

Large-Scale
Software Architecture

A Practical Guide using UML

Jeff Garland
CrystalClear Software Inc.

Richard Anthony
Object Computing Inc.

Large-Scale
Software Architecture

Large-Scale
Software Architecture

A Practical Guide using UML

Jeff Garland
CrystalClear Software Inc.

Richard Anthony
Object Computing Inc.

Copyright © 2003 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the
terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the publication. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770571.

Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage occasioned
to any person or property through using the material, instructions, methods or ideas contained herein, or acting or
freraining from acting as a result of such use. The authors and publisher expressly disclaim all implied warranties,
including merchantability or fitness for any particular purpose. There will be no duty on the authors or publisher to
correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where
John Wiley & Sons, Ltd is aware of a claim, the product names appear in capital or all capital letters. Readers,
however, should contact the appropriate companies for more complete information regarding trademarks and
registration.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.
Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Library of Congress Cataloging-in-Publication Data

(to follow)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 470 84849 9

Typeset in 104/13pt Sabon by Keytec Typesetting, Bridport, Dorset

Printed and bound in Great Britain by Biddles Ltd, Guildford and Kings Lynn

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Preface i
Acknowledgments xvii
Introduction

1.1 What is Software Architecture

1.1.1 What software architecture is not
1.1.2 Attributes of software architecture
1.1.3 Definitions of other key architecture-related terms
1.1.4 Other types of architectures

Why Architecte

Architectural Viewpoint Summary

Other Software Architecture Approaches

1.4.1 The 4+1 Views

1.4.2 RM-ODP viewpoints

1.4.3 Bass architectural structures

1.4.4 Hofmeister software architecture views
1.5 Recommended Reading

Nwio
VOV ONOCOONOWNOGA — —

Roles of the Software Architect 21

2.1 Relationship to other key roles in development organization 25
Role: project management 25
Role: development team managers 25
Role: system architect/chief engineer 26
Role: chief software engineer 26
Role: hardware architect 27

Role: network architect 27

vi

Contents

2.2
2.3
24
2.5

2.6

Role: technical leads of each release

Role: data architect

Role: systems engineering leads

Role: software systems engineering lead

Skills and Background for the Architect

Injecting Architecture Experience

Structuring the Architecture Team

Traps and Pitfalls Associated with the Role of Software Architect
2.5.1 Clear definition of leadership

2.5.2 Reporting structure for the software architect

2.5.3 Geographical location of software architect and technical leads
2.5.4 Architecture team size and composition

2.5.5 Software architect lifecycle participation
Recommended Reading

Software Architecture and the Development

Process

3.1

3.2

3.3

3.4

3.5

3.6
3.7

Overview of Iterative Development
3.1.1 Overall process phases
3.1.2 Llifecycle stages
3.1.3 Architecture and agile processes
3.1.4 Start early, refine constantly
Requirements Management
3.2.1 Use cases and requirements engineering
3.2.2 Additional requirements that impact architecture
3.2.3 Requirements tracing
Management of the Technology Roadmap
3.3.1 External software products
3.3.2 Software technology management traps and pitfalls
3.3.3 Organizational technology roadmap
Effective Technical Meetings
3.4.1 Informal technical meetings
3.4.2 Peer reviews and inspections
3.4.3 Design reviews
3.4.4 Design communication meetings
3.4.5 Management meetings
3.4.6 Vendor presentations
3.4.7 Distributed technical meetings
Traps and Pitfalls of the Software Architecture Process Activities
The out-of-touch architect
Analysis paralysis
Design for reuse
Use cases
Schedule
Computer-Aided Software Engineering (CASE) Tools
Recommended Reading

28
28
28
29
29
31
32
33
34
34

36
36
37

39
39
40
41
43
47
48
48
49

50
50
53
54
55
55
56
57
57
57

58
59
59
60
60
60
60
61
62

Contents

4 Example System Overview 63
4.1 System Overview 64
4.2 Overview of System Interfaces 64
4.3 Constraints 67
4.4 Maijor Operational Requirements and Software Requirements 67

5 UML Quick Tour 69
5.1 UML Diagram Summary 69
5.2 General Diagramming Conventions 72

5.2.1 General UML features: stereotypes, tagged values, multi-instance 73
5.2.2 View labels 74
5.3 The Diagrams 75
5.3.1 Component instance diagrams 75
5.3.2 Class and subsystem diagrams 76
5.3.3 Interaction (sequence and collaboration) diagrams 77
5.3.4 Deployment diagrams 79
5.3.5 Statechart diagrams 80
5.3.6 Activity diagrams 81
5.4 Managing Complexity 81
5.4.1 Use Case focused modeling 82
5.4.2 Element focused modeling 82
5.4.3 Llevel of detail 83
5.4.4 Controlling the number of models 83
5.4.5 Use Supplemental Textural Information 85
5.5 Recommended Reading 85

6 System Context and Domain Analysis 87
6.1 Conceptual Diagrams 87
6.2 Context Viewpoint 89
6.3 Domain Analysis Techniques 94

6.3.1 A formal analysis technique 95
6.3.2 Other techniques for finding domain entities 98
6.3.3 Analysis shortcuts 100
6.4 Analysis Viewpoints 101
6.4.1 Analysis Interaction Viewpoint 101
6.4.2 Analysis Focused Viewpoint 103
6.4.3 Analysis Overall Viewpoint 105
6.4.4 Candidate subsystem identification 107
6.5 Recommended Reading 108

7 Component Design and Modeling 111

7.1 Overview 111
7.1.1 Componentbased development 111
7.1.2 Terminology 112
7.1.3 Communication and interfaces 115
7.1.4 Finding components 115
7.1.5 Qualities of component design 116

=
=%
=Y

Contents

7.2 Component Viewpoint 116
7.2.1 Component communication 117
7.2.2 Component interfaces 118
7.2.3 Message-based component modeling 121
7.2.4 Combining interfaces and messaging 124
7.2.5 Comparison of interfaces and messaging 127
7.2.6 Mechanism and performance annotations 128

7.3 Component Interaction Viewpoint 131
7.3.1 Component to Component Interactions 131

7.4 Component State Modeling 133

7.5 Modeling Highly Configurable Component Architectures 137

7.6 Recommended Reading 137

8 Subsystem Design 139

8.1 Terminology 139

8.2 Modeling Subsystems, Interfaces, and Layers 141
8.2.1 Subsystem Interface Dependency Viewpoint 141
8.2.2 Enhancing the Subsystem Dependency Views with layers 143
8.2.3 Top-evel Dependencies 144
8.2.4 The Layered Subsystem Viewpoint 146

8.3 Mapping Subsystems and Layers to Implementation 151
8.3.1 Subsystems, layers, and build trees 151
8.3.2 Subsystems and components 153

8.4 Recommended Reading 154

9 Transaction and Data Design 155

9.1 Logical Data Architecture 155
9.1.1 logical data model stability 157
9.1.2 Effects of the stable logical data model 158

9.2 logical Data Viewpoint 159
9.2.1 logical Data View example 160
9.2.2 logical Data View for messaging 163

9.3 Data Model Design — Other Considerations 163
9.3.1 Data models and layers 164
9.3.2 Data models and reflection 165
9.3.3 Mapping objects to relational database 166

9.4 Transaction Design 169
9.4.1 Transaction concepts 170
9.4.2 Modeling transaction dynamics 171
9.4.3 Transactions and interface design 173

9.5 Recommended Reading 174

10 Process and Deployment Design 177

10.1 Physical Data Viewpoint 178
10.1.1 Modeling other storage attributes 179
10.1.2 Detailed physical storage modeling 181

10.2 Process Viewpoint 183

Contents

10.2.1 Processes and components 186
10.2.2 Process and component management 186
10.2.3 Process State Viewpoint 189
10.3 Deployment Viewpoint 193
10.3.1 Scalable node design 194
10.3.2 Backup/archive design 199
10.4 Recommended Reading 199

11 Architecture Techniques 201

11.1 Architecture Development Techniques 201
11.1.1 Commonality and variability analysis 202
11.1.2 Design for change 203
11.1.3 Generative programming techniques 204
11.1.4 Building a skeleton system 205
11.1.5 Prototyping 206
11.1.6 Interface development — Design by Contract 206
11.1.7 Architectural description languages 208
11.1.8 Architecture evaluation 208

11.2 Software Partitioning Strategies — Separation of Concerns 208
11.2.1 Functional decomposition 209
11.2.2 Isolate donfiguration data 210
11.2.3 Isolate hardware-specific components 210
11.2.4 Isolate time-critical components 211
11.2.5 Separate domain implementation model from human interface 211
11.2.6 Separate domain implementation model from implementation

technology 211
11.2.7 Separate main function from monitoring 212
11.2.8 Separate fault recovery processing 212
11.2.9 Adaptation of external interfaces 213

11.3 Software Changeability and Dependency Management 213
11.3.1 The stable dependencies principle (SDP) 214
11.3.2 Acyclic dependencies principle 215
11.3.3 Interface Separation Principle 216

11.4 Using Architectural Patterns 216

11.5 Integration Strategies 218
11.5.1 Data-only integration 219
11.5.2 Executable integration 220

11.6 Establishing Architecture to Support Development 221
11.6.1 Configuration and change management 221
11.6.2 Build management 222
11.6.3 Continuous integration 222
11.6.4 Anticipate multi-language development 223
11.6.5 Anticipate tactical development (scripting) 224

11.7 Recommended Reading 225

12 Applying the Viewpoints 227
12.1 Bottom-Up Architecture Development 227
12.2 Top-Down Architecture Development 229

Contents

12.3 Message Protocol and Interface Development
12.4 Reengineering Existing Systems
12.5 Documenting the Architecture
12.6 Conclusions
12.6.1 Becoming an architect
12.6.2 State of the Practice
12.6.3 Looking forward
12.6.4 Final thoughts
12.7 Recommended Reading

Appendix: Summary of Architectural Viewpoints

Bibliography

Index

231
233
233
235
235
237
238
240
241

243
251
257

Preface

The purpose of this book is to describe practical representations and techni-
ques for the development of large-scale software architectures. The goal is to
enable other software architects, developers, and managers to become more
effective as a direct result of our experiences on several large-scale software
development projects. We describe the techniques and architectural represen-
tations we have utilized successfully.

This book is intended to be a practical guide. Our goal is to be brief. We
cover only the essential information to guide software architects in defining
the software architecture, providing pointers to further reading in lieu of
detailed descriptions of this literature. Ideally, we can help software develop-
ment teams avoid the common practice of capturing the architecture after the
software has been developed instead of utilizing the architecture as a tool to
guide the software development.

The Unified Modeling Language (UML) is used throughout this book. We
reduce the myriad of UML constructs to a precious few that we have found to
be most useful. Leveraging the recent IEEE 1471 standard for software
intensive systems, we describe several architectural viewpoints that are helpful
in the development and documentation of software architectures. After read-
ing this book, you will understand these viewpoints and techniques that will
improve the modeling of your system’s software architecture.

The focus of this book will be the software architecture of large-scale
systems. Typically, this means enterprise systems and large distributed sys-
tems. However, most of the viewpoints and techniques discussed here will

=Y

Preface

apply to smaller projects and embedded systems. A typical large-scale soft-
ware project will include:

e Large quantities of source code (typically millions of lines)

e Large numbers of developers (potentially hundreds, often geographically
distributed)

e High complexity of interaction between components
e Extensive use of off-the-shelf components
e Multiple programming languages

e Multiple persistence mechanisms (files, relational databases, object data-
bases)

e Multiple hardware platforms
e Distribution of components over several hardware platforms

e High concurrency

Dealing with the complexity of large-scale systems can be a challenge for
even the most experienced software designers and developers. Large software
systems contain millions of elements, which interact to achieve the system
functionality. The interaction of these elements is far from obvious, especially
given the artifacts created for a typical software project. These artifacts are
especially critical as new team members are added and at different phases of
the project. These phases include development, integration, testing and main-
tenance of the system. Even more challenging, however, these elements must
be understood and modified as the required functionality of the system
evolves. To do this correctly requires an understanding of how the elements
interact as well as the underlying principles of the design.

Unfortunately, humans are ill equipped to manage complexity. Human
short-term memory can typically hold between five and nine items simulta-
neously. Communication among team members is critical to cooperation and
yet often uses imprecise language that frequently creates miscommunication.
Providing a shared language of discussion can greatly enhance communica-
tion. Recently software has begun to develop some of the complexity manage-
ment methods similar to those utilized in other engineering domains. These
include the UML, object-modeling techniques, Design Patterns, and use of
pre-fabricated software components and frameworks.

Architecture-based development is often recommended as a technique for

Preface

dealing with the complexity of large-scale projects. However, there is still
little agreement about how to develop and describe software architecture
effectively. The agreement usually ends with the use of UML for design,
although this is not universal either. The UML provides a huge set of
constructs for describing the software architecture, and includes many
extensibility features. However, this flexibility creates a large number of
possibilities for software architecture representation. In addition, most of the
books and articles on software architecture and UML do not address large-
scale development. The literature typically doesn’t provide guidelines on how
to get started in the definition of the software architecture, and doesn’t
provide specific representations which convey appropriate information to the
stakeholders in a software architecture. This book is an attempt to meet
these needs, which are critical to the software architect and the software
development team.
Some areas where this book will provide practical guidance include:

o Modeling of architectural constructs, including components, subsystems,
dependencies, transactions, and interfaces

e Modeling of environmental elements, including processes, nodes, and
physical databases

e Insight into useful techniques for development of software architectures
e Various software architecture development processes

e Roles and responsibilities of the software architect and the architecture
team

e Traps and pitfalls of architecture development

e Utilization of reusable and off-the-shelf software frameworks and compo-
nents

e Addressing non-functional requirements such as performance and main-
tainability

This book does not purport to describe the best or only way to represent
software architecture. Some systems may require additional representations
from the ones shown in this book, and others may require only a subset of
those shown here. However, most software development projects could benefit
from at least some of the techniques and architecture representations de-
scribed here.

Preface

In this book, we stick closely to the UML without major extensions. In
some cases, this results in some limitations in formality or model semantics.
Regardless of these limitations, these viewpoints have helped us solve complex
problems in large systems. Note that over the course of several projects, the
views described within were upgraded to utilize the UML. In many cases, we
were using ad-hoc notations before the UML had reached its current state. In
addition, future changes to the UML and the associated profiles may allow for
improvements of the architecture views described in the book. Any that we
are aware of are highlighted. Finally, although the focus is on modeling
architecture with the UML, we discuss other representations where appro-
priate.

While a major portion of the book focuses on the application of the UML
to software architecture, we also discuss the role of the software architect and
how architecture development fits within the software development process.
We have applied the architectural viewpoints described within on several
projects across different organizations and within different development
processes. Large projects tend to utilize relatively formal processes for which
the described viewpoints fit nicely. However, we have also used these view-
points and techniques on projects using highly iterative and agile processes.
We believe that architecture-based development does not need to imply heavy-
weight processes.

The intended audience for this book includes those practitioners who are
currently in the role of software architect, those who are currently software
developers or designers and who will soon be in this role, and developers
working on large-scale software development who want to better understand
successful techniques for software architecture. We have assumed the reader
has a working knowledge of the UML and at least a few years experience as a
software developer or designer. Experience in the role of software architect or
on a software architecture team would allow the reader to gain even more
from reading this book.

This book is organized to provide general information and overview in the
first chapters and discussion of specific architectural viewpoints in the later
chapters. Chapter 1 provides our view of what ‘software architecture’ means.
Chapters 2-3 discuss roles and process related to architecture. Chapter 4
gives an overview of a banking system example we use to illustrate the various
viewpoints in the later chapters. Chapter 5 summarizes the UML diagrams
and the viewpoints described in later chapters. Chapters 6—10 discuss and
describe the various viewpoints of software architecture. Chapter 11 describes
architecture development techniques and principles.

At the end of each chapter is a recommended reading list of key books and

Preface

papers. These references contain additional information on the topics covered
in that chapter. Many of the books, papers, and Web page references in the
recommended readings provide detail in areas where we only touch lightly.
This list is intended to contain the information we have found most useful.
The books and papers are summarized in the Bibliography. URLs can be
found at the book’s web site.

Chapter 1 introduces the definition of software architecture and other
terms. In addition, the UML-based architecture viewpoints are introduced
and compared with other contemporary architecture methods.

Chapter 2 describes the role of the software architect. This includes topics
such as the skills and background required to be an effective software
architect, the ways an organization can support the architect, and the organi-
zation and structure of the software architecture team.

Chapter 3 discusses how software architecture relates to the overall soft-
ware development process and describes processes for the development of
software architecture. Topics include the creation of an effective review
process, development of software infrastructure, technology roadmap man-
agement, process traps and pitfalls, and a brief discussion on tools.

Chapter 4 gives an overview of the banking system example that will be
used to illustrate the architectural viewpoints described in the remainder of
the book.

Chapter 5 provides a quick overview of the UML diagrams and concepts
used in later chapters to build architectural viewpoints.

Chapter 6 provides an overview of representations and techniques for
defining system context and performing domain analysis. Included is a discus-
sion of conceptual diagrams, context views, and views used for domain
analysis.

Chapter 7 explains architecture representations to facilitate component
development. This includes the Component View, Component Interaction
View, and Component State Views. Component messaging and interfaces are
also discussed.

Chapter 8 discusses subsystem and layer representations. These views
include the Layered Subsystem View and the Subsystem Interface Dependency
View. These views serve as some of the fundamental diagrams utilized for
software architecture.

Chapter 9 describes transaction and logical data modeling. This includes a
discussion of mapping designs to relational databases.

Chapter 10 discusses representations for the modeling of physical system
constructs, including nodes, databases, and process. These include Physical
Data Views, Process Views, and Deployment Views.

XV

Preface

Chapter 11 describes various tips and techniques essential to the develop-
ment of software architectures. This includes architectural patterns, system
partitioning, legacy and COTS utilization, and design techniques.

Chapter 12 puts it all together and has some final remarks. This includes
some thoughts on becoming a software architect.

The Appendix provides summaries of all the architectural viewpoints.

This book provides a useful addition to the growing set of literature on
software architecture in that it is a concise collection of key information, it is
focused on large-scale software architecture, and it provides a set of key
informative architectural viewpoints utilizing UML. We hope you will enjoy
this book and find it to contain much of the key information required by the
software architect. We welcome comments and discussion on this book at our
website, http:/www.largescalesoftwarearchitecture.infol.

Jeff Garland

Richard Anthony

Acknowledgments

We would like to thank the many individuals that helped make this book
possible.

Our reviewers gave up their own valuable time to provide us very useful
input that helped us to improve the overall quality of the book. These
reviewers included Brad Appleton, Thomas Bichler, David DeLano, Robert
Hanmer, Ralph Johnson (and his Software Architecture Class Participants),
Patrick McDaid, Robert Nord, Micki Tugenberg, and Eoin Woods.

Thanks also to Linda Rising for inspiring us and helping us get this project
started. In addition, we would like to thank our editor, Gaynor Redvers-
Mutton. Without her enthusiasm and support, this book would not have been
possible.

Finally, we would like to thank our families for their patience and support.

Team~ny®

Introduction

1.1 Whatis Software Architecture?

The many web pages and books on software architecture have provided
dozens, if not hundreds, of definitions of software architecture and related
terms. Given this plethora of definitions, we must settle on a set of key
definitions for the purposes of communicating software architecture concepts.
What follows are some key definitions required for a discussion of software
architecture. Additional definitions can be found in the recommended read-
ings located at the end of this chapter.

The Institute of Electrical and Electronic Engineers (IEEE) recently issued a
recommended practice regarding Software Architecture: IEEE 1471. The
definitions we provide in this book are closely aligned with IEEE 1471. These
include definitions of system, stakeholder, architect, architecture, architectural
views, and architectural viewpoints. IEEE 1471 defines the following key
terms:

e System is a set of components that accomplishes a specific function or set
of functions.

e ‘Architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution’.

Introduction

e Architectural Description is a set of products that document the architec-
ture.

e Architectural View is a representation of a particular system or part of a
system from a particular perspective.

e Architectural Viewpoint is a template that describes how to create and
use an architectural view. A viewpoint includes a name, stakeholders,
concerns addressed by the viewpoint, and the modeling and analytic
conventions.

The IEEE definitions are intentionally general, to cover many types of
software architecture, and are not specific enough to provide detailed gui-
dance to architects and developers of large-scale systems. As such, a large
portion of the book is devoted to the description of specific architectural
viewpoints, defined in the UML, which can be applied to many different large-
scale development projects. In addition, most of these viewpoints can also
be applied to smaller development efforts. In this book, these viewpoints
are illustrated as architectural views for an example system introduced in
Chapter 4.

The System Architecture is the set of entities, the properties of those entities,
and relationships among them that define structure of the system. The Soft-
ware Architecture is the set of software components, subsystems, relation-
ships, interactions, the properties of each of these elements, and the set of
guiding principles that together constitute the fundamental properties and
constraints of a software system or set of systems.

Software Architecting refers to the analysis, design, documentation, review,
approval, and other related activities concerned with the definition and
management of the software architecture. Architectural Views provide repre-
sentations of the architecture that can be used to guide construction, manage,
explore, train personnel, test, and perform other engineering tasks related to
creation and maintenance of the software system. Some uses for views
include:

e Capturing the design decisions both early on, and as enhancements are
made

¢ Capturing information about the runtime environment for the software

e Providing constraints on the lower-level design and implementation

What is Software Architecture?

e Providing input to the structure of the development organization

e Designing the system to meet the software reliability, availability, main-
tainability, and performance requirements

e Facilitating communication among the project teams

¢ Communicating the software capabilities and constraints to various devel-
opers, testers, and others

For each of these views there is a group of associated Stakeholders. The
stakeholders may include project and program managers, development team
managers and technical leads, system engineers, the test organization, and
individual developers. This group of stakeholders may be building the early
versions of the software, or may be making maintenance modifications to
software that has existed for some time. The architectural views are used to
communicate with the stakeholders and, as such, must be carefully crafted
to communicate the appropriate information at the appropriate level of detail
to the set of associated stakeholders for that view.

While the definition of software architecture terminology provided above is
useful, the definitions are still somewhat fuzzy since some of the terms used in
the definitions are not themselves clearly defined. The following sections of
this chapter will help refine and clarify these definitions.

Architecting software is primarily about software design — design in the
large. Thus, the focus of architecture is on the arrangement of the larger
aspects of software systems such as subsystems and components rather than
classes and objects. To model software systems in the large requires examining
both the static or build-time view and the dynamic or runtime behaviors of
the software.

Another way of thinking about software architecture is to think about some
of the typical questions that can be answered by views of the architecture:

e What are the subsystems or components of the software?
e What are the responsibilities of the components?

e What are the interfaces provided/consumed by these subsystems or com-
ponents?

e What subsystems or components are impacted by a change to the soft-
ware?

e How much retesting is required if we change this component?

Introduction

e What components are involved in installing this change?

e How are parts of the system to be physically distributed?

e How will a change impact the performance of the system?

e What development teams are impacted by a change to this interface?

e How much effort is involved in the development of this functionality?

Since the software architecture being defined is often part of an even larger
system, it is often useful to concentrate on the subset of the system for which a
particular architecture is being defined. Examples of this type of system subset
include a set of components being developed by a particular development team
or a set of components that will be developed rather than purchased. This
subset of the system can be referred to as the system under design. This means
that even though only part of a larger system is being designed, any external
entities can be considered external to the system under design. This approach
allows architectural definition to focus on the parts of the system that are
critical and delay concerns about parts of the system which are not yet defined.

1.1.1 What software architecture is not

The software architecture does not include the hardware, network, or physical
plant architecture. As such, the software architecture description is not
intended to convey the complete description of the system, only the software
within that system and any context needed to create the software. As an
example, information such as hardware model number, hardware configura-
tion information, routers, or LAN cards is not the focus in software architec-
ture views. Other views, tables, or documents may be used to specify this type
of information. However, this type of information should be included or
referenced if it influences the software design.

In general, the software architecture description should not duplicate
information found in other sources, such as requirements documents or
marketing information. Duplication causes extra rework when these other
documents change.

The software architecture description must be kept at the appropriate level
of detail. The team that defines the architecture must keep each view at the
right level of detail and avoid showing more than one level of detail in a
particular view, unless the reasons for doing so are clear and agreed upon in
advance.

What is Software Architecture?

Low-level implementation details should not be included in the software
architecture description. For example, a context or subsystem view should not
include details about the implementation mechanism for a particular interface.
In addition, descriptions of specific implementation mechanisms such as
compiler optimizations, shared versus static libraries, COTS class or method
names, or file format should not be included in the software architecture
views.

1.1.2 Attributes of software architecture

Many different attributes or qualities are of interest in software architecture.
These qualities are important because they impact the design and development
of many different parts of the software. Some of these qualities include:

e Cultural adaptability — support for multiple languages and cultural
differences

e Security — prevent unauthorized access
e Data integrity — does not corrupt or provide bad data
e Maintainability characteristics
o Portability — can software be ported to other platforms

o Changeability — ability to add new functions and change existing
functions

» Fragility — changes to fragile software tend to break existing
functions

= Rigidity — software is difficult to change even in simple ways

= Duplication — software with duplication strewn throughout is
more difficult to maintain because it is larger and because change
is not localized

o Understandability — can the software be understood so that changes
can be made

o Debugging support — support for multiple levels of online debugging
e Testability — software can be tested effectively (impacts changeability)

e Usability — a measure of the effectiveness of the human interface

Introduction

e Operational system aspects:
o Availability — percentage of the time system is functioning
o Manageability — ability to inspect and manage executing components

o Upgradeability — can system be upgraded while running, how difficult
are upgrade procedures

o Reliability — ability to perform required functions over specified
period of time

o Recoverability — time required to recover from a failure
e Performance

o Response - is the response fast enough for normal and extreme usage
scenarios

o Scalability — system capacity/throughput can be increased or de-
creased as necessary

o Capacity/ Throughput — handle heavy loads and still maintain re-
sponse

e Safety — system does not create hazards in the real world

All of these attributes of the architecture are typical concerns for the
architecture team. Members of the architecture team need to constantly
evaluate the software architecture to determine if it meets the desired goals with
respect to these characteristics. At first blush, this evaluation seems straightfor-
ward, but it is not. Increasing one attribute often results in a non-linear decrease
in a different attribute. For example, an increase in modifiability might reduce
performance. An increase in changeability might negatively impact testability.
In addition, the requirements with respect to these properties are not easy to
specify. Many of these attributes can only be assessed qualitatively given
current tools and practice. Architects must constantly prioritize and manage
the trade-offs between these attributes for a given project.

Some of these properties also imply that architects are concerned with
implementation mechanisms. For example, mechanisms involving data persis-
tence, transactions, and component error handling often need consistent
approaches in order to meet the architectural goals. This often means coping
with how to integrate legacy components alongside new components.

To a large extent, the practice of software architecture is the attempt to
balance a series of fuzzy trade-offs for the system stakeholders over what are

What is Software Architecture?

often immensely complex systems. Looking at the whole system at once is
simply not possible. Architects need tools to break down problems and reason
about the parts, the interaction of the parts, and how the entire system fits
together.

1.1.3 Definitions of other key architecture-related terms

The following are a few other definitions that are required for understanding
the discussions in the remainder of the book. We recommend the reader rely
on the recommended readings for a complete set of architecture-related
definitions. Terms that are associated with a particular aspect of software
architecture, for example terms associated with the analysis and design
process, are defined in the appropriate sections later in this book.

The following terms will provide a clearer understanding of concepts key to
large-scale software architecture:

Architectural Patterns — define a general set of element types and their
interactions. Examples of Architectural Patterns include Pipes and Filters,
Model-View-Controller, and Reflection.

Architectural Style — As the term coined by Garlan and Shaw, it is an
idiomatic pattern of system organization. For example, a client—server system
is an architectural style. Many of the original architectural styles have been
reformulated as patterns.

Build Systems — Development teams typically employ a set of tools that
facilitate the translation of a large source code base into a set of libraries and
executables in an orderly manner. This usually involves interacting with
configuration management tools as well as tools such as the ‘Make’ utility that
utilizes software dependencies to perform incremental builds.

Commercial Off-the-Shelf (COTS) Products — These include software compo-
nents that are purchased from software vendors or obtained from open
source. Some authors use the term ‘common’ in place of the term commercial
to prevent confusion with using the term ‘commercial’ for open source
software.

Component — A construct that groups implementation constructs and pro-
vides/consumes a set of interfaces. A component is a modular and easily

Introduction

replaceable implementation construct. The UML definition includes execu-
table processes, applets, EJB, and code libraries as part of the component
definition. Some authors further categorize components to include conceptual
or logical components. However, we define views only in terms of the runtime
aspects of components.

Domain — A domain is an area of concern. For example, the ‘problem
domain’ defines the ‘what’ aspect of the system under design. The ‘solution
domain’ is the ‘how’ aspect. A large complex problem is often broken into
sub-domains that address only one aspect of the larger problem.

Model — A representation used to understand or document one or more aspects
of a problem or solution. With the UML, the model is often kept in a tool that
will support the creation of multiple views. In this case, the tool can provide the
ability to keep a series of partial views of a complex model consistent.

Top-Level Software Architecture Description — The set of views of the system
that encompass the highest-level perspective of the software. This perspective
tends to focus on subsystems and components as documented in the top-level
software design document.

Subsystem — A collection of classes and components that are grouped to form
a development package. These subsystems need to be defined in such a way as
to facilitate having them assigned to different, possibly geographically diverse,
development teams.

1.1.4 Other types of architectures

Architecture is used in conjunction with many adjunct terms such as technical
architecture, business architecture, enterprise architecture, reference architec-
ture, product line architecture, and information architecture. To some extent,
all these ‘architectures’ have confused and obscured the definition of software
architecture. The following list will briefly describe some of these in order to
clarify how they relate to software architecture:

Enterprise Architecture is generally defined in terms of its constituent architec-
tures. These include the business architecture, application architecture, tech-
nology architecture, software infrastructure architecture, and information
architecture. The enterprise architecture provides the vision and consistent

What is Software Architecture?

principles that cross all the constituent architecture types and addresses
objectives such as security, flexibility, make versus buy decisions, and reuse.

The Business Architecture defines the key business strategies, organization,
goals, and related business processes. The software architecture should be
complementary with the business architecture. We must remember that the
final goal of most software is to make the business successful, not simply to
produce an elegant software design.

At the enterprise level, the Application Architecture may be more of a set of
guidelines on how the various software architectures should be constructed
consistently across the enterprise. For a specific product, the application
architecture is the software architecture for that product.

The Technology/Infrastructure Architecture refers to the network connectiv-
ity, hardware upon which the software runs, network routers, operating
systems, and other technologies that facilitate the communication among the
distributed software components and support the execution environment of
the software.

The Data Architecture, sometimes referred to as the Information Architecture,
refers to how the data is structured, stored, and handled either in the
enterprise or for a particular project. The definition of the data architecture
involves the specification of the number and type of databases, the logical and
physical database design, the allocation of data to servers, the strategy for
data replication and archival, as well as the strategy and design of a data
warehouse.

The U.S. Army’s Joint Technical Architecture — Army (JTA-Army) provides
the following definition:

A Technical Architecture is the minimal set of rules governing the
arrangement, interaction, and interdependence of the parts or elements
that together may be used to form an information system. Its purpose is
to ensure that a conformant system satisfies a specified set of require-
mentis. It is the build code for the Systems Architecture being constructed
to satisfy Operational Architecture requirements.

A Product-line Architecture is used to define a set of products that are
developed by a company or organization within the company. The similarities
within that set of products allow for sharing of design and implementation

10

Introduction

information among the various teams developing the products. In this way,
the products can be more consistent in the way they are designed, developed,
tested, supported, and in their appearance to the end user. In addition, these
products can be developed in a more cost-effective manner, due to the design
and implementation reuse potential.

The term Reference Architecture refers to the definition of an architecture for a
particular application domain. An example domain might be satellite ground
control systems or telecommunications switch network management. The
reference architecture describes the high-level set of elements involved in applica-
tions from a particular domain along with their interactions. These elements
must intentionally be left at a high level to apply to a large number of systems for
that particular domain. Reference architectures are often used to focus on
subsystem definition rather than application process level definition. Reference
architecture definitions also provide an excellent framework for development of
a specific system in that application domain and can save the software architects
a significant amount of time rediscovering these elements. In addition, the
naming conventions used in the reference architecture provide a common
language for architects and application developers to communicate. The func-
tional and interface definitions provided in the reference architecture also
provide an opportunity for third-party COTS products to be developed that can
be used by software architects for significant portions of the final system.

The techniques and many of the architectural views described in this book
can also be used for developing product-line, data, and reference architectures.

1.2 Why Architect?

It has become standard practice in the software industry to engage in a process
of software analysis and design along with coding. This design facilitates
understanding the structure of the developed software. Architecting simply
recognizes the need to focus on the bigger picture of the software design and
to provide guidance to the development team designers. At the software
architecture level, we’re more interested in the subsystems, components, and
interfaces than in the classes and methods.
According to Hofmeister, software architecture:

provides a design plan — a blueprint of the system, and that it is an
abstraction to belp manage the complexity of the system. ... The
purpose of the software architecture is not only to describe the important

Why Architect?

aspects for others, but to expose them so that the architect can reason
about the design.

As described earlier in this chapter, the software architecture is a place to
capture early design decisions, provide constraints on the lower-level design
and implementation, and provide the organizational structure for the develop-
ment team. Getting the architecture defined well up front saves a great deal of
pain and trouble throughout the development process. The goal is that a well-
defined architecture will produce a system that will be easier to design,
develop, and maintain.

A good architectural representation (sometimes any meaningful architectural
representation) is often missing completely from projects that have been under
development for some time. Often the role of the software architect is to capture
the existing architecture, then make recommendations for improvements for
future releases. We have been in this position, and it can be quite frustrating.
Major design changes may be required to repair the damage from the lack of a
software architecture, but convincing management to make these changes may
be an impossible task. Our hope is that the emphasis on good software
architecture practices will allow the software architect to get the architecture
right up front. In this way, the architect will not be the victim of a bad
architecture and can avoid playing catch-up to try to fix a bad architecture.

Here is a list of some of the uses for the software architecture description:

Training is essential for new team members. Anyone who has been assigned to
an existing software project can appreciate the need for a well-documented
software architecture to quickly bring developers up to speed. In addition, this
information can be used to train customers, managers, testers, and operations
personnel for the software system. New architects will likely need to be
trained since most teams do not stay the same over the full life of a system.

Making modifications to the system must be done carefully so existing
functionality is not broken. A common maintenance need is to describe the
impact or scope of a change and hence the regression testing required to
ensure correctness of the change. This process should start with a careful
analysis of the existing software architecture, which includes the static and
dynamic aspects of the system.

Testers need to understand the system and its interfaces, at both the subsystem
level and the component level, to perform white box testing. In addition, key
process interactions are captured in the architecture views. Finally, each

11

12

Introduction

interface should have associated performance information that can be verified
by the test organization.

Ensuring architectural attributes such as testability, reliability, availability,
maintainability, and performance is another important use of the architectural
description. To reason about these attributes of software, there is a need to
explore and document these attributes of the software structure.

Verification of requirements — Architectural modeling will often expose
missing, invalid, or inconsistent requirements.

Project management — When the architecture moves beyond the preliminary
state, project managers can use the information to structure the development
organizations and identify work to be performed by specific development
teams. Project managers can use the architecture to identify interface elements
to be negotiated among the development teams. This can be useful when
contract or project negotiations need to take place to reduce functionality or
move functionality to a later build.

Operating a system — Large systems such as telephone switches that support
24 (17 operations often require human operators to run and interact with the
system. Some of these may be users, but others will perform system adminis-
tration functions. The operations staff often needs an understanding of the
software structure to perform their job.

1.3 Architectural Viewpoint Summary

The following summarizes the architectural viewpoints described in later
chapters. These viewpoints are built by applying the various UML diagram
types to specific architecture development tasks. Each viewpoint has specific
modeling goals and stakeholders. Additionally, we have used the IEEE 1471
framework to describe the rationale for each of the viewpoints. These descrip-
tions should assist those attempting to apply these viewpoints. Appendix A
provides a detailed summary of these viewpoints.

The viewpoints in Table 1.1 provide a set of highly abstracted software
descriptions. The Context View provides a summary of the system boundary and
the external entities that interact with the system. The analysis views provide an
abstractset of entities focused on modeling the problem rather than the solution.

Architectural Viewpoint Summary

Table 1.1 Conceptual and analysis viewpoint summary

Viewpoint UML diagram Description Chapter
type
Analysis Focused Class Describe system entities in 6

response to a scenario. Often
referred to as a view of
participating classes or VOPC.

Analysis Interaction Interaction Interaction diagram between 6
objects for analysis.

Analysis Overall Class Combination of all classes 6
from all focused analysis
viewpoints.

Context Use Case Show the external system 6
actors and the system under
design.

Table 1.2 describes a set of viewpoints targeted at describing the software
design. The Component, Component Interaction, and Component State Views
provide a mapping of the logical runtime structures, their functionality, and their
intercommunications. The Subsystem Interface Dependency View provides a

Table 1.2 Logical design viewpoints

Viewpoint UML diagram Description Chapter
type

Component Component Illustrate component 7
communications.

Component Interaction Interactions among components. 7

Interaction

Component State State/Activity State transition/activity diagram 7
for a component or for a set of
components.

Layered Subsystem Package Illustrate layering and subsystems 8
design.

Logical Data Class Show critical data views used for 9
integration.

Subsystem Interface Class Illustrate subsystem dependencies 8

Dependency and interfaces.

13

14

Introduction

visualization of subsystem dependencies and interfaces. The Layered Subsystem
View provides a highly abstracted view of all the subsystems. Finally, the Logical
Data View provides a description of data models shared between components.
The final set of viewpoints (Table 1.3) is focused on the environment and
physical aspects of the software, such as database deployment, that can impact
architectural qualities of the system. The Deployment View shows the map-
ping of hardware and software for distributed systems. The Physical Database
View illustrates the physical deployment structures of databases. The Process
View shows the execution threads of the system and often the mapping to
components. The Process State View shows the dynamic states for a process.

Table 1.3 Environment/Physical viewpoint summary

Viewpoint UML diagram Description Chapter
type
Deployment Deployment Mapping of software to hardware for 10

distributed systems.
Physical Data Deployment Physical view of a particular database. 10

Process Deployment Show the processes of a particular 10
system instance.

Process State ~ State Show the dynamic states of a process. 10

Why These Viewpoints — Isnt This Too Many2 Where are the others?2

So why this particular set of viewpoints? These viewpoints are based on our
architectural development experiences on several large-scale projects. These
projects are from different domains, including telecommunications, finan-
cial systems, and others. We have spent a large amount of time over the
years trying to apply various techniques to the real-world work of develop-
ing and communicating software architectures. In our experience, the view-
points discussed here have broad application across many types of systems.
Many of the ideas incorporated in the viewpoints precede the UML. We
have reworked our previously ad-hoc notations to utilize the UML. Several
of the viewpoints in this book highlight the utilization of parts of the UML
not frequently discussed in the current literature, with the majority of

articles focused on the modeling of classes and objects. With only a couple

Architectural Viewpoint Summary

of exceptions, all of the viewpoints focus on constructs larger than the class
and object, such as components and subsystems.

In these days of Agile Methods, it might be inferred from the number of
viewpoints described here that a heavyweight process needs to be employed.
This is not the case. The viewpoints should be used only where they provide
useful benefit to the project. In addition, there is no requirement that a
particular viewpoint be maintained. A viewpoint can be sketched on a
whiteboard, information absorbed by the participants, understanding
gained, and then the whiteboard erased. This is discussed further in
Chapter 5.

Obviously missing from these viewpoints is a staple of software archi-
tects: the UML use case diagram. This does not imply that we oppose the
application of use cases for requirements definition. Rather, we leave out
use case diagrams, for several reasons. First, in our experience they do not
contribute greatly to the understanding of the software architecture.
Second, non-experts are frequently confused by the meaning of the use case
diagrams. Often the relationship lines are interpreted as data flow. A simple
list of use cases avoids these issues and serves as an excellent tool for
requirements management. Finally, we focus less on use cases here since
there is already a large body of literature on use cases.

Another frequently cited ‘architectural view’ missing here is the imple-
mentation or code view. These views use the UML notations to provide a
pictorial view of the source files and dependencies. In our experience, these
views are inferior to using tables or performing analysis of the source code.
Automated tools and build systems are an essential part of creating large
systems. These systems often provide the ability to analyze and understand
the details of the implementation far better than UML diagrams.

Often, overall views of large software systems become overwhelming.
An overall view usually requires architecture-size paper to print, which
necessarily limits distribution and use. As a result, we sometimes describe a
single viewpoint that covers both a ‘focused’ and ‘overall’ variation of a view.
In these cases, a series of focused views is often developed as the basis for an
overall view. However, if the stakeholders and intent of the focused and
overall perspectives are different a new viewpoint is created. The idea of
focusing a view is critical to enabling development of large systems. In
Chapter 3, in the discussion of managing model complexity, we describe the
focusing principles that underlie the derivation of many of these viewpoints.
Specific projects might create other viewpoints using these principles.

Frequently several views will be used together. For example, in the design of

15

16

Introduction

components and interfaces it is common to create a Component View, a
Component Interaction View, and a Component State View. A series of
interaction views is then used to elaborate the details of the Component View
and validate the component structure. The state view describes the overall
dynamics of a collection of components without showing the details of the
sequencing of operations.

1.4 Other Software Architecture Approaches

Much of the current literature uses different meanings for the term architec-
tural view. In the following sections, therefore, the term view does not always
match IEEE 1471. The following sections will briefly map our approach to
several of the other current software architecture approaches.

1.4.1 The 4+1 Views

One architecture approach, the 4+1 Views described by Philippe Kruchten,
has become a widespread approach for architecture representation. This
scheme defines several key views of a system.

e Logical View — This is the logical representation of the key packages and
subsystems within the software system under design. It omits any imple-
mentation or physical details.

e Process View — This view will define how the various operating system
threads, tasks, or processes communicate with one another.

e Deployment View — This defines the way the actual processes are
instantiated and deployed on the physical hardware.

e Implementation View — This view describes how the actual software is
implemented and usually includes concepts such as the actual source code,
the directory structure of the code, and the library structure of the system.

e Use-Case View — This view contains the body of use cases that must be
defined to understand the behavior of the system.

Obviously, since the 4+1 views preceded IEEE 1471, they do not meet the
definition of views as specified in the standard. The 4+1 views are more

Other Software Architecture Approaches

closely aligned with an IEEE 1471 viewpoint. The 4+1 views describe a
collection of representations that provide guidance for software architects.
These views tend to be more suggestive than proscriptive. As a result, they
have been applied differently in various papers and books.

However, in large part, the viewpoints we discuss are within the spirit of the
4+1 views. Most of the architecture viewpoints described in this book would
fit within the definitions of the Logical, Deployment, and Process views of the
4+1 Views (Table 1.4). For example, the subsystem dependency view maps to
the Logical View. None of the viewpoints described in this book fit in the
Implementation View.

Table 1.4 Approximate Mapping to 4+1 Views

4+1 View Our Viewpoints

Logical View Subsystem Interface Dependency, Layered Subsystem, Component,
Component Interaction, Component State, Logical Data

Process View Process, Process State
Deployment View Deployment and Physical Data
Implementation View None — see box

Use Case View None - see box

No Equivalent in 4+1 Context and Analysis

1.4.2 RM-ODP viewpoints

The Reference Model for Open Distributed Processing (RM-ODP) is an ISO
standard that provides a framework for the development of standards-related
distributed processing. RM-ODP defines the important properties of distrib-
uted systems to be openness, integration, flexibility, modularity, federation,
manageability, provisioning of quality of service, security, and transparency.
In addition, a set of viewpoints are also defined. The RM-ODP viewpoint
definition roughly corresponds to the IEEE 1471 definition. The five view-
points described by RM-ODP are:

e Enterprise viewpoint — looks at the system in the context of such factors
as the business requirements and policies as well as the scope and purpose
of the system. RM-ODP deals with enterprise-related information, such as
organizational structure, that may affect the system.

17

18

Introduction

e Information viewpoint — refers to the structure of the information, how it
changes, how it flows, and the logical divisions between independent
functions.

e Computational viewpoint — focuses on the decomposition of the system
into entities and their interfaces.

e Engineering viewpoint — deals with the interaction between distributed
system objects and how this interaction is supported.

Table 1.5 Comparison to Bass architectural structures

Structure Description Our viewpoints

name

Module Units of work that have associated No direct mapping, but subsystems

Structure products and are assigned to are used for this purpose.
development teams.

Conceptual Abstractions of functional No direct mapping here. Analysis
requirements used to understand the views perform a similar role, but not
problem. from using functional requirements.

Process Physical process or threads in the Process View.
system.

Physical A mapping of hardware to software. Deployment View.

Uses Defines dependencies between Subsystem Interface Dependency.
modules.

Calls Specifies the invocation relationship ~ Component Interaction views
between functional procedures or provide similar information.
sub-procedures. However, we are more concerned

with interactions between higher-
level entities.

Data Flow The sending of data between entities. Not covered.

Control This indicates which program, module, Component State. Also similar is the

Flow or system states become active after ~ Process State.
another has completed some task.

Class Traditional objected-oriented class Used in the Analysis and Logical

Structure structures. Data.

No Mapping Context, Layered Subsystem,

Physical Data

Recommended Reading

e Technology viewpoint — defines the hardware and software components
that make up the system.

Several of our viewpoints are similar to the Engineering, Technology, and
Computational viewpoints, but our viewpoints have slightly different con-
cerns and stakeholders.

1.4.3 Bass architectural structures

Bass et al. define several ‘architectural structures’ or views of the software
architecture. Bass does not use the UML, but still has significant conceptual
overlap with our viewpoints. For example, the ideas of process and deploy-
ment viewpoints are similar to the process and physical structures. Table 1.5
compares our set of viewpoints against those defined by Bass.

1.4.4 Hofmeister software architecture views

In a recent software architecture book, Hofmeister et al. utilize four UML-
based views: the conceptual, module, execution, and code views. These
views share some similar concepts and stereotypes with the views we define
(Table 1.6). For example, there are similar uses of layering and subsystem
modeling. Hofmeister provides an extremely detailed method for protocol
development that goes beyond our technique.

1.5 Recommended Reading

IEEE 1471 (2000) describes a framework for the development of software
architecture descriptions. This document defines many terms, including archi-
tecture and architecture description.

A good source of information on Enterprise architecture is the web site for
Enterprise-Wide IT Architecture (EWITA).

Information on application/software architecture can be found on the
Bredemeyer web site.

Definitions of technology/infrastructure architecture, business architecture,
information/data architecture can be found on The Open Group Architectural
Framework (TOGAF) web site. This site also contains description of architec-
ture qualities.

The Army technical architecture (2000), also referred to as the Joint
Technical Architecture — Army (JTA-Army), is available on the web.

19

20

Introduction
Table 1.6 Comparison to Hofmeister views

View name Description Our viewpoints

Conceptual ~ This contains the major design Our approach is different, employing

View elements and their relationships to actual components from the start and
one another. progressively adding the detail and

refactoring as the architecture
evolves.

Module View In this view, the components and Similar to the Layered Subsystem and
their interfaces are mapped to Subsystem Interface Dependency.
subsystems and modules.

Execution Describes how modules are mapped Process and Deployment views.

View to threads of execution.

Code View Mapping of build-time entities such Not covered — see box.
as source files to components.

No Mapping There are several of cur viewpoints Component, Component Interaction,
that are not utilized in Hofmeister’s Context and Analysis, Physical Data,
approach. Process State, Component State,

Logical Data

David Parnas (1972) was one of the first to recognize the importance of
software structure in his seminal paper on decomposing systems into modules.

Shaw and Garlan (1996) coined the term architectural style.

Hofmeister et al. (1999) and Bosch (2000) have good discussions of
product-line and reference architectures.

The Reference Model for Open Distributed Processing (RM-ODP) is
defined in ISO/IEC DIS 10746-1:1995. A book on the subject by Putman
(2000) has a complete description of the structuring approaches, viewpoints,
and transparencies.

The 4+1 Views of architecture are described in the paper by Philippe
Kruchten (1995). There are later discussions in the book by Kruchten (1998)
and in the UML User Guide (Booch et al., 1999).

Robert Martin coined the terms ‘Fragility’ and ‘Rigidity’ to describe
changeability aspects of software. A paper describing these terms can be found
at the Object Mentor web site.

Roles of the Software
Architect

This chapter will provide an understanding of the role of the software
architect and how this role relates to other key roles on the development team.
In addition, the skills required for the software architect, key approaches for
leading the software architecture team, and traps and pitfalls associated with
the software architect are discussed. In keeping with the philosophy of
providing a practical guide, many of the detailed definitions and discussions
are left to the recommended reading at the end of the chapter.

The importance of a good software architect should not be underestimated.
There are plenty of examples of projects gone awry for lack of good leader-
ship. Lack of someone filling the architect role is sometimes part of the story.
Of course good architects can fail in a non-supportive environment. A poor
architect that is out of touch, however, can quickly drive a project to ruin.

The software architect should be instrumental in the development of a
‘shared vision’ for the software. What is a shared vision? At a basic level the
development team must have an idea in their minds about what the final
product will be, the effect the software will have, and the goals of the
organization. The architecture will reflect and define a large part of the vision.

The shared vision is influenced by many factors, many of them non-
technical. However, it is in the technical aspects of the vision that the architect
typically makes the largest contribution. The final architecture will necessarily
balance the conflicting interests of the various stakeholders. The architect

22

Roles of the Software Architect

must always be prepared to communicate and interact with other team
members about the overall vision.

Defining and communicating this technical vision includes the following
activities:

e Analysis of the problem domain

e Risk management

e Requirements management

e Interface design

e Technology roadmap management

e Determination of implementation approaches

e Definition of an architecture that meets the system requirements

e Definition of an architecture that meets goals of the organization

e Definition of an architecture that meets the project budget and schedule

e Opversight of the mapping from the architecture to the design and
implementation

e Communication of the software architecture to technical and non-techni-
cal audiences

e Maintenance of the software architecture throughout the project lifecycle

Although the exact roles and responsibilities vary somewhat by project and
organization, the following are typical:

Requirements tend to be a topic that consumes much of the attention of the
software architect. This is because the architect is typically responsible for
understanding and managing the non-functional system requirements such as
maintainability, performance, testability, reusability, reliability, and availabil-
ity. In addition, the architect must often review and approve both the
requirements provided by the system-level systems engineering organization
and the designs produced by the development teams. The software architect
participates in reviews of these development work products. Often the
architect will work directly with customers, marketing, and support organiza-
tions as well on the formulation of requirements.

Roles of the Software Architect

Technical risk assessment and management is another crucial role for the
architect. The architect should use his or her experience to provide manage-
ment and other stakeholders with information about the key technical risks of
the proposed software. A risk reduction plan, either formal or informal, to
address these risks is the responsibility of the architect. The architect needs to
be capable of assessing the impact of requirements changes on the system as
well as the risk of the proposed changes.

Analysis of the problem domain is an important role. This is especially true if
the task is to create a product line, framework, or family of products. The
architect needs to be able to dissect problems into component parts and
structure solutions that can meet the needs of the organization.

Design of the overall software structure as well as critical components,
interfaces, and policies is the direct responsibility of the architect. The
software architect should also provide a set of design guidelines to the
development team as well as input to the development of coding style guides.
The software architect is the final authority on issues such as design/develop-
ment style, interface negotiation and definition, and requirement modifica-
tions.

The software architect serves as a reviewer and approver of many different
project deliverables. These including subsystem designs, interface definition
documents, coding style guidelines, and system engineering work products. In
addition to reviewing, the software architect also approves many of these
documents. The software architect also reviews and approves software deliv-
eries and associated documentation. Examples of these associated documents
should include test reports and updated design documents that accompany
the delivery.

Mentoring of designers and developers is another key role. Since the software
architect is an expert developer and designer it is critical to share this
knowledge and experience with other team members. This can be done in a
number of different ways, including developing and teaching classes, indivi-
dual help sessions, and brown-bag seminars. Participating in design sessions,
peer reviews, and inspections are additional mentoring techniques. An occa-
sional programming session will also be beneficial.

Integration and test support is another important role of the software
architect. This includes defect prioritization and assignment, resolution of

23

24

Roles of the Software Architect

defect issues, definition of test scenarios, and participation in test execu-
tion.

Implementation is a role that may be played by an architect on a small project.
In addition, an architect may be involved in initial prototyping efforts to defer
major risks. However, on large-scale projects there are simply too many high-
level issues for an architect to spend significant time in an implementation
role. One caution for the architect on large-scale systems is to avoid getting
tied up in the implementation details to the point that the architecture suffers.
In spite of the fact that software architects usually have a strong development
background, the architect should not be personally responsible for code
deliverables as this involvement may end up as a bottleneck for other
developers.

Finally, team lead is another critical role played by the architect. The architect
is part of the leadership team and needs to work with that team. In addition,
in large projects an architect may have a supporting staff, or at a minimum an
architecture team. The architect needs to lead these teams and keep them
focused on addressing the most critical project risks.

The software architect is also a key liaison to project management, other
technical leaders, system engineering, and developers. The architect will need
to translate and interpret technical information for other team members as
well as helping a team member find appropriate contacts.

These roles and responsibilities will be emphasized or de-emphasized as the
project evolves. As the systems engineers begin requirements definition, the
software architect will be focused on understanding the domain, preparation
and review of the requirements. As requirements are becoming more defined,
the focus will shift to staffing the senior technical team members, and process
definition. During the development of the top-level architecture, the focus will
shift to architecture definition.

As subsystem teams start design, the role of reviewer and approver will be
the focus. As the software deliveries to the integration and test organization
begin, the role of integration and test support may be the focus. In addition,
the software architect must start the architecture definition tasks for the next
increment of the software during the development of the current increment, or
the architecture definition will not be complete when the next set of subsystem
design activities begin.

Relationship to Other Key Roles in Development Organization

2.1 Relationship to Other Key Roles in
Development Organization

The following roles are usually found in large-scale software development.
Each role has an associated relationship with the software architect. Note that
no organization will necessarily have all these roles, nor will each role be
assigned to separate individuals. Often in smaller organizations, two or more
of the roles can be combined and assigned to one person. In addition, there
will often be more overlap of individuals focused on architecture and those
focused on development in smaller projects. On large projects, these kinds of
overlap will occur less frequently. The relationships between the role of
software architect and other roles in the organization are described below:

Role: project management

Description: This includes the top-level project manager, and the immediate
staff associated with that role. This could include program planning, sub-
contract management, supplier management, software estimation, release
management, and operations management.

Relationship to Software Architect: The program management must under-
stand how the software architecture maps to internal development teams,
subcontracted development teams, COTS tools, hardware, network archi-
tecture, and external organizations/entities with whom the software must
interface. In addition, the architect will work with project management in the
definition of release content as well as prioritization of features included or
omitted from a release.

Role: development team managers

Description: These are the managers for each individual development team.
These may be internal or subcontracted teams. These leads may also have a
small staff with whom the software architect must communicate.

Relationship to Software Architect: These development team managers should
clearly understand the interfaces they provide and consume with respect to
other development teams and external entities. This includes the high-level
technical aspects, such as COTS tools involved in the interface, as well as the

25

26

Roles of the Software Architect

complexity involved in the development or modification of each of these
interfaces. In addition, the managers should understand the key interfaces that
may be a potential performance problem. Finally, the software architect will
need to assist the development team managers in the addition of features or
reduction of functionality.

Role: system architect/chief engineer

Description: Many organizations have a top-level technical lead responsible
for the overall system design and delivery. This is frequently the case when
significant hardware components are to be delivered along with software. The
responsibilities associated with this role often include technical leadership of
the systems engineering, software development, hardware design, network
(LAN and WAN) design, and even test organizations.

Relationship to Software Architect: The software architect must communicate
the overall software design to the system architect. This includes interfaces
between development teams, external interfaces, requirements-related issues,
and dependencies from other organizations that may impact the software
development. In addition, the software architect will work closely with the
chief engineer to identify and resolve significant technical issues.

Role: chief software engineer

Description: In some organizations, a role of chief software engineer (CSE) is
separate from the software architect. In smaller organizations, these roles may
be merged. The role of the chief software engineer is usually tied more closely
to the development process than the details of the software architecture. This
means the CSE should not only play a key role in the definition of the process,
but should ensure the process is followed throughout the development life-
cycle. The CSE works closely with the technical lead and build manager for
each release.

Relationship to Software Architect: The software architect and CSE work
closely together not only to make sure the delivered software meets the
requirements, but also to ensure that the interface and port definitions match
those defined by the software architecture team. In addition, the CSE will

Relationship to Other Key Roles in Development Organization

consult the software architect on many process definition issues, especially
those related to requirements, architecture definition, and design.

Role: hardware architect

Description: The hardware architect is responsible for the selection and
configuration of the hardware on which the software must execute. This
requires a careful analysis of several types of requirements. These include
requirements related to performance, input/output, data storage, COTS
products, software sizing, and the user interface.

Relationship to Software Architect: The software architect will provide detailed
information on the low-level requirements the software will levy on the hard-
ware. These estimates will often vary widely early in the architecture definition
process and less widely as the architecture becomes well understood. The
hardware architect will also communicate to the software architect the restric-
tions that are imposed by the hardware that will be used. Often the selection of
hardware is mandated by the customer or prior installations of the system and
the software architect must make sure the software architecture is defined
within the constraints of this hardware. In addition, the software architect must
participate in the hardware selection and the specification of configuration
information, making sure all key requirements are considered.

Role: network architect

Description: The network architect is responsible for defining the LAN and
WAN design and configuration. In addition, the network architect must make
sure the installation of the network hardware is performed to meet the
network design. This role is sometimes combined with the hardware architect,
primarily because knowledge of the various hardware components and how
these components are interconnected are closely related.

Relationship to Software Architect: As with the hardware architect, the
software architect must communicate network requirements to the network
architect and participate in the selection and configuration of the network. In
addition, once the network configuration is defined, the network architect
must communicate the constraints implied by the network back to the soft-
ware architect.

27

28

Roles of the Software Architect

Role: technical leads of each release

Description: One effective approach we have seen is to have a manager and
technical lead work together to deliver each major release of the software.
Each individual can then focus on what they do best, leaving the release
management tasks to the manager and the technical issues to be worked out
by the technical lead. This lead is responsible for technical aspects of the
interfaces, defects, building, testing, and delivery of the software. These
technical leads will often participate in the definition of and modifications to
the software architecture.

Relationship to Software Architect: First, the software architect must deliver a
set of architecture views to the technical lead that clearly communicates the
system under development and test for that release. This will enable the
technical lead to quickly detect and remedy issues with the software. In
addition, the software architect should work with the technical lead to change
representations in the architecture that do not accurately represent the soft-
ware that was delivered.

Role: data architect

Description: The data architect is responsible for the definition, development,
and documentation of the data architecture. This includes both the logical
and physical data architecture. When specific aspects of the physical data
architecture are the responsibility of the subsystem development teams, the
data architect will review and approve the team’s data architecture.

Relationship to Software Architect: The data architect will usually be one of
the members of the software architecture team. It is important that the data
architect work closely with the software architect and that the software
architect have insight into and final approval of the data architecture.

Role: systems engineering leads

Description: The systems engineering leads are responsible for delivering the
system requirements that have been allocated to software, to the development
organization.

Skills and Background for the Architect

Relationship to Software Architect: The software architect must review these
requirements to make sure they can be developed, given the project con-
straints, and provide feedback to the systems engineering leads when a
mismatch occurs. In addition, the software architect must communicate
the software architecture to the systems engineering leads to make sure
the requirements have been correctly understood and translated into the
architecture.

Role: software systems engineering lead

Description: Many development organizations create a software systems
engineering (SSE) group that translates and maps the requirements from the
higher-level systems group into lower-level requirements, which can be as-
signed to individual development teams. This often means that the higher-level
‘shall statements’ which are used at the top level must be translated into use
cases and other artifacts that more clearly communicate the requirements to
the software development teams. In addition, the requirements associated with
each interface may also be specified by this team.

Relationship to Software Architect: The software architect should participate
in many of the use case and interface definition activities with the SSE team.
The preliminary software architecture will often be provided to this organiza-
tion, and the resulting activities of the SSE team will evolve the software
architecture as the system is better understood.

2.2 Skills and Background for the Architect

A software architect should have most or all of the following skills, back-
ground, and attributes.

Extensive software design and development experience is required to create
an effective overall design, and the software architect must understand and
explain how this will map to the implementation. In order to do this, the
software architect should have significant development experience.

Technical leadership is key to making timely and effective decisions. The
management and development leads need to be convinced the decisions being
made by the software architect are good ones, based on current information.
The software architect should be a recognized technical leader and, as a result,

29

30

Roles of the Software Architect

instill this confidence in the program managers, development managers, and
development leads.

Team facilitation skills are essential. The software architect should be
effective in leading both the architecture team and the development teams.
The architecture team usually consists of individuals with strong technical
backgrounds and who often have strong opinions. The architect should be
able to handle the dynamics of this team as well as be the final decision maker
when there are technical disagreements.

Communication skills are vital to the job of architect. The software
architect should be able to handle hundreds of emails a day, provide clear
direction to the architecture team and technical leadership, and make the
architecture and related issues clearly understood by both technical and non-
technical stakeholders. The software architect should also be able to clearly
communicate needs and concerns related to the architecture to these stake-
holders.

The architect will spend a great deal of time building consensus among
technical leaders and managers. This is often required in advance of technical
meetings, so the meetings will run smoothly. However, the amount of
consensus building should not increase to the extent that the project stops
progressing. There is an appropriate time to make a decision and move on,
preparing those on the opposing side in advance, if possible.

Technical skills of the software architect should be broad, deep and up to
date. In addition, based on a wide knowledge of technology, the architect
should have the ability to make technology selections that can facilitate
development within the project schedule, budget, and developer skill set.
Technical leaders in the development organization that try to push their own
favorite technology should be dealt with carefully by the architect. In addition,
the architect must avoid the tendency to select one technology and apply it to
all situations. Finally, the architect needs to keep up-to-date technical skills on
new software design and development technologies and should always be
researching new techniques that are more effective. Development languages,
modeling techniques, and platforms continue to evolve rapidly. The architect
needs to assimilate the relevant aspects of these new technologies for their
applicability to the system or systems.

One facet of the architect’s technical skill set is knowledge of component
communication mechanisms. In order to select the correct implementation
approaches and tools, the software architect should have experience with and
knowledge of several mechanisms. Examples include remote procedure call
(RPC), Java Remote Method Invocation (RMI), Common Object Request
Broker Architecture (CORBA), other standards-based communication proto-

Injecting Architecture Experience

cols, directory services, web services, and relational as well as object-oriented
databases.

In addition, knowledge of the domain is also important. The software
architect must be able to develop an architecture that meets the needs of the
customers and end users of the system. In order to meet these needs, the
approaches and techniques applied by the end users in performing their day-
to-day tasks must be clearly understood by the architect. This can frequently
be achieved by spending on-site time with existing or potential customers.
There is no substitute for actual hands-on experience, or at least discussions
with and observations of end users of the system under design. Good
architects tend to be quick learners and keen observers because of the need to
quickly acquire new domain understanding.

Finally, the software architect must possess very good abstraction skills.
This is critical to the definition of views that communicate the appropriate
information. Many developers will not be good software architects, as they
are not able to focus at the right level of abstraction and quickly become
overwhelmed by the low-level aspects of the software design and imple-
mentation.

2.3 Injecting Architecture Experience

Frequently an organization may not have a person with the necessary
experience to be the software architect when embarking on a major project. In
this case, a contracted specialist can be brought in to perform the responsi-
bilities of the software architect or assist the individual selected from within
the organization to be the software architect. Contract architects have the
distinct advantage of a broader range of systems experience than can typically
be obtained by employees. However, contract architects often lack specific
experience with existing team members and organizational norms. As a result,
a good compromise is to use contract architects to guide and assist the project
software architect. In this way, the diverse experience of the contract architect
can be leveraged within the confines of the existing culture of the development
organization.

In addition, a contracted specialist in software architecture can be used to
reduce the workload on the software architect. Contract architects can be
used for assisting in the development of the software architecture, support of
the development of subsystem designs, and for assessments or reviews of both
the top-level architecture and subsystem-level design.

Several other approaches can be used to inject architecture experience.

31

32

Roles of the Software Architect

These include mentoring of select individuals by members of the architecture
team or contract architects, purchased or developed training courses for
architects and designers, attendance at software architecture and design
conferences and workshops, brown-bag seminars, and participation in re-
views and inspections of architecture and design work products.

2.4 Structuring the Architecture Team

In order to function effectively, the software architect must not become
detached from the other technical leadership. This includes the chief software
engineer, the software systems engineering lead, and the development team
leads. The approach that works best for communication of both the top level
and subsystem level of the software architecture is to create a small software
architecture team made up of the key technical individuals on the development
team. The size of this team should usually be limited to no more than seven
individuals. If the development is geographically distributed, then a weekly
meeting via network-connected meeting software and teleconference can work
well. If the travel budget permits, it is good to have the software architect and
a few key individuals travel to the different sites occasionally for some of the
meetings. This can be done in conjunction with periodic technical interchange
meetings with the development teams.

The architecture team is composed of team members, not representatives.
When the team meets, the team members should be representing the best
interests of the system architecture, not the individual groups they may feel
the need to represent. These team members should report to project manage-
ment personnel, not to the software architect. This will allow the software
architect to focus on the technical aspects of the system and not on the
management tasks, such as performance reviews and other personnel manage-
ment activities. However, a large project may require a small group of people
that report to the software architect to support such activities as preparation
of the top-level architecture document or definition/negotiation of interfaces
between the software subsystems or processes.

The architecture team should take ownership of the overall software
architecture and design. In addition, they are responsible for defining the
design and coding guidelines. The software architecture team should be the
group of individuals that makes the key design and implementation decisions.
They are responsible for making the architecture and design as effective as
possible, given project constraints. In addition, both requirements and design
changes to the system should be approved by this team.

Traps and Pitfalls Associated with the Role of Software Architect

The architecture team is a working group that approves all design reviews,
documents, deliveries, and makes sure the software delivery and the architec-
ture defined for that delivery are consistent. Members of this team should be
invited to all key reviews. In addition, they should participate in many of the
peer reviews and inspections of the design artifacts and code. Many of the
members of the software architecture team will be development leads, since
these are usually the senior technical members of the development team. This
will also facilitate acceptance of decisions made by the team among the
development team members.

It is important this team be composed only of technical design and develop-
ment leads that are responsible for the software architecture, not just indivi-
duals who are interested in or who may need to review the architecture. One
exception to this rule is that a technical lead from the test team is sometimes a
good addition to the architecture team to ensure the testability aspects have
been considered.

While project management support is important for the success of the
software architecture team and managers should be used to facilitate the team
activities, a manager should never lead the team nor should any managers be
members of the team. These managers should not be making or guiding the
technical decisions made by the software architecture team, other than to
provide input on the budget and schedule aspects of architectural decisions.

In order to facilitate communication, presentations should be scheduled for
the sole purpose of communicating the latest architecture and related issues to
the managers and other development team members. These presentations are
effective communication and training sessions and will be effective in minimiz-
ing the number of requests to add interested individuals to the architecture
team.

2.5 Traps and Pitfalls Associated with the Role
of Software Architect

Many organizational issues can have a significant impact on the ability of the
software architect to function effectively. As much as possible, the architect
should focus on the definition of an effective architecture that meets the
requirements. Distractions caused by a poorly defined or misaligned develop-
ment organization can detract from this focus. A few of these issues and their
potential remedies are discussed below.

33

34

Roles of the Software Architect

2.5.1 Clear definition of leadership

Description: In the organization, the definition of clear leads is critical in many
key areas. These include software systems engineering, development leads, test
leads, and potentially the software architect or chief software engineer. Often,
especially if there are two diverse geographical development centers, manage-
ment will create two or more co-leads with equal roles and responsibilities.
The degenerate case of this is the ‘self-managed team.” This is a clear sign of
trouble on the horizon, as these two leads will seldom be able to act as one
and an inevitable set of conflicts will occur.

Remedy: Encourage management to establish a clear leader and offer an
equitable solution. For example, the lead of one type of team (for example,
the test team) could be established at one site and the lead of another team
(for example, the process team) at another site. Another approach we have
seen to be successful is to clearly define the roles and responsibilities of the
two individuals so that there is no overlap and to have a common manager or
technical leader that arbitrates conflicts. Of course, this approach works best
when the two individuals are located at the same site and can easily
coordinate with one another.

2.5.2 Reporting structure for the software architect

Description: The software architect should report directly to the overall
software development manager. Any attempt to create a software architect
from one of the lower level technical leads and leave that lead reporting to the
same manager will fail. In order to garner the respect required for the job of
software architect and to effect change and arbitrate management disagree-
ments, the reporting level of the software architect must be at the appropriate
level. In addition, a software architect reporting to a manager at too high a
level is often seen as an outsider by the entire development organization.

Remedy: Key individuals should usually report to the top-level software
development manager. These individuals include the software architect, chief
software engineer, software systems engineering lead, and data architect. The
network architect and hardware architect often report to a project hardware
management lead. An example of an organization chart based on this
approach is shown in Figure 2.1. The key technical positions are shown as
staff positions reporting to a manager. Another approach we have seen to be

Traps and Pitfalls Associated with the Role of Software Architect

Top-Level Project
Manager

= Chief Engineer

v v

Systems Hardware Mgmt SW Development
Engineering Lead Mgmt Lead
Mgmt Lead E—
| | |
Systems Eng.
Technical Lead Hardware Subsystem
Architect __Managers l/
i Subsystem
Network Architect Software Technical
Architect Leads
Chief Software
Engineer
SW Systems

Engineering Lead

Figure 2.1 Organization chart example

effective is to have all these key technical individuals, with the exception of
the subsystem technical leads, report to the chief engineer.

2.5.3 Geographical location of software architect and technical leads

Description: In geographically distributed development organizations, the
software architect must either be located with the majority of the development
leads, or plan on commuting frequently to the other site in order to commu-
nicate with these leads.

Remedy: The technical focus will shift early in the program to one primary
site, usually the one where the top-level development manager spends most of
his or her time. Select the software architect from the qualified technical leads
at the site where technical focus will most likely result, or plan on having the
software architect travel for a significant amount of the time.

35

36

Roles of the Software Architect

2.5.4 Architecture team size and composition

Description: Managers will often try to get themselves or other non-technical
individuals added to the architecture team, or convince the software architect’s
manager to have them added to the team. In addition, individuals who are not
technical leaders but who may consider themselves to be technical leaders
may request to be added to the team.

Remedy: The software architect should closely control the size and composi-
tion of the architecture team from the start. This means that the architect
should define the guidelines for the structure and composition of the team and
communicate these guidelines to the project managers early in the process.
The effectiveness of the software architecture team will be compromised if the
team is too large or if anyone who is not one of the key technical individuals
is on the team.

To prevent unreasonable requests for additions to the team, the software
architect must be sure to clearly communicate to all interested individuals the
minutes of the architecture team meetings, the decisions made by that team,
and the architecture that is defined by the team. The software architect should
keep several mailing lists to keep information flowing.

One related problem that occurs frequently is that effective individuals are
often overlooked when the team is first structured and individuals might be
added who are not effective. One approach for adding to the team is to start
very small (3—4 key individuals) and then determine if others have emerged as
technical leaders in the organization. Removing people from the team is very
difficult, so the initial selection must be done carefully.

2.5.5 Software architect lifecycle participation

Description: The software architect is frequently moved on to the next project
in advance of the final delivery of the system. This may be due to the
perception that the software architecture task ends before the final build or
due to the needs of the new project. This should be avoided, as the architect
will not be able to evaluate the true effectiveness of the architecture and will
not learn from architecture flaws that existed in the system, but were not
noticed until the end users interacted with the software over an extended
period. This could potentially introduce the same flaws in the software
architecture of the new system.

Remedy: The software architect should participate in the development effort,

Recommended Reading

either in the role of software architect or as the technical lead of the final
software build. If the architect remains in the architecture role, this will have
the added benefit of ensuring the documentation of the software architecture
accurately represents the final state of the software. If the architect is filling
the technical lead role, then this will result in a closer involvement with the
end users and a better understanding of the weaknesses in the architecture.

2.6 Recommended Reading

McCarthy (1995) describes the nuances of the development of a shared team
vision in great detail.

Hofmeister et al. (1999) and Bass et al. (1998) have good discussions on the
role and skills of the software architect. The book by Sewell and Sewell
(2001) also has a good discussion of the overall role of the software architect.

Organizational issues affecting the software architect are discussed in the
book on organizational practices by Dikel er al. (2000). The manager’s
perspective and use of the software architecture can be found in the book by
Paulish (2001). The topics in this book include an approach for defining the
software organization based on the architecture as well as how to extract
project planning and management information from the architecture.

Jim Coplien and Neil Harrison are building a pattern language that includes
several patterns related to the software architect and architecture team. Links
to this information can be found on Jim Coplien’s web page under the links to
the organizational pattern language effort.

Kruchten (1999) describes some of the roles discussed in this chapter and
Brown (1998) discusses several of the software architecture pitfalls in the
Anti-Patterns book.

The Worldwide Institute of Software Architects (WWISA) has a good
description on their web page of the role of the software architect and how it
changes throughout the phases of software design and development.

There are several good descriptions of the role of the software architect and
links to papers and to other sites containing similar information on the
Bredemeyer web site. Additional information can be found on the HP soft-
ware architecture web site. Another good description of the role of the
software architect can be found at the IconProcess web site.

37

Software Architecture
and the Development
Process

This chapter provides an overview of the development process and its
relationship to the definition of the software architecture. This discussion is
included to provide an overall context for the discussions that follow, not to
mandate a specific development process. Our architecture definition approach
can fit within the context of most development processes. Included in this
chapter is a brief description of an iterative development process, deliverables
and artifacts that relate to software architecture, use case driven approaches
for architecture development, technology roadmap definition, development
process traps and pitfalls, and a discussion of case tools.

3.1 Overview of Iterative Development

The Rational Unified Process (RUP) is a widely used framework for defining
and managing the development process. The RUP process framework pro-
vides some key terms that will be used throughout this book when process
phases and lifecycle stages are discussed. While RUP is not a requirement for
applying the viewpoints, we use elements of RUP to describe software process

40

Software Architecture and the Development Process

in general. In a RUP-based process, viewpoints are artifacts associated with a
particular milestone in the process.

3.1.1 Overall process phases

While some managers may prefer to look at development as a waterfall for
project planning purposes, large software development projects will always be
an iterative process. There are many reasons for the iterative nature of
software development. These include the inability to completely specify
requirements, modifications to requirements, and the need to maintain
systems over a long lifecycle. The only decision, then, is whether or not to take
control of the iterations.

The phases defined in the RUP process are organized over time in the order
shown below:

e Inception — This phase is where the vision of the final software product is
defined. In addition, the business case and scope of the work to be done
are specified in this phase. In order to perform inception-related tasks, the
higher-level requirements must be analyzed and understood. These
requirements are often incomplete when the preliminary analysis is
performed. Assumptions must be made for missing requirements. These
assumptions can be refined in later phases.

e Elaboration — In this phase, a plan for the development activities is
prepared. In addition, the bulk of the requirements and top-level architec-
ture definition is performed in this phase. This architecture definition will
evolve from a very preliminary version to the architecture definition that
allows the development teams to begin to design their own architecture
and begin development. The architecture will continue to evolve through-
out the subsequent phases, due to requirements changes and project
re-scoping.

e Construction — This phase is where the actual software product is built.
This software will evolve from preliminary versions that have limited
functionality, but allow the development team to get through the develop-
ment/delivery/integration/test cycle, to the final version that is delivered to
the users.

e Transition — In this phase, the product is transitioned to the users. This

Overview of Iterative Development

includes delivery, training, support, and maintenance. The end of this
phase is the product release.

Within each phase, one or more iterations may be defined. These iterations
further divide the work and the deliverables for that phase. One of the key
tenets of RUP is to get deliveries as early in the development process as
possible to avoid the ‘big bang’ integration and test phenomenon that occurs
on so many software development projects. In addition, high-risk functional-
ity and interfaces are moved to early iterations to help mitigate risk and drive
out issues as early as possible. This is a change for most development team
members, since the natural tendency for developers and managers is to put off
the high-risk work until late in the development cycle. The software architect
should assist the product management and release management leadership in
defining the functionality for each of the iterations.

The architecture team will go through a process of refinement of the top-
level software architecture. This process will normally be done over several
iterations. The software architecture will evolve as the development process
identifies necessary changes. This is delivered to the development teams as a
specification for them to use when doing their own level of design. While the
types of artifacts produced at each level are similar, the content and level of
detail will change. In addition, some artifacts from the software architecture
description can be used as-is by the development teams and do not require
further elaboration.

3.1.2 Lifecycle stages

The lifecycle stages, called process workflows in RUP, define the activities that
occur within each phase. Not all of the workflows occur in every phase.
Which workflows apply in a particular phase is part of the planning process
for the project. The software architect will primarily be involved in the
analysis and design workflow, but will be involved in all workflows. We don’t
make a clear distinction between analysis and design, nor does RUP. The
definitions of these activities can often blur, especially when several levels of
software architecture are defined. The analysis and design activities for the
top-level architecture can be quite different from those done by each indivi-
dual development team.
The core process workflows and software architect responsibilities are:

e Business Modeling — This workflow is not necessarily needed for all

41

42

Software Architecture and the Development Process

development efforts. This modeling is useful for understanding the busi-
ness domain, usually before the development effort begins. Business
modeling usually consists of end-user-centric use case development, along
with a business domain model of the key entities. The software architect
can play a key role here in the selection of use cases, definition of use
cases, and in developing the business domain model. Individuals with
knowledge of the business aspects of the system often don’t have modeling
experience. As a result, the architect may play the role of facilitator while
learning the business aspects of the system.

Requirements — In large-scale projects, the higher-level systems engineer-
ing organization, in conjunction with marketing organizations and target
users, often provides the functional requirements for the software. The
software architect and other members of the architecture team should
participate in this activity. Some of the architecture team members are
often assigned to the system engineering team in the early project stages.
In addition, the software architect is the customer of these requirements
and should review them carefully. The requirements will become the basis
for the architecture definition. Another set of requirements is often gener-
ated for the development teams, often by a software systems engineering
team. The software architect should participate in this process as well,
working in conjunction with the software systems engineering team to
define the top-level architecture.

Analysis and Design — This workflow occurs at two levels. First, the
software architecture team performs analysis and design, using the soft-
ware system engineering work products, and produces the top-level
architecture. Second, each development team performs analysis and de-
sign under the review and approval of the architecture team. The software
architect must make sure the subsystem-level analysis and design meets
the specification from the top-level architecture. In addition, the subsys-
tem-level effort will undoubtedly uncover problems or even mistakes in
the top-level architecture.

Implementation — The top-level architecture and subsystem-level architec-
tures are input to the implementation workflow. The software architect
must ensure the resulting implementation matches the top-level and
subsystem-level architecture for each of the iterations. Implementation

will also uncover areas of the software architecture that need to be
modified.

Overview of Iterative Development

e Test — The software architect should be an active participant in testing of
the resulting software. This includes providing a top-level architecture
description that can be used by the test organization to understand the
software, and in the identification of implementations that have strayed
from the guidelines in the top-level architecture. The test workflow will
also drive out problems with the architecture that will result in modifica-
tions to the original architecture.

e Deployment — This workflow involves delivery of the software to the end
users. The software architect at this point is involved in communicating
the architecture to the end users, and potentially to the sales staff, so that
the benefits of this architecture over others can be easily seen.

Figure 3.1 shows an example of the relative level of effort for each workflow
over a series of three example iterations. In addition, it shows some typical
architecture-related artifacts that would be produced by the workflows in
each iteration. In this diagram, we have shown top-level architecture develop-
ment as a separate workflow from subsystem design. This sort of tailoring is
often needed in RUP to deal with multiple levels of architecture and design.

3.1.3 Architecture and agile processes

A recent movement is the rise of agile processes such as Extreme Programming
(XP) and Scrum. These processes have some of the following characteristics:

e Rapid and frequent delivery of useful, working software
e Responsive to rapid requirements changes
e Architectures that emerge from self-organizing teams

e Teams regularly self-examine processes to make them more efficient

We see little conflict between agile processes and the techniques and view-
points we recommend. Agile teams may tend to maintain and create fewer of
the views than teams with a more traditional process. However, larger projects
inherently have larger numbers of developers, and an increased need for
training and communication of the architecture. Even teams using agile
processes will need a reasonable number of architecture views to communicate
a common understanding of the architecture and to coordinate development
effectively. Having all team members reading the code to understand the

43

44 Software Architecture and the Development Process

Figure 3.1 Workflow level of effort and artifact summary example

Overview of Iterative Development

architecture is neither feasible nor effective as a means to communicate the
overall design.

We fully agree with the philosophy that prefers the production of code
to secondary artifacts. So for each artifact or document that is produced,
the software team and architect need to ask the question, “Who will look
at this?’ If a large document is produced which has no stakeholders, then
it should be scrapped. While this book recommends several views and
diagrams to capture the software architecture effectively, we do not sug-
gest they all be used for every development project. It is the responsibility
of the software architect and the teams to select the important views that
convey the appropriate information to the stakeholders for the current
system.

In our experience with large projects, a good architecture will not emerge
without a focal point for communication. The tendency is for individual teams
to reinvent infrastructure code, use different development standards, and to
be focused on limited objectives rather than the overall goals. An architecture
team nicely focuses the communication among development teams and
provides a conduit for setting architectural standards and for focusing the
development of reusable infrastructure libraries.

Some might suggest that there is conflict between the software archi-
tects, who want to spend time designing the system, and the program-
mers, who want to start writing code. This can result in proposed
approaches that reduce or eliminate the need for analysis and design. But
the best architects are usually also developers and understand how to
limit their efforts to the development and maintenance of the primary
system viewpoints. Experienced software architects can successfully avoid
this pitfall.

Extreme programming (XP) advocates performing design before coding.
Designs are typically sketched on a whiteboard and documentation is not
maintained. In our experience this approach will not scale up to large
development, due to the lack of an architectural focal point. XP advocates
acknowledge that XP has not been utilized on many large projects. Of
course individual development teams within a larger development team
might utilize XP practices using the architect and other team members as
a source of design input and constraints. In the end, most of the XP
practices are compatible with an organized architecture effort. However,
for this approach to work the system must be divided into smaller chunks
that smaller teams can address in a relatively independent fashion. More-
over, dependencies between these chunks require additional coordination
between teams.

45

46

Software Architecture and the Development Process

An Experience Combining Architecture and Agile Processes

A few years ago we worked on a project that successfully combined
architecture with agile development techniques. In this project, a large
development team used a Scrum-like iterative development process to cope
with a very dynamic requirements environment and to support rapidly
evolving project goals. The nature of the subsystem being developed was
fairly novel and, as a result, even domain experts had difficulty writing
good requirements. The subsystem team peaked at about 40 developers and
the project team peaked at about 250 developers.

The project was far from perfect, but without a focal point for architec-
tural decisions the result would have been utter chaos and potentially
project failure. In fact, the project started without an architect. The
appointment of a full-time architect emerged as a result of a need for better
coordination of cross-team issues. While there were many experienced and
motivated developers that attempted to address architectural concerns, they
were not successful. This was due, at least in part, to these developers
lacking the authority to make decisions and partially because there wasn’t
total agreement. Appointment of an architect and architecture team to
mediate and drive these issues to resolution solved the problem. Unfortu-
nately, the late recognition of the architecture role meant that the architect
and the architecture team had to play catch-up.

From the development team perspective, the appointment of an architect
to help mediate architectural issues was critical and had little impact on the
process. Architectural issues and concerns brought up at daily team meet-
ings would now finally get the attention needed to resolve them. The
movement of reusable assets into a common infrastructure group was
helpful in reducing the team workload. Finally, the additional effort to
participate in the development of a top-level architecture document and
architecture team meetings was a relatively minor investment of time and
paid many dividends in helping teams to communicate and to understand
the system.

The ‘stories’ used by XP practitioners are very much like use cases. If the
traps and pitfalls of use cases we describe below can be avoided, the two
concepts of use cases and stories are very similar. The need to do more
development and less documentation can be met from two aspects. First, the
approach advocated in RUP is to start implementation iterations as early as
possible, put high-risk items early in the development cycles, and evolve the

Overview of Iterative Development

system iteratively. This should get coding going sooner. However, the top-level
architecture is required to provide guidance to that evolving development.
The approach we recommend is one of cautious moderation.

Finally, some XP practices can create issues in the deployment. Specifically,
merciless refactoring of the data schema is usually not usually practical due to
the testing and transition costs. Attempts to do this can result in deployment
nightmares. We discuss the reasons for this in detail in Chapter 9.

3.1.4 Start early, refine constantly

In order to have a successful software development project, several activities
must be started as early as possible. One key activity we have seen that must
be started early is the development of software infrastructure. This infrastruc-
ture includes frameworks and utility classes that will be used by multiple
development teams. These include debug and logging capabilities, wrappers
around COTS products, component frameworks, process startup/shutdown
utilities, and network management interfaces. These products must be avail-
able when developers start development, and may also be needed for develop-
ment teams to complete their design. To make these available in a timely
fashion, the design and development of the infrastructure must be started in
advance of subsystem-level analysis and design. The catch, however, is that
the requirements for this infrastructure often come out of the development
activities. The approach we have used is to design and build a preliminary set
of infrastructure products, based on experience, and modify/add to this set of
infrastructure quickly as new requirements arise.

Another effective approach is to start the design as soon as any descriptions
of the system become available. This design will be preliminary and should be
clearly marked accordingly. This ‘straw man’ approach to doing top-level
architecture has the benefit of getting a design out early so input can be
obtained from systems engineers and development teams. One drawback is
that some managers may forget that this is preliminary and start to build a
development organization around the preliminary design. The only remedy
for this is to constantly remind them that the architecture is preliminary, and
to indicate which aspects of the architecture may be well defined enough to
devote one or more dedicated development teams to them.

Another aspect of starting early on the architecture is to look for other
sources in the absence of requirements. For example, in some telecommunica-
tions domains, standards exist which go a long way in describing the behavior
and functionality of certain aspects of telecommunications systems. This

47

48

Software Architecture and the Development Process

information should be used whenever possible to get a jump on the top-level
architecture definition.

The definition and deployment of a set of key prototypes is also a task that
should be done early. These prototypes may be developed in the inception or
elaboration phase. The definition and management of an effective prototyping
plan is one of the key responsibilities of the software architect.

Determination of the appropriate views and artifacts to produce can vary
depending on the needs of the project. For example, a set of preliminary
deployment views may need to be created if the purchase process requires the
hardware architect to budget or even purchase hardware early in the project
lifecycle. In a different scenario where the hardware is more flexible or even
predetermined, these views may be done much later in the development of the
system.

3.2 Requirements Management
3.2.1 Use cases and requirements engineering

Use cases can be an effective tool in the identification of key software
requirements. They can also be used as a means to translate higher-level
systems engineering requirements and functional artifacts to a meaningful set
of information for software developers. In this way, the ‘shall’ statements in
the higher-level requirements can be mapped to use cases as a simple means to
show traceability. The elaboration of these use cases can provide the necessary
information on how the software subsystems and components will com-
municate.

If a software systems engineering organization exists, then this group
should be focused on use cases and related artifacts, such as sequence and
collaboration diagrams. Use cases can also be effective as one means to drive
out the software system partitioning. This approach is described in Chapter
12.

However, caution must be exercised when use cases are applied. Use cases
cannot be expected to form a complete specification for the system. Use cases
are usually not effective for the specification of system characteristics such as
performance and availability. Use cases often need to be supplemented to
capture this type of information.

The misapplication of use cases can cause unnecessary effort to be
expended. This wasted effort is sometimes called ‘analysis paralysis’ and has
led to use cases being referred to as ‘useless cases’ or ‘abuse cases’. The
application of use cases should be limited to driving out the key interfaces and

Requirements Management

interactions, and their application to form a complete specification should be
avoided. In addition, use case misapplication can include creating too many
use cases, when separate interaction views that all map to a particular use case
would have been a better approach.

3.2.2 Additional requirements that impact architecture

One set of requirements that impact the software architecture can be described
as the ‘ilities’: reliability, maintainability, testability, and usability. Some others
include fault tolerance, error handling, security, portability, and performance.
These are requirements that impact the attributes of software architecture as
described in Chapter 1. The architecture team needs to ensure that these
requirements are as clearly stated as feasible.

Complicating the clear statement of these requirements is the fact that some
overall requirements may not apply to all components. For example, it might
be vital for a database engine to sustain an availability of 99.999 per cent
while a monitoring tool might only need 90 per cent. Engineering the
monitoring tool for the higher availability can dramatically increase the cost
of development and testing. It is important to sort out how various compo-
nents fit into the overall system strategy so that these requirements can be
interpreted properly.

From a process perspective the architect and the architecture team should
play devil’s advocate with the trade-offs represented by the architecture-
impacting requirements. Questions, such as the following, need to be an-
swered:

e What would happen if a particular component were not really fault
tolerant?

e Is portability really a hard requirement or just nice to have?

e Do all processes need to be highly available, or just certain ones?

e Is a quick restart of a process a better option than a complicated
checkpointing scheme?

3.2.3 Requirements tracing

There may also be a large number of ‘shall’ statements that apply to the basic
functionality of the system, and duplicate the information captured by the use
case process. The software system engineering team should map the use cases

49

50

Software Architecture and the Development Process

to these functional requirements. In addition, requirements, such as perform-
ance, should be mapped to key interactions and interfaces. In this way, the test
team can verify that the higher-level requirements have been met.

As described above, key requirements should be traced to the appropriate
entity functionality and interfaces. Conventional functional requirements, on
the other hand, can be mapped to key use cases and scenarios. These key use
cases can then be mapped to specific test cases. This mapping is usually best
maintained in tabular form in a spreadsheet application, for example. The
generation of mapping information can often be automated if requirements
databases are utilized by the top-level systems engineering team.

3.3 Management of the Technology Roadmap

One of the key responsibilities of the software architect is to manage the
selection of technologies and software products used in the current product,
and to develop a plan for evolving these technologies as the product evolves.
Similarly, the software architect will be tasked to identify key technologies
and products on which the development organization as a whole should
focus. This section focuses first on identification, selection, and management
of the technology roadmap for a development project.

3.3.1 External software products

For the software architect, the primary objective of managing the technology
roadmap is to control the infusion of commercial software products, open
source software, and freeware. We will refer to the collection of these
categories of technology products as commercial-off-the-shelf or COTS. This
responsibility should be considered at the same level of importance as that of
controlling the design and development of software from scratch. The final
software product will often be impacted as much by the COTS as by the
software developed by the development team. A poor choice of a COTS
product can have major consequences to project cost and can even result in
project failure. If the organization does not have experience with a particular
COTS technology or product, the risk of making a poor choice is magnified.
Complicating the acquisition process is that COTS selections typically
involve trading off multiple variables. For example, there may be trade-offs
between time to market and functionality. A COTS product that provides a
70 per cent solution may be superior to a homegrown solution that provides

Management of the Technology Roadmap

90 per cent due to the cost and time required to develop the homegrown
solution.

The other reason to control the selection of COTS products is to prevent
uncontrolled introduction of open source and freeware products that may
potentially conflict with each other. In addition, the versions of COTS
products must be kept consistent across the development teams and in the
integration and test facilities. This will minimize the impact to development
teams that would need to retest their software because their entire develop-
ment and test were done with an older version of a COTS product.

One approach for controlling COTS selection that we have seen to be
effective is the creation of a COTS selection and approval team. The
responsibility of this team is to approve COTS products that are both
evaluated and selected for the project. This team is best facilitated by a key
development manager and populated with technical leads from each of the
development teams, the software architect or other members of the architec-
ture team, the chief engineer, one or more of the technical leads from the test
organization, and a member of the configuration management team. This
team meets regularly, usually once a week, and approves all requests to
evaluate COTS products as well as requests to adopt a product at the
conclusion of a successful evaluation.

The COTS evaluation process should include a technical evaluation of
competing products, followed by a down-select to a few products. The
selected set of products should be included in a pathfinding activity to make
sure there are no compatibility issues with the existing system and that the
product meets the project needs. This development evaluation should include
as many of the COTS products that will be in the final system and interact
with the product being evaluated as possible. These prototyping efforts should
be included in the schedules for the early process iterations. One exception to
this process may be the selection of a COTS product on which the develop-
ment team has significant experience or a product that has gone through a
similar selection process on a previous project. Examples of this type of
product include a configuration management tool or a relational database
product. If most of the development team has significant experience with one
product, the evaluation may not require pathfinding or development of a
prototype.

In addition to management of COTS products, this team may be tasked
with the selection of design tools, operating system version, compilers, other
development tools, and test tools. However, a clear distinction must be made
between tools and technologies used for design, development, and test, and
those that are delivered with the software. Caution must be taken to avoid

51

52

Software Architecture and the Development Process

unnecessarily delivering to the end user software used only in the development
and test phases.

Different projects and organizations will have different overall philosophies
about the use of COTS products. On one extreme is the approach where the
goal is to buy as much of the software architecture as possible. The advantage
of this approach is that the amount of hand-crafted software is minimized
and, with the proper selection of technologies, the parts of the system that are
not hand crafted are much more stable and thoroughly tested. One disadvan-
tage with this approach is the potential for conflicts among the products and
the inability to resolve these conflicts without requesting changes by the
supplier. A second disadvantage is the lack of flexibility to change the product
to match the needs of the project. Commercial products must be changed by
the vendor, and custom changes to open source products will cause problems
when upgrading to a newer and better version of the open source product.

Another disadvantage of using primarily COTS products is that they will not
have consistent approaches for configuration, startup, shutdown, logging, and
monitoring. A final disadvantage to using a large number of COTS products is
the cost of licensing and maintaining the COTS products. Large-scale systems
are often characterized by a large number of computer nodes, developers,
development workstations, and operators. Products that are licensed by indivi-
dual developers, users, or workstations can be very costly to purchase. In
addition, maintenance contract costs can often be 15 to 25 per cent of the
product cost and can greatly increase the maintenance costs for a large system.

The other extreme for utilizing COTS is to minimize its use and craft as much
of the functionality required for the project as possible. This approach is often
referred to as the ‘not invented here’ technique. This term applies to the fact
that certain developers or development teams are reluctant to use any software
they did not develop themselves. The advantages of this approach include
reduced COTS licensing and maintenance costs, more control over function-
ality of the components, the ability to make changes directly in the code without
concern for upgrade, and smaller total code size (COTS code size plus crafted
code size) due to the focused nature of the final software. There are many
problems with this approach. One is that the large amount of crafted software
will have a much higher defect rate than COTS products. In addition, the
development time will be much greater than if COTS products had been
utilized. Finally, overall system costs may actually be higher, depending on the
complexity of the components that were developed for the system, due to the
higher number of developers required and the recurring maintenance costs for
a larger developed code base. In addition, features may need to be reduced in
the developed version of a COTS tool due to project budget limitations.

Management of the Technology Roadmap

The ideal solution is somewhere between the two extremes. Purchase as
much COTS as practical for the project and produce internal versions of
COTS where it makes sense. Trade-offs may need to be made where costs are
not within project limitations, where functionality is much more than required
and the necessary functionality can be developed, or where COTS products
cannot integrate or place an unnecessary burden on the end user for config-
uration or management.

A third option is to identify a supplier that specializes in custom modifica-
tions to the specific open source product and contract them to make the
necessary changes. These changes can first be introduced in the project’s
version of the open source and then included in the open source distribution.
In this way, the open source community can enhance and identify defects in
the modifications made for the project.

One way to reduce the licensing and maintenance fees of a COTS product is
to have a team of negotiators who can strike compromises with COTS
vendors whose licensing schemes don’t make sense on a large project. If the
project is one being developed in a large corporation, corporate licensing fees
with the costs spread out over several development teams are often the answer.
In addition, licensing and maintenance costs must be included in the criteria
for selection of a COTS product. A competing product that has fewer features
may be selected, if the cost of the fully featured product is prohibitive.

3.3.2 Software technology management traps and pitfalls

Several pitfalls should be avoided while managing the technologies selected
for a project. Caution should be used when using technologies that are on the
leading edge, sometimes called the ‘bleeding edge’. Products tied to these
technologies usually lack maturity and functionality. These products will also
be less fully tested than more mature products.

A similar caution is to be wary of features that are new to the current
release of a software product. The probability of defects in these new features
is usually much higher than features that have been in the product for some
time. Dependency on these features can cause catastrophic design changes
when the software must be modified to eliminate the use of the feature. A
related pitfall is to base the architecture or design on vendor claims of a
feature in the next release of the product and to design the software to depend
on this feature. In addition to the high risk associated with new features, the
overzealous sales person may actually be pushing functionality that will be
moved to a later release of the product.

53

54

Software Architecture and the Development Process

Another trap to avoid is the excitement some members of the development
team experience when they read about a new technology or have some initial
experience using products aligned with the technology. Certain personality
types are easily enamored with new technologies and see them as the solution
to many problem areas, ignoring the lack of maturity of the technology. While
these new technologies should not be ignored, caution must be taken and a
careful analysis performed before adopting them. The inclusion of technology
for technology’s sake could cause a large redesign or increase maintenance
costs by introducing significant defects in the product under development.

Open source products can alleviate many of the cost problems for pur-
chased COTS products, but bring a few problems of their own. One of these
problems is that new releases of open source products often have many defects
that have not yet been uncovered by the users of the product. While many
popular open source products have an adequate test suite, the complete testing
of these products occurs as users adopt the product. In addition, open source
products with a small user base may not be as well tested as those with a large
user base. It is a good idea to test an open source product thoroughly prior to
adoption or upgrade to a new release. Monitoring of the user’s groups and
primary web site for the open source product is also required to identify
potential problems that have been uncovered by the user community.

A final problem with open source products is that inevitably a defect will
need to be fixed in the project version prior to getting the fix in the online
version of the product. This could be due to the fact that no one in the open
source community is working on the specific problem, or that the problem is
fixed in a newer version, which the project has not yet adopted. These fixes
should be carefully monitored and identified so they can be applied to the new
version of the open source product, if necessary. A recommended approach for
dealing with open source products is to identify a vendor who supports the
product, for a fee, and will provide quick turnaround on fixes. These vendors
often add value in several areas. These include getting new features into the
product, quick turnaround of fixes, additional testing prior to release, im-
proved documentation, training, and consulting on proper use of the product.

3.3.3 Organizational technology roadmap

Developing the organizational technology roadmap is a somewhat different
process from developing a project technology roadmap. This activity should
involve, at a minimum, the software architecture teams from the various
projects and other technical leaders in the organization. This process should

Effective Technical Meetings

include identification of potential technologies that impact all products devel-
oped by the organization.

A small team should then be put in place to become knowledgeable in these
technologies, evaluate related products, perform prototyping related to these
products, and communicate the results to the rest of the organization. In-
process communication to the software architects and other key technical
leaders should be included to keep these leaders aware of potential technolo-
gies for their particular projects. Included in the evaluation activities of this
small team should be the potential users of the technology under evaluation.
In this way, a core group of developers will emerge from the evaluation with
the necessary skills to begin using the technology immediately.

3.4 Effective Technical Meetings

The software architect will attend and lead many different types of technical
meetings. These include informal technical meetings, peer reviews, inspec-
tions, and design reviews. These meetings should be limited to technical team
members. Attendance by managers should be minimized. This allows the
technical teams to focus on key technical issues and minimizes taking extra
time at these meetings to educate non-technical team members. To help
managers and other team members to better understand the overall architec-
ture, key interfaces, design issues, and risks, the software architecture team
members should provide regularly scheduled presentations that focus on the
key areas and help keep the other team members informed.

3.4.1 Informal technical meetings

The first types of technical meetings that usually occur are informal meetings
held with a group of designers from the development teams and the software
architecture team. The purpose of these meetings is to determine, prior to or
in lieu of any sort of more formal review, the status of a particular design or
development effort. These meetings will occur first in the development
process with the framework or software infrastructure development teams,
as these products will lead the subsystem development teams significantly.
The goal of these meetings is to determine the status of the design and to
identify any issues that need the attention and focus of the architecture team
to resolve.

The best approach for these meetings is to schedule them at regular intervals
during the design aspects of the development process. With each of the

55

56

Software Architecture and the Development Process

iterations of the development process comes a new round of design activities
that require the input of the software architecture team. In addition, these
meetings may be held as needed to discuss relevant technical issues such as the
status of prototyping, technology evaluation status, or to select a particular
software or hardware product to be used on the project. The topics to be
covered at these technical meetings include:

e Subsystem views for each subsystem or framework
e Component design for all components owned by the subsystem team

e Process views for all processes and threads in which the components
execute

e Subsystem-level design of significant analysis classes or interface classes

e Requirements overview, including a discussion of key subsystem-level use
cases and interactions

e Interface and port details, including interface implementation mechanisms
e New functionality and changes since last meeting or review

e Performance-related information, including memory and CPU utilization
estimates

e Approach used for reliability, availability
e Configuration information
e Technical concerns

e Development environment concerns

3.4.2 Peer reviews and inspections

Peer reviews and inspections are closely related, but not quite the same. Peer
reviews are held with a relatively small group of technical representatives to
review the status of a work product that is under development, but nearing an
initial stage of completion. These reviews not only determine the feasibility of
a certain approach, but also allow a certain amount of discussion on
alternatives. Action items are captured and tracked, but formal defect metrics
are not normally tracked. Inspections, on the other hand, are a detailed
evaluation of a work product with a small team (no more than six, usually)
with the goal to identify and track defects. In these meetings, discussions of

Effective Technical Meetings

design alternatives are not allowed. Action items are captured where decisions
or discussion of alternatives needs to occur.

3.4.3 Design reviews

Design reviews are formal reviews held with a larger group of representatives
from the software architecture team, the development teams, integration and
test team members, and others. The purpose of these reviews is to validate
and approve a design prior to initiating a more detailed design or a develop-
ment stage in the process. If the software architecture team has been attending
the appropriate number of informal technical meetings and participating in
peer reviews of the design work products, there should be few surprises in the
design reviews. These meetings may be followed by a formal inspection of the
design documentation. With an effective process of regularly scheduled
informal technical meetings, along with peer reviews and inspections of the
design documentation in which the appropriate stakeholders are included, the
formal review may be omitted.

3.4.4 Design communication meetings

Design communication meetings are targeted at explaining the software
architecture to managers, system engineers, developers, customers, or other
team members. These meetings are held based on a need for a particular group
to understand an existing design or modifications to a design. These meetings
might be focused on the top-level architecture or the subsystem-level architec-
ture of one or more specific subsystems.

3.4.5 Management meetings

While the software architect and architecture team members may be invited to
many management meetings, attendance should be limited to meetings where
the software architect will be required to discuss key technical issues or where
an understanding of key schedule or budget issues is communicated to the
software architect to help shape the decision-making process. The daily or
weekly management meetings should be replaced with regularly scheduled
technical issue meetings. One example of this type of meeting is a daily defect
review, during the development or test stage. The software architecture team
members can provide insight into how a defect impacts other facets of
the software being developed or tested. In addition, the architecture team

57

58

Software Architecture and the Development Process

members can assist in determination of ownership for a particular defect due
to their understanding of the overall software architecture.

3.4.6 Vendor presentations

Another type of meeting the software architect will be required to attend will
be vendor presentations. For a large-scale development project, many ven-
dors will need to be evaluated if the project has a strategy to utilize COTS
products. These meetings must focus on the technical aspects of the software
and not on the history of the company or other non-technical issues. Other-
wise, much time will be wasted listening to non-technical discussions that are
not relevant to the selection of the COTS product. While a brief discussion
of the status and size of the company, along with similar projects where the
product has been used, is very useful, the real effectiveness of the presenta-
tions lies in communicating the detailed design and usage aspects of the
product. One approach we have seen to be successful is to request that the
vendor send only technical representatives and that the sales personnel
attend another meeting with the vendor contract management team mem-
bers, if needed.

3.4.7 Distributed technical meetings

One final recommendation for holding effective meetings, given that nearly all
large-scale development efforts are geographically distributed, is to become
very effective in network-based meeting software. This technology can be
useful for all technical meetings, especially since the architecture team will be
geographically distributed and may not all be able to travel for all meetings.
The combination of a network connection to review or discuss technical
material and a good teleconference connection can quickly become the
preferred means to hold a technical meeting. This technology has proven to be
more effective than teleconferencing alone or video conferencing because real-
time updates to documents can be seen immediately on the screens of all
meeting participants.

One caution is that individuals who haven’t worked in a distributed mode
often run meetings like there is no one on the phone. This includes use of
transparencies and whiteboards that can’t be seen by the remote team
members, use of inexpensive speaker phones, not repeating questions, allow-
ing discussions which can’t be heard at the other end of the phone, etc. These

Traps and Pitfalls of the Software Architecture Process Activities

habits should start to subside as the networking software is introduced into
the teleconferences.

In addition to using network meeting software, several techniques can be
used to make the meetings more effective. These include purchasing tele-
phone headsets and emailing all the materials before the meeting. If these
techniques are used effectively, meeting rooms don’t even need to be
scheduled; the meeting can be held using only online software for viewing, a
headset for listening/speaking, and a teleconference service to set up the call
in advance.

3.5 Traps and Pitfalls of the Software
Architecture Process Activities

The software architect must exercise caution in several areas with respect
to the design and development process. The pitfalls we discuss here are
based on our own experience as software architects on large development
projects.

The out-of-touch architect

One of the primary areas of concern relates to the difference that always
occurs between those that prefer to design and those that prefer to write
code. The software architect must make sure that communication of a
proposed design precedes development activities. In the case of prototype
development this design need not be formal, nor a formal review be held,
prior to development. However, for most other development, an effective set
of technical meetings, peer reviews, design reviews, and design inspections
should occur prior to the start of formal development. Quite often in many
development projects, the software architect is informed that a design flaw
detected in a design review cannot be changed because the code is already
written. The problem of coding going on without involvement of the soft-
ware architect and the architecture team in the design is even more of a
problem for remote development teams. The software architect should plan
regular on-site technical meetings with these development teams to track
design progress and assess whether or not coding has started. As described
earlier, this technique may be used as a replacement for formal design
reviews.

59

60

Software Architecture and the Development Process

Analysis paralysis

A problem that occurs on the opposite end of the design versus code spectrum
is that of spending too much time on the analysis and design, and not starting
the coding on time. This problem occurs when inexperienced development
leads get stuck discussing abstract concepts. Just as the software architecture
team is responsible for providing the top-level architecture in a timely manner
to the development teams, the development design teams should provide the
design to their developers on time. This problem has traditionally been called
‘analysis paralysis’.

Design for reuse

Similarly, while design for reuse is a good goal, it must not drive the overall
approach of the project. Spending too much time on designing for reuse, or
other design activities that are even less productive, can also severely limit the
amount of time left for development and test of the product. The software
architecture team must ensure that all analysis and design activities are
producing work products that will prove useful in the downstream project
activities or in the development of a family of related software products.

Use cases

As described in the discussion of use cases above, caution should be exercised
when utilizing this technique. These use cases can quickly become abuse cases,
where every low-level aspect and every possible scenario involving the system
is being described in a use case. This abuse will also prevent the start of
coding, or even the start of lower-level design activities.

Schedule

While the software architecture team should be focused on technical issues,
they cannot lose sight of schedule issues and should make sure the analysis
activities, design reviews, and design inspections are held in a timely manner
to meet the overall project schedule.

Computer-Aided Software Engineering (CASE) Tools

3.6 Computer-Aided Software Engineering
(CASE) Tools

Despite the fact that the diagrams in the book comply with the UML
specification, it does not mean that the available design tools can be used to
create them. Most of the current design tools are not extensible in that they
don’t allow for extension of the existing set of icons and behavior required to
define all the key views of the system. While most of these tools have support
for detailed design and code generation, they cannot be easily extended for
capturing the types of diagrams and notations shown in this book.

There are two classifications of tools: those built to model the UML and
drawing tools. Most of the UML tools support an underlying model indepen-
dent of the graphical representation. Having support for an underlying model
is critical to maintaining a consistent model, much like a compiler checks the
syntax of a programmer. For example, if the name of a class is changed on
one diagram, all the other diagrams should be automatically updated to reflect
the change. The internal model is essential if the project intends to create a
large number of diagrams that need to be consistent.

The general conundrum of UML tools is that those supplying a rich under-
lying model tend to be poorer in their ability to render complex drawings. In
addition, they also will want to enforce consistency. Sometimes the model
consistency gets in the way. For example, if you want to create two versions of
model so that you can see two different design approaches side by side, it is
usually difficult. Usually these tools will require an entire copy of the model
repository for each variant.

Finally, tools do not necessarily support all variations of the UML specifica-
tion. Most tools have been tuned to support basic class modeling and lower-
level design. This is frequently troublesome because the project cannot easily
employ desired architecture modeling techniques with the selected tool.

In practice, the result is that often both types of tools are employed. A
drawing tool might be employed by the architecture team to render some
diagrams that are not possible in the project design tools. Top-level diagrams
are usually one-of-a-kind and there aren’t a lot of them, so a good drawing
tool is often sufficient.

Once developers start using CASE tools, they may resist generating design
documents. The usual response is that the design is in the CASE tool and
doesn’t need to be documented anywhere else. The architecture and design
products for a large system need to be highly accessible by a large number of
team members. Design tools have complex interfaces that make it difficult for
non-experts to find information easily. In addition, there are usually limited

61

62

Software Architecture and the Development Process

numbers of licenses available and installation is usually a long process. The
major architecture and design documents should ultimately be rendered in a
common format such as HTML that can be viewed without the original tools.
As much as possible, these documents should be generated from the CASE
tool, but there may be some mixture of hand-generated information and auto-
generated information in the final set of design documents.

3.7 Recommended Reading

The Rational Unified Process is well described in the book by Kruchten. The
phases, lifecycle states, and iterations are well defined. Rational also provides
a software product, which includes extensive web pages and document
templates, for RUP. The software product is confusingly also called RUP. In
addition, Fowler and Scott (1997) has a good and brief outline of the software
development process. This description has a lot in common with RUP, and
even references Kruchten’s book. In addition, the Jacobson (1999) book on
process has more detail on the UML process. These should all be used as a
guide or, at best, a framework as all these processes will need to be tailored to
meet the needs of your project.

The Agile Manifesto web page provides a clearinghouse of information
about agile processes.

The Scrum process is described in Rising and Janoff (2000).

There are many papers and web sites providing information on process.
One recent article by Vaughan (2001) discusses effective approaches for
utilizing use cases and a discussion of ‘abuse cases’. In addition, the first
Antipatterns book by Brown et al. (1998) has several process-related Anti-
patterns. More information may also be found in Brown’s project manage-
ment Antipatterns book (2000).

Lakos (1996) provides tools for extracting and analyzing dependencies for
C++ projects.

The book by Meyers and Oberndorf (2001) covers the areas of COTS and
open source software selection and management. The paper by Anthony ez al.
(1999) discusses the advantages and disadvantages of using frameworks.

An interesting article by Jackson and Chapin describes some of the issues
with the lack of high-level system documentation in the redesign of an air
traffic control system.

Foote and Yoder (2000) have described the result of coding for a long time
without a design as the Big Ball of Mud Pattern.

Example System
Overview

The following example system will be used throughout the book in order to
illustrate various concepts and views of a large-scale system. We have decided
to use a banking system because most people are familiar with the concepts
involved in this type of system. In addition, the banking system includes an
ATM, a design example that has been the choice of most texts on object-
oriented software design for the past 10-12 years. For that reason, we
concluded it was only proper to include an ATM in our example system.

We will often select some part of the overall example system to illustrate
certain concepts and may add elements to the example in order to illustrate an
architectural view. The inclusion of a legacy system in the example will be
used to illustrate how to define the software architecture for a large-scale
system that includes legacy elements. However, we may not make a distinction
between the legacy elements and the new elements of the banking system if the
diagram or discussion is not illustrating how to deal with legacy elements.
Remember that this example is for illustration only, and it is not intended to
show a specific, or even meaningful, architecture of a banking system.

The next few pages could be considered a ‘typical’ summary of concepts
that serve as the initial input to a large system. There is a wealth of interesting
conceptual and requirements information in the material. The information is
incomplete, steeped in undefined terminology, and yet contains basic imple-
mentation constraints. There are broad and over-generalized statements like

64

Example System Overview

‘build quality software’ that must be transformed into principles that guide
the software development.

4.1 System Overview

The example system is intended to show a complete banking system. The
legacy part of the system will support traditional checking, savings, and loan
services. This includes customer record keeping, transaction history, and
transaction management, as well as bank personnel and customer query
support. Legacy interfaces include those to external banks, other instances of
this system in other major bank branches, traditional ATMs, banking person-
nel, and customer phone queries.

The new system will support web-based customer interfaces, two-way pager
and cell-phone web browser access, enhanced ATMs, and enhanced interfaces
to other branches. The new web-based customer and cell-phone browser
interface will not only support traditional account queries but will also
support stock portfolio management, electronic funds transfer, bill payment,
and account transfers. Teller, account manager, and loan officer interfaces will
gradually be converted to new intranet web-based interfaces and migrate
away from the legacy interfaces. In addition, ATMs will eventually be
converted over to the new interfaces, which will also be web-based and touch
screen, and will include voice and facial recognition.

Figure 4.1 is a typical conceptual diagram that would be provided by the
top-level systems engineering or marketing group. Notice that this diagram
includes elements that are logical ones, such as the external banking systems,
in addition to physical elements, such as the edge router and firewall. This is a
common occurrence in top-level conceptual diagrams and we included them
here for that reason. In addition, this diagram makes use of ‘network clouds’
that do not display element interfaces, but leave the diagram reader to guess
how the elements actually interface to one another. In addition, several key
interfaces are omitted. These include the interface to the customer service
organization and to the network operations personnel. This was intentional,
especially since the network management interface to a system is often the last
one considered when doing top-level requirements.

4.2 Overview of System Interfaces

The following interface elements will be supported by the example banking
system:

Overview of System Interfaces 65

Figure 4.1 Conceptual diagram of the example banking system

Legacy remote ATM machines — These allow the traditional support for
viewing balances, getting cash, and updating customer account informa-
tion. There are hundreds of these networked to each instance of a legacy
banking system.

Example System Overview

Enhanced ATM machines — These machines provide the same support as
the legacy ATMs, but provide a web-based interface which adds capabil-
ities like electronic funds transfer, account transfer, bill payment, voice
and facial recognition, and even an infrared interface for a customer PDA.

Teller, Account Manager, Loan Officer human—computer interfaces —
These interfaces are used for activities such as querying account balances,
deposits, withdrawals, updating customer profile information, credit/debit
card management, currency conversion, customer identification, and clos-
ing out accounts.

Accounting/Billing bank personnel interface — This interface will be used
by the accounting and billing departments for managing accounts pay-
able/receivable and for the creation of monthly or on-demand account
statements.

Web-based customer interfaces — This includes access via the Internet and
access from a cell-phone web browser (running the Wireless Access
Protocol, for example). Features included are account query, account
funds transfer, electronic funds transfer, electronic bill payment, and stock
portfolio management.

Customer service interface — This will allow customer service representa-
tives to easily pull up account and transaction data to determine the cause
of a customer complaint. The system makes certain that the customer
account information is on the screen before the voice connection to the
representative is established. In addition, this interface will alert the
customer service personnel to new products that are potentially useful to
a particular customer.

Security interface — This will be used to identify potential misuse of
customer credit/debit cards and stop use of those cards. In addition,
alerting of customers via pager, cell phone, email, and/or home phone can
be performed from the security interface.

Interfaces to other banking systems — These will be used for ATM
transaction data exchange, electronic funds transfers, and electronic bill

payment.

Interface to other branch systems — This assumes the banking system is

Major Operational Requirements and Software Requirements 67

more decentralized, with major banking centers in several major cities. As
a side effect of this, separate backup facilities could be established or the
multiple sites could back up one another.

e Interface to network operations personnel — This includes access by both
the network operations personnel and system management personnel.
This interface is critical to the effective operations of the banking center,
but is often overlooked when requirements are being written.

4.3 Constraints

The following constraints apply to the example banking system:

e Legacy interfaces (graphical user interfaces and external interfaces) must
still be supported. Some of these will be supported only by the legacy
system, while others will be supported by both the new and the legacy
system.

o The legacy ATM types must be supported, in addition to the new ATM
type and new ATM interface types. The new system will provide an
integrated interface to both new and legacy ATM types.

e Conventional telephone interface must be supported, in addition to access

from a cell-phone web browser. The may require a WAP server.

4.4 Major Operational Requirements and
Software Requirements

The following major requirements must be met by the banking system:

e System must be up 24 hours per day, 7 days per week, 365 days per year,
with no downtime for software upgrades

e Server systems will be located at multiple sites for disaster purposes
e A backup facility will be in place, located at a remote site. One option for

the back up capability is for major installations of the banking system to
back up each other.

68 Example System Overview

e Network operations team must be able to detect and respond quickly to
any failures

e Fault zones will be utilized within the software to provide for software/
hardware recovery without operator involvement, unless necessary.

Some of the major software requirements include:

e All software will be built to be both robust and maintainable
e Software will be of the highest quality

e All software will be implemented in either C++ or Java

UML Quick Tour

5.1 UML Diagram Summary

The UML defines nine kinds of diagrams. These include the class diagram,
object diagram, component diagram, deployment diagram, use case diagram,
sequence diagram, collaboration diagram, statechart diagram, and activity
diagram. All of these except for the object diagram and use case diagram are
useful for describing the software architecture. This chapter will briefly
describe the subset of diagrams useful for architecture description.

All UML diagrams in this book use features available in the UML 1.4
specification. Current UML 2.0 candidate specifications have nothing that
would invalidate any of the diagrams shown here. Subsequent versions of the
UML should also not invalidate any of the notation we utilize.

One complex aspect of understanding the UML semantics is the dichotomy
between design/build-time and runtime. The dichotomy provides for the
modeling of snapshots of the running system as well as the elements used only
during design. Most of the UML diagrams depict either a build-time or a
runtime perspective. Somewhat confusingly, some modeling elements are used
in both build-time and runtime diagrams. This is discussed more below.

Table 5.1 describes the diagram types we utilize for software architecture
description. The table summarizes their design/build or runtime context, the
UML constructs used in the diagram, and a brief description of each.
Examples of these diagrams will be provided later in this chapter.

Interaction diagrams, which include sequence and collaboration diagrams,
are logically equivalent and will be grouped together for purposes of our

UML Quick Tour

70

‘syuouodwod 10
/pue ‘sassado1d ‘sapou 19y30 01 sdiysuone[a1 I3 Pue ‘sapou

speaIyJ,

95013 uo sjuauodwod 10 $35$3201d 33 ‘SIpOU JO 39S B smOyg ‘syuouodwio)) $assad01] ‘SOPON awnunyy Juswhojdag
‘pasn 2q ued s3ssa00.1d 10 syusuodwod 9InIdANNYdIE 21BMIJOS (uoneroqel0)
104 *s392[q0 JO 195 B Guowe £[[BIOUIF ‘SUOIEIIUNWWOD 2Q ouanbag)
oy10ads O 395 PaIapIO UB MOYS SWEISEIP 3saY] $3essay ‘siusuodwioy) “s103[qO awnuny uonOBIAUL
‘paAjoAUl $3ss3001d 10 ‘syuouodwiod ‘spearyl ‘s103(qo
3Y1 MOYS 01 PIsn 3 OS[B UBD SIUB[WIMG ‘AIIATIOE O AI1ATIO®
W01 MOJJ 941 SMOYS 18] WEISEIP 21BIS B JO JUBLIBA Y $3852001 ‘$192[q() ‘seniAnOYy awmnuny werderq Aanoy
“IN220 SIZUEBYD I1BIS YOIYM
£q SUBAW A3 PUB SIILIS I SMOYS WEIFLIp sIYy], *ssadoid SONIATIOR ‘SJUIAD
10 ‘quauodwod ‘sse[d & JO MIIA JIBUAD 313 Saensn[[‘suonIsuel] ‘saleis-qng ‘saleig awmnumy weider(21e1g
‘sdiysuonejar pue Surdnoid swmn-pying aiea3snyji 03 pasn
3q [[im SweISerp WaIsAsqng “pasn 3q 10U [[im sjusuodurod
awn-ping ‘suresderp adueisur Jusuodwos a3 aIe
9IN1DANYDIE 2IBMIJOS 10§ A3 d1€ Jey3 swesderp Juouodwod
ay 1, ‘3usuodwod yoeos 03 £]dde 1eys su10d pue saoejroiul sdiysuonepy
a1 are papnpou] sdiysuone[al Iy pue syjuauodwiod Jo 1Sy ‘s110(‘sadejraiu] ‘syuauodwio)) swnuny 1uouodwion)
"U91J0 3SOW pasn a1e
$9JBJIOIUI PUB SWAISASANS dY3 9INIDANYDIE 91BMIJOS SUIUYIp
10 *sannua swn-prmg o1 £;0a11p dew pnoys yorym sdigsuone[ay] ‘sennuy aseqeieq
‘wa1s4s 9y3 Jo matA USISIP dneIs ayp sazensny[] sdiysuone[ar ‘s3[qe], aseqeIR(] ‘s90e}I11U]
pue ‘sadejrojul ‘swalsAsqns ‘sadexoed ‘Sasse[d JO 1Sy ‘SwalsAsqng ‘saBede] ‘sasse|D) sawmn-pring sse|D)
wmn uni
uondrosa syuaWa[y sns1oA ping od £y wresger(q

awnRyI| uni/pring 119yl pue sad£y weideip TINN 1°S 9[qEL

UML Diagram Summary 71

discussion. When a sequence diagram is used, a collaboration diagram may be
substituted. While an activity diagram is a variant of a statechart, they have
not been merged because there are somewhat different semantics and elements
involved. Activity diagrams can be very effective in communicating parallel
activities and in showing the flow of control among objects.

As mentioned earlier, model elements have limitations about whether they
can be utilized during build-time or runtime diagrams. For example, packages
and subsystems are only relevant in design/build-time. They have no direct

Table 5.2 Modeling elements and build/run lifetime

Modeling Lifetime Description

element

Object Runtime An object is an instance of a class. The instance exists only
at runtime.

Class Build-time & A class is the build-time view of a corresponding object.

Runtime Classes will only have runtime semantics in systems that

support reflection or where there is class-level data and
behavior.

Package Build-time A package contains a set of model elements.

Subsystem Build-time A subsystem is a part of the system. It is represented as a

stereotyped package. A subsystem is a group of build-time
constructs that are as independent as possible from the
other subsystems. A subsystem can be thought of as
building one or more components.

Layer Build-time A stereotyped package that groups a set of subsystems.

Component Runtime A component is a physical part of the system. The UML
also defines build-time components — these are avoided for
clarity. Each component executes within a process.

Interface Build-time A stereotyped class that provides the means by which
and Runtime subsystems or components communicate. Interface
instances are used for runtime diagrams.

Ports Build-time A port is a stereotyped class that is used for communication
and Runtime of a particular category of messages. Port instances are
used in runtime diagrams.

Process Runtime A stereotyped object that provides corresponds to an
operating system process in deployment diagrams. A
process contains one or more components.

72

UML Quick Tour

existence in the executing system. Some model elements exist in both the
build-time and the runtime system. These include components, interfaces, and
ports. The runtime aspect of these is usually called an instance. Other elements
exist only in the runtime system. These include objects and processes. How-
ever, there is a mapping between many build-time entities and runtime entities.
Table 5.2 describes this mapping for the key architectural entities.

These distinctions are important because they are used to keep the models
consistent and provide clarity. Diagrams that mix model elements that have
different lifetimes should be avoided. For example, diagrams showing sub-
systems that contain components would mix build-time and runtime seman-
tics. Diagrams that have this characteristic should be avoided.

5.2 General Diagramming Conventions

Figure 5.1 provides an example of a simple UML diagram. The diagrams will
frequently be annotated with descriptive information to help highlight the
meaning and purposes of the various diagram elements. The annotations are
distinguished from the UML notation by enclosing the text in gray round-
edged boxes with italic font. For example, in Figure 5.1 the round box with
the words ‘UML Comment’ is an annotation for the comment that is part of
the diagram.

Figure 5.1 Notational conventions

General Diagramming Conventions

5.2.1 General UML features: stereotypes, tagged values, multi-instance

One feature of the UML that is used heavily is the ‘stereotype’. A stereotype is
an extension mechanism that allows new specialized element types to be
defined from the core element types. The stereotype often implies semantics,
constraints, or properties beyond the core element type. Figure 5.2 provides
an illustration of a stereotyped class and a stereotyped relationship. The
stereotype name is contained between the ‘< >’.

Figure 5.2 Stereotype example

In addition to the bracket notation, stereotypes can be associated with an
icon or specialized visual representation. The UML provides some standard
icons associated with standard stereotypes such as ‘interfaces’. We utilize this
feature to distinguish some elements such as data stores. Note that while
subsystems can be shown with a multi-compartment package icon and a
specific icon in the top of the package, subsystems can also be shown as
stereotyped packages. We will use the stereotyped package. Either notation is
allowed in the UML.

Another frequently used UML mechanism is the tagged value. The tagged
value provides the ability to associate a list of properties with a modeling element.
Tagged values can be used for nearly any UML model element. For software
architectural views, tagged values are most useful for components, processes,
threads, interfaces, nodes, associations, and dependencies. Figure 5.3 shows an
example of tagged values in a deployment diagram. The tagged value name and
value are surrounded by { }’. In the figure the node contains a tag named
‘platform’ with the value ‘Linux’ and a tag named ‘memory’ with a value ‘512K’.

Multi-instance notation is a mechanism to compactly depict multiple
instances of runtime elements. In this convention, a ‘shadow line’ is drawn
behind the modeling element to indicate that there is more than one of the
given elements. Figure 5.4 illustrates the use of this convention with compo-
nents, nodes, and processes elements.

73

74 UML Quick Tour

Figure 5.3 Tagged values

Figure 5.4 Multi-instance notation

5.2.2 View labels

A useful technique for managing the large number of views produced in large-
system development is to provide context labels. This small bit of rigor
requires only seconds when producing a view. However, it provides useful

The Diagrams

information later in understanding if the view is current. In addition, to
manage complexity in large systems some views are frequently focused on a
specific perspective. In order to capture the significant information relevant to
the view, these basic attributes should be provided:

e Title: One line description of view

e Type: The view type, based on the viewpoint name

e Date: Last date updated. Helps users decide if the view is up to date with
current architecture.

e Responsible: Person(s) responsible for creating the view. This provides a
contact person to help explain the view.

Additional information, such as the subsystem of interest and the use case
represented by the view, should also be indicated. Figure 5.5 shows an
example of this type of annotation using a standard UML note. Examples of
this notation can be seen in all the view examples throughout the book.

Title: Information Service Components
Type: Component Instance View
Date: 2002-Nov-1

Responsible: J. Garland, R. Anthony

Figure 5.5 View annotation

5.3 The Diagrams

The following sections describe the various UML diagrams from which the
software architectural views, described in Chapters 6—10, can be developed.
Each view will be developed using one of the UML diagrams below.

5.3.1 Component instance diagrams

Component instance diagrams describe the runtime components as well as
their relationships, interfaces, and ports. As described above, we have found
the use of build-time components and creation of diagrams containing build-
time components to be often confusing. For that reason, we prefer to use

75

76

UML Quick Tour

subsystem diagrams to communicate design-time and build-time information
and use component instance diagrams to communicate the runtime informa-
tion about a set of components. For the remainder of this book, the term
component diagram will refer only to component instance diagrams. In
addition, unless the term ‘component’ is prefixed by ‘build-time’, it will refer
to a component instance. Figure 5.6 shows an example of one of these
component diagrams.

Figure 5.6 Component instance diagram

5.3.2 Class and subsystem diagrams

Class diagrams are usually focused on a particular type of model element.
This includes class diagrams where the primary focus is a group of classes,
packages, subsystems, database entities, or database tables. Of these cate-
gories, diagrams that focus on classes are useful for defining certain key
concepts related to the software architecture. Since these diagrams are the
most common UML diagrams and are covered in nearly all books on the
UML, an example here is not needed. Package diagrams are most effective
when the focus is on a particular stereotyped package, the subsystem. The
UML considers process diagrams to be a type of class diagram. Once again,
we have found process instances to be the most useful construct and have
included them in the deployment diagrams.

The Diagrams

The subsystem diagram (Figure 5.7) shows a group of subsystems and
indicates how they provide and consume interfaces. As shown in this diagram,
it is often useful to include key classes contained within a subsystem in the
diagram. It can also be useful to include a system with which the subsystems
interface in a subsystem diagram.

Figure 5.7 Subsystem diagram

5.3.3 Interaction (sequence and collaboration) diagrams

The UML provides two types of interaction diagrams, sequence diagrams and
collaboration diagrams. Interaction diagrams are useful for capturing a set of
instances and the messages that flow among them. While these diagrams
traditionally have used objects, other instances can be used as well. When
defining the software architecture, interaction diagrams focused on compo-
nent and process instances are particularly effective. We show an example of
each type of interaction diagram in Figures 5.8 and 5.9.

Sequence diagrams have instances as the labels above each vertical dashed
line. The arrows from one line to another represent the messages from one
instance to another. These messages may be synchronous, as in a method call,

77

78 UML Quick Tour

Figure 5.8 Sequence diagram

Figure 5.9 Collaboration diagrams

The Diagrams

or asynchronous, as in an event. The instances in this diagram are component
instances but process instances are also useful in some circumstances.

A collaboration diagram is logically the same as a sequence diagram, but
may communicate the instance interactions more clearly. Collaboration dia-
grams work best when the communicating entities fit easily on one page, and
the number of interactions is not too large, usually less than about 10.

5.3.4 Deployment diagrams

Deployment diagrams show the runtime relationships between the processing
nodes, the components that reside on the nodes, and the processes. In
addition, threads can be shown for multi-threaded processes. Since deploy-
ment diagrams also show the process communication, we consider a diagram
that shows only processes to be a type of deployment diagram, one without

Figure 5.10 Deployment diagram

79

80

UML Quick Tour

nodes or components. The diagrams that communicate the most information
are those that include nodes, processes, and components (Figure 5.10). How-
ever, the system size or complexity may force higher levels of abstraction
where not all elements can be included.

5.3.5 Statechart diagrams

Statechart diagrams, also referred as state diagrams or state transition
diagrams, show the dynamic behavior of an element of the system. The most
effective use of statechart diagrams for capturing the software architecture is
to define the state of components, threads, and processes. State diagrams for
key classes can also be valuable. For example, if the system is sending or
receiving hardware alarms, the state transitions of an alarm may be critical to
understanding the overall system behavior. Figure 5.11 shows the basic
notation for a statechart diagram.

Figure 5.11 Statechart diagram

Managing Complexity

5.3.6 Activity diagrams

Activity diagrams are a kind of state diagram that focuses on the flow of
activities within a system. While designed to deal with objects, these diagrams
can capture the activity flow among a set of components, processes, or
threads. Figure 5.12 shows an example of a process-to-process activity
diagram.

Figure 5.12 Activity diagram

5.4 Managing Complexity

In a large-scale development, reduction of complexity is critical to success. To
be effective, software architects must focus on small pieces of the problem.
This is due to the inability of humans to deal with many facets of a problem

81

82

UML Quick Tour

simultaneously. Frequently architects will simplify in an inconsistent and
disorganized fashion. Explicit simplification is always preferred. That is,
diagrams and other artifacts should describe clearly the simplifications made
while creating the artifact. For example:

e By focusing a diagram on a particular system aspect (static structure,
sunny day of a specific use case, in a specific subsystem) architects can
attack manageable problems

e Many of the architectural views are derived by suppressing a certain set of
details and highlighting specific information

e By clearly understanding the purpose of a particular diagram we can
avoid attempting to model everything

The following sections describe some of these complexity management
strategies. To a large extent, the focusing techniques described in the following
sections are critical to keeping the development of viewpoints practical.

5.4.1 Use case focused modeling

One common dimension of simplification is to focus on a use case or scenario.
A scenario is simply one path through a specific use case. Use case focused
modeling is particularly valuable for exploring all the elements of a thread of
execution. Thus, use case focused modeling is extremely valuable for architec-
ture development since it cuts across many elements of a system.

Interaction diagrams are naturally focused on a particular scenario, but
class and other diagrams can be focused on a particular scenario as well. As
an example, the Analysis Focused View (see Chapter 6) is generated by
focusing on a use case. Component Views are often focused by depicting only
the components relevant to a particular use case.

5.4.2 Element focused modeling

Another dimension of simplification involves creating views from the perspec-
tive of a particular model element. For example, a view may be drawn to
represent only the dependencies of a particular subsystem. The view should
generally show the subsystem of interest in the center of the view with all
related subsystems around the edges. In another approach, dependencies may

Managing Complexity

be filtered into two separate views, one focusing on incoming dependencies,
the other focusing on outgoing dependencies. Finally, the dependencies may
be focused to a particular subset of other subsystems such as a particular
system layer. This group would be central to the view, with the other
subsystems surrounding them.

A view could also be created that explains the key relationships of a
particular set of model elements. This allows the architect to focus on a
particular set of entities that are of interest. This view could involve a set of
subsystems, a set of components, or a set of objects.

5.4.3 Level of detail

Another dimension of simplification is the level of detail represented on a
view. For example, a Subsystem Interface Dependency View (Chapter 8) may
include interface information, or it may just indicate a dependency exists. For
some systems and some purposes, the inclusion of additional detail only
distracts from the purpose of the view. For example, analysis views strive to
ignore aspects of the software solution in an attempt to model only the
problem domain. For analysis, a typical approach is to exclude details such as
method parameters. These details are only required in implementing software.

Another key aspect of level of detail is the clear definition of the level of
entities for a particular type of view. For example, when doing system-level
use cases the text of the use case may only discuss the system as a whole.
However, the associated scenarios will usually be one level lower, for example
at the subsystem level. It is critical that the use case writer not include
discussions of the subsystem-level entities, or a change to the subsystem-level
design will cause many use cases to be affected.

In other views the level of detail may be somewhat mixed. For example,
when creating a sequence diagram, interactions with external components can
show the external components as a single component. However, the entities of
focus would be shown as objects in full detail. This provides a detailed focus
on the internal design while ignoring the detail of the external elements. In
fact, this is an example of combining element focused modeling with level of
detail.

5.4.4 Controlling the number of models

Because it is possible to create hundreds or thousands of models to represent a
large system, it is unrealistic to maintain or create them all by hand. Just as

83

84

UML Quick Tour

with software testing, the amount of modeling grows exponentially with the
size of the system. Therefore, it is best to prioritize, because some modeling
just won’t be done. In addition, except for a few of these models, the models
themselves are not the end goal. What is really needed is the deployed
software system.

There are many different reasons to create models in the development of
software architecture. Two critical reasons for modeling include design
exploration and documentation. Exploration is a process of understanding
existing or creating new parts of the system. Documentation is intended to
communicate to other team members some aspect of the system. These
different uses deserve different kinds of strategies in their creation and
maintenance.

Exploratory models are primarily tactical in nature. That is, there is little
expectation that these models will be maintained for the life of the project. It
is simply impossible to expect, with current technology, that every model
created will be maintained and consistent with every other aspect of a large
software system. Since the purpose of the model was to explore some aspect
of the system, that information will often be discarded. The most dramatic
variation of this principle is whiteboard design sessions where the exploratory
models are erased at the end of the discussion.

Documentation models, on the other hand, are strategic in nature. They are
frequently created to assist new team members in understanding the structure,
principles, and vision of the software system. These models need to be
maintained as the software evolves. Because of the effort that is required to
maintain these models, it is important to select a set of the most useful models.
So, for example, sequence diagrams that represent detailed interactions are
usually not maintained. However, a key set of abstracted diagrams may be
provided to illustrate basic system interactions. These diagrams will be
maintained for training purposes.

A major danger in the business of software architecture is working with
incorrect models. By nature, almost all models that make up the software
architecture will be incorrect in some fashion. As Coplien points out: ‘It’s
dangerous to depend on a design notation alone, since notational artifacts
are often limited in their expressive power and don’t track product evolu-
tion well unless they are tied into the code-generation process.” For this
reason, we recommended that detailed documentation models be reverse
engineered from code where possible. This can be done as part of the build
process to ensure the model is current. The model and the code must be
made consistent with each delivery of the software to the integration and
test team.

Recommended Reading

5.4.5 Use supplemental textual information

Sometimes a diagram does not provide the best mechanism for conveying a
complex set of information. Consider using a textual table or other approach
for organization of system information. The viewpoints described in the
following chapters typically provide a table of descriptions along with the
UML diagram. Examples of information that lends itself to tabular or other
forms of textual descriptions include:

e Descriptions of subsystems, components, interfaces, actors

e Performance or availability information for each component, node, or
interface

e Detailed descriptions of sequences or collaborations

e Detailed UML Object Constraint Language (OCL) or other formats for
specifications of preconditions, postconditions, or guards for interfaces

e Descriptions of the states in a state transition diagram

Another example of non-UML techniques is to use code analysis to
facilitate an understanding of subsystem, component, and other dependencies.
Build tools can provide powerful mechanisms for managing and verifying the
system dependencies. These build tools can also be used to generate custom
reports that will ensure the integrity of the architecture is maintained in the
face of the massive amount of daily change that occurs on a large-scale
project.

Another type of example is performance reports generated from automated
test tools. This type of report is easier to scan in simple tabular form than
attached to a series of diagrams. Information about hardware characteristics
or configurations is also a candidate for information best represented in a
tabular form. This includes aspects of the hardware such as make, model,
memory, disk space, and peripheral devices attached to the hardware. Finally,
web-based documentation generated from code can provide a form of
reference documentation that is far superior to that which can be maintained.

5.5 Recommended Reading

Details on the types of UML diagrams can be found in the UML specification,
available from the OMG web site. The definition of OCL can also be found in
the UML specification. Good sources for UML diagram types and examples

85

UML Quick Tour

include the UML Users Guide (Booch et al., 1999), and Fowler and Scott’s
book on the UML (1997).

Coplien (1998) describes many interesting aspects of software design and
modeling.

System Context and
Domain Analysis

In this chapter, we will cover how to produce several overall representations
of the top-level architecture. These include the Context View, conceptual
diagrams, and the Analysis Overall View. Also included in this chapter is a
discussion of an approach that takes advantage of use cases to produce the
Analysis Overall View. The Analysis Overall View can be used to produce the
Layered Subsystem View and the Subsystem Interface Dependency View
described in subsequent chapters. The conceptual diagram and the Analysis
Overall View will most likely not be part of the final software architecture
package. Conceptual diagrams should be included in non-architecture docu-
ments, such as systems engineering documents, and may be referenced but
should not be included in the software architecture description. The Analysis
Overall View is primarily used to gain understanding of the key entities in the
system. Except for use in product families, the Analysis Overall View is used
only to produce other artifacts and is usually not maintained.

6.1 Conceptual Diagrams

The conceptual diagram in Chapter 4 illustrates some of the elements of the
system and relationships to external entities. Conceptual diagrams are often
very similar to Context Views, in that they capture the system and its
interfaces. However, conceptual diagrams are less formal and may focus on

System Context and Domain Analysis

diverse aspects of the system. Due to the lack of formality, variability in the
stakeholders, and lack of specific modeling conventions, a viewpoint cannot
be written for conceptual diagrams. For that reason, we will use the term
conceptual diagram rather than conceptual view. While our goal in this book
is to use UML for all views, the consumers of system information are not
always familiar with UML notation or concepts. In this case, conceptual
diagrams may be a better way to communicate with these individuals.

Conceptual diagrams can come in many flavors, depending on the intended
audience. Systems engineering organizations often produce these views to
illustrate a proposed functional breakdown of the system along with some key
hardware they expect to be included in the final system. Marketing organiza-
tions use conceptual diagrams to communicate the functionality of the system
to prospective clients of the product. Technical leaders on the project may use
conceptual diagrams to prepare a technical white paper intended for readers
who may not know UML. These views are also very critical in preparation of
a proposal, where the evaluators of the proposals do not necessarily under-
stand UML. Other examples include a view of the network connectivity and
hardware that will be utilized in the network design, a view of protocol usage
on key interfaces, or a graphical view of the hardware vendor and model
selected for the system hardware elements.

The software architect or members of the architecture team are frequently
asked to develop or support development of a conceptual diagram. Some
guidelines should be followed when creating this type of diagram. The first
consideration is to identify who are the stakeholders and what information
the view is intended to convey. The next step is to analyze the level of
information that must be communicated to the intended consumer. For
example, if the purpose is to communicate types of hardware, then including
specific vendors and models may not be necessary. If the intent is to identify
point-to-point interfaces, then a network cloud should not be used, as this
masks interfaces. However, if the communication of which elements are on
which network is what is needed, then several network clouds may be used to
show which elements are on a specific network without showing point-to-
point interfaces.

As much as possible, the use of conceptual diagrams should be limited to
communications with individuals external to the software development team.
In general, these views should be prepared and owned by non-development
teams such as marketing, systems engineering, network design, and hardware
engineering. Occasionally, the software architects may be asked to prepare a
technical paper for marketing purposes that will need to include conceptual
diagrams. This is the only time the development team owns and maintains

Context Viewpoint

conceptual diagrams. However, communication of the architecture within the
software development team should not depend on these ad-hoc diagram types.
This includes communication with support teams, test organizations, and
project management. These groups need to learn the basic concepts of
UML notation in order to communicate effectively with the technical team
members.

Several cautions are in order with respect to management of conceptual
diagrams. As mentioned above, managers and others not directly involved in
software architecture or implementation should learn basic UML syntax.
Internal technical presentations or training should use UML diagrams and not
conceptual diagrams. One exception might be to use a conceptual diagram
owned by the systems engineering or marketing organization to give newly
hired employees an overview of the system scope beyond the software being
developed. However, architecture and design documents should not use these
views, but instead refer to external documents that may use them.

The software architect should discourage the use of informal conceptual
diagrams by members of the project team. The software development team
requires the additional rigor described by the architectural views contained in
this book to form a consistent basis for communication. This includes
managers, integration and test leads, subsystem designers, and others who
may feel the need to supplement the software architecture with conceptual
diagrams for their own use.

Finally, before generating a conceptual diagram, be sure that a UML view
won’t work just as well. For example, a Context View or Subsystem Interface
Dependency View with a few icons for key stereotyped actors may be just as
meaningful and easy to understand as a conceptual diagram that contains the
same basic information.

6.2 Context Viewpoint

The Context Viewpoint contains only the system, the external entities with
which it interfaces, and the system’s interfaces with these external entities. The
goal should be to create only one view from this viewpoint that captures all
external entities and their interfaces. We will refer to this single view as ‘the
Context View’. This single Context View is often the first view of the system
the architecture team will create. This viewpoint can be based on information
provided by the systems engineering, marketing or other sources that describe
the system at a high level. The external entities along with the roles they
perform are referred to as actors. This viewpoint includes the interfaces

20

System Context and Domain Analysis

between the system and external systems as well as those between the system
and human actors. The Context Viewpoint is summarized in Table 6.1.

Table 6.1 Context Viewpoint

Context Viewpoint

Purpose Model the set of actors with which the system interacts and the
interfaces between the system and these entities.

When Applicable Throughout project lifecycle. Primarily prepared during the first
stages of design and analysis, but is updated as information about
external interfaces changes.

Stakeholders Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers, Systems Engineers,
Marketing, or others who are interested in or negotiate external
interfaces.

Scalability The system should always be located in the middle of the view. The
external actors should be surrounding the system. If the number of
actors becomes too large, they may need to be grouped into higher-
level actors. Multiple Context Views should only be used as a last
resort.

Relation to Other Should be consistent with other static views that show external
Views interfaces. For example, the subsystem interface, component,
process, or deployment views.

The view created from the Context Viewpoint can be very effective as the
start of a discussion of the entire system. For example, a Context View can be
useful as the starting point for a top-level design review or for a training
session on the system. The Context View is also very useful for communicat-
ing external interfaces to managers that are on the project as well as higher-
level managers that may be above the project team. Since the negotiation of
the external interfaces can often be more political than technical, the support
of project management will be needed to make sure the interfaces are well
defined. For large projects, often one or more team members are dedicated to
negotiating these interfaces. The Context View can be useful for discussions
with these external groups.

An example of the Context View for the banking system described in
Chapter 4 is shown in Figure 6.1. In this view, the interfaces from the banking
system to the external systems and users are shown. As the view illustrates,
other icons can be substituted for actors where this may provide clarity. These

Context Viewpoint 91

Figure 6.1 Banking system Context View

icons can even be added in a CASE tool if the CASE tool supports the
definition of new icons mapped to stereotypes. These icons should be used
sparingly, so the Context View does not become overly cluttered. In addition,
as the view shows with the other banking system actor, stereotypes can be

92

System Context and Domain Analysis

used without having a special icon. One-way associations may optionally be
used to show navigability. In this view, the system is the source of the
navigation to the Backup System. This indicates the system will know how to
navigate to the Backup System, but not vice versa.

The operator interfaces on the Context View are also very important for
discussions with the operators of the system. If one operations organization is
responsible for definition of the operator roles, then the operator names on
the Context View should either match or easily map to the roles defined by
the operations organization. The operations organization may have a hier-
archical definition of operator roles. For example, network operators may
further be divided into ATM network operators and LAN device network
operators. The more general operator role names may be used in the Context
View to prevent the view from becoming too complex. More specialized
operator role names may also be used in other views.

Note that the UML User Guide takes a different approach to representing
system context. The User Guide uses a modified use case diagram to represent
a Context View. In this approach, the system under design is placed as a box
surrounding a set of use cases for the system. The actors are then connected to
the use cases, and not the system.

To begin to build this view, place a box in the center of the view showing
only the system under design. In this view, the system is treated as a black
box. The point is to show the interactions that may occur between the system
and external actors. Surrounding the system box is a set of actor icons to
represent all known external interfaces to the system. This view can be created
early in the development cycle, but may change as the system engineering
organization discovers new interfaces that are required. Since the operator
and system names defined by the software architecture team will be used for
all lower-level design, it is critical the names are carefully selected and change
is minimized.

The Context View can be supplemented with actor-to-actor interfaces to
provide additional information and to help the view convey a more complete
flow of information. This information can be obtained from business model-
ing activities.

In the software architecture document, this view should be supplemented
with a table to provide a brief description of each actor and interface.
Additional columns can be added to the table to indicate performance, data
throughput, redundant connections, protocols utilized, potential interface
mechanisms, or other information that is known about the system. An
example of this type of table is shown in Table 6.2. A column has been added
for estimated data throughput. With the initial iterations of the architecture, it

Context Viewpoint

Table 6.2 Actor descriptions for Context View

Actor Interface description Estimated data throughput
ATM The Automated Teller Machine Given the large number of ATMs
handles customer interactions both at the system will support, this
the bank and at remote sites, such as interface can total as much as 3
a grocery store or at an airport. Mbps sustained data rate, although
Transactions such as deposits, late at night, this rate can drop to as
withdrawals, account queries, low as 200 Kbps.
account transfer, and stamp
purchases are handled.
Backup Data from the system will be The amount of data will vary with
System continually sent to a set of replicated the activities in the main system,
databases at the backup system. This ranging from 500 Kbps to 1 Mbps
will be done over a dedicated for each main system connection.
network connection. The backup
system will handle all systems for a
geographical region. This is not a hot
backup system, in that its sole
purpose is to maintain an extra copy
of the data for purposes of
restoration should data in the main
system be lost or corrupted.
Network The Network Operations This interface will have low data
Operations personnel perform tasks such as throughput needs, except in the
monitoring the system status, case of software downloads.
configuring the system hardware and However, the internal LAN will be
software, and adding or removing over-provisioned to handle this
hardware. They monitor alarms scenario.
coming from the system
and react accordingly. They differ
from the system administrators in
that they do not startup or shutdown
hardware, nor do they physically
install or connect the hardware.
Other The system interacts with other This interface will range from
Banking banking systems for the purposes of 50 Kbps to 100 Kbps for each
System electronic funds transfers, ATM connection to an external bank.

transaction information exchange,
credit history processing, or loan
transfer.

(continued overleaf)

93

94

System Context and Domain Analysis

Table 6.2 (continued)

Actor Interface description Estimated data throughput

Phone/Pager The Phone/Pager customer will This interface will be very low

Customer interact with the system to query bandwidth, due to the limitations of
account status, or transfer funds. the telephone network. The peak

rate will be 100 Kbps when the
maximum number of phones is
connected to the system.

may be enough to identify the throughput as high, medium, or low. Even-
tually, specific numbers and other information (like critical time periods)
should be captured in this table.

Context views can be used at several levels in doing the system architecture
and design. A subsystem development team may also want to start their
understanding of the subsystem by capturing the interfaces in a subsystem-
level Context View. In this view, the actors will not only be the external
systems and operators with which the subsystem interacts, but will also
include other subsystems with which the subsystem interacts. These inter-
actions could be via an interface provided by the subsystem central to the
Context View, or those that are consumed. In addition, as described earlier,
operator roles may be more specialized in the subsystem-level Context Views.
For example, the stock management subsystem may interact only with
operators that monitor the hardware and software dedicated to stock manage-
ment.

6.3 Domain Analysis Techniques

Domain analysis is the process of identifying entities and abstractions related
to the problem domain. The following describes several related viewpoints
and approaches for developing the analysis views. There are three viewpoints
used for domain analysis — the Analysis Overall Viewpoint, the Analysis
Focused Viewpoint, and the Analysis Interaction Viewpoint.

It should be emphasized that the viewpoints in this chapter do not require a
formal domain analysis process. However, for large complex systems using
analysis to refine domain terminology and find abstractions, a bit of formality
often pays dividends.

Domain Analysis Techniques

6.3.1 A formal analysis technique

One of the more structured approaches for creating the Analysis Overall View,
and subsequent related views of the architecture, is to take advantage of use
cases and use case elaboration. Use case elaboration is a means of capturing
entities involved in a particular use case. Jacobson originally created this
process as the Object Oriented Software Engineering or OOSE process. This
process has now been incorporated into the Rational Unified Process.

The process begins with a list of use cases. This list should be kept to the
core set of use cases that will help identify the key domain elements. These use
cases should then be prioritized so that the process can produce valuable
results even with a limited schedule for this activity. Use cases that are only a
slight variant of one already in the list should be placed at a lower priority,
along with use cases that are not anticipated to drive out a significant number
of key entities, attributes, or behaviors.

For each use case, an Analysis Focused View and a set of Analysis Inter-
action Views are created, as illustrated in Figure 6.2. An Analysis Overall
View can be derived by adding all the classes defined in the focused views for
each of the use cases onto an overall view.

Figure 6.2 Analysis process overview

There is nearly always only one Analysis Overall View for the system under
design. This Analysis Overall View is generally derived from a series of
focused views. These focused views will be valuable for communicating

95

96

System Context and Domain Analysis

various aspects of the problem domain and may provide additional context
material for the software architecture document. One common technique for
focusing Analysis Overall Views is to base each view on a specific use case.
However, these views may also be focused on an interesting set of interacting
classes. The complete set of interactions may take several use cases to
describe.

This process works best when both the problem domain and the subsystems
and components are not well understood. If the software architecture is based
on significant previous experience, standardized design elements, or another
well-understood partitioning, this approach may not work as well.

This process should only be done with a good CASE tool. The central data
store provided by a CASE tool provides ease of renaming entities, attributes,
and operations. The modified names are then updated on all diagrams in
which the name appears. The complexity of making these changes on all
related diagrams with a drawing tool can prevent the overall process from
completing in a timely manner.

In the same way that the Analysis Overall View can be generated from a set
of focused views, these focused views are often created in conjunction with a
set of Analysis Interaction Views. The viewpoints from which these views are
generated will be described below in the following order: Analysis Interaction
Viewpoint, Analysis Focused Viewpoint, and Analysis Overall Viewpoint.

Experiences in Developing Analysis Overall Views

One technique we have applied on several projects is for the software
architect to identify a small subset of the architecture team with which to
develop an Analysis Overall View, and eventually candidate subsystems.
In order for this approach to be effective, several areas need to be
addressed. First, the team must be small, usually 3—-5 of the right
individuals. Second, the architect and the other members of the team must
get support from the management to spend half days for several weeks
dedicated to this activity. The team members should attend all or nearly
all of the sessions, and interruptions must be minimized. The sessions
work best with a CASE tool and projector so more of the view can be
seen on a large screen.

This team begins by identifying the top 10 or so use cases, and from that
set follows the process described above for developing Analysis Focused
Views, Analysis Interaction Views, and the Analysis Overall View. From the
Analysis Overall View, the team can then identify the initial candidate

Domain Analysis Techniques

architecture. This is usually best done by doing some preliminary grouping
in the drawing tool, then printing the Analysis Overall View on plotter
paper. This paper version is then used for marking the candidate groups by
circling them in pencil. Once the candidate subsystems are identified and
documented, this team can then communicate a common vision of the
candidate architecture among the other software designers. This will help
validate the architecture and bring the technical leaders of the development
team to a common understanding of the system to be developed.

The only danger with this approach is that the development organization
should not yet be formed around this candidate architecture. However,
several of the candidate subsystems will often be identified as potential
subsystems in the final architecture and staffing of the leaders of these
subsystems can begin in relative safety.

In addition, this team should have a clearer understanding of potential
software infrastructure products that may be needed, based both on the
analysis activity and on their experience. These infrastructure teams can
also be staffed and begin design.

To provide clarification, we will show an example of a simple use case that
may apply to the banking system. It is important to note that there is no real
standard for use cases, so we will use a tabular representation here.

When the use case text is written, a set of guidelines for format and level of
detail needs to be identified and followed. There should be no mention in the
text of the use case of any entities internal to the software system. Producing
the use cases at this level of detail will result in significant rework as the entity
names are modified and new entities are created or deleted. The use case text
should be from the perspective of actors that interact with the system. These
actors may be humans or other systems. Alternates to the nominal flow
through the use case steps should be identified and captured with each use
case. These alternates usually include optional branches within the use cases
or a failure that occurs during processing. Cockburn provides some good
recommendations on handling use cases.

Several additions would help provide a better use case. These include a
specification of preconditions, postconditions, a list of actors involved, and
any other information relevant to this particular use case. There may also be
additional sections for alternate flows and specific performance or availability
requirements related to the use case. Table 6.3 shows a simple use case for
adding new customer information.

The elaboration usually begins by developing an Analysis Interaction View

97

System Context and Domain Analysis

Table 6.3 Use case for collecting new customer contact data

Use case name: collect customer contact data

Step Description

1 The Customer Agent identifies that a new customer entry needs to be created.

2 The Customer Agent begins a session for creating the customer entry and entering
the data.

3 A customer ID is allocated and the associated customer entry is created.

4 The relevant customer information, such as name and date of birth, is added.

N The location information for that customer is added.

or by developing a preliminary Analysis Focused View. The objects involved
in the interactions are instances of the classes that appear in the Analysis
Focused View for that use case. The Analysis Interaction Views identify the
methods that belong to the Analysis Focused View classes. These should be
consistent. Often changes to the Analysis Interaction View will propagate to
the Analysis Focused View and vice versa. For example, if the name of a
method is changed in an Analysis Focused View, the Analysis Interaction View
needs to be updated to match.

Attributes are added to the object as needed for clarification. However,
during use case elaboration, access methods for these attributes are generally
not specified. In addition, data types for attributes are usually not specified.
Parameters and return values for functions are not critical to the Analysis
Focused View, but can be added as needed for clarification. Multiplicity and
role names are added to nearly all the associations to provide a clear set of
information for the person reading the Analysis Focused View. As with the
Analysis Overall View, implementation details should be omitted from these
views.

6.3.2 Other techniques for finding domain entities

There are many ways to capture an Analysis Overall View, ranging from ad
hoc to well structured, but nearly all of the approaches will work best if a
small but knowledgeable group participates in the process. In addition, using
a group of this kind will produce a larger consensus that this is an accurate
representation of the problem domain and wider acceptance of the terminol-
ogy used in the view. This consensus acceptance of terminology will be
valuable later on in the design process.

Domain Analysis Techniques

The most ad-hoc approach for capturing the Analysis Overall View is
simply to brainstorm the view with a group of individuals. The first step is to
brainstorm an initial list of candidate entities. Once there is some agreement
on the initial list, begin to place the entities on an Analysis Overall View and
connect the entities with the various UML relationships. Add operations and
attributes as they are discussed. Do this for a few hours at a time over several
weeks to allow some time to elapse so the team members can think about and
refine the view. The hardest part of this process will be reaching agreement. It
is the job of the software architect to arbitrate disagreements. When the small
group has produced an initial Analysis Overall View, bring in a slightly larger
group to analyze the view, using either a projector or a printed version of the
Analysis Overall View.

Another approach to capturing the Analysis Overall View is to start with a
set of documents that describe the problem domain and scan them for key
entities to include in the view. These documents could come from standards
bodies (like ANSI, ETSI, ITU, 3GPP, etc.), from marketing documents, or
from systems engineering overviews. From this point, the preparation of the
Analysis Overall View is much like the brainstorming approach.

Another, slightly less ad-hoc approach, is to prepare a set of Analysis
Interaction Views in order to identify the key classes in the problem domain.
These views can be prepared by identifying the primary scenarios in which the
system being designed will participate. From this list, prepare one or more
Analysis Interaction Views. This process will identify the problem domain
classes and their operations. A process similar to the first two described above
will be required to identify attributes and relationships.

An alternative to using Analysis Interaction Views would be to start with a
set of system interactions produced by a standards organization or by a
systems engineering group. For example, many telecommunications standards
organizations produce message sequence charts to describe system behavior.
From these interactions, the goal is to identify domain classes and operations.
Be aware that the labels used in this representation may not map directly to
domain view entities.

One effective technique for capturing key entities for many of these ap-
proaches is the use of CRC cards. The use of CRC cards was originated by
Ward Cunningham in the late 1980s. This technique can be used to quickly
evaluate analysis and design alternatives and is especially useful in the early
stages of software analysis and design. CRC stands for Class, Responsibility,
and Collaboration. The technique uses index cards to identify the class names,
their responsibilities, and their collaborations with other classes. The index
cards usually have the class name at the top, with the responsibilities and

929

100

System Context and Domain Analysis

collaborations in two columns on the face of the card. More formalized
techniques use colored cards to indicate different types of classes. These would
be stereotypes, using the UML nomenclature. As with the brainstorming
approach discussed above, use of CRC cards works best with a small group.
Using use cases, product documentation, or knowledge of the problem
domain, the group doing the design works to identify the classes, a description
of their responsibilities, and other classes with which they collaborate. Ap-
proaches with CRC cards usually involve a group of people laying the cards
on a table and moving cards into or out of the group to indicate how they are
involved in the use case or functional area being designed. This type of
collaboration to produce design elements may more easily performed with a
laptop, CASE or drawing tool, and a projector.

6.3.3 Andlysis shortcuts

There are many reasons to take short cuts in the generation of the Analysis
Overall View. This is primarily because most projects come with real deadlines
and constraints and projects that analyze endlessly are eventually canceled.
Even more important, the initial iteration in which some initial parts of the
system are developed will have a ‘back-draft’ effect on requirements. That is,
using a part of the system will make users recognize missing functions.
Therefore, it is important to get users looking at finished products as early as
possible.

In addition to the inherent cycle time reductions in the less formal ap-
proaches described above, several techniques can be used to keep the analysis
process minimal, yet effective. One approach discussed earlier is the prioritiza-
tion of use cases. This is a good way to focus on a subset of system operations
and yet realize most of the critical elements of the architecture before starting
to design.

In addition, for many sorts of business interaction there will be a series of
standard use cases based on the old data mantra: create, read, update, and
delete. The question is, will creating an Analysis Focused View for each of
these cases yield more information? Usually update and delete are not terribly
interesting as separate views. They don’t typically add significantly to the
model in a way that can’t easily be extended later. Finding specific data entities
from these use cases may seem worthwhile, but often identification of specific
data should be delayed until database design begins in earnest.

Another good way to reduce the analysis effort is to use analysis patterns or
predefined views. These provide good guidance on recurring types of views

Analysis Viewpoints

that come up in many domains. These views may provide a starting point
for an Analysis Overall View. Many of these views are available if a similar
project has been done previously by the development team and object-
oriented methods were used. Additionally, the information for these views
may be available from standards documents that apply to the domain. These
standards documents may also prove valuable for providing an initial set of
use cases or interactions from which the Analysis Focused Views can be
developed.

These approaches are bound to be controversial, especially to those who
insist on following each step in the process. In addition, over-application of
any simplification approach may prevent the production of a software
architecture with the quality provided by a more formal approach. However,
once rework is accepted as an essential part of the development process, the
objective becomes to organize and manage for the iterations. It is also
important to understand that talented designers experienced in the domain
may be able to utilize analysis shortcuts and still produce a quality design.

6.4 Analysis Viewpoints

The following sections describe the viewpoints utilized by the techniques
described in the earlier sections of this chapter.

6.4.1 Andlysis Interaction Viewpoint

The Analysis Interaction Viewpoint identifies the class-to-class and class-to-
actor interactions involved in a specific scenario or path through a use case.
The views associated with this viewpoint will be grouped to identify a
collection of classes that will be placed in an Analysis Focused View. The
interaction views are especially useful as the basis for test case development.
The fact that these views are identified early in the design process allows the
test group to get an early start on writing test cases. This viewpoint is
summarized in Table 6.4.

The Analysis Interaction View in Figure 6.3 is derived from the Collect
Customer Contact Data use case. One use case may have several associated
Analysis Interaction Views, each representing a different path through the use
case. The class names used in the Analysis Interaction View will also appear in
the Analysis Focused View. In addition, the methods and parameters may also
be identified in the Analysis Interaction View. The early Analysis Interaction
Views will provide a great deal of information to the Analysis Focused View.

101

102

System Context and Domain Analysis

Table 6.4 Analysis Interaction Viewpoint

Analysis Interaction Viewpoint

Purpose Illustrate a set of classes, attributes, methods, and associations for a
specific path through a use case.

When Applicable Prepared during analysis, along with use case development.
Generally not maintained.

Stakeholders Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers.

Scalability The Analysis Interaction Views will be used to produce a focused
view for that use case.

Relation to Other Should be consistent with the initial focused views, but will most

Views likely not be maintained as the focused views evolve.
. customer . customer . . L
e RN . customer - location info
agent interface

create_customer | l

i |

crefite |

|
|
gl |
|
|
|

1 o
add_data(name, DOB, ssn, loc) |

| U

add_location

I
: create /|[‘

1]
| add_data(address)| |

' | i

complete_customer_addition

! I l
I) | |
I : |

Title: Collect Customer Contact Data

Type: Analysis Interaction View

Date: 2002-Nov-1
Responsible: Garland / Anthony

Figure 6.3 Analysis Interaction View — Collect Customer Contact Data

Analysis Viewpoints

As more of these views are created, more of the information in the Analysis
Interaction View will already have been placed in the Analysis Focused View.
At the point that very little information is being added for each Analysis
Interaction View, the use case should be considered fully elaborated.

6.4.2 Analysis Focused Viewpoint

The Analysis Focused Viewpoint defines a set of associated classes that
participate in a specific use case or set of use cases. Prior to the development
of the overall view, the focus is on only the actors, classes, attributes, methods,
and interfaces that apply to that specific use case or set of use cases. After the
Analysis Overall View has been developed, other focused views may be
produced to capture subsets of the information in the overall view. The
Analysis Focused Viewpoint is described in Table 6.5.

Table 6.5 Analysis Focused Viewpoint

Analysis Focused Viewpoint

Purpose Illustrate a set of actors, classes, attributes, methods, and
associations for a specific use case, set of use cases, or subset of an
Analysis Overall View.

When Applicable ~ Primarily prepared during analysis, along with use case
development. Generally not maintained, unless a product family is
being developed.

Stakeholders Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers.

Scalability The focused views will be used to produce an overall view that can
be used to drive the software architecture definition.

Relation to Other Should be consistent with the initial overall views, but will most
Views likely not be maintained as the overall views evolve.

Prior to UML, Jacobson documented an object-oriented software engineer-
ing approach that took advantage of what were called Views of Participating
Objects (VOPO). In UML, these came to be known as Views of Participating
Classes (VOPC). We refer to these views as Analysis Focused Views. These
views are generated in the process of use case elaboration. Each use case
generates one Analysis Focused View. The view only displays the attributes
and functions needed to satisfy the associated use case. The set of all Analysis
Focused Views for the use cases is used to create the Analysis Overall View.

103

104

System Context and Domain Analysis

While these views are important for generating the Analysis Overall View,
they are generally not maintained during the rest of the architecture develop-
ment process. One exception is if the domain analysis is central to the
development of a reference architecture or the development of a product
family.

The view in Figure 6.4 provides an example Analysis Focused View for the
Add New Customer use case. In this view, several stereotypes are used.
First, the actor generally interacts with a boundary class. These provide a
means to focus the external communications with the system. Generally one
boundary class will be used for each actor type, but if several actors are
utilizing the same methods, one boundary class may work for several actors.
Second, the entity classes are used to identify key constructs of the domain.
These entities will generally include data and behavior. To simplify view
construction, access methods for the attributes are not usually included.
Finally, controller classes are used to encapsulate a complex collaboration

Figure 6.4 Example Analysis Focused View — Collect Customer Contact Data

Analysis Viewpoints

among several entities that does not logically reside with any of the entities.
We did not include controller classes in Figure 6.4 for simplicity reasons. The
actor, indicated by the stick figure, is the external entity that interacts with the
system. Refer to the recommended reading for a more detailed discussion of
use case elaboration.

6.4.3 Andlysis Overall Viewpoint

The Analysis Overall Viewpoint is used to provide an agreed-upon under-
standing of the problem domain, independent of any implementation details.
This viewpoint provides a common representation for the set of entities in the
problem domain along with their relationships, attributes, and behavior. The
views that result from the Analysis Overall Viewpoint are often used to
capture an agreed-upon definition of the problem space as well as how the
system to be designed will interact with the external entities. The Analysis
Overall Viewpoint is described in Table 6.6.

Table 6.6 Analysis Overall Viewpoint

Analysis Overall Viewpoint

Purpose Illustrate the set of key actors, classes, attributes, methods, and
associations for a system. This viewpoint should not contain
implementation details.

When Applicable Primarily prepared during analysis, along with use case
development. Generally not maintained, unless a product family is
being developed.

Stakeholders Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers.

Scalability The overall view is seldom small enough to fit onto a single sheet of
paper. Subsets of the classes, actors, and associated information can
be extracted to produce focused views that convey a key concept or
set of concepts.

Relation to Other ~ Should be consistent with the initial Analysis Focused and Analysis
Views Interaction Views, but generally evolves to contain additional
information.

As described earlier, there is usually only one overall view for the system.
This Analysis Overall View can provide a common vocabulary to be used for
further analysis and architecture definition. In addition, the Analysis Overall

105

106 System Context and Domain Analysis

View can produce a set of focused views that can be used to explain various
facets of the problem domain.

What we refer to in this book as the Analysis Overall View was originally
called the domain object model by Jacobson. This view is simply called the

Figure 6.5 Example Analysis Overall View

Analysis Viewpoints

domain model in the UML process book. Bringing together all the classes
from the individually focused views creates the Analysis Overall View. With-
out good tool support, creating this view correctly is extremely difficult. The
goal of this view is to be able to look at all the entities in the system as a
whole, assess the coupling and cohesion, and divide the classes into subsys-
tems for design. This view can also be used as a basis for data modeling and
other design activities.

The Analysis Overall View is one of the few views that need not fit on
standard paper. To simplify the view somewhat, the controller or actor classes
are often omitted, showing only the entity classes. Even with this simplifica-
tion, this view will often require a plotter to print, and as a result will most
likely not be included in architecture documents. Because of the extreme size
of these views, the example in Figure 6.5 shows only a perspective of the
Analysis Overall View. Many classes are obscured due to the space con-
straints. In addition, we have drawn domain boundaries as a first cut at
grouping the analysis classes. These groups correspond to a set of candidate
subsystems as described in the following section.

However, putting the view on a web site where scroll bars can be used to
find various parts of the view can be very useful to make the view accessible to
as many architects and developers as possible. Due to the complexity of the
problem domain view, it also may not be maintained throughout the develop-
ment lifecycle. One case where the Analysis Overall View should be main-
tained is for use in product families or for a starting point to develop a new
design for an existing product.

One pitfall to avoid when preparing the Analysis Overall View is the
temptation to include implementation mechanisms and technologies. All of
the participants in the creation of the Analysis Overall View need to resist the
urge to include any implementation details. This should be viewed as an
activity to produce a view that describes only the problem domain. That is,
the view is implementation technology neutral.

6.4.4 Candidate subsystem identification

Extracting a set of candidate subsystems from the Analysis Overall View is the
process of transitioning from a sketchy Analysis Overall View into something
that forms the basis for implementation. Evaluation of the cohesion and
coupling of the various domains allows division of the problem into a
preliminary set of subsystems that can be evolved. What is produced in this
process is a Subsystem Interface Dependency View, which will be described

107

108

System Context and Domain Analysis

in more detail in Chapter 8. Additional information about how candidate
subsystems fit into various architecture development tasks is described in
Chapter 12.

The simplest technique for identifying the candidate subsystems is to use the
domain boundaries identified in the analysis as the starting point. However,
while this view can be useful in producing an initial grouping of subsystems
for development purposes, it is important to remember that this is a descrip-
tion of the problem domain. The actual subsystems used for development may
be somewhat different, due to the addition of implementation details.

One approach to obtain this implementation information is to follow
through a similar elaboration process, but add implementation classes to the
Analysis Focused Views and Analysis Overall View. In addition, some of the
classes related to the common software infrastructure can also be added. This
final view produced can then be divided into subsystems that will more easily
evolve into the subsystems to be assigned to development teams. As usual,
iterative approaches should be used for developing the Analysis Overall View
and the version of the view that includes implementation classes.

6.5 Recommended Reading

The Context View originally came from Yourdon’s Structured Analysis and
Design approach. A good source for this discussion is his book on analysis
(1991). The Context View in SASD showed the system as a box, external
entities in boxes, and data flows from the external entities in and out of the
system. Most UML practitioners refer to the Context View as the highest-level
view of the system. The UML User Guide by Booch et al. (1999) shows a
Context View as a use case view with the set of all top-level use cases and
actors in a view with a box around the use case names. The box is labeled
with the system name, making it very close to the context view shown here.

Analysis Focused Views or VOPCs were initially done as object diagrams
and were called Views of Participating Objects (VOPO) in Jacobson’s initial
book on software engineering (1992). The term VOPC is described in the
Unified Software Development Process book (1999).

Domain analysis views were discussed in Jacobson’s initial book (1992).
These are effectively the same as Analysis Overall Views. The domain model
and other aspects of the use case driven approach to building the domain
model are described in the book on UML process (1999). A more detailed
description of the process of evolving use cases into the software architectural
elements can be found in the paper by Lawrence et al. (1999).

Recommended Reading

Kent Beck and Ward Cunningham (1989) discussed CRC cards in a paper
accepted to the OOPSLA conference that year. In this paper, Ward Cunning-
ham is credited with the invention of CRC cards. A book was later released
on CRC cards by David Bellin and Susan Suchman Simone (1997).

The International Telecommunication Union (ITU) Telecommunication
Standardization Sector (ITU-T) defined the specification for Message Sequence
Charts (1999). This is the notation used by systems engineers and software
designers who use the Specification and Design Language (SDL), which is the
ITU-T Z.100 specification (1999). Since many telecommunications organiza-
tions use these standards, it may be necessary for the software architecture
and software systems engineering teams to be able to understand requirements
and systems specifications done by systems engineering using this approach.

Cockburn (2000) describes techniques for the writing of effective use cases.

Czarnecki and Esenecker (2000) describe a system of domain analysis to
support product line engineering using Feature Modeling. This much more
sophisticated method provides a technique for modeling commonality and
variability between members of a product family. In addition, they describe
some of the practical limits of the simpler techniques described here.

109

Team~ny®

Component Design and
Modeling

7.1 Overview

This chapter describes some of the fundamental architectural viewpoints for
a large-scale system. Component structure, interfaces, dependencies, and
dynamics are the topics addressed by the viewpoints in this chapter. The
views produced from these viewpoints are especially critical to the implemen-
tation teams, as they document the runtime component structures and inter-
actions.

Component development often occurs in the context of distributed system
development. However, the views in this section are focused on the logical
interactions of the components. The Process and Deployment Views, de-
scribed in Chapter 10, are focused on the exploration of the distribution of
components in a system.

7.1.1 Component-based development

Component-based development is a major trend in the construction of large-
scale software systems. Component-based development facilitates reduced
development times and increases system functionality. Components also
enable developers to utilize off-the-shelf software. In addition, designing with
components enables development teams to build and test parts of the system

112

Component Design and Modeling

independently. Delivery of a software component to the integration and test
team typically includes up-to-date documentation, test drivers, and commu-
nication specifications for that component.

Component development is nothing new. For many years, Unix systems
have had a command line or scripted development environment that facilitates
the rapid creation of novel applications by chaining together executable
components. For example, to build an application to perform a count of the
statements in a source code file requires the following shell code:

% cat *.cpp | grep <3’ | we —1

Here the commands shell, cat (catalog), grep (find), and wc (word count) are
executable components that are connected together by data pipes (the ') as
created by the shell program. This program simply counts the number of lines
with one or more semi-colons in the C++ files in the current directory. Note
that the cat, grep, and word count programs have no dependencies on each
other except the ability to read and write character data from the operating
system pipe. This operating system pipe provides a data port for the execu-
table components to use for communication.

Today, there are many different component implementation models avail-
able. COM, CORBA, and Java Beans all provide component implementation
models. All of these component implementation models vary in the details of
required interfaces, allowed programming languages, and required environ-
ments. Many of these implementation models provide the capability to use the
same interface definition for co-located components and distributed compo-
nents. This allows the component location to be more flexible, co-locating
performance critical interfaces and moving less critical interfaces to separate
processes. These mechanisms optimize these interfaces when co-located to
take advantage of communication within the process.

Very large systems may utilize multiple component implementation mod-
els simultaneously for system implementation. Projects that have the option
of selecting a single implementation model for components should do so
early. This enables teams to begin training, experimentation, and other
development activities utilizing the target component implementation infra-
structure.

7.1.2 Terminology

In order to accurately model the entities and relationships at the component
level, the terminology must be well understood. In addition, the relationship

Overview

between UML concepts and real-world runtime software development con-
cepts must be clearly defined. Given that there is much confusion in the
modeling community, it is appropriate to provide clarification here.

As described in Chapter 5, the UML defines three types of components —
compile-time components, link-time components, and runtime components.
Examples of compile- and link-time components include object code
libraries and executable files. Runtime components are the in-memory
instantiation of these build-time constructs. We only define views that
describe the runtime aspects of components. For our purposes, the defini-
tion of a component is a physical set of object-based or functional
constructs that provides system functionality through well-defined commu-
nication mechanisms. A component definition includes a set of ports and/or
interfaces that provide for interaction with other system components. Often
they are deployed as an executable, dynamic library, or via another runtime
packaging technology.

Understanding component properties helps the software architect determine
if the potential component will facilitate effective design and execution of the
system. A component always has the following properties:

e DProvides services through well-defined interfaces, ports, and interaction
protocols

e Encapsulates both state and behavior

e Depends only on a component framework or operating system to provide
startup and communication to other components

A component frequently has the following properties:

e Obtained by purchasing rather than developing
e Operates in an independent process or thread of execution

e Utilizes transparent distribution location via naming service or other
location techniques

e Has many configuration options, that may impact component behavior
e Is developed, tested, and delivered independently of other components

e Is developed using object-oriented concepts

113

114

Component Design and Modeling

e s language independent, thus providing binary compatibility

Each component has a subsystem of origin. The result of the build
process for that subsystem is one or more components. However, the
component built by a particular subsystem may also include entities from
other subsystems. These other subsystems merely provide the build-time
entities so that the component can be built. They are not the subsystem of
origin. An interface on a component is an instance of an interface on the
subsystem of origin for the component. This is described in more detail in
Chapter 8.

Composite components group a set of components together into a single
‘logical component’. Composite components are a form of abstraction that
allows modeling of large sets of components at a higher level of abstraction.
In essence, the composite component represents the ‘union’ of all the functions
and interfaces of the grouped components. Composite components are very
useful for simplifying complex views. However, care should be taken not to
consider these composite components to be first-class elements of the architec-
ture and produce a complete set of work products as are required for conven-
tional components. For example, an interface specification at this level is not
useful and produces additional documentation maintenance and opportunities
for inconsistencies.

Frequently, the component is the physical unit of replacement for the
system. Replacement of components is important for system evolution. If a
component supports replacement, it limits the impact for software upgrades
to only the modified components. The key to successful architecture definition
using components is that each component has well-defined configurations and
communication mechanisms that can be used to combine a set of components
to achieve a set of system functions.

During initial system design, some components may be nothing more than a
list of required functions and a rough set of interfaces. These components
should be classified as ‘preliminary’. As the design progresses, the component
definitions are expected to change. However, some components may be
completely understood because they are either products (e.g., web server) or
parts of an existing legacy system. Eventually, however, the preliminary com-
ponents should be evolved into the actual components to be delivered. Others
have used the term ‘conceptual components’ to refer to something similar to
preliminary components. We prefer to use the term ‘preliminary’ to indicate
that the component definition will evolve and the architecture team should
not spend a great deal of time documenting these components at a lower level
of detail.

Overview

7.1.3 Communication and interfaces

Three other key terms will be used throughout this chapter. These terms are
interface, messaging, and port. In the UML, an interface is a stereotyped class
that provides the means by which external components communicate with the
component that provides the interface. Interfaces are generally implemented
as methods on a class that has been provided to an external client. The
interface may be implemented using mechanisms such as CORBA, COM/
DCOM, Java Remote Method Invocation, as well as a native language
function or class method invoked by the client.

Messaging is another form of communication between components. While
the UML doesn’t provide specific stereotypes for static representation of
messaging-based communication, we have found the distinction between
messaging and interfaces to be significant. Interfaces are focused on defining a
set of methods to be invoked by a client, while messaging provides a set of
message types to be transmitted. As a result, interfaces specify a method-based
form of communication, while messaging specifies a data schema and a
protocol. A protocol defines constraints on appropriate message ordering and
content.

To facilitate the discussion of messaging, the concept of ports is useful. A
port is a stereotyped class that is used to denote communication of a particular
category of messages. Ports are used to identify incoming messages accepted
and outgoing messages generated by a component.

7.1.4 Finding components

One issue for the architect in using component-based modeling is partitioning
system functionality into components. If the design is for an existing system, a
system utilizing a standards-based architecture, or a system based on a
reference architecture, there will be a set of well-established candidate compo-
nents. The determination of the actual components can be straightforward
since the current as-is structure or predefined architectural elements can guide
the modeling. For systems without such a clear architectural basis, for
example a new system with no precedence upon which to base the architec-
ture, components can be identified using a number of approaches. Several of
these approaches for finding components are discussed in Chapters 11 and
12. One of these techniques is simply to decompose the major functional
domains as a preliminary set of composite components. The composite com-
ponents provide a starting point for modeling and design activities.

115

116

Component Design and Modeling

7.1.5 Qualities of component design

Several aspects of a component design should be analyzed to determine if the
component design will produce effective component behavior and interactions
at runtime. The software architect should carefully analyze the component
dependencies to make sure they will be effective. Co-dependency of compo-
nents is one example of a potential problem. For example, if two components
depend on one another at startup a deadlock may occur.

Another aspect of determining the effectiveness of the component design is
the assignment of system state to components. For example, if system state
information is duplicated among several components, keeping this informa-
tion consistent may be a problem. Similarly, if the system state is too widely
distributed, and several components need access to this information, commu-
nication overhead may severely impact performance. The nature and usage of
each category of system state data must be analyzed to determine which of
these two approaches best applies.

Since components are independently developed sets of functionality, they
are an ideal way to break down large software architectures into smaller
elements. The architectural effort then focuses on making sure the objects that
are in the components are cohesive and that the interfaces between compo-
nents are specified to minimize coupling between components. In addition,
dependencies between components must be managed so that classes that are
used in multiple components are provided in a timely manner to all compo-
nent development teams.

7.2 Component Viewpoint

The Component Viewpoint provides a set of static views of component
runtime structures and their relationships. This viewpoint ignores the issues of
component distribution and threads of execution. Instead, the Component
Viewpoint is focused on the partitioning of functionality among components,
the interfaces between components, and any global state that must be shared
among the components.

The goal of component modeling is to describe the runtime system, often
before much of the software has been designed. A Component View provides
a mechanism to divide a large set of functions into a coherent set of runtime
components and illustrate the interactions between them. During the initial
software architecture development, component modeling can provide a useful
tool for understanding the system.

A Component View provides a different perspective on the software system

Component Viewpoint

than analysis or subsystem views. Component Views illustrate how various
runtime entities will communicate. This is similar to using an object diagram
to show how class instances interact, but the Component Viewpoint is at a
higher level of granularity. Table 7.1 summarizes the Component Viewpoint.

Table 7.1 Component Viewpoint

Component Viewpoint

Purpose Describe runtime component connectivity and
communication. Can be applied to performance analysis
and later the process interaction design.

When Applicable During system design and development, as analysis views
and subsystems are identified.

Stakeholders Architecture Team, Subsystem Developers, Test Team,
Software System Engineering Team, Systems Engineering
Team, Project and Development Managers (to a lesser
degree)

Scalability Drawn with scenario or component focus. Can make use of
composite components.

Relation to Other Views The Component Views should be consistent with
components shown in the Process and Deployment Views.

7.2.1 Component communication

As described above, components can communicate either using an interface or
via messaging. At the lowest levels of the software, all types of network
communication are built on a packet transmission protocol, much like messa-
ging. However, if an application is built on a remote procedure call commu-
nication mechanism, the interface to the application appears to be that of
normal method invocation, not that of packet-based communications. That is,
all the packet exchange is at a level of abstraction below the level of the design
concern. This is to be contrasted with applications that make direct use of
messaging or publish/subscribe protocols to implement the system function-
ality. Thus for component modeling we only model communication as messa-
ging when the component depends directly on this style of communication.
The best choice for a component communication style on a particular
interface depends on the particular application interface under design. How-
ever, most large systems have combinations of both messaging and traditional
interfaces. One way to think about the difference is to think of an interface as

117

118

Component Design and Modeling

a data-pull approach and messaging as a data-push approach. Data-push is
especially relevant when communications are asynchronous, such as when
connecting systems to instruments that measure or produce events. Data-pull
is especially relevant when querying for information, such as when accessing
external process data in memory, data in shared memory, or large amounts of
data stored in a database or in files.

The software architect should determine whether a particular component
interaction should be based on messaging or on an interface. When the
interface requires a large amount of data to be transmitted, messaging may
not be the best choice. Messages normally carry smaller amounts of data. On
the other hand, if the interaction is asynchronous, then a message may be the
best way to implement the interface. Similarly, if the message sender and
the message consumer need to be decoupled, then a message publication/
subscription approach is usually best. Normally, point-to-point communica-
tion requires interfaces. That is, if a message contains source and/or destina-
tion information, then the use of messages should be questioned. However,
there are applications for point-to-point messaging. For example, many
telecommunications protocols use this approach. In that case, we recommend
this interaction be modeled and implemented as messaging.

7.2.2 Component interfaces

The view in Figure 7.1 shows an example Component View that is focused on
the interactions between different system interfaces and the servers that
provide customer information. The view succinctly provides an overview of
the major runtime components that make up the system. In addition, it
highlights the interfaces utilized for communication among the components.

Interestingly, the information for this system view is likely available well
before system construction begins. For example, in the banking system there
is a requirement to work with existing products such as the web server and
voice response systems. Of course, other architectures for the backend systems
are possible. For example, the session management may be combined with the
customer information server. These are the types of trade-offs that Component
Views are ideal for exploring and documenting.

The multi-instance components on the view indicate that there is expected
to be more than one of these component types running in the system. That is,
there is an expectation that the load from all the clients will be split across
several component instances. The lines between components and inter-
faces illustrate a ‘client—server’ communication relationship between the

Component Viewpoint

Figure 7.1 Component View with interfaces

components. The Teller Server, Voice Response Server, and Web Server all use
the customer info and transaction interfaces. All the interfaces in this view
represent traditional interfaces rather than messaging interfaces. These will be
illustrated later in this chapter. Also shown in this view is that during
preliminary design, interface definition may not have been completely deter-
mined. In this case, an association is drawn directly between the components
without an interface icon to indicate that the details of the interface have not
yet been defined.

It is important to note that this view does not constrain the process and
thread structure of the solution. For example, to improve performance, the
server implementation for customer information and session management
may ultimately be delivered as a library that is linked directly into the same
executable as the web server, teller interface, and voice response interface.
However, one constraint of the architecture is that the web browser will

119

120

Component Design and Modeling

necessarily reside in a different process than the web server. The ‘external’
stereotype on the web browser component indicates that this component is
not a part of the system under design. The web server will likely use off-the-
shelf technology, but will need to have custom plug-ins to support the desired
functions.

In addition to the view, a best practice is to provide a tabular description of
each of the elements in the view. This description may be kept in a modeling
tool and exported or maintained in a separate system. Table 7.2 shows an
example.

Table 7.2 Component descriptions

Component name Role
Teller Client Provide a user interface tuned for the needs of bank tellers.
Teller Server Provides services for the use of tellers. This includes

administrative functions.
Session Manager Provides transaction and session id support.

Customer Info Server Provides service interfaces that provide access to basic
customer information.

In addition, a table of interface descriptions for the Component View is
valuable. Table 7.3 is an example of a component interface description table.

Table 7.3 Component interface descriptions

Interface name Description Provided by Consumed by
Customer Info Provides access to customer Customer Info Web Server, Teller
data. Server Server, Voice

Response Interface

Transaction Provides transaction Transaction Web Server, Teller
coordination for components. Manager Server, Voice
Response Interface

Figure 7.1 is a rather manageable size. However, if we expand the scope of
the Component View it may become unwieldy. One way to cope with the
complexity is to abstract a set of components into a composite component.
Figure 7.2 illustrates the combination of the Web Server, Teller Server, and
Voice Response Server into a single composite component. In addition, the

Component Viewpoint

Figure 7.2 Composite component example

external client components are also abstracted into the ‘External Clients’
component. The composite components are labeled with the stereotype ‘com-
posite’ in order to clearly distinguish them from actual components.

7.2.3 Message-based component modeling

In many types of systems, interfaces may not accurately describe the compo-
nent interactions. These systems can be thought of as a collection of indepen-
dent components that communicate via messaging protocols. The messages
between components are typically asynchronous and may have highly variable
transmission rates over time.

Often in these systems, external hardware or software pushes data or events
into the system. The system must often handle some of the data in real time
and do other processing over a more extended period. For example, consider
the architecture of telephone central-office systems. When a telephone sub-
scriber picks up the phone, this is detected by hardware. The software must
then detect the state change and connect the phone to a dial tone. The
software component scanning the telephone lines for state changes is typically

121

122

Component Design and Modeling

different from the component that reacts and sets up the dial tone, collects the
digits, and connects the call. The system is built up on state changes and
message-based reactions to these state changes.

Similarly, in manufacturing control systems, data is being continually fed
from hardware that measures temperatures, pressures, and other aspects of
the system that are being measured. In this type of system, the operator
display is usually a separate component that receives data and updates the
display appropriately to show the state of the system has changed.

Messaging is fundamentally different from an interface because it can
support broadcasting. That is, a single component may send a message and
many components may receive it and act accordingly upon that message. The
reaction of a component to a message is usually implemented as a non-
blocking function call, referred to as a callback. To distinguish messaging
from interfaces the component exports a ‘port’. As described earlier, a port is
like an interface, but instead of describing a set of methods that can be called,
the port describes a messaging schema and protocol that is used for commu-
nication. Unlike interfaces, ports cannot directly return a value. An inbound
message can generate a new message that sends a value to the original sender
(and perhaps others), but the mechanism is still fundamentally different from
a synchronous return to the sender.

From an architectural perspective, we are interested in answering several
key questions concerning message-oriented component interactions. These
include:

e What are the protocols in which a component participates?
e Is the component a sender or receiver for these protocols?

e What processing functionality does a component provide as a result of
sending or receiving these messages?

e s the information in the message sufficient for the component to act
accordingly?

e What are the peak messaging rates?

Figure 7.3 illustrates a message-oriented component design. In this part of the
banking system, a stock server component receives asynchronous messages
that update the current prices for stocks. Simultaneously, a historical trending
component receives the same data. The Stock Trade History component
processes the events and stores summarized and raw data so that graphs and
charts can be generated. The Stock Server, on the other hand, is only

Component Viewpoint

Figure 7.3 Component View with messaging

concerned with providing the latest information to other clients. The ports in
the view illustrate a division between different messaging schemas. Ports are
connected via associations, indicating navigability. The direction of the arrow
indicates the port from which the message initiates. The arrowhead is placed
on the receiving port, with no arrowhead on the sending port. This is similar
to the use of arrows in use case diagrams.

Table 7.4 summarizes the components in Figure 7.3. This table could be

Table 7.4 Component descriptions

Component name Role

Stock Server Provide real-time collection point for latest trade and quote
data.

Stock Trade History Provide historical summaries of trade prices. Historical

summaries include up-to-the-second daily summaries as
well as monthly, quarterly, and yearly profiles.

Exchange Feed Systems Provides raw real-time feed of market information.

123

124

Component Design and Modeling

supplemented with information about ports associated with each component,
but this information may be better defined in the port table, shown later.

In addition to the component descriptions, port descriptions are also
valuable. The ports in the system are shown in Table 7.5. An additional
column, listing the specific messages associated with each port, is often useful
later in the design process as the messages become known. In addition, a list
of specific components expected to use these ports can also be included.

Table 7.5 Stock Server Port Descriptions

Port name Description Components — Components —
IN port OUT port
Trades Messages containing Stock Trade History, ~Exchange Feed Systems

periodic quotes for stocks Stock Server
identified to be tracked by
the stock server.

Quotes Provides transaction Stock Trade History, Exchange Feed Systems
coordination for stock Stock Server
trades to client components;
usually this includes the
stock server and the stock
trade history components.

One important variation of this view excludes all details of ports and
protocols. Thus, only components and connections are represented. This
variation is useful during the initial design to identify a preliminary compo-
nent set. Subsequent iterations of the view can add port and protocols details.

7.2.4 Combining interfaces and messaging

Large systems frequently have both client—server interfaces and messaging in
combination. As an example, in the banking system, the requirement to keep
a host of quote server components updated with the latest quote information
uses messaging. The Exchange Feed Systems provide asynchronous updates
constantly to the current quote prices. The number and nature of the servers
that need to be updated are hard to predict until the system is scaled. In

Component Viewpoint 125

addition, the types of processing required may be very different for different
applications. For example, one program may want to maintain the history of
the stock price for the current day to perform statistical prediction analysis
while another may simply provide the latest market prices to a web client.
This example of combining messaging and interfaces in the same view is
shown in Figure 7.4.

Figure 7.4 Component view with both interfaces and messaging

Table 7.6 shows the components in this view, along with a brief list of
interfaces and components.

Component Design and Modeling

126

(1) sopen

(Q) saaonb
(0) sopen

(1) sopen

(1) sapen
‘(1) saaonb

(D) £10381y 9pEIY

(d) £10381y SpEN

(q) 210nb oo1s

“BLIOILID

UOI13[3S dY 393U JBYI SIPEII JO 39S PIIIJ[IS A 0]
£I0ISTH apei], 201§ a3 03 uoneoynou Suipiaoid ‘swaisdg
P99 98uBYIXY 2y WOJJ UOIIBWLIOJUI JUIAD OPEBII $ISSID01]

“UOTIBWLIOJUT JOXIBW JO P2J JUITI-[BT MBI SIPIAOI]

‘sa[goad A[reaf pue ‘A[1a1renb Ayiuow se [om

Se soLrewwuns AJiep

PU053s-373-03-dn 9PN[OUT SILTEUWIUINS [BIITOISTH "SIMIINIIS
[enpIAIpUT 10J $3011d OPEII JO SALTBUIINS [BILIOISTY PIAOI]

*SONLINDIS 1O TRUI YIIM PIIBIDOSSE
e1ep
a10nb pue open 1sa1e[103 Jurod UOTIII[OD JUWITI-[BIT IPTAOI]

19YNON Y

SuIa1s4Ag
Paaq adueyoxy

£3103STH
apei], 201§

TOATSG D015

m(Q) u(p) - s1og

pawnsuo(5) papiaox(d)
- WOUN‘U—HOHGH

s[0y

swreu
1usuodwo))

SurSessow pue sadeyIAIUl YIm MIIA Juouodwo)) 9/ Jqe],

Component Viewpoint

7.2.5 Comparison of interfaces and messaging

Messaging architectures have a different dependency structure than interface-
based interactions. With messaging, both components depend on message
data schema and protocol instead of an interface. Thus, messaging architec-
tures tend to be more decoupled since data senders and receivers often do not
depend directly on each other. Rather they depend on the message protocol
and the messaging infrastructure, which may be purchased or developed by
an infrastructure team.

The two different dependency structures of messaging and interface ap-
proaches are illustrated in the Figures 7.5 and 7.6. These figures are used to
illustrate relationships between components, messages, and interfaces. These
diagrams are for illustration and not suggested for use as actual architectural
Views.

In a message-oriented design, both components depend on the subsystems

Figure 7.5 Build-time component dependency concept — message-oriented

127

128

Component Design and Modeling

Figure 7.6 Build-time component dependency concept — interface-oriented

and classes that represent the message types to be exchanged. In Figures 7.5
and 7.6, a subsystem is used for the build-time representation of a component.
Figure 7.5 illustrates that there is build-time dependence between the build-
time aspects of a component and a specific set of messages.

In an interface approach, as illustrated in Figure 7.6, the client component
depends directly on the interface exported by the server component. The clear
impact of this is that changes to the server component will impact the
deployment and testing issues more than in the message-oriented design.

7.2.6 Mechanism and performance annotations

One aspect of the system the architect would like to capture early in the
development will be the performance and scalability requirements. In another
variation of the view, the Component View can be annotated to include
implementation mechanisms and performance quantities. Figure 7.7 is the
same as Figure 7.1 redrawn with quantity and mechanism annotations. The
purpose of these annotations is to document the relative scaling of the
proposed system. As the view shows, it is expected that each web server can
handle up to 200 (10000/50 assuming even load balancing) simultaneous
browsers. Note that multiplicity is not used to represent quantities because the
number of component instances may not be related to the interface relation-
ships. Initially these quantities will likely be guesses based on experience, but

Component Viewpoint

Figure 7.7 Component View with quantity and mechanism annotations

may be deemed critical enough to test in an architectural prototype or in early
system tests.

Figure 7.7 also shows the expected implementation technologies for the
various interfaces. If no mechanism is shown, then the mechanism has not
been determined or is not of interest for this view.

Table 7.7 is an example of a table that might be produced to capture the
key information on the interfaces shown in the Component View above.
Another useful table for this type of view is a table that lists all the compo-
nents in the view and has a description of each. Supplementary information,
such as estimated memory footprint, can also be included in this type of table.
Whenever possible, these types of supplementary tables should be generated
in an automated manner from the CASE tool or a central database, such as a

129

Component Design and Modeling

130

194198 12d sdqy 00¢
JO [8303 B [IM SJUId 00 € 35d

“oed BIBP JO $A1£q 967 >
yam anurwr 13d sysanbax oot
JO [€101 YIIM SIUDID OGS T 03 dn "1y

samoy [euonetado Juump sdqy 00¢
JO [€101 YIIM SIUDI[D OGT T 03 dn "1s7

‘[EMEBIPYIM

sodap wrograd 10 “erep

JUNOJE ‘BIEP JSWOISND

£39nb 01 sjeuruuIa) 1911

d9L 10J I9AIIS UOUIWOD SIPIAOI]

‘uonodesuen ﬁwucmu
VIIOD pue ‘pud ‘urdaq 031 90ejI1a1u]

*10381Y 3IPaId

‘sIaquUNu JUNOJJE ‘SSAIPpE

SE [oNs UOBULIOJUL

INd I2WOISNd SIPIA0I]

9BJI2IUT JUAT[D

uonodesuell

OJur Jowroisnd

IOATOS T[],

Io8BUBJN UOISSAG

JOAIOG
oJuyJ IOW0ISNY)

ndySnoIyl pue peoj 11 Jed

WISTUBYIIA uondrsaq

papraoad aoejia1ug

juauodwon)

9[(Bl 90BJIJUT MITA HEMEOQEOU L7, 9lqel,

Component Interaction Viewpoint

requirements database. In this way, information repeated in several tables can
be kept consistent.

7.3 Component Interaction Viewpoint

The dynamic aspects of components are modeled in two ways. These are the
Component Interaction and Component State Viewpoints. The Component
Interaction Viewpoint utilizes component-level sequence or collaboration
diagrams to show how specific components will interact. This viewpoint is
summarized in Table 7.8.

Table 7.8 Component Interaction Viewpoint

Component Interaction Viewpoint

Purpose Validate structural design via exploration of the software
dynamics.
When Applicable Throughout project lifecycle. Primarily prepared during

design and analysis, but can also be used and expanded
during development.

Stakeholders Software Architecture Team, Software Systems Engineering
Team, Subsystem Design Leads, Developers.

Scalability Based on scenarios, can be scaled to higher levels by using
composite components.

Relation to Other Views Should be consistent with Component, Process, and
Deployment Views.

7.3.1 Component to Component Interactions

Figure 7.8 shows a Component Interaction View. This view illustrates the
startup and login scenario for the Teller Interface component. The view also
illustrates the protocol used to access an Authentication Server component.
All the details of the individual object instances exported by the various
components are elided so that an overall understanding of the component
dynamics can be explored. Stereotypes are used to indicate that the instances
in the view correspond to component instances.

131

132

Component Design and Modeling

Figure 7.8 Component to Component Interaction View

Component Interaction Views scale better than object interaction diagrams
since the details of the individual object instances are not shown. Component
Interaction Views are also helpful when illustrating the use of off-the-shelf or
legacy software. COTS can be represented as a component, thus hiding the
detail of the interface and reducing the modeling demands.

The view shown in Figure 7.9 illustrates the use of an alternative interaction
view using a component collaboration diagram. This type of view is logically
equivalent to a sequence-based interaction view, but may communicate the
component interactions more clearly. As described in Chapter S, collaboration
diagrams work best when the communicating entities fit easily on one page,
and the number of interactions is not too large, usually less than 10.

Component State Modeling

Figure 7.9 Component interaction using collaborations

7.4 Component State Modeling

The Component State Viewpoint provides a means to communicate the
internal states and activities for one or more components. The views specified
by this viewpoint provide visibility into the overall behavior of the compo-
nent(s). This behavior can be documented in two ways: by illustrating the
potential states of a component along with the transitions among the states,
or by illustrating the flow of control from one activity to another.

Table 7.9 summarizes the Component State Viewpoint.

A state is a part of the life of a component during which the compo-
nent performs some set of activities. The component enters the state upon
completion of another state or upon receipt of an event causing the transition
from the other state. The component leaves the state upon completion or

133

134

Component Design and Modeling

Table 7.9 Component State Viewpoint

Component State Viewpoint

Purpose Model the state of a component or group of components.

When Applicable Throughout project lifecycle. Primarily prepared during
design and analysis, but can also be used and expanded
during development.

Stakeholders Software Architecture Team, Software Systems Engineering
Team, Subsystem Design Leads, Developers, Testers.

Scalability State-based views, based on individual components, can be
scaled up to composite components. Activity-based views
can be applied to single component or several components.

Relation to Other Views Should be consistent with other dynamic views as well as
interface and message definition.

receipt of an event. In the activity-based approach, the flow from activity to
activity is shown. This is described in more detail below.

A state-based view defines state changes for a single component. The states
begin with the creation of the component and end with the component
lifespan. These transitions indicate aspects of the component that require
some activities to occur. One common mistake among modelers is to model a
transition as a state. Transitions are the short-lived occurrences in the life of a
component, usually triggered by an event or the completion of a state. Within
each state, entry and exit actions are defined. In addition, actions that occur
within the state as well as internal transitions are listed as text inside the state.

Figure 7.10 shows a Component State View for the Stock Alert Notifier
component shown in Figure 7.4. After loading, the component is initialized
and, if successful, waits for updates. When an update is received the Notifier
processes the update. When the Notifier receives a shutdown it is unloaded
and terminates.

The information in nearly all Component State Views could also be
represented in a tabular form. This form may be useful to provide better
descriptions of the states or activities. However, this form of component state
often makes it more difficult to follow the transitions from one state or activity
to another. The good approach involves capturing the states or activities and
supplementing with a table that describes the key information.

An activity-based variant of the Component State View is also useful. This
approach shows a flow from activity to activity for a component. In this case,

Component State Modeling

Figure 7.10 Alert Notifier Component States

an activity differs from a state-based view in that the states shown in the view
usually include one activity and that the transitions in an activity-based view
are normally triggered by the completion of a state. Any statechart notation
can be used in this type of state view. These include branches, forks, joins,
composite states, and nested states.

In addition to showing activity flow for one component, these activities can
be for multiple components and can be grouped into structures referred to as
swimlanes. One approach we recommend is to have each swimlane group the
responsibility of one or more components. In this way, the flow among a set
of activities can be illustrated across several components. An example of this
approach is shown in Figure 7.11.

135

136 Component Design and Modeling

Figure 7.11 Activity-based state view

Recommended Reading

7.5 Modeling Highly Configurable Component
Architectures

Standard UML modeling techniques model static architectures well, but are
not as good at representing dynamic component architectures. That is, com-
ponents that are made available dynamically as requests are made by the
component infrastructure. This would include systems that dynamically load
and unload components based on the needs of the system. These highly
adaptable component architectures can be shown by using the creation and
destruction semantics in Component Interaction Views. These views were
discussed earlier in this section.

A similar problem is determining how to represent components that have
many different configuration options. While the static view of the components
does not necessarily change during these configurations, certain component
interfaces may be more or less emphasized under different configurations.
Options for different configurations include annotations to indicate interfaces
emphasized or de-emphasized by each configuration. Utilizing well-known
configuration names is useful to support these annotations. Another approach
is to once again capture several views, one or more per configuration, each
showing how different aspects of the static view are involved in each config-
uration. As the UML evolves, other approaches to solving the problems of
dynamic and configurable components may be found.

7.6 Recommended Reading

Hofmeister et al. (1999) describe a conceptual architecture view for modeling
components. Their system enables the description of components, connectors,
ports, roles, and protocols. This is a more detailed sort of modeling that may
be useful for message-based systems. However, Hofmeister et al. apply this to
‘conceptual components’ that are ‘relatively independent of the particular
hardware and software techniques’. The viewpoints described in this chapter
can be considered a simplified version of the Hofmeister approach, but the
components are not conceptual. We prefer to define ‘preliminary’ components
and evolve them into the final component set. At that point, the preliminary
components are no longer useful. At some point in the implementation, the
actual components identified in the early design should be built and available
for use. Of course, the assignment of functionality to components may shift
over time, and unique combinations of components can be created.

137

138

Component Design and Modeling

The Jacobson paper (1995) discusses the system of systems approach. It is
also discussed in the UML User Guide (1999).

Hofmeister et al. (1999) also discuss the concept of ports. However, they
include both operations and messages in the port definition. We have found
these to be fundamentally different, and therefore require separate modeling
elements.

In his PHD thesis Component Interaction in Distributed Systems, Nat Pryce
(2000) has defined an architecture description language for modeling compo-
nents.

Kruchten’s (1999) book on the Rational Unified Process has a good discus-
sion of component-based development.

Subsystem Design

As Fowler suggests, ‘Packages are a vital tool for large projects. Use packages
whenever a class diagram that encompasses the whole system is no longer
legible on a single letter-size (or A4) sheet of paper.” Fowler’s standard would
almost certainly guarantee the extensive use of packages for most system
development, especially large-scale systems. Our recommendation is to focus
on the subsystems, which are similar to packages but have a few additional
constraints. As discussed in Chapters 11 and 12, the partitioning of classes
into subsystems and managing the dependencies between these subsystems is
a key focus of the software architect.

Subsystems define design/build-time system structure, interfaces, and depen-
dencies. The subsystem viewpoints described in this chapter provide informa-
tion on the system’s build-time and organizational dependencies. These views
are especially critical to the implementation teams, as they will document the
static software structures.

8.1 Terminology

In order to accurately model the entities and relationships at subsystem level,
the terminology must be well understood. In addition, the relationship be-
tween UML packages and subsystems, and the corresponding build-time
software development concepts, must be clearly defined. These concepts
include package, system, and subsystem.

The UML User’s Guide defines a package as a collection of model elements.

140

Subsystem Design

All model elements, except for the top-level system package, must be con-
tained within a package. These elements include classes, interfaces, compo-
nents, nodes, collaborations, use cases, and other packages. These model
elements are owned by the package. That is, they are deleted from the model
if the package is removed. Packages can have model elements that are hidden
from other packages and others that are visible. The visible model elements
are usually the interface classes within the package.

A system is shown graphically as a stereotyped package, and is a represen-
tation of the entire scope of the development effort. A subsystem is a part of
the system and, as with the system, is shown as a stereotyped package. The
subsystem is important because this is the level at which design work products
are to be assigned to development teams. Subsystems should map to the build-
time directories that will be developed, tested, and delivered by the respective
development teams. To ensure maintainability it is desirable to have subsys-
tems that exhibit high cohesion and low coupling. If the coupling is inap-
propriate, the development teams will expend unnecessary time and effort
negotiating, developing, and delivering interfaces between the highly coupled
subsystems.

Subsystems are typically the lowest-level entity for which the software
architecture team manages interfaces. In addition, a subsystem is the unit for
which design documentation will be produced. This means that if a subsystem
team identifies lower-level subsystems, that software development team, not
the architecture team, will manage these interfaces. Conversely, multiple
subsystems may be assigned to a development team, but should be designed,
developed, and tested separately. In addition, each subsystem should have the
subsystem-level interfaces and design managed and reviewed by the software
architecture team.

Subsystems are also the unit at which testing is performed. Automated test
suites are often developed at this level. As issues are isolated, defects are
usually assigned to subsystem teams for resolution. Often integration teams
use subsystems as the unit of delivery for documentation, source code, test
reports, and other delivery products.

The UML User Guide also refers to modeling large development efforts as a
system of systems. In this approach, each subsystem may be considered the
system under design. This means that many of the architecture processes and
techniques we describe can be applied at the subsystem level, given the
subsystem is of sufficient complexity.

Another technique to help abstract a system design is the use of layers.
Layers decompose the functions of a software system into clearly defined
groups where functions of the higher layers depend on functions of the lower

Modeling Subsystems, Interfaces, and Layers

layers. There are many variations on layering, including strict layering,
relaxed layers, and inheritance across layers. In all cases, however, the higher
layers depend on the lower layers. Some of these semantics are detailed later
in this chapter.

The practical implications of layers are many. For example, layering can
enhance the portability of the architecture. To port a layered architecture from
one platform to another is simplified because there is a natural division of
effort and order inherent in the design. Layers also provide additional support
for the minimization of software by skipping builds of lower layers when they
have not changed. Finally, layers facilitate communication by allowing the
suppression of detail.

8.2 Modeling Subsystems, Interfaces, and
Layers

Subsystems and layers are two fundamental tools for structuring large-scale
systems into smaller, more manageable parts. As described earlier, a subsystem
groups related classes and other elements into an entity that can be indepen-
dently designed, developed, managed, and tested. The decomposition of soft-
ware naturally leads to the creation of dependencies between subsystems. The
following sections will describe the modeling of subsystems, layers, and
subsystem interfaces.

Dependency management and interface development are some of the funda-
mental tasks of architecture development. Dependency management is funda-
mental because it directly impacts the changeability and testability of the
system. A system where many subsystems are co-dependent quickly becomes
difficult to change because every modification potentially requires rebuilding
and retesting of all the subsystems. In addition, the process for negotiating
subsystem and component interface changes becomes insurmountable. This
problem has been described in the Big Ball of Mud Pattern. Conversely, an
architecture without codependent subsystems is much more changeable since
the impact of a change is localized. In fact, moving classes and functions
between different subsystems is probably the most critical task of the architect
and architecture team.

8.2.1 Subsystem Interface Dependency Viewpoint

Often the visualization of dependencies is helpful in developing an under-
standing of the system structure. Subsystem Interface Dependency Views

141

142

Subsystem Design

(Table 8.1) provide the tools for recording, exploring, and managing the
overall system dependencies.

Table 8.1 Subsystem Interface Dependency Viewpoint

Subsystem Interface Dependency Viewpoint

Purpose Describe subsystem dependencies and interfaces. Will most likely be
one of these for overall system, potentially one for each top-level
subsystem complex enough to require a view of its own.

When Applicable ~ During system design and development, as subsystems are identified.

Stakeholders Project and Development Managers (primary stakeholders for top-
level subsystem views), Architecture Team, Development Leads,
Test Team.

Scalability Can be focused on individual subsystems or scenarios. Layers also

provide for hiding of detail.

Relation to Other These views should be consistent with the Layered Subsystem View.
Views

A common strategy in large systems is to provide one or several views for
each major subsystem where the ‘focus subsystem’ is treated as the center of
attention. Related subsystems are placed around the subsystem of focus.
Figure 8.1 illustrates a basic Subsystem Interface Dependency View. The
billing subsystem is the focus and the view is filtered such that only subsystems
on which it depends are included. In this view, interface dependencies are not
illustrated. That is, if a subsystem exports multiple interfaces, this detail is not
shown.

A variation of the Subsystem Interface Dependency View includes the
interfaces exported by a particular subsystem. As shown in Figure 8.2, the
billing subsystem is still the focus and the dependencies to the interfaces of
some of the related subsystems are illustrated. This clarifies that the actual
dependencies between subsystems are only to specific interfaces. This distinc-
tion may be important if an interface would be better provided by a different
subsystem.

Ports are usually not included in a Subsystem Interface Dependency View.
This is because port usage does not necessarily imply a dependency between
subsystems. The use of ports in component views is described in detail in
Chapter 7.

Modeling Subsystems, Interfaces, and Layers

Figure 8.1 Subsystem Interface Dependency View — focused on billing

8.2.2 Enhancing the Subsystem Dependency Views with layers

Layering of software systems is a highly successful design strategy. Almost all
modern software systems are composed of multiple layers, with most having
several clearly identifiable layers. Including layering information can enhance
the Subsystem Interface Dependency View. This provides additional informa-
tion about the structure of the system as related to a particular subsystem. In
Figure 8.3, the containing layers illustrate the structure of the subsystems
upon which the billing subsystem depends.

Layers can also be used to suppress detail in complex views. In Figure 8.4,
the focus is changed from a particular subsystem to a scenario. In addition,

143

144

Subsystem Design

Figure 8.2 Subsystem Interface Dependency View — focused on billing

the ‘information level’ has been decreased by suppressing all interface depen-
dencies and moving dependencies on lower layers up to the layer level. The
view loses the detail of which lower-level subsystems are depended upon by
the higher layer subsystems, but is simpler to create and maintain.

8.2.3 Top-level Dependencies

A top-level version of the Subsystem Interface Dependency View may be
created by combining a set of subsystem centric views. The purpose of
this variation is to describe the ‘organizational interfaces’. This allows the

Modeling Subsystems, Interfaces, and Layers

Figure 8.3 Subsystem Dependencies with layers

software architect to communicate development team boundaries, communi-
cate and negotiate interfaces between development teams, and communicate
with project management. Due to this focus, this variation of the view
typically omits infrastructure and off-the-shelf subsystems.

Figure 8.5 illustrates a top-level view for the banking example. Notice that
the subsystems from the foundation layer have been omitted. Interfaces that
are shown in the detailed views of the system or in the subsystem-centric views
can be collapsed in this top-level view. For example, the validation and query

145

146

Subsystem Design

Figure 8.4 Subsystem Interface Dependency View — use case focused, with layers

interfaces on the Customer subsystem have been combined here to simplify
the view.

8.2.4 The Layered Subsystem Viewpoint

The Layered Subsystem Viewpoint organizes subsystems into layers in order
to provide a single view that represents the entire architecture. This view is an
adaptation of the Subsystem Interface Dependency View that uses layering
and suppression of details to provide an overall view of the architecture of a
large system. Traditional architecture documents often include a layered view
of the system. These are easy-to-understand views for non-software experts.
However, these ad-hoc diagrams are not drawn consistently and therefore do
not provide significant technical information about the architecture. The
Layered Subsystem Viewpoint (Table 8.2) builds on this tradition by adding
dependency semantics for the technical teams while maintaining the easy-to-
understand form of traditional layer diagrams.

For the software developers the Layered Subsystem View concisely repre-
sents a critical aspect of the software architecture: build-time dependencies.
Specifically, subsystems in higher layers depend on lower layers but not the
other way around. The Layered Subsystem View is used as a fundamental
representation of the software system design and build-time architecture.

Modeling Subsystems, Interfaces, and Layers

1
<<subsystem>> [——————— = |
Billing | — 1 |
| |
— | |
<<subsystem>> | I [
Advertisin
- — |
e A <<subsystem>>
| | Customer :
| <<subsystem>> P |
| Authorization | . _ _ _) Validation / |
| | Query
I Auth | e _ '
I et | ' :
| I ————————
I Sttt | | [
LI R — | '
<<subsystem>> <<subsystem>>" |_ I
Teller User 2 (>——- Account I
Interface Acct Management P |
Status z
1 LT 1
<<subsystem>> | = [T T === <<subsystem>>
Voice Interface Acct Accounts
Info
— Transaction
- T
<<subsystem>>
r >0 Loans : I
: Status / === :
<Zsubsystemss | Update | —)
Loan <<subsystem>> <<
subsystem>>
Management ATM User uStgcks
Interface

Title: Top-Level Subsystem Interfaces
Type: Subsystem Interface Dependency
Date: 2002-Nov-1

Responsible: Garland / Anthony

Figure 8.5 Top-level Subsystem Interface Dependency View

Extensions of this view can be used to communicate multiple system aspects
to different project stakeholders.

Figure 8.6 shows some of the possible dependency semantics of the Layered
Subsystem View. These semantics are important primarily for development
teams and the architecture team. We include this diagram to illustrate
the semantics of the Layered Subsystem View. It will not be part of any
architecture or design documentation. For very large systems that share

147

148

Subsystem Design

Table 8.2 Layered Subsystem Viewpoint

Layered Subsystem Viewpoint

Purpose Provide top-level view of the subsystem and layer build-time
architecture.

When Applicable Throughout project lifecycle.

Stakeholders Program and Project Managers, Software Architecture Team,

Development Team, Test Team, Customers.
Scalability Onmits detailed dependency information.

Relation to other Views Abstraction of the Subsystem Interface Dependency View.

Figure 8.6 Layering semantics — formal and relaxed

common foundational components a relaxed layering approach is a practical
arrangement. In small systems or within a restricted context, a formal layering
semantic may also be achieved.

Figure 8.7 provides an example of the Layered Subsystem View. The lowest
layer consists of third-party subsystems such as database and user interface
libraries. The second layer represents subsystems maintained by the project to
simplify common programming tasks. The third layer consists of subsystems
that provide components specific to the problem domain. Finally, the top layer
provides application subsystems realized by utilizing and often extending the
functionality in the lower layers. This example does not represent the only

Modeling Subsystems, Interfaces, and Layers 149

Figure 8.7 Layered Subsystem View

possible set of layers. A system may have a larger or smaller number of layers
and may also have different logical relationships. The guiding principle,
however, is that the upper layers should depend on the lower layers and not
vice versa.

150 Subsystem Design

Figure 8.8 Layered Subsystem View with language and phasing annotation

Mapping Subsystems and Layers to Implementation

One issue in the construction of the Layered Subsystem View is whether to
allow dependencies within a layer. The resolution of this issue is really
determined by how layers are defined. In some systems, it may be possible and
desirable to create a totally ordered set of layers. In this case, dependencies
between subsystems in a layer would not be allowed.

Supplementing the Layered Subsystem View with dependency tables
or other subsystem-level dependency mechanisms is valuable so that the
details of individual subsystems can be explored as needed. The Layered
Subsystem View can be used as a starting point for more detailed dependency
exploration.

Architects are frequently asked to provide managers and others with
auxiliary information about the software. The Layered Subsystem View can
provide a handy vehicle for communicating such information. For example,
Figure 8.8 provides an example of the Layered Subsystem View annotated to
describe the languages used to implement various elements of the system. In
addition, shading is used to highlight subsystems that have deliveries as part
of the first phase of development. Many types of information can be
compactly represented using this view. As another example, highlighting of
subsystems that will be developed internally versus those that will be
purchased or subcontracted.

8.3 Mapping Subsystems and Layers to
Implementation

The following sections describe some details of how to map subsystems,
layers, and components to the final implementation.

8.3.1 Subsystems, layers, and build trees

In large projects, we recommend that layers and subsystems map directly to
the build-time implementation structure of the project. A subsystem in the
design is realized as a subdirectory of the same name in the source directory
tree. A subsystem directory should contain a set of common subdirectories to
manage the products of subsystem development, including source code,
subsystem test suites, and documentation. Subsystems can also be composed
of other subsystems as needed. If layers are used in the architecture, they are
also reflected as a directory in the implementation. The layers serve as the top-
level set of directories in the hierarchy.

Figure 8.9 illustrates a mapping of layers and subsystems to the

151

152

Subsystem Design

Figure 8.9 Mapping layers and subsystems to a directory structure

development directory structure. Note that the directories for third-party
subsystems often do not physically reside within the directory tree, but may
use linking to appear as though they reside there. In addition, some projects
may find the use of multiple trees preferable. This diagram is used for
illustration purposes only. It is not intended to become an actual architecture
view.

We also recommend a direct reflection of the subsystem architecture in the
source code. A best practice is to have ‘include’ paths that match the layer and
subsystem structure. For example, in our example system for a C++ module to
access the date class in the date-time subsystem of the ‘foundation’ layer the
programmer would write:

#include “foundation/date-time/date.hpp”

Mapping Subsystems and Layers to Implementation

The benefit of this approach is that the architecture of the system is directly
reflected in the source code. This helps implementers learn and grasp the
overall system organization.

The alternative is to remove these details from the source. In this case, the
build system is used to manipulate the inclusion paths such that the program-
mer only writes:

#include “date.hpp”

While this is shorter, it conveys much less information. The downside of the
explicit approach is that if the subsystem organization changes (say by
renaming a package), much more source code is impacted. However, such
changes are mechanical and can be easily automated with a script.

8.3.2 Subsystems and components

In the UML, it is technically possible to develop views with components and
subsystems together. We recommend against this approach. The issue stems
back to the definition of a component and the relationship between compo-
nents and subsystems. In our definition, components are runtime instances
while subsystems are a build-time structuring technique. Therefore, the only
relationship that makes sense is that a subsystem ‘builds’ a component. As a
result, each component has a corresponding subsystem, called the subsystem
of origin. The component is not in the subsystem of origin, but rather is a
result of building, installing, and executing that subsystem. To describe both
the build and runtime aspects with components only, we would need to have
‘build-time’ components and runtime components with the same name. We
prefer to avoid this entire issue with appropriate subsystem naming and
comments that explain relationships.

Figure 8.10 illustrates the conceptual relationship between a subsystem and
a component built by that subsystem. This diagram is here for illustration
only and is not an architectural view. In addition to being built by a
subsystem, a component also has an instance of an interface that was defined
for its subsystem of origin. Similar to the naming conventions for subsystems
and components, the interface on the subsystem and the one on the compo-
nent will have the same name. It is important to note that a subsystem can
build one or more components.

153

154 Subsystem Design

Figure 8.10 Subsystem and component conceptual relationship

8.4 Recommended Reading

Hofmeister et al. (1999) discuss modularization and layering design.

Buschmann (1996) describes Layers as an Architectural Pattern. He also
describes the different variations of the semantics of layers, including strict
layering, relaxed layers, and inheritance across layers.

This Layered Subsystem View is similar to the ‘Tiers View’ suggested by
Doug Smith (2000), except that the layered subsystem view does not attempt
to represent dependencies explicitly.

The Layered Subsystem View was initially presented as the Layered Package
View by Garland (2001).

Lakos (1996) describes package groups, dependencies, and many other
aspects of architectural structuring for large C++ implementations.

Transaction and Data
Design

This chapter provides an overview of architectural issues and viewpoints
surrounding the development of data models and transactions. Since this topic
could consume an entire book we focus on the highlights here and provide
suggestions in the recommended reading for further study. In this chapter we
focus mostly on the logical aspects of the data design. Physical deployment
topics such as data distribution and backup are discussed in Chapter 10.

9.1 Logical Data Architecture

The logical data architecture describes the form or structure of the entities,
data relationships, and constraints used in the software. The logical data
architecture is often referred to as the data schema or logical data model. We
will use these terms interchangeably here and will shorten logical data model
to data model for this chapter.

A data schema has two main applications: persistent storage and messaging.
For modeling messaging, the data schema definition would define the indivi-
dual messages and their relationships, primarily in a hierarchy of message
types. In the case of modeling the data schema for persistent storage, the
relationships between the data schema and their mapping to persistent storage
mechanisms become more important.

The data schema may be modeled as a conventional object model or using

156

Transaction and Data Design

entity-relationship (ER) models. In this book, we will focus on using a UML
approach. We find the UML notation to be a sufficiently rich representation of
the entities, their relationships, and constraints. The data schema will be
represented as UML classes with attribution. Methods are generally not
applicable for the data architecture.

An entity relationship model may be preferred if the project makes wide-
spread use of relational databases and has a significant investment in and
experience with ER modeling tools. However, ER models are not as effective
for non-relational data, including storage schemes such as files and object
databases. In addition, the wide use of technologies such as shared memory is
another reason to use a technology-neutral approach such as the UML for
modeling the data schemas. Finally, very complex object models are often
quite difficult to implement using relational databases.

The logical data architecture can be developed by a dedicated group of data
architects, by other members of the architecture team, or by the subsystem
design teams with oversight by the architecture team. In large-scale systems, a
combination of these approaches is often used. Aspects of the data architec-
ture that cross subsystem boundaries should be defined by the architecture
team and data used entirely within the subsystem should be defined by the
subsystem team.

An Unhealthy Split

In our experience, there has been an unhealthy split of data modeling and
object modeling with the widespread adoption of object-oriented design
techniques. Object-oriented advocates suggest that data and behavior must
always be combined. However, there are important aspects of large systems
that are best designed viewing ‘data as just data’. Similarly, database
designers insist on ER modeling even though an object model will suffice. In
addition, database designers often develop stored database procedures to
achieve complex system behaviors when this functionality should be part of
the application software. On the other hand, application designers hard-
coding duplicate data integrity constraints into application code creates
problems as well.

In the end, there is not one right answer. It is important to realize that
redundant models, disjoint teams, and squabbling over turf won’t move the
project forward. Team members need to cross-train in the various techni-
ques and technologies and keep an open mind. In addition, the architecture

Logical Data Architecture

team should ensure that data architecture is developed in an appropriate
manner.

9.1.1 Logical data model stability

Once a system is deployed, the impacts of changing the data model are severe.
These changes often impact the budget, schedule, testing, and customer inter-
face.

To see why modifications are difficult, consider the possible types of data
model changes:

¢ Add or remove a class

e Add or remove an attribute from a class
e Change an attribute type

e Move attribute to different class

e Restructure a class hierarchy

With perhaps the exception of adding a new attribute, all of these data
changes can create major deployment issues for a system. Almost all will
require upgrading the existing data, the schema, and the software. This might
not be feasible because the new attributes may require some additional
information that is not easily obtained. For example, in the banking system
there is a need to collect customer information. If email is added as a new
attribute, then there is no way to obtain that information easily without
contacting all of the customers.

Additional server hardware, networks, and specialized utilities or programs
are often required to migrate data from one form to another. This migration
requires extensive testing to ensure the resulting data is correct. In addition,
the software may be required to support multiple versions of the data to be
able to operate during the migration.

In environments that support continuous software operations, both the old
and the new versions of the data may need to be available simultaneously.
This is because it may not be possible or desirable to upgrade all program
components at once, so both forms must be available simultaneously. This
makes additions or major modifications to the data much more difficult.
Similarly, if a fall-back capability is required during migration, the data in the

157

158

Transaction and Data Design

old form may need to be kept consistent with the data in the upgraded form.
Both versions need to be kept synchronized to allow for the situation where
the new software fails and the old system needs to be restored.

Attempts to avoid direct dependence on the data model by inserting a
procedural layer to encapsulate access to the data do not necessarily help. If
this layer is required to support multiple versions of the data interface, now
both the application code and the interface layer must change when the data
model changes. Changes to the content of the data model will nearly always
impact application code. However, a set of infrastructure code to insulate the
application developers from the database mechanisms such as session man-
agement and transactions can be used to limit dependencies on product-
specific database mechanisms.

Finally, there is the issue of retesting. Changes to an underlying data model
typically impact systems by forcing full regression testing to ensure the change
has not broken existing functionality. This type of testing can be prohibitively
expensive to do well. This reason alone may cause data changes to be blocked
by project management.

9.1.2 Effecis of the stable logical data model

Due to the problems introduced by changes to the data model, it is essential to
explore and refine the data model early. The aspects of the data model likely
to change need to be identified early in the development process. In this way,
the alternatives can be analyzed and potentially prototyped so a decision can
be made before the migration issues become a problem.

The stable nature of the data model makes it imperative that the architec-
ture team actively participates in the development of the data architecture.
This participation should include frequent technical meetings and reviews to
determine the current state of the data architecture as well as approval of the
architecture itself. The stability of the data model can also provide several
advantages. For example, a stable data model can facilitate the rapid and early
development of custom reports. In addition, the data model is one aspect of
the design that can become well understood by many team members. This
shared understanding provides a basis for communication about the shared
portion of the underlying model utilized by the software.

A stable data model also makes a good basis for integration of components,
described as data-only integration in Chapter 11. The Repository and Black-
board architecture patterns are examples of utilizing a stable data model for
data-only component integration. Another effect of the data-only integration

Logical Data Viewpoint

approach is that it often allows for the addition of new disparate functions
using new technologies without impact to existing systems. These new func-
tions can be added much more rapidly than might be possible if the existing
system had to be modified.

Data models for messaging have somewhat fewer restrictions on their
stability than data models for database or file-based data. This is primarily
because messages have fewer complex relationships and as a result the impacts
of modifications tend to be more isolated. In addition, messaging systems can
often be more flexible in handling messages with varying format. This is
especially true if the messages use a self-describing format, such as XML or
attribute value pairs. However, if the messages are stored in a compact or
binary format, the constraints on their stability are much more restricted.

A pitfall to avoid in logical data architecture is taking an incremental
deployment approach with a large-scale data model. An incremental approach
can be taken during early iterations, but once systems are deployed, all the
aforementioned issues with changing the data model become relevant. Incre-
mental deployment can only be achieved if the new elements of a data model
are independent of an existing core data model.

9.2 Logical Data Viewpoint

The Logical Data Viewpoint (Table 9.1) provides an overview of all the major
data entities in the system. The Logical Data Viewpoint is a UML class
diagram focused on modeling attributes and relationships rather than meth-
ods and behavior. This view does not need to include all data entities, only
those that are shared by multiple components or subsystems. The entities from
the Analysis Overall View can serve as the foundation for the Logical Data
View. Alternatively, for reengineering tasks an existing database schema,
message types, or file contents might serve as the basis for building this view.

Table 9.1 Logical Data Viewpoint

Logical Data Viewpoint

Purpose Describe the logical form of data and messaging types for a system.
When Applicable Design.
Stakeholders Architecture Team, Developers, Testers, Hardware Architect.

Relation to other Derived from Analysis Overall View.
Views

159

160

Transaction and Data Design

A typical application of the Logical Data Viewpoint is to create a view of
the entities shared among a set of collaborating components. The data entities
serve as a point of integration for these components. The data sharing
mechanism may use a persistent store such as a database, message passing, or
shared memory.

While this viewpoint applies to data views both for messaging and for
database or file storage, the views for these two types of data can be quite
different in appearance. The views for database or file storage can be quite
complex, with a heavy dependence on aggregation and associations. The
views for messaging models will be much simpler with little, if any, use of
associations and aggregation.

9.2.1 Logical Data View example

Figure 9.1 shows a partial example of a Logical Data View. Derived from the
Analysis Overall View, this view has been detailed by defining types for each
attribute. This view focuses only on the attributes of the data model and not
on the methods elaborated during the analysis. The presumption here is that
all the attributes will be available for retrieval and update by clients.

As is customary with views, there is a supporting table that provides
descriptions of the entities. Table 9.2 is an example of this.

Part of the analysis of the overall Logical Data View should include dividing
the entities in the model and assigning them to different subsystems. The
approach generally involves an analysis of the cohesion and coupling of the
various data entities. A similar approach is used for the analysis of
the Analysis Overall View in the determination of the candidate subsystems,
as described in Chapter 12. The process for development of the data view
should be considered an extension of the process for the development of the
Analysis Overall View. The development of the Logical Data View will often
result in modifications to the candidate subsystems.

The logical data design will provide many constraints on the subsystem
design. For example, it is important for the subsystem designers to remember
that data entities with required bi-directional associations usually need to be
created simultaneously. These entities are tightly coupled and should often be
assigned to the same subsystem. Attributes of the same entity are automati-
cally coupled.

The assumptions behind attribute coupling need to be examined carefully.
For example, in Figure 9.1 if the program is eventually to be expanded to
support international locations, the location information will need to change

Logical Data Viewpoint 161

Figure 9.1 Example subset of Logical Data View

Table 9.2 Partial Entity Description Table

Entity Description

Customer Provides base information about the customer, including name and
social security number.

Account Entry that serves as anchoring point for all account types. Has a unique
id. A customer may have multiple accounts, and an account may be
related to multiple people.

162 Transaction and Data Design

since addresses in Europe do not have a state or zip code. In addition, the
email address in the existing view must be created along with every location.
In addition, many customers may have several email addresses at the same
location, and an email address for a portable device like a mobile phone that
doesn’t really relate to a location. Figure 9.2 is a refactored data model that
accounts for these issues.

Figure 9.2 Refactored Logical Data View

If the data in the repository or message set is only accessed and used within
a single subsystem, then this data becomes part of a subsystem design. This

Data Model Design — Other Considerations

also includes data that is adapted by the subsystem to be communicated on an
external interface and not accessed directly by the external subsystem clients.
However, some core parts of the domain model may be so critical to the
overall system operation that they are treated as system infrastructure and will
often be modeled by the architecture team. As an example, the customer or
account id will be used as a key field for looking up different types of data
associated with a particular customer. Thus, the generation and assignment of
the key values is an issue that needs to be addressed by the architecture.
Without a consistent approach, integration of components will be difficult.

As another example, in the banking system there are several different
identifiers that should be accessible to retrieve the customer information. The
home phone number, for example, might be matched by the voice response
system to perform an initial lookup of the customer. Similarly, an account
number or last name might be used interaction with a customer represen-
tative.

9.2.2 Logical Data View for messaging

As described earlier, the Logical Data View can be used to represent messages
as well as persistent data. Messages are generally much simpler than persistent
classes, in that they have fewer complex associations and aggregations. How-
ever, they often have a rich inheritance hierarchy. This allows messages to be
sent, received, and routed to message handlers by general-purpose frame-
works that deal with the base classes rather than the derived classes.

Figure 9.3 shows an example of a Logical Data View for messages in the
banking system. In this model, there is a base message type and several derived
types. A group of these message types can be used as the schema for a
component data port as described in Chapter 7. The class Message in the
diagram forms an abstraction upon which message routing components may
be built. The usual description table that accompanies views is omitted for
brevity here.

9.3 Data Model Design - Other Considerations

The following sections briefly describe other data model considerations. This
includes the interaction with layering, use of reflection for dynamic data
models, and mapping objects to relational databases.

163

164

Transaction and Data Design

«Entity»
Message

source: string

«Entity»
Alarm

alarm id : unsigned
cause : string
diagnostics : string

«Entity»
Statistics

«Entity»
Status

Category : string
Stat : unsigned

Category : string

«Entity»
Descriptive
Status

«Entity»
Measurable
Status

status : string

status : unsigned

«Entity»
Process Alarm
pid : unsigned «Entity»
host : Hostld Device Alarm
dev type : ID

Title: Message Hierarchy

Type: Logical Data View

Date: 2002-Nov-1

Responsible: Garland / Anthony

«Entity»
Component
Alarm

compid : ID

Figure 9.3 Message-based Logical Data View

9.3.1 Data models and layers

Several of the layering strategies for systems interact with the data model. For
example, in the Model-View—Controller Pattern the data model is usually a
large part of the model layer. Many of the entities in this model layer are often
either stored in a persistent store or transmitted in messages. This model layer
is similar to what we call the ‘Domain Layer’ in the Layered Subsystem View

in Chapter 8.

Data Model Design — Other Considerations

Figure 9.4 shows an example layering strategy. All of the subsystems
associated with the data model form the core of the architecture. Modifica-
tions to these subsystems will naturally be the most expensive, potentially
requiring changes to the upper layers of the architecture to match with the
data changes. In contrast, modifications to the view and control have less
impact.

—
<<layer>>
Controller
I
|
|
— Y
<<layer>>
View
I
|
|
<<layer>> |
Model Vi
I I —
<<subsystem>> <<subsystem>> <<subsystem>>
Customer Billing Authorization
I 1 I 1
<<subsystem>> <<subsystem>> <<subsystem>> <<subsystem>>
Accounts Stocks Loans Advertising

Figure 9.4 Example layering strategy

9.3.2 Data models and reflection

Reflection is a technique that allows systems to provide for flexible data
models by providing the software the ability to interrogate the schema at
runtime and adapt accordingly. Databases have provided this ability to
interrogate the data schema for many years. However, the addition of
reflection to languages such as Java makes the implementation of reflection
techniques much more feasible. Generally reflection facilitates the implemen-
tation of infrastructure software that provides mechanisms for marshaling,
parsing, and serialization of data. Without reflection, the creation of the
infrastructure software often involves tedious and repetitive programming.

165

166

Transaction and Data Design

Reflection is an important architectural design strategy that can used to
improve the adaptability of systems. However, it is important to realize that
reflection by itself doesn’t solve the data evolution problem. In particular, all
the issues of evolving existing data content still exist.

There are other costs as well. Using reflection often hides software depen-
dencies between components from the build system. Errors that might be
found by compilation errors in a system based on reflection must be found at
runtime. For example, if a field is removed from a message in a messaging
system based on reflection, the consumers of the message that process the
removed field will compile without error but may not execute correctly.
Designing and developing software that can adapt to any potential change in
the data structure is nearly always a difficult task.

In addition, using reflection in the architecture doesn’t eliminate the need to
model the data. If two components are interchanging messages, the content of
those messages still needs to be defined. For example, the information that is
to be saved for each customer must still be understood. If two different system
components are going to access the same customer data, then the model is
shared and it must be understood whether or not reflection is employed.

Code generation can often be used in place of reflection as a means to
alleviate the tedious and repetitive programming for data-dependent infra-
structure. In this approach, the structure of the data provides a means for
generating the infrastructure specific to that data. For example, an XML
schema can be used as input to a code generator that produces related
infrastructure code.

9.3.3 Mapping obijects to relational database

Mapping objects to a relational database is a common architectural issue
today because of the extensive use of object-oriented design and relational
database systems. As a result, there are many tools and frameworks to
support mapping of objects to databases. Unfortunately, the details of this
topic are more extensive than can be covered in this book. Here, we will focus
on a few major considerations useful for addressing this issue.

One issue when mapping objects to relational databases is that objects are
generally referenced based on a unique identifier. Examples of these identifiers
include the physical memory address of the object or an identifier generated
by an object database. Relational database records are often referenced based
on a key, which consists of one or more field values. This basic difference can
be problematic when defining a mapping strategy. When mapping objects to

Data Model Design — Other Considerations

relational databases, a scheme for creation of unique identifiers as a field in
the record may be utilized. As an alternative, database key values can be
stored as object attributes to provide a mapping mechanism.

Unique identifier generation schemes must often be employed in a system to
provide unique identifiers for the objects. Object-oriented databases generally
provide this capability as part of the facility. Many relational databases also
provide a similar capability for providing unique identifiers.

Another basic issue in schema mapping is the relationship between the
object model and the tables that implement the model. First, there is the issue
of attributes. A primitive attribute is a simple data type such as a number,
string, or time that can be directly represented as a single column in a database
table. For each primitive attribute in the object model, there must be a
corresponding column in a database table.

There are at least three major approaches for mapping tables to classes:

¢ One table for each class
e One table for each concrete class
e One table for all classes

e Several tables representing a generic data model

When one table per concrete class is employed, any inherited attributes are
mapped into the table for the concrete class. If a single table is used many null
fields are employed for attributes that do not apply. A generic data model uses
reflection (discussed in a later section) to represent all classes in a uniform
fashion.

Note that the following diagrams use a specialized icon to represent a table,
which is a stereotyped class. In addition, these diagrams are not a view, but
simply an illustration.

Figure 9.5 illustrates a simple strategy of mapping the attributes of each
class to a table. The derived class gets attribute values from both the Base and
Derived tables. To reconstruct a derived class instance requires the joining of
the base and derived tables. This diagram provides a simple illustration of the
mapping between classes and tables without requiring the detail of showing
all the columns or attribute names. If a consistent set of naming conventions is
used, the model may not be needed. These naming conventions will allow
designers to easily understand the relationship between the data view entities
and the database tables.

Unfortunately, designs are not usually this simple. The cost of joining tables

167

168

Transaction and Data Design

Figure 9.5 Class to table mapping design

or the overhead of extra ‘id’ attributes may become prohibitive in some cases.
Figure 9.6 provides an example of an alternative design. In this case, there is
only a single table for all the attributes of all three classes.

Base

<<maps to>>

Derived1

Derived2

<<maps to>>

<<maps to>>

Consolidated Table

Figure 9.6 Alternative class to table mapping design

Another issue for object to relational database mapping is managing
relationships between objects. In Figure 9.7, below, class 1 maps all of its
attributes to a single table, class 2 maps all of its attributes to a table, and the
association between the classes maps to a third relational table. The associa-

Transaction Design

Class 1 Class2

<<maps to>>

<<maps to>> <<maps to>>

Class 1 Attributes Class1-2 Association Table Class 2 Attributes

Figure 9.7 Relationship mapping

tion table contains two columns to map the id of a class 1 instance to the id of
a class 2 instance.

9.4 Transaction Design

Another critical architectural design issue is the understanding of transactions
and component interaction concurrency. Understanding and modeling the
transactions of various parts of the system is essential for developing a good
architecture. There are several reasons for this fact. First, poorly designed
transactions can result in incomplete data in the data store. This incomplete data
results in data corruption that can lead to program crashes or at least bad data
presented to users. Improper transactions can result in unrecoverable software
errors, which is obviously undesirable for software that needs to be robust or
highly available. Second, transactions typically span across subsystem, layer,
component, and even process boundaries. Thus, the management of the
transactional state of the data becomes an implied part of the contract for many
operations to behave correctly. The spanning of transactions across components
and layers nearly always makes transaction design an architectural issue.

Several architectural issues typically need to be considered when dealing
with transactions. These include:

e Which component(s) control the transactions?
e How do transactions relate to interfaces?

e Where are the potential concurrency hotspots?

e What are the transaction rates for updates?

169

170

Transaction and Data Design

9.4.1 Transaction concepts

Transactions are a unit of interaction with a persistence mechanism. Most
database systems provide ACID transactions. ACID stands for:

e Atomicity — never partially executed
e Consistency — data never half committed
e Isolation — transactions are independent of each other

e Durability — data can survive process failures

The main advantage of ACID transactions is that they serve as distinct
points where the state of components and processes are saved. Note that a
database system is not required to have a system with ACID transactions.
ACID transactions can be built with plain files. The advantage of the database
system is that ACID transactions are typically built in, thus requiring no
additional effort.

To implement ACID transactions typically requires some kind of data lock-
ing scheme. That is, transactions that manipulate the same data must be
serialized to ensure ACID properties. Locking typically has different properties
for reading and writing. Usually a piece of data can have an unlimited number
of simultaneous readers and up to one writer. However, there are other locking
schemes where any read transaction blocks any write transactions.

An important architectural issue is the unit of locking. Frequently the
physical unit of locking does not match the logical unit of locking. Physical
data modeling is discussed in Chapter 10. For example, if an application needs
to update a customer object it might not be possible to lock only the customer
of interest due to the locking mechanisms of the database. If table, page, or
file locking is used instead of customer object locking, many other customer
objects will be locked besides the customer actually being updated.

A frequent design goal when using databases is to keep update transactions
as short as possible. This allows for multiple components to write to the
database without blocking for significant periods of time. Keep in mind that
not all ‘transactions’ represent a small amount of work in a short period. For
example, in the banking system a billing program might take an entire day to
process a set of customers. The billing cycle is not completed until all the
records are processed. Internally the system may perform many transactions
but if a failure occurs, the system might need to roll back all of the processing.

Some types of systems, such as computer-aided design systems, need

Transaction Design

transactions to version data rather than replace data. In these systems, the
idea of a transaction is separate from the idea of a ‘checkout’ and ‘check-in’.

9.4.2 Modeling transaction dynamics

Transactions may be modeled for several reasons. These include the need to
understand and document complex transactional semantics, and as input to
the development of component interfaces. Given the need to model transac-
tions, the question arises how best to model them. The first step is to begin to
understand where transactions fit into the dynamic model of the system. To
model the dynamics there are at least two approaches, one for analysis and
one for component interactions. The Component Interaction View is the
component perspective on the transaction, where the Analysis Interaction
View is the user perspective on the transaction.

Figure 9.8 shows a technique for annotating transactions in an Analysis

Figure 9.8 Analysis Interaction View of transactions

171

172

Transaction and Data Design

Interaction View. Here the transaction start and end are simply annotated
using comments and attachment lines. This notation is appropriate in Analysis
Interaction Views because including transaction servers during analysis creates
unwanted implementation entities.

Difficulties in Modeling Transaction Issues

As you can see, we think that the modeling of transactions, whether at the
conceptual or at the implementation level, is important to the software
design. Unfortunately, figuring out the best way to do this with the UML is
difficult. While interaction views can be annotated, as we show in this
section, this notation provides only limited help in understanding architec-
tural issues such as concurrent locking and data inconsistencies.

Consider the case of concurrent locking issues. To understand this issue
requires an understanding of which data entities are locked, what type of
lock is acquired (e.g., read, non-blocking read, or write), and how long the
lock will be held. A design that has many client components that perform a
blocking read might prevent components that need to update an entity from
obtaining an appropriate lock. There is no single view that succinctly
represents all the information needed to analyze this issue.

While the Component View and Interaction Views we recommend here
are helpful, understanding and addressing these issues is still left to the
designers.

Figure 9.9 shows an example of a Component Interaction View annotated
with transaction information. Tagged values indicate the transaction mode
and a transaction identifier. The identifier becomes relevant when modeling
nested transactions and abort scenarios. The only real issue with this
approach is that an additional entity must be added to the view just to denote
the transaction start and end.

It is clear that the dynamic model can provide a start at answering the
question of which components are responsible for managing transactions.
However, this model by itself does not answer the issues about potential areas
of concern with respect to concurrency and transaction rates. To answer these
issues, it is necessary to derive this information from use cases or requirements
or by asking stakeholders about the scalability of the system.

Transaction Design

Figure 9.9 Explicit transaction start and commit

9.4.3 Transactions and interface design

A major issue in interface design is whether the transactions are explicit for
the client or hidden from the client. For example, if a client is making small
individual queries to the database, then each query can have an embedded
transaction begin and end. In this way, the client is insulated from knowledge
that the transaction exists. However, if the client is about to make several
thousand queries, then the performance impact for beginning and ending one
transaction for each query may be prohibitive. In this case, the interface
should allow the client to control the beginning and end of the transaction.
Additionally, the client may need to control transactions for purposes of
defining appropriate rollback strategies.

One of the main reasons it is desirable to hide transactions behind an
interface is that it is typically difficult to avoid client components from
depending on the transaction implementation mechanisms. For example, if

173

174

Transaction and Data Design

the server uses a particular database, the client code that controls transactions
will become dependent on that particular database’s transactional mechan-
isms. Exporting this type of implementation detail is the kind of dependence
that makes software change difficult. One solution is to provide an abstract
transaction mechanism as part of the architecture that clients and servers can
use instead of direct dependence on the particular database.

The following are some of the factors that need to be considered when
determining whether or not to expose the transaction operations to the client:

e Number of objects retrieved

e Is client updating the data, or just reading the data

e Is concurrent reading by one client and writing by another allowed
e s performance an issue

e Which component controls the transaction

e How is transaction error handling performed by the interface and the
clients

e Does the interface need to utilize an initial transaction to copy the data
and a subsequent transaction to merge the data back into the database

9.5 Recommended Reading

Martin Fowler, as part of his Enterprise Application Architecture (formerly
known as Information Systems Architecture) Patterns, describes the patterns
for concurrency including ‘Unit of Work’, Optimistic Concurrency, etc. You
can find this information on the web. One approach described by Fowler that
is especially useful for messaging systems is to use what Fowler refers to as a
data transfer object. This is an instance of a class that consists only of
attributes and methods to access or modify these data members. These objects
are particularly useful for serializing and in sending messages between
distributed system components. This type of entity is closely aligned with the
data architecture entities we discuss here.

Code generation can often be used as an alternative to reflection. Rettig and
Fowler (2001) have a paper with a discussion of reflection versus code
generation.

The data is just data’ quote is the phrase coined by Geoff Buhn in a private
conversation.

Recommended Reading

The use of UML diagrams for documenting database designs can be found
in Naiburg and Maksimchuk (2001). In addition, they add the concept of a
tablespace as a component. This is not consistent with our definition of a
component.

Buschmann (1996) describes Blackboard Pattern. The Repository Pattern is
described in Coplien (1995). Buschmann also describes the Reflection Pattern.

Ambler (1999) has written articles describing issues surrounding object to
relational mapping issues, including techniques for generation of unique ids.
These are available on his web site.

Rational software (2000) has devised a detailed technique for data model-
ing in UML. A paper describing the details is available on their web site.

175

Process and
Deployment Design

This chapter deals with several viewpoints and design topics related to the
design and development of large distributed systems. These topics impact
several architecture attributes, including reliability, ability to upgrade, fault
tolerance, and performance. Enterprise systems, telecommunications systems,
and web systems are all examples of the type of systems that require an
understanding of the topics in this chapter.

The viewpoints described in this chapter include Physical Data, Process,
Process State, and Deployment. Process, Physical Data, and Deployment are
variations of the UML deployment diagram. Also included are two examples
of solutions to common deployment-related problems, a scalable server and
database backup/archive. Views showing process interactions are not shown
here, since they are an extension of the Component Interaction Views
described in Chapter 7.

Some authors consider many of the viewpoints discussed in this section to
be part of the system architecture rather than the software architecture.
However, software development teams must often consider the hardware
aspects of the design, since they can impact the component design and
structure. As an example, there is a direct impact on performance if processing
is distributed as opposed to concentrated on a single machine. It is also
important to remember that several aspects of the hardware, such as speci-
fic hardware configuration information, still remain part of the hardware

178

Process and Deployment Design

architecture and will not be included in the viewpoints of interest to the
software architect.

10.1 Physical Data Viewpoint

The Physical Data Viewpoint (Table 10.1) illustrates the relationship between
servers, components, and data. The physical data organization plays a key
role for operational staff understanding and maintaining an enterprise system.
For software developers the physical data organization can impact software
design and development in several ways. First, it can be critical in determining
the performance and availability of an application. In addition, if the data
storage is a file or an object database, the application logic may be directly
impacted by the need to manage physical data storage locations.

Table 10.1 Physical Data Viewpoint

Physical Data Viewpoint

Purpose To describe the layout of the physical database elements. These views
are annotated with estimates/measurements of database size, growth
rates per factor, and redundancy strategies.

When Applicable During subsystem and component design and development.

Stakeholders Architecture Team, Developers, Operations Staff, Hardware
Architect, Testers.

Scalability Can be focused on a chosen subset of the system or can model the
overall system.

Relation to Other ~ Nodes and databases may also be shown on the deployment view.
Views

The Logical Data View, described in Chapter 9, shows the relationships
among the data entities. These logical views usually stabilize early in the
design process and undergo few changes as the system evolves. However, the
Physical Data View is something that typically evolves more after system
deployment. The physical aspects of how the data is stored and managed tend
to be tweaked in order to optimize the storage and performance of data
access.

Figure 10.1 shows an example of a Physical Data View. This view shows
the set of data stores that are controlled by the main database server node.
Each of the data stores is given a stereotype based on the storage mechanism.

Physical Data Viewpoint

Main DB Node

Customer
Information

<<QODB>>

Stock
Information

Checking
Transactions

Savings
Transactions

Application
Configuration
Data

Title:Main DB Node

Type: Physical Data View

Date: 2002-Nov-1

Responsible: Garland / Anthony

Figure 10.1 Physical Data View

The RDB is for relational databases, OODB for object-oriented databases,
and File for regular operating system files. These three stereotypes utilize a
‘cylinder’ icon to distinguish them clearly from nodes and other components.
This particular view is focused on a small set of the data for the entire system.
Full-scale versions of this view may be produced for a particular system
installation.

10.1.1 Modeling other storage attributes

Besides documenting which databases are managed by a particular server, a
frequent need is to understand the basic parameters that will impact the
performance of the server. Transaction rates, growth rates, and archive
policies have a major impact on the overall performance the server provides.
These attributes of the databases can be documented in an auxiliary table or
can be provided directly on the view. Figure 10.2 shows a part of the physical
database structure annotated with size and growth rates. In addition, several
databases are annotated with the archive policy.

The data growth and archive policies provide insight into the storage
requirements for the system. The largest and fastest-growing databases and
files will require special design attention to ensure that they can be deployed
properly. In addition, they may require distribution which requires deciding

179

180

Process and Deployment Design

Main DB Node

<<RDB>> <<RDB>>

<<RDB>>

Checking
Transactions

Customer Information Savings Transactions
{trans_rate=5/sec
growth=50K/day

archive=hourly}

{trans_rate=200/sec
growth=2K/day
archive=daily}

{trans_rate=50/sec
growth=2M/day
archive=hourly}

TN
<<Q0DB>> <<File>>
Stock Information Application
{trans_rate=10/sec Configuration Data
growth=10K/day {trans_rate=0,
archive=weekiy} growth=0}

N~

Title:Main DB Node

Type: Physical Data View

Date: 2002-Nov-1

Responsible: Garland / Anthony

Figure 10.2 Physical Data View with attributes

how to split up large databases into smaller ones and how that impacts on
server design. For example, managing a database that grows at a rate of
500 KB per day can be a very different from managing a database that grows
at a rate of several terabytes per day.

The transaction rates provide input into the specification of server sizing
and scaling. Databases requiring high transaction rates may require specia-
lized server hardware or may need to be distributed across multiple server
nodes. Several databases with low transaction rates may be assigned to lower
cost hardware or may be combined to use the same database server node.

This same database and attribute information shown in Figure 10.2 is
reflected in Table 10.2. If several Physical Data Views must be produced to

Physical Data Viewpoint 181

Table 10.2 Physical data storage attributes

Database Type Description Backup Trans Growth Archive
name strategy rate rate
Customer RDB Provides basic Replication ~ 200/sec ~ 2K/day Daily
Information customer data Server

records.
Savings RDB Provides Journaling log 5/sec 50K/day Hourly
Transactions information about file and

savings account periodic

transactions. backup script
Application File Provides application File system N/A 0 Daily
Config. configuration backup

information for
various internal
applications.

capture a large number of databases, then the table may be preferable to
creating these views. In addition, the table can represent additional attributes
by adding columns. For example, the table has a backup strategy that is not
shown in the view. If all these table attributes were added to the views, they
would become too cluttered with detailed database attribute information.

Both the table and the view show the archive strategy for each database.
This strategy could involve several levels of archive. The most recent data, a
few hours’ worth for example, might go to an archive server dedicated for
that purpose. From this first level of archive data, another set of data could be
archived every few days to a second-level archive server. From there, a final
level of archive may involve creation of a tape archive that holds several years
of data. In this way, the most recent data would be readily available. Data that
is not as recent would require slightly longer to access, and the oldest data
may take several minutes or hours to retrieve. A deployment view showing a
simple archive strategy, along with a database backup strategy, is shown at
the end of this chapter.

10.1.2 Detailed physical storage modeling

Often large systems utilize multiple storage technologies. Some of these
technologies, such as files and databases, have physical storage containment
hierarchies. These hierarchies may be relevant for several reasons. First, the

182

Process and Deployment Design

hierarchy may need to be managed by the applications or database adminis-
trators. In addition, in some types of databases this hierarchy may relate to
other properties of the database such as locking semantics. For example, in
the case of an object database, the database may lock containers when
writing. In the case where containment hierarchies are utilized, correct
physical organization may directly impact the logical design.

Figure 10.3 shows an example of a Physical Data View of a storage
hierarchy for an object database system. In this example, the object database

Figure 10.3 Detailed storage hierarchies

Process Viewpoint

physical hierarchy is composed of databases and containers. Containers are
important in this environment because they must be allocated by the applica-
tion to avoid exceeding a fixed number of objects allowed in a container. In
the example, a new stock history container is allocated for each trading
session.

10.2 Process Viewpoint

Distributed programs are very complex to design. Many difficult process
intercommunication issues need to be addressed that do not occur in a system
residing in only one operating system process. Examples of these process
intercommunication issues include:

e Order of process startup and shutdown
e Process failure and recovery

e Failure and recovery in inter-component communication within the
process

e Threading allocation and schemes in a process

Proper design of the process and intercommunication aspects of the soft-
ware architecture has a direct bearing on the reliability and fault tolerance of
the system. This design can also dramatically impact the scalability and
performance of the system. To grapple with these issues a view of the process
structure and intercommunication between the processes is useful. The Process
Viewpoint, summarized in Table 10.3, is useful for analyzing these issues.
Process Views are also often useful in reengineering of poorly documented
existing systems. Since existing systems are realized as a set of processes,
building an initial model of these processes and their interactions provides
insight into functionality and its distribution.

Process Views overlap with Component and Deployment Views. If a
Deployment View is developed then a Process View is sometimes redundant.
However, since Process Views do not contain the detail of physical node
mappings, they are often handy if the node mapping does not impact the
design task. In systems that have a one-to-one mapping between processes
and components, the Component View and the Process View are equivalent.

In the Process Views, we are interested in at least some of the following
properties:

183

184

Process and Deployment Design

Table 10.3 Process Viewpoint

Process Viewpoint

Purpose Describe process inter-communication mechanisms independent of
physical hardware deployment.

When Applicable During system design and development. Reengineering of existing
systems.

Stakeholders Architecture Team, Subsystem Developers, Test Team, Software
System Engineering Team, Systems Engineering Team, Hardware
Architect, Project and Development Managers (to a lesser degree),
Operations Staff.

Scalability Supplement with tables indicating access frequency, response times,
data transfer sizes, etc.

Relation to Other ~ This view is an abstraction of a Deployment View that does not

Views include a mapping of processes to nodes. This view is a detailing of
the Component View showing the mapping of components to
processes.

e Allocation of components to processes and threads
e Performance of process intercommunications

¢ Quick startup and restart

¢ Redundancy

e Load balancing

e Minimization of impact on process failure

¢ Handling of communication failures

In process design, it is important to avoid runtime ‘co-dependence’. That is,
two processes that require each other to be available for startup often lead to
process deadlocks. If the architecture has co-dependent processes they should
be combined, or a third process should be created that contains the co-
dependent functionality. Cycles on a Process View may signal the potential for
this process co-dependence.

Figure 10.4 shows a Process View for the banking system. In this particular
system, the Process View is similar to the Component View. The view shows
the various system processes and the communication between the processes.
The arrow indicates the process from which the communication originates.

Process Viewpoint

Figure 10.4 Process View

The arrow points toward the receiving process. To be consistent with UML
conventions, a line with no arrowheads on either end indicates bi-directional
initiation of communication. Alternatively, an arrowhead can be placed on
both ends for bi-directional cases.

Each process in Figure 10.4 has a tagged value that indicates if the process
is ‘transient’ or ‘persistent’. Server processes tend to be long-running processes
that are started and wait for client processes to interact. However, some server
processes may be started on demand to serve a client and discarded when the
client process interaction is completed. Persistent server processes have the
advantage that they can provide faster response since the time to start
the process, perform component configuration, and perhaps cache data is
completed before the client request. Client processes that are initiated by a
user are inherently transient processes. Client processes can also be started by
a process management component within the system. These are also generally
transient.

In this view, the ‘Info Server’ and ‘Database Server’ processes are the most
critical processes since all other services ultimately require them to receive
customer information. However, the ‘Info Server’ process is a single process

185

186

Process and Deployment Design

that must handle all the traffic from all the external systems. This design is
unlikely to perform well unless the number of simultaneous clients is small. In
addition, the ‘Info Server’ process is a single point of failure in the process
architecture since it is not replicated.

10.2.1 Processes and components

Adding components to a Process View can often add valuable information.
These components can be used to clarify the purpose of many processes,
especially those that may include several independent components. The
Process View in Figure 10.5 illustrates the distribution of components into
processes and threads. In contrast with Figure 10.4 where the processes were
named, the processes in Figure 10.5 are unnamed. In addition, component
communication is illustrated. In this example, the Customer Info Server and
the Session Manager components are grouped together into the same process.
In the case of a process or node failure, any transient state information they
utilize will be lost unless the components are checkpointing state data.

The view also illustrates which of the interfaces the “Web Server’ and ‘Teller
Server’ utilize. In addition, mechanism and quantity annotations are included
to help designers assess the scalability of the design. This view is focused on
the client information use case, but a full system view can also be created
using these techniques.

10.2.2 Process and component management

Today, a wide variety of applications are developed using component frame-
works. These frameworks often provide standard capabilities for component
management. Facilities often include component startup and monitoring,
interface discovery, checkpointing, application logging, and load balancing.
Since these common facilities are frequently the basis for development, it is
important for developers to understand these facilities. A Process View is often
helpful in describing the runtime aspects of the common component facilities.

Figure 10.6 shows an example of a simple component management frame-
work. In this framework there are two main elements provided by the frame-
work: the process management component and the component management
component. There is one process management component per process and it
performs the following functions:

e Configures the process level resources

Process Viewpoint

{mech=db_transport}

«process» «process»
{quantity=0..50 {quantity=0...2}
ersistent=yes
perst yes} customer

info Customer
Web
Server R >0— Info
Server
{me¢h=Corba}
transaction .
Session
>0— Manager
«process»
{quantity=0..5}
Teller
Server M «process»
" «thread»
I {quantity=50}
«process»

{quantity=0..5}

Voice

Response
Interface

Title: Information Service Processes AN
Type: Process View

Date: 2002-Nov-1

Responsible: Garland / Anthony

database

server

Figure 10.5 Process View with components

e Loades, starts, configures, initializes, reports statistics for each component

e DProvides an interface to the management system for status, alarms, per-
formance statistics, configuration changes, and commands (for example,

shutdown)

In addition, there is one management component for each application com-
ponent. This management component handles the component-specific

187

188

Process and Deployment Design

interactions. This component is specialized by each component development

team and does the following:

e Loads, initializes, configures, starts, stops, unloads the component

e Responds to commands from the Process Management component

e Provides statistics, alarms, and status to the Process Management Com-

ponent

An example of a banking system Process View that utilizes these manage-
ment components is shown in Figure 10.6. Documented examples can be of

great help in keeping consistent application of component frameworks.

«process»
Network Management
System
«process»

Process
proc mgm Mgmt
X : Customer

comp mgmt|[Session Mgr comp mgmt] Info

Component
Mgmt

Session
Manager

Customer

Component
Mgmt

Info
Server

Title: Process and Component Management
Type: Process View

Date: 2002-Nov-1

Responsible: Garland / Anthony

Figure 10.6 Process and component management framework

Process Viewpoint

10.2.3 Process State Viewpoint

While the Process Viewpoint is focused on describing a set of process and
component instances, it does not model the dynamics of these processes. Often,
to understand the overall interactions of the processes, a view of the process
dynamics is required. The Process State View can be used provide this under-
standing. The viewpoint associated with this view is shown in Table 10.4.

Table 10.4 Process State Viewpoint

Process State Viewpoint

Purpose Describe the state transitions and interactions of one or more
processes.

When Applicable During system design and development.

Stakeholders Architecture Team, Subsystem Developers, Test Team.

Scalability These views can be provided for a single process or a group of
processes.

Relation to other The Process View illustrates the processes of interest for modeling in

Views the Process State View. The Component State View often provides

details for a process that executes multiple components.

In many ways, the process state is the sum of the states of the components it
executes. Thus in some cases the Component State View is really the view of
interest. However, the Process State View may be useful in modeling standard
process dynamics that are independent of the loaded components. These
dynamics may, for example, be part of a component management infrastruc-
ture that loads and controls components in the process.

For process dynamics, it is often useful to think in terms of a standard set of
states such as initializing, operating, and shutting down. Figure 10.7 provides
an example of just such a canonical state view for a process. In the operating
state, the components provided by the process are available for other
processes to utilize. When the process is in the other states, the components
are not accessible and hence other components attempting to access the
process will either block or receive an error. A standard Process State View
may become part of the architecture as part of a component management
infrastructure or monitoring capability. Note that this view may not apply for
processes provided as part of third-party products.

Although all processes may have a canonical set of states, they often

189

190 Process and Deployment Design

Initializing)

. [Init Failure] /
[Diag. OK] SendAlarm(initFailure)

[Init Success]

Operating

[System Error OR
Shutdown
Request]

Diagnosing Startup

@TRY / sendAIarm(Diag}

[Diag. Failure]/
sendAlarm(StartFailure)

Shutting
Down

Title: Common Process States
Type: Process State View

Date: 2002-Nov-1

Responsible: Garland / Anthony

Figure 10.7 Canonical Process State View

perform very different functions while processing in a particular one of these
standard states. To understand the specific dynamics of the process, each of
the canonical process states needs to be detailed for the different processes in
the system. This information is usually captured sufficiently in the Component
State View, but the Process View can be used to supplement the component
state information. As with Component State Views, these Process Views
should only be defined for process states that contain significant state-based
behavior.

Figure 10.8 illustrates a state view of the initialization substate for the
Customer Information Server process from Figure 10.5. As the view shows,
the server will internally start two components after establishing database
connections. In addition, the Customer Information Server will fail if the
database server process is unavailable. A better behavior might be to send an
alarm indicating the failure and to retry until the database becomes available.
This would remove the need for restart of this process.

It is important to point out that this type of lower-level state modeling may

Process Viewpoint

/ Initializ@

init info
server
component

read
component
config

[Success]

[Success]

[Success]

[Init Failure]/
SendAlarm(init
Failure)

init db
connections

init session
manager

[Init Failure] /

SendAlarm(initFailure) [Init Success |

o J

Diaganosing operating
[Diag. OK] Startup

Title: Customer Info Server - Initializing
Type: Process State View

Date: 2002-Nov-1

Responsible: Garland / Anthony

Figure 10.8 State View — process initialization

be better performed by one of the subsystem teams, with close review and
participation by the software architecture team. This level of focus by the
software architect and the architecture team is a similar issue with component
state modeling. The architecture team may want to leave the component state
design to be defined by the subsystem team that is implementing that
component.

Notice that this substate view is consistent with the state view in Figure
10.7. This means that the events, guards, and actions that enter and exit the
initializing substate must be consistent with the ones in the overall state view.

The cross-process and cross-component dynamics illustrated in the Figure
10.8 dependencies are critical to fault tolerance and performance in distrib-
uted systems. As the figure shows, a failure to connect to the database results

191

192 Process and Deployment Design

Figure 10.9 Multi-process State View

Deployment Viewpoint

in a process shutdown and hence a system startup failure. The performance
and fault tolerance issues uncovered in dynamic modeling may result in
changes to the Process Views and ultimately the Component Views.

While a Process State View focused on a single process is important for
understanding the dynamics and potential interactions, it does not show the
overall system. For the overall focus, we recommend the utilization of an
activity diagram version of the Process State View to show the interactions of
several processes.

Figure 10.9 is an example of a multi-process state view for a system restart
scenario. Each swimlane in the view corresponds to a process. This view
illustrates the actions of various server processes and the parallelism of the
restart. The use of this view should be limited to scenarios that explicitly
involve process behavior that is independent of the component behavior, such
as administrative scenarios for starting or monitoring a process. The Compo-
nent State View provides a better view of component-specific states.

10.3 Deployment Viewpoint

The Deployment View (described by the viewpoint in Table 10.5) builds on
the Process and Component Views by adding a hardware element, called a

Table 10.5 Deployment Viewpoint

Deployment Viewpoint

Purpose Describe mapping of processes /components to hardware, may need
several of these. May have several views for large systems.
Describe runtime component connectivity and communication. Can
be applied to performance analysis and later the process interaction
design.

When Applicable After preliminary components are identified, this view can be created
as input to making hardware purchase decisions. Updated during
construction and transition as components are completed. When
reengineering or documenting an existing distributed system.

Stakeholders Architecture Team, Hardware and Network Architects, Subsystem
Developers, Test Team, Software System Engineering Team, Systems
Engineering Team, Project and Development Managers (to a lesser
degree), Operations Staff.

Scalability Drawn with scenario or component focus. Also, a node focus can be
used for modeling scalable servers.

Relation to Other Builds on process, component, and physical database views by
Views adding in mapping to nodes.

193

194

Process and Deployment Design

node, which can execute components in processes and threads. In addition,
nodes typically have the ability to maintain persistent state via files and
databases. This view describes the mapping of processes and components to
physical nodes.

Sometimes the Deployment View is not necessary. This occurs when there is
an obvious mapping from the Process View to the deployed system. In
addition, in some cases a tabular mapping of processes to nodes is sufficient to
document the deployment details. If the Deployment View is determined to be
necessary, the Process and Component Views should be created first since they
provide significant input for the Deployment View.

Figure 10.10 is an example of a Deployment View for the banking system.
The view includes node, process, and database information. The focus of this
Deployment View is to communicate the mapping of processes to nodes and
the utilization of databases with respect to these processes and nodes. The
nodes are annotated with the operating system and other special information
such as the number of processors and the operating system. As with the
Process View, connecting lines between processes show inter-process commu-
nication paths.

Figure 10.10 is focused on a specific scenario. However, it is common to
have one or more views to capture a specific system configuration. Highly
configurable systems may have many different variations that need to be
depicted, each requiring a separate view.

Figure 10.11 illustrates a variation of the Deployment View that includes
both processes and components. While more complex, this variation of the
view provides a clear mapping of components to nodes and processes. In this
variation of the Deployment View, we illustrate the component-to-component
communication paths. The process-to-process communication paths can then
be easily seen, as each component must be mapped to a process.

10.3.1 Scalable node design

One problem that frequently arises when building large-scale systems is the
need to create a set of nodes that serve as a point of scalability for the
architecture. That is, a particular installation can install as many or as few of
these nodes as needed to handle more or less load. In addition, a series of
these can be deployed to provide load balancing and fault tolerance. The
Deployment View can be used to model the scalable server designs. In this
variation of the Deployment View, the internal design of a scalable node is the
focus rather than the design of the overall system. This view is important

Deployment Viewpoint 195

Figure 10.10 Deployment View with annotated nodes

because data and processes must be designed in a way that will allow the
system to meet the load and fault requirements.

Figure 10.12 shows an example of a view illustrating a scalable node
design. This Deployment View provides additional detail about the monitor-
ing processes and logs files for the scalable node. A shared memory log file
system provides a link between a node monitoring process and the customer
server. This shared memory is shown as a database that is located on the node

196 Process and Deployment Design

Figure 10.11 Deployment View with components

Deployment Viewpoint 197

AN
3 nodes required for fault recovery data

tolerant configuration 7
=~~~ \Customer Info Server Node /
= — {quantity=3..50} /

«PIOCessS» /

<<Shared Mem>>

{persistent=yes,
quantity=20}

customer
info

Customer
Info Server

transaction .
Session

Manager

«process»

db api

<<RDB>> database
server

Customer
Information

«process»

SNMP

node
monitor

Title: Scalable Customer Info Server
Type: Deployment View

Date: 2002-Nov-1

Responsible: Garland / Anthony

Figure 10.12 Scalable server design

198 Process and Deployment Design

Figure 10.13 Backup/Archive Deployment View

Recommended Reading

itself. Databases stored on a disk are shown external to the node. Note that
the interfaces not attached to internal components are interfaces used by
external components not shown in the view.

10.3.2 Backup/archive design

Another deployment view that applies to many large-scale systems is the
representation of the backup and archive strategies. In many large-scale
systems, these strategies are captured in separate Deployment Views. The
backup strategy can be one or more of several approaches. Among these are
to make use of vendor capabilities for journaling databases changes to a log
file or to make use of a special-purpose replication process. Other approaches
include custom scripts to periodically move the data to a backup server.
Similarly, vendor utilities can provide archive functionality or the development
team may design a custom script or application to perform the archive
functionality. As described earlier, several levels of archive nodes and pro-
cesses may be necessary to store all the necessary archive data.

The Deployment View in Figure 10.13 shows a set of backup and archive
nodes and the key processes involved. Notice in this view that the database
server processes are shown for each node. Another option is to show each
process directly reading from and writing to the database, with the underlying
assumption that the vendor’s database server process is actually handling the
data reads and writes. As with other views shown earlier, this view could be
annotated with mechanisms or quantities to better understand the perform-
ance characteristics.

10.4 Recommended Reading

On their web site, Bredemeyer discusses how software architecture is not the
physical system architecture such as nodes and processors while acknowl-
edging the impact of these on the software architecture. We agree with this,
and believe these views need to be included in the software architecture
description even though the elements modeled aren’t technically part of the
software architecture, they are part of the overall environment for the soft-
ware.

A canonical set of states can also be found in many standards, such as IEEE
X.731. This specification specifies operational, usage, administrative, and
management states. For example, the administrative states include ‘unlocked’,
‘locked’, and ‘shutting down’.

199

200 Process and Deployment Design

Examples of process and deployment diagrams can be found in the UML
User Guide (Booch et al., 1999) which uses a cylinder icon for databases.
Fowler and Scott (1997) and Hofmeister (1999) also have examples of
deployment diagrams.

Architecture Techniques

This chapter will provide an overview of a number of techniques that have
proven useful for software architects. These techniques include software
analysis and design strategies, partitioning strategies, management of depen-
dencies, use of Architectural Patterns, and strategies for system component
integration. The proper application of these techniques can reduce the level of
complexity of the software architecture, reduce the time spent developing the
architecture, and reduce the workload for the software architect and architec-
ture team.

Since this chapter provides information on a wide variety of techniques, the
discussions will intentionally provide only a brief overview of each concept.
For additional information on these topics, refer to the recommended reading
section.

11.1 Architecture Development Techniques

The following sections describe analysis and design techniques that can be
helpful in the development of software architectures. The selection of techni-
ques that are best for architecture development will largely depend on the
project context. Not all problems are created equal, and as a result, different
problems require different techniques. In a large-scale system, several sub-
domains with different properties will commonly exist. In these cases, it is
desirable to take different approaches to these domains. As a result, these
different domains can provide inherent division points in the architecture.

202

Architecture Techniques

Examples of different domain types include algorithmic domains, data
intensive domains, and transactional domains. Thus, the best practice for one
project might be nearly useless on another project. Unfortunately, no con-
trolled and quantitative studies of development projects provide guidance on
how best to apply these techniques. Our recommendation is to hire an
experienced software architect with knowledge of these techniques and
experience applying them on several projects.

11.1.1 Commondlity and variability analysis

The essence of commonality and variability analysis is to take several things,
identify what they have common and what is different, and take advantages
of those parts that are common and that vary. This approach was called
scope, commonality, and variability (SCV) analysis by Coplien et al.

This approach is usually applied to entities within the analysis or design of
the system. The primary steps in this approach begin with the identification of
the set of entities to be analyzed. For the software architect, this may involve
analysis of the functionality in several subsystems, or components. It may also
involve analyzing a large number of classes in an Analysis Overall View. This
first step establishes the scope. Then the commonalities and variabilities are
identified and documented. Following this step, the variabilities are bounded
by applying limits to the amount each is expected to change.

The architect then leverages the commonalities in the development of the
software architecture. This means that the common aspects of the system will
be designed and developed only once. This approach not only prevents
duplication of effort, but also provides a standard solution for each common
aspect of the system. Finally, the architect identifies ways that the variabilities
can be handled by the architecture with minimum impact.

Commonality and variability analysis is useful for many aspects of analysis
and design. The commonalities can provide the basis for creating a standard
interface, approach, or abstract type. Applying this technique can also assist
in the discovery of key abstractions in the architecture. One common use of
this technique is to identify reusable aspects of the set of constructs that can be
factored out as frameworks or software infrastructure. By analyzing the
common aspects of several subsystems, for example, potential frameworks or
software infrastructure can be identified for development or purchase.

In addition, the variability analysis part of this technique is useful in
understanding the aspects of the system that are likely to change versus those
that are not likely to change. The variations should be used to identify possible

Architecture DevelopmentTechniques

extension points in the architecture. In addition, potential design modification
can be explored to facilitate the extensions and modifications when they
occur.

There is no way this book can address this topic in depth. However, in
order to develop high quality and modifiable software architectures, the
architect should read and learn about this technique.

11.1.2 Design for change

Typically, one of the most critical and difficult aspects of developing a
software architecture is understanding what is likely to change and what is
not likely to change. The basic idea of change cases is to enumerate the types
of changes the architecture will likely need to accommodate. These changes
are then used to evaluate whether the current or proposed architecture will
easily handle the change. Ask questions like:

o Is the change localized or spread among many disparate subsystems?

e What interfaces or messages will need to be modified to accommodate the
change?

e Will the database design need to be updated?

e What is the scope of the change? For example, what is the estimate of
how many classes or source code files will need to be modified?

One way to represent change cases is a simple table of one-line descriptions
and a relative likelihood. This provides a convenient way to think about the
types of changes that will impact the architecture and their relative impor-
tance. Table 11.1 gives a simple example of using the technique to elaborate
expected variations. Note that this is just a form of commonality and
variability analysis applied to requirements. This approach can also be applied

Table 11.1 Simple change case table

Change Description Likelihood
Support new printer System will need to support new printer types for 100%
types bill printing as technology evolves.

Web-based interface for Support web-based interface for customer 50%

customer creation creation in addition to the integrated interface.

203

204

Architecture Techniques

to use cases by documenting the potential changes that apply to a particular
use case.

One of the dangers of change cases is that they require guessing about
future events. An expected feature or dimension of change may not be
required while adding flexibility to the architecture up front is almost
guaranteed to cost time and money. This is a classic engineering risk trade-off.
The cost of implementing flexibility up front must be considered against the
cost of making the change later by refactoring the design. Items with high
probability, high refactoring cost, and low initial cost should be supported up
front. Items with low probability and low refactoring costs do not need to be
supported by the architecture. Of course, all of the costs and probabilities are
imperfect estimates so the decisions are necessarily imperfect.

As with many techniques, there are many levels of possible rigor. The
change case process can be completely driven by the experience and know-
ledge of the architect or can be explicitly documented. The explicit approach
takes more time, but has the advantages of typically being more complete and
allows the participation of multiple individuals. However, the benefits of
experience are critical in making good decisions.

11.1.3 Generative programming techniques

Generative programming techniques can be used to automate the development
of software products. There are many different types of generative program-
ming techniques, including advanced application of C++ templates, aspect-
oriented programming, custom code generation tools, and domain-specific
languages. In addition, code generation from Computer Aided Software
Engineering (CASE) tools can also be considered a form of generative
programming techniques. This not only applies to the UML, but also can
apply to languages like Specification and Design Language (SDL).

Generative techniques provide the ability to customize libraries and compo-
nents to better meet the needs of the project and to automate the production
of some parts of the software. These techniques are particularly relevant if a
family of products is to be built from a single architecture.

The architecture team must evaluate whether the use of generative program-
ming techniques will be of value. Most likely, if the project is large enough
and important enough to need an architecture team, generative programming
techniques will bring value to one or more aspects of the system.

In addition, the architecture team must determine how to represent gen-
erative aspects of the system within the architecture. This may be difficult

Architecture DevelopmentTechniques

because of the unique nature of generative components. However, stereotypes
or other UML extension techniques may be used to facilitate the modeling of
generative aspects of the architecture.

The use of some types of components, such as CORBA, promotes the use of
generative programming techniques. The tools associated with the CORBA
implementations generate elements of the solution that are extended per the
normal CORBA practices. For example, the interface is defined using an
interface definition language (IDL) specific to CORBA and the IDL compiler
generates code in any of a variety of programming languages.

This technique can provide a large boost to developer productivity, but the
software architect must make sure the technique is only used in areas where it
is applicable. These techniques will rarely apply to an entire large-scale
system. In addition, several different generative programming techniques may
be applied to different aspects of a large system.

11.1.4 Building a skeleton system

Another proven tactic is to begin the first increment of development by
building a skeleton system. This approach builds a single thread of execution
across the entire system. This execution thread is the first confirmation of
many aspects of the software architecture. Typically, only a few aspects of the
architecture need to be in place when the skeleton is developed. Often the
skeleton serves as the first iteration of the system to be built. Using this
approach has several major advantages:

e Forces integration, which is usually a major development risk, earlier in
the process

o Fits well with iterative development approach
e Forces the early development of infrastructure mechanisms

e Can bootstrap end-to-end test automation

Following the completion of the first thread through the system, additional
threads can be added and the system functionality can be added incrementally.
It is often necessary to use tactical development approaches such as scripts as
stand-ins for parts of the system that are needed for the skeleton system, but
are not available. This allows the skeleton system to bootstrap prior to having
all the components available.

The skeleton system is not intended to be a throwaway prototype, rather it

205

206

Architecture Techniques

is expected to build some portion of the final system with a focus on breadth.
It is important to understand that some aspects of the initial skeleton may
need to be refactored as the system evolves. Sufficient time needs to be
allocated for this refactoring to ensure that the quality of the design is
maintained. Building test automation for the skeleton is an important differ-
ence between a skeleton system and prototyping. The initial test automation is
a prelude to the development of a continuous integration support that is
discussed later in this chapter.

11.1.5 Prototyping

When certain aspects of a large system are unknown, prototyping can often be
a powerful technique for developing a concrete understanding of these aspects
of the architecture. This approach is discussed as part of the risk reduction
strategy and incremental development approach described in Chapter 3.

Several types of prototypes can be built which benefit the understanding of
which architectural trade-offs will be the most effective. For example, proto-
typing of user interfaces is often beneficial to understanding user tasks and
building more useable software. In addition, prototypes can be used as part of
the analysis and selection of specific COTS or open source products. As a
result, this technique is especially powerful if the focus of much of the
development is the integration of existing components. The prototyping
strategy is also useful to analyze the effectiveness of specific interface mechan-
isms and designs. Prototypes can be used to identify potential performance
bottlenecks in the interfaces themselves and alleviate performance problems
early in the development cycle.

One problem with prototyping is the desire to use the prototype as part of,
or as the basis for, the final system. While this might seem like a good idea
when schedules are compressed, it is nearly always a bad idea. Typically,
prototypes have been constructed using many shortcuts that will become
liabilities to the architecture later in the development process. Since these
liabilities are often the outcome, it is better simply to develop the components
in an incremental fashion, recognizing that the first versions may be incom-
plete in some significant fashion.

11.1.6 Interface development — Design by Contract

One very useful technique for codifying interfaces is called ‘Design by
Contract’. Bertrand Meyer developed the technique, which is an approach for

Architecture DevelopmentTechniques

defining interface specifications for software components. The Eiffel program-
ming language provides first-class support for design by contract. The benefits
include:

e A better understanding of object-oriented concepts by the system de-
signers

e A systematic approach to improve quality

e A framework for identifying errors in the software, for testing, and for
quality assurance

e An approach for documenting software components, especially the inter-
faces

e A technique for exception handling

The basic approach is to provide for detailed specification of an interface
using preconditions, postconditions, and invariants. These are all types of
assertions, or logical conditions associated with a software element. These
assertions are generally applied to the classes and methods in the analysis or
design views. Interfaces, in this approach, can be defined as specific class
methods. A precondition defines an input condition that must be true prior to
entry into a method. A postcondition defines an output condition that will be
true after the method completes. A class invariant, usually just referred to as
an invariant, is a condition that applies to all instances of a class.

Design by contract is based on the use of abstract data types and the
concept of business-like contracts. The use of abstract data types makes the
interface specification precise and verifiable. The contract concept implies
the contract is clear and free of ambiguities. Even if the details of the interface
are not all specified using this technique, it is a good way to think about the
details of an interface. Message-based protocols can also be developed using
design by contract.

One way to extend the design by contract approach is to make use of the
fact that the UML contains a specification for the Object Constraint Language
(OCL). This language provides a way of specifying the rules of an interface.
OCL was added to the UML as a formal language for specifying constraints
in a UML model. These constraints include preconditions, postconditions,
and guards. One use for the OCL is to allow for constraints between entities
in a UML model to be specified. Another use for OCL is to provide a
specification for pre- and postconditions of an operation. This is especially
useful for definition of the methods in an interface class.

207

208

Architecture Techniques

11.1.7 Architectural description languages

One area of interest in the research community is that of architectural
description languages (ADL). ADLs are formal languages that can be used to
represent and reason about software architectures. These languages also show
promise for purposes of analyzing and comparing software architectures. One
area of focus is the use of ADLs for specification of component interfaces.
While these approaches show promise, they are primarily a research area at
this time.

11.1.8 Architecture evaluation

One fundamental task of the software architect and the architecture team is
the evaluation of the software architecture. Team members should be con-
stantly analyzing the architecture to see if it meets the goals of the stake-
holders. This means assessing if the architecture possesses the desired qualities
such as maintainability and testability. Many other attributes of interest for
software architects are described in Chapter 1.

Most architecture evaluation is ad hoc, occurring during the normal process
of developing a project. For example, reviewing various project work
products, including designs and implementations. While reading code, the
architect might be surprised to see an unanticipated dependency between
subsystems. The architect must evaluate if the dependency violates the
principles and structure of the envisioned architecture, reducing the maintain-
ability of the system.

Occasionally, it is useful to have a formal review of the architecture. Usually
the review will be targeted at assessing some particular attribute of the
architecture. A structured review might include the assessment of a series of
use cases if the goal is to assess an operational or performance aspect of the
software. However, if the goal is to assess changeability then change cases or
other requirements changes may be the focus of the evaluation.

11.2 Software Partitioning Strategies -
Separation of Concerns

A fundamental technique for software design can be referred to as ‘divide and
conquer’. The goal of divide and conquer is to take a large system and break
it up into more manageable subsystems or to take a set of subsystems and
identify the software components associated with them.

Software Partitioning Strategies — Separation of Concerns

When partitioning a system the elements should be grouped to maximize
the cohesive aspects and to minimize the coupling of elements. This is
especially critical when partitioning the system into subsystems that will be
developed by separate development teams.

The following sections describe various strategies for partitioning a system.
These strategies are commonly employed, and might even be considered
patterns, but have not been described as such. These are pointed out as
approaches that should be considered when evaluating division points for
software architecture.

Not all strategies can be used on the same system, but more than one of
them will most likely be applicable. Some strategies may also be used as a
means to validate aspects of a system decomposition that were identified using
another strategy. For example, if an initial partitioning of the system is done
by a system engineering organization utilizing functional decomposition, a
careful coupling and cohesion analysis can be used to validate the effectiveness
of the initial partitioning.

11.2.1 Functional decomposition

Functional decomposition is the process of analyzing the functions performed
by a system, using these functions as a means to partition the system, then
decomposing each function into lower-level functions. This technique is
usually considered the antithesis of object-oriented approaches. However,
functional decomposition can still be useful as an initial partitioning of a large
system into smaller subsystems.

Some object-oriented practitioners will claim that functional decomposition
will lead to an inefficient program structure. However, this is not necessarily
the case. Widely disparate functions should be placed in separate system
partitions. However, commonality and variability analysis and other techni-
ques may also uncover some shared entities. For example, configuration data
might be shared by several different functions. In addition, other techniques
may be used to validate the effectiveness of the functional decomposition.

As an example, a system that provides a spell checking capability along
with a text editing capability can easily be split initially. The needs of these
two functions may share a common model in the document, but are otherwise
largely independent functions. This approach is actually more of an intuitive
analysis of coupling and cohesion that many experienced system engineers
and software architects have been employing for years. There is no reason not

209

210

Architecture Techniques

to apply this experience and intuition, but care needs to be taken to make sure
validation is done on the resulting partitioning.

The biggest danger of functional decomposition is the tendency to use it for
several levels of the system decomposition. The thinking is that if the tech-
nique is effective for the initial partitioning, it is effective for all levels of
partitioning. The reason this approach only works for a potential top-level
partitioning is that the coupling of the data and functional behavior is more
critical in subsystem-level interfaces. Functional analysis approaches only
identify the functions at each level, not the data upon which those functions
depend. This encapsulation of data and behavior is one of the cornerstones of
the object-oriented design approaches. In addition, interface mechanisms
themselves are often best identified in terms of encapsulated objects and
behavior. Functional decomposition only has applicability at the highest level
because the details of the interfaces are not as critical at this level.

11.2.2 Isolate configuration data

Some of the components may need to share a common set of configuration
information. The configuration element serves as a dividing line for the
system. The configuration data is a shared set of information that provides a
form of integration for the components that depend on the data. For example,
a system might have several components that need to understand the structure
of nodes in a network. The model of the network structure can be a separate
component shared by all the components. This is similar to the Repository
Pattern.

Examples of this type of system include a common set of the security
symbol information listed on an exchange for various programs that monitor
stock trading, or a database of telephone numbers and line features for
telephone switching/billing programs.

11.2.3 Isolate hardware-specific components

Isolating hardware-specific parts of a system is a partitioning strategy that has
been used by most modern operating systems and many other types of
software systems. The idea is to create a software driver or a hardware
abstraction that serves as the interface to the hardware. If a system contains a
major hardware component, a matching software driver component is a
natural partitioning of that part of the system. Similarly, when a software
system requires an interface to hardware entities, a separate software compo-

Software Partitioning Strategies — Separation of Concerns

nent that provides an interface to that hardware insulates the software from
the low-level hardware interfaces. This isolation from the hardware interface
increases the flexibility of the software to adapt to different hardware
interfaces. The modifications to the software are isolated to changes in the
interface module.

11.2.4 Isolate time-critical components

Time-critical components are those that have tighter performance constraints
than the other parts of the system. For example, the parts of a system that
process a real-time data stream are more time-critical than the parts of the
system that interact with a human end-user. Time-critical components often
have a different development lifecycle and engineering concerns than compo-
nents that are less time-critical. In order to facilitate the application of
techniques that the designers of these components may require, these compo-
nents need to be separated from the rest of the system as much as possible. Of
course, this separation will include the specification of clearly defined inter-
faces. In this way, several different approaches can be utilized. These could
include prototyping, dedicated hardware-specific solutions, and enhanced
data storage mechanisms.

11.2.5 Separate domain implementation model from human interface

This is a component design principle targeted at keeping the details of the
‘human interaction’ separated from the domain implementation model. Part
of the reason for this partitioning strategy is that the human interaction might
take on multiple forms, such as a web browser interface and a conventional
graphical interface. Without this separation, the domain component gets
written repeatedly, reducing reuse and increasing cost. This technique is the
basis of the Model-View—Controller Pattern.

11.2.6 Separate domain implementation model from implementation
technology

The basic concept here is that it is desired to keep the domain model separated
from lower-level implementation technology. This strategy is similar to separa-
tion of the domain model from the human interface, except that this applies to
interfaces to lower-level implementation constructs. Again, this is easier said
than done. If a database is used as the primary storage of the domain model,

211

212

Architecture Techniques

for example, it is usually difficult to keep the database technology separated
from the domain model interfaces. Implementation details of the database
product may end up exposed to application developers interacting with the
domain model. One approach is to represent the domain interfaces with a set
of ‘handles’ to hide the implementation details from the clients.

This may not be possible if the clients need to control implementation
semantics related to the domain model. In the database example, this may
include transaction management or opening and closing databases.

11.2.7 Separate main function from monitoring

In many large systems, components may require some introspection or
monitoring capabilities. The idea of this technique is that the main function of
a component should be separated from the component that allows for
monitoring of that function. That is, the component should generate data that
provides another component with the ability to provide the monitoring func-
tion. For example, a web server provides logging information that can be
utilized for many purposes. The log analyzer is a completely different function
performed by a software component unrelated to the web server itself. The
web server provides the log in a specified data format, and the log analysis
software provides the desired information about usage.

11.2.8 Separate fault recovery processing

Fault tolerant software systems may include complex logic for handling faults.
This logic may include things like monitoring and restarting of processes that
are operating correctly. Often this might involve multiple recovery levels, some
of which ultimately involve decisions by the human operator.

The fault recovery logic should be separated from the core component logic
wherever possible. This keeps the complex recovery strategies from littering
the component functional code. However, basic identification and logging of
faults and perhaps a first level of fault recovery will necessarily need to be
done by individual components. In addition, the component may need to
write its state data to a location where it can be used for recovery or restart.

The next level of fault recovery would be for a component management
entity to determine a component has failed and initiate shutdown and restart
of that component. Additional levels include process and node-level fault
recovery. The localization of fault recovery into separate layers as described
here is often referred to as making use of fault zones. These zones form an

Software Changeability and Dependency Management

ever-widening set of constructs for detecting and handling faults in the system,
thus controlling the propagation of faults.

11.2.9 Adaptation of external interfaces

When a software system has external interfaces that are likely to change, one
effective technique is to provide a set of components that adapt the external
interface to a common internal representation. For example, an interface
based on an evolving telecommunications standard could benefit from this
approach so that the internal software components are insulated from changes
in the standard. In addition, processing of the interface can be handled by the
adaptation components and the key information directed to the appropriate
internal components.

This approach can also be used to reduce repeated parsing of the same
message. As an example, many telecommunications protocols encode mes-
sages in Abstract Syntax Notation (ASN.1) and repeated processing of the
complete message by several components in order to extract specific informa-
tion can be inefficient. A single adaptation component can extract the
necessary information from the message and send the appropriate subset of
the information to each of the components interested in that subset message
data.

Performance and availability considerations, such as load balancing and fail
over, can also be allocated to these adaptation components. For example, an
adaptation component could be the first contact for an external interface, but
would quickly dispatch the handling of the message to a set of components to
balance the load and facilitate scalability. If a failure of one of the components
occurred, the adaptation component would redirect subsequent messages to
another component.

These adaptation components must be highly available and may be paired
with another component that can quickly take over. Another approach is to
make the adaptation component stateless and quickly restart another if the
primary component fails.

11.3 Software Changeability and Dependency
Management
Separating software into several smaller elements is a key technique for

building large-scale software systems. Ideally, each new element can add a
small and clear bit of functionality that fits seamlessly into the larger system.

213

214

Architecture Techniques

Usually, no one part of the system creates the functionality directly. Rather,
each part contributes an aspect of the functionality and depends on other
parts to provide other aspects. However, each new element complicates the
system structure, making it harder to document and test. Making this problem
harder is the fact that software is rarely static. There is an expectation that the
software will evolve over time to support changes in the business rules or
other external drivers. Some of these drivers might be technological, including
the continuing evolution of computing technology itself. Given that the
majority of the lifecycle cost of software is typically after the initial deploy-
ment, planning for change is essential.

The previous sections describe a series of different techniques for creating
elements based on separating the concerns of software. However, every
additional separation will introduce dependencies among the various pieces.
There is a constant tension between additional complexity represented by
adding a new system element and having a single more complex piece perform
the desired function.

Ideally, most change can be localized to a single subsystem. Since subsys-
tems are a unit of delivery, responsibility, and test, localized changes can be
done with higher confidence and lower cost. Unfortunately, it is easy to
separate the parts in such as way that all elements end up being co-dependent.
That is, every part depends on everything else such that every change requires
changes to many different parts. It is also easy to replicate functions or policies
such that a change to one of these requires changes to many subsystems.

The following sections describe some principles and techniques for mana-
ging software dependencies and hence enhancing changeability of the soft-
ware. This list is not necessarily complete; additional principles and
techniques can be found in the references listed in the recommended reading.

11.3.1 The stable dependencies principle (SDP)

Robert Martin describes the stable dependencies principle as ‘Depend in the
direction of stability’. In essence, the desire is to isolate the software that
changes frequently. It is undesirable for otherwise stable software to depend on
frequently changing subsystems. The reason is that unchanged subsystems may
require to be retested and redeployed if a subsystem upon which they depend
has changed. Even with extensive automated internal testing, the retesting and
redeployment costs can be high since external customers may be involved.
While we agree with Martin’s statement of the principle, we use a different
definition of stability. In particular, Martin describes creating stability by creat-

Software Changeability and Dependency Management

ing abstract interfaces. Martin calls this the ‘Stable Abstractions Principle’.
While this approach solves a certain class of problems, it ignores other subsystem
types that provide strictly concrete interface classes and are highly stable.

An example of an infrastructure subsystem for a large project would be a
sub-system that provides data-time functionality. The classes in such a
subsystem are not abstract. In fact, they are considered ‘concrete’ classes, yet
they are typically extremely stable. The reason for the stability of the date-
time subsystem is that for a given project the requirements for date-time do
not change frequently. Further, it is desirable that these classes be utilized
uniformly throughout the program. Use of this subsystem is desired because
application code is simplified. In addition, should the need arise to change the
date-time representation, such as during year 2000 rollover, only a single
subsystem needs to be modified. While there is still the issue of retesting and
deployment it is still far easier to modify a single subsystem and retest than
modify many subsystems and retest.

Subsystems that provide shared system data models are also stable. These
subsystems cannot always be effectively abstracted and will become difficult
to modify, as described in Chapter 9.

11.3.2 Acyclic Dependencies Principle

Another of Martin’s principles, the Acyclic Dependencies Principle, states that
‘the dependency structure for released components must be a directed acyclic
graph’. This means that the components should depend on one another in one
direction only, with no loops in the dependency graph. That is, Component A
can depend on Component B, which can depend on Component C. However,
Component C cannot depend on Component A or Component B, as that
would form a loop, or cycle, in the dependency relationships.

This principle can also be applied to subsystems. Since the unit of release is
the subsystem, a cyclic dependency in a set of subsystems creates a coupling
between all the subsystems in the cycle. The modification of one of the
subsystems results in possible impact to all of the subsystems in the cycle.

There are many ways to modify the organization of elements so that this
principle is maintained. Among these are moving subsystem entities to another
subsystem to break the cycle or moving the entities that are the target of the
dependency to a separate subsystem. As a result, following this principle tends
to result in smaller subsystems that provide fewer classes and functions. This
is primarily because creating smaller subsystems reduces the difficulties of the
management of subsystem dependencies.

215

216

Architecture Techniques

11.3.3 Interface Separation Principle

The Interface Separation Principle involves the separation of interfaces so that
clients of a component do not have functionality in an interface that they
don’t use. This approach produces a set of minimal interfaces and reduces
unnecessary coupling between components. Lack of application of this princi-
ple causes unnecessary dependencies at build time. In addition, development
teams that are clients of a particular interface are required to review and
inspect aspects of the interface definition that they do not use.

11.4 Using Architectural Patterns

Patterns have now become an essential tool in developing large-scale systems.
Patterns document a solution to a recurring problem, providing a problem
context and solution trade-offs. Patterns have many uses, including inspira-
tion for design, communication of a design, gathering of design ideas, and
reviewing of designs. The main benefit of patterns is their ability to extend the
experience of the team. Simply reading the trade-offs and solutions as
documented by other development teams may lead to the consideration of
trade-offs that would otherwise go unnoticed. Eventually patterns may do
more, but it is currently time-consuming to research and understand which
patterns might apply to a particular problem.

One interesting question is which patterns are most relevant to the practice
of software architecture. Buschmann defines an Architectural Pattern as
‘expressing a fundamental structural organization schema for software sys-
tems. It provide a set of predefined subsystems, specifies their responsibilities,
and includes rules and guidelines for organizing the relationships between
them’. This section will briefly describe just a few of the Architectural
Patterns. However, architects should be fluent in their understanding of
patterns well beyond those categorized as architectural.

Other kinds of patterns, such as Process and Organizational Patterns,
influence software architecture. Many of the aspects of these patterns were
discussed in Chapter 3 and, as a result, they will not be addressed here. Refer
to the recommended readings section here and in Chapter 3 for references to
these types of patterns.

In smaller systems or at the subsystem level a single Architectural Pattern
may be a dominant theme. Shaw and Garlan have called this an architectural
style. However, most large-scale systems will incorporate many patterns.
Thus, it is usually impossible to describe a large system with a single

Using Architectural Patterns

architectural style. The incorporation of several styles into a single system is
likely an Architectural Pattern that has yet to be documented.

Some of the commonly described architectural styles include Pipes and
Filters, Black Board or Repository, and Layered Architecture. As described
previously, different viewpoints provide some of the views described by these
Architectural Patterns. For example, the Subsystem Layered View provides an
overview of the subsystem and layers in the software architecture.

While patterns can be tremendously useful, they can be misused. One pitfall
is lengthy arguments over whether a certain pattern fits the design or vice
versa. These debates are typically off topic and are not terribly useful to
producing the final system. In addition, the software architect must be careful
that a pattern is applicable to the problem at hand and wasn’t selected because
a zealous designer had a desire to apply the pattern. This desire may be fueled
by the fact that the pattern looked interesting or because it was used
successfully on another system.

The following paragraphs describe only a few of the many software
Architectural Patterns that may prove to be useful. Discussion of a complete
set of Architectural Patterns would fill several books the size of this one. In
fact, Architectural Patterns have been the topic of, or included in, several
books already. Several of these can be found in the recommended readings at
the end of the chapter.

Model—View-Coniroller (MVC) is an Architectural Pattern that provides
for the separation of the interface from the underlying domain model. This
approach divides a system that requires a human—computer interface that
manipulates an underlying set of information into three components. The
model defines the domain information in the system, independent of how the
user interacts with the information. The view defines the way the information
is presented to the human and the acceptable set of manipulation capabilities.
The controller processes and sequences human input. A mechanism is also
provided to ensure consistency by propagating changes from the interface to
the model.

One common Architectural Pattern, called Reflection, can be used to build
powerful systems. This pattern provides a means for the structure and behav-
ior of the system to be changed dynamically. This capability is facilitated
by the ability of objects within a system to be self-described and to allow
this description to be dynamically modified. This is done by storing meta-
information about the objects in the system. This meta-data can then provide
information about attributes, methods, and other information. As a result,
software can be written that is not dependent on the structure of the system.
This provides for a more generic and less fragile approach to architecture

217

218

Architecture Techniques

definition. Reflection is most useful in systems where the structure of the data
is not known in advance and a generic system needs to access and analyze the
data. Examples include data schema browsers and general-purpose displays
of device attribute information.

Several patterns describe the trade-offs involved in creating a layered
architecture. The Layers Pattern described by Buschmann involves structuring
the system by organizing the elements into groups at different levels of
abstraction. The goal is to structure the system into an appropriate number of
layers, with the highest level of abstraction at the top layer and the lowest
level of abstraction at the bottom layer. This approach is similar to the one
used in the Layered Subsystem Viewpoint. While the Layers Pattern is some-
times considered as one option for architecture definition, we view the
Layered Subsystem Viewpoint as one of the viewpoints that can be applied to
nearly all large-scale software systems.

Pipes and Filters pattern is useful for the design of flexible processing of data
streams. In this pattern, the system is divided into a sequence of processing
tasks called filters. The data travels through pipes that connect the filters to one
another. The output of one task is input to another. The input to the system is
some type of data source, for example a set of sensors in a process control
system. The output usually flows to a set of displays, possibly in conjunction
with a database system. Pipes and Filters can be used in large-scale systems that
handle large amounts of data, for example a live data feed for a financial
management system.

11.5 Integration Strategies

The potential ways by which the various parts of the system will communicate
are often referred to as integration strategies. There are frequently different
options available for component integration. For example, both COTS and
legacy systems serve as constraints on the software architecture by defining
approaches for integration with other parts the system. Integration strategies
that utilize minimal build-time coupling are often most effective for integra-
tion with COTS and legacy systems.

In some systems, the selection of an integration strategy may have only a
minor impact on the overall architecture of the system. However, in many
systems the integration approaches are critical to consider early in project
development as they may substantially change the determination of develop-
ment to be done versus purchasing or reusing existing system elements. In
addition, a major aspect of many projects that is essential to the effectiveness

Integration Strategies

of the software architecture is the selection and development of the system
integration facilities.

Many of these integration approaches are difficult to apply, especially when
the system functionality requires predictable response times or fault tolerance.
This is because many integration strategies that utilize a clear separation of
elements do not provide predictable bounded response times, nor do they
enable fault tolerance. However, even systems that require these features can
often use these integration strategies in parts of the system where predictable
response times or fault tolerance is not required. The following sections
describe two of the most common component integration strategies that
require minimal build-time coupling.

11.5.1 Data-only integration

A data-only integration strategy provides for loose coupling of software
components. A data-only integration scheme means that the system will
provide data and a form suitable for import into another program. There is
no direct invocation of one component by another. As a result, this strategy
has the following properties:

o Works with unchanged COTS and legacy code
e No build-time coupling
e Components need not share a common platform

e A database or shared memory may be used to store the data to be
exchanged

As an example, a system might provide the ability to export data to a
comma-separated value list. This type of file can be imported into custom
analysis tools or popular spreadsheet products where the data can be
analyzed. Similarly, export of a report into HTML provides the ability for any
web browser to display the data. Alternatively, a new system component
might import a data file produced from a spreadsheet program to alleviate the
need for the creation of a user interface. The advent of XML has increased the
ease of implementation of this approach by providing developers access to a
common set of tools for handling complex data.

The downside of the data-only integration approach is that the user is often
directly involved in the management of files and in controlling the execution
of the COTS or legacy program after generating a data file. For tasks that

219

220

Architecture Techniques

occur infrequently, this approach works well but may be cumbersome if the
task occurs frequently, for example if users are required to frequently
exchange data between components.

Adding a central database as a repository of data exchange will often make
the use of existing products more difficult. On the other hand, some of the
direct management of data storage and exchange is removed. In addition, the
database often provides security and query features more directly than a file-
based approach.

For this sort of integration, there is often little impact to the software
architecture task unless a data exchange format and the associated database
schema needs to be defined, or the data exchange between components is bi-
directional. Approaches for this task are described in Chapter 9. In addition,
if the approach uses a database, then a database system needs to be acquired
and integrated into the system design.

One issue to consider is to try to select relatively stable data exchange
formats. If a new version of a COTS product does not recognize the old data
import or export format then the system components will need to be changed
to match or to support multiple formats as the new version of COTS becomes
available.

11.5.2 Executable integration

In executable integration, a stand-alone executable component is used to
perform a specific function in the system. The executable component is
partially controlled by either another component or a scripting infrastructure
within the larger system. The controlling component will need to depend on
an execution infrastructure that allows the controlling component to start the
executable component and to exchange data with that component. The
execution infrastructure may be anything from operating system process
execution facilities to a web protocol. This integration approach has the
following properties:

e No build-time component coupling
¢ Dependency on component invocation platform
e Usually builds on a data integration foundation

e Isnot required to share a common platform, but often this is the case

As an example, a system might generate a data file and then use a COTS

Establishing Architecture to Support Development

spreadsheet product to provide data graphing capabilities. The creation of
graphs may be driven by a script that provides the spreadsheet product with
the necessary data from the system to draw the desired user graphs.

A big advantage of this approach is that the direct role of the user can often
be eliminated. Thus, even if a data file is the primary basis of integration
between two components, the ability of one component to execute another
can automate an end-to-end task for a user.

With this sort of integration, the architecture concern is in the interactions
between components as well as the design of the supporting component
execution infrastructure. The execution infrastructure is often part of the
selected platform or is provided by a cross-platform execution facility.

11.6 Establishing Architecture to Support
Development

The architecture of a software system inevitably impacts and is impacted by
many critical development support functions. The following sections will
describe some of development support functions impacted and enabled by the
software architecture. Establishing the relationship between support functions
and the architecture is often critical to keeping a large project agile enough to
succeed.

11.6.1 Configuration and change management

Establishing configuration and change management practices is essential to
the success of large-scale systems. Configuration management systems provide
for the versioning and management of changes to source code and other
software artifacts. A mapping of the subsystems to a build-tree provides a
good basis of source code configuration management.

Change management systems record defect and feature requests that drive
the development process. Inevitably, the setup of these development support
systems is impacted by the software architecture. In particular, as defects are
reported, they will often be isolated to a certain subsystem or subsystems. The
assignment of a development group to investigate and make the necessary
changes usually involves determining the subsystems involved and assigning
the work accordingly.

Inevitably, some changes will involve coordination across multiple subsys-
tems that are the responsibility of different parts of the organization. These
types of changes are fundamentally more expensive since communication and

221

222

Architecture Techniques

coordination are required. Again, there is inevitably some mapping between
the software architecture and the organizational responsibility.

11.6.2 Build management

Establishing consistent and automated build practices is essential to the
success of large-scale systems. By build, we mean the process of compiling
source code, creating libraries and executables, and transforming these pro-
ducts into an installable software package. The subsystem structure usually
provides the basis for automated build systems.

The agility of the build process is significantly impacted by the software
architecture. Reduction of build times is an important way that the architec-
ture facilitates development. For example, in a good architecture that
leverages layers, the lowest layers will change the least. These lower layers can
be pre-built and made available for developers to utilize. This relieves
individual developers from the time needed to constantly build these stable
elements of the software. In a good architecture, the majority of changes will
only require modification of a single subsystem. When this is the case, the
build and test cycles are minimized. This means that more work can be
accomplished by the same number of developers. Add the effect of these
efficiencies over many developers and extended periods, and the benefits of a
good architecture become clear.

As new builds of the software are created, the architecture description must
be updated to match. This usually involves an automated update of the
detailed design information, as well as validation that the subsystem and
higher-level architecture are still consistent with the code that was delivered.
As an example, the subsystems map to the build-tree within which the
libraries and executables for the system are generated. If new subsystems are
created, or additional dependencies between the subsystems are added, auto-
mated tools can flag this change and notify the architecture and development
teams.

11.6.3 Continuous infegration

In large systems with many developers, software changes can happen at a
rapid rate. Continuous integration is a process for managing changes and
detecting incompatibilities between changes rapidly. As developers integrate
changes into the system, a series of regression tests is performed to ensure that

Establishing Architecture to Support Development

the changes have not broken some existing capability. These tests go beyond
the subsystem-level tests typically performed as changes are being made.

A typical realization of this process is a daily build and test process. In
reality, most large projects will perform multiple builds in a given day since
management of multiple different versions is needed to manage complex
delivery constraints. For example, a single change may be propagated to
several release versions that support external customers as well as internal
development versions of the software. The build and test process may need to
be run across all of these versions. In addition, some complex changes may
require days or weeks to complete. In this case, a daily build and test may be
required on a feature development branch as well.

The most important aspect of continuous integration is that failures in the
automated tests detect system integration issues almost immediately following
the change is made. This early detection ensures that the change is still fresh in
the mind of the developer and avoids expensive rework cycles typically
involved with integrating large numbers of unchecked changes.

The architecture of the software heavily impacts the continuous integration
process. Ideally, the daily build and test process will run smoothly. Changes
will be made, and no errors will be found by the automated tests. If the daily
build and tests are constantly unstable, this is an indication that developers
are unable to isolate work appropriately. It is often the sign of a poor
architecture.

Development of a skeleton system, as described earlier, can provide the start
for the development of a continuous integration process. Likewise, the
skeleton system is a technique for incrementally building up the software
architecture.

11.6.4 Anticipate multi-language development

In today’s software development environments, there are many different
languages available for development. These include C++, Perl, Python, Java,
SQL, Visual Basic, and others. Different languages and environments have
different strengths and weaknesses. The widespread use of databases and
web-based infrastructure almost guarantees that a large system will have
multiple development languages. It is an important architectural concern to
determine where and how language boundaries impact the software design.
Choosing the correct language and environment for addressing various
problems can provide cost-effective solutions. For example, SQL might be
used to create data in a database that is retrieved by a C++ application. Since

223

224

Architecture Techniques

C++ never needs to update the data, time and energy are saved since the C++
application only needs to implement database-reading capabilities.

One common approach to the multi-language environment is to describe
the cross-language interfaces using middleware such as the Common Object
Request Broker Architecture (CORBA). The tools provided with CORBA
implementations generate much of the cross-language binding and marshal-
ing. However, there are many other cross-language mechanisms, including
other libraries that provide the ability to execute a program written in one
language from another language. For example, a Perl script can be executed
from within a C++ program by loading a Perl interpreter within the C++
executable. The Perl program might then call functions written as part of the
C++ program. This type of approach might be used to enable custom reports
written in Perl to retrieve data from the C++ APL

One of the big downsides to multi-language development is increased
complexity in both the operational and development environments. In addi-
tion, a badly partitioned system will end up with intertwined application logic
written in multiple languages. Therefore, one goal of the architecture is to
isolate specialty languages to solving the problems for which they are appro-
priate. This might involve restricting the language to a particular layer of the
system such as the application user interface. For example, the application
logic should generally not be written as stored procedures in a database
system.

11.6.5 Anticipate tactical development (scripting)

A topic that is related to multi-language development is the enabling of
tactical development features. Tactical development is the rapid development
of a short-lived capability which is very specific to a certain customer or
context. The scripting approach provides many benefits, including the ability
to develop one-of-a-kind or one-use programs.

Scripting may be used to mine data, fix a database corruption, recover from
a software failure, or perform other complex jobs that would otherwise be
difficult to accomplish manually. For example, the ability to create a report
from a database to gather data for resolving a software bug is an example of a
potential one-time feature. The software problem may be unique, and hence
the report is only valuable one time. However, having the ability to quickly
develop scripts for data mining and other purposes may allow for quick
resolution of the problem.

Often the features developed using tactical development techniques will not

Recommended Reading

require the same level of formal review as software that forms the core of the
system. As a result, it might be important for the architecture to support and
limit the risk of this type of software. For example, a Perl binding to a
database for report generation might be limited to reading of the database.
This would prevent the destruction of data created by a flawed script.

Software architectures that facilitate scripting can be created using several
approaches. For example, a software architecture might provide scripting
interfaces to data stores that allow for various monitoring and reporting
capabilities. In many large-scale developments, providing for scripting is an
essential component of success. Modern scripting languages provide the
ability to develop new features in real time that could not be anticipated up
front.

11.7 Recommended Reading

The applicability of Scope, Commonality, and Variability (SCV) Analysis as
well as domain analysis for product families is described in Weiss and Lai
(1999). As a general-purpose approach for software engineering, SCV is
described in both the paper by Coplien, Hoffman, and Weiss (1998) and the
book by Coplien (1998). The use of Commonality and Variability Analysis
for identification of frameworks is described in Mili et al. (2002).

Feature modeling, as described by Czarnecki and FEisenecker in their
generative programming book (2000), is a formal version of commonality
and variability analysis. Feature modeling provides a formal basis for the
development of frameworks and product families.

Bertrand Meyer (1997) has the definitive discussion on design by contract.
There are also several good discussions on the Interactive Software Engineer-
ing web page and in the paper by Meyer (1992).

Bass et al. (1998) describes building a skeletal system as the first step.

Many papers on Architecture Description Languages can be found at the
CMU SEI web site. Shaw and Garlan (1996) have done a lot of work in this
area. Garlan and Allen (1994), as well as several other authors on the topic of
ADLs, have been focusing on describing interfaces using ADLs.

The paper by Niklaus Wirth (1971) on stepwise refinement provides a good
overview of early thinking on the divide and conquer approach.

Hofmeister (2000) includes several effective strategies. Among them are
Encapsulate Domain-Specific Hardware, Isolate Time-Critical Components,
and Separate Domain Model from Human Interface.

In a series of articles, Robert Martin discussed several key principles,

225

226

Architecture Techniques

including the Dependency Inversion Principle, the Interface Segregation
Principle, and the Open Closed Principle. The articles describing these
principles are also available at his web site. The book by Lakos (1996) also
discusses package levelization, a similar to dependency inversion.

Buschmann (1996) has a very good description of many Architectural
Patterns. These include Pipes and Filters, Blackboard, Model- View—-Control-
ler, and Reflection. While Buschmann introduced the idea of an Architectural
Pattern, Shaw and Garlan (1996) had an earlier discussion of what came to be
called patterns and architectural style. Monroe et al. (1997) also had a paper
that discussed architectural styles and design patterns.

Douglass (1999) discusses the use of Architectural Patterns for real-time
software.

The Specification and Description Language (SDL) is in the ITU Z.100
Specification (1999).

The Repository Pattern is described in Coplien (1995).

The SEI has done a significant amount of work on architecture analysis and
evaluation. This work includes the Architecture Tradeoff Analysis Method
(ATAM) and the Software Architecture Analysis Method (SAAM). Informa-
tion is available from the SEI web site.

Garland, Anthony, and Lawrence (1999) provide a more detailed descrip-
tion of the factors that impact the quest for the creation of stable software in
an OOPSLA position paper.

Martin Fowler has a good description of continuous integration at his web
site. There is also a description of continuous integration at the C2 Wiki site.

Applying the
Viewpoints

The following sections sketch how to use the previously described viewpoints
to facilitate architecture development. In addition, we provide some conclud-
ing thoughts about becoming a software architect, the current state of the
practice, and some thoughts about the future.

It should be noted that the amount of time required to perform a full
iteration through these processes might range from hours to months. The
length of time required will depend on the size of the system and the focus of
the participants. An expert designer focused on a small part of the system
might progress through a series of views and directly to implementation all in
a single session. These views might be simply sketched on a whiteboard to
support development of either a prototype or skeletal system. An architecture
team in the first phase of a very large and complex system development might
spend a month. Every project and situation is a bit different.

12.1 Bottom-Up Architecture Development

One of the more structured approaches for architecture development starts
with domain analysis as described in Chapter 6. This overall process is
illustrated in Figure 12.1. Note that the figure only illustrates the structural
views. The dynamic views are used in conjunction with these structural views
as described in the earlier chapters.

228 Applying the Viewpoints

Analysis
Focused — — —

Analysis
Overall View

Layered
Subsystem

View ¢

/
—_—
<
~
~ —

~
b
&

— -
P
Subd

Con}ponent Subsystem Logi(_:al Data
Views Interface Dependency Views

i l

<<process>>

l@ _L @

H

o comp| <<process>>

= . = alalt

Deployment Process Physical Data
Views Views Views

Figure 12.1 Bottom-up architecture development

Top-Down Architecture Development

A list of use cases is the driver for development of analysis and subsequent
design views. The domain analysis process produces the Analysis Overall
View. The next step is to partition the analysis view into domains. This
partitioning is accomplished by rearranging the Analysis Overall View and
grouping the classes based on coupling and cohesion, as described in Chapter
11. The classes that are closely coupled should be grouped together into a
cohesive set. The goal is to minimize the number of associations and aggrega-
tions between the groups of classes. Each group forms the basis for a
candidate subsystem.

One approach for identifying the set of subsystems is to add implementa-
tion details to the Analysis Overall View until the key implementation classes
are added. This is similar to the process of evolving an object-oriented analysis
into a design. From this more detailed Analysis Overall View, the subsystems
are then identified by following a similar grouping process. Another, more
rigorous approach, is to go back to the use-case elaboration step and add
implementation constructs to all the Analysis Focus Views and eventually to a
view that is more implementation focused. Once again, this view is used for
identification of the subsystems based on grouping of the classes in the
Analysis Focused View.

Regardless of which approach is used, the result will be the set of
subsystems. The subsystems can be represented in the Layered Subsystem
View. As subsystem interfaces are identified, the Subsystem Interface Depen-
dency View is developed. At this point off-the-shelf infrastructure subsystems
and other technical mechanisms are added. The Component View is often
developed following the definition of the Subsystem Interface Dependency
View in order to understand the preliminary runtime structure for the
candidate subsystems. For systems using a shared data design, the Logical
Data View should be developed starting from the Analysis Overall View.

Mapping to processes and hardware can be derived by starting with
Component Views and creating Process Views and Deployment Views.
Remember from Chapter 10 that both types of views may not be needed since
Deployment Views can also capture processes.

12.2 Top-Down Architecture Development

A completely different approach from the bottom-up approach is to identify a
preliminary set of system components, develop the interfaces, and then begin
to analyze the details of the subsystems and entities required to support each
component. This ‘top-down’ approach has many benefits. First, it reduces the

229

230

Applying the Viewpoints

— — | 1
Sub1 Sub2 Sub3
=
= = = = |
Subb Sub7 Subd Sub9 |
Layered
Component Subsystem
Views View
— =
Subt _J—oé _———
o
N
\\ —
-
5
— — -
:
Subsystem Loglt_:al Data
Interface Dependency Views
Views l
- <cprogesse»
=L
cmp C"'“p <<Process>>
2

Deployment
Views

Process
Views

Physical Data
Views

Figure 12.2 Top-down architecture development

Message Protocol and Interface Development

time required for analysis and design because it ignores many details required
by the bottom-up analysis approach. Second, software architecture develop-
ment is often not undertaken for a completely new system but for an existing
system. Existing systems consist of well-defined components that can be
rapidly modeled. In addition, the requirements for a new system might specify
the use of some existing components, thus fixing the solution space. Finally, a
system based on standards will often predefine specific components and
interfaces, again limiting the solution space.

Figure 12.2 provides an overview of this approach. As with the bottom-up
approach, use cases can be used to elaborate Component Views. The focus in
the top-down approach is on splitting the system functions into components
and detailing a set of message-based or interface-based interactions. The
interface design process is discussed in more detail in the next section.

After defining Component Views for the key use cases, one option is for all
the components in the use case focused views to be brought together into a
single Component View representing all the components and component
interactions. This Component View can then be used to identify candidate
subsystems that will build the components. The layers and interfaces asso-
ciated with these subsystems can then be identified and the Layered Subsystem
View and Subsystem Interface Dependency Views can be generated. The
Logical Data Views can then be generated from the Component Views along
with the Layered Subsystem View. The Deployment and Process Views can be
defined, based on the component definition. In addition, the Physical Data
View can be defined based on the Logical Data Views.

12.3 Message Protocol and Interface
Development

Interface and message protocol development is a critical part of architecture
definition. The process of defining an interface or a messaging protocol
involves detailing the sequence of events between two or more components.
Chapter 11 describes a number of useful techniques, including Design by
Contract and prototyping, that can be useful for refining the details of an
interface or messaging protocol.

Figure 12.3 shows a structured technique for developing interfaces and
message protocols. In this method, the use cases drive the development of a set
of Component Interaction Views. Component Views may be developed as
well, but it is the interactions that are fundamental to the understanding of the
interfaces and message protocols.

231

232 Applying the Viewpoints

lise Casa 2

Use Case 1

Component
Interaction
Component Views
Views

Message Document

—
—
message 1
message 2 AN
message 3 AN
AN —
1 |msg1 | desc

4
— -
- \
“TNE
SubS
Message Descriptions

Message Top-Level Subsystem
Description Component Interface
Document View Dependency View

Figure 12.3 Messaging and interface development

From these Component Views, the component interface detail can be
captured at a high level in the Subsystem Interface Dependency Views, and in
the overall Component View. In addition, information concerning the mes-
sages and ports can be captured at a lower level of detail in a Message
Description or Interface Document. The detailed description of interfaces that

Documenting the Architecture

accompanies the Component Views, along with the message detail contained
in the Message Description Document, is then used to drive the design and
development of the software.

Interface development is typically supported either by prototyping or done
within the context of skeleton system development. All of the aforementioned
views provide a useful start to both of these efforts.

12.4 Reengineering Existing Systems

A frequent problem faced by development teams is the need to understand
existing systems for reengineering, evolution, or integration with new systems.
In this case, the Process, Deployment, and Component Views are useful in
getting an understanding of the as-is system. The Process and Deployment
Views provide an understanding of the physical layout of the system and the
Component Views provide a logical layout. Other views, such as the Logical
Data View, may also be created to understand and document database
schemas for existing systems.

Once the as-is system is documented, the next step is to describe the as-desired
system. This usually involves discussing the implementation constraints of the
current system that are preventing it from fulfilling the desired requirements. For
example, an existing system may not be capable of supporting desired scalability
and deployment scenarios because of a monolithic component design. In this
case, some components may need to be split into multiple components that can
be replicated at runtime. Developing Component and Deployment Views of the
as-desired system supports this type of redevelopment.

In the end, the best selection of views depends on the particular problem.
And as usual, the development of views is typically only an intermediate step
prior to code refactoring or a rewrite. To be effective, designers need to
constantly evaluate what information will be learned by creating another view.

12.5 Documenting the Architecture

In order to document the software architecture, a top-level software design
document (TLSDD), sometimes referred to as the software architecture docu-
ment, should be produced and maintained by the software architecture team.
This document will communicate the software architecture to the stake-
holders. If the project is utilizing a CASE tool, as much of this document as
possible should be generated from that tool. However, certain text sections
may need to be edited by hand and included in the generated document.

233

234

Applying the Viewpoints

The following views and information should be included in the document.
Along with nearly all views, a textual description and/or a set of tables that
are similar to the ones we describe along with the viewpoints should also be
included. The TLSDD should include all of the relevant architectural views
and related information. However, it should not be stuffed with so much
detail that it cannot be used as a reference by the stakeholders, nor should it
contain views for which there are no stakeholders. The following information
is typical of what should be included in the TLSDD:

e Overall description of the software system under design

e Identification of the major design constraints as they relate to the key top-
level requirements

e Opverall design principles, key abstractions, and overarching considera-
tions

e References to other key documents defined by the architecture or process
teams

e Context view

e Top-Level Subsystem Interface Dependency View — This will define the
organizational boundaries and dependencies. If a single view will not fit in
the document, then produce a smaller set of views to capture the relevant

information or use the Layered Subsystem View.

e Other focused Subsystem Interface Dependency Views, potentially one for
each development subsystem with that subsystem as the focus

e One or more views of the composite components — These may be focused
on key use cases or other critical interactions. If possible, one overall
Component View should be produced.

e Other Component Views, again focused on use cases or other interactions

e Logical Data Views

¢ Deployment Views, focusing on sets of nodes or processes that are involved
in specific interactions or that need to be grouped for other reasons

Conclusions

e Key design decisions that drove this version of the software architecture

¢ Outstanding issues or concerns with the overall architecture

A typical TLSDD should be fifty to one hundred pages. This is small enough
to be quickly read, but deep enough to cover the system. If the document
becomes too large, think about ways to move details to other documents.

12.6 Conclusions
12.6.1 Becoming an architect

Becoming a good software architect is a difficult job requiring a large breadth
of knowledge and many years of experience. It requires becoming an expert in
software development. It also means learning many social skills. It requires
becoming an expert in the domain of the project.

The following are some characteristics of great software architects:

o Well versed in software analysis and design techniques, as well as archi-
tectural and design patterns

o Fluent in several programming languages
e Excellent verbal communication and writing skills
e Excellent at critical thinking and knowledge acquisition

e Ten or more years of experience in software development

With the exception of experience, the skills required to become an architect
can be taught. People can learn new languages, read about design, and take
classes to improve communication skills. The following paragraphs expand
on these topics.

Ten years ago, very little literature existed about applied software design.
Thanks to the pattern movement and many other authors, a large body of
literature has been developed about software design. There is certainly no lack
of advice. New software architects should read widely and try out ideas that
look promising. Patterns are especially valuable for several reasons. First, they
typically provide an end-to-end capsule of thought about a particular design
aspect. Both the abstractions and the implementation are available for study
in a concise and specific write-up. Second, patterns describe trade-offs and

235

236

Applying the Viewpoints

alternatives. Finally, they are based on repeated experience and hence repre-
sent practical designs.

The architect should be fluent in several programming languages. The
first reason for this is that the software architect of a large project will be
faced with implementations using many languages. Architects will often be
involved in helping to sort out which languages are applied to which
problems. In addition, architects will need to read and review interface
implementations and other source code. Consider the need to evaluate if an
existing C library can serve as the foundation for a Java interface. Being
fluent in several different languages makes the job of learning unfamiliar
programming languages much easier.

Excellent writing and presentation skills are critical for software architects.
Software architects need to interact with many types of people. Extracting the
important essence of the information from a discussion or other communica-
tion is an important skill. Be prepared to make regular presentations as a
software architect. Sometimes highly technical topics need to be communi-
cated to non-technical audiences. At other times the architect much interface
directly with technical experts. Sometimes these presentations may be to a
hostile audience, making the interactions stressful. All of these skills can be
nurtured by taking classes or participating in organizations focused on the
development of communications skills.

Software architects need to be good critical thinkers. The various roles of
an architect require evaluation of the merits of everything from requirements
to code structure. Being able to distinguish between good arguments and
spurious rationale helps in making good technical choices. While being
critical, it is important to keep an open mind. Few designs are categorically
good or bad. Most designs have various strengths and weaknesses. The
critical question is whether the strengths and weaknesses are in alignment
with the needs of the project and the stakeholders. Architects that work on a
broad range of systems often need to rapidly get an understanding of the
domain of a new system. This means digging in and understanding new
terminologies and processes. It means also means not being afraid to ask
questions and admit a lack of knowledge.

Finally, there is no substitute for experience. It is important for aspiring
architects to dig in, get their hands dirty by doing design and development.
For example, the architect should try to implement a reusable library in his or
her spare time from the ground up. The architect should also write and review
Design Patterns in order to become accustomed to looking at the different
perspectives. The architect should also be a frequent product tester. These
experiences will help the aspiring architect to:

Conclusions

e Balance trade-offs in a design
e Learn to move on before perfection is achieved
e Learn how to estimate well in the face of great uncertainty

e Learn how to see the customer perspective

Throughout this book we have pointed to many sources of information
about software architecture and related topics. This list of sources is only a
small fraction of what we have actually read and learned from over the years.
Reading widely is another required behavior for a software architect.

12.6.2 State of the practice

Over the past ten years there have been dramatic changes in the practice of
software development. Some of the changes include:

e Less software developed from scratch
e Emergence of object-oriented, scripting, and special-purpose languages
e Rise of the Internet and networked applications

e Consensus that software design matters

More often than not, projects are either rewriting existing capabilities or
adding web interfaces onto existing systems. In addition, the libraries and
frameworks available for developers have expanded dramatically. The avail-
ability of good libraries has reduced the amount of time devoted to the
development of basic data structures and other low-level details. This allows
more attention to be paid to the development of the application. On the other
hand, the expectations of users have dramatically increased due to more
sophisticated user interfaces and to advanced functionality becoming an
expectation rather than an exception. As a result, the job of software develop-
ment is becoming more about putting together in new ways software that
already exists in various pieces.

Internet and network applications have become much more prevalent as the
Internet has grown. This has resulted in an increase in complexity compared
with non-networked applications.

Object-oriented languages such as Java and C++ are the predominant
development languages. These languages have features that allow for more

237

238

Applying the Viewpoints

sophisticated architectures than the functional languages that preceded them.
Less recognized has been the expansion of widely available special-purpose
programming languages and general-purpose scripting languages such as Perl
and Python. These languages can provide highly effective development envir-
onments for integration, testing, and development of tactical functionality.
Frameworks that apply generative programming techniques have become
rather commonplace.

In the area of the modeling and representation of software architecture, a
significant advancement was the emergence of the UML as a standard. Prior
to the standardization of the UML, the object-oriented design community was
attempting to promote widely disparate approaches and modeling notations.

One other interesting change is that companies developing software have
decided that having a design is important. Most companies now expect that
software projects will include design as well as code products. There is
recognition that a bad architecture can result in significant downsides for a
project, including cost overruns and even project abandonment. This is all
meaningful for the software architect, as it means many organizations will
now provide for and support the software design effort.

All of these factors have changed the issues for software architects. Today, it
is more important than ever to understand the advantages and limitations of
off-the-shelf components. Integration and augmentation of existing compo-
nents is a common problem.

The good news is that projects that have an early and consistent focus on
software architecture and that provide the necessary resources for the defini-
tion of an effective architecture will realize the benefits throughout the project
lifecycle. For this reason, more projects are making use of architecture-centric
processes and are achieving these benefits. While the architecture-centric
approach is being used more often, providing tremendous improvements in
the state of the art of software development, many projects are still attempting
significant development efforts without the definition of a software architec-
ture. In fact, many projects are still being attempted without any documented
software architecture at all.

12.6.3 Looking forward

While the information in this book and others like it will assist the software
architect in doing his or her job, there is still much to be done to improve
software architecture definition. Some areas where advancement might be
reasonably expected include:

Conclusions

e Improved design and development tool support
¢ Improved documentation and usability of architecture patterns

e Improved architecture definition language support

Software engineering tools have never been better, and they are continually
improving. For example, several programming environments now integrate
coding and design tools. However, there are still plenty of issues with tools.
As an example, most tools provide extremely limited support for automated
layout of diagrams. This requires designers to spend time ‘tweaking’ the
diagrams to look good. It should be reasonable to expect that a sophisticated
program can relieve designers of the tedium of diagram layout. It should also
be reasonable to expect design tools to automatically generate and maintain
a view based on model information and some sort of template specification.
Like many of today’s applications, we can expect design tools to become
truly networked enabled providing first-class support for geographically
distributed development teams. Finally, direct support for design-level refac-
toring within a tool that directly modifies code will magnify the impact of
expert designers.

As mentioned previously, Software Patterns are still in an early stage of
development. Many patterns have been written, but much less work has been
done to unify patterns into a coherent system. Figuring out how best to apply
patterns today requires an immense effort. The development of Pattern
Languages should provide deeper insight into how various patterns relate and
how to use them together effectively.

Some of the original Design Patterns are increasingly becoming the building
blocks for the next generation of reusable components. Patterns such as
Abstract Factory and Singleton have been married with design tools and
generative programming techniques to provide powerful configurable li-
braries. This moves the practice of design to a new level by automating the
implementation based on a set of configuration options. This allows architects
and designers to have more control over the quality and consistency of the
final implementation. In the past this was not possible because libraries made
design decisions incompatible with a new architecture. All too frequently this
meant rewriting the library. By leveraging documented patterns these libraries
build on previously successful designs. With these new techniques, reuse seems
like a much more achievable goal. As more repetitive and infrastructure code
can be configured for specific needs and reused directly, more time and focus
can be applied to improved application architecture and development.

The adoption of IEEE 1471 and the upcoming release of the UML 2.0

239

240

Applying the Viewpoints

should help improve the future practice of software architecture. Having a
common vocabulary for discussion is typically the first step to common
understanding. We hope that this book will provide some insights for discuss-
ing other improvements. Some of the proposals for Architectural Description
Languages may also make a major impact on the practice of software
architecture.

This book has attempted to provide a set of practical techniques and
approaches for defining a software architecture that achieves the product and
organizational goals. In addition, we stress the importance of producing only
architectural views for which there are stakeholders in order to prevent the
architecture definition process from becoming too heavyweight. We have been
successful in building architectures using these techniques. In many cases, the
full benefit was not initially achieved as we were still learning how to apply
the notations and techniques effectively. The message this book is intended to
convey is that successful large-scale projects can be developed and have a
software architecture that reflects the needs of the users.

12.6.4 Final thoughts

Developing software is one of the most complex tasks in which humans can
be engaged. To develop this software without a blueprint or set of overriding
principles makes the task nearly impossible. The goal of the software architect
is to develop and communicate this blueprint based on a vision of how the
system should evolve into the final product.

With a well-defined architecture and the guidance of a knowledgeable
software architect, large-scale software can be a much more satisfying experi-
ence for all who are involved.

In this book, we provided both the experienced and the aspiring software
architect with techniques and a set of viewpoints, which have proven to be
valuable in several large-scale and smaller projects. Our hope is that you have
found this book useful. We hope that armed with the knowledge gained by
reading this book and the recommended readings you will:

e Extract the pieces that apply to the particular project and organization
e Supplement this information with your own experience and study
e Mentor other aspiring software architects

e Promote best practices in software architecture and design

Recommended Reading

e Add to the growing body of Architectural Patterns

e Document and publish your knowledge and experiences as a software
architect

e Find other ways to further advance the state of software architecture

12.7 Recommended Reading

The process described here for the creation and partitioning of the Analysis
Overall View was referenced in the Unified Process, but little detail was
provided.

Andrei Alexandrescu (2001) has implemented several of the original Design
Patterns using policy-based design in C++.

241

Appendix: Summary

of

Architectural
Viewpoints

This appendix includes a summary viewpoint table, based on the tables
found in Chapter 1, along with the Viewpoint tables from each chapter. The

summary is found in Table A.1.

Table A.1 Software Architecture Viewpoint Summary

Viewpoint UML diagram Description Chapter
type

Analysis Focused Class Describe system entities in response 6
to a scenario. Often referred to as a
view of participating classes or
VOPC.

Analysis Interaction Interaction Interaction diagram between objects 6
for analysis.

Analysis Overall Class Combination of all classes from all 6
focused analysis viewpoints.

Component Component Illustrate component 7
communications.

Component Interaction Interactions among components. 7

Interaction

(continued overleaf)

244 Appendix: Summary of Architectural Viewpoints

Table A.1 (continued)

Viewpoint UML diagram Description Chapter
type

Component State State/Activity State transition/activity diagram for a 7
component or for a set of components

Context Use Case Show the external system actors and 6
the system under design.

Deployment Deployment Mapping of software to hardware for 10
distributed systems.

Layered Subsystem Package Illustrate layering and subsystems 8
design.

Logical Data Class Show critical data views used for 9
integration.

Physical Data Deployment Physical view of a particular 10
database.

Process Deployment Show the processes of a particular 10
system instance.

Process State State Show the dynamic states of a process. 10

Subsystem Interface Class Illustrate subsystem dependencies 8

Dependency and interfaces.

The descriptions for each of the viewpoints shown in the summary are
shown in Tables A.2 to A.15.

Table A.2 Analysis Focused Viewpoint

Analysis Focused Viewpoint

Purpose Illustrate a set of actors, classes, attributes, methods, and
associations for a specific use case, set of use cases, or subset of an
Analysis Overall View.

When Applicable Primarily prepared during analysis, along with use case
development. Generally not maintained, unless a product family is
being developed.

Stakeholders Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers.

Scalability The focused views will be used to produce an overall view that can
be used to drive the software architecture definition.

Relation to Other Should be consistent with the initial overall views, but will most
Views likely not be maintained as the overall views evolve.

Appendix: Summary of Architectural Viewpoints

Table A.3 Analysis Interaction Viewpoint

Analysis Interaction Viewpoint

Purpose

When Applicable
Stakeholders
Scalability

Relation to Other
Views

Illustrate a set of classes, attributes, methods, and associations for a
specific path through a use case.

Prepared during analysis, along with use case development.
Generally not maintained.

Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers.

The interaction views will be used to produce a focused view for that
use case.

Should be consistent with the initial focused views, but will most
likely not be maintained as the focused views evolve.

Table A.4 Analysis Overall Viewpoint

Analysis Overall Viewpoint

Purpose

When Applicable

Stakeholders

Scalability

Relation to Other
Views

Illustrate the set of key actors, classes, attributes, methods, and
associations for a system. This viewpoint should not contain
implementation details.

Primarily prepared during analysis, along with use case
development. Generally not maintained, unless a product family is
being developed.

Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers.

The overall view is seldom small enough to fit onto a single sheet of
paper. Subsets of the classes, actors, and associated information can
be extracted to produce focused views that convey a key concept or
set of concepts.

Should be consistent with the initial analysis focused and interaction
views, but generally evolves to contain additional information.

Table A.5 Component Viewpoint

Component Viewpoint

Purpose

When Applicable

Describe runtime component connectivity and communication. Can
be applied to performance analysis and later the process interaction
design.

During system design and development, as analysis views and
subsystems are identified.

(continued overleaf)

245

246

Appendix: Summary of Architectural Viewpoints

Table A.5 (continued)

Component Viewpoint

Stakeholders

Scalability

Relation to Other
Views

Architecture Team, Subsystem Developers, Test Team, Software
System Engineering Team, Systems Engineering Team, Project and
Development Managers (to a lesser degree)

Drawn with scenario or component focus. Can make use of
composite components.

The Component Views should be consistent with components shown
in the Process and Deployment Views.

Table A.6 Component Interaction Viewpoint

Component Interaction Viewpoint

Purpose

When Applicable

Stakeholders

Scalability

Relation to Other
Views

Validate structural design via exploration of the software dynamics.

Throughout project lifecycle. Primarily prepared during design and
analysis, but can also be used and expanded during development.

Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers.

Based on scenarios, can be scaled to higher levels by using composite
components.

Should be consistent with Component, Process, and Deployment
Views.

Table A.7 Component State Viewpoint

Component State Viewpoint

Purpose

When Applicable

Stakeholders

Scalability

Relation to Other
Views

Model the state of a component or group of components.

Throughout project lifecycle. Primarily prepared during design and
analysis, but can also be used and expanded during development.

Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers.

State-based views, based on individual components, can be scaled up
to composite components. Activity-based views can be applied to
single component or several components.

Should be consistent with other dynamic views as well as interface
and message definition.

Appendix: Summary of Architectural Viewpoints

Table A.8 Context Viewpoint

Context Viewpoint

Purpose

When Applicable

Stakeholders

Scalability

Relation to Other
Views

Model the set of actors with which the system interacts and the
interfaces between the system and these entities.

Throughout project lifecycle. Primarily prepared during the first
stages of design and analysis, but is updated as information about
external interfaces changes.

Software Architecture Team, Software Systems Engineering Team,
Subsystem Design Leads, Developers, Testers, Systems Engineers,
Marketing, or others who are interested in or negotiate external
interfaces.

The system should always be located in the middle of the view. The
external actors should be surrounding the system. If the number of
actors becomes too large, they may need to be grouped into higher-
level actors. Multiple Context Views should only be used as a last
resort.

Should be consistent with other static views that show external
interfaces. For example, the subsystem interface, component,
process, or deployment views.

Table A.9 Deployment Viewpoint

Deployment Viewpoint

Purpose

When Applicable

Stakeholders

Scalability

Relation to Other
Views

Describe mapping of processes/components to hardware, may need
several of these. May have several views for large systems.

Describe runtime component connectivity and communication. Can
be applied to performance analysis and later the process interaction
design.

After preliminary components are identified, this view can be created
as input to making hardware purchase decisions. Updated during
construction and transition as components are completed. When
reengineering or documenting an existing distributed system.

Architecture Team, Hardware and Network Architects, Subsystem
Developers, Test Team, Software System Engineering Team, Systems
Engineering Team, Project and Development Managers (to a lesser
degree), Operations Staff.

Drawn with scenario or component focus. Also, a node focus can be
used for modeling scalable servers.

Builds on process, component, and physical database views by
adding in mapping to nodes.

247

248

Appendix: Summary of Architectural Viewpoints

Table A.10 Layered Subsystem Viewpoint

Layered Subsystem Viewpoint Synopsis

Purpose

When Applicable

Stakeholders

Scalability

Relation to other
Views

Provide top-level view of the subsystem and layer build-time
architecture

Throughout project lifecycle

Program and Project Managers, Software Architecture Team,
Development Team, Test Team, Customers

Onmits detailed dependency information

Abstraction of the Subsystem Interface Dependency View.

Table A.11 Logical Data Viewpoint

Logical Data Viewpoint

Purpose
When Applicable
Stakeholders

Relation to other
Views

Describe the logical form of data and messaging types for a system.
Design
Architecture Team, Developers, Testers, Hardware Architect.

Derived from Analysis Overall View.

Table A.12 Physical Data Viewpoint

Physical Data Viewpoint

Purpose

When Applicable

Stakeholders

Scalability

Relation to Other
Views

To describe the layout of the physical database elements. These views
are annotated with estimates/measurement of database size, growth
rates per factor and redundancy strategies.

During subsystem and component design and development.

Architecture Team, Developers, Operations Staff, Hardware
Architect, Testers

Can be focused on a chosen subset of the system or can model the
overall system.

Nodes and databases may also be shown on the deployment view.

Appendix: Summary of Architectural Viewpoints

Table A.13 Process Viewpoint

Process Viewpoint

Purpose
When Applicable

Stakeholders

Scalability

Relation to Other
Views

Describe process inter-communication mechanisms independent of
physical hardware deployment.

During system design and development. Reengineering of existing
systems.

Architecture Team, Subsystem Developers, Test Team, Software
System Engineering Team, Systems Engineering Team, Hardware
Architect, Project and Development Managers (to a lesser degree),
Operations Staff.

Supplement with tables indicating access frequency, response times,
data transfer sizes, etc.

This view is an abstraction of a Deployment View that does not
include a mapping of processes to nodes. This view is a detailing of the
Component View showing the mapping of components to processes.

Table A.14 Process State Viewpoint

Process State Viewpoint

Purpose

When Applicable
Stakeholders
Scalability

Relation to other
View

Describe the state transitions and interactions of one or more processes.
During system design and development.
Architecture Team, Subsystem Developers, Test Team.

These views can be provided for a single process or a group of
processes.

The Process View illustrates the processes of interest for modeling in the
process state view. The Component State View often provides details for
a process that executes multiple components.

Table A.15 Subsystem Interface Dependency Viewpoint

Subsystem Interface Dependency Viewpoint

Purpose

When Applicable
Stakeholders
Scalability

Relation to Other
Views

Describe subsystem dependencies and interfaces. Will most likely be one
of these for overall system, potentially one for each top-level subsystem
complex enough to require a view of its own.

During system design and development, as subsystems are identified.

Project and Development Managers (primary stakeholders for top-level
subsystem views), Architecture Team, Development leads, Test Team.

Can be focused on individual subsystems or scenarios. Layers also
provide for hiding of detail.

These views should be consistent with the Layered Subsystem View.

249

Team~ny®

Bibliography

The following books and papers provide a good source of information on
software architecture. URLs mentioned in the recommended reading may be
found on the web site.

Alexandrescu, Andrei. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley, 2001.

Ambler, Scott, ‘Distributed Object Design’, Software Development, June 1999.

Anthony, Richard, Jeff Garland, and Bill Lawrence, ‘An Analysis of the Advantages
of Application and Enterprise Frameworks’. Position Paper for the Workshop on
Achieving Bottom-Line Improvements with Application and Enterprise Frameworks at
OOPSLA 1999.

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-
Wesley, 1998.

Beck, Kent, and Ward Cunningham, ‘A Laboratory For Teaching Object-Oriented Think-
ing’. From the OOPSLA’89 Conference Proceedings, October 1-6, 1989, and the
special issue of SIGPLAN Notices, 24, No. 10, October 1989.

Bellin, David, and Susan Suchman Simone. The CRC Card Book. Addison-Wesley, 1997.

Booch, Grady, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

Bosch, Jan. Design and Use of Software Architectures. Addison-Wesley, 2000.

Brown, William J., Hays W. McCormick, and Scott W. Thomas. Anti-Patterns in Project
Management. John Wiley, 2000.

Brown, William J. (Editor), Raphael C. Malveau, and Hays W. McCormick, III. Anti-
Patterns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley, 1998.

Buschmann (Editor), Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley, 1996.

Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2000.

252

Bibliography

Coplien, James O. Multi-Paradigm Design for C++. Addison-Wesley, 1998.

Coplien, James, Daniel Hoffman, and David Weiss, ‘Commonality and Variability in
Software Engineering’, IEEE Software, November/December 1998, 15, No. 6.

Coplien, James O., and Douglas C. Schmidt (Editors). Pattern Languages of Program
Design. Addison-Wesley, 1995.

Czarnecki, Krzysztof, and Ulrich W. Eisenecker. Generative Programming — Methods,
Tools, and Applications. Addison-Wesley, 2000.

Department of the Army, ‘Joint Technical Architecture — Army’, Version 6.0, 8 May 2000.

Dikel, David M., David Kane, and James R. Wilson. Software Architecture: Organizational
Principles and Patterns. Prentice-Hall, 2000.

Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns. Addison-Wesley, 1999.

Egyed, Alexander, and Nenad Medvidovic. “Extending Architectural Representation in
UML with View Integration”. In Proceedings of the Second IEEE International
Conference on the Unified Modeling Language (UML99). IEEE Computer Society
Press.

Ericsson, Maria, ‘Developing Large-scale Systems with the Rational Unified Process’,
Rational Software, Rational White Paper, 2000.

Fagan, MLE., ‘Design and Code Insptections to Reduce Errors in Program Development’,
IBM Systems Journal, 38, Nos 2—3, 1999.

Foote, Brian, Neil Harrison, and Hans Rohnert. Pattern Languages of Program Design 4.
Addison-Wesley, December 1999.

Foote, Brian, and Yoder, Joseph, ‘Big Ball of Mud’. In Paitern Languages of Program
Design 4. Addison-Wesley, 2000.

Fowler, Martin, ‘Reducing Coupling,” IEEE Software, July/August 2001.

Fowler, Martin, and Jim Highsmith, ‘The Agile Manifesto’, Software Development
Magazine, August 2001.

Fowler, Martin, and Kendall Scott. UML Distilled, Applying the Standard Object Model-
ing Language. Addison-Wesley, 1997.

Garlan, David, and Robert Allen, ‘Formalizing Architectural Connection’, 71-80. In
Proceedings of the 16th International Conference on Software Engineering, Sorrento,
Italy, May 16-21, 1994. IEEE Computer Society Press.

Garland, Jeff, ‘Representing Software Architectures for Large-Scale Systems’. Position
Paper for the OOPSLA 2001 Workshop on Representing Architectures.

Garland, Jeff, Richard Anthony, and Bill Lawrence, ‘Accomplishing Software Stability’.
Position Paper for the OOPSLA 99 Workshop on Accomplishing Software Stability.

Highsmith III, James A. Adaptive Software Development. Dorset House, 2000.

Hofmeister, Christine, Robert Nord, and Dilip Soni. Applied Software Architecture.
Addison-Wesley, 1999.

IEEE Std. 1471-2000, TEEE Recommended Practice for Architectural Description of
Software-Intensive Systems’, 2000.

ISO/IEC, ‘The Reference Model for Open Distributed Processing’, ISO/IEC DIS 10746-
1:1995.

ITU-T Recommendation X.731 | ISO/IEC 10164-2, ‘State Management Function’.

ITU-T, “Z.100, Specification and Description Language (SDL) Specification’, November
1999.

ITU-T, “Z.120, Message Sequence Chart (MSC) Specification’, November 1999.

Bibliography

Jackson, Daniel, and John Chapin, ‘Redesigning Air Traffic Control: An Exercise in
Software Design’, IEEE Software, May/June 2000, pp. 63-70.

Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

Jacobson, Ivar, ‘Use Cases in Large-Scale Systems’, ROAD, 1, No. 6, 1995.

Jacobson, Ivar, Grady Booch, James Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

Jacobson, Ivar, K. Palmkvist, and S. Dyrhage, ‘Systems of Interconnected Systems’, ROAD,
2,No. 1, 1995.

Kandé, Mohamed Mancona, and Alfred Strohmeier, “Towards a UML Profile for Software
Architecture Descriptions’. In Proceedings of UML 2000 — The Unified Modeling
Language: Advancing the Standard, Third International Conference, York, UK, Octo-
ber 2-6, 2000. Springer Verlag.

Kerner, Judy, ‘Joint Technical Architecture: Impact on Department of Defense Programs’,
CrossTalk, The Journal of Defense Sofitware Engineering, October 2001.

Kruchten, Philippe, “The 4+1 view model of architecture’, IEEE Software, 12, No. S,
1995.

Kruchten, Philippe, ‘Modeling Component Systems with the Unified Modeling Language’.
A Position Paper presented at the 1998 International Workshop on Component-Based
Software Engineering.

Kruchten, Philippe. The Rational Unified Process. Addison-Wesley, 1999.

Lago, P., and P. Falcarin, ‘UML Requirements for Distributed Software Architectures’. In
Proceedings of the 1st International Workshop on Describing Software Architecture
with UML (co-located with ICSE’2001), Toronto, Canada, May 2001.

Lakos, John. Large-Scale C++ Software Design. Addison-Wesley, 1996.

Lawrence, Bill, Dick Anthony, and Jeff Garland, ‘A Process for Developing Reusable
Software’. Position Paper submitted to the OOPSLA *99 Workshop on Patterns in
Software Architecture: The Development Process.

Maier, Mark W., and Eberhardt Rechtin. The Art of Systems Architecting. CRC Press,
1996.

Maier, M.W., D. Emery, and R. Hilliard, ‘Software Architecture: Introducing IEEE
Standard 1471°, Computer, 34, No. 4 , April 2001, pp. 107-109.

Martin, Robert C. Designing Object Oriented C++ Applications Using The Booch Method.
Prentice-Hall, 1995.

McCarthy, Jim. Dynamics of Software Development. Microsoft Press, 1995.

Medividovic, Nenad, and David S. Rosenblum, ‘Assessing the Suitability of a Standard
Design Method for Modeling Software Architectures’. In Proceedings of the First
Working IFIP Conference on Software architectures (WICSA1), San Antonio, TX,
February 22-24, 1999.

Medvidovic, Nenad, David S. Rosenblum, Jason E. Robbins, and David F. Redmiles,
‘Modeling Software Architectures in the Unified Modeling Language’, IEEE Computer
Magazine, January 1999.

Medividovic, Nenad, and Richard N. Taylor, ‘Separating Fact from Fiction in Software
Architecture’. In Proceedings of the Third International Software Architecture Work-
shop (ISAW-3), pp. 105-108, Orlando, FL, November 1-2, 1998.

Meyer, Bertrand, ‘Applying Design by Contract’, IEEE Computer, 25, No. 10, October
1992, pages 40-51.

253

254

Bibliography

Meyer, Bertrand. Object-Oriented Software Construction. Prentice-Hall, 1997.

Meyers, B. Craig, and Patricia Oberndorf. Managing Software Acquisition: Open Systems
and COTS Products. Addison-Wesley, 2001.

Mili, Hafedh, Mohammed Fayad, Davide Brugali, David Hamu, and Dov Dori, ‘Enterprise
Frameworks: Issues and Research Directions’, International Software Practice &
Experience (SP&E) Journal, March 2002.

Monroe, Robert T., Andrew Kompanek, Ralph Melton, and David Garlan, ‘Architectural
Styles, Design Patterns, and Objects’, IEEE Software, January, 1997, pp. 43-52.

Naiburg, Eric J., and Robert A. Maksimchuk. UML for Database Design. Addison-Wesley,
2001.

Ousterhout, John K., ‘Scripting: Higher Level Programming for the 21st Century’, IEEE
Computer, March 1998.

Parnas, D.L., ‘On the Criteria To Be Used in Decomposing Systems into Modules’,
Communications of the ACM, 15, No. 12, December 1972, pp. 1053-1058.

Paulish, Daniel J. Architecture-Centric Software Project Management: A Practical Guide.
Addison-Wesley, 2001.

Pryce, Nathamid G., ‘Component Interaction in Distributed Systems’. PhD Thesis, Imperial
College of Science, Technology and Medicine, January 2000.

Putman, Janis, R. Architecting With RM-ODP. Prentice Hall, 2000.

Rettig, Michael J., and Martin Fowler, ‘Reflection vs. Code Generation’, Java World,
November 2001.

Riel, Arthur J. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

Rising, Linda, and Norman S. Janoff, ‘The Scrum Software Development Process for Small
Teams’, IEEE Software, July/August 2000.

Rosenberg, Doug, and Kendall Scott. Use Case-Driven Object Modeling with UML.
Addison-Wesley, 1999.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

Schmidt, Douglas, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-Oriented
Software Architecture, Volume 2, Paiterns for Concurrent and Networked Objects.
John Wiley, 2000.

Sewell, Marc, and Laura Sewell. The Software Architect’s Profession: An Introduction to
the 21st Century. Prentice-Hall, 2001.

Shaw, M., and P. Clements, ‘A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems’. In Proceedings of Computer Software and
Applications Conference 1997 (COMPSAC *97), 1997, pp. 6—13.

Shaw, Mary, and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

Smith, Douglas, ‘Realizing Architecture Through Realizing Use Cases’. In Proceedings
of UML World 2000, June 12, 2000, New York. Published by CMP Media, pp.
1131-1168.

Soni, Dilip, R.L. Nord, and Liang Hsu, ‘An Empirical Approach to Software Architec-
tures’. In Proceedings of the Seventh International Workshop on Software Specification
and Design, 1993, pp. 47-51.

Taylor, P., ‘Adhocism in Software Architecture — Perspectives from Design Theory’. In
Proceedings of the International Conference on Software Methods and Tools 2000
(SMT 2000), pp. 41-50.

Bibliography

Vaughan, Jack, ‘UML Hits the Streets’, Application Development Trends, 8, No. 9,
September 2001, pp 18-23.

Weinberg, Gerald M. The Psychology of Computer Programming, Silver Anniversary
Edition. Dorset House Publishing. February 2000.

Weiss, David M., Chi Tau Robert, and Lai, Software Product-Line Engineering: A Family-
Based Software Development Approach. Addison-Wesley, 1999.

Wirth, Niklaus, ‘Program Development by Stepwise Refinement’, Communications of the
ACM, 14, No. 4, April 1971, pp. 221-227.

Yourdon, E. Modern Structured Analysis. Prentice-Hall, 1991.

255

4+1 Views, 16,17

ACID transactions, 170

activity diagram, 70, 91

actor, 90-2

Acyclic Dependencies Principle, 215

agile pocesses, 43-7

Analysis and Design Process Workflow,
42

Analysis Focused Viewpoint, 13, 95,
103-5, 244

Analysis Interaction Viewpoint, 13, 935,
101-3, 171, 245

Analysis Overall Viewpoint, 13, 95-101,
105-7, 245

analysis paralysis, 60

analysis shortcuts, 100-1

application architecture, 9

architectural description, 2

architectural patterns, 7,201, 216-18

architectural style, 7

Architectural View, 2

Architectural Viewpoint, 2, 12

architecture evaluation, 208

architecture team, 6, 21-3, 36, 117,159,
178,184,189, 193

architecture, 1

archive design, 199

availability, 6

Index

backup, 199

Bass architectural structures, 18, 19

Big Ball of Mud Pattern, 62, 141

Blackboard Pattern, 158, 217

bottom-up architecture development,
227-9

boundary class, 104

build management, 222

build systems, 7

build tree, 151

business architecture, 9

business modeling process workflow, 41-2

Calls Structure, 18

candidate subsystems, 107-8

capacity, 6

CASE tool, 61-2, 96, 129

change management, 221-2

changeability, 5

chief engineer, 26

chief software engineer, 26

class diagram, 76-7

Class Structure, 18

class(es), 70, 71

Code View, 19

collaboration diagram, 48, 77-9

Common Object Request Broker
Architecture (CORBA), 112, 205, 224

258

Index

commonality and variability analysis,
202-3

component design, 116

component diagram, 70

component framework, 47

component implementation models, 112

component instance diagram, 75-6

Component Interaction Viewpoint, 13, v14,
16,131-3,171, 246

Component State Viewpoint, 13, 14, 16,
133-6, 246

Component Viewpoint, 13, 14, 16,
116-131, 183, 245

component(s), 8, 70, 71, 113, 115

component-based development, 111-12

composite component(s), 114

computational viewpoint, 19

Computer-Aided Software Engineering
(CASE) (tool(s)), 61-2, 96, 129

conceptual diagram, 87-9

Conceptual Structure, 18

Conceptual View, 19

configuration data, 210

configuration management, 137, 221-2

construction phase, 40

Context Viewpoint, 13, 89-94, 247

continuous integration, 222-3

Control Flow Structure, 18

controller class(es)

COTS (commercial off-the-shelf software),
4,7,50-3

coupling and cohesion, 116, 209

CRC cards, 99-100

cultural adaptability, 5

data architect, 9, 28

data architecture, 155-9

Data Flow Structure, 18

data integrity$5

data model, 157

data schema, 155-9

data sharing

data-only integration, 220

deadlock, 116

debugging, 5

dependency (co-dependency, dependency
management), 141-51,213-16

deployment diagram, 70, 79-80
deployment process workflow, 43
Deployment View, 13, 14, 16, 17, 183
Deployment Viewpoint, 193-9, 247
design by contract, 206—7

design communication meetings, 57
design for change, 203-4

design for reuse, 60

design reviews, 57

development team manager, 25
distributed system(s), 111

distributed technical meetings, 58—9
documentation models, 84

domain analysis, 94-101

domain implementation model, 211-12
domain, 8, 31

duplication, 5

elaboration phase, 40

element focused modeling, 82-3
engineering viewpoint, 19
enterprise architecture, 9
enterprise viewpoint, 18
entity-relationship models, 156
executable integration, 220
Execution View, 19

exploratory models, 84

external interfaces, 213

extreme programming (XP), 45-7

fault tolerance, 49, 212-13
Fowler, Martin, 139, 174

fragility, 5

functional decomposition, 209-10

generative programming, 204-5
hardware architect, 27, 159, 178, 184, 193

hardware-specific components, 210-11

IEEE 1471, 1,17, 239
implementation process workflow, 42
Implementation View, 16, 17
inception phase, 40

informal technical meetings, 55-6
information viewpoint, 18
inspection(s), 56—7

integration, 218-21

interaction diagram, 70, 77-9

interface separation principle, 216

interface(s), 71, 113, 115, 118-21, 127,
173-4,231-3

iterative development, 40—8

layer(s) (layering), 143-4,151-3, 217

Layered Subsystem Viewpoint, 13, 14,
146-51, 248

Layers pattern, 218

level of detail, 83

lifecycle stage41-3

locking170, 173

Logical Data Viewpoint, 13, 14, 159-64,
248

Logical View, 16, 17

maintainability, 5

manageability, 6

management meetings, 57

Martin, Robert, 214-15

mentoring, 23

messaging, 115, 118, 122,127, 164

model, 8, 83-4

Model-View-Controller pattern, 164,
211,217

Module Structure, 18

Module View, 19

multi-instance, 73

multi-language development, 2234

multiplicity

network architect, 27, 193
network-based meeting software, 58

object oriented database (OODB), 167

Object Oriented Software Engineering
(OOSE), 95

object, 71, 156, 166-9

off-the-shelf-software (see COTS)

open source, 50, 54

operations staff, 178, 184, 193

package(s), 71, 139-40
peer reviews, 56—7
performance, 128

Index

physical data organization, 178

Physical Data Viewpoint, 14, 178-83, 248
Physical Database View, 13

Physical Structure, 18

Pipes and Filters pattern, 217, 218
port(s), 73, 113, 115

portability, 5

Process State Viewpoint, 14, 189-93, 249
Process Structure, 18

Process View, 13, 14, 16,17, 183-6
Process Viewpoint, 183-93, 249

process workflow, 41-3

process(es), 71, 186

product family, 109

product-line architecture, 10

project management, 12

protocol, 117,231-3

prototyping, 48, 206

Rational Unified Process (RUP), 39
recoverability, 6

reengineering, 233

reference architecture, 10
Reflection pattern, 217

reflection, 165-6

relational database, 166-9
reliability, 6

repository pattern, 158,217
requirements management, 48—50
requirements process workflow, 42
requirements tracing, 49-50
response, 6

rigidity, 5

RM-ODP, 17-19

safety, 6

scalability, 6, 128, 194-9
schedule, 60

scripting, 224-5

SCRUM, 43

security, 5

separation of concerns, 208-13
sequence diagram, 48, 77-9
shared memory, 197

skeleton system, 205-6
software architect, 21-37, 235-7
software architecting, 2

259

260

Index

software architecture document, 233

software architecture team, 90, 103, 105,
131,134, 148

software architecture, 3,4, 11

software engineering tools, 239

software infrastructure, 47

software patterns, 239

software systems engineering lead, 29

software systems engineering team, 29, 90,
103, 105,117,131, 134, 184,193

Specification and Design Language
(SDL), 109

stable dependencies principle, 214-15

stakeholders, 3

state (see also system state, component
state), 133

state diagram, 70

state modeling, 133-6

statechart diagram, 80

stereotype(s), 75

subcontract (subcontracting)
(subcontracted), 70

subsystem design lead(s), 134

subsystem diagram, 767

Subsystem Interface Dependency
Viewpoint, 13, 14, 141-6, 249

subsystem(s) (see candidate subsystems)

subsystem(s), 3, 8, 71, 140, 141, 151-4

supplemental textual information, 85

system architect, 26

system architecture, 2

system state, 80

system under design4

system, 1, 140

systems engineering lead, 28—-9

systems engineering team, 28, 117,
184,193

tagged values, 73
technical leadership, 28, 29

technical meetings, 55-9

technology roadmap, 50-5

technology viewpoint, 19

technology/infrastructure architecture, 9

test process workflow, 43

testability, 6

tester(s), 12, 90, 103, 105, 134, 159, 178

thread(s) (of execution), 183, 186

throughput, 6

time-critical components, 211

top-down architecture development,
229-31

top-level dependencies, 144

top-level software architecture, 8

top-level software design document
(TLSDD), 233-5

training, 11

transaction(s), 169-74

transition phase, 40

UML - multiplicity

UML - relationships, 99
UML - role names

UML (Unified Modeling Language), 69-85
Understandability, 5
upgradeability, 6

usability, 6

use case focused modeling, 82
Use-Case View, 16

use case(s), 48-9, 60

Uses Structure, 18

vendor presentations, 58

view label, 74-5

View of Participating Classes (VOPC), 103,
108

View of Participating Objects (VOPO),
103, 108

view, 2

viewpoint, 2

