalization 
(Snowflaking) 

The flattened, denormalized dimension tables with repeating textual values 
may make a normalization modeler uncomfortable. Let’s revisit our case 
study product dimension table. The 150,000 products roll up into 50 distinct 
departments. Rather than redundantly storing the 20-byte department 
description in the product dimension table, modelers with a normalized 
upbringing want to store a 2-byte department code and then create a new 
department dimension for the department decodes. In fact, they would feel 
more comfortable if all the descriptors in our original design were normalized 
into separate dimension tables. They argue that this design saves space 
because we’re only storing cryptic codes in our 150,000-row dimension table, 
not lengthy descriptors. 

In addition, some modelers contend that the normalized design for the dimen-
sion tables is easier to maintain. If a department description changes, they’d 
only need to update the one occurrence rather than the 3,000 repetitions in our 
original product dimension. Maintenance often is addressed by normalization 
disciplines, but remember that all this happens back in the staging area, long 
before the data is loaded into a presentation area’s dimensional schema. 

Dimension table normalization typically is referred to as snowflaking. Redun-
dant attributes are removed from the flat, denormalized dimension table and 
placed in normalized secondary dimension tables. Figure 2.12 illustrates 
the partial snowflaking of our original schema. If the schema were fully 
snowflaked, it would appear as a full third-normal-form entity-relationship 
diagram. The contrast between Figure 2.12 and the earlier design in Figure 2.10 
is startling. While the fact tables in both figures are identical, the plethora of 
dimension tables (even in our simplistic representation) is overwhelming. 

POS Retail Sales Transaction Fact Product Dimension Brand Dimension Category Dimension Department Dimension 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Promotion Key (FK) 

Sales Quantity 
Sales Dollar Amount 
Cost Dollar Amount 
Gross Profit Dollar Amount 

Product Key (PK) 
Product Description 
SKU Number (Natural Key) 
Brand Key (FK) 

Fat Content 

Shelf Height 
Shelf Depth 
… and more 

Brand Key (PK) 
Brand Description 

Department Key (FK) 

Department Key (PK) 
Department Description 

POS Transaction Number (DD) Package Type Key (FK) 

Weight 
Weight Units of Measure 
Storage Type Key (FK) 
Shelf Width 

Category Key (FK) 

Package Type Dimension 

Package Type Key (PK) 
Package Type Description 

Storage Type Dimension 

Storage Type Key (PK) 
Storage Type Description 
Shelf Life Type Key (FK) 

Shelf Life Type Dimension 

Shelf Life Type Key (PK) 
Shelf Life Type Description 

Category Key (PK) 
Category Description 

Figure 2.12 Partially snowflaked product dimension. 
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While snowflaking is a legal extension of the dimensional model, in general, 
we encourage you to resist the urge to snowflake given our two primary 
design drivers, ease of use and performance. 

�� The multitude of snowflaked tables makes for a much more complex pre-
sentation. Users inevitably will struggle with the complexity. Remember 
that simplicity is one of the primary objectives of a denormalized dimen-
sional model. 

�� Likewise, database optimizers will struggle with the complexity of the 
snowflaked schema. Numerous tables and joins usually translate into 
slower query performance. The complexities of the resulting join specifi-
cations increase the chances that the optimizer will get sidetracked and 
choose a poor strategy. 

�� The minor disk space savings associated with snowflaked dimension 
tables are insignificant. If we replaced the 20-byte department description 
in our 150,000-row product dimension table with a 2-byte code, we’d save 
a whopping 2.7 MB (150,000 x 18 bytes), but we may have a 10-GB fact 
table! Dimension tables are almost always geometrically smaller than fact 
table. Efforts to normalize most dimension tables in order to save disk 
space are a waste of time. 

�� Snowflaking slows down the users’ ability to browse within a dimension. 
Browsing often involves constraining one or more dimension attributes 
and looking at the distinct values of another attribute in the presence of 
these constraints. Browsing allows users to understand the relationship 
between dimension attribute values. 

Obviously, a snowflaked product dimension table would respond well if 
we just wanted a list of the category descriptions. However, if we wanted 
to see all the brands within a category, we’d need to traverse the brand 
and category dimensions. If we then wanted to also list the package types 
for each brand in a category, we’d be traversing even more tables. The 
SQL needed to perform these seemingly simple queries is quite complex, 
and we haven’t even touched the other dimensions or fact table. 

�� Finally, snowflaking defeats the use of bitmap indexes. Bitmap indexes are 
very useful when indexing low-cardinality fields, such as the category 
and department columns in our product dimension tables. They greatly 
speed the performance of a query or constraint on the single column in 
question. Snowflaking inevitably would interfere with your ability to 
leverage this performance-tuning technique. 
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The dimension tables should remain as flat tables physically. Normalized, 
snowflaked dimension tables penalize cross-attribute browsing and prohibit the use 
of bit-mapped indexes. Disk space savings gained by normalizing the dimension ta-
bles typically are less than 1 percent of the total disk space needed for the overall 
schema. We knowingly sacrifice this dimension table space in the spirit of perfor-
mance and ease-of-use advantages. 

There are times when snowflaking is permissible, such as our earlier example 
with the date outrigger on the store dimension, where a clump of correlated 
attributes is used repeatedly in various independent roles. We just urge you to 
be conservative with snowflaked designs and use them only when they are 
obviously called for. 

Too Many Dimensions 
The fact table in a dimensional schema is naturally highly normalized and 
compact. There is no way to further normalize the extremely complex many-
to-many relationships among the keys in the fact table because the dimensions 
are not correlated with each other. Every store is open every day. Sooner or 
later, almost every product is sold on promotion in most or all of our stores. 

Interestingly, while uncomfortable with denormalized dimension tables, some 
modelers are tempted to denormalize the fact table. Rather than having a sin-
gle product foreign key on the fact table, they include foreign keys for the fre-
quently analyzed elements on the product hierarchy, such as brand, 
subcategory, category, and department. Likewise, the date key suddenly turns 
into a series of keys joining to separate week, month, quarter, and year dimen-
sion tables. Before you know it, our compact fact table has turned into an 
unruly monster that joins to literally dozens of dimension tables. We affection-
ately refer to these designs as centipedes because the fact tables appear to have 
nearly 100 legs, as shown in Figure 2.13. Clearly, the centipede design has 
stepped into the too-many-dimensions trap. 

Remember, even with its tight format, the fact table is the behemoth in a 
dimensional design. Designing a fact table with too many dimensions leads to 
significantly increased fact table disk space requirements. While we’re willing 
to use extra space for dimension tables, fact table space consumption concerns 
us because it is our largest table by orders of magnitude. There is no way to 
index the enormous multipart key effectively in our centipede example. The 
numerous joins are an issue for both usability and query performance. 
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Figure 2.13 Centipede fact table with too many dimensions. 

Most business processes can be represented with less than 15 dimensions in 
the fact table. If our design has 25 or more dimensions, we should look for 
ways to combine correlated dimensions into a single dimension. Perfectly cor-
related attributes, such as the levels of a hierarchy, as well as attributes with a 
reasonable statistical correlation, should be part of the same dimension. You 
have made a good decision to combine dimensions when the resulting new 
single dimension is noticeably smaller than the Cartesian product of the sepa-
rate dimensions. 

A very large number of dimensions typically is a sign that several dimensions are not 
completely independent and should be combined into a single dimension. It is a di-
mensional modeling mistake to represent elements of a hierarchy as separate di-
mensions in the fact table. 

Surrogate Keys 

We strongly encourage the use of surrogate keys in dimensional models rather 
than relying on operational production codes. Surrogate keys go by many 
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other aliases: meaningless keys, integer keys, nonnatural keys, artificial keys, syn­
thetic keys, and so on. Simply put, surrogate keys are integers that are assigned 
sequentially as needed to populate a dimension. For example, the first product 
record is assigned a product surrogate key with the value of 1, the next prod-
uct record is assigned product key 2, and so forth. The surrogate keys merely 
serve to join the dimension tables to the fact table. 

Modelers sometimes are reluctant to give up their natural keys because they 
want to navigate the fact table based on the operational code while avoiding a 
join to the dimension table. Remember, however, that dimension tables are our 
entry points to the facts. If the fifth through ninth characters in the operational 
code identify the manufacturer, then the manufacturer’s name should be 
included as a dimension table attribute. In general, we want to avoid embed-
ding intelligence in the data warehouse keys because any assumptions that we 
make eventually may be invalidated. Likewise, queries and data access appli-
cations should not have any built-in dependency on the keys because the logic 
also would be vulnerable to invalidation. 

Every join between dimension and fact tables in the data warehouse should be 
based on meaningless integer surrogate keys. You should avoid using the natural op-
erational production codes. None of the data warehouse keys should be smart, 
where you can tell something about the row just by looking at the key. 

Initially, it may be faster to implement a dimensional model using operational 
codes, but surrogate keys definitely will pay off in the long run. We sometimes 
think of them as being similar to a flu shot for the data warehouse—like an 
immunization, there’s a small amount of pain to initiate and administer surro-
gate keys, but the long-run benefits are substantial. 

One of the primary benefits of surrogate keys is that they buffer the data ware-
house environment from operational changes. Surrogate keys allow the ware-
house team to maintain control of the environment rather than being 
whipsawed by operational rules for generating, updating, deleting, recycling, 
and reusing production codes. In many organizations, historical operational 
codes (for example, inactive account numbers or obsolete product codes) get 
reassigned after a period of dormancy. If account numbers get recycled fol-
lowing 12 months of inactivity, the operational systems don’t miss a beat 
because their business rules prohibit data from hanging around for that long. 
The data warehouse, on the other hand, will retain data for years. Surrogate 
keys provide the warehouse with a mechanism to differentiate these two sep-
arate instances of the same operational account number. If we rely solely on 
operational codes, we also are vulnerable to key overlap problems in the case 
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of an acquisition or consolidation of data. Surrogate keys allow the data ware-
house team to integrate data from multiple operational source systems, even if 
they lack consistent source keys. 

There are also performance advantages associated with the use of surrogate 
keys. The surrogate key is as small an integer as possible while ensuring that it 
will accommodate the future cardinality or maximum number of rows in the 
dimension comfortably. Often the operational code is a bulky alphanumeric 
character string. The smaller surrogate key translates into smaller fact tables, 
smaller fact table indices, and more fact table rows per block input-output 
operation. Typically, a 4-byte integer is sufficient to handle most dimension sit-
uations. A 4-byte integer is a single integer, not four decimal digits. It has 32 
bits and therefore can handle approximately 2 billion positive values (232–1) or 
4 billion total positive and negative values (–232–1 to +232–1). As we said, this is 
more than enough for just about any dimension. Remember, if you have a 
large fact table with 1 billion rows of data, every byte in each fact table row 
translates into another gigabyte of storage. 

As we mentioned earlier, surrogate keys are used to record dimension con-
ditions that may not have an operational code, such as the “No Promotion in 
Effect” condition. By taking control of the warehouse’s keys, we can assign 
a surrogate key to identify this condition despite the lack of operational 
coding. 

Similarly, you may find that your dimensional models have dates that are yet 
to be determined. There is no SQL date value for “Date to be Determined” or 
“Date Not Applicable.” This is another reason we advocate using surrogate 
keys for your date keys rather than SQL date data types (as if our prior ratio-
nale wasn’t convincing enough). 

The date dimension is the one dimension where surrogate keys should be 
assigned in a meaningful, sequential order. In other words, January 1 of the 
first year would be assigned surrogate key value 1, January 2 would be 
assigned surrogate key 2, February 1 would be assigned surrogate key 32, and 
so on. We don’t want to embed extensive calendar intelligence in these keys 
(for example, YYYY-MM-DD) because doing so may encourage people to 
bypass the date lookup dimension table. And, of course, in using this smart 
format, we would again have no way to represent “Hasn’t happened yet” and 
other common date situations. We just want our fact table rows to be in 
sequential order. Treating the surrogate date key as a date sequence number 
will allow the fact table to be physically partitioned on the basis of the date 
key. Partitioning a large fact table on the basis of date is highly effective 
because it allows old data to be removed gracefully and new data to be loaded 
and indexed without disturbing the rest of the fact table. 
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Finally, surrogate keys are needed to support one of the primary techniques 
for handling changes to dimension table attributes. This is actually one of the 
most important reasons to use surrogate keys. We’ll devote a whole section in 
Chapter 4 to using surrogate keys for slowly changing dimensions. 

Of course, some effort is required to assign and administer surrogate keys, but 
it’s not nearly as intimidating as many people imagine. We’ll need to establish 
and maintain a cross-reference table in the staging area that will be used to 
substitute the appropriate surrogate key on each fact and dimension table row. 
In Chapter 16 we lay out a flow diagram for administering and processing sur-
rogate keys in our dimensional schemas. 

Before we leave the topic of keys, we want to discourage the use of concate-
nated or compound keys for dimension tables. We can’t create a truly surro-
gate key simply by gluing together several natural keys or by combining the 
natural key with a time stamp. Also, we want to avoid multiple parallel joins 
between the dimension and fact tables, sometimes referred to as double-barreled 
joins, because they have an adverse impact on performance. 

While we don’t typically assign surrogate keys to degenerate dimensions, you 
should evaluate each situation to determine if one is required. A surrogate key 
is necessary if the transaction control numbers are not unique across locations 
or get reused. For example, our retailer’s POS system may not assign unique 
transaction numbers across stores. The system may wrap back to zero and 
reuse previous control numbers once its maximum has been reached. Also, 
your transaction control number may be a bulky 24-byte alphanumeric column. 
In such cases, it would be advantageous to use a surrogate key. Technically, con-
trol number dimensions modeled in this way are no longer degenerate. 

For the moment, let’s assume that the first version of the retail sales schema rep-
resents both the logical and physical design of our database. In other words, the 
relational database contains only five actual tables: retail sales fact table and 
date, product, store, and promotion dimension tables. Each of the dimension 
tables has a primary key, and the fact table has a composite key made up of 
these four foreign keys, in addition to the degenerate transaction number. Per-
haps the most striking aspect of the design at this point is the simplicity of the 
fact table. If the four foreign keys are tightly administered consecutive integers, 
we could reserve as little as 14 bytes for all four keys (4 bytes each for date, 
product, and promotion and 2 bytes for store). The transaction number might 
require an additional 8 bytes. If the four facts in the fact table were each 4-byte 
integers, we would need to reserve only another 16 bytes. This would make our 
fact table row only 38 bytes wide. Even if we had a billion rows, the fact table 
would occupy only about 38 GB of primary data space. Such a streamlined fact 
table row is a very typical result in a dimensional design. 
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Our embellished retail sales schema, illustrated in Figure 2.11, has three addi-
tional dimensions. If we allocate 4 bytes each for shopper and clerk and 2 bytes 
for the time of day (to the nearest minute), then our fact table width grows to 
only 48 bytes. Our billion-row fact table occupies just 48 GB. 

Market Basket Analysis 

The retail sales schema tells us in exquisite detail what was purchased at each 
store and under what conditions. However, the schema doesn’t allow us to 
very easily analyze which products were sold in the same market basket 
together. This notion of analyzing the combination of products that sell 
together is known by data miners as affinity grouping but more popularly is 
called market basket analysis. Market basket analysis gives the retailer insights 
about how to merchandise various combinations of items. If frozen pasta din-
ners sell well with cola products, then these two products perhaps should be 
located near each other or marketed with complementary pricing. The concept 
of market basket analysis can be extended easily to other situations. In the 
manufacturing environment, it is useful to see what products are ordered 
together because we may want to offer product bundles with package pricing. 

The retail sales fact table cannot be used easily to perform market basket 
analyses because SQL was never designed to constrain and group across line 
item fact rows. Data mining tools and some OLAP products can assist with 
market basket analysis, but in the absence of these tools, we’ll describe a more 
direct approach below. Be forewarned that this is a rather advanced technique; 
if you are not doing market basket analysis today, simply skim this section to 
get a general sense of the techniques involved. 

In Figure 2.14 we illustrate a market basket fact table that was derived from 
retail sales transactions. The market basket fact table is a periodic snapshot 
representing the pairs of products purchased together during a specified time 
period. The facts include the total number of baskets (customer tickets) that 
included products A and B, the total number of product A dollars and units in 
this subset of purchases, and the total number of product B dollars and units 
purchased. The basket count is a semiadditive fact. For example, if a customer 
ticket contains line items for pasta, soft drinks, and peanut butter in the mar-
ket basket fact table, this single order is counted once on the pasta-soft drinks 
fact row, once on the row for the pasta-peanut butter combination, and so on. 
Obviously, care must be taken to avoid summarizing purchase counts for more 
than one product. 
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Figure 2.14 Market basket fact table populated from purchase transactions. 

You will notice that there are two generalized product keys (product keys A 
and B) in the market basket fact table. Here we have built a single product 
dimension table that contains entries at multiple levels of the hierarchy, such 
as individual products, brands, and categories. This specialized variant of our 
normal product dimension table contains a small number of rather generic 
attributes. The surrogate keys for the various levels of the product hierarchy 
have been assigned so that they don’t overlap. 

Conceptually, the idea of recording market basket correlations is simple, but 
the sheer number of product combinations makes the analysis challenging. If 
we have N products in our product portfolio and we attempt to build a table 
with every possible pair of product keys encountered in product orders, we 
will approach N2 product combinations [actually N x (N – 1) for the mathe-
maticians among you]. In other words, if we have 10,000 products in our port-
folio, there would be nearly 100,000,000 pairwise combinations. The number 
of possible combinations quickly approaches absurdity when we’re dealing 
with a large number of products. If a retail store sells 100,000 SKUs, there are 
10 billion possible SKU combinations. 

The key to realistic market basket analysis is to remember that the primary 
goal is to understand the meaningful combinations of products sold together. 
Thinking about our market basket fact table, we would first be interested in 
rows with high basket counts. Since these product combinations are 
observed frequently, they warrant further investigation. Second, we would 
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look for situations where the dollars or units for products A and B were in 
reasonable balance. If the dollars or units are far out of balance, all we’ve 
done is find high-selling products coupled with insignificant secondary 
products, which wouldn’t be very helpful in making major merchandising or 
promotion decisions. 

In order to avoid the combinatorial explosion of product pairs in the market 
basket fact table, we rely on a progressive pruning algorithm. We begin at the 
top of the product hierarchy, which we’ll assume is category. We first enumer-
ate all the category-to-category market basket combinations. If there are 25 cat-
egories, this first step generates 625 market basket rows. We then prune this 
list for further analysis by selecting only the rows that have a reasonably high 
order count and where the dollars and units for products A and B (which are 
categories at this point) are reasonably balanced. Experimentation will tell you 
what the basket count threshold and balance range should be. 

We then push down to the next level of detail, which we’ll assume is brand. 
Starting with the pruned set of combinations from the last step, we drill down 
on product A by enumerating all combinations of brand (product A) by cate-
gory (product B). Similarly, we drill down one level of the hierarchy for prod-
uct B by looking at all combinations of brand (product A) by brand (product B). 
Again, we prune the lists to those with the highest basket count frequencies and 
dollar or unit balance and then drill down to the next level in the hierarchy. 

As we descend the hierarchy, we produce rows with smaller and smaller bas-
ket counts. Eventually, we find no basket counts greater than the reasonable 
threshold for relevance. It is permissible to stop at any time once we’ve satis-
fied the analyst’s curiosity. One of the advantages of this top-down approach 
is that the rows found at each point are those with the highest relevance and 
impact. Progressively pruning the list provides more focus to already relevant 
results. One can imagine automating this process, searching the product hier-
archy downward, ignoring the low basket counts, and always striving for bal-
anced dollars and units with the high basket counts. The process could halt 
when the number of product pairs reached some desired threshold or when 
the total activity expressed in basket count, dollars, or units reached some 
lower limit. 

A variation on this approach could start with a specific category, brand, or 
even a product. Again, the idea would be to combine this specific product first 
with all the categories and then to work down the hierarchy. Another twist 
would be to look at the mix of products purchased by a given customer during 
a given time period, regardless of whether they were in the same basket. In 
any case, much of the hard work associated with market basket analysis has 
been off-loaded to the staging area’s ETL processes in order to simplify the 
ultimate query and presentation aspects of the analysis. 
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Summary

In this chapter we got our first exposure to designing a dimensional model. 
Regardless of industry, we strongly encourage the four-step process for tack-
ling dimensional model designs. Remember that it is especially important that 
we clearly state the grain associated with our dimensional schema. Loading 
the fact table with atomic data provides the greatest flexibility because we can 
summarize that data “every which way.” As soon as the fact table is restricted 
to more aggregated information, we’ll run into walls when the summarization 
assumptions prove to be invalid. Also remember that it is vitally important to 
populate our dimension tables with verbose, robust descriptive attributes. 

In the next chapter we’ll remain within the retail industry to discuss tech-
niques for tackling a second business process within the organization, ensur-
ing that we’re leveraging our earlier efforts while avoiding stovepipes. 
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In Chapter 2 we developed a dimensional model for the sales transactions in a 
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large grocery chain. We remain within the same industry in this chapter but 

Inventory

move up the value chain to tackle the inventory process. The designs devel-
oped in this chapter apply to a broad set of inventory pipelines both inside and 
outside the retail industry. 

Even more important, this chapter provides a thorough discussion of the data 
warehouse bus architecture. The bus architecture is essential to creating an 
integrated data warehouse from a distributed set of related business processes. 
It provides a framework for planning the overall warehouse, even though we 
will build it incrementally. Finally, we will underscore the importance of using 
common, conformed dimensions and facts across the warehouse’s dimen-
sional models. 

Chapter 3 discusses the following concepts: 

�� Value chain implications 
�� Inventory periodic snapshot model, as well as transaction and accumulating 

snapshot models 
�� Semi-additive facts 
�� Enhanced inventory facts 
�� Data warehouse bus architecture and matrix 
�� Conformed dimensions and facts 
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Introduction to the Value Chain 

Most organizations have an underlying value chain consisting of their key 
business processes. The value chain identifies the natural, logical flow of an 
organization’s primary activities. For example, in the case of a retailer, the 
company may issue a purchase order to a product manufacturer. The products 
are delivered to the retailer’s warehouse, where they are held in inventory. A 
delivery is then made to an individual store, where again the products sit in 
inventory until a consumer makes a purchase. We have illustrated this subset 
of a retailer’s value chain in Figure 3.1. Obviously, products sourced from a 
manufacturer that delivers directly to the retail store would bypass the ware-
housing steps of the value chain. 

Operational source systems typically produce transactions or snapshots at 
each step of the value chain, generating interesting performance metrics along 
the way. The primary objective of most analytic decision support systems is to 
monitor the performance results of key processes. Since each business process 
produces unique metrics at unique time intervals with unique granularity and 
dimensionality, each process typically spawns one or more fact tables. To this 
end, the value chain provides high-level insight into the overall enterprise 
data warehouse. We’ll devote more time to this topic later in this chapter. 
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Retailer 

Deliveries at 
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Retail Store 
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Figure 3.1 Subset of a retailer’s value chain. 
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Inventory Models

In the meantime, we’ll delve into several complementary inventory models. 
The first is the inventory periodic snapshot. Every day (or at some other regu-
lar time interval), we measure the inventory levels of each product and place 
them as separate rows in a fact table. These periodic snapshot rows appear 
over time as a series of data layers in the dimensional model, much like geo-
logic layers represent the accumulation of sediment over long periods of time. 
We’ll explore this common inventory model in some detail. We’ll also discuss 
briefly a second inventory model where we record every transaction that has 
an impact on inventory levels as products move through the warehouse. 
Finally, in the third model, we’ll touch on the inventory accumulating snap-
shot, where we build one fact table row for each product delivery and update 
the row until the product leaves the warehouse. Each of the three inventory 
models tells a different story. In some inventory applications, two or even all 
three models may be appropriate simultaneously. 

Inventory Periodic Snapshot 
Let’s return to our retail case study. Optimized inventory levels in the stores 
can have a major impact on chain profitability. Making sure the right product 
is in the right store at the right time minimizes out-of-stocks (where the prod-
uct isn’t available on the shelf to be sold) and reduces overall inventory carry-
ing costs. The retailer needs the ability to analyze daily quantity-on-hand 
inventory levels by product and store. 

It is time to put the four-step process for designing dimensional models to 
work again. The business process we’re interested in analyzing is the retail 
store inventory. In terms of granularity, we want to see daily inventory by 
product at each individual store, which we assume is the atomic level of detail 
provided by the operational inventory system. The dimensions immediately 
fall out of this grain declaration: date, product, and store. We are unable to 
envision additional descriptive dimensions at this granularity. Inventory typi-
cally is not associated with a retail promotion dimension. Although a store 
promotion may be going on while the products are sitting in inventory, the 
promotion usually is not associated with the product until it is actually sold. 
After the promotion has ended, the products still may be sitting in inventory. 
Typically, promotion dimensions are associated with product movement, such 
as when the product is ordered, received, or sold. 

The simplest view of inventory involves only a single fact: quantity on 
hand. This leads to an exceptionally clean dimensional design, as shown in 
Figure 3.2. 
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Figure 3.2 Store inventory periodic snapshot schema. 

The date dimension table in this case study is identical to the table developed 
in the earlier case for retail store sales. The product and store dimensions also 
may be identical. Alternatively, we may want to further decorate these dimen-
sion tables with additional attributes that would be useful for inventory analy-
sis. For example, the product dimension could be enhanced to include 
columns such as the minimum reorder quantity, assuming that they are con-
stant and discrete descriptors of each product stock keeping unit (SKU). Like-
wise, in the store dimension, in addition to the selling square-footage attribute 
we discussed in Chapter 2, we also might include attributes to identify the 
frozen and refrigerated storage square footages. We’ll talk more about the 
implications of adding these dimension attributes later in this chapter. 

If we are analyzing inventory levels at the retailer’s warehouse rather than at 
the store location, the schema would look quite similar to Figure 3.2. Obvi-
ously, the store dimension would be replaced with a warehouse dimension. 
When monitoring inventory levels at the warehouse, normally we do not 
retain the store dimension as a fourth dimension unless the warehouse inven-
tory has been allocated to a specific store. 

Even a schema as simple as this one can be very useful. Numerous insights can 
be derived if inventory levels are measured frequently for many products in 
many storage locations. If we’re analyzing the in-store inventory levels of a 
mass merchandiser, this database could be used to balance store inventories 
each night after the stores close. 

This periodic snapshot fact table faces a serious challenge that Chapter 2’s 
sales transaction fact table did not. The sales fact table was reasonably sparse 
because only about 10 percent of the products in each of our hypothetical 
stores actually sold each day. If a product didn’t sell in a store on a given day, 
then there was no row in the fact table for that combination of keys. Inventory, 
on the other hand, generates dense snapshot tables. Since the retailer strives to 
avoid out-of-stock situations where the product is not available for sale, there 
is a row in the fact table for virtually every product in every store every day. 
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We may well include the zero measurements as explicit records. For our gro-
cery retailer with 60,000 products stocked in 100 stores, we would insert 
approximately 6 million rows (60,000 products x 100 stores) with each fact 
table load. With a row width of just 14 bytes, the fact table would grow by 84 
MB each time we append more fact table rows. A year’s worth of daily snap-
shots would consume over 30 GB. The denseness of inventory snapshots 
sometimes mandates some compromises. 

Perhaps the most obvious compromise is to reduce the snapshot frequencies 
over time. It may be acceptable to keep the last 60 days of inventory at the 
daily level and then revert to less granular weekly snapshots for historical 
data. In this way, instead of retaining 1,095 snapshots during a 3-year period, 
the number could be reduced to 208 total snapshots (60 daily + 148 weekly 
snapshots in two separate fact tables given their unique periodicity). We have 
reduced the total data size by more than a factor of 5. 

Semiadditive Facts 

We stressed the importance of fact additivity in Chapter 2. When we modeled 
the flow of product past a point at the checkout cash register, only the products 
that actually sold were measured. Once a product was sold, it couldn’t be 
counted again in a subsequent sale. This made most of the measures in the 
retail sales schema perfectly additive across all dimensions. 

In the inventory snapshot schema, the quantity on hand can be summarized 
across products or stores and result in a valid total. Inventory levels, however, 
are not additive across dates because they represent snapshots of a level or bal-
ance at one point in time. It is not possible to tell whether yesterday’s inven-
tory is the same or different from today’s inventory solely by looking at 
inventory levels. Because inventory levels (and all forms of financial account 
balances) are additive across some dimensions but not all, we refer to them as 
semiadditive facts. 

The semiadditive nature of inventory balance facts is even more understand-
able if we think about our checking account balances. On Monday, let’s pre-
sume that you have $50 in your account. On Tuesday, the balance remains 
unchanged. On Wednesday, you deposit another $50 into your account so that 
the balance is now $100. The account has no further activity through the end of 
the week. On Friday, you can’t merely add up the daily balances during the 
week and declare that your balance is $400 (based on $50 + 50 + 100 + 100 + 
100). The most useful way to combine account balances and inventory levels 
across dates is to average them (resulting in an $80 average balance in the 
checking example). We are all familiar with our bank referring to the average 
daily balance on our monthly account summary. 
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All measures that record a static level (inventory levels, financial account balances, 
and measures of intensity such as room temperatures) are inherently nonadditive 
across the date dimension and possibly other dimensions. In these cases, the mea-
sure may be aggregated usefully across time, for example, by averaging over the 
number of time periods. 

The last few words in this design principle contain a trap. Unfortunately, you 
cannot use the SQL AVG function to calculate the average over time. The SQL 
AVG function averages over all the rows received by the query, not just the 
number of dates. For example, if a query requested the average inventory for 
a cluster of three products in four stores across seven dates (that is, what is the 
average daily inventory of a brand in a geographic region during a given 
week), the SQL AVG function would divide the summed inventory value by 
84 (3 products x 4 stores x 7 dates). Obviously, the correct answer is to divide 
the summed inventory value by 7, which is the number of daily time periods. 
Because SQL has no standard functionality such as an AVG_DATE_SUM oper-
ator that would compute the average over just the date dimension, inventory 
calculations are burdened with additional complexity. A proper inventory 
application must isolate the date constraint and retrieve its cardinality alone 
(in this case, the 7 days comprising the requested week). Then the application 
must divide the final summed inventory value by the date constraint cardinal-
ity. This can be done with an embedded SQL call within the overall SQL state-
ment or by querying the date dimension separately and then storing the 
resulting value in an application that is passed to the overall SQL statement. 

Enhanced Inventory Facts 

The simplistic view of inventory we developed in our periodic snapshot fact 
table allows us to see a time series of inventory levels. For most inventory 
analysis, quantity on hand isn’t enough. Quantity on hand needs to be used in 
conjunction with additional facts to measure the velocity of inventory move-
ment and develop other interesting metrics such as the number of turns, num-
ber of days’ supply, and gross margin return on inventory (GMROI, 
pronounced “jem-roy”). 

If we added quantity sold (or equivalently, quantity depleted or shipped if 
we’re dealing with a warehouse location) to each inventory fact row, we could 
calculate the number of turns and days’ supply. For daily inventory snapshots, 
the number of turns measured each day is calculated as the quantity sold 
divided by the quantity on hand. For an extended time span, such as a year, 
the number of turns is the total quantity sold divided by the daily average 
quantity on hand. The number of days’ supply is a similar calculation. Over a 
time span, the number of days’ supply is the final quantity on hand divided by 
the average quantity sold. 
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In addition to the quantity sold, we probably also can supply the extended value 
of the inventory at cost, as well as the value at the latest selling price. The differ-
ence between these two values is the gross profit, of course. The gross margin is 
equal to the gross profit divided by the value at the latest selling price. 

Finally, we can multiply the number of turns by the gross margin to get the 
GMROI, as expressed in the following formula: 

total quantity sold x (value at latest selling price – value at cost)
GMROI = 

daily average quantity on hand x value at the latest selling price 

Although this formula looks complicated, the idea behind GMROI is simple. By 
multiplying the gross margin by the number of turns, we create a measure of the 
effectiveness of our inventory investment. A high GMROI means that we are 
moving the product through the store quickly (lots of turns) and are making 
good money on the sale of the product (high gross margin). A low GMROI means 
that we are moving the product slowly (low turns) and aren’t making very much 
money on it (low gross margin). The GMROI is a standard metric used by inven-
tory analysts to judge a company’s quality of investment in its inventory. 

If we want to be more ambitious than our initial design in Figure 3.2, then we 
should include the quantity sold, value at cost, and value at the latest selling 
price columns in our snapshot fact table, as illustrated in Figure 3.3. Of course, 
if some of these metrics exist at different granularity in separate fact tables, a 
requesting application would need to retrieve all the components of the 
GMROI computation at the same level. 

Notice that quantity on hand is semiadditive but that the other measures in 
our advanced periodic snapshot are all fully additive across all three dimen-
sions. The quantity sold amount is summarized to the particular grain of the 
fact table, which is daily in this case. The value columns are extended, additive 
amounts. We do not store GMROI in the fact table because it is not additive. 
We can calculate GMROI from the constituent columns across any number of 
fact rows by adding the columns up before performing the calculation, but we 
are dead in the water if we try to store GMROI explicitly because we can’t use-
fully combine GMROIs across multiple rows. 

Date Key (PK) 
Date Attributes … 

Date Dimension 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Quantity on Hand 
Quantity Sold 

Product Key (PK) 
Product Attributes … 

Product Dimension 

Store Key (PK) 
Store Attributes … 

Store Dimension 
Dollar Value at Cost 
Dollar Value at Latest Selling Price 

Store Inventory Snapshot Fact 

Figure 3.3 Enhanced inventory periodic snapshot to support GMROI analysis. 
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The periodic snapshot is the most common inventory schema. We’ll touch 
briefly on two alternative perspectives to complement the inventory snapshot 
just designed. For a change of pace, rather than describing these models in the 
context of the retail in-store inventory, we’ll move up the value chain to dis-
cuss the inventory located in our warehouses. 

Inventory Transactions 
A second way to model an inventory business process is to record every trans-
action that affects inventory. Inventory transactions at the warehouse might 
include the following: 

�� Receive product

�� Place product into inspection hold

�� Release product from inspection hold

�� Return product to vendor due to inspection failure 

�� Place product in bin

�� Authorize product for sale

�� Pick product from bin

�� Package product for shipment

�� Ship product to customer

�� Receive product from customer 

�� Return product to inventory from customer return

�� Remove product from inventory 

Each inventory transaction identifies the date, product, warehouse, vendor, 
transaction type, and in most cases, a single amount representing the inven-
tory quantity impact caused by the transaction. Assuming that the granularity 
of our fact table is one row per inventory transaction, the resulting schema is 
illustrated in Figure 3.4. 

Date Dimension Date Key (FK) 
Product Key (FK) 

Product Dimension 

… and more 

Warehouse Key (FK) 
Vendor Key (FK) 
Inventory Transaction Type Key (FK) 
Inventory Transaction Dollar Amount 

Warehouse Inventory Transaction Fact 

Warehouse Key (PK) 
Warehouse Name 
Warehouse Address 
Warehouse City 
Warehouse State 
Warehouse Zip 
Warehouse Zone 
Warehouse Total Square Footage 

Warehouse Dimension 

Inventory Transaction Type Key (PK) 
Inventory Transaction Type Description 
Inventory Transaction Type Group 

Inventory Transaction Type Dimension 

Vendor Dimension 

Figure 3.4 Warehouse inventory transaction model. 
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Even though the transaction-level fact table is again very simple, it contains the 
most detailed information available about inventory because it mirrors fine-
scale inventory manipulations. The transaction-level fact table is useful for mea-
suring the frequency and timing of specific transaction types. For instance, only 
a transaction-grained inventory fact table can answer the following questions: 

�� How many times have we placed a product into an inventory bin on the 
same day we picked the product from the same bin at a different time? 

�� How many separate shipments did we receive from a given vendor, and 
when did we get them? 

�� On which products have we had more than one round of inspection 
failures that caused return of the product to the vendor? 

Even so, it is impractical to use this table as the sole basis for analyzing inven-
tory performance. Although it is theoretically possible to reconstruct the exact 
inventory position at any moment in time by rolling all possible transactions 
forward from a known inventory position, it is too cumbersome and impracti-
cal for broad data warehouse questions that span dates or products. 

Remember that there’s more to life than transactions alone. Some form of snapshot 
table to give a more cumulative view of a process often accompanies a transaction 
fact table. 

Inventory Accumulating Snapshot 
The final inventory model that we’ll explore briefly is the accumulating snap-
shot. In this model we place one row in the fact table for a shipment of a par-
ticular product to the warehouse. In a single fact table row we track the 
disposition of the product shipment until it has left the warehouse. The accu-
mulating snapshot model is only possible if we can reliably distinguish prod-
ucts delivered in one shipment from those delivered at a later time. This 
approach is also appropriate if we are tracking disposition at very detailed lev-
els, such as by product serial number or lot number. 

Let’s assume that the inventory goes through a series of well-defined events or 
milestones as it moves through the warehouse, such as receiving, inspection, 
bin placement, authorization to sell, picking, boxing, and shipping. The phi-
losophy behind the accumulating snapshot fact table is to provide an updated 
status of the product shipment as it moves through these milestones. Each fact 
table row will be updated until the product leaves the warehouse. As illus-
trated in Figure 3.5, the inventory accumulating snapshot fact table with its 
multitude of dates and facts looks quite different from the transaction or peri-
odic snapshot schemas. 
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Date Received Key (FK) 
Date Inspected Key (FK) 

Date Authorized to Sell Key (FK) 
Date Picked Key (FK) 
Date Boxed Key (FK) 
Date Shipped Key (FK) 
Date of Last Return Key (FK) 
Product Key (FK) 

Quantity Received 
Quantity Inspected 

Quantity Placed in Bin 
Quantity Authorized to Sell 
Quantity Picked 
Quantity Boxed 
Quantity Shipped 
Quantity Returned by Customer 

Quantity Damaged 
Quantity Lost 

Unit Cost 
Unit List Price 

Date Received Dimension 

Date Inspected Dimension 

Date Authorized to Sell Dimension 

Date Picked Dimension 

Date Boxed Dimension 

Date Shipped Dimension 

Date of Last Return Dimension 

Date Placed in Inventory Key (FK) 

Warehouse Key (FK) 
Vendor Key (FK) 

Quantity Returned to Vendor 

Quantity Returned to Inventory 

Quantity Written Off 

Unit Average Price 
Unit Recovery Price 

Warehouse Inventory Accumulating Fact 

Date Placed in Inventory Dimension 

Product Dimension 

Warehouse Dimension 

Vendor Dimension 

Figure 3.5 Warehouse inventory accumulating snapshot. 

Accumulating snapshots are the third major type of fact table. They are inter-
esting both because of the multiple date-valued foreign keys at the beginning 
of the key list and also because we revisit and modify the same fact table 
records over and over. Since the accumulating snapshot rarely is used in long-
running, continuously replenished inventory processes, rather than focusing 
on accumulating snapshots at this time, we’ll provide more detailed coverage 
in Chapter 5. The alert reader will notice the four non-additive metrics at the 
end of the fact table. Again, stay tuned for Chapter 5. 

Value Chain Integration 

Now that we’ve completed the design of three inventory model variations, 
let’s revisit our earlier discussion about the retailer’s value chain. Both the 
business and IT organizations typically are very interested in value chain inte-
gration. Low-level business analysts may not feel much urgency, but those in 
the higher ranks of management are very aware of the need to look across the 
business to better evaluate performance. Numerous data warehouse projects 
have focused recently on management’s need to better understand customer 
relationships from an end-to-end perspective. Obviously, this requires the 
ability to look consistently at customer information across processes, such as 
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quotes, orders, invoicing, payments, and customer service. Even if your man-
agement’s vision is not so lofty, business users certainly are tired of getting 
reports that don’t match from different systems or teams. 

IT managers know all too well that integration is needed to deliver on the 
promises of data warehousing. Many consider it their fiduciary responsibility 
to manage the organization’s information assets. They know that they’re not 
fulfilling their responsibilities if they allow standalone, nonintegrated data-
bases to proliferate. In addition to better addressing the business’s needs, the 
IT organization also benefits from integration because it allows the organiza-
tion to better leverage scarce resources and gain efficiencies through the use of 
reusable components. 

Fortunately, the folks who typically are most interested in integration also 
have the necessary organizational influence and economic willpower to make 
it happen. If they don’t place a high value on integration, then you’re facing a 
much more serious organizational challenge. It shouldn’t be the sole responsi-
bility of the data warehouse manager to garner organizational consensus for 
an integrated warehouse architecture across the value chain. The political sup-
port of senior management is very important. It takes the data warehouse 
manager off the hook and places the burden of the decision-making process on 
senior management’s shoulders, where it belongs. 

In Chapters 1 and 2 we modeled data from several processes of the value 
chain. While separate fact tables in separate data marts represent the data from 
each process, the models share several common business dimensions, namely, 
date, product, and store. We’ve logically represented this dimension sharing in 
Figure 3.6. Using shared, common dimensions is absolutely critical to design-
ing data marts that can be integrated. They allow us to combine performance 
measurements from different processes in a single report. We use multipass 
SQL to query each data mart separately, and then we outer join the query 
results based on a common dimension attribute. This linkage, often referred to 
as drill across, is straightforward if the dimension table attributes are identical. 

POS Retail Sales 

Snapshot Fact 

Store Dimension 

Date Dimension 

Promotion Dimension 

Product Dimension 

Transaction Fact 

Retail Inventory 

Warehouse Inventory 
Transaction Fact 

Warehouse Dimension 

Vendor Dimension 

Figure 3.6 Sharing dimensions between business processes. 
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Data Warehouse Bus Architecture

Obviously, building the enterprise’s data warehouse in one step is too daunt-
ing, yet building it as isolated pieces defeats the overriding goal of consistency. 
For long-term data warehouse success, we need to use an architected, incre-
mental approach to build the enterprise’s warehouse. The approach we advo-
cate is the data warehouse bus architecture. 

The word bus is an old term from the electrical power industry that is now 
used commonly in the computer industry. A bus is a common structure to 
which everything connects and from which everything derives power. The bus 
in your computer is a standard interface specification that allows you to plug 
in a disk drive, CD-ROM, or any number of other specialized cards or devices. 
Because of the computer’s bus standard, these peripheral devices work 
together and usefully coexist, even though they were manufactured at differ-
ent times by different vendors. 

By defining a standard bus interface for the data warehouse environment, separate 
data marts can be implemented by different groups at different times. The separate 
data marts can be plugged together and usefully coexist if they adhere to the standard. 

If we think back to the value chain diagram in Figure 3.1, we can envision 
many business processes plugging into the data warehouse bus, as illustrated 
in Figure 3.7. Ultimately, all the processes of an organization’s value chain will 
create a family of dimensional models that share a comprehensive set of com-
mon, conformed dimensions. We’ll talk more about conformed dimensions 
later in this chapter, but for now, assume that the term means similar. 

Store Sales 

Store Inventory 

Purchase Orders 

Date Product Store Promotion Warehouse Vendor Shipper 

Figure 3.7 Sharing dimensions across the value chain. 
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The data warehouse bus architecture provides a rational approach to decom-
posing the enterprise data warehouse planning task. During the limited-
duration architecture phase, the team designs a master suite of standardized 
dimensions and facts that have uniform interpretation across the enterprise. 
This establishes the data architecture framework. We then tackle the imple-
mentation of separate data marts in which each iteration closely adheres to 
the architecture. As the separate data marts come on line, they fit together like 
the pieces of a puzzle. At some point, enough data marts exist to make good 
on the promise of an integrated enterprise data warehouse. 

The bus architecture allows data warehouse managers to get the best of both 
worlds. They have an architectural framework that guides the overall design, 
but the problem has been divided into bite-sized data mart chunks that can be 
implemented in realistic time frames. Separate data mart development teams 
follow the architecture guidelines while working fairly independently and 
asynchronously. 

The bus architecture is independent of technology and the database platform. 
All flavors of relational and online analytical processing (OLAP)-based data 
marts can be full participants in the data warehouse bus if they are designed 
around conformed dimensions and facts. Data warehouses will inevitably 
consist of numerous separate machines with different operating systems and 
database management systems (DBMSs). If designed coherently, they will 
share a uniform architecture of conformed dimensions and facts that will 
allow them to be fused into an integrated whole. 

Data Warehouse Bus Matrix 
The tool we use to create, document, and communicate the bus architecture is 
the data warehouse bus matrix, which we’ve illustrated in Figure 3.8. 
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Figure 3.8 Sample data warehouse bus matrix. 
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Working in a tabular fashion, we lay out the business processes of the organi-
zation as matrix rows. It is important to remember that we are identifying the 
business processes closely identified with sources of data, not the organiza-
tion’s business departments. The matrix rows translate into data marts based 
on the organization’s primary activities. We begin by listing the data marts 
that are derived from a single primary source system, commonly known as 
first-level data marts. These data marts are recognizable complements to their 
operational source. 

The rows of the bus matrix correspond to data marts. You should create separate 
matrix rows if the sources are different, the processes are different, or if the matrix 
row represents more than what can reasonably be tackled in a single implementa-
tion iteration. 

Once it is time to begin a data mart development project, we recommend start-
ing the actual implementation with first-level data marts because they mini-
mize the risk of signing up for an implementation that is too ambitious. Most 
of the overall risk of failure comes from biting off too much of the extract-
transformation-load (ETL) data staging design and development effort. In 
many cases, first-level data marts provide users with enough interesting data 
to keep them happy and quiet while the data mart teams keep working on 
more difficult issues. 

Once we’ve fully enumerated the list of first-level data marts, then we can 
identify more complex multisource marts as a second step. We refer to these 
data marts as consolidated data marts because they typically cross business 
processes. While consolidated data marts are immensely beneficial to the orga-
nization, they are more difficult to implement because the ETL effort grows 
alarmingly with each additional major source that’s integrated into a single 
dimensional model. It is prudent to focus on the first-level data marts as 
dimensional building blocks before tackling the task of consolidating. In some 
cases the consolidated data mart is actually more than a simple union of data 
sets from the first-level data marts. 

Profitability is a classic example of a consolidated data mart where separate 
revenue and cost factors are combined from different process marts to provide 
a complete view of profitability. While a highly granular profitability mart is 
exciting because it provides visibility into product and customer profit perfor-
mance, it is definitely not the first mart you should attempt to implement. You 
could easily drown while attempting to stage all the components of revenue 
and cost. If you are absolutely forced to focus on profitability as your first mart, 
then you should begin by allocating costs on a rule-of-thumb basis rather than 
doing the complete job of sourcing all the underlying cost detail. Even so, 
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attempting to get organization consensus on allocation rules may be a project 
showstopper given the sensitive (and perhaps wallet-impacting) nature of the 
allocations. One of the project prerequisites, outside the scope of the warehouse 
project team’s responsibilities, should be business agreement on the allocation 
rules. It is safe to say that it is best to avoid dealing with the complexities of 
profitability until you have some data warehousing successes under your belt. 

The columns of the matrix represent the common dimensions used across the 
enterprise. It is often helpful to create a comprehensive list of dimensions 
before filling in the matrix. When you start with a large list of potential dimen-
sions, it becomes a useful creative exercise to determine whether a given 
dimension possibly could be associated with a data mart. 

The shaded cells indicate that the dimension column is related to the business 
process row. The resulting matrix will be surprisingly dense. Looking across 
the rows is revealing because you can see the dimensionality of each data mart 
at a glance. However, the real power of the matrix comes from looking at the 
columns as they depict the interaction between the data marts and common 
dimensions. 

The matrix is a very powerful device for both planning and communication. 
Although it is relatively straightforward to lay out the rows and columns, in 
the process, we’re defining the overall data architecture for the warehouse. We 
can see immediately which dimensions warrant special attention given their 
participation in multiple data marts. The matrix helps prioritize which dimen-
sions should be tackled first for conformity given their prominent roles. 

The matrix allows us to communicate effectively within and across data mart 
teams, as well as upward and outward throughout the organization. The 
matrix is a succinct deliverable that visually conveys the entire plan at once. It 
is a tribute to its simplicity that the matrix can be used effectively to directly 
communicate with senior IT and business management. 

Creating the data warehouse bus matrix is one of the most important up-front deliv-
erables of a data warehouse implementation. It is a hybrid resource that is part tech-
nical design tool, part project management tool, and part communication tool. 

It goes without saying that it is unacceptable to build separate data marts that 
ignore a framework to tie the data together. Isolated, independent data marts 
are worse than simply a lost opportunity for analysis. They deliver access to 
irreconcilable views of the organization and further enshrine the reports that 
cannot be compared with one another. Independent data marts become legacy 
implementations in their own right; by their very existence, they block the 
development of a coherent warehouse environment. 
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So what happens if you’re not starting with a blank data warehousing slate? 
Perhaps several data marts have been constructed already without regard to 
an architecture of conformed dimensions. Can you rescue your stovepipes and 
convert them to the bus architecture? To answer this question, you should start 
first with an honest appraisal of your existing nonintegrated data marts. This 
typically entails a series of face-to-face meetings with the separate teams 
(including the clandestine teams within business organizations) to determine 
the gap between the current environment and the organization’s architected 
goal. Once the gap is understood, you need to develop an incremental plan to 
convert the data marts to the enterprise architecture. The plan needs to be sold 
internally. Senior IT and business management must understand the current 
state of data chaos, the risks of doing nothing, and the benefits of moving for-
ward according to your game plan. Management also needs to appreciate that 
the conversion will require a commitment of support, resources, and funding. 

If an existing data mart is based on a sound dimensional design, perhaps you 
can simply map an existing dimension to a standardized version. The original 
dimension table would be rebuilt using a cross-reference map. Likewise, the 
fact table also would need to be reprocessed to replace the original dimension 
keys with the conformed dimension keys. Of course, if the original and con-
formed dimension tables contain different attributes, rework of the preexisting 
queries is inevitable. More typically, existing data marts are riddled with 
dimensional modeling errors beyond just the lack of adherence to standard-
ized dimensions. In some cases, the stovepipe data mart already has outlived 
its useful life. Isolated data marts often are built for a specific functional area. 
When others try to leverage the environment, they typically discover that the 
data mart was implemented at an inappropriate level of granularity and is 
missing key dimensionality. The effort required to retrofit these data marts 
into the warehouse architecture may exceed the effort to start over from 
scratch. As difficult as it is to admit, stovepipe data marts often have to be shut 
down and rebuilt in the proper bus architecture framework. 

Conformed Dimensions 
Now that you understand the importance of the bus architecture, let’s further 
explore the standardized conformed dimensions that serve as the cornerstone of 
the warehouse bus. Conformed dimensions are either identical or strict mathe-
matical subsets of the most granular, detailed dimension. Conformed dimen-
sions have consistent dimension keys, consistent attribute column names, 
consistent attribute definitions, and consistent attribute values (which translates 
into consistent report labels and groupings). Dimension tables are not con-
formed if the attributes are labeled differently or contain different values. If a 
customer or product dimension is deployed in a nonconformed manner, then 
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either the separate data marts cannot be used together or, worse, attempts to use 
them together will produce invalid results. 

Conformed dimensions come in several different flavors. At the most basic level, 
conformed dimensions mean the exact same thing with every possible fact table 
to which they are joined. The date dimension table connected to the sales facts is 
identical to the date dimension table connected to the inventory facts. In fact, the 
conformed dimension may be the same physical table within the database. 
However, given the typical complexity of our warehouse’s technical environ-
ment with multiple database platforms, it is more likely that the dimensions are 
duplicated synchronously in each data mart. In either case, the date dimensions 
in both data marts will have the same number of rows, same key values, same 
attribute labels, same attribute definitions, and same attribute values. There is 
consistent data content, data interpretation, and user presentation. 

Most conformed dimensions are defined naturally at the most granular level 
possible. The grain of the customer dimension naturally will be the individual 
customer. The grain of the product dimension will be the lowest level at which 
products are tracked in the source systems. The grain of the date dimension 
will be the individual day. 

Sometimes dimensions are needed at a rolled-up level of granularity. Perhaps 
the roll-up dimension is required because the fact table represents aggregated 
facts that are associated with aggregated dimensions. This would be the case if 
we had a weekly inventory snapshot in addition to our daily snapshot. In 
other situations, the facts simply may be generated by another business 
process at a higher level of granularity. One business process, such as sales, 
captures data at the atomic product level, whereas forecasting generates data 
at the brand level. You couldn’t share a single product dimension table across 
the two business process schemas because the granularity is different. The 
product and brand dimensions still would conform if the brand table were a 
strict subset of the atomic product table. Attributes that are common to both 
the detailed and rolled-up dimension tables, such as the brand and category 
descriptions, should be labeled, defined, and valued identically in both tables, 
as illustrated in Figure 3.9. 

Roll-up dimensions conform to the base-level atomic dimension if they are a strict 
subset of that atomic dimension. 

We may encounter other legitimate conformed dimension subsets with dimen-
sion tables at the same level of granularity. For example, in the inventory snap-
shot schema we added supplemental attributes to the product and store 
dimensions that may not be useful to the sales transaction schema. The prod-
uct dimension tables used in these two data marts still conform if the keys and 
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Product Dimensions Brand Dimension 

Conforms 

Product Key (PK) 
Product Description 
SKU Number (Natural Key) 
Brand Description 

Department Description 

Package Size 
Fat Content Description 

Shelf Height 
Shelf Depth 
… and more 

Brand Key (PK) 
Brand Description 

Department DescriptionSubcategory Description 
Category Description 

Package Type Description 

Diet Type Description 
Weight 
Weight Units of Measure 
Storage Type 
Shelf Life Type 
Shelf Width 

Subcategory Description 
Category Description 

Figure 3.9 Conforming roll-up dimension subsets. 

common columns are identical. Of course, given that the supplemental attrib-
utes were limited to the inventory data mart, we would be unable to look 
across processes using these add-on attributes. 

Another case of conformed dimension subsetting occurs when two dimen-
sions are at the same level of detail but one represents only a subset of rows. 
For example, we may have a corporate product dimension that contains data 
for our full portfolio of products across multiple disparate lines of business, 
as illustrated in Figure 3.10. Analysts in the separate businesses may want to 
view only their subset of the corporate dimension, restricted to the product 
rows for their business. By using a subset of rows, they aren’t encumbered 
with the entire product set for the organization. Of course, the fact table 
joined to this subsetted dimension must be limited to the same subset of 
products. If a user attempts to use a subset dimension while accessing a fact 
table consisting of the complete product set, he or she may encounter unex-
pected query results. Technically, referential integrity would be violated. We 
need to be cognizant of the potential opportunity for user confusion or error 
with dimension row subsetting. We will further elaborate on dimension sub-
sets when we discuss heterogeneous products in Chapter 9. 
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The conformed date dimension in our daily sales and monthly forecasting sce-
nario is a unique example of both row and column dimension subsetting. Obvi-
ously, we can’t simply use the same date dimension table because of 
the difference in roll-up granularity. However, the month dimension may 
consist of strictly the month-end daily date table rows with the exclusion of 
all columns that don’t apply at the monthly granularity. Excluded columns 
would include daily date columns such as the date description, day number in 
epoch, weekday/weekend indicator, week-ending date, holiday indicator, day 
number within year, and others. You might consider including a month-end 
indicator on the daily date dimension to facilitate creation of this monthly table. 

Conformed dimensions will be replicated either logically or physically through-
out the enterprise; however, they should be built once in the staging area. The 
responsibility for each conformed dimension is vested in a group we call the 
dimension authority. The dimension authority has responsibility for defining, 
maintaining, and publishing a particular dimension or its subsets to all the data 
mart clients who need it. They take responsibility for staging the gold-standard 
dimension data. Ultimately, this may involve sourcing from multiple opera-
tional systems to publish a complete, high-quality dimension table. 

Corporate 
Product Dimension 

Appliance 
Products 

Apparel 
Products 

Drilling across (conforming) 
both appliance products and 

apparel products requires using 
attributes common to both types. 

Figure 3.10 Conforming dimension subsets at the same granularity. 
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The major responsibility of the centralized dimension authority is to establish, main-
tain, and publish the conformed dimensions to all the client data marts. 

Once a set of master conformed dimensions has been defined for the enter-
prise, it is extremely important that the data mart teams actually use these 
dimensions. The commitment to use conformed dimensions is more than a 
technical decision; it is a business policy decision that is key to making the 
enterprise data warehouse function. Agreement on conformed dimensions 
faces far more political challenges than technical hurdles. Given the political 
issues surrounding them, conformed dimensions must be supported from the 
outset by the highest levels of the organization. Business executives must 
stress the importance to their teams, even if the conformed dimension causes 
some compromises. The CIO also should appreciate the importance of con-
formed dimensions and mandate that each data mart team takes the pledge to 
always use them. 

Obviously, conformed dimensions require implementation coordination. 
Modifications to existing attributes or the addition of new attributes must be 
reviewed with all the data mart teams employing the conformed dimension. 
You will also need to determine your conformed dimension release strategy. 
Changes to identical dimensions should be replicated synchronously to all 
associated data marts. This push approach to dimension publishing maintains 
the requisite consistency across the organization. 

Now that we’ve preached about the importance of conformed dimensions, 
we’ll discuss the situation where it may not be realistic or necessary to estab-
lish conformed dimensions for the organization. If you are a conglomerate 
with subsidiaries that span widely varied industries, there may be little point 
in trying to integrate. If you don’t want to cross-sell the same customers from 
one line of business to another, sell products that span lines of business, or 
assign products from multiple lines of business to a single salesperson, then it 
may not make sense to attempt a comprehensive data warehouse architecture. 
There likely isn’t much perceived business value to conform your dimensions. 
The willingness to seek a common definition for product or customer is a 
major litmus test for an organization theoretically intent on building an enter-
prise data warehouse. If the organization is unwilling to agree on common 
definitions across all data marts, the organization shouldn’t attempt to build a 
data warehouse that spans these marts. You would be better off building sep-
arate, self-contained data warehouses for each subsidiary. 

In our experience, while many organizations find it currently mission impos-
sible to combine data across their disparate lines of business, some degree of 
integration is typically an ultimate goal. Rather than throwing your hands in 
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the air and declaring that it can’t possibly be done, we suggest starting down 
the path toward conformity. Perhaps there are a handful of attributes that can 
be conformed across disparate lines of business. Even if it is merely a product 
description, category, and line of business attribute that is common to all busi-
nesses, this least-common-denominator approach is still a step in the right 
direction. You don’t have to get all your businesses to agree on everything 
related to a dimension before proceeding. 

Conformed Facts 
Thus far we have talked about the central task of setting up conformed dimen-
sions to tie our data marts together. This is 90 percent of the up-front data 
architecture effort. The remaining effort goes into establishing conformed fact 
definitions. 

Revenue, profit, standard prices, standard costs, measures of quality, measures 
of customer satisfaction, and other key performance indicators (KPIs) are facts 
that must be conformed. In general, fact table data is not duplicated explicitly 
in multiple data marts. However, if facts do live in more than one location, 
such as in first-level and consolidated marts, the underlying definitions and 
equations for these facts must be the same if they are to be called the same 
thing. If they are labeled identically, then they need to be defined in the same 
dimensional context and with the same units of measure from data mart to 
data mart. 

We must be disciplined in our data naming practices. If it is impossible to conform a 
fact exactly, then you should give different names to the different interpretations. 
This makes it less likely that incompatible facts will be used in a calculation. 

Sometimes a fact has a natural unit of measure in one fact table and another 
natural unit of measure in another fact table. For example, the flow of product 
down the retail value chain may best be measured in shipping cases at the 
warehouse but in scanned units at the store. Even if all the dimensional con-
siderations have been taken into account correctly, it would be difficult to use 
these two incompatible units of measure in one drill-across report. The usual 
solution to this kind of problem is to refer the user to a conversion factor 
buried in the product dimension table and hope that the user can find the con-
version factor and use it correctly. This is unacceptable in terms of both over-
head and vulnerability to error. The correct solution is to carry the fact in both 
units of measure so that a report can easily glide down the value chain, pick-
ing off comparable facts. We’ll talk more about multiple units of measure in 
Chapter 5. 
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Summary

Inventory is an important process to measure and monitor in many industries. 
In this chapter we developed dimensional models for the three complemen-
tary views of inventory. Either the periodic or accumulating snapshot model 
will serve as a good stand-alone depiction of inventory. The periodic snapshot 
would be chosen for long-running, continuously replenished inventory sce-
narios. The accumulating snapshot would be used for one-time, finite inven-
tory situations with a definite beginning and end. More in-depth inventory 
applications will want to augment one or both of these models with the trans-
action model. 

We introduced key concepts surrounding the data warehouse bus architecture 
and matrix. Each business process of the value chain, supported by a primary 
source system, translates into a data mart, as well as a row in the bus matrix. 
The data marts share a surprising number of standardized, conformed dimen-
sions. Developing and adhering to the bus architecture is an absolute must if 
you intend to build a data warehouse composed of an integrated set of data 
marts. 
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e’ll explore the procurement process in this chapter. This topic has obvious cross-
industry appeal because it is applicable to anyone who acquires products or ser-
vices for either use or resale. In addition to developing several purchasing 
models in this chapter, we will provide in-depth coverage of the techniques for 
handling changes to our dimension table attributes. While the descriptive attrib-
utes in dimension tables are relatively static, they are subject to change over 
time. Product lines are restructured, causing product hierarchies to change. Cus-
tomers move, causing their geographic information to change. Sales reps are 
realigned, causing territory assignments to change. We’ll discuss several 
approaches to dealing with these inevitable changes in our dimension tables. 

Chapter 4 discusses the following concepts: 

�� Value chain reinforcement 
�� Blended versus separate transaction schemas 
�� Slowly changing dimension techniques, both basic and advanced 

Procurement Case Study 

Thus far we have studied downstream retail sales and inventory processes in the 
value chain. We understand the importance of mapping out the data warehouse 
bus architecture where conformed dimensions are used across process-centric 
fact tables. In this chapter we’ll extend these concepts as we work our way fur-
ther up the value chain to the procurement process. 

89 
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For many companies, procurement is a critical business activity. Effective pro-
curement of products at the right price for resale is obviously important to 
retailers such as our grocery chain. Procurement also has strong bottom-line 
implications for any large organization that buys products as raw materials for 
manufacturing. Significant cost-savings opportunities are associated with 
reducing the number of suppliers and negotiating agreements with preferred 
suppliers. 

Demand planning drives efficient materials management. Once demand is 
forecasted, procurement’s goal is to source the appropriate materials/prod-
ucts in the most economical manner. Procurement involves a wide range of 
activities from negotiating contracts to issuing purchase requisitions and pur-
chase orders (POs) to tracking receipts and authorizing payments. The follow-
ing list gives you a better sense of a procurement organization’s common 
analytic requirements: 

�� Which materials or products are purchased most frequently? How many 
vendors supply these products? At what prices? In what units of measure 
(such as bulk or drum)? 

�� Looking at demand across the enterprise (rather than at a single physical 
location), are there opportunities to negotiate favorable pricing by consoli-
dating suppliers, single sourcing, or making guaranteed buys? 

�� Are our employees purchasing from the preferred vendors or skirting the 
negotiated vendor agreements (maverick spending)? 

�� Are we receiving the negotiated pricing from our vendors (vendor con-
tract purchase price variance)? 

�� How are our vendors performing? What is the vendor’s fill rate? On-time 
delivery performance? Late deliveries outstanding? Percent of orders 
backordered? Rejection rate based on receipt inspection? 

Procurement Transactions 

As we begin working through the four-step design process, we first decide that 
procurement is the business process to be modeled. We study the process in 
detail and observe a flurry of procurement transactions, such as purchase requi-
sitions, purchase orders, shipping notifications, receipts, and payments. Similar 
to the approach we took in Chapter 3 with the inventory transactions, we first 
elect to build a fact table with the grain of one row per procurement transaction. 
We identify transaction date, product, vendor, contract terms, and procurement 
transaction type as our key dimensions. Procured units and transaction amount 
are the facts. The resulting design looks similar to Figure 4.1. 
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Procurement Transaction Fact 

Date Dimension 
Product Key (FK) 

Contract Number (DD) 

Product Dimension 

… and more 

Procurement Transaction Date Key (FK) 

Vendor Key (FK) 
Contract Terms Key (FK) 
Procurement Transaction Type Key (FK) 

Procurement Transaction Quantity 
Procurement Transaction Dollar Amount 

Vendor Key (PK) 
Vendor Name 
Vendor Street Address 
Vendor City 
Vendor Zip 
Vendor State/Province 
Vendor Country 
Vendor Status 
Vendor Minority Ownership Flag 
Vendor Corporate Parent 

Vendor Dimension 

Contract Terms Key (PK) 
Contract Terms Description 
Contract Terms Type 

Procurement Transaction Type Key (PK) 
Procurement Transaction Type Description 
Procurement Transaction Type Category 

Contract Terms Dimension 

Procurement Trasaction Type Dimension 

Figure 4.1 Procurement fact table with multiple transaction types. 

If we are still working for the same grocery retailer, then the transaction date 
and product dimensions are the same conformed dimensions we developed 
originally in Chapter 2. If we’re working with manufacturing procurement, 
the raw materials products likely are located in a separate raw materials 
dimension table rather than included in the product dimension for salable 
products. The vendor, contract terms, and procurement transaction type 
dimensions are new to this schema. The vendor dimension contains one row 
for each vendor, along with interesting descriptive attributes to support a vari-
ety of vendor analyses. The contract terms dimension contains one row for 
each generalized set of terms negotiated with a vendor, similar to the promo-
tion dimension in Chapter 2. The procurement transaction type dimension 
allows us to group or filter on transaction types, such as purchase orders. The 
contract number is a degenerate dimension. It would be used to determine the 
volume of business conducted under each negotiated contract. 

Multiple- versus Single-Transaction 
Fact Tables 

As we review the initial procurement schema design with business users, we 
are made aware of several new details. First of all, we learn that the business 
users describe the various procurement transactions differently. To the busi-
ness, purchase orders, shipping notices, warehouse receipts, and vendor pay-
ments are all viewed as separate and unique processes. 

It turns out that several of the procurement transactions actually come from 
different source systems. There is no single procurement system to source all 
the procurement transactions. Instead, there is a purchasing system that pro-
vides purchase requisitions and purchase orders, a warehousing system that 
provides shipping notices and warehouse receipts, and an accounts payable 
system that deals with vendor payments. 
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We further discover that several of our transaction types have different dimen-
sionality. For example, discounts taken are applicable to vendor payments but 
not to the other transaction types. Similarly, the name of the warehouse clerk 
who received the goods at the warehouse applies to receipts but doesn’t make 
sense elsewhere. 

We also learn about a variety of interesting control numbers, such as purchase 
order and payment check numbers, that are created at various steps in the pro-
curement process. These control numbers are perfect candidates for degener-
ate dimensions. For certain transaction types, more than one control number 
may apply. 

While we sort through these new details, we are faced with a design decision. 
Should we build a blended transaction fact table with a transaction type 
dimension to view all our procurement transactions together, or do we build 
separate fact tables for each transaction type? This is a common design 
quandary that surfaces in many transactional situations, not just procurement. 

As dimensional modelers, we need to make design decisions based on a thor-
ough understanding of the business requirements weighed against the trade-
offs of the available options. In this case, there is no simple formula to make 
the definite determination of whether to use a single or multiple fact tables. A 
single fact table may be the most appropriate solution in some situations, 
whereas multiple fact tables are most appropriate in others. When faced with 
this design decision, we look to the following considerations to help us sort 
things out: 

�� First, what are the users’ analytic requirements? As designers, our goal is 
to reduce complexity in order to present the data in the most effective form 
for the business users. How will the business users most commonly ana-
lyze this data? Do the required analyses often require multiple transaction 
types together, leading us to consider a single blended fact table? Or do 
they more frequently look solely at a single transaction type in an analysis, 
causing us to favor separate fact tables for each type of transaction? 

�� Are there really multiple unique business processes? In our procurement 
example, it seems that buying products (purchase orders) is distinctly dif-
ferent from receiving products (receipts). The existence of separate control 
numbers for each step in the process is a clue that we are dealing with 
separate processes. Given this situation, we would lean toward separate 
fact tables. In Chapter 3’s inventory example, all the varied inventory 
transactions clearly related to a single inventory process, resulting in a 
single fact table design. 

�� Are multiple source systems involved? In our example, we’re dealing 
with three separate source systems: purchasing, warehousing, and 
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accounts payable. Again, this would suggest separate fact tables. The data 
staging activities required to source the single-transaction fact table from 
three separate source systems is likely daunting. 

�� What is the dimensionality of the facts? In our procurement example we 
discovered several dimensions that applied to some transaction types but 
not to others. This would again lead us to separate fact tables. 

In our hypothetical case study we decide to implement multiple transaction 
fact tables as illustrated in Figure 4.2. We have separate fact tables for purchase 
requisitions, purchase orders, shipping notices, warehouse receipts, and ven-
dor payments. We arrived at this decision because the users view these activi-
ties as separate and distinct business processes, the data comes from different 
source systems, and there is unique dimensionality for the various transaction 
types. Multiple fact tables allow us to provide richer, more descriptive dimen-
sions and attributes. As we progress from purchase requisitions all the way to 
vendor payments, we inherit date dimensions and degenerate dimensions 
from the previous steps. The single fact table approach would have required 
generalization of the labeling for some dimensions. For example, purchase 
order date and receipt date likely would have been generalized to transaction 
date. Likewise, purchasing agent and receiving clerk would become 
employee. In another organization with different business requirements, 
source systems, and data dimensionality, the single blended fact table may be 
more appropriate. 

We understand that multiple fact tables may require more time to manage and 
administer because there are more tables to load, index, and aggregate. Some 
would argue that this approach increases the complexity of the data staging 
processes. In fact, it may simplify the staging activities. Since the operational 
data exist in separate source systems, we would need multiple staging 
processes in either fact table scenario. Loading the data into separate fact 
tables likely will be less complex than attempting to integrate data from the 
multiple sources into a single fact table. 

Complementary Procurement 
Snapshot 

Separate from the decision regarding procurement transaction fact tables, we 
may find that we also need to develop some sort of snapshot fact table to fully 
address the needs of the business. As we suggested in Chapter 3, an accumu-
lating snapshot that crosses processes would be extremely useful if the busi-
ness is interested in monitoring product movement as it proceeds through the 
procurement pipeline (including the duration or lag at each stage). We’ll spend 
more time on this topic in Chapter 5. 



Requisition Date Key (FK) 
Requested Date Key (FK) 
Product Key (FK) 

Requested By Key (FK) 
Contract Number (DD) 

Requisition Date Key (FK) 
Requested Date Key (FK) 

Product Key (FK) 

Requested By Key (FK) 

Contract Number (DD) 

Shipping Notification Date Key (FK) 
Ship Date Key (FK) 
Requested Date Key (FK) 
Product Key (FK) 

Requested By Key (FK) 

Contract Number (DD) 

Shipping Notification Number (DD) 
Shipped Quantity 

Shipping Notices Fact 

Ship Date Key (FK) 
Requested Date Key (FK) 
Product Key (FK) 

Received Condition Key (FK) 

Shipping Notification Number (DD) 
Received Quantity 

Payment Date Key (FK) 
Ship Date Key (FK) 

Product Key (FK) 

Contract Number (DD) 

Shipping Notification Number (DD) 
Accounts Payable Check Number (DD) 

Product DimensionDate Dimension 

Received Condition DimensionEmployee Dimension 
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Vendor Key (FK) 
Contract Terms Key (FK) 

Purchase Requisition Number (DD) 
Purchase Requisition Quantity 
Purchase Requisition Dollar Amount 

Purchase Requisition Fact 

Purchase Order Date Key (FK) 

Vendor Key (FK) 
Contract Terms Key (FK) 

Purchase Agent Key (FK) 

Purchase Requisition Number (DD) 
Purchase Order Number (DD) 
Purchase Order Quantity 
Purchase Order Dollar Amount 

Purchase Order Fact 

Vendor Key (FK) 
Contract Terms Key (FK) 

Purchase Agent Key (FK) 

Purchase Requisition Number (DD) 
Purchase Order Number (DD) 

Warehouse Receipt Date Key (FK) 

Vendor Key (FK) 

Warehouse Clerk (FK) 
Purchase Requisition Number (DD) 
Purchase Order Number (DD) 

Warehouse Receipts Fact 

Warehouse Receipt Date Key (FK) 

Vendor Key (FK) 
Contract Terms Key (FK) 
Discount Taken Key (FK) 

Purchase Requisition Number (DD) 
Purchase Order Number (DD) 

Vendor Payment Quantity 
Vendor Gross Payment Dollar Amount 
Vendor Payment Discount Dollar Amount 
Vendor Net Payment Dollar Amount 

Vendor Payment Fact 

Contract Terms Dimension Vendor Dimension 

Discount Taken Dimension 
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Figure 4.2 Multiple fact tables for procurement processes. 
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Slowly Changing Dimensions

Up to this point we have pretended that each dimension is logically indepen-
dent from all the other dimensions. In particular, dimensions have been 
assumed to be independent of time. Unfortunately, this is not the case in the 
real world. While dimension table attributes are relatively static, they are not 
fixed forever. Dimension attributes change, albeit rather slowly, over time. 
Dimensional designers must engage business representatives proactively to 
help determine the appropriate change-handling strategy. We can’t simply 
jump to the conclusion that the business doesn’t care about dimension changes 
just because its representatives didn’t mention it during the requirements 
process. While we’re assuming that accurate change tracking is unnecessary, 
business users may be assuming that the data warehouse will allow them to 
see the impact of each and every dimension change. Even though we may not 
want to hear that change tracking is a must-have because we are not looking 
for any additional development work, it is obviously better to receive the mes-
sage sooner rather than later. 

When we need to track change, it is unacceptable to put everything into the 
fact table or make every dimension time-dependent to deal with these 
changes. We would quickly talk ourselves back into a full-blown normalized 
structure with the consequential loss of understandability and query perfor-
mance. Instead, we take advantage of the fact that most dimensions are nearly 
constant over time. We can preserve the independent dimensional structure 
with only relatively minor adjustments to contend with the changes. We refer 
to these nearly constant dimensions as slowly changing dimensions. Since Ralph 
Kimball first introduced the notion of slowly changing dimensions in 1994, 
some IT professionals—in a never-ending quest to speak in acronymese—have 
termed them SCDs. 

For each attribute in our dimension tables, we must specify a strategy to han-
dle change. In other words, when an attribute value changes in the operational 
world, how will we respond to the change in our dimensional models? In the 
following section we’ll describe three basic techniques for dealing with 
attribute changes, along with a couple hybrid approaches. You may decide 
that you need to employ a combination of these techniques within a single 
dimension table. 

Type 1: Overwrite the Value 
With the type 1 response, we merely overwrite the old attribute value in the 
dimension row, replacing it with the current value. In so doing, the attribute 
always reflects the most recent assignment. 
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Let’s assume that we work for an electronics retailer. The procurement buyers 
are aligned along the same departmental lines as the store, so the products 
being acquired roll up into departments. One of the procured products is Intel-
liKidz software. The existing row in the product dimension table for Intel-
liKidz looks like the following: 

Product SKU Number 
Product Key Description Department (Natural Key) 

12345 IntelliKidz 1.0 Education ABC922-Z 

Of course, there would be numerous additional descriptive attributes in the 
product dimension, but we’ve abbreviated the column listing given our page 
space constraints. As we discussed earlier, a surrogate product key is the pri-
mary key of the table rather than just relying on the stock keeping unit (SKU) 
number. Although we have demoted the SKU number to being an ordinary 
product attribute, it still has a special significance because it remains the nat-
ural key. Unlike all other product attributes, the natural key must remain invi-
olate. Throughout the discussion of all three SCD types, we assume that the 
natural key of a dimension remains constant. 

Suppose that a new merchandising person decides that IntelliKidz should be 
moved from the Education software department to the Strategy department 
on January 15, 2002, in an effort to boost sales. With the type 1 response, we’d 
simply update the existing row in the dimension table with the new depart-
ment description. The updated row would look like the following: 

Product SKU Number 
Product Key Description Department (Natural Key) 

12345 IntelliKidz 1.0 Strategy ABC922-Z 

In this case, no dimension or fact table keys were modified when IntelliKidz’s 
department changed. The rows in the fact table still reference product key 
12345, regardless of IntelliKidz’s departmental location. When sales take off 
following the move to the Strategy department, we have no information to 
explain the performance improvement because the historical and more 
recently loaded data both appear as if IntelliKidz has always rolled up into 
Strategy. 

The type 1 response is the simplest approach to dealing with dimension 
attribute changes. The advantage of type 1 is that it is fast and easy. In the 
dimension table, we merely overwrite the preexisting value with the current 
assignment. The fact table is left untouched. The problem with a type 1 response 
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is that we lose all history of attribute changes. Since overwriting obliterates his-
torical attribute values, we’re left solely with the attribute values as they exist 
today. A type 1 response obviously is appropriate if the attribute change is a cor-
rection. It also may be appropriate if there is no value in keeping the old descrip-
tion. We need input from the business to determine the value of retaining the old 
attribute value; we shouldn’t make this determination on our own in an IT vac-
uum. Too often project teams use a type 1 response as the default response for 
dealing with slowly changing dimensions and end up totally missing the mark 
if the business needs to track historical changes accurately. 

The type 1 response is easy to implement, but it does not maintain any history of 
prior attribute values. 

Before we leave the topic of type 1 changes, there’s one more easily overlooked 
catch that you should be aware of. When we used a type 1 response to deal 
with the relocation of IntelliKidz, any preexisting aggregations based on the 
department value will need to be rebuilt. The aggregated data must continue 
to tie to the detailed atomic data, where it now appears that IntelliKidz has 
always rolled up into the Strategy department. 

Type 2: Add a Dimension Row 
We made the claim earlier in this book that one of the primary goals of the data 
warehouse was to represent prior history correctly. A type 2 response is the 
predominant technique for supporting this requirement when it comes to 
slowly changing dimensions. 

Using the type 2 approach, when IntelliKidz’s department changed, we issue 
a new product dimension row for IntelliKidz to reflect the new department 
attribute value. We then would have two product dimension rows for Intel-
liKidz, such as the following: 

Product SKU Number 
Product Key Description Department (Natural Key) 

12345 IntelliKidz 1.0 Education ABC922-Z 
25984 IntelliKidz 1.0 Strategy ABC922-Z 

Now we see why the product dimension key can’t be the SKU number natural 
key. We need two different product surrogate keys for the same SKU or phys-
ical barcode. Each of the separate surrogate keys identifies a unique product 
attribute profile that was true for a span of time. With type 2 changes, the fact 
table is again untouched. We don’t go back to the historical fact table rows to 
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modify the product key. In the fact table, rows for IntelliKidz prior to January 
15, 2002, would reference product key 12345 when the product rolled into the 
Education department. After January 15, the IntelliKidz fact rows would have 
product key 25984 to reflect the move to the Strategy department until we are 
forced to make another type 2 change. This is what we mean when we say that 
type 2 responses perfectly partition or segment history to account for the 
change. 

If we constrain only on the department attribute, then we very precisely dif-
ferentiate between the two product profiles. If we constrain only on the prod-
uct description, that is, IntelliKidz 1.0, then the query automatically will fetch 
both IntelliKidz product dimension rows and automatically join to the fact 
table for the complete product history. If we need to count the number of prod-
ucts correctly, then we would just use the SKU natural key attribute as the 
basis of the distinct count rather than the surrogate key. The natural key field 
becomes a kind of reliable glue that holds the separate type 2 records for a sin-
gle product together. Alternatively, a most recent row indicator might be 
another useful dimension attribute to allow users to quickly constrain their 
query to only the current profiles. 

The type 2 response is the primary technique for accurately tracking slowly changing 
dimension attributes. It is extremely powerful because the new dimension row auto­
matically partitions history in the fact table. 

It certainly would feel natural to include an effective date stamp on a dimen-
sion row with type 2 changes. The date stamp would refer to the moment 
when the attribute values in the row become valid or invalid in the case of 
expiration dates. Effective and expiration date attributes are necessary in the 
staging area because we’d need to know which surrogate key is valid when 
we’re loading historical fact records. In the dimension table, these date stamps 
are helpful extras that are not required for the basic partitioning of history. If 
you use these extra date stamps, just remember that there is no need to con-
strain on the effective date in the dimension table in order to get the right 
answer. This is often a point of confusion in the design and use of type 2 slowly 
changing dimensions. 

While including effective and expiration date attributes may feel comfortable to 
database designers, we should be aware that the effective date on the dimen-
sion table may have little to do with the dates in the fact table. Attempting to 
constrain on the dimension row effective date actually may yield an incorrect 
result. Perhaps version 2.0 of IntelliKidz software will be released on May 1, 
2002. A new operational SKU code (and corresponding data warehouse surro-
gate key) would be created for the new product. This isn’t a type 2 change 
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because the product is a completely new physical entity. However, if we look at 
a fact table for the retailer, we don’t see such an abrupt partitioning of history. 
The old version 1.0 of the software inevitably will continue to be sold in stores 
after May 1, 2002, until the existing inventory is depleted. The new version 2.0 
will appear on the shelves on May 1 and gradually will supersede the old ver-
sion. There will be a transition period where both versions of the software will 
move past the cash registers in any given store. Of course, the product overlap 
period will vary from store to store. The cash registers will recognize both oper-
ational SKU codes and have no difficulty handling the sale of either version. If 
we had an effective date on the product dimension row, we wouldn’t dare con-
strain on this date to partition sales because the date has no relevance. Even 
worse, using such a constraint may even give us the wrong answer. 

Nevertheless, the effective/expiration date stamps in the dimension may be 
useful for more advanced analysis. The dates support very precise time slicing 
of the dimension by itself. The row effective date is the first date the descrip-
tive profile is valid. The row expiration date would be one day less than the 
row effective date for the next assignment, or the date the product was retired 
from the catalog. We could determine what the product catalog looked like as 
of December 31, 2001, by constraining a product table query to retrieve all 
rows where the row effective date to less than or equal to December 31, 2001, 
and the row expiration date to greater than or equal to December 31, 2001. 
We’ll further discuss opportunities to leverage effective and expiration dates 
when we delve into the human resources schema in Chapter 8. 

The type 2 response is the workhorse technique to support analysis using his-
torically accurate attributes. This response perfectly segments fact table his-
tory because prechange fact rows use the prechange surrogate key. Another 
type 2 advantage is that we can gracefully track as many dimension changes 
as required. Unlike the type 1 approach, there is no need to revisit preexisting 
aggregation tables when using the type 2 approach. 

Of course, the type 2 response to slowly changing dimensions requires the use 
of surrogate keys, but you’re already using them anyhow, right? It is not suffi-
cient to use the underlying operational key with two or three version digits 
because you’ll be vulnerable to the entire list of potential operational key 
issues discussed in Chapter 2. Likewise, it is certainly inadvisable to append 
an effective date to the otherwise primary key of the dimension table to 
uniquely identify each version. With the type 2 response, we create a new 
dimension row with a new single-column primary key to uniquely identify the 
new product profile. This single-column primary key establishes the linkage 
between the fact and dimension tables for a given set of product characteris-
tics. There’s no need to create a confusing secondary join based on effective or 
expiration dates, as we have pointed out. 
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We recognize that some of you may be concerned about the administration of 
surrogate keys to support type 2 changes. In Chapter 16 we’ll discuss a work-
flow for managing surrogate keys while accommodating type 2 changes in 
more detail. In the meantime, we want to put your mind somewhat at ease 
about the administrative burden. When we’re staging dimension tables, we’re 
often handed a complete copy of the latest, greatest source data. It would be 
wonderful if only the changes since the last extract, or deltas, were delivered 
to the staging area, but more typically, the staging application has to find the 
changed dimensions. A field-by-field comparison of each dimension row to 
identify the changes between yesterday’s and today’s versions would be 
extremely laborious, especially if we have 100 attributes in a several-million-
row dimension table. Rather than checking each field to see if something has 
changed, we instead compute a checksum for the entire row all at once. A 
cyclic redundancy checksum (CRC) algorithm helps us quickly recognize that 
a wide, messy row has changed without looking at each of its constituent 
fields. In our staging area we calculate the checksum for each row in a dimen-
sion table and add it to the row as an administrative column. At the next data 
load, we compute the CRCs on the incoming records to compare with the prior 
CRCs. If the CRCs match, all the attributes on both rows are identical; there’s 
no need to check every field. Obviously, any new rows would trigger the cre-
ation of a new product dimension row. Finally, when we encounter a changed 
CRC, then we’ll need to deal with the change based on our dimension-change 
strategy. If we’re using a type 2 response for all the attributes, then we’d just 
create another new row. If we’re using a combination of techniques, then we’d 
have to look at the fields in more detail to determine the appropriate action. 

Since the type 2 technique spawns new dimension rows, one downside of this 
approach is accelerated dimension table growth. Hence it may be an inappro-
priate technique for dimension tables that already exceed a million rows. We’ll 
discuss an alternative approach for handling change in large, multimillion-
row dimension tables when we explore the customer dimension in Chapter 6. 

Type 3: Add a Dimension Column 
While the type 2 response partitions history, it does not allow us to associate 
the new attribute value with old fact history or vice versa. With the type 2 
response, when we constrain on Department = Strategy, we will not see Intel-
liKidz facts from before January 15, 2002. In most cases, this is exactly what we 
want. 

However, sometimes we want the ability to see fact data as if the change never 
occurred. This happens most frequently with sales force reorganizations. Dis-
trict boundaries have been redrawn, but some users still want the ability to see 
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today’s sales in terms of yesterday’s district lines just to see how they would 
have done under the old organizational structure. For a few transitional 
months, there may be a desire to track history in terms of the new district 
names and conversely to track new data in terms of old district names. A type 
2 response won’t support this requirement, but the type 3 response comes to 
the rescue. 

In our software example, let’s assume that there is a legitimate business need 
to track both the old and new values of the department attribute both forward 
and backward for a period of time around the change. With a type 3 response, 
we do not issue a new dimension row, but rather we add a new column to cap-
ture the attribute change. In the case of IntelliKidz, we alter the product 
dimension table to add a prior department attribute. We populate this new col-
umn with the existing department value (Education). We then treat the depart-
ment attribute as a type 1 response, where we overwrite to reflect the current 
value (Strategy). All existing reports and queries switch over to the new 
department description immediately, but we can still report on the old depart-
ment value by querying on the prior department attribute. 

Product Product Prior SKU Number 
Key Description Department Department (Natural Key) 

12345 IntelliKidz 1.0 Strategy Education ABC922-Z 

Type 3 is appropriate when there’s a strong need to support two views of the 
world simultaneously. Some designers call this an alternate reality. This often 
occurs when the change or redefinition is soft or when the attribute is a 
human-applied label rather than a physical characteristic. Although the 
change has occurred, it is still logically possible to act as if it has not. The type 
3 response is distinguished from the type 2 response because both the current 
and prior descriptions can be regarded as true at the same time. In the case of 
a sales reorganization, management may want the ability to overlap and ana-
lyze results using either map of the sales organization for a period of time. 
Another common variation occurs when your users want to see the current 
value in addition to retaining the original attribute value rather than the prior. 

The type 3 response is used rather infrequently. Don’t be fooled into thinking 
that the higher type number associated with the type 3 response indicates that 
it is the preferred approach. The techniques have not been presented in good, 
better, and best practice sequence. There is a time and place where each of 
them is the most appropriate response. 

The type 3 slowly changing dimension technique allows us to see new and historical 
fact data by either the new or prior attribute values. 
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A type 3 response is inappropriate if you want to track the impact of numerous 
intermediate attribute values. Obviously, there are serious implementation 
and usage limitations to creating attributes that reflect the prior minus 1, prior 
minus 2, and prior minus 3 states of the world, so we give up the ability to ana-
lyze these intermediate values. If there is a need to track a myriad of unpre-
dictable changes, then a type 2 response should be used instead in most cases. 

Hybrid Slowly Changing Dimension Techniques 

In this section we’ll discuss two hybrid approaches that combine basic slowly 
changing dimension techniques. Many IT professionals become enamored of 
these techniques because they seem to provide the best of all worlds. However, 
the price we pay for greater flexibility is often greater complexity. While some 
IT professionals are easily impressed by elegant flexibility, our business users 
are just as easily turned off by complexity. You should not pursue these options 
unless the business agrees that they are needed to address their requirements. 

Predictable Changes with 
Multiple Version Overlays 

This technique is used most frequently to deal with sales organization realign-
ments, so we’ll depart from our IntelliKidz example to present the concept in 
a more realistic scenario. Consider the situation where a sales organization 
revises the map of its sales districts on an annual basis. Over a 5-year period, 
the sales organization is reorganized five times. On the surface, this may seem 
like a good candidate for a type 2 approach, but we discover through business 
user interviews that they have a more complex set of requirements, including 
the following capabilities: 

�� Report each year’s sales using the district map for that year. 

�� Report each year’s sales using a district map from an arbitrary 
different year. 

�� Report an arbitrary span of years’ sales using a single district map from 
any chosen year. The most common version of this requirement would 
be to report the complete span of fact data using the current district map. 

We cannot address this set of requirements with a standard type 2 response 
because it partitions history. A year of fact data can only be reported using the 
assigned map at that point in time with a type 2 approach. The requirements 
can’t be met with a standard type 3 response because we want to support more 
than two simultaneous maps. 



Sales Rep Key 
Sales Rep Name 
Sales Rep Address... 
Current District 
District 2001 
District 2000 
District 1999 
District 1998 
… and more 

Sales Rep Dimension 
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Figure 4.3 Sample dimension table with multiple version overlays. 

In this case we take advantage of the regular, predictable nature of these 
changes by geralizing the type 3 approach to have five versions of the district 
attribute for each sales rep. The sales rep dimension would include the attrib-
utes shown in Figure 4.3. 

Each sales rep dimension row would include all prior district assignments. 
The business user could choose to roll up the sales facts with any of the five 
district maps. If a sales rep were hired in 2000, the dimension attributes for 
1998 and 1999 would contain values along the lines of “Not Applicable.” 

We label the most recent assignment as “Current District.” This attribute will 
be used most frequently; we don’t want to modify our existing queries and 
reports to accommodate next year’s change. When the districts are redrawn 
next, we’d alter the table to add a district 2002 attribute. We’d populate this 
column with the current district values and then overwrite the current 
attribute with the 2003 district assignments. 

Unpredictable Changes with 
Single-Version Overlay 

This final approach is relevant if you’ve been asked to preserve historical accu-
racy surrounding unpredictable attribute changes while supporting the ability 
to report historical data according to the current values. None of the standard 
slowly changing dimension techniques enable this requirement independently. 

In the case of the electronics retailer’s product dimension, we would have two 
department attributes on each row. The current department column represents 
the current assignment; the historical department column represents the his-
torically accurate department attribute value. 
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When IntelliKidz software is procured initially, the product dimension row 
would look like the following: 

SKU 
Product Product Current Historical Number 
Key Description Department Department (Natural Key) 

12345 IntelliKidz 1.0 Education Education ABC922-Z 

When the departments are restructured and IntelliKidz is moved to the Strat-
egy department, we’d use a type 2 response to capture the attribute change by 
issuing a new row. In this new dimension row for IntelliKidz, the current 
department will be identical to the historical department. For all previous 
instances of IntelliKidz dimension rows, the current department attribute will 
be overwritten to reflect the current structure. Both IntelliKidz rows would 
identify the Strategy department as the current department. 

SKU 
Product Product Current Historical Number 
Key Description Department Department (Natural Key) 

12345 IntelliKidz 1.0 Strategy Education ABC922-Z 
25984 IntelliKidz 1.0 Strategy Strategy ABC922-Z 

In this manner we’re able to use the historical attribute to segment history and 
see facts according to the departmental roll-up at that point in time. Mean-
while, the current attribute rolls up all the historical fact data for product keys 
12345 and 25984 into the current department assignment. If IntelliKidz were 
then moved into the Critical Thinking software department, our product table 
would look like the following: 

SKU 
Product Product Current Historical Number 
Key Description Department Department (Natural Key) 

12345 IntelliKidz 1.0 Critical Education ABC922-Z 
Thinking 

25984 IntelliKidz 1.0 Critical Strategy ABC922-Z 
Thinking 

31726 IntelliKidz 1.0 Critical Critical ABC922-Z 
Thinking Thinking 

With this hybrid approach, we issue a new row to capture the change (type 
2) and add a new column to track the current assignment (type 3), where 
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subsequent changes are handled as a type 1 response. Someone once sug-
gested that we refer to this combo approach as type 6 (2 + 3 + 1). This tech-
nique allows us to track the historical changes accurately while also 
supporting the ability to roll up history based on the current assignments. 
We could further embellish (and complicate) this strategy by supporting 
additional static department roll-up structures, in addition to the current 
department, as separate attributes. 

Again, while this powerful technique may be naturally appealing to some 
readers, it is important that we always consider the users’ perspective as we 
strive to arrive at a reasonable balance between flexibility and complexity. 

More Rapidly Changing Dimensions 

In this chapter we’ve focused on the typically rather slow, evolutionary 
changes to our dimension tables. What happens, however, when the rate of 
change speeds up? If a dimension attribute changes monthly, then we’re no 
longer dealing with a slowly changing dimension that can be handled reason-
ably with the techniques just discussed. One powerful approach for handling 
more rapidly changing dimensions is to break off these rapidly changing 
attributes into one or more separate dimensions. In our fact table we would 
then have two foreign keys—one for the primary dimension table and another 
for the rapidly changing attribute(s). These dimension tables would be associ-
ated with one another every time we put a row in the fact table. Stay tuned for 
more on this topic when we cover customer dimensions in Chapter 6. 

Summary 

In this chapter we discussed several approaches to handling procurement 
data. Effectively managing procurement performance can have a major impact 
on an organization’s bottom line. 

We also introduced several techniques to deal with changes to our dimension 
table attributes. The slowly changing responses range from merely overwriting 
the value (type 1), to adding a new row to the dimension table (type 2), to the 
least frequently used approach in which we add a column to the table (type 3). 
We also discussed several powerful, albeit more complicated, hybrid 
approaches that combine the basic techniques. 
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rder management consists of several critical business processes, including 
order, shipment, and invoice processing. These processes spawn important 
business metrics, such as sales volume and invoice revenue, that are key per-
formance indicators for any organization that sells products or services to 
others. In fact, these foundation metrics are so crucial that data warehouse 
teams most frequently tackle one of the order management processes for their 
initial data warehouse implementation. Clearly, the topics in this case study 
transcend industry boundaries. 

In this chapter we’ll explore several different order management transactions, 
including the common characteristics and complications you might encounter 
when dimensionally modeling these transactions. We’ll elaborate on the con-
cept of an accumulating snapshot to analyze the order-fulfillment pipeline 
from initial order through release to manufacturing, into finished goods inven-
tory, and finally to product shipment and invoicing. We’ll close the chapter by 
comparing and contrasting the three types of fact tables: transaction, periodic 
snapshot, and accumulating snapshot. For each of these fact table types, we’ll 
also discuss the handling of real-time warehousing requirements. 

Chapter 5 discusses the following concepts: 

�� Orders transaction schema 
�� Fact table normalization considerations 
�� Date dimension role-playing 
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�� More on product dimensions 
�� Ship-to / bill-to customer dimension considerations 
�� Junk dimensions 
�� Multiple currencies and units of measure 
�� Handling of header and line item facts with different granularity 
�� Invoicing transaction schema with profit and loss facts 
�� Order fulfillment pipeline as accumulating snapshot schema 
�� Lag calculations 
�� Comparison of transaction, periodic snapshot, and accumulating snapshot fact 

tables 
�� Special partitions to support the demand for near real time data warehousing 

Introduction to Order Management 

If we take a closer look at the order management function, we see that 
it’s comprised of a series of business processes. In its most simplistic form, 
we can envision a subset of the data warehouse bus matrix that resembles 
Figure 5.1. 

As we saw in earlier chapters, the data warehouse bus matrix closely corre-
sponds to the organization’s value chain. In this chapter we’ll focus specifi-
cally on the order and invoice rows of the matrix. We’ll also describe an 
accumulating snapshot fact table that combines data from multiple order man-
agement processes. 
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Figure 5.1 Subset of data warehouse bus matrix for order management processes. 
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Order Date Dimension Order Transaction Fact 

Order Date Key (FK) 
Requested Ship Date Key (FK) 
Product Key (FK) 

Sales Rep Key (FK) 
Deal Key (FK) 
Order Number (DD) 
Order Line Number (DD) 
Order Quantity 
Gross Order Dollar Amount 
Order Deal Discount Dollar Amount 
Net Order Dollar Amount 

Order Date Key (PK) 
Order Date 

Order Date Month 
… and more 

Product Dimension 

Sales Rep Dimension 

Deal Dimension 

Requested Ship Date Key (PK) 
Requested Ship Date 

Requested Ship Date Month 
… and more 

Requested Ship Date Dimension 

Customer Ship To Key (FK) 
Order Date Day of Week Customer Ship To Dimension 

Requested Ship Date Day of Week 

Figure 5.2 Order transaction fact table. 

Order Transactions 

The first process we’ll explore is order transactions. As companies have grown 
through acquisition, they often find themselves with multiple operational 
order transaction processing systems in the organization. The existence of 
multiple source systems often creates a degree of urgency to integrate the dis-
parate results in the data warehouse rather than waiting for the long-term 
application integration. 

The natural granularity for an order transaction fact table is one row for each line 
item on an order. The facts associated with this process typically include the order 
quantity, extended gross order dollar amount, order discount dollar amount, and 
extended net order dollar amount (which is equal to the gross order amount less 
the discounts). The resulting schema would look similar to Figure 5.2. 

Fact Normalization 
Rather than storing a list of facts, as in Figure 5.2, some designers want to fur-
ther normalize the fact table so that there’s a single, generic fact amount, along 
with a dimension that identifies the type of fact. The fact dimension would 
indicate whether it is the gross order amount, order discount amount, or some 
other measure. This technique may make sense when the set of facts is 
sparsely populated for a given fact row and no computations are made 
between facts. We have used this technique to deal with manufacturing qual-
ity test data, where the facts vary widely depending on the test conducted. 

However, we generally resist the urge to further normalize the fact table. As we 
see with orders data, facts usually are not sparsely populated within a row. In 
this case, if we were to normalize the facts, we’d be multiplying the number of 
rows in the fact table by the number of fact types. For example, assume that we 
started with 10 million order line fact table rows, each with six keys and four 
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facts. If we normalized the facts, we’d end up with 40 million fact rows, each 
with seven keys and one fact. In addition, if we are performing any arithmetic 
function between the facts (such as discount amount as a percentage of gross 
order amount), it is far easier if the facts are in the same row because SQL makes 
it difficult to perform a ratio or difference between facts in different rows. In 
Chapter 13 we’ll explore a situation where a fact dimension makes more sense. 

Dimension Role-Playing 
By now we all know that a date dimension is found in every fact table because 
we are always looking at performance over time. In a transaction-grained fact 
table, the primary date column is the transaction date, such as the order date. 
Sometimes we also discover other dates associated with each transaction, such 
as the requested ship date for the order. 

Each of the dates should be a foreign key in the fact table. However, we cannot 
simply join these two foreign keys to the same date dimension table. SQL 
would interpret such a two-way simultaneous join as requiring both the dates 
to be identical, which isn’t very likely. 

Even though we cannot literally join to a single date dimension table, we can 
build and administer a single date dimension table behind the scenes. We cre-
ate the illusion of two independent date tables by using views. We are careful 
to uniquely label the columns in each of the SQL views. For example, order 
month should be uniquely labeled to distinguish it from requested ship 
month. If we don’t practice good data housekeeping, we could find ourselves 
in the uncomfortable position of not being able to tell the columns apart when 
both are dragged into a report. 

As we briefly described in Chapter 2, you would define the order date and 
requested order date views as follows: 

CREATE VIEW ORDER_DATE (ORDER_DATE_KEY, ORDER_DAY_OF_WEEK,

ORDER_MONTH...) 

AS SELECT DATE_KEY, DAY_OF_WEEK, MONTH, . . . FROM DATE

and 

CREATE VIEW REQ_SHIP_DATE (REQ_SHIP_DATE_KEY, REQ_SHIP_DAY_OF_WEEK,

REQ_SHIP_MONTH ...) 

AS SELECT DATE_KEY, DAY_OF_WEEK, MONTH, . . . FROM DATE

We now have two unique date dimensions that can be used as if they were inde-
pendent with completely unrelated constraints. We refer to this as role-playing 
because the date dimension simultaneously serves different roles in a single 
fact table. We’ll see additional examples of dimension role-playing sprinkled 
throughout this book. 
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Role-playing in a data warehouse occurs when a single dimension simultaneously 
appears several times in the same fact table. The underlying dimension may exist as 
a single physical table, but each of the roles should be presented to the data access 
tools in a separately labeled view. 

To handle the multiple dates, some designers are tempted to create a single 
date table with a key for each unique order date and requested ship date com-
bination. This approach falls apart on several fronts. First, our clean and sim-
ple daily date table with approximately 365 rows per year would balloon in 
size if it needed to handle all the date combinations. Second, such a combina-
tion date table would no longer conform to our other frequently used daily, 
weekly, and monthly date dimensions. 

Product Dimension Revisited 
A product dimension has participated in each of the case study vignettes pre-
sented so far in this book. The product dimension is one of the most common 
and most important dimension tables you’ll encounter in a dimensional 
model. 

The product dimension describes the complete portfolio of products sold by a 
company. In most cases, the number of products in the portfolio turns out to be 
surprisingly large, at least from an outsider’s perspective. For example, a 
prominent U.S. manufacturer of dog and cat food tracks nearly 20,000 manu-
facturing variations of its products, including retail products everyone (or 
every dog and cat) is familiar with, as well as numerous specialized products 
sold through commercial and veterinary channels. We’ve worked with 
durable goods manufacturers who sell literally millions of unique product 
configurations. 

Most product dimension tables share the following characteristics: 

Numerous verbose descriptive columns. For manufacturers, it’s not unusual 
to maintain 100 or more descriptors about the products they sell. Dimen-
sion table attributes naturally describe the dimension row, do not vary 
because of the influence of another dimension, and are virtually constant 
over time, although as we just discussed in Chapter 4, some attributes do 
change slowly over time. 

One or more attribute hierarchies in addition to many nonhierarchical 
attributes. It is too limiting to think of products as belonging to a single 
hierarchy. Products typically roll up according to multiple defined hierar-
chies. All the hierarchical data should be presented in a single flattened, 
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denormalized product dimension table. We resist creating normalized 
snowflaked sub-tables for the product dimension. The costs of a more com-
plicated presentation and slower intradimension browsing performance 
outweigh the minimal storage savings benefits. It is misleading to think 
about browsing in a small dimension table, where all the relationships can 
be imagined or visualized. Real product dimension tables have thousands 
of entries, and the typical user does not know the relationships intimately. 
If there are 20,000 dog and cat foods in the product dimension, it is not too 
useful to request a pull-down list of the product descriptions. It would be 
essential, in this example, to have the ability to constrain on one attribute, 
such as flavor, and then another attribute, such as package type, before 
attempting to display the product description listings. Notice that the first 
two constraints were not drawn strictly from a product hierarchy. Any of 
the product attributes, regardless of whether they belong to a hierarchy, 
should be used freely for drilling down and up. In fact, most of the attrib-
utes in a large product table are standalone low-cardinality attributes, not 
part of explicit hierarchies. 

The existence of an operational product master aids in maintenance of the 
product dimension, but a number of transformations and administrative steps 
must occur to convert the operational master file into the dimension table, 
including: 

Remap the operational product key to a surrogate key. As we discussed in 
Chapter 2, this smaller, more efficient join key is needed to avoid havoc 
caused by duplicate use of the operational product key over time. It also 
might be necessary to integrate product information sourced from different 
operational systems. Finally, as we just learned in Chapter 4, the surrogate 
key is needed to track changing product attributes in cases where the oper-
ational system has not generated a new product master key. 

Add readable text strings to augment or replace numeric codes in the opera-
tional product master. We don’t accept the excuse that the businesspeople 
are familiar with the codes. The only reason businesspeople are familiar 
with codes is that they have been forced to use them! Remember that the 
columns in a product dimension table are the sole source of query con-
straints and report labels, so the contents must be legible. Keep in mind that 
cryptic abbreviations are as bad as outright numeric codes; they also should 
be augmented or replaced with readable text. Multiple abbreviated codes in 
a single field should be expanded and separated into distinct fields. 

Quality assure all the text strings to ensure that there are no misspellings, 
impossible values, or cosmetically different versions of the same 
attribute. In addition to automated procedures, a simple backroom 
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technique for flushing out minor misspellings of attribute values is to just 
sort the distinct values of the attribute and look down the list. Spellings 
that differ by a single character usually will sort next to each other and can 
be found with a visual scan of the list. This supplemental manager’s qual-
ity assurance check should be performed occasionally to monitor data 
quality. Data access interfaces and reports rely on the precise contents of 
the dimension attributes. SQL will happily produce another line in a report 
if the attribute value varies in any way based on trivial punctuation or 
spelling differences. We also should ensure that the attribute values are 
completely populated because missing values easily cause misinterpreta-
tions. Incomplete or poorly administered textual dimension attributes lead 
to incomplete or poorly produced reports. 

Document the product attribute definitions, interpretations, and origins in 
the data warehouse’s metadata. Remember that the metadata is analogous 
to the data warehouse encyclopedia. We must be vigilant about populating 
and maintaining the metadata. 

Customer Ship-To Dimension 
The customer ship-to dimension contains one row for each discrete location to 
which we ship a product. Customer ship-to dimension tables can range from 
moderately sized (thousands of rows) to extremely large (millions of rows) 
depending on the nature of the business. A typical customer ship-to dimension 
is shown in Figure 5.3. 

Order Date Key (FK) 
Requested Ship Date Key (FK) 
Product Key (FK) 

Sales Rep Key (FK) 
Deal Key (FK) 
Order Number (DD) 
Order Line Number (DD) 
Order Quantity 
Gross Order Dollar Amount 
Order Deal Discount Dollar Amount 
Net Order Dollar Amount… 

Customer Organization Name 
Customer Corporate Parent Name 
Customer Credit Rating 
Assigned Sales Rep Name 

Assigned Sales District 
Assigned Sales Region 

Order Date Dimension 

Request Ship Date Dimension 

Product Dimension 

Sales Rep Dimension 

Deal Dimension 

Customer Ship To Key (FK) 

Order Transaction Fact 

Customer Ship To Key (PK) 
Customer Ship To ID (Natural Key) 
Customer Ship To Name 
Customer Ship To Address 
Customer Ship To City 
Customer Ship To State 
Customer Ship To Zip + 4 
Customer Ship To Zip 
Customer Ship To Zip Region 
Customer Ship To Zip Sectional Center 
Customer Bill To Name 
Customer Bill To Address Attributes 

Assigned Sales Rep Team Name 

Customer Ship To Dimension 

Figure 5.3 Sample customer ship-to dimension. 
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Several separate and independent hierarchies typically coexist in a customer 
ship-to dimension. The natural geographic hierarchy is clearly defined by the 
ship-to location. Since the ship-to location is a point in space, any number of 
geographic hierarchies may be defined by nesting ever-larger geographic enti-
ties around the point. In the United States, the usual geographic hierarchy is 
city, county, and state. The U.S. ZIP code identifies a secondary geographic 
breakdown. The first digit of the ZIP code identifies a geographic region of the 
United States (for example, 0 for the Northeast and 9 for certain western states), 
whereas the first three digits of the ZIP code identify a mailing sectional center. 

Another common hierarchy is the customer’s organizational hierarchy, assum-
ing that the customer is a corporate entity. For each customer ship-to, we 
might have a customer bill-to and customer corporation. For every base-level 
row in the customer ship-to dimension, both the physical geography and the 
customer organizational affiliation are well defined, even though the hierar-
chies roll up differently. 

It is natural and common, especially for customer-oriented dimensions, for a dimen-
sion to simultaneously support multiple independent hierarchies. The hierarchies 
may have different numbers of levels. Drilling up and drilling down within each of 
these hierarchies must be supported in a data warehouse. 

The alert reader may have a concern with the implied assumption that multi-
ple ship-tos roll up to a single bill-to in a many-to-one relationship. The real 
world is rarely quite this clean and simple. There are always a few exceptions 
involving ship-tos that are associated with more than one bill-to. Obviously, 
this breaks the simple hierarchical relationship that we have assumed in the 
earlier denormalized customer ship-to dimension. If this is a rare occurrence, 
it would be reasonable to generalize the customer ship-to dimension so that 
the grain of the dimension is each unique ship-to/bill-to combination. If there 
are two sets of bill-to information associated with a given ship-to location, 
then there would be two rows in the dimension, one for each combination. On 
the other hand, if many of the ship-tos are associated with many bill-tos in a 
robust many-to-many relationship, then ship-to and bill-to probably need to 
be handled as separate dimensions that are linked together by the fact table. 
This is the designer’s prerogative. With either approach, exactly the same 
information is preserved at the fact table order line-item level. We’ll spend 
more time on customer organizational hierarchies, including the handling of 
recursive customer parent-child relationships, in Chapter 6. 

Another potential independent hierarchy in the customer ship-to dimension 
might be the manufacturer’s sales organization. Designers sometimes ques-
tion whether sales organization attributes should be modeled as a separate 
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dimension or the attributes just should be added to the existing customer 
dimension. Similar to the preceding discussion about bill-tos, the designer 
should use his or her judgment. If sales reps are highly correlated with cus-
tomer ship-tos in a one-to-one or many-to-one relationship, combining the 
sales organization attributes with the customer ship-to dimension is a viable 
approach. The resulting dimension is only about as big as the larger of the two 
dimensions. The relationships between sales teams and customers can be 
browsed efficiently in the single dimension without traversing the fact table. 

However, sometimes the relationship between sales organization and cus-
tomer ship-to is more complicated. The following factors must be taken into 
consideration: 

The one-to-one or many-to-one relationship may turn out to be a many-to-
many relationship. As we discussed earlier, if the many-to-many relation-
ship is an exceptional condition, then we may still be tempted to combine 
the sales rep attributes into the ship-to dimension, knowing that we’d need 
to treat these rare many-to-many occurrences by issuing another surrogate 
ship-to key. 

If the relationship between sales rep and customer ship-to varies over time 
or under the influence of a fourth dimension such as product, then the 
combined dimension is in reality some kind of fact table itself! In this 
case, we’d likely create separate dimensions for the sales rep and the cus-
tomer ship-to. 

If the sales rep and customer ship-to dimensions participate independently 
in other business process fact tables, we’d likely keep the dimensions 
separate. Creating a single customer ship-to dimension with sales rep 
attributes exclusively around orders data may make some of the other 
processes and relationships difficult to express. 

When entities have a fixed, time-invariant, strongly correlated relationship, 
they obviously should be modeled as a single dimension. In most other cases, 
your design likely will be simpler and more manageable when you separate 
the entities into two dimensions (while remembering the general guidelines 
concerning too many dimensions). If you’ve already identified 25 dimensions 
in your schema, you should give strong consideration to combining dimen-
sions, if possible. 

When the dimensions are separate, some designers want to create a little table 
with just the two dimension keys to show the correlation without using the fact 
table. This two-dimension table is unnecessary. There is no reason to avoid the 
fact table to respond to this relationship inquiry. Fact tables are incredibly effi-
cient because they contain only dimension keys and measurements. The fact 
table was created specifically to represent the correlation between dimensions. 
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Before we leave the topic of sales rep assignments to customers, users some-
times want the ability to analyze the complex assignment of sales reps to cus-
tomers over time, even if no order activity has occurred. In this case, we could 
construct a factless fact table, as we briefly introduced in Chapter 2, to capture 
the sales rep coverage. The coverage table would provide a complete map of 
the historical assignments of sales reps to customers, even if some of the 
assignments never resulted in a sale. As we’ll learn in Chapter 13, we’d likely 
include effective and expiration dates in the sales rep coverage table because 
coverage assignments change over time. 

Deal Dimension 
The deal dimension is similar to the promotion dimension from Chapter 2. The 
deal dimension describes the incentives that have been offered to the customer 
that theoretically affect the customers’ desire to purchase products. This 
dimension is also sometimes referred to as the contract. As shown in Figure 5.4, 
the deal dimension describes the full combination of terms, allowances, and 
incentives that pertain to the particular order line item. 

The same issues that we faced in the retail promotion dimension also arise 
with this deal dimension. If the terms, allowances, and incentives are usefully 
correlated, then it makes sense to package them into a single deal dimension. 
If the terms, allowances, and incentives are quite uncorrelated and we find 
ourselves generating the Cartesian product of these factors in the dimension, 
then it probably makes sense to split such a deal dimension into its separate 
components. Once again, this is not an issue of gaining or losing information, 
since the database contains the same information in both cases, but rather the 
issues of user convenience and administrative complexity determine whether 
to represent these deal factors as multiple dimensions. In a very large fact 
table, with tens of millions or hundreds of millions of rows, the desire to 
reduce the number of keys in the fact table composite key would favor keep-
ing the deal dimension as a single dimension. Certainly any deal dimension 
smaller than 100,000 rows would be tractable in this design. 

Order Date Key (FK) 
Requested Ship Date Key (FK) 
Product Key (FK) 

Sales Rep Key (FK) 
Deal Key (FK) 
Order Number (DD) 
Order Line Number (DD) 
Order Quantity 
Gross Order Dollar Amount 
Order Deal Discount Dollar Amount 
Net Order Dollar Amount 

Deal Key (PK) 
Deal Description 

Allowance Description 

Special Incentive Description 

Deal Dimension 
Order Date Dimension 

Request Ship Date Dimension 

Product Dimension 

Sales Rep Dimension 

Customer Ship To Key (FK) 

Order Transaction Fact 

Deal Terms Description 
Deal Terms Type Description 

Allowance Type Description 

Special Incentive Type Description 
Customer Ship To Dimension 

Figure 5.4 Sample deal dimension. 



Order Management 117 

Degenerate Dimension for 
Order Number 

Each line item row in the orders fact table includes the order number as a 
degenerate dimension, as we introduced in Chapter 2. Unlike a transactional 
parent-child database, the order number in our dimensional models is not tied 
to an order header table. We have stripped all the interesting details from the 
order header into separate dimensions such as the order date, customer ship-to, 
and other interesting fields. The order number is still useful because it allows us 
to group the separate line items on the order. It enables us to answer such ques-
tions as the average number of line items on an order. In addition, the order 
number is used occasionally to link the data warehouse back to the operational 
world. Since the order number is left sitting by itself in the fact table without 
joining to a dimension table, it is referred to as a degenerate dimension. 

Degenerate dimensions typically are reserved for operational transaction identifiers. 
They should not be used as an excuse to stick a cryptic code in the fact table without 
joining to a descriptive decode in a dimension table. 

If the designer decides that certain data elements actually do belong to the 
order itself and do not usefully fall into another natural business dimension, 
then order number is no longer a degenerate dimension but rather is a normal 
dimension with its own surrogate key and attribute columns. However, 
designers with a strong parent-child background should resist the urge simply 
to lump the traditional order header information into an order dimension. In 
almost all cases, the header information belongs in other analytic dimensions 
rather than merely being dumped into a dimension that closely resembles the 
transaction order header table. 

Junk Dimensions 
When we’re confronted with a complex operational data source, we typically 
perform triage to quickly identify fields that are obviously related to dimen-
sions, such as date stamps or attributes. We then identify the numeric mea-
surements in the source data. At this point, we are often left with a number of 
miscellaneous indicators and flags, each of which takes on a small range of dis-
crete values. The designer is faced with several rather unappealing options, 
including: 

Leave the flags and indicators unchanged in the fact table row. This could 
cause the fact table row to swell alarmingly. It would be a shame to create a 
nice tight dimensional design with five dimensions and five facts and then 
leave a handful of uncompressed textual indicator columns in the row. 
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Make each flag and indicator into its own separate dimension. Doing so 
could cause our 5-dimension design to balloon into a 25-dimension design. 

Strip out all the flags and indicators from the design. Of course, we ask the 
obligatory question about removing these miscellaneous flags because they 
seem rather insignificant, but this notion is often vetoed quickly because 
someone might need them. It is worthwhile to examine this question care-
fully. If the indicators are incomprehensible, noisy, inconsistently popu-
lated, or only of operational significance, they should be left out. 

An appropriate approach for tackling these flags and indicators is to study 
them carefully and then pack them into one or more junk dimensions. You can 
envision the junk dimension as being akin to the junk drawer in your kitchen. 
The kitchen junk drawer is a dumping ground for miscellaneous household 
items, such as rubber bands, paper clips, batteries, and tape. While it may be 
easier to locate the rubber bands if we dedicated a separate kitchen drawer to 
them, we don’t have adequate storage capacity to do so. Besides, we don’t 
have enough stray rubber bands, nor do we need them very frequently, to war-
rant the allocation of a single-purpose storage space. The junk drawer pro-
vides us with satisfactory access while still retaining enough kitchen storage 
for the more critical and frequently accessed dishes and silverware. 

A junk dimension is a convenient grouping of typically low-cardinality flags and indi-
cators. By creating an abstract dimension, we remove the flags from the fact table 
while placing them into a useful dimensional framework. 

A simple example of a useful junk dimension would be to remove 10 two-value 
indicators, such as the cash versus credit payment type, from the order fact table 
and place them into a single dimension. At the worst, you would have 1,024 (210) 
rows in this junk dimension. It probably isn’t very interesting to browse among 
these flags within the dimension because every flag occurs with every other flag 
if the database is large enough. However, the junk dimension is a useful holding 
place for constraining or reporting on these flags. Obviously, the 10 foreign keys 
in the fact table would be replaced with a single small surrogate key. 

On the other hand, if you have highly uncorrelated attributes that take on 
more numerous values, then it may not make sense to lump them together into 
a single junk dimension. Unfortunately, the decision is not entirely formulaic. 
If you have five indicators that each take on only three values, the single junk 
dimension is the best route for these attributes because the dimension has only 
243 (35) possible rows. However, if the five uncorrelated indicators each have 
100 possible values, we’d suggest the creation of separate dimensions because 
you now have 100 million (1005) possible combinations. 
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Order 
Indicator 

Key 
Payment Type 

Description 

Payment 
Type 

Group 

Inbound/ 
Outbound 

Order Indicator 
Commission Credit 

Indicator 
Order Type 
Indicator 

1 Cash Cash Inbound Commissionable Regular 
2 Cash Cash Inbound Non-Commissionable Display 
3 Cash Cash Inbound Non-Commissionable Demonstration 
4 Cash Cash Outbound Commissionable Regular 
5 Cash Cash Outbound Non-Commissionable Display 
6 Discover Card Credit Inbound Commissionable Regular 
7 Discover Card Credit Inbound Non-Commissionable Display 
8 Discover Card Credit Inbound Non-Commissionable Demonstration 
9 Discover Card Credit Outbound Commissionable Regular 
10 Discover Card Credit Outbound Non-Commissionable Display 
11 MasterCard Credit Inbound Commissionable Regular 
12 MasterCard Credit Inbound Non-Commissionable Display 
13 MasterCard Credit Inbound Non-Commissionable Demonstration 
14 MasterCard Credit Outbound Commissionable Regular 

Figure 5.5 Sample rows of an order indicator junk dimension. 

We’ve illustrated sample rows from an order indicator dimension in Figure 5.5. A 
subtle issue regarding junk dimensions is whether you create rows for all the 
combinations beforehand or create junk dimension rows for the combinations as 
you actually encounter them in the data. The answer depends on how many pos-
sible combinations you expect and what the maximum number could be. Gener-
ally, when the number of theoretical combinations is very high and you don’t 
think you will encounter them all, you should build a junk dimension row at 
extract time whenever you encounter a new combination of flags or indicators. 

Another interesting application of the junk dimension technique is to use it to 
handle the infrequently populated, open-ended comments field sometimes 
attached to a fact row. Optimally, the comments have been parameterized in a 
dimension so that they can be used for robust analysis. Even if this is not the 
case, users still may feel that the comments field is meaningful enough to 
include in the data warehouse. In this case, a junk dimension simply contains 
all the distinct comments. The junk dimension is noticeably smaller than the 
fact table because the comments are relatively rare. Of course, you will need a 
special surrogate key that points to the “No Comment” row in the dimension 
because most of your fact table rows will use this key. 

Multiple Currencies 
Suppose that we are tracking the orders of a large multinational California-
based company with sales offices around the world. We may be capturing 
order transactions in more than 15 different currencies. We certainly wouldn’t 
want to include columns in the fact table for each currency because theoreti-
cally there are an open-ended number of currencies. 
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The most obvious requirement is that order transactions be expressed in both 
local currency and the standardized corporate currency, such as U.S. dollars in 
this example. To satisfy this need, we would replace each underlying order 
fact with a pair of facts, one for the applicable local currency and another for 
the equivalent standard corporate currency. This would allow all transactions 
to easily roll up to the corporate currency without complicated application 
coding. We’d also supplement the fact table with an additional currency 
dimension to identify the currency type associated with the local-currency 
facts. A currency dimension is needed even if the location of the transaction is 
otherwise known because the location does not necessarily guarantee which 
currency was used. 

However, you may find the multicurrency support requirements are more 
complicated than we just described. We may need to allow a manager in any 
country to see order volume in any currency. For example, the sales office in 
Bangkok may monitor sales orders in Thai bhat, the Asia-Pacific region man-
ager in Tokyo may want to look at the region’s orders in Japanese yen, and the 
sales department in California may want to see the orders based on U.S. dol-
lars. Embellishing our initial design with an additional currency conversion 
fact table, as shown in Figure 5.6, can deliver this flexibility. The dimensions in 
this fact table represent currencies, not countries, because the relationship 
between currencies and countries is not one to one. The needs of the sales rep 
in Thailand and U.S.-based sales management would be met simply by query-
ing the orders fact table. The region manager in Tokyo could roll up all Asia-
Pacific orders in Japanese yen by using the special currency conversion table. 

Order Date Key (FK) 
Product Key (FK) 

Sales Rep Key (FK) 
Deal Key (FK) 
Local Currency Dimension Key (FK) 
Order Number (DD) 
Order Line Number (DD) 
Order Quantity 
Local Currency Gross Order Amount 
Local Currency Order Discount Amount 
Local Currency Net Order Amount 
Standard US Dollar Gross Order Amount 
Standard US Dollar Order Discount Amount 
Standard US Dollar Net Order Amount 

Date Dimension 

Product Dimension 

Sales Rep Dimension 

Deal Dimension 

Currency Dimension 

Customer Ship To Key (FK) 

Order Transaction Fact 

Customer Ship To Dimension 

Currency Conversion Fact 

Conversion Date Key (FK) 

Destination Currency Key (FK) 
Source Currency Key (FK) 

Source-Destination Exchange Rate 
Destination-Source Exchange Rate 

Supports reporting of facts 
in multiple currencies 

Supports reporting of facts 
in two currencies 

Figure 5.6 Tracking multiple currencies with a daily currency exchange fact table. 
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Within each fact table row, the amount expressed in local currency is 
absolutely accurate because the sale occurred in that currency on that day. The 
equivalent U.S. dollar value would be based on a conversion rate to U.S. dol-
lars for that day. The conversion rate table contains all combinations of effec-
tive currency exchange rates going in both directions because the symmetric 
rates between two currencies are not exactly equal. 

Header and Line Item Facts with 
Different Granularity 

It is quite common in parent-child transaction databases to encounter facts of dif-
fering granularity. On an order, for example, there may be a shipping charge that 
applies to the entire order that isn’t available at the individual product-level line 
item in the operational system. The designer’s first response should be to try to 
force all the facts down to the lowest level. We strive to flatten the parent-child 
relationship so that all the rows are at the child level, including facts that are cap-
tured operationally at the higher parent level, as illustrated in Figure 5.7. This pro-
cedure is broadly referred to as allocating. Allocating the parent order facts to the 
child line-item level is critical if we want the ability to slice and dice and roll up all 
order facts by all dimensions, including product, which is a common requirement. 

Unfortunately, allocating header-level facts down to the line-item level may 
entail a political wrestling match. It is wonderful if the entire allocation issue is 
handled by the finance department, not by the data warehouse team. Getting 
organizational agreement on allocation rules is often a controversial and com-
plicated process. The data warehouse team shouldn’t be distracted and delayed 
by the inevitable organizational negotiation. Fortunately, in many companies, 
the need to rationally allocate costs has been recognized already. A task force, 
independent of the data warehouse team, already may have established activ-
ity-based costing measures. This is just another name for allocating. 

Order Line Fact 

Allocated to line level 

Order Date Key (FK) 

Sales Rep Key (FK) 
Deal Key (FK) 
Order Number (DD) 
Order Shipping Charges 

Order Header Fact Order Date Key (FK) 
Product Key (FK) 

Sales Rep Key (FK) 
Deal Key (FK) 
Order Number (DD) 
More Line Item Facts … 
Order Shipping Charges 

Customer Ship To Key (FK) 
Customer Ship To Key (FK) 

Note the absence of a product dimension 
in this fact table since product 

doesn't apply to the order header 

When header facts are allocated to the 
line level, we're able to analyze them 

by the product dimension 

Figure 5.7 Allocating header facts to the line item. 
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If the shipping charges and other header-level facts cannot be allocated suc-
cessfully, then they must be presented in an aggregate table for the overall 
order. We clearly prefer the allocation approach, if possible, because the sepa-
rate higher-level fact table has some inherent usability issues. Without alloca-
tions, we’d be unable to explore header facts by product because the product 
isn’t identified in a header-grain fact table. If we are successful in allocating 
facts down to the lowest level, the problem goes away. 

We shouldn’t mix fact granularities (for example, order and order line facts) within a 
single fact table. Instead, we need to either allocate the higher-level facts to a more 
detailed level or create two separate fact tables to handle the differently grained 
facts. Allocation is the preferred approach. Optimally, a finance or business team 
(not the data warehouse team) spearheads the allocation effort. 

Invoice Transactions 

If we work for a manufacturing company, invoicing typically occurs when 
products are shipped from our facility to the customer. We visualize shipments 
at the loading dock as boxes of product are loaded onto a truck destined for a 
particular customer address. The invoice associated with the shipment is cre-
ated at this time. The invoice governs the current shipment of products on that 
truck on that day to a particular customer address. The invoice has multiple 
line items, each corresponding to a particular product being shipped. Various 
prices, discounts, and allowances are associated with each line item. The 
extended net amount for each line item is also available. 

Although we don’t show it on the invoice to the customer, a number of other 
interesting facts are potentially known about each product at the time of ship-
ment. We certainly know list prices; manufacturing and distribution costs may 
be available as well. Thus we know a lot about the state of our business at the 
moment of customer shipment. 

In the shipment invoice fact table we can see all the company’s products, all 
the customers, all the contracts and deals, all the off-invoice discounts and 
allowances, all the revenue generated by customers purchasing products, all 
the variable and fixed costs associated with manufacturing and delivering 
products (if available), all the money left over after delivery of product (con-
tribution), and customer satisfaction metrics such as on-time shipment. 
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For any company that ships products to customers or bills customers for services ren-
dered, the optimal place to start a data warehouse typically is with invoices. We often 
refer to the data resulting from invoicing as the most powerful database because it 
combines the company’s customers, products, and components of profitability. 

We choose the grain of the invoice fact table to be the individual invoice line 
item. A sample invoice fact table associated with manufacturer shipments is 
illustrated in Figure 5.8. 

As you’d expect, the shipment invoice fact table contains a number of dimen-
sions that we’ve seen previously in this chapter. The conformed date dimen-
sion table again would play multiple roles in the fact table. The customer, 
product, and deal dimensions also would conform so that we can drill across 
from fact table to fact table and communicate using common attributes. We’d 
also have a degenerate order number, assuming that a single order number is 
associated with each invoice line item, as well as the invoice number degener-
ate dimension. 

The shipment invoice fact table also contains some interesting new dimen-
sions we haven’t seen yet in our designs. The ship-from dimension contains 
one row for each manufacturer warehouse or shipping location. This is a rela-
tively simple dimension with name, address, contact person, and storage facil-
ity type. The attributes are somewhat reminiscent of the facility dimension 
describing stores from Chapter 2. 

The shipper dimension describes the method and carrier by which the product 
was shipped from the manufacturer to the customer. Sometimes a shipment 
database contains only a simple carrier dimension, with attributes about the 
transportation company. There is only one ship method, namely, truck to cus-
tomer. However, both manufacturers and customers alike are interested in 
tracking alternative delivery methods, such as direct store delivery (product 
delivered directly to the retail outlet), cross-docking (product transferred from 
one carrier to another without placing it in a warehouse), back hauling (carrier 
transports the product on a return trip rather than returning empty), and cus-
tomer pallet creation (product custom assembled and shrink-wrapped on a 
pallet destined for a retail outlet). Since investments are made in these alterna-
tive shipping models, manufacturers (and their customers) are interested in 
analyzing the businesses along the shipper dimension. The customer satisfac-
tion dimension provides textual descriptions that summarize the numeric sat-
isfaction flags at the bottom of the fact table. 



Figure 5.8 Shipment invoice fact table. 

Profit and Loss Facts 
If your organization has tackled activity-based costing or implemented a 
robust enterprise resource planning (ERP) system, you are likely in a position 
to identify many of the incremental revenues and costs associated with ship-
ping finished products to the customer. It is traditional to arrange these rev-
enues and costs in sequence from the top line, which represents the 
undiscounted value of the products shipped to the customer, down to the bot-
tom line, which represents the money left over after discounts, allowances, 
and costs. This list of revenues and costs is called a profit and loss (P&L) state-
ment. We typically don’t make an attempt to carry the P&L statement all the 
way to a complete view of company profit, including general and administra-
tive costs. For this reason, we will refer to the bottom line in our P&L statement 
as the contribution. 

Keeping in mind that each row in the invoice fact table represents a single line 
item on the shipment invoice, the elements of our P&L statement, as shown in 
Figure 5.8, have the following interpretations: 

Quantity shipped. This is the number of cases of the particular line-item 
product. We’ll discuss the use of multiple equivalent quantities with differ-
ent units of measure later in the chapter. 

Extended gross invoice amount. This is also know as extended list price 
because it is the quantity shipped multiplied by the list unit price. This and 
all subsequent dollar values are extended amounts or, in other words, unit 

Shipment Invoice Line Item Transaction Fact 

Date Dimension (views for 3 roles) 

Customer Ship To Dimension 

Ship From Dimension 

Customer Satisfaction Dimension 
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Invoice Date Key (FK) 
Requested Ship Date Key (FK) 
Actual Ship Date Key (FK) 
Product Key (FK) 

Deal Key (FK) 
Ship From Key (FK) 
Shipper Key (FK) 
Customer Satisfaction Key (FK) 
Invoice Number (DD) 
Order Number (DD) 
Quantity Shipped 
Extended Gross Invoice Dollar Amount 
Extended Allowance Dollar Amount 
Extended Discount Dollar Amount 
Extended Net Invoice Dollar Amount 
Extended Fixed Manufacturing Cost 

Extended Storage Cost 
Extended Distribution Cost 
Contribution Dollar Amount 

Shipment Line Item Complete Count 
Shipment Line Item Damage Free Count 

Product Dimension 

Deal Dimension 

Shipper Dimension 

Customer Ship To Key (FK) 

Extended Variable Manufacturing Cost 

Shipment Line Item On-Time Count 
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rates multiplied by the quantity shipped. This insistence on additive val-
ues simplifies most access and reporting applications. It is relatively rare 
for the user to ask for the price from a single row of the fact table. When 
the user wants an average price drawn from many rows, the extended 
prices are first added, and then the result is divided by the sum of the 
shipped quantities. 

Extended allowance amount. This is the amount subtracted from the 
invoice-line gross amount for deal-related allowances. The allowances are 
described in the adjoined deal dimension. The allowance amount is often 
called an off-invoice allowance. The actual invoice may have several 
allowances for a given line item. In this example design, we lumped the 
allowances together. If the allowances need to be tracked separately and 
there are potentially many simultaneous allowances on a given line item, 
then an additional dimension structure is needed. An allowance-detail fact 
table could be used to augment the invoice fact table, serving as a drill-
down target for a detailed explanation of the allowance bucket in the 
invoice fact table. 

Extended discount amount. This is the amount subtracted on the invoice for 
volume or payment-term discounts. The explanation of which discounts 
are taken is also found in the deal dimension row that points to this fact 
table row. As discussed in the section on the deal dimension, the decision 
to code the explanation of the allowances and discount types together is 
the designer’s prerogative. It makes sense to do this if allowances and dis-
counts are correlated and users wish to browse within the deal dimension 
to study the relationships between allowances and discounts. Note that the 
discount for payment terms is characteristically a forecast that the cus-
tomer will pay within the time period called for in the terms agreement. If 
this does not happen, or if there are other corrections to the invoice, then 
the Finance Department probably will back out the original invoice in a 
subsequent month and post a new invoice. In all likelihood, the data ware-
house will see this as three transactions. Over time, all the additive values 
in these rows will add up correctly, but care must be taken in performing 
rows counts not to impute more activity than actually exists. 

All allowances and discounts in this fact table are represented at the line 
item level. As we discussed earlier, some allowances and discounts may be 
calculated operationally at the invoice level, not the line-item level. An 
effort should be made to allocate them down to the line item. An invoice 
P&L statement that does not include the product dimension poses a serious 
limitation on our ability to present meaningful P&L slices of the business. 

Extended net invoice amount. This is the amount the customer is expected to 
pay for this line item before tax. It is equal to the gross invoice amount less 
the allowances and discounts. 
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The facts described so far likely would be displayed to the customer on the 
invoice document. The following cost amounts, leading to a bottom-line con-
tribution, are for internal consumption only. 

Extended fixed manufacturing cost. This is the amount identified by manu-
facturing as the pro rata fixed manufacturing cost of the product. 

Extended variable manufacturing cost. This is the amount identified by 
manufacturing as the variable manufacturing cost of the product. This 
amount may be more or less activity-based, reflecting the actual location 
and time of the manufacturing run that produced the product being 
shipped to the customer. Conversely, this number may be a standard value 
set by a committee of executives. If the manufacturing costs or any of the 
other storage and distribution costs are too much averages of averages, 
then the detailed P&Ls in the data warehouse may become meaningless. 
The existence of the data warehouse tends to illuminate this problem and 
accelerate the adoption of activity-based costing methods. 

Extended storage cost. This is the cost charged to the product for storage 
prior to being shipped to the customer. 

Extended distribution cost. This is the cost charged to the product for trans-
portation from the point of manufacture to the point of shipment. This cost 
is notorious for not being activity-based. Sometimes a company doesn’t 
want to see that it costs more to do business in Seattle because the manu-
facturing plant is in Alabama. The distribution cost possibly can include 
freight to the customer if the company pays the freight, or the freight cost 
can be presented as a separate line item in the P&L. 

Contribution amount. This is the final calculation of the extended net invoice 
less all the costs just discussed. This is not the true bottom line of the over-
all company because general and administrative expenses and other finan-
cial adjustments have not been made, but it is important nonetheless. This 
column sometimes has alternative labels, such as margin, depending on the 
company culture. 

Profitability—The Most Powerful 
Data Mart 

We should step back and admire the dimensional model we just built. We often 
describe this design as the most powerful data mart. We have constructed a 
detailed P&L view of our business, showing all the activity-based elements of 
revenue and costs. We have a full equation of profitability. However, what 
makes this design so compelling is that the P&L view sits inside a very rich 
dimensional framework of calendar dates, customers, products, and causal 
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factors. Do you want see customer profitability? Just constrain and group on the 
customer dimension and bring the components of the P&L into your report. Do 
you want to see product profitability? Do you want to see deal profitability? All 
these analyses are equally easy and take the same analytic form in your query 
and report-writing tools. Somewhat tongue in cheek, we recommend that you 
not deliver this data mart too early in your career because you will get promoted 
and won’t be able to work directly on any more data warehouses! 

Profitability Words of Warning 
We must balance the last paragraph with a more sober note. Before leaving this 
topic, we are compelled to pass along some cautionary words of warning. It 
goes without saying that most of your users probably are very interested in 
granular P&L data that can be rolled up to analyze customer and product prof-
itability. The reality is that delivering these P&L statements often is easier said 
than done. The problems arise with the cost facts. Even with advanced ERP 
implementations, it is fairly common to be unable to capture the cost facts at 
this atomic level of granularity. You will face a complex process of mapping, or 
allocating, the original cost data down to the invoice line level of the shipment 
invoice. Furthermore, each type of cost may turn out to require a separate 
extraction from some source system. Ten cost facts may mean 10 different 
extract and transformation programs. Before you sign up for mission impossi-
ble, be certain to perform a detailed assessment of what is available and feasi-
ble from your source systems. You certainly don’t want the data warehouse 
team saddled with driving the organization to consensus on activity-based 
costing as a side project, on top of managing a number of parallel extract 
implementations. If time permits, profitability is often tackled as a consoli-
dated data mart after the components of revenue and cost have been sourced 
and delivered separately to business users in the data warehouse. 

Customer Satisfaction Facts 
In addition to the P&L facts, business users often are interested in customer 
satisfaction metrics, such as whether the line item was shipped on time, 
shipped complete, or shipped damage-free. We can add separate columns to 
the fact table for each of these line item-level satisfaction metrics. These new 
fact columns are populated with additive ones and zeroes, supporting inter-
esting analyses of line item performance metrics such as the percentage of 
orders shipped to a particular customer on time. We also would augment the 
design with a customer satisfaction dimension that combines these flags into a 
single dimension (ala the junk dimension we discussed earlier) to associate 
text equivalents with the flags for reporting purposes. 
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Accumulating Snapshot for the Order 
Fulfillment Pipeline 

We can think of the order management process as a pipeline, especially in a 
build-to-order manufacturing business, as illustrated in Figure 5.9. Customers 
place an order that goes into backlog until it is released to manufacturing to be 
built. The manufactured products are placed in finished goods inventory and 
then shipped to the customers and invoiced. Unique transactions are gener-
ated at each spigot of the pipeline. Thus far we’ve considered each of these 
pipeline activities as a separate fact table. Doing so allows us to decorate the 
detailed facts generated by each process with the greatest number of detailed 
dimensions. It also allows us to isolate our analysis to the performance of a sin-
gle business process, which is often precisely what the business users want. 

However, there are times when users are more interested in analyzing the 
entire order fulfillment pipeline. They want to better understand product 
velocity, or how quickly products move through the pipeline. The accumulat-
ing snapshot fact table provides us with this perspective of the business, as 
illustrated in Figure 5.10. It allows us to see an updated status and ultimately 
the final disposition of each order. 

The accumulating snapshot complements our alternative perspectives of the 
pipeline. If we’re interested in understanding the amount of product flowing 
through the pipeline, such as the quantity ordered, produced, or shipped, we rely 
on transaction schemas that monitor each of the pipeline’s major spigots. Periodic 
snapshots give us insight into the amount of product sitting in the pipeline, such 
as the backorder or finished goods inventories, or the amount of product flowing 
through a spigot during a predefined time period. The accumulating snapshot 
helps us better understand the current state of an order, as well as product move-
ment velocities to identify pipeline bottlenecks and inefficiencies. 

We notice immediately that the accumulating snapshot looks different from 
the other fact tables we’ve designed thus far. The reuse of conformed dimen-
sions is to be expected, but the number of date and fact columns is larger than 
we’ve seen in the past. We capture a large number of dates and facts as the 
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Figure 5.9 Order fulfillment pipeline diagram. 
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Finished Inventory Placement Date Key (FK) 

Warehouse Key (FK) 

Finished Goods Inventory Quantity 

Manufacturing Release to Inventory Lag 
Inventory to Shipment Lag 

Warehouse Dimension 

Figure 5.10 Order fulfillment accumulating snapshot fact table. 

order progresses through the pipeline. Each date represents a major milestone 
of the fulfillment pipeline. We handle each of these dates as dimension roles by 
creating either physically distinct tables or logically distinct views. It is critical 
that a surrogate key is used for these date dimensions rather than a literal SQL 
date stamp because many of the fact table date fields will be “Unknown” or 
“To be determined” when we first load the row. Obviously, we don’t need to 
declare all the date fields in the fact table’s primary key. 

The fundamental difference between accumulating snapshots and other fact 
tables is the notion that we revisit and update existing fact table rows as more 
information becomes available. The grain of an accumulating snapshot fact 
table is one row per the lowest level of detail captured as the pipeline is 
entered. In our example, the grain would equal one row per order line item. 
However, unlike the order transaction fact table we designed earlier with the 
same granularity, the fact table row in the accumulating snapshot is modified 
while the order moves through the pipeline as more information is collected 
from every stage of the lifecycle. 
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Accumulating snapshots typically have multiple dates in the fact table representing the 
major milestones of the process. However, just because a fact table has several dates 
doesn’t dictate that it is an accumulating snapshot. The primary differentiator of an ac-
cumulating snapshot is that we typically revisit the fact rows as activity takes place. 

The accumulating snapshot technique is very useful when the product moving 
through the pipeline is uniquely identified, such as an automobile with a vehi-
cle identification number, electronics equipment with a serial number, lab 
specimens with a identification number, or process manufacturing batches 
with a lot number. The accumulating snapshot helps us understand through-
put and yield. If the granularity of an accumulating snapshot is at the serial or 
lot number, we’re able to see the disposition of a discrete product as it moves 
through the manufacturing and test pipeline. The accumulating snapshot fits 
most naturally with short-lived processes that have a definite beginning and 
end. Long-lived processes, such as bank accounts, are better modeled with 
periodic snapshot fact tables. 

Lag Calculations 
The lengthy list of date columns is used to measure the spans of time over 
which the product is processed through the pipeline. The numerical difference 
between any two of these dates is a number, which can be averaged usefully 
over all the dimensions. These date lag calculations represent basic measures of 
the efficiency of the order fulfillment process. We could build a view on this fact 
table that calculated a large number of these date differences and presented 
them to the user as if they were stored in the underlying table. These view fields 
could include such measures as orders to manufacturing release lag, manufac-
turing release to finished goods lag, and order to shipment lag, depending on 
the date spans that your organization is interested in monitoring. 

Multiple Units of Measure 
Sometimes different functional organizations within the business want to see 
the same performance metrics expressed in different units of measure. For 
instance, manufacturing managers may want to see the product flow in terms 
of pallets or shipping cases. Sales and marketing managers, on the other hand, 
may wish to see the quantities in retail cases, scan units (sales packs), or con-
sumer units (such as individual sticks of gum). 

Designers sometimes are tempted to bury the unit-of-measure conversion 
factors, such as ship case factor, in the product dimension. Users are then 
required to appropriately multiply (or was it divide?) the order quantity by the 
conversion factor. Obviously, this approach places a burden on business users, 
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in addition to being susceptible to calculation errors. The situation is further 
complicated because the conversion factors may change over time, so users 
also would need to determine which factor is applicable at a specific point 
in time. 

Rather than risk miscalculating the equivalent quantities by placing conver-
sion factors in the dimension table, we recommend that they be stored in the 
fact table instead. In the orders pipeline fact table example, assume that we 
had 10 basic fundamental quantity facts, in addition to five units of measure. 
If we physically stored all the facts expressed in the different units of measure, 
we’d end up with 50 (10 x 5) facts in each fact row. Instead, we compromise 
by building an underlying physical row with 10 quantity facts and 4 unit-of-
measure conversion factors. We only need four unit-of-measure conversion 
factors rather than five since the base facts are already expressed in one of 
the units of measure. Our physical design now has 14 quantity-related facts 
(10 + 4), as shown in Figure 5.11. With this design, we are able to see perfor-
mance across the value chain based on different units of measure. 

Of course, we would deliver this fact table to the business users through one 
or more views. The extra computation involved in multiplying quantities by 
conversion factors is negligible compared with other database management 
system (DBMS) overhead. Intrarow computations are very efficient. The most 
comprehensive view actually could show all 50 facts expressed in every unit 
of measure, but obviously, we could simplify the user interface for any spe-
cific user group by only making available the units of measure the group 
wants to see. 

Order Fulfillment Fact 

Date Keys (FKs) 
Product Key (FK) 
More Foreign Keys … 
Degenerate Dimensions … 
Order Quantity 
Release to Manufacturing Quantity 
Manufacturing Pass Inspection Quantity 
Manufacturing Fail Inspection Quantity 

Authorized to Sell Quantity 
Shipment Quantity 
Shipment Damage Quantity 
Customer Return Quantity 
Invoice Quantity 
Retail Case Factor 
Shipping Case Factor 
Pallet Factor 
Car Load Factor 

Finished Goods Inventory Quantity 

The factors are physically 
packaged on each fact row. 
In the user interface, a view 
multiplies out the combinations. 

Figure 5.11 Support for multiple units of measure with fact table conversion factors. 
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Packaging all the facts and conversion factors together in the same fact table row 
provides the safest guarantee that these factors will be used correctly. The converted 
facts are presented in a view(s) to the users. 

Finally, another side benefit of storing these factors in the fact table is that it 
reduces the pressure on the product dimension table to issue new product 
rows to reflect minor factor modifications. These factors, especially if they 
evolve routinely over time, behave more like facts than dimension attributes. 

Beyond the Rear-View Mirror 
Much of what we’ve discussed in this chapter focuses on effective ways to 
analyze historical product movement performance. People sometimes refer to 
these as rear-view mirror metrics because they allow us to look backward and 
see where we’ve been. As the brokerage industry reminds us, past perfor-
mance is no guarantee of future results. The current trend is to supplement 
these historical performance metrics with additional facts that provide a 
glimpse of what lies ahead of us. Rather than focusing on the pipeline at the 
time an order is received, some organizations are trying to move further back 
to analyze the key drivers that have an impact on the creation of an order. For 
example, in a sales organization, drivers such as prospecting or quoting activ-
ity can be extrapolated to provide some visibility to the expected order activ-
ity volume. Some organizations are implementing customer relationship 
management (CRM) solutions in part to gain a better understanding of con-
tact management and other leading indicators. While the concepts are 
extremely powerful, typically there are feasibility concerns regarding this 
early predictive information, especially if you’re dealing with a legacy data 
collection source. Because organizations build products and bill customers 
based on order and invoice data, they often do a much better job at collecting 
the rear-view mirror information than they do the early indicators. Of course, 
once the organization moves beyond the rear-view mirror to reliably capture 
front-window leading indicators, these indicators can be added gracefully to 
the data warehouse. 

Fact Table Comparison 

As we mentioned previously, there are three fundamental types of fact 
tables: transaction, periodic snapshot, and accumulating snapshot. All three 
types serve a useful purpose; you often need two complementary fact tables 
to get a complete picture of the business. Table 5.1 compares and contrasts 
the variations. 
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Table 5.1 Fact Table Type Comparison 

PERIODIC

Indeterminate time 
represented predictable 

intervals 

Grain One row per One row per One row per life 
transaction event period 

Not revisited Not revisited Revisited whenever 
activity 

Date dimension End-of-period Multiple dates for 
date standard milestones 

predefined time finite lifetime 
interval 

 ACCUMULATING 
TRANSACTION SNAPSHOT SNAPSHOT 

CHARACTERISTIC GRAIN GRAIN GRAIN 

Time period Point in time Regular, 
span, typically 
short-lived 

Fact table loads Insert Insert Insert and update 

Fact row updates 

Transaction date 

Facts Transaction activity Performance for Performance over 

These three fact table variations are not totally dissimilar because they share 
conformed dimensions, which are the keys to building separate fact tables that 
can be used together with common, consistent filters and labels. While the 
dimensions are shared, the administration and rhythm of the three fact tables 
are quite different. 

Transaction Fact Tables 
The most fundamental view of the business’s operations is at the individual 
transaction level. These fact tables represent an event that occurred at an 
instantaneous point in time. A row exists in the fact table for a given customer 
or product only if a transaction event occurred. Conversely, a given customer 
or product likely is linked to multiple rows in the fact table because hopefully 
the customer or product is involved in more than one transaction. 

Transaction data often is structured quite easily into a dimensional frame-
work. The lowest-level data is the most naturally dimensional data, support-
ing analyses that cannot be done on summarized data. Transaction-level data 
let us analyze behavior in extreme detail. Once a transaction has been posted, 
we typically don’t revisit it. 

Having made a solid case for the charm of transaction-level detail, you may be 
thinking that all you need is a big, fast DBMS to handle the gory transaction 
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minutiae, and your job is over. Unfortunately, even with transaction-level 
data, there is still a whole class of urgent business questions that are impracti-
cal to answer using only transaction detail. As we indicated earlier, dimen-
sional modelers cannot survive on transactions alone. 

Periodic Snapshot Fact Tables 
Periodic snapshots are needed to see the cumulative performance of the busi-
ness at regular, predictable time intervals. Unlike the transaction fact table, 
where we load a row for each event occurrence, with the periodic snapshot, we 
take a picture (hence the snapshot terminology) of the activity at the end of a 
day, week, or month, then another picture at the end of the next period, and so 
on. The periodic snapshots are stacked consecutively into the fact table. The 
periodic snapshot fact table often is the only place to easily retrieve a regular, 
predictable, trendable view of the key business performance metrics. 

Periodic snapshots typically are more complex than individual transactions. 
When transactions equate to little pieces of revenue, we can move easily from 
individual transactions to a daily snapshot merely by adding up the transac-
tions, such as with the invoice fact tables from this chapter. In this situation, the 
periodic snapshot represents an aggregation of the transactional activity that 
occurred during a time period. We probably would build the daily snapshot 
only if we needed a summary table for performance reasons. The design of the 
snapshot table is closely related to the design of its companion transaction table 
in this case. The fact tables share many dimension tables, although the snapshot 
usually has fewer dimensions overall. Conversely, there often are more facts in a 
periodic snapshot table than we find in a transaction table. 

In many businesses, however, transactions are not components of revenue. 
When you use your credit card, you are generating transactions, but the credit 
card issuer’s primary source of customer revenue occurs when fees or charges 
are assessed. In this situation, we can’t rely on transactions alone to analyze 
revenue performance. Not only would crawling through the transactions be 
time-consuming, but also the logic required to interpret the effect of different 
kinds of transactions on revenue or profit can be horrendously complicated. 
The periodic snapshot again comes to the rescue to provide management 
with a quick, flexible view of revenue. Hopefully, the data for this snapshot 
schema is sourced directly from an operational system. If it is not, the ware-
house staging area must incorporate very complex logic to interpret the finan-
cial impact of each transaction type correctly at data load time. 

Accumulating Snapshot Fact Tables 
Last, but not least, the third type of fact table is the accumulating snapshot. 
While perhaps not as common as the other two fact table types, accumulating 
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snapshots can be very insightful. As we just observed in this chapter, accumu-
lating snapshots represent an indeterminate time span, covering the complete 
life of a transaction or discrete product (or customer). 

Accumulating snapshots almost always have multiple date stamps, represent-
ing the predictable major events or phases that take place during the course of 
a lifetime. Often there’s an additional date column that indicates when the 
snapshot row was last updated. Since many of these dates are not known 
when the fact row is first loaded, we must use surrogate date keys to handle 
undefined dates. It is not necessary to accommodate the most complex sce-
nario that might occur very infrequently. The analysis of these rare outliers can 
always be done in the transaction fact table. 

In sharp contrast to the other fact table types, we purposely revisit accumulat-
ing snapshot fact table rows to update them. Unlike the periodic snapshot, 
where we hang onto the prior snapshot, the accumulating snapshot merely 
reflects the accumulated status and metrics. 

Sometimes accumulating and periodic snapshots work in conjunction with 
one another. Such is the case when we build the monthly snapshot incremen-
tally by adding the effect of each day’s transactions to an accumulating snap-
shot. If we normally think of the data warehouse as storing 36 months of 
historical data in the periodic snapshot, then the current rolling month would 
be month 37. Ideally, when the last day of the month has been reached, the 
accumulating snapshot simply becomes the new regular month in the time 
series, and a new accumulating snapshot is started the next day. The new 
rolling month becomes the leading breaking wave of the warehouse. 

Transactions and snapshots are the yin and yang of dimensional data ware-
houses. Used together, companion transaction and snapshot fact tables pro-
vide a complete view of the business. We need them both because there is often 
no simple way to combine these two contrasting perspectives. Although there 
is some theoretical data redundancy between transaction and snapshot tables, 
we don’t object to such redundancy because as data warehouse publishers our 
mission is to publish data so that the organization can analyze it effectively. 
These separate types of fact tables each provide a different perspective on the 
same story. 

Designing Real-Time Partitions 

In the past couple years, a major new requirement has been added the data 
warehouse designer’s list. The data warehouse now must extend its existing 
historical time series seamlessly right up to the current instant. If the customer 
has placed an order in the last hour, we need to see this order in the context of 
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the entire customer relationship. Furthermore, we need to track the hourly 
status of this most current order as it changes during the day. 

Even though the gap between the operational transaction-processing systems 
and the data warehouse has shrunk in most cases to 24 hours, the rapacious 
needs of our marketing users require the data warehouse to fill this gap with 
near real-time data. 

Most data warehouse designers are skeptical that the existing extract-trans-
form-load (ETL) jobs simply can be sped up from a 24-hour cycle time to a 15-
minute cycle time. Even if the data cleansing steps are pipelined to occur in 
parallel with the final data loading, the physical manipulations surrounding 
the biggest fact and dimension tables simply can’t be done every 15 minutes. 

Data warehouse designers are responding to this crunch by building a real-
time partition in front of the conventional static data warehouse. 

Requirements for the Real-Time 
Partition 

To achieve real-time reporting, we build a special partition that is separated 
physically and administratively from the conventional static data warehouse 
tables. Actually, the name partition is a little misleading. The real-time partition 
in many cases should not be a literal table partition in the database sense. 
Rather, the real-time partition is a separate table subject to special update and 
query rules. 

The real-time partition ideally should meet the following stringent set of 
requirements. It must: 

�� Contain all the activity that occurred since the last update of the static 
data warehouse. We will assume that the static tables are updated each 
night at midnight. 

�� Link as seamlessly as possible to the grain and content of the static data 
warehouse fact tables. 

�� Be so lightly indexed that incoming data can be continuously dribbled in. 

In this chapter we just described the three main types of fact tables: transaction 
grain, periodic snapshot grain, and accumulating snapshot grain. The real-
time partition has a different structure corresponding to each fact table type. 

Transaction Grain Real-Time Partition 
If the static data warehouse fact table has a transaction grain, then it contains 
exactly one record for each individual transaction in the source system from 
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the beginning of recorded history. If no activity occurs in a time period, there 
are no transaction records. Conversely, there can be a blizzard of closely 
related transaction records if the activity level is high. The real-time partition 
has exactly the same dimensional structure as its underlying static fact table. It 
only contains the transactions that have occurred since midnight, when we 
loaded the regular data warehouse tables. The real-time partition may be com-
pletely unindexed both because we need to maintain a continuously open 
window for loading and because there is no time series (since we only keep 
today’s data in this table). Finally, we avoid building aggregates on this table 
because we want a minimalist administrative scenario during the day. 

We attach the real-time partition to our existing applications by drilling across 
from the static fact table to the real-time partition. Time-series aggregations 
(for example, all sales for the current month) will need to send identical 
queries to the two fact tables and add them together. 

In a relatively large retail environment experiencing 10 million transactions 
per day, the static fact table would be pretty big. Assuming that each transac-
tion grain record is 40 bytes wide (7 dimensions plus 3 facts, all packed into 4-
byte fields), we accumulate 400 MB of data each day. Over a year this would 
amount to about 150 GB of raw data. Such a fact table would be heavily 
indexed and supported by aggregates. However, the daily tranche of 400 MB 
for the real-time partition could be pinned in memory. Forget indexes, except 
for a B-Tree index on the fact table primary key to facilitate the most efficient 
loading. Forget aggregations too. Our real-time partition can remain biased 
toward very fast loading performance but at the same time provide speedy 
query performance. 

Since we send identical queries to the static fact table and the real-time parti-
tion, we relax and let the aggregate navigator sort out whether either of the 
tables has supporting aggregates. In the case we have just described, only the 
large static table needs them. 

Periodic Snapshot Real-Time Partition 
If the static data warehouse fact table has a periodic grain (say, monthly), then 
the real-time partition can be viewed as the current hot-rolling month. Suppose 
that we are working for a big retail bank with 15 million accounts. The static fact 
table has the grain of account by month. A 36-month time series would result in 
540 million fact table records. Again, this table would be indexed extensively 
and supported by aggregates to provide good query performance. The real-time 
partition, on the other hand, is just an image of the current developing month, 
updated continuously as the month progresses. Semiadditive balances and fully 
additive facts are adjusted as frequently as they are reported. In a retail bank, the 
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core fact table spanning all account types is likely to be quite narrow, with per-
haps 4 dimensions and 4 facts, resulting in a real-time partition of 480 MB. The 
real-time partition again can be pinned in memory. 

Query applications drilling across from the static fact table to the real-time par-
tition have a slightly different logic compared with the transaction grain. 
Although account balances and other measures of intensity can be trended 
directly across the tables, additive totals accumulated during the current 
rolling period may need to be scaled upward to the equivalent of a full month 
to keep the results from looking anomalous. 

Finally, on the last day of the month, hopefully the accumulating real-time par-
tition can just be loaded onto the static data warehouse as the most current 
month, and the process can start again with an empty real-time partition. 

Accumulating Snapshot 
Real-Time Partition 

Accumulating snapshots are used for short-lived processes such as orders and 
shipments. A record is created for each line item on the order or shipment. In 
the main fact table this record is updated repeatedly as activity occurs. We cre-
ate the record for a line item when the order is first placed, and then we update 
it whenever the item is shipped, delivered to the final destination, paid for, or 
maybe returned. Accumulating snapshot fact tables have a characteristic set of 
date foreign keys corresponding to each of these steps. 

In this case it is misleading to call the main accumulating fact table static 
because this is the one fact table type that is deliberately updated, often repeat-
edly. However, let’s assume that for query performance reasons this update 
occurs only at midnight when the users are offline. In this case, the real-time 
partition will consist of only those line items which have been updated today. 
At the end of the day, the records in the real-time partition will be precisely the 
new versions of the records that need to be written onto the main fact table 
either by inserting the records if they are completely new or overwriting exist-
ing records with the same primary keys. 

In many order and shipment situations, the number of line items in the real-
time partition will be significantly smaller than in the first two examples. For 
example, a manufacturer may process about 60,000 shipment invoices per 
month. Each invoice may have 20 line items. If an invoice line has a normal 
lifetime of 2 months and is updated 5 times in this interval, then we would see 
about 7,500 line items updated on an average working day. Even with the 
rather wide 80-byte records typical of shipment invoice accumulating fact 
tables, we only have 600 kB (7,500 updated line items per day x 80 bytes) of 
data in our real-time partition. This obviously will fit in memory. Forget 
indexes and aggregations on this real-time partition. 
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Queries against an accumulating snapshot with a real-time partition need to 
fetch the appropriate line items from both the main fact table and the partition 
and can either drill across the two tables by performing a sort merge (outer 
join) on the identical row headers or perform a union of the rows from the two 
tables, presenting the static view augmented with occasional supplemental 
rows in the report representing today’s hot activity. 

In this section we have made a case for satisfying the new real-time require-
ment with specially constructed but nevertheless familiar extensions to our 
existing fact tables. If you drop all the indexes (except for a basic B-Tree index 
for updating) and aggregations on these special new tables and pin them in 
memory, you should be able to get the combined update and query perfor-
mance needed. 

Summary 

In this chapter we covered a lengthy laundry list of topics in the context of the 
order management process. We discussed multiples on several fronts: multiple 
references to the same dimension in a fact table (dimension role-playing), mul-
tiple equivalent units of measure, and multiple currencies. We explored sev-
eral of the common challenges encountered when modeling orders data, 
including facts at different levels of granularity and junk dimensions. We also 
explored the rich set of facts associated with invoice transactions. 

We used the order fulfillment pipeline to illustrate the power of accumulating 
snapshot fact tables. Accumulating snapshots allow us to see the updated sta-
tus of a specific product or order as it moves through a finite pipeline. The 
chapter closed with a summary of the differences between the three funda-
mental types of fact tables, along with suggestions for handling near real-time 
reporting with each fact table type. 
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ong before customer relationship management (CRM) was a buzzword, organiza-
tions were designing and developing customer-centric dimensional models to 
better understand their customers’ behavior. For nearly two decades these 
models have been used to respond to management’s inquiries about which 
customers were solicited, which responded, and what was the magnitude of 
their response. The perceived business value of understanding the full spec-
trum of customers’ interactions and transactions has propelled CRM to the top 
of the charts. CRM has emerged as a mission-critical business strategy that 
many view as essential to a company’s survival. 

In this chapter we discuss the implications of CRM on the world of data ware-
housing. Given the broad interest in CRM, we’ve allocated more space than 
usual to an overview of the underlying principles. Since customers play a role 
in so many business processes within our organizations, rather than develop-
ing schemas to reflect all customer interaction and transaction facts captured, 
we’ll devote the majority of this chapter to the all-important customer dimen-
sion table. 

Chapter 6 discusses the following concepts: 

�� CRM overview, including its operational and analytic roles 
�� Customer name and address parsing, along with international considerations 
�� Common customer dimension attributes, such as dates, segmentation attributes, 

and aggregated facts 
�� Dimension outriggers for large clusters of low-cardinality attributes 
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�� Minidimensions for attribute browsing and change tracking in large dimensions, as 
well as variable-width attribute sets 

�� Implications of using type 2 slowing changing dimension technique on dimension 
counts 

�� Behavior study groups to track a set of customers that exhibit common character­
istics or behaviors 

�� Commercial customer hierarchy considerations, including both fixed and variable 
depth 

�� Combining customer data from multiple data sources 
�� Analyzing customer data across multiple business processes 

CRM Overview 

Regardless of the industry, organizations are flocking to the concept of 
CRM. They’re jumping on the bandwagon in an attempt to migrate from a 
product-centric orientation to one that is driven by customer needs. While all-
encompassing terms like customer relationship management sometimes 
seem ambiguous or overly ambitious, the premise behind CRM is far from 
rocket science. It is based on the simple notion that the better you know your 
customers, the better you can maintain long-lasting, valuable relationships 
with them. The goal of CRM is to maximize relationships with your cus-
tomers over their lifetime. It entails focusing all aspects of the business, from 
marketing, sales, operations, and service, to establishing and sustaining 
mutually beneficial customer relations. To do so, the organization must 
develop a single, integrated view of each customer. 

CRM promises significant returns for organizations that embrace it in terms of 
both increased revenue and greater operational efficiencies. Switching to a cus-
tomer-driven perspective can lead to increased sales effectiveness and closure 
rates, revenue growth, enhanced sales productivity at reduced cost, improved 
customer profitability margins, higher customer satisfaction, and increased 
customer retention. Ultimately, every organization wants more loyal, more 
profitable customers. Since it often requires a sizable investment to attract new 
customers, we can’t afford to have the profitable ones leave. Likewise, one of 
CRM’s objectives is to convert unprofitable customers into profitable ones. 

In many organizations, the view of the customer varies depending on the 
product line, business unit, business function, or geographic location. Each 
group may use different customer data in different ways with different results. 
The evolution from the existing silos to a more integrated perspective obvi-
ously requires organizational commitment. CRM is like a stick of dynamite 
that knocks down the silo walls. It requires the right integration of business 
processes, people resources, and application technology to be effective. 
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In many cases, the existing business processes for customer interactions have 
evolved over time as operational or organization work-arounds. The resulting 
patchwork set of customer-related processes is often clumsy at best. Merely 
better automating the current inefficient customer-centric processes actually 
may be more harmful than doing nothing at all. If you’re faced with broken 
processes, operational adjustments are necessary. 

Since it is human nature to resist change, it comes as no surprise that people-
related issues often challenge CRM implementations. CRM involves new 
ways of interacting with your customers. It often entails radical changes to the 
sales channels. CRM requires new information flows based on the complete 
acquisition and dissemination of customer touch-point data. Often organiza-
tion structures and incentive systems are altered dramatically. 

Unfortunately, you can’t just buy an off-the-shelf CRM product and expect it to 
be a silver bullet that solves all your problems. While many organizations 
focus their attention on CRM technology, in the end this may be the simplest 
component with which to contend compared to other larger issues. Obviously, 
the best place to start CRM is with a strategy and plan. Tackling the acquisition 
of technology first actually may impede progress for a successful CRM imple-
mentation. Technology should support, not drive, your CRM solution. With-
out a sound CRM strategy, technology merely may accelerate organizational 
chaos through the deployment of additional silos. 

Earlier in this book we stated that it is imperative for both senior business and 
IT management to support a data warehousing initiative. We stress this advice 
again when it comes to a CRM implementation because of the implications of 
its cross-functional focus. CRM requires clear business vision. Without busi-
ness strategy, buy-in, and authorization to change, CRM becomes an exercise 
in futility. Neither the IT community nor the business community is capable of 
implementing CRM successfully on its own; it demands a joint commitment of 
support. 

Operational and Analytic CRM 
It could be said that CRM suffers from a split personality syndrome because it 
addresses both operational and analytic requirements. Effective CRM relies on 
the collection of data at every interaction we have with a customer and then 
the leveraging of that breadth of data through analysis. 

On the operational front, CRM calls for the synchronization of customer-
facing processes. Often operational systems must be either updated or supple-
mented to coordinate across sales, marketing, operations, and service. Think 
about all the customer interactions that occur during the purchase and use 
of a product or service—from the initial prospect contact, quote generation, 
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purchase transaction, fulfillment, payment transaction, and ongoing cus-
tomer service. Rather than thinking about these processes as independent 
silos (or multiple silos that vary by product line), the CRM mind-set is to inte-
grate these customer activities. Each touch point in the customer contact cycle 
represents an opportunity to collect more customer metrics and characteris-
tics, as well as leverage existing customer data to extract more value from the 
relationship. 

As data is created on the operational side of the CRM equation, we obviously 
need to store and analyze the historical metrics resulting from our customer 
interaction and transaction systems. Sounds familiar, doesn’t it? The data 
warehouse sits at the core of CRM. It serves as the repository to collect and 
integrate the breadth of customer information found in our operational sys-
tems, as well as from external sources. The data warehouse is the foundation 
that supports the panoramic 360-degree view of our customers, including cus-
tomer data from the following typical sources: transactional data, interaction 
data (solicitations, call center), demographic and behavioral data (typically 
augmented by third parties), and self-provided profile data. 

Analytic CRM is enabled via accurate, integrated, and accessible customer 
data in the warehouse. We are able to measure the effectiveness of decisions 
made in the past in order to optimize future interactions. Customer data can be 
leveraged to better identify up-sell and cross-sell opportunities, pinpoint inef-
ficiencies, generate demand, and improve retention. In addition, we can lever-
age the historical, integrated data to generate models or scores that close the 
loop back to the operational world. Recalling the major components of a ware-
house environment from Chapter 1, we can envision the model results pushed 
back to where the relationship is operationally managed (for example, sales 
rep, call center, or Web site), as illustrated in Figure 6.1. The model output can 
translate into specific proactive or reactive tactics recommended for the next 
point of customer contact, such as the appropriate next product offer or antiat-
trition response. The model results also are retained in the data warehouse for 
subsequent analysis. 

In other situations, information must feed back to the operational Web site or 
call center systems on a more real-time basis. This type of operational support 
is appropriately the responsibility of the operational data store (ODS), as 
described in Chapter 1. In this case, the closed loop is much tighter than Figure 
6.1 because it is a matter of collection and storage and then feedback to the col-
lection system. The ODS generally doesn’t require the breadth or depth of cus-
tomer information available in the data warehouse; it contains a subset of data 
required by the touch-point applications. Likewise, the integration require-
ments are typically not as stringent. 
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Integrate 
(Data Staging) 

Collect Store(Operational (Data Presentation) 

Model Analyze and Report 

Source System) 

(Data Access Tools) 

Figure 6.1 Closed-loop analytic CRM. 

Obviously, as the organization becomes more centered on the customer, so 
must the data warehouse. CRM inevitably will drive change in the data ware-
house. Data warehouses will grow even more rapidly as we collect more and 
more information about our customers, especially from front-office sources 
such as the field force. Our data staging processes will grow more complicated 
as we match and integrate data from multiple sources. Most important, the 
need for a conformed customer dimension becomes even more paramount. 

Packaged CRM 
In response to the urgent need of business for CRM, project teams may be 
wrestling with a buy versus build decision. In the long run, the build approach 
may match the organization’s requirements better than the packaged applica-
tion, but the implementation likely will take longer and require more 
resources, potentially at a higher cost. Buying a packaged application will 
deliver a practically ready-to-go solution, but it may not focus on the integra-
tion and interface issues needed for it to function in the larger IT context. For-
tunately, some providers are supporting common data interchange through 
Extensible Markup Language (XML), publishing their data specifications so 
that IT can extract dimension and fact data, and supporting customer-specific 
conformed dimensions. 

Buying a packaged solution, regardless of its application breadth, does not 
give us an excuse to dodge the challenge of creating conformed dimensions, 
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including the customer dimension. If we fail to welcome the packaged appli-
cation as a full member of the data warehouse, then it is likely to become a 
stovepipe data mart. The packaged application should not amount to dis-
connected customer information sitting on another data island. The recent 
CRM hype is based on the notion that we have an integrated view of the cus-
tomer. Any purchased component must be linked to a common data ware-
house and conformed dimensions. Otherwise, we have just armed our 
business analysts with access to more inconsistent customer data, resulting 
in more inconsistent customer analysis. The last thing any organization 
needs is another data stovepipe, so be certain to integrate any packaged solu-
tion properly. 

Customer Dimension 

The conformed customer dimension is a critical element for effective CRM. A 
well-maintained, well-deployed conforming customer dimension is the cor-
nerstone of sound customer-centric analysis. 

The customer dimension is typically the most challenging dimension for any 
data warehouse. In a large organization, the customer dimension can be 
extremely deep (with millions of rows), extremely wide (with dozens or even 
hundreds of attributes), and sometimes subject to rather rapid change. One 
leading direct marketer maintains over 3,000 attributes about its customers. 
Any organization that deals with the general public needs an individual 
human being dimension. The biggest retailers, credit card companies, and 
government agencies have monster customer dimensions whose sizes exceed 
100 million rows. To further complicate matters, the customer dimension often 
represents an amalgamation of data from multiple internal and external source 
systems. 

In this next section we focus on numerous customer dimension design con-
siderations. The customer data we maintain will differ depending on 
whether we operate in a business-to-business (B2B) customer environment, 
such as distributors, versus a business-to-consumer (B2C) mode. Regardless, 
many of these considerations apply to both scenarios. We’ll begin with 
name/address parsing and other common customer attributes, including 
coverage of dimension outriggers. From there we’ll discuss minidimension 
tables to address query performance and change tracking in very large cus-
tomer dimensions. We’ll also describe the use of behavior study group 
dimensions to track ongoing activity for a group of customers that share a 
common characteristic. Finally, we’ll deal with fixed- and variable-depth 
commercial customer hierarchies. 
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Name and Address Parsing 
Regardless of whether we’re dealing with individual human beings or com-
mercial entities, we typically capture our customers’ name and address attrib-
utes. The operational handling of name and address information is usually too 
simplistic to be very useful in the data warehouse. Many designers feel that a 
liberal design of general-purpose columns for names and addresses, such as 
Name-1 through Name-3 and Address-1 through Address-6, can handle any 
situation. Unfortunately, these catchall columns are virtually worthless when 
it comes to better understanding and segmenting the customer base. Design-
ing the name and location columns in a generic way actually can contribute to 
data quality problems. Consider the sample design in Table 6.1 with general-
purpose columns. 

In this design, the name column is far too limited. There is no consistent 
mechanism for handling salutations, titles, or suffixes. We can’t identify 
what the person’s first name is or how she should be addressed in a person-
alized greeting. If we looked at additional sample data from this operational 
system, potentially we would find multiple customers listed in a single name 
field. We also might find additional descriptive information in the name 
field, such as “Confidential,” “Trustee,” or “UGMA” (Uniform Gift to 
Minors Act). 

In our sample address fields, inconsistent abbreviations are used in various 
places. The address columns may contain enough room for any address, but 
there is no discipline imposed by the columns that will guarantee conformance 
with postal authority regulations or support address matching or latitude/ 
longitude identification. 

Table 6.1 Sample Customer Dimension with Overly General Columns 

Name Ms. R. Jane Smith, Atty 

Address-1 

Address-2 

City 

State Ark. 

Phone Number 

DIMENSION ATTRIBUTE EXAMPLE VALUES 

123 Main Rd, North West, Ste 100A 

P.O. Box 2348 

Kensington 

ZIP Code 88887-2348 

888-555-3333 x776 main, 555-4444 fax 
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Instead of using a few general-purpose fields, the name and location attributes 
should be broken down into as many elemental parts as possible. The extract 
process needs to perform significant parsing on the original dirty names and 
addresses. Once the attributes have been parsed, then they can be standard-
ized. For example, “Rd” would become “Road” and “Ste” would become 
“Suite.” The attributes also can be verified, such as validating that the ZIP code 
and associated state combination is correct. Fortunately, name and address 
data cleansing and scrubbing tools are available on the market to assist with 
parsing, standardization, and verification. 

A sample set of name and location attributes for individuals in the United 
States is shown in Table 6.2. We’ve filled in every attribute to make the design 
clearer, but no single real instance would look like this row. 

Table 6.2 Sample Customer Dimension with Parsed Name and Address Elements 

Salutation Ms. 

Informal Greeting Name Jane 

Ms. Smith 

First and Middle Names R. Jane 

Surname Smith 

Suffix 

Ethnicity English 

Attorney 

Street Number 

Street Name Main 

Road 

Street Direction 

Suite 

City 

District Cornwall 

Second District Berkeleyshire 

State Arkansas 

South 

Country United States 

DIMENSION ATTRIBUTE EXAMPLE VALUES 

Formal Greeting Name 

Jr. 

Title 

123 

Street Type 

North West 

Post Box 2348 

100A 

Kensington 

Region 

(Continues) 



Customer Relationship Management 149 

Table 6.2 Continued. 

Continent 

United States 

1 

888 

5553333 

Office Extension 

1 

888 

E-mail address 

DIMENSION ATTRIBUTE EXAMPLE VALUES 

North America 

Primary Postal ZIP Code 88887 

Secondary Postal ZIP Code 2348 

Postal Code Type 

Office Telephone Country Code 

Office Telephone Area Code 

Office Telephone Number 

776 

FAX Telephone Country Code 

FAX Telephone Area Code 

FAX Telephone Number 5554444 

RJSmith@ABCGenIntl.com 

Web Site www.ABCGenIntl.com 

Unique Customer ID 7346531 

Commercial customers typically have multiple addresses, such as physical 
and shipping addresses; each of these addresses would follow much the same 
logic as the address structure we just developed. 

Before leaving this topic, it is worth noting that some organizations maintain 
the complete set of name and address characteristics in their customer dimen-
sion in order to produce mail-ready addresses, as well as support other com-
munication channels such as telephone, fax, and electronic mail, directly from 
the data warehouse. Here the data warehouse customer dimension becomes a 
kind of operational system because it is the enterprise-wide authority for valid 
addresses. This is most likely to happen when no other operational system has 
taken responsibility for consolidating customer information across the enter-
prise. In other cases, organizations already have decided to capture solicitation 
and communication touch points in an operational system. In these environ-
ments, the customer dimension in the warehouse may consist of a more 
reduced subset of attributes meaningful to analysis, as opposed to the complete 
set of attributes necessary to generate the mailing labels or call list details. 

International Name and Address 
Considerations 

Customer geographic attributes become more complicated if we’re dealing 
with customers from multiple countries. Even if you don’t have international 
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customers, you may need to contend with international names and addresses 
somewhere in your data warehouse for international suppliers or human 
resources personnel records. 

When devising a solution for international names and addresses, we need to 
keep the following in mind, in addition to the name and address parsing 
requirements we discussed earlier: 

Universal representation. The design should be consistent from country to 
country so that similar data elements appear in predictable, similar places 
in the customer dimension table. 

Cultural correctness. This includes the appropriate salutation and personal-
ization for a letter, electronic mail, or telephone greeting. 

Differences in addresses. Different addresses may be required whether 
they’re foreign mailings from the country of origin to the destination coun-
try (including idiosyncrasies such as presenting the destination city and 
country in capital letters), domestic mailings within the destination coun-
try, and package delivery services (which don’t accept post office boxes). 

The attributes we described earlier are still applicable for international names 
and addresses. In addition, we should include an address block attribute with 
a complete valid postal address including line breaks rendered in the proper 
order according to regulations of the destination country. Creating this 
attribute once in the staging process, based on the correct country-by-country 
address formation rules, simplifies downstream usage. 

Similar to international addresses, telephone numbers must be presented dif-
ferently depending on where the phone call is originated. We need to provide 
attributes to represent the complete foreign dialing sequence, complete 
domestic dialing sequence, and local dialing sequence. Unfortunately, the 
complete foreign dialing sequence will vary by country of origin. 

We have barely scratched the surface concerning the intricacies of interna-
tional names and addresses. For more detailed coverage, we recommend Toby 
Atkinson’s book on the subject, Merriam-Webster’s Guide to International Busi-
ness Communications (Merriam-Webster, 1999). 

Other Common Customer Attributes 
While geographic attributes are some of the most common attributes found on 
a customer dimension, here are others you’ll likely encounter. Of course, the 
list of customer attributes typically is quite lengthy. The more descriptive 
information we capture about our customers, the more robust the customer 
dimension will be—and the more interesting the analysis. 
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Fact Table Customer Dimension Date of 1st Purchase Dimension 

Customer Key (FK) 
More Foreign Keys … 
Facts … 

Customer Key (PK) 
Customer ID (Natural Key) 
Customer Salutation 
Customer First Name 
Customer Surname 
Customer City 
Customer State 
Customer Attributes … 

… and more 

Transasction Date Key (FK) 

Date of 1st Purchase (FK) 

Date of 1st Purchase Key (PK) 
Date of 1st Purchase 
Date of 1st Purchase Month 
Date of 1st Purchase Year 
Date of 1st Purchase Fiscal Month 
Date of 1st Purchase Fiscal Quarter 
Date of 1st Purchase Fiscal Year 
Date of 1st Purchase Season 

Figure 6.2 Date dimension outrigger. 

Dates 

We often find dates in the customer dimension, such as date of first purchase, 
date of last purchase, and date of birth. Although these dates may initially be 
SQL date format fields, if we want to take full advantage of our date dimension 
with the ability to summarize these dates by the special calendar attributes of 
our enterprise, such as seasons, quarters, and fiscal periods, the dates should be 
changed to foreign key references to the date dimension. We need to be careful 
that all such dates fall within the span of our corporate date dimension. These 
date dimension copies are declared as semantically distinct views, such as a 
“First Purchase Date” dimension table with unique column labels. The system 
behaves as if there is another physical date table. Constraints on any of these 
tables have nothing to do with constraints on the primary date dimension table. 
Shown in Figure 6.2, this design is an example of a dimension outrigger, which 
we’ll discuss further later in this chapter. Dates outside the span of our corpo-
rate date dimension should be represented as SQL date fields. 

Customer Segmentation
Attributes and Scores

Some of the most powerful attributes in a customer dimension are segmenta-
tion classifications or scores. These attributes obviously vary greatly by busi-
ness context. For an individual customer, they may include: 

�� Gender 

�� Ethnicity 

�� Age or other life-stage classifications 

�� Income or other lifestyle classifications 

�� Status (for example, new, active, inactive, closed) 

�� Referring source 
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�� Recency (for example, date of last purchase), frequency (for example, total 
purchase transaction count), and intensity (for example, total net purchase 
amount), as well as cluster labels generated by data mining cluster analy-
sis of these recency, frequency, and intensity measures 

�� Business-specific market segment (such as a preferred customer identifier) 

�� Scores characterizing the customer, such as purchase behavior, payment 
behavior, product preferences, propensity to churn, and probability of 
default. Statistical segmentation models typically generate these scores, 
which are then tagged onto each customer dimension row as an attribute. 

Aggregated Facts as Attributes 

Users often are interested in constraining the customer dimension based on 
aggregated performance metrics, such as wanting to filter on all customers 
who spent over a certain dollar amount during last year. To make matters 
worse, perhaps they want to constrain based on how much the customer has 
purchased during his or her lifetime. Providing aggregated facts as dimension 
attributes is sure to be a crowd pleaser with the business users. Rather than 
issuing a separate query to determine all customers who satisfied the spending-
habits criteria and then issuing another fact query to further inquire about that 
group of customers, storing an aggregated fact as an attribute allows users 
simply to constrain on that spending attribute, just like they might on a geo-
graphic attribute. These attributes are to be used for constraining and labeling; 
they are not to be used in numeric calculations. While there are query usabil-
ity and performance advantages to storing these attributes, the downside bur-
den falls on the backroom staging processes to ensure that the attributes are 
accurate, up-to-date, and consistent with the actual fact rows. In other words, 
they require significant care and feeding. If you opt to include some aggre-
gated facts as dimension attributes, be certain to focus on those which will be 
used frequently. In addition, you should strive to minimize the frequency with 
which these attributes need to be updated. For example, an attribute for last 
year’s spending would require much less maintenance than one that identifies 
year-to-date behavior. Rather than storing attributes down to the specific dol-
lar value, they are sometimes replaced (or supplemented) with more mean-
ingful descriptive values, such as “High Spender,” as we just discussed with 
segmentation attributes. These descriptive values minimize our vulnerability 
to the fact that the numeric attributes may not tie back exactly to the appropri-
ate fact tables. In addition, they ensure that all users have a consistent defini-
tion for high spenders, for example, rather than resorting to their own 
individual business rules. 
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Dimension Outriggers for a 
Low-Cardinality Attribute Set 

As we said in Chapter 2, a dimension is said to be snowflaked when the low-car-
dinality columns in the dimension have been removed to separate normalized 
tables that then link back into the original dimension table. Generally, 
snowflaking is not recommended in a data warehouse environment because it 
almost always makes the user presentation more complex, in addition to hav-
ing a negative impact on browsing performance. Despite this prohibition 
against snowflaking, there are some situations where you should build a 
dimension outrigger that has the appearance of a snowflaked table. Outriggers 
have special characteristics that cause them to be permissible snowflakes. 

In Figure 6.3, the dimension outrigger is a set of data from an external data 
provider consisting of 150 demographic and socioeconomic attributes regarding 
the customers’ county of residence. The data for all customers residing in a given 
county is identical. Rather than repeating this large block of data for every cus-
tomer within a county, we opt to model it as an outrigger. There are several fac-
tors that cause us to bend our no-snowflake rule. First of all, the demographic 
data is available at a significantly different grain than the primary dimension 
data (county versus individual customer). The data is administered and loaded 
at different times than the rest of the data in the customer dimension. Also, we 
really do save significant space in this case if the underlying customer dimen-
sion is large. If you have a query tool that insists on a classic star schema with no 
snowflakes, you can hide the outrigger under a view declaration. 

Dimension outriggers are permissible, but they should be the exception rather than 
the rule. A red warning flag should go up if your design is riddled with outriggers; 
you may have succumbed to the temptation to overly normalize the design. 

Fact Table Customer Dimension County Demographics Outrigger Dimension 

Customer Key (FK) 
More Foreign Keys … 
Facts … 

Customer Key (PK) 
Customer ID (Natural Key) 
Customer Salutation 
Customer First Name 
Customer Surname 
Customer City 
Customer County 
County Demographics Key (FK) 
Customer State 
… and more 

County Demographics Key (PK) 

Female Population 
% Female Population 
Male Population 
% Male Population 
Number of High School Graduates 
Number of College Graduates 
Number of Housing Units 
Homeownership Rate 
… and more 

Total Population 
Population under 5 Years 
% Population under 5 Years 
Population under 18 Years 
% Population under 18 Years 
Population 65 Years and Older 
% Population 65 Years and Older 

Figure 6.3 Permissible snowflaking with a dimension outrigger for cluster of low-cardinality 
attributes. 
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Large Changing Customer 
Dimensions 

Multimillion-row customer dimensions present two unique challenges that 
warrant special treatment. Even if a clean, flat dimension table has been imple-
mented, it generally takes too long to constrain or browse among the relation-
ships in such a big table. In addition, it is difficult to use our tried-and-true 
techniques from Chapter 4 for tracking changes in these large dimensions. We 
probably don’t want to use the type 2 slowly changing dimension technique 
and add more rows to a customer dimension that already has millions of rows 
in it. Unfortunately, huge customer dimensions are even more likely to change 
than moderately sized dimensions. We sometimes call this situation a rapidly 
changing monster dimension! 

Business users often want to track the myriad of customer attribute changes. 
In some businesses, tracking change is not merely a nice-to-have analytic capa-
bility. Insurance companies, for example, must update information about their 
customers and their specific insured automobiles or homes because it is criti-
cal to have an accurate picture of these dimensions when a policy is approved 
or claim is made. 

Fortunately, a single technique comes to the rescue to address both the brows-
ing-performance and change-tracking challenges. The solution is to break off 
frequently analyzed or frequently changing attributes into a separate dimen-
sion, referred to as a minidimension. For example, we could create a separate 
minidimension for a package of demographic attributes, such as age, gender, 
number of children, and income level, presuming that these columns get used 
extensively. There would be one row in this minidimension for each unique 
combination of age, gender, number of children, and income level encoun-
tered in the data, not one row per customer. These columns are the ones that 
are analyzed to select an interesting subset of the customer base. In addition, 
users want to track changes to these attributes. We leave behind more constant 
or less frequently queried attributes in the original huge customer table. 

Sample rows for a demographic minidimension are illustrated in Table 6.3. 
When creating the minidimension, continuously variable attributes, such as 
income and total purchases, should be converted to banded ranges. In other 
words, we force the attributes in the minidimension to take on a relatively small 
number of discrete values. Although this restricts use to a set of predefined 
bands, it drastically reduces the number of combinations in the minidimension. 
If we stored income at a specific dollar and cents value in the minidimension, 
when combined with the other demographic attributes, we could end up with as 
many rows in the minidimension as in the main customer dimension itself. The 
use of band ranges is probably the most significant compromise associated 
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Table 6.3 Sample Rows from a Demographic Minidimension 

1 Male 

2 Male 

3 Male 

Male 

Male 

DEMOGRAPHIC KEY AGE GENDER INCOME LEVEL 

20-24 <$20,000 

20-24 $20,000-$24,999 

20-24 $25,000-$29,999 

18 25-29 $20,000-$24,999 

19 25-29 $25,000-$29,999 

with the minidimension technique because once we decide on the value bands, 
it is quite impractical to change to a different set of bands at a later time. If users 
insist on access to a specific raw data value, such as a credit bureau score that is 
updated monthly, it also should be included in the fact table, in addition to 
being represented as a value band in the demographic minidimension. In 
Chapter 9 we’ll see how to construct on-the-fly value-banding queries against 
the facts in the fact table, although such queries are much less efficient than 
directly constraining the value band in our minidimension table. 

Every time we build a fact table row, we include two foreign keys related to the 
customer: the regular customer dimension key and the minidimension demo-
graphics key. As shown in Figure 6.4, the demographics key should be part of 
the fact table’s set of foreign keys in order to provide efficient access to the fact 
table through the demographics attributes. This design delivers browsing and 
constraining performance benefits by providing a smaller point of entry to the 
facts. Queries can avoid the huge customer dimension table altogether unless 
attributes from that table are constrained. 

When the demographics key participates as a foreign key in the fact table, 
another benefit is that the fact table serves to capture the demographic profile 
changes. Let’s presume that we are loading data into a periodic snapshot fact 
table on a monthly basis. Referring back to our sample demographic minidi-
mension sample rows in Table 6.3, if one of our customers, John Smith, was 24 
years old with an income of $24,000, we’d begin by assigning demographics 
key 2 when loading the fact table. If John has a birthday several weeks later, 
we’d assign demographics key 18 when the fact table was next loaded. The 
demographics key on the earlier fact table rows for John would not be 
changed. In this manner, the fact table tracks the age change. We’d continue to 
assign demographics key 18 when the fact table is loaded until there’s another 
change in John’s demographic profile. If John receives a raise to $26,000 sev-
eral months later, a new demographics key would be reflected in the next fact 
table load. Again, the earlier rows would be unchanged. Historical demo-
graphic profiles for each customer can be constructed at any time by referring 
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to the fact table and picking up the simultaneous customer key and its con-
temporary demographics key, which in general will be different from the most 
recent demographics key. 

Customer dimensions are unique in that customer attributes frequently are 
queried independently of the fact table. For example, users may want to know 
how many female customers live in Dade County by age bracket. Counts such 
as these are extremely common with customer segmentation and profiling. 
Rather than forcing any analysis that combines solely customer and demo-
graphic data to link through the fact table, the most recent value of the demo-
graphics key also can exist as a foreign key on the customer dimension table. 
In this case, we refer to the demographics table as a customer dimension outrig-
ger, as we discussed earlier in this chapter. 

The minidimension terminology refers to when the demographics key is part of the 
fact table composite key; if the demographics key is a foreign key in the customer di­
mension, we refer to it as an outrigger. 

If you embed the most recent demographics key in the customer dimension, 
you must treat it as a type 1 attribute. If you tracked all the demographics 
changes over time as a type 2 slowly changing dimension, you would have 
reintroduced the rapidly changing monster dimension problem that we have 
been working to avoid! With a type 1 change, as we discussed in Chapter 4, we 
overwrite the demographics key in the customer row whenever it changes 
instead of creating a new customer row. We also recommend that these outrig-
ger demographic attributes be labeled as most recent or current values to min-
imize confusion. Even with unique labeling, be aware that presenting users 
with two avenues for accessing demographic data, through either the minidi-
mension or the outrigger, can deliver more functionality and complexity than 
some users can handle. 

Customer Key (PK) 
Customer ID (Natural Key) 
Customer Name 
Customer Address 
Customer Date of Birth
Customer Date of 1st Order
… 

Customer Key (FK) 
Customer Demographics Key (FK) 
More Foreign Keys …
Facts …

Customer Dimension Fact Table 

Customer Dimension 

Becomes ... 

Customer Key (PK) 
Customer ID (Natural Key) 
Customer Name 
Customer Address 
Customer Date of Birth 
Customer Date of 1st Order 
… 
Age 
Gender 
Annual Income 
Number of Children 
Marital Status 

Customer Demographics Dimension 

Customer Demographics Key (PK) 
Customer Age Band 
Customer Gender 
Customer Income Band 
Customer Number of Children Band 
Customer Marital Status 

Figure 6.4 Demographic minidimension with a customer dimension. 



Customer Key (PK) 
Relatively constant attributes … 

Customer Dimension 

Customer Demographics Key (PK) 
Demographics attributes … 

Customer Demographics Dimension 

Credit and payment behavioral attributes … 

Customer Key (FK) 
Customer Demographics Key (FK) 

More Foreign Keys … 
Facts … 
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Customer Purchase-Credit Key (PK) 

Customer Purchase-Credit Dimension 

Customer Purchase-Credit Key (FK) 

Fact Table 

Figure 6.5 Separate demographic and behavioral minidimensions. 

The demographic dimension itself cannot be allowed to grow too large. If we 
have 5 demographic attributes, each with 10 possible values, then the demo-
graphics dimension could have 100,000 (105) rows. This is a reasonable upper 
limit for the number of rows in a minidimension. However, there are certainly 
cases where we need to support more than 5 demographic attributes with 10 
values each. In this case, we would build a second demographics dimension, 
as shown in Figure 6.5. For example, we may have one set of attributes con-
cerning traditional demographic income and lifestyle attributes and another 
set that focuses on purchase and credit behavioral scores. Multiple minidi-
mensions address the issue of minidimension growth while also clustering 
like attributes together for a more intuitive user presentation. Another motiva-
tion for creating these two minidimensions is that they are potentially sourced 
from two different data providers with different update frequencies. However, 
remember to bear in mind our advice from Chapter 2 concerning too many 
dimensions. We certainly don’t want to create a separate minidimension with 
a foreign key in the fact table for each demographic attribute, such as an age 
dimension, gender dimension, and income dimension. Likewise, we shouldn’t 
jump immediately on the minidimension technique unless we’re dealing with 
a large or rapidly changing dimension; we can’t forget the advantages of main-
taining a simple, flat, denormalized dimension table. 

The best approach for efficiently browsing and tracking changes of key attributes in 
really huge dimensions is to break off one or more minidimensions from the dimen­
sion table, each consisting of small clumps of attributes that have been administered 
to have a limited number of values. 
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Variable-Width Attribute Set 

Finally, a minidimension can be created to handle a variable number of 
customer attributes. Obviously, the longer we have a relationship with a 
customer, the more descriptive information we know about him or her. If we 
think about the sales cycle, we have many more prospects than we do cus-
tomers; however, we know much less about the prospects than we do about 
our customers. We may have 10 million initial prospects, described by a 
handful of characteristics, who are worked through the sales pipeline even-
tually to result in 1 million official customers with a much broader set of 
known characteristics. 

When using external prospect lists, we often are permitted only a one-time use 
of the list and don’t have the legal right to store the prospect information inter-
nally. However, if we’ve generated our own prospect information, it certainly 
can be stored in the data warehouse. Let’s assume that we’re capturing metrics, 
perhaps associated with solicitation or quote-generation events that apply to 
both prospects and customers. We could store the prospects and customers 
together in a single contact dimension; however, there is a significant disparity 
between the numbers of attributes for prospective versus customer contacts. As 
illustrated in Figure 6.6, we may know only a handful of identification and loca-
tion attributes about our prospects. On the other hand, we may know 50 addi-
tional attributes for a customer, covering purchase, payment, credit and service 
behaviors, directly elicited profile attributes, and third-party purchased demo-
graphic attributes. In the world of electronic retailing, we can equate prospects 
to be the anonymous Web site visitors as opposed to our registered customers. 

Contact Dimension Fact Table 

Extended Customer Dimension 

Contact Key (PK) 
Contact ID (Natural Key) 
Contact Zip 
Contact State 
Extended Customer Key (FK) 

Extended Customer Key (PK) 
Empty Customer Flag 
Customer Name 
Customer Address 
Customer City 
Customer State 
Customer Zip 

Payment Behavior Score 
Credit Behavior Score 
Homeownership Indicator 
… and more 

Contact Key (FK) 
Extended Customer Key (FK) 
More Foreign Keys … 
Facts … 

Purchase Behavior Score 

Figure 6.6 Variable-width customer attributes handled as a base dimension and 
minidimension. 
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If we assume that many of the final 50 customer attributes are textual, we eas-
ily could have a total row width of 1,000 bytes. Suppose that we have 10 mil-
lion contacts (9 million prospects and 1 million official customers). Obviously, 
we are concerned that the trailing 50 columns in 90 percent of our contacts 
have no data. This gets our attention when we’re dealing with a 10-GB dimen-
sion table. In this case, we may wish to introduce a minidimension. 

If we’re dealing with a database platform that supports variable-width rows, 
such as Oracle, we may be able to build a single dimension with the full com-
plement of attributes if the total attributes list is not too long; in some of these 
cases, we don’t need to worry about all the prospects’ null columns because 
they take up virtually zero disk space. However, if we have a fixed-width data-
base, or if the attributes list is very long, we are uncomfortable with all the 
empty columns for the prospects. In this case, as shown in Figure 6.6, we break 
the dimension into a 10-million-row base dimension table consisting of attrib-
utes that are common to both prospects and customers, along with a 1-million-
row customer minidimension that contains the additional attributes we know 
about our customers. Again, we include two foreign keys in the fact table. 
Nine of ten fact table rows would join to an empty customer row in the 
extended customer minidimension. 

Implications of Type 2 Customer 
Dimension Changes 

Perhaps your organization sells to tens of thousands of customers rather than 
tens of millions. In this case, the techniques we discussed in Chapter 4 for track-
ing dimension changes are still viable. The slowly changing dimension type 2 
technique, where another row is added to the dimension table, would remain 
the predominant technique for tracking change in customer dimensions with 
less than 100,000 rows. Even if we have a truly large customer dimension, we 
likely will need to still use the type 2 response to handle very slowly changing 
attributes left behind in the customer dimension. 

As we mentioned earlier, users frequently want to count customers based on 
their attributes without joining to a fact table. If we used a type 2 response to 
track customer dimension changes, we would need to be careful to avoid 
overcounting because we may have multiple rows in the customer dimension 
for the same individual. Doing a COUNT DISTINCT on a unique customer 
identifier is a possibility, assuming that the attribute is indeed unique and 
also hasn’t been altered. A most recent row indicator in the customer dimen-
sion is also helpful to do counts based on the most up-to-date descriptive val-
ues for a customer. 
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Things get more complicated if we need to do a customer count at a given his-
torical point in time using effective and expiration dates in the customer 
dimension. For example, if we need to know the number of customers we had 
at the beginning of 2002, we could constrain the row effective date to less than 
or equal to “1/1/2002” and the row expiration date to greater than or equal to 
“1/1/2002” to restrict the result set to only those rows which were valid on 
January 1, 2002. Note that the comparison operators depend on the business 
rules used to set our effective/expiration dates. In this example, the row expi-
ration date on the no-longer-valid customer row is one day less than the effec-
tive date on the new row. Alternatively, as we discussed earlier, the dates may 
be surrogate date keys joined to a date dimension outrigger table. In this case, 
we would use unequal joins between the outrigger date tables and the effec-
tive/expiration dates on the customer dimension. 

Customer Behavior Study Groups 
With customer analysis, simple queries, such as how much have we sold to 
customers in this geographic area in the past year, rapidly evolve to more 
complex inquiries, such as how many customers bought more this past 
month than their average monthly purchase amount from last year. The latter 
question is much too complicated for business users to express in a single 
SQL request. Some data access tool vendors allow embedded subqueries, 
whereas others have implemented multipass SQL capabilities, in which com-
plex requests are broken into multiple select statements and then combined in 
a subsequent pass. 

In other situations, we may want to capture the set of customers from a query 
or exception report, such as the top 100 customers from last year, customers 
who spent more than $1,000 last month, or customers who received a specific 
test solicitation, and then use that group of customers, which we call a behavior 
study group, for subsequent analysis without reprocessing to identify the initial 
condition. To create a behavior study group, we run a query (or series of 
queries) to identify the set of customers we want to further analyze and then 
capture the customer keys of the result set as an actual physical table. We then 
use this special behavior study group dimension table of customer identifiers 
whenever we wish to constrain any analysis to that set of specially defined 
customers, as shown in Figure 6.7. 

The secret to building complex behavioral study group queries is to capture the keys 
of the customers or products whose behavior you are tracking. You then use the cap­
tured keys to constrain other fact tables without having to rerun the original behav­
ior analysis. 
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The behavior study group dimension is attached with an equijoin to the nat-
ural key (named “Customer ID” in Figure 6.7) of the customer dimension. This 
can be even done in a view that hides the explicit join to the behavior dimen-
sion. In this way, the resulting dimensional model looks and behaves like an 
uncomplicated schema. If the study group dimension table is hidden under a 
view, it should be labeled to uniquely identify it as being associated with the 
top 100 customers, for example. Virtually any data access tool should be able 
to analyze this specially restricted schema without paying syntax or user-
interface penalties for the complex processing that defined the original subset 
of customers. 

Like many design decisions, this one represents certain compromises. First, 
this approach requires a user interface for capturing, creating, and administer-
ing physical behavior study group tables in the data warehouse. After a com-
plex exception report has been defined, we need the ability to capture the 
resulting keys into an applet to create the special behavior study group dimen-
sion. These study group tables must live in the same space as the primary fact 
table because they are going to be joined to the customer dimension table 
directly. This obviously affects the DBA’s responsibilities. 

Commercial Customer Hierarchies 
One of the most challenging aspects of dealing with commercial customers is 
modeling their internal organizational hierarchy. Commercial customers often 
have a nested hierarchy of entities ranging from individual locations or 
organizations up through regional offices, business unit headquarters, and 
ultimate parent companies. These hierarchical relationships may change fre-
quently as customers reorganize themselves internally or are involved in 
acquisitions and divestitures. 

POS Retail Sales Transaction Fact 

Customer ID (Natural Key) 

Customer Behavior Study 
Group Dimension Customer Key (PK) 

Customer ID (Natural Key) 
… and more 

Customer Dimension Date Key (FK) 
Product Key (FK) 
Customer Key (FK) 
Store Key (FK) 
Promotion Key (FK) 

Sales Quantity 
Sales Dollar Amount 

POS Transaction Number (DD) 

Figure 6.7 Behavior study group dimension consisting of selected keys joined directly to the natural 
key of the customer dimension. 
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We’ll talk about two approaches to handling customer hierarchies. The first is 
straightforward but relies heavily on brute force rather than elegance. Still, it 
may address your requirements adequately with a simplistic approach. The 
second approach is more advanced and complicated but also much more 
extensible. If you’re not dealing with unpredictable, ragged hierarchies (such 
as variable customer and cost center hierarchies or manufacturing parts explo-
sion), you may want to skim the coverage on variable-depth hierarchies 
because it is a bit of a brainteaser. 

Fixed-Depth Hierarchies 

Although this occurs relatively uncommonly, the lucky ones among us some-
times are confronted with a customer dimension that is highly predictable 
with a fixed number of levels. Suppose that we track a maximum of three roll-
up levels, such as the ultimate corporate parent, business unit headquarters, 
and regional offices (from top to bottom). In this case, we have three distinct 
attributes in the customer dimension corresponding to these three levels. For 
commercial customers with complicated organizational hierarchies, we’d pop-
ulate all three levels to appropriately represent the three different entities 
involved at each roll-up level. By contrast, if another customer had a much 
simpler organization structure, such as a one-location corporation, we’d dupli-
cate the lower-level value to populate the higher-level attributes. In this way, 
all regional offices will sum to the sum of all business unit headquarters, 
which will sum to the sum of all ultimate corporate parents. We can report by 
any level of the hierarchy and see the complete customer base represented. 

As we acknowledged up front, this simplistic approach doesn’t necessarily 
address real-world complexity adequately; however, we would be remiss in not 
mentioning it because it does provide a satisfactory solution for some. The tech-
nique described next is more robust, but the robustness comes with baggage. In 
some situations, the more complex method may be impractical or overkill. 

Variable-Depth Hierarchies 

Representing an arbitrary, ragged organization hierarchy is an inherently dif-
ficult task in a relational environment. For example, we may want to report the 
revenues for a set of commercial customers who have intricate relationships 
with each other, such as in Figure 6.8. Each square on the diagram represents 
an individual customer entity connected in an organizational tree. The illus-
trated organization has four levels; other customer organizations may have 
one, ten, or more levels. Let’s assume that we sell our products or services to 
any of these commercial customers. Thus the customer dimension rows can 
play the role of parent as well as child. We may want to look at the customers 
and their sales revenue individually. At other times, we may want to summa-
rize revenue to any node in the overall organizational tree. 
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The computer science approach for handling this unpredictable hierarchy 
would be to include a recursive parent customer key pointer on each cus-
tomer dimension row. Although this is a compact and effective way to repre-
sent an arbitrary hierarchy, this kind of recursive structure cannot be used 
effectively with standard SQL. The GROUP BY function in SQL cannot fol-
low the recursive tree structure downward to summarize an additive fact 
in a companion fact table such as revenue in an organization. Oracle’s 
CONNECT BY SQL extension is able to navigate a recursive pointer in a 
dimension table, but the CONNECT BY phrase cannot be used in the same 
SQL statement as a join, which prohibits us from connecting a recursive 
dimension table to any fact table. While we can fool the parser and perform 
the join by hiding the CONNECT BY in a VIEW declaration, performance 
likely would suffer significantly. 

Instead of using a recursive pointer, we insert a bridge table between the cus-
tomer dimension and fact tables, as depicted in Figure 6.9. The bridge table has 
been called a helper or associative table in the past, but going forward, we’ll con-
sistently use the bridge terminology. Use of the bridge table is optional; neither 
the customer dimension table nor the fact table has to be modified in any way. 
If the bridge table is left out, the customer dimension table joins to the fact 
table in the usual way. We can report revenue by customer, but we’re unable to 
navigate the organization hierarchy. When the bridge table is inserted between 
the customer dimension and fact tables, we’re able to analyze revenue results 
at any hierarchical level using standard SQL, albeit via a more complicated 
presentation. 

The bridge table contains one row for each pathway in Figure 6.8 from a customer 
entity to each subsidiary beneath it, as well as a row for the zero-length pathway 

Customer 
1 
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7 

Customer 
2 
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Customer 
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Customer 
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Figure 6.8 Organization diagram of parent and subsidiary companies. 



164 C  H A P T E  R  6  

from a customer to itself. Each pathway row contains the customer key of the par-
ent roll-up entity, the customer key of the subsidiary entity, the number of levels 
between the parent and the subsidiary, a bottom-most flag that identifies a sub-
sidiary with no further nodes beneath it, and finally, a top-most flag to indicate 
that there are no further nodes above the parent. The sample bridge table rows 
corresponding to the hierarchy in Figure 6.8 are shown as in Table 6.4. 

The number of rows in the bridge table typically is several times larger than the 
number of rows in the customer dimension. The eight individual parent and 
subsidiary customers in the Figure 6.8 hierarchy translated into 22 rows in the 
Table 6.4 bridge table. As an aside, a quick way to calculate the total number of 
rows for a given customer organization is to multiply the number of values at 
each level times the depth of the level (counting from the top), and then sum up 
the resulting products. Let’s refer to the Figure 6.8 organization diagram again. 
At top level 1 of the hierarchy, we have 1 customer (customer 1), which trans-
lates into 1 = (1 x 1) row in the bridge table. At the second level, we have 2 cus-
tomers (customers 2 and 7), which translate into another 4 = (2 x 2) rows in the 
bridge. At level 3, we have 3 customers (customers 3, 4, and 8), which translate 
into 9 = (3 x 3) bridge table rows. Finally, at the bottom (fourth) level, we have 
2 customers (customers 5 and 6), which translate into an additional 8 = (4 x 2) 
rows. The sum total number of rows is 22 = (1 + 4 + 9 + 8). If you don’t believe 
us, go ahead and count up the number of sample rows in Table 6.4. 

When we want to descend the organization hierarchy, we join the tables 
together as shown in Figure 6.9. We can now constrain the customer table to a 
particular parent customer and request any aggregate measure of all the sub-
sidiaries at or below that customer. We can use the “# of Levels from Parent” 
column in the organization bridge table to control the depth of the analysis. 
Constraining to a value of 1 would give all the direct subsidiaries of the cus-
tomer. A value greater than zero would give all subsidiary customers but not 
the original parent. We can use the “Bottom Flag” column to jump directly to all 
the bottom-most customer entities but omit all higher-level customer entities. 

Customer Key (PK) 
Customer ID (Natural Key) 
Customer Name 
Customer Address 
Customer Attributes … 

Customer Dimension 

Parent Customer Key 

# Levels from Parent 
Level Name 
Bottom Flag 

Date Key (FK) 
Customer Key (FK) 
More Foreign Keys … 
Facts … 

Subsidiary Customer Key 

Top Flag 

Customer Hierarchy Bridge Fact Table 

Optional view definition to look 
like normal fact table 

with single-valued keys 

Figure 6.9 Customer dimension and bridge tables with join configuration to descend 
the tree. 
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Table 6.4 Sample Bridge Table Rows Corresponding to Hierarchy in Figure 6.8 

1 1 0 N Y 

1 2 1 N N 

1 3 2 Y N 

1 4 2 N N 

1 5 3 Y N 

1 6 3 Y N 

1 7 1 N N 

1 8 2 Y N 

2 2 0 N N 

2 3 1 Y N 

2 4 1 N N 

2 5 2 Y N 

2 6 2 Y N 

3 3 0 Y N 

4 4 0 N N 

4 5 1 Y N 

4 6 1 Y N 

5 5 0 Y N 

6 6 0 Y N 

7 7 0 N N 

7 8 1 Y N 

8 8 0 Y N 

PARENT SUBSIDIARY #LEVELS 
CUSTOMER CUSTOMER FROM BOTTOM TOP 
KEY KEY PARENT FLAG FLAG 

When we want to ascend the organization hierarchy, we reverse the joins by 
connecting the customer dimension primary key to the bridge subsidiary key, 
as shown in Figure 6.10. By constraining the “# of Levels” column in the bridge 
table to the value of 1, we find the immediate parent of the customer in the cus-
tomer dimension. When the top-most flag is Y, we have selected the ultimate 
parent for a given customer. 

When issuing SQL statements using the bridge table, we need to be cautious 
about overcounting the facts. When connecting the tables as shown in Figures 
6.9 and 6.10, we must constrain the customer dimension to a single value and
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then join to the bridge table, which is then joined to the fact table. If we wanted 
to sum up revenue in the fact table for a given customer and all its subsidiaries, 
the SQL code would look something like the following: 

SELECT C.CUSTOMER_NAME, SUM(F.REVENUE)

FROM CUSTOMER C, BRIDGE B, FACT F, DATE D

WHERE C.CUSTOMER_KEY = B.PARENT_KEY

AND B.SUBSIDIARY_KEY = F.CUSTOMER_KEY

AND F.DATE_KEY = D.DATE_KEY //along with joins for other dimensions 

AND C.CUSTOMER_NAME = 'ABC General International' //for example

AND D.MONTH = 'January 2002'

GROUP BY C.CUSTOMER_NAME

We can request all the revenue from the organizations associated with many 
parents at once, but we have to get the subsidiary keys distinctly or risk dou-
ble counting. In the following example we retrieve the January 2002 revenue 
from all organizations whose parents are located in San Francisco. The SQL 
code is messier, but it works for both unique and multiple parent customers. 

SELECT 'San Francisco', SUM(F.REVENUE)

FROM FACT F, DATE D

WHERE F.CUSTOMER_KEY IN 

(SELECT DISTINCT B.SUBSIDIARY_KEY

FROM CUSTOMER C, BRIDGE B

WHERE C.CUSTOMER_KEY = B.PARENT_KEY

AND C.CUSTOMER_CITY = 'San Francisco') //to sum all SF parents

AND F.DATE_KEY = D.DATE_KEY

AND D.MONTH = 'January 2002'

GROUP BY 'San Francisco'

Customer Dimension Customer Hierarchy Bridge Fact Table 

Customer Key (PK) Parent Customer Key Date Key (FK)
Customer ID (Natural Key) Subsidiary Customer Key Customer Key (FK)
Customer Name # Levels from Parent More Foreign Keys …
Customer Address Level Name Facts …
Customer Attributes … Bottom Flag

Top Flag 

Optional view definition to look 
like normal fact table 

with single-valued keys 

Figure 6.10 Different bridge table join configuration to climb the organizational tree. 
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There are a number of administrative issues in building and maintaining an orga-
nization bridge table. Perhaps the biggest question is, where does the information 
come from? How do you identify that an organizational change occurred, and 
then how do you handle the change? If a complete history of changing organiza-
tional many-to-many relationships needs to be maintained, then the organization 
bridge table can be generalized to include effective and expiration dates on each 
row, as we’ll elaborate on in Chapter 13. A most recent indicator to identify the 
most current organizational roll-up also would be useful. If these dates are 
administered properly, then every requesting application would have to con-
strain on a specific date between the effective and expiration dates. 

When a group of nodes is moved from one part of an organizational hierarchy 
to another, only the bridge table rows that refer to paths from outside parents 
to the moved structure need to be altered. All rows referring to paths within 
the moved structure are unaffected. Of course, we’d need to add rows if the 
moved structure had new parentage. This is an advantage over other tree-
representation schemas that often require a global renumbering to handle a 
change such as this. 

If two or more parents jointly own a subsidiary, then we can add a weighting 
factor to the bridge table to reflect the fractional ownership. We’ll further elab-
orate on weighted bridge tables in Chapter 13. 

Small and medium-sized parts explosions in a manufacturing application can 
be modeled using the same kind of bridge table between a part/assembly 
dimension table and a fact table. The main limitation to using this approach for 
manufacturing parts explosions is the sheer number of subassemblies and 
parts. A very large manufacturing parts explosion with hundreds of thousands 
or millions of parts could result in a bridge table with “more rows than there 
are molecules in the universe.” 

Organization hierarchies and parts-explosion hierarchies may be represented with 
the help of a bridge table. This approach allows the regular SQL grouping and sum­
marizing functions to work through ordinary query tools. 

Having made the case for a bridge table to handle recursive variable-depth 
hierarchies, we’d be the first to admit that it is not a perfect solution. The 
approach attempts to bridge two inherently distinct structures, fixed rectangu-
lar relational tables and free-form hierarchical formations, which is akin 
to blending oil and water. While the bridge table can be navigated via the 
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standard SQL code generated by many query tools, it is not for the faint of heart. 
Analytical applications should be preconstructed to shield users from this non-
trivial SQL code. Fortunately, a number of nonrelational OLAP tools are provid-
ing more robust built-in support for navigating these pesky hierarchies for small 
to medium-sized dimensions typically with less than 64,000 members. 

Combining Multiple Sources of 
Customer Data 

Now that we’ve designed the customer dimension, it is time to populate it. It 
is likely that the conformed customer dimension is a distillation of data from 
several operational systems and possibly outside sources. In the worst case, a 
unique customer has multiple identifiers in multiple operational touch-point 
systems. Obviously, one of operational CRM’s objectives is create a unique 
customer identifier and restrict the creation of unnecessary identifiers. In the 
meantime, the data warehouse team likely will find itself responsible for sort-
ing out and integrating the disparate sources of customer information. 

Unfortunately, there’s no secret weapon for tackling this data consolidation. The 
attributes in the customer dimension should represent the best source available 
for that data in the enterprise. We’ll want to integrate a national change of 
address (NCOA) process to ensure that address changes are captured. Much of 
the heavy lifting associated with customer data consolidation demands cus-
tomer-matching or deduplicating logic. Removing duplicates or invalid 
addresses from large customer lists is critical to eliminating the financial and 
customer satisfaction costs associated with redundant, misdirected, or undeliv-
erable communications, in addition to avoiding misleading customer counts. 

The science of customer matching is more sophisticated than it might first 
appear. It involves fuzzy logic, address-parsing algorithms, and enormous 
look-up directories to validate address elements and postal codes, which vary 
significantly by country. There are specialized commercially available software 
and service offerings that can perform individual customer or commercial 
entity matching with remarkable accuracy. Often these products match the 
address components with standardized census codes, such as state codes, 
country codes, census tracts, block groups, metropolitan statistical areas 
(MSAs), and latitude/longitude, which facilitates the merging of external data. 
As we’ll discuss in Chapter 9, there are also householding capabilities that 
group or link customers who share similar name and address information. 
Rather than merely performing intrafile matching, some services maintain an 
enormous external reference file of everyone in the United States to match 
against. Although these products and services are potentially expensive and 
complex, it’s worthwhile to make the investment if customer matching (as in 
the foundation of rudimentary CRM) is strategic to your organization. In the 
end, effective consolidation of customer data depends on a balance of capturing 
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the data as accurately as possible in the source systems coupled with powerful 
data cleansing/merging tools in the staging process. 

Analyzing Customer Data from Multiple 
Business Processes 

As we indicated in earlier chapters, data warehouses should be built process 
by process, not department by department, on a foundation of conformed 
dimensions to support cross-process integration. We can imagine querying the 
sales or support service fact tables to better understand a customer’s purchase 
or service history. 

Since the sales and support tables both contain a customer foreign key, we can 
further imagine joining both fact tables to a common customer dimension to 
simultaneously summarize sales facts along with support facts for a given cus-
tomer, as in Figure 6.11. Unfortunately, the many-to-one-to-many join will 
return the wrong answer in a relational environment because of the differences 
in fact table cardinality. 

Consider the case in which we have a fact table of customer solicitations and 
another fact table with the customer responses resulting both from the solici-
tations and other independent sources. There is a one-to-many relationship 
between customer and solicitation and another one-to-many relationship 
between customer and response. The solicitation and response fact tables have 
different cardinalities; in other words, not every solicitation results in a 
response (unfortunately for the marketing department), and some responses 
are received for which there is no solicitation. Simultaneously joining the solic-
itation fact table to the customer dimension, which is in turn joined to the 
response fact table, does not return the correct answer in a relational DBMS 
because of the cardinality differences. Fortunately, this problem is easily 
avoided. We simply issue multipass SQL code to query the solicitation and 
response tables in separate queries and then outer join the two answer sets. 
The multipass approach has additional benefits in terms of better controlling 
performance parameters, in addition to supporting queries that combine data 
from fact tables in different physical locations. 

Solicitation Date Key (FK) 
Customer Key (FK) 
More Foreign Keys ... 
Solicitation Facts … 

Customer Solicitation Facts 

Customer Key (PK) 
Customer ID (Natural Key) 
Customer Attributes … 

Customer Dimensions 
Response Date Key (FK) 
Customer Key (FK) 
More Foreign Keys ... 
Response Facts … 

Customer Response Facts 

Figure 6.11 Many-to-one-to-many joined tables should not be queried with a single 
SELECT statement. 
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Be very careful when simultaneously joining a single dimension table to two fact 
tables of different cardinality. In many cases, relational systems will return the 
wrong answer. A similar problem arises when joining two fact tables of different 
granularity together directly. 

If users are frequently combining data from multiple business processes, then 
an additional fact table can be constructed that combines the data once into a 
second-level, consolidated fact table rather than relying on users to combine 
the data consistently and accurately on their own. We’ll discuss consolidated 
fact tables further in Chapter 7. Merely using SQL code to drill across fact 
tables to combine the results makes more sense when the underlying processes 
are less closely correlated. Of course, when constructing the consolidated fact 
table, we’d still need to establish business rules to deal with the differing car-
dinality (for example, does the combined fact table include all the solicitations 
and responses or only those where both a solicitation and response occurred?). 

Summary 

In this chapter we focused exclusively on the customer, beginning with an 
overview of CRM basics. We then delved into design issues surrounding the 
customer dimension table. We discussed name and address parsing where 
operational fields are decomposed to their basic elements so that they can be 
standardized and validated. We explored several other types of common cus-
tomer dimension attributes, such as dates, segmentation attributes, and aggre-
gated facts. Dimension outriggers that contain a large block of relatively 
low-cardinality attributes were described as permissible snowflakes in our 
dimensional designs. 

In cases where our customer dimension has millions of rows, we recom-
mended creating a minidimension of frequently analyzed or frequently chang-
ing attributes. A minidimension is also appropriate for variable-width 
attribute sets. The fact table then has two customer-related foreign keys, one 
for the primary customer dimension and another for the minidimension. We 
discussed the implications of counting within a customer dimension where 
additional type 2 rows are created to handle change. We also explored the 
notion of creating behavioral study group dimensions, which merely consist of 
customer keys that share a common trait or experience. Finally, we tackled the 
handling of simple and complex commercial customer hierarchies. The unpre-
dictable, variable-depth customer hierarchies commonly require the use of a 
bridge table to reflect the recursive hierarchy in a manner that can be queried 
by standard SQL code. 
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We briefly discussed the use of external software and service offerings to con-
solidate customer information effectively while managing duplicate data. 
Finally, we stepped back into the world of fact tables for a moment to discuss 
the potential downfalls of querying across two fact tables joined through a 
common customer dimension table. 
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F inancial analysis spans a variety of accounting applications, including the gen-
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eral ledger and detailed subledgers for purchasing and accounts payable, 
invoicing and accounts receivable, and fixed assets. Since we’ve already 
touched on purchase orders and invoices in this book, we’ll focus on the gen-
eral ledger in this chapter. General ledgers were one of the first applications to 
be computerized decades ago, given the need for accurate handling of a com-
pany’s financial records. Perhaps some of you are still running your business 
on a twenty-year-old ledger system. In this chapter we’ll discuss the data 
collected by the general ledger in terms of both journal entry transactions 
and snapshots at the close of an accounting period. We’ll also talk about the 
budgeting process. 

Chapter 7 discusses the following concepts: 

�� General ledger periodic snapshots and transactions 
�� Year-to-date facts 
�� Multiple fiscal accounting calendars 
�� Budgeting process and associated data, including net change granularity 
�� Consolidated fact tables that combine metrics from multiple business processes, 

such as actual and budget data 
�� Role of online analytic processing (OLAP) and packaged analytic financial solutions 
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Accounting Case Study

Since finance was an early adopter of technology to better run businesses, it 
comes as no surprise that early decision support solutions focused on the 
analysis of financial data. Financial analysts are some of the most data-literate 
and spreadsheet-savvy individuals around. Often their analysis is dissemi-
nated or leveraged by many others in an organization. Managers at all levels 
need timely access to key financial metrics. In addition to receiving standard 
reports, managers need the ability to analyze performance trends, variances, 
and anomalies with relative speed and minimal effort. Unfortunately, the 
backlog of special requests for financial data is often quite lengthy. As we 
observe frequently in operational source systems, the data in the general 
ledger is likely scattered among hundreds of tables. Gaining access to financial 
data and creating ad hoc reports may require a decoder ring to navigate 
through the maze of screens. This runs counter to the objective of many orga-
nizations to push fiscal responsibility and accountability to line managers. 

The data warehouse can provide a single source of usable, understandable 
financial information, ensuring that everyone is working with the same data 
based on common definitions and metrics. The audience for financial data is 
quite diverse in many organizations, ranging from analysts to operational 
managers to executives. For each group, we need to determine which subset of 
corporate financial data is needed, in which format, and with what frequency. 
Analysts and managers will want to view information at a high level and then 
drill down to journal entries for more detail. For executives, financial data 
from the data warehouse often feeds their dashboard or scorecard of key per-
formance indicators. Armed with direct access to information, managers can 
obtain answers to questions more readily than when forced to work through 
an intermediary. Meanwhile, the finance department can turn its attention to 
information dissemination and value-added analysis rather than focusing on 
report creation. 

The benefits of improved access to financial data focus on opportunities to bet-
ter manage risk, streamline operations, and identify potential cost savings. 
While financial analysis has cross-organization impact, many businesses focus 
their initial data warehouse implementation on strategic revenue-generating 
opportunities. Consequently, accounting data is often not the very first subject 
area tackled by the data warehouse team. Given its proficiency with technol-
ogy, the finance department often has already performed magic with spread-
sheets and personal databases to create work-around analytic solutions, 
perhaps to its short-term detriment, since these imperfect interim fixes likely 
are stressed to the limits. 
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General Ledger Data

The general ledger (G/L) is a core foundation financial system because it ties 
together the detailed information collected by the purchasing, payables (what 
you owe to others), and receivables (what others owe you) subledgers or sys-
tems. In this case study we’ll focus on the general ledger rather than the sub-
ledgers, which would be handled as separate business processes and fact tables. 
As we work through a basic design for G/L data, we discover, once again, that 
two complementary schemas with periodic snapshot and transaction-grained 
fact tables working together are required. 

General Ledger Periodic Snapshot 
We begin by delving into a snapshot of the G/L accounts at the end of each fis-
cal period (or month if your fiscal accounting periods align with calendar 
months). Referring once again to our four-step process for designing dimen-
sional models, the business process obviously focuses on the G/L. The grain of 
this periodic snapshot is one row per accounting period for the most granular 
level in the G/L’s chart of accounts. 

Chart of Accounts 

The cornerstone of the G/L is the chart of accounts. The G/L’s chart of 
accounts is the epitome of an intelligent key because it usually consists of a 
series of identifiers. For example, the first set of digits may identify the 
account, account type (for example, asset, liability, equity, income, or expense), 
and other account roll-ups. Sometimes intelligence is embedded in the account 
numbering scheme. For example, account numbers from 1,000 through 1,999 
might be asset accounts, whereas account numbers ranging from 2,000 to 2,999 
may identify liabilities. Obviously, in the data warehouse, we’d include the 
account type as a dimension attribute rather than forcing users to filter on the 
first digit of the account number. 

The chart of accounts also likely provides insight regarding the organizational 
cost center associated with the account. Typically, the organizational elements 
provide a complete roll-up from cost center to department to division, for 
example. If the corporate G/L combines data across multiple business units, 
the chart of accounts also would indicate the business unit or subsidiary 
company. 

Obviously, charts of accounts vary from company to company. They’re often 
extremely complicated. In our case study vignette we assume that the chart of 
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accounts naturally decomposes into two dimensions. One dimension focuses 
on the attributes of the financial G/L account, whereas the other represents the 
organizational roll-up. The organization roll-up may be a fixed-depth hierar-
chy, where we can handle the hierarchy levels as separate attributes in the 
organization cost center dimension. If the organizational hierarchy is ragged 
with imbalanced roll-up trees, then we’ll need to resort to the bridge table 
technique from Chapter 6 for dealing with variable-depth hierarchies. 

The G/L sometimes tracks financial results for multiple sets of books or sub-
ledgers to support different requirements, such as taxation or regulatory 
agency reporting. We’ll treat this as a separate dimension because it is such a 
fundamental filter. 

Period Close 

At the end of each accounting period, the finance organization is responsible 
for finalizing the financial results so that they can be officially reported inter-
nally and externally. It typically takes several days at the end of each period to 
reconcile and balance the books before they can be closed with the finance 
department’s official stamp of approval. From there, finance’s focus turns to 
reporting and interpreting the results. The finance department often produces 
countless reports and responds to countless variations on the same questions 
each month. 

Financial analysts are constantly looking to streamline the processes for 
period-end closing, reconciliation, and reporting of G/L results. While opera-
tional G/L systems often support these requisite capabilities, they may be 
cumbersome, especially if you’re not dealing with a modern G/L. In this chap-
ter we’ll focus on more easily analyzing the closed financial results rather than 
facilitating the close. However, in many organizations, G/L trial balances are 
loaded into the data warehouse to leverage the capabilities of the data ware-
house’s presentation area to find the needles in the G/L haystack and then 
make the appropriate operational adjustments before the period ends. 

The sample schema in Figure 7.1 supports the access and analysis of G/L 
account balances at the end of each account period. It would be very useful for 
many kinds of financial analysis, such as account rankings, trending patterns, 
and period-to-period comparisons. 

For the moment, we’re just representing actual facts in the Figure 7.1 schema; 
we’ll turn our attention to budget data later in this chapter. Obviously, the bal-
ance amount is a semiadditive fact. Although we typically attempt to avoid 
semiadditive facts, it makes sense to store the balance in this schema because 
many of the accounts are tracked as a balance. Otherwise, we’d need to go 
back to the beginning of time to calculate an accurate end-of-period balance. 



Accounting Period Key (PK) 
Accounting Period Number 
Accounting Period Description 

Accounting Period Dimension 

Accounting Period Key (FK) 
G/L Key (FK) 
G/L Account Key (FK) 
G/L Organization Key (FK) 
Period End Balance Amount 
Period Debit Amount 
Period Credit Amount 
Period Net Change Amount 

G/L Snapshot Fact 

G/L Organization Key (PK) 
Cost Center Name 
Cost Center Number 
Department Name 
Department Number 
Division Name 
Business Unit Name 
Company Name 

G/L Organization Dimension 

G/L Key (PK) 
G/L Book Name 

G/L Dimension 

G/L Account Key (PK) 
G/L Account Name 

G/L Account Dimension 
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Accounting Period Fiscal Year 

G/L Account Category 
G/L Account Type 

Figure 7.1 General ledger (G/L) periodic snapshot. 

Year-to-Date Facts 

Designers are often tempted to store to-date columns in fact tables. They think 
that it would be helpful to store quarter-to-date or year-to-date totals on each 
fact row so that users don’t need to calculate them. We need to remember that 
numeric facts must be consistent with the grain. To-date fields are not true to 
the grain and are fraught with peril. When fact rows are queried and summa-
rized in arbitrary ways, these untrue-to-the-grain facts produce nonsensical, 
overstated results. They should be left out of the relational schema design and 
calculated in the data access application instead. 

In general, to-date totals should be calculated, not stored in the fact table. 

Multiple Currencies Revisited 

If the general ledger consolidates data that has been captured in multiple curren-
cies, we would handle it much as we discussed in Chapter 5. With financial data, 
we typically want to represent the facts in terms of both the local currency and a 
standardized corporate currency. In this case, each row in the fact table would 
represent one set of fact amounts expressed in local currency and a separate set of 
fact amounts expressed in the equivalent corporate currency. Doing so allows us 
to summarize the facts in a common corporate currency easily without jumping 
through hoops in our access applications. Of course, we’d also add a currency 
dimension as a foreign key in the fact table to identify the local currency type. 

General Ledger Journal Transactions 
While the end-of-period snapshot addresses a multitude of financial analyses, 
many users need to dive into the underlying details. If the periodic snapshot 
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Post Date Dimension G/L Journal Entry Fact G/L Dimension 

Post Date Key (PK) 
Post Date Attributes … 

Post Date Key (PK) 
G/L Key (FK) 
G/L Account Key (FK) 
G/L Organization Key (FK) 
Debit-Credit Indicator Key (FK) 

G/L Organization Key (PK) 
G/L Organization Attributes … 

G/L Organization Dimension 

G/L Key (PK) 
G/L Attributes … 

G/L Account Key (PK) 
G/L Account Attributes … 

G/L Account Dimension 

Debit-Credit Indicator Key 
Debit-Credit Indicator Description 

Debit-Credit Indicator Dimension 

Journal Entry Number (DD) 
Journal Entry Amount 

Figure 7.2 General ledger (G/L) journal entry transactions. 

data appears unusual or not as expected, analysts will want to look at the 
detailed transactions to sort through the issue. Others will want access to the 
details because the summarized monthly balances may obscure large dispari-
ties at the granular transaction level. Once again, we complement the periodic 
snapshot with a detailed journal entry transaction schema. Of course, the 
accounts payable and receivable subledgers may contain transactions at even 
lower levels of detail, which would be captured in separate fact tables with 
additional dimensionality. 

In this situation we’re still focused on the G/L process; however, the grain of 
the fact table is now one row for every G/L journal entry transaction. The jour-
nal entry transaction identifies the G/L account and the applicable debit or 
credit amount. As illustrated in Figure 7.2, we’ll reuse several dimensions from 
the last schema, including the account and organization dimensions. If our 
G/L tracked multiple sets of books, we’d also include the ledger dimension. 
We’re capturing journal entry transactions by transaction posting date, so 
we’ll use a daily-grained date table in this schema. Depending on the business 
rules associated with the source data, we may need a second role-playing date 
dimension to distinguish the posting date from the effective accounting date. 

The journal entry number likely is a degenerate dimension with no linkage to 
an associated dimension table. Depending on the source data, we may have a 
journal entry transaction type and even a description. In this situation we’d 
create a separate journal entry transaction dimension. Assuming that the 
descriptions are not just freeform text, this dimension would have significantly 
fewer rows than the fact table, which would have one row per journal entry 
line. The specific journal entry number would still be treated as degenerate. 

Fact Types 

Each row in the journal entry fact table would be identified as either a credit or 
a debit. Given this inherent sparsity, we’d likely store a single journal entry 
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amount with a debit/credit indicator, unless we’re using a database platform, 
such as Oracle, which supports variable-width columns so that the empty 
columns take up minimal disk space. The debit/credit indicator would take on 
two and only two values. We can create a two-row debit/credit decode dimen-
sion table, or if your database supports bit-mapped indices, we may just 
include the industry-standard debit/credit abbreviation (DR/CR) in the fact 
table with a bit-mapped index for speedy filtering or constraining. We don’t 
want you to perceive that this is an excuse to bypass dimension table decode 
tables for all low-cardinality dimensions. It makes sense in this case because 
the abbreviations are understood universally, which isn’t usually the case with 
our internal codes and abbreviations. Ninety-nine percent of the time we’ll 
continue to create dimension tables that contain textual, descriptive decodes. 

Multiple Fiscal Accounting Calendars 

In this schema we’re capturing data by posting date, but users likely also want 
the ability to summarize the data by fiscal account period. Unfortunately, fis-
cal accounting periods often do not align with standard Gregorian calendar 
months. For example, a company may have 13 four-week accounting periods 
in a fiscal year beginning on September 1 rather than 12 monthly periods 
beginning on January 1. If we’re dealing with a single fiscal calendar, then each 
day in a year corresponds to a single calendar month, as well as a single 
accounting period. Given these relationships, the calendar and accounting 
periods are merely hierarchical attributes on the daily date dimension, as we 
saw in Chapter 2. The daily date dimension table obviously would conform to 
a calendar month dimension table, as well as to a fiscal accounting period 
dimension table. 

In other situations we may be dealing with multiple fiscal accounting calen-
dars that vary by subsidiary or line of business. If the number of unique fiscal 
calendars is a fixed, low number, then we can include each set of uniquely 
labeled fiscal calendar attributes on a single date dimension. A given row in 
the daily date dimension could be identified as belonging to accounting period 
1 for subsidiary A, but accounting period 7 for subsidiary B. 

In a more complex situation with a large number of different fiscal calendars, 
we could identify the official corporate fiscal calendar in the date dimension. 
We then have several options to address the subsidiary-specific fiscal calendars. 
The most common approach is to create a date dimension outrigger with a mul-
tipart key consisting of the date and subsidiary keys. There would be one row 
in this table for each day for each subsidiary. The attributes in this outrigger 
would consist of fiscal groupings (such as fiscal week end date and fiscal period 
end date). We’d need a mechanism for filtering on a specific subsidiary in the 
outrigger. Doing so through a view would then allow the outrigger to be 
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presented as if it were logically part of the date dimension table. A second 
approach for tackling the subsidiary-specific calendars would be to create sep-
arate physical date dimensions, instead of views, for each subsidiary calendar 
using a common set of surrogate date keys. This option likely would be used if 
your fact data were decentralized by subsidiary. Depending on your data access 
tool’s capabilities, it may be easier to either filter on the subsidiary outrigger as 
described in the first option or ensure use of the appropriate subsidiary-specific 
physical date dimension table (the second option). Finally, we could allocate 
another foreign key in the fact table to a subsidiary fiscal period dimension 
table. The number of rows in this table would be the number of fiscal periods 
(approximately 36 for three years) times the number of unique calendars. This 
approach simplifies user access but puts additional strain on the staging area 
because it must insert the appropriate fiscal period key during the transforma-
tion process. 

Financial Statements 
One of the primary functions of a G/L system is to produce the organization’s 
official financial reports, such as the balance sheet and income statement. Typ-
ically, the operational system handles the production of these reports. We 
wouldn’t want the data warehouse to attempt to replace the reports published 
by the operational financial system. 

However, data warehouse teams sometimes create a complementary database 
of aggregated data to provide simplified access to report information that can 
be more widely disseminated throughout the organization. Dimensions in the 
financial statement database would include the accounting period and cost 
center. Rather than looking at G/L account-level data, the fact data would be 
aggregated and tagged with the appropriate financial statement line number 
and label. In this manner, managers could easily look at performance trends 
for a given line in the financial statement over time for their organization. Sim-
ilarly, key performance indicators and financial ratios may be made available 
at the same level of detail. 

Budgeting Process 

Modern G/L systems typically include the ability to integrate budget data into 
the G/L. However, if our G/L either lacks this capability or we’ve elected not 
to implement it, we need to provide an alternative mechanism for supporting 
the budgeting process and variance comparisons. 

Within most organizations, the budgeting process is looked at as a series of 
events. Prior to the start of a fiscal year, each cost center manager typically 
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creates a budget, broken down by budget line items, which is then approved. 
In reality, budgeting is seldom simply a once-per-year event any more. Bud-
gets are becoming more dynamic because there are budget adjustments as the 
year progresses, reflecting changes in business conditions or the realities of 
actual spending versus the original budget. Managers want to see the current 
budget’s status, as well as how the budget has been altered since the first 
approved version. As the year unfolds, commitments to spend the budgeted 
monies are made. Finally, payments are processed. 

As dimensional modelers, we view the budgeting chain as a series of fact 
tables. We’ll begin with a budget fact table. For an expense budget line item, 
each row identifies what an organization in the company is allowed to spend 
for what purpose during a given time frame. Similarly, if the line item reflects 
an income forecast, which is just another variation of a budget, it would iden-
tify what an organization intends to earn from what source during a time 
frame. 

We could further identify the grain to be a status snapshot of each line item in 
each budget each month. Although this grain has a familiar ring to it (because 
it feels like a management report), it is a poor choice as the fact table grain. 
The facts in such a status report are all semiadditive balances rather than fully 
additive facts. Also, this grain makes it difficult to determine how much has 
changed since the previous month or quarter because we have to obtain the 
records from several time periods and then subtract them from each other. 
Finally, this grain choice would require the fact table to contain many dupli-
cated records when nothing changes in successive months for a given line 
item. 

Instead, the grain we’re interested in is the net change of the budget line item 
in a cost center that occurred during the month. While this suffices for budget 
reporting purposes, the accountants eventually will need to tie to the budget 
line item back to a specific G/L account that is affected, so we’ll also go down 
to the G/L account level. 

Given the grain, the associated dimensions would include effective month, 
organization, budget line item, and G/L account, as illustrated in Figure 7.3. 
The organization dimension is identical to the one used earlier with the G/L 
data. The G/L dimension is also a reused dimension. The only complication 
regarding the G/L account dimension is that sometimes a single budget line 
item has an impact on more than one G/L account. In such a case, we would 
need to allocate the budget line to the individual G/L accounts. Since the grain 
of the budget fact table is by G/L account, a single budget line for a cost center 
may be represented as several rows in the fact table. 
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Effective Date Dimension Budget Fact Budget Line Item Dimension 

Budget Effective Date Key (PK) 
Budget Effective Date Month 

… and more 

Budget Effective Date Key (FK) 
Budget Line Item Key (FK) 
G/L Account Key (FK) 
G/L Organization Key (FK) 
Budget Amount 

G/L Organization Key (PK) 
G/L Organization Attributes … 

G/L Organization Dimension 

Budget Line Item Key (PK) 
Budget Line Description 

G/L Account Key (PK) 
G/L Account Attributes … 

G/L Account Dimension 

Budget Effective Date Year Budget Year 
Budget Line Subcategory Description 
Budget Line Category Description 

Figure 7.3 Annual budget schema. 

The budget line item identifies the purpose of the proposed spending, such as 
employee wages or office supplies. Typically, several levels of summarization 
categories are associated with a budget line item. As we discussed in Chapter 5, 
all the budget line items may not have the same number of levels in their sum-
marization hierarchy, such as when some have only a category roll-up but not 
a subcategory. In this case we may populate the dimension attributes by repli-
cating the category name in the subcategory column to avoid having line items 
roll up to a “Not Applicable” subcategory bucket. The budget line-item dimen-
sion also would identify the budget year and budget version. 

The effective month is the month during which the budget changes are posted. 
The first entries for a given budget year would show the effective month when 
the budget is first approved. If the budget is updated or modified as the bud-
get year gets underway, the effective months would occur during the budget 
year. If we don’t adjust the budget at all throughout the year, then the only 
entries would be the first ones when the budget is approved. This is what we 
meant when we specified the grain to be the net change. It is critical that you 
understand this point, or you won’t understand what is in this budget fact 
table or how it is used. 

Sometimes budgets are created as annual spending plans; at other times 
they’re broken down by month or by quarter. The schema in Figure 7.3 
assumes that the budget is an annual figure, with the budget year identified in 
the budget line-item dimension. If we need to express the budget data by 
spending month, we would need to include a second month dimension table 
that plays the role of spending month. 

The budget fact table has a single budget amount fact that is fully additive. If 
we’re budgeting for a multinational organization, the budget amount may be 
tagged with the expected currency conversion factor for planning purposes. 
If the budget amount for a given budget line and G/L account is modified 
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during the year, an additional row is added to the budget fact table represent-
ing the net change. For example, if the original budget was $200,000, we might 
have another row in June for a $40,000 increase and then another in October 
for a negative $25,000 as we tighten our belts going into year-end. 

Once the budget year begins, managers make commitments to spend the bud-
get through purchase orders, work orders, or other forms of contracts. Man-
agers are keenly interested in monitoring their commitments and comparing 
them with the annual budget in order to manage their spending. We can envi-
sion a second fact table for the commitments that shares the same dimensions, 
in addition to dimensions identifying the specific commitment document 
(purchase order, work order, or contract) and commitment party. In this case 
the fact would be the committed amount. 

Finally, payments are made as monies are transferred to the party named in 
the commitment. From a practical point of view, the money is no longer avail-
able in the budget when the commitment is made. However, the finance 
department is interested in the relationship between commitments and pay-
ments because it manages the company’s cash. The dimensions associated 
with the payments fact table would include the commitment fact table dimen-
sions plus a payment dimension to identify the type of payment and the 
payee to whom the payment actually was made. In the budgeting chain we 
expand the list of dimensions as we move from the budget to commitments to 
payments. 

With this design, we can create a number of interesting analyses. To look at the 
current budgeted amount by department and line item, we constrain on all 
dates up to the present, adding the amounts by department and line item. 
Because the grain is the net change in the line items, adding up all the entries 
over time does exactly the right thing. We end up with the current approved 
budget amount, and we get exactly those line items in the given departments 
which have a budget. 

To ask for all the changes to the budget for various line items, we simply con-
strain on a single month. We’ll report only those line items which experienced 
a change during the month. 

To compare current commitments with the current budget, we separately sum 
the commitment amounts and budget amounts from the beginning of time to 
the current date (or any date of interest). We then combine the two answer sets 
on the row headers. This is a standard drill-across application using multipass 
SQL. Similarly, we could drill across commitments and payments. 

If you’re interested in reading more about building and using the budgeting 
chain, we recommend Data Warehouse Design Solutions (Wiley 1998) by Chris 
Adamson and Mike Venerable. 
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Consolidated Fact Tables 
In the last section we discussed users comparing metrics generated by sepa-
rate business processes by drilling across fact tables, such as budget and com-
mitments. If this type of drill-across analysis is extremely common in the user 
community, it likely makes sense to create a single fact table that combines the 
metrics once rather than relying on users or their reporting applications to 
stitch together result sets, especially given the inherent issues of complexity, 
accuracy, tool capabilities, and performance. 

Most typically, business managers are interested in comparing actual to bud-
get variances. At this point we presume that our annual budgets and/or fore-
casts have been broken down by accounting period. In Figure 7.4 we see the 
actual and budget amounts, as well as the variance (which is a calculated dif-
ference) by the common dimensions. As we discussed earlier, we deliver the 
to-date fields by leveraging the roll-up attributes on the accounting period 
dimension. 

Again, if we’re working for a multinational organization, we likely would see 
the actual amounts in both local and equivalent standard currency, based on 
the effective conversion rate. In addition, we may convert the actual results 
based on the planned currency conversion factor (as described during the 
budget process). Given the unpredictable nature of currency fluctuations, it is 
useful to monitor performance based on both the effective and planned con-
version rates. In this manner, remote managers aren’t penalized for currency 
rate changes outside their control. Likewise, the finance department can bet-
ter understand the big-picture impact of unexpected currency conversion 
fluctuations on the organization’s annual plan. 

As we introduced in Chapter 3, we refer to fact tables that combine metrics at 
a common granularity as consolidated or second-level fact tables (or consolidated 
data marts). While consolidated fact tables can be very useful in terms of both 
performance and usability, they often represent a dimensionality compromise 
because they consolidate facts at the least common denominator set of dimen-
sions. One potential risk associated with consolidated fact tables is that proj-
ect teams sometimes base their designs solely on the granularity of the 
consolidated fact table while failing to meet user requirements that demand 
the ability to dive into more granular data. These schemas also run into seri-
ous problems if project teams attempt to force a one-to-one correspondence in 
order to consolidate data with different granularity or dimensionality. 
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Accounting Period Dimension Budget Variance Fact 

Accounting Period Key (PK) 
Accounting Period Attributes … 

Accounting Period Key (FK) 
G/L Account Key (FK) 
G/L Organization Key (FK) 
Accounting Period Actual Amount 
Accounting Period Budget Amount 

G/L Organization Key (PK) 
G/L Organization Attributes … 

G/L Organization Dimension 

G/L Account Key (PK) 
G/L Account Attributes … 

G/L Account Dimension 

Accounting Period Budget Variance 

Figure 7.4 Actual versus budget consolidated fact table. 

When facts from multiple business processes are combined in a consolidated fact 
table, they must live at the same level of granularity and dimensionality. Optimally, the 
separate facts naturally live at a common grain. Otherwise, we are forced to eliminate 
or aggregate some dimensions to support the one-to-one correspondence or keep 
them in separate fact tables. Project teams should not create artificial facts or dimen­
sions in an attempt to force fit the consolidation of differently grained fact data. 

Role of OLAP and Packaged Analytic Solutions 

While we’ve been discussing financial data warehouses in the context of 
relational databases, it is worth noting that multidimensional OLAP vendors 
have long played a role in this arena. OLAP products have been used exten-
sively for financial reporting, budgeting, and consolidation applications. We 
often see relational dimensional models feeding financial OLAP data cubes. 
OLAP cubes are precalculated, which results in fast query performance that 
is critical for executive use. The data volumes, especially for the G/L bal-
ances or financial statement aggregates, typically do not overwhelm the 
practical size constraints of a multidimensional product. OLAP is well suited 
to handle complicated organizational roll-ups, as well as complex calcula-
tions, including interrow manipulations. Most multidimensional OLAP ven-
dors provide finance-specific capabilities, such as financial functions (for 
example, net present value or compound growth), the appropriate handling 
of financial statement data (in the expected sequential order, such as income 
before expenses), and the proper treatment of debits and credits depending 
on the account type, as well as more advanced functions such as financial 
consolidation. 
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Given the standard nature of G/L processing, purchasing a G/L package 
rather than attempting to build one from scratch has been a popular route for 
years. Nearly all the operational package providers also offer a complemen-
tary analytic solution, sometimes in partnership with one of the multidimen-
sional OLAP vendors. In many cases these canned analyses based on the 
cumulative experience of the vendor are a sound way to jump-start a financial 
data warehouse implementation with potentially reduced cost and risk. The 
analytic solutions often have tools to assist with the extraction and staging of 
operational financial data, as well as tools to assist with analysis and interpre-
tation. However, as we discussed in Chapter 6, when leveraging packaged 
solutions, we need to be cautious about avoiding stovepipe applications. One 
could easily find oneself in a situation with separate financial, CRM, human 
resources, and ERP packaged analytic solutions from as many different ven-
dors, none of which integrates with other internal data. We need to conform 
dimensions across the entire data warehouse environment regardless of 
whether we’re building our own solution or implementing packages. Pack-
aged analytic solutions can turbocharge your data warehouse implementa-
tion; however, they do not alleviate the need for conformance. Most 
organizations inevitably will rely on a combination of building, buying, and 
integrating for a complete solution. 

Summary 

In this chapter we focused primarily on financial G/L data in terms of both 
periodic snapshots and journal entry transactions. We discussed the handling 
of common G/L data challenges, including multiple currencies, multiple fiscal 
years, unbalanced organizational trees, and the urge to create to-date totals. 

We explored the series of events in a budgeting process chain. We described 
the use of net-change granularity in this situation rather than creating snap-
shots of the budget data totals. We also discussed the concept of consolidated 
fact tables that combine the results of separate business processes when they 
are analyzed together frequently. 

Finally, we discussed the natural fit of multidimensional OLAP products for 
financial analysis. We also stressed the importance of integrating analytic 
packages into the overall data warehouse through the use of conformed 
dimensions. 
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C H A P T E R  

his chapter, which focuses on human resources (HR) data, is the last in the 
series that deals with cross-industry business applications. Similar to the 
accounting and finance data described in Chapter 7, HR information is dis-
seminated broadly throughout the organization. Unlike finance, however, we 
typically don’t find a cadre of tech-savvy HR analysts in many organizations. 

Most of us operate in a rapidly changing, competitive business environment. 
We need to better understand our employees’ demographics, skills, earnings, 
and performance in order to maximize their impact. In this chapter we’ll 
explore several dimensional modeling techniques in the context of HR data. 

Chapter 8 discusses the following concepts: 

�� Dimension tables to track employee transaction facts 
�� Audit dimension 
�� Skill-set keyword dimension outrigger 
�� Handling of survey questionnaire data 
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Time-Stamped Transaction Tracking 
in a Dimension 

C  H A P T E  R  8  

Thus far the dimensional models we have designed closely resemble each other 
in that the fact tables have contained key performance metrics that typically can 
be added across all the dimensions. It is easy for dimensional modelers to get 
lulled into a kind of additive complacency. In most cases, this is exactly how it is 
supposed to work. However, with HR employee data, many of the facts aren’t 
additive. Most of the facts aren’t even numbers, yet they are changing all the time. 

To frame the problem with a business vignette, let’s assume that we work in 
the HR department of a large enterprise with more than 100,000 employees. 
Each employee has a detailed HR profile with at least 100 attributes, including 
date of hire, job grade, salary, review dates, review outcomes, vacation entitle-
ment, organization, education, address, insurance plan, and many others. In 
our organization there is a stream of transactions against this employee data. 
Employees are constantly being hired, transferred, and promoted, as well as 
adjusting their profiles in a variety of ways. 

The highest-priority business requirement is to track and analyze these 
employee transaction events accurately. This detailed transaction history is the 
fundamental truth of HR data; it should provide the answer to every possible 
employee profile inquiry. While these unanticipated questions may be com-
plex, we must be confident the data is available and waiting to be analyzed. 

We immediately visualize a schema as depicted in Figure 8.1 where each 
employee transaction event is captured in a transaction-grained fact table. The 
granularity of this fact table would be one row per employee transaction. Since 
no numeric metrics are associated with the transaction, the fact table is factless. 
The measurements associated with employee transactions are the changes 
made to the employee profile, such as a new address or job grade promotion. 

Employee Key (PK) 
Employee ID (Natural Key) 
Employee Attributes … 

Employee Dimension 

Employee Key (FK) 

Transaction Date Key (FK) 
Transaction Time Key (FK) 

Employee Transaction Type Key (FK) 

Employee Transaction Fact Table 

Employee Transaction Type Key (PK) 
Employee Transaction Type Description 

Employee Transaction Type Dimension 

Transaction Date Dimension 

Transaction Time Dimension 

Each change to the Grain: one row per
employee dimension employee transaction

handled as a SCD type 2

Figure 8.1 Initial draft for tracking employee change transactions. 
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In this initial draft schema, the dimensions include the transaction date and 
time, transaction type, and employee. The transaction date and time dimen-
sions refer to the exact date and time of the employee transaction. We assume 
that these dates and times are fine-grained enough that they guarantee 
uniqueness of the transaction row for a given employee. The transaction type 
dimension refers to the variety of transaction that caused the creation of this 
particular row, such as a promotion or address change. The employee dimen-
sion is extremely wide with many attribute columns. The employee identifier 
used in the HR production system as a constant identifier for the employee is 
included in this dimension table as an attribute. 

We envision using the type 2 slowly changing dimension technique for track-
ing changed profile attributes in the employee dimension. Consequently, 
with every employee transaction in the fact table in Figure 8.1, we also create 
a new type 2 row in the employee dimension that represents the employee’s 
profile as a result of the transaction event. It continues to accurately describe 
the employee until the next employee transaction occurs at some indetermi-
nate time in the future. The alert reader is quick to point out that we’ve 
designed an employee transaction fact table and a type 2 employee dimen-
sion table with the exact same number of rows, which are almost always 
joined to one another. At this point dimensional modeling alarms should be 
going off. We certainly don’t want to have as many rows in a fact table as we 
do in a related dimension table. 

Instead of using the initial schema, we can simplify the design by embellishing 
the employee dimension table to make it more powerful and thereby doing 
away with the transaction event fact table. As depicted in Figure 8.2, the 
employee transaction dimension contains a snapshot of the employee profile 
following each individual employee transaction. We included the transaction 
type description in the employee dimension to track the reason for the profile 
change. There is no numeric metric associated with a profile transaction; the 
transaction merely results in a new set of employee profile characteristics. In 
some cases, the affected characteristics are numeric. If the numeric attributes 
are summarized rather than simply constrained upon, they belong in a fact 
table instead. 

As you’d expect, the surrogate employee transaction key is the primary key of 
the dimension table, although the natural key is the constant employee ID. We 
resist the urge to rely on a smart key consisting of the employee ID, transaction 
code, and transaction date/time. All these attributes are valuable, but they are 
simply columns in the employee transaction row that participate in queries 
and constraints like all the other attribute columns. 
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Employee Transaction Dimension 

Employee ID (Natural Key) 
Employee Name … 
Employee Address … 
Job Grade … 

… 
Education … 
Original Hire Date (FK) 
Last Review Date (FK) 
Appraisal Rating … 
Health Insurance Plan … 

… 

Employee Transaction Key (PK) 

Salary 

Vacation Plan 
Employee Transaction Type Description 
Employee Transaction Date 
Employee Transaction Time 
Employee Transaction Expiration Date 
Employee Transaction Expiration Time 
Most Recent Transaction Indicator 

Indicates the transaction that caused 
another Employee row to be created 

Figure 8.2 Employee transaction dimension. 

A crucial component of this design is the second date and time entry, the trans-
action expiration date/time. This date/time represents the date/time of the 
next transaction to occur for this employee, whenever that may be. In this way 
these two date/times in each row define a span during which the employee 
profile is accurate. The two date/times can be one second apart (if a rapid 
sequence of transactions is being processed against an employee profile) or 
many months apart. The transaction expiration date/time in the most current 
employee profile must be set to an arbitrary time in the future. Although it 
would seem more elegant to set the expiration date for this row to null, this 
probably would make the query and reporting applications more complex 
because they might have to test separately for the null value. 

The most recent transaction indicator identifies the latest transaction made 
against an employee profile. This column allows the most recent or final status 
of any employee to be retrieved quickly. If a new profile transaction occurs for 
this employee, the indicator in the former profile row needs to be updated to 
indicate that it is no longer the latest transaction. 

Even in a large organization, this approach doesn’t require significant storage. 
Assume that we have 100,000 employees and perform an average of 10 HR 
profile transactions on each employee each year. Even if we have a verbose 
2,000-byte transaction row, 5 years of profile data only adds up to 10 GB (5 
years x 100,000 employees x 2,000 bytes x 10 transactions per year) of raw data 
in the employee transaction dimension. 
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On its own, this time-stamped type 2 employee transaction dimension can 
answer a number of interesting HR inquiries. We obviously can use this table 
to look in detail at the sequence of transactions against any given employee. 
We can easily profile the employee population at any precise instant in time. 
We can choose an exact date at any historical point in time and ask how many 
employees we have and what their detailed profiles were on that date by con-
straining the date and time to be equal to or greater than the transaction 
date/time and less than the transaction expiration date/time. The query can 
perform counts and constraints against all the rows returned from these date 
constraints. Given that the dimension rows are snapshots in their own right, 
we avoid sifting through a complex set of transactions in sequence to construct 
a snapshot for a particular date in the past. 

Adding effective and expiration date/time stamps, along with a transaction descrip­
tion, on each row can embellish the design of a type 2 slowly changing dimension to 
allow very precise time slicing of the dimension by itself. 

Before rushing into this design for an HR application, we need to be thought-
ful about the transaction dimension. The underlying HR source system may 
have a very complex notion of a transaction that isn’t really what we want in 
the data warehouse. For instance, an employee promotion may be imple-
mented in the source system by many microtransactions corresponding to 
each change in an individual field on the employee record. We don’t want to 
see this detail in the data warehouse. Rather, we want to encapsulate the whole 
series of microtransactions from the underlying source system and treat them 
all as a super transaction called employee promotion. The new record in our type 
2 employee dimension reflects all the relevant changed fields in one step. Iden-
tifying these supertransactions may be tricky. Perhaps the best way to identify 
them is to make sure that there is a field on the HR operational application that 
captures the high-level action. 

Time-Stamped Dimension with 
Periodic Snapshot Facts 

Some of you may be wondering if the employee transaction dimension table 
isn’t really a kind of fact table because it is time-stamped. While technically 
this may be true, this employee transaction table mainly contains textual val-
ues; it is the primary source of query constraints and report labels. Thus it is 
proper to think of this table as a dimension table that serves as the entry point 
into the HR fact tables. The employee transaction table can be used with any 
fact table that requires an employee dimension as long as the employee surro-
gate key is extended to be the employee transaction surrogate key. 



192 C  H A P T E  R  8  

In addition to profiling the employee base in HR, we also need to report sum-
mary statuses of the employee base on a regular, monthly basis. We’re inter-
ested in counts, statistics, and totals, including such things as number of 
employees, total salary paid during the month, vacation days taken, vacation 
days accrued, number of new hires, and number of promotions. We want to 
analyze the data by all possible slices, including time and organization. We 
need to access totals at the end of each month, even when there is no transac-
tion activity in a given employee’s profile during that month. 

As shown in Figure 8.3, the HR periodic snapshot consists of a fairly ordinary 
looking fact table with three dimensions: month, employee transaction, and 
organization. The month dimension table contains the usual descriptors for 
the corporate calendar at the month grain. The employee transaction key in a 
fact table row is the employee transaction key that was effective on the last day 
of the given reporting month. This guarantees that the month-end report is a 
correct depiction of all the employee profiles. The organization dimension 
contains a description of the organization to which the employee belongs at 
the close of the relevant month. 

The facts in this HR snapshot consist of monthly numeric summaries that are 
difficult to calculate from the underlying transactions. These monthly counts 
and totals satisfy the bulk of management’s inquiries regarding monthly 
employee statistics. All the facts are additive across all the dimensions or 
dimension attributes, except for the facts labeled as balances. These balances, 
like all balances, are semiadditive and must be averaged across the time 
dimension after adding across the other dimensions. 

Human Resources Snapshot Fact
Employee Transaction Dimension Month Dimension 

Employee Transaction Key (PK)
Employee ID (Natural Key)
Employee Attributes …
Employee Transaction Type Description Organization Dimension
Employee Transaction Date
Employee Transaction Time
Employee Transaction Expiration Date
Employee Transaction Expiration Time
Most Recent Transaction Indicator

Month Key (FK) 

Organization Key (FK) 

Overtime Paid 
Overtime Hours 
Retirement Fund Paid 
Retirement Fund Employee Contribution 

Employee Count 
New Hire Count 

Promotion Count 

Month Key (PK) 
Month Attributes … 

Organization Key (PK) 
Organization Attributes ... 

Employee Transaction Key (FK) 

Salary Paid 

Vacation Days Accrued 
Vacation Days Taken 
Vacation Day Balance 

Transfer Count 

Employee Transaction and Organization 
foreign keys are those valid at month end 

Figure 8.3 HR periodic snapshot with employee transaction dimension. 
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Audit Dimension

Whenever we build a fact table containing measurements of our business, we 
surround the fact table with everything we know to be true. We can extend this 
everything-we-know approach to our fact tables by including key pieces of 
metadata that are known to be true when an individual fact row is created. For 
instance, when we create a fact table row, we know the following: 

�� What source system supplied the fact data 

�� What version of the extract software created the row 

�� What version of allocation logic, if any, was used to create the row 

�� Whether a specific “Not Applicable” fact column is unknown, impossible, 
corrupted, or not available yet 

�� Whether a specific fact was altered after the initial load and, if so, why 

�� Whether the row contains facts more than 2, 3, or 4 standard deviations 
from the mean or, equivalently, outside various bounds of confidence 
derived from some other statistical analysis 

The first three items describe the lineage of the fact table row; in other words, 
where did the data come from? The last three items describe our confidence 
in the quality of data for that fact table row. As illustrated in Figure 8.4, the 
most efficient way to add this information to a fact table is to create a single 
audit foreign key in the fact table. The beauty of this design is that the data 
staging lineage and confidence metadata has now become regular data, 
which can be queried and analyzed along with the other more familiar 
dimensions. 

The indicators in the audit dimension consist of textual decodes. We are 
going to constrain and report on these various audit attributes, so we want 
them to appear as understandable text. Perhaps the extract software 
attribute might contain the value “Employee extract version 5 using ETL 
vendorABC release 6.4.” The altered status attribute might contain values 
such as “Not altered” or “Altered due to restatement.” In our staging 
extract-transformation-load (ETL) process, we track these indicators and 
have them ready when the fact table row is being assembled in its final state. 
If we are loading a large number of rows each day, almost all the rows will 
have the same audit foreign key because presumably nearly all the rows 
will be normal. 
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Human Resources Snapshot Fact 

… 
Employee Attributes … 

Audit Key (PK) 
Extract Completion Date 

Extract Status 
Number of Records Extracted 

Load Completion Date 

Load Status 
Number of Records Loaded 
Number of Load Records Rejected 

Audit Dimension 

Month Key (FK) 

Organization Key (FK) 
Audit Key (FK) 

Overtime Paid 
Overtime Hours 
Retirement Fund Paid 
Retirement Fund Employee Contribution 

Employee Count 
New Hire Count 

Promotion Count 

Month Key (PK) 
Month Attributes … 

Month Dimension 

Organization Key (PK) 
Organization Attributes ... 

Organization Dimension 

Employee Transaction Key (PK) 
Employee Transaction Attributes 

Employee Transaction Dimension 

Extract Completion Time 

Transformation Completion Date 
Transformation Completion Time 
Transformation Status 
Number of Records Transformed 
Number of Transform Records Rejected 

Load Completion Time 

Employee Transaction Key (FK) 

Salary Paid 

Vacation Days Accrued 
Vacation Days Taken 
Vacation Day Balance 

Transfer Count 

Figure 8.4 HR periodic snapshot with audit dimension. 

Keyword Outrigger Dimension 

Let’s assume that the IT department wants to supplement the employee 
dimension with descriptive technical skill-set information. The department 
wants to be able to determine any and all of the key technical skills in which an 
employee is proficient. It is highly likely that many IT employees have exper-
tise in a wide variety of skills. We can consider these technical skills to be key-
words that describe our employees. There will be a number of different 
keywords, but there will be predictability or structure to them. Some key-
words will describe programming languages (for example, Cobol, C++, and 
Pascal), whereas others will describe operating systems (for example, Unix, 
Windows, and Linux) or database platforms. We want to search the IT 
employee population by these descriptive keywords, which we will label as 
skills in our design. 

Since each employee will have a variable, unpredictable number of skills, the 
skills dimension is a prime candidate to be a multivalued dimension. Key-
words, by their nature, usually are open-ended. New keywords are created 
regularly and added to the database. We’ll show two logically equivalent 
modeling schemes for handling open-ended sets of keywords while at the 
same time keeping both querying and administration simple. Figure 8.5 shows 
a multivalued dimension design for handling the skills keywords as an 
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Human Resources Fact 

Employee Key (FK) 
More Foreign Keys … 

… 
Employee Key (PK) 
Employee Attributes … 
Employee Skill Group Key (FK) 

Employee Dimension 

Employee Skill Group Key (PK) 
Employee Skill Key (PK) 
Employee Skill Description 

Employee Skill Group Outrigger
Human Resources Facts 

Employee Skill Category 

Figure 8.5 Skills group keyword dimension outrigger. 

outrigger to the employee dimension table. As we’ll see in Chapter 13 when 
we further elaborate on multivalued dimension attributes, sometimes the mul-
tivalued dimension is joined directly to a fact table. 

The skills group identifies a given set of skills keywords. All IT employees 
who are proficient in Oracle, Unix, and SQL would be assigned the same skills 
group key. In the skills group outrigger, there would be three rows for this par-
ticular group, one for each of the associated keyword skills (Oracle, Unix, and 
SQL). In this case, just two attributes are associated with each skill, description 
and category, so we include these attributes in the outrigger directly. 

AND/OR Dilemma 
Assuming that we have built the schema as shown in Figure 8.5, we are still 
left with a serious query problem. Query requests against the technical skill-
set keywords likely will fall into two categories. The OR queries (for example, 
Unix OR Linux experience) can be satisfied by a simple OR constraint on the 
skills description column in the outrigger. However, AND queries (for exam-
ple, Unix AND Linux experience) are difficult because the AND constraint is a 
constraint across two rows in the skills outrigger. SQL is notoriously poor at 
handling constraints across rows. The answer is to create SQL code using 
unions and intersections, probably in a custom interface that hides the com-
plex logic from the business user. The SQL code would look like this: 

(SELECT EMPLOYEE_ID, EMPLOYEE_NAME 

FROM EMPLOYEE, SKILLS 

WHERE EMPLOYEE.SKILLSGROUP = SKILLS.SKILLSGROUP AND SKILL = “UNIX”) 

UNION / INTERSECTION 

(SELECT EMPLOYEE_ID, EMPLOYEE_NAME 

FROM EMPLOYEE, SKILLS 

WHERE EMPLOYEE.SKILLSGROUP = SKILLS.SKILLSGROUP AND SKILL = “LINUX”) 

Using the UNION lists employees with Unix OR Linux experience, whereas 
using INTERSECTION identifies employees with Unix AND Linux experience. 
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Searching for Substrings 
We can remove the many-to-many join and the need for UNION/ 
INTERSECTION SQL by changing the design to a simpler form, as shown in 
Figure 8.6. Now each row in the skills list outrigger contains one long text 
string with all the skills keywords for that list key. We use a special delimiter 
such as a backslash at the beginning of the skills list column and after each 
skill in the list. Thus the skills list string containing Unix and C++ would look 
like \Unix\C++\. We presume that a number of employees share a common 
list of skills. If the lists are not reused frequently, we could collapse the skills 
list outrigger into the employee dimension merely by including the skills list 
string as we just described directly in the employee dimension. 

String searches can be challenging because of the ambiguity caused by search-
ing on upper or lower case. Is it UNIX or Unix or unix? We can resolve this 
either by changing all the keywords to one case or by using a special database 
text string search function that is case-insensitive. 

With the design in Figure 8.6, the AND/OR dilemma can be addressed in a 
single SELECT statement. The OR constraint looks like this: 

SKILL_LIST LIKE ‘%\UNIX\% OR SKILL_LIST LIKE ‘%\LINUX\%’ 

Meanwhile, the AND constraint has exactly the same structure: 

SKILL_LIST LIKE ‘%\UNIX\%’ AND SKILL_LIST LIKE ‘%\LINUX\%’ 

The % symbol is a wildcard pattern-matching character defined in SQL that 
matches zero or more characters. The backslash delimiter is used explicitly in 
the constraints to exactly match the desired keywords and not get erroneous 
matches. 

The keyword list approach shown in Figure 8.6 will work in any relational 
database because it is based on standard SQL. However, leading wildcard 
searches are notorious for being slow when the keyword dimension table gets 
large. If performance becomes objectionable, you can pursue two approaches 
if your database allows. First, you can pin the keyword list outrigger in mem-
ory so that even though the constraint may invoke an exhaustive search of the 
dimension, it may be pretty fast. Second, you can build a special pattern index 
on the keyword list column that provides an index lookup to every conceiv-
able substring, provided that your database can support this type of index. 
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Human Resources Fact 

Employee Key (FK) 
More Foreign Keys … 

… 
Employee Key (PK) 
Employee Attributes … 
Employee Skill Group Key (FK) 

Employee Dimension 

Employee Skill List Key (PK) 
Employee Skill List 

Employee Skill Group Outrigger
Human Resources Facts 

Figure 8.6 Delimited skills list dimension outrigger. 

Survey Questionnaire Data 

The HR department often collects survey data from the entire employee base, 
especially when gathering peer and/or management review data. The depart-
ment wants to analyze these questionnaire responses to determine the average 
rating for a reviewed employee and the average rating within a department. 

In order to analyze questionnaire data, we create a fact table with one row for 
each question on a respondent’s survey, as illustrated in Figure 8.7. There 
would be two role-playing employee dimensions in the schema corresponding 
to the responding employee and the reviewed employee. The survey dimen-
sion consists of descriptors about the survey instrument. The question dimen-
sion would provide the question and its categorization. Presumably, the same 
question is asked on multiple surveys. The survey and question dimensions 
can be useful handles for searching for specific topics in a broad database of 
questionnaires. The response dimension contains the responses and perhaps 
categories of responses, such as favorable or hostile. 

Responding Employee Key (FK) 
Reviewed Employee Key (FK) 
Question Key (FK) 

Response 

Responding Employee Dimension 

Reviewed Employee Dimension 

Question Key (PK) 
Question Label 

Question Dimension 

Survey Sent Date Dimension 

Survey Sent Date Key (FK) 
Survey Received Date Key (FK) 
Survey Key (FK) 

Response Category Key (FK) 
Survey Number (DD) 

Employee Evaluation Survey Fact 

Survey Key (PK) 
Survey Title 
Survey Type 
Survey Objective 
Review Year 

Survey Dimension 

Response Category Key (PK) 
Response Category Description 

Response Category Dimension 

Survey Received Date Dimension 

Question Category 

Figure 8.7 HR survey schema. 
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Creating the simple schema in Figure 8.7 supports robust slicing and dicing of 
survey data. Variations of this schema design would be useful for analyzing all 
types of survey data, including customer satisfaction and product usage feed-
back. 

Summary 

In this chapter we discussed several concepts in the context of HR data. First, 
we further elaborated on the advantages of embellishing a dimension table so 
that it not only captures all the relevant attributes but also tracks transactions 
that cause profile changes. In the world of HR, this single table will be used to 
address a number of questions regarding the status and profile of the 
employee base at any point in time. We described the use of an audit dimen-
sion to track data lineage and quality metadata within an HR fact table. This 
technique obviously is broadly applicable beyond the HR arena. We intro-
duced the use of keyword group or delimited list dimension outriggers to sup-
port analysis on multivalued attributes. Finally, we provided a brief overview 
regarding the analysis of data collected from surveys or questionnaires. 
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The financial services industry encompasses a wide variety of businesses, 

C H A P T E R  

including credit card companies, brokerage firms, and mortgage providers. 
This chapter will focus primarily on retail banks given that most readers have 
some degree of personal familiarity with this type of financial institution. A 
full-service bank offers a breadth of products, including checking accounts, 
savings accounts, mortgage loans, personal loans, credit cards, and safe 
deposit boxes. This chapter begins with a very simplistic schema. We then 
explore several schema extensions, including handling of the bank’s broad 
portfolio of heterogeneous products that vary significantly by line of business. 

As we embark on a series of industry-focused chapters, we want to remind 
you that they are not intended to provide full-scale industry solutions. While 
various dimensional modeling techniques will be discussed in the context of a 
given industry, the techniques certainly are applicable to other businesses. If 
you don’t work in financial services, you still need to read this chapter. If you 
do work in financial services, remember that the schemas in this chapter 
should not be viewed as complete. 

Chapter 9 discusses the following concepts: 

�� Dimension triage to avoid the “too few dimensions” trap 
�� Household dimensions 
�� Associating individual customers with accounts using a bridge table 
�� Multiple minidimensions in a single fact table 
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�� Value banding of facts for reporting purposes 
�� Point-in-time balances using transaction data 
�� Handling heterogeneous products, each with unique metrics and dimension attributes, 

across lines of business 

Banking Case Study

The bank’s initial goal is to build the capability to better analyze the bank’s 
accounts. Users want the ability to slice and dice individual accounts, as well 
as the residential household groupings to which they belong. One of the 
bank’s major objectives is to market more effectively by offering additional 
products to households that already have one or more accounts with the bank. 
After conducting interviews with managers and analysts around the bank, we 
develop the following set of requirements: 

1. Business users want to see 5 years of historical monthly snapshot data on 
every account. 

2. Every account has a primary balance. The business wants to group differ-
ent types of accounts in the same analyses and compare primary balances. 

3. Every type of account (known as products within the bank) has a set of 
custom dimension attributes and numeric facts that tend to be quite dif-
ferent from product to product. 

4. Every account is deemed to belong to a single household. There is a sur-
prising amount of volatility in account-household relationships due to 
changes in marital status and other life-stage factors. 

5. In addition to the household identification, users are interested in demo-
graphic information as it pertains to both individual customers and 
households. In addition, the bank captures and stores behavior scores 
relating to the activity or characteristics of each account and household. 

Dimension Triage 

Based on the business requirements just listed, the grain and dimensionality of 
the initial model begin to emerge. We start with a core fact table that records 
the primary balances of every account at the end of each month. Clearly, the 
grain of the fact table is one row for each account at the end of each month. 
Based on this grain declaration, we initially envision a design with only two 
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dimensions—month and account. These two foreign keys form the fact table 
primary key, as shown in Figure 9.1. A data-centric designer might argue that 
all the other description information, such as household, branch, and product 
characteristics, should be embedded as descriptive attributes of the account 
dimension because each account has only one household, branch, and product 
associated with it. 

While this schema accurately represents the many-to-one and many-to-many 
relationships in the snapshot data, it does not adequately reflect the natural 
business dimensions. Rather than collapsing everything into the huge 
account dimension table, additional analytic dimensions such as product and 
branch mirror the instinctive way that banking users think about their busi-
nesses. These supplemental dimensions provide much smaller points of entry 
to the fact table. Thus they address both the performance and usability objec-
tives of a dimensional model. Finally, given that the master account dimen-
sion in a big bank may approach 10 million members, we worry about type 2 
slowly changing dimension (SCD) effects mushrooming this huge dimension 
into something unworkable. The product and branch attributes are conve-
nient groups of attributes to remove from the account dimension in order to 
cut down on the type 2 SCD effects. Later in this chapter we’ll squeeze the 
changing demographics and behavioral attributes out of the account dimen-
sion for the same reasons. 

The product and branch dimensions are two separate dimensions because 
there is a many-to-many relationship between products and branches. They 
both change slowly but on different rhythms. Most important, business users 
think of them as basic, distinct dimensions of the banking business. 

In general, most dimensional models end up with between 5 and 15 or so 
dimensions. If we find ourselves at or below the low end of this range, we 
should be suspicious that dimensions may have been left out of the design 
inadvertently. In this case we should consider carefully whether any of the fol-
lowing kinds of dimensions are appropriate supplements to a draft dimen-
sional model: 

Month End Date Key (PK) 
Month Attributes … 

Month Dimension 

Month End Date Key (FK) 
Account Key (FK) 

Monthly Account Snapshot Fact 

Account Key (PK) 
Account Attributes … 
Product Attributes … 
Household Attributes … 
Status Attributes … 
Branch Attributes … 

Account Dimension 

Primary Month Ending Balance 

Figure 9.1 Balance snapshot with too few dimensions. 
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Causal dimensions. These dimensions, such as promotion, contract, deal, 
store condition, or even weather, provide additional insight into the cause 
of an event. 

Multiple date or time-stamp dimensions. Refer to Chapter 5 for sample fact 
tables with multiple date stamps, especially when the fact table is an accu-
mulating snapshot. 

Degenerate dimensions. These dimensions identify operational transaction 
control numbers, such as an order, invoice, bill of lading, or ticket, as illus-
trated initially in Chapter 2. 

Role-playing dimensions. Role-playing occurs when a single physical 
dimension appears several times in a fact table, each represented as a 
separate logical table with unique column names through views. 

Status dimensions. These dimensions identify the current status of a transac-
tion or monthly snapshot within some larger context, such as an account 
status. 

Audit dimension. As discussed in Chapter 8, this dimension is designed to 
track data lineage and quality. 

Junk dimensions. These consist of correlated indicators and flags, as 
described in Chapter 5. 

These supplemental dimensions typically can be added gracefully to a design, 
even after the data warehouse has gone into production, because they do not 
change the grain of the fact table. The addition of these dimensions usually 
does not alter the existing dimension keys or measured facts in the fact table. 
All existing applications should continue to run without change. 

Any descriptive attribute that is single-valued in the presence of the measurements 
in the fact table is a good candidate to be added to an existing dimension or to be 
its own dimension. 

Based on further study of the bank’s requirements, we ultimately choose the 
following dimensions for our initial schema: month end date, account, house-
hold, branch, product, and status. As illustrated in Figure 9.2, at the intersec-
tion of these six dimensions, we take a monthly snapshot and record the 
primary balance and any other metrics that make sense across all products, 
such as interest paid, interest charged, and transaction count. Remember that 
account balances are just like inventory balances in that they are not additive 
across any measure of time. Instead, we must average the account balances by 
dividing the balance sum by the number of months. 
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Month Dimension Monthly Account Snapshot Fact Account Dimension 

Month End Date Key (PK) 
Month Attributes … 

Branch Key (PK) 
Branch Address Attributes … 
Branch Rollup Attributes … 
Branch Format Description 

Branch Dimension 

Product Key (PK) 
Product Description 

Product Dimension 

Account Status Key (PK) 
Account Status Description 
Account Status Group 

Account Status Dimension 

Month End Date Key (FK) 
Branch Key (FK) 
Product Key (FK) 
Account Key (FK) 
Account Status Key (FK) 
Household Key (FK) 

Interest Paid 
Interest Charged 
Fees Charged 

Account Key (PK) 
Account Number (Natural Key) 

Account Address Attributes … 
Account Open Date 

… and more 

Household Key (PK) 
Head of Household Name 
Household Address Attributes … 

Household Income 
Household Homeownership Indicator 
Household Presence of Children 
… and more 

Household Dimension 

Product Type 
Product Category 

Primary Month Ending Balance 
Average Daily Balance 
Number of Transactions 

Primary Account Holder Name 
Secondary Account Holder Name 

Account Type Description 
Account Type Category 

Household Type 

Figure 9.2 Core snapshot fact table for all accounts. 

The product dimension consists of a simple product hierarchy that describes 
all the bank’s products, including the name of the product, type, and category. 
The need to construct a generic product categorization in the bank is the same 
need that causes grocery stores to construct a generic merchandise hierarchy. 
The main difference between the bank and grocery store examples is that the 
bank also develops a large number of custom product attributes for each prod-
uct type. We’ll defer discussion regarding the handling of these custom attrib-
utes until the end of this chapter. 

The branch dimension is similar to the facility or location dimensions we 
discussed earlier in this book, such as the retail store or distribution center 
warehouse. 

The account status dimension is a useful dimension to record the condition of 
the account at the end of each month. The status records whether the account 
is active or inactive or whether a status change occurred during the month, 
such as a new account opening or an account closure. Rather than whipsawing 
the large account dimension or merely embedding a cryptic status code or 
abbreviation directly in the fact table, we treat status as a full-fledged dimen-
sion with descriptive status decodes, groupings, and status reason descrip-
tions as appropriate. In many ways we could consider the account status 
dimension to be another example of a minidimension, as we introduced in 
Chapter 6. 
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Household Dimension 
Rather than focusing solely on the bank’s accounts, users also want the ability 
to analyze the bank’s relationship with an entire economic unit, or household. 
They are interested in understanding the overall profile of a household, the 
magnitude of the existing relationship with the household, and what addi-
tional products should be sold to the household. They also want to capture key 
demographics regarding the household, such as household income, whether 
the household owns or rents the home, and whether there are children in the 
household. These demographic attributes change over time; as you might sus-
pect, the users want to track the changes. If the bank focuses on accounts for 
commercial entities rather than consumers, it likely has similar requirements 
to identify and link corporate families. 

From the bank’s perspective, a household may be comprised of several 
accounts and individual account holders. For example, consider John and 
Mary Smith as a single household. John has a checking account, and Mary has 
a savings account. In addition, John and Mary have a joint checking account, 
credit card, and mortgage with the bank. All five of these accounts are consid-
ered to be a part of the same Smith household despite the fact that minor 
inconsistencies may exist in the operational name and address information. 

The process of relating individual accounts to households (or the commercial 
business equivalent of a residential household) is not to be taken lightly. 
Householding requires the development of business rules and algorithms to 
assign accounts to households. As we discussed in Chapter 6, there are spe-
cialized products and services to do the matching necessary to determine 
household assignments. It is very common for a large financial services orga-
nization to invest significant resources in specialized capabilities to support its 
householding needs. 

The decision to treat accounts and households as separate dimensions is some-
what a matter of the designer’s prerogative. Despite the fact that accounts and 
households are correlated intuitively, we decide to treat them separately 
because of the size of the account dimension and the volatility of the account 
constituents within a household dimension, as referenced earlier. In a large 
bank, the account dimension is huge, with easily over 10 million rows that 
group into several million households. The household dimension provides 
a somewhat smaller point of entry into the fact table without traversing a 
10-million-row account dimension table. In addition, given the changing 
nature of the relationship between accounts and households, we elect to use 
the fact table to capture the relationship rather than merely including the 
household attributes on each account dimension row. In this way we avoid 
using the type 2 SCD approach with the large account dimension. 



205Financial Services 

Multivalued Dimensions 
As we just saw in the John and Mary Smith example, an account can have one, 
two, or more individual account holders, or customers, associated with it. 
Obviously, we cannot merely include the customer as an account attribute; 
doing so violates the granularity of the dimension table because more than one 
individual can be associated with an account. Likewise, we cannot include 
customer as an additional dimension in the fact table; doing so violates the 
granularity of the fact table (one row per account per month) again because 
more than one individual can be associated with any given account. This is a 
classic example of a multivalued dimension, which we’ll develop fully in 
Chapter 13. For now, suffice it to say that to link an individual customer 
dimension to an account-grained fact table requires the use of an account-to-
customer bridge table, as shown in Figure 9.3. At a minimum, the primary key 
of the bridge table consists of the surrogate account and customer foreign 
keys. We’ll discuss date/time stamping of bridge table rows in Chapter 13 to 
capture relationship changes. In addition, we’ll elaborate on the use of a 
weighting factor in the bridge table to enable both correctly weighted reports 
and impact reports. 

An open-ended many-valued attribute can be associated with a dimension row by 
using a bridge table to associate the many-valued attributes with the dimension. 

In some financial services companies, the individual customer is identified and 
associated with each transaction. For example, credit card companies often 
issue unique card numbers to each cardholder. John and Mary Smith may have 
a joint credit card account, but the numbers on their respective pieces of plastic 
are unique. In this case there is no need for an account-to-customer bridge table 
because the atomic transaction facts are at the discrete customer grain. Account 
and customer would both be foreign keys in this fact table. 

Month End Date Key (FK) 
Branch Key (FK) 
Product Key (FK) 
Account Key (FK) 
Account Status Key (FK) 
Household Key (FK) 

Interest Paid 
Interest Charged 
Fees Charged 

Month Account Snapshot Fact 

Account Key (PK) 
Account Number (Natural Key) 

Account Address Attributes … 
Account Open Date 

… and more 

Account Dimension 

Primary Month Ending Balance 
Average Daily Balance 
Number of Transactions 

Primary Account Holder Name 
Secondary Account Holder Name 

Account Type Description 

Account-to-
Customer Bridge 

Account Key (FK) 
Customer Key (FK) 
Weighting Factor 

Customer Dimension 

Customer Key (PK) 
Customer Name 
Customer Date of Birth 
… and more 

Figure 9.3 Account-to-customer bridge table to associate multiple customers with account-level facts. 



TEAMFL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 

206 C H A P T E R  9  

Minidimensions Revisited 
Similar to our Chapter 6 discussion regarding the customer dimension, there 
are a wide variety of attributes to describe the bank’s accounts, customers, and 
households, including monthly credit bureau attributes, external demo-
graphic data, and calculated scores to identify their behavior, retention, prof-
itability, and delinquency characteristics. Financial services organizations 
typically are interested in understanding and responding to changes in these 
attributes over time. 

It is unreasonable to rely on the type 2 SCD technique to track changes in the 
account dimension given the dimension row count and attribute volatility, 
such as the monthly update of credit bureau attributes. Instead, we break off 
the browseable and changeable attributes into multiple minidimensions, such 
as credit bureau and demographics minidimensions, whose keys are included 
in the fact table. This recommendation was illustrated in Figure 6.4. The mini-
dimensions allow us to slice and dice the fact data based on a lengthy list of 
attributes while readily tracking attribute changes over time, even though they 
may be updated at different frequencies. While minidimensions are extremely 
powerful, we need to be careful that we don’t overuse the technique. However, 
account-oriented financial services are a good environment for using the mini-
dimension technique because the primary fact table is a very long-running 
periodic snapshot. Thus a fact table row exists for every account every month. 
This fact row provides a home for all the foreign keys and links them together 
so that we can always see the account together with all the other minidimen-
sions for any month. 

Minidimensions should consist of correlated clumps of attributes; each attribute 
shouldn’t be its own minidimension or we’d end up with too many dimensions 
in the fact table. 

As described in Chapter 6, one of the compromises associated with minidi-
mensions is the need to band attribute values in order to maintain reasonable 
minidimension row counts. Rather than storing extremely discrete income 
amounts, such as $31,257.98, we store income ranges, such as $30,000-$34,999 
in the minidimension. Similarly, the profitability scores may range from 1 
through 1,200, which we band into fixed ranges such as less than or equal to 
100, 101-150, 151-200, and so on in the minidimension. 

Most organizations find that these banded attribute values support their rou-
tine analytic requirements; however, there are two situations where banded 
values may be inadequate. First, data mining analysis often requires discrete 
values rather than fixed bands to be most effective. Second, a limited number 
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of power analysts may want to analyze the discrete values to determine if the 
selected bands are appropriate. In this case we still maintain our banded-value 
minidimension attributes to support consistent day-to-day analytic reporting, 
but we also store the key discrete numeric values as facts in the fact table. For 
example, if each account’s profitability score is recalculated each month, we 
assign the appropriate profitability-range minidimension for that score each 
month. In addition, we capture the discrete profitability score as a fact in the 
monthly account snapshot fact table. Finally, if needed, we could include the 
most recent profitability range or score in the account dimension, where any 
changes are handled by deliberately overwriting the attribute. Each of these 
data elements in a schema should be uniquely labeled so that they are distin-
guishable. Designers always must carefully balance the incremental value of 
including somewhat redundant facts and attributes versus the cost in terms of 
additional complexity for both the staging application and user presentation. 

Arbitrary Value Banding of Facts 

Suppose that business users want the ability to perform value-band reporting 
on a standard numeric fact, such as the account balance, but are not willing to 
live with predefined bands. They may want to create a report that looks simi-
lar to the following based on the account balance snapshot: 

Balance Range Number of Accounts Total of Balances 

0-1,000 45,678 $10,222,543 
1,001-2,000 36,788 $45,777,216 
2,001-5,000 11,775 $31,553,884 
5,001-10,000 2,566 $22,438,287 
10,001 and up 477 $8,336,728 

Using the schema in Figure 9.2, it is difficult to create this report directly from 
the fact table. SQL has no generalization of the GROUP BY clause that clumps 
additive values into ranges. To further complicate matters, the ranges are of 
unequal size and have textual names like “10,001 and up”. Also, users typically 
need the flexibility to redefine the bands at query time with different bound-
aries or levels of precision. 

The schema design shown in Figure 9.4 allows us to do flexible value-band 
reporting. The band definition table can contain as many sets of different 
reporting bands as desired. The name of a particular group of bands is stored 
in the band group column. The band definition table is joined to the balance 
fact using a pair of less-than and greater-than joins. The report uses the band 
range name as the row header and sorts the report on the band sort column. 
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Month Account Snapshot Fact 

Month End Date Key (FK) 
Branch Key (FK) 
Product Key (FK) 
Account Key (FK) 
Account Status Key (FK) 
Household Key (FK) 

Interest Paid 
Interest Charged 
Fees Charged 

Band Group Key (PK) 
Band Group Sort Order (PK) 
Band Group Name 
Band Range Name

>= 

<
Primary Month Ending Balance 
Average Daily Balance 
Number of Transactions 

Band Lower Value 
Band Upper Value 

Band Definition Table 

Figure 9.4 Arbitrary value-band reporting using a band definition table. 

Controlling the performance of this query can be a challenge. By definition, a 
value-band query is very lightly constrained. Our example report needed to 
scan the balances of more than 90,000 accounts. Perhaps only the date dimen-
sion was constrained to the current month. Furthermore, the unconventional 
join to the banding definition table is not the basis of a nice restricting con-
straint; all it is doing is grouping the 90,000 balances. In this situation you may 
need to place an index directly on the balance fact. The performance of a query 
that constrains or groups on the value of a fact, such as balance, will be 
improved enormously if the database management system (DBMS) can sort 
and compress the individual fact efficiently. Such an approach was pioneered 
by the Sybase IQ product in the early 1990s and is now becoming a standard 
indexing option on several of the competing DBMSs. 

Point-in-Time Balances 

So far we’ve restricted our discussions in this financial services chapter to 
month-end balance snapshots because this level of detail typically is sufficient 
for analysis. If required, we could supplement the monthly-grained snapshot 
fact table with a second fact table that provides merely the most current snap-
shot as of the last nightly update or perhaps is extended to provide daily-balance 
snapshots for the last week or month. However, what if we face the requirement 
to report an account’s balance at any arbitrarily picked historical point in time? 

Creating daily-balance snapshots for a large bank over a lengthy historical 
time span would be overwhelming given the density of the snapshot data. If 
the bank has 10 million accounts, daily snapshots translate into approximately 
3.65 billion fact rows per year. 
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Assuming that business requirements already have driven the need to make 
transaction detail data available for analysis, we could leverage this transac-
tion detail to determine an arbitrary point-in-time balance. To simplify mat-
ters, we’ll boil the account transaction fact table down to an extremely simple 
design, as illustrated in Figure 9.5. The transaction type key joins to a small 
dimension table of permissible transaction types. The transaction sequence 
number is a continuously increasing numeric number running for the 
lifetime of the account. The final flag indicates whether this is the last 
transaction for an account on a given day. The transaction amount is self-
explanatory. The balance fact is the ending account balance following the 
transaction event. 

Like all transaction-grained fact tables, we add a row to the fact table in 
Figure 9.5 only if a transaction occurs. If an account were quiet for two weeks, 
perhaps January 1 through 14, there would be no rows in the fact table for the 
account during that time span. However, suppose that we want to know what 
all the account balances were on January 5? In this case we need to look for the 
most recent previous transaction fact row for each account on or before our 
requested date. Here’s sample SQL code that does the trick: 

SELECT A.ACCTNUM, F.BALANCE

FROM FACT F, ACCOUNT A

WHERE F.ACCOUNT_KEY = A.ACCOUNT_KEY

AND F.DATE_KEY 

(SELECT MAX(G.DATE_KEY) 

FROM FACT G 

WHERE G.ACCOUNT_KEY = F.ACCOUNT_KEY 

AND G.DATE_KEY IN 

(SELECT D.DATE_KEY 

FROM DATE D 

WHERE D.FULLDATE <= ‘January 5, 2002’)) 

In this example we are taking advantage of a special situation that exists with 
the surrogate date key. As we discussed in Chapter 2, the date key is a set of 
integers running from 1 to N with a meaningful, predictable sequence. We 
assign consecutive integers to the date surrogate key so that we can physically 
partition a large fact table based on the date. This neatly segments the fact 
table so that we can perform discrete administrative actions on certain date 
ranges, such as moving archived data to offline storage or dropping and 
rebuilding indexes. The date dimension is the only dimension whose surro-
gate keys have any embedded semi-intelligence. Due to its predictable 
sequence, it is the only dimension on which we dare place application con-
straints. We used this ordering in the preceding SQL code to locate the most 
recent prior end-of-day transaction. 
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Account Dimension 
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Transaction Date Key (FK) 

Transaction Type Key (FK) 
Transaction Sequence Number (DD) 

Transaction Amount 
Transaction Ending Balance 

Balance Transaction Fact Table 

Transaction Type Key (PK) 
Transaction Type Description 

Transaction Type Dimension 

Transaction Date Dimension 
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Figure 9.5 Using a transaction fact table for point-in-time balances. 

Leveraging the transaction fact table for dual purposes requires that the fact 
table is absolutely complete and accurate. Every transaction against the 
account must appear in this fact table, or else the running balance will not be 
accurate. A late-arriving transaction row would require sweeping forward 
from the point of insertion in that account and incrementing all the balances 
and transaction sequence numbers. Note that we haven’t explicitly used the 
transaction sequence number in this discussion, although it is needed in this 
design to reconstruct the true sequence of transactions reliably and to provide 
the basis of the fact table’s primary key, which is the date, account, and 
sequence number. We prefer using the sequence number rather than a time-of-
day stamp because differences between the sequence numbers are a valid mea-
sure of account activity. 

This technique is viable in some part because the transaction processing sys-
tem can readily hand off the current balance metric to the warehouse with each 
transaction record. Unlike the year-to-date facts we discussed in Chapter 8, in 
this case of account balances we have no way to determine the balances merely 
by summarizing recent transactions alone. Rather, we’d need to study the 
impact of all transactions from the beginning of the account’s existence to cal-
culate valid account balances. For some businesses within the financial ser-
vices arena, even if balances are provided following each transaction, they still 
may not be valid for point-in-time balance reporting. For example, in the case 
of a brokerage firm, if a valuation balance is updated following each invest-
ment transaction, we cannot rely on that balance for point-in-time reporting 
because the valuation changes constantly. In this case we’d likely create a 
snapshot fact table to provide users with regular end-of-period investment 
valuation balances. 

Heterogeneous Product Schemas 

In many financial service businesses, a dilemma arises because of the hetero-
geneous nature of the products or services offered by the institution. As we 
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mentioned in the introduction to this chapter, a typical retail bank offers a myr-
iad of dissimilar products, from checking accounts to mortgages, to the same 
customers. Although every account at the bank has a primary balance and 
interest amount associated with it, each product type has a number of special 
attributes and measured facts that are not shared by other products. For 
instance, checking accounts have minimum balances, overdraft limits, and ser-
vice charges; time deposits such as certificates of deposit have few attribute 
overlaps with checking but instead have maturity dates, compounding fre-
quencies, and current interest rate. 

Business users typically require two different perspectives that are difficult to 
present in a single fact table. The first perspective is the global view, including 
the ability to slice and dice all accounts simultaneously, regardless of their 
product type. As we described in Chapter 6, this global view is needed to plan 
appropriate customer relationship management (CRM) cross-sell and up-sell 
strategies against the aggregate customer base spanning all possible products. 
In this situation we need the single core fact table crossing all the lines of busi-
ness to provide insight into the complete account portfolio, as illustrated ear-
lier in Figure 9.2. Note, however, that the core fact table can present only a 
limited number of facts that make sense for virtually every line of business. We 
are unable to accommodate incompatible facts in the core fact table because, in 
the case of banking, there may be several hundred of these facts when all the 
possible account types are considered. Similarly, the core product dimension 
provides an extremely useful analytical point of entry to the facts but is limited 
to the subset of common product attributes. 

The second perspective required by users is the specific line-of-business view 
that focuses on the in-depth details of one business, such as checking. As we 
described, there is a long list of special facts and attributes that only make 
sense for the checking business. These special facts cannot be included in the 
core fact table; if we did this for each line of business in a retail bank, we would 
end up with a hundred special facts, most of which would have null values in 
any specific row. Likewise, if we attempted to include specific line-of-business 
attributes in the product dimension table, it would have hundreds of special 
attributes, almost all of which would be empty for any given row. The result-
ing tables would resemble Swiss cheese, littered with data holes. The solution 
to this dilemma is to create a custom schema for the checking line of business 
that is limited to just checking accounts, as shown in Figure 9.6. 

Now both the custom checking fact table and the corresponding checking 
product dimension are widened to describe all the specific facts and attrib-
utes that only make sense for checking products. These custom schemas also 
contain the core facts and attributes so that we can avoid joining tables from 
the core and custom schemas in order to get the complete set of facts and 
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attributes. Likewise, we would build custom fact and product tables for the 
other lines of business to support their in-depth analysis requirements. 
Although creating product-specific schemas sounds complex, only the DBA 
sees all the tables at once. From the perspective of users, either it’s a cross-
product analysis that relies on the core fact table and its attendant core prod-
uct table or the analysis focuses on a particular product type, in which case 
one of the custom line-of-business subschemas is used. In general, it does not 
make sense to combine data from one or more custom subschemas because, 
by definition, the facts and attributes are disjoint (or nearly so). 

The keys of the custom product dimensions are the same keys used in the core 
product dimension, which contains all possible product keys. For example, if 
the bank offers a $500 minimum balance with no per-check charge checking 
product, the product would have the same surrogate key in both the core and 
custom checking product dimensions. As we discussed in Chapter 3, estab-
lishing conformed dimensions is essential to an extensible data warehouse 
architecture. Each custom product dimension is a subset of rows from the core 
product dimension table. Each custom product dimension contains attributes 
specific to a particular product type. 

This heterogeneous product technique obviously applies to any business that 
offers widely varied products through multiple lines of business. If we worked 
for a technology company that sells hardware, software, and services, we can 
imagine building core sales fact and product dimension tables to deliver the 
global customer perspective. The core tables would include all facts and 
dimension attributes that are common across lines of business. The core tables 
would then be supplemented with schemas that do a deep dive into custom 
facts and attributes that vary by business. Again, a specific product would be 
assigned the same surrogate product key in both the core and custom product 
dimensions. 

Month End Date Key (FK) 
Account Key (FK) 
Product Key (FK) 
More Core Foreign Keys … 
Core Facts … 
Number of Checks Cleared 

Number of Overdrafts 

Number of Deposits 

Monthly Checking Snapshot Fact 

Product Key (PK) 
Core Product Attributes … 
Minimum Checking Balance Requirement 
Per Check Fee Indicator 
Per Check Fee Amount 
Monthly Fee Indicator 
Monthly Fee Basis 
Monthly Fee Amount 
Free Check Printing Indicator 
Debit Card Eligible Indicator 

Checking-Specific Product Dimension 

Number of Electronic Transactions 

Number of ATM Usages 

Figure 9.6 Specific line-of-business custom schema for checking products. 
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A family of core and custom fact tables is needed when a business has heteroge-
neous products that have naturally different facts and descriptors but a single 
customer base that demands an integrated view. 

We can consider handling the specific line-of-business attributes as a context-
dependent outrigger to the product dimension, as illustrated in Figure 9.7. We 
have isolated the core attributes in the base-product dimension table, and we 
can include a snowflake key in each base record that points to its proper 
extended-product outrigger. The snowflake key must connect to the particular 
outrigger table that a specific product type defines. Usually, you can accom-
plish this task by constructing a relational view for each product type that 
hardwires the correct join path. 

In the case of account-oriented financial services, when a product is sold to a 
customer, a new account is opened. In the case of some banking products, such 
as mortgages, more account-specific descriptive information is collected when 
the account opening occurs. For example, the bank may offer a 15-year fixed-
rate mortgage at a given rate. When the mortgage originates, the bank will 
know more about the specific property, including the address, appraised 
value, square footage, home type (for example, single-family, townhouse, con-
dominium, trailer), construction type (for example, wood frame, brick, 
stucco), date of construction, and acreage. These attribute values differ by 
account, so they don’t belong in the what-the-bank-sells product dimension. 
As shown in Figure 9.7, we can envision an account dimension outrigger for 
some account types. 

If the lines of business in our retail bank are physically separated so that each 
has its own data mart, the custom fact and dimension tables likely will not 

Monthly Mortgage Snapshot Fact Product Dimension 
Account Dimensions 

Mortgage-Specific 
Product Outrigger 

Month End Date Key (FK) 
Account Key (FK) 
Product Key (FK) 
More Core Foreign Keys … 
Core Facts … 
Original Loan Amount 
Outstanding Loan Amount 
Interest Amount 

Insurance Escrow Amount 
Property Mortgage Insurance Amount 

Insurance Escrow Paid 
Property Mortgage Insurance Paid 
Escrow Overage/Shortage Amount 
Late Payment Fee 
Additional Principal Paid 

Product Key (PK) 
Core Product Attributes … 

Mortgage-Specific Product Key (PK) 
Fixed / Adjustable 
Conventional / Jumbo 
Rate 

FHA Compliant / Eligible 

Property Tax Escrow Amount 

Property Tax Escrow Paid 

Term 

VA Compliant / Eligible 

Account Key (PK) 
Core Account Attributes … 

Mortgage-Specific Account Key (PK) 
Property Address … 

Square Footage 

Acreage 

Mortgage-Specific 
Account Outrigger 

Appraised Value 

Home Type 
Construction Type 
Year Constructed Completed 

Figure 9.7 Context-dependent dimension outriggers. 
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Fact Table Restricted to Checking Accts 

Month End Date Key (FK) 
Account Key (FK) 
Product Key (FK) 
More Foreign Keys … 
Core Facts … 
Checking-Specific Fact Key (FK) 

Checking-Specific Fact Key (PK) 
Number of Checks Cleared 

Number of Overdrafts 

Number of Deposits 
More Checking-Specific Facts … 

Number of Electronic Transactions 

Number of ATM Usages 

Custom Checking Extended Fact Table 

Figure 9.8 Heterogeneous products schema using an extended fact table. 

reside in the same space as the core fact and dimension tables. In this case the 
data in the core fact table would be duplicated exactly once to implement all 
the custom tables. Remember that the custom tables provide a disjoint parti-
tioning of the products so that there is no overlap between the custom 
schemas. 

If the lines of business share the same physical table space, we can avoid dupli-
cating both the core fact keys and core facts in the custom line-of-business fact 
tables. We do so by assigning a special join key to each core fact row that 
uniquely identifies a single account in a single month. Using this join key, we 
physically link the extended custom facts to the core fact table, as shown in 
Figure 9.8. When using this technique, we need to ensure that the optimizer 
resolves the constraints on the core fact table prior to joining to the extended 
fact table using the special join key. 

The query tool or application must know to use this special join key to link to 
the correct extended fact table for each line of business. While this sounds 
complicated, it is actually quite natural. By definition with heterogeneous 
facts, it almost never makes sense to join to more than one extended fact table 
representing one line of business in a single SQL expression. The names of the 
facts in the separate extended fact tables, by definition, are different; no single 
SQL expression can talk to multiple extended fact tables. Thus a requesting 
application analyzing a specific line of business, such as checking, always 
would be hard-coded to link to the correct extended fact table. 
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Heterogeneous Products with 
Transaction Facts 

The heterogeneous product technique just discussed is appropriate for fact 
tables in which a single logical row contains many product-specific facts. 
Snapshots usually fit this pattern. 

On the other hand, transaction-grained fact tables often have a single fact that 
is generically the target of a particular transaction. In such cases the fact table 
has an associated transaction dimension that interprets the amount column. In 
the case of transaction-grained fact tables, we typically do not need specific 
line-of-business fact tables. We get by with only one core fact table because 
there is only one fact. However, we still can have a rich set of heterogeneous 
products with diverse attributes. In this case we would generate the complete 
portfolio of custom product dimension tables and use them as appropriate, 
depending on the nature of the application. In a cross-product analysis, we 
would use the core product dimension table because it is capable of spanning 
any group of products. In a single-product analysis, we optionally could use 
the custom-product dimension table instead of the core dimension if we 
wanted to take advantage of the custom attributes specific to that product type. 

Summary 

We began this chapter by discussing the situation in which a fact table has too 
few dimensions. We provided suggestions for ferreting out additional dimen-
sions using a triage process. Approaches for handling the often complex rela-
tionship between accounts, customers, and households were described. We 
also discussed the use of multiple minidimensions in a single fact table, which 
is fairly common in financial services schemas. 

We illustrated a technique for clustering numeric facts into arbitrary value 
bands for reporting purposes through the use of a separate band table. We also 
touched on an approach for leveraging an existing transaction fact table to 
supply point-in-time balances. 

Finally, we provided recommendations for any organization that offers het-
erogeneous products to the same set of customers. In this case we create a core 
fact table that contains performance metrics that are common across all lines of 
business. The companion core dimension table contains rows for the complete 
product portfolio, but the attributes are limited to those that are applicable 
across all products. Multiple custom schemas, one for each line of business, 
complement this core schema with product-specific facts and attributes. 
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Telecommunications and Utilities 

C H A P T E R  

his chapter will flow a bit differently than preceding chapters. We’ll still begin 
with a case study overview, but we won’t be designing a dimensional model 
from scratch this time. Instead, we’ll step into a project midstream to conduct 
a design review, looking for opportunities to improve the initial draft schema. 
Do you recall reading Highlights for Children magazine in your dentist’s waiting 
room long ago? If so, do you remember the what’s wrong with this picture work-
sheets where you identified all the out-of-place items, like the chicken driving 
a car or a snowman on the beach? The bulk of this chapter will focus on a 
dimensional modeling what’s wrong with this picture exercise where we’ll iden-
tify out-of-place design flaws. 

We’ll use a billing vignette drawn from the telecommunications industry as 
the basis for the case study; however, it shares similar characteristics with the 
billing data generated by a utilities company. At the end of this chapter we’ll 
elaborate on managing and leveraging the geographic location information in 
the warehouse, regardless of the industry. 

Chapter 10 discusses the following concepts: 

�� Design review exercise 
�� Common design mistakes to look for in a review 
�� Geographic location dimension, including its treatment as a snowflaked outrigger 

and its interaction with geographic information systems 
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Telecommunications Case Study

Given your extensive experience in dimensional modeling (nine chapters so 
far), you’ve been recruited to a new position as a dimensional modeler on the 
data warehouse team for a large wireless telecommunications company. On 
your first day, after a few hours of human resources paperwork and orienta-
tion (including the location of the nearest coffee machine), you’re ready to get 
to work. 

The data warehouse team is anxious to pick your brain regarding its initial 
dimensional design. So far it seems that the project is off to a good start. The 
company has a strong business and IT sponsorship committee that embraced 
the concept that a data warehouse must be business-driven; as such, the com-
mittee was fully supportive of the business requirements gathering process. 
Based on the requirements initiative, the team drafted an initial data ware-
house bus matrix. It is the first flip chart, as illustrated in Figure 10.1, to hit the 
wall during the design walk-through with you. The team identified several 
core business processes and a number of common dimensions. Of course, the 
complete enterprise-wide matrix would be much larger in terms of both 
the number of rows and the number of columns, but you’re comfortable that the 
key constituencies’ major data requirements have been captured. 

The sponsorship committee jointly decided to focus on the first row of the 
matrix, the customer billing process, for the initial phase of the data warehouse. 
Business management determined that better access to the metrics resulting 
from the billing process would have significant impact on the business, espe-
cially given the business’s recent focus on CRM, as we discussed in Chapter 6. 
Management wants the ability to see monthly usage and billing metrics 
(otherwise known as revenue) by customer, sales organization, and rate plan to 
perform sales rep and channel performance analysis and the rate plan analy-
sis. Fortunately, the IT team felt that it was feasible to tackle this business 
process during the first warehouse iteration. 

Some people in the IT organization thought it would be preferable to tackle 
individual call detail records, such as every call initiated or received by every 
phone. While this level of highly granular data would provide interesting 
insights, it was determined by the joint business and IT sponsorship commit-
tee that the associated data presents more feasibility challenges while not 
delivering as much short-term business value. 
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Customer Billing 

Channel Sales 

Repair Items 

Call Detail Traffic 
Purchasing 
Distributor Inventory 

Service Calls 

Figure 10.1 Subset of the data warehouse bus matrix. 

Based on the direction provided by the sponsorship committee, the team pro-
ceeded to look more closely at the customer billing data. Each month, the oper-
ational billing system generates a bill for each phone number, also known as 
service line. Since the wireless company has millions of service lines, this repre-
sents a significant amount of data. Each service line is associated with a single 
customer. However, a customer can have multiple wireless service lines, which 
appear as separate line items on the same bill; each service line has its own set 
of billing metrics, such as the number of minutes used and monthly service 
charge. There is a single rate plan associated with each service line on a given 
bill; this plan can change as customers’ usage habits evolve. Finally, a sales rep 
(and his or her respective sales organization and channel) is associated with 
each service line in order to evaluate the ongoing billing revenue stream gen-
erated by each rep and channel partner. 

The team designed a fact table with the grain being one row per bill each 
month. The data warehouse team proudly unrolls its draft dimensional mod-
eling masterpiece, as shown in Figure 10.2, and looks at you expectantly. 

What do you think? Before we move on, please spend several minutes studying 
the design in Figure 10.2. Try to identify the design flaws and suggest improve-
ments in this “what’s wrong with this picture” exercise before reading ahead. 
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Customer Dimension Billing Fact Bill Dimension 

Customer ID (PK and Natural Key) 
Customer Name 
Customer City 
Customer State 
Customer Zip 

Original Authorization Credit Score 

Sales Rep Number (PK and Natural Key) 
Sales Rep Name 
Sales Org ID 

Sales Rep Dimension 

Sales Org ID 
Sales Channel ID 

Sales Org Dimension 

Bill # (FK) 
Customer ID (FK) 
Sales Rep Number (FK) 
Sales Org ID (FK) 
Rate Plan Code (FK) 

Number of Calls 

Number of Roam Minutes 
Number of Long-Distance Minutes 

Roaming Charge 
Long-Distance Charge 

Bill # (PK) 
Bill Date 

Rate Plan Code (PK and Natural Key) 
Rate Plan Abbreviation 

Rate Plan Dimension 

Area Code 
Area Code and Prefix 

Date of 1st Service Rate Plan Type Code 

Number of Total Minutes 

Monthly Service Charge 
Prior Month Service Charge 
Year-to-Date Service Charges 

Taxes 
Regulatory Charges 

Service Line Number (FK) Service Line Number (PK) 

Service Line Activation Date 

Service Line Dimension 

Figure 10.2 Draft schema prior to design review. 

General Design Review Considerations 

Before we discuss the specific issues and potential recommendations for Fig-
ure 10.2, we’ll take a moment to outline the design issues we commonly 
encounter when conducting a design review. Not to insinuate that the data 
warehouse team in our case study has stepped into all these traps, but it may 
be guilty of violating several. Again, the design review exercise will be a more 
effective learning tool if you take a moment to jot down your personal ideas 
regarding Figure 10.2 before proceeding. 

Granularity 
One of the first questions we always ask during a design review is, What’s the 
grain of the fact table? Surprisingly, we often get inconsistent answers to this 
inquiry from the project team. Declaring a clear and concise definition of the 
grain of the fact table is critical to a productive modeling effort. Likewise, the 
project team and business liaisons should share a common understanding of 
this grain declaration. 

Of course, if you’ve read this far, you’re aware that we strongly believe that 
you should build your fact table at the lowest level of granularity possible. 
However, the definition of the lowest level of granularity possible depends on 
the business process you are modeling. 

In this case study we don’t need call-level detail with the granularity of one row 
for every call to address the business requirements. Instead, a billing fact table 
is more appropriate. We want to implement the most granular data available 
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for the selected billing process, not just the most granular data available in the 
enterprise. Of course, if the high-priority business requirements focused on 
switching network traffic and capacity analysis, then low-level call detail data 
would be appropriate. 

Going to the lowest level of granularity does not imply finding the greatest amount 
of detailed data available in the organization. 

Fact Granularity 

Once the fact table granularity has been established, facts should be identified 
that are consistent with the grain declaration. In an effort to improve perfor-
mance or reduce query complexity, aggregated facts such as year-to-date totals 
sometimes sneak into the fact row. These totals are dangerous because they are 
not perfectly additive. While a year-to-date total reduces the complexity and 
run time of a few specific queries, having it in the fact table invites a query to 
double count the year-to-date column (or worse) when more than one bill date 
is included in a query. It is very important that once the grain of a fact table is 
chosen, all the additive facts are presented at a uniform grain. 

Dimension Granularity 

Each of the dimensions associated with a fact table should take on a single 
value with each row of fact table measurements. Likewise, each of the dimen-
sion attributes should take on one value for a given dimension row. If the 
attributes have a one-to-many relationship, then this hierarchical relationship 
can be represented within a single dimension. We generally should look for 
opportunities to collapse dimension hierarchies whenever possible. 

In general, we discourage the snowflaking or normalization of dimension 
tables. While snowflaking may reduce the disk space consumed by dimension 
tables, the savings are usually insignificant when compared with the entire 
data warehouse and seldom offset the disadvantages in ease of use or query 
performance. 

Throughout this book we have occasionally discussed outriggers as permissi-
ble snowflakes. Outriggers can play a useful role in your dimensional designs, 
but keep in mind that the use of outriggers for a cluster of relatively low-
cardinality or frequently reused attributes should be the exception rather than 
the rule. Be careful to avoid abusing the outrigger technique by overusing 
them in your schemas. 
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Date Dimension 
Design teams sometimes join a generic date dimension to their fact table 
because they know it’s the most common dimension but then can’t articulate 
what the date refers to. Needless to say, this presents real challenges for the 
data staging team. While we discourage superfluous date dimensions, we 
encourage the inclusion of robust date roll-up and filter attributes in a mean-
ingful date dimension table. 

Fixed Time-Series Buckets Instead of 
Date Dimension

Other designers sometimes avoid a date dimension table altogether by repre-
senting a time series of monthly buckets of facts on a single fact table row. 
Older operational systems may contain metric sets that are repeated 12 times 
on a single record to represent month 1, month 2, and so on. There are several 
problems with this approach. First, the hard-coded identity of the time slots is 
inflexible. When you fill up all the buckets, you are left with unpleasant 
choices. You could alter the table to expand the row. Otherwise, you could shift 
everything over by one column, dropping the oldest data, but this wreaks 
havoc with your existing query applications. The second problem with this 
approach is that all the attributes of the date itself are now the responsibility of 
the application, not the database. There is no date dimension in which to place 
calendar event descriptions for constraining. Finally, the fixed-slot approach is 
inefficient if measurements are only taken in a particular time period, resulting 
in null columns in many rows. Instead, these recurring time buckets should be 
presented as separate rows in the dimensional fact table. 

Degenerate Dimensions 
Rather than treating operational transaction numbers, such as the invoice or 
order number, as degenerate dimensions, teams sometimes want to create a 
separate dimension for the transaction number. Attributes of the transaction 
number dimension then include elements from the transaction header record, 
such as the invoice date, invoice type, and invoice terms. 

Remember, transaction numbers are best treated as degenerate dimensions. In 
your design reviews, be on the lookout for a dimension table that has as many 
(or nearly as many) rows as the fact table. This should be a warning sign that 
there may be a degenerate dimension lurking within a dimension table. 

Dimension Decodes and Descriptions 
All identifiers and codes in the dimension tables should be accompanied by 
descriptive decodes. We simply need to dismiss the misperception that business 
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users prefer to work with codes. To convince yourself, you should stroll down 
to their offices to see the decode listings filling their bulletin boards or lining 
their computer monitors. Most users do not memorize the codes outside of a 
few favorites. New hires are rendered helpless when assaulted with a lengthy 
list of meaningless codes. 

The good news is that we usually can source decodes from operational systems 
with minimal additional effort or overhead. Occasionally, the descriptions are 
not available from an operational system but need to be provided by business 
partners. In these cases, it is important to determine an ongoing maintenance 
strategy to maintain data quality. 

Finally, we sometimes work with project teams that opt to embed complex fil-
tering or labeling logic in the data access application rather than supporting it 
via a dimension table. While access tools may provide the ability to decode 
within the query or reporting application, we recommend that decodes be 
stored as data elements instead. Applications should be data-driven in order 
to minimize the impact of decode additions and changes. Of course, decodes 
that reside in the database also ensure greater report labeling consistency. 

Surrogate Keys 
Instead of relying on operational keys or identifiers, we recommend the use of 
surrogate keys throughout your dimensional design. If you are unclear about 
the reasons for pursuing this strategy, we suggest you backtrack to Chapter 2 
to refresh your memory. 

Too Many (or Too Few) Dimensions 
As we have mentioned, a dimensional model typically has 5 to 15 dimensions. 
If your design has only two or three dimensions, then you should revisit Chap-
ter 9 for a discussion on dimension triage considerations. If your design has 25 
or 30 dimensions, we suggest you review the centipede design in Chapter 2 or 
the junk dimension in Chapter 5 for ideas to reduce the number of dimensions 
in your schema. 

Draft Design Exercise Discussion 

Now that we’ve reviewed several common dimensional modeling pitfalls that 
we encounter frequently during design reviews, let’s look back to the draft 
design in Figure 10.2. Several items immediately jump out at us—perhaps so 
many that it’s hard to know where to start. 
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The first thing we focus on is the grain of the fact table. The design team stated 
that the grain is one row for each bill each month. However, based on our 
understanding from the data discovery effort, the lowest level of billing data 
would be one row per service line on a bill. When we point this out to the proj-
ect team, the team directs us to the bill number dimension, which includes the 
service line number. When reminded that each service line has its own set of 
billing metrics, the team agrees that the more appropriate grain declaration 
would be one row per service line per bill. We move the service line key into 
the fact table as a foreign key to the service line dimension. 

While discussing the granularity, the bill number dimension is scrutinized, 
especially since we just moved the service line key into the fact table. As the 
draft model was originally drawn in Figure 10.2, every time a bill row is loaded 
into the fact table, a row also would be loaded into the bill number dimension 
table. It doesn’t take much to convince the team that something is wrong with 
this picture. Even with the modified granularity to include service line, we 
would still end up with nearly as many rows in both the fact and bill number 
dimension tables. Instead, we opt to treat the bill number as a degenerate 
dimension. At the same time, we move the bill date into the fact table and join 
it to a robust date dimension, which plays the role of a bill date in this schema. 

We’ve been bothered since first looking at the design by the double joins on the 
sales rep organization dimension table. First of all, the sales rep organizational 
hierarchy has been snowflaked unnecessarily. We opt to collapse the hierarchy 
by including the sales rep organization and channel identifiers (along with 
more meaningful descriptors, hopefully) as additional attributes in the sales 
rep dimension table. In addition, we can eliminate the unneeded sales rep 
organization foreign key in the fact table. 

The design inappropriately treats the rate-plan type code as a textual fact. Tex-
tual facts are seldom a sound design choice. They almost always take up more 
space in our fact tables than a surrogate key. More important, users generally 
want to query, constrain, and report against these textual facts. We can provide 
quicker response and more flexible access by handling these textual values in 
a dimension table. In addition, additional descriptive attributes usually are 
associated with the textual fact. In this case study, the rate plan type code and 
its decode can be treated as roll-up attributes in the rate plan dimension table. 

The team spent some time discussing the relationship between the service line 
and the customer, sales rep, and rate plan dimensions. Since there is a single 
customer, sales rep, and rate plan associated with a service line number, the 
dimensions theoretically could be collapsed and modeled as service line attrib-
utes. However, collapsing the dimensions would result in a schema with just 
two dimensions (bill date and service line). Besides, the service line dimension 
already has millions of rows in it and is growing rapidly. In the end, we opt to 
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treat the customer, sales rep, and rate plan as minidimensions of the service 
line, as we described in Chapter 6. 

We notice that surrogate keys are used inconsistently throughout the design. 
Many of the draft dimension tables use operational identifiers or system keys 
as primary keys. We encourage the team to implement surrogate keys for all 
the dimension primary keys and fact table foreign keys. 

The original design was riddled with operational codes and identifiers. In gen-
eral, adding descriptive names will make the data more legible to the business 
users. If required by the business, the operational codes can continue to 
accompany the descriptors as dimension attributes, but they should not be the 
dimension primary keys. 

Finally, we see that there is a year-to-date fact stored in the fact table. While the 
team felt that this would enable users to report year-to-date figures more eas-
ily, in reality, year-to-date facts can be confusing and prone to error. We opt to 
remove the year-to-date fact. Instead, users can calculate year-to-date amounts 
on the fly by using a constraint on year in the date dimension or by leveraging 
the data access tool’s capabilities. 

After a taxing day, our initial review of the design is complete. Of course, 
there’s more ground to cover, including the handling of changes to the dimen-
sion attributes. In the meantime, everyone on the team agrees that the 
revamped design, illustrated in Figure 10.3, is a vast improvement. We feel 
that we’ve earned our first week’s pay at our new employer. 

Customer Dimension Billing Fact Bill Date Dimension 

Customer Key (PK) 
Customer ID (Natural Key) 
Customer Name 
Customer City 
Customer State 
Customer Zip 

Original Authorization Credit Score 
… more attributes 

Sales Rep Key (PK) 
Sales Rep Number (Natural Key) 
Sales Rep Name 
Sales Organization ID 
Sales Organization Name 
Sales Channel ID 
Sales Channel Name 

Sales Rep Dimension 

Bill Date Key (FK) 
Customer Key (FK) 

Sales Rep Key (FK) 
Rate Plan Key (FK) 
Bill Number (DD) 
Number of Calls 

Number of Roam Minutes 
Number of Long-Distance Minutes 

Roaming Charge 
Long-Distance Charge 

Bill Date Key (PK) 
Bill Date 

… more attributes 

Rate Plan Key (PK) 
Rate Plan Code (Natural Key) 
Rate Plan Abbreviation 
Rate Plan Description 

Rate Plan Dimension 

Date of 1st Service 

Service Line Key (FK) 

Number of Total Minutes 

Monthly Service Charge 

Taxes 
Regulatory Charge 

Bill Date Year 

Service Line Key (PK) 
Service Line Number (Natural Key) 
Service Line Area Code 
Service Line Area Code and Prefix 
Service Line Prefix 
Service Line Activation Date 

Service Line Dimension 

Rate Plan Type Code 
Rate Plan Type Description 

Figure 10.3 Schema following the design review. 
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Geographic Location Dimension

Let’s shift gears and presume that we’re now working for a phone company 
with land lines tied to a specific physical location. In general, the telecommu-
nications industry has a very well-developed notion of location. The same 
could be said for the utilities industry. Many of its dimensions contain a precise 
geographic location as part of the attribute set. The location may be resolved to 
a physical street, city, state, and ZIP code or even to a specific latitude and lon-
gitude. Using our dimension role-playing technique, we imagine building a 
single master location table where data is standardized once and then reused. 
The location table could be part of the service line telephone number, equip-
ment inventory, network inventory (including poles and switch boxes), real 
estate inventory, service location, dispatch location, right of way, and even cus-
tomer entities. Each row in the master location table is a specific point in space 
that rolls up to every conceivable geographic grouping, such as census tracts 
and counties. A location could roll up to multiple unique geographic group-
ings simultaneously. 

Location Outrigger 
Location more naturally is thought of as a component of a dimension, not as 
a standalone dimension. The use of an embedded role, such as location, in a 
variety of unrelated larger dimensions is one of the few places where we 
support snowflaked outriggers. We recommend creating a join from each of 
the primary dimension tables that need to describe location to a clone of the 
location subdimension table. The issues in creating location clones are 
exactly the same as the ones we described in Chapter 5 for creating date role-
playing dimensions. We need separate views for each use of the location 
table, being careful to create distinguishable column names. A possible 
advantage of this approach is that if we later embellish the geographic 
dimensions with census or demographic information, we do so in one place, 
without touching all the primary dimensions that include a location descrip-
tion. On the other hand, we haven’t gained much with this approach if there 
is little overlap between the geographic locations embedded in various 
dimensions. In this situation we would pay a performance price for consoli-
dating all the disparate addresses into a single dimension. Likewise, we 
should check with our database management system to determine its treat-
ment (and associated penalty, if applicable) of the view construct. Ultimately, 
we need to remain focused on our two driving design principles: ease of use 
and performance. 
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Leveraging Geographic 
Information Systems 

While we’re on the topic of location dimensions, very few conventional data 
warehouses currently make the most of their data with a map-driven approach 
to visualization and presentation. The data warehouse can take advantage of 
interesting geographic information system (GIS) tools to deliver the informa-
tion and insights contained in spatially oriented address or route data. This 
actually may encourage design enhancements and extensions to include attrib-
utes that enable richer analysis of our warehouse data via a GIS capability. 

Using GIS tools, we can effectively exploit the millions of addresses we already 
store. We can invoke new graphic presentation tools that allow us to see two-
dimensional patterns on a map that simply can’t be detected in spreadsheets 
and conventional reports. In addition, we can attach some new verbs to our 
existing databases that let us ask spatially enabled questions, such as “Find all 
the service lines or switches that are within or near a group of counties,” with-
out modifying the underlying data. 

The process for integrating the warehouse data with a GIS capability will vary 
depending on which GIS tool is used. Essentially, in order for the GIS to inter-
pret ordinary street addresses, it first standardizes the raw address informa-
tion from the location dimension into a parsed form. The GIS tool’s geocoder 
then attempts to match the parsed addresses with a standard street network 
database of geographic points. If all goes well, you get back a set of location 
objects that can be plotted visually. In other cases you may choose to physically 
alter and populate the underlying location dimension with geospecific attrib-
utes such as points, lines, and polygons. You also may want to consider the 
spatial capabilities that are implemented within some DBMSs. 

If you are a GIS professional sitting on top of mounds of geospatial data, this 
approach is probably not for you; you likely need to use a mainline GIS solu-
tion instead. However, if you are a text-and-numbers data warehouse manager 
already storing millions of addresses and other attributes of physical locations, 
then consider this technique to pick the low-hanging fruit that our GIS col-
leagues have generously provided without modifying your existing data 
warehouse applications or data architecture. 

Summary 

This chapter provided the opportunity to conduct a design review using an 
example case study. We provided a laundry list of common design flaws to 
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scout for when performing a review. We encourage you to use this laundry list 
to review your own draft schemas in search of potential improvements. 

We also discussed the geographic location as a permissible outrigger if it is 
used repeatedly in dimensional designs. Finally, we suggested opportunities 
to further leverage this geographic information through the use of a GIS tool. 
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oyages occur whenever a person or thing travels from one point to another, 
perhaps with stops in the middle. Obviously, this applies directly to organiza-

Transportation

tions involved in the travel industry. Shippers, as well as internal logistical 
functions, also will relate to the discussion, as will package delivery services 
and car rental agencies. Somewhat unexpectedly, many of the characteristics 
in this chapter’s schema are also applicable to telecommunications network 
route analysis. A phone network can be thought of as a map of possible voy-
ages that a call makes between origin and destination phone numbers. 

In this chapter we’ll draw on an airline frequent flyer case study to explore 
voyages and routes because many readers are familiar (perhaps too familiar) 
with the subject matter. The case study lends itself to a discussion of multiple 
fact tables at different granularities. We’ll also expand on several concepts, 
such as dimension role-playing and additional date and time dimension con-
siderations. As usual, the intended audience for this chapter should not be lim-
ited to the industries just listed. 

Chapter 11 discusses the following concepts: 

�� Fact tables at different levels of granularity 
�� Combining role-playing dimensions into a superdimension in certain situations 
�� Country-specific date dimensions 
�� Time of day as a fact versus dimension 
�� Dates and times in multiple time zones 
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Airline Frequent Flyer Case Study

In this case the airline’s marketing department wants to analyze the flight 
activity of each member of its frequent flyer program. The department is inter-
ested in seeing what flights the company’s frequent flyers take, which planes 
they fly, what fare basis they pay, how often they upgrade, how they earn and 
redeem their frequent flyer miles, whether they respond to special fare pro-
motions, how long their overnight stays are, and what proportion of these 
frequent flyers have titanium, platinum, gold, or aluminum status. 

As usual, we work through the four-step process to tackle the design of this 
frequent flyer schema. For this case study, the business process would be 
actual flight activity. We are not focusing on reservation or ticketing activity 
data that didn’t result in a frequent flyer boarding a plane. The data warehouse 
team will contend with those other sources of data in subsequent phases. 

Multiple Fact Table Granularities 
When it comes to the grain, we encounter a situation in this case where we are 
presented with multiple potential levels of fact table granularity. Each of these 
levels of granularity has different metrics associated with them. 

At the most granular level, the airline captures data at the leg level. The leg 
represents an aircraft taking off at one airport and landing at another without 
any intermediate stops. Capacity planning and flight scheduling analysts are 
very interested in this discrete level of information because they’re able to look 
at the number of seats to calculate load factors by leg. We also can include facts 
regarding the leg’s flight duration as well as the number of minutes late at 
departure and arrival. Perhaps there’s even a dimension to easily identify 
on-time arrivals. 

The next level of granularity corresponds to a segment. In this case we’re 
looking at the portion of a trip on a single aircraft. Segments may have one or 
more legs associated with them. If you take a flight from San Francisco to 
Minneapolis with a stop in Denver but no aircraft change, you have flown one 
segment (SFO-MSP) but two legs (SFO-DEN and DEN-MSP). Conversely, if 
the flight flew nonstop from San Francisco to Minneapolis, you would have 
flown one segment as well as one leg. The segment represents the line item on 
an airline ticket coupon; revenue and mileage credit is generated at the seg-
ment level. 

Next, we can analyze flight activity by trip. The trip provides an accurate pic-
ture of customer demand. In our prior example, assume that the flights from 
San Francisco to Minneapolis required the flyer to change aircraft in Denver. In 
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this case the trip from San Francisco to Minneapolis would entail two seg-
ments corresponding to the two aircraft involved. In reality, the passenger just 
asked to go from San Francisco to Minneapolis; the fact that he or she needed 
to stop in Denver was merely a necessary evil but certainly wasn’t requested. 
For this reason, sales and marketing analysts are interested in trip-level data. 

Finally, the airline collects data for the itinerary, which is equivalent to the 
entire airline ticket or reservation confirmation number. 

The data warehouse team and business representatives decide to begin at the 
segment-level grain to satisfy the need for improved frequent flyer analysis. 
This represents the lowest level of data with meaningful metrics for the mar-
keting department. The data warehouse team inevitably will tackle the more 
granular leg-level data for the capacity planners and flight schedulers at some 
future point. The conforming dimensions built during this first iteration cer-
tainly will be leveraged at that time. 

There will be one row in the fact table for each boarding pass collected from 
frequent flyers. The dimensionality associated with this data is quite extensive, 
as illustrated in Figure 11.1. If we had instead chosen the grain to be the trip as a 
multiple-segment event, all the specific details regarding the aircraft, fare basis, 
class, and other circumstances of each flight would have been suppressed. 

We see that the schema uses the role-playing technique extensively. The multi-
ple date, time, and airport dimensions link to views of a single underlying 
physical date, time, and airport dimension table, respectively, as we discussed 
originally in Chapter 5. 

Scheduled Departure Date Key (FK) 

Actual Departure Date Key (FK) 

Frequent Flyer Key (FK) 
Frequent Flyer Profile Key (FK) 
Segment Origin Airport Key (FK) 
Segment Destination Airport Key (FK) 
Flight Key (FK) 

Class Key (FK) 
Fare Basis Key (FK) 
Sales Channel Key (FK) 

Segment Sequence Number (DD) 
Gross Segment Revenue 
Segment Miles Flown 
Segment Miles Earned 
Segment Flight Duration 
Number of Minutes Late at Departure 
Number of Minutes Late at Arrival 
Net Number of Minutes Late 

Segment-Level Flight Activity Fact 

(view for 2 roles) 

Date Dimension (views for 2 roles) 

Airport Dimension 
(views for 2 roles) 

Frequent Flyer Dimension 

Flight Dimension 

Fare Basis Dimension 

Class Dimension 

Sales Channel Dimension 

Frequent Flyer Profile Dimension 

Scheduled Departure Time Key (FK) 

Actual Departure Time Key (FK) 

Aircraft Key (FK) 

Itinerary Number (DD) 
Ticket Number (DD) 

Time-of-Day Dimension 

Aircraft Dimension 

Figure 11.1 Initial segment-level flight activity schema. 
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The frequent flyer dimension is a garden-variety customer dimension with all 
the attributes captured about our most valuable flyers. Interestingly, in this 
case the frequent flyers are motivated to help you maintain this dimension 
accurately because they want to ensure that they’re receiving appropriate 
mileage credit. For a large airline, this dimension would have tens of millions 
of rows in it. Marketing wants to analyze activity by frequent flyer tier, which 
can change during the course of a year. In addition, we learned during the 
requirements process that the users are interested in slicing and dicing based 
on the flyers’ home airports and whether they belong to the airline’s airport 
club. Therefore, we opt to create a separate frequent flyer profile minidimen-
sion, as we discussed in Chapter 6, with one row for each unique combination 
of frequent flyer elite tier, home airport, and club membership status. 

The flight dimension contains information about each flight, such as the air-
craft used. Although there is a specific origin and destination associated with 
each flight, we call these key airport dimensions out separately to simplify the 
user’s view of the data and make access more efficient. 

The class of service flown describes whether the passenger sat in coach, busi-
ness, or first class. The fare basis dimension describes the terms surrounding 
the fare. It would identify whether it’s a full fare, an unrestricted fare, a 21-day 
advanced-purchase fare with change and cancellation penalties, or a 10 per-
cent off fare due to a special promotion available for tickets purchased at the 
company’s Web site during a given time period. In this case study we decide 
not to separate the notion of promotion from fare basis. After interviewing 
business users at the airline, we conclude that fare basis and promotion are 
inextricably linked and that it does not make sense to separate them in the 
data. 

The sales channel dimension identifies how the ticket was purchased, whether 
through a travel agency, directly from the airline’s toll-free phone number or 
city ticket office, from the airline’s Web site, or via another Internet travel ser-
vices provider. In addition, several operational numbers are associated with 
the flight activity data, including the itinerary number, the ticket number, and 
the segment sequence number. 

The facts captured at the segment level of granularity include the gross seg-
ment revenue, segment miles flown, and segment miles awarded (in those 
cases where a minimum number of miles are awarded regardless of the flight 
distance). To monitor customer service levels, we also might include such facts 
as the minutes late at departure and arrival, which would be summarized in 
the case of a multileg segment. 
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Linking Segments into Trips 
Despite the powerful dimensional framework we just designed, we are unable 
to easily answer one of the most important questions about our frequent fly-
ers, namely, where are they going? The segment grain masks the true nature of 
the trip. If we fetch all the segments of the airline voyage and sequence them 
by segment number, it is still nearly impossible to discern the trip start and end 
points. Most complete itineraries start and end at the same airport. If a lengthy 
stop were used as a criterion for a meaningful trip destination, it would 
require extensive and tricky processing whenever we tried to summarize a 
number of voyages by the meaningful stops. 

The answer is to introduce two more airport role-playing dimensions: trip ori-
gin and trip destination, while keeping the grain at the flight segment level. 
These are determined during data extraction by looking on the ticket for any 
stop of more than four hours, which is the airline’s official definition of a 
stopover. The enhanced schema looks like Figure 11.2. We would need to exer-
cise some caution when summarizing data by trip in this schema. Some of the 
dimensions, such as fare basis or class of service flown, don’t apply at the trip 
level. On the other hand, it may be useful to see how many trips from San 
Francisco to Minneapolis included an unrestricted fare on a segment. 

Scheduled Departure Date Key (FK) 

Actual Departure Date Key (FK) 

Frequent Flyer Key (FK) 
Frequent Flyer Profile Key (FK) 
Segment Origin Airport Key (FK) 
Segment Destination Airport Key (FK) 

Flight Key (FK) 

Class Key (FK) 
Fare Basis Key (FK) 
Sales Channel Key (FK) 

Segment Sequence Number (DD) 
Gross Segment Revenue 
Segment Miles Flown 
Segment Miles Earned 
Segment Flight Duration 
Number of Minutes Late at Departure 
Number of Minutes Late at Arrival 
Net Number of Minutes Late 

Segment-Level Flight Activity Fact 

(view for 2 roles) 

Date Dimension (views for 2 roles) 

Airport Dimension 
(views for 4 roles) 

Frequent Flyer Dimension 

Flight Dimension 

Fare Basis Dimension 

Class Dimension 

Sales Channel Dimension 

Frequent Flyer Profile Dimension 

Scheduled Departure Time Key (FK) 

Actual Departure Time Key (FK) 

Trip Origin Airport Key (FK) 
Trip Destination Airport Key (FK) 

Aircraft Key (FK) 

Itinerary Number (DD) 
Ticket Number (DD) 

Time-of-Day Dimension 

Aircraft Dimension 

Figure 11.2 Trip-level flight activity schema. 
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In addition to linking segments into trips as Figure 11.2 illustrates, if the business 
users are constantly looking at information at the trip level, rather than by seg-
ment, we might be tempted to create an aggregate fact table at the trip grain. 
Some of the earlier dimensions discussed, such as class of service, fare basis, and 
flight, obviously would not be applicable. The facts would include such metrics 
as trip gross revenue and additional facts that would appear only in this com-
plementary trip summary table, such as the number of segments in the trip. 
However, we would only go to the trouble of creating such an aggregate table if 
there were obvious performance or usability issues when we used the segment-
level table as the basis for rolling up the same reports. If a typical trip consisted 
of three segments, then we might barely see a three times performance improve-
ment with such an aggregate table, meaning that it may not be worth the bother. 

Extensions to Other Industries 

Using the frequent flyer case study to illustrate a voyage schema makes intu-
itive sense because most of us have boarded a plane at one time or another. 
We’ll briefly touch on several other variations on this theme. 

Cargo Shipper 
The schema for a cargo shipper looks quite similar to the frequent flyer schemas 
just developed. Suppose that a transoceanic shipping company transports bulk 
goods in containers from foreign to domestic ports. The items in the containers 
are shipped from an original shipper to a final consignor. The trip can have mul-
tiple stops at intermediate ports. It is possible that the containers may be off-
loaded from one ship to another at a port. Likewise, it is possible that one or 
more of the legs may be by truck rather than ship. 

As illustrated in Figure 11.3, the grain of the fact table is the container on a spe-
cific bill-of-lading number on a particular leg of its trip. 

The ship mode dimension identifies the type of shipping company and specific 
vessel. The item dimension contains a description of the items in a container. 
The container dimension describes the size of the container and whether it 
requires electrical power or refrigeration. The commodity dimension describes 
one type of item in the container. Almost anything that can be shipped can be 
described by harmonized commodity codes, which are a kind of master con-
formed dimension used by agencies, including U.S. Customs. The consignor, 
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Shipping Transport Fact 

Leg Departure Date Key (FK) 

Leg Origin Port Key (FK) 
Leg Destination Port Key (FK) 
Ship Mode Key (FK) 
Container Key (FK) 
Commodity Key (FK) 
Consigner Key (FK) 

Foreign Consolidator Key (FK) 
Shipper Key (FK) 
Domestic Consolidator Key (FK) 

Consignee Key (FK) 
Leg Fee 

Leg Miles 

Port Dimension 
(view for 4 roles) 

Date Dimension 
(views for 2 roles) 

Business Entity Dimension 
(views for 7 roles) 

Ship Mode Dimension 

Container Dimension

 Commodity Dimension 

Voyage Departure Date Key (FK) 

Voyage Origin Port Key (FK) 
Voyage Destination Port Key (FK) 

Foreign Transporter Key (FK) 

Domestic Transporter Key (FK) 

Leg Tariffs 

Figure 11.3 Shipper schema. 

foreign transporter, foreign consolidator, shipper, domestic consolidator, 
domestic transporter, and consignee are all roles played by a master business 
entity dimension that contains all the possible business parties associated with 
a voyage. The bill-of-lading number is a degenerate dimension. We assume that 
the fees and tariffs are applicable to the individual leg of the voyage. 

Shipping transport schemas like this one characteristically have a large num-
ber of dimensions. When all the parties to the voyage have been added, the 
design can swell to 15 or even 20 dimensions. 

Travel Services 
If we work for a travel services company, we can envision complementing the 
customer flight activity schema with fact tables to track associated hotel stays 
and rental car usage. These schemas would share several common dimen-
sions, such as the date, customer, and itinerary number, along with ticket and 
segment number, as applicable, to allow hotel stays and car rentals to be inter-
leaved correctly into a airline trip. For hotel stays, the grain of the fact table is 
the entire stay, as illustrated in Figure 11.4. The grain of a similar car rental fact 
table would be the entire rental episode. Of course, if we were constructing a 
fact table for a hotel chain rather than a travel services company, the schema 
would be much more robust because we’d know far more about the hotel prop-
erty characteristics, the guest’s use of services, and associated detailed charges. 
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Travel Services Hotel Stay Fact 

Date of Arrival Key (FK) 
Date of Departure Key (FK) 

Customer Key (FK) 
Hotel Key (FK) 
Sales Channel Key (FK) 

Segment Number (DD) 
Number of Nights 
Room Dollar Charge 
Meal Dollar Charge 
Phone Dollar Charge 
Miscellaneous Charge 

Customer Dimension 

Date Dimension 
(views for 3 roles) 

Sales Channel Dimension 
Hotel Dimension 

Date of Reservation Key (FK) 

Itinerary Number (DD) 
Ticket Number (DD) 

Tax Charge 

Figure 11.4 Travel services hotel stay schema. 

Combining Small Dimensions 
into a Superdimension 

We stated previously that if a many-to-many relationship exists between two 
groups of dimension attributes, then they should be modeled as separate 
dimensions with separate foreign keys in the fact table. Sometimes, however, 
we’ll encounter a situation where these dimensions can be combined into a 
single superdimension rather than treating them as two separate dimensions 
with two separate foreign keys in the fact table. 

Class of Service 
The Figure 11.1 draft schema included the class of service flown dimension. Fol-
lowing our first design checkpoint with the business community, we learn that 
the business users want to analyze the class of service purchased, as well as the 
class flown. Unfortunately, we’re unable to reliably determine the class of ser-
vice actually used from the original fare basis because the customer may do a 
last-minute upgrade. In addition, the business users want to easily filter and 
report on activity based on whether an upgrade or downgrade occurred. Our 
initial reaction is to include a second role-playing dimension and foreign key in 
the fact table to support access to both the purchased and flown class of service, 
along with a third foreign key for the upgrade indicator. In this situation, how-
ever, there are only three rows in each class dimension table to indicate first, 
business, and coach classes. Likewise, the upgrade indicator dimension also 
would have just three rows in it, corresponding to upgrade, downgrade, or no 
class change. Since the row counts are so small, we elect instead to combine the 
dimensions into a single class of service dimension, as illustrated in Figure 11.5. 
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Class of 
Service Key Class Purchased Class Flown 

Purchased-Flown 
Class Group 

Class Change 
Indicator 

1 Coach Coach Coach-Coach No Class Change 
2 Coach Business Coach-Business Upgrade 
3 Coach First Coach-First Upgrade 
4 Business Coach Business-Coach Downgrade 
5 Business Business Business-Business No Class Change 
6 Business First Business-First Upgrade 
7 First Coach First-Coach Downgrade 
8 First Business First-Business Downgrade 
9 First First First-First No Class Change 

Figure 11.5 Sample rows from the combined class dimension. 

The Cartesian product of the separate class dimensions only results in a nine-
row dimension table (three class purchased rows, three class flown rows). We 
also have the opportunity in this superdimension to describe the relationship 
between the purchased and flown classes, such as the class group and class 
change indicator. In some ways, we can think of this combined class of service 
superdimension as a type of junk dimension, which we introduced in Chapter 5. 

Origin and Destination 
Likewise, we can consider the pros and cons of combining the origin and des-
tination airport dimensions. In this situation the data volumes are more signif-
icant, so separate role-playing origin and destination dimensions seem more 
practical. However, the users may need additional attributes that depend on 
the combination of origin and destination. In addition to accessing the charac-
teristics of each airport, business users also want to analyze flight activity data 
by the distance between the city-pair airports, as well as the type of city pair 
(such as domestic or trans-Atlantic). Even the seemingly simple question 
regarding the total activity between San Francisco (SFO) and Denver (DEN), 
regardless of whether the flights originated in SFO or DEN, would be chal-
lenging with separate origin and destination dimensions. Sure, SQL experts 
may be able to answer the question programmatically, but what about the less 
empowered? In addition, even if we’re able to derive the correct answer, we 
lack a standard label for that city-pair route. Some applications may label it 
SFO-DEN, whereas others might opt for DEN-SFO, San Fran-Denver, Den-SF, 
and so on. Rather than embedding inconsistent labels in application code, we 
should put them in a dimension table so that common, standardized labels can 
be used throughout the organization. It would be a shame to go to the bother 
of creating a data warehouse and then allow application code to implement 
inconsistent reporting labels. The business sponsors of the data warehouse 
won’t tolerate that for long. 
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City-Pair 
Key 

City-Pair 
Name 

Origin 
Airport Origin City 

Destination 
Airport 

Destination 
City 

Distance 
(Miles) Distance Band City-Pair Type 

1 BOS-JFK BOS Boston, MA JFK New York, NY 191 Less than 200 miles Domestic 
2 BOS-JFK JFK New York, NY BOS Boston, MA 191 Less than 200 miles Domestic 
3 BOS-LGW BOS Boston, MA LGW London, UK 3267 3,000 to 3,500 miles Trans-Atlantic 
4 BOS-LGW LGW London, UK BOS Boston, MA 3267 3,000 to 3,500 miles Trans-Atlantic 
5 BOS-NRT BOS Boston, MA NRT Tokyo, Japan 6737 More than 6,000 miles Trans-Pacific 

Figure 11.6 Sample rows from the city-pair (route) dimension. 

To satisfy the need to access additional city-pair attributes, we have two 
options. One is merely to add another dimension to the fact table for the city-
pair descriptors, including the city-pair name, city-pair type, and distance. The 
other alternative, as shown in Figure 11.6, is to combine the origin and desti-
nation airport attributes in addition to including the supplemental city-pair 
attributes. In this case, the number of rows in the combined dimension table 
will grow significantly. Theoretically, the combined dimension could have as 
many rows as the Cartesian product of the origin and destination airports. For-
tunately, in real life the number of rows is much smaller than this theoretical 
limit. More to the point, we’re willing to live with this compromise because the 
combined city-pair dimension reflects the way the business thinks about the 
data. We could use this same table as a role-play for a trip city-pair dimension. 

As we mentioned, if the actual row counts prohibited a combined dimension, 
then we could continue to use the separate origin and destination dimensions 
but include a third dimension in the fact table to support the city-pair attrib-
utes rather than relying on the access application for the combination city-pair 
logic. Besides large data volumes, the other motivation for maintaining sepa-
rate dimension tables occurs if other business processes require the separate 
dimensions, although one could argue that the separate dimensions merely 
must conform to the combined superdimension. 

In most cases, role-playing dimensions should be treated as separate logical dimen-
sions created via views on a single physical table, as we’ve seen earlier with date 
dimensions. In isolated situations it may make sense to combine the separate 
dimensions into a superdimension, notably when the data volumes are extremely 
small or there is a need for additional attributes that depend on the combined 
underlying roles for context and meaning. 

More Date and Time Considerations 

From the earliest chapters in this book we’ve discussed the importance of hav-
ing a verbose date dimension, whether it’s at the individual day, week, or 
month granularity, that contains descriptive attributes about the date and 
private labels for fiscal periods and work holidays. In this final section we’ll 
introduce several additional considerations when dealing with date and time 
dimensions. 
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Country-Specific Calendars 
If the data warehouse serves multinational needs, we must generalize the 
standard date dimension to handle multinational calendars in an open-ended 
number of countries. The primary date dimension contains generic attributes 
about the date, regardless of the country. If your multinational business spans 
Gregorian, Hebrew, Islamic, and Chinese calendars, then we would include 
four sets of days, months, and years in this primary dimension. 

Country-specific date dimensions supplement the primary date table. The key 
to the supplemental dimension is the primary date key, along with the country 
name. The table would include country-specific date attributes, such as holiday 
or season names, as illustrated in Figure 11.7. This approach is similar to the 
handling of multiple fiscal accounting calendars, as described in Chapter 7. 

We can join this table to the main calendar dimension or to the fact table 
directly. If we provide an interface that requires the user to specify a country 
name, then the attributes of the country-specific supplement can be viewed as 
logically appended to the primary date table, allowing you to view the calendar 
through the eyes of a single country at a time. Country-specific calendars can be 
messy to build in their own right. Things get even messier if we need to deal 
with local holidays that occur on different days in different parts of a country. 

Fact 

Date Key (FK) 
More Foreign Keys … 
Facts … 

Date Dimension Country-Specific Date Outrigger 

Date Key (PK) Date Key (FK) 
Date Country Key (PK) 
Day of Week Country Name 
Day Number in Epoch Civil Holiday Flag 
Week Number in Epoch Civil Holiday Name 
Month Number in Epoch Religious Holiday Flag 
Day Number in Calendar Month Religious Holiday Name 
Day Number in Calendar Year Workday Indicator 
Day Number in Fiscal Month Season Name 
Day Number in Fiscal Year 
Last Day in Week Indicator 
Last Day in Month Indicator 
Calendar Week Ending Date 
Calendar Week Number in Year 
Calendar Month 
Calendar Month Number in Year 
Calendar Year-Month (YYYY-MM) 
Calendar Quarter 
Calendar Year-Quarter 
Calendar Half Year 
Calendar Year 
Fiscal Week 
Fiscal Week Number in Year 
Fiscal Month 
Fiscal Month Number in Year 
Fiscal Year-Month 
Fiscal Quarter 
Fiscal Year-Quarter 
Fiscal Half Year 
Fiscal Year 
SQL Date Stamp 
… and more 

Figure 11.7 Country-specific calendar outrigger. 
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Time of Day as a Dimension or Fact 
We strongly encourage designers to separate time of day from the date dimen-
sion to avoid an explosion in the date dimension row count. In earlier examples 
we’ve illustrated the time of day as a full-fledged dimension table with one row 
per discrete time period (for example, each second or minute within a 24-hour 
period). This is the preferred route if we need to support the roll-up of time peri-
ods into more summarized groupings for reporting and analysis, such as 
15-minute intervals, hours, or AM/PM. They also could reflect business-specific 
time groupings, such as the weekday morning rush period for flight activity. 

If there’s no need to roll up or filter on time-of-day groups, then we have the 
option to treat time as a simple numeric fact instead. In this situation, the time 
of day would be expressed as a number of minutes or number of seconds since 
midnight, as shown in Figure 11.8. 

Date and Time in Multiple 
Time Zones 

When operating in multiple countries or even just multiple time zones, we’re 
faced with a quandary concerning transaction dates and times. Do we capture 
the date and time relative to local midnight in each time zone, or do we express 
the time period relative to a standard, such as the corporate headquarters 
date/time or Greenwich Mean Time (GMT)? To fully satisfy users’ require-
ments, the correct answer is probably both. The standard time allows us to see 
the simultaneous nature of transactions across the business, whereas the local 
time allows us to understand transaction timing relative to the time of day. 

Contrary to popular belief, there are more than 24 time zones (corresponding 
to the 24 hours of the day) in the world. For example, there is a single time 
zone in India, offset from GMT by 5.5 or 6.5 hours depending on the time of 
year. The situation gets even more unpleasant when you consider the com-
plexities of switching to and from daylight saving time. As such, it’s unrea-
sonable to think that merely providing an offset in a fact table can support 

Date Dimension Departure Date Key (FK) 
Frequent Flyer Key (FK) 
More Foreign Keys … 
Degenerate Dimensions … 

More Facts … 

Flight Activity Fact 

Departure Time of Day 

Frequent Flyer Dimension 

Time of day as a fact 

Figure 11.8 Fact table with time of day as a fact. 
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Flight Activity Fact 

Date Dimension (playing 2 roles) Departure Date Key (FK) 
GMT Departure Date Key (FK) 
More Foreign Keys … 
Degenerate Dimensions … 

More Facts … 

Departure Time of Day 
GMT Departure Time of Day 

Comparing across time 
zones requires 2 dates 
and times of day 

Figure 11.9 Localized and equalized date/time across time zones. 

equivalized dates and times. Likewise, the offset can’t reside in a time or air-
port dimension table. The recommended approach for expressing dates and 
times in multiple time zones is to include separate date and time-of-day 
dimensions (or time-of-day facts, as we just discussed) corresponding to the 
local and equivalized dates, as shown in Figure 11.9. 

We’ll elaborate further on multiple date and time dimension tables to capture 
both the absolute standard and local clock-on-the-wall dates and times when 
we discuss a multinational Web retailer in Chapter 14. 

Summary 

In this chapter we turned our attention to the concept of trips or routes. The 
expanded case study focused on an airline frequent flyer example, and we 
briefly touched on similar scenarios drawn from the shipping and travel 
services industries. We examined the situation in which we have multiple fact 
tables at multiple granularities with multiple grain-specific facts. We also dis-
cussed the possibility of combining dimensions into a single dimension table 
in cases where the row count volumes are extremely small or when there are 
additional attributes that depend on the combined dimensions. Again, com-
bining dimensions should be viewed as the exception rather than the rule. 

We wrapped up this chapter by discussing several date and time dimension 
techniques, including country-specific calendar outriggers, treatment of time 
as a fact versus a separate dimension, and the handling of absolute and rela-
tive dates and times. 
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W look at the applicant student pipeline as an accumulating snapshot. When we 
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e step into the world of an educational institution in this chapter. We’ll first 

Education

introduced the accumulating snapshot-grained fact table in Chapter 5, we 
used an order fulfillment pipeline to illustrate the concept. In this chapter, 
rather than watching orders move through various states prior to completion, 
the accumulating snapshot is used to monitor prospective student applicants 
as they move through standard admissions milestones. The other primary 
concept discussed in this chapter is the factless fact table. We’ll explore several 
case study illustrations drawn from education to further elaborate on these 
special fact tables, and we will discuss the analysis of events that didn’t occur. 

Chapter 12 discusses the following concepts: 

�� Admission’s applicant tracking as an accumulating snapshot 
�� Factless fact table for student registration and facilities management data 
�� Handling of nonexistent events, including promotion events from the retail industry 
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University Case Study

In this chapter we’ll pretend that we work for a university, college, or other 
type of educational institution. Traditionally, there has been less focus on rev-
enue and profit in this arena, but with the ever-escalating costs and competi-
tion associated with higher education, universities and colleges are very 
interested in attracting and retaining high-quality students. In fact, there’s a 
strong interest in understanding and maintaining a relationship well beyond 
graduation. There’s also a dominant need to understand what our student cus-
tomers are buying in terms of courses each term. Finally, we’ll take a look at 
maximizing the use of the university’s capital-intensive facilities. 

Accumulating Snapshot for 
Admissions Tracking 

In Chapter 5 we treated the order fulfillment pipeline as an accumulating 
snapshot. We also described the use of an accumulating snapshot to track a 
specific item, uniquely identified by a serial or lot number, as it moves through 
the manufacturing and test pipeline. Let’s take a moment to recall the distin-
guishing characteristics of an accumulating snapshot fact table: 

�� A single row represents the complete history of something. 

�� Such a fact table is most appropriate for short-lived processes, such as 
orders and bills. 

�� Multiple dates represent the standard scenario milestones of each row. 

�� Open-ended sets of facts accumulate the interesting measures. 

�� Each row is revisited and changed whenever something happens. 

�� Both foreign keys and measured facts may be changed during the revisit. 

We can envision these same characteristics applied to the prospective student 
admissions pipeline. For those who work in other industries, there are obvious 
similarities to tracking job applicants as they move through the hiring process, 
and tracking sales prospects as they become customers. 

In the case of applicant tracking, prospective students progress through a 
standard set of admissions hurdles or milestones. Perhaps we’re interested in 
tracking activities around key dates, such as receipt of preliminary admissions 
test scores, information requested (via Web or otherwise), information sent, 
interview conducted, on-site campus visit, application received, transcript 
received, test scores received, recommendations received, first pass review by 
admissions, review for financial aid, final decision from admissions, accepted, 
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admitted, and enrolled. At any point in time, people in the admissions and 
enrollment management area are interested in how many applicants are at 
each stage in the pipeline. The process is much like a funnel, where many 
applicants enter the pipeline, but far fewer progress through to the final stage. 
Admission personnel also would like to analyze the applicant pool by a vari-
ety of characteristics. 

The grain of the accumulating snapshot to track the applicant’s lifecycle is one 
row per prospective student. This granularity represents the lowest level of 
detail captured when the prospect enters the pipeline. As more information is 
collected while the prospect progresses toward application, acceptance, and 
admission, we continue to revisit and update the prospect’s status in the fact 
table row, as illustrated in Figure 12.1. 

Applicant Pipeline Accumulating Fact 

Information Requested Date Key (FK) 
Information Sent Date Key (FK) 

Application Submitted Date Key (FK) 

Recommendations Received Date Key (FK) 
Admissions First Pass Review Date Key (FK) 
Reviewed for Financial Aid Date Key (FK) 
Admissions Final Decision Date Key (FK) 
Applicant Decision Received Date Key (FK) 
Admitted Date Key (FK) 
Enrolled Date Key (FK) 
Admissions Decision Key (FK) 
Applicant Key (FK) 

Information Requested Quantity 
Information Sent Quantity 
Information Requested-Sent Lag 

Application Submitted Quantity 

Recommendations Received Quantity 
Application Complete Quantity 
Application Submitted-Complete Lag 
Admissions First Pass Review Quantity 
Reviewed for Financial Aid Quantity 
Admissions Final Decision Quantity 
Application Submitted-Final Decision Lag 
Accepted Quantity 
Decline Quantity 
Final Decision-Accepted/Decline Lag 
Admitted Quantity 
Enrolled Quantity 

Admissions Decision Key (PK) 
Admissions Decision Description 

Date Dimension (views for 15 roles) 

Admissions Decision Dimension 

Applicant Key (PK) 
Applicant Name 
Applicant Address Attributes … 

Applicant High School 

Number of Advanced Placement Credits 
Gender 
Date of Birth 
Ethnicity 

… and more 

Applicant Dimension 

Preliminary Test Score Receipt Date Key (FK) 

Interview Conducted Date Key (FK) 
On-Site Campus Visit Date Key (FK) 

Transcript Received Date Key (FK) 
Test Scores Received Date Key (FK) 

Preliminary Test Score Receipt Quantity 

Interview Conducted Quantity 
On-Site Campus Visit Quantity 

Transcript Received Quantity 
Test Scores Received Quantity 

Admissions Decision Category 

Applicant High School GPA 

Applicant SAT Math Score 
Applicant SAT Verbal Score 

Preliminary School 
Preliminary College Major 

Figure 12.1 Student applicant pipeline as an accumulating snapshot. 
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Like other accumulating snapshots we’ve discussed, there are multiple dates 
in the fact table corresponding to the standard process milestones. We want to 
analyze the prospect’s progress by these dates to determine the pace of move-
ment through the pipeline, and we also want to spot bottlenecks. This is espe-
cially important if we see a significant lag involving a candidate whom we’re 
interested in attracting. Each of these dates is treated as a role-playing dimen-
sion, using surrogate keys to handle the inevitable unknown dates when we 
first load the row. 

The applicant dimension contains many interesting attributes about our 
prospective students. Admissions analysts are interested in slicing and dicing 
these applicant characteristics by geography, incoming credentials (grade 
point average, college admissions test scores, advanced placement credits, and 
high school), gender, date of birth, ethnicity, and preliminary major. Analyzing 
these characteristics at various stages of the pipeline will help admissions per-
sonnel adjust their strategies to encourage more (or fewer) students to proceed 
to the next mile marker. 

As we saw previously, accumulating snapshots are appropriate for short-lived 
processes, such as the applicant pipeline, that have a defined start and end, as 
well as standard intermediate milestones. This type of fact table allows us to 
see an updated status and ultimately final disposition of each prospective 
applicant. We could include a fact for the estimated probability that the 
prospect will become a student. By adding all these probabilities together, we 
would see an instantaneous prediction of the following year’s enrollment. 

Another education-based example of an accumulating snapshot focuses on 
research proposal activities. Some user constituencies may be interested in view-
ing the lifecycle of a research grant proposal as it progresses through the grant 
pipeline from preliminary proposal to grant approval and award receipt. This 
would support analysis of the number of outstanding proposals in each stage of 
the pipeline by faculty, department, research topic area, or research funding 
source. Likewise, we could see success rates by the various dimensions. Having 
this information in a common repository such as the data warehouse would 
allow it to be leveraged more readily by a broader university population. 

Factless Fact Tables 

So far we’ve designed fact tables that have had a very characteristic structure. 
Each fact table typically has three to approximately 15 to 20 key columns, fol-
lowed by one to potentially several dozen numeric, continuously valued, 
preferably additive facts. The facts can be regarded as measurements taken at 
the intersection of the dimension key values. From this perspective, the facts 
are the justification for the fact table, and the key values are simply adminis-
trative structure to identify the facts. 
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There are, however, a number of business processes whose fact tables are sim-
ilar to those we’ve been designing with one major distinction: There are no 
measured facts! We call these factless fact tables. In the following examples we’ll 
discuss both event tracking and coverage factless fact tables. We briefly intro-
duced the factless coverage table in Chapter 2 while discussing retail promo-
tion coverage, as well as in Chapter 5 to describe sales rep territory coverage. 

Student Registration Events 
There are many situations in which events need to be recorded as the simulta-
neous coming together of a number of dimensional entities. For example, we 
can track student registrations by term. The grain of the fact table would be 
one row for each registered course by student and term. As illustrated in Fig-
ure 12.2, the fact table has the following dimensionality: term, student, student 
major and attainment, course, and faculty. 

In this scenario we’re dealing with fact data at the term level rather than at the 
more typical calendar day, week, or month granularity. Term is the lowest level 
available for the registration events. The term dimension still should conform 
to the calendar date dimension. In other words, each date in our daily calendar 
dimension should identify the term (for example, Fall AY2002), academic year 
(for example, AY2002), and term season (for example, Winter). The column 
labels and values must be identical for the attributes common to both the 
calendar date and term dimensions. 

Student Registration Event Fact 

Student Key (FK) 
Declared Major Key (FK) 
Credit Attainment Key (FK) 
Course Key (FK) 
Faculty (FK) 
Registration Count (always = 1) 

Faculty Key (PK) 
Faculty Employee ID (Natural Key) 
Faculty Name 
Faculty Address Attributes … 

Faculty Original Hire Date 

Faculty School 

Faculty Dimension 

Course Key (PK) 
Course Name 
Course School 
Course Format 
Course Credit Hours 

Course Dimension 

Student Key (PK) 
Student ID (Natural Key) 
Student Attributes … 

Student Dimension 

Declared Major Key (PK) 
Declared Major Description 
Declared Major School 

Credit Attainment Key (PK) 
Class Level Description 

Declared Major Dimension 

Credit Attainment Dimension 

Term Key (FK) 

Faculty Type 
Faculty Tenure Indicator 

Faculty Years of Service 

Term Key (PK) 
Term Description 
Academic Year 
Term/Season 

Term Year Dimension 

Interdisciplinary Indicator 

Figure 12.2 Student registration events as a factless fact table. 
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The student dimension is an expanded version of the applicant dimension that 
we discussed in the last scenario. We still want to retain all the information we 
garnered from the application process (for example, geography, credentials, 
and preliminary major) but supplement it with on-campus information, such 
as part-time/full-time status, residence, involvement in athletics, declared 
major, and class level status (for example, sophomore). As we discussed in 
Chapter 6, we imagine treating some of these attributes as a minidimension(s) 
because factions throughout the university are interested in tracking changes 
to them over time, especially when it comes to declared major, class level, and 
graduation attainment. People in administration and academia are keenly 
interested in academic progress and retention rates by class, school, depart-
ment, and major. 

A fact table is a reasonable place to represent the robust set of many-to-many 
relationships among these dimensions. It records the collision of dimensions at 
a point in time and space. This table could be queried to answer a number of 
interesting questions regarding registration for the college’s academic offer-
ings, such as which students registered for which courses? How many 
declared engineering majors are taking an out-of-major finance course? How 
many students have registered for a given faculty member’s courses during 
the last three years? How many students have registered for more than one 
course from a given faculty member? The only peculiarity in this example is 
that we don’t have a numeric fact tied to this registration data. As such, analy-
ses of this data will be based largely on counts. 

Events often are modeled as a fact table containing a series of keys, each representing 
a participating dimension in the event. Event tables often have no obvious numeric 
facts associated with them and hence are called factless fact tables. 

The SQL for performing counts in this factless fact is asymmetric because of 
the absence of any facts. When counting the number of registrations for a fac-
ulty member, any key can be used as the argument to the COUNT function. 
For example: 

SELECT FACULTY, COUNT(TERM_KEY)... GROUP BY FACULTY

This gives the simple count of the number of student registrations by faculty, 
subject to any constraints that may exist in the WHERE clause. An oddity of 
SQL is that you can count any key and still get the same answer because you 
are counting the number of keys that fly by the query, not their distinct values. 
We would need to use a COUNT DISTINCT if we wanted to count the unique 
instances of a key rather than the number of keys encountered. 

The inevitable confusion surrounding the SQL statement, while not a serious 
semantic problem, causes some designers to create an artificial implied fact, 
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perhaps called registration count (as opposed to dummy), that is always popu-
lated by the value 1. While this fact does not add any information to the fact 
table, it makes the SQL more readable, such as: 

SELECT FACULTY, SUM(REGISTRATION_COUNT)... GROUP BY FACULTY

At this point the table is no longer strictly factless, but most would agree that 
the 1 is nothing more than an artifact. The SQL will be a bit cleaner and more 
expressive with the registration artifact. Perhaps query tools will have an easier 
time constructing the query with a few simple user gestures. More important, 
if we build a summarized aggregate table above this fact table, we will need a 
real column to roll up to meaningful aggregate registration counts. 

If a measurable fact does surface during the design, it can be added to the 
schema, assuming that it is consistent with the grain of student registrations 
by term. For example, if we have the ability to track tuition revenue, earned 
credit hours, and grade scores, we could add them to this fact table, but then 
it’s no longer a factless fact table. The addition of these facts would definitely 
enable more interesting analyses. For example, what is the revenue generated 
by course or faculty? What is the average grade per class by faculty? 

Facilities Utilization Coverage 
The second type of factless fact table is the coverage table. We’ll draw on a sce-
nario dealing with facility management to serve as an illustration. Universities 
invest a tremendous amount of capital in their physical plant and facilities. It 
would be helpful to understand which facilities were being used for what 
purpose during every hour of the day during each term. For example, which 
facilities were used most heavily? What was the average occupancy rate of the 
facilities as a function of time of day? Does use drop off significantly on Fri-
days when no one wants to teach (or attend) classes? 

Once again, the factless fact table comes to the rescue. In this case we’d include 
one row in the fact table for each facility for standard hourly time blocks dur-
ing each day of the week during a term regardless of whether the facility is 
being used or not. We’ve illustrated the schema in Figure 12.3. 

The facility dimension would include all types of descriptive attributes about 
the facility, such as the building, facility type (for example, classroom, lab, or 
office), square footage, capacity, and amenities (for example, white board or 
built-in projector). The utilization status dimension obviously would include a 
text descriptor with values of “Available” or “Utilized.” Meanwhile, multiple 
organizations may be involved in facilities utilization. Such would be the case 
if one organization owned the facility during a time block, whereas the same 
or a different organization was assigned as the facility user. 



250 C  H A P T E  R  1  2  

Facility Utilization Coverage Fact 

Key (FK) 

Facility Key (FK) 
Owner Organization Key (FK) 
Assigned Organization Key (FK) 
Utilization Status Key (FK) 
Utilization Count (always = 1) 

Organization Dimension 
(views for 2 roles) 

Facility Key (PK) 
Facility Building Name 
Facility Building Address 
Facility Room Number 

Facility Floor 
Facility Square Footage 
Facility Capacity 
White Board Indicator 
PC Monitor Indicator 
… and more 

Facility Dimension 

Utilization Status Key (PK) 
Utilization Status Description 

Utilization Status Dimension 

Term Year
Day of Week Key (FK) 
Time-of-Day Hour Key (FK) 

Time-of-Day Hour Key (PK) 
Time-of-Day Description 
Time-of-Day AM/PM Indicator 
Time-of-Day Day Part 

Time-of-Day Hour Dimension 

Term Year Dimension 

Day of Week Dimension 

Facility Type 

Figure 12.3 Facilities utilization as a coverage factless fact table. 

Student Attendance Events 
We can visualize a similar schema to track student attendance in a course. In 
this case the grain would be one row for each student who walks through the 
course’s classroom door each day. This factless fact table would share a num-
ber of the same dimensions we discussed with respect to registration events. 
The primary difference would be that the granularity is by calendar date in 
this schema rather than merely term. This dimensional model, as illustrated in 
Figure 12.4, would allow us to answer such questions as which courses were 
the most heavily attended? Which courses suffered the least attendance attri-
tion over the term? Which students attended which courses? Which faculty 
member taught the most students? 

Date Key (FK) 
Student Key (FK) 
Facility Key (FK) 
Faculty Key (FK) 
Course Key (FK) 
Attendance Count (0 or 1) 

Student Attendance Event Fact 

Date Dimension 

Facility Dimension 

Course Dimension 

Student Dimension 

Faculty Dimension 

Figure 12.4 Student attendance fact table. 
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Explicit Rows for What Didn’t Happen 

Perhaps people are interested in monitoring students who were registered for 
a course but didn’t show up. In this example we can envision adding explicit 
rows to the fact table for attendance events that didn’t occur. Adding rows is 
viable in this scenario because the nonattendance events have the same exact 
dimensionality as the attendance events. Likewise, the fact table won’t grow at 
an alarming rate, presuming (or perhaps hoping) that the no shows are a small 
percentage of the total students registered for a course. In this situation we’re 
no longer dealing with a factless fact table because now the attendance fact 
would equal either 1 or 0. 

While this approach is reasonable in this scenario, creating rows for events that 
didn’t happen is ridiculous in many situations. For example, if we think back 
to our transportation case study, we certainly don’t want to build fact table 
rows for each flight not taken by a frequent flyer on a given day. 

Other Relational Options for What 
Didn’t Happen 

In many cases the primary transaction fact table, such as the sales in a grocery 
store, is very sparsely populated. Only a fraction of the total product portfolio 
sells in each store each day in most retail environments. There would be over-
whelming overhead associated with storing explicit rows for products that 
didn’t sell. The transaction sales fact table is already very large; the last thing 
we want to do is to spend more money on the resources and disk space to store 
a bunch of zeroes. As we recall from Chapter 2, we can use a promotion cover-
age factless fact table to help answer the question of what was being promoted 
but didn’t sell. A row is placed in the coverage table for each product in each 
store that is on promotion in each time period. This table would be much 
smaller than adding explicit rows to the existing transaction fact table because 
it only contains the items on promotion; those not being promoted would be 
excluded. In addition, perhaps we could substitute a weekly granularity 
instead of a daily grain if promotions run on a weekly basis. To answer the 
question regarding what was on promotion but didn’t sell, we’d first consult 
the coverage table for the products on promotion at a given time in that store. 
We’d then consult the sales fact table to determine what did sell; the set differ-
ence between these two lists of products is our answer. 
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In a relational database environment, we also have the option of using the 
NOT EXISTS construct in SQL to identify rows that don’t exist in a database, 
such as nonexistent facts or dimension attributes. While this approach allevi-
ates the need for upfront planning and design work to either include explicit 
rows or construct coverage tables, it’s not as pain free as it appears initially. We 
must ask very specifically what doesn’t exist by framing the NOT EXISTS 
within a larger query. For example, to answer the question about nonexistent 
sales for promoted products, we must first determine all products sold during 
a given extended time frame and then issue a subquery within the NOT EXISTS 
construct to determine all products sold on promotion during a smaller time 
frame. The danger in using this SQL correlated subquery approach is that we’ll 
miss products that didn’t sell at all during the extended time frame. Also, the 
query is bound to perform slowly because of the complexity. Finally, data 
access tools may prohibit the use of this construct within their interface. Using 
the factless promotion coverage table in Figure 12.5, here is the SQL for finding 
all the products that did not sell on a particular promotion (“Active Promo-
tion”) on January 15, 2002 that otherwise sold in the San Antonio Main Outlet 
sometime during January 2002. If you can understand this SQL, then you are 
qualified to support this application! 

SELECT P1.PRODUCT_DESCRIPTION

FROM SALES_FACT F1, PRODUCT P1, STORE S1, DATE D1, PROMOTION R1

WHERE F1.PROD_KEY = P1.PROD_KEY

AND F1.STORE_KEY = S1.STORE_KEY

AND F1.DATE_KEY = D1.DATE_KEY

AND F1.PROMO_KEY = R1.PROMO_KEY

AND S1.STORE_LOCATION = ‘San Antonio Main Outlet’

AND D1.MONTH = ‘January, 2002’

AND NOT EXISTS

(SELECT R2.PROMO_KEY

FROM SALES_FACT F2, PROMOTION R2, DATE D2

WHERE F2.PROMO_KEY = R2.PROMO_KEY

AND F2.PROD_KEY = F1.PROD_KEY

AND F2.STORE_KEY = F1.STORE_KEY

AND F2.DATE_KEY = D2.DATE_KEY

AND R2.PROMOTION_TYPE = ‘Active Promotion’

AND D2.FULL_DATE = ‘January 15, 2002’)
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Date Dimension Promotion Coverage Fact Product Dimension 

Date Key (FK) 
Product Key (FK) 
Store Key (FK) 
Promotion Key (FK) 
Promotion Count (always = 1) 

Date Key (PK) 
Date Attributes… 

Store Key (PK) 
Store Attributes… 

Store Dimension 

Product Key (PK) 
Product Attributes… 

Promotion Key (PK) 
Promotion Attributes… 

Promotion Dimension 

Figure 12.5 Promotion coverage as a factless fact table. 

Multidimensional Handling of What 
Didn’t Happen

Multidimensional online analytical processing (OLAP) databases do an excel-
lent job of helping users understand what didn’t happen. When the data cube 
is constructed, the multidimensional database handles the sparsity of the 
transaction data while minimizing the overhead burden of storing explicit 
zeroes. As such, at least for fact cubes that are not too sparse, the event and 
nonevent data is available for user analysis while reducing some of the com-
plexities we just discussed in the relational world. 

Other Areas of Analytic Interest 

Now that we’ve taken a tangent to discuss the analysis of what didn’t happen, 
let’s return to the world of higher education to bring this chapter to an orderly 
conclusion. Many of the analytic processes described earlier in this book, such 
as procurement and human resources, are obviously applicable to the univer-
sity environment given the desire to better monitor and manage costs. When 
we focus on the revenue side of the equation, research grants and alumni con-
tributions are key sources, in addition to the tuition revenue. 

The majority of research grant analysis is a variation of financial analysis, as 
we discussed in Chapter 7, but at a lower level of detail, much like a subledger. 
The grain would include additional dimensions to further describe the 
research grant, such as the corporate or governmental funding source, 
research topic, grant duration, and faculty researcher. There is a strong need to 
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better understand and manage the budgeted and actual spending associated 
with each research project. The objective is to optimize the spending so that a 
surplus or deficit situation is avoided, while funds are deployed where they 
will be most productive. Likewise, understanding research spending rolled up 
by various dimensions is necessary to ensure proper institutional control of 
such monies. 

Better understanding the university’s alumni is much like better understand-
ing a customer base, as we described in Chapter 6 regarding CRM. Obviously, 
there are many interesting characteristics that would be helpful in maintaining 
a mutually beneficial relationship with our alumni, such as geographic, demo-
graphic, employment, interests, and behavioral information, in addition to the 
data we collected about them as students (for example, incoming credentials, 
affiliations, school, major, length of time to graduate, and honors). Improved 
access to a broad range of attributes about the alumni population would allow 
the university to better target messages and allocate resources. In addition to 
alumni contributions, we can leverage the information for potential recruiting, 
job placement, and research opportunities. To this end, we can envision a full-
scale CRM operational system to track all the university’s touch points with its 
alumni, working in conjunction with the warehouse’s analytic foundation. 

Summary 

In this chapter we focused on two primary concepts. First, we looked at the 
accumulating snapshot used to track the application pipeline (or conversely, 
the research grant activity pipeline). Even though the accumulating snapshot 
is used much less frequently than the more common transaction and periodic 
snapshot fact tables, it is very useful in situations where we want to track the 
current status of a short-lived process with generally accepted standard 
progress milestones. 

Second, we explored several examples of the factless fact table. These fact 
tables capture the relationship between dimensions in the case of an event or 
coverage but are unique in that no measurements are collected to serve as 
actual facts. We also discussed the handling of situations where we want to 
track events that didn’t occur. 
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ealth care presents several interesting data warehouse design situations. In 
this chapter we will imagine first that we work for a large health care consor-
tium, then that we work for a billing organization for care providers and 
hospitals, and finally that we work for a large clinic with millions of complex 
patient treatment records. Each of these situations will suggest important 
design techniques applicable to health care and other industries. 

Chapter 13 discusses the following concepts: 

�� Value circle within health care, centered on the patient treatment records 
�� Accumulating snapshot fact table to handle medical bill line items 
�� More dimension role-playing as applied to multiple dates and providers 
�� Multivalued dimensions, such as an open-ended number of diagnoses along with 

effective dates and weighting factors to support allocations 
�� Extended fact set to support profitability analysis 
�� Handling of complex medical events 
�� Fact dimension to organize extremely sparse, heterogeneous measurements 
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Health Care Value Circle

A typical large health care consortium is a network of providers, clinics, 
hospitals, pharmacies, pharmaceutical manufacturers, laboratories, employers, 
insurance companies, and government agencies. Unlike the value chain we 
described in Chapter 3, a health care consortium resembles more of a value 
circle, as illustrated in Figure 13.1. This figure is not a schema diagram! It is a 
picture of how all these diverse organizations need to share the same critical 
data: the patient treatment record. 

There are two main types of patient treatment records. The treatment billing 
record corresponds to a line item on a patient bill from a provider’s office, a 
clinic, a hospital, or a laboratory. The treatment medical record, on the other 
hand, is more comprehensive and includes not only the treatments that result 
in charges but also all the laboratory tests, findings, and provider’s notes dur-
ing the course of treatment. The issues involved in these two kinds of records 
are quite different, and we will look at them in separate sections. 

Our large health care consortium must be able to share treatment billing 
records smoothly from organization to organization. Billing records from all 
the different kinds of providers must have a complete set of common dimen-
sions in order to be processed by the insurance companies and medical bill 
payers. As individuals move from location to location, employer to employer, 
and insurance company to government health care program, a coherent pic-
ture of that individual’s history needs to be creatable at any time. And finally, 
on the scrimmage line of health care delivery, the medical records of a patient 
need to be available on short notice for legitimate medical use by any of the 
primary providers. 

Patient 

Care Facilities Physician 
Offices 

Pharmacies 

Pharmaceutical 
Manufacturers 

Laboratories 

Employers 

Insurance 
Companies 

Government 
Agencies 

Hospitals 

Clinics 

Treatment 

Long Term 

Figure 13.1 Typical health care value circle. 
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The health care value circle differs from the classic linear value chain because 
there is no obvious ordering in time. However, the issues of conforming the 
common dimensions remain exactly the same. The health care consortium will 
be able to function if and only if it can implement a set of conformed dimen-
sions. A representative set of dimensions that must be conformed by the health 
care consortium include: 

�� Calendar date 

�� Patient 

�� Responsible party (parent, guardian, employee) 

�� Employer 

�� Health plan 

�� Payer (primary, secondary) 

�� Provider (all forms of health care professionals who administer 
treatments) 

�� Treatment (billable procedure, lab test, examination) 

�� Drug 

�� Diagnosis 

�� Outcome 

�� Location (office, clinic, outpatient facility, hospital) 

A billing row probably would need all these dimensions except for the out-
come dimension. A medical row would not always identify the employer, 
health plan, or payer dimensions. And insurance claims processing would 
need even more dimensions relating to claimants, accidents, lawyers, and the 
transaction types needed for claims processing. We’ll suppress the insurance 
aspect of health care data warehouses because we will deal with those kinds of 
subjects in Chapter 15. 

In the health care business, some of these dimensions are very hard to con-
form, whereas others are easier than they look at first glance. The patient and 
responsible party dimensions are the hardest, at least in the United States, 
because of the lack of a reliable national identity number and because people 
are signed up separately in doctors’ offices and hospitals and employment 
situations. The problems with the patient and responsible party dimensions 
are very similar to the issues we discussed in Chapter 6 regarding the consoli-
dation of multiple sources for customer information. The same customer 
matching, householding, merge-purge software, and service providers offer 
similar services to the health care industry. To find out more about these com-
panies, search for name householding or merge-purge on an Internet search 
engine such as Google (www.google.com). 
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The diagnosis and treatment dimensions are considerably more structured 
and predictable than one might expect because the insurance industry and 
government have mandated their content. Diagnoses usually follow the Inter­
national Classification of Diseases, 9th Revision: Clinical Modification, Volumes 1 
and 2 (ICD-9-CM) standard. The U.S. Department of Health and Human Ser-
vices (HHS) maintains this standard as far as the United States is concerned. 
The ICD-9-CM standard, Volume 3, defines treatment and management codes. 

The Health Care Financing Administration Common Procedure Coding System 
(HCPCS) standard, also updated and distributed by HHS; and Current Proce­
dural Terminology, 4th Edition (CPT-4), as updated and distributed by the 
American Medical Association, cover health-related services and other items, 
including: 

�� Physician services

�� Physical and occupational therapy services

�� Radiological procedures

�� Clinical laboratory tests

�� Other medical diagnostic procedures

�� Hearing and vision services

�� Transportation services (including ambulance)

�� Medical supplies

�� Orthotic and prosthetic devices

�� Durable medical equipment

Dentists are able to use the Code on Dental Procedures and Nomenclature, as 
updated and distributed by the American Dental Association, for dental 
services. 

When all the dimensions in our list have been conformed, then any organiza-
tion with appropriate access privileges can drill across the separate fact tables, 
linking together the information by matching the row headers of each row. The 
use of conformed dimensions guarantees that this matching process is well 
defined. We described this process in Chapter 3 in a product movement con-
text, but the principles are exactly the same when applied to the health care 
value circle. 

Health Care Bill 

Let us imagine that we work for a billing organization for health care 
providers and hospitals. We receive the primary billing transactions from the 
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providers and hospitals, prepare and send the bills to all the responsible 
payers, and track the progress of the payments made. 

Our health care billing data warehouse must meet a number of business objec-
tives. We want to analyze the counts and dollar amounts of all the bills by 
every dimension available to us, including by patient, provider, diagnosis, 
treatment, date, and any combinations of all these. We want to see how these 
bills have been paid and what percentage of the bills have not been collected. 
We want to see how long it takes to get paid, and we want to see the current 
status of all unpaid bills, updated every 24 hours. And of course, the queries 
need to be simple, and the response time must be instantaneous! 

As we discussed in Chapter 5, whenever we consider a data source for inclu-
sion in the data warehouse, we have three fundamental choices of grain for the 
fact table. Remember that the grain of the fact table is the fundamental defini-
tion of what constitutes a fact table row. In other words, what is the measure-
ment that we are recording? 

The transaction grain is the most fundamental. In the health care bill example, 
the transaction grain would include every input transaction from the 
providers and the hospitals, as well as every payment transaction resulting 
from the bill being sent. Although the world can be reconstructed from indi-
vidual transactions, this grain may not be the best grain to begin with to meet 
our business reporting objectives because many of the queries would require 
rolling the transactions forward from the beginning of the patient’s treatment. 

The periodic snapshot grain is the grain of choice for long-running time-series 
processes such as bank accounts and insurance policies. However, the periodic 
snapshot doesn’t do a good job of capturing the behavior of a quickly moving, 
short-lived process such as orders or medical bills. Most of the interesting 
activity surrounding a medical bill takes place quickly in one or two months. 
Also, if the periodic snapshot is available only at month-end, we cannot see the 
current status of the unpaid bills. 

We will choose the accumulating snapshot grain for our health care bill. A sin-
gle row in our fact table will represent a single line item on a health care bill. 
Furthermore, this single row will represent the accumulated history of that 
line item from the moment of creation of the row to the current day. When any-
thing about the line item changes, we revisit the unique accumulating row and 
modify the row appropriately. From the point of view of the billing organiza-
tion, we’ll assume that the standard scenario of a bill includes: 

�� Treatment date 

�� Primary insurance billing date 

�� Secondary insurance billing date 
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�� Responsible party billing date 

�� Last primary insurance payment date 

�� Last secondary insurance payment date 

�� Last responsible party payment date 

We choose these dates to be an adequate description of a normal bill. An accu-
mulating snapshot does not attempt to describe unusual situations fully. If the 
business users occasionally need to see all the details of a particularly messy 
bill payment situation, then a companion transaction grained fact table would 
be needed. The purpose of the accumulating snapshot grain is to place every 
health care bill into a uniform framework so that the business objectives we 
described earlier can be satisfied easily. 

Now that we have a clear idea of what an individual fact table row represents 
(for example, the accumulated history of a line item on a health care bill), we 
can complete the list of dimensions by carefully listing everything we know to 
be true in the context of this row. In our hypothetical billing organization, we 
know the responsible party, employer, patient, provider, provider organiza-
tion, treatment performed, treatment location, diagnosis, primary insurance 
organization, secondary insurance organization, and master bill ID number. 
These become our dimensions, as shown in Figure 13.2. 

Responsible Party Billing Date Key (FK) 

Last Responsible Party Payment Date Key (FK) 
Responsible Party Key (FK) 
Employer Key (FK) 
Patient Key (FK) 
Provider Key (FK) 
Provider Organization (FK) 

Diagnosis Keys (multi-valued) 

Master Bill ID (DD) 
Billed Amount 

Responsible Party Paid Amount 

Sent to Collections Amount 

Remaining to be Paid Amount (calculated) 

Days to First Responsible Party Payment 

Health Care Billing Line Item Fact 

Date Dimension 
(views for 7 roles) 

Responsible Party Dimension 

Employer Dimension 

Patient Dimension 

Provider Dimension 

Provider Organization Dimension 

Diagnosis Dimension (see Fig 13.3) 

Insurance Organization Dimension 
(views for 2 roles) 

Treatment Date Key (FK) 
Primary Insurance Billing Date Key (FK) 
Secondary Insurance Billing Date Key (FK) 

Last Primary Insurance Payment Date Key (FK) 
Last Secondary Insurance Payment Date Key (FK) 

Treatment Key (FK) 
Treatment Location Key (FK) 

Primary Insurance Organization Key (FK) 
Secondary Insurance Organization Key (FK) 

Primary Insurance Paid Amount 
Secondary Insurance Paid Amount 

Total Paid Amount (calculated) 

Written Off Amount 

Number of Treatment Units 
Treatment Duration 
Days to First Primary Insurance Payment 
Days to First Secondary Insurance Payment 

Treatment Dimension 

Treatment Location Dimension 

Figure 13.2 Accumulating snapshot fact table for health care billing. 
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The interesting facts that we choose to accumulate over the history of the line 
item on the health care bill include the billed amount, primary insurance paid 
amount, secondary insurance paid amount, responsible party paid amount, 
total paid amount (calculated), amount sent to collections, amount written off, 
amount remaining to be paid (calculated), number of treatment units (depend-
ing on treatment type), treatment duration, number of days from billing to first 
primary insurance payment, number of days from billing to first secondary 
insurance payment, and number of days from billing to first responsible party 
payment. 

We’ll assume that a row is created in this fact table when the activity transac-
tions are first received from the providers and hospitals and the initial bills are 
sent. On a given bill, perhaps the primary insurance company is billed, but the 
secondary insurance and the responsible party are not billed, pending a 
response from the primary insurance company. For a period of time after the 
row is first entered into the database, the last five dates are not applicable. The 
surrogate date key in the fact table must not be null, but the full date descrip-
tion in the corresponding date dimension table row can indeed be null. 

In the next few days and weeks after creation of the row, payments are 
received, and bills are sent to the secondary insurance company and responsi-
ble party. Each time these events take place, the same fact table row is revis-
ited, and the appropriate keys and facts are destructively updated. This 
destructive updating poses some challenges for the database administrator. 
The row widths in databases such as Oracle will grow each time an update 
occurs because numeric facts may be changed from a small number to a larger 
number. This can cause block splits and fragmentation if enough space is not 
available at the disk block level to accommodate this growth. If most of these 
accumulating rows stabilize and stop changing within 90 days (for instance), 
then a physical reorganization of the database at that time can recover disk 
storage and improve performance. If the fact table is partitioned on the treat-
ment date key, then the physical clustering (partitioning) probably will be well 
preserved throughout these changes because we assume that the treatment 
date is not normally revisited and changed. 

Roles Played By the Date Dimension 
Accumulating snapshot fact tables always involve multiple date stamps. Our 
example, which is typical, has seven foreign keys pointing to the date dimen-
sion. This is a good place to reiterate several important points: 

�� The foreign keys in the fact table cannot be actual date stamps because 
they have to handle the “Not Applicable” case. The foreign keys should 
be simple integers serving as surrogate keys. 
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�� The surrogate keys assigned in the date dimension should be assigned 
consecutively in order of date. This is the only dimension where the 
surrogate keys have any relationship to the underlying semantics of the 
dimension. We do this so that physical partitioning of a fact table can be 
accomplished by using one of the date-based foreign keys. In our example 
we recommend that the treatment date key be used as the basis for physi-
cally partitioning the fact table. 

�� Surrogate keys corresponding to special conditions such as “Not Applica-
ble,” “Corrupted,” or “Hasn’t Happened Yet” should be assigned to the 
top end of the numeric range so that these rows are physically partitioned 
together in the hot partition with the most recent data. We do this if these 
rows are ones that are expected to change. 

�� We do not join the seven date-based foreign keys to a single instance of 
the date dimension table. Such a join would demand that all seven dates 
were the same date. Instead, we create seven views on the single underly-
ing date dimension table, and we join the fact table separately to these 
seven views, just as if they were seven independent date dimension 
tables. This allows the seven dates to be independent. We refer to these 
seven views as roles played by the date dimension table. 

�� The seven view definitions using the date dimension table should cosmet-
ically relabel the column names of each view to be distinguishable so that 
query tools directly accessing the views will present the column names 
through the user interface in a way that is understandable to the end user. 

Although the role-playing behavior of the date dimension is very characteris-
tic of accumulating snapshot fact tables, other dimensions often play roles in 
similar ways, such as the payer dimension in Figure 13.2. Later in this chapter 
we will see how the physician dimension needs to have several roles in com-
plex surgical procedures depending on whether the physician is the primary 
responsible physician, working in a consulting capacity, or working in an 
assisting capacity. 

Multivalued Diagnosis Dimension 
Normally we choose the dimensions surrounding a fact table row by asking, 
what do we know to be true in the context of the measurement? Almost always 
we mean, what takes on a single value in the context of the measurement? If 
something has many values in the context of the measurement, we almost 
always disqualify that dimension because the many-valuedness means that 
the offending dimension belongs at a lower grain of measurement. 
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However, there are a few situations in which the many-valuedness is natural 
and unavoidable, and we do want to include such a dimension in our design, 
such as the case when we associated multiple customers with an account in 
Chapter 9. The diagnosis dimension in our health care billing fact table is 
another good example. At the moment of treatment, the patient has one or 
more diagnoses, which are well known. Furthermore, there is good incentive 
for keeping these diagnoses along with the billing row. 

If there were always a maximum of three diagnoses, for instance, we might be 
tempted to create three diagnosis dimensions, almost as if they were roles. 
However, diagnoses don’t behave like roles. Unfortunately, there are often 
more than three diagnoses, especially for elderly patients who are hospital-
ized. Real medical bill-paying organizations sometimes encounter patients 
with more than 50 diagnoses! Also, the diagnoses don’t fit into well-defined 
roles other than possibly admitting diagnosis and discharging diagnosis. The 
role-playing dimensions we talked about in the preceding section are catego-
rized much more naturally and disjointly. Finally, the multiple-slots style of 
design makes for very inefficient applications because the query doesn’t know 
a priori which dimensional slot to constrain for a particular diagnosis. 

We handle the open-ended nature of multiple diagnoses with the design 
shown in Figure 13.3. We replace the diagnosis foreign key in the fact table 
with a diagnosis group key. This diagnosis group key is connected by a many-
to-many join to a diagnosis group bridge table, which contains a separate row 
for each diagnosis in a particular group. 

Health Care Billing Line Item Fact 

Diagnosis Group Bridge 

Responsible Party Billing Date Key (FK) 

Responsible Party Key (FK) 
Employer Key (FK) 
Patient Key (FK) 
Provider Key (FK) 
Provider Organization (FK) 

Diagnosis Group (FK) 

Master Bill ID (DD) 
Facts … 

Diagnosis Group Key (FK) 
Diagnosis Key (FK) 

Treatment Date Key (FK) 
Primary Insurance Billing Date Key (FK) 
Secondary Insurance Billing Date Key (FK) 

Last Primary Insurance Payment Date Key (FK) 
Last Secondary Insurance Payment Date Key (FK) 

Treatment Key (FK) 
Treatment Location Key (FK) 

Primary Insurance Organization Key (FK) 
Secondary Insurance Organization Key (FK) Weighting Factor 

Diagnosis Dimension 

Diagnosis Key (PK) 
ICD-9 Code 
Full Diagnosis Description 
Diagnosis Type 
Diagnosis Category 

Figure 13.3 Design for a multivalued diagnosis dimension. 
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If a patient has three diagnoses, then that patient is assigned a diagnosis group 
with three diagnoses. We assign a numerical weighting factor to each diagnosis 
in the group such that the sum of all the weighting factors in the group is exactly 
1.00. We can then use the weighting factors to allocate any of the numeric addi-
tive facts across individual diagnoses. In this way we can add up all billed 
amounts by diagnosis, and the grand total will be the correct grand total billed 
amount. This kind of report would be called a correctly weighted report. 

We see that the weighting factors are simply a way to allocate the numeric 
additive facts across the diagnoses. Some would suggest that we change the 
grain of the fact table to be line item by diagnosis rather than just line item. In 
this case we would take the weighting factors and physically multiply them 
against the original numeric facts. This is done rarely, for three reasons. First, 
the size of the fact table would be multiplied by the average number of diag-
noses. Second, in some fact tables we have more than one multivalued dimen-
sion. The number of rows would get out of hand in this situation, and we 
would start to question the physical significance of an individual row. Finally, 
we may want to see the unallocated numbers, and it is hard to reconstruct 
these if the allocations have been combined physically with the numeric facts. 

If we choose not to apply the weighting factors in a given query, we can still 
summarize billed amounts by diagnosis, but in this case we get what is called 
an impact report. A question such as “What is the total billed amount across all 
possible treatments in any way involving the diagnosis of XYZ?” would be an 
example of an impact report. 

In Figure 13.3, an SQL view could be defined combining the fact table and the 
diagnosis group bridge table so that these two tables, when combined, would 
appear to data access tools as a standard fact table with a normal diagnosis 
foreign key. Two views could be defined, one using the weighting factors and 
one not using the weighting factors. 

Finally, if the many-to-many join in Figure 13.3 causes problems for your mod-
eling tool that insists on proper foreign-key-to-primary-key relationships, the 
equivalent design of Figure 13.4 can be used. In this case an extra table whose 
primary key is diagnosis group is inserted between the fact table and the bridge 

Diagnosis Group Key (PK) 

Diagnosis Group 
DimensionForeign Keys … 

Diagnosis Group (FK) 
Master Bill ID (DD) 
Facts … 

Health Care Billing 
Line Item Fact 

Diagnosis Group Key (FK) 
Diagnosis Key (FK) 

Diagnosis Group Bridge 

Diagnosis Key (PK) 
ICD-9 Code 
Full Diagnosis Description 

Diagnosis Dimension 

Weighting Factor 

Diagnosis Type 
Diagnosis Category 

Figure 13.4 Diagnosis group dimension to create a primary key relationship. 
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table. Now both the fact table and the bridge table have conventional many-to-
one joins in all directions. There is no new information in this extra table. 

In the real world, a bill-paying organization would decide how to administer 
the diagnosis groups. If a unique diagnosis group were created for every out-
patient treatment, the number of rows could become astronomical and 
unworkable. Probably the best approach is to have a standard portfolio of 
diagnosis groups that are used repeatedly. This requires that each set of diag-
noses be looked up in the master diagnosis group table. If the existing group is 
found, it is used. If it is not found, then a new diagnosis group is created. 

In a hospital stay situation, however, the diagnosis group probably should be 
unique to the patient because it is going to evolve over time as a type 2 slowly 
changing dimension (SCD). In this case we would supplement the bridge table 
with two date stamps to capture begin and end dates. While the twin date 
stamps complicate the update administration of the diagnosis group bridge 
table, they are very useful for querying and change tracking. They also allow 
us to perform time-span queries, such as identifying all patients who pre-
sented a given diagnosis at any time between two dates. 

To summarize this discussion of multivalued dimensions, we can list the issues 
surrounding a multivalued dimension design: 

�� In the context of the fact table measurement, the multivalued dimension 
takes on a small but variable number of well-defined values. 

�� Correctly allocated reports can be created only if weighting factors can be 
agreed to. 

�� Weighting factors can be omitted, but then only impact reports can be 
generated using the multivalued dimension. 

�� In high-volume situations such as medical bills and bank accounts, a 
system of recognizing and reusing groups should be used. 

�� In cases where the relationship represented in the bridge table changes 
over time, we embellish the bridge table with begin and end dates. 

Extending a Billing Fact Table 
to Show Profitability 

Figure 13.5 shows an extended set of facts that might be added to the basic 
billing schema of Figure 13.2. These include the consumables cost, provider 
cost, assistant cost, equipment cost, location cost, and net profit before general 
and administrative (G&A) expenses, which is a calculated fact. If these addi-
tional facts can be added to the billing schema, the power of the fact table 
grows enormously. It now becomes a full-fledged profit-and-loss (P&L) view 
of the health care business. 
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Existing 17 Foreign Keys … 
Master Bill ID (DD) 
Existing 13 Facts … 
Consumables Cost 
Provider Cost 
Assistant Cost 
Equipment Cost 
Location Cost 
Net Profit before G&A (calculated) 

Health Care Billing Line Item Fact 
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Figure 13.5 Billing line-item fact table extended at the same grain with activity-based 
costs for profit and loss. 

These costs are not part of the billing process and normally would not be col-
lected at the same time as the billing data. Each of these costs potentially arises 
from a separate source system. In order to bring this data into the billing fact 
table, the separately sourced data would have to be allocated down to the 
billing line item. For activity-based costs such as the ones we have included in 
the list, it may be worth the effort to do this allocation. All allocations are con-
troversial and to an extent arbitrary, but if agreement can be reached on the set 
of allocations, the P&L database that results is incredibly powerful. Now the 
health care organization can analyze profitability by all the dimensions! 

Dimensions for Billed Hospital Stays 
The first part of this chapter described a comprehensive and flexible design for 
billed health care treatments that would cover both inpatient and outpatient 
bills. If an organization wished to focus exclusively on hospital stays, it would 
be reasonable to tweak the dimensional structure of Figure 13.2 to provide 
more hospital-specific information. Figure 13.6 shows a revised set of dimen-
sions specialized for hospital stays, with the new dimensions set in bold type. 

In Figure 13.6 we show two roles for provider: admitting provider and attend-
ing provider. We show provider organizations for both roles because providers 
may represent different organizations in a hospital setting. 

We also have three multivalued diagnosis dimensions on each billed treatment 
row. The admitting diagnosis is determined at the beginning of the hospital 
stay and should be the same for every treatment row that is part of the same 
hospital stay. The current diagnosis describes the state of knowledge of the 
patient at the time of the treatment. The discharge diagnosis is not known until 
the patient is discharged and is applied retroactively to all the rows that have 
been entered as part of the hospital stay. 



Responsible Party Billing Date Key (FK) 

Last Responsible Party Payment Date Key (FK) 
Responsible Party Key (FK) 
Employer Key (FK) 
Patient Key (FK) 
Admitting Provider Key (FK) 
Attending Provider Key (FK) 
Admitting Provider Organization (FK) 
Attending Provider Organization (FK) 

Admitting Diagnosis Keys (multivalued) 
Current Diagnosis Keys (multivalued) 
Discharge Diagnosis Keys (multivalued) 

Hospital Stay ID (DD) 
Facts … 

Hospital Stay Billing Fact 
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Treatment Date Key (FK) 
Primary Insurance Billing Date Key (FK) 
Secondary Insurance Billing Date Key (FK) 

Last Primary Insurance Payment Date Key (FK) 
Last Secondary Insurance Payment Date Key (FK) 

Treatment Key (FK) 
Treatment Location Key (FK) 

Primary Insurance Organization Key (FK) 
Secondary Insurance Organization Key (FK) 

Figure 13.6 Accumulating snapshot for hospital stays billing. 

Complex Health Care Events 

In a hospital setting, we may want to model certain very complex events, such 
as major surgical procedures. In a heart-transplant operation, whole teams of 
specialists and assistants are assembled for this one event. A different heart 
transplant may involve a team with a different makeup. 

We can model these complex events with the design shown in Figure 13.7. We 
combine the techniques of role-playing dimensions and multivalued dimen-
sions. We assume that a surgical procedure involves a single responsible 
physician and variable numbers of attending physicians, assisting profession-
als, procedures, and equipment types. We also assume that the patient has a 
multivalued diagnosis before the surgery and a separate multivalued diagno-
sis after the surgery. 

Thus we have six multivalued dimensions, indicated by the bold type in Fig-
ure 13.7. The responsible physician, attending physician, and assisting profes-
sional dimensions are all roles played by an overall provider dimension. The 
presurgery and postsurgery multivalued diagnosis dimensions are roles 
played by a single diagnosis dimension. 



Patient Key (FK) 
Responsible Physician Key (FK) 
Attending Physician Keys (multivalued) 
Assisting Professionals Keys (multivalued) 
Location Key (FK) 
Procedure Keys (multivalued) 
Equipment Keys (multivalued) 

Outcome 

Consummables Cost 
Provider Cost 
Assistant Cost 
Equipment Cost 
Location Cost 
Net Profit before G&A (calculated) 
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Treatment Date Key (FK) 
Treatment Time of Day Key (FK) 

Pre-Surgery Diagnosis Keys (multivalued) 
Post-Surgery Diagnosis Keys (multivalued) 

Total Billed Amount 
Total Paid Amount (accumulating overwrite) 

Surgical Events Transaction Fact 
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Figure 13.7 Surgical events transaction fact table extended to show profit and loss. 

Since the grain of the fact table is the surgical procedure itself, it is natural to 
supply a comprehensive set of facts. We show the extended set of facts that 
would allow a complete P&L analysis to be done on surgical procedures, 
assuming that the various costs can be allocated to each surgical event. 

We leave out the weighting factors on all the multivalued dimensions in this 
design. If we tried to provide weighting factors for the multivalued dimen-
sions, we would be implicitly supporting all the complex combinations of 
weighting values, some of which would be nonsensical. It doesn’t seem worth 
the trouble to claim that the correctly allocated portion of the total billed 
amount of the surgery conjointly assigned to each possible assistant and each 
possible piece of equipment has much meaning. Our technique of placing the 
weighting factors independently in each dimension is only part of the prob-
lem. A more practical concern is that most organizations would not be willing 
to assign dozens or hundreds of weighting factors. 

Without the weighting factors, we nevertheless can create many useful impact 
reports. For instance, what is the total value of all surgeries performed that used 
a heart-lung machine? We also can ask which physicians, which assisting pro-
fessionals, and which pieces of equipment were involved in various kinds of 
surgery. And finally, if we have allocated the costs to each surgery in a rational 
way, we can ask which types of surgery are profitable or nonprofitable and why. 
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Medical Records

General medical records are challenging for the data warehouse because of 
their extreme variability. The records in a patient file take many different 
forms, ranging from standard-format numeric data captured online, to one-of-
a-kind laboratory test results, to free-text comments entered by a health care 
professional, to graphs and photographs. Given this extreme variability, we 
don’t attempt to do queries and reports simultaneously analyzing every data 
type. However, we still would like to provide a standard, simple framework 
for all the records for a given patient. We are driven by the suspicion that if the 
grain could be defined as an individual record entry for a patient, we should 
be able to capture most of a medical record in a single fact table. 

In such a fact table we might be tempted to provide a fact field for each type of 
measurement. Some fields would be numeric, and some fields would be flags 
(or foreign keys to junk dimensions consisting of groups of flags, as described 
in Chapter 5). However, the sheer variety of possible medical record entries 
defeats us. We would soon end up with a ridiculously wide fact table row with 
too many fact fields, almost all of which would be null or zero for any specific 
medical entry. In addition, this fixed-slot style of design is very inflexible 
because new measurement types could be added only by physically altering 
the fact table with the addition of a new field. 

Fact Dimension for Sparse Facts 
We handle the extreme variability of the medical record entry with a special 
dimension we call a fact dimension. In Figure 13.8 the entry type is a fact dimen-
sion that describes what the row means or, in other words, what the fact 
represents. The entry type dimension also determines which of the four kinds 
of fact fields (amount, flag, comment, and JPEG file name) are valid for the 
specific entry and how to interpret each field. For example, the generic amount 
column is used for every numeric entry. The unit of measure for a given 
numeric entry is found in the attached entry type dimension row, along with 
any additivity restrictions. If the entry is a flag (for example, Yes/No or High/ 
Medium/Low), the types of flag values are found in the entry type dimension. 
If the entry is a free-text comment or a multimedia object such as JPEG graphic 
image or photograph, the entry type dimension alerts the requesting applica-
tion to look in these fact table fields. 
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Medical Record Entries Fact Table 

Patient Key (FK) 
Responsible Provider Key (FK) 
Attending Provider Key (FK) 
Assisting Professionals Keys (Multivalued) 
Location Key (FK) 
Equipment Key (FK) 

Comment (FK) 

Amount 
Flag 
JPEG File Name 

Entry Date Key (FK) 

Diagnosis Keys (Multivalued, time varying) 

Entry Type (FK) 
Test Panel ID (DD) 

Foreign key to free text from procedure/lab test 
Fact dimension to identify which facts are populated in
 this row and what they mean 

Measured value from procedure/lab test 
Bounded set of categorical values from procedure/lab test 
Pointer to graph or photo from procedure/lab test 

Figure 13.8 Transaction table with sparse, heterogeneous medical record facts and a fact 
dimension. 

This approach is elegant because it is superbly flexible. We can add new mea-
surement types just by adding new rows in the fact dimension, not by altering 
the structure of the fact table. We also eliminate the nulls in the classic posi-
tional fact table design because a row exists only if the measurement exists. 
However, there are some significant tradeoffs. Using a fact dimension may 
generate lots of new fact table rows. If an event resulted in 10 numeric mea-
surements, we now have 10 rows in the fact table rather than a single row in 
the classic design. For extremely sparse situations, such as clinical/laboratory 
or manufacturing test environments, this is a reasonable compromise. How-
ever, as the density of the facts grows, we end up spewing out too many fact 
rows. At this point we no longer have sparse facts and should return to the 
classic fact table approach. 

Moreover, we must be aware that this approach typically complicates data 
access applications. Combining two numbers that have been taken as part of a 
single event is more difficult because now we must fetch two rows from the 
fact table. SQL likes to perform arithmetic functions within a row, not across 
rows. In addition, we must be careful not to mix incompatible amounts in a 
calculation because all the numeric measures reside in a single amount column. 

The other dimensions in Figure 13.8 should be fairly obvious. The patient, 
responsible provider, attending provider, location, equipment, and diagnosis 
dimensions were all present in various forms in our earlier designs. The test 
panel ID is a standard degenerate dimension because it probably is just a sim-
ple natural key that ties together multiple medical record entries that were all 
part of a particular test panel. 
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Free text comments should not be stored in a fact table directly because they 
waste space and rarely participate in queries. Presumably, the free text com-
ments occur only on some records. Rather, the fact table should have a foreign 
key that points to a comment dimension, as shown in Figure 13.8. 

The use of a JPEG file name to refer to an image, rather than embedding the 
image as a blob directly in the database, is somewhat of an arbitrary decision. 
The advantage of using a JPEG file name is that other image creation, viewing, 
and editing programs can access the image freely. The disadvantage is that a 
separate database of graphic files must be maintained in synchrony with the 
fact table. 

Going Back in Time 

As data warehouse practitioners, we have developed powerful techniques for 
accurately capturing the historical flow of data from our enterprises. Our 
numeric measurements go into fact tables, and we surround these fact tables 
with contemporary descriptions of what we know is true at the time of the 
measurements. These contemporary descriptions are packaged as dimension 
tables in our dimensional schemas. In our health care data warehouse, we 
allow the descriptions of patient, provider, and payer to evolve whenever 
these entities change their descriptions. Since these changes occur unpredictably 
and sporadically, we have called these slowly changing dimensions (SCDs). 

In Chapter 4 we developed specific techniques for processing overwrites (type 
1 SCDs), true changes in the entities at points in time (type 2 SCDs), and 
changes in the labels we attach to entities (type 3 SCDs). These procedures are 
an important part of our extract-transform-load (ETL) procedures with every 
update. 

However, what do we do when we receive late-arriving data that should have 
been loaded into the data warehouse weeks or months ago? Some of our pro-
cedures won’t work. There are two interesting cases that need to be discussed 
separately. 

Late-Arriving Fact Rows 
Using our patient treatment scenario, suppose that we receive today a treat-
ment row that is several months old. In most operational data warehouses we 
are willing to insert this late-arriving row into its correct historical position, 
even though our summaries for the prior month will now change. How-
ever, we must choose the old contemporary dimension rows that apply to this 
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treatment carefully. If we have been date stamping the dimension rows in our 
type 2 SCDs, then our processing involves the following steps: 

1. For each dimension, find the corresponding dimension row whose date 
stamp is the latest date stamp less than or equal to the date of the treatment. 

2. Using the surrogate keys found in the each of the dimension rows from 
step 1, replace the natural keys of the late-arriving fact row with the 
surrogate keys. 

3. Insert the late-arriving fact row into the correct physical partition of the 
database containing the other fact rows from the time of the late-arriving 
treatment. 

There are a few subtle points here. First, we assume that all of our dimension 
rows contain twin date stamps that indicate the span of time when that partic-
ular detailed description was valid. We need to be careful to have an unbroken 
chain of nonoverlapping begin and end dates for each patient, provider, and 
payer because we must find the right dimension rows for the new fact row 
about to be inserted. 

A second subtle point goes back to our assumption that we have an opera-
tional data warehouse that is willing to insert these late-arriving rows into old 
months. If your data warehouse has to tie to the books, then you can’t change 
an old monthly total, even if that old total was incorrect. Now you have a 
tricky situation in which the date dimension on the treatment record is for a 
booking date, which may be today, but the other patient, provider, and payer 
dimensions nevertheless should refer to the old descriptions in the way we 
described earlier. If you are in this situation, you should have a discussion 
with your finance department manager to make sure that he or she under-
stands what you are doing. An interesting compromise is to carry two date 
dimensions on treatment records. One refers to the actual treatment date, and 
the other refers to the booking date. Now we can roll up the treatment records 
either operationally or by the books. 

The third subtle point is the requirement to insert the late-arriving treatment 
row into the correct physical partition of the database containing its contem-
porary brothers and sisters. In this way, when you move a physical partition 
from one form of storage to another or when you perform a backup or restore 
operation, you will be affecting all the treatment rows from a particular span 
of time. In most cases this is what you want to do. You can guarantee that all 
fact rows in a time span occupy the same physical partition if you declare the 
physical partitioning of the fact table to be based on the date dimension, where 
the surrogate date keys are assigned in a predictable sequence order. 
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Late-Arriving Dimension Rows 
A late-arriving dimension row presents an entirely different set of issues that, 
in some ways, are more complex than a late-arriving fact row. Suppose that 
John Doe’s patient dimension row contains a marital flag attribute that always 
contained the value “Single.” We have a number of patient rows for John Doe 
because this is a slowly changing dimension and other attributes such as 
John’s address and employment status have changed over the past year or two. 

Today we are notified that John Doe was married on July 15, 1999 and has been 
married ever since. To add this new information to the data warehouse 
requires the following steps: 

�� Insert a fresh row, with a new surrogate key, for John Doe into the patient 
dimension with the marital status attribute set to “Married” and the effec-
tive date set to “July 15, 1999.” 

�� Scan forward in the patient dimension table from July 15, 1999, finding 
any other rows for John Doe, and destructively overwrite the marital 
status field to “Married.” 

�� Find all fact rows involving John Doe from July 15, 1999 to the first next 
change for him in the dimension after July 15, 1999 and destructively 
change the patient foreign key in those fact rows to the new surrogate key 
created in step 1. 

This is a fairly messy change, but you should be able to automate these steps 
in a good programmable ETL environment. We have some subtle issues in this 
case, too. First, we need to check to see if some other change took place for 
John Doe on July 15, 1999. If so, then we only need to perform step 2. We don’t 
need a new dimension row in this special case. 

Second, since we are using a pair of date stamps in each product dimension 
row, we need to find the closest previous to July 15 patient row for John Doe 
and change its end date to July 15, 1999, and we also need to find the closest 
subsequent to July 15 patient row for John Doe and set the end date for the July 
15, 1999 entry to the begin date of that next row. Got it? 

Finally, we see from this example why the surrogate keys for all dimensions 
except date or time cannot be ordered in any way. You never know when you 
are going to have to assign a surrogate key for a late-arriving row. And since 
surrogate keys are just assigned in numeric order without any logic or struc-
ture, you can easily have a high-valued surrogate key representing a dimen-
sion row that is very old. 



274 C H A P T E R  13  

Hopefully, these late-arriving fact and dimension rows are unusual in most of 
our data warehouses. If nothing else, they are bothersome because they change 
the counts and totals for prior history. However, we have taken a pledge as 
keepers of the data warehouse to present the history of our enterprise as accu-
rately as possible, so we should welcome the old rows because they are mak-
ing our databases more complete. 

Some industries, such as health care, have huge numbers of late-arriving rows. 
In such cases, these techniques, rather than being specialized techniques for 
the unusual case, may be the dominant mode of processing. 

Summary 

Health care not only is an important application area in its own right, but it also 
provides the data warehouse designer with a number of clear design examples 
that can be used in many other situations. In this chapter we have seen: 

The value circle, where a large number of organizations need to look at the 
same data in parallel without any strong sense of time sequencing. How-
ever, the issues of building a value-circle data warehouse bus architecture 
with conformed dimensions and conformed facts are exactly the same as 
the more conventional value chains. 

The accumulating snapshot grain of fact table applied to a medical bill line 
item. This grain was appropriate because of the relatively brief duration of 
a medical bill compared with something like a bank account, where the 
periodic snapshot is more appropriate. 

Roles played by the date dimension in the accumulating snapshot grain, as 
well as roles played by the provider and payer dimensions in other fact 
tables of this chapter. Roles are implemented as separate, specifically 
named views on a single underlying master dimension. 

Multivalued dimensions, especially the diagnosis dimension. In many 
cases we are able to associate a weighting factor with each of the values in 
a multivalued dimension entry so as to allow allocations to be calculated 
on numeric facts in the fact table. We would call this kind of report a cor-
rectly weighted report. However, in some cases where we are unwilling to 
assign weighting factors, the multivalued dimension still lets us produce 
impact reports. 

An extended set of cost-based facts that allow us to implement a P&L 
schema. Adding these cost-based facts is very attractive, but it is a lot of 
work. The best costs to add to a design are activity-based costs because 
these are not too controversial to associate with individual fact rows such 
as our medical bill line items. 
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Complex events modeled as single fact table rows containing several multi­
valued dimensions. In these cases we often do not build weighting factors 
into all the multivalued dimensions because the interaction between the 
weighting factors becomes nonsensical. 

Fact dimensions used to organize extremely sparse, heterogeneous measure­
ments into a single, uniform framework. Our example plausibly covered 
general medical records consisting of standardized numeric measures, 
one-of-a-kind lab results, categorical textual measurements, free-text 
comments, and image data. 
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eb-intensive businesses have access to a new kind of data source that literally 
records the gestures of every Web site visitor. We call it the clickstream. In its 
most elemental form, the clickstream is every page event recorded by each of 
the company’s Web servers. The clickstream contains a number of new dimen-
sions—such as page, session, and referrer—that are unknown in our conven-
tional data marts. The clickstream is a torrent of data, easily being the largest 
text and number data set we have ever considered for a data warehouse. 
Although the clickstream is the most exciting new development in data ware-
housing, at the same time it can be the most difficult and most exasperating. 
Does it connect to the rest of the warehouse? Can its dimensions and facts be 
conformed in a data warehouse bus architecture? 

The full story of the clickstream data source and its implementation by com-
panies, such as those involved in electronic commerce, is told in the complete 
book on this subject, The Data Webhouse Toolkit, by Ralph Kimball and Richard 
Merz (Wiley, 2000). This chapter is a lightning tour of the central ideas drawn 
from The Data Webhouse Toolkit. We start by describing the raw clickstream data 
source. We show how to design a data mart around the clickstream data. 
Finally, we integrate this data mart into a larger matrix of more conventional 
data marts for a large Web retailer and argue that the profitability of the Web 
sales channel can be measured if you allocate the right costs back to the indi-
vidual sales of the retailer. 

277 



278 C H A P T E R  14  

Chapter 14 discusses the following concepts: 

�� Brief tutorial on Web client-server interactions 
�� Unique characteristics of clickstream data, including the challenges of identifying 

the visitors, their origin, and their complete session 
�� Clickstream-specific dimensions, such as the page, event, session, and referral 

dimensions 
�� Clickstream fact tables for the complete session, individual page event, and an 

aggregated summary 
�� Integrating the clickstream data mart into the rest of the enterprise data warehouse 
�� Web profitability data mart 

Web Client-Server Interactions Tutorial 

Understanding the interactions between a Web client (browser) and a Web 
server (Web site) is essential for understanding the source and meaning of the 
data in the clickstream. In Figure 14.1 we show a browser, designated “Visitor 
Browser.” We’ll look at what happens in a typical interaction from the per-
spective of a browser user. The browser and Web site interact with each other 
across the Internet using the Web’s communication protocol—the HyperText 
Transfer Protocol (HTTP). 

First, the visitor clicks a button or hypertext link containing a Uniform 
Resource Locator (URL) to access a particular Web site, shown as black-circled 
action 1 in Figure 14.1. When this HTTP request reaches the Web site, the server 
returns the requested item (action 2). In our illustration, this fetches a docu-
ment in HyperText Markup Language (HTML) format—websitepage.html. 
Once the document is entirely retrieved, the visitor’s browser scans web-
sitepage.html and notices several references to other Web documents that it 
must fulfill before its work is completed; the browser must retrieve other com-
ponents of this document in separate requests. Note that the only human 
action taken here is to click on the original link. All the rest of the actions that 
follow in this example are computer-to-computer interactions triggered by the 
click and managed, for the most part, by instructions carried in the initially 
downloaded HTML document, websitepage.html. In order to speed up Web 
page responsiveness, most browsers will execute these consequential actions 
in parallel, typically with up to 4 or more HTTP requests being serviced 
concurrently. 

The visitor’s browser finds a reference to an image—a logo perhaps—that, 
from its URL, is located at Website.com, the same place it retrieved the initial 
HTML document. The browser issues a second request to the server (action 3), 
and the server responds by returning the specified image. 



Electronic Commerce 279 

Visitor Browser Website.com 
HTML Pages 

Banner-ad.com 

Demographic Detail 

User 
Profile 

Images 

Click Link 

websitepage.html 

Hidden Link 

Image 

Banner Ad 

Cookie File 

Banner-ad.com 

Reads 
Cookie 

Reads 
Cookie 

Advertisements 

1 

2 

3 

4 

5 

6Profiler.com 

Website.com 

Profiler.com 

Figure 14.1 Interactions between Web client (browser) and Web server (Web site). 

The browser continues to the next reference in websitepage.html and finds an 
instruction to retrieve another image from Banner-ad.com. The browser makes 
this request (action 4), and the server at Banner-ad.com interprets a request for 
the image in a special way. Rather than immediately sending back an image, 
the banner-ad server first issues a cookie request to the visitor’s browser 
requesting the contents of any cookie that might have been placed previously 
in the visitor’s PC by Banner-ad.com. The banner-ad Web site retrieves this 
cookie, examines its contents, and uses the contents as a key to determine 
which banner ad the visitor should receive. This decision is based on the visi-
tor’s interests or on previous ads the visitor had been sent by this particular ad 
server. Once the banner-ad server makes a determination of the optimal ad, it 
returns the selected image to the visitor. The banner-ad server then logs which 
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ad it has placed along with the date and the clickstream data from the visitor’s 
request. Had the banner-ad server not found its own cookie, it would have 
sent a new persistent cookie to the visitor’s browser for future reference, sent 
a random banner ad, and started a history in its database of interactions with 
the visitor’s browser. 

The HTTP request from the visitor’s browser to the banner-ad server carried 
with it a key piece of information known as the referrer. The referrer is the URL 
of the agent responsible for placing the link on the page. In our example the 
referrer is Website.com/websitepage.html. The referrer is not the user’s 
browser but rather is the HTML context in which the link to Banner-ad.com 
was embedded. Because Banner-ad.com now knows who the referrer was, it 
can credit Website.com for having placed an advertisement on a browser 
window. This is a single impression. The advertiser can be billed for this 
impression, with the revenue being shared by the referrer (Website.com) and 
the advertising server (Banner-ad.com). 

If the Web site is sharing Web log information with the referring site, it will be 
valuable to share page attributes as well. In other words, not only do we want 
the URL of the referring page, but we also want to know what the purpose of 
the page was. Was it a navigation page, a partner’s page, or a general search 
page? 

While the ad server deals primarily with placing appropriate content, the pro-
filer deals with supplying demographic information about Web site visitors. In 
our original HTML document, websitepage.html had a hidden field that con-
tained a request to retrieve a specific document from Profiler.com (action 5). 
When this request reached the profiler server, Profiler.com immediately tried 
to find its cookie in the visitor’s browser. This cookie would contain a user ID 
placed previously by the profiler that is used to identify the visitor and serves 
as a key to personal information contained in the profiler’s database. The pro-
filer might either return its profile data to the visitor’s browser to be sent back 
to the initial Web site or send a real-time notification to the referrer, Website.com, 
via an alternative path alerting Website.com that the visitor is currently logged 
onto Website.com and viewing a specific page (action 6). This information also 
could be returned to the HTML document to be returned to the referrer as part 
of a query string the next time an HTTP request is sent to Website.com. 

Although Figure 14.1 shows three different sites involved in serving the con-
tents of one document, it is possible, indeed likely, that these functions will be 
combined into fewer servers. It is likely that advertising and profiling will be 
done within the same enterprise, so a single request (and cookie) would suffice 
to retrieve personal information that would more precisely target the ads that 
are returned. However, it is equally possible that a Web page could contain ref-
erences to different ad/profile services, providing revenue to the referrer from 
multiple sources. 
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Why the Clickstream Is Not  
Just Another Data Source 

The clickstream is not just another data source that is extracted, cleaned, and 
dumped into the data warehouse. The clickstream is really an evolving collec-
tion of data sources. There are more than a dozen Web server log file formats 
for capturing clickstream data. These log file formats have optional data com-
ponents that, if used, can be very helpful in identifying visitors, sessions, and 
the true meaning of behavior. We are in the infancy of this clickstream game, 
and it is a sure bet that new logging capabilities and new logging formats will 
become available on a regular basis. Extensible Markup Language (XML) has 
the potential for making the structure of our Web pages far more expressive, 
which is bound to affect the clickstream data source. 

Because of the distributed nature of the Web, clickstream data is often collected 
simultaneously by different physical servers, even when the visitor thinks that 
he or she is interacting with a single Web site. Even if the log files being col-
lected by these separate servers are compatible, a very interesting problem 
arises in synchronizing the log files after the fact. Remember that a busy Web 
server may be processing hundreds of page events per second. It is unlikely 
that the clocks on separate servers will be in synchrony to a hundredth of a 
second. The Data Webhouse Toolkit explores various technical approaches to 
solving this synchronization problem. 

We also get clickstream data from different parties. Besides our own log files, 
we may get clickstream data from referring partners or from Internet service 
providers (ISPs). We also may get clickstream data from Web-watcher services 
that we have hired to place a special control on certain Web pages that alert 
them to a visitor opening the page. 

Another important form of clickstream data is the search specification given to 
a search engine that then directs the visitor to the Web site. 

Finally, if we are an ISP providing Web access to directly connected customers, 
we have a unique perspective because we see every click of our familiar cap-
tive visitors that may allow much more powerful and invasive analysis of the 
end visitor’s sessions. 

The most basic form of clickstream data from a normal Web site is stateless. That 
is, the log shows an isolated page retrieval event but does not provide a clear tie 
to other page events elsewhere in the log. Without some other kind of context 
help, it is difficult or impossible to reliably identify a complete visitor session. 

The other big frustration with basic clickstream data is the anonymity of the 
session. Unless the visitor agrees to reveal his or her identity in some way, we 
often cannot be sure who he or she is or if we have ever seen the visitor before. 
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In certain situations we may not even be able to distinguish the clicks of two 
visitors who are browsing our Web site simultaneously. 

Challenges of Tracking with 
Clickstream Data 

Clickstream data contains many ambiguities. Identifying visitor origins, visitor 
sessions, and visitor identities is something of an interpretive art. Browser 
caches and proxy servers make these identifications even more challenging. 

Identifying the Visitor Origin 

If we are very lucky, our site is the default home page for the visitor’s browser. 
Every time the visitor opens his or her browser, our home page is the first 
thing he or she sees. This is pretty unlikely unless we are the Webmaster for a 
portal site or an intranet home page, but many sites have buttons that, when 
clicked, prompt the visitor to set his or her URL as the browser’s home page. 
Unfortunately, there is no easy way to determine from a log whether or not our 
site is set as a browser’s home page. 

A visitor may be directed to our site from a search at a portal such as Yahoo! or 
Alta Vista. Such referrals can come either from the portal’s index or table of 
contents, for which you may have paid a placement fee, or from a word or con-
tent search. 

For many Web sites, the most common source of visitors is from a browser 
bookmark. In order for this to happen, the visitor will have to have previously 
bookmarked the site, and this will occur only after the site’s interest and trust 
levels cross the visitor’s bookmark threshold. Unfortunately, when a visitor 
uses a bookmark, the referrer field is empty, just as if the visitor had typed in 
the URL by hand. 

Finally, the site may be reached as a result of a click-through—a deliberate 
click on a text or graphic link from another site. This may be a paid-for referral 
as via a banner ad or a free referral from an individual or cooperating site. In 
the case of click-throughs, the referring site almost always will be identifiable 
in the Web site’s referrer log data. Capturing this crucial clickstream data is 
important to verify the efficacy of marketing programs. It also provides crucial 
data for auditing invoices you may receive from click-through advertising 
charges. 

Identifying the Session 

Most web-centric data warehouse applications will require every visitor 
session (visit) to have its own unique identity tag, similar to a grocery store 
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point-of-sale ticket ID. We call this the session ID. The rows of every individual 
visitor action in a session, whether derived from the clickstream or from an 
application interaction, must contain this tag. Keep in mind, however, that the 
operational application generates this session ID, not the Web server. 

The basic protocol for the World Wide Web, HTTP, is stateless—that is, it lacks 
the concept of a session. There are no intrinsic login or logout actions built into 
the HTTP, so session identity must be established in some other way. There are 
several ways to do this: 

1. In many cases, the individual hits comprising a session can be consoli-
dated by collating time-contiguous log entries from the same host (Inter-
net Protocol, or IP, address). If the log contains a number of entries with 
the same host ID in a short period of time (for example, one hour), one 
can reasonably assume that the entries are for the same session. This 
method breaks down for visitors from large ISPs because different visitors 
may reuse dynamically assigned IP addresses over a brief time period. In 
addition, different IP addresses may be used within the same session for 
the same visitor. This approach also presents problems when dealing with 
browsers that are behind some firewalls. Notwithstanding these prob-
lems, many commercial log analysis products use this method of session 
tracking, which requires no cookies or special Web server features. 

2. Another, much more satisfactory method is to let the Web browser place a 
session-level cookie into the visitor’s Web browser. This cookie will last as 
long as the browser is open and, in general, won’t be available in subse-
quent browser sessions. The cookie value can serve as a temporary session 
ID not only to the browser but also to any application that requests the 
session cookie from the browser. This request must come from the same 
Web server (actually, the same domain) that placed the cookie in the first 
place. Using a transient cookie value as a temporary session ID for both 
the clickstream and application logging allows a straightforward approach 
to associating the data from both these sources during postsession log 
processing. However, using a transient cookie has the disadvantage that 
you can’t tell when the visitor returns to the site at a later time in a new 
session. 

3. HTTP’s secure sockets layer (SSL) offers an opportunity to track a visitor 
session because it may include a login action by the visitor and the 
exchange of encryption keys. The downside to using this method is that 
to track the session, the entire information exchange needs to be in high-
overhead SSL, and the visitor may be put off by security advisories that 
can pop up when certain browsers are used. In addition, each host server 
must have its own unique security certificate. 

4. If page generation is dynamic, you can try to maintain visitor state by 
placing a session ID in a hidden field of each page returned to the visitor. 
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This session ID can be returned to the Web server as a query string 
appended to a subsequent URL. This method of session tracking requires 
a great deal of control over the Web site’s page-generation methods to 
ensure that the thread of session ID is not broken. If the visitor clicks on 
links that don’t support this session ID ping-pong, a single session will 
appear to be multiple sessions. This approach also breaks down if multi-
ple vendors are supplying content in a single session. 

5. Finally, the Web site may establish a persistent cookie in the visitor’s PC 
that is not deleted by the browser when the session ends. Of course, it’s 
possible that the visitor will have his or her browser set to refuse cookies 
or may clean out his or her cookie file manually, so there is no absolute 
guarantee that even a persistent cookie will survive. Although any given 
cookie can be read only by the Web site that caused it to be created, cer-
tain groups of Web sites can agree to store a common ID tag that would 
let these sites combine their separate notions of a visitor session into a 
supersession. 

In summary, the most powerful method of session tracking from Web server 
log records is to set a persistent cookie in the visitor’s browser. Other less pow-
erful methods include setting a session-level nonpersistent cookie or nearly 
associating time-contiguous log entries from the same host. The latter method 
requires a robust algorithm in the log postprocessor to ensure satisfactory 
results, in part by deciding when not to take the results seriously. 

Identifying the Visitor 

Identifying a specific visitor who logs onto our site presents some of the most 
challenging problems facing a site designer, Webmaster, or manager of data 
warehousing for the following reasons: 

Web visitors wish to be anonymous. They may have no reason to trust us, the 
Internet, or their PC with personal identification or credit card information. 

If we request a visitor’s identity, he or she is likely to lie about it. It is 
believed that when asked their name on an Internet form, men will enter 
a pseudonym 50 percent of the time and women will use a pseudonym 
80 percent of the time. 

We can’t be sure which family member is visiting our site. If we obtain an 
identity by association, for instance, from a persistent cookie left during a 
previous visit, the identification is only for the computer, not for the spe-
cific visitor. Any family member or company employee may have been 
using that particular computer at that moment in time. 
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We can’t assume that an individual is always at the same computer. Server-
provided cookies identify a computer, not an individual. If someone accesses 
the same Web site from an office computer, a home PC, and a laptop com-
puter, a different Web site cookie is probably put into each machine. 

Proxy Servers 

When a browser makes an HTTP request, that request is not always served 
from the server specified in a URL. Many ISPs make use of proxy servers to 
reduce Internet traffic. Proxy servers are used to cache frequently requested 
content at a location between its intended source and an end visitor. Such prox-
ies are employed commonly by large ISPs such as America Online and Earth-
link, and in some cases, an HTTP request may not even leave the visitor’s PC. It 
may be satisfied from the browser’s local cache of recently accessed objects. 

Proxy servers can introduce three problems, as illustrated in Figure 14.2. First, 
a proxy may deliver outdated content. Although Web pages can include tags 
that tell proxy servers whether or not the content may be cached and when 
content expires, these tags often are omitted by Webmasters or ignored by 
proxy servers. 

Second, proxies may satisfy a content request without properly notifying the 
originating server that the request has been served by the proxy. When a proxy 
handles a request, convention dictates that it should forward a message that 
indicates that a proxy response has been made to the intended server, but this 
is not reliable. As a consequence, our Webhouse may miss key events that are 
otherwise required to make sense of the events that comprise a browser/Web 
site session. Third, if the visitor has come though a proxy, the Web site will not 
know who made the page request unless a cookie is present. 

It is important, therefore, to make liberal use of expiration dates and no-proxy 
tags in the HTML content of your Web site. This will help ensure that we are 
getting as much data as possible for our warehouse. 

The type of proxy we are referring to in this discussion is called a forward proxy. 
It is outside of our control because it belongs to a networking company or an 
ISP. Another type of proxy server, called a reverse proxy, can be placed in front 
of our enterprise’s Web servers to help them offload requests for frequently 
accessed content. This kind of proxy is entirely within our control and usually 
presents no impediment to Webhouse data collection. It should be able to sup-
ply the same kind of log information as that produced by a Web server and 
discussed in the following section. 
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Figure 14.2 Proxy architectures. 

Browser Caches 

Browser caches also introduce uncertainties in our attempts to track all the 
events that occur during a visitor session. Most browsers store a copy of 
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recently retrieved objects such as HTML pages and images in a local object 
cache in the PC’s file system. If the visitor returns to a page already in his or 
her local browser cache (for example, by clicking the Back button), no record of 
this event will be sent to the server, and the event will not be recorded. This 
means that we can never be certain that we have a full map of the visitor’s 
actions. 

As with proxies, we can attempt to force the browser to always obtain objects 
from a server rather than from cache by including appropriate “No Cache” 
HTML tags, but we may not choose to do this because of performance or other 
content-related reasons. 

A similar uncertainty can be introduced when a visitor opens multiple 
browser windows to the same Web site. The visitor may have multiple views 
of different pages of the site available on his or her PC screen, but there isn’t 
any way for the Web server to know this. 

Specific Dimensions for 
the Clickstream 

Before we design specific clickstream data marts, let’s collect together as many 
dimensions as we can think of that may have relevance in a clickstream envi-
ronment. Any single dimensional schema will not use all the dimensions at 
once, but it is nice to have a portfolio of dimensions waiting to be used. The 
complete list of dimensions for a Web retailer could include: 

�� Date 

�� Time of day 

�� Part 

�� Vendor 

�� Transaction 

�� Status 

�� Type 

�� Carrier 

�� Facilities location 

�� Product 

�� Customer 

�� Media 

�� Causal 
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�� Service policy 

�� Internal organization 

�� Employee 

�� Page 

�� Event 

�� Session 

�� Referral 

All the dimensions in the list, except for the last four, are familiar data ware-
house dimensions, most of which we have used already in earlier chapters of 
this book. The last four, however, are the unique dimensions of the clickstream 
and warrant some careful attention. We’ll also provide preliminary sizing esti-
mates to give a sense of their magnitude. 

Page Dimension 

The page dimension describes the page context for a Web page event, as 
shown in Table 14.1. The grain of this dimension is the individual page. Our 
definition of page must be flexible enough to handle the evolution of Web 
pages from the current, mostly static page delivery to highly dynamic page 
delivery in which the exact page the customer sees is unique at that instant in 
time. We will assume even in the case of the dynamic page that there is a well-
defined function that characterizes the page, and we will use this to describe 
the page. We will not create a page row for every instance of a dynamic page 
because that would yield a dimension with an astronomical number of rows, 
yet the rows would not differ in interesting ways. What we want is a row in 
this dimension for each interesting, distinguishable type of page. Static pages 
probably get their own row, but dynamic pages would be grouped by similar 
function and type. 

When the definition of a static page changes because the Webmaster alters it, 
the row in the page dimension either can be overwritten or can be treated as a 
slowly changing dimension. This decision is a matter of policy for the data 
Webhouse, and it depends on whether the old and new descriptions of the 
page differ materially and whether the old definition should be kept for his-
torical analysis purposes. 

Web site designers and Webhouse developers need to collaborate to assign 
descriptive codes and attributes to each page served by the Web server, 
whether the page is dynamic or static. Ideally, Web page developers supply 
descriptive codes and attributes with each page they create and embed these 
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Table 14.1 Recommended Design for the Page Dimension 

N 

Static, Dynamic, Unknown, Corrupted, Inapplicable 

Sparse, Dense 

Combination 

File Name 

ATTRIBUTE SAMPLE VALUES 

Page Key Surrogate values, 1-

Page Source 

Page Function Portal, Search, Product Description, Corporate Information 

Page Template 

Item Type Product SKU, Book ISBN Number, Telco Rate Type 

Graphics Type GIF, JPG, Progressive Disclosure, Size Pre-Declared, 

Animation Type Similar to Graphics Type 

Sound Type Similar to Graphics Type 

Page File Name 

codes and attributes into the optional fields of the Web log files. This crucial 
step is at the foundation of the implementation of this page dimension. 

The page dimension is small. If the nominal width of a single row is 100 bytes 
and we have a big Web site with 100,000 pages, then the unindexed data size is 
100 x 100,000 = 10 MB. If indexing adds a factor of 3, then the total size of this 
dimension is about 40 MB. 

Event Dimension 

The event dimension describes what happened on a particular page at a par-
ticular point in time. The main interesting events are open page, refresh page, 
click link, and enter data. As dynamic pages based on XML become more com-
mon, the event dimension will get much more interesting because the seman-
tics of the page will be much more obvious to the Web server. Each field in an 
XML document can be labeled with a visitor-defined tag. We will want to cap-
ture this information in this event dimension, as shown in Table 14.2 

Table 14.2 Recommended Design for the Event Dimension 

N 

Inapplicable 

Event Content Application-dependent fields eventually driven from 

ATTRIBUTE SAMPLE VALUES 

Event Key Surrogate values, 1-

Event Type Open Page, Refresh Page, Click Link, Enter Data, Unknown, 

XML tags 
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The event dimension is tiny. If the nominal width of a single row is 40 bytes and 
we have 1,000 distinct events, then the indexed data size is 40 x 1,000 = 0.04 MB. 
If indexing adds a factor of 3, then the total size of this dimension is only about 
0.16 MB.

Session Dimension 
The session dimension, illustrated in Table 14.3, provides one or more levels of 
diagnosis for the visitor’s session as a whole. For example, the local context of 
the session might be requesting product information, but the overall session 
context might be ordering a product. The success status would diagnose 
whether the mission was completed. The local context may be decidable from 
just the identity of the current page, but the overall session context probably 
can be judged only by processing the visitor’s complete session at data extract 
time. The customer status attribute is a convenient place to label the customer 
for periods of time, with labels that are not clear immediately either from the 
page or from the immediate session. Useful statuses include high-value reli-
able customer, new customer, about to cancel, or in default. All these statuses 
may be derived from auxiliary data marts in the data Webhouse, but by plac-
ing these labels deep within the clickstream, we are able to study the behavior 
of certain types of customers directly. We do not put these labels in the cus-
tomer dimension because they may change over very short periods of time. If 
there were a large number of these statuses, then we would consider creating 
a separate customer status dimension rather than embedding this information 
in the session dimension. 

This dimension is extremely important because it provides a way to group ses-
sions for insightful analysis. For example, this dimension would be used to ask: 

�� How many customers consulted our product information before ordering? 

�� How many customers looked at our product information and never 
ordered? 

�� How many customers began the ordering process but did not finish? 
And where did they stop? 

The session dimension is tiny. If the nominal width of a single row is 80 bytes 
and we have 10,000 identified session combinations, then the indexed data 
size is 80 x 10,000 = 0.8 MB. If indexing adds a factor of 3, then the total size of 
this dimension is about 3 MB. 
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Table 14.3 Recommended Design for the Session Dimension 

N 

Classified, Unclassified, Corrupted, Inapplicable 

Local Content 
information 

Session Context 

Action Sequence Summary label for overall action sequence during 
session 

Success Status 

Customer Status 

ATTRIBUTE SAMPLE VALUES 

Session Key Surrogate values, 1-

Session Type 

Page-derived context, such as requesting product 

Trajectory-derived context, such as ordering a product 

Whether the overall session mission was achieved 

High Value, Reliable, In Default 

Referral Dimension 

Shown in Table 14.4, the referral dimension describes how the customer 
arrived at the current page. Web server logs usually provide this information. 
The URL of the previous page is identified, and in some cases, additional infor-
mation is present. If the referrer was a search engine, then usually the search 
string is specified. It is not worthwhile to put the raw search specification into 
our database because the search specifications are so complicated and idio-
syncratic that an analyst couldn’t usefully query them. We assume that some 
kind of simplified and cleaned specification is placed in the specification field. 

Table 14.4 Recommended Design for the Referral Dimension 

N 

Inapplicable 

Referring Site 

Referring Domain Site.com 

Specification Actual spec used; useful if simple text, questionable 
otherwise 

ATTRIBUTE SAMPLE VALUES 

Referral Key Surrogate values, 1-

Referral Type Intra Site, Remote Site, Search Engine, Corrupted, 

Referring URL www.organization.site.com/linkspage 

www.organization.site.com 

Search Type Simple Text Match, Complex Match Logic 

Target Where the search found its match, for example, 
Meta Tags, Body Text, Title 
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The referral dimension may be fairly large. If the average width of a single row 
is 100 bytes and if we have 1 million referral rows, then the indexed data size 
is 100 x 1,000,000 = 100 MB. If indexing adds a factor of 3, then the total size of 
this dimension is about 400 MB. This is a hard dimension to estimate without 
actual data because the variability in size comes from the length of the refer-
ring URL and the search specification, which may not be present. 

Now that we have a portfolio of useful clickstream dimensions, we can first 
build the primary clickstream data mart directly off the server log files. Then 
we will integrate this data mart into the family of other data marts in our Web 
retailer. 

Clickstream Fact Table for Complete Sessions 

The first fact table in our clickstream data mart will be based solely on the 
clickstream data derived from our own Web site logs. With an eye toward 
keeping the first fact table from growing astronomically, we choose the grain 
to be one row for each completed customer session. This grain is significantly 
higher than the underlying Web server logs, which record each microscopic 
page event. However, perhaps we have a big site recording more than 100 mil-
lion raw page events per day, and we want to start with a more manageable 
number of rows to be loaded each day. We assume for the sake of argument 
that the 100 million page events boil down to 5 million complete visitor ses-
sions. This could arise if an average visitor session touched five pages, and 
there was an average of four basic events recorded per page, including 
requests for GIF and JPEG graphic images. 

The dimensions that are appropriate for this first fact table are calendar date, 
time of day, customer, page, session, and referrer. Finally, we add a set of 
measured facts for this session that includes session seconds, pages visited, 
orders placed, order quantity, and order dollar amount. The completed design 
is shown in Figure 14.3. 

There are a number of interesting aspects to the design shown in Figure 14.3. 
You may be wondering why the date and time-of-day dimensions play two 
different roles, identified by semantically independent views, in this schema, 
as we introduced in Chapter 11. Because we are interested in measuring the 
precise times of sessions, we must make sure we meet two conflicting require-
ments. First, we want to make sure that we can synchronize all session dates 
and times across multiple time zones internationally. Perhaps we have other 
date and time stamps from other Web servers or from non-Web systems 
elsewhere in our data warehouse. To achieve true synchronization of events 
across multiple servers and processes, we must record all session dates and 
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times uniformly in a single time zone such as Greenwich Mean Time (GMT). 
We interpret the session date and time combinations as the beginning of the 
session. Since we have the dwell time of the session as a numeric fact, we can 
tell when the session ended if this is of interest. 

The other requirement we will meet with this design is to record the date and 
time of the session relative to the visitor’s wall clock. The best way to represent 
this information is with a second pair of calendar date and time-of-day foreign 
keys. Theoretically, we could represent the time zone of the customer in the 
customer dimension table, but constraints to determine the correct wall clock 
time would be horrendously complicated. The time difference between two 
cities (such as London and Sydney) can change by as much as 2 hours at dif-
ferent times of the year depending on when these cities go on and off daylight 
savings time. This is not the business of the end-user application to work out; 
it is the business of the database to store this information so that it can be con-
strained in a simple and direct way. 

Inclusion of the page dimension in Figure 14.3 may seem surprising given that 
the grain of the design is the customer session. However, in a given session, an 
interesting page is the entry page. We interpret the page dimension in this 
design as the page with which the session started. In other words, how did the 
customer hop onto our bus just now? Coupled with the referrer dimension, we 
now have an interesting ability to analyze how and why the customer accessed 
our Web site. A more elaborate design also would add an exit page dimension. 

Universal Date Key (FK) 

Local Date Key (FK) 

Customer Key (FK) 

Session Key (FK) 
Referrer Key (FK) 
Causal Key (FK) 
Session Seconds 

Orders Placed 
Order Quantity 
Order Dollar Amount 

Clickstream Page Event Fact 

Date Key (PK) 
Date Attributes… 

Date Dimension 
(views for 2 roles) (views for 2 roles) 

Customer Key (PK) 
Customer Attributes… 

Customer Dimension 

Session Key (PK) 
Session Attributes… 

Session Dimension 

Page Attributes… 

Referrer Key (PK) 
Referrer Attributes… 

Referrer Dimension 

Causal Key (PK) 
Causal Attributes… 

Causal Dimension 

Universal Time of Day Key (FK) 

Local Time of Day Key (FK) 

Entry Page Key (FK) 

Pages Visited 

Time of Day Key (PK) 
Time of Day Attributes… 

Time of Day Dimension 

Entry Page Key (PK) 

Entry Page Dimension 

Figure 14.3 Clickstream schema at the session grain. 
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We may be tempted to add the causal dimension to this design, but if the 
causal dimension were intended to focus on individual products, it would be 
inappropriate to add to this design. The symptom that the causal dimension 
does not mesh with this design is the multivalued nature of the causal factors 
for a given complete session. If we are running ad campaigns or special deals 
for several products, how do we represent this multivalued situation if the 
customer’s session involves several products? The right place for a product-
oriented causal dimension will be in the more fine-grained table we build in 
the next fact table example. Conversely, a more broadly focused market causal 
dimension that described market conditions affecting all products would be 
appropriate for a session-grained fact table. 

The session seconds fact is the total number of seconds the customer spent on 
the site during this session. There will be many cases where we can’t tell when 
the customer left. Perhaps the customer typed in a new URL. Conventional 
Web server logs won’t detect this (although if the data is being collected by an 
ISP that can see every click across sessions, then this particular issue goes 
away). Or perhaps the customer got up out of the chair and didn’t return for 
an hour. Or perhaps the customer just closed the browser without making any 
more clicks. In all these cases our extract software needs to assign a small and 
nominal number of seconds to this part of the session so that the analysis is not 
distorted unrealistically. 

The fact table shown in Figure 14.3 has 13 fields. Since all the foreign key fields 
are surrogate keys, none of them needs to be represented in more than 4 bytes. 
Similarly, all the measured facts are either integers or scaled integers. Again, 
4-byte fields are reasonable for estimation purposes. Thus our fact table is about 
52 bytes wide. If we collect 5 million new fact rows each day for our hypothet-
ical large Web site example, then we are adding 260 MB of data (before index-
ing) to the fact table each day. Over the course of a year, this would amount to 
260 MB x 365 = 94.9 GB of unindexed data. This is big, but not ridiculously so. 
Three years of data, together with indexing overhead, perhaps would consume 
600 GB of disk space. Given the pace of Web marketing and Web technology, it 
seems reasonable to plan on keeping only 3 years of data. 

Note that the dimension tables, with the possible exception of the customer 
dimension, are small by comparison with the main fact table. A fully indexed 50-
million-row customer table could occupy 200 GB of storage, about one-third the 
size of the fact table. All the other dimension tables are negligible by comparison. 

We purposely built this first fact table in our clickstream data mart to focus on 
complete visitor sessions and to keep the size of the data mart under control. 
The next table we design drops down to the lowest practical granularity we 
can support in the data Webhouse: the individual page event. 



Electronic Commerce 295 

Clickstream Fact Table for 
Individual Page Events 

In this second fact table we will define the granularity to be the individual 
page event in each customer session. With simple, static HTML pages, we may 
be able to record only one interesting event per page view, namely, the page 
view itself. As Web sites employ dynamically created XML-based pages with 
the ability to establish an ongoing dialogue through the page, the number and 
types of events will grow. 

It is likely that this fact table will become astronomical in size. We will resist 
the urge to aggregate the table up to a coarser granularity because such a step 
inevitably involves eliminating dimensions. Actually, the first fact table we 
built for this data mart represents just such an aggregation. It is a worthwhile 
fact table, but the analyst cannot ask questions about visitor behavior or indi-
vidual pages. When the individual page-oriented data set gets too large, then 
in order to preserve the ability to analyze detailed behavior, either the time 
span of the data must be restricted or statistical sampling techniques must be 
used to reduce data size. Although disk storage capacity has been doubling 
even faster (every 12 months, supposedly) than processing power, our propen-
sity to collect reams of data seems to be doubling at an even faster pace. 

Having chosen the grain, we can choose the appropriate dimensions. Our list 
of dimensions includes calendar date, time of day, customer, page, event, ses-
sion, session ID, product, causal, and referrer. The completed design is shown 
in Figure 14.4. 

Universal Date Key (FK) 

Local Date Key (FK) 

Customer Key (FK) 
Page Key (FK) 
Event Key (FK) 
Session Key (FK) 
Session ID (DD) 
Referrer Key (FK) 
Product Key (FK) 
Causal Key (FK) 
Page Seconds 
Order Quantity 
Order Dollar Amount 

Clickstream Page Event Fact 

Date Dimension 
(views for 2 roles) (views for 2 roles) 

Customer Dimension 

Session Dimension 

Causal Dimension 

Page Dimension 

Referrer Dimension 

Event Key (PK) 
Event Attributes… 

Event Dimension 

Product Key (PK) 
Product Attributes… 

Product Dimension 

Universal Time of Day Key (FK) 

Local Time of Day Key (FK) 

Time of Day Dimension 

Figure 14.4 Clickstream schema at the page-event grain. 
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The design in Figure 14.4 looks rather similar to our first design. This similar-
ity between fact tables is typical of dimensional models. One of the charms of 
dimensional modeling is the boring similarity of the designs. However, this is 
where they get their power. When the designs have a predictable structure, all 
the software up and down the data warehouse chain, from extraction, to data-
base querying, to the end-user tools, can exploit this similarity to great advan-
tage. Query and reporting tools, for example, may be able to adapt to a whole 
family of dimensional designs without any reprogramming. 

The two roles played by the calendar date and time-of-day dimensions have the 
same interpretation as in the first design; one role is the universal synchronized 
time, probably expressed in GMT, and the other role is the local wall clock time 
as measured by the customer. In this fact table the date/time combinations refer 
to the individual page event that is being described by the row we are building. 

The page dimension refers to the individual page whose events we are record-
ing. This is the main difference in grain between this fact table and the first one 
we built. In this fact table we will be able to see all the pages accessed by the 
customers. 

The event dimension describes what happened on the page, as we described 
earlier in this chapter. 

The session dimension describes the outcome of the session. A companion field, 
the session ID, is a degenerate dimension that does not have a join to a dimension 
table. The session ID is simply a unique identifier with no semantic content that 
serves to group together the page events of each customer session in an unam-
biguous way. We did not need a session ID degenerate dimension in our first fact 
table because each row in that table already represented a complete session. We 
recommend that the session dimension be at a higher level of granularity than the 
session ID because the session dimension is intended to describe classes and cat-
egories of sessions, not the characteristics of each individual session. 

We show a product dimension in this design under the assumption that this 
Web site is owned by a Web retailer. A financial services site probably would 
have a similar dimension. A consulting services site would have a service 
dimension. An auction site would have a subject or category dimension 
describing the nature of the items being auctioned. A news site would have a 
subject dimension, although with different content than an auction site. 

We accompany the product dimension with a causal dimension so that we can 
attach useful marketplace interpretations to the changes in demand we may 
see for certain products. 
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For each page event we record the number of seconds that we believe elapse 
before the next page event. We call this page seconds to contrast it with session 
seconds that we used in the first fact table. This is a simple example of paying 
attention to conformed facts. If we called both these measures simply seconds, 
then we would run the risk of having these seconds added or combined inap-
propriately. Since these seconds are not precisely equivalent, we name them 
differently as a warning. In this particular case we would expect the page sec-
onds for a session in this second fact table to add up to the session seconds in 
the first fact table. 

Our final facts are order quantity and order dollar amount. These fields will be 
zero or null for many of the rows in this fact table simply because the specific 
page event is not the event that places the order. Nevertheless, it is highly 
attractive to provide these fields because they tie all-important Web revenue 
directly to behavior. If the order quantity and dollar amount were only avail-
able through the production order-entry system elsewhere in the data Web-
house, it would be inefficient to perform the revenue-to-behavior analysis 
across multiple large tables. In many database management systems the exis-
tence of these kinds of null fields is handled efficiently and may take up liter-
ally zero space in the fact table. 

We can quickly estimate the size of this fact table. If we use the earlier example 
of 100 million raw Web log events each day, we probably end up with about 20 
million meaningful page events per day after we discard the requests for GIF 
and JPEG images. Each row in the page-event fact table has 15 fields, which we 
estimate occupies 15 x 4 bytes = 60 bytes. Thus the total fact table data to be 
added each day is 20 million x 60 bytes = about 1.2 GB per day. This would 
amount to 365 x 1.2 GB = 438 GB per year, before indexing. Again, while this is 
a large number, it is within reach of today’s technology. 

As we move to more dynamic page delivery with better semantic labels on 
each of the actions (thanks to XML), undoubtedly we will increase the volume 
of data available. Perhaps we keep the granularity of the present table at 
approximately one page view per row rather than making a row for each dis-
crete customer gesture. It is too early at this time to make a definitive predic-
tion of whether we will descend all the way to the individual gesture level 
with a third and even more granular fact table. Even if our storage and query 
technologies keep up with the increased volume of data, we need to wait to see 
if there is sufficient analysis content in the lowest-level behavior data to make 
it worthwhile. Hopefully, you can see how to extend the techniques of this 
chapter to handle this case. 
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Aggregate Clickstream Fact Tables

Both the fact tables we have built thus far in our clickstream data mart are 
large. There are many business questions we would like to ask that would be 
forced to summarize millions of rows from these tables. For example, if we 
want to track the total visits and revenue from major demographic groups of 
customers accessing our Web site on a month-by-month basis, we certainly can 
do this with either fact table. In the session-grained fact table we would con-
strain the calendar date dimension to the appropriate time span (say, January, 
February, and March of the current year). We would then create row headers 
from the demographics type field in the customer dimension and the month 
field in the calendar dimension (to separately label the three months in the out-
put). Finally, we would sum over the total order dollars and count the number 
of sessions. This all works just fine. However, it is likely to be slow without 
help from an aggregate table. If this kind of query is frequent, the DBA will be 
encouraged to build an aggregate table such as shown in Figure 14.5. 

We can build this table directly from our first fact table, whose grain is the indi-
vidual session. To build this aggregate table, we group by month, demographic 
type, entry page, and session outcome. We count the number of sessions and 
sum all the other additive facts. This results in a drastically smaller fact table, 
almost certainly less than 1 percent of the original session-grained fact table. 
This reduction in size translates directly to a corresponding increase in perfor-
mance for most queries. In other words, we would expect queries directed to 
this aggregate table to run at least 100 times faster. 

Although it may not have been obvious, we followed a careful discipline in build-
ing the aggregate table. This aggregate fact table is connected to a set of shrunken 
dimensions directly related to the original dimensions in the session-grained fact 
table. The month table is a conformed subset of the calendar-day table. The 
demographic table is a conformed subset of the customer table. We assume that 
the page and session tables are unchanged, although a careful design of the 
aggregation logic could suggest a conformed shrinking of these tables as well. 

Month Dimension 

Entry Page Dimension 

Session Characteristics
Aggregate Fact

Universal Month Key (FK) 
Demographic Key (FK) 

Session Outcome Key (FK) 
Number of Sessions 
Session Seconds 

Orders Placed 
Order Quantity 
Order Dollar Amount 

Entry Page Key (FK) 

Pages Visited 

Demographic Dimension 

Session Outcome Dimension 

Figure 14.5 Aggregated clickstream schema summarized by session characteristics. 
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Integrating the Clickstream Data Mart 
into the Enterprise Data Warehouse 

In this section we look at the overall design of a series of data marts implemented 
for a Web-based computer retailer. The data marts correspond to all the business 
processes needed by this retailer to run its business. We could illustrate this 
design by showing each schema as we have done in the preceding examples, but 
the synergy among the designs would be difficult to see clearly. Instead, we use 
the data warehouse bus matrix, which we introduced in Chapter 3. 

The matrix method lists the data marts down the left side of the matrix and the 
dimensions used by the data marts across the top of the matrix. The cells of the 
matrix contain Xs if the particular data mart uses a particular dimension. Note 
that the matrix describes data marts, not individual fact tables. Typically, a 
data mart consists of a suite of closely associated fact tables all describing a 
particular business process. A good way to start the design of a series of data 
marts is to define first-level data marts that are, as much as possible, related to 
single sources of data. Once several of these first-level data marts have been 
implemented, then second-level consolidated data marts, such as profitability, 
can be built that require data from the first-level marts to be combined. Thus the 
entries in a given row of the matrix represent the existence of a dimension some-
where in the closely associated suite of tables defining a particular data mart. 

Figure 14.6 shows the completed bus matrix for a Web retailer. The matrix has 
a number of striking characteristics. There are a lot of Xs. An X in a given 
matrix column is, in effect, an invitation to the meeting for conforming that 
dimension. The average data mart uses six to eight dimensions. Some of the 
dimensions, such as date/time, transaction, status/type, organization, and 
employee, appear in almost every data mart. The product and customer 
dimensions dominate the whole middle part of the matrix, where they are 
attached to the data marts that describe customer-oriented activities. At the 
top of the matrix, suppliers and parts dominate the processes of acquiring the 
parts that make up products and building them to order for the customer. At 
the bottom of the matrix we have classic infrastructure and cost-driver data 
marts that are not tied directly to customer behavior. 

We see the Web visitor clickstream data mart sitting squarely among the 
customer-oriented data marts. It shares the date/time, transaction, product, 
customer, media, causal, and service policy dimensions with several other 
data marts nearby. In this sense it should be obvious that the Web visitor click-
stream data mart is well integrated into the fabric of the overall data ware-
house for this retailer. Applications tying the Web visitor clickstream will be 
easy to integrate across all these data marts sharing these conformed dimen-
sions because the separate queries to each data mart will be able to be com-
bined across individual rows of the report. 
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Figure 14.6 Data warehouse bus matrix for a Web retailer. 

The Web visitor clickstream data mart contains the four special clickstream 
dimensions not found in the other data marts. These dimensions do not pose a 
problem for applications. Instead, the ability of the Web visitor clickstream 
data mart to bridge between the Web world and the brick-and-mortar world is 
exactly the advantage that we are looking for. We can constrain and group on 
attributes from the four Web dimensions and explore the effect on the other 
business processes. For example, we can see what kinds of Web experiences 
produce customers who purchase certain kinds of service policies and then 
invoke certain levels of service demands. 

Electronic Commerce Profitability Data Mart 

After the data Webhouse team successfully brings up the initial clickstream 
data mart and ties this data mart to the sales transaction and customer 
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communication data marts, the team may be ready to tackle the most chal-
lenging data mart of all: the Web profitability data mart. 

We can build the Web profitability data mart as an extension of the sales trans-
action data mart. Fundamentally, we are going to allocate all the activity costs 
and infrastructure costs down to each sales transaction. We could, as an alter-
native, try to build the Web profitability data mart on top of the clickstream, 
but this would involve an even more controversial allocation process in which 
we allocated costs down to each session. It would be hard to assign activity 
and infrastructure costs to a session that had no obvious product involvement 
and led to no immediate sale. 

A big benefit of extending the sales transaction fact table is that we will get a 
view of profitability over all our sales channels, not just the Web. In a way, this 
should be obvious, because we know that we have to sort out the costs and 
assign them to the various channels anyway. For this reason, we will call the 
main fact table in our new data mart simply profitability. 

Thus the grain of the profitability fact table is each individual product sold on 
a sales ticket to a customer at a point in time. This sounds familiar, doesn’t it? 
This grain is nearly identical to the grain of the first dimensional model we 
designed. The primary difference is that Chapter 2’s schema was limited to the 
grocer’s brick-and-mortar store. In this section the model will include profitabil-
ity metrics across all channels, including store sales, telesales, and Web sales. 

We explored a profitability data mart extensively in Chapter 5. We enumerated 
a lengthy list of profit and loss (P&L) facts from gross revenue to contribution 
profit. Figure 14.7 illustrates these same facts in a somewhat broader context. 
As we saw in Chapter 5, the fact table is organized as a simple P&L statement. 

The first fact is our now-familiar quantity sold. The rest of the facts are dollar 
values, beginning with gross revenue, which is the value of the item as if it 
were sold at list or catalog price. We account for allowances and promotions to 
arrive at net revenue, which is the true net price the customer pays times the 
quantity purchased. 

The rest of the P&L table consists of a series of subtractions, where we calcu-
late progressively for more far-reaching versions of profit. We begin by sub-
tracting the product manufacturing cost (if we manufacture it) or, equivalently, 
the product acquisition cost (if we acquire it from a supplier). We then subtract 
the product storage cost. At this point many enterprises refer to this partial 
result as the gross profit. One can divide this gross profit by the gross revenue 
to get the gross margin ratio. 
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Profitability Fact 

Time of Day Dimension Date Dimension 
Universal Date Key (FK) 

Local Date Key (FK) 

Customer Key (FK) 
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Product Key (FK) 
Promotion Key (FK) 
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Manufacturing Allowance 
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Sales Markdown 
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Manufacturing Cost 
Storage Cost 
Gross Profit 
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Other Overhead Cost 
Net Profit 

Universal Time of Day Key (FK) 

Local Time of Day Key (FK) 

Ticket Number (DD) 

(views for 2 roles)(views for 2 roles) 

Customer Dimension 
Channel Dimension 

Product Dimension 
Promotion Dimension 

Figure 14.7 Electronic commerce profitability schema. 

Obviously, the columns called “Net Revenue” and “Gross Profit” are calculated 
directly from the fields immediately preceding them in the P&L table. However, 
should we explicitly store these fields in the database? The answer depends on 
whether you provide access to this fact table through a view or allow users or 
applications to access the physical fact table directly. The structure of the P&L 
table is sufficiently complex that, as the data warehouse provider, you don’t 
want to risk having important measures such as net revenue and gross profit 
computed incorrectly. If you provide all access through views, you can easily 
supply the computed columns without physically storing them. However, if 
your users are allowed to access the underlying physical table, then you should 
include net revenue, gross profit, and net profit as physical fields. 

Below the gross profit we continue subtracting various costs. Typically, the 
warehouse team must source or estimate each of these costs separately. 
Remember that the actual entries in any given fact table row are the fractions 
of these total costs allocated all the way down to the individual fact row grain. 
Often there is significant pressure on the warehouse team to finish the prof-
itability data mart. To put this another way, there is tremendous pressure to 
source all these costs. But how good are the costs in the various underlying 
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data sets? Sometimes a cost is only available as a national average, computed 
for an entire year. Any allocation scheme is going to assign a kind of pro forma 
value that has no real texture to it. Other costs will be broken down a little bet-
ter, perhaps to the calendar quarter and by geographic region (if this is rele-
vant). Finally, some costs may be truly activity-based and vary in a highly 
dynamic, responsive, and realistic way over time. 

Web site system costs are an important cost driver in electronic commerce-
oriented businesses. Although Web site costs are classic infrastructure costs and 
therefore are difficult to allocate directly to the product and customer activity, 
this is a key step in developing a Web-oriented P&L statement. Various alloca-
tion schemes are possible, including allocating the Web site costs to various 
product lines by the number of pages devoted to each product, allocating the 
costs by pages visited, or allocating the costs by actual Web-based purchases. 

Before leaving this design, it is worthwhile to reiterate that Figure 14.7’s prof-
itability fact table within a rich dimensional framework is immensely power-
ful. We can see the breakdown of all the components of revenue, cost, and 
profit for every conceivable slice and dice supported by the dimensions. We 
can ask, “How profitable are each of our channels (for example, Web sales, 
telesales, and store sales) and why?” or “How profitable are all our possible 
customer segmentations and why?” Of course, the symmetric dimensional 
approach allows us to combine constraints from as many dimensions as we 
can. This gives us compound versions of profitability analyses, such as, “Who 
are the profitable customers in each channel and why?” or “Which promotions 
work well on the Web but do not work well in other channels and why?” 

Summary 

The Web retailer example we used in this chapter is illustrative of any business 
with a significant Web presence. Besides building the clickstream data mart, 
the central challenge is to integrate the clickstream data effectively into the rest 
of the business. In this chapter the key concepts included: 

The challenge of identifying the Web visitor’s origin. In some cases we can 
look backward through the referral information in the Web log, but in 
many other cases this information is not supplied. 

The challenge of identifying a complete session. HTTP sessions are stateless. 
The use of cookies is the best mechanism for defining a session, bearing in 
mind that we cannot explain all the time intervals between page requests. 

The challenge of identifying the Web visitor. Even with a cookie, we cannot 
be sure who the individual is at the other end. 
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How to deal with proxy servers. A proxy server intercepts the visitor’s page 
requests. We can inhibit the use of proxy servers, or in some cases we can 
collect the logs. 

The design of the page dimension. The key step is to get the Web page 
designer to assign content codes and attributes to each page and then 
embed these codes and attributes into the Web server logs. 

The design of the session dimension. The key step is to use the record of the 
complete session, together with some simple criteria, to provide a session 
diagnosis that can be used to look for sessions of different types. 

The design of a clickstream fact table for complete sessions. This fact table 
is an interesting compromise between a high-level summary of Web site 
activity and the overwhelming detail provided by a fact table for each page 
event. 

The design of a clickstream fact table for each page event. This ultimate 
level of detail is the most accurate and complete record of customer behav-
ior. The size problems with this table can be addressed by sampling. 

The design of aggregate clickstream fact tables. Much smaller (and faster) 
fact tables can usefully summarize visitor behavior, such as correlating 
demographics with productive sessions. 

How to integrate the clickstream data mart into the rest of the data ware-
house. Using the bus matrix design method, we see which dimensions 
must be conformed across all the data marts, and we see that the click-
stream data mart has a significant overlap with the other data marts. 

How to add profitability measures to the product sales data mart so that 
the contribution of the Web channel can be isolated and analyzed. 
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e will bring together concepts from nearly all the previous chapters to build a 
data warehouse for a property and casualty insurance company in this final 
case study. If you are from the insurance industry and jumped directly to this 
chapter for a quick fix, please accept our apology, but this material depends 
heavily on ideas from the earlier chapters. You’ll need to turn back to the 
beginning of the book to have this chapter make any sense. 

As has been our standard procedure, this chapter is launched with back-
ground information for a business case. While the requirements unfold, we’ll 
draft the data warehouse bus matrix, much like we would in a real-life require-
ments analysis effort. We’ll then design a series of dimensional models by 
overlaying the core techniques learned thus far in a manner similar to the 
overlay of overhead transparencies. 

Chapter 15 reviews the following concepts: 

�� Requirements-driven approach to dimensional design 
�� Value-chain implications 
�� Data warehouse bus matrix 
�� Complementary transaction, periodic snapshot, and accumulating snapshot 

schemas 
�� Four-step design process for dimensional models 
�� Dimension role-playing 
�� Handling of slowly changing dimension attributes 
�� Minidimensions for dealing with large, more rapidly changing dimension 

attributes 
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�� Multivalued dimension attributes 
�� Degenerate dimensions for operational control numbers 
�� Audit dimensions to track data lineage 
�� Heterogeneous products with attributes and facts that vary by line of business 
�� Conformed dimensions and facts 
�� Consolidated fact tables that combine metrics from separate business 

processes 
�� Factless fact tables 
�� Common mistakes to avoid when designing dimensional models 

Insurance Case Study

Let’s imagine that we work for a $5 billion property and casualty insurer that 
offers automobile, homeowners’, and personal property insurance. We con-
duct extensive interviews with representatives and senior management from 
the claims, field operations, actuarial, finance, and marketing departments. 
Based on these interviews, we learn that the insurance industry is in a state of 
flux. New, nontraditional players are entering by leveraging alternative chan-
nels, such as the Internet. In the meantime, the industry is consolidating due to 
globalization, deregulation, and demutualization challenges. Markets are 
changing, along with customer needs. Numerous interviewees tell us that 
information is becoming an even more important strategic asset. Regardless of 
the functional groups, there is a strong desire to use information more effec-
tively to identify opportunities more quickly and respond most appropriately. 

The good news is that internal systems and processes already capture the bulk 
of the data required. Most insurance companies generate tons of nitty-gritty 
operational data. The bad news is that the data is not integrated. Over the 
years, political and data-processing boundaries have encouraged the con-
struction of tall barriers around these isolated islands of data. There are multi-
ple disparate sources for information about the company’s products, 
customers, and distribution channels. In the legacy operational systems, the 
same policyholder may be identified several times in separate automobile, 
home, and personal property applications. Traditionally, this segmented 
approach to data was acceptable because the different lines of business func-
tioned largely autonomously. There was little interest in sharing data across 
units for cross-selling and collaboration in the past. Now we’re attempting to 
better leverage an enormous amount of inconsistent yet somewhat redundant 
data. 

Besides the inherent issues surrounding data integration, business users lack 
the ability to access data easily when needed. In an attempt to address this 
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shortcoming, several organizations within the insurance company rallied their 
own resources and hired consultants to solve their individual short-term data 
needs. In many cases the same data was extracted from the same source sys-
tems to be accessed by separate organizations without any strategic overall 
information-delivery strategy. Unfortunately, no one had the courage to pro-
actively inform senior management of the negative consequences of this 
approach. 

It didn’t take long for management to recognize the negative ramifications 
associated with separate data warehouses because performance results pre-
sented at executive meetings differed depending on the analytic source. Man-
agement understood that this independent route was not viable as a long-term 
solution because of the lack of integration, large volumes of redundant data, 
and difficulty in accessing and interpreting the results. Given the importance 
of information in this brave new insurance world, management was moti-
vated to deal with the cost implications surrounding the development, sup-
port, and analytic inefficiencies of these supposed data warehouses that 
merely proliferated the operational data islands. 

A new chief information officer (CIO) was hired to lead the information 
charge. Senior management chartered the CIO with the responsibility and 
authority to break down the historical data silos to “achieve information nir-
vana.” They charged the CIO with the fiduciary responsibility to manage and 
leverage the organization’s information assets more effectively. The CIO 
developed an overall vision that wed an enterprise strategy for dealing with 
massive amounts of data, with a response to the immediate need to become an 
information-rich organization. In the meantime, an enterprise data warehouse 
team was created to begin designing and implementing the vision. 

Senior management has been preaching about a transformation to a more 
customer-centric focus instead of the traditional product-centric approach in an 
effort to gain competitive advantage. The CIO jumped on that bandwagon as a 
catalyst for change and already has had an impact. The message has reached 
the folks in the trenches. They pledge intent to share data rather than squirrel-
ing it away for a single purpose. There is a strong desire for everyone to have 
a common understanding of the state of the business. They’re clamoring to get 
rid of the isolated pockets of data while ensuring that they have access to 
detail and summary data at both the enterprise and line-of-business levels. 

Insurance Value Chain 
The primary value chain of an insurance company is seemingly short and 
simple. The core processes are to issue policies, collect premium payments, 
and process claims. The organization is interested in better understanding the 
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metrics spawned by each of these processes. Users want to analyze detailed 
transactions relating to the formulation of policies, as well as transactions 
generated by claims processing. They want to measure profit over time by 
coverage, covered item type (that is, which kinds of houses and automobiles), 
geographic, demographic, and sales distribution channel characteristics. Of 
course, the desire to monitor profit implies that both revenues and costs can 
be identified and tracked. While users are interested in the enterprise per-
spective, they also want to analyze the heterogeneous nature of the insurance 
company’s lines of business. 

Obviously, an insurance company is engaged in many other external 
processes, such as the investment of premium payments, as well as a host of 
internally focused activities, such as human resources, finance, and purchas-
ing. For now, we’ll focus on the core business related to policies and claims. 

The insurance value chain begins with a variety of policy transactions. Based 
on our current understanding of the requirements and underlying data, we opt 
to handle all the transactions having an impact on a policy as a single business 
process (and fact table). If this perspective is too simplistic to accommodate the 
metrics, dimensionality, or analytics required, we have the option to split the 
transaction activities into separate fact tables (for example, separate fact tables 
for quoting, rating, and underwriting). As we discussed in Chapter 3, there are 
tradeoffs between creating separate fact tables for each natural cluster of trans-
action types versus lumping the transactions into a single fact table. 

While we’re on the topic of policies, there is also a need to better understand the 
premium revenue associated with each policy on a monthly basis. This will be 
key input into the overall profit picture. In the case of insurance, the business is 
very transaction-intensive, but the transactions themselves do not represent lit-
tle pieces of revenue, as was the case with retail or manufacturing sales. We can-
not merely add up insurance transactions to determine the revenue amount. The 
picture is further complicated in insurance because customers pay in advance 
for services. We encounter this same advance-payment model in organizations 
that offer magazine subscriptions or extended warranty contracts. Premium 
payments must be spread out across multiple reporting periods because the 
organization earns the revenue over time as it provides insurance coverage. The 
complex relationship between individual transactions and the basic measures of 
revenue often makes it impossible to answer revenue questions by crawling 
through the individual transactions. Not only is such crawling time-consuming, 
but the logic required to interpret the effect of different transaction types on rev-
enue also can be horrendously complicated. The natural conflict between the 
detailed transaction view and the monthly snapshot perspective almost always 
requires that we build both kinds of fact tables in the warehouse. In this case, the 
premium snapshot is not merely a summarization of the policy transactions; it is 
quite a separate thing that comes from a separate source. 
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Figure 15.1 Initial draft bus matrix. 

Draft Insurance Bus Matrix 
Based on the interview findings, along with an understanding of the key 
source systems, the team begins to draft a data warehouse bus matrix with the 
core business processes as rows and core dimensions as columns. At this point 
we’re focused on the policy-based processes. We put two rows in the matrix, 
one corresponding to the policy transactions and another for the monthly pol-
icy premium snapshot. 

As illustrated in Figure 15.1, the core dimensions include date, policyholder, 
employee, coverage, covered item, and policy. When drafting the matrix, we 
don’t attempt to include all the dimensions because the matrix could end up 
with 100 columns or more. Instead, we try to focus on the core common 
dimensions that are reused in more than one schema. 

Policy Transactions 

Now let’s turn our attention to the first row of the matrix by focusing on the 
transactions for creating and altering a policy. We assume that the policy is the 
header for a set of coverages sold to the policyholder. Coverages can be con-
sidered the products sold by the insurance company. Homeowner coverages 
include fire, flood, theft, and personal liability. Automobile coverages include 
comprehensive, collision damage, uninsured motorist, and personal liability. 
In a property and casualty insurance company, coverages typically apply to a 
specific covered item, such as a particular house or car. Both the coverage and 
covered item are identified carefully in the policy. A particular covered item 
usually will have several coverages listed in the policy. We assume that a pol-
icy can contain multiple covered items. 

Just to keep things reasonably simple, an agent sells the policy to the policy-
holder in this case. Before the policy can be created, a pricing actuary deter-
mines the premium rate that will be charged given the specific coverages, 
covered items, and qualifications of the policyholder. An underwriter, who 
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takes ultimate responsibility for doing business with the policyholder, makes 
the final approval. 

The operational policy transaction system captures the following types of 
transactions: 

�� Create policy, alter policy, cancel policy (with reason)

�� Create coverage on covered item, alter coverage, cancel coverage
(with reason) 

�� Rate coverage, decline to rate coverage (with reason) 

�� Underwrite policy, decline to underwrite policy (with reason) 

The grain of the policy transaction fact table would be one row for each indi-
vidual policy transaction. Each atomic transaction should be embellished with 
as much context as possible to create a complete dimensional description 
of the transaction. The dimensions associated with the policy transaction 
business process include the transaction date, effective date, policyholder, 
employee, coverage, covered item, policy number, and policy transaction type. 

Dimension Details and Techniques 
Now let’s further discuss the dimensions in this schema while taking the 
opportunity to reinforce concepts from earlier chapters. 

Dimension Role-Playing 

There are two dates associated with each policy transaction. The policy trans-
action date is the date when the transaction was entered into the operational 
system, whereas the policy transaction effective date is when the transaction 
legally takes effect. These two independent dimensions can be implemented 
using a single physical date table. Multiple logically distinct tables are then 
presented to the user through views with unique column names, as described 
originally in Chapter 5. 

The policyholder is the customer in this schema. The policyholder can be multi-
ple people, such as a person and his or her spouse, or the policyholder can be a 
business entity. The policyholder dimension often qualifies as a large dimension, 
as is the case with our $5 billion insurer that caters to millions of policyholders. 

Slowly Changing Dimensions 

Insurance companies typically are very interested in tracking changes to dimen-
sions over time. We’ll apply the three basic techniques for handling slowly 
changing dimension attributes that we introduced in Chapter 4 to the policy-
holder dimension. 
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With the type 1 approach, we simply overwrite the preceding dimension 
attribute value. This is the simplest approach to dealing with attribute changes 
because the attributes always represent the most current descriptors. For 
example, perhaps the business agrees to handle changes to the policyholder’s 
date of birth as a type 1 change based on the assumption that any changes to 
this attribute are intended as corrections. In this manner, all fact table history 
for this policyholder appears to have always been associated with the updated 
date-of-birth value. 

Since the policyholder’s ZIP code is key input to the insurer’s pricing and risk 
algorithms, users are very interested in tracking ZIP code changes, so we opt 
to use a type 2 approach to this attribute. Type 2 is the most common slowly 
changing dimension (SCD) approach when there’s a requirement for accurate 
change tracking over time. In this case, when the ZIP code changes, we create 
a new policyholder dimension row with a new surrogate key and updated 
geographic attributes. We do not go back and revisit the fact table. Historical 
fact table rows, prior to the ZIP code change, still reflect the old surrogate key. 
Going forward, we use the policyholder’s new surrogate key so that new fact 
table rows join to the postchange profile. While this technique is extremely 
graceful and powerful, it places more burdens on the data staging application. 
Also, the number of rows in the dimension table grows with each type 2 SCD 
change. Given that there are already well over 1 million rows in our policy-
holder dimension table, we may opt to use a minidimension for tracking ZIP 
code changes, which we’ll review shortly. 

Finally, let’s assume that each policyholder is classified as belonging to a par-
ticular segment. Perhaps we historically tagged our nonresidential policy-
holders as either commercial or government entities. Going forward, the 
business users want more detailed customer classifications. For instance, the 
new policyholder segments may differentiate between large multinational, 
middle market, and small business commercial customers, in addition to 
nonprofit organizations and governmental agencies. For a period of time, 
users want the ability to analyze results by either the historical or new seg-
ment classifications. In this case we could use a type 3 approach to track the 
change for a period of time. We add a column to the dimension table, labeled 
“Historical Policyholder Segment Type,” to retain the old classifications. The 
new classification values would populate the segment attribute that has been 
a permanent fixture on the policyholder dimension. This approach, while 
not extremely common, allows us to see performance by either the current or 
historical segment maps. This is useful when there’s been an en masse 
change, such as the customer classification realignment. Obviously, the type 
3 technique becomes overly complex if we need to track more than one ver-
sion of the historical map or if we need to track before and after changes for 
multiple dimension attributes. 
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Minidimensions for Large or Rapidly 
Changing Dimensions 

As we referenced earlier, the policyholder dimension qualifies as a large 
dimension with more than 1 million rows. The covered item dimension likely 
also falls into this category because most policyholders insure more than one 
specific item. In both cases, it is often important to track content values accu-
rately for a subset of attributes. For example, we need an accurate description 
of some policyholder and covered item attributes at the time the policy was 
created, as well as at the time of any adjustment or claim. We saw in Chapter 6 
that the practical way to track changing attributes in large dimensions was to 
split the closely monitored, more rapidly changing attributes into one or more 
minidimensions directly linked to the fact table with a separate surrogate key. 
The use of minidimensions has an impact on the efficiency of attribute brows-
ing because users typically want to browse and constrain on these changeable 
attributes, as well as on updating. If all possible combinations of the attribute 
values in the minidimension have been created already, handling a mini-
dimension change simply means placing a different key in the fact table row 
from a certain point in time forward. Nothing else needs to be changed or 
added to the database. 

Multivalued Dimension Attributes 

We discussed multivalued dimension attributes in Chapter 9 when we associ-
ated multiple customers with an account and then again in Chapter 13 when a 
patient encounter involved multiple diagnoses. We certainly could duplicate 
the multiple customers per account design for each policy, but in this case 
study we’ll look at yet another multivalued modeling situation: the relation-
ship between commercial customers and their industry classifications. 

Each commercial customer may be associated with one or more standard 
industry classification (SIC) codes. A large, diversified commercial customer 
could be represented by a dozen or more SIC codes. Much like we did with 
Chapter 13’s diagnosis group, we build an SIC group bridge table to tie 
together all the SIC codes within an SIC group. This SIC bridge table joins to the 
customer dimension as an outrigger. It allows us to report fact table metrics by 
any attribute in the SIC table, either correctly weighted or as an impact report. 
To handle the case where no valid SIC code is associated with a given customer, 
we simply create a special SIC dimension row that represents “Unknown.” 

Let’s move on to the coverage dimension. Large insurance companies will 
have dozens or even hundreds of separate coverage products available to sell 
for a given type of covered item. If the coverage has specific limits or 
deductibles, we generally treat these numeric parameters as facts rather than 
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creating a distinct coverage for every different possible value. For example, a 
basic limit on homeowner’s fire protection is the appraised value of the house. 
Since the appraised value can be thought of as a continuously valued numeric 
quantity that is measured each time we look at a different policy and can even 
vary for a given policy over time, we treat limits as legitimate facts. 

The covered item is the house, the car, or other specific insured item. The cov-
ered item dimension contains one row for each actual covered item. As we men-
tioned earlier, the covered item dimension is usually somewhat larger than the 
policyholder dimension, so it’s a good place to consider deploying a mini-
dimension. In general, it is not desirable to capture the variable descriptions of 
the physical covered objects as facts because most are textual and are not 
numeric or continuously valued. In most cases a textual measurement is a 
description of something drawn from a discrete list of alternatives. The designer 
should make every effort to put textual measures into dimension tables because 
they can be correlated more effectively with the other textual attributes in a 
dimension and require much less space, especially if the proposed fact table text 
column is a wide, fixed-width field that is often empty. Textual facts can be 
counted and constrained on, but if they are unpredictable free text, the usual 
dimensional activities of constraining and grouping on these text values will be 
of little value. A true text fact is not a very good thing to have in a fact table. 

The employee is the individual responsible for creating the transaction. For 
create policy and create coverage transactions, the responsible employee is the 
agent. For rating transactions, the employee is the rater. Likewise, the under-
writer is the employee involved in underwriting transactions. 

Degenerate Dimension 

The policy number will be treated as a degenerate dimension if we have 
extracted all the header information associated with the policy into the other 
dimensions. We obviously want to avoid creating a policy transaction fact table 
with just several keys while embedding all the descriptive details (including the 
policyholder, dates, and coverages) in a policy dimension. In some cases there 
may be one or two attributes that still belong to the policy and not to another 
dimension. For example, if the underwriter establishes an overall risk grade for 
the policy, based on the totality of the coverages and covered items, then this risk 
grade probably belongs in a policy dimension. Of course, in this scenario we no 
longer have a degenerate dimension. 

The policy transaction type dimension is a small dimension consisting of the 
transaction types listed earlier together with all the possible reason descrip-
tions for the applicable transactions. Usually, a transaction type dimension 
contains less than 100 entries, although not always. 
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Audit Dimension 

We always have the option to add keylike information to the transaction fact 
row, such as an audit key that links to a dimension row created by the extract 
process. As we described in Chapter 8, each audit dimension row can describe 
the data lineage of the fact row, including the time of the extract, the source 
table, and the version of the extract software. 

We are now able to present the policy transaction schema, as illustrated in Fig-
ure 15.2. The resulting fact table illustrates several characteristics of a classic 
transaction-grain fact table. First of all, the fact table consists almost entirely of 
keys. Transaction-level schemas allow us to analyze behavior in extreme detail. 
As we descend to lower granularity with atomic data, the fact table naturally 
sprouts more dimensionality. In this case the fact table has a single numeric fact, 
called policy transaction amount. Interpretation of the amount column depends 
on the type of transaction, as identified in the transaction type dimension. 
Because there are different kinds of transactions in the same fact table, we usu-
ally cannot label the fact with anything more specific. If the transaction-
processing system introduces additional types of transactions, they represent a 
change to the data content but don’t necessitate a schema modification. 

Heterogeneous Products 

While there is strong support for an enterprise-wide perspective at our insur-
ance company, the business users don’t want to lose sight of their line-of-
business specifics. Insurance companies typically are involved in multiple yet 
very different lines of business. For example, the detailed parameters of home-
owners’ coverages differ significantly from automobile coverages. And these 
both differ substantially from personal property coverage, general liability 
coverage, and other types of insurance. Although all coverages can be coded 
into the generic structures we have used so far in this chapter, insurance com-
panies want to track numerous specific attributes (and perhaps facts) that only 
make sense for a particular coverage and covered item. We can generalize the 
initial schema developed in Figure 15.2 by using the heterogeneous products 
technique we discussed in Chapter 9. 

Policy Effective Date Key (FK) 
Policyholder Key (FK) 
Employee Key (FK) 
Coverage Key (FK) 
Covered Item Key (FK) 

Policy Number (DD) 

Date Dimension (views for 2 roles) 

Policyholder Dimension 

Employee Dimension 
Covered Item Dimension 

Coverage Dimension 

Policy Transaction Date Key (FK) 

Policy Transaction Type Key (FK) 
Policy Transaction Audit Key (FK) 

Policy Transaction Amount 

Policy Transaction Fact 

Policy Transaction Type Dimension 

Policy Transaction Audit Dimension 

Figure 15.2 Policy-creation transaction schema. 
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In Figure 15.3 we show a schema to handle the specific attributes that describe 
automobiles and their coverages. For each line of business (or coverage type), 
we create custom dimension tables for both the covered item and the coverage. 
When an access application needs the specific attributes of a single coverage 
type, it uses the appropriate custom dimension tables. 

Notice in this transactional schema that we don’t need a custom fact table. We 
only introduce custom dimension tables to handle the special automobile 
attributes. No new keys need to be generated; logically, all we are doing is 
extending existing dimension rows. 

Alternative (or Complementary) 
Policy Accumulating Snapshot 

Finally, before we leave policy transactions, we want to mention briefly the 
use of an accumulating snapshot to capture the cumulative effect of the trans-
actions. In this case the grain of the fact table likely would be one row for each 
coverage/covered item on a policy. We can envision including the following 
policy-centric dates in the fact table: quoted, rated, underwritten, effective, 
renewed, and expiration. Many of the other dimensions we discussed also 
would be applicable to this schema, with the exception of the transaction type 
dimension. The accumulating snapshot likely would have an expanded fact 
set. As we discussed in Chapter 5, an accumulating snapshot is effective for 
collecting information about the key milestones of the policy transaction 
process. It represents the cumulative lifespan of a policy, covered items, and 
coverages; however, it does not capture information about each and every 
transaction that occurred. Unusual transactional events or unexpected out-
liers from the standard process could be masked with an accumulating per-
spective. On the other hand, this type of snapshot, sourced from the 
transactions, provides a clear picture of the durations or lag times between 
key process events. 

Automobile Coverage Policy Transaction Fact Automobile Covered
Dimension Item Dimension 

Coverage Key (PK) 
Coverage Description 
Line of Business Description 
Automobile Deductible 

Rental Car Coverage Included 

Policy Effective Date Key (FK) 
Policyholder Key (FK) 
Employee Key (FK) 
Coverage Key (FK) 
Covered Item Key (FK) 

Policy Number (DD) 

Covered Item Key (PK) 
Covered Item Description 

Engine Size 
Number of Passenger Capacity 
Driver's Airbag Indicator 

Windshield Coverage Included 

Policy Transaction Date Key (FK) 

Policy Transaction Type Key (FK) 
Policy Transaction Audit Key (FK) 

Policy Transaction Amount 

Vehicle Manufacturer 
Vehicle Make 
Vehicle Year 
Vehicle Classification 

Figure 15.3 Policy transaction schema with custom automobile dimension tables. 
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Policy Periodic Snapshot

The policy transaction schema is very useful for answering a wide range of ques-
tions. However, the blizzard of transactions makes it difficult to quickly deter-
mine the status or financial value of a policy at a given point in time. Even if all 
the necessary detail lies in the transaction data, a snapshot perspective would 
require rolling the transactions forward from the beginning of history. Not only is 
this nearly impractical on a single policy, but it is ridiculous to think about gener-
ating summary top-line views of key performance metrics in this way. 

The answer to this dilemma is to create a second fact table that operates as a 
companion to the policy transaction table. In this case the business process is 
the monthly policy premium snapshot. The granularity of the fact table is one 
row per coverage and covered item on a policy each month. 

Conformed Dimensions 
Of course, when we approach this second business process within our insur-
ance company, we strive to reuse as many dimensions as makes sense at the 
periodic snapshot granularity. Hopefully, you have become a conformed 
dimension enthusiast by now. As we indicated in Chapter 3, conformed 
dimensions used in separate fact tables either must be identical or must repre-
sent a subset of the most granular version of the dimension. 

The policyholder, covered item, and coverage dimensions would be identical. 
We replace the daily date dimension with a conformed month dimension 
table. We don’t need to track all the employees that were somehow involved in 
policy transactions on a monthly basis, although it may be useful to retain the 
involved agent, especially since field operations are so focused on ongoing 
revenue performance analysis. The transaction type dimension would not be 
used because it does not apply at the periodic snapshot granularity. Instead, 
we introduce a status dimension so that users can discern quickly the current 
state of a coverage or policy, such as new policies or cancellations this month 
and over time. 

Conformed Facts 
While we’re on the topic of conformity, we also need to use conformed facts. If 
the same facts appear in multiple fact tables, such as some facts that are com-
mon to this snapshot fact table as well as the consolidated fact table we’ll dis-
cuss later in this chapter, then they must have consistent definitions and labels. 
If the facts are not identical, then they need to be given different names. 
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Pay-in-Advance Metrics 

Business management wants to know how much premium revenue was written 
(or sold) each month, as well as how much revenue was earned. In this case we 
can’t derive revenue metrics merely by summarizing the detailed policy trans-
actions. While a policyholder may contract and pay for specific coverages on 
specific covered items for a period of time, the revenue is not earned until the 
service is provided. In the case of the insurance company, the revenue from a 
policy is earned month by month as long as the customer doesn’t cancel the pol-
icy. A correct calculation of a metric such as earned premium would mean fully 
replicating all the business rules of the operational revenue-recognition system 
within the data warehouse access application. Typically, the rules for converting 
a transaction amount into its monthly revenue impact are very complex, espe-
cially with coverage upgrades and downgrades. Fortunately, these metrics can 
be sourced from a separate operational revenue-recognition system. 

As we see in the periodic snapshot in Figure 15.4, we include two premium 
revenue metrics in the fact table to handle the different definitions of written 
versus earned revenue. Simplistically, if an annual policy for a given coverage 
and covered item was written on January 1 for a cost of $600, then the written 
premium for January would be $600, whereas the earned premium is $50 ($600 
divided by 12 months). In February, the written premium is zero, whereas the 
earned premium is still $50. If the policy is canceled on March 31, the earned 
premium for March is $50, whereas the written premium is a negative $450. 
Obviously, at this point the earned-revenue stream comes to a crashing halt. 

Pay-in-advance business scenarios typically require the combination of a 
transaction-grained fact table and a monthly snapshot-grained fact table in 
order to answer questions of transaction frequency and timing, as well as 
questions of earned income in a given month. We can almost never add 
enough facts to a snapshot schema to do away with the need for a transaction 
schema, or vice versa. 

Month End Snapshot Date Key (FK) 
Policyholder Key (FK) 
Coverage Key (FK) 
Covered Item Key (FK) 
Agent Key (FK) 
Policy Status Key (FK) 
Policy Number (DD) 

Earned Premium Revenue Amount 

Policy Premium Snapshot Fact 

Month End Dimension 

Policyholder Dimension 

Coverage Dimension 

Covered Item Dimension 

Agent Dimension 

Policy Status Dimension 

Written Premium Revenue Amount 

Figure 15.4 Periodic policy snapshot schema. 
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Heterogeneous Products Again 

We are again confronted with the need to look at snapshot data by more spe-
cific line-of-business attributes. In this case we also need to grapple with 
snapshot facts that vary by line of business. Because the custom facts for each 
line are incompatible with each other, for any given snapshot row, most of 
the fact table would be filled with nulls. In this scenario, the answer is to sep-
arate the monthly snapshot fact table physically by line of business. We end 
up with the single core monthly snapshot schema and a series of custom 
monthly snapshots, one for each line of business or coverage type. Each of 
the custom snapshot fact tables is a copy of a segment of the core fact table 
for just those coverage keys and covered item keys belonging to a particular 
line of business. We include the core facts as a convenience so that analyses 
within a coverage type can use both the core and custom facts without hav-
ing to access two large fact tables. Alternatively, we could handle the 
extended fact set by adding a special join key to each fact table row, as 
described in Chapter 9. 

Multivalued Dimensions Again 

Automobile insurance provides us with another opportunity to discuss multi-
valued dimensions. Often multiple insured drivers are associated with a poli-
cyholder. We can construct a bridge table, as illustrated in Figure 15.5, to 
capture the relationship between the insured drivers and the policyholder. In 
this case the insurance company can calculate the weighting factor more real-
istically based on each driver’s share of the total premium cost. We also can 
assign begin and end dates to the bridge table rows to capture relationship 
changes over time, as required. 

Policy Premium Snapshot Fact 

Month End Snapshot Date Key (FK) 
Policyholder Key (FK) 
More Foreign Keys … 

Earned Premium Revenue Amount 
Written Premium Revenue Amount 

Policyholder-Insured 
Driver Bridge 

Policyholder Key (FK) 
Insured Driver Key (FK) 
Weighting Factor 

Insured Driver Dimension 

Insured Driver Key (PK) 
Insured Driver Name 
Insured Driver Address Attributes ... 
Insured Driver Date of Birth 
Insured Driver Occupation 
Insured Driver Accident History Attributes ... 

Figure 15.5 Handling multiple drivers associated with a policy. 
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More Insurance Case Study Background

Unfortunately, the insurance business has a downside. We learn from the inter-
viewees that there’s more to life than collecting premium payments. The costs in 
this industry predominantly result from claims or losses. After a policy with its 
associated coverages and covered items is in effect, then a claim can be made 
against a specific coverage and covered item. A claimant, who may be the policy-
holder or perhaps a new party not previously known to the insurance company, 
makes the claim. The claimant provides a description of the loss in the claim. The 
nature of the claim obviously depends on the coverage and covered item. 

When the insurance company opens a new claim, a reserve is usually estab-
lished at this time. The reserve is a preliminary estimate of the insurance com-
pany’s eventual liability for the claim. As further information becomes known, 
this reserve can be adjusted. 

Before the insurance company pays any claim, there is usually an investigative 
phase where the insurance company sends out an adjuster to examine the cov-
ered item and interview the claimant, policyholder, or other individuals 
involved. The investigative phase produces a stream of transactions. In com-
plex claims, various outside experts may be required to pass judgment on the 
claim or the extent of the damage. 

In most cases, after the investigative phase, the insurance company issues a 
number of payments. Many of these payments go to third parties such as doc-
tors, lawyers, or automotive body shop operators. Some payments may go 
directly to the claimant. A large insurance company may have more than 
1,000 individuals who are authorized to issue payments against open claims. 
For this reason, it is important to clearly identify the employee responsible for 
every payment made against an open claim. 

The insurance company may take possession of the covered item after replac-
ing it for the policyholder or claimant. In many such cases there is a salvage 
value to the item, which is realized eventually by the insurance company. Sal-
vage payments received are a credit against the claim accounting. 

Eventually, the payments are completed, and the claim is closed. If nothing 
unusual happens, this is the end of the transaction stream generated by the 
claim. However, in complex cases, further claims are made at later times or 
claimant lawsuits may force a claim to be reopened. In this case the reserve usu-
ally is reset as well. An important measure for an insurance company is how 
often and under what circumstances claims are reopened and reserves are reset. 

Toward the tail end of processing a complex claim, the insurance company 
may believe that further money will flow back to the insurance company when 
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pending lawsuits or counterclaims are resolved eventually. The insurance 
company may choose to sell the rights to all such further recoveries to special-
ists who are prepared to wait out the resolution of the lawsuits or counter-
claims. Although such sales take place at a discount, they allow the insurance 
company to get cash immediately and close its books on the claim. This option 
is known as subrogation and generates its own special transaction. 

In addition to analyzing the detailed transactions, the insurance company also 
wants to understand what happens during the life of a claim. For example, the 
time lag between the claim open date and the first payment date is an impor-
tant measure of claims processing efficiency. 

Updated Insurance Bus Matrix 
With a better understanding of the claims side of the house, we’ll revisit the 
draft matrix from Figure 15.1. Based on the new requirements we’ve uncov-
ered, we add another row to the matrix to accommodate claims transactions, 
as shown in Figure 15.6. Many of the dimensions identified earlier in the proj-
ect will be reused; we added new columns to the matrix for the claim, 
claimant, and third party. 

Project teams sometimes struggle with the level of detail captured in a bus 
matrix. In the planning phase of an architected data warehouse project, it 
makes sense to stick with rather high-level business processes (or sources). 
Multiple fact tables may result from each of these business process rows. As 
we delve into the implementation phase, we sometimes take a subset of the 
matrix to a lower level of detail by reflecting all the fact tables resulting from 
the process as separate matrix rows. At this point the matrix can be enhanced 
in several ways. We can add columns to reflect the granularity and metrics 
associated with each fact table. Likewise, we can indicate the use of more sum-
marized conformed dimensions, especially when documenting an aggregated 
schema. We’ve illustrated this lower implementation bus matrix in Figure 15.7. 
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Figure 15.6 Updated insurance bus matrix. 
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Figure 15.7 Implementation bus matrix detailing fact tables for each business process. 
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Claims Transactions

As we learned earlier, the operational claims processing system generates a 
slew of transactions, including the following transaction types: 

�� Open claim, reopen claim, close claim 

�� Set reserve, reset reserve, close reserve 

�� Set salvage estimate, receive salvage payment 

�� Adjuster inspection, adjuster interview 

�� Open lawsuit, close lawsuit 

�� Make payment, receive payment 

�� Subrogate claim 

We discovered when updating the Figure 15.6 bus matrix that this schema 
uses a number of dimensions developed for the policy world. We again have 
two role-playing dates associated with the claims transactions. Unique col-
umn labels should distinguish the claims transaction and effective dates 
from those associated with policy transactions. The employee is the 
employee involved in the transactional event. As mentioned in the business 
case, this is particularly interesting for payment authorization transactions. 
The claims transaction type dimension would include the transaction types 
and groupings just listed. 

As shown in Figure 15.8, there are several new dimensions in the claims 
transaction fact table. The claim dimension contains a codified description of 
the claim. Generally, it must map to the coverage and covered item in order 
to be valid and make sense. The claimant is the party making the claim, typ-
ically an individual. The third party is a witness, expert, or payee. The 
claimant and third-party dimensions usually are dirty dimensions because 
of the difficulty of reliably identifying and tracking them across different 
claims, although there certainly would be value in doing so. Unscrupulous 
potential payees may go out of their way not to identify themselves in a way 
that would make it easy to tie them to other claims in the insurance com-
pany’s system. 

The heterogeneous product techniques discussed earlier in this chapter are 
also applicable to claims data. The only difference is that we probably want to 
extend the claim dimension table, in addition to the covered item and cover-
age dimension tables, because it seems plausible that there could be special 
claims attributes that depend on the coverage type. 



Claim Effective Date Key (FK) 
Policyholder Key (FK) 
Employee Key (FK) 
Coverage Key (FK) 
Covered Item Key (FK) 
Claimant Key (FK) 
Claim 3rd Party Key (FK) 

Claim Key (FK) 
Policy Number (DD) 

Date Dimension (views for 2 roles) 

Policyholder Dimension 

Employee Dimension 

Coverage Dimension 

Covered Item Dimension 

Claimant Dimension 

Claim 3rd Party Dimension 

Claim Dimension 
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Claim Transaction Date Key (FK) 

Claim Transaction Type Key (FK) 

Claim Transaction Amount 

Claims Transaction Fact 

Claim Transaction Type Dimension 

Figure 15.8 Claims transaction schema. 

Claims Accumulating Snapshot 

As we’ve seen in the past, even with a robust transaction-level schema, there is 
a whole class of urgent business questions that can’t be answered using only 
transaction detail. It is difficult to derive claim-to-date performance measures 
by traversing through every detailed transaction from the beginning of the 
claim’s history and applying the transactions appropriately. 

On a periodic basis, perhaps at the close of each day, we can roll forward all the 
transactions to update an accumulating claims snapshot incrementally. The 
granularity is one row for each unique combination of policy, coverage, cov-
ered item, and claim. The row is created once when the claim is opened and 
then is updated throughout the life of a claim until it is finally closed. 

Many of the dimensions are reusable, conformed dimensions, as illustrated in 
Figure 15.9. We include more dates in this fact table to track the key milestones 
in the life of a claim. The dates allow us to observe time lags easily. We’ve also 
added a status dimension to quickly identify all open, closed, or reopened 
claims, for example. Transaction-specific dimensions such as employee, 
claimant, third party, and claim transaction type are suppressed, whereas the 
list of additive, numeric measures has been expanded. 

In cases where a claim is not so short-lived, such as with long-term disability 
or care claims that have a multiyear life span, we may represent the snapshot 
as a periodic monthly snapshot rather than an accumulating variety. The grain 
of the periodic snapshot would be one row for every working claim each 
month. The facts would represent numeric, additive facts that occurred during 
the month, such as amount claimed, amount paid, and change in reserve. In 
some situations we find ourselves building all three types of fact tables for the 
same business process. 



Claim Open Date Key (FK) 
Claim Assessment Completion Date Key (FK) 
Claim 1st Payment Date Key (FK) 
Claim Most Recent Payment Date Key (FK) 

Claim Close Date Key (FK) 
Policyholder Key (FK) 
Agent Key (FK) 
Coverage Key (FK) 
Covered Item Key (FK) 
Claimant Key (FK) 
Claim Status Key (FK) 
Claim Key (FK) 
Policy Number (DD) 

Assessed Damage Amount 

Claim Amount Paid 
Payment Received 
Salvage Received 

Claim Open Date to Assessment Lag 
Claim Open Date to 1st Payment Lag 
Claim Open Date to Close Lag 

Claims Accumulating Snapshot Fact 

Date Dimension 
(views for 6 roles) 

Policyholder Dimension 

Agent Dimension 

Coverage Dimension 

Covered Item Dimension 

Claimant Dimension 

Claim Status Dimension 

Claim Dimension 
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Claim Most Recent Transaction Date Key (FK) 

Original Reserve Amount 

Reserve Adjustment Amount 
Current Reserve Amount 
Open Reserve Amount 

Number of Transactions 
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Figure 15.9 Claims accumulating snapshot schema. 

Policy/Claims Consolidated Snapshot 

With the four fact tables designed thus far (in addition to the heterogeneous 
extensions), we deliver a robust perspective of the policy and claims transac-
tions, in addition to snapshots from both processes. However, recall that the 
users expressed a strong interest in profit metrics. While premium and claim 
financial metrics could be derived by separately querying two fact tables and 
then combining the result set, we opt to go the next step in the spirit of ease of 
use and performance. We can construct another fact table to bring the pre-
mium revenue and claim loss metrics together, as shown in Figure 15.10. This 
table has a reduced set of dimensions corresponding to its slightly summa-
rized monthly granularity. As you recall from Chapter 7, we refer to this as a 
consolidated fact table because it combines data from multiple business 
processes. It is best to develop consolidated fact tables after the base metrics 
have been delivered in separate dimensional models. 



Month End Snapshot Date Key (FK) 
Policyholder Key (FK) 
Coverage Key (FK) 
Covered Item Key (FK) 
Agent Key (FK) 
Policy Status Key (FK) 
Claim Status Key (FK) 
Policy Number (DD) 

Earned Premium Revenue Amount 
Claim Paid Amount 
Claim Receipt Amount 

Consolidated Policy/Claims Fact 

Month End Dimension 

Policyholder Dimension 

Coverage Dimension 

Covered Item Dimension 

Agent Dimension 

Policy Status Dimension 

Claim Status Dimension 
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Written Premium Revenue Amount 

Figure 15.10 Policy/claims consolidated schema. 

Factless Accident Events 

When we discussed factless fact tables in Chapter 12, we referred to them as the 
collision of keys at a point in space and time. In the case of an automobile 
insurer, we can record literal collisions using a factless fact table. In this situation 
the fact table registers the many-to-many correlations between the loss parties 
and loss items or, to put it less euphemistically, all the correlations between the 
people and vehicles involved in an accident. 

Several new dimensions appear in the factless fact table shown in Figure 15.11. 
The loss party describes other individuals who were involved in the accident, 
possibly as passengers, witnesses, or in another capacity. If the loss party was 
not associated with a vehicle in the accident, then the loss vehicle key would 
join to a “No Vehicle” entry in that dimension. The loss affiliation explains the 
role of the loss party (and loss vehicle, if applicable) to the claim. Again, as we 
did in Chapter 12, we include a fact that is always valued at 1 to facilitate 
counting and aggregation. This factless fact table can represent complex acci-
dents involving many individuals and vehicles because the number of 
involved parties with various roles is open-ended. When there is more than 
one claimant or loss party associated with an accident, we can optionally treat 
these dimensions as multivalued dimensions using claimant group and loss 
party group bridge tables. This has the advantage that the grain of the fact 
table is preserved as one record per accident claim. Either schema variation 
could answer questions such as “How many bodily injury claims did we han-
dle where ABC Legal Partners represented the claimant and EZ-Dent-B-Gone 
body shop performed the repair?” 
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Loss Vehicle Key (FK) 
Loss Vehicle Dimension 
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Figure 15.11 Factless fact table for accident events. 

Common Dimensional Modeling 
Mistakes to Avoid 

As we close this final chapter on dimensional modeling techniques, we 
thought it would be helpful to establish boundaries beyond which designers 
should not go. Thus far in this book we’ve presented concepts by positively 
stating that you should use technique A in situation X. Now, rather than focus-
ing on to-dos, we turn our attention to not-to-dos by elaborating on dimen-
sional modeling techniques that should be avoided. As we did with Chapter 
1’s list of pitfalls, we’ve listed the not-to-dos in reverse order of importance. Be 
aware, however, that even the less important mistakes can seriously compro-
mise your data warehouse. 

Mistake 10: Place text attributes used for constraining and grouping in a 
fact table. The process of creating a dimensional model is always a kind of 
triage. The numeric measurements delivered from an operational business 
process source belong in the fact table. The descriptive textual attributes 
from the context of the measurements go in dimension tables. Finally, we 
make a field-by-field decision about the leftover codes and pseudonumeric 
items, placing them in the fact table if they are more like measurements 
and in the dimension table if they are more like physical descriptions of 
something. You shouldn’t lose your nerve and leave true text, expecially 
comment fields, in the fact table. We need to get these text attributes off the 
main runway of your data warehouse and into dimension tables. 

Mistake 9: Limit verbose descriptive attributes in dimensions to save 
space. You might think that you are being a good, conservative designer by 
keeping the size of your dimensions under control. However, in virtually 
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every data warehouse, the dimension tables are geometrically smaller than 
the fact tables. Having a 100-MB product dimension table is insignificant if 
the fact table is 100 times as large! Your job as designer of an easy-to-use 
data warehouse is to supply as much verbose descriptive context in each 
dimension as you can. Make sure every code is augmented with readable 
descriptive text. Better yet, you probably can remove the codes entirely. 
Remember that the textual attributes in the dimension tables provide the 
user interface to data browsing, constraining, or filtering, as well as the 
content for the row and column headers in your final reports. 

Mistake 8: Split hierarchies and hierarchy levels into multiple dimensions. 
A hierarchy is a cascaded series of many-to-one relationships. For example, 
many products may roll up to a single brand; and many brands may roll 
up to a single category. If your dimension is expressed at the lowest level 
of granularity (for example, product), then all the higher levels of the hier-
archy can be expressed as unique values in the product row. Users under-
stand hierarchies. Your job is to present the hierarchies in the most natural 
and efficient manner. A hierarchy belongs together in a single physical flat 
dimension table. Resist the urge to snowflake a hierarchy by generating a 
set of progressively smaller subdimension tables. In this case you would be 
confusing backroom data staging with front room data presentation! 
Finally, if more than one roll-up exists simultaneously for a dimension, in 
most cases it’s perfectly reasonable to include multiple hierarchies in the 
same dimension, as long as the dimension has been defined at the lowest 
possible grain (and the hierarchies are uniquely labeled). 

Mistake 7: Ignore the need to track dimension attribute changes. Contrary 
to popular belief, business users often want to understand the impact of 
changes to a subset of the dimension tables’ attributes. It is unlikely that 
your users will settle for dimension tables with attributes that always reflect 
the current state of the world. We have three techniques for tracking slowly 
moving attribute changes; don’t rely on type 1 exclusively. Likewise, if a 
group of attributes changes rapidly, don’t delay splitting a dimension to 
allow for a more volatile minidimension. You can’t always understand the 
volatility of your data when you first design the dimensions. Suppose that 
your product dimension contains a set of attributes called standard parame­
ters. At the beginning of the design process you are assured that these stan-
dard parameters are fixed for the life of the product. However, after rolling 
out your data warehouse, you discover that these attributes change several 
times per year for each product. Sooner, rather than later, you probably 
should separate your product dimension into two dimensions. The new 
product standard parameter dimension will keep your original product 
dimension from burgeoning disastrously if you tried to model it as slowly 
changing. 
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Mistake 6: Solve all query performance problems by adding more hard-
ware. Aggregates, or derived summary tables, are the most cost-effective 
way to improve query performance. Most query tool vendors have explicit 
support for the use of aggregates, which depend on explicit dimensional 
modeling constructs. Adding expensive hardware should be done as part 
of a balanced program that includes building aggregates, creating indices, 
choosing query-efficient DBMS software, increasing real memory size, 
increasing CPU speed, and finally, adding parallelism at the hardware 
level. 

Mistake 5: Use operational or smart keys to join dimension tables to a fact 
table. Novice data warehouse designers are sometimes too literal minded 
when designing the dimension tables’ primary keys that connect to the for-
eign keys of the fact table. It is counterproductive to declare a whole suite 
of dimension attributes as the dimension table key and then use them all as 
the basis of the physical join to the fact table. This includes the unfortunate 
practice of declaring the dimension key to be the operational key, along 
with an effective date. All types of ugly problems will arise eventually. You 
should replace the smart physical key with a simple integer surrogate key 
that is numbered sequentially from 1 to N, where N is the total number of 
rows in the dimension table. 

Mistake 4: Neglect to declare and then comply with the fact table’s grain. 
All dimensional designs should begin with the business process that gen-
erates the numeric performance measurements. Second, specify the exact 
granularity of that data. Building fact tables at the most atomic, granular 
level will gracefully resist the ad hoc attack. Third, surround these mea-
surements with dimensions that are true to that grain. Staying true to the 
grain is a crucial step in the design of a dimensional data model. A subtle 
but serious error in a dimensional design is to add helpful facts to a fact 
table, such as rows that describe totals for an extended time span or a large 
geographic area. Although these extra facts are well known at the time of 
the individual measurement and would seem to make some applications 
simpler, they cause havoc because all the automatic summations across 
dimensions overcount these higher-level facts, producing incorrect results. 
Each different measurement grain demands its own fact table. 

Mistake 3: Design the dimensional model based on a specific report. A 
dimensional model has nothing to do with an intended report! Rather, it is 
a model of a measurement process. Numeric measurements form the basis 
of fact tables. The dimensions that are appropriate for a given fact table are 
the physical context that describes the circumstances of the measurements. 
We see that a dimensional model is based solidly on the physics of a mea-
surement process and is quite independent of how a user chooses to define 
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a report. A project team once confessed to us that they had built several 
hundred fact tables to deliver order management data to their users. It 
turned out that each fact table had been constructed to address a specific 
report request. The same data was being extracted many, many times to 
populate all these fact tables. Not surprisingly, the team was struggling to 
update the databases within the nightly batch window. Rather than 
designing a quagmire of report-centric schemas, they should have focused 
on the measurement process(es). The users’ requirements could have been 
handled with a well-designed schema for the atomic data along with a 
handful (not hundreds) of performance-enhancing aggregations. 

Mistake 2: Expect users to query the lowest-level atomic data in a normal-
ized format. The lowest-level data is always the most dimensional and 
should be the foundation of your dimensional design. Data that has been 
aggregated in any way has been deprived of some of its dimensions. You 
can’t build a data mart with aggregated data and expect your users and 
their tools to seamlessly drill down to third normal form data for the 
atomic details. Normalized models may be helpful for staging the data, but 
they should never be used for presenting the data to business users. 

Mistake 1: Fail to conform facts and dimensions across separate fact tables. 
This final not-to-do should be presented as two separate mistakes because 
they are both so dangerous to a successful data warehouse environment, 
but we’ve run out of mistake numbers to assign, so we’ve lumped them 
into one. 

It would be a shame to get this far and then build isolated data stovepipes. 
We refer to this as snatching defeat from the jaws of victory. If you have a 
numeric measured fact, such as revenue, in two or more data marts 
sourced from different underlying systems, then you need to take special 
care to ensure that the technical definitions of these facts match exactly. If 
the definitions do not match exactly, then they shouldn’t both be referred 
to as revenue. This is called conforming the facts. 

Finally, the single most important design technique in the dimensional 
modeling arsenal is conforming your dimensions. If two or more fact 
tables have the same dimension, then you must be fanatical about making 
these dimensions identical or carefully chosen subsets of each other. When 
you conform your dimensions across fact tables, you will be able to drill 
across separate data sources because the constraints and row headers mean 
the same thing and match at the data level. Conformed dimensions are the 
secret sauce needed for building distributed data warehouses, adding 
unexpected new data sources to an existing warehouse, and making 
multiple incompatible technologies function together harmoniously. 
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Summary

In this final case study we designed a series of insurance dimensional models 
representing the culmination of many important concepts developed through-
out this book. Hopefully, now you feel comfortable and confident using the 
vocabulary and tools of a dimensional modeler. With dimensional modeling 
mastered, we turn our attention to all the other activities that occur during the 
lifecycle of a successful data warehouse project in the next chapter. Before you 
go forth and be dimensional, it’s useful to have this holistic perspective and 
understanding, even if your job focus is limited to modeling. 
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he gears shift rather dramatically in this chapter. Rather than focusing on 
dimensional modeling techniques, we turn our attention to everything else 
that occurs during the course of a data warehouse design and implementation 
project. We’ll walk through the life of a data warehouse project from inception 
through ongoing maintenance, identifying best practices at each step, as well 
as potential vulnerabilities. More comprehensive coverage of the data ware-
house lifecycle is available in The Data Warehouse Lifecycle Toolkit, by Ralph 
Kimball, Laura Reeves, Margy Ross, and Warren Thornthwaite (Wiley, 1998). 
This chapter is a crash course drawn from the complete text, which weighs in 
at a hefty 750+ pages. 

Some may perceive that this chapter’s content is applicable only to data ware-
house project managers. We certainly don’t feel that this is the case. Imple-
menting a data warehouse requires tightly integrated activities. We believe 
that everyone on the project team, including the business analyst, architect, 
database designer, data stager, and analytic application developer, needs a 
high-level understanding of the complete lifecycle of a data warehouse. Like 
the rest of the book, we’ve written this chapter so that it’s accessible to a broad 
audience. 

Chapter 16 covers the following concepts: 

�� Business dimensional lifecycle overview 
�� Data warehouse project planning and ongoing communication and management 
�� Tactics for collecting business requirements, including prioritization 
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�� Process for developing the technical architecture and then selecting products 
�� Dimensional design workshops 
�� Physical design considerations, including aggregation and indexing 
�� Data staging recommendations 
�� Analytic application design and development 
�� Recommendations for deployment, ongoing maintenance, and future growth 
�� Common mistakes to avoid when building and managing a data warehouse 

Business Dimensional Lifecycle Road Map 

When driving to a place we’ve never been to before, most of us rely on a road 
map. Similarly, a road map is extremely useful if we’re about to embark on the 
unfamiliar journey of data warehousing. The authors of The Data Warehouse 
Lifecycle Toolkit drew on decades of experience to develop the business dimen-
sional lifecycle approach. We chose the name because it reinforced several of 
our key tenets for successful data warehousing. First and foremost, data ware-
house projects must focus on the needs of the business. Second, the data pre-
sented to the business users must be dimensional. Hopefully, this comes as no 
surprise to any readers at this point! Finally, while data warehousing is an 
ongoing process, each implementation project should have a finite cycle with 
a specific beginning and end. 

We use the diagram in Figure 16.1 to encapsulate the major activities of the 
business dimensional lifecycle. The diagram illustrates task sequence, depen-
dency, and concurrency. It serves as a road map to help teams do the right 
thing at the right time. The diagram does not reflect an absolute timeline. 
While the boxes are equally wide, there’s a vast difference in the time and 
effort required for each major activity. 
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Figure 16.1 Business dimensional lifecycle diagram. 
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Road Map Major Points of Interest 
Before we dive into specifics, let’s take a moment to orient ourselves to the 
road map. The data warehouse lifecycle begins with project planning, as one 
would expect. During this module we assess the organization’s readiness for a 
data warehouse initiative, establish the preliminary scope and justification, 
obtain resources, and launch the project. Ongoing project management serves 
as a foundation to keep the remainder of the lifecycle on track. 

The second major task in Figure 16.1 focuses on business requirements defini-
tion. Notice the two-way arrow between project planning and business 
requirements definition because there’s much interplay between these two 
activities. Aligning the data warehouse with business requirements is 
absolutely crucial. Best-of-breed technologies won’t salvage a data warehouse 
that fails to focus on the business. Data warehouse designers must understand 
the needs of the business and translate them into design considerations. Busi-
ness users and their requirements have an impact on almost every design and 
implementation decision made during the course of a warehouse project. In 
Figure’s 16.1 road map, this is reflected by the three parallel tracks that follow. 

The top track of Figure 16.1 deals with technology. Technical architecture 
design establishes the overall framework to support the integration of multi-
ple technologies. Using the capabilities identified in the architecture design as 
a shopping list, we then evaluate and select specific products. Notice that 
product selection is not the first box on the road map. One of the most frequent 
mistakes made by novice teams is to select products without a clear under-
standing of what they’re trying to accomplish. This is akin to grabbing a ham-
mer whether you need to pound a nail or tighten a screw. 

The middle track emanating from business requirements definition focuses on 
data. We begin by translating the requirements into a dimensional model, as 
we’ve been practicing. The dimensional model is then transformed into a 
physical structure. We focus on performance tuning strategies, such as aggre-
gation, indexing, and partitioning, during the physical design activities. Last 
but not least, data staging extract-transformation-load (ETL) processes are 
designed and developed. As we mentioned earlier, the equally sized boxes 
don’t represent equally sized efforts; this is obvious when we think about the 
workload differential between physical design and data staging activities. 

The final set of tasks spawned by the business requirements definition is 
the design and development of analytic applications. The data warehouse 
project isn’t done when we deliver data. Analytic applications, in the form of 
parameter-driven templates and analyses, will satisfy a large percentage of 
the analytic needs of business users. 
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We bring together the technology, data, and analytic application tracks, along 
with a good dose of education and support, for a well-orchestrated deploy-
ment. From there, ongoing maintenance is needed to ensure that the data 
warehouse and its user community remain healthy and poised to leverage the 
investment. Finally, we handle future data warehouse growth by initiating 
subsequent projects, each returning to the beginning of the lifecycle all over 
again. 

Now that we have a high-level understanding of the road map’s overall struc-
ture, we’ll delve into each of the boxes of Figure 16.1 for more details. 

Project Planning and Management 

Not surprisingly, we launch the data warehouse with a series of project planning 
activities. We sometimes refer to these as marshmallow tasks because they’re soft, 
sticky, and can gum up the works of a data warehouse project seriously. 

Assessing Readiness 
Before moving full-steam ahead with significant data warehouse expenditures, 
it is prudent to take a moment to assess the organization’s readiness to proceed. 
Based on our cumulative experience from hundreds of data warehouses, we’ve 
identified five factors that differentiate projects that were predominantly 
smooth sailing versus those which entailed a constant struggle. These factors 
are leading indicators of data warehouse success. You don’t need high marks 
on every factor to move forward, but any shortfalls represent risks or vulnera-
bilities. We’ll describe the characteristics in rank order of importance. 

The most critical factor for successful data warehousing is to have a strong 
business sponsor. Business sponsors should have a vision for the potential 
impact of a data warehouse on the organization. They should be passionate 
and personally convinced of the project's value while realistic at the same time. 
Optimally, the business sponsor has a track record of success with other inter-
nal initiatives. He or she should be a politically astute leader who can convince 
his or her peers to support the warehouse. 

Sometimes there’s strong demand for a data warehouse coming from a single 
sponsor. Even if this person and his or her opportunity encompass the ware-
house characteristics we’re looking for, we can still encounter trouble in this 
scenario because lone sponsors tend to move on, either internally or externally. 
This is the most common cause for data warehouse stagnation. Some teams are 
confronted with too much demand coming from all corners of the organiza-
tion. Assuming that you (or your management) do not attempt to tackle all the 
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demand in one fell swoop, this is a great way to start. Finally, the business 
sponsor may be missing in action, but this doesn’t stop the IT organization 
from moving forward, nearly guaranteeing a data warehouse false start. This 
is the riskiest scenario; the project should slow down until the right business 
sponsor has been identified (or perhaps recruited) and has voiced a commit-
ment to the project. 

The second readiness factor is having a strong, compelling business motiva-
tion for building a data warehouse. This factor often goes hand in hand with 
sponsorship. A data warehouse project can’t merely deliver a nice-to-have 
capability; it needs to solve critical business problems in order to garner the 
resources required for a successful launch and healthy lifespan. Compelling 
motivation typically creates a sense of urgency, whether the motivation is from 
external (for example, competitive factors) or internal (for example, inability to 
analyze cross-organization performance following acquisitions) sources. 

The third factor when assessing readiness is feasibility. There are several 
aspects of feasibility, such as technical or resource feasibility, but data feasibil-
ity is the most crucial. Are we collecting real data in real operational source 
systems to support the business requirements? Data feasibility is a major con-
cern because there is no short-term fix if we’re not already collecting reason-
ably clean source data at the right granularity. 

The next factors are not project showstoppers but still influence your probabil-
ity for success. The fourth factor focuses on the relationship between the busi-
ness and IT organizations. In your company, does the IT organization 
understand and respect the business? Conversely, does the business under-
stand and respect the IT organization? The inability to honestly answer yes to 
these questions doesn’t mean that you can’t proceed. Rather, it implies that 
you need to vigilantly keep the business and IT representatives marching to 
the same drum. In many ways the data warehouse initiative can be an oppor-
tunity to mend the fence between these organizations, assuming that you both 
deliver. 

The final aspect of readiness is the current analytic culture within your com-
pany. Do business analysts make decisions based on facts and figures, or are 
their decisions based on intuition, anecdotal evidence, and gut reactions? The 
businesspeople already immersed in numbers likely will be more receptive to 
a data warehouse. However, you can be successful with either scenario as long 
as you prepare for the increased burden of shifting the cultural mindset (with 
the help of the business sponsor), as well as the need for additional analytic 
application development, education, and support resources. 

If your project is not ready to proceed, typically due to a business sponsor 
shortfall, we suggest two approaches for shoring up your readiness. The first 
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is to conduct a high-level business requirements analysis and prioritization. 
We’ll talk more about this process in the next major section, so stay tuned. The 
other alternative is to create a proof of concept. Proofs of concept are quick and 
dirty demonstrations of the potential capabilities of a data warehouse. They 
are a sales tool rather than a technical proof of design. Teams use this tech-
nique because business users supposedly can’t describe what they want with-
out seeing something to react to. While the proof of concept can establish a 
common understanding, we don’t suggest that it be the first tool pulled from 
your toolbox. Proofs of concept often require more effort than quick and dirty 
implies. Typically, they’re held together with duct tape yet have a tendency to 
morph into a production system without the requisite rework. It is challenging 
to manage user expectations appropriately. Those who like to play with tools 
gravitate to this technique, but you should be aware that there might be more 
effective and efficient methods to reach the same objective. 

Scoping 
Once you’re comfortable with the organization’s readiness, it’s time to put 
boundaries around an initial project. Scoping requires the joint input of both 
the IT organization and business management. The scope of your data ware-
house project should be both meaningful in terms of its value to the organiza-
tion and manageable. When you are first getting started, you should focus on 
data from a single business process. Save the more challenging, cross-process 
projects for a later phase. Sometimes scopes are driven by a target completion 
date, such as the end of the fiscal year. You can manage the scope to a due date 
effectively, but doing so may present additional risks. Even with a set time 
frame, you need to maintain your focus on scoping a project that is both com-
pelling and doable. Sometimes project teams feel that the delivery schedule is 
cast in concrete before project planning is even initiated. The prioritization 
process, which we’ll describe during business requirements definition, can be 
used to convince IT and business management that adjustments are required. 
Finally, remember to avoid the law of too when scoping—too firm of a commit-
ment to too brief of a timeline involving too many source systems and too 
many users in too many locations with too diverse analytic requirements. 

Justification 
A slew of acronyms surrounds the justification process, but don’t let them 
intimidate you. Justification requires an estimation of the benefits and costs 
associated with a data warehouse; hopefully, the anticipated benefits grossly 
outweigh the costs. IT usually is responsible for deriving the expenses. You 
need to determine approximate costs for the requisite hardware and software. 
Data warehouses tend to expand rapidly, so be sure the estimates allow some 
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room for short-term growth. Unlike operational system development, where 
resource requirements tail off after production, ongoing warehouse support 
needs will not decline appreciably over time. 

We rely on the business to determine the financial benefits of a data ware-
house. Warehouses typically are justified based on increased revenue or profit 
opportunities rather than merely focusing on expense reduction. Delivering a 
single version of the truth or flexible access to information isn’t sufficient financial 
justification. You need to peel back the layers to determine the quantifiable 
impact of improved decision making made possible by these sound bites. If 
you are struggling with warehouse justification, this is likely a symptom that 
you are focused on the wrong business sponsor or problem. 

Staffing 
Data warehouse projects require the integration of a cross-functional team 
with resources from both the business and IT communities. It is common for 
the same person to fill more than one role, especially as the cost of entry for 
data warehousing has fallen. The assignment of named resources to roles 
depends on the project’s magnitude and scope, as well as the individual’s 
availability, capacity, and experience. 

From the business side of the house, you’ll need representatives to fill the fol-
lowing roles: 

Business sponsor. The business sponsor is the warehouse’s ultimate client, as 
well as its strongest advocate. Sponsorship sometimes takes the form of an 
executive steering committee, especially for cross-enterprise initiatives. 

Business driver. If you work in a large organization, the sponsor may be too 
far removed or inaccessible to the project team. In this case the sponsor 
sometimes delegates his or her less strategic warehouse responsibilities to 
a middle manager in the organization. This driver should possess the same 
characteristics as the sponsor. 

Business lead. The business project lead is a well-respected person who is 
highly involved in the project, likely communicating with the project man-
ager on a daily basis. The same person serving as the business driver or 
subject matter expert sometimes fills this role. 

Business users. Optimally, the business users are the enthusiastic fans of the 
data warehouse. You need to involve them early and often, beginning with 
the project scope and business requirements. From there, you must find 
creative ways to maintain their interest and involvement throughout the 
lifecycle. Remember, user involvement is critical to data warehouse accep-
tance. Without business users, the data warehouse is a technical exercise 
in futility. 
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Several other positions are staffed from either the business or IT organizations. 
These straddlers can be technical resources that understand the business 
or business resources that understand technology. Straddler roles include the 
following: 

Business system analyst. This person is responsible for determining the busi-
ness needs and translating them into architectural, data, and analytic 
application requirements. 

Business subject matter expert. This person is often the current go-to 
resource for ad hoc analysis. He or she understands what the data means, 
how it is used, and where data inconsistencies are lurking. Their analytic 
and data insights are extremely useful, especially during the modeling and 
analytic application processes. 

Analytic application developer. Analytic application developers are respon-
sible for designing and developing the starter set of analytic templates, as 
well as providing ongoing application support. 

Data warehouse educator. The educator(s) must be confident of their data, 
applications, and access tool knowledge because the business community 
does not differentiate between these warehouse deliverables. 

The following roles typically are staffed from the IT organization (or an 
external consulting firm). If you are working with consultants due to 
resource or expertise constraints, you should retain internal ownership of the 
project. Insist on coaching and extensive skills/knowledge transfer so that 
you can function more independently on the next project. Finally, you must 
clearly understand whether you’re buying meaningful experience rather 
than staff augmentation (perhaps with consultants who merely know how to 
spell OLAP). 

Project manager. The project manager is a critical position. He or she should 
be comfortable with and respected by business executives, as well as tech-
nical analysts. The project manager’s communication and project manage-
ment skills must be stellar. 

Technical architect. The architect is responsible for the overall technical and 
security architecture. He or she develops the plan that ties together the 
required technical functionality and helps evaluate products on the basis of 
the overall architecture. 

Technical support specialists. Technical specialists tend to be nearly encyclo-
pedic about a relatively narrow spectrum of technology. 

Data modeler. The data modeler likely comes from a transactional data mod-
eling background with heavy emphasis on normalization. He or she 
should embrace dimensional modeling concepts and be empathetic to the 
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requirements of the business rather than focused strictly on saving space 
or reducing the staging workload. 

Database administrator. Like the data modeler, the database administrator 
must be willing to set aside some traditional database administration tru-
isms, such as having only one index on a relational table. 

Metadata coordinator. This person ensures that all the metadata is collected, 
managed, and disseminated. As a watchdog role, the coordinator is 
responsible for reminding others of their metadata-centric duties. 

Data steward. The data steward is responsible for enterprise agreement on 
the warehouse’s conformed dimensions and facts. Clearly, this is a politi-
cally challenging role. 

Data staging designer. The staging designer is responsible for designing the 
data staging ETL processes. He or she typically is involved in the make 
versus buy decision regarding staging software. 

Data staging developer. Based on direction from the staging designer, the 
staging developer delivers and automates the staging processes using 
either a staging tool or manually programmed routines. 

Data warehouse support. Last, but not least, the data warehouse requires 
ongoing backroom and front room support resources. Most often this role 
is assigned to individuals who have been involved in the project in an 
earlier capacity. 

Developing and Maintaining 
the Project Plan 

Developing the data warehouse project plan involves identification of all the 
tasks necessary to implement the data warehouse. Resources are available in 
the marketplace to help you compile a project task list. For example, the 
CD-ROM that comes with The Data Warehouse Lifecycle Toolkit includes a nearly 
200-item task listing. 

Any good project manager knows that key team members, such as the data 
staging designer, should develop the effort estimates for their tasks. The proj-
ect manager can’t dictate the amount of time allowed and expect conformance. 
The project plan should identify a user acceptance checkpoint after every 
major milestone and deliverable to ensure that the project is still on track and 
that the business is still intimately involved. 

The data warehouse project demands broad communication. During the proj-
ect planning phase, we suggest that the project manager establish a communi-
cation matrix, such as Table 16.1 illustrates, to help make certain that the 
communication strategy is executed. 
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Table 16.1 Example Data Warehouse Communication Plan 

Business sponsors Bimonthly Issue resolution, 
briefing expectation management, 

funding 

Business Monthly Requisite involvement, 
community expectation management, 

critical dates 

Project team Status 
meetings identification and 

resolution 

IT colleagues Bimonthly Existing IT Expectation management, 
staff meeting resource needs 

CONSTITUENCY FREQUENCY FORUM KEY MESSAGES 

Face-to-face 

Web site 

Weekly Progress, issue 

Data warehouse projects are vulnerable to scope creep largely due to our 
strong desire to satisfy users’ requirements. We need to be most watchful 
about the accumulation of minor changes that snowball. While no single 
request is too arduous, taken in total, they may represent a significant change 
to the project’s scope. We have several options when confronted with changes. 
First, we can increase the scope by adding time, resources, or money to accom-
modate the change. Otherwise, the total effort can remain unchanged if the 
users relinquish something that had been in scope to accommodate the 
change. Finally, we can just say no without really saying no by handling the 
change as an enhancement request. The most important thing to remember 
about scope changes is that they shouldn’t be made in an IT vacuum. The right 
answer depends on the situation. Now is the time to leverage your partnership 
with the business to arrive at an answer with which everyone can live. 

The keys to data warehouse project planning and management include: 

1. Having a solid business sponsor 
2. Balancing high value and doability to define the scope 
3. Working with the best team possible to develop a detailed project plan 
4. Being an excellent project manager by motivating, managing, and communicating 

up, down, and across the organization 

Business Requirements Definition 

Embracing the business users to understand their requirements and garner 
their buy-in is absolutely essential to successful data warehousing. This sec-
tion focuses on back-to-basics techniques for accomplishing just that. 
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Requirements Preplanning 
Before sitting down with the business community to gather requirements, we 
suggest that you set yourself up for a productive session by considering the 
following: 

Choose the Forum 

We gather requirements by meeting with business user representatives while 
interweaving data sessions with source system gurus and subject matter 
experts. This dual-pronged approach gives us insight into the needs of the 
business in conjunction with the realities of the data. However, we can’t ask 
business managers about the granularity or dimensionality of their critical 
data. We need to talk to them about what they do, why they do it, how they 
make decisions, and how they hope to make decisions in the future. Like orga-
nizational therapy, we’re trying to detect the issues and opportunities. 

There are two primary techniques for gathering requirements—interviews or 
facilitated sessions. Both have their advantages and disadvantages. Interviews 
encourage lots of individual participation. They are also easier to schedule. 
Facilitated sessions may reduce the elapsed time to gather requirements, 
although they require more time commitment from each participant. 

Based on our experience, surveys are not a reasonable tool for gathering 
requirements because they are flat and two-dimensional. The self-selected 
respondents only answer the questions we’ve asked in advance. There’s no 
option to probe more deeply, such as when we’re face to face. In addition, 
don’t forget that a secondary outcome of gathering requirements is to create a 
bond between users and the warehousing initiative. This is just not going to 
happen with surveys. 

We generally use a hybrid approach with interviews to gather the gory details 
and then facilitation to bring the group to consensus. While we’ll describe this 
hybrid approach in more detail, much of the discussion applies to pure facili-
tation as well. The forum choice depends on the team’s skills, the organiza-
tion’s culture, and what you’ve already subjected your users to. This is a case 
in which one size definitely does not fit all. 

Identify and Prepare
the Requirements Team

Regardless of the approach, you need to identify and prepare the project team 
members who are involved. If you’re doing interviews, you need to identify a 
lead interviewer whose primary responsibility is to ask the great open-ended 
questions. Meanwhile, the interview scribe takes copious notes. While a tape 
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recorder may provide more complete coverage of each interview, we don’t use 
one because it changes the meeting dynamics. Our preference is to have a sec-
ond person in the room with another brain and sets of eyes and ears rather 
than relying on a whirling machine. We often invite one or two additional proj-
ect members (depending on the number of interviewees) as observers so that 
they can hear the users’ input directly. 

Before you sit down with users, you need to make sure you’re approaching 
the sessions with the right mindset. You shouldn’t presume that you already 
know it all. If done correctly, you will definitely learn during these require-
ments interviews. On the other hand, you should do some homework by 
researching available sources, such as the annual report, Web site, and inter-
nal organization chart. 

Since the key to getting the right answers is asking the right questions, we rec-
ommend that questionnaires be formulated before user meetings. The ques-
tionnaire should not be viewed as a script. It is a tool to organize your thoughts 
and serve as a fallback device in case your mind goes blank during the inter-
view session. 

Select, Schedule, and Prepare Business 
Representatives 

If this is your first foray into data warehousing (or your first attempt to rescue 
data stovepipes), you should talk to businesspeople who represent horizontal 
breadth across the organization. This coverage is critical to formulating the 
data warehouse bus matrix blueprint. You need to have an early understand-
ing of the common data and vocabulary across the core business functions to 
build an extensible environment. 

Within the target user community, you should cover the organization verti-
cally. Data warehouse project teams naturally gravitate toward the super-
power analysts in the business. While their insight is valuable, you can’t 
ignore senior executives and middle management. Otherwise, you are vulner-
able to being overly focused on the tactical here-and-now but lose sight of the 
organization’s future strategic direction. 

Scheduling the business representatives can be the most onerous requirements 
task. Be especially nice to your administrator (or your boss’s administrator is 
you’re attempting to schedule sessions with executive staff). We prefer to meet 
with executives on their own, whereas we can meet with a homogeneous 
group of two to three people for those lower on the organization chart. We 
allow 1 hour for individual meetings and 11⁄2 hours for the small groups. The 
scheduler needs to allow 1⁄ hour between meetings for debriefing and other2 

necessities. Interviewing is extremely taxing because you must be completely 
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focused for the duration of the session. Consequently, we only schedule three 
to four sessions in a day because our brains turn mushy after that. 

When it comes to preparing the interviewees, the optimal approach is to con-
duct a project launch meeting with the users. The business sponsor plays a 
critical role, stressing his or her commitment and the importance of everyone’s 
participation. The launch meeting disseminates a consistent message about 
the project. It also generates a sense of the business’s ownership of the project. 
If the launch meeting is a logistical nightmare, the sponsor should distribute a 
launch memo covering the same topics. Likewise, the interview team must 
prepare the interviewees by highlighting the topics to be covered in the 
upcoming session. We do not include a copy of the questionnaire, which is not 
intended for public dissemination. We do ask the interviewees to bring copies 
of their key reports and analyses. 

Collecting the Business Requirements 
It’s time to sit down face to face to collect the business requirements. The 
process usually flows from an introduction through structured questioning to 
a final wrap-up, as we’ll discuss. 

Launch 

Responsibility for introducing the interview should be established prior to 
gathering in a conference room. The designated kickoff person should script 
the primary points to be conveyed in the first couple minutes when you set the 
tone of the interview meeting. You should focus on the project and interview 
objectives but not ramble on about the hardware, software, and other technical 
jargon. The introduction should convey a crisp, business-centric message. 

Interview Flow 

The objective of an interview is to get business users to talk about what they do 
and why they do it. A simple, nonthreatening place to begin is to ask about 
their job responsibilities and organizational fit. This is a lob ball that intervie-
wees can respond to easily. From there, we typically ask about their key per-
formance metrics. Determining how they track progress and success translates 
directly into the dimensional model. They’re telling us about their key busi-
ness processes and facts without us asking those questions directly. 

If we’re meeting with a person who has more hands-on data experience, we 
indirectly probe to better understand the dimensionality of the business, 
along with hierarchical roll-ups. Again, we go to their world rather than ask-
ing them to meet on our turf. Such questions as “How do you distinguish 
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between products (or agents, providers, or facilities)?” or “How do you 
naturally categorize products?” help identify key dimension attributes and 
hierarchies. 

If the interviewee is more analytic, we ask about the types of analyses he or 
she currently performs. Understanding the nature of these analyses and 
whether they are ad hoc or standardized provides input into the data access 
tool requirements, as well as the application template design process. Hope-
fully, the interviewee has brought along copies of their key spreadsheets and 
reports. Rather than stashing them in a folder, it is helpful to understand 
how the interviewee uses the analysis today, as well as opportunities for 
improvement. Contrary to the advice of some industry pundits, you cannot 
design an extensible analytic environment merely by getting users to agree 
on the top five reports or queries. The users’ questions are bound to change. 
Consequently, we must resist the temptation to narrow our design focus to a 
supposed top five. 

If we’re meeting with business executives, we usually don’t delve into the 
details just described. Instead, we ask them about their vision for better lever-
aging information in the organization. Perhaps the project team is envisioning 
a totally ad hoc environment, whereas business management is more inter-
ested in the delivery of standardized analysis. We need to make sure the data 
warehouse deliverable matches the business demand and expectations. 

We ask each interviewee about the impact of improved access to information. 
We’ve likely already received preliminary funding for the project, but it never 
hurts to capture more potential, quantifiable benefits. 

Ground rules for effective interviewing include: 

�� Remember your interview role; listen and absorb like a sponge.
�� Strive for a conversational flow; don’t dive too quickly (or pull out a copy of poten-

tial data elements). 
�� Verify communication and capture terminology precisely because most organiza-

tions use terminology inconsistently. 
�� Establish a peer basis with the interviewee; use his or her vocabulary. 

Wrap-Up 

As the interview is coming to a conclusion, we ask each interviewee about his 
or her success criteria for the project. Of course, each criterion should be mea-
surable. Easy to use and fast mean something different to everyone, so you 
should get the interviewees to articulate specifics, such as their expectations 
regarding the amount of training required to run a predefined report. 
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At this point in the interview we make a broad disclaimer. The interviewees 
must understand that just because we discussed a capability in the meeting 
doesn’t guarantee that it’ll be included in the first phase of the project. We 
thank interviewees for their brilliant insights and let them know what’s hap-
pening next and what their involvement will be. We also take advantage of 
this opportunity to manage expectations. 

Conducting Data-Centric Interviews 

While we’re focused on understanding the requirements of the business, it is 
helpful to intersperse sessions with the source system data gurus or subject 
matter experts to evaluate the feasibility of supporting the business needs. 
These data-focused interviews are quite different from the ones just described. 
The goal is to assess that the necessary core data exists before momentum 
builds behind the requirements. A more complete data audit will occur during 
the dimensional modeling process. We’re trying to learn enough at this point 
to manage the organization’s expectations appropriately. 

Postcollection Documentation 
and Follow-up 

Immediately following the interview, the interview team should debrief. You 
want to ensure that you’re on the same page about what was learned, as well 
as being prepared for any surprises or inconsistencies. It is also helpful to 
review your notes quickly to fill in any gaps while the interview is still fresh in 
your memory. Likewise, you should examine the reports gathered to gain fur-
ther offline insight into the dimensionality that must be supported in the data 
warehouse. 

At this point it is time to document what you heard. While documentation is 
everyone’s least favorite activity, it is critical for both user validation and project 
team reference materials. There are two levels of documentation that typically 
result from the requirements process. The first is to write up each individual 
interview. This activity can be quite time-consuming because the write-up 
should not be merely a stream-of-consciousness transcript but should make 
sense to someone who wasn’t in the interview. The second level of documenta-
tion is a consolidated findings document. We organize the document by first 
identifying the key business processes. As we mentioned earlier, we tackle the 
initial phases of a data warehouse on a process-by-process basis. Consequently, 
it is logical to organize the requirements of the business into the same buckets 
that will, in turn, become implementation efforts. Notes from all the interviews 
are reviewed to capture the findings associated with each of the core business 
processes. 
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When writing up the findings document, we typically begin with an executive 
summary, followed by a project overview that discusses the process used and 
participants involved. The bulk of the report centers on our requirements find-
ings. For each major business process discussed, we describe why business 
users want to analyze the process results, what capabilities they desire, their 
current limitations, and potential benefits or impact. We include a list of sam-
ple questions that could be answered once the process metrics are available in 
the data warehouse. Commentary about the feasibility of tackling the data 
generated by each process is also documented. 

We sometimes bring the processes together in a matrix to convey the oppor-
tunities across the organization. In this case we’re not referring to a data ware-
house bus matrix. The rows of the opportunity matrix still identify the 
business processes. However, in the opportunity matrix, rather than identify-
ing common dimensions as the columns, we instead identify the organiza-
tional groups or functions. Surprisingly, the matrix will be quite dense 
because many groups need access to the same core business process perfor-
mance metrics. 

Prioritization and Consensus 

The requirements findings document serves as the basis for presentations back 
to senior management representatives, as well as for others who participated. 
Inevitably we’ve uncovered more than can be tackled in a single iteration, so 
we need to prioritize our efforts. As we discussed with project scope, you 
shouldn’t make this decision in a vacuum. You need to leverage (or foster) 
your partnership with the business community to arrive at priorities with 
which everyone can live. 

The requirements wrap-up presentation is positioned as a findings review and 
prioritization meeting. Participants include relatively high-level business rep-
resentatives, as well as the data warehouse manager and other involved IT 
management. The session begins with an overview of each identified business 
process. You want everyone in the room to have a common understanding of 
the range of opportunities, as well as what is meant when we say “sales book-
ings analysis,” for example. 

Once the findings have been reviewed, it is time to prioritize. The four-cell quad-
rant technique, illustrated in Figure 16.2, is an effective tool for reaching consen-
sus on a data warehouse development plan that focuses on the right initial 
opportunities. The quadrant’s vertical axis refers to the potential impact or value 
to the business. The horizontal axis conveys feasibility. Each of the finding’s 
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Figure 16.2 Prioritization quadrant analysis. 

business process themes is placed in a quadrant based on the representatives’ 
composite agreement on impact and feasibility. The projects that warrant 
immediate attention are located in the upper right corner because they’re high-
impact projects, as well as highly feasible. Projects in the lower left cell should 
be avoided like the plague—they’re missions impossible that do little for the 
business. Likewise, projects in the lower right cell don’t justify short-term 
attention, although project teams sometimes gravitate here because these pro-
jects are doable but not very crucial. In other words, no one will notice if the 
project doesn’t go well. Finally, projects in the upper left cell represent mean-
ingful opportunities. These projects have large potential business payback but 
are currently infeasible. While the data warehouse project team is focused on 
projects in the shaded upper right cell, other IT teams should address the cur-
rent feasibility limitations of those in the upper left cell. 

Lifecycle Technology Track 

The business requirements definition is followed immediately by three con-
current tracks focused on technology, data, and analytic applications, respec-
tively. In the next several sections we’ll zero in on the technology track, which 
includes design of the technical architecture and selection of products that 
bring the architecture to reality. 
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Technical Architecture Design

Much like a blueprint for a new home, the technical architecture is the blue-
print for the warehouse’s technical services and elements. The architecture 
plan serves as an organizing framework to support the integration of tech-
nologies. Like housing blueprints, the technical architecture consists of a series 
of models that delve into greater detail regarding each of the major compo-
nents. In both situations, the architecture allows us to catch problems on paper 
(such as having the dishwasher too far from the sink) and minimize midpro-
ject surprises. It supports the coordination of parallel efforts while speeding 
development through the reuse of modular components. The architecture 
identifies the immediately required components versus those which will be 
incorporated at a later date (such as the deck and screened porch). Most 
important, the architecture serves as a communication tool. Home construc-
tion blueprints allow the architect, general contractor, subcontractors, and 
homeowner to communicate from a common document. The plumber knows 
that the electrician has power in place for the garbage disposal. Likewise, the 
data warehouse technical architecture supports communication regarding a 
consistent set of technical requirements within the team, upward to manage-
ment, and outward to vendors. 

In Chapter 1 we discussed several major components of the technical architec-
ture, including data staging services, data access services, and metadata. In the 
following section we turn our attention to the process of creating the technical 
architecture design. 

Eight-Step Process for Creating 
the Technical Architecture 

Data warehouse teams approach the technical architecture design process 
from opposite ends of the spectrum. Some teams simply don’t understand the 
benefits of an architecture and feel that the topic and tasks are too nebulous. 
They’re so focused on data warehouse delivery that the architectures feels like 
a distraction and impediment to progress, so they opt to bypass architecture 
design. Instead, they piece together the technical components required for the 
first iteration with bailing twine and chewing gum, but the integration and 
interfaces get taxed as we add more data, more users, or more functionality. 
Eventually, these teams often end up rebuilding because the nonarchitectured 
structure couldn’t withstand the stresses. At the other extreme, some teams 
want to invest two years designing the architecture while forgetting that the 
primary purpose of a data warehouse is to solve business problems, not 
address any plausible (and not so plausible) technical challenge. 
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Neither end of the architecture spectrum is healthy; the most appropriate 
response lies somewhere in the middle. We’ve identified an eight-step process 
to help you navigate these architectural design waters. Remember, every data 
warehouse has a technical architecture. The question is whether yours is 
planned and explicit or merely implicit. 

Establish an Architecture Task Force 

Based on our experience, it is most useful to have a small task force of two to 
three people focus on architecture design. Typically, it is the technical architect, 
working in conjunction with the data staging designer and analytic applica-
tion developer, to ensure both backroom and front room representation on the 
task force. This group needs to establish its charter and deliverables time line. 
It also needs to educate the rest of the team (and perhaps others in the IT orga-
nization) about the importance of an architecture. 

Collect Architecture-Related Requirements 

As you recall from Figure 16.1, defining the technical architecture is not the 
first box in the lifecycle diagram. The architecture is created to support high-
value business needs; it’s not meant to be an excuse to purchase the latest, 
greatest products. Consequently, key input into the design process should 
come from the business requirements definition findings. However, we listen 
to the business’s requirements with a slightly different filter to drive the archi-
tecture design. Our primary focus is to uncover the architectural implications 
associated with the business’s critical needs. We also listen closely for any tim-
ing, availability, and performance needs. 

In addition to leveraging the business requirements definition process, we 
also conduct additional interviews within the IT organization. These are 
purely technology-focused sessions to understand current standards, 
planned technical directions, and nonnegotiable boundaries. In addition, we 
can uncover lessons learned from prior information delivery projects, as well 
as the organization’s willingness to accommodate operational change on 
behalf of the warehouse, such as identifying updated transactions in the 
source system. 

Document Architecture Requirements 

Once we leveraged the business requirements definition process and con-
ducted supplemental IT interviews, we need to document our findings. At this 
point we opt to use a simplistic tabular format. We simply list each business 
requirement that has an impact on the architecture, along with a laundry list of 
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architectural implications. For example, if there is a need to deliver global sales 
performance data on a nightly basis following the recent acquisition of several 
companies, the technical implications might include 24/7 worldwide avail-
ability, data mirroring for loads, robust metadata to support global access, ade-
quate network bandwidth, and sufficient staging horsepower to handle the 
complex integration of operational data. 

Develop a High-Level Architectural Model 

After the architecture requirements have been documented, we begin formu-
lating models to support the identified needs. At this point the architecture 
task force often sequesters itself in a conference room for several days of heavy 
thinking. The team groups the architecture requirements into major compo-
nents, such as data staging, data access, metadata, and infrastructure. From 
there the team drafts and refines the high-level architectural model. This 
drawing is similar to the front elevation page on housing blueprints. It illus-
trates what the warehouse architecture will look like from the street, but it is 
dangerously simplistic because significant details are embedded in the pages 
that follow. 

Design and Specify the Subsystems 

Now that we understand how the major pieces will coexist, it is time to do a 
detailed design of the subsystems. For each component, such as data staging 
services, the task force will document a laundry list of requisite capabilities. 
The more specific, the better, because what’s important to your data ware-
house is not necessarily critical to mine. This effort often requires preliminary 
research to better understand the market. Fortunately, there is no shortage of 
information and resources available on the Internet, as well as from network-
ing with peers. The subsystem specification results in additional detailed 
graphic models. 

In addition to documenting the capabilities of the primary subsystems, we 
also must consider our security requirements, as well as the physical infra-
structure and configuration needs. Often, we can leverage enterprise-level 
resources to assist with the security strategy. In some cases the infrastructure 
choices, such as the server hardware and database software, are predeter-
mined. However, if you’re building a large data warehouse, over 1 TB in size, 
you should revisit these infrastructure platform decisions to ensure that they 
can scale as required. Size, scalability, performance, and flexibility are also key 
factors to consider when determining the role of OLAP cubes in your overall 
technical architecture. 
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Determine Architecture
Implementation Phases

Like the homeowner’s dream house, you likely can’t implement all aspects of 
the technical architecture at once. Some are nonnegotiable mandatory capabil-
ities, whereas others are nice-to-haves that can be deferred until a later date. 
Again, we refer back to the business requirements to establish architecture pri-
orities. We must provide sufficient elements of the architecture to support the 
end-to-end requirements of the initial project iteration. It would be ineffective 
to focus solely on data staging services while ignoring the capabilities required 
for metadata and access services. 

Document the Technical Architecture 

We need to document the technical architecture, including the planned imple-
mentation phases, for those who were not sequestered in the conference room. 
The technical architecture plan document should include adequate detail so 
that skilled professionals can proceed with construction of the framework, 
much like carpenters frame a house based on the blueprint. 

Review and Finalize the
Technical Architecture

Eventually we come full circle with the architecture design process. With a 
draft plan in hand, the architecture task force is back to educating the organi-
zation and managing expectations. The architecture plan should be communi-
cated, at varying levels of detail, to the project team, IT colleagues, business 
sponsors, and business leads. Following the review, documentation should be 
updated and put to use immediately in the product selection process. 

Product Selection and Installation 

In many ways the architecture plan is similar to a shopping list. We then select 
products that fit into the plan’s framework to deliver the necessary functional-
ity. We’ll describe the tasks associated with product selection at a rather rapid 
pace because many of these evaluation concepts are applicable to any technol-
ogy selection. The tasks include: 

Understand the corporate purchasing process. The first step before selecting 
new products is to understand the internal hardware and software purchase-
approval processes, whether we like them or not. Perhaps expenditures need 
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to be approved by the capital appropriations committee (which just met last 
week and won’t reconvene for 2 months). 

Develop a product evaluation matrix. Using the architecture plan as a start-
ing point, we develop a spreadsheet-based evaluation matrix that identi-
fies the evaluation criteria, along with weighting factors to indicate 
importance. The more specific the criteria, the better. If the criteria are too 
vague or generic, every vendor will say it can satisfy our needs. Common 
criteria might include functionality, technical architecture, software design 
characteristics, infrastructure impact, and vendor viability. 

Conduct market research. We must be informed buyers when selecting prod-
ucts, which means more extensive market research to better understand 
the players and their offerings. Potential research sources include the Inter-
net, industry publications, colleagues, conferences, vendors, and analysts 
(although be aware that analyst opinions may not be as objective as we’re 
lead to believe). A request for information or request for proposal (RFP) is 
a classic product-evaluation tool. While some organizations have no choice 
about their use, we avoid this technique, if possible. Constructing the 
instrument and evaluating responses are tremendously time-consuming 
for the team. Likewise, responding to the request is very time-consuming 
for the vendor. Besides, vendors are motivated to respond to the questions 
in the most positive light, so the response evaluation is often more of a 
beauty contest. In the end, the value of the expenditure may not warrant 
the effort. 

Narrow options to a short list and perform detailed evaluations. Despite 
the plethora of products available in the market, usually only a small num-
ber of vendors can meet both our functionality and technical requirements. 
By comparing preliminary scores from the evaluation matrix, we should 
focus on a narrow list of vendors about whom we are serious and disqual-
ify the rest. Once we’re dealing with a limited number of vendors, we can 
begin the detailed evaluations. Business representatives should be 
involved in this process if we’re evaluating data access tools. As evalua-
tors, we should drive the process rather than allow the vendors to do the 
driving (which inevitably will include a drive-by picture of their headquar-
ters building). We share relevant information from the architecture plan so 
that the sessions focus on our needs rather than on product bells and whis-
tles. Be sure to talk with vendor references, both those provided formally 
and those elicited from your informal network. If possible, the references 
should represent similarly sized installations. 

Conduct prototype, if necessary. After performing the detailed evaluations, 
sometimes a clear winner bubbles to the top, often based on the team’s 
prior experience or relationships. In other cases, the leader emerges due to 
existing corporate commitments. In either case, when a sole candidate 
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emerges as the winner, we can bypass the prototype step (and the associ-
ated investment in both time and money). If no vendor is the apparent 
winner, we conduct a prototype with no more than two products. Again, 
take charge of the process by developing a limited yet realistic business 
case study. Ask the vendors to demonstrate their solution using a small 
sample set of data provided via a flat file format. Watch over their shoul-
ders as they’re building the solution so that you understand what it takes. 
As we advised earlier with proof of concepts, be sure to manage organiza-
tional expectations appropriately. 

Select product, install on trial, and negotiate. It is time to select a product. 
Rather than immediately signing on the dotted line, preserve your negoti-
ating power by making a private, not public, commitment to a single ven-
dor. In other words, make your choice but don’t let the vendor know that 
you’re completely sold. Instead, embark on a trial period where you have 
the opportunity to put the product to real use in your environment. It takes 
significant energy to install a product, get trained, and begin using it, so 
you should walk down this path only with the vendor from whom you 
fully intend to buy; a trial should not be pursued as another tire-kicking 
exercise. As the trial draws to a close, you have the opportunity to negoti-
ate a purchase that’s beneficial to all parties involved. 

Lifecycle Data Track 

In the lifecycle diagram found in Figure 16.1, the middle track following the 
business requirements definition focuses on data. We turn our attention in that 
direction throughout the next several sections. 

Dimensional Modeling 

Given the focus of the first 15 chapters of this book, we won’t spend much time 
discussing dimensional modeling techniques here. This is merely a place-
holder for all we’ve discussed earlier. We will, however, take a moment to 
review the overall dimensional modeling process. We stressed the four-step 
process previously, but here we’ll discuss those steps within a larger project 
context. 

Immediately following the business requirements definition, we should draft 
(or revisit) the data warehouse bus matrix, as introduced in Chapter 3. We 
already drafted the matrix rows when documenting and presenting the user’s 
requirements in the context of business processes. Canvassing the core data 
sources by talking with IT veterans can further flesh out the rows. Likewise, 
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we generate an impressive list of potential dimensions and then mark the 
intersections. 

The final prioritization step of the business requirements activities identified 
the specific business process that will be tackled first. This, of course, corre-
sponds to a row of the matrix. It also addresses the first question of our four-
step dimensional modeling approach: identify the business process. 

At this point it’s time to do a more thorough analysis of the data generated by 
this process. While we conducted a high-level audit during the business 
requirements definition, we need to dig into the nitty-gritty to evaluate granu-
larity, historical consistency, valid values, and attribute availability. Often busi-
ness subject matter experts or power analysts from the business community 
can shed light quickly on data inconsistencies or idiosyncrasies based on the 
challenges they’ve encountered while attempting to analyze the data. 

Once our data-analysis homework is complete, we conduct design workshops 
to create the dimensional schema. In our experience, it is more effective and 
efficient to have a small team (consisting minimally of the business system 
analyst, business subject matter expert, business power analyst, and data mod-
eler) work through the design rather than relying on a solo modeler sitting in 
his or her ivory tower to design independently. The facilitated group work-
shop approach seems to arrive at the right design more rapidly. During the 
earlier case studies, steps 2 through 4 (that is, grain, dimensions, and facts) 
were tackled in an orderly sequence. In real life, don’t be surprised if the 
design team revisits the granularity declaration once it is immersed in dimen-
sions or facts. While progress is made in each workshop, issues also are iden-
tified inevitably. Responsibility for resolving the design issues needs to be 
assigned. Someone also must be responsible for logging and documenting the 
complete set of issues and their resolutions. Obviously, the team should lever-
age the business requirements findings to ensure that the model can support 
the key needs and questions. 

Once the modeling team is reasonably confident about its work product, we 
communicate and validate the design with a broader audience, first within the 
IT and data warehouse team and then with others in the business community. 
To start, the matrix is a prime communication tool with both audiences so that 
everyone gains an appreciation of the larger, integrated vision and plan. From 
there, we focus on the specific schema. 

We can expect the IT-centric meetings potentially to identify but also hopefully 
to resolve data issues. The business-user sessions initially will involve a small 
group of users identified to validate the design. This group should focus on 
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the types of analyses and questions it hopes to ask of the data. When we’re 
ready to present the dimensional design to a larger group of business users, it 
is often helpful to simplify the schema to hide the join keys and many-to-one 
crow’s feet that have been known to overwhelm users. Simplified illustrations 
help spoon-feed the design to people who aren’t already comfortable with a 
modeling tool’s output. 

Documentation on the validated model should identify the table and column 
names, definitions, and either calculation rules for facts or slowly changing 
dimension rules for dimension attributes. Typically captured in a modeling 
tool, this information is some of the first input (or link) to a metadata catalog. 
As tools and partnerships mature, information will flow more readily between 
the modeling, staging, access, and metadata tools. The schema documentation 
is further supplemented by adding the specific source system, fields, and 
transformation rules to derive the source-to-target mapping in conjunction 
with the staging team. It is helpful to adopt standard naming conventions for 
the data elements early in the process. 

Physical Design 

The dimensional models developed in the preceding section need to be trans-
lated into a physical design. In dimensional modeling, the logical and physical 
designs bear a very close resemblance. We certainly don’t want the database 
administrator to convert our lovely dimensional schema into a normalized 
structure during the physical design. The physical model will differ from the 
logical model in terms of the details specified for the physical database, 
including physical column names (don’t be afraid to use lengthy names), data 
types, key declarations (if appropriate), and the permissibility of nulls. At this 
point the physical design also contends with such nuts-and-bolts activities as 
performance tuning, partitioning, and the file layout. 

Contrary to public belief, adding more hardware isn’t the only weapon in our 
arsenal for performance tuning. Creating indexes and aggregate tables are far 
more cost-effective alternatives. We’ll briefly review recommendations in both 
areas, understanding that physical design considerations quickly descend into 
platform specifics, which are changing rapidly. Also, be aware that aggregation 
and indexing strategies are bound to evolve as we better understand actual use. 
However, don’t use inevitable change as an excuse to procrastinate on these top-
ics. We must deliver appropriately indexed and aggregated data with the initial 
rollout to ensure that the warehouse delivers adequate query performance. 
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Aggregation Strategy 
Every data warehouse should contain precalculated and prestored aggrega-
tion tables. Given our stringent rules about avoiding mixed fact table granu-
larity, each distinct fact table aggregation should occupy its own physical fact 
table. When we aggregate facts, we either eliminate dimensionality or associ-
ate the facts with a rolled-up dimension. These rolled-up, aggregated dimen-
sion tables should be shrunken versions of the dimensions associated with the 
granular base fact table. In this way, aggregated dimension tables conform to 
the base dimension tables. 

It is impractical to think about building all potential aggregation combina-
tions. If we have a very simple fact table with just four dimensions and each 
dimension has three attributes that are candidates for aggregation, there are 
256 different potential aggregate fact tables. Since we can’t possibly build, 
store, and administer all these aggregates, we need to consider two primary 
factors when designing our aggregation strategy. First, we need to think 
about the business users’ access patterns. In other words, what data are they 
frequently summarizing on the fly? The answer to this question can be 
derived from business requirements analysis insights, as well as from input 
gained by monitoring actual usage patterns. Second, we need to assess the 
statistical distribution of the data. For example, how many unique instances 
do we have at each level of the hierarchy, and what’s the compression as we 
move from one level to the next? If our 50 products roll up into 10 brands, 
we’re only summarizing 5 base rows (on average) to calculate the brand 
aggregate. In this case it’s not worth the effort to physically prestore the 
aggregate. On the other hand, if we can avoid touching 100 base rows by 
accessing the aggregate instead, it makes much more sense. The aggregation 
game boils down to reducing input-output. In general, the disk space 
required by aggregate tables should be approximately two times the space 
consumed by the base-level data. 

The availability of an aggregate navigator is another consideration in our over-
all aggregation strategy. Without an aggregate navigator, the number of aggre-
gate schemas for analytic users to manually choose from is very 
limited—probably no more than two aggregates per base fact table. Aggregate 
navigator functionality sits between the requesting client and relational data-
base management system. The navigator intercepts the client’s SQL request 
and, wherever possible, modifies it so that it accesses the most appropriate 
performance-enhancing aggregates. The aggregate navigator makes produc-
tive use of the aggregate tables while buffering the client applications. Clients 
don’t need to specifically write their query to access a specific base versus 
aggregated fact table, requiring that queries be rewritten when aggregates are 
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added or dropped. The navigator handles changes to the aggregate portfolio 
behind the scenes so that the client can remain oblivious, as it should be. 

Finally, we should consider the role of OLAP cubes as part of our aggregation 
strategy because they are especially well suited for rapid response to summa-
rized data. Some products allow a seamless integration between the aggre-
gated data in the cubes and the detailed schema in a relational structure. 

Initial Indexing Strategy 
Database administrators may hyperventilate when they learn that dimen-
sion tables frequently have more than just one index. Dimension tables will 
have a unique index on the single-column primary key. In addition, we rec-
ommend a B-tree index on high-cardinality attribute columns used for con-
straints. Bit-mapped indexes should be placed on all medium- and 
low-cardinality attributes. 

Meanwhile, fact tables are the behemoths of the data warehouse, so we need to 
index them more carefully. The primary key of the fact table is almost always 
a subset of the foreign keys. We typically place a single, concatenated index on 
the primary dimensions of the fact table. Since many dimensional queries are 
constrained on the date dimension, the date foreign key should be the leading 
index term. In addition, having the date key in the first position speeds the 
data loading process where incremental data is clumped by date. Since most 
optimizers now permit more than one index to be used at the same time in 
resolving a query, we can build separate indexes on the other independent 
dimension foreign keys in the fact table. Much less frequently, indexes are 
placed on the facts if they are used for range or banding constraints. 

Creating the physical storage plan for the data warehouse is not dissimilar to 
that for other relational databases. The database administrator will want to 
consider the database file layout, including striping to minimize input-output 
contention. Large fact tables typically are partitioned by date, with data seg-
mented by month, quarter, or year into separate storage partitions while 
appearing to the users as a single table. The advantages of partitioning by date 
are twofold. Queries will perform better because they only access the parti-
tions required to resolve the query. Likewise, in most cases data loads will run 
more quickly because we only need to rebuild the index for a partition, not for 
the entire table. Partitions also can be archived easily. Finally, the database 
administrator should implement a usage monitoring system as early as possi-
ble. Usage monitoring will be important for ongoing performance tuning, as 
well as for user support, capacity planning, and internal marketing. 
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Data Staging Design and Development

The final activity in the data track is the design and development of the stag-
ing or ETL system. We sometimes refer to staging as the iceberg of the data 
warehouse project. While the iceberg looks formidable from the ship’s helm, 
we often don’t gain a full appreciation of its magnitude until we collide with it 
and discover the mass that’s lurking beneath the water’s surface. 

As we described in Chapter 1, data staging takes the raw data from opera-
tional systems and prepares it for the dimensional model in the data presenta-
tion area. It is a backroom service, not a query service, that requires a robust 
system application. Unfortunately, many teams focus solely on the E and the L 
of the ETL acronym. Much of the heavy lifting occurs in the transform (T) step, 
where we combine data, deal with quality issues, identify updated data, man-
age surrogate keys, build aggregates, and handle errors. 

As has been our mantra throughout this chapter, you must first formulate a 
staging plan. Similar to the technical architecture, we design the staging appli-
cations using a series of schematics that start at the high level and then drill 
into the specifics for each table. You need to decide whether we’re buying a 
data staging tool or building the capabilities on our own. We generally recom-
mend using a commercially available product. While you can’t expect to 
recoup your investment on the first iteration due to the learning curve, a tool 
will provide greater metadata integration and enhanced flexibility, reusability, 
and maintainability in the long run. 

The other fundamental decision to be made concerns the structure of the data 
stores that result from or are used to support the staging activities, as we dis-
cussed in Chapter 1. Normalizing the source data before it is denormalized for 
the dimensional model may be appropriate for a particularly thorny relation-
ship or if the source is already normalized, but often is unnecessary. For some, 
it is unfathomable to think about tackling the staging activities without the use 
of a normalized structure despite the additional storage space and effort 
required. In this case the normalized  data satisfies a comfort zone need rather 
than an absolute requirement. 

Dimension Table Staging 
Since dimensions need to conform and be reused across dimensional models, 
typically they are the responsibility of a more centralized authority. The 
dimension authority is responsible for defining, maintaining, and publishing a 
particular dimension for the appropriate data marts. The act of publishing is 
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actually a kind of synchronous replication because all the downstream marts 
should have an identical copy of the dimension at the same time. 

While the dimension authority has centralized responsibility, there are likely 
multiple authorities in our organization, each responsible for one or more core 
dimensions. Dimensions can be processed concurrently. However, all the dimen-
sions involved in a schema must be published prior to staging of the fact data. 

Dimension table staging involves the following steps. Staging tools can deliver 
much of this functionality. 

Extract dimensional data from operational source system. The extracted 
data can be moved to the dimension staging area by either outputting to a 
file and using File Transfer Protocol (FTP) or doing a stream transfer. Audit 
statistics from the extract should be collected. 

Cleanse attribute values. Appropriate action should be taken to handle the 
following situations, along with many others: name and address parsing, 
inconsistent descriptive values, missing decodes, overloaded codes with 
multiple meanings over time, invalid data, and missing data. 

Manage surrogate key assignments. Since we use surrogate keys in the data 
warehouse, we must maintain a persistent master cross-reference table in 
the staging area for each dimension. The cross-reference table keeps track of 
the surrogate key assigned to an operational key at a point in time, along 
with the attribute profile. If the master cross-reference data were handled as 
a flat table, the fields would include those identified in Figure 16.3. 

As shown in Figure 16.4, we interrogate the extracted dimensional source 
data to determine whether it is a new dimension row, an update to an exist-
ing row, or neither. New records from the operational source are identified 
easily on the initial pass because the operational source key isn’t located in 
the master cross-reference table. In this case the staging application assigns 
a new surrogate key and inserts a new row into the master table. 

Surrogate Dimension Key 

Dimension Attributes 1-N 
Dimension Row Effective Date 
Dimension Row Expiration Date 
Most Recent Dimension Row Indicator 
Most Recent Cyclic Redundancy Checksum (CRC) 

Operational Source Key 

Master Dimension Cross-Reference Table 

If combining data from 
multiple sources, there 
would be additional 
columns for the other 
operational sources. 

Figure 16.3 Fields for the Staging Master Dimension Cross-Reference Table 
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Figure 16.4 Dimension table surrogate key management. 

To quickly determine if rows have changed, we rely on a cyclic redun-
dancy checksum (CRC) algorithm. If the CRC is identical for the extracted 
record and the most recent row in the master table, then we ignore the 
extracted record. We don’t need to check every column to be certain that 
the two rows match exactly. 

If the CRC for the extracted record differs from the most recent CRC in the 
cross-reference table, then we need to study each column to determine 
what’s changed and then how the change will be handled. If the changed 
column is a type 1 attribute, then we merely overwrite the attribute value. If 
the column is to be handled with a type 3 response, changes are made 
solely in the existing row. However, the processing is a bit trickier with a 
type 2 change. In this case we add a new row to the master cross-reference 
table with a new surrogate key reflecting the new attributes values, as well 
as the appropriate effective date, expiration date, and most recent indicator. 
The expiration date and most recent indicator on the prior version need to 
be updated to reflect that the prior row is no longer in effect. If we’re using 
a combination of SCD techniques within a single table, we must establish 
business rules to determine which change technique takes precedence. 

The final step in Figure 16.4 is to update the most recent surrogate key 
assignment table. This table consists of two columns—the operational 
source key and its most recent assigned surrogate key. If we’ve handled 
changes using the type 2 technique, this table will contain only the most 
recent row. We create this table to provide fast lookups when assigning fact 
table surrogate keys. 
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Build dimension row load images and publish revised dimensions. Once 
the dimension table reflects the most recent extract (and has been confi-
dently quality assured), it is published to all data marts that use that 
dimension. 

Fact Table Staging 
While the dimension tables are replicated to all the appropriate date marts, 
fact table data is explicitly not duplicated. With the data warehouse bus archi-
tecture, the boundaries around a fact table are based on the source business 
process(es), not on organizational lines. Consequently, fact tables are isolated 
at unique locations but available to all who need access. Unlike dimension 
tables that require a centralized authority to guarantee consistency across the 
organization, fact tables can be managed on a more distributed basis, assum-
ing that each promises to use the dimension authority’s conformed dimension 
and not replicate the same fact table data in multiple locations. We briefly out-
lined the steps required to stage the fact table data: 

1. Extract fact data from operational source system. 

2. Receive updated dimensions from the dimension authorities. We want 
to ensure that we have the complete set of dimension rows that might be 
encountered in the fact data. 

3. Separate the fact data by granularity as required. Operational source sys-
tems sometimes include data at different levels of detail within the same 
file. The granularities should be separated early in the staging process. 

4. Transform the fact data as required. Common transformations include 
arithmetic calculations, time conversions, equivalization of currencies or 
units of measure, normalization of facts (such as the treatment of 12 date-
defined buckets on a single operational record), and handling of nulls. 

5. Replace operational source keys with surrogate keys. To replace the oper-
ational keys with surrogate keys, we use the most recent surrogate key 
assignment table created by the dimension authority. Making one pass over 
the fact table for each dimension, we quickly substitute the most recent sur-
rogate key for each operational key encountered. We should ensure referen-
tial integrity at this point rather than waiting for the data load process. If 
the fact table’s operational key does not locate a match in the surrogate key 
assignment table, we have several options. The process could be halted. The 
questionable rows could be written to a reloadable suspense file. Otherwise, 
we could automatically create a new surrogate key and dimension row for 
the unmatched operational key. Rather than assigning a single unknown 
dummy key for all the troublesome operational keys encountered, we 
assign a different surrogate key for each nonlocated operational key. The 
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descriptive attribute for this newly assigned surrogate key might read 
something like “Description Unknown for Operational Key XYZ.” In this 
manner, when the new operational key is described properly, you often can 
avoid revisiting the surrogate keys in the fact table. 

6. Add additional keys for known context. We sometimes add surrogate 
keys that aren’t available on the operational record, such as the appropri-
ate promotion key for the point-of-sale transactions or the demographics 
minidimension key that identifies the customer’s current profile. Surro-
gate keys to indicate “Not Applicable” or “Date to Be Determined” 
would be assigned as appropriate. 

7. Quality-assure the fact table data. Of course, we should be generating 
more row counts and cross-foots to compare with the extract statistics. 

8. Construct or update aggregation fact tables. The aggregate tables typi-
cally are created outside the relational database platform because their 
construction depends heavily on sort-and-sum sequential processing. 
Be aware that reversals or prior-period adjustments can wreak havoc 
on aggregation subsystems. 

9. Bulk load the data. If fact table key collisions occur during the load, 
we again have several options. We can halt the process, write the rows 
to a reloadable suspense file, or additively update the target row. 

10. Alert the users. Finally, inform the business community that the fact 
table has been published and is ready for action. 

Lifecycle Analytic Applications Track 

The final set of parallel activities following the business requirements defini-
tion in Figure 16.1 is the analytic application track, where we design and 
develop the applications that address a portion of the users’ analytic require-
ments. As a well-respected application developer once told us, “Remember, 
this is the fun part!” We’re finally using the investment in technology and data 
to help users make better decisions. The applications provide a key mecha-
nism for strengthening the relationship between the project team and the busi-
ness community. They serve to present the data warehouse’s face to its 
business users, and they bring the business needs back into the team of appli-
cation developers. 

While some may feel that the data warehouse should be a completely ad hoc 
query environment, delivering parameter-driven analytic applications will sat-
isfy a large percentage of the business community’s needs. There’s no sense 
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making every user start from scratch. Constructing a set of analytic applications 
establishes a consistent analytic framework for the organization rather than 
allowing each Excel macro to tell a slightly different story. Analytic applications 
also serve to encapsulate the analytic expertise of the organization, providing a 
jump-start for the less analytically inclined. 

Analytic Application Specification 
Following the business requirements definition, we need to review the find-
ings and collected sample reports to identify a starter set of approximately 10 
to 15 analytic applications. We want to narrow our initial focus to the most crit-
ical capabilities so that we can manage expectations and ensure on-time deliv-
ery. Business community input will be critical to this prioritization process. 
While 15 applications may not sound like much, the number of specific analy-
ses that can be created from a single template merely by changing variables 
will surprise you. 

Before we start designing the initial applications, it’s helpful to establish stan-
dards for the applications, such as common pull-down menus and consistent 
output look and feel. Using the standards, we specify each application tem-
plate, capturing sufficient information about the layout, input variables, calcu-
lations, and breaks so that both the application developer and business 
representatives share a common understanding. 

During the application specification activity, we also must give consideration 
to the organization of the applications. We need to identify structured naviga-
tional paths to access the applications, reflecting the way users think about 
their business. Leveraging the Web and customizable information portals are 
the dominant strategies for disseminating application access. 

Analytic Application Development 
When we move into the development phase for the analytic applications, we 
again need to focus on standards. Standards for naming conventions, calcula-
tions, libraries, and coding should be established to minimize future rework. 
The application development activity can begin once the database design is 
complete, the data access tools and metadata are installed, and a subset of his-
torical data has been loaded. The application template specifications should be 
revisited to account for the inevitable changes to the data model since the spec-
ifications were completed. 

Each tool on the market has product-specific tricks that can cause it to jump 
through hoops backwards. Rather than trying to learn the techniques via trial 
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and error, you should invest in appropriate tool-specific education or supple-
mental resources for the development team. 

While the applications are being developed, several ancillary benefits result. 
Application developers, armed with a robust data access tool, quickly will find 
needling problems in the data haystack despite the quality assurance per-
formed by the staging application. This is one reason why we prefer to get 
started on the application development activity prior to the supposed comple-
tion of staging. Of course, we need to allow time in the schedule to address any 
flaws identified by the analytic applications. The developers also will be the 
first to realistically test query response times. Now is the time to begin review-
ing our performance-tuning strategies. 

The application development quality-assurance activities cannot be com-
pleted until the data is stabilized. We need to make sure that there is adequate 
time in the schedule beyond the final data staging cutoff to allow for an 
orderly wrap-up of the application development tasks. 

Deployment 

The technology, data, and analytic application tracks converge at deployment. 
Unfortunately, this convergence does not happen naturally but requires sub-
stantial preplanning. Perhaps more important, a successful deployment 
demands the courage and willpower to assess the project’s preparedness 
to deploy honestly. Deployment is similar to serving a large holiday meal to 
friends and relatives. It can be difficult to predict exactly how long it will take 
to cook the turkey. Of course, if the turkey’s thermometer doesn’t indicate done-
ness, the cook is forced to slow down the side dishes to compensate for the lag. 
In the case of data warehouse deployment, the data is the main entrée, analo-
gous to the turkey. Cooking (or staging) the data is the most unpredictable task. 
Unfortunately, in data warehousing, even if the data isn’t fully cooked, we often 
still proceed with deployment because we told the warehouse guests they’d be 
served on a specific date and time. Because we’re unwilling to slow down the 
pace of deployment, we march into their offices with undercooked data. No 
wonder users sometimes refrain from coming back for a second helping. 

In addition to critically assessing the readiness of the data warehouse deliver-
able, we also need to package it with education and support for deployment. 
Since the user community must accept the warehouse for it to be deemed suc-
cessful, education is critical. The education program needs to focus on the 
complete warehouse deliverable: data, analytic applications, and the data 
access tool (as appropriate). If we elect to develop educational materials 
inhouse, we must allow at least 1 to 2 days of development for each hour of 
education. 
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Consider the following for an effective education program: 

�� Understand your target audience; don’t overwhelm. 
�� Don’t train the business community early prior to the availability of data and ana-

lytic applications. 
�� Postpone the education (and deployment) if the data warehouse is not ready to be 

released. 
�� Gain the sponsor’s commitment to a “no education, no access” policy. 

The data warehouse support strategy depends on a combination of manage-
ment’s expectations and the realities of the data warehouse deliverables. Sup-
port is often organized into a two-tier structure—the first line of expertise 
resides within the business area, whereas centralized support provides a sec-
ondary line of defense. In addition to identifying support resources and pro-
cedures, we also need to determine the application maintenance and release 
plan, as well as ongoing communication strategies. 

Much like a software product release goes through a series of phases prior to 
general availability, so should the data warehouse. The alpha test phase con-
sists of the core project team performing an end-to-end system test. As with 
any system test, you’re bound to encounter problems, so make sure there’s 
adequate time in the schedule for the inevitable rework. With the beta test, we 
involve a limited set of business users to perform a user acceptance test, espe-
cially as it applies to the business relevance and quality of the warehouse 
deliverables. Finally, the data warehouse is released for general availability, 
albeit as a controlled rollout. 

Maintenance and Growth 

We’ve made it through deployment, so now we’re ready to kick back and 
relax. Not so quickly! Our job is far from complete once we’ve deployed. We 
need to continue to invest resources in the following areas: 

Support. User support is crucial immediately following the deployment in 
order to ensure that the business community gets hooked. For the first 
several weeks following user education, the support team should be 
working proactively with the users. We can’t sit back in our cubicles and 
assume that no news from the business community is good news. If we’re 
not hearing from them, then chances are that no one is using the data 
warehouse. Relocate (at least temporarily) to the business community so 
that the users have easy access to support resources. If problems with the 
data or applications are uncovered, be honest with the business to build 
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credibility while taking immediate action to correct the problems. Again, 
if your warehouse deliverable is not of high quality, the unanticipated 
support demands for data reconciliation and application rework can be 
overwhelming. 

Education. We need to provide a continuing education program for the data 
warehouse. The curriculum should include formal refresher and advanced 
courses, as well as repeat introductory courses. More informal education 
can be offered to the developers and power users to encourage the inter-
change of ideas. 

Technical support. The data warehouse is no longer a nice-to-have but needs 
to be treated as a production environment, complete with service level 
agreements. Of course, technical support should proactively monitor per-
formance and system capacity trends. We don’t want to rely on the busi-
ness community to tell us that performance has degraded. 

Program support. While the implementation of a specific phase of the data 
warehouse may be winding down, the data warehouse program lives on. 
We need to continue monitoring progress against the agreed-on success 
criteria. We need to market our success. We also need to ensure that the 
existing implementations remain on track and continue to address the 
needs of the business. Ongoing checkpoint reviews are a key tool to assess 
and identify opportunities for improvement with prior deliverables. Data 
warehouses most often fall off track when they lose their focus on serving 
the information needs of the business users. 

If we’ve done our job correctly, inevitably there will be demand for growth, 
either for new users, new data, new applications, or major enhancements 
to existing deliverables. As we advised earlier when discussing scoping, 
the data warehouse team should not make decisions about these growth 
options in a vacuum. The business needs to be involved in the prioritiza-
tion process. Again, this may be a good time to leverage the prioritization 
quadrant analysis illustrated in Figure 16.2. If you haven’t done so already, 
it is helpful to have an executive business sponsorship committee in place 
to share responsibility for the prioritization. Once new priorities have been 
established, then we go back to the beginning of this chapter and do it all 
over again! Hopefully, we can leverage much of the earlier work, especially 
regarding the technical and data architectures. 

Common Data Warehousing Mistakes to Avoid 

We’ve told you what to do throughout this chapter; now we’ll balance those rec-
ommendations with a list of what not to do. We closed Chapter 15 with a list of 
common dimensional modeling mistakes. Here we’ve listed mistakes to avoid 
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when building and managing a data warehouse. The mistakes are described as 
a series of negative caricatures. Please forgive any trace of cynicism you might 
detect. Our goal is for you to learn from these caricatures based on mistakes 
made by unnamed data warehouse teams. As George Santayana said, “Those 
who cannot remember the past are condemned to repeat it.” Let’s all agree not 
to repeat any of these mistakes. 

As in Chapter 15’s list of dimensional modeling mistakes, we’ve listed these 
mistakes in reverse order, ending with the most important. However, any of 
these could be show-stoppers. 

Mistake 10: Accept the premise that those responsible for the enterprise's major 
source systems are too important and busy to spend time with the data warehouse 
team. Certainly, they cannot alter their operational procedures significantly for 
passing data to or from the warehouse. If your organization really understands 
and values the data warehouse, then the operational source systems 
should be effective partners with you in downloading the data needed and 
in uploading cleaned data as appropriate. 

Mistake 9: After the data warehouse has been rolled out, set up a planning meeting 
to discuss communications with the business users, if the budget allows. Newslet-
ters, training sessions, and ongoing personal support of the business com-
munity should be gating items for the first rollout of the data warehouse. 

Mistake 8: Make sure the data warehouse support personnel have nice offices in the 
IT building, which is only a short drive from the business users, and set up a data 
warehouse support number with lots of touch-tone options. Data warehouse 
support people should be physically located in the business departments, 
and while on assignment, they should spend all their waking hours 
devoted to the business content of the departments they serve. Such a rela-
tionship engenders trust and credibility with the business users. 

Mistake 7: Train every user on every feature of the data access tool in the first train-
ing class, defer data content education because the class uses dummy data (the real 
data won’t be ready for another couple of months), and declare success at the com-
pletion of the first training class because the data warehouse has been rolled out to 
business users. Delay training until your first data mart is ready to go live 
on real data. Keep the first training session short, and focus only on the 
simple uses of the access tool. Allocate more time to the data content and 
analytic applications rather than to the tool. Plan on a permanent series of 
beginning training classes, as well as follow-up training classes. Take credit 
for the user acceptance milestone when your users are still using the data 
warehouse six months after they have been trained. 

Mistake 6: Assume that business users naturally will gravitate toward robust data 
and develop their own killer analytic applications. Business users are not appli-
cation developers. They will embrace the data warehouse only if a set of 
prebuilt analytic applications is beckoning them. 
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Mistake 5: Before implementing the data warehouse, do a comprehensive analysis 
describing all possible data assets of the enterprise and all intended uses of infor-
mation, and avoid the seductive illusion of iterative development, which is only 
an excuse for not getting it right the first time. Very few organizations and 
human beings can develop the perfect comprehensive plan for a data 
warehouse upfront. Not only are the data assets of an organization too vast 
and complex to describe completely, but also the urgent business drivers 
will change significantly over the life of the data warehouse. Start with a 
lightweight data warehouse bus architecture of conformed dimensions and 
conformed facts, and then build your data warehouse iteratively. You will 
keep altering and building it forever. 

Mistake 4: Don’t bother the senior executives of your organization with the data 
warehouse until you have implemented it and can point to a significant success. 
The senior executives must support the data warehouse effort from the 
very beginning. If they don’t, your organization likely will not be able to 
use the data warehouse effectively. Get their support prior to launching 
the project. 

Mistake 3: Encourage the business users to give you continuous feedback through-
out the development cycle about new data sources and key performance metrics 
they would like to access, and make sure to include these requirements in the in-
process release. You need to think like a software developer and manage 
three very visible stages of developing each data mart: (1) the business 
requirements gathering stage, where every suggestion is considered seri-
ously, (2) the implementation stage, where changes can be accommodated 
but must be negotiated and generally will cause the schedule to slip, and 
(3) the rollout stage, where project features are frozen. In the second and 
third stages, you must avoid insidious scope creep (and stop being such 
an accommodating person). 

Mistake 2: Agree to deliver a high-profile customer-centric data mart, ideally cus-
tomer profitability or customer satisfaction, as your first deliverable. These kinds of 
data marts are consolidated, second-level marts with serious dependencies 
on multiple sources of data. Customer profitability requires all the sources of 
revenue and all the sources of cost, as well as an allocation scheme to map 
costs onto the revenue! For the first deliverable, focus instead on a single 
source of data, and do the more ambitious data marts later. 

Mistake 1: Don’t talk to the business users; rather, rely on consultants or internal 
experts to give you their interpretation of the users’ data warehouse requirements. 
Your job is to be the publisher of the right data. To achieve your job objec-
tives, you must listen to the business users, who are always right. Nothing 
substitutes for direct interaction with the users. Develop the ability to listen. 
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The business users, not you, define the suitability and usability of the data 
warehouse deliverable. You will be successful only if you serve the business 
users’ needs. 

Summary 

This chapter provided a high-speed tour of the lifecycle of a data warehouse 
project. We briefly touched on the key processes and best practices of a data 
warehouse design and implementation effort. While each project is a bit dif-
ferent from the next, inevitably you’ll need to focus attention on each of the 
major tasks we discussed to ensure a successful initiative. 
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say that we are still in the middle of a revolution in computing and communi-

Future Outlook

cations. A majority of the citizens in the United States, Europe, and parts of 
Asia are using computers directly or are affected directly by them in various 
ways. The speed and capacities of our computers continue to double every 
18 months, and we are aggressively rewiring our infrastructure to support 
high-bandwidth communications. 

The unabated pace of this information revolution has profound implications 
for data warehousing. Remember, data warehousing (or whatever it may be 
called in the future) simply means publishing the right data. Data warehousing 
is the central responsibility for doing something useful with all the data we 
collect. Thus perhaps the good news is that we will all have jobs forever 
because data warehousing is at the core of IT’s responsibility. But the bad news 
is that data warehousing will be a moving target because our information 
environment is evolving so rapidly and surely will continue to evolve for 
many decades. 

To try to get a grip on what the next 10 or 20 years may have in store us, let’s 
first lay out as much as we can about what other industry pundits have said 
recently regarding the next directions of technology. Although this may seem 
to go counter to the biases in this book (that is, start with the business user’s 
needs, not with technology), in the large sense of the marketplace, the new 
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technology is indeed a reflection of what the users want. Viewed from the per-
spective of the data warehouse, the entire world is being educated in the new 
medium of the computer, and a whole set of powerful expectations will define 
and drive what is a data warehouse. 

Second, we must acknowledge and anticipate powerful political forces at 
work in the world today affecting what we think a computer is and how infor-
mation should be used. The operative words are security and privacy. The data 
warehouse is absolutely in the thick of both security and privacy issues, and if 
anything, the data warehouse community has been slow to articulate security 
and privacy solutions. Instead, we have had solutions handed to us by non-
data warehouse interests, including infrastructure groups in IT as well as 
politicians. 

Finally, we will try to describe the big cultural trends within data warehous-
ing, including the shake-out of the vendor community, the use of packaged 
applications and outsourced application service providers, and the trends 
toward and away from data warehouse centralization. 

Ongoing Technology Advances 

Let’s start with a fun topic: new technology. Did we say gadgets? 

Internet appliance. Wafer thin, high performance, always on, real-time audio 
and video with 24-bit color. Today’s personal computers connected to digi-
tal subscriber line (DSL) or cable modems already approach these specifi-
cations. Increasingly, people will demand portable devices with wireless 
wideband connections to the Internet. The Internet appliance will become 
an even more potent combination of information manipulation and com-
munication than it is today. Many data warehouse-driven services will be 
delivered through this medium, and much data will be collected as a result 
of the end user’s gestures made while using the appliance. The applica-
tions of the Internet appliance will include: 

All forms of information search and retrieval. These will feature search 
engines that do a much better job of understanding meaning, both in the 
search specifications and in document contents. 

Electronic mail. Always-on e-mail will encourage a flood of tiny e-mails 
consisting of single sentence fragments as people converse casually and as 
parents check on the locations of children, as well as countless other infor-
mal types of communication. This behavior is already common with the 
Japanese DoCoMo device. 
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Telephony. The Internet appliance will be a full-powered telephone, avail-
able anywhere at all times. 

Mobile teleconferencing. Two-way and N-way face-to-face and voice-to-
voice communications will become a significant and valuable mode of 
using the Internet appliance. 

Television. Television will be widely available via the Internet appliance, 
although it will not replace the standard living room TV. 

Movies, literature, and games. The Internet appliance, coupled with wire-
less access, will be used increasingly for leisure and entertainment, espe-
cially on the road. Entertainment, of course, blends into education. 

e-Learning. Electronic education will continue to be delivered on demand 
more and more to remote students. 

Radio. Conventional radio broadcasts from all over the world will grow in 
popularity. The Internet is the successor to shortwave radio. 

Shopping. Shopping on the Internet will continue to grow. Consumers 
increasingly will configure the options they want and arrange delivery of 
their built-to-order products. Dell provides a case study in a built-to-order, 
no-intermediary business. eBay will grow to become the worldwide mar-
ketplace for person-to-person sales. 

Navigation. Since the Internet appliance is portable, always connected, and 
probably Global Positioning System (GPS)-enabled, it will be an increas-
ingly useful navigation aid, whether for driving or for walking. 

Language translation. Slowly but surely, automatic language translation 
services accessed via the Internet appliance will become accurate and useful. 

4000 x 3000 pixel two-page monitors. Large-format, high-resolution display 
technologies are coming out of the labs today that will increase the usable 
area and resolution of our desktop PC systems dramatically. 

Integration of cameras, video cameras, personal video recorders (PVRs), 
and PCs. Disk storage and processor bandwidths are very close to being 
ready at consumer prices for a grand synthesis of high-resolution photog-
raphy, full video capture, PVRs, and video libraries. 

Spoken-language interfaces. Speech recognition is good enough already for 
voice control of computer commands. A related capability will be voice 
annotations in documents, a technology that has been waiting in the wings 
for enough microphones attached to PCs to achieve critical mass. 

GPS integration. GPS devices will permeate everything from our automo-
biles to our portable PCs to our smart credit cards. These devices not only 
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will give end users feedback about where on the surface of the earth they 
are but also frequently will record and save the locations of important 
events, such as phone calls and transactions. The increased geocoding of 
much of our data warehouse data will bring the data warehouse and GPS 
communities somewhat closer together. 

Secure, pervasive e-wallet. Today’s uncertainties about revealing your credit 
card numbers will be forgotten. All of us will have the ability to reliably 
authenticate ourselves (see the next item) and pay for products and ser-
vices in any situation. Coincidentally, this will hasten the financial crisis of 
the conventional post office because paying bills by first class mail will be 
one of the biggest categories switching over to the electronic form. 

Reliable biometric identification. The window of opportunity for smart 
tokens, such as automatic teller machine (ATM) cards, has passed by 
already. Especially in these days of concern about making sure the person 
at the PC is really who he or she says he or she is, there will be widespread 
use of virtually foolproof biometric devices for personal identification. 
Today, in 2002, fingerprint recognition seems to be the leader, but retinal 
recognition seems to be the best long-term technology, assuming that the 
retinal recognition devices can be built cheaply. 

Personal data-collecting transducers everywhere. Over the next several 
decades, it will be hard to resist the gradually increased use of data-
collecting transducers that will record our every move and every gesture. 
Some of the pressure will come from security cameras or transducers in 
sensitive public areas. Some of the pressure will come from protective par-
ents needing to track the whereabouts of their children. Criminals perhaps 
may be released early from jail if they agree to wear a tracking device at all 
times. Helpful household appliances will turn on the lights and heat up the 
coffee when we stumble out of bed. Our pantries will keep a running 
inventory and will generate a pick list for the next grocery store visit. The 
grocery store itself can interact with this list and optimize our visit. It’s a 
brave new world. 

If all 300 million people in the United States generate one record each 
second 24 hours per day 365 days per year, and assuming that the 
records thus generated are 40 bytes wide, this would require 378,432 TB 
of raw data storage each year. And this is a conservative design consisting 
of only text and numbers, no images or maps. 

Micropayments for content. A side effect of the e-wallet may well be the 
introduction of added-value services in exchange for micropayments of a 
few cents or fractions of a cent. Our hesitation here is not with the technol-
ogy but with the culture of the Internet that demands free access to every-
thing. Of course, content providers have to make money somehow, and 
unless it’s advertising, it may have to be micropayments. 
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Political Forces Demanding Security 
and Affecting Privacy 

At the time of this writing we are in the early stages of responding to the chal-
lenges of international terrorism. At the moment, most Americans would be 
willing give up a little of their civil liberties and privacy in exchange for 
significantly increased safety. If significant time goes by before another major 
terrorist assault, the demand for a national ID card or other forms of secure 
authentication of all persons will fade away. However, if another assault takes 
place soon, it seems likely that we will want to track everyone, everywhere, at 
least when they are using public infrastructure. The likely authentication tech-
nologies include forgery-proof ID cards with embedded biometric informa-
tion, as well as camera recognition systems that can identify anyone passing 
through a security barrier. 

In the face of terrorist threats, it is likely that we will tolerate a certain level of 
tapping of our e-mails as well as our phone calls. It is not likely that we will 
impose significant new constraints on the use of encryption simply because 
strong encryption technology is already widely available both in the United 
States and from foreign countries. 

The existence of a national ID number and the encouragement to tie an indi-
vidual’s behavior together with the use of that number is, of course, the familiar 
use of a conformed dimension on a very grand scale. 

Conflict between Beneficial Uses 
and Insidious Abuses 

We often allow our personal information to be gathered only when we consider 
the beneficial uses. And we usually don’t understand or anticipate the insidious 
abuses of that same gathering of information when we approve it. Consider 
the following examples: 

Personal medical information. The beneficial uses are obvious and com-
pelling. We want our doctors to have complete information about us so 
that they can provide the most informed care. We recognize that insurance 
companies need access to our medical records so that they can reimburse 
the health care providers. Most of us agree that aggregated data about 
symptoms, diagnoses, treatments, and outcomes is valuable for society as a 
whole. Furthermore, we see the need to tie these medical records to fairly 
detailed demographic and behavioral information. Is the patient a smoker? 
How old is the patient? However, the insidious abuses are nearly as rivet-
ing as the benefits. Most of us don’t want our personal medical details to 
be available to anyone other than our doctors. Preferably, insurance claims 
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processing clerks should not be able to view our names, but this is proba-
bly unrealistic. We certainly don’t want our personal medical information 
to be sold to marketing-oriented third parties. We don’t want to be discrimi-
nated against because of our health status, age, or genetic predispositions. 

Purchase behavior. The beneficial uses of purchase behavior data allow our 
favorite retailers to give us personalized service. In fact, when we trust a 
retailer, we are quite happy to provide a customization profile listing our 
interests if this focuses the choices down to a manageable number and alerts 
us to new products in which we would be interested. We want the retailer 
to know us enough to handle questions, payment issues, delivery problems, 
and product returns in a low-stress way. However, insidious abuses of our 
purchase behavior drive us ballistic. We do not wish to be solicited by any 
third party through junk mail or e-mail or over the telephone. 

Safety and security in public facilities. In this day and age, all of us are 
grateful for a feeling of security in airports, in front of bank teller machines, 
and in parking garages. We wish the people who deliberately run red traffic 
lights would stop endangering the rest of us. Most of us accept the presence 
of cameras and license plate recognition systems in these public places as 
an effective compromise that increases our safety and security. The legal 
system, which ultimately reflects our society’s values, has solidly supported 
the use of these kinds of surveillance technologies. However, the insidious 
abuses of cameras and citizen tracking systems are scary and controversial. 
We have the technical ability to create a national image database of every 
citizen and identify most of the faces that cross through airport security 
gates. How is the accumulated record of our travels going to be used and 
by whom? 

Who Owns Your Personal Data? 
There is a natural inclination to believe that each of us owns and has an 
inalienable right to control all our personal information. However, let’s face 
the harsh reality. This view is naive and impractical in today’s society. The 
forces that collect and share personal information are so pervasive and grow-
ing so quickly that we can’t even make comprehensive lists of the information-
gathering systems, much less define what kinds of collecting and sharing are 
acceptable. 

Think about the three examples discussed earlier. We all routinely sign the 
waivers that allow providers and insurance companies to share our medical 
records. Have you read one of these waivers? Usually they allow all forms of 
records to be used for any purpose for an indefinite period. Just try objecting 
to the wording on the waiver, especially if you are in the emergency room. 
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And, honestly, the providers and the insurance companies have a right to own 
the information because they have committed their resources and exposed 
themselves to liability on your behalf. 

Similarly, the retailer has a right to know who you are and what you bought if 
you expect any form of credit or delivery relationship with the retailer. If you 
don’t want personalized service, then only engage in anonymous cash trans-
actions at traditional brick-and-mortar stores. 

And finally, if you use airports, teller machines, or roads, you implicitly agree 
to accept the surveillance compromise. Any images collected belong to the 
government or the bank, at least as far as current law is concerned. An odd 
corollary of being filmed in a public place is the experience we all have had of 
walking through a scene being filmed by an amateur photographer. Since a 
third party has innocently captured our image, do we have any rights of own-
ership in that image? 

What Is Likely to Happen? 
Watching the Watchers . . . 

In our opinion, there are two major ways in which privacy laws and practices 
will be developed. Either our lawmakers will lead the way with innovative 
and insightful legislation such as the Health Insurance Portability and 
Accountability Act (HIPAA) and the Children’s On-Line Privacy Protection 
Act (COPPA) or the marketplace and media will force organizations to adapt 
to the perceived privacy concerns of our citizens. It should be said that the 
government moves slowly, even when it does its job well. HIPAA was enacted 
in 1996, and COPPA was enacted in 1998. The requirements of these laws still 
have not been implemented fully in 2002. 

Much has been written about the threats to privacy and the impact of new 
technologies, but a pragmatic and compelling perspective that seems to be 
gaining a significant following can be found in David Brin’s The Transparent 
Society: Will Technology Force Us to Choose Between Privacy and Freedom? (Perseus 
Books, 1999). Brin argues that an effective compromise between freedom and 
privacy can be struck by watching the watchers. In other words, we accept the 
inevitability of the beneficial applications of personal information gathering, 
but we make the whole process much more visible and transparent. In this 
way we can curb many of the insidious uses of the information. We insist on 
very visible notifications of information gathering wherever it occurs. We 
insist on honesty and ethical consistency in following the stated policies. And 
significantly, we insist on being notified whenever our personal information is 
used by anyone. 
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Simson Garfinkel, in Database Nation (O’Reilly, 2000), agrees with many of the 
points raised in Brin’s book and further insists that citizens should be able to 
access, challenge, and correct all instances of their personal information, even 
if they don’t have the absolute right to inhibit its use. 

How Watching the Watchers Affects 
Data Warehouse Architecture 

The privacy movement is a potent force that may develop quickly. As data 
warehouse designers, we may be asked suddenly by management to respond 
to an array of privacy concerns. How is our data warehouse architecture likely 
to be affected? Here is a likely list, in our opinion: 

�� All personal information scattered around our organization will need to 
be consolidated and centralized into a single database. There should only 
be one consistent, cleaned set of data about individuals, and any data that 
is not being used for any identified purpose should be removed from all 
databases. 

�� Security roles and policies surrounding this centralized personal informa-
tion database will need to be defined, enforced, and audited. 

�� The server containing the centralized personal information database will 
be need to be physically isolated on its own segment of a local-area net-
work behind a packet filtering gateway that only accepts packets from 
trusted application servers on the outside. 

�� Backup and recovery of the centralized personal information server will 
need a strong form of physical and logical security. 

�� At least two levels of security sensitivity will need to be defined to imple-
ment a new privacy standard in your organization. General demographic 
information will be assigned a lower level of security. Names, account 
numbers, and selected financial and health-related information will be 
assigned a higher level of security. 

�� An audit database that tracks every use of the personal information must 
accompany the main database. This audit database must implement the 
requirement to notify every individual of all uses of his or her personal 
information, including who the requestor of the information is and what 
the application is. The audit database may have different access require-
ments compared with the main database. If the audit database is used in a 
batch mode, it pumps out usage reports that are e-mailed (or postal mailed) 
to the affected individual whose information is being used. If the affected 
individual can query the audit database online, then it is inherently less 
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secure than the main database and probably needs to sit on a different, 
more public server. It is important that the audit database contains as little 
compromising content as possible but is focused simply on disclosing the 
final uses of information. 

�� An interface must be provided that authenticates the individual requestor 
and then provides a copy of all his or her personal information stored on 
the database. A second interface must allow the individual to challenge, 
comment on, or correct the information. 

�� A mechanism must exist for the effective expunging of information that is 
deemed to be incorrect, legally inadmissible, or outdated. Expunged 
information must be truly expunged so that it cannot surface again at a 
later time. 

Although the data warehouse community traditionally hasn’t led the way in 
advocating social change, we think that it may be a canny look into the future 
if we each consider whether the preceding list of changes could be imple-
mented in our organizations. Consider it a reasonable future scenario that 
merits a little advanced planning. If you are more daring, and if you think the 
privacy debate will end up as the kind of compromise described in Brin’s and 
Garfinkel’s books, then have a talk with your CIO and your marketing man-
agement about some of these ideas. 

Designing to Avoid Catastrophic Failure 

We have been used to thinking that our big, important, visible buildings and 
computers are intrinsically secure just because they are big, important, and vis-
ible. This myth has been shattered. If anything, these kinds of buildings 
and computers are the most vulnerable. 

The devastating assault on our infrastructure also has come at a time when the 
data warehouse has evolved to a near production-like status in many of our 
companies. The data warehouse now drives customer relationship manage-
ment and provides near-real-time status tracking of orders, deliveries, and pay-
ments. The data warehouse is often the only place where a view of customer 
and product profitability can be assembled. The data warehouse has become 
an indispensable tool for running many of our businesses. 

Is it possible to do a better job of protecting our data warehouses? Is there a 
kind of data warehouse that is intrinsically secure and less vulnerable to cata-
strophic loss? 



380 C H A P T E R  17  

Catastrophic Failures 
Let us list some important threats that can result in a sustained catastrophic 
failure of a data warehouse, followed by potential practical responses: 

Destruction of the facility. A terrorist attack can level a building or damage 
it seriously through fire or flooding. In these extreme cases, everything on 
site may be lost, including tape vaults and administrative environments. 
Painful as it is to discuss, such a loss may include the IT personnel who 
know passwords and understand the structure of the data warehouse. 

Deliberate sabotage by a determined insider. The events of September 11, 
2001 showed that the tactics of terrorism include the infiltration of our 
systems by skilled individuals who gain access to the most sensitive points 
of control. Once in the position of control, the terrorist can destroy the 
system, logically and physically. 

Cyberwarfare. It is not news that hackers can break into systems and wreak 
havoc. The events of September 11 should remove any remaining naive 
assumptions that these incursions are harmless or constructive because 
they expose security flaws in our systems. There are skilled computer 
users among our enemies who are actively attempting today to access 
unauthorized information, alter information, and disable our systems. 
How many times in recent months have we witnessed denial-of-service 
attacks from software worms that have taken over servers or personal 
computers? We do not believe for a minute that these are solely the work 
of script kiddies. We suspect that some of these efforts are practice runs by 
cyberterrorists. 

Single-point failures (deliberate or not). A final general category of cata-
strophic loss comes from undue exposure to single-point failures, whether 
the failures are caused deliberately or not. If the loss of a single piece of 
hardware, a single communication line, or a single person brings the data 
warehouse down for an extended period of time, then we have a problem 
with the architecture. 

Countering Catastrophic Failures 
Now that we’ve identified several potential catastrophic failures, let’s turn our 
attention to possible responses: 

Profoundly distributed systems. The single most effective and powerful 
approach to avoiding catastrophic failure of the data warehouse is a pro-
foundly distributed architecture. The enterprise data warehouse must be 
made up of multiple computers, operating systems, database technologies, 



381Present Imperatives and Future Outlook 

analytic applications, communications paths, locations, personnel, and 
online copies of the data. The physical computers must be located in 
widely separated locations, ideally in different parts of the United States 
or across the world. Spreading out the physical hardware with many inde-
pendent nodes greatly reduces the vulnerability of the warehouse to sabo-
tage and single-point failures. Implementing the data warehouse 
simultaneously with diverse operating systems (for example, Linux, Unix, 
and NT) greatly reduces the vulnerability of the warehouse to worms, 
social engineering attacks, and skilled hackers exploiting specific vulnera-
bilities. Over the next 20 years, many of the interesting architectural 
advances in data warehousing will be in building profoundly distributed 
systems. Although building and administering a profoundly distributed 
data warehouse sound difficult, we have been arguing for years that we all 
do this anyway! Very few large enterprise data warehouses are centralized 
on a single monolithic machine. 

Parallel communication paths. Even a distributed data warehouse implemen-
tation can be compromised if it depends on too few communication paths. 
Fortunately, the Internet is a robust communications network that is highly 
parallelized and adapts itself continuously to its own changing topology. 
Our impression is that the architects of the Internet are very concerned 
about system-wide failures due to denial-of-service attacks and other inten-
tional disruptions. Collapse of the overall Internet is probably not the 
biggest worry. The Internet is locally vulnerable if key switching centers 
(where high-performance Web servers attach directly to the Internet back-
bone) are attacked. Each local data warehouse team should have a plan for 
connecting to the Internet if the local switching center is compromised. Pro-
viding redundant multimode access paths such as dedicated lines and satel-
lite links from your building to the Internet further reduces vulnerability. 

Extended storage-area networks (SANs). A SAN is typically a cluster of 
high-performance disk drives and backup devices connected together via 
very high-speed fiber channel technology. Rather than being a file server, 
this cluster of disk drives exposes a block-level interface to computers 
accessing the SAN that makes the drives appear to be connected to the 
backplane of each computer. SANs offer at least three huge benefits to a 
hardened data warehouse. A single physical SAN can be 10 kilometers in 
extent. This means that disk drives, archive systems, and backup devices 
can be located in separate buildings on a fairly big campus. Second, 
backup and copying can be performed disk to disk at extraordinary speeds 
across the SAN. And third, since all the disks on a SAN are a shared 
resource for attached processors, multiple application systems can be con-
figured to access the data in parallel. This is especially compelling in a true 
read-only environment. 
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Daily backups to removable media taken to secure storage. We’ve known 
about this one for years, but now it’s time to take all this more seriously. 
No matter what other protections we put in place, nothing provides the 
bedrock security that offline and securely stored physical media provide. 
However, before rushing into buying the latest high-density device, give 
considerable thought as to how hard it will be to read the data from the 
storage medium one, five, and even ten years into the future. 

Strategically placed packet-filtering gateways. We need to isolate the key 
servers of our data warehouse so that they are not directly accessible from 
the local-area networks used within our buildings. In a typical configura-
tion, an application server composes queries, which are passed to a separate 
database server. If the database server is isolated behind a packet-filtering 
gateway, the database server can only receive packets from the outside 
world coming from the trusted application server. This means that all other 
forms of access are either prohibited or must be connected locally to the 
database server behind the gateway. This means that database administra-
tors with system privileges must have their terminals connected to this 
inner network so that their administrative actions and passwords typed in 
the clear cannot be detected by packet sniffers on the regular network in 
the building. 

Role-enabled bottleneck authentication and access. Data warehouses can be 
compromised if there are too many different ways to access them and if 
security is not centrally controlled. Note that we didn’t say centrally located; 
rather, we said centrally controlled. An appropriate solution would be a 
Lightweight Directory Access Protocol (LDAP) server controlling all out-
side-the-gateway access to the data warehouse. The LDAP server allows 
all requesting users to be authenticated in a uniform way regardless of 
whether they are inside the building or coming in over the Internet from 
a remote location. Once authenticated, the directory server associates the 
user with a named role. The application server then makes the decision on 
a screen-by-screen basis as to whether the authenticated user is entitled to 
see the information based on his or her role. As our data warehouses grow 
to thousands of users and hundreds of distinct roles, the advantages of this 
bottleneck architecture become significant. 

There is much we can do to fortify our data warehouses. In the past few years 
our data warehouses have become too critical to the operations of our organi-
zations to remain as exposed as they have been. We have had the wakeup call. 
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Intellectual Property and Fair Use

Organizations who create information have tremendous political power and 
largely have succeeded in asserting permanent ownership rights to the informa-
tion they create. This kind of information includes recordings of works of art, 
such as songs, movies, and video productions, as well as news and sports broad-
casts, and copyrighted expressions of opinion, such as financial newsletters. 

All of this has a pretty significant impact on the data warehouse. One must be 
extraordinarily careful about collecting information from an outside source. 
Since most of our organizations have deep pockets, we must be very risk-
averse to avoid a lawsuit based on the claim that we appropriated information 
that did not belong to us or was under license. Because of this, and because 
media copying technology is being made much more restrictive, the original 
concept of fair use of information found in a purchased copyrighted work 
such as a book largely has been eviscerated. Fair use may be still legally valid 
for an individual, but it may not be possible for a large enterprise. 

Although the general public may have felt that Napster was harmless or even 
beneficial, the courts took an extremely negative view of Napster’s file sharing 
and cut off Napster’s air completely. Unless there is some significant change in 
the law or a successful constitutional challenge, the writing on the wall is clear. 
Created information belongs to the owner, who has very long-term rights to 
the absolute control of that information. If you are lucky, you can rent the 
information, but you won’t own it, and there is no practical way to make fair 
use of that information, at least with the technology we know about today. 

Cultural Trends in Data Warehousing 

We’ll close this chapter by describing the significant cultural trends going on 
and having an impact on data warehousing. 

Managing by the Numbers 
across the Enterprise 

In the past 20 years the business world shifted noticeably to managing by the 
numbers rather than managing by instinct or by walking the aisles. The whole 
current generation of business managers has been educated in data-driven 
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analysis and the importance of key performance indicators. The sheer size and 
complexity of large businesses demand detailed measurements. And finally, 
micromanaging individual store locations, product subcategories, and even 
individual customers can result in significant economies. 

All this requires a biblical flood of numbers and measurements. Although 
marketing managers and the other strategic analysts in the business world 
have been quantitatively oriented for most of the last 20 years, only recently 
have the rank-and-file operations managers embraced the full potential of the 
data warehouse. Much of the recent move comes from the new emphasis on 
integrating all the customer-facing processes of the business into a seamless 
whole so that both operations people and the customer can see all the 
processes at once in a single understandable framework. However, achieving 
full enterprise application integration (EAI) is a very complex process that 
usually involves replacing the primary online transaction processing (OLTP) 
operational systems. We are only partway through this process on a global 
scale. However, competitive and financial pressures to achieve this integration 
will only increase in the next 20 years. Thus, although this continued evolution 
of managing by the numbers (you can call it data warehousing, CRM, or EAI) 
may not be the most high-tech trend in the next 20 years, it is in some ways the 
most important and pervasive trend we will have to deal with. 

Increased Reliance on Sophisticated 
Key Performance Indicators 

Business managers always have had a love-hate relationship with powerful 
key performance indicators (KPIs), especially those derived from sophisti-
cated mathematical models. If they work, they’re fantastic, but as soon as they 
produce an inexplicable or wrong result, they suffer a disastrous drop in cred-
ibility. Data mining and sophisticated forecasting models gradually are gain-
ing a critical mass of respect, especially in certain application areas, such as 
economic forecasting, promotions analysis, optimal pricing algorithms, fraud 
detection, and threat analysis. The data mining community seems to have 
learned the lesson not to oversell their sophisticated techniques but rather to 
focus on successes that bring money to the bottom line. Generally, we feel that 
the sophisticated analytic tools are natural clients of the data warehouse. In 
many cases, the data warehouse serves to hand off observation sets as physi-
cal files to these tools, where they are processed and analyzed repeatedly 
while the main data warehouse is busy serving other clients. The key issues for 
the data warehouse manager supporting these sophisticated clients are to 
(1) make sure that these clients actually use the data warehouse as the platform 
for cleaned data rather than performing primary data extraction themselves, 
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(2) educate these clients on how to drill across the conformed dimensions of 
the enterprise to assemble broad and powerful observations, and (3) develop 
an effective partnership for handing off data in both directions—to the data 
mining tool and from the data mining tool. 

Behavior Is the New Marquee 
Application 

In the 1980s, the dominant data warehouse application was shipments and 
share. We were delighted just to see how much product went out the door to 
various markets. In the 1990s, profitability was the dominant data warehouse 
application. We discovered that with the proper data warehouse design, we 
could slice and dice the profitability of our businesses by products, customers, 
promotional events, time, and many other dimensions. 

Although shipments, share and profitability certainly remain important, in the 
2000s it appears that we have a new marquee application—behavior. Like the 
earlier applications, behavior means many things and reaches to all corners of 
our business. Customers have purchase behavior, payment behavior, product 
return behavior, repurchase behavior, support request behavior, and recom-
mendation behavior. Products have reliability behavior, market appeal behav-
ior, and ordering season behavior. Employees have productivity behavior, 
selling behavior, vacation taking behavior, and leadership behavior. Web site 
visitors have click-through behavior, site navigation behavior, privacy behav-
ior, and trust behavior. Behavior is a powerful perspective to add to the ship-
ments and share and profitability applications we already know how to do. 
Clearly, however, behavior is a more elusive concept. If profitability equals 
revenue minus expenses, then what is behavior? 

Packaged Applications Have Hit 
Their High Point 

During the go-go days of the Internet hype, many IT shops were overwhelmed 
by the new demands of e-business. Most IT shops knew that they lacked the 
skills to build their own Web- and CRM-oriented data warehouse systems. 
This paved the way for application package vendors to address this need with 
load-and-go packages for Web and CRM analysis. However, with e-business 
pausing and taking a deep breath, IT shops now have the time to consider 
more thoughtfully the tradeoffs in relying on an outside vendor’s proprietary 
package for a portion of the data warehouse. We are not taking the position 
here that packaged applications are bad, but we respectfully suggest that 
package providers and IT shops need to reach a better middle ground. Here’s 
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the main issue: Application package providers cannot be the data warehouse. 
And this includes the biggest Enterprise Resource Planning (ERP) vendors. 
The proprietary barriers of most of the application packages defeat the ability 
of IT to control and publish its enterprise data in an open way. Application 
packages instead should focus on performing their specific tasks very well and 
then provide the most flexible and high performance possible way for the IT 
organization to extract all the data from the package for housing in a separate 
data warehouse. 

Application Integration Has to 
Be Done by Someone 

We mentioned earlier that integrating the enterprise’s applications in order to 
achieve a consistent customer-facing view often requires replacing the pro-
duction OLTP systems. This is not a cop-out in an effort to get the data ware-
house off the hook. Like data quality issues, it is almost impossible to clean up 
incompatible data issues downstream from the source. Information has been 
lost. In many cases the matching of data from incompatible systems is not log-
ically possible. In the long run, the data warehouse must follow, not lead, the 
EAI effort. We do not mean by this to give up on creating conformed dimen-
sions and conformed facts. We are trying to warn you that this task will be far 
easier if it starts with the production systems. Finally, you should be very con-
cerned if you (the data warehouse manager) are not invited to be on the EAI 
architecture board of your organization. You are one of the most important 
clients of this process, and senior management of your organization should 
understand this. 

Data Warehouse Outsourcing Needs 
a Sober Risk Assessment 

At the height of the Internet hype there was a hope that application service 
providers (ASPs) could take off much of the load of developing and support-
ing the new kinds of data warehouses required for e-business. Some of these 
also were affiliated with application package providers (discussed earlier). 
The potential attraction of a data warehouse ASP remains very real, but again, 
with the benefit of the pause we are all experiencing, we are assessing the risks 
of the ASP model as well as the advantages. If we are no longer in a desperate 
hurry to implement our e-business and our e-warehouse, why are we willing 
to trust a strategic responsibility to an outsider? Before we throw the baby out 
with the bath water, let’s list the advantages of the ASP model for data ware-
housing: 
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�� The ASP already has skills that the IT shop does not have and perhaps 
cannot obtain easily. 

�� The ASP has configured a complete set of hardware and software compo-
nents that are known to work well together. 

�� The ASP has spare hardware capacity to respond to explosive demands 
from the Web or for disaster recovery. 

�� The ASP has centralized economies of scale for backup and recovery. 

�� The costs of the ASP can be isolated and managed in a more visible way 
than an internal department. 

�� The ASP takes care of its own personnel management. 

Countering these very compelling potential advantages are the risks: 

�� Defining a data warehouse level-of-service agreement is a sophisticated 
task, and there isn’t a lot of industry experience doing this. No matter 
what, this agreement should come from your organization, not from the 
lawyers working for the ASP! 

�� An ASP can go out of business. A source code escrow agreement is not 
much consolation in such a case. 

�� An ASP may upgrade its software on its own schedule. In any case, the 
ASP probably will not want to make custom modifications to standard 
software offerings if it is supporting many clients across many applications. 

�� An ASP may support your competitors. You don’t have direct visibility 
of the security procedures of an ASP. 

At this point we are betting against the pure business model of the remote ASP 
for data warehousing applications. Rather, we think a more viable model giv-
ing both parties what they need is for an ASP-like entity to run an inhouse data 
warehouse implementation where there is significant skills sharing with the 
local IT staff. In this way, many of the advantages of the ASP model can be real-
ized while lessening the risks. 

In Closing 

The best way to end this book is to return to the beginning. Sweeping away all 
the details and techniques, the gold coin for the data warehouse professional 
is to listen to the business. Consistently listening to the users brings us back to 
what we are supposed to do. Over the next 20 years, we can navigate through 
all the technical, organizational, and political changes that will happen if we 
keep our eyes on the horizon. After all, our job is to publish the right data. 





Glossary

24/7 Operational availability 24 hours a day, 7 days a week. 

3NF See Third normal form. 

Accumulating snapshot fact table Type of fact table with multiple dates 
representing the major milestones of a relatively short-lived process or 
pipeline. The fact table is revisited and updated as activity occurs. A record 
is placed in an accumulating snapshot fact table just once, when the item 
that it represents is first created. Contrast with Periodic snapshot fact table 
and Transaction-grain fact table. 

Activity-based costs Costs that are reported as a measure of the activity 
required rather than on an unchanging standard value. See Allocations. 

Additive (facts) Measurements in a fact table that can be added across all 
the dimensions. Ratios and unit prices are not generally additive. 

Ad hoc queries Queries that are formulated by the user on the spur of the 
moment. The ad hoc attack refers to the difficulty a database has in antici-
pating the pattern of queries. The more that queries are ad hoc, the more 
symmetric the database model must be so that all queries look the same. 
This is one of the strengths of the dimensional modeling approach. 
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Aggregate navigator Layer of software between the client and the relational 
data that intercepts the client’s Structured Query Language (SQL) and 
transforms that SQL, if it can, to use aggregates that are present somewhere 
in the data warehouse. The aggregate navigator, by definition, shields the 
user application from needing to know if an aggregate is present. In this 
sense, an aggregate behaves like an index. Some relational database suppli-
ers have incorporated aggregate navigation capabilities into their database 
management systems (DBMSs). 

Aggregates Physical rows in a database, almost always created by sum-
ming other records in the database for the purpose of improving query 
performance. Sometimes referred to as precalculated summary data. See 
Aggregate navigator. 

Algorithm Standard method for computing something; essentially a 
mathematical recipe. 

Alias (SQL) A short alphanumeric identifier in an SQL expression that 
stands for a physical table name. 

Allocated inventory Inventory that has been assigned for shipment to a 
particular customer or store before it has actually been shipped. 

Allocations Assignment or proration of measured values (usually costs) to 
several accounts, customers, products, or transactions. For instance, the 
overhead costs in a manufacturing plant are often allocated to the various 
product lines made in the plant. 

Allowance Amount subtracted from the list price of a product, typically as 
a result of a promotion or a deal. Usually shown on the invoice but called 
an off-invoice allowance. 

Analytic application Prebuilt data access applications intended for less 
frequent users of the data warehouse. Typically parameter-driven with 
flexibility to analyze countless permutations. Such an application repre-
sents an opportunity to encapsulate the analytic best practices of an 
organization. 

Analytic processing Using data for analytic purposes to support business 
decision-making, versus operational processing, where data is used to run 
the business. Analytic processing often involves trend analysis, period-to-
period comparisons, and drilling. 

ANSI American National Standards Institute, the recognized standards-
publishing body for a range of businesses, professions, and industries. 
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Answer set Rows returned to the end user as a result of an SQL expression 
presented to a relational DBMS. 

Application constraint (SQL) Portion of the WHERE clause in SQL that 
defines a constraint on values, usually within a dimension table. To be 
contrasted with a join constraint. 

Architected data marts See Data warehouse bus architecture. 

ASCII American Standard Code for Information Interchange. An 8-bit 
character set encoding. ASCII can only support 127 characters, which is 
not enough for international usage. See Extended ASCII and UNICODE. 

Asset Item that appears on the balance sheet of a company that represents 
something owned by the company or something owed to the company by 
someone else. Bank loans are assets from the bank’s point of view because 
they are owed to the bank. 

Associative table See Bridge table. 

Atomic data The most detailed granular data captured by a business 
process. Atomic data must be made available in the data presentation area 
to respond to unpredictable ad hoc queries. 

Attribute A column (field) in a dimension table. 

Audit dimension A special dimension that tags each fact table row with 
operational meta data (for example, data lineage and confidence) when the 
row is created. 

Authentication The step of determining the identity of the requesting 
client. Single-factor authentication usually is based on a simple password 
and is the least secure authentication scheme. Two-factor authentication 
may involve What-You-Know (a password) with What-You-Possess (a 
plastic card) and is secure enough for banks’ automated teller machines. 
Other two-factor authentication schemes involve What-You-Know with 
Who-You-Are, using biometric scanning devices, such as fingerprint-, 
retina-, or voice-based systems. 

Average order backlog Average length of time that orders have been 
waiting to be fulfilled. 

B-tree index A relational index that is particularly useful for high-cardinality 
columns. The B-tree index builds a tree of values with a list of row IDs that 
have the leaf value. B-tree indexes are almost worthless for low-cardinality 
columns because they take a lot of space and they usually cannot be com-
bined with other indexes at the same time to increase the focus of the 
constraints. Contrast with Bitmap index. 
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Baseline sales (of a promotion) Sales volume that would have occurred if 
there had been no promotion in effect. 

Behavior score Figure of merit that is assigned to a customer based on pur-
chase patterns or credit patterns. Also referred to as a segmentation score. 
Behavior scores can range from simple segmentation labels such as high, 
medium, or low to complex numerical results of a data-mining application. 

Behavior study group Large group of customers or products that is used in 
a user analysis or report but which cannot be defined by constraining on 
dimensional attributes and is too large to be enumerated by an SQL IN 
clause. The behavioral study group often is defined from an original 
analysis that isolates interesting purchase behavior or credit behavior. 

BI See Business intelligence. 

Bitmap index A relational indexing technique most appropriate for 
columns with a limited number of potential values (low cardinality). Most 
optimizers can combine more than one bitmapped index in a single query. 
Contrast with B-tree index. 

Brick and mortar A physically tangible business, such as a store, as 
opposed to virtual or Web-based businesses. See also Click and mortar. 

Bridge table A table with a multipart key capturing a many-to-many rela-
tionship that can’t be accommodated by the natural granularity of a single-
fact table or single-dimension table. Serves to bridge between the fact table 
and the dimension table in order to allow many-valued dimensions or 
ragged hierarchies. Sometimes referred to as a helper or associative table. 

Browse query SELECT DISTINCT query on a single-dimension table to 
show the user the values of an attribute or combination of attributes. 

Browser Personal computer (PC) client software that communicates with 
Web servers and displays Web content (text, image, audio, video) on the 
PC. The main function of the browser is to execute the HyperText Markup 
Language (HTML) program downloaded from the remote Web server. 

Bus Originally used in the electrical power industry to refer to the common 
structure providing power; then used in the computer industry to refer to a 
standard interface specification. In the data warehouse, the bus refers to 
the standard interface that allows separate data marts to coexist usefully. 
See Data warehouse bus architecture. 
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Business dimensional lifecycle A methodology for planning, designing, 
implementing, and maintaining data warehouses, as described in The Data 
Warehouse Lifecycle Toolkit (Wiley, 1998). 

Business intelligence (BI) A generic term to describe leveraging the organi-
zation’s internal and external information assets for making better business 
decisions. 

Business measure Business performance metric captured by an operational 
system and represented as a fact in a dimensional model. 

Business process Major operational activities or processes supported by 
a source system, such as orders, from which data can be collected for the 
analytic purposes of the data warehouse. Choosing the business process is 
the first of four key steps in the design of a dimensional model. 

Byte (B) Unit of measure, consisting of 8 bits of data. 

Cache In a Web browser, disk space set aside to store temporary copies of 
Web objects so that if they are requested again, they need not be fetched 
from the Web but can be obtained locally. More generally, a cache is a tem-
porary storage space for objects or data expected to be used in the near 
future. 

Cannibalization Growth of sales of one product causing the slowing of 
sales of another product. Usually referring to two products made by the 
same manufacturer. 

Cardinality The number of unique values for a given column in a relational 
table. Low cardinality refers to a limited number of values, relative to the 
overall number of rows in the table. 

Cartesian product A set comprised of all the possible combinations from 
multiple constraints. 

Causal (factor or dimension) Something that is thought to be the cause of 
something else. Causal factors in retail sales usually refer to ads, displays, 
coupons, and price reductions. A causal dimension describes these causal 
factors. 

Centipede fact table A fact table with too many dimensions (often more 
than 20), leading to a schema that resembles a centipede with numerous 
foreign keys joined to numerous dimension tables. Centipedes typically 
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result when designers attempt to represent hierarchical relationships with 
a proliferation of separate dimensions rather than nested within a single 
dimension. 

Chart of accounts List of accounts used by the general ledger. A uniform 
chart of accounts is a chart of accounts applied consistently across an 
organization. 

Churn In a subscription service, the ratio of customers lost to customers 
gained. 

CIO Chief information officer within an organization. 

Click and mortar A hybrid business with both a Web-based and a physically 
tangible presence. Contrast with Brick and mortar. 

Clickstream The composite body of actions taken by a user at a Web browser. 
The clickstream can include both the actual clicks (browser requests) and 
the server responses to those requests. The clickstream takes the form of 
Web server logs, where each Web server log record corresponds to a single 
page event. 

Click-through The action of arriving at a Uniform Resource Locator (URL; 
Web page) by clicking on a button or link, usually located on a different 
Web site. 

Column Data structure that contains an individual data item within a row 
(record). Equivalent to a database field. 

Composite key Key in a database table made up of several columns. Same 
as Concatenated key. The overall key in a typical fact table is a subset of the 
foreign keys in the fact table. In other words, it usually does not require 
every foreign key to guarantee uniqueness of a fact table row. 

Concatenated key See Composite key. 

Conformed dimensions Dimensions are conformed when they are either 
exactly the same (including the keys) or one is a perfect subset of the other. 
Most important, the row headers produced in answer sets from two differ-
ent conformed dimensions must be able to be matched perfectly. 

Conformed facts Facts from multiple fact tables are conformed when the 
technical definitions of the facts are equivalent. Conformed facts are 
allowed to have the same name in separate tables and can be combined 
and compared mathematically. If facts do not conform, then the different 
interpretations must be given different names. 
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Consolidated data mart Data marts that combine business measurements 
from multiple business processes. Sometimes called a second-level data 
mart. Contrast with First-level data mart. 

Constraint Phrase in the SQL WHERE clause. A constraint is either a join 
constraint or an application constraint. 

Continuously valued (facts) Numeric measurement that usually is differ-
ent every time it is measured. Continuously valued measurements should 
be facts in the fact table as opposed to discrete attributes that belong in a 
dimension table. 

Contribution Profit in a business measured by subtracting the allowances, 
discounts, costs of manufacturing, and costs of sales from the gross revenue. 
See Profit and loss. 

Cookie A small text file placed on a user’s PC by a Web browser in response 
to a specific request from a remote Web server. The cookie contents are 
specified by the Web server and can only be read from Web servers belong-
ing to the domain that is specified in the cookie. 

Copybook Traditional COBOL header file that describes all the columns in 
an underlying data file. 

Core table The fact table or the dimension table in a heterogeneous product 
situation that is meant to span all the products at once. Contrast with 
Custom line-of-business tables. See also Heterogeneous products. 

Cost based optimizer Software in a relational database that tries to deter-
mine how to process the query by assigning estimated costs to various 
table lookup alternatives. 

Coverage table for a promotion A fact table, typically factless, that records 
all the products that are on a promotion in a given store, regardless of 
whether they sold or not. 

CRC See Cyclic redundancy checksum. 

CRM See Customer relationship management. 

Cross-selling The technique of increasing sales by selling a new product 
line to existing customers. See also Up-selling. 

Cube Name for a dimensional structure on a multidimensional or online 
analytical processing (OLAP) database platform, originally referring to the 
simple three-dimension case of product, market, and time. 
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Custom line-of-business table The fact table or the dimension table in a 
heterogeneous product situation that contains facts or attributes specific to 
one set of products, where those facts or attributes are incompatible with 
the other sets of products. Contrast with Core tables. See also Heterogeneous 
products. 

Customer master file Company’s master list of customers, usually 
maintained by the order-processing operational system of record. 

Customer matching The effort to identify an individual human customer 
across multiple systems by Social Security Number, address, or other 
indicators. 

Customer relationship management (CRM) Operational and analytic 
processes that focus on better understanding and servicing customers in 
order to maximize mutually beneficial relationships with each customer. 

Cyclic redundancy checksum (CRC) An algorithm that is useful for check-
ing two complex items, such as customer records, to see if anything has 
changed. The CRC can be stored with an existing record, and then the CRC 
can be computed on an incoming record. If there are any differences, the 
CRCs will be different. This eliminates the requirement to check each con-
stituent field in the record. 

Data access tool A client tool that queries, fetches, or manipulates data 
stored on a relational database, preferably a dimensional model located in 
the data presentation area. Contrast with a Data staging tool. 

Data cube See Cube. 

Data extract Process of copying data from an operational system in order to 
load it into a data warehouse. 

Data mart A logical and physical subset of the data warehouse’s presentation 
area. Originally, data marts were defined as highly aggregated subsets of 
data, often chosen to answer a specific business question. This definition 
was unworkable because it led to stovepipe data marts that were inflexible 
and could not be combined with each other. This first definition has been 
replaced, and the data mart is now defined as a flexible set of data, ideally 
based on the most atomic (granular) data possible to extract from an opera-
tional source, and presented in a symmetric (dimensional) model that is 
most resilient when faced with unexpected user queries. Data marts can 
be tied together using drill-across techniques when their dimensions are 
conformed. We say these data marts are connected to the data warehouse 
bus. In its most simplistic form, a data mart represents data from a single 
business process. 
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Data mining A class of undirected queries, often against the most atomic 
data, that seek to find unexpected patterns in the data. The most valuable 
results from data mining are clustering, classifying, estimating, predicting, 
and finding things that occur together. There are many kinds of tools that 
play a role in data mining. The principal tools include decision trees, 
neural networks, memory- and cased-based reasoning tools, visualization 
tools, genetic algorithms, fuzzy logic, and classical statistics. Generally, 
data mining is a client of the data warehouse. 

Data presentation area The place where warehouse data is organized, 
stored, and available for direct querying by users, data access tools, and 
other analytical applications. All querying takes place on the data presen-
tation area. The data in the presentation area must be dimensional and 
atomic (and possibly summarized, as appropriate) and adhere to the data 
warehouse bus architecture. Typically referred to as a series of integrated 
data marts. Contrast with the Data staging area. 

Data quality assurance The step during the production data staging 
process where the data is tested for consistency, completeness, and fitness 
to publish to the user community. 

Data staging area A storage area and set of processes that clean, transform, 
combine, deduplicate, household, archive, and prepare source data for use 
in the data warehouse. The data staging area is everything in between the 
source system and the data presentation server. No querying should be 
done in the data staging area because the data staging area normally is not 
set up to handle fine-grained security, indexing or aggregations for perfor-
mance, or broad data integration across multiple data sources. Contrast 
with the Data presentation area. 

Data staging tool A software application typically resident on both the 
client and the server that assists in the production data extract-transform-
load processes. Contrast with Data access tools. 

Data stovepipe Occurs when data is available in isolated application-
specific databases, where little investment has been made to sharing 
common data, such as customer or product, with other operational systems. 
Unarchitected, stovepipe data marts are disastrous as they merely perpetu-
ate isolated, incompatible views of the organization. 

Data warehouse The conglomeration of an organization’s data warehouse 
staging and presentation areas, where operational data is specifically struc-
tured for query and analysis performance and ease-of-use. See Enterprise 
data warehouse. 
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Data warehouse bus architecture The architecture for the data warehouse’s 
presentation area based on conformed dimensions and facts. Without 
adherence to the bus architecture, a data mart is a standalone stovepipe 
application. 

Data warehouse bus matrix Tool used to create, document, and communi-
cate the bus architecture, where the rows of the matrix identify the organi-
zation’s business processes and the columns represent the conformed 
dimensions. The intersection of relevant dimensions applicable to each 
business process is then marked. 

Database management system (DBMS) A computer application whose 
sole purpose is to store, retrieve, and modify data in a highly structured 
way. Data in a DBMS usually is shared by a variety of applications. 

Days’ supply (inventory) The number of days the current inventory level 
would last at the current rate of sales. 

DBA Database administrator, a senior IT position requiring extensive 
understanding of database and data warehouse technology, as well as the 
uses of corporate data. 

DD See Degenerate dimension. 

Decision support system (DSS) The original name for data warehousing. 
In our opinion, it’s still the best name because it’s the business rationale for 
the data warehouse—using data to make decisions in an organization. See 
also Business intelligence. 

Decode The textual description associated with an operational code, flag, 
or indicator. 

Degenerate dimension A dimension key, such as a transaction number, 
invoice number, ticket number, or bill-of-lading number, that has no 
attributes and hence does not join to an actual dimension table. 

Demand side Flow of processes in a business starting with finished goods 
inventory and progressing through to customer sales. Contrast with the 
Supply side. 

Demographic minidimension See Minidimensions. 

Denormalize Allowing redundancy in a table so that the table can remain 
flat, rather than snowflaked or normalized, in order to optimize perfor-
mance and ease-of-use. Equivalent to Second normal form (2NF). 

Depletions Same as Shipments. Usually refers to a warehouse drawing 
down inventory in response to customer orders. 
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Dimension An independent entity in a dimensional model that serves as 
an entry point or as a mechanism for slicing and dicing the additive 
measures located in the fact table of the dimensional model. 

Dimension table A table in a dimensional model with a single-part primary 
key and descriptive attribute columns. 

Dimensional data warehouse Set of tables for decision support designed as 
star-joined schemas. 

Dimensional modeling A methodology for logically modeling data for 
query performance and ease of use that starts from a set of base measure-
ment events. In the relational DBMS environment, a fact table is constructed 
generally with one record for each discrete measurement. This fact table is 
then surrounded by a set of dimension tables describing precisely what is 
known in the context of each measurement record. Because of the charac-
teristic structure of a dimensional model, it is often called a star schema. 
Dimensional models have proved to be understandable, predictable, 
extendable, and highly resistant to the ad hoc attack from groups of busi-
ness users because of their predictable symmetric nature. Dimensional 
models are the basis of many DBMS performance enhancements, including 
powerful indexing approaches and aggregations. Dimensional models are 
the basis for the incremental and distributed development of data ware-
houses through the use of conformed dimensions and conformed facts. 
Dimensional models are also the logical foundation for all OLAP systems. 

Directory server A server, which can be viewed as a little data warehouse, 
that keeps track of all the users of a system as well as all the resources 
available on the system, such as database servers, file servers, printers, and 
communications resources. The industry standard way to communicate 
with a directory server is the Lightweight Directory Access Protocol (LDAP). 

Dirty customer dimension Customer dimension in which the same person 
can appear multiple times, probably not with exactly the same name 
spellings or other attributes. 

Discrete (dimension attributes) Data, usually textual, that takes on a fixed 
set of values, such as the flavor of a product. Discrete textual data always 
should be handled as attributes in a dimension table as opposed to contin-
uously valued numeric data that belongs in a fact table. 

Domain (1) A specific range of Internet addresses assigned to a single Inter-
net user. The domain name is a unique text name, often ending in .com, 
.org, .gov, or .net. (2) In a dimension, the complete set of legal values from 
which actual values are derived for an attribute. 
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Double-barreled joins Multiple parallel joins between a single dimension 
table and a fact table. 

Drill across The act of requesting similarly labeled data from two or more 
fact tables in a single report, almost always involving separate queries that 
are merged together in a second pass by matching row headers. 

Drill down The act of adding a row header or replacing a row header in a 
report to break down the rows of the answer set more finely. 

Drill up The act of removing a row header or replacing a row header in a 
report to summarize the rows of the answer set. Sometimes called dynamic 
aggregation. 

DSS See Decision support system. 

Dwell time The length of time that a specific Web page is available for 
viewing on a user’s browser. 

Earned income The income that a company is allowed to report in a given 
time period based on providing a service during that time period. Money 
paid in advance cannot be reported as income until it is earned. 

End-aisle displays A form of promotion in grocery and drug stores. 

Enterprise application integration (EAI) In a general sense, the reengineer-
ing of operational source systems to deliver enterprise consistency. In a 
product sense, a set of products that attempt to facilitate transaction-level 
communication among potentially incompatible operational source systems. 

Enterprise data warehouse (EDW) The conglomeration of an organization’s 
data warehouse staging and presentation areas. Others in the industry 
refer to the EDW as an centralized, atomic, and normalized layer of the 
data warehouse, without making it clear if such a system is available for 
end-user querying and drill-down. We discourage this interpretation of the 
EDW, preferring to think of the EDW as the largest possible union of stag-
ing and presentation services, taken as a whole. 

Enterprise resource planning (ERP) application A class of applications 
aimed at spanning some or all of the business functions of a complete 
enterprise. ERP applications often are deployed on relational databases, 
and the data dictionaries for these applications may contain thousands of 
tables. An organization acquiring a major ERP application usually must 
shut down existing legacy applications and restructure fundamental busi-
ness processes around the ERP system. ERP systems often contain the 
equivalent of an operational data store (ODS) because they usually are 
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capable of real-time or near-real-time operational reporting, but ERP systems 
until 2002 have not made good data warehouses because they have not 
provided acceptable end-user query performance or a flexible environment 
for importing third-party data. 

Entity-relationship (ER) diagram (ERD) Drawings of boxes and lines to 
communicate the relationship between tables. Both third normal form 
(3NF) and dimensional models can be represented as ER diagrams because 
both consist of joined relational tables. The key difference between the 
models is the degree of dimension normalization. A dimensional model is 
a second normal form (2NF) model. 

Equal access The original promise of relational databases: the ability to 
retrieve data based on any criteria present in the data. 

ETL See Extract-transform-load. 

Event See Page event. 

Event-tracking table A fact table, frequently factless, where the dimensions 
of the table are brought together to describe an event, such as an insurance 
description of an automobile accident. 

Extended ASCII The extension of the American Standard Code for Infor-
mation Interchange to include European accented characters and other 
special characters. This encoding uses the high 128 characters in the 8-bit 
ASCII format. See ASCII and UNICODE. 

Extended cost The unit cost multiplied by a quantity to give an additive 
value. 

Extensible Markup Language (XML) A cousin of HTML that provides 
structured data exchange between parties. XML contains data and meta 
data but no formatting information. Contrast with HTML. XML is a flexible, 
strongly hierarchical framework for assigning tags to fields within a docu-
ment. XML does not specify what the tags should be. It is up to various 
organizations or industry groups to define and use consistent sets of tags, 
and this effort is the main gating factor slowing the widespread use of XML. 

Extract-transform-load (ETL) Set of processes by which the operational 
source data is prepared for the data warehouse. The primary processes of 
the backroom data staging area of the data warehouse, prior to any presen-
tation or querying. Consists of extracting operational data from a source 
application, transforming it, loading and indexing it, quality-assuring it, 
and publishing it. 
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Fact A business performance measurement, typically numeric and additive, 
that is stored in a fact table. 

Fact dimension A special dimension used to identify extremely sparse, 
dissimilar measurements in a single fact table. 

Fact table In a star schema (dimensional model), the central table with 
numeric performance measurements characterized by a composite key, 
each of whose elements is a foreign key drawn from a dimension table. 

Factless fact table A fact table that has no facts but captures certain many-
to-many relationships between the dimension keys. Most often used to 
represent events or provide coverage information that does not appear in 
other fact tables. 

File Transfer Protocol (FTP) TCP/IP protocol that is used for transferring 
files between computers. 

Filter on fact rows A type of application constraint that constrains on the 
numeric values of one or more facts. Used for value banding. 

First-level data mart A data mart that is derived from a single primary 
source system. Contrast with Consolidated data mart. 

Fixed depth hierarchy A highly predictable hierarchy with a fixed number 
of levels. Contrast with Ragged hierarchy. 

FK See Foreign key. 

Flat file A simple data structure, often implemented on a mainframe, that 
relies on nonrelational files, such as IBM VSAM files. 

Foreign key (FK) A column in a relational database table whose values are 
drawn from the values of a primary key in another table. In a star-join 
schema, the components of a composite fact table key are foreign keys with 
respect to each of the dimension tables. 

Framework Unifying, guiding architectural approach, as in the data ware-
house bus architecture. 

FROM clause (SQL) SQL clause that lists the tables required by the query. 

General ledger (G/L) Ledger that represents the organization’s assets, 
liabilities, equity, income, and expense. The G/L remains balanced through 
offsetting transactions to debit and credit accounts. 
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Geographic information system (GIS) A hybrid application combining 
database and mapping technology. Typically, in a GIS, queries can be con-
structed from maps, and maps can be delivered as a result of a query. 

Gigabyte (GB) One billion bytes. 

GIS See Geographic information system. 

GMROI Gross margin return on inventory, equal to the number of turns of 
inventory multiplied by the gross margin percent. A measure of the return 
on each dollar invested in inventory. 

Grain The meaning of a single row in a fact table. The declaration of the 
grain of a fact table is the second of four key steps in the design of a 
dimensional model. 

Granularity The level of detail captured in the data warehouse. See Grain. 

Greenwich Mean Time (GMT) The local standard time at zero degrees 
longitude, which runs through the Royal Navy Observatory near London. 

Gross margin percent The gross profit expressed as a percentage of gross 
revenue. 

Gross profit The gross revenue less the cost of the goods. 

Gross revenue The total revenue paid to a company by its customers. If the 
gross revenue is calculated before applicable discounts, then the actual 
amount paid by the customers is called the net revenue. 

GROUP BY clause (SQL) SQL clause that uniquely lists the unaggregated 
items in the SELECT list, that is, everything that is not a SUM, COUNT, 
MIN, MAX, or AVG. 

GUI Graphic user interface. A style of computer interface characterized by 
windows, icons, the use of graphics, and the use of a mouse pointing 
device. 

Helper table See Bridge table. 

Heterogeneous products A set of products typically characterized by many 
incompatible product attributes and measurable facts. A characteristic 
design challenge in financial service environments. See Core table and 
Custom line-of-business table. 

Hierarchical relationship A relationship where data rolls up into higher 
levels of summarization in a series of strict many-to-one relationships. 
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Hierarchies are reflected by additional columns on the atomic dimension 
table. 

Householding The effort to assign an account or an individual to a house-
hold of accounts or individuals for marketing purposes. 

HyperText Markup Language (HTML) A standard markup language for 
defining the presentation characteristics of Web documents. HTML con-
tains data and formatting but does not contain meta data. Contrast with 
XML. HTML is not a general programming language. 

HyperText Transfer Protocol (HTTP) The communications protocol of the 
Web. HTTP specifies the way in which a browser and Web site exchange 
information. 

Impact report When reporting with a bridge table, the weighting factor 
assigned to the multivalued dimension is ignored. The resulting totals pro-
vide a summarization for any case in which the multivalued dimension 
was involved, regardless of the extent of the involvement. Contrast with 
Weighted report. 

Implementation bus matrix A more detailed version of the data warehouse 
bus matrix where fact tables are identified for each business process, as well 
as the fact table granularity and measurements. 

Index A data structure associated with a table that is logically ordered by 
the values of a key and used to improve database performance and query 
access speed. B-tree indexes are used for high-cardinality fields, and 
bitmap indexes are used for medium- and low-cardinality fields. 

Internet The worldwide collection of communication links and services 
that are tied together using the Internet Protocol (IP). 

Internet service provider (ISP) A company or organization that provides 
Internet connectivity to the public through the use of telephone lines, 
cable, or satellites. ISPs often offer a range of services, such as electronic 
mail, Web hosting, and application access, and provide connectivity to the 
customer’s personal computer using TCP/IP protocols. 

IP address The numeric address of a particular host or subnet on the Internet. 

Join constraint (SQL) The portion of the SQL WHERE clause that book-
keeps the join relationships between the fact table and the dimension 
tables. 
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JPEG, JPG An image-compression format standardized by the Joint Photo-
graphic Experts Group. It is particularly suited to complex images such as 
photographs. A JPEG image can be adjusted to offer high compression with 
resulting loss of image quality or low compression with high image quality. 

Julian day number A representation of a calendar date as the simple count 
of days from the beginning of an epoch, such as January 1, 1900. True Julian 
dates are numbered in the millions and are not used often as the literal 
basis of date values. 

Junk dimension An abstract dimension with the decodes for a group of 
low-cardinality flags and indicators, thereby removing the flags from the 
fact table. 

LDAP Lightweight Directory Access Protocol, a standard currently agreed 
to by most of the major systems vendors for describing the users of a net-
work and the resources available on a network. See Directory server. 

Liability An item that appears on the balance sheet of a company that 
represents money the company owes to someone else. Bank deposits are 
liabilities from a bank’s point of view because they must be paid back. 

Lift of a promotion The increase of sales over the baseline value that can be 
attributed to the effects of a promotion. 

Line item An individual line of a control document such as an invoice usu-
ally identifying a single product within the invoice. Most often used as the 
grain of the associated fact table. 

Logical design The phase of a database design concerned with identifying 
the relationships among the data elements. Contrast with Physical design. 

Loss party (insurance) Any individual or entity associated with a claim 
(a loss), including injured parties, witnesses, lawyers, and other service 
providers. 

Low-cardinality attribute set A set of attributes that have a very low cardi-
nality relative to the number of rows in the base dimension, such as external 
demographic data for a set of customers. May be handled as a dimension 
outrigger. See also Cardinality. 

Many-to-many relationship A logical data relationship in which the value 
of one data element can exist in combination with many values of another 
data element, and vice versa. 

Many-to-one relationship See One-to-many relationship. 
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Many-valued dimensions Normally, a fact table possesses only connec-
tions to dimensions representing a single value, such as a single time or a 
single product. But occasionally, it is valid to connect a fact table record to 
a dimension representing an open-ended number of values, such as the 
number of simultaneous diagnoses a patient may have at the moment of a 
single treatment. In this case we say that the fact table has a many-valued 
dimension. Also referred to as Multivalued dimensions. Typically handled 
using a bridge table. 

Market basket analysis A kind of analysis in retail environments that seeks 
to understand all the products purchased by a customer in a single shop-
ping event. Market basket analysis is an example of affinity grouping that 
seeks to find things that happen together. 

Market growth A desirable outcome of a promotion that causes overall 
sales of a product category to grow instead of causing cannibalization. 

MBA Master of Business Administration, a graduate college or university 
degree requiring extensive understanding of how commercial businesses 
are organized and managed. 

Merchandise hierarchy A set of attributes in the product dimension that 
define an ascending many-to-one relationship. Common to all manufactur-
ing and retail environments. 

Meta data Any data maintained to support the operations or use of a data 
warehouse, similar to an encyclopedia for the data warehouse. Nearly all 
data staging and access tools require some private meta data in the form 
of specifications or status. There are few coherent standards for meta data 
viewed in a broader sense. Distinguished from the primary data in the 
dimension and fact tables. 

Migrate Moving data from one computer to another or from one file format 
to another. 

Minidimensions Subsets of a large dimension, such as customer, that are 
broken off into separate, smaller artificial dimensions to control the explo-
sive growth of a large, rapidly changing dimension. The continuously 
changing demographic attributes of a customer are often modeled as a 
separate minidimension. 

Mirrored database A physical organization of data where the entire data-
base is duplicated on separate disk drives. Mirrored databases offer a 
number of performance and administrative advantages. 
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Modeling applications A sophisticated data warehouse client with analytic 
capabilities that transform or digest the output from the data warehouse. 
Modeling applications include forecasting models, behavior scoring mod-
els that cluster and classify customer purchase behavior or customer credit 
behavior, allocation models that take cost data from the data warehouse 
and spread the costs across product groupings or customer groupings, and 
most data mining tools. 

Most recent indicator An attribute, typically used in conjunction with 
type 2 slowly changing dimensions, that indicates the most current profile. 

Multidimensional database Database in which the data is presented in 
data cubes, as opposed to tables in a relational database platform. 

Multidimensional OLAP (MOLAP) Dedicated online analytical processing 
implementations not dependent on relational databases. Although 
MOLAP systems do not scale to the sizes that relational databases systems 
can, they typically offer better performance and more tightly integrated 
tools than their relational counterparts. 

Multipass SQL Query capability supported by some data access tools in 
which the results of separate star-schema queries are combined column 
by column via the conformed dimensions. Not the same thing as a union, 
which is a row-by-row combination of separate queries. 

Multitable join query One of the two characteristic types of queries in a 
data warehouse environment. Involves the joining of one or more dimen-
sion tables to a single fact table. Contrast with Browse queries. 

Multivalued dimensions See Many-valued dimensions. 

Natural key The identifier used by the operational systems. Natural keys 
often have embedded meaning. They may appear as dimension attributes 
in dimensional models but should not serve as the dimension table primary 
key, which always should be a surrogate key. 

Nonadditive (facts) A fact that cannot logically be added between rows. 
May be numeric and therefore usually must be combined in a computation 
with other facts before being added across rows. If nonnumeric, can only 
be used in constraints, counts, or groupings. 

Normalize A logical modeling technique that removes data redundancy by 
separating the data into many discrete entities, each of which becomes a 
table in a relational DBMS. 
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Null A data field or record for which no value exists. We avoid null keys 
in the fact table by assigning a dimension surrogate key to identify “Not 
Applicable,” “To Be Determined,” or other “Empty” conditions. 

ODS See Operational data store. 

Off-invoice allowances Typically deal- or promotion-related subtractions 
from the list price shown on the invoice. Part of deriving the net invoice 
amount, which is what the customer is supposed to pay on this line item. 

Off-invoice discounts Typically financial terms-related subtractions from 
the list price shown on the invoice. Part of deriving the net invoice amount, 
which is what the customer is supposed to pay on this line item. 

One-to-many relationship A logical data relationship in which the value 
of one data element can exist in combination with many values of another 
data element, but not vice versa. 

Online analytic processing (OLAP) OLAP is a loosely defined set of princi-
ples that provide a dimensional framework for decision support. 
The term OLAP also is used to define a confederation of vendors who offer 
nonrelational, multidimensional database products aimed at decision 
support. Contrast with Online transaction processing. 

Online transaction processing (OLTP) The original description for all the 
activities and systems associated with entering data reliably into a data-
base. Most frequently used with reference to relational databases, although 
OLTP can be used generically to describe any transaction-processing envi-
ronment. Contrast with Online analytic processing. 

Operational data store (ODS) A physical set of tables sitting between the 
operational systems and the data warehouse or a specially administered 
hot partition of the data warehouse itself. The main reason for an ODS is 
to provide immediate reporting of operational results if neither the opera-
tional system nor the regular data warehouse can provide satisfactory 
access. Because an ODS is necessarily an extract of the operational data, 
it also may play the role of source for the data warehouse. 

Operational system of record An operational system for capturing data 
about a company’s operations and business processes. May not necessarily 
be a transaction system or a relational system. 

ORDER BY clause (SQL) SQL clause that determines the ordering of rows 
in the answer set. 
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Outrigger table A secondary dimension table attached to a dimension 
table. An outrigger table is a physical design interpretation of a single 
logical dimension table. Occurs when a dimension table is snowflaked. 

P&L See Profit-and-loss schema. 

Page (1) A Web page is a document in HTML format that can be displayed 
by a browser. The term page also is used to describe a compound document 
consisting of the HTML document itself and ancillary objects such as 
images or sounds that are downloaded to the browser as directed by the 
page’s HTML. (2) Basic unit of stored data. 

Page event Refers to a Web page or frame downloaded from a Web server 
to a browser, exclusive of any ancillary content. 

Parent-child database Hierarchical organization of data typically involving 
a header and set of line items. The dimensional modeling approach strips 
all the information out of the header (parent) into separate dimensions and 
leaves the original parent natural key as a degenerate dimension. 

Parsing Decomposing operational fields, such as a name or address, into 
standard elemental parts. 

Partitioned tables Tables (and their associated indices) that are managed as 
physically separate tables but appear logically as a single table. Large fact 
tables are candidates for partitioning, often by date. Partitioning can 
improve both query and maintenance performance. 

Partitioning of history The natural correspondence between dimension 
table entries and fact table rows when a type 2 slowly changing dimension 
has been implemented. A type 2 slowly changing dimension partitions his-
tory because each value of its surrogate key is administered correctly to 
connect to the correct contemporary span of fact records. 

Periodic snapshot fact table A type of fact table that represents business 
performance at the end of each regular, predictable time period. Daily 
snapshots and monthly snapshots are common. Snapshots are required in 
a number of businesses, such as insurance, where the transaction history is 
too complicated to be used as the basis for computing snapshots on the fly. 
A separate record is placed in a periodic snapshot fact table each period 
regardless of whether any activity has taken place in the underlying 
account. Contrast with Transaction fact table and Accumulating snapshot 
fact table. 
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Physical design The phase of a database design following the logical 
design that identifies the actual database tables and index structures used 
to implement the logical design. 

PK See Primary key. 

Point-of-sale (POS) system The cash registers and associated in-store 
computers in a retail environment. 

Portal A Web site designed to be the first point of entry for visitors to the 
Web. Portal sites usually feature a wide variety of contents and search 
capabilities in order to entice visitors to use them. Portals are often selected 
as browser home pages. 

Price-point analysis The breakdown of product sales by each discrete 
transaction price. Requires a fact table with fine enough grain to represent 
each price point separately. 

Primary key (PK) A column in a database table that is uniquely different 
for each row in the table. 

Product master file A company’s master list of products, usually main-
tained by a manufacturing or purchase order operational application. 

Profit-and-loss (P&L) schema The P&L, also known as an income statement, 
is the classic logical ordering of revenues and costs to represent a progres-
sion from gross revenues down to a bottom line that represents net profit. 
The profitability schema often is called the most powerful dimensional 
schema because it allows the business to slice and dice revenue, cost, and 
profit by their primary dimensions, such as customer and product. 

Promotion An event, usually planned by marketing, that features one or 
more causal items such as ads, displays, or price reductions. Also thought 
of as a deal or sometimes as a contract. 

Proxy An alternate Web server that responds to a Web page request in order 
to reduce the load on a primary Web server or network. 

Pseudotransaction A step needed in some production data extract systems 
where a nontransactional legacy system is analyzed to see what changed 
from the previous extract. These changes are then made into artificial 
(pseudo) transactions in order to be loaded into the data warehouse. 

Publishing the right data The most succinct way to describe the overall 
responsibility of the data warehouse. The data is right if it satisfies the 
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business’s requirements. The act of publishing is driven ultimately by the 
business user’s needs. 

Pull-down list A user-interface effect in a data access tool that displays a 
list of options for the user. The most interesting pull-down lists in a data 
warehouse come from browse queries on a dimension attribute. 

Query User request for information stored in a data warehouse. With a 
relational DBMS, the query is an SQL SELECT statement passed from the 
data access application (typically on the end user’s client machine). 

Ragged hierarchy A hierarchy with an unbalanced and arbitrarily deep 
structure that usually cannot be described in advance of loading the data. 
Sometimes referred to as a variable-depth hierarchy. Organization charts 
often are ragged hierarchies. See Bridge table. 

Real time partitions A physically separate and specially administered set 
of tables, apart from the conventional data warehouse, to support more 
real-time access requirements. See also Operational data store. 

Reason code A field used in conjunction with a transaction dimension to 
describe why the transaction took place. Reason codes are valuable for 
returns and cancellations and for describing why something changed. 

Redundancy Storing more than one occurrence of the data. 

Referential integrity (RI) Mandatory condition in a data warehouse where 
all the keys in the fact tables are legitimate foreign keys relative to the 
dimension tables. In other words, all the fact key components are subsets 
of the primary keys found in the dimension tables at all times. 

Referral The identity of the previous context of a URL. In other words, if 
you click on a link in page A and wind up on page B, page B’s Web server 
sees page A as the referral. Web servers can log referrals automatically, 
which is a very useful way to see why a visitor came to your Web site. 

Relational database management system (RDBMS) Database management 
system based on the relational model that supports the full range of stan-
dard SQL. Uses a series of joined tables with rows and columns to organize 
and store data. 

RI See Referential integrity. 

ROI Return on investment, usually expressed as a rate describing the 
growth of an investment during its lifetime. 
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Role-playing dimensions The situation where a single physical dimension 
table appears several times in a single fact table. Each of the dimension 
roles is represented as a separate logical table with unique column names 
through views. 

Roll up To present higher levels of summarization. See Drill up. 

Row A record in a relational table. 

Row header The nonaggregated components of the SQL select list. Always 
listed in the SQL group by clause. 

Sales invoice The operational control document that describes a sale. 
Usually contains multiple line items that each represent a separate product 
sold. 

Scalability The ability to accommodate future growth requirements. 

SCD See Slowly changing dimensions. 

Schema The logical or physical design of a set of database tables, indicating 
the relationship among the tables. 

Second-level mart See Consolidated data mart. 

SELECT DISTINCT (SQL) SQL statement that suppresses duplicate rows 
in the answer set. 

SELECT list (SQL) List of column specifications that follows SELECT and 
comes before FROM in an SQL query. Each item in the select list generates 
a column in the answer set. 

Semantic layer An interface layer placed between the user and the physical 
database structure. 

Semiadditive (fact) Numeric fact that can be added along some dimensions 
in a fact table but not others. Inventory levels and balances cannot be 
added along the time dimension but can be averaged usefully over the time 
dimension. 

Session The collection of actions taken by a Web site visitor while visiting 
the Web site without leaving it. Also called a visit. 

Shelf displays Tags, racks, or other promotional mechanisms used in a 
retail environment. 
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SKU See Stock keeping unit. 

Slice and dice Ability to access a data warehouse through any of its dimen-
sions equally. Slicing and dicing is the process of separating and combining 
warehouse data in seemingly endless combinations. 

Slowly changing dimensions (SCD) The tendency of dimension rows to 
change gradually or occasionally over time. A type 1 SCD is a dimension 
whose attributes are overwritten when the value of an attribute changes. 
A type 2 SCD is a dimension where a new row is created when the value 
of an attribute changes. A type 3 SCD is a dimension where an alternate 
old column is created when an attribute changes. 

Snapshot See either Accumulating snapshot fact table or Periodic snapshot 
fact table. 

Snowflake A normalized dimension where a flat, single-table dimension is 
decomposed into a tree structure with potentially many nesting levels. In 
dimensional modeling, the fact tables in both a snowflake and star schema 
would be identical, but the dimensions in a snowflake are presented in 
third normal form, usually under the guise of space savings and maintain-
ability. Although snowflaking can be regarded as an embellishment to the 
dimensional model, snowflaking generally compromises user understand-
ability and browsing performance. Space savings typically are insignificant 
relative to the overall size of the data warehouse. Snowflaked normalized 
dimension tables may exist in the staging area to facilitate dimension 
maintenance. 

Sort To sequence data according to designated criteria. 

Source system An operational system of record whose function it is to 
capture the transactions or other performance metrics from a business’s 
processes. Alternatively, the source system may be external to the organiza-
tion but is still capturing information that is needed in the data warehouse. 

Sparse A fact table that has relatively few of all the possible combinations 
of key values. A grocery store product movement database is considered 
sparse because only 5 to 10 percent of all the key combinations for product, 
store, and day will be present. An airline’s frequent-flyer database is 
extremely sparse because very few of the customer, flight number, and day 
combinations actually appear in the database. 

Sparsity failure A situation that occurs when an aggregate table is created 
that is not appreciably smaller than the table on which it is based. For 
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instance, if only one SKU in each brand is sold on a given day, then a brand 
aggregate for a day will be the same size as the base table. 

SQL Structured Query Language, the standard language for accessing 
relational databases. 

Star-join schema The generic representation of a dimensional model in a 
relational database in which a fact table with a composite key is joined to a 
number of dimension tables, each with a single primary key. 

Star schema See Star-join schema. 

Stock keeping unit (SKU) A standard term in manufacturing and retail 
environments to describe an individual product. 

Subrogation The act of an insurance company selling the rights remaining 
in a claim, such as the right to sue someone for damages. 

Supply side The part of the value chain in a manufacturing company that 
starts with purchase orders for ingredients and parts and ends with fin-
ished goods inventory. Physically, the supply side is the manufacturing 
operation. Contrast with Demand side. 

Surrogate key Integer keys that are sequentially assigned as needed in 
the staging area to populate a dimension table and join to the fact table. 
In the dimension table, the surrogate key is the primary key. In the fact 
table, the surrogate key is a foreign key to a specific dimension and may 
be part of the fact table’s primary key, although this is not required. A 
surrogate key usually cannot be interpreted by itself. That is, it is not a 
smart key in any way. Surrogate keys are required in many data ware-
house situations to handle slowly changing dimensions, as well as 
missing or inapplicable data. Also known as artificial keys, integer keys, 
meaningless keys, nonnatural keys, and synthetic keys. 

Syndicated data suppliers Companies that collect data, clean it, package it, 
and resell it. A.C. Nielsen and IRI are the principal syndicated data suppli-
ers for grocery and drug store scanner data, and IMS Health and Source 
Informatics (Walsh America) are the principal syndicated data suppliers 
for pharmaceutical data. 

Table Collection of rows (records) that have associated columns (fields). 

Takeaway Consumer purchases. 

TCP/IP Transmission Control Protocol/Internet Protocol, the basic commu-
nication protocol of the Internet, consisting of a transport layer (IP) and an 
application layer (TCP). 
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Temporal inconsistency Tendency of an OLTP database to change its 
primary data relationships from moment to moment as transactions are 
processed. This inconsistency has an impact on users in two primary ways: 
(1) the database is changing constantly as they query it, and (2) old history
is not necessarily preserved. 

Temporary price reduction (TPR) Promotional technique in retail 
environments. 

Terabyte (TB) One trillion (1012) bytes. 

Textual (dimension attributes) Dimension attributes that are actually text 
or behave like text. 

Third normal form (3NF) Database design approach that eliminates redun-
dancy and therefore facilitates insertion of new rows into tables in an 
OLTP application without introducing excessive data locking problems. 
Sometimes referred to as normalized. 

3NF See Third normal form. 

Time shifting of a promotion Tendency of some promotions to cause the 
customer to defer purchases until the promotion is on and then not make 
purchases after the promotion for a prolonged period. In the most serious 
cases, the promotion accomplishes nothing except to allow the customer to 
buy products cheaply. 

Time stamping Tagging each record with the time the data was processed 
or stored. 

Topology The organization of physical devices and connections in a system. 

TPR See Temporary price reduction. 

Transaction Indivisible unit of work. A transaction processing system 
either performs an entire transaction or it doesn’t perform any part of the 
transaction. 

Transaction fact table Type of fact table in which the fact table granularity 
is one row for the lowest level of detail captured by a transaction. A record 
in a transaction fact table is present only if a transaction event actually 
occurs. Contrast with Periodic snapshot fact table and Accumulating snapshot 
fact table. 

Transshipments Shipments of product that occur between the warehouses 
belonging to the manufacturer or retailer. 
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Trending Analyzing data representing multiple occurrences in a time series. 

Turns (inventory) Number of times in a given period (usually a year) that 
the inventory must be completely replenished in order to keep up with the 
observed rate of sales. 

24/7 Operational availability 24 hours a day, 7 days a week. 

Twinkling database The tendency of a transaction-processing database to 
constantly be changing the data the user is attempting to query. 

Type 1 A slowly changing dimension (SCD) technique where the changed 
attribute is overwritten. 

Type 2 A slowly changing dimension (SCD) technique where a new dimen-
sion record with a new surrogate key is created to reflect the change. 

Type 3 A slowly changing dimension (SCD) technique where a new column 
is added to the dimension table to capture the change. 

UNICODE The UNICODE worldwide character standard is a character 
coding system designed to support the interchange, processing, and dis-
play of the written texts of the diverse languages of the modern world, 
including Japanese, Chinese, Arabic, Hebrew, Cyrillic, and many others. 
In addition, it supports classical and historical texts of many written lan-
guages. UNICODE is a 16-bit implementation, which means that 65,535 
characters can be supported, unlike ASCII, which can support only 127, 
or extended ASCII, which supports 255. Release 2.1, the current release 
of UNICODE, defines 38,887 of the possible characters. 

Universal Product Code (UPC) Standard bar-coded value found on most 
grocery and drug store merchandise. 

Universal Resource Locator (URL) The text address of a specific object on 
the World Wide Web. It usually consists of three parts: a prefix describing 
the TCP protocol to use to retrieve it (for example, HTTP), a domain name 
(for example, webcom.com), and a document name (for example, index. 
html). Such a URL would be formatted as http://www.webcom.com/ 
index.html. 

UPC See Universal product code. 

Up-selling Selling a product or service to an existing customer, where the 
goal is to get the customer to purchase a more expensive or higher-value 
version than previously purchased. See Cross-selling. 
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URL See Universal resource locator. 

Value banding (facts) Grouping facts into flexible value bands as specified 
in a band definition table. 

Value chain Sequence of processes that describe the movement of products 
or services through a pipeline from original creation to final sales. 

Value circle In some organizations, the sequence of events or processes 
more closely resembles a circle, rather than a chain, centered on core data, 
such as the patient treatment record in health care. 

Variable-depth hierarchy See Ragged hierarchy. 

Variable-width attribute set The situation where a varied number of dimen-
sion attributes are known, depending on the duration of the relationship, 
such as the case with prospects who evolve into customers. 

VIEW (SQL) SQL statement that creates logical copies of a table or a com-
plete query that can be used separately in a SELECT statement. Views are 
semantically independent, so the separate roles of a dimension usually are 
implemented as views. 

Virgin territory Portion of disk storage that is unoccupied prior to a data 
load. In a static database experiencing no in-place updates or inserts and 
with a primary sort order with time as the leading term in the sort, all data 
loading takes place in virgin territory. 

Web Short for the World Wide Web, the collection of servers and browsers 
that talk to each other using the HTTP protocol. 

Webhouse The data warehouse evolved to a new form because of the 
existence of the Web. 

Web site A Web server, or collection of Web servers, that appears to users as 
an integrated entity with a well-defined system of hyperlinks connecting 
its components. 

Weighted report When using a bridge table, the facts in the fact table are 
multiplied by the bridge table’s weighting factor to appropriately allocate 
the facts to the multivalued dimension. Contrast with Impact report. 

XML See Extensible Markup Language. 
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A 
accounting, 173–186

about, 173
budgeting process, 180–185
case study, 174
general ledger data, 175–180
OLAP, 185–186
packaged analytic solutions,

185–186
account status dimension, financial

services, 203
accumulating snapshot fact tables, 

134–135. See also periodic 
snapshot fact tables; transaction 
grain fact tables 

accumulating snapshot for 
admissions tracking, 244–246 

accumulating snapshot for order 
fulfillment pipeline

lag calculations, 130
multiple units of measure, 130–132
order management, 128–132
rear-view mirror metrics, 132

accumulating snapshot grain fact
tables, 18

accumulating snapshot real-time
partition, 138–139

AC Nielsen, 16
Adamson, Chris, 183
additive (facts), 17
additive complacency, 188
address parsing, CRM, 147–150

affinity grouping. See market basket 
analysis

aggregate clickstream fact table, 298
aggregated facts as attributes,

CRM, 152
aggregate navigators, 390
aggregates, 390
aggregation strategy, data ware-

house building, 356–357 
airline frequent flyer case study 

multiple fact table granularities, 
230–232 

transportation, 230–234
algorithms, 390
alias (SQL), 390
allocated inventory, 390
allocations, 390

header facts to line item, 121–122
allowance, 390
alternate reality, 101
alternative (or complementary)

policy accumulating snapshot, 
insurance, 315

America Online, 285
analytic application, 390

development, 338
development, lifecycle analytic

applications track, 363–364
specification, lifecycle analytic

applications track, 362–364
analytic CRM, 143–145
analytic processing, 390

419 
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AND/OR dilemma, 195
anonymous Web visitors, 284
ANSI, 390
answer set, 391
application constraint (SQL), 391
application integration, data ware-

housing cultural trends, 386
application service providers

(ASPs), 386–387
architected data marts. See data

warehouse bus architecture
architectural requirements, data

staging area, 8
artificial keys. See surrogate keys
ASCII, 391
asset, 391
associative tables, 163. See also

bridge tables
Atkinson, Toby, 150
atomic data, 22–23, 391

dimensional modeling, 12
attribute hierarchies, order 

transactions, 111
attributes, 20, 391
audit dimension, 391

financial services, 202
human resources management,

193–194
insurance policy transactions, 314

authentication, 391
average order backlog, 391

B 
backups, 382
banking case study, 20
baseline sales (of a promotion), 392
behavior score, 392
behavior study group, 160, 392
BI. See business intelligence (BI)
billing fact table extension to show

profitability, 265–266
biometric identification, 374

bitmap indexes, 392. See also B-tree
indexes

snowflaking and, 56
branch dimension, financial

services, 203
brick and mortar, 392. See also click

and mortar
bridge tables, 163, 392

joining, 166
Brin, David, 377
browse queries, 392
browser caches, data tracking,

286–287
browsers, 392
browsing

key attributes, 157
snowflaking and, 56

B-tree indexes, 391. See also bitmap
indexes

budgeting process, 180–185
consolidated fact tables, 184–185

bus, 78, 392. See also data warehouse
bus architecture

bus architecture, 13
business dimensional lifecycle, 393

data warehouse building, 332–334
business intelligence (BI), 393
business measure, 393
business process, 393

selection, retail sales, 33–34 
business representatives, 342–343 
business requirements 

data warehouse building, 340–347 
postcollection documentation and 

follow-up, 345–347 
prioritization and consensus, 

346–347 
business requirements collecting

data-centric interviews, 345
interview flow, 343–344
launch, 343
wrap-up, 344–345



C 

Index 

business requirements preplanning
business representatives, 342–343
forum choice, 341
prepare requirements team,

341–342
business subject matter experts, 338
business system analysts, 338
bytes (B), 393

cache, 393
cannibalization, 393
cardinality, 393
cargo shippers, transportation,

234–235
Cartesian product, 393
catastrophic failure prevention,

379–382 
causal dimensions, 393

financial services, 202
retail sales, 46–48

causal factors, 393
centipede fact tables, 393–394

with too many dimensions, 58
centipedes, 57
chart of accounts, 394

general ledger periodic snapshot,
175–176

chief operating officer (CIO),
307, 394

Children’s On-Line Privacy
Protection Act (COPPA), 377

churn, 394
claims accumulating snapshot,

insurance, 323–324 
claims transactions, insurance, 

321–323 
class of service, transportation, 

236–237 
click and mortar, 394. See also brick 

and mortar 
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clickstream, 277, 281–292, 394 
data tracking, 282–287 

clickstream data mart, enterprise 
data warehouse and, 299–300 

clickstream dimensions, 287–292 
event dimension, 289–290 
page dimension, 288–289 
referral dimension, 291–292 
session dimension, 290–291 

clickstream fact tables, 292–294
aggregate, 298
page events, 295–297

click-through, 394
closed-loop analytic CRM, 145
Code on Dental Procedures and 

Nomenclature, 258
columns, 394
commercial customer hierarchies,

161–168
fixed-depth hierarchies, 162
variable depth hierarchies, 162–168

complementary procurement 
snapshot, 93–94 

complex schemas, dimensional 
modeling and, 10–12

composite keys, 18, 394
compound keys, 61
concatenated keys, 18, 61. See also

composite keys
confidential information, data

warehouse, 4
conformed dimensions, 394

data warehouse bus architecture,
82–87

insurance policy periodic
snapshot, 316

conformed facts, 394
data warehouse bus 

architecture, 87
insurance policy periodic snapshot,

316–317
conforming the facts, 329




