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Preface

The development, characterization, and technological exploitation of new materials,
particularly as components in ‘smart’ systems, are key challenges for chemistry and
physics in the next millennium. New substances and composites including nano-
structured materials are envisioned for innumerable areas including magnets for
the communication and information sectors of our economy. Magnets are already
an important component of the economy with worldwide sales of approximately
$30 billion, twice those of semiconductors. Hence, research groups worldwide are
targeting the preparation and study of new magnets especially in combination with
other technologically important features, e. g., electrical and optical properties.

In the past few years our understanding of magnetic materials, thought to be
mature, has enjoyed a renaissance as it has been expanded by contributions from
many diverse areas of science and engineering. These include (i) the discovery of
bulk ferro- and ferrimagnets based on organic/molecular components with critical
temperature exceeding room temperature, (ii) the discovery that clusters in high, but
not necessarily the highest, spin states because of a large magnetic anisotropy or zero
field splitting have a significant relaxation barrier that traps magnetic flux enabling a
single molecule/ion (cluster) to act as a magnet at low temperature; (iii) the discov-
ery of materials with large negative magnetization; (iv) spin-crossover materials with
large hysteretic effects above room temperature; (v) photomagnetic and (vi) elec-
trochemical modulation of the magnetic behavior; (vii) the Haldane conjecture and
its experimental realization; (viii) quantum tunneling of magnetization in high spin
organic molecules; (ix) giant and colossal magnetoresistance effects observed for
3-D network solids; (x) the realization of nanosized materials, such as self-organized
metal-based clusters, dots and wires; (xi) the development of metallic multilayers and
(xii) spin electronics for the applications. This important contribution to magnetism
and more importantly to science in general will lead us into the next millennium.

Documentation of the status of research, ever since William Gilbert’s de Mag-
nete in 1600, has provided the foundation for future discoveries to thrive. As one
millennium ends and another beckons, the time is appropriate to pool our growing
knowledge and assess many aspects of magnetism. This series, entitled Magnetism:
Molecules to Materials, provides a forum for comprehensive yet critical reviews on
many aspects of magnetism which are on the forefront of science today. This third
volume reviews the current state of the art in the field of “nanosized materials”,
including both metallic and organometallic compounds, experimental as well as the-
oretical points of view.

Joel S. Miller Marc Drillon
Salt Lake City, USA Strasbourg, France
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1 Nanostructured Magnetic Materials

Charles J. O’Connor, Jinke Tang, and Jian H. Zhang

1.1 Introduction

This survey will critically discuss recent advances in the synthesis, properties and
applications of magnetic materials with nanoscale dimensions. Consideration of the
different preparative techniques will be followed by a discussion of novel properties
and applications likely to fuel research in the coming decades.

1.2 Synthesis

In general, synthetic methods for the fabrication of magnetic materials with
nanometer-scale dimensions can be classified into two categories – synthesis from
molecular precursors, as with most chemical methods, and synthesis by processing of
bulk precursors, for example mechanical attrition. Nanostructured materials can be
effectively fabricated by inert gas condensation, pyrolysis, crystallization of amor-
phous precursors, molecular self-assembly, mechanical alloying, electrolytic plating,
plasma deposition, and varieties of solution techniques. Many synthetic techniques
developed in the other fields, for example ceramics, electronic materials, catalysts,
etc., are applicable to the fabrication of nanostructured magnetic materials. Books
are available covering a variety of synthetic techniques [1–5] and numerous review
articles on the subject have been published, including one focusing on nanostructured
magnetic materials [6]. By use of these techniques many types of nanostructured
magnetic materials have been synthesized, including metallic iron, cobalt, nickel, and
their alloys, soft and hard ferrites, soft and hard magnets, ferrofluids, and nanocom-
posites. Because multilayer magnetic materials have been extensively studied in
recent years they are not included in this survey, which focuses on synthetic methods
for the preparation of nanoparticles and nanocomposites.

Chemical methods, in particular, solution routes, are widely used for the fabri-
cation of nanoparticles and nanocomposites. Some of the most frequently used are
precipitation, reduction, pyrolysis, the aerogel–xerogel process, reverse micelle mi-
croemulsion, etc. This is partly because of the mild reaction conditions and the less
expensive equipment needed. It has been observed that the fabrication technique
used has a large influence on the magnetic properties of the nanoparticles obtained,
even though they have the same grain size. For example, the reaction temperature
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2 1 Nanostructured Magnetic Materials

in the fabrication of spinel ferrites affects not only the size and morphology of the
particles, but also the relative distribution of magnetic ions on tetrahedral and octa-
hedral sites. As a result the magnetic properties might be significantly altered. Some
chemical techniques, for example reverse micelle synthesis, enable substantial con-
trol over the size and size distribution of particles. Many old chemical methods have
been continuously modified for more effective synthesis. This article surveys recent
applications of the synthetic techniques used to prepare nanostructured magnetic
materials, with emphasis on solution chemical reactions.

1.2.1 Inert Gas Condensation

One early method for producing nanostructured materials was inert gas conden-
sation from a supersaturated vapor. During inert gas condensation the volatilized
monomers are aggregated into clustered by collisions with cold inert gas atoms. This
method can be used to prepare nanoparticles of elements, alloys, compounds, and
composites. This technique has a few advantages – it can furnish high-purity nanopar-
ticles and it can be used for direct production of films and coatings. Its disadvantage
is that it is difficult to produce as large a variety of nanostructured materials as is
possible by simpler chemical methods. To produce nanoparticles from the vapor it is
necessary to achieve supersaturation. The methods used to produce a supersaturated
vapor include thermal evaporation, sputtering, electron beam evaporation, or laser
ablation. Some of the most recent synthetic studies using vaporization–condensation
processes are introduced here.

Nanoparticles of Fe, Co, and Ni prepared by the inert gas condensation method
have different amounts of surface oxidation. Much research has been published on
the study of the magnetic interaction between metal core and surface oxide on sam-
ples prepared by the inert gas condensation technique [7, 8]. Typically, nanoparticles
of iron were prepared by evaporating iron in a tungsten boat at 1500 ◦C into high
purity helium gas at 1 Torr. Upon collision with the inert gas atoms the evaporated
atoms lost kinetic energy and condensed as ultrafine powders that accumulated on
a cold finger. Passivation was achieved by dosing with oxygen before opening the
chamber to air. Detailed low-temperature magnetic study of nanoparticles of iron
coated with iron oxide revealed the occurrence of an exchange anisotropy effect be-
tween the ferromagnetic core and the iron oxide in the spin-glass state [7]. Normally
X-ray diffraction showed the shell oxides of as-synthesized samples to be amorphous.
Subsequent annealing at temperatures up to 300 ◦C resulted in iron oxide thickness
of 4–10 nm. Thus the core-shell structure (α-Fe/γ -Fe2O3, Fe3O4) formed could be
used to study magnetic coupling [8].

It is difficult to produce a large quantity of ultrafine particles economically by
traditional inert gas condensation techniques. Recently, a modified method called
the activated hydrogen plasma–molten metal reaction method has been used for
continuous preparation of ultrafine (20–30 nm) particles of Fe, Ni, and Fe–Ni alloys
in a large scale [9]. In this method, the metals are evaporated by arc discharge into
a circulating gas mixture of H2 and Ar, which carried away the generated particles
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into a collector. It was observed that ultrafine Fe–Ni particles are more resistant to
oxidation than Fe and Ni particles. A nanocomposite of iron oxide and silver was
fabricated by inert gas condensation [10]. The procedure involved:

(i) co-evaporation of silver and iron into helium gas;
(ii) in-situ oxidation of iron particles;

(iii) in-situ compacting of the particles; and
(iv) post-annealing in an inert or an oxidizing atmosphere.

Variation of the helium gas pressure between 0.1 and 10 Torr enabled control of
the size of the nanoparticles. Ten-nanometer particles were obtained at 0.1 Torr.
The magnetic species was identified as γ -Fe2O3 after the post-annealing treat-
ment, whereas Fe and Fe3O4 coexist in the as-prepared loose powder and the as-
compacted pellet. The nanocomposite was superparamagnetic with blocking tem-
peratures >150 K.

The laser vaporization of metal targets has been combined with controlled con-
densation in a diffusion cloud chamber to produce varieties of metal oxide and metal
carbide nanoparticles, depending on the reactant gas present in the chamber [11].
In laser vaporization a high-energy pulse laser with an intensity flux of approxi-
mately 106–107 W cm−2 is focused on a metal target. The resulting plasma causes
highly efficient vaporization so that the density of the local atomic vapor can exceed
1018 atoms cm−3 (equivalent to 100 Torr pressure) in the microseconds after the
laser pulse. Nanoparticles of iron oxides (γ -Fe2O3, Fe3O4) with a mean diameter of
approximately 6 nm have been prepared by laser vaporization of iron in a helium
atmosphere containing different concentrations of oxygen. All were superparamag-
netic with blocking temperature ranging from 50 K to above room temperature. The
significant advantage of laser vaporization is the possibility producing high-density
metal vapor in an extremely short time (10−8 s), and generating directional high-
speed metal vapor from a metal target for direct deposition of the particles. Ultrafine
particles (20–30 nm) of Fe, Ni, and Fe–Ni alloys have recently been prepared on a
large scale by use of a modified method called the activated hydrogen plasma–metal
reaction method. In this method, the metals were evaporated by arc discharge into a
circulating gas mixture of H2 and Ar. It was observed that ultrafine Fe–Ni particles
were more resistant to oxidation than Fe and Ni particles.

1.2.2 Water-in-oil Microemulsion Method

Nanoparticle synthesis by use of the water-in-oil microemulsion technique was first
reported by Boutonnet et al., who prepared 3–5 nm noble metal particles in 1982
[12]. Water-in-oil microemulsions, also known as reverse micelles, have been used
to synthesize a variety of nanostructured materials, for example nanoparticles of
silver halides, superconductors, and magnetic oxide [13]. Reverse micelles are nan-
odroplets of water sustained in an organic phase by a surfactant that can hold and
dissolve inorganic salts. The inorganic salts are then converted to an insoluble in-
organic nanoparticle after chemical reaction and removal of water. The chemical
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reactions that occur in the reverse micelles can be precipitation or reduction reac-
tions, depending on the products desired.

In the precipitation reaction, two reverse micelles containing the constituent ions
of a precipitate come in contact to each other upon mixing; this results in the for-
mation of the precipitate. On the other hand metal cations in the aqueous phase of
the reverse micelles can be reduced to metallic nanoparticles by adding a reducing
agent such as hydrazine or sodium borohydride. The most frequently employed sur-
factants are sodium bis(2-ethylhexyl)sulfosuccinate (NaAOT), cetyltrimethylammo-
nium bromide (CTAB), and didodecyldimethylammonium bromide (DDAB). The
advantage of this method is that control of the physical and chemical properties of
the reverse micelle and microemulsion systems enables great control over particle
size with a narrow size distribution and shape.

Precipitation reactions with reverse micelles as templates are suitable for the syn-
thesis of nanoparticles of magnetic oxides. Several groups have synthesized nanopar-
ticles of hexagonal barium ferrite (BaFe12O19) by use of different microemulsion
systems. Synthesis of barium ferrite involves two steps, preparation of nanopar-
ticles of a precursor then calcination of the precursor to barium ferrite. Pillai et
al. [13] employed a water–CTAB–n-butanol–n-octane system in which the aqueous
cores (typically 5–25 nm in size) were used as constrained microreactors for the co-
precipitation of precursor carbonates (typically 5–15 nm in size). The carbonates thus
formed were separated, dried, and calcined at or above 950 ◦C to form nanoparti-
cles of barium ferrite. Nanoparticles of barium ferrite with a narrow size distribution
were also synthesized from an alcohol-in-oil microemulsion system [14], in which the
metal ions were supplied in the form of the surfactants Fe(AOT)2 and Ba(AOT)2.
A monodisperse, fine-gained Ba–Fe oxalate precursor was ensured by the reverse
micelle structure, while the non-aqueous environment promoted stoichiometric co-
precipitation. Pure barium ferrite particles were obtained by calcining the oxalate
precursor at or above 950 ◦C.

A series of nanoparticles of spinel ferrites, γ -Fe2O3 and MFe2O4 (M = Fe, Co,
Ni, and Mn), has been prepared by use of the reversed micelle method. Pileni et al.
synthesized 2–5 nm cobalt ferrite particles by controlling the reactant concentrations
in the water–CH3NH3OH–Co(II) dodecyl sulfate-Fe(II) dodecyl sulfate system [15,
16]. By use of this method it was possible to obtain the particles either suspended in
the solvent to form a ferrofluid or as a dry powder. The particle size decreased as the
total reactant concentration was reduced. The magnetic behavior of cobalt ferrite
nanoparticles as the dry powder differed strongly from those as a ferrofluid, because
of strong interaction between the particles. Magnetic measurement revealed that the
reduced remanence, Mr/Ms, and the coercivity, Hc, increased with increasing anneal-
ing temperature. This was attributed to the increase in particle size and to the release
of the adsorbed surfactant to the particle interface. O’Connor’s group has synthe-
sized nanoparticles of Fe3O4, CoFe2O4, and MnFe2O4 with an average size of 5 nm
by use of metal aqueous solution–AOT–isooctane reverse micelle systems [17, 18].
In a typical preparation, NH4OH–AOT solution was added into the reverse micelle
system while stirring; Mn2+, Fe2+–AOT–isooctane systems, for example, were used
to prepare MnFe2O4. The metal hydroxides were precipitated and oxidized to the
ferrite within the nanosized micelles. Adding either H2O2 solution or excess aqueous
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ammonia solution (NH4OH) facilitated the oxidation. It was observed [18] that the
processing conditions affected the distribution of manganese cation at the octahe-
dral and tetrahedral sites. The presence of H2O2 or a surplus of NH4OH resulted in
an increase in the concentration of manganese, whereas the use of a stoichiometric
amount of NH4OH produced the stoichiometric manganese ferrite. In all Mn-ferrite
nanoparticles, however, the manganese cation had a preference for octahedral site
occupancy compared with bulk Mn ferrite.

In an attempt to improve the crystallinity of ferrites, John et al. developed a self-
assembling organohydrogel containing the water–AOT–lecithin–isooctane reverse
micelle system to synthesize 15–25 nm γ -Fe2O3 and CoFe2O4 particles [19]. Be-
cause of the slower diffusion of ion species through the gel medium during crystal
growth, the nanoparticles were more crystalline, and thus their coercivity was higher
than that of particles of the same size but prepared in regular reverse micelle sys-
tems.

Nanoparticles of metals and alloys have been synthesized by ion reduction in the
reverse micelles. Pileni et al. synthesized nanoparticles of Cu, Co, and Fe–Cu alloy
by reduction of the so-called functionalized surfactants Fe(AOT)2, Co(AOT)2, and
Cu(AOT)2 [20]. Cu particles (2–12 nm) were synthesized by use of the quaternary
system Cu(AOT)2–Na(AOT)–water–isooctane and hydrazine as a reducing agent.
The size and shape of pure Cu particles were strongly correlated with the structure
of the mesophase in the surfactant system. The size of the spherical Cu particles in-
creased with increasing water-to-surfactant ratio, w (= [H2O]/[AOT]). Further study
has shown [21] that the shape of copper particles could be controlled by changing
the [H2O]/[AOT] ratio during reduction with hydrazine of the Cu(AOT)2 in water–
isooctane solution. Spherical particles were formed when the [H2O]/[AOT] ratio was
very low or high, because of the formation of reverse micelles, whereas cylindrical
particles tended to be formed at some intermediate ratios, because of the formation
of bi-continuous phases.

When the quaternary system Co(AOT)2–Na(AOT)–water–isooctane with
NaBH4 as reducing agent was used to prepare Co nanoparticles the size decreased
with increasing water content as a consequence of the formation of an oxide shell
which prevented particle growth [20]. Nanoparticles of Fe–Cu alloys have been
formed by a reaction between Fe(AOT)2–Cu(AOT)–isooctane reverse micelle solu-
tion and NaBH4 aqueous solution [20]. Particles of bcc α-Fe (10–100 nm) coated by
an amorphous Fe1−x Bx alloy have been formed by a reaction between Fe(AOT)2–
isooctane reverse micelles and NaBH4 aqueous solution [22].

In addition to the functionalized surfactants that act both as surfactants and as
sources of metal in metal and alloy syntheses, other surfactants, for example dido-
decyldimethylammonium bromide (DDAB) and cetyltrimethylammonium bromide
(CTAB), have also successfully been used to synthesize nanoparticles of metals such
as cobalt. Lin et al. fabricated cobalt nanoparticles by NaBH4 reduction of cobalt
chloride in DDAB–toluene solution, and studied the effect of reaction temperature
on particle size and morphology [23]. Low reaction temperatures yielded small spher-
ical particles whereas high reaction temperatures resulted in clusters. In an attempt
to control the size and size distribution of cobalt nanoparticles precisely, without
formation of clusters, the germ-growth method in DDAB–toluene–CoCl2 system
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with NaBH4 as reductant was developed. In this synthesis sequence uniform seed
particles with a mean size of 3.8 nm in the form of a colloid were first synthesized at
low temperature. Further Co2+ solution was slowly added into the reverse micelle
system, followed by addition of NaBH4 solution to enable the particles to grow [24].
O’Connor et al. used water–CTAB–1-butanol–octane reverse micelle solution and
NaBH4 as reductant to synthesize nanoparticles (15 nm) of Co, CoPt, and CoPt5
[25].

Nanoparticles of iron and cobalt are very active and readily oxidized. To pre-
vent oxidation they can be coated with inert metals to form the so-called core–shell
structure. Synthesis of core-shell nanoparticles by use of the reverse micelle mi-
croemulsion method is conducted in a two-stage process. First, the core particles
are synthesized in the reverse micelle medium by reduction of the metal ion with
NaBH4. This is followed by addition of an aqueous solution containing silver or
gold ion to effect the coating. Iron particles (40–50 nm) coated with Ag have been
prepared by use of this method [26] and O’Connor’s group has synthesized Fe/Au
core–shell nanoparticles with precisely controlled core size (8 nm) and coating thick-
ness (2–3 nm) [27]. The magnetic core materials were synthesized in the reverse mi-
celle medium by reduction of FeSO4 with NaBH4; this was followed by addition of an
aqueous solution of HAuCl4 to effect the gold coating of the nanoparticles. Magnetic
measurements revealed superparamagnetic behavior with blocking temperature of
50 K, for uncoated 8-nm iron particles. The blocking temperatures were not affected
by a subsequent gold coating 2–3 nm thick [27].

Synthesis of nanoparticles of antiferromagnets such as NH4MnF3, KMnF3, and
NaMnF3 by the reverse micelle microemulsion method has attracted the interest
of those wishing to study nano-antiferromagnetism. All these fluoromanganates
are well known antiferromagnets with Neel temperatures of 80–88 K. Nanoparti-
cles of NH4MnF3 were prepared by mixing the water–NH4F–NH4AOT–n-heptane
microemulsion system with the water–Mn(CH3COO)2–NH4AOT–n-heptane mi-
croemulsion system, then coagulation with acetone [28]. The mean crystallite sizes
of NH4MnF3 particles were in the range 10–60 nm, depending on the reaction con-
dition – i. e. water/oil ratio, salt concentration, temperature, and the period of time
taken to mix the two microemulsions. O’Connor et al. has synthesized cubic shaped
crystalline nanoparticles of KMnF3 with average particle sizes of 13–35 nm and very
narrow size distributions (confirmed by TEM). All samples were superparamag-
netic below the ordering temperature, and the blocking temperature increased as
the average size increased; hysteresis was observed below the blocking temperature
[29].

Reverse micelle medium is also suitable for synthesis of polymer–ferrite nanocom-
posites. Recently, John et al. successfully developed a simple method for encapsulat-
ing nanometer-sized iron oxide crystals into micron-sized phenolic polymer particles
to form superparamagnetic microspheres of ferrite–polymer composite [30, 31]. This
method was a two-step process. In the first step, nanoparticles of ferrite were pre-
pared using a normal reverse micelle system as described above. In the second step,
a pre-synthesized polymer (poly(4-ethylphenol) was dissolved in a polar solvent
(acetone), and re-precipitated using a large excess of the reverse micelle solution
containing ferrite nanoparticles as a non-solvent solution. The polymer precipitated
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with spherical morphology and during precipitation ferrite nanocrystals were incor-
porated, and uniformly distributed in the polymer matrix.

1.2.3 Organic/Polymeric Precursor Method

The organic/polymeric precursor approach to nanosize magnetic oxides is of great
interest, because of the overall simplicity of the technique. Varieties of precursor
methods have been developed mainly in the ceramic community. In general, these
methods involve the preparation of a precursor using an organic acid in aqueous
solution which contains all necessary cations in the desired product and combustible
anions. After dehydration at mild temperatures the precursor becomes a dry gel
that is amorphous in nature. The dry gel directly yields the required materials upon
calcination in the presence of air or oxygen. Because the starting materials are ho-
mogeneously mixed on an atomic scale in the solution during precursor preparation,
all the ions in the dry gel are homogeneously fixed in the polymeric matrix with
very short diffusion paths to each other. The formation of a new phase occurs at a
lower calcination temperature, in comparison with conventional solid-state reaction.
The other advantage over other chemical methods such as co-precipitation is that
it is not restricted by the stoichiometry of the product. Thus it is highly suitable for
preparation of highly dispersed mixed oxides and oxide solid solutions. By use of
these methods, ultrafine powders of a large number of spinel, garnet, and perovskite
oxides have been synthesized.

The citrate precursor method, first introduced by Pechini [32], uses citric acid
and ethylene glycol as complexing agents in the formation of precursor. Recently,
Uekawa et al. have demonstrated that the citrate method with alkaline metal ion
doping can be applied to the preparation of thin oxide film [33, 34]. Alkali metal ions
were used to regulate the thermal decomposition process of the cation–citrate com-
plex. Controlling the concentration of alkaline ion in the precursor and the reduction
atmosphere enabled control of the nanostructure of the spinel iron oxide films [34].
With citric acid as the only complexing agent in the solution, a gelatinous precursor
does not precipitate from the solution. The solution containing metal nitrate or ac-
etate and citrate acid is, therefore, dehydrated in a rotary evaporator at temperatures
below 100 ◦C until a dry and transparent gel is formed [35]. Because all the ions are
in the gel, including anions such as nitrate ions or acetate ions, the calcination of
the gel is a complex redox reaction. Study has showed that both the nature of the
anions in the metal salts and the amount of citric acid affect the nanostructure of
particle [36]. By using mixed Ni and Fe tartrates as precursor, Yang et al. synthesized
10-nm nickel ferrite particles [37]. In a detailed study of the thermal decomposition
process by use of DTA/TG and XRD it was found that nickel ferrite was formed in
the temperature range 280–420 ◦C, depending on solution pH in the preparation of
the tartrate precursor from metal salts, tartaric acid, and NH4OH. The higher the pH
used for tartrate treatment the higher was the temperature at which the nickel ferrite
was formed; nickel ferrite formed at the higher temperatures had fewer defects and
was more thermally stable [37].
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In a manner similar to the citrate precursor method, polyacrylic acid can also be
used as a gelating agent to form an amorphous and gelatinous precursor, as described
by Micheli [38]. The polyacrylate precursor method has been employed to synthe-
size nanocrystalline Cu ferrite, Cu0.5Fe2.5O4; attempts have been made to obtain the
material with all the copper in the monovalent state and occupying tetrahedral sites,
to achieve high saturation magnetization [39]. It was observed that 10 nm particles
of pure phase were formed from the polyacrylate precursor precipitated out of solu-
tions at higher pH and with higher carboxylic group to cation ratio. The calcination
temperature was below 400 ◦C. It was also observed that the saturation magneti-
zation was significantly affected by the solution pH used to stabilize the precursor.
Nanoparticles of LiZn ferrite, Li0.3Zn0.4Fe2.3O4 with a size of approximately 15 nm
were also synthesized with polyacrylate as a precursor and after calcination at 450 ◦C
[40]. All organic or polymeric precursor techniques are the same in principle in the
sense that the starting materials are mixed in a solution, and the cations are disperse
homogeneously in the precursor matrix. Another example is the use of a water-
soluble polymer, poly(vinyl alcohol) (PVA), as matrix medium [41]. Two chemical
routes were developed for synthesis of the amorphous precursors. The first route
involved co-precipitation of the desired metal nitrates from their aqueous solution
by use of triethylammonium carbonate solution in the presence of polyvinyl alcohol.
Upon combustion in air, the precipitates generated nanoparticles of spinel ferrites
(MFe2O4 where M = Ni, Co, or Zn), rare-earth orthoferrites (RFeO3 where R =
Sm, Nd, or Gd), and rare-earth garnets (R3Fe3O12 where R = Sm, Nd, or Gd); the
products were of high purity and chemical homogeneity. The other process involved
complete evaporation of a mixture of optimum amounts of poly(vinyl alcohol) and
the desired aqueous metal nitrate solutions, with and without addition of optimum
amounts of urea. The mixture was evaporated to a pasty mass, then heated further
to furnish the final ferrites and garnets [41].

1.2.4 Sonochemical Synthesis

Sonochemical synthesis of nanostructured materials, developed by Suslick and co-
workers, involves the irradiation of a volatile organometallic compound (usually a
metal carbonyl complex) in a non-aqueous and high-boiling solvent with high in-
tensity ultrasound. Sonochemistry arises from acoustic cavitation – the formation,
growth, and implosive collapse of bubbles within a liquid [42]. The collapsing bubbles
generate localized hot spots in which the temperature and pressure can be as high as
ca 5000 K and 1800 atm, respectively, and the cooling rate is greater than 1010 K s−1

[43, 44]. Under these extreme conditions, volatile organometallic compounds decom-
pose inside collapsing bubbles to form solids consisting of agglomerates of nanome-
ter clusters, which are often amorphous, because of rapid quenching. Suslick et al.
have used this chemical approach to produce a variety of nanostructured catalysts
including silica-supported Fe, Fe–Co alloy, and carbides [45].

Amorphous nanoclusters of Ni in the size range 10–15 nm have been deposited on
submicrospheres of silica by sonication of a suspension containing Ni(CO)4 and silica
gel in decalin [46]. The as-deposited amorphous clusters were transformed to poly-
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crystalline fcc Ni particles by heating in argon at 400 ◦C. As-deposited amorphous
Ni had superparamagnetic behavior, whereas the polycrystalline Ni on silica was
found to be ferromagnetic. Amorphous nanoclusters of Fe in the size range 5–10 nm
deposited on silica microspheres have also prepared by use of the sonochemical
method [47]. It was observed that the as-deposited amorphous iron clusters were
very active, and reacted instantaneously with the active species on the silica surface
to form amorphous oxyhydroxide precursors, which yielded nanocrystalline Fe3O4
on heating in argon. Nanoclusters of amorphous Fe could be only deposited on silica
thermally treated in argon or under vacuum above 750 ◦C. The sonochemical ap-
proach to spinel ferrites involves preparation of the amorphous precursor powders,
then thermal treatment at very low temperatures. For CoFe2O4, the precursor was
prepared by sonochemical decomposition of Fe(CO)5 and Co(NO)(CO)3 in decalin
at 273 K. Subsequent thermal treatment at 450 ◦C in air resulted in the formation of
crystalline particles of CoFe2O4 (<5 nm) [48]. Amorphous nanoparticles of Fe2O3
(<25 nm) have also been synthesized by sonication of Fe(CO)5 in decalin as solvent
[49].

Sonochemical synthesis of nanoparticles of transition metal oxides in aqueous
solutions has also been exploited. Ultrafine powders of Cr2O3 and Mn2O3 have
been prepared at ambient temperature by the sonochemical reduction of ammonium
dichromate and potassium permanganate, respectively, in aqueous solutions. The
amorphous powders were converted into crystalline materials by thermal treatment
at 320–600 ◦C [50].

1.2.5 Hydrothermal Synthesis

Hydrothermal synthesis of magnetic oxides offers mild reaction condition, produc-
tion of high-quality particles, and elimination of the final high temperature calci-
nation process common to many chemical routes. Hydrothermal synthesis is also
realizable in a continuous flow-through powder synthesis process and on a large
scale. Scientists at the Pacific Northwest National Laboratory (PNNL) have devel-
oped such a method, and called it the rapid thermal decomposition of precursors
in solution (RTDS) method [51]. The engineering-scale unit operates in the tem-
perature range 100–400 ◦C and the pressure range 4–8 kpsig; the solution residence
time in the reactor is 5–30 s. By use of this method a large amount of nanoparticles
(<20 nm) of iron-based oxides has been produced. So far most of the laboratory’s
efforts have been directed towards understanding the effects of reaction conditions
such as the form of the starting materials, solution pH, temperature, pressure, and
reaction time on particle size and morphology and magnetic properties.

Using a suspension of nanocrystalline goethite (3–5 nm) and barium hydroxide
as a starting materials, Penn et al. synthesized nanocrystalline barium hexaferrite
(BaFe12O19) below 50 nm by hydrothermal reaction at 250 ◦C in an autoclave [52].
The equilibrium morphology of crystals was truncated hexagonal. They studied the
effect of precursor concentration, solution pH, and heating time on particle size and
particle growth rate and suggested a topotactic transformation mechanism for bar-
ium hexaferrite formation from the nanocrystalline goethite. Remanent and satura-
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tion magnetization, and hysteresis measurements, suggested the superparamagnetic
threshold size for barium hexaferrite was approximately 7 nm; this was consistent
with theoretical prediction [53]. In an attempt to reduce the reaction temperature,
Dogan et al. studied the synthesis of 50 nm BaTiO3 and BaFe12O19 particles un-
der hydrothermal conditions below 100 ◦C, using barium hydroxide and titanium
oxide, and barium hydroxide and ferric chloride, respectively, as starting materi-
als [54]. While crystalline BaTiO3 was formed relatively quickly (within a couple of
days) formation of fully crystalline BaFe12O19 required longer (up to several weeks).
Detailed analysis indicated that the BaFe12O19 particles started forming at low tem-
peratures, and were fully converted from the amorphous phase to the crystalline
phase over a long time period. It was found that a temperature exceeding 200 ◦C was
necessary for efficient growth of nanocrystalline BaFe12O19.

Hydrothermal reaction has also been used to synthesize nanoparticles of soft
ferrites such as NiZn ferrite and MnZn ferrite, commercially important magnetic
and electronic materials. Early study [55] of the synthesis of MnZn ferrite indicated
that the pH of the starting mixture had a decisive influence on the composition of
the product, whereas the heating temperature and time determined the size of the
particles. The effects of reaction conditions on the formation of mixed ferrites were
more complex than the effects on simple spinel ferrites. Dias et al. have systematically
investigated the effects of the starting materials, temperature, and reaction time
on lattice parameters, particle size, density, and size and total volume of pores on
the surface of the particles [56]. It was observed that the combination of metal
sulfates and sodium hydroxide gave the best results under the same conditions of
reaction temperature and time. Hydrothermal reaction of metal sulfates and sodium
hydroxide solution at 110–190 ◦C generated nanocrystalline Mn0.5Zn0.5Fe2O4 (10–
40 nm) [57] and Ni0.5Zn0.5Fe2O4 (52 ± 6 nm) [58]. These powders gave high-density
and surface homogeneous ceramic components after high-temperature sintering.
It was observed that small differences between hydrothermal powder morphology
gave rise to sintered components with rather different microstructures [58]. With
hydrothermal powders excellent magnetic properties could be achieved by sintering
at considerably lower temperatures. For example, the initial permeability resulting
from sintering under the same conditions was approximately 20% higher for the
hydrothermal powder-based core of Mn0.5Zn0.5Fe2O4 than for the conventionally
produced core, because the homogeneous microstructure was almost free from pores
[59].

1.2.6 Pyrolysis

Laser pyrolysis is a technique used to synthesize ultrafine powders by heating a
mixture of reactant vapor and inert gas with a laser. The rapid decomposition of
reactant vapor as a result of heating produces a saturated vapor of the desired con-
stituent atoms, which forms clusters upon collision with inert gas molecules. Varieties
of nanoparticles of oxides, nitrides, and carbides have been prepared by use of this
technique. Nanoparticles of α-Fe, Fe3C, and Fe7C3 were produced by carbon dioxide
laser pyrolysis of a Fe(CO)5–C2H4 vapor mixture [60]. Nanoparticles (<35 nm) of
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γ -Fe4N and ε-Fe3N were prepared by vapor-phase pyrolysis of Fe(CO)5–NH3 with
a carbon dioxide laser in an Ar and N2 atmosphere [61].

Aerosol spray pyrolysis is a technique in which aqueous metal salts are sprayed
as a fine mist, dried, and then passed into a hot flow tube where pyrolysis converts
the salts to the final products. In general, aerosol spray pyrolysis involves dissolution
of precursor salts, nebulization of the solution, aerosol formation, drying, reaction
in a reactor, and particle collection [62]. Nebulization is an important step in the
control of particle size. A vibrating orifice, an ultrasonic nebulizer, or an electrospray
nebulizer can be used in this step. Occasionally post-aerosol thermal treatment might
be needed to achieve the homogeneous product desired.

Aerosol spray pyrolysis is an attractive means of producing high-purity ox-
ide nanoparticles, for example barium ferrite (BaFe12O19), gadolinium garnet
(Gd3Fe5O12), manganese ferrite (MnFe2O4), and Fe3O4 [62], and is extensively used
in industry to prepare metal oxides and ceramics. Several research groups have made
efforts to prepare barium ferrite nanoparticles with crystalline size less than 50 nm
and a narrow size distribution, which are required for high-density data storage ap-
plications in magnetic recording. Lee et al. sprayed a homogeneous aqueous solution
with the targeted molar ratio of 0.313 BaO–0.215 B2O3–0.100 Na2O-0.330 Fe2O3 on
to the surface of a hot plate at 250 ◦C, and obtained pure and defect-free barium
ferrite nanoparticles (50–70 nm) upon crystallization at temperatures below 600 ◦C
[63]. The soluble precursor salts most often used are nitrates that decompose at rel-
atively high temperatures (>600 ◦C). Choice of the proper precursors can, however,
reduce the decomposition temperature. For example, nanoparticles of BaFe12O19
(10–20 nm) were prepared at the notably low temperature of 425 ◦C by use of a cit-
rate precursor. The precursor decomposed at 425 ◦C to form a metastable spinel-like
structure which underwent time- and temperature-dependent transformation to the
final hexagonal spinel structure [64]. Use of ferric nitrate and barium nitrate as pre-
cursors with ZnCl2 and TiCl4 as additives in ultrasonic spray pyrolysis in which an
ultrasonic nebulizer was employed enabled synthesis of spherical fine particles of
pure and ZnTi-doped barium ferrites [65, 66]. Because of the short residence time,
the precursors collected were amorphous and paramagnetic. Subsequent thermal
treatment up to 1000 ◦C indicated that amorphous Ba–Fe–O was transformed di-
rectly into spherical barium ferrite particles whereas Ba–Fe–Zn–Ti–O was converted
indirectly into doped barium ferrite particles through an intermediate α-Fe2O3
phase [66].

1.2.7 Arc Discharge Technique

In the short time since the discovery of spherical [67] and tubular fullerenes [68],
much effort has been devoted to the study of particle confinement within their struc-
tures. Carbon-arc techniques are used to synthesize fullerenes, and the magnetic
species can be incorporated concurrently with this preparation or into fullerene
products on subsequent manipulation. In the former method the carbon rods that
are burned contain a magnetically active component. The fullerene cage or tube
produced will then contain the magnetic species. Guerrer-Piécourt et al. [69] and
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others [70, 71] have reported the routine, direct preparation of magnetically impor-
tant transition metals and/or their carbides inside both cages and nanotubes. This
route has also been effective in the preparation of carbon-coated magnetic species,
and researchers have made several finely divided materials including hard magnetic
materials such as samarium–cobalt and neodymium–iron–boron alloys [72, 73]. The
insertion of magnetic species into fullerenes subsequent to their synthesis has pri-
marily been in the field of nanotubes. Methods have been developed that enable
the removal of tube end-caps and placement of species inside [74]. Some metals
in the molten state were placed directly in tubes by capillary action [75], but the
most effective method for magnetic components was based on solution routes [74].
Nickel species, for example, have been inserted into tubes via aqueous solutions.
Subsequent treatment under oxidizing conditions can produce metal oxides in the
tubes, and in some instances on the tube surface also [76]. Similar chemistry under
reducing conditions has resulted in tubes that contain ferromagnetic nickel particles
[77]. Techniques have also been developed that enable the removal of the carbon
structures after formation of the desired nanoparticle [76]. A modified tungsten arc
technique, instead of conventional graphite–graphite arc techniques, has recently
been used for the synthesis of carbon-encapsulated ferromagnetic nanoparticles of
Ni, Co, and Fe [78]. In this technique a tungsten rod was used as a cathode and
molten metal supported by a graphite crucible was used as the anode of the mate-
rial to be encapsulated. Carbon-encapsulated Ni particles with an average size of
approximately 18.2 nm were obtained by use of this arc discharge technique, which
were highly environmentally and thermally stable [79].

1.2.8 Electrodeposition

Electrodeposition has mainly been used to prepare nano-processed soft magnetic
materials such as pure iron, nickel, and cobalt, and binary nickel–iron and ternary
nickel–iron–chromium alloys [80]. Nanoprocessing can be considered a distinct
form of grain boundary engineering by means of which property enhancements
are achieved by deliberately increasing the volume fraction of grain boundaries and
triple junctions. The bulk materials or thin films nanoprocessed by electrodeposi-
tion have a grain size on the nanometer scale; they are also called nanocrystalline
materials [81]. Nano-processing by electrodeposition has improved the overall per-
formance characteristics of the soft magnetic materials used in recording heads [82].
Permalloy containing 15–25% (w/w) Fe and 0.05% (w/w) Cr was nano-processed
by electrodeposition, using a metal chloride solution at 23 ◦C and 0.05 A cm−2, to
produce electrodeposits with a grain size of 7–16 nm and enhance properties such as
coercivity, electric resistivity, hardness, and corrosion behavior for recording-head
applications [83].

Recently, a new technique called pulsed electrodeposition has been developed
for the production of metal nanoparticles. This technique is based on the use of a
pulsed electrical current and a pulsed pressure caused by an ultrasound generator,
their irradiation periods being out-of-phase. The combination of the pulsed current
and vigorous electrolyte stirring enables the use of a higher current density. As a
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result higher nucleation rates and smaller nucleus sizes can be achieved. Use of this
technique has produced particles of Fe, Co, Ni, and their binary and ternary alloys
with a mean size of 100 nm [84].

1.2.9 Mechanical Alloying

Mechanical attrition or mechanical alloying is a versatile approach to the production
of nanostructured materials in large quantities. Since the first application of mechan-
ical alloying by Benjamin [85] for the synthesis of oxide dispersion strengthened ma-
terials, this technique has been used to produce a broad range of alloys, intermetallic
compounds, supersaturated solid solutions, and composites in the amorphous and
nanocrystalline state. By use of high-energy ball milling the grain size of pure metal,
and intermetallic compounds can be reduced to the nanometer scale. The high-
energy ball milling technique is also suitable for synthesis of magnetic oxide and
nanocomposite powders by solid-state reactions at ambient temperature – called
mechanochemical synthesis. These solid-state reactions for bulk phases normally
occur at very high temperatures.

Since the discovery of giant magnetoresistance (GMR) in granular structures in
which metallic ferromagnetic nanoparticles are dispersed in a non-magnetic matrix,
several investigators have prepared nanostructured Cu–Fe [86] and Cu–Co alloys
[87, 88], by mechanical alloying, for study of magnetotransport properties. The alloy
Cu85Fe15 was prepared by grinding fine powders of copper and iron in a high-energy
ball mill. It was found that its magnetoresistance reached 5.5% at 4.5 K in a field
of 5 Tesla; this was increased to 7.6% upon annealing at 300 ◦C for 20 min [86].
Nanostructured Cu80Co20 was prepared by repeated forging. The correlation be-
tween Co-substitution into the Cu-lattice and reduction of Co magnetization was
studied using XRD and VMS [87]. It was shown by the recovery of Co magnetiza-
tion that Co nanoparticles were precipitated in the Cu matrix as a result of annealing.
The maximum magnetoresistance ratio under 1.0 MA m−1 at room temperature was
4.9% for Cu80Co20 with a mean Co particle size of 6 nm [88]. Study of the thermal
stability of the nanocrystalline materials prepared by ball milling is of interest, be-
cause greater thermal stability of the nanocrystalline materials would be beneficial
during subsequent thermal–mechanical consolidation or sintering in the fabrication
of dense nanocrystalline solids. Jiang et al. investigated the thermal stability of the
Fe–Al (Al <10% w/w) nanocrystalline alloys by ball milling [89] and observed that
addition of 10% Al to Fe significantly enhanced the thermal stability of nanocrys-
talline Fe–Al alloys annealed at temperatures between 600 ◦C and 1000 ◦C, although
addition of 4–10% Al had little effect on the thermal stability. Besides preparation
of amorphous or nanocrystalline alloys from elemental components, ball milling has
also used to synthesize nanocomposites composed of metal nanoparticles embed-
ded in a non-metallic medium such as silica or alumina via displacement reactions.
One recent example was synthesis of iron–silica and nickel–silica nanocomposites
by exchange reactions between Fe2O3 and Si, and NiO and Si, respectively [90].

Great efforts have been made to apply the mechanical alloying technique to
the preparation of high-performance nanostructured permanent magnets from rare
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earth–transition metal compounds. Two systems that have been most studied are
Nd2Fe14B and Sm2Fe17−x (C,N)x . The nanocrystalline structure developed by me-
chanical alloying and subsequent thermal treatment resulted in high coercivity and
isotropic behavior associated with random grain alignment. The nanocrystalline pow-
ders of Sm2Fe15Ga2C2 prepared by ball milling of elemental powders had an average
grain size of 5–10 nm in the as-milled state and 30–50 nm after annealing [91]. The
hot compacted magnets made from ball milled powders had higher coercivity values
up to 1.5 T and a nearly full density of 7.6 g cm−3. Of these nanocrystalline magnets,
a new class of magnets called “exchange spring magnets” has attracted considerable
research interest. They are nanocomposites consisting of exchange-coupled hard
and soft magnetic phases on the nanometer scale. The hard magnetic phases are rare
earth transition metal materials such as Nd2Fe14B, and Sm2Fe17 and their carbide
and nitride. The soft magnetic phases are α-Fe, or α-(Fe, Co). Such exchange cou-
pling across interface of grains helps give these magnets a high coercive force and
enhanced remanence. Modeling studies and experimental work have shown that a
crystallite size below 20 nm is generally necessary for effective coupling. A recent
development in this respect was a review by McCormick et al. [92]. As expected, the
application of mechanical alloying techniques to the synthesis of permanent magnet
nanocomposites was very versatile. For example, mechanical alloying of Sm, Co, and
Fe powders gave a mixture of amorphous Sm–Co–Fe and nanocrystalline bcc Fe–Co
phase of composition Sm10Co49.5Fe40. Thermal treatment of the mixture resulted
in the formation of a metastable phase, which was transformed into a nanocrys-
talline phase Sm2(CoFe)17–Co–Fe at temperatures >650 ◦C [93]. The nanocompos-
ites formed had single-phase magnetic hysteresis behavior and significantly enhanced
remanence. The nanocomposite Nd2Fe14B–α-Fe obtained by mechanically alloying
a mixture of Nd2Fe14B and iron powder had enhanced remanence [94, 95].

Nanocrystalline spinel ferrites have been prepared at ambient temperature by
high-energy ball milling from varieties of precursors. Vallet-Regi et al. prepared the
nanocrystalline Zn ferrite, Mn ferrite, and ZnMn ferrite by mechanical milling of
different precursors: (i) oxides and carbonates, (ii) ceramic products, and (iii) hy-
droxides and oxides [96]. It was observed that the precursors affected the magnetic
properties of the products. The milling process led to distortion of the anion sublat-
tice and redistribution of the cation between tetrahedral and octahedral sites. The
chemical homogeneity of nanocrystalline ZnMn mixed ferrites (10–13 nm) obtained
by high-energy ball milling of different precursors has been studied in detail [97].
The MnZn ferrite prepared from oxides and carbonates was a metastable structure
and was highly inhomogeneous, because of the deficient dissolution of the larger
cations such as Mn2+ into the structure. Use of hydroxides and acidic oxides as
precursors reduced this inhomogeneity, because an acid–base reaction assisted the
dissolution of Mn2+. Mechanically induced structural disorder was also studied in
the nanocrystalline Zn ferrite obtained by ball milling of the Fe2O3–ZnO mixture
in a planetary mill [98]. The metastable structure was characterized by substantial
displacement of Fe3+ cations into tetrahedral sites and Zn2+ cations into octahedral
sites, and by deformation of the octahedral geometry. Crystallization of the mechan-
ically synthesized Zn ferrite occurred at temperatures significantly lower than those
synthesized by the conventional high-temperature method. Study of structural and
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magnetic evolution in Cu ferrite (CuFe2O4) during long-term ball milling has es-
tablished three sequential processes [99]: (i) the formation of partially inverted Cu
ferrite nanoparticles with a non-collinear spin structure, (ii) decomposition of the
Cu ferrite into α-Fe and other related phases, and (iii) reduction of α-Fe to Fe3O4.

1.2.10 Matrix-mediated Synthesis

By matrix-mediated or confined synthesis it is meant that a rigid structure is provided
to act as a host or a matrix for the confined growth of the nanoscale magnetic particles.
Several such host materials have been explored, including those based on organic
resins, polymers, zeolite, and mesoporous solids. The host or matrix not only provides
spatially localized sites for nucleation but also imposes an upper limit on the size of
the nanoparticles. As a result, this method will produce nanoparticles with uniform
dimensions.

Ion-exchange resins have rigid pore structures and are a suitable host material
for synthesis of nanoparticles. Ziolo et al. [100] have synthesized nanocrystalline
γ -Fe2O3-polymer composites using an ion exchange resin as the host structure.
The resin was sulfonated polystyrene cross-linked with divinylbenzene to form a
three-dimensional, porous polymer network. During the synthesis the resin was ex-
changed with FeCl2 or FeCl3 solution then treated chemically and heated to form
the γ -Fe2O3–polymer nanocomposite. The nanocomposite had superparamagnetic
behavior and appreciable optical transparency in the visible region. A superpara-
magnetic form of goethite, α-[FeO(OH)], has been prepared within macroporous
poly(divinylbenzene) microspheres of 50–200 nm pore size by a chemical process
[101]. The synthesis involved sulfonation of the microspheres, treatment with fer-
rous chloride solution, and oxidation with hydrogen at pH 14 and 70 ◦C. It was
observed that there were two forms of goethite within the polymer – 25 nm diam-
eter disks and 25 × 80 nm needles. Cohen et al. synthesized optically transparent
block copolymer films of [NORCOOH]30[MTD]300 (NORCOOH = 2-norbornene
dicarboxylic acid; MTD = methyltetracyclododecene) containing superparamagnetic
γ -Fe2O3 nanoparticles by static casting [102]. The nanoparticles (approx. 5 nm) of γ -
Fe2O3 were located within interconnected cylindrical microdomains and uniformly
distributed throughout the film. Magnetic gels are of considerable interest for po-
tential applications in medical diagnostic technologies. Winnik et al. reported a new
approach to the synthesis of nanocrystalline γ -Fe2O3 in iron(II) cross-linked algi-
nate gels, i. e. γ -Fe2O3-alginate nanocomposite [103]. In their preparation, the cross-
linking ion was used as the reaction center for in-situ formation of nanocrystalline
iron oxides. The resulting gel was isolated in the form of spherical beads that were
superparamagnetic with a blocking temperature below 50 K.

Microporous solids such as zeolites and mesoporous solids also have rigid pore
structures. Although use of these materials for the growth of semiconductor nanopar-
ticles (quantum particles) is known [104], the growth of magnetic particles in these
systems has been much less studied and, interestingly, often motivated by particle
properties other than magnetism (e. g. catalytic activity). Of the investigations re-
ported, most have concentrated on the use of zeolite hosts; some researchers have,
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for example, examined the preparation of iron [105] and cobalt [106] metal and iron
oxide [107]. Very few reports have extended to the study of mesoporous materials.
One of the few examples found that iron oxide particles could be readily prepared
in the silicate MCM-41 [108]. MCM-41 is one of a new family of molecular sieves
with a regular hexagonal array of uniform pore openings and pore sizes in the range
2–10 nm. It has been found that the nanoparticles of Fe2O3 encapsulated in the uni-
form pores of MCM-41 have a uniform size of approximately 4 nm, and the bandgap
of the resulting Fe2O3 particles is widened from 2.1 to 4.1 eV. The magnetic properties
of this system remain undetermined.

A typical preparation of magnetic nanoparticles using zeolite as a host structure
can be illustrated with the synthesis of iron clusters embedded in the Faujasite-type
zeolite NaX [109]. The crystal structure of NaX consists of SiO4 and AlO4 tetrahedra
forming cubo-octahedra which are interconnected by six-membered rings. The over-
all frame contains supercages which provide enough space to host molecular units of
sizable dimensions (<1.3 nm). The NaX solids are saturated with Fe(CO)5, and this
is followed by thermal decomposition. The size of the iron nanoparticles depends
on the conditions used for thermal decomposition of the system Fe(CO)5-NaX.
Thermal decomposition under continuous vacuum and temperatures up to 453 K
leads to iron particles larger than 10 nm whereas thermal decomposition up to 723 K
under argon leads to 3–4-nm clusters. In contrast, clusters in the 2-nm range could
be obtained by thermal decomposition up to 453 K under static vacuum and sub-
sequent heating up to 823 K under continuous vacuum. Microporous alumina has
also been used as templates in the growth of magnetic nanostructures. Fig. 1 shows
a scanning electron micrograph of an Fe network grown on 100-nm pore size, 50-nm
wall width nanochannel alumina. The light connected regions correspond to the Fe
network and the dark regions are the nanochannels (pores) in the alumina substrate
[110].

1.3 Structure-Property Overview

Nanocrystalline and nanocomposite materials are polycrystalline materials with
grain sizes of up to ca 100 nm. Because of the extremely small dimensions, a large
volume fraction of the atoms is located at the grain boundaries and surfaces. Nanos-
tructured materials are thus a special state of solid matter that consists primarily of
incoherent interfaces (grain or interphase boundaries) formed between nanometer-
sized crystallites with different crystallographic orientation. The atomic arrangement
in the incoherent interfaces is characterized by reduced density and nearest neighbor
coordination number relative to the glassy or crystalline state, because of the misfit
between crystallites of different crystallographic orientation that are joined at the
interfaces. The reduced density and nearest neighbor coordination number lead to
a new type of atomic structure which has properties that differ (sometimes by many
orders of magnitude) from those of crystals and glasses with the same chemical com-
position [111]. A clear picture of the structure of nanoscaled materials is only now
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Fig. 1. Scanning electron micrograph of an Fe network grown on 100-nm pore size, 50-nm wall
width nanochannel alumina. The light connected regions correspond to the Fe network and
the dark regions are the nanochannels (pores) in the alumina substrate [110].

emerging. The properties of nanocrystalline materials are very often superior to those
of conventional polycrystalline coarse-grained materials. Nanoscaled materials often
have higher electrical resistivity, specific heat, and coefficient of thermal expansion,
and lower thermal conductivity than conventional coarse-grained materials; they also
often have superior magnetic properties. Nanostructured alloys enable the alloying of
components that are immiscible in the crystalline and/or glassy states. New concepts
of nanocomposites and nanoglasses are being intensively investigated. Although
discovered several decades ago, nanostructured materials have started to enter the
regime of technology applications. There is a great potential for future applications
of nanoscaled materials. Extensive investigation of structure-property correlations
in nanocrystalline materials in recent years have begun to unravel the complexities
of these materials, and pave the way for successful exploitation of nanoscaled design
principles to synthesize better materials than have hitherto been available.

When materials with long-range magnetic order, e. g. ferromagnetism and anti-
ferromagnetism, are reduced in size, the magnetic order can be replaced by other
magnetic states. One way of reducing the dimensions of the ordered magnetic re-
gions is to isolate them inside non-magnetic matrices by precipitation from solid
solution. Another way is to form a composite of nanometer-sized magnetic and
non-magnetic species. The magnetic behavior of these nanocomposites becomes ei-
ther paramagnetic or superparamagnetic [112]. Because of the ease with which the
magnetic behavior can be controlled by controlling the processing parameters, such
materials present great possibilities for the atomic engineering of materials with
specific magnetic properties.
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1.3.1 Quantum Tunneling

Quantum tunneling effects have recently been reported in several nanoscale mag-
netic materials and molecular magnets [113–116]. Fig. 2 shows one such nanoscale
magnet, Fe10, which consists of ten Fe3+ ions (large symbol) bound in a ring structure
with chlorine, oxygen, and carbon [117].

Observation of quantum tunneling effects in nanostructured materials is possible
partly because of significant advances both in the ability to obtain magnetic systems
of almost any desirable size, shape, and composition, and in the development of
instrumentation for detection of extremely weak magnetic signals. The observation
of steps at regular intervals of magnetic field in hysteresis loops was interpreted as
evidence of thermally assisted, field-tuned resonant tunneling between quantum spin
states in a large number of identical high-spin molecules. Because the magnetization
is a classical vector, this effect is also referred to as macroscopic quantum tunneling.
Study of low-temperature magnetic relaxation, single particle measurements, and
domain wall junction, quantum coherence, and quantum resonance measurements
in nanostructured materials has provided the opportunity to observe the occurrence
of quantum tunneling of magnetization. Quantum resonance measurements have
shown unambiguously the occurrence of quantum tunneling of magnetization on
the one-nanometer scale [118]. It has been shown that a staircase structure in the
magnetization curve results from Landau–Zener tunneling between different pairs
of nearly-degenerate energy levels for a uniaxial magnet [119]. Clusters of metal ions
are a class of compounds actively investigated for their magnetic properties, which

Fig. 2. Nanoscale magnet Fe10,
which consists of ten Fe3+ ions
(large symbol) bound in a ring
structure with chlorine, oxy-
gen, and carbon [117].



1.3 Structure-Property Overview 19

changes from those of simple paramagnets to those of bulk magnets. In addition to
the coexistence of classical and quantum behavior, these systems might help reveal
the link between simple paramagnetism and bulk magnetic behavior [117].

1.3.2 Anisotropy

The most common types of anisotropy are crystalline anisotropy, shape anisotropy,
stress anisotropy, and exchange anisotropy, of which crystalline anisotropy and shape
anisotropy are most important in nanostructured materials. Magneto-crystalline
anisotropy arises from spin–orbit coupling and energetically favors alignment of
the magnetization along a specific crystallographic direction. Shape anisotropy is
the result of departure of magnetic particles from sphericity and is predicted to pro-
duce the largest coercivity. El-Shall et al. found that magnetic anisotropy constants
for iron oxide nanoparticles were one order of magnitude higher than known bulk
values [11]. Study of the magnetic properties of nanocomposites of silver and iron
oxide synthesized by sputtering, gas condensation, and in-situ oxidation have indi-
cated that these composites were superparamagnetic above ∼100 K [120, 121]. At
lower temperatures hysteresis measurement provides evidence of the occurrence of
unidirectional anisotropy; this is believed to be caused by interactions between the
magnetic phases coexisting in the composites [122]. Induced magnetic anisotropy
was found to increase with the field annealing time in nanocrystalline Fe–Cu–Nb–
Si–B alloys. A high relative initial permeability, a flat B–H loop, and low rema-
nence were obtained by transverse-field annealing for a short time [123]. Exchange-
coupled ferromagnetic–antiferromagnetic thin films are known to have unidirec-
tional anisotropy and an antiferromagnetic bias layer is used to enable selective
alteration of the coercivity of a neighboring ferromagnetic layer in magnetic device
structures. Fig. 3 shows such an exchange-coupled ferromagnetic-antiferromagnetic

Fig. 3. Exchange-coupled ferromag-
netic–antiferromagnetic thin film in
which the moments of the ferromag-
netic layer (bottom) are pinned by the
antiferromagnetic layer (top).
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thin film in which the moments of the ferromagnetic layer (bottom) are pinned by
the antiferromagnetic layer (top). Exchange coupling in so-called “core-shell struc-
tures”, in which magnetic nanoparticles are coated with an antiferromagnetic shell
layer, is also being studied [124].

1.3.3 Analytical Instrumentation

Typical instruments used for analysis of magnetic nanostructured materials include
transmission electron microscopy, scanning electron microscopy, X-ray diffraction,
atomic-force microscopy, magnetic force microscopy, magneto-optical Kerr rotation,
small-angle neutron scattering, nuclear magnetic resonance, electron spin resonance,
Raman spectroscopy and IR spectroscopy, low-energy electron diffraction, and elec-
tron energy loss spectroscopy. Coherent Lorentz imaging using TEM, scanning elec-
tron microscopy with polarization analysis (SEMPA), spin polarized scanning tun-
neling microscopy, spin polarized low energy electron microscopy (SPLEEM), X-ray
magnetic circular dichroism spectroscopy, and spin polarized photoemission studies
are increasingly being used to characterize nanostructured magnetic materials. Fig. 4

Fig. 4. An in situ-determined im-
age of exact monolayer coverage
of W (110) by Co at 650 K by use
of SPLEEM [125].



1.4 Theory and Modeling 21

shows an in-situ-determined image of exact monolayer coverage of W (110) by Co
at 650 K by use of SPLEEM [125].

Mössbauer spectroscopy continues to be a very powerful tool for characteriza-
tion of nanostructured materials containing iron and selected groups of elements.
A new design of Mössbauer in-situ cell for studies of catalysts and nanometer-sized
particles has been reported [126]. Non-linear magneto-optical phenomena such as
magnetization-induced second-harmonic generation (MSHG) can only be observed
in materials in which both space-inversion and time-reversal symmetry are simultane-
ously broken. This makes non-linear magneto-optical effects particularly attractive
for the study of magnetic multilayers and nanostructures [127]. A hybrid magneto-
optical magnetometer and optical microscope has been designed and constructed for
probing the magnetic properties of submicron nanomagnets [128]. Near-field tech-
niques have increasingly been applied, because they can surpass the resolution limit
set by the wavelengths used [129].

Atomic-force microscopy and magnetic-force microscopy, AFM and MFM, are
important and widely used versatile tools for characterization of magnetic materials.
These techniques are increasingly being used, in industry and academia, to probe
morphological information of nanostructured materials down to the atomic level
and determine the orientation and stability of magnetic domains in the materials.
Recent advances in magnetic resonance force microscopy (MRFM) have enabled
the detection of the magnetic force exerted by electrons and nuclei in microscopic
samples, and it might become possible to detect single-electron magnetic moments
[130].

1.4 Theory and Modeling

1.4.1 Single-domain Particles

Magnetic particles of nanometer sizes are mostly single-domain, because the forma-
tion of domain walls becomes energetically unfavorable [131]. As particle size further
decreases below the single-domain value, the magnetic moment of the particles will
be gradually affected by thermal fluctuation and they will behave paramagnetically
with giant moments. This superparamagnetism has zero coercivity and readily oc-
curs above; the blocking temperature at which thermal energy is sufficient for the
moment to relax during the time of the measurement. The evolution of intrinsic
coercivity, HCI, as a function of particle size is illustrated in Fig. 5. Above a critical
particle size, DS, the particles are multi-domain. The coercivity increases as the par-
ticle size decreases. Below, DS, the particles are single-domain. When the average
particle size decreases further below DP the particles become superparamagnetic
with unstable magnetic moments and vanishing coercivity. Stoner–Wohlfarth theory
was developed to describe the behavior of an assembly of single-domain particles
[132]. A more recent theory by Holz and Scherer addresses the coupling between
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Fig. 5. Schematic representation of the
change of intrinsic coercivity as a func-
tion of the size of a magnetic particle.

magnetic particles in nanostructured materials [133]. The issue of exchange coupling
between magnetic nanoparticles has drawn much attention in recent years, because
it will have significant impact on both the understanding and application of nanos-
tructured magnetic materials.

1.4.2 Modeling

Combining classical micromagnetic theory with the Landau–Lifshitz–Gilbert gyro-
magnetic equations, recent modeling studies have led to much improved under-
standing of fundamental magnetization processes in magnetic thin films. For ex-
ample, magnetic domain states of a permalloy prism are calculated by means of
three-dimensional finite element modeling. Both the four-domain Landau structure
and the seven-domain “diamond” structure are observed by using different starting
conditions. Both domain patterns are sheared on the surfaces. This shearing is at-
tributed to bulk effects of the magnetic structure [134]. Fig. 6 shows the simulated
static magnetization configuration for a 1 × 0.5 µm sized, 10 nm thick, Permalloy
thin film element with the field applied along the element width direction. The gray
scale pictured in the top and middle rows represents the magnetization component
in the length and width directions, respectively. The gray scale in the bottom row
represents the normal component of the magnetization curl ∇ × M [135].

Hysteresis properties and transition noise behavior of longitudinal thin film
recording media with advanced microstructures have been studied by micromag-
netic modeling. High coercive squarenesses can be achieved for films with a weak
exchange coupling through the normal boundary. The high coercive squareness and
extremely low noise make nanocrystalline films suitable for ultra-high density record-
ing applications [136]. Chui and Tian have recently studied the finite temperature
magnetization reversal of single domain nanostructures (particles and wires) of dif-
ferent materials with Monte Carlo and analytical techniques. For large structure
diameters there are different reversal mechanisms at different orientations of the
external field. For small structure diameters growth usually starts with the nucle-
ation and subsequent depinning of domain walls at the end(s) of the structure. The
nucleation energy of the domain wall in a magnetic field approaches zero near the
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Fig. 6. Simulated static magnetization configuration for a 1×0.5 µm sized, 10 nm thick, Permal-
loy thin-film element with the field applied along the element width direction. The gray scale
pictured in the top and middle rows represents the magnetization component in the length
and width directions, respectively. The gray scale in the bottom row represents the normal
component of the magnetization curl ∇ × M [135].

coherent rotation limit at small aspect ratios and at fields less than the coherent
rotation limit at large aspect ratios. As the domain wall energy approaches zero
the domain wall width can remain finite. For small diameters the coercive field is
significantly temperature-dependent [137].

1.5 Applications

1.5.1 Magneto-optical Recording

High density re-writable magneto-optical Kerr effect recording is now a reality. Fu-
ture development includes application of shorter wavelength diode lasers for higher
recording density and preparation of films with sufficiently small grain size for the
reduction of media noise. Studies have found that nanoscaled transition metal mul-
tilayers, in particular Co–Pt multilayers, compare favorably with amorphous rare
earth–transition metal alloys such as GdTbFe at short wavelengths. The Co–Pt mul-
tilayers have a Kerr rotation which is larger by, approximately, a factor of 3 in com-
parison to GdTbFe in the 400-nm region [138]. One of the deficiencies of Co–Pt mul-
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Fig. 7. The magnetic force image of rows of bits on TbGdFeCo magneto-optical medium
produced by 3M Corporation [Courtesy of Digital Instruments].

tilayers is that they are polycrystalline rather than amorphous, although their grain
size is quite small. Fig. 7 is the magnetic force image of rows of bits on TbGdFeCo
magneto-optical medium produced by 3M Corporation [Courtesy of Digital Instru-
ments].

Although MnBi-based compounds have rather large Kerr rotation compared with
amorphous alloys and Co–Pt multilayers, the polycrystalline nature of the material
and its relatively large grain size makes it unsuitable for practical recording film,
because of high media noise. It also has a structural instability near its Curie tem-
perature, which causes difficulties in the writing process. Although it was recently
reported [139] that Al doping increases the Kerr rotation of MnBi, reduces the grain
size, and improves the thermal stability; Sellmeyer et al. found that Al doping neither
enhances the Kerr rotation nor eliminates the high temperature structural instabil-
ity but does promote small grain sizes which are required for a low-noise recording
medium [140].

MnBi-based compounds and garnets are both polycrystalline materials with large
Kerr rotations at blue wavelengths. They have high potential as practical recording
media. Synthesis of nanocrystalline materials with grain sizes less than 30 nm is
desirable for low media noise.
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1.5.2 Magnetic Sensors and Giant Magnetoresistance

Typical applications include magnetic field probes, magnetic read heads, contactless
switches, position sensors in brushless motors, which might eliminate contact noise,
a significant noise contribution in electronic devices, and pattern recognition, in
which a magnetically printed pattern is scanned using a highly sensitive magnetic
sensor made of giant magnetoresistance (GMR) materials. Bridge magnetic sensors
made of GMR materials give signals 3–20 times larger than those of a traditional
magnetoresistive sensor. They are linear over most of their operating range and have
superior temperature stability [141].

Most studies on GMR materials have involved metal–metal systems in which
magnetic metal particles are dispersed in a non-magnetic metal matrix, or magnetic
metal layers are separated by non-magnetic metallic spacers. Recently, large mag-
netoresistance has been observed in metal–insulator–metal trilayers in which two
magnetic layers are separated by a thin insulator film [142, 143]. The results support
the claim that large magnetoresistance is a result of the spin-polarized tunneling
of electrons between two magnetic metals through a thin Al2O3 insulator. These
findings have attracted much attention because of the interesting problem of “spin
tunneling” involved in such systems and their potential applications. GMR in gran-
ular materials employing an insulating matrix has also been reported recently [144].
One issue concerning tunneling magnetoresistance is the preparation of pinhole-free
barriers [145]. One way of avoiding this problem is to make discontinuous tunnel
junctions that consist of granular magnetic nanoparticles. Discontinuous junctions
are not susceptible to metallic bridging by pinholes because of the multiple junction
nature of the structure [146].

1.5.3 High-density Magnetic Memory

The areal density in longitudinal magnetic recording has surpassed the 1 Gbit in−2

level and reached 10 Gbit in−2 density [147, 148]. A further increase will require
major improvements in head, media, and channel technologies [149]. Of particular
interest are low-noise high-coercivity media. Currently, CoPtCr-based continuous
media are used. These consist of exchange-coupled grains several tens of nanometers
in size. Reduction of grain size and control of inter-grain exchange coupling would be
highly desirable for further noise reduction, which is required in ultrahigh-density
media, i. e. beyond 10 Gbit in−2. Reduction of grain size, however, will eventually
lead to superparamagnetic particles, unsuitable for recording. Such limitations can
be overcome by the design of novel nanocomposite materials with larger intrinsic
magnetic anisotropies [150, 151]. For example, a nanocomposite structure consisting
of CoPt nanoparticles with a highly anisotropic hard fct phase embedded in a fcc
Ag matrix has been reported [152]. A Ni–Al nitride nanocomposite has been shown
to have potential applications as a high density recording medium, as have other
finely divided dispersions of ferromagnetic metals in insulating matrixes [153]. An
especially interesting approach is the fabrication of completely exchange-decoupled
magnetic nanoparticles which would enable the production of media in which the
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Fig. 8. The micrograph of section of
magnetoresistive random-access mem-
ory developed by Honeywell Corpora-
tion, showing 2-µm × 12-µm MRAM
bits [Courtesy of G.B. Granley, Honey-
well Corporation].

transition between adjacent bits is controlled by the physical location of the particle,
rather than by the demagnetization zone, as in continuous media. Development of
a process enabling fabrication of regular arrays of such particles might eliminate
transition noise completely [154]. Such processes could include nanolithography, as
suggested by Chou et al. [155, 156], who have prepared patterned media by means
of an injection-molding process for patterning and subsequent electrodeposition of
Ni. Isolated and interactive arrays of magnetic Ni pillars were fabricated. Unique
magnetic properties were obtained by controlling size, aspect ratio, and spacing of the
pillar array. Particles as small as 15 nm in diameter have been reported and nominal
areal densities of approximately 250 Gbit in−2 were suggested. Addressability (write,
read, data rate, etc.) remains an open issue.

Magnetoresistive random-access memory (MRAM), an integrated magnetic
memory technology that uses magnetic storage and magnetoresistive reading with
semiconductor support circuits [157], has been developed using GMR materials.
Fig. 8 is the micrograph of section of magnetoresistive random-access memory de-
veloped by Honeywell Corporation, showing 2-µm × 12-µm MRAM bits [Courtesy
of G.B. Granley, Honeywell Corporation].
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1.5.4 Optically Transparent Materials

A magnetic material with appreciable optical transmission in the visible region at
room temperature has been found in a γ -Fe2O3–polymer nanocomposite. Optical
studies show that the small-particle form of γ -Fe2O3 is considerably more transpar-
ent to visible light than is the single crystal form. The magnetization of the nanocom-
posite is greater by more than an order of magnitude than those of the strongest
room-temperature-transparent magnets FeBO3 and FeF3 [100, 158].

Real time transitions from metallic (YH2 or LaH2) to semiconducting (YH3 or
LaH3) behavior was recently found to occur in the coated films during continuous
absorption of hydrogen; it was accompanied by pronounced changes in their optical
properties – for example, it changes from a shiny mirror to a yellow, transparent
window [159]. Although the time scale on which this transition occurs is currently
rather slow, there seems to be considerable scope for improvement by appropriate
choice of rare-earth element and by adopting electrochemical means for driving
the transition. This switchable optical property might find important technological
applications.

1.5.5 Soft Ferrites

Ferrites have many advantages in rf applications where the complex permeability
can be modified by application of an external field or by changes in composition. The
complex permeability of a ferrite of the YIG family was measured as a function of
magnetic field to characterize control of the permeability at different temperatures
[160]. It has been shown that there is a gradual increase in the real permeability of
polycrystalline thin films of YIG with increasing frequency, as opposed to a decrease
observed in bulk ferrite toroids of the same composition. These films seem to be
useful in the construction of rf microstructures [161].

The demand for soft ferrites has been growing and ferrites will expand markedly
in both quantity and the extent of application as the need for ferrites of higher qual-
ity increases. The electromagnetic properties of ferrites depend on the production
process and on their micro and nanostructures. MnZn ferrite is a principal ferrite for
high permeability and power uses. Spray roasting to produce the Mn–Zn–Fe ternary
system has been developed recently [162]. Precise control of the production process
to prevent the occurrence of defects is the key to producing high-performance fer-
rites. New applications of ferrites, for example ferrite carriers and toners for elec-
trophotocopy and biochemical applications, is expanding.

The noise filter characteristics of a common-mode choke coil fabricated from a
nanocrystalline Fe84Nb7B9 alloy have been studied with the aim of clarifying its
potential for application as a core material [163]. The impulse attenuation character-
istics of the choke coil with the nanocrystalline alloy core were superior to those of
a coil with an Mn–Zn ferrite core. Choke coils made from the nanocrystalline alloy
and amorphous alloy cores resulted in higher attenuation in the frequency range
>1 MHz. The common-mode attenuation of the choke coil with the nanocrystalline
alloy core resulted in attenuation values higher than those of coils with the other two
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cores in the frequency range >4 MHz. The conducted radio noise characteristics of
the choke coil with the nanocrystalline alloy core were superior to those of the coil
with the amorphous alloy core. The attenuation of the former was 5 dB higher than
that of the latter.

1.5.6 Nanocomposite Magnets

Recently developed nanocomposite magnets are composed of magnetically soft and
hard ultra-fine grains the magnetization of which are coupled by the inter-grain
exchange interaction. Because of the presence of soft grains and the coupling of the
magnetization, nanocomposite magnets are expected to have superior hard magnetic
properties, for example high remanence, large energy product, small temperature
coefficient of the remanence, and high coercivity [164]. The nanocomposites have
been predicted to offer a maximum energy product, (B H)max, in excess of 100 MGOe
[165], because of the exchange coupling between the hard and soft magnetic grains
[166]. The hard magnetic phase provides the high anisotropy and coercive fields
and the soft phase enhances the magnetic moments. The moments in the soft grains
near the interfaces are pinned to the hard grains by the exchange coupling and the
centers of the soft grains can rotate in a reverse field. This configuration results in
enhanced remanent magnetization and reversible demagnetization curves, because
the moments of the soft grains will rotate back to align with the neighboring hard
grains when the applied field is removed. An added advantage of such nanocomposite
magnets is that they require less of the expensive rare earths and thus are potentially
more competitive than the magnets currently available. The major problem with
such magnets is the relatively low coercivity obtained in systems studied so far. The
coercivity is found to decrease drastically as the soft phase is added. This might be
mainly because of the experimental difficulties of obtaining an ideal nanostructure. A
recent surge in the research interest in this field has shown that the nitride of the rare
earth–iron compound has good magnetic properties. Also, application of mechanical
alloying for the synthesis of the rare earth–iron compound is more versatile [167].

1.5.7 Magnetic Refrigerant

Upon application of an external magnetic field, the magnetic spins in a material
partially align with the field, thereby reducing the magnetic entropy of the spin sys-
tem. When this is performed adiabatically, the temperature of the specimen will
increase. This temperature rise, which is related to the entropy change by the heat
capacity, is known as the magnetocaloric effect. Upon cycling the magnetic field,
this effect can be used to transfer heat from one thermal reservoir to another, form-
ing the basis for a magnetic refrigerator. Composite magnetic materials contain-
ing nanometer-size magnetic species might have enhanced magnetocaloric effects
especially at high temperatures or low magnetic fields over a large temperature
range [168]. Enhanced magnetocaloric effects have been reported for a series of
iron-substituted gadolinium garnets (GGIG) Gd3Ga5−x Fex O12; this was consistent
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with superparamagnetic behavior at low Fe concentrations and was in qualitative
agreement with calculation [169]. A giant magnetocaloric effect has recently been
discovered in the Gd5(Six Ge1−x )4 pseudobinary alloys. Its ordering temperature is
tunable between 30 and ∼276 K and it exceeds the reversible (with respect to al-
ternating magnetic field) magnetocaloric effect for any known magnetic refrigerant
material at the corresponding Curie temperature by a factor of 2–10 [170].

1.5.8 High-TC Superconductor

Because of their small coherence lengths, the high-Tc cuprates can be used as super-
conducting interconnects with widths of a few tens of nanometers, or as Josephson
junctions with a surface area of a few hundred square nanometers. Nanopatterning
of these materials has, therefore, become an attractive research undertaking [171].

1.5.9 Ferrofluids

Applications of ferrofluids include lubrication, sealing, air-moisture absorption, med-
ical application, and electrically conducting fluids for electromechanical systems
[172]. Ferrofluid seals, ferrofluids sustained by a magnetic field in the desired po-
sition, have the advantages of both contact and hydrodynamic seals. They have low
friction moments and a high degree of sealing and can be used to seal vacuum systems
and high pressure chambers, and to separate different media. Ferrofluid lubricants
can be easily positioned, by means of a magnetic field, to the exact friction zone;
this might be difficult to achieve with traditional lubricants. Ferrofluids can also
find applications for damping oscillations and as shock absorbers. Shock absorbers
made with ferrofluids have high supporting power and good amplitude–frequency
characteristics.

The use of ferrofluids for cooling devices where magnetic fields are present is
particularly promising. The possibility of intensifying convection at the expanse of
a magnetic field converts a magnetic fluid into a highly effective heat carrier. It can
also be used as a tool to control heat transfer.

Ferrofluid-based devices include sensors and actuators. Ferrofluids have, for ex-
ample, been used in densimeters, accelerometers, pressure transducers, displacement
transducers, and slope angle-data transmitters. By applying a magnetic field to a fer-
rofluid it is possible not only to position it easily, but to displace it easily or to change
its shape. The basic advantages of such a mechanism lies in the absence of movable
mechanical parts and, hence, in improved reliability. Typical examples of an actuator
using ferrofluids are electromechanical converters, electrical contacts, displays, and
level-detectors.

Because a magnetic fluids are either black or brown, they might be used as inks
in a printer controlled by a magnetic field. Despite of their relatively slow printing
speed, advanced design might enable printing at higher speeds [173]. They can also
be used as magnetic toners in xerography.
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Methods of preparing nanometer-sizedγ -Fe2O3, Fe, other transition metal, or rare
earth magnetic particles coated with carbon or organic layers have been reported
[174–176]. It has been suggested that such coated magnetic particles might extend
the applications of stabilizing ferrofluids or be used as contract agents in magnetic
resonance imaging.

1.5.10 Biological Applications

Ferritin is a natural participant in the metabolic processes of most animals. It con-
sists of a segmented protein shell and an inner space filled with a hydrated iron oxide
similar to ferrihydrite. It is one of the ways an organism stores Fe3+ for physiological
needs. It has been recently shown that after removal of the ferrihydrite core, it is pos-
sible to reconstitute the empty protein shell under controlled oxidative conditions,
tailored to the synthesis of magnetite rather than ferrihydrite [177]. In addition to
the potential for the production of novel nanophase materials derived from biologi-
cal materials, nanoscaled magnets are also potentially useful in magnetic resonance
imaging and controlled drug delivery as a biocompatible ferrofluid. The synthesis and
understanding of artificial (and natural) ferritin proteins has been advancing rapidly.
New technology in molecular chemistry is now realizing the possibility of creating
true molecular magnets, in which the magnetic ions are added one at a time and the
resulting magnet has precisely defined atomic weight and magnetic properties, and
so might, for example, be able to target specific tissues [117].

Other examples of interest and importance are magnetotactic bacteria. There is
evidence of a magnetic direction-finding ability in many species and this suggests
some interesting biomimicking possibilities in relation to both magnetic sensors and
the transducers. Currently our understanding in this area is limited to a group known
as magnetotactic bacteria, which use the earth’s magnetic field to orientate them-
selves and move in the direction of nutritional or chemical gradients [178]. The
permanent magnetic dipole moment of each magnetotactic cell arises as a result
of the presence of intracellular membrane-bound single-domain inorganic particles,
which are arranged in chains. Most of the particles, known as magnetosomes, contain
magnetite Fe3O4 or greigite Fe3S4 in the 40 nm to 100 nm size range [179].

Methods for the large-scale preparation of biodegradable and biocompatible mag-
netic nanospheres have been developed [180]. The nanospheres can be used for cell
labeling in magnetic cell-separation techniques. The nanospheres have proved to be
immunospecific, biodegradable, and biocompatible. These immunospecific magnetic
nanospheres are expected to have many applications as biopharmaceutical reagents
in biology and medicine.
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2 Magnetism and Magnetotransport Properties
of Transition Metal Zintl Isotypes

Susan M. Kauzlarich, Amy C. Payne, and David J. Webb

2.1 Introduction

Novel magnetic and electronic properties discovered in transition metal Zintl com-
pounds crystallizing in the Ca14AlSb11 structure [1] will be the topic of this chapter.
Zintl phases are made up of electropositive elements, typically alkali or alkaline
earth elements, that donate electrons to more electronegative elements, typically
group 13, 14, and 15 elements [2]. In this definition, the cations function as simple
electron donors to the anionic substructure.

Motivated by the intriguing structures of this type of compound, we sought to
discover new compounds that could be prepared at the metal–insulator boundary
[2–4]. With this approach to synthesizing new compounds, Ca14MnBi11 was discov-
ered [5]. It is isostructural with Ca14AlSb11, crystallizing in the tetragonal crystal
system with space group I41/acd, and has ferromagnetic ordering at 56 K. The struc-
ture of this compound consists of isolated Ca2+ cations, discrete MnBi9−

4 tetrahedra,
Bi7−

3 linear anions, and isolated Bi3− anions. A similar description had already been
provided for Ca14AlSb11 [1]. Theoretical calculations are in agreement with the Zintl
interpretation of the structure [6]. Much of our work has focussed on Mn analogs of
the Ca14AlSb11 phase because of the unexpected ferromagnetic ordering observed
in these phases. Mn containing compounds prepared to date are of the formula,
A14MnPn11 (A = Ca, Sr, Ba, Eu, Yb; Pn = P, As, Sb, Bi) [2, 3, 5, 7–18]. The reason
that magnetic ordering is surprising is that in this type of structure the Mn atoms are
approximately 10 Å apart.

With the Zintl description of the structure, one expects localized d electrons
and no possibility of magnetic ordering through orbital superexchange. In these
phases, however, all the Sb and Bi compounds and Eu14MnAs11 and Eu14MnP11
have long-range magnetic order. The highest transition temperature has been ob-
served for Eu14MnSb11 which has ferromagnetic ordering at approximately 92 K.
Because of the large distances between Mn atoms and the absence of any covalent
bonds between them, the magnetic coupling has been attributed to a Ruderman–
Kittel–Kasuya–Yosida (RKKY) interaction between localized moments via conduc-
tion electrons [2, 15, 17, 19]. In addition, large magnetoresistance has been discovered
in some of these compounds [13, 14, 16], and they can be classified as colossal mag-
netoresistance (CMR) materials because they have a large magnetoresistance effect
coincident with the magnetic ordering temperature [20, 21].

Magnetism: Molecules to Materials III. Edited by J.S. Miller and M. Drillon
c
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2.2 Structure

The structure of Ca14AlSb11 has been discussed in detail [1]. We have also recently
reviewed the Mn analogs of this structure type [2]. One formula unit of Ca14AlSb11
is best described as consisting of 14 Ca2+ + AlSb9−

4 + Sb7−
3 + four Sb3−. The Ca2+

cations and the Sb3− anions are isolated – that is, these ions are not covalently bonded
to any other atom in the structure. Many compounds have been synthesized with this
type of structure (see Table 1).

Figure 1 shows the relative orientation of the two polyatomic units. Briefly, the
MPn9−

4 tetrahedra (M = Al, Ga, Mn; Pn = pnictogen) and the Pn7−
3 linear chains

alternate along the c axis. The chains are rotated by 90◦ relative to one another
along the c axis. The chains and tetrahedra also alternate along the a and b axes,
but are translated by a full unit-cell dimension along these directions (Fig. 2). This

Table 1. Compounds of the Ca14AlSb11 structure type with important distances and angles.

Compound M–Pn distance (Å) Pn–M–Pn angle (◦) Mn· · ·Mn distance (Å) Ref.

Ba14MnP11 – – – –
Ba14MnAs11 – – – –
Ba14MnSb11 2.872 118.7, 105.1 10.991 19
Ba14MnBi11 2.935 119.9, 104.5 11.128 19
Sr14MnP11 – – – –
Sr14MnAs11 2.683 114.7, 106.9 9.970 19
Sr14MnSb11 2.838 115.9, 106.4 10.519 19
Sr14MnBi11 2.889 118.7, 105.0 10.658 19
Eu14MnP11 - – – –
Eu14MnAs11 - – – –
Eu14MnSb11 2.790 118.6, 105.1 10.352 10
Eu14MnBi11 2.862 119.5, 104.7 10.532 15
Ca14MnP11 – – – –
Ca14MnAs11 2.603 113.4, 107.5 9.471 19
Ca14MnSb11 2.759 115.3, 106.6 10.030 19
Ca14MnBi11 2.814 118.0, 105.4 10.183 8
Yb14MnP11 – – – –
Yb14MnAs11 – – – –
Yb14MnSb11 2.750 117.5, 105.6 9.954 17
Yb14MnBi11 2.803 119.4, 104.7 10.155 17
Ba14InP11

∗ 2.71 114.2, 107.1 – 22
Sr14GaAs11 2.613 114.7, 106.9 – 23
Ca14GaAs11 2.546 113.0, 107.8 – 24
Ca14AlSb11

∗ 2.718 114.0, 107.3 – 25
Sr14AlSb11 2.833 114.6, 107.0 – 25
Ba14AlSb11 2.799 117.9, 105.4 – 25

All the data are from low-temperature single-crystal X-ray diffraction except those com-
pounds marked ∗, which were obtained from room-temperature single-crystal diffraction data.
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Fig. 1. A view of the unit cell along the c axis of A14MnPn11 (A = alkaline earth, Pn =
pnictogen) with only the MnPn4 tetrahedra and the Pn3 units indicated.

Fig. 2. A view of the unit cell along the a axis
of A14MnPn11 (A = alkaline earth, Pn = pnic-
togen) with only the MnPn4 tetrahedra and the
Pn3 units indicated.

figure shows the Pn7−
3 unit as being symmetric, but many of the As and P analogs

are asymmetric [22–24, 26]. This effect is strongly related to the size of the atoms,
in particular the radius of the cation and, therefore, the size of the cation cage that
envelops the Pn7−

3 unit controls the symmetry of the linear unit.
The isolated Pn3− anions are situated between the Pn7−

3 linear anion and the
MPn9−

4 tetrahedron. These anions are located along fourfold screw axes and form
spirals coincident with the c axis in the unit cell. These atoms seem to form loosely
associated pairs within the spiral. The Pn· · ·Pn distances within the spiral are consid-
erably longer than any bonding interactions observed in other compounds; they are,
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Fig. 3. A view of the tetrahedral
unit showing the compression
along the z axis with the pro-
posed crystal-field splitting dia-
gram.

therefore, not considered to be bonded. The isolated Pn3− anion has seven cations
in a distorted deltahedron.

The MnPn9−
4 tetrahedron is compressed along the a–b plane compared with the

main group analogs. This statement is true irrespective of the nature of the A2+
cation or the identity of the main group element (M = Al, Ga, In) in the tetrahedron,
MPn9−

4 . The larger distortion found in the MnSb9−
4 tetrahedra is attributed to Jahn-

Teller distortion, because the Mn is formally a d4 ion; a possible crystal-field splitting
diagram is shown in Fig. 3. Depending upon the amount of crystal-field splitting
expected from an Sb3− anion, the relative energies of the degenerate dxz and dyz
orbitals might be higher than that of the dx2−y2 orbital. In any case, high-spin behavior
is expected, because ligand-field splittings for tetrahedral complexes are small.

This type of structure has also been described as hierarchically related to that
of Cu2O, with two interpenetrating frameworks [22]. In this view the O and Cu
atoms are replaced by the metal-centered tetrahedra fused to A2+ cation-centered
octahedra. The nearest neighbor Mn tetrahedra are linked through an A2+ cation.
Figs. 4 and 5 show one of the interpenetrating networks, Fig. 4 with only the cation
that join the tetrahedra via their corners and Fig. 5 with the octahedra joining the
tetrahedra. Fig. 6 shows the spatial relationship of the Mn centered tetrahedra, the
A2+ octahedra, and the Pn7−

3 linear units.

Fig. 4. A view showing the MnPn9−
4 tetrahe-

dra linked with A2+ cations.
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Fig. 5. A view showing the MnPn9−
4 tetrahe-

dra linked with APn6 octahedra.

Fig. 6. A view of the spatial
relationship between the A2+
octahedra, the tetrahedra, and
the linear units.

The Eu series of compounds are the only compounds with two magnetic ions, Eu2+
and Mn3+. In Figs. 7 and 8 the Eu2+ cation packing is shown in a zero-perspective
view along the c axis and along the b axis. There is no simple description of the Eu2+
packing and one might expect fairly complex magnetic interactions.

2.3 Magnetism

Many of the magnetic properties of powder and polycrystalline samples of alka-
line earth compounds have been reviewed elsewhere [2]; data relating to the high-
temperature paramagnetic states and the low-temperature ordered states of these
compounds were presented and discussed. Since that review, single-crystal samples
of these alkaline earth compounds and single crystals of the newer rare earth analogs
have been studied [13, 14, 18]. This chapter briefly summarizes the results presented
in the past review for powder and polycrystalline material, and magnetism and elec-
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Fig. 7. A zero perspective along the a axis of the pack-
ing of the Eu2+ and Mn3+ cations (gray and black,
respectively) in the unit cell.

Fig. 8. A zero perspective along the c
axis of the packing of the Eu2+ and
Mn3+ cations (gray and black, respec-
tively) in the unit cell.

tron transport for single crystals of the alkaline earth compounds and all the measure-
ments for the rare earth compounds are presented and discussed in detail. Finally,
some general conclusions about the microscopic mechanism of the colossal magne-
toresistance (CMR) observed in these Zintl compounds will be presented, and the
compounds will be compared with other CMR compounds.



2.3 Magnetism 43

2.3.1 Alkaline Earth Compounds

2.3.2 High-temperature Paramagnetic Susceptibility

Early magnetic measurements [8, 12, 19] on powders of A14MnPn11 materials (A =
Ca, Sr, or Ba and Pn = As, Sb, or Bi) gave a clear picture of the general properties
of the alkaline earth compounds. The molar susceptibilities at high temperature
(generally T > 100–150 K) can be fit by the form χ(T ) = χ0 + C/(T − θ) which
is the Curie–Weiss law plus a temperature-independent background. The values for
the fitting parameters are given in Table 2.

The Curie constant can be used to identify the valence of the Mn ion by using the
standard form [27] of the Curie constant for molar susceptibility:

C = NAµ2
Bµ2

eff

3kB

where NA is Avogadro’s number, µB is the Bohr magneton, kB is Boltzmann’s con-
stant, and µeff is termed the “effective Bohr magneton number” of the ion and is
given by µ2

eff = g2 J (J + 1), where g is the Lande g-factor and J is the total effective
angular momentum of the ion. Examination of Table 2 shows that all these com-
pounds have a value of µeff consistent with 4.9, which is appropriate for a high-spin
Mn3+ ion with quenched orbital angular momentum. The values of µeff for Mn4+
and Mn2+, for instance, are approximately 3.9 and 5.9, respectively, and are incon-
sistent with the experimental data. The second important property determined by
the above fit for the molar susceptibility is the Weiss constant, θ . The Weiss constant
is a measure of the strength of the exchange coupling [27] between pairs of Mn3+
local magnetic moments. The Weiss constant is nearly zero for the As compounds,

Table 2. Magnetic properties.

Compound Ref. C µeff(µB) µsat(µB) θ(K ) Transition
(emu K mol−1) temperature (K)

Sr14MnAs11 19 3.5 5.1 – – –
Ca14MnAs11 19 3.3 5.2 – – –
Ba14MnSb11 19 3.0 4.9 2.2 18 20
Sr14MnSb11 19 3.6 5.4 3.3 40 45
Ca14MnSb11 19 3.3 5.2 2.7 62 65
Yb14MnSb11 17 3.04 4.92 – 48 56
Eu14MnSb11 15 88.9 27 102 95 92
Ba14MnBi11 8 2.9 4.8 2.9 17 15
Sr14MnBi11 8 3.1 5.0 2.7 38 33
Ca14MnBi11 8 2.9 4.8 2.5 50 55
Yb14MnBi11 17 3.1 4.9 – 51 60
Eu14MnBi11 15 85.3 26.1 – 45 32
Eu14InSb11 15 112 30 – 0.3 15
Eu14InBi11 15 114 30 – -14 10
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suggesting that these materials are simple Curie paramagnets with local magnetic
moments that are not strongly coupled. On the other hand, Table 2 shows that for the
Sb and Bi compounds the Weiss constant is relatively large (10–70 K) which implies
that the Mn moments in these compounds are relatively strongly ferromagnetically
coupled. This suggests that each of these compounds should become ferromagnetic
at low temperature.

2.3.2.1 Low-temperature Magnetization

Ordered States and Transition Temperatures

Magnetization measurements [8, 12, 19] at low temperatures confirm that, with one
exception, all of the alkaline earth analogs order ferromagnetically with the Curie
temperature, TC, near the Weiss constant, θ , as expected. The Curie temperatures
are listed in Table 2. The exception is Ba14MnBi11 for which the peak in the low field
susceptibility is interpreted as a transition to an antiferromagnetic ground state at a
Néel temperature, TN [12]. Figure 9 shows the dependence of magnetic susceptibility
on temperature. There have been no magnetic structure determinations yet to verify
this identification. A positive Weiss constant implies ferromagnetic coupling of the
local moments. The existence of antiferromagnetic ordering in a material with a
positive Weiss constant suggests there must be at least two sublattices of Mn ions and

Fig. 9. Plot of magnetic suscep-
tibility against temperature for
Ba14MnBi11.
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that there is strong ferromagnetic coupling between near-neighbor intrasublattice
moments but that intersublattice moments are coupled antiferromagnetically [27].
Because the structures of all these compounds are the same, this would also imply
that the intersublattice coupling in all alkaline earth Sb and Bi compounds of this
structure type (except Ba14MnBi11) is ferromagnetic.

Ordered Magnetic Moments

For powdered samples of the ferromagnetic alkaline earth compounds, at T = 5 K,
the magnetic field dependence of the magnetization, as seen elsewhere [7, 12, 19]
and reviewed in Ref. [2], resembles that of a simple ferromagnet, except that the
magnetization of these powder samples is difficult to saturate completely. The mag-
netization seems to be near saturation at a magnetic field, H = 5 T, however, and the
ordered saturation moment corresponds to approximately 4 µB for each Mn atom.
This is the magnetic moment expected, µMn = g JµB, from a Mn3+ ion with four
unpaired spins with their orbital angular momentum quenched, g = 2 and J = 2.

Magnetic Coupling

The Mn ions are very far apart (approximately 10 Å) and the electrons in these ma-
terials are all expected to have localized (bonding or atomic) filled orbitals. Magnetic
exchange coupling depends on the overlap of wavefunctions, and the orbitals in these
compounds should not overlap significantly. The Mn magnetic moments in the As
compounds are weakly coupled. Measurement of the resistivity (to be discussed be-
low) of the As compounds shows that they are semiconductors. How can this data be
reconciled with the relatively strong ferromagnetic coupling of Mn moments in the
Sb and Bi compounds? We will see that the Sb compounds are semimetals and the
Bi compounds are poor metals so one looks to the spatially-extended wavefunctions
of the conduction electrons in these materials to provide the magnetic exchange
coupling.

The theory of magnetic exchange coupling mediated by conduction electrons
[28–30] was worked out forty years ago by Ruderman, Kittel, Kasuya, and Yosida
and is commonly called RKKY theory. The wavefunction of a conduction electron
(generically an s-electron) overlaps that of the local unpaired electrons (generi-
cally a d-electron) so there will be an energy associated with the exchange of these
two electrons. This exchange energy between the conduction electron and the local
electron(s) is usually termed Jsd. This coupling causes magnetic polarization of the
conduction electrons near a local moment that decays away as the distance from the
local moment increases. The characteristic decay of the conduction electron polar-
ization, assuming a spherical Fermi surface with Fermi wavevector, kF, features a
sinusoidal oscillation within an envelope function which is a power law decay [28].
The length scale over which the polarization oscillates is k−1

F , and kF also controls
the power law decay. The neighbors of the local magnetic moment that causes the
polarization experience the polarization through the same Jsd and so there is indi-
rect coupling between each pair of local magnetic moments in a metal. This indirect
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Fig. 10. TC as a function of Mn–
Mn distance for the A14MnPn11
compounds. The solid line is the
calculated curve based on RKKY
theory.

coupling [31] is given by:

JRKKY(r) = 9πn2 J 2
sd

EF

[
(2kFr cos(2kFr) − sin(2kFr))

(2kFr)4

]

where n is the number density of conduction electrons, kF is the Fermi wavevec-
tor, and EF is the Fermi energy. The Fermi sea is isotropic in simple metals and,
even though that is probably not true in these complex materials, an isotropic Fermi
wavevector was used by Rehr et al. in their analysis of the magnetic exchange cou-
pling [19]. Using the measured Mn–Mn distances and assuming that each Mn ion
has ten Mn near-neighbors [19], the equation θ = 2zS(S + 1)JRKKY(r = rnn)/3kB
was used for the Weiss constant where S = 2 is the Mn spin, z is the number of
Mn near neighbors (10), rnn is the near neighbor Mn–Mn distance, and JRKKY(r) is
given above. This function fits the data as shown in Fig. 10. The best fit is found with
kF ≈ 5 nm−1, which means the conduction electron density is n ≈ 5 × 1027 m−3. It
is interesting that this is very close to one charge carrier per Mn atom, but is also
consistent with a small band overlap leading to a semimetal. If one uses z = 10 and
the above estimate of the conduction electron density then the fit gives us a value for
3π S(S + 1)J 2

sd/EF of 5.5 × 10−75 J m6, which will be useful in quantitative discussion
of the high-temperature resistivity.
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Magnetic Anisotropy

Needle-like single crystals of Sr14MnSb11 have been grown, and the anisotropy of
the magnetic state has been discussed [16]. In Fig. 11 the magnetic field-dependence
of the magnetization of a single crystal of Sr14MnSb11 is shown in each of two ori-
entations – with H applied parallel and perpendicular to the c-axis. The magnetic
shape effect [32], because of the demagnetizing dipole field of a needle, would lead
to the expectation that these crystals would be extremely easy to magnetize along
the axis of the needle (the c-axis) and difficult to magnetize when the applied field
is perpendicular to the axis of the needle. Exactly the opposite situation is found.

It is clear from Fig. 11 that Sr14MnSb11 has a magnetically hard axis along the
c-axis; it is, therefore, referred to as an easy plane material. The magnetic anisotropy
is large enough to override the shape effect in this instance. Sr14MnSb11 is difficult
to categorize because it cannot be considered a soft ferromagnet where the shape
anisotropy would dominate the field dependence of the magnetization, and it is not a
useful candidate for a permanent magnet, because it saturates in relatively small (ca
several T) magnetic fields and has an easy plane rather than an easy direction so the
remanent magnetization (the magnetization remaining when the field is removed
after saturation) is small. Similarly, Ca14MnSb11 has an easy plane perpendicular
to the c-axis. The easy plane anisotropy of these compounds helps us understand
the early work [7, 8] on hysteresis loops for powder samples. A powder material
with random crystallite orientations will be very hard to saturate fully, because some
crystals have their hard axis along the magnetic field. A powder sample will, on the

Fig. 11. Magnetization as a func-
tion of field at 5 K for Sr14MnSb11.
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other hand, have a small coercive field, because the switching of the magnetization
near zero field can always occur in a continuous fashion through the easy plane
instead of the discontinuous change one sees in an easy axis (permanent magnet)
material. In contrast with this result, we will see below that the Eu compounds
are easy axis materials, with the easy axis along the c-axis, and that one of the Yb
compounds seems to have a magnetic phase transition, where the c-axis changes
from hard to easy as a function of temperature.

2.3.3 Ytterbium Compounds

2.3.3.1 High-temperature Paramagnetic Susceptibility

The Yb compounds made with Sb or Bi are quite similar [17] to the corresponding al-
kaline earth compounds. Fig. 12 shows the inverse magnetic susceptibility [17],χ−1, as
a function of temperature for Yb14MnSb11 and Yb14MnBi11. The high-temperature
data are almost linear and can be fit to the equation χ(T ) = χ0+C/(T −θ), furnishing
the data listed in Table 2. The values of µeff derived from the Curie constants are, as
for the alkaline earth compounds, consistent with one Mn3+ per formula unit. This re-
sult is consistent with the Yb ion having a valence of +2 which is also consistent both
with structural analysis and with the result predicted by simple electron-counting
considerations. The Weiss constants again imply ferromagnetic coupling and the val-
ues fall almost directly on the RKKY fit in Fig. 10, suggesting that the Yb does not
significantly change the magnetic coupling or the underlying electronic state that
gives rise to the indirect RKKY coupling. The inset to Fig. 12 shows the magnetiza-
tion (at H = 500 Oe) for the two Yb compounds. A ferromagnetic transition occurs,
and the Curie temperatures (TC is marked by the inflection point in the plot of M
against T ) are given in Table 2. There is also an unusual discontinuity at approxi-
mately 28 K in the M–T data for Yb14MnBi11. The details of this anomaly will be
discussed below in the section on single crystal magnetic anisotropy measurements.

2.3.3.2 Low-temperature Magnetization

Ordered States and Transition Temperatures

Magnetic field-dependent magnetization measurements for powder and single crys-
tal samples of these two compounds have been reported [17]. The saturation mag-
netization measured for the powder sample was approximately 6 µB/Mn. This value
is too large for Mn3+ alone but, because of the small concentration of Mn in these
materials, it only takes a very small amount (approx. 2%) of an impurity phase con-
taining Yb3+ to give this excess moment. This supposition was later supported by
the results of Fisher et al. [18], who showed that large single crystals of Yb14MnSb11
had an ordered moment of approximately 4 µB (µsat) which is more consistent with
Mn3+ and Yb2+. This leads to the idea that the Yb compounds are magnetically sim-
ilar to the alkaline earth compounds (except the antiferromagnetic Ba14MnBi11).
The only distinct difference is in magnetic anisotropy.
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Fig. 12. Inverse susceptibility as
a function of temperature for
Yb14MnPn11 (Pn = Sb, Bi), H =
1000 Oe. The inset shows the
low-temperature susceptibility as
a function of temperature for
Yb14MnPn11 (Pn = Sb, Bi).

Magnetic Anisotropy

Needle-shaped single crystals of Yb14MnSb11 and Yb14MnBi11 were grown in a
temperature gradient from stoichiometric compositions [17], and much larger single
crystals of Yb14MnSb11 have been grown from a Sn flux [18]. For the single crystals of
Sb compound, the easy axis is along the c-axis. This is in contrast with the magnetically
hard c-axis found in Ca14MnSb11 and Sr14MnSb11. The magnetic anisotropy of the
Bi compound [17] is more complex, as shown in Fig. 13. At high temperatures (T >

25 K) Yb14MnBi11 has a magnetically easy c-axis, similar to Yb14MnSb11, but at lower
temperatures the c-axis becomes the hard direction with the a–b plane becoming a
relatively easy plane, as one finds in Ca14MnSb11 and Sr14MnSb11. For this reason
Yb14MnBi11 can be regarded as intermediate between the alkaline earth compounds
and the other rare earth compounds (see Eu compounds below).

2.3.4 Europium Compounds

2.3.4.1 High-temperature Paramagnetic Susceptibility

The high-temperature paramagnetic behavior of Eu14MnSb11 and Eu14MnBi11 is
also consistent with Eu2+ ions and Mn3+ ions [15]. Magnetization measurements
[15] show that the Eu ions have the expected valence +2, so the f -shell is half
filled – leading to an S = 7/2 spin state. This means that in these compounds
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Fig. 13. Magnetization as a function
of temperature for a single crys-
tal of Yb14MnBi11 oriented with
the c axis perpendicular and par-
allel to the applied magnetic field
(H = 1000 Oe).

the 14 Eu atoms per formula unit are the major contributors to the bulk mag-
netic moment of the sample (see the effective moments in Table 2). Despite this
large increase in the effective magnetic moment of the sample there is only a small
increase in the magnetic coupling – implied by the θ values shown in the same
table.

2.3.4.2 Antimony Compound

Ferromagnetic State

The temperature-dependence of the magnetization (Fig. 14) shows that Eu14MnSb11
orders ferromagnetically at approximately 92 K [10, 15]. This is close to the θ value
obtained from the Curie–Weiss fit to the high-temperature data. This transition tem-
perature is approximately 60 and 30◦ higher than the TC values of Sr14MnSb11 and
Ca14MnSb11, respectively [19]. Because this TC is of the same order of magnitude
as for the alkaline earth compounds, even though Eu14MnSb11 contains many more
magnetic moments, it still seems reasonable, however, to suggest that the transition
temperature is largely determined by the energy associated with Mn–Mn coupling.
The increase in TC as a result of the Eu can be explained as the effect of the (some-
what less dominant) energy associated with the Eu–Mn coupling. Single crystals of
Eu14MnSb11 show that the c-axis is the easy magnetic direction [14]. This is similar
to Yb14MnSb11 and Yb14MnBi11 (with T > 25 K), as discussed above.
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Fig. 14. Dependence of magnetic
susceptibility on temperature for
Eu14MnSb11.

The low-temperature ordered magnetic moment of Eu14MnSb11 is somewhat
complicated because this low-T state apparently does not have simple ferromagnetic
order [15] (see next section). Nevertheless a hysteresis loop at 5 K (Fig. 15) does show
that, at the highest fields, the sample magnetization approaches saturation [15] with a
net moment per formula unit of slightly more than 100 µB. This value is reasonable,
because fully aligned lattices of Eu and Mn would lead to a magnetic moment of
approximately 102 µB, assuming a g factor of 2.

Low-temperature Phase Transition and High-field Susceptibility

In addition to the ferromagnetic phase transition at 92 K, there is an anomaly [15],
seen in Fig. 14 at approximately 15 K, which is suggestive of another magnetic phase
transition. Measuring the magnetization at high magnetic fields reduces the ferro-
magnetic transition but leaves this low-T anomaly intact so that it is even more
distinct. In addition, the temperature of the peak in the magnetization clearly drops
with increasing magnetic field and extrapolates to zero temperature at approximately
15 Tesla. Both the peak in the magnetization and the temperature-dependence of
the peak suggest there is underlying antiferromagnetic coupling in the Eu sublattice
leading, perhaps, to a canted ferromagnetic state for T < 15 K which is difficult
to saturate in a magnetic field (Fig. 15). The magnetic states for compounds such
as Eu14InBi11 and Eu14InSb11 were studied and compared with their respective
Eu14MnPn11 analogs, to determine the role of the underlying Eu–Eu sublattice [15].
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Fig. 15. Magnetic hysteresis loop
for Eu14MnSb11 at 5 K.

In each of the Eu14MnPn11 compounds there is an apparent antiferromagnetic tran-
sition in the temperature range around 15 K, suggesting that the Eu–Eu sublattice in
Eu14MnSb11 might, indeed, be forced to align ferromagnetically only because of the
Eu-Mn coupling and the underlying Mn–Mn ferromagnetic state. Details of the spin
alignment in Eu14MnSb11 will have to await direct measurement of the magnetic
structure.

2.3.4.3 Bi Compound

There is apparently only one magnetic phase transition in Eu14MnBi11 [15] so one
expects that both the Eu spins and the Mn spins take part in the order. Figure 16
[15] shows the magnetization for this compound as a function of temperature in
several different magnetic fields. There is an apparent antiferromagnetic transition
with the Neel temperature, TN, equal to 32 K in zero magnetic field. The transi-
tion temperature decreases with applied magnetic field. This compound has the
same general characteristics as Ba14MnBi11 discussed above – i. e. the Weiss con-
stant suggests that the sample has strong ferromagnetic coupling but, instead of
finding a ferromagnetic ground state, one finds a ground state that is apparently
antiferromagnetic. One can argue [15] that the underlying Mn sublattice is antifer-
romagnetic in Eu14MnBi11 and Ba14MnBi11 and that in the Eu compound the Eu
spins order at the same temperature, because the lowest energy state of the Eu sub-
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Fig. 16. Plot of magnetic suscepti-
bility against temperature as a func-
tion of applied field for a single crys-
tal of Eu14MnBi11 with the c axis of
the crystal oriented parallel to the
applied magnetic field.

lattice is apparently antiferromagnetic in all the Zintl compounds that have been
studied.

2.4 Heat Capacity

Some heat-capacity measurements have been made on powder samples (pressed
pellets) of Sr14MnBi11 and Ba14MnBi11 [11] and single crystals of Yb14MnSb11 [18]
at low temperatures and at zero applied magnetic field. Each of the measurements
can be fit with a model which includes conduction electrons, phonons, and the mag-
netic transition. These measurements yield an electron effective mass between 20 me
and 40 me (the spread in values depends mostly on the fitting procedure used) and
a Debye temperature of approximately 120–160 K. The conduction electrons are,
therefore, somewhat heavy (the effective mass of the conduction electrons in pure
Mn is also somewhat high, approximately 10 me) but certainly not on the scale of
the heavy Fermion compounds which can have effective masses of approximately
1000 me.
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2.5 Magnetotransport

2.5.1 Alkaline Earth and Ytterbium Compounds

2.5.1.1 Resistivity in Zero Magnetic Field

In the discussion of magnetic coupling conduction electrons were proposed as the
most likely intermediary between the Mn magnetic local moments. The question of
the presence of conduction electrons can, of course, only be definitively answered
by more direct means, for example measuring the resistivity and extrapolating to
lowest temperatures. Figure 17 shows data from Refs [7], [8], [18], and [19] for the
temperature-dependence of the resistivity, ρ, of all of the alkaline earth and Yb
compounds.

These data have several distinctive features. Firstly, the resistivity of all the As com-
pounds diverges at low-T , showing they are semiconductors. Secondly, all the other
compounds apparently have conduction electrons because the low-temperature re-
sistivity always extrapolates to a finite value. Some of these compounds, however,

Fig. 17. Temperature dependent resistivity of the alkaline earth compounds and for Yb
compounds. CMA = Ca14MnAs11, SMA = Sr14MnAs11, BMA = Ba14MnAs11, CMS =
Ca14MnSb11, SMS = Sr14MnSb11, BMS = Ba14MnSb11, CMB = Ca14MnBi11, BMB =
Ba14MnBi11, SMB = Sr14MnBi11, YMS = Yb14MnSb11, YMB = Yb14MnBi11.
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have low-T regions in the data in which dρ/dT is positive and high-T regions in which
dρ/dT is negative. For the purposes of this discussion we will usually refer to the ma-
terial as metallic when dρ/dT is positive, as it is in most metals, and semiconducting
(or semimetallic) when dρ/dT is negative as it is in any insulator as the resistivity
diverges at T = 0. Yb14MnBi11, Yb14MnSb11, Sr14MnBi11, and Ca14MnBi11 are,
therefore, all metallic over the entire range of T below 300 K. The high-temperature
(T > TC) resistivity of each of these compounds is almost independent of T and
the low-temperature (T < TC) resistivity decreases as T is reduced. Ba14MnBi11,
Sr14MnSb11, Ca14MnSb11, and Ba14MnSb11, on the other hand, are semiconducting
(or semimetallic) at high T and their resistivities change to metallic when T < TC.
In general, in each case in which there is magnetic order, the resistivity is smallest
and dρ/dT is positive in the most ordered state at lowest T whereas the resistivity
is largest and dρ/dT is small or negative at highest T in the magnetically disordered
state. The scattering from phonons is expected to be strongly temperature-dependent
in this temperature range; therefore, phonon scattering is not particularly important
in most of these materials and magnetic disorder scattering is probably the pre-
dominant high-T term determining the scattering time. This conjecture is examined
quantitatively below.

2.5.1.2 Magnetoresistance (MR)

It was pointed out above that the effect of magnetic order is to reduce the resistivity.
We also know that the effect of an applied magnetic field on the magnetic order
(at least for ferromagnets near TC) is to increase the order. These materials should,
therefore, have very large magnetoresistance. Specifically, there should be a large
decrease in resistivity on application of a magnetic field. The magnetoresistance of
single crystals of three of the compounds has been measured [16, 18] (Figs. 18–20),
and each has a fairly large negative magnetoresistance (when compared with normal
ferromagnetic metals). For example, application of a 5-T magnetic field reduces the
resistivity of Sr14MnSb11 by approximately 30% near T = TC (Fig. 18). Sr14MnSb11
is phenomenologically quite similar to CMR materials such as La1−x Srx MnO3 (for
a recent review see Ref. [20]). The underlying physics is, however, probably not the
same. The Yb14MnPn11 compounds are distinctly different, being metallic at high
temperatures (Figs. 19, 20).

2.5.1.3 Spin Disorder Scattering

The scattering of conduction electrons by a disordered set of spins was calculated over
thirty years ago by Kasuya [29]. So, given the published experimental data (Weiss
constants, high-T resistivity, and an estimated conduction electron effective mass
from heat capacity) can one find a relationship between the conduction electrons
and the magnetic spins? The RKKY fit to the Weiss constants of alkaline earth- and
Yb-containing compounds provides a Fermi wavevector (and therefore, an estimate
of the conduction electron density) setting the length scale of the interaction and
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Fig. 18. Magnetoresistance as a func-
tion of temperature for a single crys-
tal of Sr14MnSb11.

Fig. 19. Magnetoresistance as a
function of temperature for a sin-
gle crystal of Yb14MnSb11. The re-
sistivity is measured along the c
axis and the applied field is paral-
lel.
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Fig. 20. Magnetoresistance as a
function of temperature for a sin-
gle crystal of Yb14MnBi11. The re-
sistivity is measured along the c
axis and the applied field is paral-
lel.

providing a coupling constant which controls the magnitude of the interaction. The
equation for the high-temperature spin disorder resistivity is [31]:

ρ∞ =
[

3π S(S + 1)J 2
sd

EF

]
m N

2h̄e2

where we have estimates of m, the effective mass of a conduction electron, N , the
density of magnetic scatterers (only the Mn ions are magnetic), and the expression in
the brackets which was found by fitting the experimental values of TC and Mn· · ·Mn
distances to the RKKY function above. Using these estimates we predict that the
high-temperature resistivity is between 1 and 4 m
 cm and roughly independent of
temperature. Although there are rather large errors in this value, most of the data fall
within this range. It seems that the magnetic coupling and the high-temperature spin-
disorder resistivity can be explained consistently in terms of the coupling between
essentially local Mn magnetic moments and an independent conduction band.

2.5.2 Resistivity and Magnetoresistance of the Europium Compounds

Figures 21 and 22 show the resistivities of Eu14MnSb11 and Eu14MnBi11 as functions
of temperature for several magnetic fields [13, 14]. The resistivity of these compounds
in the high-temperature region (T > ordering temperature) is very similar to that of
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Fig. 21. Magnetoresistance as a
function of temperature for a sin-
gle crystal of Eu14MnSb11. The
resistivity is measured along the
c axis and the applied field is par-
allel.

Fig. 22. Magnetoresistance as a
function of temperature for a sin-
gle crystal of Eu14MnBi11. The re-
sistivity is measured along the c axis
and the applied field is parallel.
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the alkaline earth compounds. In particular, Eu14MnSb11 seems to be a semimetal (its
temperature-dependent resistivity is similar to that of a semiconductor and yet the
magnitude of the resistivity is similar to that of a poor metal) and Eu14MnBi11 has the
temperature-dependence of a metal. The sublattice of magnetic Eu ions complicates
quantitative discussion of the high-temperature zero-field resistivity for the same
reasons that made it unreasonable to estimate the magnetic coupling constants. The
substitution of alkaline earth or Yb ions by Eu ions does not, however, change
the qualitative behavior of the high-temperature resistivity so it seems likely that
the physics is not changed significantly, i. e. we still expect that the resistivity for
temperatures above the ordering temperature is determined almost entirely by spin
disorder scattering.

At low temperatures the effects of magnetic order are, again, quite clearly dis-
played in the resistivity. For Eu14MnSb11 the resistivity at zero magnetic field begins
to decrease near the Curie temperature as the Mn spins (and presumably the Eu
spins) develop short-range fluctuating order in the form of ferromagnetic spin fluc-
tuations. The resistivity changes fastest with temperature at the Curie temperature
and then continues to decrease as the temperature is further reduced and the ferro-
magnetic order parameter (the Weiss constant) increases. The zero-field resistivity
also signals the change in magnetic order at about 15 K with an abrupt change in its
temperature-dependence. The resistivity increases abruptly at the Neel temperature
for Eu14MnBi11 [13], as is seen at many magnetic transitions into states in which
the unit cell has been changed [33, 34]. A simple ferromagnetic transition does not
change the unit cell of a material but an antiferromagnetic transition often increases
the unit cell, leading to a change in the Fermi surface of the conduction electrons
which can lead to an increase in the resistivity just below the Neel temperature.
At sufficiently low temperatures, the development of antiferromagnetic order in a
metal will still lead to a resistivity which decreases as the temperature is decreased.
These two competing temperature dependencies lead to a peak in the resistivity, for
example that seen for Eu14MnBi11.

The magnetoresistance [14] of Eu14MnSb11 classifies it as a colossal magnetoresis-
tance material. It is largest when the applied magnetic field is used to induce magnetic
order. This happens at TC, because the change in magnetic susceptibility is largest at
TC, and also at T < 15 K, when the Eu sublattice seems to induce some spin disorder
(perhaps spin canting) in the Mn magnetic lattice so that an applied magnetic field
can rotate the Mn spins toward the ordered state and reduce the resistivity.

Interestingly, the magnetoresistance of Eu14MnBi11 is quite large even for T of
the order of 3 × TN [13]. By analogy with essentially all other CMR materials it has
been is proposed that this large magnetoresistance is because of the existence of
ferromagnetic spin fluctuations in this temperature range, even though the ordered
state is not ferromagnetic [13]. This idea is supported by the sign of the Weiss con-
stant obtained from fitting the high-temperature paramagnetic susceptibility. This
Weiss constant suggests that the strongest magnetic coupling is ferromagnetic, even
when the ordered state of the compound is antiferromagnetic, so ferromagnetic spin
fluctuations would be expected to develop as the crystal is cooled.
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2.5.3 Comparison with other Magnetoresistive Materials

The CMR materials that have received the most attention recently are the perovskite
LaMnO3 where a divalent cation (Ca, Sr, Ba, etc.) is substituted for La, at a concen-
tration x [20, 35–37]. The magnetic and transport phenomena of these perovskite
materials are very similar to those of the Zintl compounds, but the mechanisms re-
sponsible for these phenomena seem to be quite different. The undoped LaMnO3
compound has Mn3+ ions and is an antiferromagnetic insulator. Doping on the La
site with a divalent ion results in a change of some Mn3+ (with three unpaired
spins in t2g states and one in an eg state) into Mn4+ (with only the three t2g spins).
For each eg electron there is strong “Hund’s Rule” coupling with the three spin-
aligned t2g electrons on the same site, so eg electrons can easily hop to nearby Mn4+
sites only when the t2g electrons on the initial Mn3+ and final Mn4+ sites have the
same spin alignment. This leads to a low-temperature spin-aligned (ferromagnetic)
state in which all Mn d-electrons are ordered and the spin-aligned eg electrons form
a conduction band. The indirect exchange interaction between the local t2g elec-
trons, because of the hopping of delocalized eg electrons, is called double exchange
[38, 39]. Detailed measurements and calculations of both the conductivity and its
temperature-dependence show that in addition to the double exchange another very
important electron interaction in these compounds is between the electrons and the
lattice [40, 41]. This interaction leads to a (Jahn–Teller) lattice distortion coupled to
the conduction electrons (i. e. a polaron) and so tends to localize a conduction elec-
tron. The inclusion of this strongly localizing interaction is necessary in any theory
to account for the magnitude of magnetoresistance in the doped LaMnO3.

In contrast with doped LaMnO3, most other CMR materials, for example
Tl2Mn2O7 (with the pyrochlore structure) [42, 43], doped EuSe [44, 45], amorphous
Gdx Si1−x [46], and the transition metal Zintl compounds discussed in this review,
are near a metal insulator transition and are proposed to have localized magnetic
electrons which are distinct from the conduction electrons. In amorphous Gdx Si1−x ,
the metal insulator transition is driven by localization of conduction electrons, be-
cause of the disordered structure. The conduction electron concentration is quite
low in the other three materials and is controlled either by doping (EuSe) or by
the small overlap between the conduction and valence bands (Tl2Mn2O7 and Zintl
compounds). The magnetic coupling between the localized magnetic spins is because
of either superexchange (Tl2Mn2O7, EuSe, and possibly Gdx Si1−x ) or RKKY-type
coupling (possibly Gdx Si1−x and the Zintl compounds). Each of these materials has
properties similar to those of the Zintl compounds discussed above. In general they
have colossal magnetoresistance, either near a Curie temperature or at low-T , that
increases as the material moves toward the insulating state. Unfortunately, as these
materials move toward the insulating state, the region of T in which the magnetore-
sistance is large also moves to lower T . In other words, as the CMR effect becomes
stronger the materials become less technologically useful because the effect is only
at very low T . The current challenge in materials science is to find a material that
has room-temperature magnetism and an arbitrarily large CMR effect.
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2.6 Summary and Outlook

The incorporation of magnetic transition metals into Zintl phases has produced
intriguing magnetic and magnetoresistive materials. The A14MnPn11 phases have
many interesting magnetic and electronic properties. Within one crystallographic
structure type they span the range from localized magnetic insulators to long-range
magnetically ordered metals. Many of the properties have only been studied in a
highly cursory fashion, and the results to date warrant a more detailed examination.
This structure type has features that make it similar to molecular structures and it
therefore provides insight into the design of high-temperature molecular magnets.
Many Zintl phases have discrete units, such as those found in A14MnPn11, and further
explorations in synthesis will produce new transition metal Zintl phases with similarly
unexpected magnetic properties. The field is rich with possibilities.
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3 Magnetic Properties of Large Clusters

Dante Gatteschi and Roberta Sessoli

3.1 Introduction

Molecular clusters are unique objects used to investigate the magnetic properties of
organized matter a few nanometers in size. They are all identical, can be structurally
characterized and their structure be perfectly known, and they can be investigated in
single crystals, in polycrystalline powders, in solution, in polymer films, in Langmuir–
Blodgett films, etc. Because they are all identical measurements can be performed
on large assemblies and the response of the individual molecules can be monitored.
Being finite objects they are expected to obey the laws of quantum mechanics, but
at the same time they are large enough that some of their properties resemble those
of bulk magnets more than those of simple paramagnets [1, 2]. This aspect of their
behavior has been widely exploited in recent years after the discovery [3] that a
cluster comprising twelve manganese ions, [Mn12O12(CH3OO)16(H2O)4], Mn12Ac,
the structure of which [4] is shown in Fig. 1, is characterized by slow relaxation of
magnetization and hysteresis effects of molecular origin at low temperature. Other
clusters were later found to have the same properties [5–12], although, in general,
at lower temperature than Mn12Ac. For these molecules the term “single molecule
magnets” is now used [13], even if, of course, it is not certainly proper. A magnet
is characterized by divergence of the spin correlation length that is impossible in a
cluster containing a finite number of coupled spins. The term is, however, certainly
evocative and can be used with the above caveat.

Fig. 1. Sketch of the structure of
[Mn12O12(CH3COO)16(H2O)4], Mn12Ac.
The large light gray and dark gray spheres
represent Mn4+ and Mn3+ ions respectively.
The Ì-oxo bridges are represented by black
spheres and the acetate ligands are drawn as
sticks.
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Slow relaxation of the magnetization is certainly a feature in which the quantum
nature of the cluster merges into a quasi-classical behavior. There are, however, sev-
eral quantum features that can be observed in clusters, and these can be used to
understand the conditions under which similar effects can be observed in macro-
scopic objects. This is the field of macroscopic quantum phenomena, MQP, which is
now intensively investigated both for fundamental reasons [1, 2, 14] and to enable
the design of new types of device and computers exploiting quantum phenomena
[15]. MQP are numerous, and range from quantum tunneling of the magnetization
[16], first proved in Mn12Ac [17, 18], and tunneling of the Neel vector in antifer-
romagnetic rings [19], to the periodic quenching of the tunnel splitting [20] (Berry
phase) [21–23].

Investigation of the structural and magnetic properties of large molecular clusters
is complex and requires the use of many different techniques. The number of levels
which must be considered to calculate the thermodynamic properties of the clus-
ters increases rapidly with the number, N , of metal ions of spin S, being (2S + 1)N .
Because the clusters comprise a finite number of spins it is not possible to use trans-
lational symmetry to simplify the problems, as can be done for infinite lattices. These
limitations require that as much experimental information as possible is collected to
obtain a minimum understanding of the magnetic properties of the clusters.

The simplest possible approach for the description of the thermodynamic and
spectroscopic properties of clusters is given by a spin Hamiltonian of the type [24]:

H = �i<k JikSi · Sk + �i< j Si · Dik · Sk + �i Si · Di · Si + . . . (1)

The sums are extended to all the magnetic centers of the clusters. The first term
corresponds to the isotropic exchange interaction, the second to the exchange-
determined anisotropy, and the third to the anisotropy of the individual centers.
Other terms that can be included are biquadratic exchange, H = �i<k jikS2

i · S2
k ,

higher-order anisotropy terms, of the type H = S2n
i · D2n

ik · S2n
k , where n = 2, 3, etc.,

an antisymmetric exchange or Dzialoshinsky–Moriya term, H = �i<kGik · (Si ×Sk),
where Gik is a vector whose components depend on the symmetry of the interact-
ing pair, and higher-order anisotropic terms. The Zeeman term is also needed to
describe the interaction with an applied magnetic field. Calculation of the energy
levels is very difficult, even for reasonably small numbers of variables, and at the
lowest level of approximation, i. e. including only the isotropic part of the Hamil-
tonian Eq. (1). In fact, for Mn12Ac, where eight ions are manganese(III) with spin
S1 = 2 and four are manganese(IV) with spin S2 = 3/2, the total number of states is
(2S1 + 1)8(2S2 + 1)4 = 100 000 000! It is possible to reduce the size of the matrixes
by using the total spin, S = �k Sk , which ranges from S = 0 to S = 22. In fact the
non-zero matrix elements are between functions with the same total spin, S, but the
size of many matrixes is still intractably high, as is shown in Table 1. The largest block
is that for S = 4, which is 1 111 696 × 1 111 696.

It is apparent that calculation of the energy levels for large clusters is currently
beyond reach; a large number of different techniques is, therefore, needed to de-
scribe at least the low-lying energy levels responsible of the magnetic properties of
the clusters. The goal of this contribution is to review the most important techniques
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Table 1. Size of the matrixes of the total spin states of Mn12Ac.

S N (S) S N (S) S N (S)

0 190 860 8 654 476 16 7 656
1 548 370 9 428 450 17 2 951
2 838 126 10 333 032 18 997
3 1 029 896 11 214 996 19 286
4 1 111 696 12 129 476 20 66
5 1 090 176 13 72 456 21 11
7 831 276 15 17 776 22 1

which have so far been used to investigate the low-lying energy levels of the clusters.
We will first describe the best available techniques for calculation of the energy levels
of the clusters, at the spin Hamiltonian level, and now also at the ab-initio level. Neu-
tron techniques, both experiments polarized neutrons for determination of the spin
density and inelastic neutron scattering for determination of the energy of the levels
close to the ground state, will be reported to show how experimental techniques can
be used to improve the theoretical description of the clusters. The third section will
be devoted to magnetic measurements, both susceptibility and magnetization, un-
der DC and AC conditions. New techniques allowing the measurement of magnetic
anisotropy, even of very small crystals, will be taken into consideration. Magnetic
resonance techniques, treated in the next section, will start with EPR, with particular
emphasis on new developments in high-frequency–high-field techniques, HF-EPR.
This will be followed by a treatment of NMR, and µSR, in which the nuclei or the
muons are used as local probes of the magnetization of the clusters. All these results
will be combined in Sections 5 and 6, where we will try to review conditions for the
design and synthesis of new types of single molecule magnet and work out in detail
the properties of an octanuclear iron cluster which has so far provided most evi-
dences of tunneling of magnetization. A final section will be devoted to conclusions
and to an outlook of this new field of research.

3.2 Calculation of the Energy Levels
and Experimental Confirmations

3.2.1 Calculations

Calculation of the energy levels of the clusters is particularly simple for some high-
symmetry cases where the isotropic exchange term is the only one needed. This
can be done via the so-called generalized Kambe approach [25], which is possible
whenever the individual spins can be factored into groups, under some conditions.
The best way to show the potential of the Kambe approach is to work out a simple
example. Let us consider a nonanuclear cluster as represented schematically [26] in
Fig. 2.
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Fig. 2. Schematic diagram of the structure of a nonanu-
clear manganese cluster the energy levels of which can
be described by the Kambe approach.

The S1 spin corresponds to manganese(II) (S1 = 5/2), all the others to man-
ganese(III) (S = 2). The coupling within the two sets of spins, S2–S5 and S6–S9, can
be described by the Hamiltonian:

H = J2(S2 · S3 + S3 · S4 + S4 · S5 + S5 · S2)

+ J2(S6 · S7 + S7 · S8 + S8 · S9 + S9 · S6) + J3(S3 · S5 + S7 · S9) (2)

Assuming the central S1 spin is equally coupled to all the other eight spins the
corresponding Hamiltonian is:

H = J1�k=2.9S1 · Sk (3)

If the individual spins are coupled as:

SA = S2 + S4; SB = S3 + S5; SC = S6 + S8; SD = S7 + S9;
SE = SA + SB; SF = SC + SD; SG = SE + SF; ST = SG + S1 (4)

the energies of the states are given by:

E(ST, SG, SF, SE, SD, SC, SB, SA, S1)

= J1/2[ST(ST + 1) − SG(SG + 1) − S1(S1 + 1)] + J2/2[SE(SE + 1)

+ SF(SF + 1) − SA(SA + 1) − SB(SB + 1) − SC(SC + 1) − SD(SD + 1)]

+ J3/2[SB(SB + 1) + SD(SD + 1) − 8S2(S2 + 1)] (5)

This relatively simple expression for the energies of the levels arises because the
four spins S2–S5 are coupled by one constant J2, as are S6–S9, and S1 is equally
coupled to all the other spins. If these conditions are relaxed the Kambe approach
breaks down. Exactly solvable cases using the Kambe formalism have been reported
for clusters containing up to nine metal ions [27].

Unfortunately such examples are very rare and, in general, matrix-diagonalization
techniques must be used. To reduce the size of the matrixes the best approach is that
of irreducible tensor operators, ITO [28]. This fully exploits the symmetry of the total
spin S. The eigenfunctions of the total spin are simply indicated as a set of numbers
that identify the individual and intermediate spins. For example, for a cluster of eight
spins, e. g. the octanuclear iron(III) cluster of formula [Fe8O2(OH)12(tacn)6]8+, Fe8,
where tacn is triazacyclononane [29], depicted in Fig. 3, many different schemes can
be adopted to couple the individual spins to give the total spin S. The core of the clus-
ter is given by the so-called butterfly arrangement [30] with Fe1 and Fe2 forming the
body and Fe3 and Fe4 forming the wings. A convenient scheme, which has been used
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Fig. 3. Sketch of the structure of
[Fe8O2(OH)12(tacn)6]8+, Fe8. The large
spheres represent the iron ions, oxygen
are drawn in black, nitrogen in gray, and
carbon in light gray.

to describe the wavefunction of the ground state [31], couples S3 to S4 to give S34, S1 to
S2 to give a resulting spin S12, S12 to S5 to give S125, S125 to S6 to give S1256, S1256 to S7
to give S12567, S12567 to S8 to give S125678, and the latter to S34 to give S. The wavefunc-
tion can therefore be written as |S1S2S12S5S125S6S1256S7S12567S8S125678S3S4S34SM〉,
where −S ≤M≤ S. This is the only information needed for calculation of the matrix
elements for the isotropic term using explicit formulas which have been reported
elsewhere [28]. More recently the explicit forms of the matrix elements have also
been reported [32] for the lower-symmetry components of the spin Hamiltonian
Eq. (1). The possibility of electron delocalization was also taken into consideration
[33]. The introduction of the lower symmetry terms, however, results in a dramatic
increase in the size of the matrices to be diagonalized. In fact, in the limit of isotropic
exchange interactions the energies are independent of the M component of the total
spin, therefore only one component needs to be calculated for the energy of a given S
multiplet. For lower symmetry all the M components must be calculated separately.

Occasionally the individual spins have been treated as classical spins, i. e. they have
been considered as vectors, and the thermodynamic properties have been calculated
classically [34]. Of course this approach has many limitations. The first is that it can
only be used with individual spins as large as possible, typically for S = 5/2 or 2. The
second is that the calculations become rapidly very complicated when the number
of interactions for a given ion becomes larger than two. In fact the method is best
suited for the calculation of the thermodynamic properties of rings, where each ion
has only two nearest neighbors. The third is that the approach cannot be used at low
temperature, when quantum effects become predominant.

Monte-Carlo simulations have recently been used to overcome some of these
problems. It is now possible, in principle, to use both classic and quantum spins, but
calculations with the latter are still very cumbersome. In general the Metropolis algo-
rithm [35] is used. It has, for example, recently been possible to fit the temperature-
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dependence of the magnetic susceptibility of a ring comprising eighteen iron(III)
ions, allowing for two different coupling constants [36].

The levels obtained from the diagonalization of the matrixes can be used to cal-
culate thermodynamic properties of the clusters – namely magnetic susceptibility,
magnetization, specific heat. It should be remembered that use of the spin Hamil-
tonian is a parametric approach, i. e. the energy levels must be calculated for each set
of parameters, which might mean many tens of calculations to reach an acceptable
fit with the experimental data. Calculation of the magnetic susceptibility requires
diagonalization of the matrixes in the presence of a field, which again complicates
matters. It is certainly simpler to use the van Vleck equation, although its validity in
the limit of many quasi-degenerate levels can be questioned.

The relative energies of the levels can be verified by the satisfactory fit of the
thermodynamic properties, but certainly this is an indirect method, which leaves
some margin of ambiguity. In general the number of parameters required for best
fitting of the temperature-dependence of the magnetic susceptibility is large, and
in the presence of a large correlation it is possible that several sets of parameters
are acceptable. There is no general spectroscopic tool enabling direct insight into
the energy levels, although EPR, inelastic neutron scattering, and high-field mag-
netization studies have sometimes provided excellent information. EPR, which will
treated at some length in Section 4, usually provides information on the zero-field
splitting of the lowest, and occasionally the first, excited states. In particular in some
instances EPR has been able to provide unequivocal evidence for the S value of the
ground state, which was not conclusively indicated by magnetic susceptibility and
magnetization data [37]. Its range is, however, limited to thermally populated levels
and, in general, the allowed transitions are those within a given S multiplet.

3.2.2 Inelastic Neutron Scattering

Inelastic neutron scattering, INS, can not only provide similar information, it can
also be used for direct measurement of transitions between different multiplets [38,
39]. Neutrons are characterized by spin S = 1/2, which enables them to interact
with magnetic materials. Because neutrons thermalized at room temperature have
a wavelength λ = 1.81 Å, they can be scattered by crystal lattices. They can also be
scattered both elastically, in this way enabling probing of the static structure of the
sample, and inelastically, enabling probing of dynamic excitations within the sample.
Hot neutrons have an energy range 800–4000 cm−1, thermal neutrons 80–800 cm−1,
and cold neutrons 0.8–80 cm−1, and resolution can be of the order of 0.05 cm−1.
The problem with neutrons is that they are strongly absorbed from some nuclei, for
instance hydrogen nuclei, which make the measurement of samples containing many
protons rather problematic.

In a neutron-scattering experiment the key variables are the change in neutron
energy and wave vector. A neutron of wave vector k and energy E strikes a target in
a state |ξ〉 and energy Eξ and leaves the system with a wave vector k′ and energy E ′,
while the target is in the new state |ξ ′〉, and energy Eξ ′ . The energy transfer requires
E − E ′ = hν and momentum transfer Q = k − k′. Q is the scattering vector.
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Fig. 4. Sketch of the structure of [Ni4(H2O)2(PW9O34)2]10−, Ni4 [40]. The nickel octahedra
are hatched.

A recent example is provided by the cluster [Ni4(H2O)2(PW9O34)2]10−, the struc-
ture of which [40] is sketched in Fig. 4.

The magnetic moiety of the cluster is provided by the four nickel(II) ions that
define a rhombus. A possible spin Hamiltonian is:

H = J (S1 · S3 + S1 · S4 + S2 · S3 + S3 · S4)

+ J ′(S1 · S2) + D(S2
1z + S2

2z) + D′(S2
3z + S2

4z) (6)

The magnetic properties of the tetranuclear cluster are indicative of ferromagnetic
coupling and yield the ground state S = 4. The lowest lying excited state has S = 3.
Because the single nickel(II) ions are anisotropic all the multiplets have sizeable zero-
field splitting. In an INS experiment the transitions observed follow the selection rule
(S = ±1, 0; 
M = ±1. In this way it was possible to obtain the energy separations
of the different M states belonging to the ground S = 4 multiplet [41]. It was also
possible to measure directly the energies of the M components of the excited S = 3
states.

The M = 0 component of the ground S = 4 multiplet lies lowest, indicating
positive zero-field splitting; the anisotropy of the cluster is, therefore, of the XY type.
The energies of the excited M states follow to a good approximation the expected
DM2 dependence with D = 0.66 cm−1.

A further advantage of INS is that by measuring the Q dependence of the spectra it
is also possible to obtain first-hand information about the nature of the eigenvectors,
not only the eigenvalues of the spin Hamiltonian. This, in general, produces an
additional piece of information to be used in meaningfully estimation of the best-
fit values of the parameters. In this case the best fit parameters, J = −1.66 cm−1,
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J ′ = −0.78 cm−1, D = 0.47 cm−1, and D′ = 0.60 cm−1, correspond to an overall
splitting of the ground S = 4 state of ca 10.6 cm−1, with axial symmetry. If the basis
functions are written using the intermediate spins S12 = S1 + S2, S123 = S12 +
S3 as |S12, S123, SM〉, the ground-state function is essentially the pure |2, 3, 4M〉.
Some small admixture of excited states is possible for the low M values because the
conditions for strong exchange are not exactly met; M states belonging to different
S multiplets can be admixed.

3.2.3 Polarized Neutron Scattering

More important information can be obtained from polarized neutron scattering data
[39]. On the one hand they can be used to measure microscopic distributions of
spin densities as opposed, for example, to macroscopic measurements such as the
magnetic susceptibility. On the other hand, unlike resonance techniques, which mea-
sure microscopic quantities at certain points of the molecule, neutrons are itinerant
probes, giving information on spin density at every point in the crystal.

Neutrons are scattered via nuclear interactions with the nuclei and via magnetic
interactions with the magnetization density. Under the experimental conditions used
the nuclear spins are not polarized and nuclear scattering is independent of neutron
spin. In contrast, the interaction of the neutron with the magnetization density is
spin-dependent. This enables separation of the magnetic and nuclear contributions
by using a polarized neutron beam and performing measurements for different beam
polarizations.

Polarized neutron diffraction studies of a paramagnetic single crystal are possible
by inducing a magnetization density by means of a strong magnetic field at low
temperature. The induced magnetization density is periodic, as is the nuclear density.
For this reason, all the coherent elastic scattering occurs at the Bragg positions (hkl).

The magnetic structure factor is the Fourier component of the magnetization
density in the crystal:


FM(
k) = r0

∫

M(
k)ei(
k,
r)d3r (7)

where r0 = 0.2696 × 10−12 cm µB. The total scattered intensity of a Bragg reflection
for a polarized neutron incident beam is given by the expression:

I (
k, 
σ) = |FN|2 + | 
FM⊥|2 + FN(
σ .F∗
M⊥) + F∗

N(
σ . 
FM⊥) (8)


FM⊥ = k̂ × 
FM × k̂, with k̂ =

k

|
k|

where the FN values are the nuclear structure factors and 
k is the direction of polar-
ization.
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For an isotropic paramagnet the induced magnetization density is parallel to the
applied field: 
FM(
k) = 
zFM(
k), where 
z is a unit vector along the applied field.
If, furthermore, the crystal structure is centrosymmetric, both 
FM and FN are real
quantities. In practice one measures the “flipping ratio”, R, of Bragg reflections, that
is the ratio of scattered intensities for “up” (parallel to the applied field) and “down”
(antiparallel) polarizations of the incident beam. Using the general formula Eq. (8)
the expression for R is given by:

R(h,k,l) = I ↑
I ↓ = F2

N + F2
M⊥ + 2FN FM⊥z

F2
N + F2

M⊥ − 2FN FM⊥z

(9)

where 
FM = 
zFM, FM⊥ = FM sin α, FM⊥z = FM sin2 α, and α is the angle between
the scattering vector (hkl) and 
z.

If the crystal structure is known, the FN values are known and the magnetic
structure factors can be extracted from Eq. (9). The experiment usually includes two
steps. In the first, the precise structure of the crystal at low temperature, including
the location of the hydrogen atoms and the thermal parameters, is determined using
conventional unpolarized neutron diffraction techniques. The second step consists in
measuring the flipping ratios with polarized neutrons at low temperature to maximize
the amount of ordered spin density induced by the applied field.

An elegant example of the kind of information which can be extracted from the
analysis of polarized neutron diffraction of clusters has recently been provided by
[Fe8O2(OH)12(tacn)6]8+, Fe8 [42]. The ground state of the cluster has S = 10, which
suggests that there are six spins up and two down. It must be stressed that this is
not unambiguous, because the spin topology is complex, with many triangles which
for antiferromagnetically coupled spins can yield spin-frustration effects [43]. This
means that it is difficult, or impossible, to describe the ground state with simple
up-down-spin arguments.

Assuming that the coupling mechanisms are dominated by the µ-oxo bridges
connecting the butterfly ions, the coupling constant connecting the body ions Fe1
and Fe2, which corresponds to a double bridge with Fe–O–Fe angles of 96.8◦ on
average, is expected to be much smaller than those defining the wings, in which the
single µ-oxo bridges form, on average, an Fe–O–Fe angle of 128.8◦. Such a trend in
the strength of the interaction is in agreement with the angular dependence of the
coupling constants in iron(III) pairs, recently well established both experimentally
and theoretically [44, 45]. The average Fe–Obridge distance is, moreover, significantly
shorter for the wing-core pairs. The fit of the temperature dependence of the magnetic
susceptibility was made on this assumption, suggesting that the down spins are Fe3
and Fe4. The temperature-dependence of χT has been successfully reproduced [31,
46], assuming D2 symmetry for the cluster to reduce the matrices to a tractable size,
using J12 = 17 cm−1, J27 = 42 cm−1, J18 = 25 cm−1, and J13 = 140 cm−1.

The reconstructed magnetization density map confirmed this view, thus providing
visual access to the exchange pathways of the cluster. The magnetization density,
M D, map shows also that the spins of the four peripheral iron atoms are aligned
parallel to Fe1 and Fe2, suggesting that the antiferromagnetic interactions between
them are weaker than that with Fe3 and Fe4. In this case the Fe–Obridge distances are
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similar but the Fe–O–Fe angles are significantly smaller for the first type of bridge.
Looking in more detail at the experimental M D we see that it deviates substan-

tially from the assumed D2 symmetry, and there are, in fact, marked asymmetries
in the moment on the Fe1 and Fe2 and on the Fe3 and Fe4 pairs. The asymmetry is
much less marked on the Fe5, Fe6, Fe7, and Fe8 ions. From the point of view of the
crystal symmetry this is not surprising, because the cluster lacks a center of symmetry,
but no large differences are observed in the exchange pathways. It is possible that,
given the presence of eight triangles, spin frustration effects finely determine the MD.
Unfortunately it is not possible to calculate the spin levels without using symmetry,
because the size of the matrixes to diagonalize would become too large, and letting
13 coupling constants vary independently would probably be not meaningful.

3.2.4 High-field Magnetization

Beyond inelastic neutron scattering it is possible to explore the energies of the ex-
cited levels using high-field magnetization techniques, but this is only possible for
antiferromagnetic and ferrimagnetic clusters. In fact, in these cases the zero-field
ground state has not the maximum possible value of S, which means that it is not the
ground state in the presence of strong fields. This is easily understood by looking at
the energy-level diagram for a pair of S = 1/2 spins, in which the singlet lies lowest.
If an external field is applied parallel to the z axis, the levels, the energy separation
between the S = 0 and the M = −1 component of S = −1, is given by:


 = J − gµB H (10)

Equation (10) suggests that at H = J/gµB the two levels are degenerate, and for
higher fields the triplet becomes the ground state. At sufficiently low temperature
the magnetization rapidly increases from zero, as requested by the S = 0 state, to
the saturation value for S = 1, Msat = gNµBS. In principle this is a good method,
but it might require high magnetic fields. A field of approximately 1 T is required for
a system with g = 2, with two levels differing by unity in the value of S, separated
by 1 cm−1. Static fields can reach approximately 30 T, whereas with pulsed fields it is
relatively easy to go up to ca. 50–60 T. Pulsed fields reaching 700–800 T have recently
become available [47]! These techniques have been applied both to antiferromag-
netic rings and to ferrimagnetic clusters. Among the antiferromagnetic rings those
which have been better investigated are iron(III) rings with six and ten members.
The coupling between the metal ions is antiferromagnetic and the ground state for
the cluster is S = 0. In zero field the energies of the lowest lying excited multiplets
are, to a good approximation, given by:

E(S) = JeffS(S + 1) (11)

where Jeff = 2J/N . J is the nearest-neighbor exchange interaction and N is the
number of ions in the ring. The Lande interval rule in Eq. (11) originates from the
fact that the lowest lying levels of the ring can be approximated by coupling the ions
on the odd-number sites with those on the even-number sites to give the maximum
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spin multiplicity. For instance in a ring of ten iron(III) ions, each with S = 5/2, the
five odd-site spins are coupled to give Sodd = 5 × 5/2 = 25/2 and the five-even
site spins Seven = 25/2. These two spins are then coupled to give the total spin S,
Sodd − Seven ≤ S ≤ Sodd + Seven. For a given S there are many more states, but those
found with the above procedure are of lowest energy with that spin multiplicity.

Experimentally the best determination of excited energy levels in antiferromag-
netic rings has been performed on [Fe10(OMe)20(CH2ClCOO)10] [48], the so called
ferric wheel [49], the structure of which is shown in Fig. 5. In this instance a pulsed
magnetic field experiment up to 50 T has provided a magnetization curve with regular
pattern of peaks separated by ca. 4 T, as shown in Fig. 6. In a pulsed experiment the

Fig. 5. Sketch of the struc-
ture of the “ferric wheel”,
[Fe10(OMe)20(CH2ClCOO)10]. The
iron, carbon and oxygen atoms are
represented by full, empty, and
hatched circles, respectively. The
chlorine atoms of the ligands are
omitted for clarity.

Fig. 6. Differential magnetiza-
tion of the “ferric wheel” in a
pulsed magnetic field measured
at 0.65 K. The crossover between
the S and (S + 1) states is noted
above each maximum.
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derivative of the magnetization, dM /dH , is recorded; the peaks therefore correspond
to points of inflection of the integral curve.

The magnetization of the ferric wheel increases in steps from 0 to the saturation
value for S = 9. The regular pattern of peaks is a clear confirmation of the Lande
interval rule predicted by Eq. (11). In fact it requires that the field separation for
the crossover from a spin S to the nearest S + 1 is 
H = 2(S + 1)Jeff/gµB and the
separation between two neighboring peaks is:


H = 2Jeff/gµB (12)

From this J = 10.6 cm−1 is obtained. A rigorous fit of the magnetic susceptibility
of the ferric wheel could not be achieved, because ten iron(III) ions require matrixes
which are too large. By using classical spins, however, a fit with the value J = 9 cm−1

was obtained, in reasonable agreement with experimental data. Similar results (J =
9.6 cm−1) were obtained by fitting the susceptibility per iron with the energy levels
for a ring of eight iron(III) ions. In fact it is well known that the susceptibility of
antiferromagnetic rings rapidly converges on increasing the number of members.
This procedure has long been used to calculate the thermodynamic functions of
infinite chains by extrapolating from rings [50].

High-field magnetization data were also reported for smaller rings comprising six
iron(III) ions [51]. In this instance the energy levels can be calculated exactly by
direct diagonalization of the isotropic part of the Hamiltonian Eq. (1); agreement
with the observed energy differences is excellent. Because in this instance it was also
possible to measure the magnetic anisotropy, a detailed description of these results
will be deferred to the magnetic anisotropy section.

It must also be stressed that in a pulsed experiment the sample might not be
in thermal equilibrium with the bath. Rapid transfer of heat to and from the spin
system is required to maintain the spin system at a constant temperature when the
magnetic field is rapidly changed. The spin temperature TS will remain equal to
the bath temperature Tbath only if heat can also be exchanged rapidly between the
lattice and the bath. If this is not so, because the time of the pulse is too short, TS
varies significantly during the pulse. In fact the spin systems tends to cool at the
crossing fields, because of magnetocaloric effects. This has been clearly observed in
experiments performed on the antiferromagnetic dimer [Fe(salen)Cl]2 [52]. Satellite
peaks were observed at the crossover fields to S = 1 and S = 2, respectively. An
acceptable fit to the experimental data was made assuming that for TS the rate of
change is:

dTS

dt
= − TS

CH

(
∂ M

∂T

)
H

(
dM

dT

)
+ 1

CH

(
dQ

dT

)
(13)

where CH is the specific heat at constant H and dQ/dT is the rate of heat flow from
the bath to the spin–lattice system.

Recently extremely high fields have become available through a technique that
generates fields up to 800 T [47]. The sample, which can be a polycrystalline powder
or an oriented single crystal, is placed in one of two inductive coils of diameter of
1.6 mm and length 8 mm. The coils are accurately checked to ensure that only the
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sample magnetization voltage is present, and the sample is cooled to the desired
temperature by means of a plastic cryostat. Magnetic fields are created by the explo-
sive compression of initial magnetic flux as developed in special generators, usually
indicated as MC–1. The field rise time in the pulse is 15 µs, and the measurements are
single shot, because the measuring coils, the cryostat, and the samples are destroyed
as a result of each experiment. A laser that follows the Faraday rotation measures
the differential magnetization of the sample.

When the technique was applied to bulk ferrimagnets the magnetization increased
gradually. In contrast, when it was applied to molecular ferrimagnets the magnetiza-
tion showed a stepped behavior indicating the quantum nature of the energy levels.
Megagauss magnetization experiments were performed on Mn12Ac, the structure
of which is shown schematically in Fig. 1 [4]. The Mn12Ac molecules have tetragonal
symmetry and the S = 10 ground state arises from the antiferromagnetic coupling
between the eight manganese(III) (S = 3/2) and the four manganese(IV) (S = 2)
spins [53]. The quantum nature of the low-lying states has been confirmed by several
experiments [54, 55], but essentially nothing is known of the excited states.

Figure 7 shows the measured differential magnetization of a single crystal of the
cluster. The external magnetic field is parallel to the tetragonal axis of the cluster.
The curve shows several well resolved spikes, with the middle spike, centered at
ca 520 T, of huge amplitude. The four low-field spikes can be located at 382, 416,
448, and 475 T. There are spikes also in the high-field region, but they are less well
characterized, and are more difficult to locate. No spikes are, however, observed
above 690 T.

Although quantitative analysis is complicated, as will be better shown below, the
overall appearance of the high-field differential magnetization of Mn12Ac provides
some useful information. The lowest field spike must arise from the transition from
the ground S = 10 to the lowest S = 11 state, whereas the next three correspond to
the crossing over of the S = 12, 13, and 14 states, respectively. The large spike must
be assigned to a bunch of levels, presumably S = 15, 16, 17, and 18, which crossover

Fig. 7. Megagauss pulsed-field
magnetic susceptibility of a sin-
gle crystal of Mn12Ac. The
field is applied parallel to the
tetragonal axis.
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in a narrow field range, whereas the remaining states, S = 19, 20, 21, and 22 crossover
in the high field region up to 690 T.

It is, in principle, possible to calculate at the simplest possible level of approxima-
tion the fields at which the spin crossovers occur by using the spin Hamiltonian:

H = gµB H�i Si(z) + �i< j Ji j Si · S j (14)

where g has been assumed to be isotropic and close to 2. The sizes of the matrices to
be diagonalized are shown in Table 1. Exact calculations could be performed in zero
field for S ranging from 16, which corresponds to a 7656 × 7656 matrix, to S = 22,
which corresponds to a 1 × 1 matrix. The crossover fields were calculated under the
simplified conditions:

HS→S+1 = [E(S + 1) − E(S)]/(gµB) (15)

This equation holds for a regular pattern of levels, i. e. for a system in which the
energy of the lowest S + 1 level is higher than that of the lowest S level, and the
energy E(S + 2) > 2E(S + 1) − E(S). The advantage of this approach is that it is as
accurate as possible; it is, however, only applicable to the high field spikes, which are
the least resolved.

An alternative approach has been also developed, assuming a perturbative treat-
ment [56]. The basis for this is the consideration that the coupling constant J1, which
corresponds to a double oxo bridge between a manganese(III) and a manganese(IV)
ion should provide the most efficient antiferromagnetic pathway in the cluster. Un-
der these conditions it is possible to assume that the lowest lying states, comprising
the ground S = 10 state, derive from the configuration in which the four pairs of
manganese(III)–manganese(IV) ions are in the ground S = 1/2 state. The energies
of the excited states were then obtained by second-order perturbation theory in the
small parameters εi = Ji/J1. Although the quantitative agreement of this approach
is not totally satisfactory, as shown by comparison of the energies calculated by di-
agonalization of the matrixes, it shows a general pattern of levels that agrees well
with experimental data. If, in fact, the values of εi are kept small, the crossover fields
can be grouped in three sets. The crossovers corresponding to S = 11, 12, 13, and
14 occur at regular spacing, the crossovers corresponding to S = 15, 16, 17, and
18 occur in a narrow range of fields, and the others occur at higher fields. The cal-
culated differential susceptibilities yielded the best-fit parameters, J1 = −65 cm−1,
J2 = −32 cm−1, J3 = 6 cm−1, J4 = −16 cm−1.

3.3 Magnetic Measurements

3.3.1 Introduction

The standard magnetic measurements performed on clusters are the DC suscepti-
bility and magnetization, which are of fundamental importance for the description
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of the low-lying levels and for the determination of the nature of the ground state
and of its zero-field splitting. We will not spend additional time on these, because
their role is well known and readily available in many laboratories. We will outline
here additional techniques which are well suited to the determination of the dy-
namic susceptibility (AC magnetic measurement), or to the direct measurement of
the magnetic anisotropy in small single crystals (cantilever magnetometry), or to the
investigation of very small crystals (microSQUID arrays), and which are becoming
increasingly important.

3.3.2 AC Susceptibility Measurements

Slow relaxation of magnetization is one of the exciting features of the magnetic be-
havior of large molecular clusters. This was first discovered in Mn12Ac by performing
AC susceptibility measurements [3]. The inductive response of a specimen might be
measured in the presence of an oscillating magnetic field, and in this case it depends
on the frequency ω of the field. It can, in general, be expressed as the sum of an
in-phase component, χ ′, and an out-of-phase component, χ ′′, of the susceptibility
– χ(ω) = χ ′(ω) − iχ ′′(ω). If the change of the external field is slow compared with
the relaxation time of the magnetization, τ , (i. e. ω � τ−1) then the magnetization is
always in equilibrium over the time-scale of the experiment. The measured suscepti-
bility is the same as the static susceptibility and is called the isothermal susceptibility,
χT. If the frequency is much faster than the reorientation of the magnetization (i. e.
ω � τ−1) then the magnetic system is effectively isolated from the surroundings and
an adiabatic susceptibility, χS, is measured, which is smaller than χT. The dynamic
susceptibility can be expressed as:

χ ′ = χS + χT − χS

1 + ω2τ 2 ; χ ′′ = (χT − χS)ωτ

1 + ω2τ 2 (16)

The real part of the susceptibility is in dispersion, and the imaginary is in absorption,
as shown in Fig. 8. If the relaxation process is single-exponential, i. e. if it is dominated
by one relaxation time, then whenχ ′′(ω) is plotted againstχ ′(ω), the so-called Argand

Fig. 8. Real (solid line) and imaginary
(dashed line) components of the AC mag-
netic susceptibility as a function of the
product of the AC frequency ω with the
relaxation time τ . χS and χT denote the
adiabatic and isothermal susceptibility, re-
spectively.
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Fig. 9. Real (symbols) and imaginary (solid line) components of the AC magnetic susceptibility
of Mn12Ac at several frequencies ranging from 0.02 Hz to 6 kHz. (Courtesy of M. Novak.)

diagram, a semicircle is obtained. The intersections of the curve with the x axis give
χT and χS and the frequency at which the maximum value of χ ′′ is observed gives
the relaxation rate.

Mn12Ac shows peaks in the out-of-phase components of the susceptibility below
10 K, clear indication of slow magnetic relaxation, as shown in Fig. 9.

The position of the peaks is temperature-dependent, ruling out the possibility of
slow relaxation determined by the transition to magnetic order. An Argand plot
shows a semicircle, indicating that single-exponential relaxation behavior is being
monitored. If the relaxation time, obtained from the maximum value of χ ′′ at any
given temperature is plotted against temperature between 2 K and 10 K the expo-
nential dependence of the Arrhenius law is observed:

τ = τ0 exp(
/kT ) (17)

where 
 is a barrier for the reorientation of the magnetization and τ0 is the attempt
time, the time the magnetization spends in a potential well before jumping to the
other orientation. The best fit values are τ0 = 2.1 × 10−7 s and 
/k = 62 K. At ca
4.0 K the relaxation time is approximately 1 s; at 2.3 K it is approximately 1 day and at
2.0 K it is approximately 1 month. The Arrhenius behavior is analogous with that of
classical superparamagnets [57]. These are single-domain magnets the size of which
is so small that the barrier to reorientation of the magnetization, 
, is comparable
with the thermal energy. The pre-exponential factor in classical superparamagnets
is much shorter than the value observed here (τ0 ≈ 10−10–10−13 s).

The origin of the barrier in Mn12Ac is associated with the zero-field splitting of
the ground S = 10 state of the cluster [58–60], as determined by many other different
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techniques. All the data concur, and show that the lowest components of S = 10 are
those with M = ±10, the M = 0 state lying ca 70 K higher. This energy separation
compares well with the experimentally determined barrier. The zero-field splitting
of Mn12Ac is determined by the zero-field splitting of the individual manganese(III)
ions [59], which deviate substantially from octahedral symmetry because of crystal-
field effects.

Another feature of the AC susceptibility data shown in Fig. 9 is that a second,
much smaller, peak in χ ′′ is observed at lower temperatures. This peak is generally
observed also in other derivatives of Mn12 [5, 13]. There has been some controversy
in the literature, but it seems now established that this is because of defective clusters
present in the lattice of Mn12Ac [61]. In other words, there are some defective
molecules in which the barrier to reorientation of the magnetization is smaller than
in the bulk of Mn12Ac. This might be because one or more manganese(III) ions have
elongation axes which are not parallel to those of the other manganese(III) ions of
the cluster.

3.3.3 Cantilever Magnetometry

This technique is a recent extension of the old method of measuring the magnetic
anisotropy of a single crystal through the torque exerted on the wire holding it in a
magnetic field. The problem of this technique was that the sensitivity was low, and
large single crystals were required. Now the use of high-sensitivity cantilevers enables
measurements to be performed on tiny crystals, of approximately a few micrograms.
The method is sensitive to the couple T = M × B experienced by a magnetically
anisotropic substance in a uniform magnetic field B. M is the magnetization of the
sample. T vanishes when the magnetic field is applied along one of the principal
directions of the susceptibility tensor χ of the sample, because now M and B are
collinear. The experimental apparatus is shown schematically in Fig. 10.

The crystal is laid on the cantilever. The magnetic field is applied in the xz plane
and the apparatus measures the y component of the torque vector (Ty) acting on the
sample. The crystal can be rotated around the y axis by means of a goniometer. The
deflection of the cantilever from the zero field position, d, is detected by measuring
the capacitance of the torquemeter (C), assuming C ∝ 1/d. Capacitance variations
(
C) during the experiments are typically less than 0.5% of the zero-field capacitance
(approx. 1 pF), so that simple proportionality between 
C and Ty can be assumed.
The y axis of the torquemeter is usually aligned parallel to one of the principal

Fig. 10. Schematic diagram of a cantilever magnetometer.
The component of the torque along the y axis is measured
as a function of the field and of the angle θ .
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directions of the susceptibility. In this case the y component of the torque vector is
given by:

Ty = B2(χzz − χxx ) sin θ cos θ (18)

where θ is defined in Fig. 10. Because the torque signal is proportional to the in-plane
anisotropy and to the square of the magnetic field modulus, the sensitivity increases
dramatically in high magnetic fields.

An important application of this technique has been performed on single crystals
of antiferromagnetic rings [51, 62]. We have already reported in Section 2 how high-
field magnetization studies can be used to obtain information about the energies of
the excited states of iron(III) rings. Here we show how cantilever magnetometry can
also provide the magnetic anisotropy of the excited levels.

The most elegant cantilever results were obtained on the Fe6 rings [51], because
they have trigonal symmetry. In [NaFe6(OCH3)12(dbm)6]PF6, where dbm = 1,3-
dibenzoylmethane, the structure of which [63] is shown in Fig. 11. The six membered
ring of iron(III) ions hosts an alkali ion in the center of the ring. The crystals were
mounted with the y axis in the plane of the ring. The maximum torque was measured
at θ = 45◦. It varies rapidly with field at ca. 10 T, as shown in Fig. 12, because this
is the crossover field Bc for passing from the S = 0 to the S = 1 ground state. In
Fig. 12 the orientation dependence of Bc is also reported. This clearly shows that z,
the trigonal axis, is the hard axis, and that the anisotropy is fairly large, Bc varying
from ca. 10.75 T when the field is parallel to the trigonal axis to ca. 10.15 T when the
field is in the ring plane.

The origin of the observed anisotropy must be in the S = 1 state, and because the
g tensor for an iron(III) ion is expected to be very isotropic [64], the origin must be

Fig. 11. Sketch of the structure
of [NaFe6(OCH3)12(dbm)6]+,
NaFe6. The iron atoms are rep-
resented by large black circles
and oxygen by small black cir-
cles.
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Fig. 12. (a) Field dependence of the torque signal showing the level crossing from S = 0 to
S = 1 and from S = 1 to S = 2. (b) Orientation dependence of the crossover field Bc for
NaFe6. If θ = 0◦ the field is perpendicular to the ring; if θ = 90◦ the field is parallel to the
ring.

the zero-field splitting. The experimental data were satisfactorily analyzed to give a
zero-field splitting axial parameter D1 = 4.32 cm−1. In Table 2 this is compared with
the corresponding value for the ferric wheel and for another Fe6 derivative, Fe6Li,
in which the central alkali metal ion is lithium instead of sodium. The number of
observed states depends on the value of the exchange coupling constant and on the
maximum available field. In Fe6Li J = 14 cm−1, which, according to Eqs. (11) and
(12) gives crossovers with a step of ca. 7 T. With a maximum field of 20 T, therefore,
only two crossovers were observed. For Fe6Na J = 22 cm−1 and the step separation
is 11 T, whereas for the ferric wheel it is 4 T. The experimental determination of the
zero-field splitting for so many excited states is very rare. In principle HF-EPR can
also provide information for excited multiplets.

The data in Table 2 enable checking of the validity of the rules that relate the
zero-field splitting tensors of the S states, DS, with the corresponding tensors of the
individual ions, Dk, plus the interaction-determined contributions, Djk, as defined by
the Hamiltonian Eq. (1). Assuming that the separation between multiplets is large

Table 2. Zero-field splitting data for three iron(II) antiferromagnetic rings (cm−1).

Fe6Li Fe6Na Fe10

S = 1 1.16(1) 4.32(3) 2.24(2)
S = 2 0.295(2) – 0.599(3)
S = 3 – – 0.291(1)
S = 4 – – 0.180(1)
S = 5 – – 0.123(1)
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Table 3. Calculated coefficients for the zero-field splitting of the low lying multiplets of anti-
ferromagnetic iron(III) rings.

S N = 6 N = 10
d1 d12 d13 d1 d12 d13

1 −2.4000 2.85556 −3.00000 −2.24000 2.70800 −2.80000
2 −0.54422 0.69048 −0.68027 −0.52381 0.64857 −0.65476
3 −0.23492 0.32963 −0.29365 −0.23778 0.30533 −0.29722
4 −0.12245 0.19841 −0.15306 −0.13377 0.18052 −0.16721
5 −0.06838 0.13533 −0.08547 −0.08376 0.12051 −0.10471

compared with the splitting of the multiplets, the zero-field splitting tensors of the S
multiplets are given by [24]:

DS = � j d j Dj + � j<kd jkDjk (19)

where d j and d jk are symmetry-determined coefficients which can be calculated
with standard rules [24]. The Djk tensors are expected to be given for iron(III)
ions by the magnetic dipolar interaction only. In Table 3 we show the calculated
coefficients relating the individual parameters to those of the cluster for the low-
lying S multiplets of rings with six and ten iron(III) ions. We assume CN symmetry
for the rings, where N is the number of iron ions in the ring. Only the coefficients
d12 and d13 are reported because all the other coefficients d12n are identical with d12
and the d12n+1 are identical with d13. All the other coefficients can be obtained from
these by applying symmetry operations within the rings.

The analysis is relatively simple for the dipolar contribution. Let us assume com-
pletely planar, regular rings. In this case the Dij tensor has a principal component,
which is negative, parallel to the i– j direction. All the tensors must, therefore, have
the same component perpendicular to the ring; this is given by:

Di j,zz = 0.433g2/r3
i j (20)

where Di j,zz is in cm−1 and ri j in Å. For example, for N = 10 the dipolar contribution
to DS,zz is given by:

DS,zz = 10(D12,zz + D13,zz + D14,zz + D15,zz + D16,zz/2) (21)

In a regular ring the i j distances can be expressed as a function of the nearest-
neighbor distance r12 = r , so that the DS,zz components can be calculated with one
variable r . Because the symmetry of the regular rings is axial, z is the unique axis,
and the zero-field splitting parameter is given [64] by DS = 1.5DS,zz . The calculated
coefficients are given in Table 4 and must be multiplied by r−3 (in Å) to give the
zero-field splitting in cm−1.

It is apparent that the calculated zero-field splitting is positive, corresponding to an
XY type anisotropy. Further, the zero-field splitting roughly increases in proportion
to N . The relative data for Fe10 and Fe6Li are not too far from this limit (the ratio
of the D values is ca. 2 instead of 1.66), whereas that for Fe6Na is much larger than
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Table 4. Dipolar zero-field splitting for low-lying S multiplets of antiferromagnetic rings com-
prising N iron(III) ions.

N = 6 N = 10

S = 1 38.2955 62.2468
S = 2 9.3953 14.9821
S = 3 4.5786 7.1046
S = 4 2.8270 4.2402
S = 5 1.9850 2.8629

expected. If an average distance of 3.25 Å for the nearest-neighbor distance is taken
for Fe6Li and Fe10, in agreement with the X-ray crystal structure data, the calculated
and experimental values are in good agreement, suggesting that for these rings the
dipolar interaction is dominant. The large value for Fe6Na must arise from a sizeable
single-ion contribution. This shows how subtle changes in the structure of the rings,
for example the substitution of one alkali ion for another in the center of the ring,
can drastically alter not only the magnetic coupling but also the magnetic anisotropy.

3.3.4 MicroSQUID Arrays

The microSQUID (Super-Conducting Quantum Inference Device) technique is very
similar to the traditional SQUID technique to amplify the variation of the magnetic
flux. The essential difference is that the pick-up coil is replaced by direct coupling of
the sample with the SQUID loop. When a small sample is placed directly on the wire
of the SQUID loop, the sensitivity of the microSQUID technique is nine orders of
magnitude better than that for traditional SQUID. This result is only achieved when
the size of the sample is smaller than that of the SQUID. In a practical realization
implemented [65] at the CNRS Laboratories in Grenoble the magnetometer is a
chip with an array of micro-SQUIDs, as shown in Fig. 13. The sample is positioned
by means of a piezoelectric quartz tool. If the sample is very close to a SQUID the
response will be sensitive to the local environment, whereas if the sample is removed
farther away the response will be mediated over all the sample. The high sensitivity
of the techniques enables the measurement of single crystals of 10–500 µm. The
magnetometer works in the range 35 mK to 6 K and in fields of up to 1.4 T. Another
interesting feature of the magnetometer is that the field can be swept at very high
speed-in fact the sweeping rate can be as high as 1 T s−1. The stability of the field is also

Fig. 13. Schematic diagram of a microSQUID
array for measurement of the magnetization of
small samples. (Courtesy of W. Wernsdorfer.)
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Fig. 14. Stepped magnetic hysteresis at different tem-
peratures of the minority species present in a tiny sin-
gle crystal of Mn12Ac.

very high, better than 1 µT s−1. Finally the time resolution is also high, approximately
1 ms, enabling short-term measurements.

All these unique features have been recently exploited in the analysis of the
dynamics of the relaxation of Fe8 [66] and Mn12Ac [61] at very low temperatures.
In particular we want to show how the technique has been used to characterize the
defective species present in Mn12Ac, mentioned in Section 3.2. The defective species,
which is present at a concentration of 1–2%, has a tunneling relaxation time much
faster than that of the major species; measurements for the former are, therefore,
easier, because it is not necessary to wait for years as is the case for the latter. Both the
major and the minor species are characterized by means of stepped hysteresis, which
arises as a result of resonant quantum tunneling. The stepped hysteresis of the minor
species measured with the microSQUID array between 40 mK and 1.0 K is shown
in Fig. 14. The steps correspond to the fields at which the tunneling is enhanced by
the degeneracy of pairs of M levels. Before the measurements the major species was
demagnetized and, because of the long relaxation time at T < 1 K, this practically
does not affect the measurements. The hysteresis curve becomes almost independent
of temperature below 600 mK. This seems to be good evidence for quantum tunneling
between the lowest M = ±10 levels. No such evidence could be obtained for the
major species, because of its extremely long relaxation times in this temperature
range. Matters are different for the minor species, which has lower barrier for the
reorientation of the magnetization and faster quantum tunneling relaxation.

By comparison of the signal from a SQUID placed close to the edges of the
crystals and from those close to the center of the crystal it could be concluded that
the defective species is homogeneously distributed throughout the crystal and not
located on the surface. This possibility of performing a sort of magnetic imaging is
one advantage of the microSQUID technique.
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3.4 Magnetic Resonance Techniques

3.4.1 Introduction

Magnetic resonance techniques, especially EPR, have been very important in the de-
velopment of the field of molecular magnetic clusters. EPR can provide information
about the spin of the ground state, and occasionally about that of lower excited states
also. It also provides information about the zero-field splitting of the states; this is,
in turn, of fundamental importance for understanding the magnetic anisotropy of
the clusters. NMR is used to obtain information on the spin dynamics of the clusters,
because the shifts and the relaxation of the nuclei, which act as local probes, are
affected by electron relaxation. In this respect muon spin resonance, µSR, can also
be used to obtain information similar to that of NMR, but using muons instead of
protons.

In the following sections we will first discuss high-frequency-high-field EPR spec-
tra, then zero-field and low-frequency-high-field spectroscopy applications. Subse-
quent sections will cover NMR and µSR spectroscopy.

3.4.2 HF-EPR

High-frequency–high-field EPR (HF-EPR) spectroscopy has developed rapidly in
the last few years [37, 67–72]. The definition of HF-EPR is not exactly established,
but it can reasonably be regarded as EPR spectroscopy performed with exciting
frequencies no lower than 95 GHz. This frequency, which corresponds to a W band,
is the only one implemented on a commercial instrument – higher frequencies are
available on laboratory-developed instruments only. The exciting frequencies can be
generated either by FIR Lasers or by Gunn diodes with frequency multipliers. The
former are better for very high frequencies (>350 GHz), because at lower frequen-
cies the laser lines tend to have low power and to be unstable, but, of course, they
require very high fields. For g = 2 the resonance field for a frequency of 350 GHz is
11.7 T. Further high frequencies require quasi-optical approaches which are difficult
to implement. Gunn diodes are much easier to handle, but have limited power, and
with a frequency multiplier this is even lower.

HF spectrometers differ from the conventional X- and Q-band (9, 35 GHz) spec-
trometers, firstly because they do not use a cavity for recording the spectra. The loss
in sensitivity is partially compensated because the sensitivity of the instrumentation
increases as the frequency is increased, although sensitivity is, certainly, still one of
the problems of HF spectrometers. This might not be a very serious problem for
the investigation of clusters, because magnetically concentrated samples are usually
used.

The main reason for using HF-EPR, rather than the conventional and less expen-
sive X or Q band spectroscopy, with magnetic molecular clusters is that they often
have large spin states. The spectra of an S spin state comprise at least 2S spin-allowed
transitions spread over a wide field range. High fields are, therefore, needed just to
observe all the expected transitions. Matters can be dramatic with integer spin val-
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ues, because in this case when the zero-field splitting is larger than the microwave
frequency no spectrum is observed when moderate fields are used. Another im-
portant point is that the HF-EPR spectra not only enable simplified determination
of the zero-field splitting of a multiplet, but also of the sign. This is of paramount
importance in the determination of the nature of magnetic anisotropy.

These points are very well illustrated by the X band and 350 GHz spectra of
[N(CH3)4]4[Mn10O4(biphen)4Cl12] (biphen = 2,2′-biphenoxide) the structure of
which is shown in Fig. 15 [73]. The cluster comprises four manganese(III) ions, with
S = 2, and six manganese(II) ions, with S = 5/2, arranged in a complex three-
dimensional structure determined by the presence of four µ4-oxo groups [74]. The
nature of the ground state was not unambiguously determined by low-temperature
magnetization measurements, because of the presence of moderate zero-field split-
ting. They suggested, however, that the ground state has S ≥ 12. X-band EPR spectra
showed a pattern of parallel transitions above 0.3 T with an average separation of
ca. 0.09 T, which suggested a zero-field splitting of ca. 0.045 cm−1. These did not,
however, provide any clear indication on the nature of the ground state, because
the available field did not enable observation of all the 2S transitions. The HF-EPR
spectra at 245 GHz are shown in Fig. 16. The g = 2 resonance is at ca. 8.2 T and
clearly all the expected transitions are now observed. It is, therefore, only necessary
to count the transitions for the field parallel or perpendicular to the unique axis of

Fig. 15. Sketch of the structure of [Mn10O4(biphen)4Cl12]4+, Mn10. Manganese(III) ions are
drawn in large contoured spheres, manganese (II) in cross-hatched spheres, oxygen as small
black ones, and nitrogen as hatched small spheres.
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Fig. 16. HF-EPR spectra (245 GHz)
of Mn10 recorded from partially ori-
ented microcrystalline powder at dif-
ferent temperatures (left). On the
right are the simulated spectra ob-
tained with S = 12, g‖ = 1.974,
g⊥ = 1.983, D = −0.047 cm−1, and
E = 0.

the cluster to determine unambiguously the nature of the ground state. In this case it
turned out that 24 transitions are observed, corresponding to S = 12. The zero-field
splitting was found to be D = −0.047 cm−1. The negative sign, which corresponds
to Ising type anisotropy, is because at low temperature at and low field the parallel
transitions become intense. The fine-structure transitions correspond to excitations
from the M to the M + 1 level. The lowest field transition might correspond to the
−S → −S + 1 or S − 1 → S excitation, depending on the sign of the zero-field
splitting. The former is the correct for negative zero-field splitting, the latter for pos-
itive. In a high magnetic field the Zeeman energy is comparable with or larger than
the thermal energy, so depopulation effects will be relevant, and the −S → −S + 1
transition is of greater intensity than the S − 1 → S transition.

3.4.3 Zero-field EPR

In complete contrast with HF-EPR spectroscopy, it is now possible to measure the
zero-field splitting of large spin multiplets directly, without applying an external
magnetic field. The best results so far reported [75] have been obtained for Mn12Ac;
these are shown in Fig. 17.

These spectra are, perhaps, more difficult to obtain than HF-EPR spectra, because
the sensitivity of the technique is low, but they are certainly more easily read by
non-experts than are EPR spectra. The absorption corresponds to direct transitions
between the M components of the S multiplet. At 2.56 K only one absorption is
observed at 10.02 cm−1, corresponding to the ±10 → ±9 transition. At 5.3 K a second
absorption at 8.50 cm−1 corresponding to the ±9 → ±8 transition is observed. At
17.8 K a third absorption at 7.20 cm−1, corresponding to the ±8 → ±7 transition is
observed. The zero-field splitting of Mn12Ac at the simplest level of approximation
can be described by the spin Hamiltonian:

H = DS2
z (22)

which requires that the relative energies of the ±10 → ±9, ±9 → ±8, and ±8 → ±7
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Fig. 17. Zero-field EPR spectra of Mn12Ac. The
data used for the simulations are given in the
text.

transitions are at anergies which follow the ratio 19:17:15. The experimental data
yield the ratio 19:16:13.5, showing that Eq. (22) is not adequate. This had, indeed,
been previously observed in the analysis of the HF-EPR spectra, which required a
spin Hamiltonian including fourth order terms:

H = DS2
z + D′S4

z + C(S4
+ + S4

−) (23)

The best-fit data obtained from the zero field experiment are D = −0.389 cm−1,
D′ = −7.65 × 10−4 cm−1; these can be compared with the values obtained from
HF-EPR spectroscopy [76], D = −0.388 cm−1, D′ = −7.7 × 10−4 cm−1. The value
of C cannot be meaningfully obtained from the zero-field experiment.

3.4.4 Low-frequency EPR

Low-frequency EPR can be very important in the detection of the splitting of the
lowest-lying levels in the presence of strong transverse fields. For instance, with an
S = 10 ground state, as observed in Mn12Ac and Fe8, it is important to understand
the mechanism of tunneling within the lowest M = ±10 levels to measure the so-
called tunnel splitting. This is the separation of the two components determined by an
applied transverse magnetic field. Experiments were performed on Fe8 [77], by using
a loop-gap resonator operating at 680 MHz. Please notice that the exciting frequency
is almost three orders of magnitude smaller than that in the highest frequency HF-
EPR spectra, 550 GHz. The sample was a bunch of oriented microcrystallites, total
weight 80 mg, buried in an epoxy slab. Fig. 18 shows the field dependence of the out-
of-phase component of the susceptibility measured at 25 mK. Two peaks are clearly
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Fig. 18. Field-dependence of the out-
of-phase component of the suscepti-
bility of Fe8 at 25 mK. The sample was
a bunch of crystals oriented by the
magnetic field [78].

apparent, the first at H1 = 2.25 ± 0.05 T and the second at H2 = 3.60 ± 0.05 T; these
are associated to the transitions within the ground doublet when the external field is
applied along the intermediate and hard axis, respectively.

3.4.5 NMR

NMR experiments on clusters have usually been performed in the low-resolution
broad-band mode, because the presence of paramagnetic centers dramatically broad-
ens the lines of the nuclear resonances in such a way that the paramagnetically shifted
lines of different nuclei are observed only very rarely. We want to show, however,
that even at low resolution it is possible to obtain important information about the
spin dynamics of the clusters. This is best achieved by measuring the relaxation times,
both spin–lattice and spin–spin, because for the reasons mentioned above the spectra
are usually not very informative.

The most common technique used in NMR experiments is the Hahn-echo tech-
nique [78]. A π/2 pulse is applied and this is followed, after a delay time τ , by a
π pulse. The first pulse moves the magnetization parallel to x , z being the field di-
rection. After the pulse the magnetization starts to dephase in the xy plane. The
second pulse re-phases the magnetization parallel to −x and a signal is recorded
(the spin-echo). The π/2 pulses are typically of a few microseconds. The spin–lattice
relaxation times can be measured by the inversion recovery method or by use of the
saturation recovery pulse sequence at low temperatures. Protons are, of course, the
most widely investigated nuclei, but work on deuterons and others has also been
reported.

The advantage of using NMR is that of having available a probe, the nuclear
spin, which is sensitive to local fields [79, 80]. Collecting information on nuclear
spin relaxation thus provides information about the relaxation of the magnetization
of the system. In simple terms, the nuclear relaxation is strongly influenced by the
much faster electron relaxation. Therefore by measuring the nuclear relaxation rates
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as a function of exciting frequency, field, and temperature it is possible to obtain
indirect information about electron relaxation. The theoretical expression relating
the nuclear relaxation to the electron-spin dynamics [78] is:

T −1
1 = (�γNγe)

2

4πg2µBkBT

[
1
4

∑
q

A±(q)χ±(q) f ±
q (ωe) +

∑
q

Az(q)χz(q) f z
q (ωN)

]

(24)

where the coefficients A±(q) and Az(q) are the Fourier transforms of the spherical
components of the product of two dipole interaction tensors describing the hyperfine
coupling of a given nucleus to the electrons. The symbols ± and z refer to the com-
ponents of the electron spins transverse and longitudinal relative to the direction of
quantization, parallel to the external field. χ(q) is the wave vector-dependent mag-
netic susceptibility, and fq(ω) is the normalized relaxation function at the indicated
frequency. The first term in Eq. (24) corresponds to the relaxation at the electron
resonance frequency, ωe, and the second to the nuclear resonance frequency, ωN.

The A(q) coefficients can, in principle, be calculated if the structure is known
and if it is reasonable to assume where the electrons are localized. For metal ion
clusters it is usually assumed that the unpaired electrons are located on the metal ions,
neglecting ligand delocalization effects. χ(q, T ) and f α

q (ω) are, however, much more
difficult to calculate, and no general treatment is yet available. An example of the full
exploitation of Eq. (24) for calculation of proton relaxation rates in antiferromagnetic
clusters will be given below.

At the simplest level of approximation Eq. (24) reduces to:

T −1
1 = A

τc

1 + ω2
Nτ 2

c
(25)

where τc is a correlation time which can be identified with the relaxation time of
the electron spin. In Fig. 19 we show the calculated relaxation times for a range of
values of τc. The region of interest is that when ωNτc ≈ 1, because the longitudinal
nuclear relaxation rate goes through a maximum. It can, therefore, be useful to
measure the nuclear relaxation rate as a function of temperature and frequency. If,
in the investigated (ωN, T ) range, τc becomes of the same order of magnitude as ωN,
then a maximum in the relaxation rate is observed. This behavior has been observed
[81], for instance, in the proton relaxation rate of Mn12Ac, as shown in Fig. 20.
In experiments performed at 14.1 and 31 MHz the proton relaxation rate steadily
increases as the temperature is reduced, but below 40 K the relaxation rate becomes
too fast and cannot be measured further. This indicates that in this temperature
range τc is faster than 5 × 10−9 s. When the experiments are performed at higher
frequencies (87 and 200 MHz) distinct maxima in the proton relaxation rate are
observed at ca. 60–70 K. These data indicate that in this range of temperature τc is
ca. 8 × 10−10 s. This value should be compared with the value of the relaxation rate
of the magnetization calculated using Eq. (17) – τ0 = 2.1 × 10−7 s and 
/k = 62 K
are the values estimated at low temperature from the AC magnetic susceptibility.
At 60 K Eq. (17) yields τ = 8 × 10−7 s which is almost three orders of magnitude
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Fig. 19. Proton relaxation times calculated by use of Eq. (24). ωN = 6.28 × 108 rad s−1,
A = 1 × 105 s−2.

Fig. 20. Temperature-dependence of the proton
spin-lattice relaxation rate of Mn12Ac. •, 14.1 MHz;
◦, 31 MHz; × 87 MHz; � 200 MHz.

longer than the value estimated by use of NMR. This is not an unexpected result
because Eq. (17) is valid at low temperature when only the M levels of the ground
state S = 10 manifold are populated; on increasing the temperature higher energy
S levels become populated, thus increasing the electron relaxation rate.

Similar results were obtained for Fe8 [82]. For this compound relaxation rates
obtained by NMR are in agreement with those obtained by Mössbauer techniques
which explore essentially the same time window [7]. Additional data are available
through µSR spectroscopy; these are discussed in the Section 4.6.

NMR experiments have also been performed on antiferromagnetic rings [83]. A
nice example is provided by clusters comprising six and ten high-spin iron(III), al-
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Fig. 21. Temperature-dependence of the proton spin-lattice relaxation rate of NaFe6 at
31 MHz.

ready described in Section 3.3. The temperature-dependence of the proton relaxation
rate of NaFe6 measured at 31 MHz is shown in Fig. 21.

It is apparent that a sharp maximum is present at ca. 20 K. At low temperatures
the relaxation rate is slow in agreement with the fact that the ground state is non-
magnetic. On increasing the temperature the excited S �= 0 levels become populated.
In particular the first excited level which is 19 K above the ground state has S = 1.
The experimental data have been fitted assuming a model in which the relaxation
rate is given by the sum of two terms, corresponding to the contribution from the
first excited triplet and to all the other levels, obtained by use of the equation:

T −1
1 =

{
A exp(−ET/kT ) + B

∫ ∞

d
D(E) exp(−E/kT )dE

}
Z−1 (26)

where ET is the energy of the first excited triplet. The second term in curly brackets
is based on the assumption that the levels above the triplet can be approximated by
a continuum of levels D(E), as shown in Fig. 22. Z is the partition function and A, B,
and d are parameters. The best fit values are A = 7.3 ms−1, B = 5 ms−1, d = 200 K.

One interesting feature of magnetic rings is that they have long been used to
extrapolate the thermodynamic functions of infinite chains. One of the fingerprints of
one-dimensional magnetic behavior is the ν−1/2 dependence of the nuclear relaxation
rates at high temperature [24]. One possible question which can, therefore, be asked
is at which stage the one-dimensional spin dynamics sets in for antiferromagnetic
rings. The field-dependence of the nuclear relaxation rate of the Fe6 cluster has
shown that this is, indeed, not so for such small rings. The experimental behavior
has been well justified by a mode-coupling approach assuming that after a long time
the electron-spin correlation function decays, because of some cut-off mechanism.
Similar results were obtained from analysis of the proton relaxation rate in a ferro-
magnetic ring comprising six copper(II) ions which has a ground S = 3 state [84].
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Fig. 22. Calculated spin energy levels for
NaFe6. The curve is a Gaussian fit to the
histogram of the distribution of levels.

Fig. 23. Field-dependence of the proton re-
laxation rate of the ferric wheel at 1 K.

It is, in general, a good approximation that nuclear spin–lattice relaxation is in-
duced by the dipolar fields of the electrons, and in principle it can be calculated.
The best evidence for this has been obtained from analysis of the proton relaxation
rate in the ferric wheel, to be discussed below. We have already mentioned that
in the ferric wheel the ground state has S = 0, with the lowest lying S states at
E(S) = J S(S + 1)/5, with J/k = 15.8 K [48]. The ground state can be changed by an
external field, which stabilizes the higher spin states. In fact the S → S + 1 crossover
fields in Tesla are given by Eq. (12). Proton NMR experiments have been performed
at 2 K, in fields ranging from 2 to 16 T and the maxima of the spin–lattice relaxation
rates have been found to correspond to the crossing fields as shown in Fig. 23 [85].

Like the stepped magnetization shown in Fig. 6, the peaks in the proton relax-
ation rate are a manifestation of quantum effects. The origin of the peaks can be
understood by considering that when the separation between the electronic levels
becomes close to zero the nuclei can easily relax by exchanging a quantum with the
electron spin corresponding to the nuclear frequency. In the simplest approximation
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the coupling between the electron and the nuclear spin is provided by the dipolar
hyperfine interaction:

T −1
1 = 1

2N 2 (γeγN�)2
[

2πδ(ωN)
1

1 + eβ�ωeg

[
S2 + eβ�ωeg(S + 1)2]Gα

+ π
[
δ(ωN + ωeg) − δ(ωN − ωeg)

] (S + 1)
[
(Ns + 1)2 − (S + 1)2]

2(2S + 3)
Gβ

]
(27)

where is N the number of spins in the ring, S is the total spin, ωeg is the frequency
corresponding to the energy difference between the ground and the first excited
electron spin state, ωN is the nuclear frequency, and β = kT . Eq. (27) is valid at
low temperature, when it is a good assumption to consider only the lowest and the
first excited levels. Gα and Gβ are the average values of the hyperfine dipolar fields
on the protons exerted by the electron spins. In the actual calculation the Dirac
deltas are substituted by Lorentzian functions 2πδ(ω) = 2�/(ω2 + �2), where � is
inversely proportional to the natural lifetime of the level. This has been used to fit
the experimental data, with good agreement. It must be mentioned that this cross-
relaxation behavior can be also interpreted as evidence for quantum tunneling of
the electron magnetization. The splitting of the S and S + 1 levels can, in fact, be
considered as tunnel splitting which, when quenched, results in less efficient electron
spin relaxation and enhancement of nuclear relaxation.

3.4.6 µSR

Muons are charged particles with rest mass approximately 1/14 that of the protons.
There are both positive and negative muons, with charge ±e. In general, positively
charged muons, also called muonium, are used. They have spin S = 1/2, a magnetic
moment µµ = 4.84 × 10−3 µB, and a gyromagnetic ratio γµ/2π = 135.5 MHz/T. The
average lifetime of the muons is τµ = 2.2×10−6 s. A muon can, therefore, be regarded
as a light proton, and it can be used as a probe analogous to the latter to measure
many properties of condensed matter [86]. In particular muons are widely used
to investigate the magnetic properties of materials, and investigation of molecular
materials [87–89] and clusters [81] has begun.

Muons are obtained through the weak decay of pions, which have an average
lifetime of 26 ns according to the reaction:

π+ → µ+ + νµ (28)

The pions are produced when protons with energy >180 MeV hit beryllium or
graphite targets. In a typical experiment the muons are selected such that their spins
are 100% polarized. This is a definite advantage over NMR experiments in which spin
polarization is very low. The sensitivity of measurements with muons is, therefore,
very high.



3.4 Magnetic Resonance Techniques 95

The muons are injected into the sample and they thermalize in a time less than
1 ps, principally by interaction with electrons. After this time the thermalized muons
usually become localized in a well defined site in the sample. The muon spin will
precess around the local field Bµ which in general can be expressed as:

Bµ = Bext − Bdemag + BLor + Bhyp + Bdip (29)

where Bext is the external field, Bdemag is the demagnetizing field of the sample, BLor
is the field of the Lorentz cavity in which the muon is hosted, Bhyp is the hyperfine
field of the electron, and Bdip is the dipolar field generated by magnetic nuclei. After
a time of the order of τµ the muon decays emitting a positron, a neutrino, and an
antineutrino. The probability of emission of a positron at an angle θ from the muon
spin is:

W (θ) = 1 + A cos θ (30)

The time-dependence of the precession of the muons can be monitored by mea-
suring the emitted positrons. Typical µSR experiments can be performed with a
transverse field, with a longitudinal field, and in zero field. In all the experiments
what is measured is the depolarization of the muons while they are reaching thermal
equilibrium by interacting with the local fields of the sample in the neighborhood of
the site where the muon has become localized. If the transverse field is parallel to z,
the muon polarization will precess in the xy plane and the time-dependence of the
polarization will be given by:

N (t) = APx (0)Gx (t) cos(ωµt + ϕ) (31)

where Px (0) is the initial polarization of the muon, Gx (t) is the depolarization func-
tion, ωµ = 2πγµ B, and ϕ is the initial phase factor of the polarization when the
muons enter the magnetic field. The depolarization function depends on correla-
tion times of the local fields experienced by the muons. In the limit of slow motion,
when τc � (
ω)−1, the depolarization function is Gaussian, whereas in the limit
of fast motion the function is exponential. The Fourier transform in the slow limit
is Gaussian, whereas in the fast limit it is Lorentzian. The analogy with the NMR
experiment is apparent.

If the field is applied parallel to the direction of the muon beam, the muon spins
will remain polarized parallel to that direction without precessing. Under these con-
ditions also two limiting situations can be considered – that in which the local fields
which cause the depolarization are much stronger than the applied field, and that in
which the local fields are much weaker. The latter limit is achieved when no field is
applied. The depolarization function then takes the form:

G(t) = 1/3 + 2/3(1 − 
2t2) exp(−
2t2/2) (32)

where 
 is the second moment of the field distribution at the muon. The decay of
the polarization is initially Gaussian, but after a long time there is recovery of the
polarization along z. The polarization tail, which levels off at 1/3, is sensitive to very
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Fig. 24. Temperature-dependence of the
muon longitudinal relaxation rate of
Mn12Ac in different fields.

slow fluctuations of the local fields. When the external field is larger than the internal
fields muon polarization remains almost constant. Under intermediate conditions,
however, when dynamic internal fields are present, the system of muons thermalizes
towards the temperature of the lattice with a characteristic time, λ−1, which is the
equivalent of the spin–lattice relaxation time T1 of the NMR experiment.

µSR experiments have been performed on Mn12Ac [81], in conjunction with the
NMR described in the previous section. The experiments were performed either in
zero field or in a longitudinal field. The decay of muon polarization was fitted with
a stretched exponential, exp[−(λt)β ], indicating that the muons become distributed
among several different sites. The muon relaxation rates were measured for fields
ranging from 0 to 0.37 T. The relaxation rates vs. temperature go through maxima
which shift to higher temperature as the field is increased, as shown in Fig. 24.

The relaxation rate was expressed as:

T −1
1 = A

Z

−10∑
m=+10

e−Em/kTτm

1 + ω2
Lτ 2

m

(33)

where A is an adjustable parameter, the sum is on all the M states of the S = 10
ground state of Mn12Ac, Em is the corresponding energy, τm is the lifetime of the
level, and ωL is the Larmor frequency. The lifetime τm is expressed as:

τ−1
m = pm→m−1 + pm→m+1 (34)

where pm→m−1 is the transition probability from m to m − 1. These can be expressed
as:

pm→m−1 = C
(Em−1 − Em)3

e[(Em−1−Em )/kT ] − 1
, pm→m+1 = C

(Em − Em+1)
3

1 − e[(Em−Em+1)/kT ]
(35)

The equation is valid for m > 0. For m < 0, m − 1 must be replaced by m + 1
in the first equation, and m + 1 by m − 1 in the second equation. C is a parameter
which takes into account the phonon coupling responsible of the relaxation. The
data of Fig. 24 were solid lines correspond to the fit with A = 6 × 1015 rad s−2 and
C = 0.9 × 105 Hz K−3.
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3.5 Control of the Nature of the Ground State and of the Anisotropy

Although the magnetic properties of antiferromagnetic clusters can be of some inter-
est, it is apparent that one of the main reasons for interest in the synthesis of molecular
magnetic clusters is that of obtaining single-molecule magnets with higher blocking
temperatures. To achieve this one possible strategy is that of designing molecules
with a high value of S in the ground state. This is best achieved by using building
blocks with large spin – it is clearly easier to reach large S numbers by assembling
S = 5/2 spins rather than S = 1/2. A high spin state can be obtained by ferromag-
netic coupling, of course. This approach has been successful, for instance, in a ring
containing twelve ferromagnetically coupled S = 1 nickel(II) ions [90] and in an-
other with six S = 2 manganese(III) ions [91]. In both examples the ground state has
S = 12. The conditions for establishing nearest neighbor ferromagnetic interactions
are, however, rather stringent, because the magnetic orbitals on the two ions must
be orthogonal to each other. For this reason the ferrimagnetic approach, in which
the couplings are antiferromagnetic, is, in general, easier to achieve.

A high spin ground state can be achieved either by assembling two sets, each
containing the same number of different spins, or by assembling two sets of identical
spins, but with different number in each. An example of the former strategy is a
ring containing six S = 5/2 manganese(II) ions and six S = 1/2 nitronyl-nitroxide
radicals [92], which has a ground S = 12 spin; an example of the latter is a planar
cluster with nineteen S = 5/2 iron(III) ions, Fe19 [93], which has the structure
sketched in Fig. 25 [94]. The spin topology of the clusters is such that many triangles
of antiferromagnetically coupled iron(III) ions are present. Under these conditions
the nature of the ground state is very difficult to predict with simple hand waving
arguments. In particular, it might turn out to be impossible to predict the ground
state by trying to put the spins of the various metal ions either up or down. In the
limit of all identical coupling constants the situation referred to as spin frustration is
achieved. The characteristic result of this is that the ground state is highly degenerate.
The ground state of Fe19 turns out to be S = 33/2, one of the highest so far observed
in molecular clusters.

Another example of non-compensation of antiferromagnetically spins yielding
a high spin ground state is shown by a CrMn6 cluster [12] containing a central
CrI I I (CN)6 moiety with S = 3/2, connected to six S = 5/2 MnI I (TrispicMeen) moi-
eties – TrispicMeen = N,N,N′-(tris(2-pyridylmethyl)-N′-methylethane)1,2-diamine)
– which gives a ground S = 27/2 state. This compound has also recently been in-
vestigated by X-MCD experiments which confirmed the antiferromagnetic nature
of the magnetic coupling [95].

The conditions for slow relaxation of the magnetization of clusters have so far
been met by systems with a large spin in the ground state, reasonably well separated
from the nearest excited states, but the role of the magnetic anisotropy is by no
means secondary. A fundamental point is that to observe slow relaxation of the
magnetization the anisotropy must be of the Ising type. This condition is met when the
zero-field splitting is negative, i. e. when the M = ±S levels of the ground S multiplet
lie lowest. Another important point to be controlled is the transverse anisotropy,
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Fig. 25. Sketch of the structure of Fe19. Iron atoms are represented by hatched large circles
and oxygen by filled circles.

which can considerably reduce the height of the barrier. This is all of paramount
importance in the successful design of new molecules and we will spend some time
on it.

In general the concept of a barrier for slow-relaxing paramagnets has been ex-
tended from the theory worked out for superparamagnets. For these the magnetiza-
tion can have two different orientations, say up and down, and these correspond to
minima in a potential curve, with the maximum, which gives the height of the bar-
rier, corresponding to the orthogonal orientation of the magnetization vector [57].
Because a superparamagnet is a classical particle, the potential well is represented
by a continuum of levels. As the volume of the particle is reduced the height of the
barrier decreases linearly, and the density of levels in the potential wells gradually
decreases. Eventually the discontinuities typical of quantum systems begin to be
observed, and the overall relaxation behavior of the magnetic particles will acquire
a quantum nature. In particular, it will become possible to observe reversal of the
magnetization without reaching the top of the barrier. In the quantum regime the
barrier concept itself becomes fuzzy [46].

For strict Ising anisotropy, i. e. with axial symmetry, at the lowest level of approx-
imation the reversal of the magnetization at low temperature, i. e. the change from
the M = −S state to the degenerate M = +S state, can occur through thermally acti-
vated behavior. In this case the spin passes from M = −S to −S+1, then to −S+2, up
to S = 0, and then goes down to M = +S [58]. For this simplified model the energy
barrier is defined as the energy difference between the lowest lying M = ±S level to
the highest lying M = 0 level. The height of the barrier is, therefore, given by |D|S2
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for integer spins and |D|(S2 − 1/4) for half-integer spins. It must be stressed that this
is true only if the transverse anisotropy, represented by E , is zero. If E is different
from zero the pairs of ±M levels of integer spin states are no longer degenerate.
In fact M is no longer a good quantum number, and extensive admixture of states
can occur. Because the E term admixes states with M differing by ±2, its effect is
large on the states with small M, whereas it has a small effect only on the states with
large M . For the latter the approximation of the two potential wells is, therefore, still
acceptable. If, for instance, we consider an S = 10 state, with moderate transverse
anisotropy given by E/D = 0.16, the pairs are quasi degenerate up to M = ±5,
but the higher levels are heavily admixed. In particular there are three reasonably
well separated levels, and higher there are two more quasi-degenerate pairs. There
is, therefore, no M = 0 top level. In fact the two highest, quasi degenerate levels
are admixtures of various levels. One is the admixture of M = 0 with M = ±2 and
other even M values and the other is the admixture of M = ±1 with other odd M
values. The assumption of the height of the barrier no longer holds, therefore, and
the distinction between levels with positive and negative M also fails. In fact the tran-
sition probability from one state on the right of the barrier to that which is higher
on the same side of the double well might become smaller than the transition to the
corresponding level on the other side of the well. This is, for instance, the situation
which occurs in Fe8. Indeed this cluster has provided the best evidence for quantum
tunneling of the magnetization [96], because it has a reasonably long relaxation time
at low temperature which enabled very sophisticated measurements which provided
evidence for unique quantum behavior predicted by several theories [20]. In the fol-
lowing section we will review the main results observed for this cluster, which can be
taken as a case history of the potential observation of quantum effects in mesoscopic
matter.

3.6 Fe8 – A Case History

The structure of Fe8 has been shown in Fig. 3 [29]. The analysis of the tem-
perature dependence of the magnetic susceptibility [31], and the data obtained
from the polarized neutron experiments [42], provided the values of the cou-
pling constants, and the overall spin distribution in the ground state, character-
ized by S = 10. The ground wavevector, with the basis functions written as in-
dicated in Section 2.1 as |S1S2S12S5S125S6S1256S7S12567S8S125678S3S4S34SM〉, is ca.
70% |2.5, 2.5, 5, 2.5, 7.5, 2.5, 10, 2.5, 12.5, 2.5, 15, 2.5, 2.5, 5, 10M〉. The ground state
in split in zero field, as evidenced by HF-EPR [7] and INS experiments [97]. The
latter, shown in Fig. 26, are particularly rich, in transitions, which enabled the deter-
mination of the energies of the split components of the ground S = 10 state.

Results from both sets of measurements, HF-EPR and INS, agree that the spin
Hamiltonian for describing the zero-field splitting requires the inclusion of the fourth
order terms:

H = µBS · g · B + DS2
z + E(S2

x − S2
y) + B0

4 O0
4 + B2

4 O2
4 + B4

4 O4
4 (36)
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Fig. 26. INS spectra of Fe8 at 10 K. 1 meV cor-
responds to 8.065 cm−1 and the transitions have
been assigned as indicated on the spectrum.

where:

O0
4 = 35S4

z − 30S(S + 1)S2
z + 25S2

z ;
O2

4 = [(7S2
z − S(S + 1) − 5)(S2

+ + S2
−)

+ (S2
+ + S2

−)(7S2
z − S(S + 1) − 5]/4; and

O4
4 = 1/2(S4

+ + S4
−) (37)

The zero-field splitting leaves the M = ±10 levels as the lowest, and slow relax-
ation of the magnetization is observed. Mössbauer experiments [7], which have a
time-scale of 10−8–10−9 s, enable monitoring of slow relaxation below 20 K, whereas
AC susceptibility measurements enable observation of that below 3 K only [7]. As a
consequence of the presence of sizeable transverse anisotropy terms (E , B2

4 , B4
4 ) the

height of the barrier for Fe8 is not well defined and, in fact, the Arrhenius type relax-
ation described by Eq. (17) is never rigorously obeyed by Fe8. The relaxation time
of the magnetization becomes so slow below 1 K that hysteresis loops of molecular
origin can be observed, as shown in Fig. 27. The hysteresis has the stepped appear-
ance first reported for Mn12Ac [17, 18]. The flat regions correspond to fields at which
the relaxation is slow and the steps correspond to fields at which a rapid increase of
the relaxation rate is observed. This behavior has been attributed to resonant quan-
tum tunneling [60]. Beyond the relaxation activated by absorption and emission of
phonons it is possible to relax by tunneling between two degenerate levels. At zero
field the condition is met by the lowest lying pairs of M levels, and the relaxation is
comparatively fast. In the presence of an external field the energy of the +M level
increases and that of the −M level decreases, making quantum tunneling impossible.
The conditions for tunneling are, however, restored for fields at which the +M level
has the same energy as the −M + 1 level. The fields where these conditions are met
can be calculated by use of Eqs. (36) and (37). The calculated fields correspond to
the fields where steps are observed in the hysteresis.

Direct measurements of the relaxation time of Fe8 can be achieved at low tem-
perature by first saturating the magnetization and then monitoring its time decay.
In this way it is observed that below 350 mK the relaxation becomes temperature-
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Fig. 27. Stepped magnetic hysteresis mea-
sured by use of microSQUID on a small
single crystal of Fe8 with the magnetic field
parallel to the easy axis. Below 0.4 K the
curves no longer depend on temperature.

independent, thus confirming the quantum tunneling effects. Under these conditions
only the lowest M = ±10 levels are populated, and tunneling occurs between them.
The tunnel matrix element is of the order of 10−9 K [46]. In an ideal system resonant
tunneling requires that the magnetic field (local to the S spin) is smaller than the field
associated with the tunnel splitting. This makes it difficult, in principle, to observe
tunneling. Justification of the observed behavior can, however, be found if the dipo-
lar interactions with the neighboring cluster and the hyperfine interaction with the
magnetic nuclei are taken into consideration. In fact, rapidly fluctuating hyperfine
fields bring molecules into resonance. The molecules which relax modify the dipolar
internal field and remove from resonance a large number of neighboring spins. This
same effect might, however, bring into resonance molecules which are farther away
from the relaxed center, and enable continuous relaxation. One therefore expects
rapid relaxation on a short time-scale and a slow logarithmic relaxation on a long
time-scale [98].

The first particularly interesting evidence obtained for Fe8 was that in the quantum
regime the relaxation of the magnetization on the short time-scale must follow a
square-root time dependence [20, 99]:

M(H, t) = Min + (Meq(H) − Min)(�sq(H)t)1/2 (38)

where Min is the initial magnetization at t = 0 and Meq(H) is the equilibrium magne-
tization. The rate function �sq is proportional to the normalized distribution P(H)

of molecules which are in resonance with the applied field and to the square of the
energy difference, 
qt, between the M = ±10 states:

�sq(H) ∝ 
2
qt P(H) (39)

Starting from a well defined magnetization state it is possible to obtain �sq as a
function of field, and this can be used to follow the time evolution of molecular
states in the sample during tunneling relaxation.

These results show that it is possible to control the number of relaxing molecules
by using additional fields. This can be achieved properly by use of the microSQUID
arrays described in Section 3.4, because this magnetometer enables rapid variation
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Fig. 28. Field dependence of the
square root of relaxation rate as
function of the time of digging at
H = 0. In the inset the holes dug
in the rate distribution are shown at
an enlarged scale.

of the applied field. Starting from a well defined magnetization state, a field Hdig is
applied and the molecules are left to relax for a time tdig (‘dig’ stands for digging as will
be explained below). Finally a field H is applied and �sq is measured. Under these
conditions �sq, which, we remember, is proportional to the number of molecules
which relax in a given field H , is a function of H , Hdig, and tdig. The number of
molecules which can relax in a given field H depends on previous treatment. The
application of Hdig effectively digs a hole in the total number of molecules which can
relax, because some of them have already been relaxed. This is shown in Fig. 28 for
different digging times tdig. It is apparent that a hole is dug in the curve at H = 0 T,
and the longer the digging time the deeper the hole. The hole width has an intrinsic
broadening which depends on the magnetic moments of the nuclei which are present
in the cluster. It has, in fact, been experimentally observed that the hole broadens if
the non-magnetic iron nuclei are substituted by the magnetic 57Fe (I = 1/2), and it
becomes narrower if the less magnetic deuterium is substituted for a proton. These
experiments therefore point to a strong isotope effect on the quantum relaxation of
the magnetization. In general, isotope effects are associated with phonon coupling,
but in this instance they point out the assistance of relaxation by nuclear spin.

A different experimental procedure, in which the longitudinal field (parallel to
the easy axis) is swept rapidly over the entire resonance, has been used to measure
the tunnel splitting, and its dependence on a transverse field applied parallel to the
hard axis of the cluster. On each sweep a certain number of clusters reverse their
magnetization according to the tunnel probability, P , that is given by:

P = 1 − exp

[

2

4�gµBS(dH/dt)

]
(40)

where dH /dt is the constant field sweeping rate. Eq. (40) thus enables calculation
of the tunnel splitting. The experiments are performed by sweeping the longitudinal
field around H = 0, after having saturated the magnetization, and in this case the
tunnel splitting between the M = ±10 states is monitored. When the longitudinal
field oscillates around the value for which the M = 10 state equals the energy of
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Fig. 29. Field-dependence of tunnel
splitting when the field is applied along
the hard axis. For n = 0 the splitting
between M = ±10 states is monitored;
the other curves correspond to the tun-
nel splitting of the M = −10 and M =
10 − n states of the ground S = 10 mul-
tiplets. A parity effect of n on the phase
of the oscillations is evident.

the −M + n state, the tunnel splitting between these two states is monitored. The
oscillating behavior obtained by adding a variable transverse field, Hx , is clearly
visible in Fig. 29, although different phases are observed, depending on whether n is
odd or even.

In fact for n = 0 and n = 2 at Hx = 0 the tunnel splitting is in a maximum; minima
are observed for Hx = (k + 1/2)
H0, whereas for n = 1 the minima are observed
for Hx = k
H0 where k = 0, 1, 2 . . . and 
H0 = 0.41 T. If the magnetic anisotropy
is described by the second-order spin Hamiltonian of Eq. (36) the periodicity, 
H0,
is simply given by:


H0 = 2kb

gµB

√
2E(E + D) (41)

but higher-order terms in the spin Hamiltonian contribute strongly to 
H0, making
this technique very powerful for the evaluation of small higher-order corrections
to the spin Hamiltonian. In a semi-classic picture these oscillations can be seen
as interferences, because of the two possible paths that the spin can follow in the
plane perpendicular to the hard axis in the reversal of the magnetization. This result
had long been sought in magnets, under the term ‘Berry phase’ [23], and is a good
demonstration that molecular clusters might really provide much new physics. They
also suggest the possibility of controlling the magnetic hysteresis loop (cohercitivity,
remanent magnetization, etc.) by adding a transverse field.

3.7 Conclusions and Outlook

Molecular clusters are a challenge for many different disciplines, but primarily for
chemists who want to learn how to make larger molecules, and to give them prede-
fined properties. In this field some important success has already been achieved, but
much remains to be done. Most efforts have so far been concentrated on metal ions
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of the first transition series and on rare earth ions, but it can be expected that im-
portant results might be obtained by using heavier transition metal ions and organic
radicals also.

The contributions of molecular clusters to the development of mesoscopic physics
cannot be overlooked. Important effects have already been discovered and under-
standing of mesoscopic quantum phenomena has certainly advanced greatly after
the discovery of magnetic molecules.

Biology is interested in these systems because magnetic clusters are present in
many different metallo-enzymes and metallo-proteins. Other large inorganic clusters
are present in ferritin, in magnetosomes, etc., so the development of large synthetic
analogs might shed light on the mechanism of biomineralization and on the magnetic
properties of biological clusters.

Finally it must be remembered that these large systems, in which quantum size
effects are still so important, might be considered for use as hardware in quantum
computing devices. There is no doubt that this will be an important area of research
for many years to come.
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4 Quantum Tunneling of Magnetization in Molecular
Complexes with Large Spins – Effect of the Environment

Igor Tupitsyn and Bernard Barbara

4.1 Introduction

Can quantum mechanics, which determines behavior on the atomic and sub-atomic
scale, be manifest on a macroscopic scale? This question, which was posed when
the foundations of quantum theory were first laid, has fascinated physicists for more
than seventy years.

The phenomena of superconductivity and superfluidity in helium are quantum
manifestations on a macroscopic scale. In both there is a macroscopic non-dissipative
current of particles. More recently, quantum manifestations have been observed on
scales well above atomic scale – for example, quantum tunneling of the phase in a
Josephson junction, permanent currents in small conductor rings, and, more recently,
Bose condensates. These systems, the sizes of which vary from 10 to 105 nm, are
relatively complex; their properties can, nevertheless, be described using a small
number of degrees of freedom defined as a “macroscopic order parameter”.

In magnetism, since the discovery of superparamagnetism by Néel, it has been
known that a ferromagnetic or ferrimagnetic particle a few nanometers in size can
also be described with a small number of degrees of freedom, those of the magnetic
moment of the single domain particle, which behaves as a small magnet (the exchange
energy dominates by orienting all the moments in one direction).

The search for quantum effects on the “macroscopic scale” in magnetism started in
the early seventies after it was shown that single crystals of rare-earth intermetallics
(Dy3Al2, SmCo3.5Cu1.5) have fast magnetic relaxation in the Kelvin range. This phe-
nomenon was interpreted in terms of magnetization reversal by quantum tunneling,
below a certain crossover temperature. The reversal of magnetization of the bulk
crystals was the sum of the elementary reversals of single domain blocks (nucleation
of the so-called Barkhausen jumps); this type of study is equivalent to the study of
single nanoparticles, but with many complications (size, energy barrier and switching
field distributions, effects of domain walls, various dissipation effects. . .).

More recently there have been developments in various disciplines that have
led to great progress in obtaining different types of nanoparticle. In material sci-
ence magnetic materials have been produced as isolated aggregates, as deposits of
aggregates, as carbon nanotubes and nanocages filled with magnetic material, as
electrodeposits of magnetic material in nanoporous polycarbonate membranes, and
as dispersals in polymers. Molecular chemistry has produced molecules with giant
spins and colloidal chemistry has used micelles as microreactors to make all sorts
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of new magnetic nanoparticle. Naturally occurring biological systems have given us
ferritin, and biochemistry has provided us with their artificial analogs.

Among all these systems, an exciting type of material – molecular crystals with
identical magnetic molecules – has emerged for the study of macroscopic tunneling
in magnetism. Despite their relatively large size and the dipolar interactions between
their magnetic moments, these molecules clearly exhibit quantum tunneling of mag-
netization. The focus of this article is on two of these materials: (i) the spin cluster
system called “Mn12-ac”, a manganese acetate, the first system to exhibit what is
referred to as “resonant tunneling of magnetization”; and (ii) an analogous system,
the so-called “Fe8”, in which the same phenomenon was subsequently observed, but
at lower temperatures, which enables easier experimental studies.

4.2 Mn12-acetate

4.2.1 Experimental Results

In recent years much experimental and theoretical work has been performed on
molecules of [Mn12O12(CH3COO)16(H2O)4]. This molecule has tetragonal sym-
metry [1] and contains a cluster of twelve Mn ions divided into two shells (four
Mn4+ions with spin S = 3/2 in an inner shell surrounded by eight Mn3+ions with
spin S = 22 in an outer shell) with strong antiferromagnetic coupling (frustrated
triangles; Fig. 1). They form a collective ground state spin S = 10 with magnetic
moment M = gSµB ≈ 20µB (g ≈ 2 is the Lande factor) [2]. These molecules are
chemically identical and form a crystal with an average distance between Mn12 mole-
cules of the order of 15 Å [1]. Intermolecular exchange interactions are negligible
and dipolar interactions are approximately 0.01-0.02 K. This is much smaller than
the anisotropy barrier, U0, of each molecule (which is approximately 61–65 K [6a, 7,
9, 10]).

Fig. 1. Interaction scheme of Mn12 molecule.
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The AC susceptibility measurements of Sessoli et al. [2] and the magnetization
experiments of Paulsen et al. [6a, 7] reveal superparamagnetic behavior with a re-
laxation time that obeys the Arrhenius law τ = τ0 exp(U0/kBT ) (see Néel [3]) with
τ0 = 2×10−7s at high temperatures (T > 2.5 K) and a blocking temperature TB close
to 3 K (TB ≈ kBU0/ ln(t/τ0) ≈ 3.3 K for t ≈ 1 h). Above the blocking temperature
this superparamagnetic behavior is characterized by a Curie–Weiss law with a very
small positive paramagnetic temperature θ ≈ 70 mK. This indicates the existence of
weak dipole–dipole interactions between molecules. As the temperature decreases
from ∼3 K the magnetization evolves from relatively rapid roughly exponential re-
laxation (approx. 103s) to very slow non-exponential relaxation (approximately 107s
at T ≈ 2.1 K; non-exponential behavior, discovered later, will be discussed below)
[6a, 7, 9] (experimental results [8] have even suggested the occurrence of logarithmic
relaxation below 1 K, but this has not been confirmed by the more recent results of
Chiorescu et al. [85]). It was also found that the relaxation time τ(H) has a deep
minimum in zero field at T < 2 K [7, 9–11] whereas above this temperature τ(H)

has a maximum at 0.2 T (Fig. 2) observed, for the first time, by Paulsen et al. [7] (see
also the review paper by Barbara et al. [9]). This picture (strongly supported by dips
observed in AC-susceptibility measurements by Novak et al. [10]) was interpreted
as quantum tunneling of magnetization (QTM) of the collective spin S = 10 with
a crossover temperature TC ≈ 2 K, because of resonant energy-level crossing in a
two-well potential in a longitudinal magnetic field [6a, 7, 9–11, 4].

The reported experiments [6a, 9] were thoroughly repeated and confirmed [7].
More detailed measurements performed later [4, 11], showed steps in the isothermal
hysteresis loop (Friedman et al. [4] and Thomas et al. [11]) when the field is increased

Fig. 2. Variation of τ(Hz) [7, 9] at T > TC. Note that in this figure [9] the value of
T ln(τ (Hz)/τ0) is plotted to show also that U0(Hz) (effective barrier height) deviates from
∼ DS2(1 + Hz/2DS)2.
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Fig. 3. Hysteresis loops of Mn12 with the field along z-axis [11].

in the direction opposite to the magnetization at T < TB (Fig. 3, see also Ref. [6b]).
In the flat regions of the hysteresis loop the relaxation times were found to be much
longer than the experimental time window (∼600 s [11]) whereas in the steep regions
magnetization relaxes much more rapidly and the relaxation times can be of the
order of (or even less than) the experimental time window. The plot of ∂ Mz/∂ Hz
against longitudinal field Hz (Fig. 4) gives a series of peaks (with Lorentzian shape).
The maxima of these peaks enable definition of the values of magnetic field, Hn ,

Fig. 4. Field variation of the derivative ∂ Mz/∂ Hz taken at 1.9 K along the hysteresis loop of
the single monocrystal [12]. The sharp peaks correspond to the magnetization jumps, and the
flat regions correspond to the plateaus located between the jumps. The continuous line is a fit
to the Lorentzian peaks centered at Hn .
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Fig. 5. Dependence of relaxation times at 1.9 K on Hz obtained by Thomas et al. [11] from
repeated measurements for given Hz and T on the hysteresis loop. The insert shows the
dependence of relaxation-time drops on inverse temperature.

at which the magnetization steps occur, i. e. the fields Hn such that Hn ≈ 0.44n
T (n = 0, 1, 2, . . .). The relaxation measurements of Thomas et al. [11] show that
the relaxation time oscillates with the magnetic field (Fig. 5) and has deep minima
(resonances) at the same values of field where the steps are observed in the hysteresis
loop. These new experimental results clarify the problem of the maximum previously
observed at H = 0.2 T [7, 9, 10]. As suggested by Barbara et al. [9], it is effectively
the first maximum of the τ(H) curve. In addition, the blocking temperature TB also
has strong minima approximately at the fields Hn (extracted from the temperature
behavior of magnetization at different values of the field [4]).

All these results, interpreted as strong evidence of QTM, were obtained at
T < TB ≈ 3.3 K (in a longitudinal field). At the higher temperatures the mag-
netization relaxes too rapidly for quasi-static measurements and AC-susceptibility
(χ(ω) = χ ′(ω)− iχ ′′(ω)) measurements are necessary. The relaxation times can then
be determined, either from the position of the maxima of the imaginary susceptibil-
ity (χ(ω)′′ is maximum at ωτ = 1) or from the relationship τ = χ ′′(ω)/ω(χ ′(ω) −
iχ ′(∞)), where ω is the frequency of the AC field. The higher temperature relaxation
times also oscillate with minima at nearly the same field as in the low-temperatures
example, but the amplitude of the oscillations decreases. At 10 K, for example, this
amplitude is 25 times smaller than at the low- temperature [12] (Fig. 6). These mea-
surements show that, together with the regular decrease of the relaxation time with
the applied field (the usual field-dependence of the barrier), there is, even at temper-
atures well above the quasi-static blocking temperature, a fraction of molecules with
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Fig. 6. Field dependence of the relaxation time τ = χ ′′(ω)/ω(χ ′(ω) − iχ ′(∞)) from AC
susceptibility measurements [12]. The dashed line represents the fit of the thermal activation
background and the continuous curve is a fit of thermally activated resonance dips.

tunneling channels, as in the low-temperature regime. This means that at high tem-
perature the mechanism of relaxation is intermediate between that of the quantum
regime (where the ratio of the relaxation times at resonance and out of resonance
are much smaller than unity) and that of the classical regime (where this ratio tends
to unity).

It has also been found experimentally [4, 11] that the transition rate decreases
rapidly with temperature. If, therefore, the QTM mechanism is relevant for all these
experiments, it can be understood only by thermally assisted QTM (introduced by
Novak and Sessoli [10] and Barbara et al. [9]), where tunneling occurs from excited
levels. As the temperature decreases, the higher levels (close to the top of the barrier)
become increasingly less populated and the tunneling occurs between the lower levels
with smaller probability, explaining the extremely long relaxation time observed
below 1 K [6a, 7, 9].

In the presence of increasing longitudinal or transverse magnetic field, however,
relaxation is faster and can be easily measured in the main bulk phase of Mn12 (see
very recent experiments [85]). As an example we show in Fig. 7(a) some hysteresis
loops obtained from torque experiments in fields up to 6 T. As in Fig. 3, where
measurements were performed in lower fields and at higher temperatures, the loops
depend on temperature, but here this is true only above 0.8 K. Below this temperature
the loops are independent of temperature, showing that tunneling takes place from
the ground state, S = 10.

Similar results were obtained in a transverse magnetic field of approximately 4 T.
As an example we give in the insert of Fig. 7b the temperature-dependence of the
relaxation times measured on a short time-scale. They are clearly independent of
temperature below 0.8 K (this temperature is, by accident, nearly the same as in the
longitudinal field). This result shows that tunneling occurs here between the ground
states S = 10 and S = −10 of the two symmetrical wells. The main part of Fig. 7b gives
also an example of relaxation curves measured in the plateaus. On a short time-scale
the relaxation follows a square-root law, but on long time-scales it is exponential
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Fig. 7. (a) Hysteresis loops obtained from torque experiments on a single crystal of Mn12 (main
phase) [85] performed at temperatures between 1.3 and 0.4 K. The magnetization was first
saturated in a large positive field. The field was then reduced to zero and reversed. Data points
were obtained between −2.5 and 5.5 T. The sweeping field velocity was equal to 10.8 mT s−1.
The amplitude of the steps depends on temperature, but only above 0.5–0.8 K. Below this
temperature the hysteresis loops are independent of temperature, suggesting tunneling from
the ground-state, S = 10. (b) An example of magnetic relaxation experiments performed near
the maximum of the first resonance in the presence of a transverse field of approximately 4 T,
on a single crystal of Mn12. The data were obtained after saturation in a positive field and
fast application of the field to the top of the resonance. This curve shows that the relaxation
follows a square-root law on short time-scales and an exponential law on long time-scales.
The insert shows the temperature-dependence of the square root of relaxation time. Below
0.8 K the relaxation time is independent of temperature, showing the existence of ground-state
tunneling between S = 10 and S = −10 in this bulk phase of Mn12.
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(we should note that, although the two third of the relaxation curves could be fit
by ln(t), on the short time-scale the relaxation always follows the square-root law).
Such a crossover between square root and exponential relaxation occurs in all the
experiments of Chiorescu et al. [85] in both longitudinal and transverse fields. Note
that it was also observed in the low-field and high-temperature regime [57].

4.2.2 Basic Model

To proceed with some theoretical interpretations and conclusions one should, first
of all, establish a basic model describing the Mn12 spin structure. Early experimental
work by Sessoli et al. [2, 13] resulted in observation of the S = 10 collective spin
ground state, and the high-frequency EPR experiments of Barra et al. [5] enabled
fitting of its results to a “giant spin” S = 10 Hamiltonian which includes fourth order
anisotropy in the form:

HG = −DS2
z − K‖S4

z + K⊥(S4
+ + S4

−) − gµBHS (1)

neglecting higher-order terms, with D/kB ≈ 0.56 K, K‖/kB ≈ 1.11 × 10−3 K and
K⊥/kB ≈ 2.9 × 10−5 K. Recently, a new experimental technique, the “submillimeter
spectroscopy’, was applied to the Mn12 magnetic clusters [14]. This technique can
measure directly the energy levels which, in principle, give full information about
the Hamiltonian of the system. The information can be used to tune Hamiltonian
Eq. (1) in respect of higher-order anisotropy terms.

In this model, described by Eq. (1), the fourth-order terms contribute to tunneling
and, therefore, play a crucial role (the importance of the higher-order terms neglected
in Eq. (1) is discussed in Section 4.3.2.). Before using this Hamiltonian, however, it
is necessary to understand how the model of the collective spin S = 10 ground state
is stable with increasing temperature. To succeed in this task one can try to calculate
the energy levels of the entire problem (with all the couplings between 12 Mn ions,
as shown in Fig. 1). The dimension of the Hilbert space of such a problem is 108

and, because of the obvious uncertainty in the experimental determination of the
anisotropy constants, any such attempts will be rather useless. To achieve a solution
of the problem at least in the temperature region below 150 K, Tupitsyn et al. [15]
suggested application of the idea of a “reduced” Hamiltonian. It was assumed that
the largest coupling constant J1 (Fig. 1), which is of the order of 200 K, locks two Mn
ions with S1 = 2 and S2 = 3/2 into a spin state of S12 = 1/2 up to temperatures of the
order of J1 (similar tactics – “dimerization” – have been exploited [16, 17] after an
earlier suggestion [13]). Using this assumption, one can apply an effective eight-spin
Hamiltonian, Eq. (2), to check the temperature stability of the S = 10 ground state:

H = 1
2

[
4∑

〈µ,ν〉

(
C1Sµσν + C‖Sz

µσ z
ν

) + C2

4∑
〈α,β〉

σασβ

]

+ gµBH


 4∑

µ=1

Sµ +
4∑

ν=1

σv


 (2)
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Fig. 8. Simplified coupling scheme for the Mn12 molecule.

where S and σ distinguish four S = 2 spins from the outer shell and four combined
σ = 1

2 spins (Fig. 8). The Hilbert space of this Hamiltonian is 104 and it is now
possible to use the method of exact diagonalization to obtain the structure of the
energy levels. Even though this Hamiltonian is “reduced” (or “truncated”) it includes
both exchange and anisotropy, because of the second term with C‖} and simulates
the whole Mn12 molecule up to temperatures of approximately 150 K, at least. Note
that Eq. (2) ignores Dzyaloshinskii–Moria (DM) interactions which might also be
important in Mn12 [18], because, in antiferromagnetic systems with strong couplings,
this term can produce single-ion anisotropy which can affect the tunneling (but this
type of anisotropy can be “simulated” by the exchange anisotropy). In general, this is
a time-reversal symmetry- breaking term which can remove the Kramer’s degeneracy
of the energy levels (if any). Recent theoretical work (see Ref. [16] and references
cited therein) suggests rather strong DM interaction in the Mn12 clusters.

Because we do not know the constants C1, C2, and C‖, we should use experimental
results to determine them. Firstly, we calculated the magnetization Mz(T, Hz) and the
susceptibility χ‖(T, Hz) for different T and Hz. Comparing these calculated values
with the experimental results we tuned our coupling constants to obtain agreement
with experiment. As can be seen from Fig. 9, we found very good agreement for
C1 = −85 K, C2 = 55 K and C‖ = −7.5 K. We then used these constants to predict
the magnetization, Mx (T, Hx ), and the susceptibility, χ⊥(T, Hx ), in a transverse field.

Figure 10 shows there is good agreement with experimental results up to 150 K.
Above this temperature our model is no longer valid, because the pairs of spins S = 2
and S = 3/2 become unlocked. These calculations enable, in particular, conclusions
about the temperature range of validity of the collective spin S = 10 model. As is
apparent from Fig. 11, the multiplet S = 9 becomes occupied above approximately
40 K and the “giant spin” model with S = 10 becomes invalid. Another calculation,
made in the simple limit of a spin S = 10, enabled very good fitting of the mag-
netization curves, but only up to 30–40 K, showing also that the giant spin S = 10
cannot be valid above this temperature [18, 21]; interestingly, the measured (and
fitted) magnetization curves could not be distinguished from an hyperbolic tangent
with S = 10, showing the Ising-like character of the ground state S = 10, which is
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Fig. 9. (a) Temperature-dependence of longitudinal susceptibility χ‖. Triangles are experimen-
tal results [59]. The dashed line is χ‖T calculated from Eq. (2) with the contribution from the
energy levels up to 100 K only, starting from the ground state (85 levels). The solid line is χ‖T
calculated from Eq. (2) with the contribution from all the energy levels (104 levels). (b) Dots
are magnetization curves, plots of 〈Mz〉/Ms against longitudinal field measured by Thomas at
different temperatures [59]. Solid curves are the same curves calculated from Eq. (2).

occupied at temperatures below 10 K. This does not mean that the upper levels are
not occupied (the phenomenon of thermally activated tunneling developed below,
will show that), but simply that the weight of the ground state S = 10 dominates
magnetization curves below 10 K.

We can conclude that the tunneling in the S = 10 multiplet at temperatures above
30–40 K should be faster than in the S = 9 multiplet (for example), because higher
multiplets have broader and higher energy barriers. Experimentally this conclusion
is confirmed by the observation of well-defined and equally spaced resonances at
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Fig. 10. (a) Temperature-dependence of transverse susceptibility χ⊥. Triangles are experi-
mental results [59]. The dotted line is χ⊥T calculated from Eq. (2) with the contribution only
from the energy levels up to 100 K. The dashed line is the same but with the contribution from
energy levels up to 500 K (2982 levels). The solid line is χ⊥T calculated from Eq. (2) with
the contribution from the energy levels up to 1000 K (8362 levels). (b) Dots are magnetiza-
tion curves, plots of 〈Mx 〉/Ms against transverse field measured by Thomas [59] at different
temperatures. Solid curves are the same curves calculated from Eq. (2).

temperatures above 30 K [18, 21] (instead of randomly spaced resonances). It is also
interesting to note that neutron scattering experiments performed on Mn12-ac re-
ported the same temperature of approximately 40 K [19] for the transition from the
S = 10 ground state to S = 9. This means that the “reduced” Hamiltonian model
works well in the temperature region not higher than 120–150 K. In the framework of
almost the same model it was also shown by Zvezdin et al. [20] that the susceptibility
measured along a transverse field χ⊥(T, Hx ) has a peak in a transverse magnetic field
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Fig. 11. Energy spectrum, calculated from Eq. (2) up to 180 K. The stars show the parabolic
behavior (A(S2 − S2

z ) where −S ≤ Sz ≤ S and A =0.627 K) of the S = 10 multiplet.

at approximately 7–8 T. This peak can be interpreted in terms of a “resonance” be-
tween two states which are symmetrical relative to the applied field. Experimentally
this transition can easily be hidden by the effect of fourth-order anisotropy terms on
the magnetization curve, and to avoid thermal resonance, the temperature should
be at least 0.2 K.

Now, after the temperature range of validity of the “giant spin” model is es-
tablished, it is easy to estimate from Eq. (1) the critical values of the longitudinal
magnetic field Hn at which the intersection of energy levels occurs. The condition for
the intersection of the two levels Sz = m > 0 and Sz = (n − m) < 0 [9, 10], simply
reads [4, 11]:

Hn ≈ nD/gµB (3)

(for simplicity we neglect here all the other terms in Eq. (1), but can take them into
account in a more detailed analytical expression or numerically). Note that, because
the steps in the hysteresis loop were discovered only when the field is increased in
the direction opposite to the magnetization, we have changed a sign before the Hz
term. When the field is reduced, being parallel to the magnetization, there is no steps,
because the system is in its true ground state and there is no possibility of tunneling
to another well until the field passes through zero. The value D/kB ≈ 0.56 K gives
with Eq. (3) Hn ≈ 0.42n T, whereas the experimental value is Hn ≈ 0.44n T, as is
apparent from Fig. 5. At these values of the magnetic field Hz the levels m > 0 and
(n − m) < 0 come into resonance and the tunneling channels open.

Experimental measurements of the “effective barrier” height [21] enable us to
identify the lowest energy level (Sz = mt ) where tunneling is fast enough to be
recorded in a magnetization experiment. All the levels above this level have larger
tunnel splitting and, therefore, tunnel much more rapidly. They effectively short-
circuit the top of the barrier. This means that the “effective” height of the barrier
in zero magnetic field is Eeff(0) = D(S2 − m2

t ) whereas in a non-zero longitudinal
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Fig. 12. Dependence of the effective energy barrier of the Mn12 molecule on longitudinal
field [21]. The solid, dashed, and dotted curves represent the law Eeff(H) = �eff = −�(1 +
Hz/2DS)2 for different values of the barrier height U0 = �.

magnetic field we have Eeff(H) = −Eeff(0) × (1 + Hz/2DS)2 (we neglected all other
terms in Eq. (1) and assumed S � 1). In the high-temperature regime (T ≈ 2.6−3 K),
the relaxation time behaves approximately exponentially and follows the Arrhenius
law, with Eeff(H) = T ln(τ (T, H)/τ0). By measuring the relative size of dips on the
curve Eeff(H) one can estimate mt. As is apparent from Fig. 12 [21], the height of
the barrier in dips is reduced by approximately 10%; this corresponds to tunneling
from the levels mt ≈ 3-4.

If, however, Hz = 0, all the levels are in resonance, and tunneling can, in principle,
occur simultaneously from all the thermally excited levels. The tunneling rate �0(m)

between levels m and −m at zero temperature (and with no bias field between the
levels) is approximately:

�0(m) ≈ �2
m/G0 (4)

(see also Ref. [22]) where �m is a tunneling splitting, G0 is a level-broadening (we as-
sume G0 > �m). At non-zero temperatures one must include the thermal population
of the excited levels, which gives for the tunneling rate:

τ−1 ≈
∑

m

�0(m) exp(−Em/kBT ) (5)

where Em is the energy of level with Sz = m. Without a transverse field in Eq. (5) there
are only five terms which correspond to the tunneling between the levels linked by
the fourth-order term in Eq. (1) (i. e., only even values of m). From this “toy” model
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we can estimate the crossover temperature, TC, at which thermal activation over
the barrier is replaced by tunneling through the bottom of the barrier. At T < TC
the function Fm = −Em/kBT + 2 ln(�m) has a maximum at m = 10 whereas at
T > TC the maximum is at m = 2. Then, for crossover temperatures between these
two regimes, we can take TC ≈ (E2 − E10)/2 ln(�2/�10). Using the method of the
exact diagonalization we have calculated from Eq. (1) the energy spectrum and the
values of tunneling splitting �m,−m . Assuming that G0 is independent of m (actually
there is a weak dependence but we neglected it in this “toy” model), we obtain the
crossover temperature TC ≈ 1.3 K for Hz = 0.

This simplified model is far from reality, because it ignores correct description of
interactions with the environment and involves only transitions �m = ±4, whereas
experimentally almost all transitions with �m = −1 are observed (see Thomas et
al. [11]). This model cannot, therefore, be used to explain, e. g., the field dependence
of the relaxation time. Even from this model, however, it is clear that the tunneling
between the lowest levels at temperatures of approximately 2 K is already unfavor-
able. Therefore, at this temperature, the relaxation process should involve at least
three steps:
1. thermal activation (by phonons) to excited levels (for example S → mt);
2. tunneling across the barrier (mt → −mt); and
3. transition to the true ground state with phonon emission (−mt → −S). This is

thermally assisted QTM suggested for the first time [9, 10].
This was in zero transverse field. In the presence of a transverse field the situation

is completely different. The splitting �m = S increases in proportion to the power
2S = 20 of the ratio of the transverse to the anisotropy field (see Ref. [71a], for
example), the rate of relaxation should increase very rapidly as soon as the transverse
field is a sizable fraction of the anisotropy field. The results of Barbara et al. [18] are
highly indicative of ground-state tunneling in Mn12 if the transverse field reaches
3–4 T. Chiorescu et al. [85] showed that in such a field, relaxation is fast enough to be
easily and completely measured. This relaxation results, furthermore, from tunneling
through the barrier between the ground states Sz = ±10 and becomes faster than
relaxation by thermal activation above the barrier at the crossover temperature
TC ≈ 0.8 K. In these circumstances, when the transverse component of the applied
field, is much larger than all the other transverse matrix elements, Eq. (1), in principle,
can give quite satisfactory explanations of magnetic relaxation.

This is no longer so in low transverse fields, because then, even small transverse
matrix elements can be relevant, in particular those resulting from the environment
which is not taken into account in this section (see Section 4.4). Using this equation
one can, nevertheless, still predict very interesting effects which can be experimen-
tally observed at low temperatures and in a low transverse field. The tunneling split-
ting depends on the Haldane topological phase [32] originating from the quantum
interference of possible paths (around the hard axis) between two potential minima
(S and −S). This topological phase can be changed by an external magnetic field,
causing oscillations of the tunneling splitting [23, 24, 31, 33, 36]. These oscillations
have already been observed experimentally in the similar system Fe8 [25], but we
will discuss this system later. The easiest way to see the oscillations of the tunneling
splitting analytically is to truncate the Hamiltonian in Eq. (1) to a simple low-energy
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two-level Hamiltonian. Because of the presence of fourth-order terms, however, this
task becomes rather complicated and as far as we are aware the form of such a trun-
cated Hamiltonian has not yet been established. Because higher-order anisotropy
terms (up to 20th order with S = 10) can, moreover, contribute importantly to the
value of the tunneling splitting (Section 4.3.2), any attempt to calculate the tun-
neling splitting precisely becomes rather pointless, because higher-order anisotropy
terms cannot be measured with current experimental techniques. Because we just
want to show the principle effects, we proceed, nevertheless, with the simple biaxial
Hamiltonian which includes an easy axis/easy plane anisotropy in the following way:

H = −DS2
z + E S2

x − gµB Hx Sx (6)

The calculation of tunneling splitting for an isolated tunneling spin in the instanton
technique began with the work of Enz and Shilling [71b]. For interaction of spin
tunneling with background spins, results were first obtained by Prokof’ev and Stamp
[28], with much more detailed work appearing later (see Tupitsyn et al. [23, 31]).
Different aspects of this problem have been discussed elsewhere [27, 28, 34–36, 71,
72]. The two-level effective Hamiltonian obtained reads simply:

Heff = 2�0τx cos[π S − �] (7)

where �0 is the tunneling splitting in zero external field [23, 29–31], τx is the Pauli
matrix, and � is the Haldane topological phase:

� = πgµB Hx/2[E(E + D)]1/2 (8)

This expression of � was given by Garg [24] for the particular Hamiltonian where
the quantization z-axis is chosen along the hard axis and the field is applied along
this axis. Note that the result relative to the Haldane phase [23] was given in the limit
|E | � |D|, i. e. � = πgµB Hx/2E . This limit does not, however, affect the physics of
the problem in general. For integer S, we obtain from Eq. (7):

�H = 〈↓ |Heff| ↑〉 = �0| cos(�)| (9)

whereas for half-integer S:

�H = �0| sin(�)| (10)

Eqs. (9) and (10) clearly show the oscillations of the tunnel splitting as a function
of the transverse magnetic field, together with the parity effect [23, 31, 35–38]. This
last effect shows that half- integer spin does not tunnel in zero transverse field. Note
that a magnetic field along the easy axis (or along the medium axis, which is y-axis in
this example) does not produce any oscillations and this can be seen mathematically,
because the effective tunneling splitting �H in this instance behaves like �0| cosh(�)|
(for details see Tupitsyn et al. [23, 31]). Eq. (7) gives the general effective two-level
Hamiltonian describing tunneling with a transverse magnetic field (� = �H + i�M
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is complex; the contributions from hard and medium axes are denoted �H and �M ,
respectively).

For Mn12, where the lowest-order transverse anisotropy term is of the fourth-
order (higher-order terms have not yet been determined), we can write instead of
Eq. (8), (for Hy = 0):

� = πgµB Hx/Tx (D, K‖, K⊥, S) (11)

where Tx (D, K‖, K⊥, S), the period of the oscillations along the x-axis, can be cal-
culated numerically from Eq. (1). Note that this equation has two hard axes (x and
y) which are equivalent. This means that oscillations with the same period should
be seen along both directions. By use of the exact diagonalization method we have
calculated the tunnel splitting �m,−m for different m; the results can be seen in Fig. 13.

Firstly, it is easy to understand that the tunneling splitting has a non-zero value
in zero transverse magnetic field, only for levels with even values of m (which is
related to the fourth-order anisotropy term). For all the other levels (with odd m)

Fig. 13. Dependence of the tunneling splitting �−m,m (Mn12), calculated from Eq. (1) for
different values of m, on transverse magnetic field.
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the tunneling splitting is non-zero only if the magnetic field is finite (which also
produces transitions because of S+ and S−). To see easily why the oscillations can be
seen only in a finite region of transverse magnetic field (from −Hc to Hc), let us again
forget for a moment about the fourth-order term and return to Eq. (6). Combining
two non-diagonal terms we obtain the function A(θ, ϕ) = (sin(θ) cos(ϕ)− Hx/2E S)2.
When Hx < Hc = 2E S, A(θ, ϕ) as a function of ϕ has two local minima at non-zero
ϕ. Because the Haldane phase is nothing else but the area on a unit sphere enclosed
by two possible paths between two minima Sz = S and Sz = −S, when Hx < Hc the
topological phase (which is an imaginary part of the instanton action) has a non-zero
value and changes in Hx results in oscillations of �. For Hx > Hc = 2E S, however,
the function A(θ, ϕ) has only one local minimum at ϕ = 0, meaning that both paths
joining the states S and −S coincide (up to the ϕ fluctuations of trajectories which
re-normalize the value of Hc to [2E(E + D)]1/2S). The area enclosed by these two
paths, i. e. the imaginary part of the instanton action is zero and, therefore, there are
no more oscillations of the tunneling splitting (see also Garg [24]).

It is important to note that the number of zeros of the �m,−m(H⊥) function is
highly dependent on the symmetry of the anisotropy terms. For the Hamiltonian of
Eq. (1) (for Mn12) where the lowest transverse anisotropy term is of fourth order,
the number of zeros for even values of m (along the positive or negative direction of
the field) should not exceed the number of times (ν = 1, . . . , 5) the operator S4− has
to be applied to the state Sz = m to reach the state Sz = −m. (This is, however, valid
for K⊥ > 0 only; if K⊥ < 0, the x and y axes are no longer the hard axes and �(H⊥)

would obviously not show oscillations along these directions.) The tunneling splitting
for odd m has an additional zero at zero magnetic field. In these circumstances the
chain of operators S4− or S4+ which should be applied to the state |m〉 to reach the
state |−m〉 must be completed by additional operators S− (or S+) which come from
the magnetic field term (i. e. |−m〉 = (S−)2(S4−)ν |m〉 with ν = 0, . . . , 4). The same
situation should occur for tunneling between the levels involved in the resonance by
applying a non-zero longitudinal magnetic field (for example, levels Sz = −m and
Sz = m − n). Only the levels linked by (S4+)ν or (S4−)ν (ν = 0, . . . , 4) can have non
zero tunneling splitting in zero transverse field (Fig. 14). It is, moreover, easy to see
from this figure how the period of the first oscillation decreases when n increases
inside the group of curves (−10, 9)/(−10, 7) (or (−10, 5)/(−10, 3)). To reach the
states Sz = 9, 8, 7 from the state Sz = −10 we should apply S4− four times and then,
to complete the chain linking the mentioned states, apply S− three times, twice, or
once.

If, in addition, we apply the transverse magnetic field at different azimuth angles ϕ

and increase ϕ from 0, the amplitude of the oscillations becomes smaller and vanishes
at ϕ = π/4, because for fourth-order anisotropy the π/4-axis is an easy axis. When
ϕ is increased from π/4 to π/2, however, one can see the same curves. This is quite
obvious from the symmetry of the problem (Fig. 15). This is so when K⊥ > 0. If
K⊥ < 0, as noted already the x and y axes are no longer the hard axes. Two axes
along the directions ϕ = ±π/4 become harder for the system. Some oscillations
along these directions should be observed.
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Fig. 14. Dependence of tunneling splitting �−10,10−n (Mn12), calculated from Eq. (1) for
different values of n, on transverse magnetic field.

4.3 Fe8 Octanuclear Iron(III) Complexes

4.3.1 Experimental Results

Another molecule, the so-called Fe8, with the chemical formula
[Fe8O2(OH)12(tacn)6]8+, where tacn represents the organic ligand triazacy-
clononane, is currently under intensive investigation. It contains eight iron(III) ions
(S = 5/2) with strong antiferromagnetic coupling between the ions [39] (Fig. 16).
Similarly to Mn12 they form an uncompensated S = 10 collective ground state. Four
Fe8 ions in the middle of the molecule are in the so-called “butterfly arrangement”.
This system is nearly orthorhombic with strong Ising-like anisotropy and an energy
barrier of approximately 24 K (approximately one-third of that for Mn12) [39, 40].
Analysis of the dependence of magnetic susceptibility on temperature shows that
only the levels S > 8 are populated near 10 K [39]. (As for Mn12 – see above – one



4.3 Fe8 Octanuclear Iron(III) Complexes 127

Fig. 15. Dependence of tunneling splitting �10,−10 (Mn12), calculated from Eq. (1) for different
values of the azimuth angle ϕ, on transverse magnetic field.

Fig. 16. Interaction scheme for the Fe8 molecule.
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Fig. 17. Hysteresis loops recorded on a
single crystal of Fe8 molecules [42] at
different temperatures and at a constant
sweep rate, ∂ H/∂t , of 0.14 T s−1.

must say that upper levels are also occupied, but the weight of the ground state,
S = 10, dominates the susceptibility.)

Magnetic relaxation experiments have been performed on Fe8, by following
the same procedure as described above for Mn12. The relaxation rate becomes
temperature-independent below 0.35 K, as was shown by Sangregorio et al. [41]. This
can also be seen in the hysteresis loop recently shown for a single crystal (Fig. 17)
[42].

As in Mn12, equally-spaced steps were observed, but with smaller spacing –
�H ≈ 0.22 T instead of 0.44 T. It has been found that at these values of the field
(Hn ≈ 0.22n T), the relaxation becomes much faster than that in the plateaus [41].
These observations give a second example of tunneling across the anisotropy en-
ergy barrier, when the levels from the opposite sides of the barrier come into reso-
nance. At low temperature, and without a transverse field, the ratio of the relaxation
time measured at resonance and out of resonance is larger than in Mn12 by one
or two orders of magnitude, showing that under these conditions the relaxation in
Fe8 is faster than that in Mn12, by the same factor (one or two orders of magni-
tude). (As mentioned above, however, in the presence of a transverse field of a
few Tesla the relaxation of Mn12 becomes much faster; if the transverse field is
3–4 T, ground-state tunneling between S = +10 and S = −10 is observed below the
crossover temperature TC ≈ 0.8 K [85].) In Fe8 ground-state tunneling occurs below
TC ≈ 0.35 K, but for Fe8 it is not necessary to apply a transverse field. To fit the relax-
ation data, a stretched exponential law M(t) = M(0) exp[−(t/τ)β(T )] was used (with
β(T ) increasing from approximately 0.4–0.5 (below 0.4 K) to nearly 1 at T ≈ 1 K)
[41]. This law was also observed for measurements on an oriented crystal by Ohm
et al. [43, 56]. At temperatures below 0.35 K and after short times, the best fit of the
data is square root behavior M(t) = M(0)[1 − (t/τshort)]1/2) (Fig. 18). This law was,
in fact, predicted by the theory of Prokof’ev and Stamp [44] for relaxation as a result
of tunneling at the bottom of the barrier, after short times and at low temperatures,
with initial magnetization near saturation. These measurements were later repeated
at lower temperatures (T = 40 mK) by Wernsdorfer et al. and the square root law
was confirmed [45]. Note, however, that this law was also observed by a zero-field
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Fig. 18. Square root of time relaxation curves for a single crystal of Fe8, as measured by Ohm
et al. [43] (see also Ref. [56]) at 150 mK for Min = Ms. The insert shows the distribution of
τ−1

sqrt extracted from the above data as a function of field.

cooled annealed sample which was then left to relax in a finite field, i. e. near zero
magnetization. A similar effect was also observed for Mn12 [85] (see below). This
needs further theoretical investigation [91].

In conclusion, in Fe8 relaxation occurs in the pure quantum regime by tunneling
through the barrier between the states Sz = ±10 at temperatures T ≤ TC ≈ 0.35 K
and zero transverse field. Similarly, ground-state tunneling was also observed in
Mn12, although a transverse field of 3–4 T must be applied to achieve this result;
the crossover temperature is then larger than in Fe8 (TC ≈ 0.8 K for Mn12). The
application of such a transverse field to Fe8 would makes the relaxation so fast it
would be impossible to measure it (unless by EPR). At higher temperatures the
AC-susceptibility experiments of Caneschi et al. [42] show peaks similar to those
observed in Mn12 [12, 21], but they are more pronounced than in Mn12, from which
we may conclude that mt (m value for the barrier short-cut) is larger for Fe8. One
should, however, keep in mind that the collective spin S = 10 of this molecule breaks
down near 10 K, suggesting that the peaks observed at high temperature (7 K) come,
to a large extent, from multi-spins tunneling. This is corroborated by the observation
that the peaks are not regularly separated and that their mean separation looks closer
to 0.14 T than to the 0.22 T of the spin S = 10.
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4.3.2 Basic Model

High-frequency EPR was applied by Barra et al. [40] to investigate the magnetic
anisotropy of Fe8 molecules. They found biaxial anisotropy described by the Hamil-
tonian H = −DS2

z + E(S2
x + S2

y). More recent neutron spectroscopy experiments
(Caciuffo et al. [46]) have discovered the presence of a fourth-order term. According
to these experimental data, the Hamiltonian for the Fe8 molecule can be written:

HG = −D0S2
z + E0(S2

x − S2
y) + K⊥(S4

+ + S4
−) − gµBHS (12a)

which is equivalent to:

HG = −DS2
z + E S2

x + K⊥(S4
+ + S4

−) − gµBHS (12b)

where D/kB = (D0 − E0)/kB ≈ 0.23 K, E/kB = 2E0/kB ≈ 0.094 K, and K⊥/kB ≈
−3.28×10−5 K (g ≈ 2; [40, 46]). Eqs. (12a) and (12b) are valid only in the temperature
range where the collective spin S = 10 can be defined, i. e. at temperatures below
10 K [39] (this temperature is 40 K in Mn12).

In the same way as for the Mn12 molecule we can estimate the value of the
longitudinal magnetic fields at which the levels from the opposite sides of the barrier
(say, Sz = m and Sz = n − m) come into resonance. Eq. (12b) gives:

Hn = (nD/gµB)[1 + E/2D] (13)

(we again neglected the fourth-order term). The contribution E/2D compensates
for the difference between D and D0 (compare with Eq. 3) and one must, therefore,
have D0 = D[1 + E/2D], which is true and identical with D = D0 − E0 (see above).
Eq. (13) gives Hn ≈ 0.205n (in Tesla), whereas the experimental value is 0.22n T.

These considerations show there can be some uncertainty in both the actual values
of the constants and in the types of the anisotropy terms included in the Hamiltoni-
ans. As was pointed out elsewhere [44, 47], higher-order transverse anisotropy terms
(even with very small constants) can make an important contribution to the value
of the tunneling splitting. This can be seen easily from perturbation theory (for the
lowest-order perturbation approach for the tunneling splitting [48, 49, 71]. A simple
form of the tunnel splitting, �−m,m ≈ D(K⊥p/D)2m/p (where p is the order of the
anisotropy term in the Hamiltonian), can be written [21] by following Ref. [71] (we
omit here the dependence on the value of S). As an example, Eq. (12b) gives for
m = S = 10 and p = 2 or p = 4, �10,−10 ≈ D(E/D)10 or �10,−10 ≈ D(K⊥/D)5. The
contribution of, e. g., the 10th-order term already gives D(K⊥10/D)2. Unless there is
a quasi-exponential increase of � with p, divergence of higher orders of the tunnel-
ing splitting is forbidden, because of the rapid decrease of the constants K⊥p (these
constants are directly connected to the crystal- field parameters, which we know
decrease very rapidly with the expansion order p). � depends, nevertheless, on the
value of K⊥p in a such a crucial way that all the terms up to 20th order can be impor-
tant. Values of K⊥p for the higher orders (except p = 4) cannot, however, currently
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be measured experimentally. This makes very problematic any quantitative calcula-
tions of the tunneling splitting from Eq. (12b). The actual behavior of �m,n−m(Hx )

is highly dependent on the values of the anisotropy constant. Any uncertainties in
these constants cause changes in the period and amplitude of the oscillations in the
transverse magnetic field (Figs 13–15, 22–23). The number of the oscillations (which
are confined in a given field interval) itself also depends on the relative values of the
constants. In the simplest example of biaxial anisotropy (Eq. 6) the field interval for
oscillations is [−Hc, Hc], where Hc ≈ [2 · E · (E + D)]1/2 · S. Consider the tunnel
state where |−10〉 and |10〉 are admixed, with splitting �10,−10. To reach the state
|−10〉, starting from the state |10〉, the operator S p

+ must be applied 20/p times (for
even p). The main consequence is that the number of oscillations depends directly
on the symmetry of the anisotropy – ν(p = 2) = 10 oscillations for second-order
anisotropy or ν(p = 4) = 5 oscillations for fourth-order anisotropy. It is clear that
if K⊥ increases from zero the transition from ν(p = 2) = 10 to ν(p = 4) = 5
will not be discontinuous, because both periodicity will be involved in the interfer-
ence. If K⊥ is negligible (in Eq. (12), only the second order term contributes to the
splitting. As K⊥ increases above some critical value K⊥c ≈ 2E/S2, however, (with
K⊥ > 0) its contribution becomes dominant and ν(p = 2) = 10 decreases pro-
gressively to the value ν(p = 2) = 4 (as in Eq. 1). Simultaneously, the period and
amplitude of oscillations increase. One must note that the changes in anisotropy con-
stants are not small–the transition between ν(p = 2) and ν(p = 4) occurs when the
values of consecutive orders in Eq. (12b) are nearly identical. In the above example
K⊥c ≈ 2E/S2 ≈ 1.8×10−3 K is approximately 102 times the real value of K⊥! Except
for very unusual values of the crystal field parameters, such a transition could not be
observed. In any case, this situation is not stable, because the splitting resulting from
such large K⊥ is itself very large – �c ≈ 7 × 10−3 K, i. e. nine orders of magnitude
larger than the actual splitting given above; (let us note, in passing, the huge effect
of K⊥ on �). If the value of �c is compared with the splitting given (e. g. Fig. 22),
it is not difficult to imagine that the energy spectrum will changes dramatically and
all the levels with definite Sz will be completely admixed (Sz will not be conserved).
In the opposite case (K⊥ < 0), increasing |K⊥| above K⊥c leads to disappearance of
the oscillations, because the x-axis is no longer the hard axis of the system. (This is
also true for the y-axis, because of the tetragonal symmetry of Eq. 12b).

Any other anisotropy terms of order higher than four could, in principle, change
the number, the period, and the amplitude of the oscillations. These oscillations
have recently been observed in the Fe8 system by Wernsdorfer et al. [25]. Figure 19
shows the measured tunneling splitting as a function of transverse magnetic field at
different azimuth angles ϕ.

Using the Hamiltonian Eq. (12b) we have calculated the tunnel splitting in a
transverse field by simple diagonalization of the 21 × 21 matrix. We obtain similar
oscillations as in Ref. [25] with the values D/kB = 0.23 K, E/kB = 0.094 K, and
K⊥/kB = −3.28 × 10−5 K. There are some differences between the curve calculated
for ϕ = 0◦ and the measured curve (the calculated curve is sharper near the nodes,
and the experimental curve shows some increase of the value of �−10,10(Hx ) in the
nodes). The curve calculated for ϕ = 1◦ (shown in Fig. 20) is, however, more similar
to the experimental curve.
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Fig. 19. Dependence of ground-state tun-
neling splitting �10,−10, measured for sev-
eral azimuth angles ϕ, on transverse mag-
netic field [25].

Fig. 20. Dependence of the ground-state tunneling splitting �10,−10, calculated from Eq. (12b)
for several azimuth angles ϕ, on transverse magnetic field.

This suggests misorientation in the experiments. The reason for this suggestion is
connected with the observation that increasing the magnetic field along the medium
axis (which is the y-axis in this instance) increases the tunneling splitting which obeys
the relation �0| cosh(�y)| (where �y is the Haldane phase for the magnetic field Hy
and �0 is the tunneling splitting in zero field). The simplest (although not unique)
way to simulate this non-zero component of the Hy field is to introduce a “misalign-
ment” angle between the x-axis and the direction of the applied magnetic field. One
cause could be the mosaic which is always present in molecular crystals of this type,
which is also of the order of 1◦. This, however, leads to random misorientation be-
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tween, say, +0.5◦ and −0.5◦. Such a mosaic should modify the curve �−10,10(Hx ),
but in a distributed way, and this could contribute to the observed broadening of the
nodes. Another origin of misorientation is the triclinic symmetry of the Fe8 mole-
cule; reducing the symmetry should induce new crystal-field parameters and new
contributions to the tunneling splitting, which are, to a first approximation, taken
into account by field Hy . In what follows, we will use the value θm = 1◦ for this
“misalignment” angle.

The calculated �−10,10(Hx )) with zero longitudinal field (but θm = 1◦), can be seen
in Fig. 20. The period of the oscillations is approximately 0.41 T, in agreement with
the experimental value. The curves with the larger value of ϕ (up to π/2) clearly show
that the oscillations disappear (in agreement with the experimental behavior) when
the direction of the applied field approaches the medium axis (y). The agreement
is not very good for the absolute value of �−10,10(Hx ) and the shape of the last
oscillation. These discrepancies might indicate that the Hamiltonian Eq. (12b) is
not quite satisfactory in respect of the unknown higher-anisotropy terms. It would
always be possible to choose values of these terms up to highest order (20) to get
the best fit. One might also consider the effects of couplings to the environment. To
give an idea of the influence of high-order terms, we show Fig. 21, the effect of the
fourth-order term added to the second order term. Starting from Eq. (12b), we have
calculated numerically the period of oscillations TH, for different values of K⊥. When
this term is null i. e. when the period is given by Eq. (8), the value of TH is about one
half the measured value. The value of the fourth-order term K⊥ = −2.9 × 10−5 K,
enables recovery of the measured period. One could also take another value of K⊥,
determined independently, and fit the period on the eighth-order term (for example).
This type of activity is currently unproductive and we stop this discussion here.

At higher values of K⊥ the period depends on K⊥ almost linearly but the value of
interest (|K⊥| ≈ 3/4 × 10−5 K) is in the non-linear region. In the absence of longi-
tudinal field, (�−m,m−n with m = 10 and n = 0), it is easy to interpolate TH by some
simple formula, even in this region, but all the other anisotropy constants also have
uncertainty in their values. To tabulate TH as a function of all available anisotropy
constants, we have used the combination of the method of exact diagonalization with
the method of polynomial interpolations. The final formulas are valid in quite a wide
region of the values of the anisotropy constants (in Kelvins):

D/kB ∈ [−0.06, −0.45]; E/kB ∈ [0.5, 0.13];
K⊥/kB ∈ [−0.8 × 10−5, −5.2 × 10−5] (14)

and can be written:

TH = (2kB/gµB)[E(E + D)]1/2
3∑

µ,ν=1

XK
µ Gµν XE

ν (15)

where Gµ,ν =
3∑

α,β=1

Xν
α�

µ
α,β XD

β (16)
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Fig. 21. The period of the oscillations of the ground-state tunneling splitting �10,−10, calculated
from Eq. (12b), as a function of the fourth-order anisotropy constant, K⊥.
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For the general case (n > 0), one must return to full numerical calculations. The
period depends on the values of n and m (Figs. 22 and 23a,b). Figure 22 shows the
tunneling splitting �m,−m (in Kelvins) as function of Hx (in Tesla) in zero longitudinal
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Fig. 22. Dependence of tunneling splitting �−m,m (Fe8), calculated from Eq. (12b) for different
values of m, on transverse magnetic field.

magnetic field for the azimuth angle ϕ = 0 (with “misalignment” angle θm = 1◦).
Because of the presence of the second-order term in Eq. (12b) all the �m,−m have
non-zero values in zero transverse field. As discussed above, negative K⊥ tends
to reduce the number of the oscillations along the hard x-axis because it makes
x-direction easier for quasi-classical motion of the giant spin. This effect leads to
the decrease of the imaginary part of the instanton action (by reducing the area
on the unit sphere enclosed by two possible paths joining quasi-classical minima
−S and S). In these circumstances it is difficult to calculate the exact number of
oscillation. Firstly, analytical solution of the problem in the presence of the fourth-
order term is not easy; perturbation theory, in particular, cannot be applied to large
transverse magnetic fields. The instanton technique and WKB approximations give
non-analytical solutions which require numerical calculations (there is no reason
to apply this, because we already have an answer given by the method of exact
diagonalization). As mentioned above, the only conclusion we can make here is that
the number of oscillations is determined by the exponents α, β and γ in the chain
of operators (S1±)α(S2±)β(S4±)γ which should be applied to the state |m〉 to reach the
state |n −m〉. The operator S± comes from the transverse magnetic field term and S2±
and S4± come from the second- and fourth-order anisotropy terms, respectively. It is
clear that the whole picture is defined by the combined symmetries of the anisotropy
terms. This is apparent in Fig. 22, with the change of the period with m and the shape
of the last oscillation. Note, in particular, that the quantities �10,−10, �8,−8, and �6,−6
(with the difference δSz = 4 in the lengths of the chains connecting |m〉 and |−m〉



136 4 Quantum Tunneling of Magnetization in Molecular Complexes

Fig. 23. Tunneling splitting �−10,10−n (Fe8), calculated from Eq. (12b) for different even (a)
and odd (b) values of n, as a function of transverse magnetic field.

states) behave similarly. The situation is the same for �9,−9, �7,−7 and �5,−5. For
smaller m the structure of the interference is also affected by the admixing of states
with different m (Sz is not a good quantum number for the Hamiltonian Eq. 12b).

The same conclusions can be drawn, in the presence of a longitudinal field. The
functions �−10,10−n(Hx ) calculated for ϕ = 0, are plotted in Fig. 23 (with n even (a)
or odd (b)). The resonant longitudinal field for particular n is defined by Eq. (13) (it
was, of course, necessary to tune the value of the field around these Hn). The levels
Sz = −10 and Sz = 10 − n with odd values of n cannot be linked in zero transverse



4.4 Environmental Effects 137

Fig. 24. Tunneling splitting �−10,10−n (Fe8)
measured for n = 0, 1, 2 [25].

field (there are no matrix elements between them) and, therefore, they have a zero
tunneling splitting at Hx = 0. The levels Sz = −10 and Sz = 10 − n with even values
of n can be linked, even in zero transverse field, and tunnel splitting is finite. (As an
example, for n = 1 and n = 2 one must apply S± and S2±, respectively.) The curves
calculated in Fig. 23 can be compared with those measured for Fe8 [25] and plotted in
Fig. 24. The absolute value of the tunneling splitting is, again, not in the best possible
agreement with experimental results. These authors [25] did not, unfortunately, show
the behavior of the curves with n = 1, 2 (and larger n) at higher values of transverse
magnetic fields. Comparison of measured and calculated curves in the region of high
fields can help determine which types of anisotropy are important in the “giant spin”
Hamiltonian. In other words, measurement of the tunnel splitting as a function of
a magnetic field can be used to determine the crystal field parameters of the ”giant
spin” Hamiltonian. This method should be quite sensitive to higher-order anisotropy.

In addition, we would like to stress that the actual behavior of the tunneling
splitting in the region of the nodes is very sensitive to the environment. This point
will be discussed below in the part of this review related to the low-temperature limit
of the relaxation of the magnetization (Environmental Effects).

4.4 Environmental Effects

Current theories are unable to explain results from relaxation experiments in
all temperature ranges. It is, therefore, reasonable to consider low temperatures
(ground-state tunneling regime) and higher temperatures (thermally assisted tun-
neling regime) separately. The first is better understood by the theory of Prokof’ev
and Stamp [44, 47, 72, 73, 77], while progress in the understanding of the second is
being made by Luis et al. [50], Fort et al. [51], and Leuenberger et al. [52]. Because the
barrier height for Fe8 is approximately one third that for Mn12, the amount of tunnel-
ing splitting is larger for all states. In particular, one expects a barrier cut-off at larger
mt in the high-temperature range, and faster relaxation in the low-temperature range.
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These circumstances make Fe8 molecules very attractive for the study of ground-
state tunneling (i. e. the pure quantum regime). The thermally assisted regime is
usually (historically) the main subject of investigations on Mn12 molecules.

4.4.1 Experimental Picture

To deal with relaxation one must take into account environmental effects. The en-
vironment of a molecule essentially comprises ensembles of bosons and fermions
coupled to the spin of the molecule. In real molecular systems the most important
environmental effects come from phonons, nuclear spins, and dipolar fields. The
environment can absorb finite variations of energy and angular momentum. This
is extremely important because the non-conservation of these quantities can forbid
tunneling. The environment is also responsible for the broadening of resonance lines.
The shape of these lines is usually obtained from a plot of dMz/dHz against Hz, as this
was first defined by Thomas et al. [11]; for Mn12 resonance line-shapes were nearly
Lorentzian and of width 40 to 100 mT. Furthermore, as mentioned by Barbara et
al. [18, 11], tunneling resonance could not have been detected with the poor field
resolution of conventional SQUID magnetometers, if resonance lines were not sub-
stantially broadened, and, because pure phonon broadening is too small by a factor
of 100 [65], broadening of magnetic origin must play the major role (the line-width
in the absence of environment is approximately equal to tunnel splitting, �). This is
true at low temperature only, because the effect of phonons is obviously dominant in
the thermally assisted regime. Very similar broadening of transitions was observed
for Fe8 by Ohm et al.; at low temperatures they were approximately 12–15 mT [43].

We now describe the origin of the resonance line-width in molecular crystals, in the
two limits of high and low temperatures (see also Barbara et al. [21] for qualitative
description from experiments). In the thermally activated regime (where � at the
bottom of barrier can reach values of the order of 0.5 K) the line-width is at least
equal to the value of the tunneling splitting. The resonance line in this regime must
be homogeneously broadened with Lorentzian shape, because of equilibrated spin–
phonon transitions, and was observed for Mn12 [11, 12, 60]. Note that line-shape
can deviate from Lorentzian, depending on the magnetic history of the sample,
because the width of distributions of dipolar and hyperfine fields are of the same
order as tunneling splitting. It might be surprising to see that magnetic history can
be important in a basic effect such as tunneling. In fact the magnetic history is always
important when irreversible processes are involved, and this is so here.

It is well known that frozen distributions of hyperfine and dipolar fields (quenched
from the super- paramagnetic state) have Gaussian distributions if the temperature
is low enough to prevent fast spin reorganizations. In these circumstances reso-
nance lines will be inhomogeneously broadened, with no Lorentzian and, eventually,
Gaussian line-shapes. In the low temperature regime, where thermal fluctuations are
essentially frozen, tunneling will only be possible through internal field fluctuations,
of amplitude Hf. These fluctuations are because of nuclear spins in weak dipole–
dipole interactions, and because of strong hyperfine interactions with electronic spins.
Internal field fluctuations involve spin–spin quantum dynamics of the considered sys-



4.4 Environmental Effects 139

tem, which can be tested on either electronic or nuclear spins. In Mn12 each ion has
a nuclear spin, whereas in Fe8 this is so for only 2% of the ions (57Fe). Each Fe8
molecule contains 120 hydrogen, 18 nitrogen, and 8 bromine atoms, however, all of
which have non-zero nuclear magnetic moments. They produce (together with the
dipole moment of each molecule) the fluctuating internal field acting on each mole-
cule. The amplitudes, Hf, of these fluctuating fields are extremely small (they can be
evaluated from NMR experiments [86]; e. g., for the protons in Fe8 Hf ≈ 1.4mT [21]).
Because quantum tunneling is possible only within this range of fluctuating fields,
spin reversals from S to −S will occur only in a narrow energy window of width Hf,
“digging a hole” in the initial distribution of internal fields. The frozen distribution of
internal fields (resulting from electronic and nuclear spins which are not affected by
the quantum dynamics) could be obtained from measurements of dMz/dHz against
Hz, by sweeping the longitudinal field, as discussed above. In contrast with the high-
temperature situation, however, the distribution which is probed here for each value
of Hz is inhomogeneous, and it will be possible to probe this distribution as long as Hf
remains much smaller than its width. This will be so unless the temperature increases
to the point where Hf becomes of the order of the total local field distribution. The
cross-over between inhomogeneous Gaussian-like to homogeneous Lorentzian-like
distributions occurs when the temperature becomes large enough to equilibrate the
spin system. In Mn12, the tunneling window Hf was evaluated assuming oscillations
of the mean dipolar and hyperfine field with �m = �I = ±1 [21, 87].

Low-temperature (0.04-0.3 K) experiments by Wernsdorfer et al. [53], using the
“hole digging” technique’[45], based on the theory of Prokof’ev and Stamp’[44],
have recently enabled measurement of the tunneling window. In this theory the rate
of relaxation of the magnetization, �sqrt(H), is proportional to the distribution of in-
ternal bias field P(ξH). In the experiment, during the digging time tdig a small fraction
of the molecules (those in resonance with the applied external digging field, Hdig)
tunnel, reversing the direction of their magnetization. This causes rapid transitions
of molecules close to resonance around Hdig. Such transitions are effectively “dig-
ging a hole” in an initial distribution of the internal fields (Fig. 25). The hole widens
in time, depending on the digging time, tdig. The hole-width (which is obtained by
linear interpolation to tdig = 0) results in intrinsic broadening of the nuclear fields
σhyp (Fig. 26). It has been found [53] that the width of the Gaussian distribution of
hyperfine fields, σhyp, is ∼12 mT, which is orders of magnitude larger than the value
of the tunneling splitting �10,−10. σhyp is temperature-independent up to approxi-
mately 0.4 K and then starts to increase (Fig. 27). (This last observation needs further
theoretical investigation, because the square-root theory [44] does not work at such
high temperatures.) We should note, however, that these “hole digging” experiments
were performed on the minority phase of Mn12, and that in the presence of a mag-
netic field this system can have a lower crossover temperature. Low-temperature
studies of main phase of Mn12 have recently become possible. A large magnetic field
was applied to get rid of the minority phase [85].

Similarly to Mn12, it was observed for Fe8 that the first maximum in the relaxation
rate is not in zero applied field, but at 8 mT. As in Mn12 this was attributed to the
effect of internal fields [41]. This was for a powder sample; for a single crystal it
was found that the resonance width (approximately 12- 15 mT) is as in Mn12 and,
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Fig. 25. Quantum-hole digging in the initial distribution of internal fields [53]. Note that these
measurements were performed on a minor species of Mn12. (For details about the different
species of Mn12, see Refs [42] and [53] and references cited therein.)

Fig. 26. The dependence on digging-time of hole-shape in Mn12 [53].

Fig. 27. Temperature-dependence of hyperfine line-width (σhyp) in the Mn12 crystal [79].
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for the same reason (intermolecular dipolar interaction), orders of magnitude larger
than expected without environment or with phonons only [11, 18, 65]. A difference
between these two systems is that the first resonance is observed in a negative field
in Mn12 and in a positive field in Fe8. This was interpreted as a consequence of the
competition between the demagnetizing field −N M (shape-dependent, where N is
the demagnetizing factor) and the local Lorentz field +(4π/3)M [21]. Because the
Mn12 crystals are elongated, the demagnetizing field (which is antiparallel to M) is
smaller than the Lorentz field and the internal field is parallel to the magnetization,
M – it is necessary to apply a negative field to cancel the internal field.

The situation is just opposite with Fe8. This discussion was with reference to the
most probable values of internal fields; we now know that the internal fields are
widely distributed in both systems (see above). Hole-digging experiments similar to
those described above for the impurity phase of Mn12 were performed for Fe8 [45],
also at low temperature. It was found that, for thermally annealed sample (down
to values of magnetization of approximately −0.2Ms, where Ms is the saturated
magnetization), the distribution P(ξH) of the internal bias field ξH is very accurately
described by a Gaussian function (Fig. 28). As a matter of fact such a distribution is
expected from theoretical models, but only in the limit of high spin concentrations
(dipolar field distribution of a dense set of randomly oriented spins [88, 54]. In
the other limit, of dilute static dipoles, the distribution must be Lorentzian, as was
shown by Anderson [55]. A study for different concentrations was performed and
showed that more complicated and sometimes bi-modal distributions could occur
between these two limits [89]. Interestingly, in Fig. 28 the maximum of P(ξH) is
shifted from H = 0. The shift is even larger than in Ref. [41], because the experiment
was performed at a lower temperature - the magnetization, and thus the local field,
are larger (the sample was not absolutely annealed). The width of this distribution
(σdip) was found to be of the order of 50 mT).

The relaxation of the molecules, as for Mn12, digs a hole in P(ξH) at the value of
the applied field. The width and depth of the hole change with waiting time, i. e. with

Fig. 28. Tunneling distribution in Fe8 (which, according to Prokof’ev and Stamp [44], is pro-
portional to the distribution of P(ξH) of the internal bias field, ξH) for and annealed sample
[45]. The insert enlarges the region of the fields around the hole.
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Fig. 29. Dependence of hole shape (in initial distribution of the dipolar fields in Fe8) on the
amount of annealing [45]. At initial magnetization Min < |0.5Ms| the hole becomes indepen-
dent of future annealing and gives the line-width σhyp ≈ 1.2–1.6 mT.

the time during which the field is applied (insert in Fig. 28). For initial magnetizations
close to saturation the hole is large and asymmetric, whereas for initial magnetization
less than |0.5Ms it becomes symmetric, independent of further annealing (on initial
magnetization), and has a width of approximately 1.2–1.6 mT (Fig. 29). Similarly
to Mn12 this line-width is temperature-independent up to 0.4 K and then starts to
increase (Fig. 30). Before these experiments were performed values of the hole width
at 0 K were predicted by Prokof’ev and Stamp [44], from the nuclear spins, by use of
in their theory; the values obtained, 0.3 mT for Fe8 and 25 mT for Mn12, are close to
the measured values. It was shown that the dipolar fields produce the bias, ξH, which
is a few orders of magnitude larger than the value of the tunneling splitting and,
therefore, can block the tunneling. The fast nuclear dynamics (transverse relaxation
in nuclear subsystem or, in other words, T2 processes) broaden the resonance line,
however, and open a channel for tunneling. This explains the origin of the hole (its
width is defined by the width of the distribution of the hyperfine fields) in the field-
dependent relaxation rate (which is proportional to the total distribution of internal
fields).

All these low-T experiments performed on Fe8 [41, 43, 45, 53, 56] demonstrate the
square-root relaxation law after short times (approximately the first 100 s; see, e. g.,
Fig. 17). According to the theory of Prokof’ev and Stamp this law comes from the
time-dependent distribution of fluctuating internal dipolar fields in a sample. Fast
initial transitions change the total distribution of internal fields across the sample
that can push some molecules out of resonance but bring other molecules into the
resonance everywhere in the sample and allow continuous relaxation. When times
are longer times the experimental relaxation data are better fitted by the stretched
exponential law with β ≈ 0.4 [41, 43].

Thomas and Barbara [21, 57–59] have shown that in Mn12 relaxation behaves
non-exponentially, even at relatively high temperatures (up to 2.8 K); this can be
understood as a consequence of intermolecular dipolar coupling. (At low temper-
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Fig. 30. Temperature-dependence of the
hyperfine line-width width (σhyp) in a crys-
tal of Fe8 [80].

atures non-exponential relaxation was seen in many experiments [4, 6, 7, 11, 53,
62]). The exponential relaxation can occur only in the limit of non-interacting (with
each other and with the nuclear thermostat) molecules when we can simply write
dM(t)/dt = −τ−1 M(t). For interacting molecules the right-hand side of this equa-
tion contains a different term, M∗(t), = f (M(t)), which results in deviation from the
exponential law (note that simple distribution of relaxation times also results in non-
exponential behavior). As was reported elsewhere [57], below approximately 1.7 K
the relaxation follows a square-root law with characteristic time, τ , weakly depen-
dent on temperature, whereas at temperatures above 2.5 K the characteristic time
follows the Arrhenius law, but the relaxation is still non-exponential, because of the
dipolar interaction between molecules. To fit the experimental relaxation curves it
was necessary to use the stretched exponential law with β(T ) < 1. Below 1.9 K β(T )

is approximately constant near 0.5. At low temperatures, however, the stretched ex-
ponential law was not really satisfactory. As is apparent from Fig. 31, the square-root
law fits all the experiments up to ∼1.7–1.8 K (see also Thomas and Barbara [58]).

At higher temperatures, between 2 K and 2.8 K, dipolar interactions play a less
fundamental role, but their influence can still be observed, e. g. from the observation
that the relaxation is clearly non- exponential (the exponent of a stretch exponential
fit increases from 0.5 to 1 [21, 57–59]) and also from the shift of the maximum of
the relaxation curve in magnetic field. This shift, found by Thomas and Barbara
for Mn12 at different temperatures [21, 57–59], is because of the evolution of the
internal field with temperature. It was suggested [21, 57] that this shift can produce
square root-like relaxation laws of origin different from the Prokof’ev and Stamp
law. Instead of being at zero Kelvin, this law, with temperature-dependent relaxation
times, is valid at high temperature, even if the system is equilibrated. This suggests
that quantitative description of the thermally assisted regime for Mn12 should take
into account interactions with the spins’ environment (not only with the spin–phonon
interaction). This also explains [21] why the resonance lines have Lorentzian shape
[11, 12] although the relaxation is not exponential.

Note that even if the observed resonances can be well fitted to Lorentzian law [11,
12] (and not to the Gaussian law associated with hyperfine and dipolar fields [60]) this
does not mean that hyperfine and dipolar interactions are not relevant. The widths
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Fig. 31. Time decay of magnetization in Mn12, plotted as a function of the square root of time
[58]. Lines show linear fits.

of the dipolar fields and the distribution of hyperfine fields in Mn12 are comparable,
and although these fields can participate in the resonance broadening their non-
Lorentzian character is hidden by the long Lorentzian tails (and experimental error
bars). It has been shown that the observed Lorentzian line-shape does not prove that
the system of molecules is equilibrated - the shape of the resonance depends on the
history of the sample (field cooled or zero-field cooled, quenched or not quenched)
[21]. Finally, it should be mentioned that the published line-widths depend on the
authors; they vary from 20 mT [60] to 30 mT [53] or 35 mT [12].

A continuous increase of the resonance line-width was observed with the index of
the resonance at temperatures close to 3 K [21]. Because this effect was not symmet-
rical with the magnetization state M = 0, one cannot infer dipolar field distribution.
It might, instead, be because of the intrinsic line-width, �, which, at the higher tem-
peratures (when the tunneling occurs at the top of the barrier) is of the order of
0.5 K (which is larger than the other contributions [21]) and which increases, on
average, with applied field. This observation confirms that even if dipolar interac-
tions and hyperfine interactions (with longitudinal T1 relaxation processes, driven
by the fast dipolar processes [44, 47, 61]) are essential in the range 2 to 2.8 K, at
the higher temperatures (e. g. between 2.8 and 3 K) the intrinsic line-width, �, plays
the most important role. Under these conditions, i. e. at temperatures rather close to
the blocking temperature (3 K), the transitions are homogeneously broadened and
the observed Lorentzian line-shapes really attest to thermal recovery of the spin–
phonons system. (Note that fast dipolar flip–flop processes are also able to provide
thermal quasi-equilibrium on each side of the barrier, producing, simultaneously,
rapidly fluctuating fields acting on each molecule.) In this limit the spin–phonon in-
teraction becomes predominant leading to the thermally assisted tunneling regime.
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The observation of history-dependent peak shapes for Mn12 at a relatively low
temperature (1.6 K) [21], leads us to question the validity of experimental determina-
tions of Lorentzian line- shapes. To extract this distribution from the plot of measured
relaxation against field it is necessary to assume an analytical law to fit the data. As an
example, Friedman et al. [60] fitted the experimental curve to exp(−t/τ). As shown
above [21, 53, 57–59], however, the relaxation clearly deviates from exponential even
at these high temperatures (2–2.6 K). This must lead to large errors in the relaxation
time (obtained at each field) and, therefore, in the resonance line-width. Note that
even in the exponential regime, error bars on the equilibrium magnetization, Meq,
in M(t) = Meq + (Min − Meq) exp(−t/τ) lead to uncertainties in the line-shape. The
value of Meq can be obtained accurately only when relaxation is very fast, i. e. either
very close to the blocking temperature of 3 K (and under these conditions there is no
doubt about the Lorentzian form) or in the presence of a large transverse magnetic
field which increases the tunneling gap [85].

In conclusion, each molecule can tunnel under the effect of rapidly fluctuating
fields originating from dipolar and hyperfine interactions, and also under the effect
of spins–phonon interactions at higher temperatures. Only in this last circumstance
(where the transition width is intrinsic) are the spins and phonons is equilibrated (no
hole in the spin energy distribution).

4.4.2 Thermally Assisted Tunneling Regime

The first attempt to apply phonon-based mechanisms was made by Villain et al. [63]
and Politi et al. [64] before the resonant tunneling in Mn12 was confirmed experi-
mentally. Politi et al. [64] considered the giant spin model for single Mn12 molecule in
a longitudinal magnetic field (Eq. (1) with no S4

z term) with coupling to the acoustic
phonons in the form:

Hsp−ph =
∑

g

(
h̄/2Nu Muωq

)1/2
[
iqVq(S)C+

q − iqV +
q (S)Cq

]
(19)

where Vq(S) ≈ D(Sx Sz + Sz Sx ), Nu is the number of unit cells, Mu is the mass per
unit cell and Cq is the phonon annihilation operator. They ignored the possibility
of the tunneling (because of the fourth-order anisotropy term) at the top of the
barrier (and at the bottom) and obtained the result τ−1 ≈ (SHz)

3 for the relaxation
rate, in contradiction with the experiments which demonstrated the existence of a
minimum of relaxation time near Hz = 0, rather than a maximum (Fig. 5). Later, this
theory was extended by including the interactions with nuclear spins (the possibility
of tunneling was again ignored and only the longitudinal part of hyperfine interaction
was considered) [65]. It was found that combination of these two mechanisms (strictly
speaking, the sum of two different curves) can give a minimum of the relaxation time
at zero field. This theory was also unable to describe the resonant behavior of the
relaxation curve.

Phonon-mediated tunneling relaxation was considered in the theory of Garanin
and Chudnovsky [26], which also involved random hyperfine fields. They ignored



146 4 Quantum Tunneling of Magnetization in Molecular Complexes

higher-order anisotropy terms in the Hamiltonian, however, and based their calcu-
lations on perturbation theory for a small transverse field, Hx .

All these models are qualitatively or quantitatively in contradiction with exper-
imental results. They are, nevertheless, not incorrect and they show (directly or
indirectly) the importance of the hyperfine interaction and of intermolecular dipolar
coupling (see, for example, Burin et al. [67]). The problem is that to obtain a quan-
titatively correct answer it is necessary to remember that (even at temperatures of
approximately 2 K) the tunneling effect involves all the interactions of the spin of
each molecule with the environment of spins and phonons. This is very difficult task.
For example, Dobrovitski and Zvezdin [68] concluded that correct description of
the jump width of the hysteresis loop (Fig. 3) required consideration of fluctuating
internal fields, because they found for pure giant spin Hamiltonian a huge discrep-
ancy with the experimental results. They limited themselves to the suggestion that
the origin of this field could be dipole–dipole in nature, however. They estimated
an average value for jump width by using a Gaussian distribution of the fluctuating
field. Similar calculations were made by Gunther [69] who calculated the width of the
jump in the hysteresis loop and concluded that it is necessary to involve dynamical
transverse magnetic fields to avoid discrepancies with experimental results.

The first theory to accommodate fourth-order anisotropy terms was that of Luis et
al. [50]. They presented a theory of resonant quantum tunneling of large spins through
thermally activated states which includes: phonon-mediated transitions between the
states m and m′ with m − m′ = δm = ±1 (in the simplest form Sx Sz + Sz Sx ), resonant
tunneling as a result of fourth-order anisotropy terms, and a transverse magnetic field.
They assumed that the transverse magnetic field originates from the combined action
of dipolar and hyperfine fields. They concluded, of course, that internal fields alone
cannot explain the minima on the relaxation curve but, together with fourth-order
terms, these fields can account for the experimentally observed behavior of relaxation
in Mn12. To obtain the lifetime of the excited levels (because of phonon-mediated
transitions) they applied a standard master equation. Finally, the spin-relaxation rate
was averaged over a Gaussian distribution of longitudinal dipolar fields (together
with hyperfine fields). Despite the inequivalent treatment of tunneling between the
resonance states and phonon-mediated transitions, this model was the first which
described (qualitatively) the hysteresis loop of Mn12 [11], and other experimental
results obtained at high temperatures (T > 2.5 K). It is important to note, however,
that in this model the magnetization always relaxes exponentially “after a brief non-
exponential relaxation” (see also Fernandez et al. [78]). As we have seen above,
however, the magnetization relaxes non-exponentially, unless the temperature is
very close to the blocking temperature (approximately 3 K).

Fort et al. [51] recently improved the calculations of Villain et al. [63–65] by adding
tunneling through the top of the barrier. They derived the master equation:

dNm/dt =
2∑

p=1

Nm−pγ
m
m−p +

2∑
p=1

Nm+pγ
m
m+p

−Nm

2∑
p=1

(ym−p
m + γ

m+p
m ) − (N−m − Nm)�m (20)
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where nm is the number of molecules in spin state |m〉, γm p is the spin–phonon
relaxation rate from state |m〉 to state |p〉, and �m is the tunneling relaxation rate
from state |m〉 to state |−m〉. This equation includes phonon mediated transitions
with δm = ±1, ±2 and tunneling between the states |m〉 and |−m〉. Using Eq. (20)
the authors concentrated on investigation of the first resonance (Hz = 0) on the
relaxation curve (Fig. 5). They noted that in the region of the validity of their the-
ory (Hz < 3 kOe) the relaxation rate calculated at the temperatures T = 2.8 K and
T = 2.97 K are in good agreement with the experimental temperature, and that this
agreement between the theory and experiment becomes better at higher tempera-
tures. They also noted that a general treatment of this problem requires incorporation
of other interactions (dipolar, random fields, etc.), because the model with fourth-
order anisotropy term gives only transitions with δm = ±4. It was suggested that
the theory was modified by inclusion of transverse fields (of any nature) which obey
selection rule δm = ±1 (i. e. which contain terms like Sx or Sy).

Very recently Leuenberger and Loss [52] presented a theory of the relaxation in
Mn12 at high temperatures (2 K and higher) based on thermally assisted spin tunnel-
ing in a weak transverse magnetic field. They solved the standard master equation
(for the reduced density matrix ρ(t)) which includes both resonance tunneling as a re-
sult of the fourth-order anisotropy term (and transverse fields) and phonon-induced
transitions with δm = ±1, ±2. The origin of the transverse field was attributed to
misalignment of θm = 1◦ between the field direction and easy axis, extracted from
the experiment of Friedman et al. [60] (see also Ref. [4]). As is noted by the authors,
this model is in “reasonably good agreement with all the experimental parameter
values known so far”. Differences from the work of Fort et al. [51] are:
1. a more general spin–phonon interaction was considered;
2. transitions induced by a transverse magnetic field were included; and
3. longitudinal fields were not limited to the resonance near Hz = 0.

All this enabled them to obtain an independent description for each resonance in
the experimental curve of Fig. 5. To obtain a continuous description of the depen-
dence of relaxation time on Hz the authors applied Kirchhoff’s rules by associating
each independent path from |−10〉 to |10〉 with the probability current Jn = dρn/dt ,
where ρn is the reduced density matrix ρ(t) for a particular path n. This theory can
be applied to Mn12, but after some correction, given below. The theory, given in [52],
allows to recover the observed Lorentzian line-shape for the resonance peaks, but
the procedure used to obtain the experimentally observed line-width was, however,
“confusing”. The authors cut off the calculated Lorentzians to the appropriate val-
ues, because these Lorentzians were found to be extremely high and narrow. This
procedure was, of course, supported by mathematical arguments, but the problem
is that the authors (and Fort et al. [51]) missed from their theory the most impor-
tant contribution – the value of the tunneling splitting in the denominator of their
formula for the tunneling rate. As we will discuss below, this missed term makes the
most important contribution to the width of the resonance line.

It was also shown [52], that even and odd resonances should have different sizes,
because even resonances are induced by S4+ or S4−, whereas odd resonances are
induced by combinations such as Sx S4+ or Sx S4− (a similar effect was found experi-
mentally by Thomas and Barbara [11, 21]). In addition, on the basis of experiments
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by Caneschi et al. on dilute samples [70] (compared with the same measurements
on powder samples), the authors completely ignored dipolar fields and hyperfine
coupling, because these contributions should give rise to the Gaussian distribution,
whereas the peaks of relaxation rate, observed experimentally, are Lorentzian in
shape. We have, however, already noted (see the penultimate paragraph of Sec-
tion 4.4.1), that it is not easy to draw conclusions from experiments at T < TB ≈ 3 K
about the real shape of these peaks (even if they are the Lorentzians) close to tails.
Even if the phonons dominate in the relaxation mechanism at T > 2 K (about
which there is no doubt), the influence of dipolar and hyperfine couplings cannot
be negligible because (at least) the relaxation behaves non-exponentially at these
temperatures [21, 53, 57–59, 62].

In the following text we would like to present a qualitative picture of the thermally
assisted tunneling phenomenon including coupling to the environment (in respect of
resonance line-width). We do not state that our calculations are complete; we merely
wish to show how this works. (N.B. similar calculations were performed by Prokof’ev
and Stamp several years ago but were not published.)

The Hamiltonian of interest for the Mn12 molecule can be written:

H = HG + Hsp−ph + Hhyp + Hdip (21)

where HG is given by Eq. (1) and we take the spin–phonon Hamiltonian in the
simplest form of Eq. (19) with V (q) = D(Sx Sz +Sz Sx ) = (D/2)[(S++S−)Sz +Sz(S++
S−)]. The third term in Eq. (21) describes the hyperfine interaction of central spin S
with the nuclear spins σk of each Mn ion (i. e. N = 12 nuclear spins):

Hhyp = 1/S
12∑

k=1

(h̄ωk/2)Sσk (22)

And, finally, the last term gives the dipolar intermolecular interaction:

Hdip = 1/2
∑
i �= j

Vi, j Si S j (23)

where Vi, j depends on the cube of the inverse distance between the molecules.
Let us now assume that the system is close to the characteristic magnetic field Hn
(Eq. 3) when some pairs of levels from the two opposite sides of the barrier come
into resonance. Because this pair of levels is well separated from the others, we can
truncate the giant spin Hamiltonian HG to a two-level Hamiltonian Hm,n−m and
consider the pair of levels |m〉 and |n − m〉 with the corresponding energies E0

m and
E0

n−m (E0
m = −Dm2 − K‖m4):

Hm,n−m = �m,n−mτx + ξm,n−mτz (24)

where �m,n−m is the tunneling splitting (because of fourth-order anisotropy terms,
transverse components of dipolar and hyperfine interactions, and transverse com-
ponents of external magnetic field which can originate from the experimental mis-
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alignment of the crystal), ξm,n−m is longitudinal bias:

ξm,n−m = (2m − n)

[
(E0

m − E0
n−m)/(2m − n) + 1/S

12∑
k=1

(h̄ωk/2)σ z
k

+
∑
j �=0

(V0, j/2)m∗
j − gµB Hz

]
/2 (25)

and τx , τz are the Pauli matrixes. In Eq. (25) the third term comes from the longitudi-
nal part of the dipolar interaction, where m∗

j is the spin state of the jth molecule. In
these circumstances can obtain, for the maximum value of the tunneling probability
with no phonons:

Pm,n−m(0) = �2
m,n−m/(ξ2

m,n−m + �2
m,n−m) (26)

The longitudinal hyperfine couplings give a Gaussian spread to each giant spin en-
ergy level, Em . This means that each energy level Em is actually split into a Gaussian
multiplet with N +1 different polarization groups of N = 12 nuclear spins. In reality
one should consider tunneling between sublevels from opposite sides of the barrier,
which are in the resonance for a given field. In the simplest example (zero approxi-
mation), however, we will consider the longitudinal internal bias (which comes from
the hyperfine coupling) just as some “mute” variable ε with Gaussian distribution:

G(ε) = (2πσ 2
o )−1/2 exp(−ε2/2σ 2

o ) (27)

In this example the half-width σo ≈ N 1/2ω0 with ω0 = 〈ωk〉 and, according to the
experimental results given above [21, 53, 87], σo ≈ 6 mT (i. e. ω0 ≈ 1.75 mT). As
for the dipolar coupling, we do not know it reliably except from some preliminary
measurements which give ED = 2σo ≈ 20 mT) and, therefore, for the distribution of
dipolar fields we take the same value σo ≈ 6 mT. A remark should be made here. The
distribution of dipolar fields is highly dependent on the value of the magnetization
(e. g. M ≈ 0 after zero-field cooling or M ≈ Ms after field cooling, where Ms is
the saturated magnetization) and on the shape of the sample. Only after sufficiently
strong annealing M < 0.5|Ms| one can observe the Gaussian distribution for dipolar
fields. In the following discussion we assume zero-field cooling (an annealed sample).
Thus, we can rewrite Eq. (25) in a more transparent form (ε includes contributions
from both hyperfine and dipolar fields):

ξm,n−m = (2m − n)[gµB(Hn − Hz) + ε]/2 (28)

where Hn is the characteristic field from Eq. (3) (values of Hn are calculated using
Eq. 1). Choosing Gaussian distributions for both dipolar and hyperfine fields, and
with the same σo, is a great simplification which leads to the belief that dipolar fields
are more or less ignored, because they behave as “non-interacting” hyperfine fields.
Strictly speaking we are not far from this suggestion in our simple model, but here we
do not see the reason to play with the form of distributions. In reality, however, one
should also include the flip–flop transitions between molecules which come from the
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transverse part of dipolar interaction. When system relaxes, moreover, the total bias
field (internal plus external) changes in time. The flipping of the molecules produces
time-dependent fluctuations of dipolar fields which also cause the transitions in the
nuclear subsystem. Each molecule therefore feels a rapidly fluctuating field ξ = ξ(t)
[44, 47, 61, 72, 73]. This means that the Boltzmann distribution is time- dependent
and additional time-dependence produces deviations from the exponential law (and
these deviations increase with decreasing temperature). Ignoring that, we assume
here that all these processes are fast enough to keep the thermal quasi-equilibrium
at each side of the barrier with the “static” Boltzmann distribution. This leads, of
course, to exponential relaxation, but the above simplification is sufficient for our
purpose, which consists in estimating the width of the resonance line for an annealed
sample.

The transverse part of the hyperfine interactions contributes to the Berry phase
of a central spin in producing a random complex phase (for a details see Tupitsyn
et al. [23, 31] and Prokof’ev and Stamp [47, 72, 73]). For our current purposes we
can say that the transverse hyperfine interaction will act as a transverse field, and
therefore change the tunnel splitting into effective splitting:

�m,n−m = �m,n−m(�) (29)

where �m,n−m(0) is the tunneling splitting in zero external transverse magnetic field
with no hyperfine interactions and � is an additional phase from hyperfine inter-
actions. It would be wrong to say that the distributions of internal transverse and
longitudinal fields are always the same. In zero approximation, however (and for
a strongly annealed sample) we can use this suggestion and consider the Gaussian
distributions with the same width, σ0, for both transverse and longitudinal fields (it
is, of course, easy to take different σ0 for these fields).

Next, we should take into account the magneto–acoustic interaction. It was shown
by Kagan and Maksimov [74] that the correct contribution (to all orders in �) from
inelastic phonon processes to the transition rate can be written as:

�m,n−m = �2
m,n−m Wm/(ξ2

m,n−m + �2
m,n−m + h̄2W 2

m) (30)

where h̄Wm is the phonon line-broadening (see, for example, Blum [66]):

Wm = 1/4

(
m+p∑

K=m−p

WK ,m +
n−m+p∑

K=n−m−p

WK ,n−m

)
(30a)

and p is an integer number which describes inter-level transitions, allowed by the
particular form of spin–phonon interaction V (q). Note that Eq. (30) clearly shows
the expected dependence of the Lorentzian form on longitudinal fields for a system
at quasi-equilibrium (see Eq. 28). The most important transition here is that to the
next upper level (from |m〉 to |m − 1〉) with phonon absorption. From Eq. (19) with
V (q) = D(Sx Sz + Sz Sx ) we obtain [63–65, 90]:
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Wm−1,m = (3D2(S + m)(S − m + 1)(2m − 1)2 E3
m−1,m)

·
(

8πρc5h̄4 [exp(Em−1,m/T ) − 1]
)−1

(31)

where ρ = M/a3 is the mass density (a is the lattice constant), c =
(kB/h̄)θD(Vo/6π2)1/3 [75], is the velocity of sound, θD is the Debye temperature,
Vo is the unit cell volume, and Em−1,m = Em−1 − Em . According to recent measure-
ments of the specific heat of Mn12 by Gomes et al. [76] θD = 38 ± 4 K; from Ref. [1]
we can take Vo = 3716 Å3 and ρ = 1.83 × 103 kg m−3.

To see the dominant contribution to the Lorentzian line-width (Eq. 30) one must
compare ξm,n−m , �m,n−m and h̄Wm. As already noted, the estimated width of the
Gaussian distribution of internal fields is approximately 2σ0 = 12 mT (for hyperfine
interaction, at least). Let us concentrate for the moment on the high-temperature
regime, with thermally activated tunneling from levels m smaller or equal to 4. In
zero external field �m,−m(0) gives 1.1 × 10−2 K and 0.34 K, for m = 4 and m = 2,
respectively, whereas h̄W3,4 ≈ 1.02 × 10−5 K and h̄W1,2 ≈ 6.08 × 10−7 K (for T =
2.6 K and c = 1.4×103 m s−1). It is only in the region of m = 6 (or larger) that values
of h̄Wm−1,m and �m,−m(0) become more or less comparable. To take into account
odd values of m (and non-zero n), we have to include internal transverse fields (as
discussed above Eq. 29).

We can also consider phonon-assisted transitions with δm = ±2. For simplicity
we take V (q) = D(S2

x − S2
y) = D(S2+ + S2−)/2. For the transition from |m〉 to |m − 2〉,

this yields 52]:

Wm−2,m = (3D2(S + m)(S + m − 1)(S − m + 2)(S − m + 1)E3
m−2,m)

· (8πρc5h̄4[exp(Em−2,m/T ) − 1])−1 (32)

This equation gives h̄W2,4 ≈ 2.99 × 10−5 K and h̄W0,2 ≈ 1.16 × 10−5 K (for
T = 2.6 K also). These numbers show that transitions with δm = ±2 cannot change
the relative contributions of the values h̄Wm and �m,−m(0) to the Lorentzian line-
width. For definition of Wm in Eq. (30a), however, we use the contribution from
both transitions (|m〉 → |m −1〉 and |m〉 → |m −2〉 simultaneously). Of course, spin–
phonon interaction contains other terms but it is unlikely that this contribution will
be larger in magnitude than the value already calculated for Wm. Although it also
possible to include the transitions from |m〉 to |m + 1〉 or to |m + 2〉 in the definition
of Wm, these transitions are important to the kinetics only in the sense that they are
important in establishing equilibrium on each side of the barrier. Because we merely
want to estimate the width of the resonance line, we do not include these processes
in our qualitative model.

All this means that in the thermally activated regime (near the top of the barrier)
the line-width is defined mainly by the tunneling splitting of the resonant levels and by
the internal longitudinal fields (see Eq. 28), but not by the phonon line-broadening.
Note, however, that the phonons play an essential role in “linking” the states on the
same side of the barrier (otherwise only the ground state would be occupied, unless
one admits that all the bias is dynamic). The dipolar flip–flop processes also can cause
transitions between the energy levels providing thermal equilibrium.
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We should note that Villain and Fort et al. [51] and Leuenberger and Loss [52] have
slightly different definitions of the tunneling rate. Both definitions can, however, be
written:

�m,n−m = �2
m,n−m Wm/

(
ξ2

m,n−m + h̄2W 2
m

)
(33)

where m and n − m are the levels in the resonance and ξm,n−m = ξm − ξn−m with
ξm = E0

m − gµBm Hz (where E0
m = −Dm2 − K‖m4), i. e. ξm,n−m is the bias of Eq. (25)

(or Eq. 28) with no internal bias fields. According to this formula, the half- width of
the resonance peak should be of the order of h̄Wm (see Eq. 30a) which is actually very
small in comparison with �m,−m in zero field for upper levels where the tunneling
occurs at T > 2 K. (see above, just after Eq. 32). The reason for this problem is that
Eq. (33) misses the term relative to the intrinsic width �m,n−m (Eqs. 30 and 33). This
term is definitely not negligible for thermally activated tunneling. The problem with
the tunneling rate calculations in both papers is the same – instead of inserting the
stationary solution for the non-diagonal part of the density matrix in the equation for
the diagonal part of the density matrix, one should apply the Laplace transformation
to these equations and find the smallest real root of the equation for the Laplace
variable “s”. This root gives �m,n−m as in Eq. (30) with �2

m,n−m in the denominator.
The approximation with stationary solution of the equation for the non-diagonal part
of the density matrix gives Eq. (33) without �2

m,n−m . Apparently, this approximation
does not work well and leads to very narrow and high Lorentzians. This problem has
been “eliminated” by an analytical truncation procedure [52] leading to an effective
half- width of the peaks (relative to external field, Hz) of ω′ ≈ �m,m′/ηm,m′ (where
ηm,m′ = |m−m′|gµB). This result, however, comes directly from Eq. (30) if we ignore
the contribution from dipolar and nuclear fields (Eq. 28). In addition we should
mention that the equation for the diagonal part of the density matrix was solved
numerically, by exact diagonalization, by use of Eq. (33) without truncation procedure
(i. e., with ω′ ≈ h̄Wm/ηm,m′) [52]. It was claimed that numerical calculations give
results very similar to those obtained analytically with the tunneling rate given by
Eq. (33) with the truncation procedure (i. e. with effective line-width of the order
of �m,m′). Because we do not know the details of these numerical calculations, the
origin of this similarity is not clear to us.

Note also that, together with the tunneling rate �m,n−m between resonant lev-
els, one can include an incoherent tunneling rate �in

m,m′ which involves (when
Hz = 0) direct transitions between levels |m〉 and |−m − 1〉 (or |−m − 2〉) because
of phonon emission. Let us assume that Eq. (33) (in the transition between |m〉 and
|m〉 = −m − 1, −m − 2, . . .〉) would give such an incoherent tunneling rate. Then, be-
cause ξm,m′ = ξm −ξm′ , the incoherent rate �in

m,m′ (relative to Hz) is a Lorentzian with
a half-width of the order of h̄Wm/ηm,m′ , centered at the field H0 = (E0

m − E0
m′)/ηm,m′

even for the first resonance (n = 0, Hz < 0.44 T). It is easy to see that, even at the
top of the barrier, H0 is quite large, because E (0)

m − E (0)

m′ for m = 2 and m′ = −3 is
approximately 2 K. Of course, the resonance peak (for definite n) is the combination
of all possible �m,m′ (coherent and incoherent), but this does not sufficiently improve
the above mentioned problem, because the experimentally measured resonance
peak for n = 0 is centered at Hz = 0.
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Bearing in mind the kinetics of the relaxation processes in this system, we suppose,
however, that the contribution from the correct incoherent tunneling rate does not
change the resonance line-width by much in comparison with the contribution from
the coherent tunneling rate of Eq. (30). The reason for this suggestion is quite simple.
The above mentioned transition (|m〉 → | − m − 1〉) can be realized also by the
consecutive transitions (i) |m〉 → | − m〉 (described by the tunneling rate �m,−m)
and (ii) |−m〉 → | − m − 1〉 (described by the phonon probability W−m−1,−m). These
consecutive transitions do not, however, change the resonance line-width seriously in
comparison with the coherent tunneling transition alone, because the dependence of
W−m−1,−m on Hz is much slower than that of �m,−m . We omit, therefore, incoherent
transitions from our simplified (qualitative) consideration. (Note that at the top of
the barrier (for m = 4, 3, 2, 1), both probabilities (�m,−m and W−m−1,−m) have the
same order of magnitude (which is easy to check). This means also, that molecules
can return from the level |−m〉 to the level |m〉 (�m,−m = �−m,m) or deactivate to the
level |−m − 1〉 with equal probabilities.)

In the thermally activated regime, the value of the tunneling rate can be evaluated
for each resonance (i. e. each value of n) by taking the product of the Boltzmann
factor and the rate �m,n−m . This must be summed for all the contributions from
different |m〉:

τ−1
n (Hz) = Z−1(Hz)

∑
m

�m,n−m exp[(−E0
m − gµB Hzm)/kBT ] (34)

where Z(Hz) is the partition function. (For simplicity we omit here the time-
dependence of the Boltzmann factor, i. e. we still assume quasi-equilibrium.) The
plot of τ−1

n (Hz) gives the expected Lorentzian line-shape of the resonance peaks.
The width is rather sensitive to conditions such as the distribution of internal fields
or the velocity of sound, although realistic values for these enable experimentally
measured line-widths to be obtained. To give some numbers, we obtained a width
(for n = 0) of approximately 25 mT [60] with σ0 = 6 mT at T = 2.6 K. To get the
same height it was necessary to change only one value from all the set. We put the
velocity of sound equal to c = 1.4×103 m s−1; the other values are the same as given
above (Eqs. 1 and 31). Our curves show slightly faster decay near the tails (which
is the consequence of averaging over a Gaussian distribution of fluctuating internal
fields). If, however, we neglected these internal fields, Eq. (34) would give too narrow
and sharp resonance lines.

Before concluding, a few remarks should be made. We have limited ourselves
by taking an average of Eq. (30) over fluctuating internal fields (longitudinal in
bias ξm,n−m and transverse in �m,n−m) but this is just zero approximation, to show
that even this approximation can lead to correct resonance line-width. As already
noted, in reality the interaction with the nuclear subsystem spreads each giant spin
energy level into a Gaussian multiplet and one should consider all possible transi-
tions between the resonant levels from the opposite sides of the barrier inside such
multiplets. The internal bias field ε(t) is, moreover, actually, time-dependent (i. e.
it varies both in space and time) and produces a time-dependent Boltzmann fac-
tor (exp[(−E0

m + m Ht(t))/kBT ]Z−1(Ht(t)), where Ht(t) = gµB(Hz − ε(t)) and, as
a consequence, deviation from exponential relaxation occurs. As has already been
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mentioned, however, we do not give here the exact theory of the relaxation. The ac-
tual relaxation law can be extracted only by solving the kinetics of the problem, which
includes the effect of the environment. Such an analysis will be published elsewhere.

To conclude our discussion of the high-T behavior of the relaxation in Mn12-
acetate, we should emphasize the following main results:
1. At relatively high temperatures (T > 2 K) the relaxation is dominated by the

phonon-assisted tunneling mechanism;
2. The Lorentzian shape of the resonance peaks is determined by Eq. (30), which

describes the tunneling between levels which are in resonance in a given magnetic
field;

3. Despite the dominant role of phonons the resonance line-width is determined
mainly by the value of the tunneling splitting �m,n−m together with the internal
bias ε (Eq. 28) which originates from the hyperfine and dipolar interactions;

4. All the theories mentioned predict exponential relaxation of the magnetization
while the experiments reveal non-exponential behavior at these temperatures
[4, 6, 7, 21, 53, 57-59, 62]. This clearly shows the important role played by in-
termolecular interactions and by interactions with nuclear spins, both of which
produce a time-dependent bias field which causes the non-exponential behavior
of relaxation.

4.4.3 Ground-state Tunneling

Let us now concentrate on the low-temperature limit of T � TC where tunneling
occurs in the ground state only. In the instanton approach (see below) we assume that
kBT � �0, where �0 is the “bounce frequency” of the instanton transition (which
is roughly the distance from the ground-state level to the first excited level. Under
these conditions only the lowest levels are thermally populated and we can truncate
the “giant spin” Hamiltonian (Eqs. 1 or 12b) to an effective Hamiltonian (which
is valid only at energies � �0) describing two states |Sz〉 = ±S and their mixture,
separated by the tunneling splitting � � �0. We should, moreover, couple the “giant
spin” S of each molecule to the nuclear “spin-bath” {σk} with k = 1, 2, . . . , N . For
hyperfine coupling the latter can be described by Eq. (22) with ωk � �0 (ωk � �,
usually) and with N equal to actual number of nuclear spins inside molecule (one
can take N = 12 for Mn12, neglecting the effect of hydrogen . . . , and N = 146 for
Fe8, including 120 hydrogen, 18 nitrogen and 8 bromine atoms, neglecting the few
percent of 57Fe).

Without hyperfine interactions the total nuclear spectrum, containing 2N states,
is almost completely degenerated, with only a tiny spreading, ∼T −1

2 , of levels caused
by the inter-nuclear dipolar interactions. With the hyperfine interaction, the nuclear
levels spread into a Gaussian multiplet of N + 1 polarization groups around each
giant spin level [12, 44, 47,61,72]. The half-width of this distribution σ0 is of the order
of ω0 N 1/2 (where ω0 = (1/N )

∑N
k ωk). Note that in each polarization group the

hyperfine levels are also distributed according to a Gaussian half- width of approxi-
mately T −1

2 . Typically, the different polarization groups completely overlap within of
the Gaussian envelope of Eq. (27). The nuclear T2 processes (transverse relaxation)
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are responsible for transitions inside each polarization group, whereas the nuclear
T1 processes (longitudinal relaxation) enable transitions between different polariza-
tion groups. According to Wernsdorfer et al. [45], the half-width of the hyperfine
distribution in Fe8 is of the order of 0.6 mT, yielding ω0 ≈ 0.05 mT (for the estimate
we take only hydrogen atoms with σ = 1/2, i. e., N = 120). Because ω0 � T −1

2
(typically T −1

2 ≈ 10−7 K), the nuclear spin dynamics is slaved by dynamics of S.
We also suggest that the T1 processes are long and therefore not relevant, at these
temperatures. The reason is that the T1 processes are driven by the dipolar flip–flop
transitions, which are essentially frozen at T � TC. In general, we should consider
two effects: (i) the effect of nuclear spins on giant spin dynamics during tunneling,
and (ii) the effect of the motion of S on the nuclear spins. Both effects have to be
handled self-consistently.

Using the instanton technique, we can write the effective Hamiltonian for a single
molecule [23]:

H (1)
eff =

[
2�0τ cos

(
π S − β0nH +

N∑
k

αknσk

)
+ h.c.

]

+1/2

[
τz

N∑
k

ω
||
klkσk +

N∑
k

ω⊥
k mkσk

]
+

N∑
k �=1

V αβ
kl σα

k σ
β
l (35)

where τ describes the “giant spin” of the molecule (τ and σ are both the Pauli
matrices). The first term in Eq. (35) is a non-diagonal term (because of τ±) which
operates during transition of S. It produces a time-dependent field γk = (ωkS/S),
acting on each σk, and this causes σk to flip. If we expand out the cosines, we see that
we have a whole series of terms like ∼τ±�αβγ δσ

α
k1σ

β

k2σ
γ

k3σ
δ
k4 . . . in which an instanton

flip of the giant spin couples to many different nuclear spins simultaneously, i. e., a
single instanton can simulate multiple transitions in the nuclear bath. The probability
that σk will flip during a single instanton passage between two quasi-classical minima
|S1〉 and |S2〉 is |αk|2/2. Thus, the average number of nuclear spins that will flip each
time S flips (the so-called “co-flipping” amplitude) is approximately:

λ = 1/2
N∑
k

|ak|2 (36)

which, can in principle, be > 1. One can easily calculate the dimensionless constants
αk and β0 in the simple bi-axial Hamiltonian of Eq. (6) with Hhyp given by Eq. (22).
The answer is [23, 31]:

αkn · σk ≈ (πωk/2�0)[−iσy + (D/(E + D))1/2σx ] (37)

β0n · H ≈ (πgµBS/�0)[−i Hy + (D/(E + D))1/2 Hx ] (38)

where n is a unit vector in the (xy) plane and the “bounce frequency” �0 is:
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�0 ≈ 2S(E · D)1/2 (39)

(For non-zero values of K⊥, see Eqs. 14–18). Eq. (37) tells us that λ < 1 in the
particular case of E and D as in Fe8 or Mn12 (note that non-diagonal fourth-order
terms re-normalize Eqs. (37) and (38) but for K⊥/kB = −3.28 × 10−5 K it gives
αk ≈ (ωk/�0C⊥ with C⊥ ≈ 1.56). The second term in Eq. (35) is diagonal, which
operates when S is in one of its two quasi-classical minima. Let us introduce two
corresponding fields γ

(1)

k and γ
(2)

k . In general (any non-zero external and internal
magnetic field) S1 and S2 are not antiparallel. It is easy to see that the sum and the
difference between these two vectors define ω

‖
k and ω⊥

k i. e.:

ω
‖
klk = γ

(1)

k − γ
(2)

k (40)

ω⊥
k mk = γ

(1)

k + γ
(2)

k (41)

where lk and mk are mutually perpendicular unit vectors. The longitudinal coupling
ω

‖
k gives the change in energy of σk before and after S flips (i. e. the difference between

the effective fields acting on σk before and after transition of S). The transverse
coupling ω⊥

k defines the deviation of initial and final orientations of S from the ±z-
direction (which is the easy-axis for the Hamiltonian of Eq. 12b). For the biaxial
Hamiltonian for small values of Hx (gµB Hx � S(E + D)) we obtain:

ω
‖
klkσk ≈ ωkσz (42)

ω⊥
k mk · σk ≈ (ωkgµB Hx/(2S(E + D)))σx (43)

Finally, the third term in Eq. (35) describes very weak internuclear dipolar cou-
pling (|V αβ

kl | ≈ T −1
2 ). To complete our Hamiltonian, we should also include the

dipolar–dipolar interactions between molecules. Ignoring the transverse part of this
interaction (which leads to flip–flop processes), we obtain:

HD = 1/2
∑
µ �=ν

V (D)
µ,ν τµ

z τ ν
z (44)

where |V (D)
µ,ν | ≈ 1 mK. Thus, to work in the low-T quantum regime, one can use the

effective Hamiltonian:

Heff = H (1)
eff + HD (45)

We do not include the spin–phonon interaction in this Hamiltonian because the
phonons can play no role at T < TC.

Now, after the effective low-T Hamiltonian has been established, we would like
to discuss briefly some effects which follow from the coupling of the central spin to
the spin bath (a detailed explanation is given in the original papers [47, 72] and in
reviews [61, 73]).
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Let us start from the non-diagonal term in Eq. (35) (the first term). Because αk
is a complex quantity, two effects can be expected. The imaginary part of αk gives a
renormalization of the effective tunneling splitting, depending on the coupling con-
stants ωk. One can expect an increase (decrease) of the effective tunneling splitting
with ωk. The width of the distribution of hyperfine fields also depends on ωk. It should
also increase with ωk. The real part of αk adds an extra random phase to the Haldane
phase β0nH. As we have seen already, the average number of nuclear spins that flip
together with S is proportional to |αk|2. These flips modify the total phase of the bath
state and, consequently, randomize the phase of the giant spin (between the instan-
ton and anti-instanton) producing phase decoherence of the tunneling process that
can completely block the latter (this is called, “topological decoherence”). Indeed, we
know that a half-integer spin cannot tunnel in zero transverse field. We can imagine
that in different molecules the transition of S is accompanied by a different number
of the nuclear spins. If the total flipping spin (S and the nuclear spins σk) is integer,
tunneling is allowed. Otherwise, the tunneling is blocked. Thus, the possibility of
tunneling depends on the particular environment inside of each molecule (nuclear
spins), and over the entire sample the transition of S can happen at random.

The second term in Eq. (35) produces an internal bias field (we put here ω⊥
k = 0)

ε = 1/2
∑

k ω
‖
kσ z

k acting on S. Together with the first term it gives the Hamiltonian
of the biased two-level system (see Eq. 24) with an effective tunneling splitting
2�� = 2�0 cos(�), where � is the complex phase (we assume here that there is no
nuclear spin dynamics itself, i. e. |V αβ

kl | = 0). In this case the tunneling probability is
given by:

P(0)(t) = (4�2
�/E2) sin2(Et) (46)

E = ±(ε2 + 4�2
�)1/2 (47)

Because ε � �−10,10 (in our example ω0 � �−10,10), only a small fraction of
molecules is not pushed away from resonance by the additional longitudinal field ε

(ε depends, of course, on the particular environment state) and, therefore, are able to
tunnel. To estimate this small number of molecules that are close to the resonance, we
should take the average of P(0)(t) over the ensemble of the molecules with different
ε weighted by the Gaussian distribution of Eq. (27). This gives (in what follows, for
nuclear spins we use notation ξ0 instead of σ0) for ξ0 � �0 (see Chapter in Ref.
[72]):

P(0)(t) ≈ ρ

∞∑
k=0

J2k+1(4��t) (48)

which oscillates as the Bessel function J2k+1(z) with the amplitude equal to:

ρ = (2π)1/2��/ξ0 (49)

The value of ρ estimates the fraction of molecules that are able to tunnel. It is
easy to see that ρ � 1. This mechanism (called “degeneracy blocking”) can very



158 4 Quantum Tunneling of Magnetization in Molecular Complexes

effectively block the tunneling. If, however, we include the dynamics of the nuclear
bath (|V αβ

kl | �= 0), the situation changes dramatically. Because of the interaction
between the nuclear spins, the bias energy ε becomes time-dependent – within each
polarization group ε(t) = ε + δε(t) passes over all the energy range ∼T −1

2 and this
gives to the system a resonance window. Inside this window the total bias field fulfils
the condition ξ = ξH + ε(t) < � (where ξH is external bias field) and central spin
can tunnel. (The same mechanism can also destroy coherence by pushing molecules
away from the resonance window.) Note that tunneling can occur only between the
polarization states M and −M (M = Sz) because the energy of the final state Ef
should be in resonance with the energy of the initial state Ei (|Ef − Ei | should not
exceed �0, at least). This means that if the initial polarization state of the molecule
is M , 2M nuclear spins flip when S flips. As discussed above, the average number of
nuclear spins that will flip together with S is λ � 1 (for Fe8 and Mn12). In fact, a
better possibility of tunneling is realized for molecules with initial polarization state
M = 0. Molecules with Min �= 0 also can tunnel (with δM = 2M) but the contribution
of these events to the statistics falls very rapidly with increasing M . Actually ��(M)

falls as ∼ (λM/M!)1/2 for M � λ (see Chapter 4 in Ref. [47]).
If ω⊥

k �= 0, there is a transverse magnetic field acting on environmental spins. Be-
cause of this field the initial and final directions of the nuclear spins are not parallel
(or antiparallel) to each other. Assume that all nuclear spins are initially aligned
in γ (1) (before S flips). After S flips, nuclear spins σk are not parallel (antiparallel)
to the new field γ (2)) acting on them (note that the instanton flip of S is a sud-
den perturbation for nuclear spins, which undergo a non- adiabatic transition). This
new state is not an eigenstate of the Hamiltonian and nuclear spins must relax in
making transitions to avoid misalignment with γ (2) (this transitions transform their
wavefunction to the exact eigenstate). Thus, the tunneling of S can be suppressed
(depending on how slow are the transitions in the particular environment state),
because the initial and the final states of the nuclear bath are not exactly orthogonal.
This mechanism is known as the “orthogonality blocking” mechanism [47, 72].

All these effects can be handled by three different kinds of averaging procedure
and the final answer can be obtained by combining them, depending on its importance
in each particular case (analytical expressions are given elsewhere [47, 61, 72, 73]).
We have seen also that the dynamics of the nuclear bath are extremely important,
because, producing a rapidly fluctuating hyperfine field, it can help the system to find
a resonance window by ”scanning” over the entire range of the bias energy (which
for a single molecule is of the order of T −1

2 ). For the particular case of Fe8 or Mn12
we have λ � 1 which means that, in general, molecules in the resonance window
relax incoherently (only molecules in a nuclear polarization state with M = 0 can
relax coherently in this example). The relaxation rate for such incoherent process is
given by [47]:

τ−1
N (ξ) ≈ τ−1

0 exp(−|ξ |/ξ0) (50)

τ−1
0 ≈ 2�2

−10,10/π
1/2ξ0 (51)
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These equations describe merely the initial stage of the relaxation, however. Con-
tinuous relaxation requires more and more molecules to be brought into; this can be
achieved by fluctuations of the dipolar field across the sample [44]. When the spin of a
given molecule flips, it produces a time-dependent magnetic field (long-range) which
can push some molecules away from resonance and bring others into the resonance
window, depending on the nuclear bath state of each molecule.

To investigate the problem of the relaxation in quantum regime (ground-state
tunneling), Prokof’ev and Stamp [44] introduced a kinetic equation for the distrib-
ution function Pα(ξ, r, t) which gives the probability of find a molecule at a position
r with polarization α = ±1 (i. e. |Sz〉 = ±S) having a bias energy ξ at time t . This
equation reads:

dPα(ξ, r)/dt = −τ−1
N (ξ)[Pα(ξ, r) − P−α(ξ, r)]

−
∑
α′

∫
dr′�−1

0

∫
dξ ′τ−1

N (ξ ′)

×[P(2)

αα′(ξ, ξ ′, r, r′) − P(2)

αα′(ξ − αα′V (D)(r − r′), ξ ′, r, r′)] (52)

where P(2)

αα′(ξ, ξ ′, r, r′) is a two-molecule distribution which gives the probability of
finding a second molecule with polarization α′ and bias ξ ′ if the first molecule is
with α and bias ξ . The quantity �0 is the volume of the unit molecular cell, V (D)(r)
is the longitudinal part of the dipole–dipole interaction (see Eq. 44), and the inte-
gration

∫
dr′ is performed over the sample volume. The first term of this equation

describes the local tunneling relaxation whereas the second (which is analogous to
a collision integral) describes the influence of the dipolar field produced by the spin
flip of a molecule at site r′. Solution of Eq. (52) (analytical or numerical) gives the
magnetization M(t) as a function of time, in the form of this obvious equation:

M(t) =
∫

dξ ′
∫

dr′�−1
0 [P+(ξ, r) − P−(ξ, r)] (53)

If at t = 0 the sample is fully polarized. For short times Eq. (52) can be solved
analytically (for ellipsoidal shape, at least). At the beginning of the relaxation the
number of flipped molecules is small (M(t)/Ms � 1, where Ms is the saturated mag-
netization) and, according to Anderson [55], the field distribution of the randomly
placed dilute static dipoles can be described by the Lorentzian:

Pα(ξ) = [(1 + αM(t))/2]/[(�d(t)/π)/{(ξαE(t))2 + �2
d(t)}] (54)

�d(t) = (4π2 ED/35/2)[1 − M(t)] (55)

E(t) = ηED(1 − M(t)) (56)

where η is a sample-shape-dependent constant and ED is the strength of the dipolar
interaction (E (D)(r) = VD�0[1 − 3 cos(θ)]/r3. Under these conditions (short times,
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the Lorentzian distribution) the two-molecule distribution function becomes factor-
izable (i. e., P(2)(1, 2) = P(1)P(2)) and Eq. (52) gives the square-root relaxation law
[44]:

M(t)/Ms = 1 − (τ−1
shortt)

1/2 (57)

where τ−1
short is the rate of relaxation:

τ−1
short = χ�2

10,−10 P(ξD)/h̄ (58)

with normalized distribution of the dipolar fields in a sample P(ξD). When the num-
ber of the flipped molecules becomes large enough (larger than 10–15%), the field
distribution of the flipped spins becomes non-Lorentzian and Eq. (52) should be
solved numerically, because Eqs. (54)–(56) are no longer valid. This equation also
can be solved numerically for non-saturated sample (i. e. Min/Ms < 1, where Min
is the initial magnetization) and for samples of different geometry with Min = Ms.
The latter was achieved by means of kinetic Monte Carlo simulations [44]. The main
result of these simulations is that the short-time relaxation still obeys the square-
root law with a sample-geometry-dependent constant η (very recently Cuccoli et
al. confirmed this result with numerical calculations [81]). With regard to relaxation
in non-saturated samples, very interesting results were obtained experimentally by
Wernsdorfer et al. [45] for Fe8 and by Chiorescu et al. [85] for Mn12. They found
that the short-time square-root law is accurately obeyed for both saturated and non-
saturated samples and, moreover, that the square-root law for a strongly annealed
sample or in the presence of strong transverse field is even more pronounced, as is
apparent from comparison of Fig. 18 (Min = Ms) with Fig. 32 (Min = 0).

In the original letter [44], Prokof’ev and Stamp only give an explicit answer for
the long-time relaxation of annealed samples (using the same kinetic equation, but
now expanding in M(t) rather than (1 − M(t))). Their kinetic equation does, how-
ever, in this instance, also give

√
t relaxation [92], and this can also be verified in MC

simulations [91]. Among other possible suggestions one could say that the distribu-
tion function P(2)

αα′(ξ, ξ ′, r, r′)) is also factorizable if Min is small, and any difference

Fig. 32. Square root of time relax-
ation curves for Fe8 crystal measured
at 40 mK for Min = 0 [45].
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from the saturated sample is in numerical constant χ . The square-root law for an
annealed sample was confirmed elsewhere [25] by comparison of the tunneling rates
extracted from the relaxation experiments using Eqs. (57) and (58) and from exper-
iments based on the Landau–Zener model [68, 69, 82]. These experimental results
require further theoretical investigation. One should nevertheless mention that this
square-root relaxation is necessarily a short-time regime and a cross-over to another
relaxation regime must be observed after long times and/or at high temperatures.
Such cross-over has been observed in Mn12 for both M → Ms [57] and M → 0 [85].
The new regime is exponential and corresponds to phonons recovery.

As we understand now, at low T the short-time square-root relaxation law is
explained by dynamic dipolar interactions (but, to find a resonance window at the
beginning of the relaxation, the system needs dynamic hyperfine interactions). The
influence of dipolar fields can also be investigated by measurement of the dependence
of tunnel splitting �/Hx on a transverse magnetic field. In Fe8 at low T this quantity
is highly dependent (near the nodes) on the value of the initial magnetization (as
was found experimentally by use of the Landau–Zener method [83]), i. e. it depends
strongly on the strength of dipolar interactions between molecules (Fig. 33). In the
following text we would like to show how to analyze this dependence using very
simple language [84].

The tunneling probability in the Landau–Zener model depends on the sweep rate
of the longitudinal field, Hz, in the following way [82]:

Pm,m′ = 1 − exp(π�2
m,m′(ξ‖, ξ⊥)/h̄υ) (59)

where υ = gµB(m · m′)1/2dHz/dt ,dHz/dt is the constant sweep rate and, �m,m′
depends on dipolar bias fields (ξ‖, ξ⊥). At large sweep rates Pm,m′ ≈ π�2

m,m′/h̄υ.
Thus, the average probability over the distribution of the dipolar fields is:

Pm,m′(t) ≈ (π/h̄υ)

∫
dξ‖

∫
dξ⊥G(ξ‖, ξ⊥, t0)|�m,m′(ξ‖, ξ⊥)|2 (60)

where G(ξ‖, ξ⊥, t0) is the distribution of the dipolar fields in a sample. We have
calculated G(ξ‖, ξ⊥, t0) numerically for different sample geometries (sphere, cube,

Fig. 33. Dependence of the tunneling split-
ting �S,n−S on the transverse magnetic
field, Hx (ϕ = 0◦), around the first node for
different values of the initial magnetization
Min [83].
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parallelepiped) and for different initial magnetizations (M(t0) = Min). When
Min � Ms (e. g. zero-field cooled sample) the distributions are the Gaussians along
all the axes (x, y, z). Then, for dHz/dt � 1, Eq. (60) can be simplified to (for m = S
and m′ = −S):

PS,−S(t0) ≈ (π/h̄υ)G‖(Hz)

∫
dξx

∫
dξy |�S,−S(ξ‖ = Hz, ξx , ξy)|2G⊥(ξx , ξy)

(61)

G⊥(ξx , ξy) ≈ (2π EDX EDY )−1

· exp[−{(ξx − Hx )
2/(2E2

DX ) + (ξy − Hy)
2/(2E2

DY }] (62)

G‖(Hz) ≈ (2π E2
DZ )−1/2 exp[H2

z /2E2
DZ ] (63)

Note that a molecule can tunnel only if the total bias field ξ‖ − Hz < ξ0/gµBS.
Using this condition we put (approximately) ξ‖ ≈ Hz. Next we would like to calculate
PS,−S(t0) near the nodes of �S,−S(Hx , Hy). Let us replace the integral in Eq. (61) by
γ . Eq. (35) gives the effective tunnel splitting:

�S,−S = �0 cosh[π Hy/Ty + iπ Hx/Tx ] (64)

where Tx is the oscillation period along the x-axis and Ty is the “related” period
along the y-axis. For Eq. (12b) we obtain:

Tx/Ty = [(D + E)/D]1/2 (65)

Near the node (the first node, to be precise) we can put:

Hx = H0
x + δHx + Hdip

x , Hy = H0
y + δHy + Hdip

y (66)

where (H0
x , H0

y ) is the position of the node in the (Hx , Hy) plane, δHx,y is the distance

from the node, and Hdip
x,y is the contribution from the dipolar fields (ξx,y). At the first

node (m = S, m′ = −S) H0
y = Hz = 0 and H0

x /Tx = π(n + 1/2). If δHx,y is small, it
is easy to calculate γ analytically:

γ ≈ �2
0[�2

x + �2
y + (π2)(E2

DX + E2
DY )] (67)

�x = πδHx/Tx , �y = πδHy/Ty (68)

Thus, for EDX = EDY = ED (zero-field cooled after annealing at high tempera-
ture) exactly at the node (�x,y = 0) we obtain:

γ ≈ 2π2�2
0 E2

D (69)
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When Min decreases, the width of the dipolar fields distribution increases. With
increasing ED the value of γ in the nodes also increases. This result explains the
experimental behavior of the tunneling splitting at the nodes (because �S,−S is
proportional to γ 1/2). To check these formulas we have calculated γ numerically by
use of Eq. (12b). Fig. 34 shows that: (i) for different values of ED (i. e., depending on
annealing) γ in the nodes really behaves like E2

D (see Fig. 34c); (ii) around the nodes
γ has parabolic dependence on applied transverse magnetic field in accordance with
Eq. (67) (see Fig. 34b). Figure 35 shows the same γ as in Fig. 34a but calculated with

Fig. 34. The value of γ calculated from Eqs. (12b) and (61) for a strongly annealed sample
(Gaussian distribution of the dipolar fields). (a) γ as a function of transverse magnetic field at
different values of Gaussian half-width ED; (b) enlarged region of transverse magnetic field
around the first node; (c) the dependence on E2

D of the value of γ at the node.
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Fig. 35. The dependence of γ on transverse magnetic field calculated with small “misalign-
ment” angle θm = 1◦ at different values of ED.

a small “misalignment” angle θm = 1◦. The curves in Fig. 35 behave more similarly
to the experimental curves in respect of relative value of γ in different nodes.

These considerations conclude our discussion of the quantum regime of relax-
ation (low-T ground-state tunneling) in Fe8 and Mn12. Strictly speaking, all these
effects are not restricted to these systems but are valid for all mesoscopic systems in
which quantum tunneling is associated with extremely small tunneling splitting, i. e.
� ≈ 10−n with n much larger than unity (n ≈ 7 and n ≈ 11 in Fe8 and Mn12, respec-
tively). Because the number of phonons available at these temperatures is negligible,
phonons are not really relevant. In contrast, other types of fluctuation are numerous
in this regime, and this is so for fluctuations of the spin bath. The main result, which
we would like to emphasize here, looks very simple and straightforward. All the
physics in this limit depends on hyperfine and dipolar interactions. Any particular
result is solely a consequence of these interactions. Finally we would like to say that
the molecules Fe8 and Mn12 discussed in this paper are ferrimagnetic with a large
non-compensated moment, i. e. their physics is dominated by the ferromagnetic order
parameter. They have large spins and, therefore, important energy barriers and small
tunneling splittings. In other systems with small non-compensated spins (eventually
zero in antiferromagnetic molecules), energy barriers are much smaller leading to
much larger tunnel splitting. In these circumstances mesoscopic physics is not limited
to the spin bath, the phonons bath is also very relevant.
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[3] L. Néel, Ann. Geophys. 5, 99 (1949).
[4] J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76, 20 (1996).
[5] A. L. Barra, D. Gatteschi, and R. Sessoli, Phys. Rev. B 56, 8192 (1996).
[6] (a) C. Paulsen, J. G. Park, B. Barbara, R. Sessoli, and A. Caneschi, J. Magn. Magn. Mater.

140-144, 379 (1995); (b) C. Paulsen, J. G. Park, B. Barbara, R. Sessoli, and A. Caneschi,
J. Magn. Magn. Mater. 140-144, 1891 (1995).

[7] C. Paulsen and J. P. Park, in L. Gunter, B. Barbara (Eds), Quantum Tunneling of Magne-
tization – QTM’94, NATO ASI Series E: Applied Science, Vol. 301, Kluwer, Dordrecht,
189 (1995).

[8] J. A. A. J. Perenboom, J. S. Brooks, S. Hill, T. Hathaway, and N. S. Dalal, Phys. Rev. B
58, 333 (1998).

[9] B. Barbara, W. Wernsdorfer, L. C. Sampaio, J. G. Park, C. Puulsen, M. A. Novak, R.
Ferre, D. Mailly, R. Sessoli, A. Caneschi, K. Hasselbach, A. Benoit, and L. Thomas,
J. Magn. Magn. Mater. 140-144, 1825 (1995).

[10] M. A. Novak, R. Sessoli, in L. Gunter, B. Barbara (Eds), Quantum Tunneling of Magne-
tization – QTM’94, NATO ASI Series E: Applied Science, Vol. 301, Kluwer, Dordrecht,
171 (1995).

[11] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, Nature 383,
145 (1996).

[12] F. Lionti, L. Thomas, R. Ballou, B. Barbara, R. Sessoli, and D. Gatteschi J. Appl. Phys.
81 (8), 4608 (1997).

[13] R. Sessoli, H. L. Tsai, A. R. Shake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi,
G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc. 115, 1804 (1993).

[14] A. A. Mukhin, V. D. Travkin, A. K. Zvezdin, S. P. Lebedev, A. Caneschi and D. Gatteschi,
Europhys. Lett. 44 (6), 778 (1998).



166 4 Quantum Tunneling of Magnetization in Molecular Complexes

[15] I. Tupitsyn, P. C. E. Stamp, B. Barbara, L. Thomas, (preprint 1996).
[16] M. I. Katsnelson, V. V. Dobrovitski, B. N. Harmon, cond-mat/9807176.
[17] A. K. Zvezdin, A. I. Popov, Sov. Phys. JETP 82, 1140 (1996).
[18] B. Barbara, L. Thomas, F. Lionti, I. Chiorescu, A. Sulpice, J. Mang. Magn. Mater. 177–181,

1324 (1998).
[19] M. Hennion, L. Pardi, I. Mirebeau, E. Suard, R. Sessoli, and A. Caneschi, Phys. Rev. B

56, 8819 (1997).
[20] A. K. Zvezdin, V. V. Dobrovitski, B. N. Harmon, and M. I. Katsnelson, Phys. Rev. B 58,

R14723 (1998).
[21] B. Barbara, L. Thomas, F. Lionti, I. Chiorescu, A. Sulpice, J. Magn. Magn. Mater.

(accepted for publication).
[22] L. D. Landau and E. M. Lifshits, “Quantum mechanics”, 1965 (Oxford, Pergamon).
[23] I. S. Tupitsyn, N. V. Prokof’ev, and P. C. E. Stamp, Int. J. Mod. Phys. B 11, 2901 (1997).
[24] A. Garg, Europhys. Lett. 22, 205 (1993); cond-mat/9906203.
[25] W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999).
[26] D. A. Garanin, E. M. Chudnovsky, Phys. Rev. B 56, 11102 (1997).
[27] I. Y. Korenblit, E. F. Shender, Sov. Phys. JETP 48, 937 (1978).
[28] N. V. Prokof’ev and P. C. E. Stamp, J. Phys. Cond. Mat. 5, L663 (1993).
[29] A. I. Vainshetejn, V. I. Zakharov, V. N. Novikov, and M. A. Shifman. Usp. Fiz. Nauk,

136, 553 (1982); Sov. Phys. Usp. 25, 195 (1982).
[30] S. N. Burmistrov and L. B. Dubovski, Preprint IAE-3881/1 (in Russian), Kurchatov

Institute of Atomic Energy, Moscow (1984).
[31] I. Tupitsyn, JETP Lett., 67, 28 (1998). (cond-mat/9712302).
[32] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[33] E. N. Bogachek and I. V. Krive, Phys. Rev. B 46, 14559 (1992).
[34] A. S. Ioselevich, JETP Lett. 45, 69, 3232 (1987).
[35] J. von Delf and C. Henley, Phys. Rev. Lett. 69, 3236 (1992).
[36] D. Loss, D. P. di Vinchenzo, and G. Grinstein, Phys. Rev. Lett., 69, 3232 (1992).
[37] H. B. Braun and D. Loss, Phys. Rev. B 53, 3237 (1996).
[38] A. Garg, Phys. Rev. Lett. 74, 1458 (1995).
[39] C. Delfs, D. Gatteschi, L. Pardi, R. Sessoli, K. Wieghardt, and D. Hanke, Inorg. Chem.

32, 3099 (1993).
[40] A. L. Barra, P. Debrunner, D. Gatteshi, Ch. E. Shultz, and R. Sessoli, Europhys Lett., 35

(2), 133 (1996).
[41] C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, Phys. Rev. Lett., 78,

4645 (1997).
[42] A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A., Cornia, M. N. Novak,

C. Paulsen, and W. Wernsdorfer, J. Mang. Magn. Mater. 200, (accepted for publication,
1999).

[43] T. Ohm, C. Sangregorio, and C. Paulsen, Eur. Phys. J. B 6, 195 (1998).
[44] N. V. Prokof’ev and P. C. E. Stamp, Phys. Rev. Lett., 80, 5794 (1998).
[45] W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, and C. Paulsen, Phys.

Rev. Lett. 82, 3903 (1999).
[46] R. Caciuffo, G. Amoretti, and A. Murani, Phys. Rev. Lett., 81, 4744 (1998).
[47] N. V. Prokof’ev and P. C. E. Stamp, J. Low. Temp. Phys., 104, 143 (1996).
[48] D. A. Garanin, J. Phys. A: Math. Gen. 24, L61 (1991).
[49] F. Hartmann-Boutron, J. Phys. I France 5, 1281 (1995).
[50] F. Luis, J. Bartolome, and J. Fernandez, Phys. Rev. B 57, 505 (1998).
[51] A. Fort, A. Rettori, J. Villain, D. Gatteschi, and R. Sessoli, Phys. Rev. Lett., 80, 612 (1998).
[52] M. N. Leuenberger and D. Loss, Europhys Lett., 46 (5), 692 (1999); cond- mat/9907154.



References 167

[53] W. Wernsdorfer, R. Sessoli, and D. Gatteschi, Europhys. Lett., 47 (2), 254 (1999).
[54] D. V. Berkov, Phys. Rev. B 53, 731, (1996).
[55] P. W. Anderson, Phys. Rev. 82, 342 (1951).
[56] T. Ohm, C. Sangregorio, and C. Paulsen, J. Low. Temp. Phys., 113, 1141 (1998).
[57] L. Thomas and B. Barbara, Phys. Rev. Lett., 83, 2398 (1999).
[58] L. Thomas and B. Barbara, J. Low. Temp. Phys. 113, 1055 (1998).
[59] L. Thomas, Ph. D. Thesis, Université Joseph Fourier, Grenoble, France, 1997.
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5 Studies of Quantum Relaxation and Quantum
Coherence in Molecular Magnets by Means of
Specific Heat Measurements

Fernando M. Luis, Fabian L. Mettes, and L. Jos de Jongh

5.1 Introduction

One hundred years after its discovery, the interpretation of quantum mechanics
still continues to puzzle physicists. One of its most remarkable predictions, which
is also against our daily perception of the macroscopic world, is that the wave-
function of a particle can extend beyond classically allowed regions. In this way, the
particle can escape from a metastable potential energy well by quantum tunneling
(QT) through the energy barrier. A related effect is the phenomenon of quantum
coherence (QC), in which a particle undergoes periodical oscillations by tunneling
between two equivalent states, separated by a potential energy barrier (Fig. 1).

For a closed system, these coherent oscillations can be understood as a conse-
quence of the principle of superposition of quantum mechanics. This principle states
that the superpositions of two physical states of a particle are also possible states of
the particle. If the energy barrier is finite, and the Hamiltonian contains a kinetic
energy term, the wave-functions that describe the energy states of the particle are
not localized in each of the wells, that is, they do not correspond to the “classical”
states. The true energy states are the symmetric and antisymmetric linear combina-
tions of the classical states, for which there is equal probability of finding the particle
on the left or on the right of the energy barrier. These two states are not degenerate.

Fig. 1. Schematic diagram
of a particle in a symmet-
ric double-well potential in
which two, initially degener-
ate, “classical” energy levels
are tunnel-split by an amount
�t.
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The energy difference between them is called the tunnel splitting, �t, and is simply
h̄ times the angular frequency ωt of the coherent oscillation. Consequently, the exis-
tence of QC can be detected by observation of this energy splitting, for instance by
means of spectroscopic techniques, magnetic resonance, inelastic neutron scattering,
or specific heat measurements.

There are many well-studied examples of QC in the microscopic world; one of the
most famous is the ammonia molecule NH3, in which the position of the plane of the
three H atoms relative to the N atom oscillates coherently. One additional point is
that some physical properties of the quantum superpositions of states, such as, e. g.,
the electrical polarizability of NH3, are very different from the incoherent mixture of
the two possible classical states and can, therefore, be distinguished experimentally.

It is evident that such superpositions of states are not observed in the macro-
scopic world. The most plausible explanation within the standard theory of quantum
mechanics is that macroscopic objects can never be considered as isolated from the
rest of the world, but are in strong interaction with the many microscopic degrees
of freedom of the environment, which “measure” the state of the system [1–5]. This
interaction very rapidly destroys the coherence between the different components
of these superpositions, thus leading to the more robust “classical” states. This inter-
pretation raises a new question – where, if it exists, is the border between quantum
and classical descriptions? To investigate this point it is crucial to find pure quantum
effects, such as QC, in two-level systems made of a large number of atoms and to be
able to study and control the effect of decoherence induced by the interaction with
the environment.

Molecular clusters made of some tens of atoms can be ideal systems for study
of QT and QC at the mesoscopic scale (that is, in between the macroscopic and
the atomic worlds) [6, 7]. These molecules, for example Mn12 [8, 9], Fe8 [10, 11],
or Mn4 [12, 13], have a large net magnetic moment which results from the strong
exchange interactions between the different magnetic atoms inside a cluster. The
magnetic anisotropy favors a direction for the orientation of the magnetic moment.
The two possible projections (“up” or “down”) along the anisotropy axis are then
two equivalent states of the system, separated by a potential energy barrier, because
of the anisotropy. These molecular compounds, moreover form crystals, with the easy
axes of all molecules in parallel [14]. The molecules are well separated from each
other, which minimizes their mutual interaction. These properties enable the use
of macroscopic experimental solid-state techniques to obtain information about the
physical properties of a single cluster. A review of the extensive experimental and
theoretical work that has been devoted to the study of these systems can be found
in the chapters by D. Gatteschi, and by B. Barbara and I. Tupitsyn, in this book. The
experiments show convincingly that incoherent tunneling plays an important role
in the low-temperature spin–lattice relaxation of the magnetic moments towards
thermal equilibrium. It was observed that the hysteresis loops of Mn12 contain steps
at regular intervals of the applied magnetic field [15–17], which are accompanied
by an increase in the spin–lattice relaxation rate [16–19]. This effect was attributed
to the existence of phonon-assisted tunneling between different excited magnetic
states. This process leads to a relaxation rate, �, that decreases exponentially as
the temperature is reduced and becomes resonant when spin states on both sides



5.1 Introduction 171

of the barrier become degenerate as a result of the action of the applied magnetic
field. The magnetic relaxation of Fe8 and Mn4 becomes temperature-independent
below approximately 0.4 K, and 0.6 K, respectively [20, 21]. A similar saturation of
the relaxation time was observed for Mn12 below 2 K [17, 22], although the inter-
pretation of these experiments is more difficult because they require extremely long
experimental times (τe ≈ 105 s). The saturation of the relaxation time at these low
temperatures suggests that when the population of the excited states becomes neg-
ligibly small incoherent tunneling proceeds between the two lowest lying m = ±S
states.

The direct observation of �t of the magnetic ground state of these molecular clus-
ters is, however, a much more difficult experimental task. �t is a very small quantity,
of order 10−11–10−7 K, and QC is thus completely destroyed by the much stronger
interaction with the phonons and with the magnetic nuclei [2, 5]. It is, however, pos-
sible to increase the value of �t, while keeping the symmetry of the double-well
potential intact, by application of a magnetic field perpendicular to the anisotropy
axis [23]. Such a field introduces a non-diagonal term in the spin–Hamiltonian and
thus greatly enhances the tunneling probability. In this way, it is possible to make
�t large even with respect to the interactions mentioned above that induce deco-
herence. Following this idea, two groups have studied the resonant absorption of
electromagnetic radiation by Fe8 and Mn12 as a function of B⊥ [24, 25]. They found
that the imaginary part of the susceptibility measured at high frequencies has max-
ima at field values for which �t is expected to become of the order of the energy of
the photons, although interpretation of the experimental results as evidence of QC
seems to be not straightforward [26].

In this chapter, we show that a large amount of information about these systems
can be obtained from time-dependent specific heat measurements. By varying the
temperature, the magnetic field, and the experimental time scale, it is possible to
investigate the relaxation mechanism which brings the electronic spins into equi-
librium with the lattice and study, in this way, incoherent tunneling processes. As
shown in the next section, these experiments are an easy means of measuring the
rate of relaxation of the magnetic moment for moderate and large transverse mag-
netic fields. In Section 3 we present the theoretical background necessary to give an
account of the specific heat experiments, which are discussed in Section 4. We focus
mainly on two topics – how QC can prevail at large magnetic fields and the role QT
plays in the mechanism of spin–lattice relaxation. The data show that tunneling via
progressively lower-lying excited spin states and ultimately through the ground-state
doublet can be explored by applying large enough perpendicular magnetic fields. The
spin–lattice relaxation rate that is obtained from these experiments depends only on
transitions between different energy levels of the electronic spin in which energy is
absorbed from, or released to, the phonon-bath. The fact that QT is observed not
only for Fe8 and Mn12, which both have an integer spin value S = 10, but also for
Mn4 that has S = 9/2 is important, because an isolated half-integer spin should not
flip by QT [27]. We think that the underlying reason is to be found in the hyperfine
coupling of the nuclear spins. These data, therefore, provide valuable information
that is complementary to the study of magnetic relaxation. Under thermal equilib-
rium conditions the specific heat of Mn12, Fe8, and Mn4 clusters measured at low-T
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and in large transverse magnetic fields gives clear evidence for the existence of a �t
[28, 29, 30]. It is very important in this respect that the data can be compared with
theoretical calculations for both the coherent and the incoherent limits, which pre-
dict very different variation of the equilibrium specific heat with the magnetic field,
thus enabling clear distinction between the two.

5.2 Experimental Techniques

The specific heat experiments described in this chapter are based on two different
techniques. In both there is a characteristic time involved in the experiment (τe), or,
similarly, a characteristic frequency ωe = 2π/τe. In what follows the properties of
both techniques will be described and compared.

In the method as described by Mettes et al. [30], the power, P , to heat the sample
is applied in the form of rectangular pulses with typical time-periods of the order of
seconds. The calorimeter is thermally connected with the mixing chamber through
a weak, adjustable heat-link with thermal resistance R. As will be shown below, the
ability to adjust the thermal heat-link (and thus the experimental time τe) has great
advantages when studying equilibrium and non-equilibrium effects. When the heat is
switched on and off, the calorimeter relaxes to the new thermal equilibrium. The heat
capacity is obtained by fitting the temperature evolution of the calorimeter to a single
exponent. After determining the characteristic relaxation time (τe) and the thermal
resistance of the heat-link (R = �T/P) for each temperature, the heat capacity is
easily calculated according to C = τe/R. The characteristic time of the experiment,
τe, can be varied by changing the heat-link resistance. Typical relaxation constants
vary between 1 and 102 s. Specific heat measurements in the temperature range 0.07–
7 K and in magnetic fields of 0–12 T were performed using a commercial 3He–4He
dilution refrigerator equipped with a superconducting magnet. A special calorimeter
was designed, enabling specific heat measurements on samples with masses between
approximately 0.1–100 mg and in a high magnetic field.

The calorimeter itself consists of a thin sapphire disk of thickness ∼0.3 mm, di-
ameter ∼1 cm, that is suspended in a copper vacuum can by four thin nylon threads.
Power is applied to the plate by resistive heating of a silver layer several nanometers
thick (typically 100 
), which is sputtered on the plate. The heat-link is in the form
of a 25 Ìm gold wire. The temperature evolution of the calorimeter is monitored by
means of a Speer carbon resistor. Superconducting NbTi wires approximately 20 Ìm
in diameter are used to connect to the heater and thermometer. The thermometer
resistance is measured by means of a home made four-point ac resistance bridge op-
erating at 25 Hz. During every temperature sweep the carbon resistor is calibrated
against an RuO2 thermometer attached to the mixing chamber. The sensitivity of the
calorimeter, without sample, is approximately 20 nJ K−1 at 1 K and 2 nJ K−1 at 0.1 K.
The measured specific heat is believed to be accurate to within at most 10 % of its
absolute value in the temperature range of this work. The applied field was produced
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by a superconducting magnet with a homogeneity at its centre of 0.07 % cm−1 over
1 cm.

For additional specific heat measurements in the temperature range 5–200 K,
use was made of a commercial apparatus. In this temperature range samples of
approximately 5 mg of Mn12 and Fe8 mixed with Apiezon-N grease were measured
in zero field to estimate the lattice contribution to the specific heat.

Fominaya et al. used an ac steady-state method [31]. The major advantage of the
ac technique is the possibility of detecting very small changes in the heat capacity.
When the ac heating current of frequency ω/2π is passed through a heater the
ac temperature response of frequency ω can be observed, i. e. T (t) = T0 + δT (t).
The main disadvantage of the ac steady state device is the requirement that the
internal thermal relaxation (i. e. the response time of the sample and substrate to
the heat input) should occur much faster than the applied modulation frequency
(ω) and, furthermore, that thermal relaxation of the calorimeter to the bath occurs
much slower than ω. When these conditions are met, the amplitude of the observed
temperature modulation (�T ) can be directly related to the total heat capacity
according to: C = P/(�T ω), where P is the ac heating power.

The sample-holder is a silicon frame (10 mm × 15 mm × 280 µm) which is fabri-
cated by anisotropic etching of a (100) oriented monocrystalline silicon substrate.
A square area (5 mm × 5 mm) of this silicon frame is subsequently etched by KOH
until a membrane of thickness of 2–10 Ìm remains. To reduce further the thermal
coupling of the membrane to the frame, holes are etched into the membrane so that
a 3.3 mm × 3.3 mm membrane suspended by 12–40 Ìm wide bridges remained. The
thermal link is defined by the geometry of the bridges. The suspended membrane
itself defines an isothermal area. On the membrane, and on the frame, a 100-nm film
thermometer of NbN and a 150-nm film heater of CuNi are deposited. The electrical
connections are fabricated by depositing a 100-nm film of NbTi and were patterned
by optical lithography, ion beam etching, and chemical etching. The silicon frame is
anchored to a copper holder which has an accurately known thermal link to the bath.
The NbN thermometer is calibrated against a germanium resistance attached to the
copper holder. The whole is mounted in a conventional low-temperature device by
means of which the temperature could be varied between 1.5 and 300 K. Magnetic
fields up to 5 T could be applied. A dc measurement of the resistance of the ther-
mometer gives the temperature of the membrane. Simultaneously, this resistance
oscillates slightly at a frequency ω, because of the temperature modulation of the
heat-capacity measurement. The voltage oscillation δV is amplified by a low-noise
differential preamplifier. The sensitivity of the calorimeter without sample amounts
to approximately 3 nJ K−1 at 4 K and 0.5 nJ K−1 at 1.5 K. In the actual experiments
on Mn12, monocrystals of masses of the order of Ìg are pasted on the reverse of the
membrane by means of liquified Apiezon-N grease.



174 5 Studies of Quantum Relaxation and Quantum Coherence in Molecular Magnets

5.3 Theoretical Background

Since the discovery of resonant tunneling in Mn12, several attempts have been made
to explain the results theoretically. It is not our purpose to give here a full review of all
the models proposed. The reader can find an extensive introduction to the theory of
magnetic relaxation and tunneling in magnetic molecules in the chapter by B. Barbara
and S. Tupitsyn in this book. We shall limit ourselves to explaining the theoretical
framework needed to interpret time-dependent specific heat experiments. For this
reason, we first introduce a spin-Hamiltonian from which the energy levels and
the specific heat in equilibrium can be calculated. We pay special attention to the
influence of the magnetic field on the scheme of energy levels and how it can counter
the effect of decoherence induced by interaction with phonons and nuclear spins. The
second section is devoted to the study of the spin–lattice relaxation of a spin system
which can perform tunneling transitions between degenerate states. Finally, we will
describe a way of predicting measurable quantities, in particular time-dependent
specific heat.

5.3.1 Spin-Hamiltonian for Molecular Magnets –
Field-dependent Quantum Tunneling

In what follows, we shall make use of the “giant-spin” model Hamiltonian, which is
a good approximation when, as a consequence of the strong exchange interaction
between the magnetic ions inside a molecular cluster, the magnetic ground state can
be described by a well-defined total spin S. This is valid at low enough temperatures,
when the excited levels of different S are weakly populated. The magnetic behavior
of the molecule is then equivalent to that of a single-domain particle and the relevant
energy levels correspond to different orientations of the total spin or linear combina-
tions of these. For a system with dominant uniaxial anisotropy, the spin-Hamiltonian
can be written:

H = −DS2
z +H′ −gµB

[
Bz Sz + B⊥

(
cos(φ)Sx + sin(φ)Sy

)]+Hdip +Hh f (1)

The first two terms of H arise from crystal-field interactions. The first defines a
direction (z) as the preferred axis for the magnetization. In the absence of other
terms, that is, for pure rotational symmetry around z, the different projections m of
the spin would be eigenstates of the Hamiltonian. The corresponding energy levels
would then lie on a double-well landscape with two degenerate minima separated
by a potential energy barrier, as sketched in Fig. 2.

The second term of the spin Hamiltonian includes higher-order perturbation
terms, which arise from deviations from this pure uniaxial anisotropy. For the three
compounds considered, H′ can be written as

H′ = −E
(

S2
x − S2

y

)
+ A4S4

z + E2

[
S2

z

(
S2

x − S2
y

)
+

(
S2

x − S2
y

)
S2

z

]
+ C

(
S4
+ + S4

−
)

(2)
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Fig. 2. Double-well potential for a spin S = 10
with uniaxial anisotropy at zero magnetic field.
The horizontal dotted line marks the border
between “classical” (�t < δ) and “tunneling”
(�t > δ) energy levels. The activation barrier,
U , is roughly given by �El1,2 ≡ El1 − E2, where
l1 is the first energy level which fulfills �t ≈ δ.

The crystal-field parameters, D, E , A4, E2, and C , of Fe8, Mn12, and Mn4 have
been obtained by several groups using different experimental techniques, such as
Mössbauer spectroscopy [32], ESR [12, 32–35], inelastic neutron scattering [13, 36–
38], and optical methods [39]. The approximate values are given in Table 1. It is
important to stress that these data are obtained from experiments performed in the
“classical” high temperature regime; this enables comparison with quantum tunnel-
ing experiments with almost no fitting data.

Because of the presence of off-diagonal terms in H′ pure m states are no longer
eigenstates of H. The true eigenstates are their symmetric and antisymmetric com-
binations, each of different energy. The degeneracy of ±m spin levels is lifted by an
amount, �t, called the tunnel splitting, which is larger the lower the energy barrier
and, therefore, increases exponentially as m decreases. It is then convenient to label
the energy levels by a different index, l, in increasing order of energy. Using the
data given above, �t of the ground state is approximately 10−10–10−11 K at zero
field for Fe8 and Mn12, although recent relaxation experiments [40] give a larger
estimate (�t ≈ 10−7 K) for Fe8. As pointed out by Politi et al. [41], and by Prokof’ev
and Stamp [42], however, the interaction of the magnetic moment with the environ-

Table 1. Parameters of the spin-Hamiltonian of four molecular magnets.

Sample g D(K) E(K) A4(K) C(K) E2(K)

Mn12 [34] 1.9 0.6 0 −1.0 × 10−3 −3.06 × 10−5 0
Fe8 [32, 37] 2 0.294 4.65 × 10−2 3.53 × 10−5 4.26 × 10−6 2 × 10−7

Mn4, X=Cl− [13] 2 0.69 −3.15 × 10−2 −3.25 × 10−3 −9.95 × 10−5 0
Mn4, X=OAc− [13] 2 0.59 −2.43 × 10−2 −3.96 × 10−3 −1.21 × 10−4 0
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ment, that is, with other degrees of freedom, or with stray magnetic fields, blocks the
coherent tunneling process very effectively.

The Hamiltonian given above includes interaction terms with other molecules
(Hdip) and with the nuclei of the atoms composing the molecule (Hhf). Because
the direct exchange interaction between neighboring molecules is very small, the
intermolecular interaction is mainly the direct dipole–dipole interaction between
the magnetic moments. The term Hhf results from the hyperfine interaction between
the electronic spins and the nuclear magnetic moments. It is especially important for
those molecules, such as Mn12 or Mn4, in which the nuclei of the magnetic atoms
posses a spin (I = 5/2 for Mn), thus leading to a strong contact hyperfine interaction.
For clusters of magnetic atoms with no nuclear spin, as for the Fe8 cluster, which
contains the isotope 56Fe, Hhf represents the interaction with the magnetic nuclei
located at the ligand molecules which surround the cluster. These ligand molecules
always contain H atoms and sometimes other atoms like N, which carry nuclear spins.
Also these weaker hyperfine couplings will thus have to be considered in principle,
although we shall show below that they are weak enough to be neglected. Although
the hyperfine and the dipole–dipole interactions are weak relative to the strength
of the uniaxial anisotropy, they can induce a Zeeman splitting, δ, of the ground
state of the molecule that is many orders of magnitude larger than �t. The diagonal
terms present in both Hdip and Hhf can be regarded as a sort of bias magnetic field,
which produces an asymmetry of the two wells that blocks tunneling when δ 
 �t.
The typical value of these bias fields has been found experimentally to be of order
δ ≈ 0.2 K for the ground states of both Fe8 and Mn12 [43, 44]. Unassisted tunneling
is thus prohibited for the vast majority of the molecules present in a given crystal.

The influence of the magnetic field on the tunneling experiments turns out to be
essential. We shall, therefore, here give a detailed account of how the energy levels
and the wave-functions are modified by the third term appearing in Eq. (1). If the
field is parallel to z (Bz), it breaks the symmetry and thus the degeneracy of the states
m and −m by the amount �Z = 2gµBm Bz . The energy difference between the two
levels of a tunnel-split doublet becomes �El+1,l ≡ El+1 − El = √ (

�2
t + �2

Z

)
. When

�Z 
 �t, tunneling between these magnetic states is blocked. When, however,
Bz ≈ D/gµB, the magnetic field brings two other m levels, located on opposite sides
of the energy barrier, into resonance, thus again restoring the possibility of quantum
tunneling between the two wells. This situation is depicted in Fig. 3 for Fe8.

This crossing of levels gives rise to the phenomenon of resonant tunneling. If, by
contrast, the magnetic field is perpendicular to z (B⊥), the symmetry of the double-
well potential is maintained. Classically, the transverse field keeps the degeneracy
of the energy minima intact. It just shifts the position of the bottom of the two wells
towards the plane perpendicular to z, and thereby reduces the height of the energy
barrier. In quantum mechanics, however, the situation is different. The transverse
field introduces an off-diagonal term in the spin-Hamiltonian, that is, one which
does not commute with Sz . This is crucial because, as we have seen, QC is completely
washed out at zero field by the hyperfine and dipole–dipole interactions. The question
is whether �t can be made large enough compared with both kBT and δ. Fortunately,
the application of a transverse field offers the possibility of significantly increasing
�t, and in a well-controlled way.
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Fig. 3. Energy levels as a function of ap-
plied field parallel to the anisotropy axis
(Bz) for Fe8 as calculated from Eq. (1),
with Hdip = Hhf = 0. Inset shows level
repulsion, as present at all crossings.

Fig. 4. Quantum tunnel splitting (�t) as cal-
culated from Eq. (1), with Hdip = Hhf = 0,
as a function of applied field perpendicular
to the anisotropy axis (z) for Mn4, Fe8, and
Mn12. φ is the angle that B⊥ makes with the
easy (x) axis within the hard (xy) plane. The
orders of magnitude of interactions of the
electronic spins with different microscopic
degrees of freedom are also indicated.

We have plotted the calculated tunnel splitting of the ground state of Fe8, Mn12,
and Mn4 as a function of B⊥ in Fig. 4.

The calculations shown are for non-interacting spins, that is, the latter two terms in
H (Hdip and Hhf) are neglected. At low magnetic fields the value of �t is still mainly
dominated by the off-diagonal terms of H′. As a result, �t depends strongly on φ,
the angle that the magnetic field makes with the easy axis (x) of the hard xy plane.
When the magnetic field is applied along a hard or intermediate axis it modifies the
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quantum interference between different tunnel paths [27], which leads to maxima
or minima of �t if the interference is constructive or destructive, respectively. These
effects can lead to oscillations of the rate of incoherent tunneling; these have been
experimentally observed for Fe8 [43]. An important application of these ideas is
for a molecule with a half-integer spin, for example Mn4, with S = 9/2. At zero
field, interference effects are predicted to make �t = 0 [45, 46]. Therefore, quantum
tunneling should not occur unless a magnetic field is applied. Here, the interaction
with the nuclei can also have an important effect. The off-diagonal terms inHhf enable
tunneling and lift the degeneracy of the ground-state doublet and of the excited states.
The tunneling process of the central spin is then accompanied by the flip of one or
several nuclear spins [42]. Although the magnetic field or the interaction with the
nuclear spins are needed to break the selection rule, because of the interference
effect, the value of �t will still be determined mainly by the anisotropy terms, and
thus need not be much smaller than for molecules with an integer spin. For example,
using the crystal field value, E , found experimentally for one of the varieties of Mn4
[13], and taking Hx = 300 Oe, we get �t = 1 × 10−5 K, whereas for E = 0 a much
larger magnetic field (∼0.7 T) would be needed to obtain the same tunnel splitting.

For higher perpendicular magnetic fields, �t increases in proportion to B2S
⊥ [23].

In Fig. 4 we have indicated the order of magnitude of δ caused by dipole–dipole and
hyperfine interactions and the homogeneous broadening of the levels arising from
the interaction with the phonon-bath. Even for fields of relatively moderate strength
(easily produced in the laboratory), �t can be of the same order as, or larger than,
δ caused by these perturbations, thus opening a possibility of observing QC. For the
excited states, the splitting also increases, the relative effect being larger because the
effective energy barrier is smaller for these states.

5.3.2 Resonant Tunneling via Thermally Activated States

We have seen in the previous section that tunneling between the two lowest magnetic
states, m = +S and m = −S is suppressed by the environment when δ 
 �t. For the
excited states, however, �t is much larger, because it increases as the level approaches
the top of the classical energy barrier. For a given tunnel-split excited state it might
thus happen that the condition �t ≥ δ is fulfilled. Tunneling via these states is then
not completely blocked because the wave-functions are not pure m states, as shown
in Fig. 5.

To study spin–lattice relaxation, it is necessary to take into account the interaction
of the electronic spins with the phonon-bath, which can induce transitions between
different energy levels of the electronic spin. The bath is considered to be in internal
thermal equilibrium. The Hamiltonian of the combined system is:

Hs-ph = H + Hph + Hint (3)

where the first term is the spin-Hamiltonian given by Eq. (1), the second is the
Hamiltonian of the phonon-bath, and the third describes the interaction between
both. For T ≥ 2 K, the population of the excited spin states is not negligibly small
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Fig. 5. Calculated wave-functions (�), as expressed in
amplitudes (am) of m states for two different pairs of
energy levels: (a) tunnel-split excited levels l = 13, 14
(which correspond to the m states: m = ±4); (b) ground
state doublet (l = 1, 2) which fulfills �t � δ.

and the magnetic relaxation can proceed via a phonon-assisted tunneling process.
This mechanism, illustrated in Figs. 2 and 6, involves a phonon-induced transition
from the minimum of one of the two wells to the lowest of these “tunneling” levels,
followed by a decay into the opposite well.

The relaxation rate, �, for this process decreases exponentially with T :

� = �0 exp
(

− U

kBT

)
(4)

Fig. 6. Schematic diagram of tunneling via a thermally excited level. Initially (I), the system
occupies the energy state l1. In step II, a phonon of energy h̄ω = �El2,l1 is absorbed and
the system evolves to the localized wave-function |φ〉, which is a linear combination of l2 and
l3. After a decoherence time of the order of h̄/�t, that is, less than the period of a coherent
tunneling oscillation, the system evolves towards the symmetric wave-function l2. After the
much longer period τ0 (step III), the system decays towards a lower-lying level on the opposite
side of the barrier (IV), by emitting a phonon of energy h̄ω′.
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and the activation barrier U is roughly given by �El2,2 ≡ El2 − E2, where l1 is the
first level which fulfils �t ≈ δ (see Fig. 6) and �0 is the inverse of the typical lifetime
τ0 of the excited levels. Experiments performed in the last few years give strong
evidence for the occurrence of quantum tunneling via excited states at high enough
temperatures (above 2 K for both Fe8 and Mn12) [15–17, 47]. This mechanism is in
principle a resonant process, that is, it becomes faster whenever the longitudinal
magnetic field brings levels on different sides of the energy barrier into resonance,
whereas relaxation is much slower for intermediate field values.

We next show that the time evolution of the system is basically incoherent, because
it occurs via the interaction with the phonon-bath, which brings the molecules to the
excited states. Consider a spin that is initially in a state |i〉. To calculate the subsequent
evolution with time of any physical quantity it is necessary to evaluate the reduced
density matrix ρ(t), with elements:

〈l|ρ(t)|l ′〉 =
∑
r,r ′

Pr 〈εr ′ |〈l|U (t)|i〉|εr 〉〈εr |〈i |U †(t)|l ′〉|εr ′ 〉 (5)

where U (t) is the time evolution operator for the system, that is, of the spin plus the
phonon-bath, and |εr 〉 represents energy states for the phonon-bath alone (defined by
the number of excited phonons of each energy). In general, the density matrix defined
in Eq. (5) is not diagonal. The diagonal elements Pl = 〈l|ρ|l〉 give the populations
of the electronic energy states, whereas the off-diagonal elements represent the
occurrence of coherent superpositions of different energy states. We first write the
time evolution of a state |i〉|εr 〉 as:

U (t)|i〉|εr 〉 =
∑
j,r ′′

b j,r ′′
i,r (t) exp

(−i E0
j,r ′′ t

h̄

)
| j〉|εr ′′ 〉 (6)

where E0
j,r ′′ = E j +εr ′′ is the unperturbed energy and the coefficients b j,r ′′

i,r (t) depend
on time because of the interaction between the spins and the phonon-bath.

In what follows we investigate a particular case of interest in the study of molecular
clusters, where these states are “long-lived” [48–50]. By this we mean that the homo-
geneous broadening of the levels induced by the interaction with the bath is much
smaller than the energy difference �El+1,l = El+1 − El between neighboring energy
levels. If we denote a typical lifetime of an electronic energy level by τ0 = 1/�0,
this condition reads h̄/τ0 � �El+1,l . Fulfilment of this inequality guarantees that
we can apply standard methods of first-order time-dependent perturbation theory
to the calculation of the density matrix. In that case, the coefficients b j,r ′′

i,r (t) can be
expanded up to terms which are linear in Hint, giving:

b j,r ′′
i,r (t) � δi, jδr,r ′′ + 1

i h̄

∫ t

0
exp


 i

(
E0

j,r ′′ − E0
i,r ′′

)
t ′

h̄


〈εr ′′ |〈 j |Hint|i〉|εr 〉dt ′. (7)
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After integration of Eq. (7) and substitution in Eq. (5), it follows that:

〈l|ρ(t)|l ′〉 �
∑
r,r ′

Pr 〈εr ′ |〈l|Hint|i〉|εr 〉〈εr |〈i |Hint|l ′〉|εr ′ 〉 exp
[−i (El − El ′) t

h̄

]

×exp[
i
(

E0
l′,r ′−E0

i,r

)
t

h̄ ] − 1

E0
l ′,r ′ − E0

i,r

exp[
−i

(
E0

l,r ′−E0
i,r

)
t

h̄ ] − 1

E0
l,r ′ − E0

i,r

. (8)

The terms in Eq. (8) which contribute most are resonant terms for which E0
j,r ′ −

E0
i,r � 0 with j = l or l ′. As a consequence, the diagonal elements of ρ(t) increase

with t , whereas the off-diagonal elements cease to increase when t ≈ h̄/ (El − El ′),
thus ρ becomes diagonal for still longer times. It is important to note here that
the time interval during which off-diagonal matrix elements exist is much shorter
than the average lifetime of the excited electronic levels. The coherent evolution
is thus destroyed for times longer than the tunneling time, that is, long before the
spin decays (by emitting a phonon) to a lower-lying energy level. The process is
sketched in Fig. 6. The long-term dynamics of the system mainly driven by incoherent
transitions between different energy eigenstates, with either localized or delocalized
wave-functions.

In the next section, we will give a more quantitative account, and describe a
way of predicting measurable physical quantities. Before we do so, it is convenient
to check the extent to which the above model is applicable to the description of
quantum tunneling in molecular magnets. The criterion of validity is �El+1,l 
 h̄/τ0
for any two energy levels l + 1 and l. For levels located on the same side of the
energy barrier, �El+1,l ≥ D. For two tunnel-split levels near resonance, �El+1,l ≈√

(δ2 + �2
t ). Because D > δ, it is therefore sufficient to show that δ 
 h̄/τ0. The

value of τ0 was estimated from the prefactor of the Arrhenius law, which describes
the temperature-dependence of � [9, 15–17, 34, 51], to be of order of 10−8–10−7 s for
Fe8 and Mn12. Similar values were obtained from measurements of T1 of the protons
of Mn12 molecules [52]. The width of the distribution of bias fields associated with
the dipole–dipole and hyperfine interactions has, on the other hand, been estimated
experimentally to amount to about 200–500 Oe [43, 44]. Using the values given above
gives δ ≈ 0.05–1 K, depending on the level, whereas the homogeneous broadening
h̄/τ0 ≈ 8 × 10−5–8 × 10−4 K, i. e., two to four orders of magnitude smaller. In other
words, the condition of validity of the model described above is fulfilled by most of
the molecules of a sample which have a large enough δ. If the condition is not fulfilled,
i. e., if the homogeneous broadening is large, it is necessary to consider the effect of
the off-diagonal matrix elements of ρ, and the master equation that we will introduce
in the next section is not applicable. To solve this problem some authors have used
another approach in which the tunneling is taken as a perturbation [53–55]. A very
similar theoretical problem was considered in the description of proton tunneling
in hydrogen bonds [56]. Tunneling then gives rise to an extra term in a generalized
master equation that involves transitions between magnetic states, m, instead of true
energy states, l. In the common range of validity of the two approaches (for weak
transverse magnetic fields and �t 
 h̄/τ0), it is possible to show that both give
the same result for the shape of the resonances in �(Bz) [57]. We choose here the
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first model because it is applicable to the experimental situation in which a large
transverse field is applied, as in the specific heat experiments described later in this
chapter.

5.3.3 Master Equation – Calculation of �

We have shown in the previous section that when the spin–phonon interaction is
weak, the density matrix, expressed in the basis of true energy states l of the molecule,
becomes diagonal after a time that is much shorter than τ0. To calculate the long-
term evolution of the system we might therefore, make use of a standard Pauli master
equation for the populations Pl

d Pl

dt
=

∑
l ′

(wl←l ′ Pl ′ − wl ′←l Pl) (9)

which involves transition rates wl←l ′ induced by phonons only. These probabilities
can be calculated with Fermi’s golden rule, using the appropiate Hint. Hartmann-
Boutron et al. [58] obtained:

wl ′←l = q|El − El ′ |3|〈l ′|V (S)|l〉|2 Al,l ′ (10)

where Al,l ′ = nl,l ′ and Al,l ′ = 1 + nl,l ′ for transitions upward and downward, re-
spectively, in energy, nl,l ′ is the number of available thermal phonons for a transition
with �El ′,l = El ′ − El ≥ 0, q is a constant that depends on the elastic properties of
the lattice, and V (S) is an operator acting on the spin variables. In the calculations
that follow, the lowest order hermitian spin operator that is compatible with uniaxial
anisotropy was used B = [Sx , Sz]+ + [Sy, Sz]+ [58]. For this case, q is given by [55,
58, 59]:

q ≡ D2

6πρmc5
s h̄4 . (11)

This parameter sets the scale to all transition rates. Here ρm is the mass density and
cs the average speed of sound of the two transverse acoustic modes in the medium.
It is of interest to note here that q can be obtained experimentally by measuring �,
e. g. from the frequency-dependent susceptibility at a given temperature. Because the
crystal-field parameter D is known, we can extract from q the average speed of sound
in the medium and compare it with the value obtained from the phonon contributions
to the specific heat as measured in our experiments. To a first approximation, the
value for cs can be calculated from the obtained Debye temperature �D, which is
deduced in the low temperature limit T � �D, where the phonon specific heat
follows the well-known Debye T 3 law. The relation between cs and �D is:

cs = kB�D

h̄

(
6π2 N

V

)− 1
3

(12)
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where N is the number of molecules per unit cell with volume V . From the above it
is clear that we can, in principle, obtain estimates of the magnitude of all variables
involved in the physical description of the problem at hand.

Let us define P as a column vector with components P1, P2, . . . The master equa-
tion for all levels can be written:

d P

dt
= W P (13)

where W is a matrix of transition rates with elements (W )l,l ′ = wl←l ′ for l �= l ′ and
(W )l,l = − ∑

l ′ �=l wl ′←l . The relaxation rate, �, is the smallest non-zero eigenvalue of
W . The other eigenvalues, of order 1/τ0, are associated with fast relaxation modes. At
zero magnetic field, these modes are related to transitions between levels inside each
of the two potential wells, whereas� gives the rate at which the relative populations of
both wells reach mutual equilibrium. At higher transverse magnetic fields, as applied
in the specific heat measurements described below, or when the deviation from pure
uniaxial anisotropy is important, the wave-functions of an increasing number of
energy levels become delocalized. The separation between intra-well and inter-well
transitions then becomes artificial. Still, by using the master equation it is possible
to calculate the response of the system to an external perturbation and to separate
the fast and slow components of this response.

Calculated data for the rate of relaxation of Mn12 at T = 5 K are shown as a
function of the longitudinal field in Fig. 7.

Resonant tunneling gives rise to Lorentzian shaped peaks at the crossing fields.
The width of the peaks �Bz is determined by �t of the lowest delocalized levels. The
reason is that tunneling becomes blocked via a given excited doublet when �Z ≥ �t,
where �Z = gµB(2m + n)

∣∣Bz − Bn,m
∣∣ is the Zeeman splitting between the states m

and −m − n, which are in resonance when Bz = Bn,m . At zero field, all levels are

Fig. 7. Calculated spin–lattice relaxation rate for
Mn12 (line) compared with the experimental relax-
ation rate of a single-crystal of Mn12 (full dots), as a
function of the applied field parallel to the easy axes.
The calculated behavior for � is obtained by using
the master equation (Eq. (9)), as explained in Sec-
tion 3.3.
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in resonance. The peak of � consists, then, of two superimposed peaks of different
width and amplitude. The narrowest peak corresponds to the tunnel-split m = ±4
(�t = 2.3 × 10−2 K), where �Bz ≈ 23 Oe and the broader peak corresponds to m =
±2 (�t = 0.7 K), for which �Bz ≈ 1.4 kOe. For non-zero bias field, the peaks have
“satellites” because of tunneling through different resonant levels. The difference
between � for odd and even values of n is because quantum tunneling is mainly
induced by the (strong) perturbation H′ at zero field, whereas a linear term (arising
from the dipole–dipole or hyperfine interactions) is necessary to induce tunneling
when n is odd. This effect would be smeared out by the distribution of dipolar
fields (here not yet taken into account) and especially, under the usual experimental
conditions, by any misalignment of the sample relative to the applied field, which
induces a component B⊥. In the same figure, we compare the calculations with the
experimental data obtained from frequency-dependent susceptibility measured on
a single crystal of Mn12 [60]. The calculations reproduce the measured results fairly
well. We emphasize that the calculated � (full line) has not yet been broadened
by the distribution of dipolar fields. This inhomogeneous broadening could explain
why the width of the measured resonances is larger than calculated and why the
experiments show no “satellites” near the resonant fields.

In the picture given above for the magnetic relaxation of magnetic molecules, the
effect of a transverse field is solely to reduce gradually the threshold energy above
which �t ≥ δ is fulfilled (dotted line in Figs. 2 and 6). As a result, U decreases, as
can be inferred from the decreasing slope of the calculated log(�) against T curves
(shown in Fig. 8).

Below a given cross-over temperature TQ the population of these excited states
becomes negligible and incoherent tunneling via the ground state becomes favorable

Fig. 8. The effect of a perpendicular field on the
temperature-dependence of the spin–lattice re-
laxation rate in Fe8 (solid lines). Typical time
in the specific heat experiment (τe = 10 s) is
marked by the dotted line. Intersection points
between the experimental time curve and the
calculated spin–lattice relaxation rate curves are
denoted by an open circle. The presence of an
intersection point will lead to a blocking feature
in the experiment. For τe = 10 s, no blocking
feature is expected for B⊥ ≥ 1.7 T in Fe8.
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[41], leading to a temperature-independent relaxation rate � ≈ �dir for T → 0 (cf.
Fig. 8). Note, as can be seen from Fig. 8, that TQ depends only weakly on B⊥ and the
experimental time. At low field �dir is very small because, for most of the molecules,
δ > �t and the overlap of the initial and final wave-functions is negligible. This
phonon-assisted tunneling process is, furthermore, not resonant, because the density
of states of the phonons with h̄ω = �E2,1 becomes very small near zero field. The
spin-lattice relaxation associated with this mechanism thus becomes extremely slow
in this temperature regime. By contrast, when B⊥ increases, �t and the overlap of the
wave-functions associated with the two lowest energy levels increases. Under these
conditions, tunneling through the ground state doublet can dominate the spin–lattice
relaxation and proceed at rates that can be experimentally observed.

5.3.4 Calculation of Time-dependent Specific Heat and Susceptibility

We mentioned in the previous section that the populations of the levels in the same
well reach mutual equilibrium very quickly, time approximately τ0, but the equi-
librium between the populations of the two wells can take much longer, 1/�. We,
therefore, expect that the low-temperature specific heat can show interesting time-
dependent effects in molecular clusters when the experimental time, τe, becomes of
the order of 1/�. To obtain predictions for time-dependent quantities, we must first
obtain the “slow” and “fast” contributions from the master equation. The method
was indicated for the specific heat in Ref. [49] and also can be applied to the magnetic
susceptibility. The result is that, for fixed δ and a given magnitude and orientation of
the magnetic field, the time-dependent specific heat Cm follows exponential relax-
ation for t 
 τ0,

Cm = Ceq − (
Ceq − C0

)
exp(−�t), (14)

where C0 is the contribution to the specific heat of all these fast processes (at zero
magnetic field, C0 just equals the specific heat for one of the two potential wells) and
Ceq is the specific heat measured under thermal equilibrium conditions.

If the temperature or the magnetic field has low-amplitude periodical variation
with time (so that the master equation can be expanded in such perturbations, and
terms other than linear can safely be disregarded), then the frequency-dependent
specific heat and the ac susceptibility are given by the Debye equations

C ′
m = C0 + Ceq − C0

1 + (ω/�)2 (15)

C ′′
m = ω

�
(Cm − C0) (16)

χ ′ = χ0 + χeq − χ0

1 + (ω/�)2 (17)

χ ′′ = ω

�

(
χ ′ − χ0

)
(18)

where again C0 and χ0 are “fast” contributions and C ′
m (or χ ′) and C ′′

m (or χ ′′) give
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the responses of the system that are in-phase and shifted by 90 ◦, respectively, with the
external perturbation. C0 can be calculated using the values for the fast eigenvalues
and eigenvectors of W and its derivatives with respect to temperature. The method
was illustrated by Fernández et al. [49] for the specific heat and is valid for the
susceptibility also, although we prefer to skip here the details of the calculation.
We define a new matrix Y = dW/dT and denote by Peq and Weq, respectively, the
vector of populations and the matrix of transition rates in thermal equilibrium. We
can write Y Peq = ∑

ν aνφν , where φν is an eigenvector of Weq. The slow component
of the specific heat (that is, the contribution that decays with a relaxation rate �) is
given by

Ceq − C0 = a1E1

�
, (19)

where E1 = ∑
l El f (1)

l is the average energy in the eigenstate φ1, which corresponds
to �, and f (1)

l are the populations of the energy levels, l, in this state. Because
the equilibrium specific heat can be easily calculated when the energy levels of the
Hamiltonian are known, Eq. (19) can be used to calculate C0. Using a fully analogous
method, and taking Y = dW/dB, it is possible to write the slow component of the
susceptibility as:

χeq − χ0 = a1M1

�
(20)

where M1 = ∑
l µl f (1)

l is now the average magnetic moment (projected along the
direction of the applied field) in the state l.

To obtain numerical results that can be compared with the measured quantities,
it is still necessary to average Eqs. (14)–(18) over a distribution of bias fields and, in
case the experiments are performed on powder samples, over a distribution of orien-
tations of the anisotropy axes with respect to the magnetic field. In what follows we
shall use a Gaussian distribution of bias fields, and the width, σ , of the distribution
found experimentally in Refs [43] and [44] – σ = 250 Oe for Fe8 and σ = 200 Oe
for Mn12. Very similar results, although in slightly better agreement with the ex-
perimental specific heat and susceptibility data, are obtained if the average is taken
over a Lorentzian distribution [49]. In the next section we use this model to simulate
numerically the experimental results obtained for the three molecular clusters.

5.4 Experimental Results and Discussion

To estimate the magnetic specific heat Cm, the contribution of the lattice to the
total specific heat must first be determined. This contribution is extracted from the
T 3 contribution to the specific heat as measured at zero field between T = 3 and
T = 11 K. The Debye temperatures obtained in this way are �D = 35–41 K [30, 31,
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61] for Mn12, �D = 35 K [30] for Fe8, and �D = 41 K [30] for Mn4. Using Eq. (12),
these values give cs = 1.4–1.6 × 103 m/s, cs = 1.5 × 103 m/s, and cs = 1.5 × 103 m/s,
respectively.

5.4.1 Superparamagnetic Blocking in Zero Applied Field

The relaxation rate of Mn12, Fe8, and Mn4 follows the Arrhenius law, at least above
the crossover temperature TQ, that is, � decreases exponentially with T . At a given
temperature, usually called the blocking temperature TB, the relaxation rate becomes
of order τ−1

e , where τe is the typical time in a particular measurement. Using this
condition and Eq. (4) for �, it follows that

TB = U

kB ln (�0τe)
(21)

Below TB, the reversal of the spin cannot be completed within the experimental
time, τe, thus the response of the system decreases. The phenomenon of superpara-
magnetic blocking can easily be studied by means of frequency-dependent ac suscep-
tibility experiments. For this technique, τe = 1/ω, where ω is the angular frequency
of the ac magnetic field. As an example, we show in Fig. 9 ac susceptibility data for
Fe8 measured as a function of temperature for different values of ω.

Fig. 9. Real and imaginary components
of the ac susceptibility of Fe8 measured
at zero field for different frequencies
as a function of temperature. The lines
are calculated results that follow from
Eq. (17). The inset shows the frequency-
dependence of χ measured at T =
2.0 K, together with the calculated results
(lines).
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Fig. 10. Temperature-dependence of the spin–lattice
relaxation time of Fe8 and Mn12 as derived from
zero-field frequency-dependent susceptibility (χ(ω))
data. The lines are calculated results that follow from
Eq. (17).

For T > 4 K the susceptibility is real (in the frequency range covered) and equals
the equilibrium susceptibility, χeq ∝ 1/T . Below 4 K the real component χ ′(T ) has a
maximum at a blocking temperature TB, and then decreases to a value much smaller
than χeq. TB decreases with ω, in full agreement with Eq. (21). The observed behavior
is characteristic of a superparamagnetic system. Just below TB a peak in the imaginary
component χ ′′ is also observed. As shown in the inset of the figure, the frequency
dependence of χ ′ and χ ′′ can be well fitted to the Debye function, Eqs (17) and (18).
From this fit the spin–lattice relaxation rate, �, can be obtained. In Fig. 10 we show
the temperature-dependence of τ measured for Fe8 and Mn12 and compare it with
the calculations.

The relaxation time is seen to follow the Arrhenius law at zero and finite parallel
fields. In this way, the value of q, the strength of the spin–phonon interaction, which
gives the best agreement with the experiments can be estimated. From q the average
speed of sound is obtained by use of Eq. (11). The results are cs = 0.7 × 103 m/s for
Fe8 and cs = 0.8 × 103 m/s for Mn12. These values are a factor of two smaller than
those found from the specific heat. The reason for the observed difference might
be because only specific modes contribute to the spin–lattice relaxation, whereas all
modes contribute to the specific heat.

Next we show that, under the appropriate conditions, the blocking of the magnetic
moment of the molecular clusters can also be observed by means of specific heat mea-
surements. Below TB, the population of the levels cannot reach equilibrium during
the measurement time and the measured Cm will approach C0. At low temperatures
C0, which arises mainly as a result of transitions to excited states from the ground
state doublet, decreases exponentially. In general, Ceq > C0, even at zero applied
field, because the ground doublet of the molecule is split by an average amount δ

due to hyperfine and dipole–dipole interactions. Actually, Ceq −C0 is approximately
given by the two-level Schottky anomaly associated with (slow) transitions within
the ground state doublet, although much broadened by the distribution of dipolar
fields. This is illustrated in Fig. 11, where the two components of the specific heat are
plotted as a function of T .

In Fig. 12 we show the magnetic specific heat of Fe8 measured at zero field.
The data show a shoulder-like anomaly at approximately T = 1.3 K. This anom-

aly occurs at about the same temperature range in which the superparamagnetic
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Fig. 11. Left: Schematic picture of a double-well potential where some of the lowest-lying
energy levels and the possible transitions between them are indicated. Right: fast intra-well
transitions give rise to the high temperature contribution to Cm (dotted line), whereas slow
transitions between the two wells are responsible for the low-temperature Schottky anomaly
(full line).

Fig. 12. Zero field magnetic specific heat for
an oriented sample [30] of Fe8 as a function
of temperature for two different experimen-
tal times: τe = 20 s for open circles, τe = 1 s
for closed circles. Included are the calcula-
tions following Eq. (14): full line denotes
Ceq, dotted line C0. The inset shows the tem-
perature variation (on a log-scale) with time
at three different temperatures: T = 1.09 K
at (a), T = 1.27 K at (b), T = 1.78 K at (c).
In this scale, a straight line means that there
is a single relaxation time dominating. The
heat capacity is proportional to the slope of
the straight line.
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blocking is observed from susceptibility measurements with long experiment times
(τe ≈ 100 s). To ascertain whether the anomaly is indeed because of superpara-
magnetic blocking, measurements with different values of τe were performed. As
mentioned in Section2, τe corresponds to the length of the power pulse applied to
the sample; this can be modified by changing the thermal resistance of the thermal
link from the sample to the bath. The results show that the anomaly shifts towards
lower temperatures as τe increases, in agreement with the interpretation based on
superparamagnetic blocking. The inset of the figure shows the relaxation of the tem-
perature of the sample on a semi-logarithmic scale at three different temperatures,
below, near, and above TB. The slope of these curves is proportional to Cm. The
relaxation is clearly non-exponential near TB, which indicates that Cm increases with
time during the time-interval the power pulse is applied. In contrast, the temperature
of the calorimeter decays exponentially when T is distinctly below or above TB. In
the figure we have plotted the calculated “fast” specific heat and the equilibrium
specific heat, obtained for a Gaussian distribution of bias fields with a mean width
σ = 250 Oe. We emphasize that the blocking temperature can only be observed
because the inhomogeneous broadening makes Ceq > C0 near the corresponding
blocking temperature TB. The value of σ obtained from specific heat data corre-
sponds well with previous estimates. For Mn12 the specific heat does not have any
anomaly near TB ≈ 3 K [28, 61, 31]. This probably because Ceq − C0 decreases in
porportion T −2 and must thus be approximately one order of magnitude smaller
than for Fe8.

5.4.2 Phonon-assisted Quantum Tunneling in Parallel Fields

It is by now well established that the mechanism of resonant tunneling between nearly
degenerate states of Mn12, Fe8, Mn4 and other molecules promotes the reversal of
the spin when Bz is near a field value at which two energy levels cross (cf. Fig. 3).
This phenomenon has been studied by several groups using different experimental
techniques, such as hysteresis loops, magnetic relaxation, and ac susceptibility. In
this section, we will show that the existence of resonant tunneling also leads to an
unusual variation of Cm with the longitudinal magnetic field when the temperature
is below TB.

In Fig. 13 we show frequency-dependent specific heat data measured by Fominaya
et al. [31] at different temperatures on a very small single-crystal of Mn12. It is
important to note that for the frequencies used in the experiment (4 to 20 Hz), TB
is expected to be above 4.75 K at zero field. The measured Cm is, therefore, not an
equilibrium quantity and, indeed, it is observed that the data lie below the calculated
Ceq, also shown in the figure, at low fields (Bz ≤ 3B1, approximately). Moreover,
Cm approaches Ceq when the frequency ω decreases (not shown) [31], in agreement
with Eq. (15). The most remarkable feature is that the specific heat has maxima near
the crossing fields. These data were interpreted qualitatively by Fominaya et al. [31].
It follows from Fig. 7 that � � ω away from the resonant fields, but it can become of
the same order when Bz ≈ Bn,m . Therefore, the field-dependence of Cm at a given
frequency just reflects the resonant behavior of the relaxation rate, caused by the
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Fig. 13. Frequency-dependent magnetic
specific heat of Mn12 measured for ω/2π =
4 Hz and three different temperatures be-
low TB: T = 3.6, 4.1, and 4.75 K; top plot:

amplitude c = √ [(
C ′

m
)2 + (

C ′′
m

)2
]
, bottom

plot: imaginary part. The lines represent the
calculated specific heat that follows from
Eqs (15) and (19) averaged over a Gaussian
distribution of bias fields.

existence of quantum tunneling. The first resonance, at zero field, is not observed.
As argued in the preceding section, the reason is probably that Ceq ≈ C0 at these
temperatures because kBT 
 δ. The data show that Cm approaches equilibrium
when T increases, indicating that the relaxation is thermally activated, as expected.
It can also be seen in the figure that the model, described in the previous section,
reproduces the experimental results reasonably well. The calculated results follow
from Eq. (15), averaged over a Gaussian distribution of bias fields with σ = 200 Oe.
Similar results were obtained for Mn12 using a power-pulse method [62], instead of
a frequency modulation.

In Fig. 14 we have plotted the specific heat of a sample of oriented powder of Fe8.
The data were recorded at a few temperatures around the zero-field blocking

temperature, TB ≈ 1.3 K. The numerical simulation of the data is more difficult,
because the orientation of the sample is only partly known from magnetization mea-
surements [30]. We can, however, obtain a reasonable fit of the data by introducing
a misalignment of a few degrees relative to the easy axis. For the highest temper-
ature shown (T = 1.57 K), i. e. just above the zero-field blocking temperature (see
Fig. 12), the field dependence of Cm mimics the well-known multi-level Schottky
anomaly. The calculations show no difference between the equilibrium and non-
equilibrium specific heat at T = 1.57 K, which confirms that the system remains in
thermal equilibrium at this temperature for heat pulses of approximately 15 s. For
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Fig. 14. Dependence of measured specific heat on
Bz (black dots) at various temperatures around TB
for an oriented sample [30] of Fe8. The full lines
represent calculations for the data at T = 1.57 K
(equilibrium and non-equilibrium curves fall on
top of each other). The dotted lines are calcu-
lated for the data at T = 1.14 K, lower line: non-
equilibrium; upper line: equilibrium. The calcula-
tions are based on the model described in Sec-
tion 3.

temperatures very close to or just below the zero-field TB of approximately 1.3 K
the measured specific heat lies below the expected equilibrium value (for most of
the field range) and also shows clear increases in Cm at specific field values, i. e. at
Bz = 0 T, 0.15 T, 0.25 T, and 0.35 T, approximately (see the curve for T = 1.14 K).
The value Bz = 0.25 T is very close to that corresponding to the first level crossing for
Fe8, as obtained from the ac susceptibility measurements [47, 30]. We argue that the
peaks at Bz = 0 T and 0.25 T are a result of the zeroth and first level crossing in Fe8,
whereas the origin of the other two peaks lies in the shape of the equilibrium specific
heat. This argument is strengthened by the calculations for the data at T = 1.14 K,
included in Fig. 14. Initially the specific heat decreases, because at zero applied field
the levels are in resonance. The effect can be detected under these condition be-
cause, for Fe8, Ceq is large enough relative to C0 at these lower temperatures. The
maximum at Bz = 0.15 T arises because the system, although not fully in equilib-
rium, does reflect the field variation of the equilibrium specific heat curve which has
its maximum at Bz = 0.14 T (solid curve). At Bz = 0.25 T the levels cross and the
system is brought into resonance again, the spin–lattice relaxation rate increases,
leading to the third peak. Finally, at some higher field value, the classical activation
energy is reduced sufficiently for the system to come into equilibrium, which gives
rise to the fourth peak near 0.35 T. Note that the calculation shows that, although
the specific heat almost reaches the calculated equilibrium value at Bz = 0.25 T, it
departs once more, further from equilibrium, at higher fields. Only at approximately
Bz = 0.38 T the system finally reaches equilibrium again. The calculations for the
other two temperatures, T = 1.05 K and T = 1.24 K, show similar behavior.
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5.4.3 Phonon-assisted Quantum Tunneling in Perpendicular Fields

In this section we discuss the effect of a transverse field on resonant tunneling. It
is important to realize first that, although the samples measured always contain a
certain amount of misalignment, the specific heat data measured at low temperature
and high fields (B⊥ > 1 T for S = 10) are mainly dominated by those crystals having
the easy axes nearly perpendicular to the applied field. The reason is that a relatively
small Bz can induce a splitting �Z of the ground state that is larger than kBT , thus
exponentially suppressing Cm. For example, if θ < 86 ◦ (here, θ = 90 ◦ corresponds
with the perpendicular orientation), �Z > 2 K for a field B ≥ 1 T. The peak of
the Schottky anomaly associated with the two lowest magnetic energy levels is then
already shifted towards T > 1 K. This unique property of the specific heat makes it
possible to measure easily the relaxation rate as a function of B⊥, even in randomly
oriented samples!

In Figs. 15 and 16, we plot the temperature dependence of Cm of Fe8 and Mn12 (ori-
ented samples [30]) measured at different values of B⊥ [28]. The kink-like anomaly
that we associate with the equilibrium to non-equilibrium transition shifts towards
progressively lower temperatures as B⊥ increases and is no longer present for fields
B⊥ ≥ 2 T and 5 T for, respectively, Fe8 and Mn12. The interpretation of these data is
based on the effect that B⊥ has on �t and on �, which was illustrated in Figs. 4 and
8, respectively. The values of �t of all tunnel-split levels increase as B⊥ increases. As
a result, resonant tunneling can proceed through progressively lower-lying excited
states, as soon as �t becomes of the order of, or larger than, δ and �Z for these states.
The energy barrier for the spin reversal is roughly given by U = �El2,2, with l2 the
first energy level that fulfils �t ≈ δ. As B⊥ increases, lower-lying excited states fulfil
the above condition and as a result U decreases. For a fixed experimental time the
blocking temperature must, according to Eq. (21), also decrease (see also Fig. 8).
The values of B⊥ which are necessary to reduce TB below 1 K are larger for Mn12
than for Fe8, in agreement with the larger anisotropy D of the former compound.

The activation energy can be estimated from the values of TB and τe as U =
kBTB ln(�0τe). This enables estimation of which levels contribute most to the relax-
ation path. At zero field, tunneling proceeds via the tunnel-split m = ±4 states for
Mn12 and via m = ±5 for Fe8 [30]. For finite fields, lower-lying levels contribute. As
an example, we get U ≈ 9.5 K at B⊥ = 1.5 T and TB = 0.5 K for Fe8, and U ≈ 22 K
at B⊥ = 4 T and TB = 1.3 K for Mn12. These values compare quite well with the cal-
culated separation between the tunnel-split m = ±10 and m′ = ±8 levels, suggesting
that tunneling proceeds via these excited states (m′ = ±8). To understand qualita-
tively why these states contribute most to tunneling, we can compare the splittings
�t and �Z = 2gµBm′ Bz induced by the two components of the applied field. We use
as a typical value θ ≥ 89 ◦, because it gives a Schottky anomaly centered around and
below TB for these field values and therefore corresponds to the molecules which
contribute most to Cm. The calculated �t of the m′ = ±8 levels is as large as 0.43 K
for Fe8 and 0.55 K for Mn12, being larger than the average δ and of the order of
�Z ≤ 0.5 − 1.4 K. This qualitative interpretation is further confirmed by numerical
calculations that follow from Eq. (14), and which are shown as lines in the same
Figs. 15 and 16. They describe reasonably well the field dependence of TB.
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Fig. 15. Magnetic specific heat of an ori-
ented sample [30] of Fe8 measured for dif-
ferent values of B⊥. The lines represent the
calculated time-dependent specific heat that
follow from Eq. (14) and averaging over a
Gaussian distribution of bias fields with σ =
250 Oe.

Fig. 16. Magnetic specific heat of a sample of
oriented single crystals [30] of Mn12 measured
for different values of B⊥. The full lines give
the calculated time-dependent specific heat that
follows from Eq. (14) and averaging over a
Gaussian distribution of bias fields with σ =
200 Oe. The dotted line represents the cal-
culated hyperfine contribution under thermal
equilibrium conditions.

At high enough fields we expect that �t ≥ δ even for the ground state (see
Fig. 4). Under this condition the wave-functions of the two lowest energy states can
become delocalized. At temperatures low compared with the separation with the
nearest excited level, the spin–lattice relaxation is then dominated by direct transi-
tions between these two states, which results in a nearly temperature-independent
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Fig. 17. Field dependence of the magnetic spe-
cific heat of oriented samples [30] of Fe8 and
Mn12 at low temperatures. The field is applied
perpendicular to the easy axes. The lines repre-
sent calculations following the model described
in Section 3: solid line lowest temperature, dot-
ted line, higher temperature. The dashed line is
the calculated behavior at T = 0.15 K for Fe8 in
the absence of coherence, i. e., �t = 0.

rate �dir (see Fig. 8). In agreement with this, it is observed in Figs. 15 and 16 that
Cm measured for B⊥ ≥ 2 T for Fe8 and ≥ 5 T for Mn12 does not show any deviation
from equilibrium down to the lowest temperatures. We note here that the observation
of a temperature-independent � does in itself not give sufficient evidence for QC,
because it characterizes the relaxation of the energy of the system. It is, however,
remarkable that, at these high transverse fields, direct incoherent processes occur at
rates of the order of 1 s−1 or faster (compare with � ≤ 10−4 s−1 measured at zero field
[22, 43, 63]), indicating that the magnetic field induces considerable delocalization
of the two lowest energy wave-functions.

To obtain further insight in the physics of these incoherent tunneling processes
it is convenient to study the field-dependence of the specific heat in more detail. In
Fig. 17 we show the magnetic specific heat of both compounds as a function of B⊥
measured in the temperature range T = 0.1 − 0.3 K.

At low fields, Cm is very small, indicating again that the electronic spins are out of
equilibrium at these temperatures. At finite fields BB ≈ 1.5 T, Cm for Fe8 rises a very
steeply from a hardly observable value. Cm reaches a maximum at approximately
B⊥ = 2 − 2.5 T and then decreases abruptly at higher fields. The same qualitative
behavior is seen for Mn12, although the maximum is shifted to higher fields. Also
the “background” specific heat for Mn12 is higher; this, we shall show below, is
because of hyperfine contributions in this compound. Taking into consideration how
TB decreases with B⊥, it makes sense to attribute the first jump to the transition
from non-equilibrium to thermal equilibrium conditions. In fact, BB decreases as τe
increases, and is thus equivalent to the blocking phenomenon that occurs when T is
reduced. For a fixed experimental time τe, the unblocking of the spins occurs at the
values (TB,BB), indicated as open circles in Fig. 8, when the spin–lattice relaxation
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Fig. 18. Temperature-dependence of BB
for Fe8 (upper plot) and Mn12 (lower
plot). Open circles are obtained from
Cm(T ), closed circles from Cm(B) mea-
surements. The dotted lines follow from
calculations of Cm as a function of B⊥,
like those shown in Fig. 17. Below a
“cross-over” temperature TQ ≈ 0.2 K
for Fe8 and TQ ≈ 0.6 K for Mn12,
BB becomes effectively temperature-
independent, marking the onset of
predominant relaxation through the
ground-state doublet.

becomes fast enough through the action of the applied magnetic field so that the
condition �τe ≈ 1 is fulfilled.

As can be inferred from inspection of Fig. 8, the variation of BB with T , shown in
Fig. 18, enables direct mapping of the temperature-dependence of �, thus providing
valuable information about the nature of the relaxation process. We observe that
BB first increases roughly linearly as T decreases and then reaches a constant value
BB,0 ≈ 1.8 T for Fe8 and BB,0 = 5 T for Mn12.

The saturation marks the “cross-over” from thermally activated relaxation to
relaxation via the ground state. The application of B⊥ makes it possible to study
incoherent tunneling at high enough relaxation rates, so that very long experimental
times are not required. In this way, it is possible to measure the cross-over tempera-
ture TQ ≈ 0.2 K for Fe8 and TQ ≈ 0.6 K for Mn12. The former value compares well
with TQ ≈ 0.4 K obtained previously [20] from magnetic relaxation experiments
recorded at low fields. The cross-over temperature found for Mn12 is smaller than
TQ ≈ 2 K obtained from long-term magnetic relaxation experiments performed for
B⊥ ≈ 0 [17, 22]. It agrees well with the observation that the widths of the hysteresis
loops only become independent of T below 0.595 K ≤ TQ ≤ 0.895 K [64], however,
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and with a more recent determination of TQ performed also using large magnetic
longitudinal and transverse fields [65].

We have found that TQ, and the magnitude and temperature dependence of BB
(and therefore �), above and below TQ are rather well reproduced by the numerical
calculations that follow from Eq. (9). This is an important point because theoreti-
cal arguments [66, 67], and recent experimental evidence [63], support the idea that
incoherent tunneling between the two lowest energy states is mainly induced by fluc-
tuations of the spin-bath, whereas in the calculations shown in Fig. 18 only transitions
induced by phonons were considered. There are, however, two possible arguments
which might explain this apparent contradiction. The first is that the specific heat
measurements shown here are performed in large transverse fields. As discussed in
Section 3.3, the rate �dir for a direct process from the state l = 2 to the ground state,
accompanied by the emission of a phonon, can then become large enough to account
for the observed relaxation rates. Using, for θ = 89 ◦, Eq. (10) and the predictions
of Ref. [67] we calculate that phonon-assisted tunneling becomes dominant above
B⊥ ≈ 1 T, in agreement with our observations.

There is a second argument against the interpretation in terms of the fluctuation
model, which is rather general. Specific heat measurements are only sensitive to the
rate at which the system approaches thermal equilibrium with the lattice at the new
temperature. To reach equilibrium it is then necessary that the electronic spin and the
lattice exchange energy. A relaxation mechanism for the electronic spins mediated
by the nuclear spin bath will, therefore, be efficient only if the nuclei reach thermal
equilibrium faster than the electrons. As we will see in the next section, this is actually
not so for the molecular clusters studied here. Whether or not the presence of the
nuclear-induced processes can explain the disagreement between the experimental
TQ values found for high and low fields B⊥ is not clear and probably requires a more
detailed theoretical treatment that includes the effect of both mechanisms.

5.4.4 Time-dependent Nuclear Specific Heat

In this section, we shall discuss the relationship between the electronic relaxation
and the nuclear spin-lattice relaxation by which the nuclear spins approach thermal
equilibrium. The low temperature Cm data of Mn12 shown in Fig. 16 increase below
approximately T = 0.5 K for all field values. This increase can be related to the
existence of a nuclear contribution to the specific heat Cnucl. It arises because the
hyperfine interaction with the electronic spins splits the nuclear magnetic levels. It
is not observed for Fe8, in agreement with the observation that only 2% of the Fe
nuclei have a nuclear spin moment I = 1/2, whereas all Mn nuclei have a nuclear
spin I = 5/2. The absence of a nuclear contribution to the specific heat in Fe8 for
T > 0.1 K (and even up to 9 T) shows that in this temperature range the nuclear
specific heat of the protons and N nuclei surrounding the Fe ions can be neglected.
The underlying reason is that the hyperfine interaction with these nuclei is much
weaker and thus the splitting of the nuclear levels is correspondingly smaller. Because
the same is expected for the protons in Mn12 we have only to consider the Mn nuclei.
Under equilibrium conditions, Cnucl should take the form of a multilevel Schottky
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and thus be proportional to T −2 in the high-temperature limit. It should, moreover,
depend on B⊥ only slightly, in view of the low value of the nuclear moment. It can
be calculated as Cnucl = [32A(Mn3+) + 9A(Mn4+)]I (I + 1)T −2, which is valid for
a magnetically ordered cluster [59]. The two terms correspond to the eight Mn3+
(S = 2) and the four Mn4+ (S = 3/2) ions, respectively. The hyperfine constants
can be taken as A(Mn3+) = 6 mK and A(Mn4+) = 9 mK, as was used to explain
the inhomogeneous broadening obtained from low-T relaxation experiments [44].
Below 5 T, the measured specific heat is actually much smaller than that calculated
(indicated by the dotted line in Fig. 16). The experimental Cnucl, moreover, strongly
increases as the field is raised, and this variation is much larger than the expected
effect caused by the Zeeman splitting of the nuclear energy levels.

In our interpretation of these data we consider the dynamics of the nuclear spins.
To reach equilibrium, the nuclear spins must undergo fast transitions between their
different magnetic states m I . Because there is no direct coupling between the nuclear
spins and the lattice, these transitions cannot be induced by direct coupling to the
phonon-bath. For the nuclei of magnetic insulators the nuclear relaxation is mainly
driven by the fluctuation of the electronic spins which, in turn, is induced by the spin-
phonon interaction (see Fig. 19). Therefore the nuclei can only relax their energy to
the lattice indirectly via the electronic spins [52, 68].

A rather general expression relates the relaxation time T1 of the nuclei to the
correlation function of the (time-dependent) transverse hyperfine field δH(t) at the
nucleus [68]:

1
T1

= 1
2

(γn)2
∫ ∞

−∞
〈{δH+(t)δH−(0)}〉 cos(ω0t)dt (22)

where γn is the nuclear gyromagnetic ratio, and ω0 ≈ As is the Larmor frequency
of the nucleus. At low T , the main contribution to 〈{δH+(t)δH−(0)}〉 (where 〈〉
indicates a thermal average) is given by transitions between the lowest-lying energy
levels of the electronic spin, which are schematically depicted in Fig. 19. We have
seen in Section 3.3 that transitions between levels located in the same potential well
occur at a rate �0. At low B⊥ these transitions must play the dominant role in the
nuclear relaxation, but they become exponentially less probable as T decreases. As

Fig. 19. Schematic diagram showing the interaction between the lattice and the nuclear spins
mediated by the fluctuations of the electronic spin (left). The plot on the right shows the
transitions between electronic levels which play a role in nuclear spin–lattice relaxation at low
temperature.
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a result, the nuclear spins remain at an effective spin temperature that is higher
than the temperature of the lattice (the concept of spin temperature is well defined
here, because the nuclear spin–spin relaxation time is quite fast, i. e. nuclear flip-
flop transitions occur at a rate T −1

2 
 T −1
1 , so that the nuclear spin system itself is in

thermal equilibrium). This explains why the measured Cnucl lies below the calculated
thermal equilibrium value. When B⊥ ≥ 5 T, fast direct transitions between the two
lowest lying levels take place down to very low T , thus “connecting” the nuclear
spins to the phonon-bath. As a result the nuclear specific heat is “recovered” when
�dir becomes of the order of τ−1

e . The observed increase of Cnucl with B⊥ is in fact
another piece of evidence for our interpretation that the transverse field induces fast
direct transitions between the two lowest energy levels of the electronic spin.

5.4.5 Detection of the Tunnel Splitting for High Transverse Fields

The experimental data discussed above show that the rate of direct incoherent
processes between the lowest-energy states becomes very fast at high enough B⊥.
According to Eq. (10), this indicates that the wave-functions of the ground state
doublet have become delocalized through the action of the magnetic field B⊥. The
question whether full coherence is indeed established can best be answered by the
observation of the ensuing quantum splitting of the ground state in the energy spec-
trum. At low temperatures, when only the two lowest energy levels contribute to
the specific heat, the contribution of each of the molecules to Ceq is given by the
well-known Schottky anomaly

Ceq/kB ≈
(

�E2,1

kBT

)2 exp
(
�E2,1/kBT

)
[
1 + exp

(
�E2,1/kBT

)] , (23)

where �E2,1 ≈ √ (
�2

t + �2
Z

)
. According to Eq. (23), Ceq should be maximum when

�E2,1 becomes of the order of 2kBT , which provides a way of directly detecting
and measuring the energy splitting. We have seen that both �t and �Z depend on
the orientation of the applied field relative to the anisotropy axis. To simulate the
experiment, Eq. (23) must be averaged over the distribution of orientations of the
different crystallites which form a sample. The existence of a tunnel splitting gives
a minimum value for �E2,1 which, moreover, increases with the applied magnetic
field much faster than �Z . The existence of QC will thus give rise to a maximum of
Ceq which is broadened on the high temperature (or energy) side by the effect of the
misalignment and the other perturbations such as the hyperfine interaction with the
nuclei.

The experimental results shown in Fig. 17 indicate that Cm does indeed go through
such a maximum at exactly the field range for which �t is expected to be of the order
of 2kBT ≈ 0.3 − 0.5 K (see Fig. 4). The different field values required for Fe8 and
Mn12 are again in full agreement with the different anisotropy of these compounds.
The sharp decrease of Cm observed experimentally at higher fields is explained by
the strong dependence of the energy splitting on B⊥ [23]: �t ∝ (B⊥)2S , which can be
seen in Fig. 4. We stress that an explanation in terms of the Zeeman splitting between
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Fig. 20. Field dependence of the magnetic
specific heat of a non-oriented (powder)
sample of Fe8 at different temperatures be-
low 1 K. Note that the maxima are reduced
by a factor of three compared with those in
Fig. 17.

the lowest lying classical states +S and −S is excluded, since it will not depend on the
D-value of the molecule, as is the case here, and the shape of the anomaly would be
completely different (see Section 5). Included in Fig. 17 are our ab initio calculations.
They compare remarkably well with experimental results, showing that the observed
Schottky anomaly can only be because of tunnel splitting of the degenerate S = ±10
ground state levels.

Additional measurements performed on non-oriented samples of Fe8 are depicted
in Fig. 20. They show dependence on the magnetic field that is very close to that found
for oriented samples. The reason, as we explained in the previous section, is that only
those crystals with the easy axes nearly perpendicular to the field contribute to Cm
at low temperatures.

In a powdered sample, for most of the molecules the values of �Z are too large
and thus the molecules make no significant contribution to Ceq in the measured
temperature range. As can be seen by comparison of Figs 17 and 20, the only
difference between the results for oriented and non-oriented samples is that the
height of the peak, which is proportional to the the number of molecules that con-
tribute, is substantially lower for the non-oriented samples, in agreement with nu-
merical calculations and with the interpretation of the anomaly in terms of the tunnel
splitting.

There is still more physical evidence that supports the existence of QC in Mn12.
We have already seen that the nuclear spins must interact with the electronic spins
if they are to equilibrate to the temperature of the bath. We can now make use of
this microscopic probe to decide if tunnel splitting exists at high transverse fields. In
Fig. 21 we have plotted the specific heat of a very well oriented single-crystal of Mn12
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Fig. 21. Field-dependence of the
specific heat of an oriented sample
[30] of Mn12 measured at differ-
ent temperatures. For clarity, the
curves for T = 0.36, 0.46, and
0.57 K are shifted upwards by 0.1,
0.2, and 0.3 mJ g−1K−1, respec-
tively. The shoulder at the high
field side of the main maximum
is indicated by the arrows. The in-
set shows the calculated hyperfine
contribution (line) and the value
of the specific heat at the observed
shoulders.

(we estimate that θ ≈ 89.3 ◦ [30]) as a function of B⊥ for different temperatures.
In principle, these data look very similar to those shown in Fig. 17. Cm first reaches

equilibrium and then goes through a maximum at the field for which �t ≈ 2kBT .
There is, however, a second anomaly at slightly higher fields, an anomaly which is
more visible the higher the temperature. We recall now that, according to the model
for nuclear spin–lattice relaxation (see Fig. 19), the fluctuations of the hyperfine
field at nuclear sites depend on the rate of transitions between the lowest-lying
energy levels of the electronic spin. If �t becomes appreciably larger than kBT ,
the probability of transitions inside the ground state doublet of the electronic spin
decreases exponentially, thus the nuclear spin should again start to deviate from
equilibrium. In other words, it is now the thermal link between electrons and nuclei
that is broken (and not, as before, the connection between the electronic spins and the
phonon-bath). It seems therefore justified to attribute the second anomaly observed
in the experimental curves Cm(B⊥) to this effect. To ascertain this, we have plotted
the excess specific heat value at the anomaly as a function of T . It is shown in the
inset of Fig. 21. This excess specific heat follows very well the T −2 curve predicted
for the equilibrium specific heat of the nuclear spins for this compound (see above).
In our view, this remarkable result confirms indirectly the presence of an energy gap,
the tunnel splitting, in the energy level spectrum for the electronic spin.
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5.5 Effect of Decoherence

It is interesting to compare the experimental data with the specific heat Cinc predicted
for complete incoherence, that is, for �t = 0. To calculate Cinc while taking into
account, at the same time, the classical effects of the transverse field it is possible to
substitute the “true” energy states |1〉 and |2〉 by linear combinations |ψr 〉 and |ψl〉
of these, which have wave-functions localized on each side of the energy barrier.
Cinc is then given by Eq. (23) but with |〈E (ψr )〉 − 〈E (ψl)〉| instead of �E2,1. This
“incoherent” specific heat is shown as the dashed line in Fig. 17 (for Fe8) and is
in complete disagreement with experiment, thus showing the need for quantum
splitting, �t, to explain the abrupt vanishing of the specific heat measured for B⊥ ≥
4 T. This is an example of a measurable physical property which can help to distinguish
between a coherent superposition and an incoherent mixture of states.

We finally comment on possible decoherence mechanisms arising from the cou-
pling to the environment. Because the materials are insulators, Ohmic dissipation [2]
obviously need not be considered. Interactions with phonons are very weak at these
low temperatures. We calculate the associated broadening h̄/�dir of the electronic
tunnel-split levels to be less than 1 mK in our field and temperature ranges. This
is much smaller than the temperature at which the specific heat experiments were
performed and, therefore, smaller than the tunnel splitting that was studied with this
technique at high transverse fields (see also Fig. 4). The main source of decoherence
is, therefore, hyperfine (hf) coupling to nuclear spins. Using the formalism of Ref. [5]
we can estimate the ensuing level broadening from the expression δ = 2ω0 N 1/2,
where 2ω0 is the splitting of the nuclear levels because of opposite polarization of
the electron spin, and N is the number of nuclei involved. In both compounds H
nuclei are present; N and Br nuclei also are present in Fe8. Their hf couplings are,
however, very small, leading to δ ≈ 0.02 K only. For Fe8 only 2% of the Fe isotopes
carry a nuclear spin. As already mentioned, no nuclear specific heat is expected for
Fe8, in agreement with experimental results. For Mn12, however, a substantial hf
contribution from the Mn nuclear spins is expected, and is, indeed, observed. The
calculated broadening is δ ≈ 0.2 K, making this system a test-case to study the effect
of the nuclei. As indicated in Fig. 4, by varying the ground state tunnel splitting, �t,
with B⊥, we can tune between high and low dissipation limits. For zero and small
B⊥, the system is indeed incoherent (�t � δ), whereas for sufficiently large B⊥ we
have �t > δ and QC is established.

5.6 Incoherent Tunneling and QC in Molecules
with Half-integer Spin

The study of molecules with half-integer spin is interesting because quantum tunnel-
ing of the isolated system should be completely suppressed by the destructive inter-
ference of equivalent tunneling paths [45, 46]. Correspondingly, the tunnel splitting
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Fig. 22. Time-dependent magnetic specific heat
of a sample of non-oriented Mn4 (X=Cl−) clus-
ters measured at zero field and for three dif-
ferent values of the experimental time τe. The
full lines are the calculated results using spin–
phonon interactions only and averaging over
a Gaussian distribution of bias fields of width
σ = 240 Oe. The dashed line corresponds to the
calculated specific heat under equilibrium con-
ditions. The dotted line denotes the calculated
hyperfine contribution to Cm.

vanishes at zero magnetic field. Under these conditions, the spin must interact with
the environment to effect an incoherent transition from the state −S to +S. The
study of the time-dependent specific heat of such molecular magnets can, therefore,
give very useful information on the role played by the nuclei in the mechanism of
incoherent tunneling at very low temperatures.

A very interesting example of this kind is represented by a family of Mn4 mole-
cular magnets [13, 21]. The magnetic core of the molecules is a distorted cube with
formula [MnI I I

3 MnI V O3X], where X is a mono-anion. The magnetic moment of the
molecules corresponds to a total spin S = 9/2. Neutron-scattering measurements
[13] performed on different samples of Mn4 show that the values of D and E can be
tuned by changing the anion X. The specific heat at zero field of the compound with
X=Cl− is shown in Fig. 22.

The high-temperature (T > 1 K) magnetic specific heat has a broad anomaly. In
this temperature range Cm is adequately reproduced by a Schottky calculated for
the zero-field splitting of the S = 9/2 multiplet caused by the magnetocrystalline
anisotropy. At lower temperatures, Cm shows an extra contribution which probably
arises from the splitting of the ±S electronic states by the dipole–dipole and hyper-
fine interactions together with the nuclear contribution Cnucl. The fast spin–lattice
relaxation time of these compounds makes it possible to measure the equilibrium
specific heat down to much lower temperatures than for Fe8 and Mn12. This enables
us to study the “slow” contribution to Cm, which, as was explained in Fig. 11, arises
from transitions between the two lowest energy levels split by the interaction with
nuclei and neighboring molecules. The data can be fitted reasonably well by taking a
distribution of bias fields with σ = 240 Oe for the X =Cl− compound and adding to
it the expected Cnucl for the Mn nuclei, which is calculated using the same hyperfine
data as for Mn12. AC susceptibility measurements performed in this temperature
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range [21] provide evidence for the occurrence of superparamagnetic blocking and
give U = 11.8 K and �0 = 2.8 × 106 s−1 for X=Cl−. Furthermore, the variation of
both χ and � with Bz indicate the occurrence of resonant tunneling at the crossing
fields for both compounds [21].

A salient feature of the specific heat data is that they show no deviation from
equilibrium at low temperatures when τe is large enough (e. g. at T = 0.4 K, τe
should be ≥ 70 s). These data indicate that � becomes independent of T , because if
� followed the Arrhenius law down to these temperatures, Cm would deviate from
equilibrium, as is indeed observed for shorter experimental times. The situation is
similar to when B⊥ ≈ 1.7 T for Fe8 (Fig. 8), but now at zero applied field. In other
words, we have TQ > TB when τe ≥ 70 s (at T = 0.4 K), but TQ < TB for shorter
times. This result also yields upper and lower bounds for the rate of the incoherent
tunneling process 1.4 × 10−2 s−1 ≤ �dir ≤ 1.4 × 10−1 s−1. These results are fully
compatible with magnetic relaxation data performed in the cluster with X=Cl− [21].
It is observed that � measured at zero field saturates below approximately TQ = 0.6 K
to a value of order 3 × 10−2 s−1.

In Fig. 22 we also plotted the specific heat calculated by use of the model outlined in
Section 3, which only takes into account the interaction with phonons. The calculated
time-dependent specific heat deviates from the equilibrium curve for all experimental
times, in clear discrepancy with experiment. Taking Bz = B⊥ ≈ 100 Oe as typical
values for the dipolar fields, Eq. (10) gives �dir ≈ 10−9 s−1, much smaller than
the observed value. It seems, therefore, that there is a mechanism of QT that is
able to drive the system towards thermal equilibrium and that it is much faster
than the simple phonon-induced mechanism described in Section 3.2. As already
mentioned (Section 4.3), relaxation of the magnetization observed for Fe8 [63] near
zero applied field and low temperatures (T < 0.5 K) strongly suggests that QT is then
mediated by the fluctuation of the nuclear spins. This fluctuation, at rate T −1

2 , can
cause modulation of the bias field at the electronic spin, thus giving a finite probability
of tunneling when the total bias field crosses zero. It is not clear, however, how this
tunneling process can bring the temperature of the spin toward the temperature of
the lattice, because it does not involve any exchange of energy between them. We
believe that explanation of these data requires more detailed theoretical treatment
which takes into account both phonons and nuclear spins.

We next turn our attention to the experiments performed in applied magnetic
fields. The data obtained for powder samples of both compounds are shown in Fig. 23.
At low fields, the measured Cm lies below the equilibrium specific heat, which shows
that the experimental time (τe ≈ 12 − 30 s) is shorter than �−1. Above a given field,
BB, the magnetic moments can reach thermal equilibrium. BB is found to become
independent of T below TQ ≈ 0.4 K and 0.3 K, respectively, as shown in Fig. 24.
This saturation confirms that incoherent QT, via the ground state, dominates the
relaxation at low enough temperatures. The low-temperature limit of BB is smaller
for the cluster with X=OAc, in agreement with the fact that this compound has lower
D and higher E/D values than the other [13].

For B > BB the equilibrium specific heat has an anomaly and then decreases
abruptly. As for Mn12 and Fe8, this anomaly appears at field values for which �t
becomes larger than δ and of the order of the thermal energy. As we argued be-
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Fig. 23. The upper parts show the measured field-dependence of the specific heat of non-
oriented samples of Mn4 (X=Cl−, OAc−) at low temperatures. The lower part shows the
calculated equilibrium specific heat curves for the same temperatures as in the experiments.
For small field values (B < BB), Cm lies below the calculated equilibrium specific heat.

fore, when we discussed the experiments on Mn12 and Fe8, these two facts indicate
there is a minimum value of �E2,1, which is in agreement with the occurrence of
tunnel splitting of the ground state. The calculated specific heat, also shown in the
same figure, is, furthermore, in qualitative agreement with the position and the field
dependence of the observed anomaly only when a finite �t is taken into account.
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Fig. 24. Temperature dependence of BB
as obtained from field-dependent specific
heat data for Mn4, such as those shown
in Fig. 23. Below a “cross-over” tempera-
ture TQ ≈ 0.4 K for X=OAc− and TQ ≈
0.3 K for X=Cl−, BB becomes effectively
temperature-independent, marking the on-
set of predominant relaxation through the
ground state doublet.

5.7 Conclusions

We have tried to illustrate how the spin–lattice relaxation of molecular magnets such
as Fe8, Mn12, and Mn4 can be studied by means of specific heat measurements. In
particular, these experiments make it possible to study the phenomenon of resonant
tunneling and how it is influenced by the application of a perpendicular magnetic
field. The data show that resonant tunneling via excited states occurs via progres-
sively lower-lying excited states as B⊥ increases, which results in a decreasing the
blocking temperature. For sufficiently large fields, the relaxation rate is observed
to become nearly independent of temperature (cf. Figs 18 and 24). A plausible ex-
planation of this is that when the wave-functions of the two lowest energy levels
become delocalized, fast (≥ 1 s−1) phonon-induced transitions occur between these
two states. A temperature-independent spin–lattice relaxation rate has also been
observed for Mn4, which has a half-integer spin S = 9/2, even at zero applied field.
This is surprising because the tunnel splitting of this cluster is in principle quenched
by Kramers degeneracy. The observed QT must, then, be enabled by interaction
with nuclear spins, which can flip with the central electronic spin. The spin–lattice
relaxation rate estimated at zero applied field is still much larger than predicted for
spin–phonon direct transitions between the two lowest energy states. It is possible
that the exchange of the energy between the lattice and the electronic spins is then
induced by the interaction with the nuclear spins. We believe, however, that the
nature of this mechanism remains unclear.
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Fig. 25. Calculated wave-functions
(�), as expressed in amplitudes
(am) of m states for the ground
state doublet (l = 1, 2) of Fe8 for
B⊥ = 2.5 T.

The specific heat data measured on Mn12 also have another interesting feature.
The specific heat of the nuclei is much smaller than the calculated equilibrium value
when the spin–lattice relaxation rate of the electronic spins is too slow. By the action
of the magnetic field, however, the Mn nuclear spins present in Mn12 reach thermal
equilibrium, simultaneously with the electronic spins. This experimental result in-
dicates that the field induces rapid direct transitions between the two lowest-lying
states of the electronic spins which, in turn, bring the nuclear spins into equilibrium.
This observation confirms that the perpendicular field induces delocalization of the
wave-functions of the electronic spins and shows the close relationship between the
electronic and the nuclear spins.

Using the specific heat data measured under equilibrium conditions, evidence for
the presence of a tunnel-split magnetic ground state in all compounds is obtained.
The presence of large perturbations, because of hyperfine and dipolar interactions
responsible for an energy splitting δ, does not destroy coherent tunneling as soon
as �t is made large enough by application of B⊥. Our data show that, under these
conditions, coherent linear superpositions of different projections of the spin, such as
those shown in Fig. 25, occur and, moreover, that they are robust against decoherence.

We can now ask if these two states are actually different at the macroscopic or,
rather, at the mesoscopic scale. The wave-function of the ground state of Fe8 at
B⊥ = 2.5 T can be seen as a symmetric linear combination of two functions having
average moment ±6µB along z. When the field is not perfectly perpendicular to the
easy axis, the wave-function still contains both components, but the amplitude of
one increases relative to that of the other. The wave-function, moreover, actually
represents the magnetic state of a large (> 100) number of electrons. These systems
can, therefore, be considered as mesoscopic. It is an exciting prospect that systems
of such size may indeed show QC under the right conditions.
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6 Self-organized Clusters and Nanosize Islands
on Metal Surfaces

Jean-Pierre Bucher and Fabrice Scheurer

6.1 Introduction

Small metal clusters have become the center of interest of a variety of interdisci-
plinary subjects such as catalysis, macroscopic quantum tunneling, and Coulomb
blockade devices [1–4]. Clusters can be studied on their own, for example in molec-
ular beams [5], but they also constitute the ultimate state of integration in electronic
and optoelectronic devices, and as such are the subject of many interesting studies
in the form of supported particles. In this review we are primarily interested in mag-
netic particles that form spontaneously on surfaces during deposition of metal vapor.
Magnetic materials and devices made of well defined nanoscale particles are an im-
portant part of recent progress in spin electronics, magnetic data storage, and sensors
for giant magnetoresistance applications [6, 7]. In this context, the controlled for-
mation of ordered metal nanostructures on solid surfaces by self-organized growth
[8–10] enables anticipation of new data-storage technologies based on nanoscale
dots with tunable densities in excess of 1 Tbits in−2.

The synthesis and magnetic properties of organized metal hetero-structures on
surfaces will be reviewed and examples will be presented from recent research.
We will not address the topic of magnetic particles in matrixes, which is a subject
in itself and has its own specificity in the field of composite materials. Nanosize
islands on metal surfaces spontaneously form as a result of condensation of metal
vapor from the gas phase and subsequent nucleation and growth. By controlling
the growth kinetics, nanostructures with particular properties can be synthesized
[11, 12]. Islanding on surfaces is also the constrained pathway for the growth of
thin films. Each time it is possible, therefore, reference will be made to ultrathin
magnetic films for which a large amount of information exists [13]. In most current
work, however, the initial stage of growth is only marginally addressed, although
it is central to understanding the magnetic properties of assembled structures on
surfaces, although there are a few exceptions [14–16, 50].

Because this paper is not devoted exclusively to self-organized systems, the issue
of growth of nanostructures on surfaces will be placed in a more general context
(Sections 6.2 and 6.3). In Section 6.2 we will first describe how well defined nanos-
tructures can be built by controlling growth kinetics. Section 6.3 will be devoted to a
description of thermodynamic growth modes and interconnects between elastic and
structural aspects. The possibility of obtaining self-organized islands on surfaces will
be addressed in Section 6.4, where the driving mechanisms will also be discussed.
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The first part of Section 6.4, however, will be devoted to surface reconstruction and
strain relaxation patterns, owing to their central role as atomic scale templates for
the organization of small entities on the nanometer scale. The magnetic properties
of low-dimension systems from isolated islands to the 2D limit, will be reviewed in
Section 6.5 and experimental results will be presented in Section 6.6. The goal is
to develop a good understanding of nanostructured magnetic materials in terms of
their basic properties such as grain size and density. Ultimately, magnetism will be
viewed as the result of interacting building blocks (spin blocks), a particularly fruitful
approach for self-organized cobalt dots. In this part of the work, we will show how
the interaction between dots develops towards the formation of magnetic domain
structures.

6.2 First Stage of Growth Kinetics

Adsorption of atoms on a surface from the gas phase is a non-equilibrium process.
A system comprising a two-dimensional adatom lattice gas is temporarily supersatu-
rated and tries to restore equilibrium by condensing into islands. As a result, growth
can be viewed as a non-equilibrium phenomenon governed by competition between
kinetics and thermodynamics. An atomistic view of the processes involved in adatom
diffusion and attachment can be found elsewhere [11, 12]. In this section, we will sum-
marize ways of manipulating the growth kinetics to tune the density, size, and shape
of nanostructures. This section does not imply any reference to self-organization. For
simplicity we will follow the fate of metal atoms adsorbed on perfect, single-crystal,
metal surfaces prepared under the best condition of ultrahigh vacuum (UHV). We
will not, furthermore, go into the details of atomic exchange leading to unwanted
alloy formation.

6.2.1 Island Density

The basics of nucleation and growth on surfaces will be presented with silver adatoms
on Pt(111) as an example. Although it is not magnetic, this system has been studied
more extensively than any other [11, 17, 18]. Figure 1 shows variable-temperature
Scanning Tunneling Microscopy (STM) images of Ag islands on Pt(111) grown and
imaged at different substrate temperatures between 80 and 110 K; the silver coverage
is 0.12 ML (monolayer). The continuous diagonal lines in the images are monatomic
steps of the Pt(111) substrate and the bright zones are the monoatom-thick silver
structures. It is apparent that the density of the islands drops markedly, and the
average size of the islands increases, when the temperature is increased. There is
even a temperature (170 K in this example) at which islands are no longer nucleated
on the terraces and silver condenses at the steps of the platinum substrate (step flow).
Silver on Pt(111) is representative of islands formed by two-dimensional isotropic
diffusion.
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Fig. 1. STM topographs of low-coverage Ag submonolayer structures (� = 0.12 ML) on a
Pt(111) surface, grown and imaged at the temperatures indicated. The lateral scale is given by
the white bar, which represents a length of 20 nm [17].

A possible scenario of island formation and growth is that when an incoming
adatom is adsorbed on the surface from the gas phase it may have two distinct
destinies – it can meet another adatom during its thermally activated random walk
and form a stable nucleus (an immobile dimer), or it can be directly incorporated
into an already existing island.

The latter alternative does not contribute to increasing the number of islands on
the surface, it merely increases the size of an existing island. The first event is much
more frequent in the first stage of the growth process, whereas incorporation into an
already existing island will dominate after longer times. After very long time no new
islands are formed and an incoming adatom diffuses to an existing island before it
has the opportunity to meet another adatom. As a result, the island density saturates
and we can define a capture area for each island. The average separation between
islands then provides a good measure of the adatom diffusion length �a . Nucleation
in stages occurs when the average diffusion length before encounter of an island
becomes larger than the extension of one terrace. An analytical expression of this
saturation density of islands Nsat has been proposed by Venables [19]:

Nsat = η(�)

(
R

v0

) i
(i+2)

exp
(

Ei + i Ed

kB T (i + 2)

)
(1)

where η is a slowly varying function of the coverage �, R is the deposition rate and
v0 is the attempt frequency and is approximately 1013 to 1014 Hz. The size of the
critical nucleus is i and Ei is its binding energy. (i + 1) is the smallest island still
stable at a given temperature. When the critical nucleus is unity, Ei becomes zero
and we obtain the exponent Ed/3. The formula reflects the fact that the adatom
diffusion is thermally activated with an energy barrier Ed . In this limit, the adatom
migration barrier can be directly obtained by exploiting the results from variable-
temperature STM. When the saturation density of islands is reported as a function
of 1/T in an Arrhenius plot, the slope of the straight line directly provides Ed . It is
of advantage to work at low temperature, in the regime where the critical nucleus
is unity, because then we do not have to worry about the binding energy of dimers,
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trimers, etc. The variable temperature STM approach is among the most precise
methods of determination of Ed . An extensive review of this technique and a table
of diffusion barriers are given elsewhere [20].

6.2.2 Island Shapes

Until now we have shown that the density of islands depends on the diffusion of
adatoms on the bare surface. We show now that the shapes of these islands depend
on the diffusion of adatoms along the edges of the islands. At low temperatures
diffusing atoms stick where they hit; islands will, therefore, have fractal structures
because diffusion is hindered along the perimeter of the island (Fig. 2). The fractal
dimension of the islands is 1.78, which is very close to the value obtained from
computer simulation within the diffusion-limited aggregation (DLA) model [21].
This ideal situation of frozen perimeter is realized in practice only at sufficiently
low substrate temperatures. The influence of substrate temperature and the flux of
incoming adatoms on the final shape has recently been analyzed in detail [18] and
a transition from randomly divided to dendritic islands has been observed. At the
higher temperatures at which diffusion of adatoms around the perimeter is activated
[22], rearrangements occur and we can obtain compact structures which are close to
a thermodynamic equilibrium.

For example hexagonal aggregates have been obtained by depositing Pt atoms
on Pt(111) at 450 K and it was shown [23] (Fig. 3) that there is a transition from
hexagonal to triangular islands as a function of growth temperature. The results
were explained on the basis of a well known crystallographic fact – a compact island
on a (111)-type substrate is limited by both, edges with a {111} face and edges with a

Fig. 2. STM image showing frac-
tal aggregates grown on Pt(111) at
110 K and a deposition flux R =
1.6 × 10−5MLs−1 (image 120 nm ×
120 nm) [11].
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Fig. 3. Island shapes on Pt(111) after
deposition at substrate temperatures
of 455 and 640 K. (STM images 77 nm
× 110 nm and 230 nm × 330 nm respec-
tively and � = 0.15 ML [23].

{100} face. The triangular shapes then appear as a result of temperature-dependent
preferential diffusion along one type of edge and accumulation at the corners. Trian-
gular cobalt islands are observed also when deposited at 300 K on Cu(111). Under
these conditions, however, fcc and hcp stackings are nearly degenerate in energy and
two orientations of the triangles, rotated by 60 ◦, coexist [24].

In some circumstances (anisotropic diffusion or anisotropic bonding) [25–27]
atomic chains and stripes can be grown, and then particular symmetries of the sur-
face can play a leading role, for example by favoring the easy diffusion of adatoms
along potential wells or grooves. Anisotropic diffusion can be exploited to tailor
highly elongated metastable islands. The simplest example of an anisotropic sub-
strate is a (110) surface of a fcc crystal (Fig. 4). Such a substrate is made of compact
atomic rows, along the [110] direction, separated by channels. Under favorable con-
ditions the adatoms will diffuse preferentially within the channels in a linear type
of random motion, at least when temperatures are not too high. Linear chains form
spontaneously by aggregation of adatoms diffusing along the channels.

Fig. 4. (a) Schematic view of linear atomic chains formed in the grooves of the (110) face of an
fcc crystal. (b) STM image with 0.1 ML copper deposited at 300 K on Pd(110). Images 120 nm
× 120 nm [26].
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An example of this simple picture has been observed in variable-temperature
experiments with Cu (0.1 ML) adsorbed on Pd(110) in the temperature range from
265 to 350 K. At temperatures below 300 K linear chains several hundred Ångströms
long, “monatomic” in width, grow spontaneously along the [110] direction. Above
300 K, 2D islands that are still elongated along the [110] direction start to form. Simul-
taneously, the surface density of islands drops markedly as a function of temperature.
It has been shown by LEED experiments that these Cu islands grow pseudomor-
phically on Pd(110). Several examples of growth mechanisms of linear chains have
been described in the literature [28, 29].

So far we have only addressed the question of the shapes of the first monolayer
of adislands. The reasons clusters grow in the third dimension, and why particular
shapes are favored as a consequence of strain relaxation, will be summarized in
Section 6.3.

6.3 Growth Modes

Whereas growth kinetics were addressed in Section 6.2, this section deals with ther-
modynamic growth criteria. To synthesize metallic nanostructures (organized or not)
on a surface, one must actually prevent the formation of flat, defect-free layers. The
appropriate adsorbate and substrate elements can be chosen on the basis of simple
thermodynamic and elasticity theory arguments.

6.3.1 Thermodynamic Growth Criterion

The growth of an adsorbate on a surface can occur in many different ways. Usually
one distinguishes three main growth modes [30], depicted in Fig. 5.
1. The layer-by-layer growth mode (so-called Frank-van der Merwe mode) in which

a layer, n, grows atomically flat and is completed before the next layer, n + 1,
starts growing.

2. The Stranski-Krastanov mode in which growth occurs layer-by-layer for one or
several layers during the first stage and is then followed by a 3D growth mode.

3. The three-dimensional (3D) growth mode (also called Volmer-Weber mode) in
which crystallites grow vertically rather than expanding laterally on the surface,
thus maintaining a small contact area with the substrate.
Several other growth modes have also been identified [31], for example the si-

multaneous layer growth mode, or “Poisson growth”, obtained in the absence of
mass transport between successive layers. The islands grow in height and in lateral
size simultaneously. Another important phenomenon is the formation of a diffuse
interface; this is often observed for both miscible and immiscible elements.

A thermodynamic macroscopic approach was developed to explain some general
growth trends [30, 32]. It is a simplified theory of growth considering systems at
thermodynamic equilibrium and neglects all the kinetic effects occurring during
the nucleation processes mentioned previously. Let us consider two equilibrium
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Fig. 5. The three usual growth modes. Frank-Van der Merve, Stranski-Krastanov, Volmer-
Weber as a function of coverage.

situations – in the first the atoms, A, completely cover the surface of the substrate,
S, and in the second they form a 3D crystallite of element A (bulk-like), leaving the
major part of the substrate surface, S, free.

The energy difference per surface area of the two situations is given by:


γ∞ = (γA + γAS) − γS (2)

where γA, γS, and γAS are, respectively, the surface energies of the adsorbate and
of the substrate, and the interfacial energy. (The surface of the 3D crystallite is
neglected.) If 
γ∞ < 0, energy is gained when layers cover the surface, hence layer-
by-layer (Frank-van der Merwe) growth will occur. If 
γ∞ > 0, the growth will be
three-dimensional (Volmer-Weber).

Here we have neglected the surface tensions of the different facets that bind the
crystallites (the surface tension depends on facet orientation) and might also deter-
mine the equilibrium shape of the adsorbate (Wulff theorem) [33–36]. Mezay and
Giber calculated the surface energies for polycrystalline metals, using experimental
data [37]. More recently, metal surface energies have been computed by use of ab
initio methods, taking into account the crystallographic orientation of the surface
[38].

The interfacial term γAS is more difficult to estimate and has often been neglected
in the past [39]. For metal-on-metal growth it is a priori not possible to neglect the
interfacial energy, particularly when γA and γS are similar. The sign of 
γ∞ is than
determined by γAS. For metallic multilayer growth, in which the two elements A and
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S alternate, the role of the interfacial energy γAS is very important. If flat interfaces
are to be obtained A must wet S and S must also wet A. This is theoretically only
possible when γAS is non-zero. Bauer and van der Merwe, although neglecting the
interfacial energy, give the phenomenological criterion 2|(γA − γS)/(γA + γS| < 0.5
for multilayer growth [40]. The validity of this criterion was demonstrated later within
a microscopic model.

6.3.2 Microscopic Model

A microscopic approach to wetting, based on a tight-binding electronic structure cal-
culations, has been developed by Gautier and Stoeffler [41]. Consider NA adsorbate
atoms and NS substrate atoms of bulk energy EA and ES, and N surface adsorption
sites. Assuming A builds n perfect layers of N atoms of element A, the energy of the
system is:

E = NA EA + NB EB + N (γB + 
γn) (3)


γn is called the spreading energy and must not be confused with the previously
introduced 
γ∞. In the macroscopic limit, as n → ∞, we have 
γn → 
γ∞. To
obtain layer-by-layer growth mode, one must first have the necessary, but not suffi-
cient, condition 
γ1 < 0. This also requires that 
γ2 − 
γ1 < 
γ3 − 
γ2 < . . . < 0,
i. e. one must gain energy when depositing an additional layer (Fig. 6a). If the last
condition is no longer fulfilled for a given n, Stranski-Krastanov growth will set in
(Fig. 6b).

This model enables estimation of the spreading energy (hence the interfacial en-
ergy for large n) which contains a negative contribution from a repulsive Born-Meyer
term and an attractive band contribution, calculated in the tight-binding approxima-
tion [41]. The model has been tested on several surface orientations for transition
metals and the general trends are:

Fig. 6. Dependence of the spreading energy on the coverage n. (a) Frank-Van der Merve
growth, (b) Stranski–Krastanov growth [41].
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1. The phenomenological criterion of A wetting S, γA < γS, is approximately
valid.

2. 4d metals wet most 5d (100) metal surfaces.
3. 3d metals wet most 4d and 5d (100) metal surfaces.
4. The phenomenological Bauer and van der Merwe criterion [40] is justified.

6.3.3 Elastic and Structural Considerations

In the previous model only pseudomorphic layers are considered. i. e. the adsorbate
is forced to adopt the structure of the substrate. The elastic contribution in 
γn ,
arising from the misfit energy between the substrate and the adsorbate is, therefore,
implicitly taken into account. The elastic contribution can also be introduced into
the macroscopic thermodynamic model, as proposed by Kern et al. [35]. The elastic
misfit energy was added explicitly and the spreading energy 
γ (z) assumed to decay
exponentially towards 
γ∞ (for metals). Recently, Müller et al. allowed successive
layers to relax [42, 43] and showed that strain is the force driving the transition from
layer-by-layer growth toward the Stranski-Krastanov mode, in agreement with ear-
lier molecular dynamic simulations using the Lennard Jones potential [44]. After a
certain critical number of filled pseudomorphic layers, the accumulated strain must
be relaxed. Initially this is achieved by growing islands vertically instead of expand-
ing laterally. The second stage is the introduction of dislocations, which modifies the
shape of the growing 3D crystallites. The larger the elastic energy, the larger will be
the shape ratio (height/lateral size) of the islands. The substrate is also affected by
the strain release, because it is dragged by the relaxing island [45, 46]. To form nanos-
tructures, i. e. well separated entities on a surface (obtained, e. g., for 3D growth), one
should associate elements having a large misfit and a large substrate-to-adsorbate
stiffness ratio [36].

Sometimes the adsorbate grows incoherently or even in a structure different from
that of the substrate. A particular example, in which the elastic strain directly influ-
ences the structure of the adsorbate, occurs when bcc metals are associated with fcc
or hcp metals. The epitaxial relationships for these systems favor crystallographic
multi-domain states. Because such fcc/bcc associations might be potentially inter-
esting for the fabrication of templates of dislocation lines or arrays for organized
growth [47, 48], we briefly recall the epitaxial relationships one might expect in this
class of systems. Geometrical criteria for the epitaxial relationships between fcc (or
hcp) and bcc crystals are used [49].
1. The simplest example is the Bain orientation, for bcc(100)//fcc(100) epitaxy, in

which there is a matching of the two in-plane directions.
2. The Pitsch orientation is obtained when bcc(110)//fcc(100). Here, there is only a

matching in one in-plane direction. Because of rotational and mirror symmetries,
four types of domains with different in-plane orientations coexist on the surface.

3. The Nishiyama–Wassermann and Kurdjumov–Sachs orientations occur for
bcc(110)//fcc(111) or hcp(00.1). Both comprise uniaxial matching. Three or six,
respectively, domains with different in-plane orientations are found, for reasons
of symmetry.
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Fig. 7. STM topography of 3.5 ML Fe on Cu(111) with bcc
ridge-like Fe structures which appear during a phase transi-
tion of Fe from fcc to bcc [50].

It should be noted that except for the Bain orientation it is not equivalent to
deposit a bcc crystal on a fcc(111) substrate, or a fcc crystal on a bcc(110) substrate.
In the latter the number of differently oriented domain types is lower because of the
reduced symmetry of the substrate surface.

There is matching in the two in-plane directions (2D epitaxy) for the Bain orien-
tation only. In all other cases there is a uniaxial alignment – the adsorbate matches
the substrate well in one direction but there is poor coincidence in the other. Be-
cause there is preferential strain accumulation in one direction, rather large shape
ratios, i. e. rather elongated islands, are expected along the matching direction. An
illustration is given for Fe/Cu(111) in Fig. 7, in which the elongated islands take
different orientations relative to the substrate [50]. Because of strain accumula-
tion, transitions between different epitaxial relationships, implying very important
mass transport and island shape modifications, have been predicted [51] and ob-
served [52].

The geometrical criteria are confirmed by energy calculations either in rigid lat-
tice models [53, 54] or in models taking into account the elastic deformation [40].
The influence of misfit strain on island size and height has also been studied within
the same framework [55, 56]. These calculations enable determination of the sta-
bility of the different epitaxial relationships which are essentially dependent on the
nearest-neighbor distances ratio of the fcc and bcc elements and on the stiffness
coefficient [40].

6.4 Organized Growth

Two types of self-organized islanding can be distinguished. The first type proceeds
through cooperative growth in which the atoms of two adjacent islands interact
at a distance and rearrange during the growth process; this can be termed evolu-
tionary, dynamic self-organization (very often occurring in the Stranski–Krastanov
growth mode at thermal equilibrium; Section 6.3). This lateral exchange of infor-
mation (mesoscopic correlation of elastic origin) between atoms enables the growth
of hetero-structures that self-organize in the third dimension. A good example is
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semiconductor growth [57, 58]. In the second type of growth the substrate behaves
as if it were inert. Surface reconstructions and vicinal surfaces are used as templates.
These two processes are not mutually exclusive, although for the metal structures of
interest to us the second type is more frequent.

Surfaces can reconstruct spontaneously as a result of free energy minimization.
This means that relative to their positions in the bulk crystal, surface atoms adopt
new equilibrium positions. An example of such a reconstruction is the chevron re-
construction of the Au(111) surface. It induces rearrangement of surface atoms at the
nanoscopic scale that can appear as a modulation of the topmost atomic layer (Sec-
tion 6.4.2). Dislocation networks that are of interest for self-organized growth are,
however, most easily induced by hetero-epitaxy where the lattice mismatch between
two different materials is exploited.

6.4.1 Incommensurate Modulated Layers

Modulated phases can be studied within a simple one-dimensional model proposed
in the thirties by Frenkel and Kontorova [59]. This model takes into account the
competing interactions between a substrate potential and lateral adatom interactions.
A chain of atoms coupled by harmonic springs is placed in a cosine substrate potential
of amplitude V and periodicity a. The equilibrium separation of atoms in a chain is
b and the force constant of the springs is K . The energy of the system is then given
by:

H =
∑

n

K

2
(xn+1 − xn − b)2 +

∑
n

V
[
1 − cos

(
2π

xn

a

)]
(4)

where xn is the position of the nth atom. Frank and van der Merve solved this equation
analytically within a continuum approximation [60]. They replaced the index n by
a continuous variable and xn by a continuous function ϕ(n) = (2πx/a) − 2πn. The
problem contains three parameters, the misfit δ = (b − a)/a and the two constants
K and V . The results show that for slightly differing lattice parameters of chain and
substrate potentials (small δ), the lowest energy state is obtained for a system which
consists of large commensurate domains separated by regularly spaced regions of
bad fit (Fig. 8). The regions of bad fit are called misfit dislocations, solitons, or domain
walls. They can be considered as collective long period lattice distortion waves, which
are excitations of the commensurate ground state.

In the continuum limit the ground state satisfies the time-independent sine Gordon
equation:

d2ϕ

dn2 = p A sin(pϕ) (5)

where
√

A = 2π/b
(√

V/K
)
, and p is the commensurability. One solution of this
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Fig. 8. Uniaxial soliton solution of the Frenkel-Kontorova model. It describes the domain wall
located at n = 0 separating two adjacent commensurate regions. In this model, the width of

the domain wall is L = 1/
(

p
√

A
)

.

equation is the solitary lattice distortion:

ϕ(n) = 4
p

arctan
[
exp

(
pn

√
A
)]

(6)

the so-called soliton. This solution, shown in Fig. 8, describes the domain wall at
n = 0 between two adjacent commensurate regions.

For small sin ϕ, Eq. (5) can be linearized, yielding an exponential decay and there-
fore an exponential repulsive interaction between walls. In two-dimensional systems
walls are lines of finite width. Because there are three equivalent directions in a
compact crystallographic plane, the domain walls can cross. In a (111)-fcc crystal
adjacent domains can correspond to different stackings of the topmost layer, which
is either fcc of hcp (Fig. 9). The average period of the dislocation pattern is then
given by D = b/(b − a), as a function of the lattice constants b of the film and a of
the substrate.

6.4.2 Atomic-scale Template

Self-organization of metal clusters and islands on surfaces relies heavily on the occur-
rence of surface reconstruction and strain relaxation patterns. Dislocation networks
similar to those shown schematically in Fig. 9 have been obtained on hetero- and
homo-epitaxial systems. Figure 10 shows the dislocation pattern formed by Ag bi-
layers on Pt(111). Another, widely studied example, is the surface reconstruction
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Fig. 9. Schematic diagram of the two-dimensional hard sphere model of fcc and hcp commen-
surate domains separated by domain walls.

Fig. 10. STM image of the domain wall net-
work obtained after annealing the Ag-bilayer
on Pt(111). The inset shows a model for the
trigonal domains [63].
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Fig. 11. Zigzag reconstruction of the Au(111) surface. Left: STM image 100 nm × 100 nm.
Right: schematic view of the domains.

of Au(111) [61, 62]. Visible in Fig. 11 are the bright contrasts of the zigzag domain
walls that produce corrugations in the STM images. These discommensuration walls
are limiting fcc and hcp stacking domains of the topmost atomic layer which form
spontaneously by strain relaxation. The locations of surface gold atoms vary from the
hollow sites of the fcc stacking to the hollow sites of the hcp stacking (the fcc regions
are wider than the hcp regions). The fcc to hcp transition (the discommensuration
wall) appears as ridges in the STM images, because surface atoms near bridge sites
rest about 0.2 Å higher than those in hollow sites.

Because of its particular conformation, the zigzag reconstruction of Au(111) leads
to singularities that can best be illustrated as single atomic site dislocations (five near-
est neighbors instead of six) located at the elbows of the chevron reconstruction [8].
The dislocations are distributed on a rectangular lattice of unit cell 75 Å × 140 Å.
Although this reconstruction was first demonstrated experimentally, it is now fairly
well understood as a result of, for example, molecular dynamics simulations [62].

Among other potentially interesting systems with stress relaxation patterns are
Ag on Cu(111) [64], Cr on Pt(111) [65], and Au on Ni(111) [29], which have been
investigated both experimentally and theoretically. Theoretical prediction for Pt on
Co(111) has a similar outcome [66].

6.4.3 Self Organization

Two approaches have been exploited to achieve self-organization of metal clusters
– nucleation on ordered point dislocations and nucleation by capture within cells
limited by dislocation lines. Some attempts have been made to use these templates
for the self-organization of magnetic systems, but as far as we are aware magnetic
measurements have been performed on Co/Au(111) only. We will, therefore, focus
on Co/Au(111) which has been studied in detail.
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6.4.3.1 Nucleation on Ordered Dislocations

It has been observed that the Au(111) surface can be used as a template for growth
of organized metal clusters of Ni [8], Co [9], and Fe [67]. The point dislocations at
the elbows of the chevron reconstruction (Fig. 12) act as nucleation sites for adatoms
adsorbed from the gas phase. For Ni as an example it has been suggested that in
the initial stage the mechanism involves site exchange between one Ni and one Au
atom [68]. This substituted atom will then act as a nucleation site for further incoming
Ni atoms. Self-organized cobalt bilayer clusters containing 300 atoms each can be
synthesized in the same way (Fig. 12). If it were possible to store information in
these dots, the storage density would reach 1012 bits · cm−2, 103 times higher than
the highest storage densities reached today.

These clusters are stable in an UHV environment at temperatures up to 400 K.
Above this temperature the clusters burrow into the gold substrate, simultaneously
expelling gold atoms. This is because of the low surface energy of gold which tends
to encapsulate the cobalt clusters [15]. Annealing below 600 K, does not significantly
perturb the cobalt clusters, because the magnetic properties are preserved. For ex
situ measurements and potential applications, Co clusters and films can easily be
stabilized by a protective film of a few gold monolayers [15, 69].

Fig. 12. Cobalt clusters made of two Co monolayers, approximately 300 atoms each, self-
assembled on the zigzag reconstruction of the Au(111) surface. Image 100 nm × 100 nm.
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6.4.3.2 Confined Nucleation

Confined nucleation was demonstrated recently [10] for submonolayer Ag structures
grown on strain relaxation patterns of Ag/Pt(111) (Fig. 10). Because the dislocation
lines repel diffusing silver atoms, the silver atoms are confined inside the unit cell
in which they have landed (capture area). Because the Ag adatoms are sufficiently
mobile they will form one, and only one, island per unit cell located at the center of
the cell. Long-range repulsion at dislocations and the preferred binding to fcc areas
creates in each unit cell a local adsorption minimum to which the atoms are guided.
The island size distribution for this type of nucleation is binomial and, therefore,
significantly sharper than for nucleation on isotropic substrates (Section 6.2). The
feasibility of this approach has been demonstrated also for Fe on Cu/Pt(111) [10].
It should be mentioned, however, that this route of synthesizing nanostructures has
been tested at low temperature only (below 300 K).

6.4.4 Periodic Patterning by Stress Relaxation

When growing adatom islands on a surface, we must consider that the islands are
stressed because of possible lattice mismatch between the island material and the
substrate. The stressed islands relax at the boundary and exert a force on the substrate
which is elastically distorted and mediates the interaction between islands during
growth. Using elastic theory of continuous media, Marchenko [70] and others [71-
74] explained the spontaneous formation of periodic domain patterns in different
systems. Mesoscopic domain ordering was observed on Si(100) [75], Au(111) [61],
Cu(110) covered with oxygen [76], and Pd(110) covered with Cu [27]. The physical
origin of these ordering phenomena is believed to be long-range elastic interactions.

Let us consider the uniaxial problem. For a surface comprising alternating stripes
of two phases A and B of widths LA and LB, respectively, the extra free energy per
unit length 
F , because of the formation of domains is given by:


F = 2Fs

LA + LB
−

(
2Cel

LA + LB

)
ln

(
LA + LB

2πa
sin(π�)

)
(7)

� = LA/(LA + LB), 0 < � < 1 (8)


F is the sum of two terms, the first term is the free energy per unit length for
the creation of a boundary, the second term describes the elastic relaxation. The
logarithm becomes infinity for the limits � = 0 or 1 and it goes through a minimum
for � = 0.5. Cel depends on elastic properties such as the shear modulus and the
Poisson ratio of the substrate, and on the difference between the normal components
of the surface stress for domains A and B; a is the lattice constant. The equilibrium
periodicity D is obtained by minimizing 
F relative to LA, keeping � constant:

D(�) = �

sin(π�)
= LA(�) + LB(�) (9)
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LA(�) = ��

sin(π�)
(10)

where � = 2πa exp(1 + FS/Cel). LA does not vary much as a function of � for
0 < � < 0.7, and the D curve as a function of � is also rather flat around a central
value of about half coverage. It has been shown that there should be a firm relation-
ship between the periodicity D at an intermediate coverage � and the width of a
single island LA at low coverage [74]. The ratio D/LA is between 0.25 and 0.33 for
coverage of approximately 0.5. This ratio is roughly independent of Cel and the free
energy for the formation of one boundary.

Several results have been analyzed in terms of this theory. Island ordering has
been observed on Cu/Pd(110) above a critical coverage, somewhere between 0.15
and 0.25 ML. At a coverage of 0.2 ML the one-dimensional island-island correlation
function in the [001] direction has a repeat distance of 40 Å. Because the average
island width is 11 Å, the ratio D/LCu is 0.28, which is within the predicted interval [27].
This interpretation of island ordering is strictly valid only for systems at equilibrium.

6.4.5 Organization on Vicinal Surfaces

When the mean free path �a of adatoms on a surface (Section 6.2.1) becomes larger
than the typical width of a terrace �t , the adatoms will reach the steps before they
have the chance to meet another adatom on their path. As a result, in the so called
“step flow” limit islands no longer form on the terraces. In favorable circumstances,
when the adatoms wet the steps, this leads to the formation of stripes of adatoms
oriented parallel to the steps. This approach was first attempted on vicinal surfaces
(surfaces with slight miscuts away from a dense crystallographic plane) that de-
velop regularly spaced steps [77, 78]. Results for Co/Cu(111) and Fe/Cu(111) are
somewhat disappointing, because the stripes are irregular and sometimes segmented
(Section 6.6.2.2). As a result, structures are much less perfect than, for example, the
Cu-stripes of Fig. 4b obtained by anisotropic diffusion. Linear arrays of Fe parti-
cles have been obtained by the shading technique [79], in which the metal vapor is
deposited at a grazing incidence on a SiO-coated NaCl grating.

6.4.6 Low-temperature Growth

As was mentioned in Section 6.2.1, low temperature deposition favors growth of
small islands with a high surface density. This behavior manifests itself in a quite
spectacular way in Co/Au(111), because of the large incidence of magnetism. As a
matter of fact, Co/Au(111) is known to be a prototype of 3D growth, because cobalt
forms ordered bilayer clusters when grown at 300 K (Fig. 13a). However, as was
shown by variable-temperature STM [80], nucleation is completely different when
Co is grown on Au(111) at 30 K (Fig. 13b). Small monolayer-thick islands with a high
surface density form spontaneously [81], and a quasi layer-by-layer growth mode
becomes apparent after completion of the first monolayer.
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Fig. 13. Comparison of (a) 1.3 ML Co grown on Au(111) at 300 K (image 150 nm × 150 nm) and
(b) 1.0 ML Co grown on Au(111) at 30 K (image 100 nm × 100 nm). In (b) compact stacking
of monolayer clusters of diameter of 0.5 nm occurs while the 300 K growth in (a) leads to 7-nm
bilayer clusters.

As was discussed previously, the growth of Co on Au(111) is normally governed by
nucleation on point dislocations of the zigzag reconstruction. This particular mode
of growth of bilayer-high islands is observed down to temperatures as low as 150 K.
At some point during the reduction of substrate temperature the mean free path
of adatom diffusion becomes small compared with the separation between point
dislocations of the zigzag reconstruction. The new island density is then given by
N ≈ R1/3 exp(−Ed/3kT ), where R is the deposition rate and Ed the diffusion barrier
for a cobalt adatom on the gold surface. A much higher density of islands than that
expected from self-assembly is, therefore, achieved in the early growth stage at low
temperature (Fig. 13). Growth first proceeds by random nucleation of monolayer-
thick islands with lateral sizes of approximately 5 Å. The small monolayer-thick
islands then coalesce well before a Schwoebel-Ehrlich barrier can form at the island
edges [82, 83]. Quasi layer-by-layer 2D growth occurs, in contrast with the 3D growth
observed at 300 K. As can be foreseen, the properties of films grown at low and high
temperatures will be quite different as will be illustrated later with magnetism as an
example.

6.5 Magnetic Properties

Magnetic nanostructures have become the subject of many interesting studies related
to their reduced dimensionality. In the text below the important concepts of surface
magnetism necessary for understanding the magnetic properties of small objects
will be introduced briefly. More details on surface magnetism, ultrathin magnetic
structures, and their magnetic properties can be found elsewhere [13, 84–86].
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6.5.1 Magnetism in Low-dimensional Systems

In a small cluster, at a surface or in a very thin layer, the environment of most atoms
does not have the same symmetry as in the bulk. Bonds are broken and, therefore,
the coordination of the atoms is reduced; this results in substantial modifications of
the electronic structure. For transition metals the electronic “d” bands, which are
responsible for the itinerant magnetism are affected by this symmetry breaking. In
a tight-binding scheme the band width, WS, is directly related to the coordination
number [87]:

WS = W (1 − ZBB/Z)1/2 (11)

where W and Z are the bulk band width and coordination number respectively, and
ZBB is the number of broken bonds. In this picture the bandwidth is reduced at
the surface and, therefore, the electronic density of states is enhanced (because the
number of electronic states is unchanged). The Stoner criterion, (which results from
the competition of the exchange energy, gained by transferring electrons from one
spin band into the other, and the loss of band energy) tells us that a magnetic state
is favored when:

Jn(EF) > 1 (12)

where J is the exchange integral and n(EF) the density of states at the Fermi level.
One expects enhanced magnetic moments at the surface for magnetic “d” met-

als [88], or in epitaxial film [89]. In epitaxial film, the magnetic moment can also be
reduced because of hybridization with the substrate, as for example in Fe/W [90]. As
a matter of fact, enhanced magnetic moments have been observed in Stern–Gerlach
experiments for free Co [91], Fe [92], and Ni [93, 94] clusters. Rare earth clusters, on
the other hand, have much lower global magnetic moment than in the bulk, probably
because of spin canting [95].

Even more surprising, some metals that are non-magnetic in the bulk (e. g. V,
Rh, Ru, Pd) are expected to be magnetic when the atomic coordination drops [96],
as in free-standing or epitaxial films [97–100]. Indeed, free Rh clusters were found
to be magnetic in Stern-Gerlach experiments [101], confirming theoretical calcula-
tions [102].

There is, however, currently no clear evidence of ferromagnetism in epitaxial
layers or supported clusters of such metals. For V, Rh, or Ru clusters on Ag or
Au the situation remains controversial, but nearly all experiments give negative
results [103–107]. Recent anomalous Hall effect and weak localization experiments
might indicate that Ru atoms have a small magnetic moment when deposited on
Pd at a very low coverage [108]. These results should, however, be confirmed by
other magnetic characterization techniques. As demonstrated theoretically [109],
the magnetism of these metals is highly sensitive to the local environment. Diffusion
or imperfections, which are found in real systems, lead to a complete extinction of
the magnetic state.

Another difficulty is that an assembly of small ferromagnetic clusters often has an
average magnetization of zero, because of thermal fluctuations. The clusters behave
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like independent giant magnetic moments, fluctuating on a very short time scale. The
fluctuations can be blocked only at very low temperatures (depending on cluster size).
This is the so-called superparamagnetic behavior (Section 6.5.4).

6.5.2 Anisotropy in Ferromagnetic Nanostructures

In bulk magnetic materials, with no applied external magnetic field the magnetiza-
tion lies in a preferential direction, the so-called easy magnetization axis, which often
coincides with a high-symmetry crystallographic direction. This magnetocrystalline
anisotropy arises from the spin–orbit coupling which forces the electron spin to cou-
ple with its orbital momentum (relative to the lattice) [110]. This mechanism applies
for localized spin magnetism and for itinerant magnetism. For uniaxial perpendicu-
lar anisotropy, and neglecting higher order terms, the magnetocrystalline anisotropy
energy is written phenomenologically as:

Emc = V
[

K2mcv sin2 θ + K4mcv sin4 θ
]

(13)

where V is the volume, θ is the angle between the easy axis and the magnetization, and
K2mcv and K4mcv are the first- and second-order anisotropy constants. Eq. (13) is not
a general case – when in-plane anisotropies are present, one must add an anisotropy
term taking into account the energy-dependence of the in-plane projection of the
magnetization.

At surfaces or interfaces the broken symmetry modifies the coupling and specific
surface anisotropy can appear, as suggested by Néel [111]. The surface anisotropy,
which is actually also of magnetocrystalline origin, can favor an easy magnetization
direction either parallel or perpendicular to the surface plane. Actually, the true
surface/interface anisotropy is difficult to estimate experimentally. It often contains
in a hidden way magneto-elastic effects occurring from the strain present inepitaxial
films [112]. Its energy contribution is:

Es = SKs (14)

where S is the surface area and Ks the surface anisotropy constant.
Another source of anisotropy is the shape anisotropy which arises from long-range

dipolar interactions between magnetic moments. It is highly dependent on the shape
of the object [113]. For a revolution ellipsoid the energy of the shape anisotropy
contribution is:

Edip = µM2
s V

[
(Npara − Nperp) sin2 θ + Nperp

]
/2 (15)

where V is the volume, Ms the saturation magnetization, and θ the angle between
the magnetization and the ellipsoid axis. Npara and Nperp are factors which depend
on the shape of the magnetic object. One has 2Npara + Nperp = 1. For a thin two-
dimensional film Nperp = 1, and taking Kdip = −µ0 M2

s /2 one can write, dropping
the constant term:

Edip = KdipV sin2 θ (16)
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Fig. 14. Easy axis orientation as a function of K2eff and K4mcv. The shaded area corresponds
to a metastable zone where out-of-plane and in-plane domains can coexist [114].

Shape anisotropy favors in-plane anisotropy. It is zero for an in-plane uniform film
(θ = π/2). Shape anisotropy can, however, become important for nanostructures
with finite lateral sizes and high aspect ratios. The total anisotropy energy is given
by the sum of all contributions and can be written as:

EA = V
[

K2eff sin2 θ + K4mcv sin4 θ
]
, where (17)

K2eff = K2mcv + Kdip + Ks/d

The equilibrium direction of the magnetization is obtained by minimizing the
energy with respect to θ . A phase diagram providing the preferred directions is given
in Fig. 14 as a function of K2eff and K4mcv [114]. Usually K4mcv (and the higher-order
terms), is neglected but it is this term which can produce a canted easy axis.

If K2eff > 0, there will be an out-of-plane magnetization. According to Eq. (17),
because K2mcv + Kdip < 0 there is a critical thickness, dc = −KS/(K2mcv + Kdip),
below which an out-of-plane magnetization axis can be found, assuming Ks > 0.

The anisotropy is extremely difficult to compute for real systems, because the
theory relies on the ab initio resolution of the relativistic Dirac equation [115, 116],
although perturbative theories have been attempted [117]. Many systems have been
studied both theoretically and experimentally for their anisotropy properties. We
mention only some theoretical work on ordered nanostructures, Co wires, either
free standing or in epitaxy on Pd(110) [118]. Length effects are demonstrated for
short chains (less than five atoms). Free standing Co chains (not too short) are shown
to have an easy axis along the chain. When deposited on the Pd substrate the easy
axis is perpendicular to the chain and to the substrate surface.
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6.5.3 Magnetic Domains

In the absence of any magnetic field, the magnetization lies along an easy magneti-
zation axis. It can, however, point in the two opposite directions of this axis, or even
more if there is higher magnetocrystalline symmetry. Magnetic domains with oppo-
site magnetization directions (denoted plus and minus) therefore coexist, separated
by domain walls in which the magnetization rotates over a short length from plus to
minus.

Magnetic domains appear because of a balance between short-range exchange
coupling (J ), which tends to align adjacent spins in ferromagnetic materials, and
long-range magnetostatic (dipolar) coupling, favoring antiparallel alignment (which
keeps stray fields small). The wall width, w, between two domains is roughly given
by a micromagnetic model w = √

J/K . In nanostructures, the sizes of the objects
are comparable with, or even smaller than, the magnetic wall width. In these cir-
cumstances no walls can form inside the objects and a single domain state is ex-
pected (neglecting edge effects). For continuous films different domain structures
may form (stripe domains, checkerboard, single domain states), depending on the
relative strength of the anisotropy and the dipolar coupling [119–121].

Domains in ultrathin films are usually observed by secondary electron microscopy
with polarization analysis (SEMPA), magnetic force microscopy (MFM), or Kerr
microscopy. Magnetic imaging techniques are described in detail elsewhere [122].
An illustration is given in Fig. 15 for a Co wedge grown on Au(111) [123]. Dark and
bright regions correspond to plus and minus magnetized zones. On the left of the
figure the easy axis is out of plane, on the right the magnetization lies in plane. Other
examples, and discussion of domains in thin films, can be found elsewhere [124].

Fig. 15. Composite SEMPA im-
age of a Co wedge on Au(111)
showing magnetic domains. The
wedge is along the arrow, from 3
ML (left) to 6 ML (right) Co. The
magnetization is out-of-plane on
the left, in-plane on the right. Im-
age 112.5 nm × 112.5 nm [123].
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6.5.4 Superparamagnetism

Small ferromagnetic particles, like those obtained in organized growth, can be in a
magnetic single domain state as mentioned earlier. They have a macroscopic mag-
netic moment m = nµ (n is the number of atoms in a particle and µ the magnetic
moment per atom). If K is the anisotropy constant (e. g., uniaxial) and V the particle
volume, the magnetic energy of the system is E = K V sin2 θ . It can be regarded as
a two-level system separated by a barrier K V .

For very low temperatures (kBT � K V ), m is locked in one state along the easy
axis. For intermediate temperatures (kBT ≈ K V ), the switching of m between the two
states is thermally activated with a probability ν = ν0 exp[−K V/(kBT )] (ν0 is of the
order of 109 s−1). The magnetic moment of the particles will fluctuate over a typical
time scale τ = 1/ν. A sufficiently high applied field will align the individual giant
moments m. When the field is turned off the moments will relax and the macroscopic
magnetization of the assembly of particles (assumed non-interacting), M(t), will
decrease in accordance with M(t) = Ms exp(−t/τ). In the high temperature regime,
the fluctuations occur over a very short time-scale and a continuum of states in θ

can be considered. High fields are needed to saturate the cluster assembly. The total
magnetization in a field, M(H) is given by the Langevin function:

M(H) = MsL[µ0 MsV H/(kBT )], where L(x) = cotanh(x) − 1/x (18)

Jacobs and Bean have arbitrarily defined a blocking temperature, TB = 25 KV
[125]. A system well above TB is said to be superparamagnetic and will have anhys-
teretic magnetization loops (given by the Langevin function) in a cycling applied
field. In the vicinity of, or below, TB one observes hysteretic magnetization loops as
soon as the sweeping rate is fast, because the system has a finite relaxation time. If the
field is applied quasi-statically, allowing the system to relax, the hysteretic behavior
disappears. One must, therefore, be careful when comparing experimental blocking
temperatures obtained with different techniques, because the sampling times can
differ by several orders of magnitude!

6.5.5 Dimensionality and Critical Phenomena

The presence of long-range magnetic order in a system of dimensionality D at a non-
zero temperature depends on the model used to describe the interaction between the
spins and, in particular, on their number of degrees of freedom, n. It is, for example,
well known from the Mermin–Wagner theorem that magnetic long range order is
not observed for an infinite isotropic two dimensional system at finite temperatures.
At the ferromagnetic/paramagnetic transition, critical exponents are defined. The
spontaneous magnetization, Ms, is proportional to tβ , where t = (T − Tc)/Tc (where
Tc is the critical temperature), and the susceptibility is proportional to 1/tγ . The
values of the critical exponents depend on the model. Table 1 lists all the simple
cases encountered, namely the Ising model (n = 1), the XY model (n = 2), and the
Heisenberg model (n = 3) [86].
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Table 1. Critical exponents, and presence or absence of long-range order for the different
models [86].

D = 0 D = 1 D = 2 D = 3

n = 3 No long range order at T �= 0 β = 0.3647
(Heisenberg) γ = 1.3866
n = 2 Super- γ = ∞ β = 0.346
(XY) para- No long-range γ = 1.316

magnetism order
n = 1 β = 1/8 β = 0.3250

γ = 7/4 γ = 1.2402

Organized clusters, stripes, and thin flat layers enable study how magnetic long-
range order appears and how the critical exponents evolve [85]. Monte Carlo
methods enable simulations of more realistic systems, by taking into account fi-
nite anisotropy terms [126, 127] and the dipolar interaction [127, 128] both of which
can stabilize long-range order in 2D systems (Section 6.6). These stabilizing effects
are of great importance in low-dimensional nanostructures. One should note that
the “magnetic” dimensionality is not always connected with the real “topographic”
dimension of the nanostructures.

6.6 Magnetic Nanostructures – Experimental Results

In the following text we will analyze several examples how ferromagnetism sets in
as a function of coverage. We will see how the different ingredients, e. g. surface
anisotropy and dipolar interactions, enable either true low-dimensional ferromag-
netism to appear, or phases close to it. We will discuss the magnetic properties of
nanostructures of non-interacting, well separated islands, of interconnected islands
forming stripes, and of almost continuous films of two-dimensional character. Be-
cause of the amount of work available, it is not possible to give a review of all the
systems studied and we will limit ourselves to structures which have been well defined
and characterized both magnetically and topographically.

6.6.1 Isolated Islands

From the considerations in Section 6.5, one expects the formation of separated and
magnetically non-interacting clusters in the early stage of growth. As coverage in-
creases, these islands coalesce and can form fractal, linear, or film-like structures.
At this stage magnetic interactions (exchange and dipolar coupling) set in. A typical
illustration of this is given by the Fe/W(110) and Co/Au(111) systems.
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6.6.1.1 Fe/W (110)

For room-temperature growth, Fe grows into epitaxial monolayer islands (Fig. 16).
As long as the islands remain separated, i. e. up to a coverage of 0.58 ML, no ferro-
magnetic signal is observed (Fig. 17) [14]. There is an abrupt onset of ferromagnetism,
measured by spin polarized low energy electron diffraction (SPLEED), as soon as
the islands coalesce, at 0.6 ML.

Fig. 16. STM image for (a) 0.23 ML Fe (b) 0.53 ML, (c) 0.66 ML, (d) 0.85 ML Fe grown on
W(110) at room temperature. Images 70 nm × 70 nm [14].

Fig. 17. SPLEED-polarization as a function
of measurement temperature for different
Fe coverage, at 300 K, of W(110) [14].
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The ferromagnetic phase, in the 2D limit, will be discussed later, in Section 6.6.3.
Below 0.6 ML the films are supposed to be in a superparamagnetic state. The islands
are too small to have a blocked magnetic moment. This is a quite general behavior
in the low coverage limit and it will be analyzed more precisely for Co/Au(111).

6.6.1.2 Co/Au(111)

As mentioned earlier, Co grows in well ordered, bilayer-high clusters on the surface
zigzag reconstruction of Au(111) (see, e. g., Fig. 12) [9]. At room temperature Co
clusters nucleate at the kinks of the gold reconstruction and expand laterally as a
function of coverage, until they come close to contact at about 1.0 ML (because the
clusters are bilayers the gold surface is half-covered with Co). Here we will consider
only coverage below 1.0 ML, where the assumption of non- or weakly interacting
clusters is valid.

Because the saturation fields needed to evidence the superparamagnetic state
are so high, in situ Kerr-effect measurement on as-grown clusters is difficult. The
samples must, therefore, be covered by a protective layer. When measured ex situ
in high fields by the Kerr effect or SQUID, an anhysteretic magnetization curve,
characteristic of a superparamagnetic state, is obtained (Fig. 18)[16, 129, 130]. The
saturation fields are approximately 10 kOe.

Because the magnetization of superparamagnetic clusters is described by a
Langevin function of argument NµB/kBT , the experimental curve enables, in prin-
ciple, determination of the size of the clusters. One must assume that the clusters
are all of the same size. This is, actually, true for self-organized Co clusters nucle-

Fig. 18. SQUID magnetization curves recorded at 290 K for 0.4 ML Co on Au(111). The data
points are fitted by a sum of two Langevin functions corresponding to two populations of
clusters of different size (given in values of giant moments µ′c). The fit gives the proportion
of the two populations, Ni

c [16].
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Fig. 19. (a) STM images of a clean Au(111)/mica surface with linear reconstructions, pinned
by screw dislocations (arrows). (b) 0.3 ML Co grown on a linear reconstructed zone. The white
line indicates the direction of the reconstruction. Images 150 nm × 150 nm [16].

ated on the herringbone reconstruction. The magnetization curves in Refs [16] and
[129] are, however, measured on Co clusters deposited on thick gold films grown
on mica substrates. The Au surface of such samples has many more defects than
the well prepared Au(111) single crystalline surface. On Au/mica substrates regions
with the usual herringbone reconstruction coexist with linearly reconstructed regions
(Fig. 19a) where the Co atoms nucleate randomly and form clusters four to five times
larger than those nucleated on the herringbone (Fig. 19b). Although they represent
only 20 to 30 % of the total number of clusters, they contribute to the main part of the
magnetic signal [16]. One must, therefore, be very careful when estimating cluster
sizes from Langevin function fits.

Small and well calibrated clusters, like the Co clusters on Au(111), are suited to
study electronic properties. As mentioned previously, modifications in the electronic
structure can be expected in small clusters. Indeed, changes in the electronic struc-
ture are observed by Kerr spectroscopy for Co coverage below 2 ML [131]. The
consequence is an enhanced orbital magnetic moment, as shown by X-ray magnetic
circular dichroism (Fig. 20).

The enhanced orbital contribution leads to slightly larger anisotropy in the small
clusters [132]. Similarly, a doubling of the orbital moment of Fe has been observed
for small clusters deposited on graphite [133]. A spectacularly increased magnetic
moment has also been observed for Co and Fe atoms on Cs for extremely low amounts
of deposited material [134].

Presently, such small organized dots are of great interest in the study of fundamen-
tal aspects of magnetism. Because of their very low blocking temperature, however,
(below 30 K at approximately 0.5 ML) they are not yet suitable for technological
application in magnetic data storage. In the outlook of this review (Section 6.7) we
will show how this inconvenience might be overcome.
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Fig. 20. (a) X-ray absorption
spectra of the Co L edges for
1.5 ML Co on Au(111) for the
two photon spins in a 4 T field at
20 K. (Inset: Langevin function
fit of the magnetization curve).
(b) XMCD difference spectra
for 1.5 ML Co (dashed line) and
∼0.2 ML (continuous line). The
differences are because of mod-
ification of the orbital magnetic
moment [132].

6.6.2 Interacting Islands and Chains

In this section four types of linear structures, obtained in various ways, are consid-
ered. They illustrate different magnetic regimes. The Co/Au(111) system in the 1
ML coverage range is briefly mentioned in this part and treated in detail in Sec-
tion 6.6.3. The Fe/Cu(111) and Fe/W(110) systems are discussed because of their
peculiar growth on vicinal surfaces.

6.6.2.1 Co/Au(111)

At 1 ML Co coverage, bilayer Co clusters grow laterally and come close to con-
tact. They form more or less continuous bilayer chains approximately 8 nm wide and
100 nm long. The chains, separated by approximately 15 nm (Fig. 13b), remain super-
paramagnetic. If these chain structures are considered as a unidimensional arrange-
ment of spins with perpendicular anisotropy (1D Ising model), magnetic long range
order is not expected (Table 1) – indeed, the chains behave as large fluctuating spin
blocks the sizes of which are larger than those of individual clusters [129, 132]. In
these circumstances the magnetization curves are not supposed to fit a Langevin
function, because the clusters interact with each other.
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6.6.2.2 Fe/Cu(111)

As mentioned in Section 6.4.5, metallic stripes can be obtained upon deposition
on vicinal surfaces. In the first growth stages there is preferential nucleation of the
deposited atoms at the step edges. The aggregation in the steps produces stripes with
width controlled by the total coverage. The miscut angle of the crystal determines
the spacing between the steps (hence the spacing between adjacent stripes). For
example, the Fe stripes in Fig. 21 are obtained on a Cu(111) vicinal surface (mis-
cut 1.2 ◦) for 273 K deposition [78]. The stripes are aligned along 〈011〉. They are
monolayer high and have a width of approximately 10 nm (coverage 0.3 ML). As in
the previous example the chains are not perfectly continuous – it is apparent that
defects sometimes interrupt the stripes.

No magnetic longitudinal Kerr signal is obtained, irrespective of the field applied
along or perpendicular to the stripes. Hysteretic polar Kerr loops are obtained at
low temperatures, from 50 K for 0.3 ML to approximately 200 K for 0.8 ML (Fig. 22),
suggesting a ferromagnetic phase for a quasi-1D system with out-of-plane anisotropy.
The remanence of these Fe stripes is, however, time-dependent. After application of
a field pulse the remanent magnetization decreases over a period of several seconds
(Fig. 23). This demonstrates the presence of fluctuating spin blocks, which can be
partially frozen at low temperatures. There is, therefore, only magnetic long-range
order over a limited time-scale. The hysteretic behavior arises because, at a given
temperature, the sweeping rate of the field is much higher than the fluctuation time of
the spin blocks. The magnetization curves can be fitted in an Ising model description
in which Glauber-type dynamics have been introduced [78]. In this model, for a given

Fig. 21. Fe stripes on vicinal
Cu(111) for 0.3 ML coverage A
linescan is given along the white
line [78].
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Fig. 22. Kerr loops of Fe on vicinal Cu(111) recorded for different temperatures and coverage.
The solid lines are theoretical curves obtained in the Glauber-type model (see text) for the
given anisotropies (K1), exchange constant (J ) and volume (V0) [78].

field sweeping rate, the anisotropy, K1, the volume, V0, of the spin blocks, and the
exchange coupling strength, J , between adjacent segments can be deduced from the
fit.

6.6.2.3 Fe/W(110)

Similar Fe stripes were also obtained on a W(110) vicinal crystal (miscut 1.4 ◦). In this
instance, and in contrast with Fe/Cu(111), persistent remanent magnetization is ob-
served [135], although long-range order should not be observed for non-interacting
single stripes. The Fe stripes are, however, parallel to [001], whereas the easy magne-
tization axis of Fe/W(110) is along [110], i. e. perpendicular to the Fe stripes, because
of a strong uniaxial in-plane surface anisotropy (despite the shape anisotropy). Be-
cause the spins are perpendicular to the stripes, the dipolar interaction across the
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Fig. 23. Kerr signal as a function of time for
an applied field pulse for a 0.8 ML Fe film on
Cu(111) [78].

stripes favors alignment between spin blocks in two adjacent chains (to keep stray
fields low). This additional dipolar interaction is expected to stabilize the long range
ferromagnetic order.

6.6.2.4 Fe/SiO/NaCl(110)

Fe particles, arranged into linear arrays were obtained by deposition of Fe on a
SiO-coated NaCl(110) crystal, which has natural facets forming grooves (Fig. 24,
right) [79]. Because Fe is deposited on a SiO buffer, the clusters are not expected

Fig. 24. Magnetic (Kerr) and struc-
tural (transmission electron mi-
croscopy) for Fe particles on SiO-
coated NaCl. The average parti-
cle size is given on the right. The
easy magnetization axis is along
the wires. The continuous lines rep-
resent the Monte-Carlo simulated
magnetization loops [79].
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to have well defined crystallographic order. In contrast with Fe/W(110), therefore,
the magnetic anisotropy should be weak. Above a given size, the clusters couple
through the dipolar interaction and the magnetization aligns along the particle
chains (Fig. 24, left and middle), for minimization of the stray field. The presence
of long-range magnetic order in this system could be reproduced by Monte Carlo
simulations.

6.6.3 The 2D Limit

By use of selected examples we illustrate the transition from non-, or weakly inter-
acting structures, towards correlated, two-dimensional structures.

6.6.3.1 Co/Au(111)

We mentioned in Section 6.6.2.1 that at 1 ML coverage, the Co structures on Au(111)
have no remanent magnetization. The first ferromagnetic signal is obtained at 1.6 ML.
The two STM pictures in Fig. 25 are indicative of two slightly different coverages
(1.4 ML and 1.6 ML); also shown are the corresponding in situ Kerr magnetization
loops. The abrupt transition indicates a percolation threshold below which there is
no ferromagnetic signal.

Fig. 25. STM images for (a) 1.4 ML and (b) 1.6 ML Co on Au(111) with the corresponding
polar Kerr signals (c) and (d). Images 200 nm × 200 nm [16].
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Monte Carlo simulations were performed to describe the onset of ferromagnetism
as a function of Co coverage [16]. We assume an N ×N hexagonal array of Co clusters
of approximately 75 Å average diameter (2 ML thick) with a giant magnetic moment.
The system is described in a 2D Heisenberg-like model. The Hamiltonian is:

H = S
∑
i, j

δi, jσiεiσ jε j − K V
∑

i

(
σ z

i εi
)2 − µ0 M H

∑
i

σ z
i εi (19)

where σi is the normalized magnetization of the cluster at a site i (M is the saturation
magnetization), εi = 1 or 0 if the site is occupied, or not, by a cluster, δi, j = 1 for
nearest neighbor clusters (0 otherwise), S is the contact surface between the clusters,
V the individual cluster volume, K the perpendicular anisotropy constant, H the
external field (applied in the z direction, perpendicular to the surface), and γ is
the wall energy, for two opposite magnetizations in two adjacent clusters. The wall
energy can be estimated from a micromagnetic model (γ = 2

√
J K ). The dipolar

coupling between chains is neglected (it can be neglected at room temperature, but
dipolar effects can be observed at low temperature). The numerical values used for
the simulation are reported in the caption of Fig. 26. We start from the situation of
1 ML coverage, i. e. from an array of chains separated by a line of unoccupied sites
(white in Fig. 13). Then we start filling the unoccupied sites randomly with clusters.
The σ z-maps (there is nearly no in-plane component of σ ) are shown for several
coverages in the demagnetized state at T = 300 K.

Below 1.5 ML (Fig. 26a, b) the up and down domains are small and confined
within the chains. There are not enough connections to the adjacent row to enable
strong magnetic coupling. At about 1.5 ML, (Fig. 26c) the domain size increases
and they start spreading over the whole surface. At 2 ML (Fig. 26d), the domain
structure is very similar to that observed experimentally [136]. The corresponding
simulated magnetization curves are represented. A drastic decrease of the saturation
field is observed from 1 to 1.5 ML. Significant remanent magnetization appears
above 1.2 ML. These simulations are in quantitative agreement with experimental
results. Because of perpendicular anisotropy, there is a transition from a 1D Ising-
like system with no ferromagnetic long-range order, towards a long-range ordered
2D Ising system.

6.6.3.2 Fe/W(110)

As mentioned in Section 6.6.2.1, the abrupt onset of ferromagnetic order at 0.6 ML
coverage corresponds to the percolation of the Fe islands as observed by STM.
The Fe/W(110) system is an ideal system to study critical phenomena, because it is
possible to obtain a thermodynamically stable and flat monolayer film. The Curie
temperature can be easily measured, as can critical exponents. It has been shown
that an Fe monolayer on W(110) can be described as a two-dimensional anisotropic
Heisenberg system (actually the critical phenomena were analyzed on a Fe mono-
layer deposited at high temperature, which is thermodynamically stable) [137].

It is worth mentioning that the room-temperature-deposited films have somewhat
peculiar behavior in the 1.2 ML to 1.5 ML range. These Fe sesquilayers (i. e. one
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Fig. 26. Demagnetized σ z maps of 30 × 30 sites for different coverages θ . Unoccupied sites are
in white, occupied sites with up (down) magnetization in gray (black). Hysteresis loops and first
magnetization loops are shown [16]. γ S/kB = 125 K, K V/kB = 1000 K, M/kB = 1000 K/T.

monolayer and a half) on W(110) lose their remanent magnetization [138] (Fig. 27).
STM pictures show that in this coverage range double-layer Fe islands are surrounded
by an Fe monolayer sea (Fig. 28) [139].

Torsion oscillatory magnetometry coupled with Kerr effect measurements at dif-
ferent temperatures show that the Fe monolayer is ferromagnetic with in-plane
anisotropy whereas the double layer islands are superparamagnetic with a perpen-
dicular anisotropy; some of these are blocked, others are not. The coupling between
the double-layer islands and the surrounding layer produces micromagnetic phe-
nomena not yet very well understood. The perpendicular anisotropy of the double
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Fig. 27. SPLEED-polarization as a func-
tion of Fe thickness. Note the absence of
magnetic signal in region III [138].

Fig. 28. STM picture of an Fe sesquilayer on
W(110). L indicates the Fe monolayer [139].

layer islands is attributed to the high epitaxial strain in the Fe. Above 1.5 ML misfit
dislocations enable strain release and the system returns to the normal situation of
an in-plane magnetized film.

6.6.3.3 Co/Cu(100)

For low-dimensional structures interesting questions arise at the critical temperature
above which long-range ferromagnetic order disappears. Is the critical temperature
a true Curie temperature, at which the spontaneous magnetization vanishes, is it a
superparamagnetic blocking temperature, or does the film just break into domains?
These questions have been answered for the Co/Cu(100) system [140]. A Co film,
between 1 and 2 ML thick is ferromagnetic with weak magnetocrystalline anisotropy;
the magnetization is confined in-plane by the shape anisotropy. Kerr effect combined
with SEMPA measurements showed that for such a thin Co film the spontaneous and
remanent magnetization decrease in the same way with temperature. This demon-
strates that the critical temperature is a true Curie temperature. Above the Curie
temperature the system has a strong susceptibility in a weak external magnetic field,
as a result of large fluctuating spin-blocks evidenced by SEMPA. The system behaves
like a two-dimensional Heisenberg ferromagnet.
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6.6.3.4 Influence of Growth Conditions

The magnetic properties of such structures are governed by their morphology and
crystalline structure. Because the later depend on growth conditions, very differ-
ent magnetic properties can be expected as a result of the use of different growth
conditions. We will give two examples.

As mentioned in Section 6.4.6, when the density of island Nsat (Eq. (1) in Sec-
tion 6.2.1) is increased by reducing the growth temperature, the morphology of Co
clusters grown on Au(111) is modified. When Co is deposited at 30 K on Au(111)
small monolayer grains nucleate and build rather compact Co layers (Fig. 13b). These
layers are ferromagnetic above 1.5 ML and are magnetized in-plane [81], in contrast
with to room-temperature-grown Co clusters, which are magnetized perpendicularly
between 1.6 and 5 ML. Similarly, Nsat can be enhanced by increasing the rate of de-
position, R. Because Nsat follows a power of R, however, whereas it is exponential
with the temperature, R must be increased by several orders of magnitude to have
the same effect as cooling the substrate from 300 K to 30 K.

Such elevated deposition rates are obtained by pulsed laser deposition (PLD),
for which the instantaneous flux is of the order of 103 to 104 ML s−1. PLD-deposited
Fe on Cu(100) has been shown to grow in a perfect layer-by-layer growth mode.
These PLD-Fe layers are magnetized in-plane for coverages at which the thermal
deposited films have out-of-plane anisotropy [141]. The exact origin of the in-plane
anisotropy of Co and Fe when grown under these particular conditions is not yet
completely clear. It seems that both low-temperature deposited Co on Au(111) and
PLD-Fe on Cu(100) have a smaller magnetocrystalline anisotropy than for usual
growth conditions and therefore the shape anisotropy can force the magnetization
in-plane.

In the systems addressed above, the magnetic properties can be understood quite
well in terms of percolating superparamagnetic islands. They can be described by use
of a few types of thermodynamic models, if the growth and morphology are known
accurately and one takes proper account of the anisotropy term and the dipolar
coupling.

6.7 Conclusion and Outlook

Simultaneous analysis of STM topographs and the magnetic properties of organized
islands on surfaces has led to improved understanding of the relationship between
the growth and magnetism of films and self-organized clusters. Particular properties
of magnetic “films” increasingly seem to be a result of spontaneous nanostructur-
ing during growth (interaction between spin block, pinning of magnetic walls on
island boundaries, etc.) and not of intrinsic properties of monolithic, continuous
films, as was sometimes assumed in the past. The recent development of variable-
temperature STM equipment enables characterization of highly out of equilibrium
materials with unexpected properties. This very fruitful approach also opens up new
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ways of exploiting atomic diffusion to tailor, to a large extent, the density and shapes
of nanostructures.

Although the feasibility of self-organization on dislocation networks has been
demonstrated (Section 6.4.3), many problems remain to be addressed. A major chal-
lenge in future work will be tuning the periodicity of templates for self-organization
purposes, because currently only a few combinations of lattice mismatch of hetero-
epitaxial systems (see Ag/Pt or Au(111)) are used. It should, ideally, be possible to
adjust continuously the periodicity from one value to another. In this respect, the
possibility of using alloys of continuously varying concentration should certainly be
considered. Another important opening would be to use metal oxides as substrates,
as suggested by recent work on MgO [142]. Finally, the possibility of growing the
magnetic structures in the third dimension, in a fashion similar to that achieved on
some semiconducting systems [143], should be investigated.

Until now, ordered, well separated structures could be synthesized on few systems.
The magnetic blocking temperatures thus achieved on Co dots on gold amounts to
a few tens of degrees Kelvin. Blocking temperatures in excess of 300 K are reached
only when structures start to interact magnetically. To increase the blocking temper-
ature of each dot separately, the volume of the dot must be increased, eventually its
aspect ratio must be optimized. Along these lines, an attempt has been made to pile
up self-organized cobalt dots on Au(111) [144]. Alternating gold and cobalt depo-
sition under appropriate conditions leads to arrays of 8-nm-high columns (4 nm in
diameter). Although the self-organized columns obtained in this way have blocking
temperatures close to 300 K they nevertheless interact magnetically. Because of their
strong magnetic anisotropy, small clusters of rare earth metals [95] or transition/rare
earth metals [145] should also be considered for self-organization. Self-organized
magnetic dots would provide a state of the art solution for large scale integration
of very small particles for artificial atom devices, spin-polarized transport structures,
and single-electron Kondo physics devices [2, 146, 147], which have so far been stud-
ied only as single elemental devices.

Finally, self-organized magnetic dots embedded in a free-electron-like matrix
are, by construction, materials with very high density of interfaces. They are, there-
fore, particularly promising for giant magnetoresistance applications (GMR). Recent
work on Co/Au/Co/Au(111) films [148] seems to confirm this prediction, although
self-organization has not been verified in this work.
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[98] S. Blügel, Phys. Rev. B 1995, 51, 2025.
[99] K. Wildberg, V.S. Stepanyuk, P. Lang, R. Zeller, P.H. Dederichs, Phys. Rev. Lett. 1995,

75 509.
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7 Spin Electronics – An Overview

Ivan Petej and John Gregg

7.1 Introduction

The advances achieved in the semiconductor industry over the last fifty years have
made an enormous impact on human life. The field of semiconductor electronics has
expanded so rapidly (particularly since the cash injection as a result of the NASA
1960s space-race program) that it is difficult nowadays to imagine an area of techno-
logical development that does not use computer technology. Behind the success in
this field lies a simple physical principle. In a semiconductor two different families of
electric current carrier arise when electrons jump across a band gap in the allowed
energy spectrum – the promoted electrons in the conduction band and the positively
charged holes which they leave behind them in the valence band. The distinction
between these two types of carrier lies at the core of all electronic devices – their
manipulation by locally created electric fields and concentration gradients was the
mechanism used in the very first Ge transistor which originated in Bell Laboratories
and is still used in the modern Pentium microprocessors.

All these charge carriers also have another (inherently quantum) property, how-
ever – when electrons traverse a region in which there is a magnetic field, their angular
momentum, known as spin, aligns itself either parallel or antiparallel to the magnetic
field axis. This phenomenon, despite its having been known for over five decades, had
been largely ignored until recently by the electronics community. The need for faster,
more compact electronic devices has, however, prompted researchers to recognize
that, just as charge can be used as a distinguishing label, so also can spin. So arose the
birth of spin electronics. The newly emerging technology has the potential to change
forever the way computer memories and processors work.

Spin electronic devices function by transferring magnetic information from one
part of the device to another by using nanoscale magnetic elements (mesomagnets)
to encode it on to (and subsequently read it from) the itinerant electron spin chan-
nels. This coding can be changed by re-magnetizing the mesomagnets thus enabling
the creation of electronic components whose characteristics may be engineered to
respond to applied magnetic fields.

The aim of this article is to introduce the field of spin electronics by giving a
description of the relevant physical systems and length scales on which the spin effects
become important. Early devices are described, some more recent developments are
illustrated, and the authors conclude by outlining their own thoughts on the future
potential of this rapidly expanding field.
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7.2 The Technical Basis of Spin Electronics –
The Two-spin Channel Model

The basis of spin-polarized transport was established as far back as the 1930s with the
observation that features of electric transport in ferromagnets distinguished them
from other metals. Mott [1] explained this phenomenon by postulating that the
transport in ferromagnetic systems was effected by two independent families of
carriers whose members are distinguished by their spin orientation with respect to
the local magnetic axis – spin-up (parallel) or spin-down (antiparallel). The key point
in Mott’s argument is that because the spin-flip processes are rare on the time-scale
of the other scattering processes which control the transport, the current in each
spin-channel is conserved, and the two spin channels can essentially be regarded as
being pseudo-independent.

7.2.1 2.1 Spin Asymmetry

The physical origin of this spin asymmetry in ferromagnets is now known to arise
because the ferromagnetic exchange interaction splits the spin-up and spin-down
conduction bands, leaving different band structures (and hence densities of states,
Fig. 1) evident at the Fermi surface. As a result, the number of available carriers of a
particular spin type, or (in a tunneling process) the number of available final states for
such carriers, is different for the up-spin and down-spin electrons. In addition, owing
to the different densities of final states for each spin type, the two types of carrier
are differently affected by momentum-changing scattering processes and hence their
mobilities are in general not the same. Most spin electronic phenomena are based
on either or both of these asymmetries prevailing in the relevant physical system.

In fact, the two asymmetries often compete with one another in spin electronics.
The Fermi surface in most ferromagnetic materials contains components which have
both s and d character. The s-like effective masses are small compared with the
d-like masses and so any current that flows is primarily mediated by s-electrons.
The d-electrons are, however, significantly split by the exchange interaction, and this
results in very different densities of states into which the s electrons can be scattered.
Thus, from Fig. 1, the down s-channel (the spin type of which has a large d density of

EF
ρ

s-bandd-band

Fig. 1. Spin splitting of the density of states (ρ)
in a ferromagnet as a result of the ferromagnetic
exchange field.
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states at the Fermi energy) suffers the most scattering and hence has lower mobility
than the other s-channel; as a consequently the latter carries most of the current.
Thus in a system with s and d like character at the Fermi surface, the tendency is for
the current to be carried by the minority carriers (where “minority” is taken to mean
those with the lower density of states at the Fermi energy) whereas in a half-metallic
ferromagnet the current can be carried by majority carriers only.

7.2.2 Spin Injection Across an Interface

Now that we have considered the basic principles behind the origin of spin asymme-
try, we can briefly consider an important phenomenon which lies at the heart of early
spin electronic devices. If one carrier spin type is dominant in the electrical transport
of a ferromagnet, when a current is passed from this ferromagnet to a paramagnetic
metal such as silver or aluminum, it brings with it a net injection of spin angular
momentum and hence also of magnetization [2]. The magnetization which builds up
in the new material is known as a spin accumulation. (Fig. 2). Its size is determined by
the equilibrium between the net spin injection rate at the interface and the spin flip-
ping rate in the body of the paramagnet. It follows that the spin accumulation decays
exponentially away from the interface on a length scale called the “spin diffusion
length”.

Because of its importance in the field of spin electronic devices, it is instructive to
do a rough “back of the envelope” calculation to see how large is this spin diffusion
length, lsd, and on what factors it depends. We can consider a newly injected up-
spin arriving across the interface into the non-magnetic material. It undergoes a
number N of momentum-changing collisions before being flipped (on average after
time τ ↑↓). The average distance between momentum-scattering collisions is λ, the
mean free path. We can now derive two relationships. By analogy with the progress
of a drunken sailor leaving a bar and executing a random walk up and down the
street, we can say (remembering to include a factor of three because, unlike the

Direction of current flow

Ferromagnet Paramagnet

Fig. 2. Illustration of the spin accumulation at
the ferromagnet/paramagnet interface.



256 7 Spin Electronics – An Overview

sailor, our spin can move in three dimensions) that the average distance which the
spin penetrates into the non-magnetic material (perpendicular to the interface) is
λ
√

N/3. This distance is lsd, the spin diffusion length which we wish to estimate. The
total distance walked by the spin is, moreover, Nλ which in turn equals its velocity
(the Fermi velocity, vF) multiplied by the spin-flip time τ↑↓. Eliminating the number
of collisions, N , gives

lsd =
√

vFτ↑↓λ

3
(1)

For a rigorous analysis of the spin-accumulation length in terms of the respective
electrochemical potential of the spin channels, the reader is referred to Valet and
Fert [3] from which it can be seen, numerical factors apart, that the crude “drunken
sailor” model gives a remarkably accurate insight into the physics of this problem.

Using the above relationship, the resulting magnitude of spin accumulation can
be given in terms of the spin density, n, at distance, x , from the interface. It is:

n = n0e
−

(
x

lsd

)
(2)

where n0, the density at the interface is given by:

n0 = 3α jlsd

evFλ
(3)

Here, the coefficient α is the polarization of the ferromagnet and j is current
density at the interface. Substituting typical numbers – j = 1000 Amps cm−2, α = 1,
vF = 106 m s−1, λ = 5 nm, lsd = 100 nm gives a value of spin density of 1022 m−3

as opposed to a total electron density of approximately 1028 m−3. That such minute
asymmetries in total spin density can give rise to such large electrical transport ef-
fects as giant magnetoresistance is yet one more example of the dominance of the
electrons at the metal Fermi surface, which is where these spins are concentrated.
This small spin density asymmetry also explains why measurement of the spin den-
sity, or its associated magnetization, is difficult, owing to problems in distinguishing
convincingly the magnetic fields generated by the effect itself (approximately 10 nT
for the example above) and those caused by the current which is generating the
accumulation.

7.2.3 The Role of Impurities in Spin Electronics

From Eq. (1) it becomes evident that introducing impurities into the paramagnetic
material leads to rapid reduction of the spin diffusion length (lsd), because they
shorten not only the mean free paths of the charge carriers, but also the spin flip time
via the mechanism of spin-orbit scattering. The latter can be thought of as a relativis-
tic effect–under Lorentz transform, electric fields assume a magnetic component. To
electrons at the Fermi surface, which have weakly relativistic velocities, the electric
fields generated by impurity atoms seem weakly magnetic. If the symmetry of the
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impurity site is sufficiently low, this field can Zeeman-couple to the S+, S− opera-
tors which induce spin-flip transitions. Hence materials with point defects and low
symmetry structural disorder are likely to have reduced spin diffusion lengths [4].

7.3 Two Terminal Spin Electronics –
Giant Magnetoresistance (GMR)

Having outlined the origins of the spin accumulation length at the interface between
a ferromagnet and a normal metal, we can now consider the operation of arguably the
simplest spin electronic device – a thin layer of paramagnetic material sandwiched
between two ferromagnetic electrodes, such as that shown in Fig. 3.

The device acts as a two-terminal passive spin electronic component which, in
some realizations, is known as a “spin valve” and it passes muster in the world of
commerce as a giant magnetoresistive hard-disk read-head.

Empirically, the function of the device is simple (Fig. 4). If we measure the elec-
trical resistance between the two terminals in an externally applied magnetic field
(supplied for example by the magnetic information bit on the hard disk the orien-
tation of which must be read) we can use the field to switch the relative magnetic
orientations of the ferromagnetic layers from parallel to antiparallel. It is observed
that the parallel magnetic moment configuration corresponds to a low electrical
resistance and the antiparallel state to a high resistance. Changes in electrical resis-
tance of approximately 100 % are possible in quality devices, hence the term giant
magnetoresistance, because, by comparison with, for example, anisotropic magne-
toresistance in ferromagnets, the observed effects are about two orders of magnitude
larger.

ParamagnetFerromagnet Ferromagnet

Direction of current flow

Fig. 3. Schematic diagram of a simple GMR device.
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Fig. 4. Experimental illustration of GMR (after Baibich et al. [5]).

7.3.1 The Analogy with Polarized Light

There are several different ways – of varying rigor – of explaining the operation of this
spin valve structure. To keep things simple, let us analyze it by analogy with the phe-
nomenon of polarized light. In the limit in which the ferromagnets are half-metallic
the left hand magnetic element supplies a current consisting of spin-up electrons
only; this causes a spin accumulation in the central layer. If the physical thickness
of the silver layer is comparable with or smaller than the spin diffusion length, this
spin accumulation reaches across to the right hand magnetic layer which, because
it is half-metallic, acts as a spin filter, just as a piece of Polaroid spectacle lens acts
as a filter of polarized light. The spin accumulation presents different densities of
up and down electrons to this spin filter, which thus lets through different currents
depending on whether its magnetic orientation is parallel or antiparallel to the ori-
entation of the polarizer (i. e. the first magnetic layer). The only difference from the
example of crossed optical polarizers is that in optics the extinction angle is 90 ◦. In
spin electronics it is 180◦, which arises because the photon is a spin 1 particle and the
electron has spin 1/2.

Alternatively, a simple parallel resistor model, shown in Fig. 5, can be used to de-
scribe GMR. The two parallel paths, each consisting of five series resistors, represent
the respective spin channels and the resistors in each path represent the resistances
which they experience in each of the magnetic layers. If we arbitrarily assign resis-
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spin down

Current flow Current flow

spin up

spin down

Fig. 5. The two-resistor model of GMR.

tance values of 1 and 10 Ohms to the majority and minority resistances, it is seen that
the magnetization parallel and antiparallel configurations have overall resistance of
4.5 and 22.3 Ohms, respectively.

7.3.2 CIP and CPP GMR

It is important to note that there are two configurations in which our simple two-
terminal device can work – they are described as current in plane (CIP) and current
perpendicular to plane (CPP) configurations. Above, we have discussed only the
latter in which the critical length scale for the magnetic phenomena is the spin diffu-
sion length. The physics involved in CIP operation is rather different and the critical
length scale here is the mean free path. CIP GMR was, in fact, the first GMR to be ex-
perimentally demonstrated, its geometry being easier to realize than CPP geometry,
the implementation of which requires sophisticated nanolithography techniques [6].

CIP GMR is characterized by the same drop in electrical resistance of the thin film
sample when a magnetic field is applied. The explanation is, however, fundamentally
different – symmetry considerations show clearly that no spin accumulation is set
up in this instance, because current flow is parallel to the layers. Instead the expla-
nation invokes the different mobilities of the spin-up and spin-down electrons and
relies on the non-magnetic interlayer being sufficiently thin that a high proportion of
the current-carrying electrons experience successive momentum-scattering events
in different magnetic layers. This in turn means that if the layers are antiparallel, nei-
ther spin type has high mobility, because each experiences heavy scattering in one
or other layer. If, however, the layers are parallel, one spin-type is heavily scattered
in both layers and the other spin type is relatively unscattered and hence its high
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Fig. 6. The two resistor model of GMR in CIP configuration for ferromagnetic (left) and
antiferromagnetic (right) layer alignment.

mobility electrically short-circuits the device. The resistor model of Fig. 6 models the
CIP geometry – the two parallel paths are representative of the two spin channels in
each non-magnetic layer, and each path comprises two resistances which represent
the scattering they experience in the adjacent magnetic layers, assuming that their
trajectories sample both these magnetic layers.

7.3.3 Comparative Length Scales of CIP and CPP GMR

It is evident from this discussion that two quite different length scales are relevant
to CIP and CPP GMR. For CPP GMR, the interlayer must be less than the spin
diffusion length whereas for CIP GMR to appear the interlayer must be less than a
mean free path, which is a rather shorter distance. As a result the typical CIP GMR
multilayers use non-magnetic spacers of approximately 10 Å or less.

7.3.4 Inverse GMR

In the above discussion of GMR it is assumed that the metals in the two ferromagnetic
layers are similar, or at least that the signs of their polarizations are the same. In
other words, the majority spin for each ferromagnet is parallel to the magnetization
(positive polarization) or antiparallel to the magnetization (negative polarization).
If a combination of two ferromagnets with opposite polarizations is used to make
a GMR trilayer, the GMR is inverted, i. e. the resistance of the device increases
on application of an external magnetic field. This is because when the ferromagnets
have parallel magnetizations they disagree about which spin direction is the majority
type [7, 8].

7.3.5 Methods of Achieving Differential Switching of Magnetization –
RKKY Coupling Compared with Exchange Pinning

Two techniques are used to engineer GMR systems such that the two ferromagnetic
layers in the trilayer switch differentially in an externally applied field. The first
involves making the metallic interlayer of such a thickness (approx. 1 nm) that the
RKKY coupling across it between the magnetic layers is antiferromagnetic and so
the layers anti-align in zero applied field but align parallel to one another in applied
field [9]. This technique imposes constraints on device design which might militate
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Fig. 7. Schematic diagram of a spin valve [11].

against obtaining the best GMR signal. The other technique is to fabricate one
layer magnetically harder by exchange pinning it to an antiferromagnet on the side
opposite to that which abuts the GMR device. In this arrangement only the unpinned
soft layer moves in small magnetic fields. The resulting device is termed a spin valve
(Fig. 7) [10].

There is a third technique, using materials known as artificial antiferromagnets
(AAF), which is a clever combination of the other two ideas. Here, no RKKY cou-
pling is used in the GMR spacer layer but one of the ferromagnetic electrodes is
rendered magnetically hard by fabricating it from two distinct ferromagnetic layers
A and B, of almost identical thickness, which are magnetically coupled such that in
zero applied field they are antiparallel and hence their net moment is small. The
switching field of this artificial antiferromagnet block (A + B) is thus enhanced by
a so-called Q factor, which is the ratio of the total magnetic moment when A and B
are aligned in a high field to the net moment when A and B are anti-aligned [12].

7.3.6 GMR in Nanowires

An interesting realization of CPP GMR has been achieved by using electroplating
technology to construct metallic nanowires in nanopores of a membrane [13]. With a
suitable electrolyte containing a selection of ions, different materials can be deposited
with an interspacing of few nanometers along the wire simply by switching the value
of the electroplating potential, thereby creating a magnetic multilayer structure. This
technique has the added convenience that the geometry of the wires is conducive
to easy measurement, unlike thin evaporated films which must be lithographed to
obtain specimens whose resistance is high enough for practical purposes.

7.4 Three-terminal Spin Electronics

Electronically, the natural progression is from a two terminal GMR device to a three
terminal device, and this step was first achieved by Mark Johnson [14–16] simply by
attaching a third contact to the intermediate paramagnetic base layer to create the
Johnson transistor (shown in Fig. 8)
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1

2

3

Ferromagnet FerromagnetParamagnet

Fig. 8. The Johnson transistor.

In the language of bipolar transistors, we can speak of a base, an emitter, and a
collector, the last two being the ferromagnetic layers. Just like its bipolar counterpart,
the Johnson transistor can be used in a variety of configurations; the one we discuss
here is chosen because it gives insight into yet another way of analyzing spin filtering
and spin accumulation. We leave the collector floating and monitor the potential
at which it floats by use of a high-impedance voltmeter. Meanwhile a current is
pumped round the emitter-base circuit and this leads to spin accumulation in the
base layer as before. The floating potential of the collector now depends on whether
its magnetic moment is parallel or antiparallel to the magnetization of the polarizing
emitter electrode which causes the spin accumulation. Evidently this potential can
be altered by using an external magnetic field to switch the relative orientation of
the emitter and collector magnetic moments.

To analyze this behavior, consider again the limiting case of a half-metallic ferro-
magnet as the collector electrode. It floats in equilibrium with the base electrode – in
other words, in the steady state no net current flows. But because it is half-metallic it
can only trade electrons with the base whose spin is (say) parallel to its magnetization
and the “no current” condition then means that its electrochemical potential is equal
to the electrochemical potential in the base layer for the same electron spin type. In
other words, the collector is sampling the electrochemical potential of the appropri-
ate spin type (spin–up) in the base. Reversing the collector magnetization means it
now samples the spin-down electrochemical potential in the base. Because there is
spin accumulation in the base, these spin-up and spin-down electrochemical poten-
tials are different [3] and the collector potential thus depends on the orientation of
its magnetic moment. Thus we have a three-terminal spin electronic mechanism for
which the conditions at terminal 3 can be set by suitable adjustment of the condi-
tions at terminals 1 and 2, as for a traditional electronic three-terminal device. These
conditions can also be reversed by applying an external magnetic field. The above
encapsulates the essence of spin electronic device behavior.
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7.5 Mesomagnetism

Evidently, in the above discussion it is essential that the spin accumulation pene-
trates right across the thickness of the base layer so that the collector may sample it.
Likewise, in the two-terminal device, it was important that the base layer thickness
was small on the length scale of the spin diffusion length. This provides us with an
interesting new way to view spin electronic devices. We can regard their behavior as
a write-read process in which an encoder writes spin information on to the itinerant
electrons in one part of the device and this information is then conveyed to a physi-
cally different part of the device where it is read off by a decoder. The encoder and
decoder elements are nanoscale ferromagnets and the spin information decays in
transit on the length scale of the spin diffusion length. The message, then, is that for
successful spin electronic device operation, the device must be physically engineered
on this length scale or smaller.

This is just one particular manifestation of the general phenomenon of meso-
magnetism, which concerns itself with the appearance of novel physical phenomena
when magnetic systems are reduced to the nanoscale. The underlying tenet of me-
somagnetism is that magnetic processes are characterized by a variety of length
scales and that when the physical dimensions of a magnetic system are engineered
to dimensions comparable with or smaller than these characteristic lengths, new
and unusual magnetic phenomena appear, for example giant magnetoresistance, su-
perparamagnetism, and perpendicular recording media. These characteristic length
scales have a variety of origins. Many – domain size, domain wall width, exchange
length, thin film perpendicular anisotropy threshold – are governed by a balance of
energy terms. Others are the result of diffusion processes for energy, momentum,
and magnetization.

7.5.1 Giant Thermal Magnetoresistance

As an interesting example of a mesomagnetic phenomenon we consider giant ther-
mal resistance. The Wiedemann- Franz law (WFL) tells us there is a close relation-
ship between electrical transport and heat transport in most materials. Thermal and
electrical conductivity are limited in most regimes by the same scattering processes
and the WFL tells us that in these circumstances their quotient is a constant times
absolute temperature. Moreover, this close relationship extends to magnetotrans-
port in mesomagnetic systems. Figure 9 shows measurement of the giant thermal
magnetoresistance in a giant magnetoresistive mechanical alloy.

The analysis is identical to that for the electrical case. Spin information is encoded
on to a thermal current in one part of the device and read off again in a different part
of the device. The result is a thermal resistance which varies with applied magnetic
field by many percent [17].
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Fig. 9. (a) Schematic diagram of an experiment designed to measure thermal magnetore-
sistance, and (b) the thermal GMR effect seen in a mechanical alloy. For comparison, the
electrical GMR is also shown inverted (dots) and superimposed on the thermal trace.

7.5.2 The Domain Wall in Spin Electronics

Another example of the intrigue of mesomagnetism can be seen by considering the
geometrical similarity between a spin-valve structure and a ferromagnetic domain
wall, as illustrated in Fig. 10. In both, regions of differential magnetization are sepa-
rated by an intermediate layer. In the former this layer is in the form of a thin film
of non-magnetic metal whereas in the latter it is a region of twisted magnetization.

The spin valve functions if spin conservation occurs across the intermediate zone.
By analogy, it is possible to develop a model of domain wall resistance [18–20] in
which the value of the resistance is determined by the amount of spin depolarization
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(a)

(b)

Fig. 10. Geometric similarities between (a) an FM domain wall and (b) a GMR trilayer
(courtesy of W. D. Allen).

of the charge carriers in the twisted magnetic structure formed at the heart of the
domain wall. The model invokes magnetic resonance in the ferromagnetic exchange
field to determine the amount of electron spin mis-tracking on passing through the
domain wall. This mis-tracking of, say, an up-spin leads to its making an average
angle θ with the local magnetization direction in the domain wall, which is equiva-
lent to its wavefunction being contaminated by a fraction sin(θ/2) of the down-spin
wavefunction (Fig. 11).

Fig. 11. Spin orientation versus trajectory for the electrical carriers in transit through a do-
main wall in cobalt. The blue vector represents the cobalt magnetization and the red vector
represents the spin orientation (courtesy of W D Allen).
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The up-spin is then susceptible to additional scattering by an amount equivalent to
〈sin2(θ/2)〉 multiplied by the down-spin scattering rate. This model leads to a formula
for the spin-dependent contribution to the domain wall resistivity:

δρw

ρ
=

(
λ∗

λ
+ λ

λ∗ − 2
) 〈

sin2
(

θ

2

)〉
(4)

where λ and λ∗ are the majority and minority spin mean free paths, and ρ0 and
δρW are, respectively, the bulk ferromagnetic resistivity and the resistivity increase
for domain wall material. The varying angle θ has an amplitude which is approxi-
mately equal to hvF/Eexd , where d is wall thickness, vF is Fermi velocity and Eex is
ferromagnetic exchange energy [21].

This spin-dependent contribution differs from various other proposed mecha-
nisms for domain wall resistance in that it predicts not a fixed value of resistance for
the wall but rather a ratio increase based on the bulk value for the material. In prin-
ciple, therefore, the validity of the model can be assessed by measuring domain walls
in increasingly impure samples of the same ferromagnet and observing if the ratio
δρW/ρ0 stays fixed. This model has been re-analyzed [22] by replacing this simple
rotating frame approach with a more sophisticated quantum mechanical analysis. To
within a simple numerical factor, identical results are obtained.

7.6 Spin Tunneling

Tunneling between ferromagnetic electrodes, and the effect of the relative magnetic
orientation of the electrodes upon it, was an effect first investigated by Julliere [23]
and Maekawa [24]. These early observations (Fig. 12) showed that the tunneling con-
ductance (for these dissimilar electrodes) increases when the relative orientation of
the electrodes changes from parallel to antiparallel; the effect was termed tunneling
magnetoresistance (TMR).

Julliere was the first to describe the cause of this effect in classical terms. His
argument was that the spin splitting of the Fermi level in the magnetic metals led
to unequal distribution of up- and down-spin electron states. This, combined with
the classical model of tunneling [26], in which the overall tunneling conductance is
proportional to the product of the densities of states of the two electrodes, with the
assumption that spin is conserved in the process of tunneling, resulted in a simple
formula which stated that:

�R

R
=

(
R P − R AP

)
(
R P + R AP

) = 2P1 P2

(P1 + P2)
(5)

where Pi is the polarization of the electrode defined as:

Pi = ρ
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ρ
↑
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Fig. 12. Experimental signature
of spin tunneling [25]; resis-
tance of CoFe/Al2O3/Co tunnel-
ing junction plotted as a function
of H in the film plane, at 295 K.
Also shown is the variation of
CoFe and Co resistances. The ar-
rows indicate the direction of M
in the two films.

and ρ is the density of states. This well known Julliere model was successful in giving
physical insight into the possible origin of the effect. Extensive research performed
over the last twenty years has, however, posed new questions, some of which re-
main unexplained even today. For instance, in a classic experiment by Moodera and
Kinder [25] it was found that the observed TMR is highly dependent not only on
the type of insulator used as a tunnel junction, but also on the barrier height and
width. Many workers found that the TMR varies substantially with temperature and
applied bias, irrespective of junction quality. In addition, barrier impurities and the
introduction of a spacer metal into barriers of controlled thicknesses all affected the
measured values. None of these effects is explained by the simple classical model.
The search for a comprehensive theoretical model for TMR that can explain all
available experimental data is as yet an unresolved challenge.

7.6.1 Theoretical Description of Spin Tunneling

The basic defect in the classical theory of spin tunneling is that it treats the two fer-
romagnetic electrodes as independent systems [23]. In Julliere’s model, the electron
wavefunctions within the barrier are treated as evanescent and are assumed not to
perturb the electron wavefunction in the other electrode. It also considers only the
simple case of a square barrier–i. e. one which is unbiased, or at least where the ef-
fect of the bias voltage on the barrier shape can be ignored. As a result, this early
model does not predict any barrier width or height dependence of the tunneling
magnetoresistance, in clear contradiction of the measured results.

The need to modify Julliere’s model was first realized by Slonczewski [27], who
argued that because most practical barriers are relatively permeable, wavefunction
overlap within the barrier means that wavefunction matching must be considered
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across the entire device. Using two parabolic bands (spin up and down) shifted rel-
ative to one another by the exchange splitting, Slonczewski solved the Schrödinger
equation for the wavefunctions of the polarized electrons tunneling across a rectan-
gular barrier and determined the resulting conductance from the current operator.
The principal result of his calculation was that the effective polarization of the tun-
neling electron (which, when substituted into Eq. (5), gives the TMR) now depends
on the height of the barrier, Vb, through an imaginary wavevector in the barrier, κ ,
defined by:

h̄κ =
√

[2m(Vb − EF )] (7)

by an amount:
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[
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k↑
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×
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i k↓
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]
(8)

This equation has a simple physical interpretation–because the magnitude of the
Fermi wavevector for a particular spin channel is proportional to the density of
states at the Fermi energy, we can see that the first factor

(
k↑ − k↓)

/
(
k↑ + k↓)

is
identical to the polarization obtained in Julliere’s classical theory of tunneling, but
is now multiplied by a new factor [κ2 − k↑k↓]/[κ2 + k↑k↓]. Because κ ranges from
0 (low barrier) to infinity (high barrier) we can see that in the limit of high barrier
height the effective polarization reduces to Julliere’s result; for low barrier height,
however, it departs significantly and can even change sign. Hence the matching of
the wavefunctions across the tunnel barrier offers a plausible explanation of the
observed dependence of TMR on the thickness and height of the tunneling barrier,
and hence on the choice of insulator itself.

7.6.1.1 Fowler-Nordheim Tunneling Regime

An additional sophistication, which may be added at will to the Julliere and Slon-
czewski models alike is the replacement of the simple square barrier with a triangular
topped barrier, the shape of which more accurately reflects the applied bias across
the tunnel junction. This has the effect that the tunneling electron wavefunction
in the barrier is now an Airy function rather than a simple evanescent wave. The
circumstances in which this modification is necessary (i. e. when the bias potential
term is not small compared with the barrier height) is termed the Fowler–Nordheim
tunneling regime. The Fowler-Nordheim regime manifests itself experimentally as
non-linearity in the current-voltage curve for the tunnel junction.

7.6.1.2 Linear Response Theory

Although Slonczewski’s model enables much more realistic treatment of the F/I/F
interface than the classical theory of tunneling, its drawback is that it cannot be
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readily extended to more complex systems with more than one electron band. Any
rigorous model of TMR must, however, include, or at least justify the exclusion of,
the multi-orbital structure of ferromagnetic electrodes. It is for this reason that a
great majority of the work undertaken in explaining TMR over the last decade was
based on the linear-response theory of electron tunneling.

The main assumption of this theory (often referred to as the Kubo/Landauer
formalism) is that the overall conductance in either spin channel for any (insulating
or conducting) sample sandwiched between two electrodes can be written in terms of
its total transmission coefficient [28]. The basis of the linear response theory states
that the expression for the conductance in either spin channel can be written in
terms of one-electron Green’s functions in the left and right planes of the tunneling
junction, in a direction parallel to the current flow [29]:

Gσ = 4e2

h

∑
k‖

T r
(
[Tσ Imgσ

R(EF , k‖)] × [
T+

σ Imgσ
L(EF , k‖)

])
(9)

The theory includes more essential components necessary to explain the ob-
served effects than any earlier model. The Green functions for each of the-states
Imgσ

R,L(EF , k‖), (which are closely related to the densities of states) are multiplied
by a matrix Tσ whose elements indicate the strength of the tight binding hopping
between atomic orbitals in the left and right planes. The matrix also contains an el-
ement which is responsible for evaluation of the dependence of TMR on the height
and width of the tunneling barrier, as will be shown below. Summation over the
two-dimensional Brillouin zone and taking into account the different characteristics
of the s, p, and d orbitals yields an overall conductance.

As an illustration, we can simplify the formalism and evaluate the above equation
for the simple case of coherent (k‖ and spin conserved) tunneling through a high
barrier, assuming that the electrons originate from only one band. In these circum-
stances it is found is that the current in each channel is then proportional to the
product of the surface densities of states of the two electrodes (as in the classical
theory of tunneling), but that the product is scaled by the denominator which de-
scribes the mutual interaction of the two electrodes as a result of the overlap of the
wavefunctions. Such a model has been used to perform numerical calculations [29]
on a structure chosen to resemble a junction with Co electrodes and the result (in-
creasing TMR with increasing barrier height, Vins, saturating when Vins is of the
order of the bandwidth of the electrodes) is in excellent agreement with recent ex-
perimental results of Sousa et al. [30, 31]. The observed weak variation of TMR with
barrier thickness [32] can be explained by the model if we assume that most TMR
experiments are performed in the high-barrier regime.

By adding a fully realistic band structure for the ferromagnetic electrodes to the
above model (i. e. by distinguishing between s, p, and d orbitals), it is possible to test
whether the Kubo/Landauer formula predicts the correct sign for the polarization
of the tunneling electrons. Two such calculations have been performed–one dealing
with tunneling between Co electrodes through a vacuum gap [29] one through a
simple step barrier [33]. The results from the first study are particularly encouraging
– the calculated polarization of the tunneling electrons as a function of the tunneling
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vacuum gap shows that, when the tunneling gap is small, of the order of the lattice
constant, the conductance is dominated by d electrons, and the polarization has the
“wrong” sign, i. e. P < 0 as in the classical Julliere theory of tunneling. There is
a rapid crossover, however, as the width of the gap increases, and the polarization
changes to positive values. The calculated saturation value of 35-40 % is, moreover,
in excellent agreement with the observed values [34]. The crossover occurs because
the overlap of the d-orbitals decreases with increasing gap much faster than that
of the s-orbitals, and it is, therefore, s-electrons which determine the conductance
in most tunneling experiments. One can therefore deduce that the observed sign
of the polarization in junctions between ferromagnets and Al2O3 suggests that the
sd-hybridization between the two must be weak.

Going a step further in the Kubo/Landauer formalism, it is possible to consider
the effect on the observed TMR of disorder in the barrier. In most tunneling ex-
periments the fabricated barriers are amorphous and, therefore, the assumption of
conservation of momentum parallel to the tunneling junction (k‖) is not satisfied.
Advanced studies of the effect of disorder on spin tunneling using a single-orbital
tight-binding model and the Kubo formalism, show that, in addition to the mixing
of the k// channels, disorder also induces resonant tunneling via localized electronic
states [35–37]. These states are formed in the barrier in the presence of impurities
or defects. Resonant tunneling results in quasi-one-dimensional high-conductance
channels which dominate the overall conductance when the degree of disorder is
high and the barrier is thick [38]. It follows that the overall tunneling current, and
hence the TMR, is not only determined by the intrinsic properties of the densities of
states of the ferromagnet, but also to a large extent by the properties of the insulator.

As a further test of this theory, it is useful to compare its predictions with the
experiments performed by several workers [39, 40] in which a thin layer of non-
magnetic metal is inserted between one of the ferromagnetic electrodes and the
insulating barrier. According to classical theory, because there is no spin asymmetry
in one of the metal insulator interfaces, no TMR should be observed; this contradicts
the experimental findings. Calculations by Mathon and Umerski [41], using the Kubo
formalism, predict that the TMR should oscillate with increasing thickness of the Cu
interlayer in a Co junction with a vacuum gap. For a very thin interlayer this leads to
a negative TMR. This effect can be explained by considering the Fermi surfaces of
Cu and Co. For the majority spin electrons in Co the matching of the surfaces with
Cu is good, whereas for the minority spins they are not. It follows that the majority
spin electrons can easily cross the Co/Cu interface whereas the poor match for the
minority spin electrons results in the formation of down spin quantum well states in
the Cu overlayer [42–44]; the loss of transport of these gives rise to a spin asymmetry
of the tunneling current, and hence to a non-zero TMR.

We can see, therefore, that the linear response theory is relatively successful in
offering explanations of the many subtleties of observed TMR effects. Many ques-
tions, however, remain unanswered. One of the more challenging problems is the
true origin of the fall in TMR with increasing temperature and applied DC bias. For
the former, there are currently two possible explanations. One involves the mech-
anism of spin-flip scattering arising from magnetic impurities in the barrier [45],
which, being an inelastic process, increases with temperature. The other suggests
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that the increase in temperature leads to a reduction of overall magnetization in the
ferromagnet, because of excitations of magnons [46, 47]. At this stage the extent to
which each of these holds true is unclear. In a similar way, bias dependence can be ac-
counted for by Slonczewski’s model [25, 48], although the predicted initial decrease
of TMR is much slower than is observed [49]. An alternative explanation invokes
electron–magnon scattering which (because magnons are spin-1 quasi-particles) flips
the electron spin in the process [50]. Because the phase space for electron-magnon
scattering increases with increasing bias, the total TMR decreases. Again, the extent
to which these mechanisms are responsible for the observed behavior is currently
unclear.

7.6.2 Applications of Spin Tunneling

By analogy with the spin valve, the spin tunneling junction acts as an electronic switch
the operation of which again mirrors that of a pair of crossed optical polarizers which
can be switched on and off by application of external magnetic fields. If the electrodes
are not ideal HMFs, the on/off conductance ratio is finite and reflects the majority
and minority density of states for the ferromagnet concerned. Spin tunnel junctions
as described have the added advantage that their operation depends only on the
net properties at the interfaces and does not invoke carrier mobility, hence unlike
GMR, there is no competition between these two effects. Unlike all-metal systems,
moreover, they have lower conductances per unit area of device and hence larger
signal voltages (of the order of millivolts or more) are realizable for practical values
of operating current. The device characteristics such as the size of the “on” resistance,
current densities, operating voltages, and total current can be tuned by adjusting the
device cross-section, the barrier height, and the barrier width. As we shall see below,
this is just one reason they are very promising candidates for the spin-injector stages
of future spin electronic devices. They are also the basis of the next generation of
tunnel MRAM, as illustrated in Figs 13 and 14.

Fig. 13. A 10 × 10 MRAM matrix with tunnel memory elements (courtesy of M. Hehn,
Université H. Poincare, France).
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 14. (a) Current state of the art MRAMs use semiconductor diodes to prevent parasitic cur-
rent paths during readout. These diodes impede further miniaturization. Alternative options
include: (b) MIM diodes and (c) three- terminal spin tunnel transistor TRAM with selective
polarization. A selection of array address geometries is shown: (d) TRAM–diode units (e)
TRAM–MIM units, and (f) three-terminal spin tunnel transistor TRAM. (Courtesy of M.
Hehn)

7.7 Hybrid Spin Electronics

Although the early Johnson transistor is a useful and versatile demonstrator device, it
has practical limitations. The voltage changes measured are small and it has no power
gain without the addition of two extra electrodes and a transformer structure. The
underlying design problem with the device is that it is entirely Ohmic in operation
simply because all its constituent parts are metals.

Clearly another technology progression is needed and this is the introduction of
hybrid spin electronics-the combination of conventional semiconductors with spin-
asymmetric conducting materials. At a stroke this makes the complete armory of
semiconductor physics (for example exploitation of diffusion currents, depletion
zones, and the tunnel effect in semiconductors) available to the spin electronic de-
signer for the creation of new high-performance spin-devices.
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7.7.1 The Monsma Transistor

The first hybrid spin electronic device was the Monsma transistor (Fig. 15) produced
by the University of Twente [51–53]. It was fabricated by sandwiching an all-metal
spin valve device between two layers of silicon. Three electrical contacts are attached
to the spin-valve base layer and to the silicon layers. The spin valve is more sophisti-
cated than that illustrated in Fig. 12 and comprises multiple magnetic/non-magnetic
bilayers, but the operating principle is the same. Schottky barriers form at the inter-
faces between the silicon and the metal structure and these absorb the bias voltages
applied between pairs of terminals. The collector Schottky barrier is back-biased and
the emitter Schottky is forward biased. This has the effect of injecting (unpolarized)
hot electrons from the semiconductor emitter into the metallic base high above its
Fermi energy. The question now is whether the hot electrons can travel across the
thickness of the base and retain enough energy to surmount the collector Schottky
barrier. If not they remain in the base and get swept from the base connection.

By varying the magnetic configuration of the base magnetic multilayer the opera-
tor can determine how much energy the hot electrons lose in their passage across the
base. If the magnetic layers are antiferromagnetically aligned in the multilayer both
spin types experience heavy scattering in one or other magnetic layer orientation,
so the density of both spin types with energy greater than the collector barrier EC
as a function of distance into the base follows the heavy exponential decay curve of
Fig. 15. If, on the other hand, the magnetic multilayer is in an applied field and its
layers are all aligned, one spin class gets scattered heavily in every magnetic layer,
whereas the other class has a passport to travel through the structure relatively un-

Emitter CollectorBase

GMR
Multilayer

Si Si

e-

GMR
Multilayer

Si Si

e-

x

Collector barrier

λ1

λ2n(x)

(a) (b)

Fig. 15. The Monsma transistor – the first attempt to integrate ferromagnetic metals with sili-
con (a); (b) shows the density as a function of distance into the base for majority hot spins with
energy greater than the collector barrier. The thick line corresponds to an antiferromagneti-
cally aligned multilayer and the thin line to ferromagnetic alignment. There is a clear tradeoff
between the size of the collected current and the sensitivity of the collector current to the
applied magnetic field.
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scathed and the plot of density (with E > EC) against distance for this privileged class
follows the thin curve. It can thus be seen that for parallel magnetic alignment more
spins with energy > EC impinge on the collector barrier and the collected current
is correspondingly higher. Once again, like the Johnson device, we have a transistor
with electrical characteristics that are magnetically tuneable. This time, however, the
current gain and the magnetic sensitivity are sufficiently large that, with help from
some conventional electronics, this is a candidate for a practical working device.

It can be seen by comparison of the two traces of Fig. 15 that a trade-off must be
made in determining the optimum base thickness. A thin base enables a large col-
lector current harvest but affords little magnetic discrimination. A thick base, on the
other hand, means a large difference between the collector currents corresponding
to the two magnetic states of the multilayer but an abysmally small current gain. The
low current gain has always been the Achilles’ heel of metal base transistors, and is
probably the main reason for their fall from favor as practical devices despite their
good high frequency performance which derives from the absence of charge storage
in the base.

An interesting feature of the Monsma transistor is that transmission selection at
the collector barrier is achieved on the basis of energy. Thus the scattering processes
in the base which determine collected current are the inelastic processes. Elastic
collisions which change momentum but not energy are of less significance (although
spin transmission at the interface is confined to a cone of k-vectors the incident
angles of which lie within certain limits). This contrasts with the functioning of a
spin valve type system in which all momentum-changing collision processes have the
same status in determining device performance [54].

7.7.2 Spin Transport in Semiconductors

The Monsma transistor is a very important step in the evolution of spin electronics.
It is the first combination of spin-selective materials with semiconductor. So far,
however, the semiconductor has been used solely to generate barriers and to shield
the spin-dependent part of the device from electric fields. To release the full potential
of hybrid spin electronics we need to make devices which exploit spin-dependent
transport in the semiconductor itself.

7.7.3 The SPICE Transistor [55, 56]

The current gain of a conventional bipolar transistor is partly a result of the screening
action of the junctions either side of the base which absorb the bias voltages and
leave the base region relatively free from electric fields. The current which diffuses
across the base is primarily driven by carrier concentration gradient and to a rather
lesser extent by electric field. The randomness associated with concentration-driven
current flow helps to improve the current gain. The carriers injected by the emitter
are forced to wander towards the base along the top of an extended cliff in voltage,
at the bottom of which lies the collector. Approximately 99 %, say, of the carriers
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stumble over the cliff and are swept out the collector and the remaining 1 % make
it to the base connection; this gives a very satisfactory current gain β = Ic/Ib of 99.

Implementing spin-polarized current transport in a semiconductor enables a
new concept in spin transistor design – the spin polarized injection current emit-
ter (SPICE) device in which the emitter launches a spin-polarized current into the
electric field screened region and a spin-selective guard-rail along the top of the cliff
determines whether or not these polarized carriers are allowed to fall into the collec-
tor. Thus we have a device with a respectable current gain from which power-gain can
easily be derived, but whose characteristics may again be switched by manipulating
the magnetic guard rail via an externally applied magnetic field. A wide variety of
designs is possible which answer to this general principle. For example the emitter
and collector interfaces can be realized by p–n junctions, Schottky barriers, or spin
tunnel junctions and the geometry of the device can be adjusted to allow a greater
or lesser amount of electric field driving component to the diffusion current in the
base, depending on the application.

7.7.4 Measuring Spin Decoherence in Semiconductors

The crucial question which must be answered to realize this kind of spin transistor
is whether spin transport is possible at all in semiconductors, and, if so, whether it
is possible over the sort of physical dimensions on which a typical transistor is built.
In other words, we need an estimate of the spin diffusion length in a typical semi-
conductor. A subsidiary question concerns the role of dopants in the semiconductor
and whether they introduce spin-orbit scattering which militates against the spin
transport by reducing the spin flip times.

An immediate way of addressing this question is to direct spin-inject into a semi-
conductor and observe the polarization of the current which emerges on the other
side. Figure 16 shows an experiment in which this was performed.

Doped channels of silicon with various types of dopant at different concentrations,
and of different lengths (from 1 to 64 microns), were contacted at each end with
differentially magnetizable cobalt pads of well defined magnetizing behavior. The
transport results shown in Fig. 16 are insensitive to magnetic field direction, have
even symmetry (thereby eliminating AMR and the Hall effect as possible causes),
and they are compatible with the observed domain magnetization processes for the
cobalt pads. They seem to correspond to spin transport through the semiconductor,
and as such they correlate well with earlier experiments [57] using nickel injectors.
Interestingly, however, the spin transport effects are of order a few percent at best,
yet the effect decays only very slightly with silicon channel length and was still well
observable for 64-µm channels.

The message would seem to be that the spin diffusion length in silicon is many tens
of microns at least, but that the spin injection process at the metal/silicon interface
is highly inefficient. This direct injection inefficiency is being widely observed and
its cause is still hotly debated. It might arise from spin depolarization by surface
states [58], or it might be explainable by the Valet/Fert model in which spin injection
is less efficient for materials of very different conductivity [59]. It might also be
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Fig. 16. Geometry of an experiment (dimensions in microns) to investigate the possibility of
spin injection across a ferromagnetic/semiconductor interface (a). The transport curves (b)
suggest that the spin diffusion length is of the order of tens of microns, but that the spin
injection process at the interface is highly inefficient. (Courtesy of C. Sirisathitkul)

because the spin injection is not being implemented at the optimum point in the
semiconductor band structure. From the latter standpoint spin tunnel injection into
semiconductors is a more versatile technique, because, for a given injected tunnel-
current density, the necessary bias (and hence the point in the band-structure where
injection occurs) can be tuned by varying the thickness and/or the tunnel barrier
height.

A very beautiful direct measurement of semiconductor spin diffusion length has
been performed by avoiding the spin injection problem [60, 61] and generating the
spin-polarized carriers in the semiconductor itself (Fig. 17). Gallium arsenide, which
was used as the host, has the property that, when pumped with circularly polarized
light, the selection rules are such as to populate the conduction band with predomi-
nantly one spin type.

These spins can be made to precess by application of a small magnetic field. The
resulting precessing magnetization is then detected using optical Faraday rotation,
by use of a probe beam from the same optics as provides the pump. The magneti-
zation drifts under the application of a driving electric field and the spatial decay
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(a)

(b)

(c)

Fig. 17. Lateral drag of spin coherence in gallium arsenide, measured by Faraday rotation [55]
(a). Additional population is created every time a pulse hits the sample (b). The electrons
in each new population drift along the magnetic field, and the spatial extent of each spin
population can be assessed as shown in (c). Spin transport can be observed on length scales
exceeding 100 µm.

of the precession signal is a measure of the spin diffusion length. The results are of
order many tens of microns, in accordance with the silicon direct injection experiment
discussed above.

Thus it would seem beyond doubt that the spin diffusion length in semiconductors
is adequate for the design and realization of SPICE type transistor structures –
assuming means of efficient delivery of the initial spin polarized current are provided.

7.7.5 Methods of Increasing Direct Spin-injection Efficiency

With this problem in mind it is interesting to examine the results of an experiment
which injects spin-polarized carriers from a magnetic semiconductor into a normal
semiconductor light-emitting diode structure [62–65]. The polarization of the in-
jected carriers depends on the magnetization direction of the magnetic semiconduc-
tor which supplies them. This is reflected in the polarization of the light emitted by
the LED – its polarization is related to the spin of the electrons which cause it via
the same selection rules, as discussed in the Awschalom experiment [60, 61], and as
illustrated in Fig. 18.



278 7 Spin Electronics – An Overview

(a)

(b)

(c)

Fig. 18. (a) Electrical spin injection into an epitaxially grown ferromagnetic semiconductor. (b)
The photoluminescence of the device as a function of energy. (c) Polarization of the emitted
optical radiation decays in accordance with the variation of the semiconductor magnetization
with temperature.

The polarization of the light emitted correlates well with the hysteresis loop for
the magnetic semiconductor and decays with temperature exactly as the magnetic
moment of the magnetic semiconductor, leaving little doubt that successful spin in-
jection has been achieved. The percentage injection achieved here is more favorable
than has been possible by direct injection from metals and it might be that magnetic
semiconductors have an important role to play in future spin electronics develop-
ment, notwithstanding the non-negligible materials problems which they pose. Very
recent developments [66, 67] would seem to promise workable high-temperature
magnetic semiconductor materials.

Otherwise, experiments suggest that spin-tunnel injection into semiconductors
is a promising technique with higher injection efficiency than direct spin-injection.
Further results in this area are imminent.

7.8 Novel Spin Transistor Geometries –
Materials and Construction Challenges

The different spin transistors designed along the SPICE principle all require ferro-
magnetic polarizer and analyzer stages each side of the semiconductor assemblies.
For contamination reasons the magnetic fabrication must be performed only after
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Fig. 19. Schematic illustration of a spin tunneling semiconductor transistor: (a) shows the differ-
ential magnetic hysteresis of the transistor before the base and collector were lithographically
patterned to produce the structure shown in (b).

semiconductor processing is complete. The materials must be compatible, the process
must enable the implementation of high-quality tunnel junctions, the nanomagnetic
elements must be differentially magnetizable, the physical dimensions must satisfy
spin diffusion length requirements, and the fabrication must comprise a lithographic
stage which defines the three distinct electrodes, all with a minimum of processing
steps.

Faced with these challenges, the authors and their colleagues in York, Strasbourg,
and Southampton have found the configuration illustrated in Fig. 19 most satisfactory
for making this type of device. The basis of the structure is a silicon-on-insulator (SOI)
wafer into the base of which is etched a micron-sized pit with relieved sides. The spin
polarized injection emitter is built into the pit and the base and collector structures
are deposited and etched on the device-quality silicon side.
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7.9 The Rashba effect and the Spin FET

7.9.1 The Rashba Effect

The Lorentz transform applied to electromagnetism shows that to a relativistic trav-
eller a stationary electric field looks partially magnetic. Because charge-carrier ve-
locities in devices are of the order of 106 m s−1 or larger, relativistic considerations
apply, and electrons in, for example, the channel of a field-effect transistor see the
local electric fields in the device as having magnetic components whose orientation
depends on the geometry of the observer’s travel relative to the field axis. This is
known as the Rashba effect. If the electric field in question originates from crystal-
field effects or from the depletion layer in a semiconductor structure, the magnetic
component which appears to relativistic electrical carriers is capable of spin-splitting
the conduction band if it is diagonal and of causing spin precession if it is off-
diagonal.

7.9.2 The Datta–Das Transistor or Spin FET [68]

The Rashba effect gives rise to a novel spin electronic device concept proposed by
Datta and Das but so far unrealized experimentally. The device has a construction
similar to that of a conventional field-effect transistor with source and drain elec-
trodes made in ferromagnetic metals and a semiconductor channel which is subject
to a transverse electric field whose magnitude can be tuned by applying a gate volt-
age. Spin-polarized carriers leave the source with their spins parallel to the source
magnetization and precess in transit through the channel owing to the Rashba effect.
If the drain magnetization is parallel to that of the source and the carriers perform
an integral number of precessions in transit, the conductance of the device is high.
Slight modification of the gate voltage changes the precession rate, however, and
if the spins now execute N + 1/2 precessions in transit the device conductance is
minimized. The resulting device thus behaves like a normal FET with the additional
feature that the differential magnetization of its electrodes (and hence its electrical
characteristics) are sensitive to an externally applied magnetic field.

Although the device has not yet been realized, much groundwork on the mate-
rials properties, and principles exist in the literature and spin-valve effects have ap-
parently been observed in experiments involving two-dimensional electron gases in
which spin-polarized carriers are injected from permalloy contacts into an AlSb/InAs
quantum well and are analyzed by a second permalloy contact with a different switch-
ing field [69, 70].

Some scepticism has, however, been voiced by other workers on the spin FET
problem [71, 72], and theoretical signposts have been placed to spin precession type
data which will confirm unambiguously that Datta/Das type device function has been
observed [73]. This is clearly an exciting topic which will continue to attract attention
and research activity for the foreseeable future.
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7.10 Methods for Measuring Spin Asymmetry

With the caveat, particularly for spin tunneling, that the concept of the amount of spin
polarization is more appropriate to combinations of materials [74], it is interesting to
establish the expected polarization which a particular material might offer in a device.
Several methods exist, including spin-polarized photoemission spectroscopy [75] and
Andreev reflection [76], in which the transport properties of an interface between
a superconductor and point-contact of the spin-asymmetric material are examined.
Another technique involves characterization of tunneling currents from an electrode
of the material under investigation to a known electrode/insulator combination [74].

A third technique [77] is to analyze the magnetic variation in the Schottky char-
acteristics of a barrier formed between the ferromagnetic conductor under analysis
and a semiconductor. The Schottky current varies as:

I = I0 exp
{

µB B

kB T

[
ρ↑ − ρ↓
ρ↑ + ρ↓

]} [
e

eV
kB T − 1

]
(10)

where V is the bias voltage, B is applied magnetic field and (ρ↑ − ρ↓)/ρ↑ + ρ↓) is
the required spin asymmetry, which can, therefore, be extracted by observing the
modifications to the Schottky characteristic in a magnetic field.

7.10.1 Ferromagnetic Single-electron Transistors (FSETs)

The electrostatic energy of a charged capacitor is 1/2Q2/C . If C is sufficiently small,
this energy can compete with thermal quanta of size kB T , even for Q = e, the elec-
tronic charge. Small metallic spheres or pads with physical dimensions in the nanome-
ter range have capacitances in the right range for this condition to be satisfied [78].
If such a metallic island is sandwiched between two physically close metallic elec-
trodes (the source and the drain), we have a single-electron transistor (SET) [79–81]
through which current can be made to pass one electron at a time. A third electrode
(the gate) which is capacitatively coupled to the metallic island is biased to control
the passage of current, as illustrated in Fig. 20.

The physics involved is competition between three energy terms; the electrostatic
energy, Ei, of the island, because of the presence on it of just one electron, the thermal
quantum, kB T , and the energy, eVb, gained by an electron in falling through the bias
voltage, Vb. The first electron which arrives on the island from the source electrode
charges it to a potential e/C which, is sufficient to prevent any further electrons
hopping to the island until the first electron has left via the drain electrode. The
charges are encouraged to jump from the island to the drain (and hence make room
for more charges to arrive from the source) by appropriate bias on the gate electrode.
If the thermal quantum size is arranged to be small compared with the electrostatic
energies in play, the risk of random thermal interference with the current control is
negligible.
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Fig. 20. (a) Schematic diagram of a FSET, and (b) the scanning electron microscope picture
of the actual device. (I. Petej)

There is a fourth energy term which we can now introduce to the problem, the
electrochemical potential difference for spin-up and spin-down electrons associated
with spin accumulation. In practice this is achieved by making the electrodes and/or
the island from ferromagnetic material [82–84]. A ferromagnetic source electrode
will, in principle, induce spin accumulation on a non-magnetic island and, under
certain bias conditions, the associated electrochemical potential divergence holds
the balance of power between the main energy terms, and hence has a large amount
of control over the current flow to the ferromagnetic drain. Other configurations are
possible in which the island also is magnetic. Fert and Barnas [85] have performed
extensive calculations for a variety of temperature regimes of the different possible
modes of behavior of such devices, which are called ferromagnetic single-electron
transistors (FSETs) or spin SETs. They are of particular interest in the experimental
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Fig. 21. A conductor of thickness d1 evap-
orated on to a previously evaporated step
of barrier material of thickness d2. If d1 <

d2 the two electrodes have no contact at
the edge of the step and current is carried
by means of tunneling. The capacitance of
a SECO capacitor is small compared with
those of conventional tunneling elements,
because there is no overlap of the electrodes.

development of quantum computing, because they are a means of manipulating
spatially localized qubits, as discussed below.

Very recently a completely novel design of an FSET has been considered by the
authors; in this the tunnel junction structure is formed by use of the step-edge cut
off (SECO) [86] method (Fig. 21).

The main reason for choosing the SECO geometry is that the capacitance of
such a junction is dramatically smaller than that of a tunnel sandwich, even with
larger line-widths, because of zero overlap of the electrodes, and the fabrication of
such a step with a defined interruption of 10 nm is also much easier than that of a
tunnel sandwich with 50 nm line widths made by electron beam lithography. This
makes it possible to investigate the interplay between spin and charge-tunneling
phenomena at higher temperatures; it is also a possible route to a room-temperature
single-electron transistor. As an illustration, Fig. 22 shows the results of our numerical
simulations of the capacitances of this structure (on the basis of algorithms developed
by M. Knoll and H.F. Uhlmann [87, 88]). The predicted capacitance values are 15 aF,
which will enable us to observe Coulomb blockade effects at temperatures <100 K
(i. e. e2/2kBC for 15 aF equals 120 K). The capacitance can be further reduced by
reducing the line width of the electrodes.

Fig. 22. 3D geometry of the pro-
posed SECO based design of the
FSET, indicating the relevant di-
mensions.
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Fig. 23. Result of micromagnetic simulation of a 50-nm wide element showing the direction
of local magnetization with the field applied parallel to the long axis

In addition, the SECO geometry is naturally suited to making all three thin-
film ferromagnetic electrodes in the required shapes as acicular magnetic thin-film
elements in which it is possible to induce quasi-single-domain behavior by modifying
the shape of their ends [89]. Figure 23 illustrates a micromagnetic simulation close
to the switching point on the type of element to be used.

The field is applied parallel to the long dimension and it is seen that even near
switching there are no embryonic domains in the reverse direction and that the mag-
netization along the tunneling edges is well behaved. For the dimensions modeled,
our simulation predicts a difference of 1350 Oe between the switching fields of the
island and the electrodes (HS(island) − HS(electrode)). (Although this is proba-
bly an overestimate, it indicates we have a safety margin of nearly two orders of
magnitude.)

Overall this new design hopes to deliver the concept of spin selectivity com-
bined with the operational principles of the now-established single electron transistor
(SET) to develop a device which will not only be a veritable playground for investi-
gating the nanomagnetic behavior of single-electron transport, but also promises to
be the basic building block of an important future technology.

7.10.2 Spin Blockade

Another interesting possibility which arises also if the magnetic island is itself a
ferromagnet is that of a spin-blockaded system in which electrical transport across
the device is switched by magnetizing the island [90]. An example of a Schottky
barrier at low temperature which has been spin blockaded in this fashion is shown
in Fig. 24 [91]. The MR effect is as large as 25 % at 20 K, which is unprecedented
in a silicon device (shown in Fig. 25). The band structure consists of the Schottky
barrier on the edge of which have been placed a series of magnetic islands which
are antiferromagnetically coupled (and hence blockaded) in zero applied magnetic
field. Applying a field orients these superparamagnetic particles and the resistance of
the structure decreases owing to a tunnel-hopping current between adjacent islands.
Exposure to light increases the resistance of the structure owing to photon-promotion
of electrons from the islands to the large density of adjacent surface states. The
geometry of this system is not unlike that of a high electron mobility transistor
(HEMT) in which the performance of the main current channel is controlled by
localized states in an adjacent but physically distinct region of the device.
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Fig. 24. Proposed band-structure for the spin blockaded Schottky barrier device [91].
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Fig. 25. Spin blockaded Schottky Barrier magnetoresistance measured at (a) 4 K, and (b) 20 K.
The MR effect of 25 % in the latter is unprecedented in a silicon device.

7.11 Unusual Ventures in Spin Electronics

Just as conventional electronics insinuates itself into all walks of life, so spin electron-
ics has the same invasive tendency. Even the carbon nanotube has not escaped [92].
Figure 26 shows the spin-valve effect observed from a cobalt-contacted nanotube;
from this it is deduced that the spin diffusion length in such nanotubes is a surpris-
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(a) (b)

Fig. 26. (a) Electron microscope picture of a 40-nm carbon nanotube contacted by Co. (b)
The measured magnetoresistance [92].

ingly large 130 nm. This would seem to promise well for future device applications
of such materials.

7.12 The Future of Spin Electronics

Outside the realms of politics and economics it is most foolhardy to predict the
future of anything. Who would have thought that, after a mere decade of existence
(starting for real in 1988), spin electronics would underpin a major industry such as
hard-disk read technology? It seems clear that its next conquest is likely to be to carve
itself a large niche in the MRAM industry using existing tunnel-junction technology
and perhaps eventually refinements of the spin-tunnel transistors discussed above.
Ultimately it might spawn a new philosophy in computer memory in which the
distinction between storage memory and active memory becomes less defined.

7.12.1 Fast Magnetic Switching

A feature of spin electronic device performance which we have not discussed in
detail is device bandwidth. There are two aspects to this, device response to electri-
cal and to magnetic signals. The former is determined by the same considerations
that govern the speed of conventional electronics – diffusion rate, charge storage,
parasitic capacitance, and its spin analog. The magnetic switching time of the spin
polarizing nanoelements is, however, another matter which is new to spin electronics,
though some analogies may be drawn with the high-frequency response of particu-
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late recording media. Analysis of high-speed magnetic switching of nanoelements is
widely researched and has been found to be highly dependent on sample shape and
coupling of the switching mode to the spin-wave spectrum. MRAM nanoelement ac-
cess/write times of the order of nanoseconds are routinely achievable; this is highly
competitive with other memory technology. In the future, however, higher magnetic
switching speeds are desirable.

7.12.2 Optically Pumped Magnetic Switching

In the authors’ opinions, one potential option for making a fast write-time magnetic
memory is to use a spin electronic device in which one of the magnetic nano-elements
is a ferromagnetic spin-split insulator. The memory function is contained in the ori-
entation of this magnetic insulator relative to a metallic ferromagnetic electrode.
Because the insulator is optically transparent, however, its moment might be re-
versed very rapidly by connecting the Zeeman energy reservoir to a suitable optical
transition energy reservoir by off-resonance optical irradiation. This would func-
tion as a high-frequency analog of dynamic nuclear polarization [93]. An alternative
scheme might involve optical-microwave double resonance whereby the device is
continuously bathed in microwave radiation and the switching is achieved by expo-
sure to a short pulse of optical radiation. The principle in both is to induce energy
transfer between two different energy baths – magnetic and electronic with whose
Hamiltonians the operators representing the irradiation do not commute.

7.12.3 Spin Diode

An idea for a two-terminal spin device, which was originally mooted by Roland
Mattheis [94], consists of a five-layer magnetic system in which three ferromagnetic
metal layers are mutually spaced by thin paramagnetic metal layers (Fig. 27). From
left to right the ferromagnetic layer magnetizations point respectively along the y,
z, and x directions. y-Polarized spins leaving the first layer precess 90 ◦ about the z-

Ferromagnetic

layers

Insulators

Fig. 27. Schematic illustration of a
spin diode device.
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oriented magnetization in the second layer (the thickness of which is thus determined
by the precession frequency of the spin) and transfer to the x-oriented third layer
to whose magnetization they are now parallel. If, however, spins transfer in the
opposite direction from the right hand x-oriented layer, these also precess 90 ◦ in
the center layer and end up antiparallel to the y-orientation of the left-hand layer
to which they are unable to transfer owing to the absence of density of states of the
right polarization. Thus the entire system functions as a spin diode which is capable
of fulfilling the memory and blocking function of a two terminal MRAM element
in a single device. Tunnel versions of this device should also be realizable which,
because their function is wholly determined by density of states asymmetry, should
offer higher on/off ratios.

7.12.4 Spin Split Insulator as a Polarizing Injector –
Application to Semiconductor Injection

The transport properties of spin-split Europium-based insulators at low tempera-
tures have been studied [95, 96] and the empirical data obtained would seem to
suggest that these–or room-temperature analogs thereof – might act as convincing
spin polarizers. To date, however, little practical use has been made of these materi-
als. The physics relies on the fact that, because the insulator band gap is spin-split, a
tunneling quasiparticle with its energy in the bandgap sees a different tunnel barrier
height depending on its spin (Fig. 28). Accordingly its evanescent wavefunction has a
spin-dependent decay constant. For unpolarized electrons incident on a sufficiently
thick barrier, this implies a high spin asymmetry for the tunnel current and hence
suggests itself as an ideal way to spin inject into materials such as semiconductors.
Because no metal is involved, no problems of Schottky barrier interface states and
differential material resistivities are called into play and the insulator/semiconductor
combination affords a high degree of flexibility in choosing the point on the semi-
conductor band-structure where spin injection occurs.

7.12.5 Novel Fast-switching MRAM Storage Element

The above ideas could be combined to produce a new type of tunnel MRAM storage
element consisting of a ferromagnetic film, a spin-split magnetic insulator and a nor-
mal metal. The memory function would then comprise the magnetic configurations
of the magnetic metal and the magnetic insulator. The former would be magneti-
cally pinned and the latter would be rapidly switchable by optical double-resonance
techniques.

7.12.6 Quantum-coherent Spin Electronics

Perhaps the most far-reaching development in spin electronics will be the establish-
ment of quantum coherent spin devices. By this is meant devices whose construction



7.12 The Future of Spin Electronics 289

(b)

εF

εc

Conduction band

Tunnel current

Metal

εF

n-doped

semiconductor

spin-split insulator

εc

εv

Conduction band

Valence band

(a)

Fig. 28. Spin split insulator injector (a) unbiased, and (b) biased.

is on a sufficiently short length scale that the quantum coherence of the electronic
wavefunction is preserved across the device, thereby coupling input and output elec-
trical signals.

Earlier in this chapter we considered the importance of the various mesomagnetic
length scales in generating the novel characteristics and properties of spin electronic
devices. In fact the spin diffusion length, which is the determining size threshold for
spin electronics, is the least exacting length scale to reach, being typically thousands
of Angstroms for pure metals. At the other end of the scale of difficulty is the
quantum coherence length, which is of order the mean free path, i. e. comparable
with the length scale on which momentum scattering events occur, i. e. typically tens
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Insulating barriers

Collector

Emitter

Fig. 29. Tunnel grid spin triode.

of Angstroms upwards. On a slightly longer length scale are inelastic scattering events
which change not only the momentum but also the energy of the carriers.

Nanofabrication technology is such that devices can now be constructed with
relative ease on the 10-Å scale. A typical example is the double-barrier resonant-
tunnel diode – three metal layers sandwiching two insulating layers – which relies
for its performance on quantum mechanical interference between opposite faces
of the central potential well. Because insulating barriers can now be prepared with
Angstrom precision it is but a short step to a three-terminal spin transistor in which
the emitter, base and collector are phase-coherent. A foreshadow of this concept is
to be found in the patent of Ounadjela and Tiusan [97]. A typical schematic diagram
is shown in Fig. 29.

7.12.7 The Tunnel-grid Spin-triode

The authors envisage a device which is essentially the double-barrier resonant-tunnel
diode with ferromagnetic collector and emitter and an added electrical contact to the
non-magnetic base layer. In operation the base and collector are biased progressively
positive relative to the emitter. In line with the above discussion the base layer is thin
compared with the mean free path – and here we mean hot electron mean free path –
so little carrier scattering occurs in the base and the phase coherence of the electrons
launched by the emitter is preserved into the collector. Although the base layer does
not appreciably scatter the transiting carriers, and so does not demand significant base
current, it nonetheless is sufficiently substantial to define the electrostatic potential
across the successive barriers and hence to modulate the current tunneling from
emitter to collector. In this respect the base is not unlike the grid electrode in a
vacuum triode. Thus we have a device in which the emitter-collector conductance
can be controlled by applying potential to a high impedance base, thereby affording
power gain. Owing to the ferromagnetic nature of the electrodes, moreover, the
device characteristics are also switchable by applying an external magnetic field.
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Fig. 30. Tunnel grid spin triode with spin-split insulator injector (no bias).

Other permutations of this basic configuration are imaginable, for example making
all three layers – or indeed any pair of them – ferromagnetic. Another coherent spin
transistor variant, shown in Fig. 30, uses a spin-split insulator as the spin-polarizing
injector stage.

7.12.8 Multilayer Quantum Interference Spin-stacks

More elaborate quantum coherent structures can be made by analogy with optical
thin-film interference filters in which stacks of λ/4 dielectric layers are cascaded to
provide special optical transfer functions. In like manner, combinations of λ/4 metal
films and tunnel barriers can achieve analogous electrical transport effects. In par-
ticular, use might be made of resonant thin-film structures in which the magnetic
“refractive index” changes with change in magnetization or spin direction thereby
modifying the resonant conditions and changing the transfer function of the multi-
layer stack.

7.12.9 Multilayer Tunnel MRAM

This is another possible means of realizing two terminal tunnel MRAM elements
in which the memory function and the blocking of parasitic paths is achieved at
the same time by realizing a structure which is both a tunnel junction and a MIM
diode. The asymmetric characteristic of the MIM relies on the difference between
the work-functions of the two magnetic metals either side of the insulating barrier.
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Insufficient latitude in work-functions is available to make this viable, assuming that
a back-to-front diode asymmetry of at least ten is required. Bruno has proposed a
double resonant variant [98] to improve the transport asymmetry. Multilayer con-
structions analogous to the optical thin film domain might be capable of even better
performance.

7.12.10 Quantum Information Technology

On an equally speculative note, it would seem that spin electronics has a bright
potential future in the world of quantum information technology [99]. The simple
spin electronic devices which have been demonstrated to date–for example GMR
devices and the various spin transistors – function by coding spin information on
to the electrical carriers in one part of the device and reading it back in another
remote region of the device. In short, contemporary spin electronics functions by
transfer of streams of single qubits from one part of the spin electronic circuit to
another. Viewed thus, this is just the simplest possible type of quantum information
transfer in which no entanglement is involved. The next stage in spin electronics
is to implement devices which function by displacing spin information by means
of entangled qubit pairs. So, for example, multi-terminal spin devices of the future
might be envisaged in which streams of entangled qubits enable communication
between different device terminals, each of which receives one qubit component of
the entangled ensemble. The practical realization of such a device might be attempted
by employing combinations of spin SETs.

The FSET (or spin SET) is a particularly important stepping-stone on the path
to quantum information processing. Its distinguishing feature is that it is a rare
example of a quantum processor in which the qubits (i. e. the spins) can be physically
displaced, enabling the gates and their implementation hardware to be spatially
localized, as in conventional computing. Competing quantum processor hardware,
for example nuclear magnetic resonance processors, have fixed qubits and peripatetic
gates. Coupled with this configurational advantage, the Spin SET is also endowed
with an automatic electrical facility for measuring and collapsing the qubit. These
two attributes alone position it in the forefront of potential candidates for future
quantum information-processing hardware.

Although realization of a full-blown quantum computer will be a long way into the
future, owing to the monumental problems of overcoming uncontrolled quantum de-
coherence and parasitic interactions of qubits, the more modest aim of implementing
demonstrators of basic quantum information processing hardware is, nonetheless,
feasible in the medium term. Particularly intriguing would be to explore their use
in quantum dense coding, in which fractions of entangled qubits are used to carry
increased information capacity compared with classical bit-streams. This might be
achieved by using pairs of spin SETs, each of which is fed entangled qubit spins by
a central generator, and each of which is equipped with gate hardware capable of
executing the basic single qubit operators X , Y , Z , H , and P(θ), which are used to
decode the entangled dual spin states. In the simplest example the gates might consist
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simply of ferromagnetic layer sandwich structures with differing anisotropy axes in
combination with ultra-fast switching microwave pulsing.

A rather simpler task, which could be investigated to gain insight into the function-
ing of this hardware, is the matter of transmitting quantum-encrypted data. This has
been achieved experimentally by using polarized light (see, for example, Ref. [100])
but not yet with localized qubits. The problem is one of transmitting single qubits with
one of two orthogonal quantization axes and projecting them on arrival on to similar
axes. Interception of the data might then be detected by monitoring the bit-stream
error rate which must remain lower than 25 % for guaranteed secure transmission.
This is a configuration which lends itself to implementation by assemblies of three
connected spin SETs.

The main obstacles in quantum information processing are unsolicited interaction,
quantum decoherence, and data corruption by noise. A key element in any successful
program will be to reduce these effects to a working minimum necessary to demon-
strate functioning of such primitive quantum hardware, as has been outlined above.
In particular, ways must be developed to introduce quantum error correction and
spin regeneration by methods which do not seek to violate the “no-qubit” cloning
rule.
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8 NMR of Nanosized Magnetic Systems, Ultrathin Films,
and Granular Systems

Pierre Panissod

8.1 Introduction

Nuclear magnetic resonance investigations cover an extremely broad range of appli-
cations reaching from pure nuclear physics to NMR imaging in medicine, including
atomic physics, condensed-matter physics, chemical analysis, and structural investi-
gations in biology. Because of the sensitivity of the nuclei to their local electronic
environment, NMR (and other hyperfine techniques) is widely used in condensed
matter to probe local crystallographic or molecular structures and, particularly in
metallic systems, local electronic structure and magnetism.

This chapter is devoted to studies by NMR of the magnetic properties of ferromag-
netic systems that are inhomogeneous on a nanometer scale, for example multilayers
or granular alloys with a magnetic and a non-magnetic component. Materials of this
class are studied intensively for fundamental purposes (surface or interface mag-
netic anisotropy, exchange coupling through a non-magnetic spacer, spin-dependent
scattering or tunneling), and for technological applications (recording media, field
sensors and other ‘spintronic’ devices based on spin-selective electric currents). The
composite nature of these systems offers the possibility of tailoring their properties
by choosing the appropriate components, structure, and composition, and the way
they are arranged in the final material (or device). Considering the intricacy of the
two (or more) components in the material, it is obvious that interactions at the inter-
faces and between the magnetic components through the non-magnetic component
largely determine the magnetic and magneto-transport properties of the composite.
Indeed the influence of the interface topology and of the detailed microstructure
of the components on the aforementioned properties has been demonstrated or,
at least, predicted. For example, the roughness of, or compositional intermixing at,
the interfaces affects the giant magneto-resistance of the multilayers. Bulk defects
also influence the magneto-resistance, as a result of spin-independent scattering and,
in some systems, spin-dependent scattering. Changing the structure can, moreover,
modify the coupling between the magnetic layers (or grains), their anisotropy, and
their coercive field, which will also largely determine the sensitivity of the composite
to the external field and its applicability as a magneto-resistive field sensor. This
example stresses the need for detailed studies of the composite structure and its
consequences on the magnetization process of the magnetic components.

In this respect NMR does provide original insight into the structural and magnetic
properties of composite nanostructured materials. In short, the yield of NMR exper-
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iments is twofold. On the one hand the NMR spectrum reflects the distribution of the
different chemical configurations, the different phases in the sample, their structure,
and their defects. On the other hand the dependence of spectral shape on the strength
and orientation of external magnetic fields (DC and radio-frequency) enables prob-
ing of the magnetization, the magnetic anisotropy, or the magnetic stiffness of the
electronic environment of the observed nuclei. Combining both aspects thus makes
NMR a unique tool for correlating, on a local scale, the inhomogeneous magnetic
properties of a composite sample with its different structural components. For ex-
ample, one can estimate the magnetization profile at a diffuse interface between
a magnetic and non-magnetic phase, measure separately the magnetic anisotropy
in different parts of a sample, or monitor the different magnetic hardness of the
magnetic clusters in respect of the alloyed matrix in nanogranular alloys.

Although the application of NMR to structural investigations and phase analysis
is summarized in Section 8.2, most of the chapter is devoted to the use of NMR to
investigate local magnetic properties.

8.2 Local Structure

8.2.1 Introduction

In an NMR experiment, the 2I + 1 levels of the ground state of a nucleus (spin I )
are split by Zeeman interaction with a static field H0. The energy difference between
adjacent levels is γnh̄ H0 where γn is the gyromagnetic ratio of the nucleus. A radio
frequency (r. f.) field, H1, applied perpendicular to H0, induces dipolar transitions
(�m = ±1) between adjacent levels. The probability of transition and, consequently,
the amplitude of the NMR signal are significant only when the frequency is close
to ωL = γn H0, the Larmor (precession) frequency of the nuclei [1, 2]. In condensed
matter the static field H0 experienced by nuclei differs from the externally applied
field Hext because the electronic magnetization produces additional fields at the nu-
cleus – the classical dipolar field and the hyperfine field H F . H F is brought about by
the spatial distribution of electron spin polarization close to the observed nucleus; it
is, therefore, indicative of the topological and chemical environment of this nucleus
(position, symmetry, number, and nature of neighbors) [3]. In an inhomogeneous
material, the distribution of local environments around the nuclei gives rise to a dis-
tribution of resonance frequencies, the NMR spectrum. Therefore specific structural
regions in a sample correspond to specific frequency ranges in the spectrum.

It is, therefore, possible to obtain structural information from NMR spectra, if a
quantitative relationship is established between the strength of H F and the local
chemical and topological structure. This relationship can be deduced from theoreti-
cal calculations but, despite recent advances [4–9], ab-initio calculations are still too
difficult to perform in systems that are inhomogeneous on the atomic scale. Hence
the assignment of a given resonance frequency to a specific local atomic configuration
is more generally inferred, phenomenologically, from reference studies of standard
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alloys and compounds, the structures of which are known from conventional char-
acterization techniques [10–19]. Subsequently the information is used to analyze the
spectrum observed in the unknown system under investigation – the intensity of the
lines measures the number of nuclei resonating in each spectral range, which yields
the atomic fraction of the various atomic configurations and structural components
in the sample.

In magnetic/non-magnetic composites one will first distinguish coarsely the bulk
of the magnetic phase from its interface with the other phase; refined analysis of the
spectral shape of these two parts will then identify and quantify the defects in the bulk
of the magnetic component and characterize the roughness or the interdiffusion at
the interfaces. Pioneering works along this line were initiated in Japan [20, 21] using
combined NMR and Mössbauer techniques to provide the local information around
V and Fe, respectively, in Fe/V multilayers. Since then the method has been used
mainly for structural investigations of cobalt-based multilayers and, particularly,
their buried interfaces [22–48]. Investigations of nanogranular systems have also
been undertaken more recently [49–51].

8.2.2 Local Atomic Configuration and Resonance Frequency

8.2.2.1 The Bulk of the Magnetic Component – Crystallographic Structure
and Strains

As far as the influence of the crystallographic structure on the nuclear resonance
frequency is concerned, cobalt is exemplary because it can be found in a hexagonal
compact phase and a face-centered cubic phase that are almost degenerate in energy.
Although the hcp phase is the stable phase below 400 ◦C, the fcc phase is easily
stabilized, particularly in small grains, and many Co-based systems contain both
phases. In fcc Co the NMR frequency extrapolated to 0 K is 217 MHz [52]. The hcp
Co phase is slightly more compact and anisotropic; as a consequence the hyperfine
field has considerable anisotropy that results in an NMR frequency of 220 MHz, when
the moment is along the c-axis, and of 228 MHz, when it lies in the c-plane [53–55].
It is thus usually easy to discriminate between the two phases. In samples with some
fcc/hcp phase admixture, which is very common, two more lines are observed. These
correspond to stacking faults [56–59], i. e. planes that are locally hcp stacked within
an fcc grain, and vice versa (Fig. 1). In addition to the two stable crystallographic
structures, under some conditions Co can be forced to assume a metastable bcc
phase [45–48, 60, 61]. The Co NMR frequency in the less dense bcc Co is lower
(198 MHz at 1.4 K ) than in the compact hcp or fcc Co phases.

It is apparent that in the different phases of cobalt the resonance frequency in-
creases with the compactness of the structure. Experiments under pressure [62] have
also shown that, within the same crystallographic structure, the resonance frequency
increases with decreasing atomic volume. For Co, the dependence of the hyperfine
field on the change in volume, V , is approximately �H F/H F ≈ −�V/V . Hence
the presence of strains in layers or clusters is immediately apparent, and has actually
been studied by NMR [27–30].
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Fig. 1. Example of bulk cobalt spectra (here
mostly fcc) showing the lines of the main
phases and of stacking faults (see also Fig. 8).

8.2.2.2 The Interface Between Components – Chemical Coordination

In a pure metal sample the NMR spectrum has a single line arising from nuclei that are
all equivalent. When foreign atoms are substituted for matrix atoms in the vicinity
of the nucleus, H F modifications are reflected on the spectrum by the presence
of new lines shifted away from the main line. These new lines are called satellites
(Fig. 2). Usually, only satellites arising from substitution in the nearest neighbor
(NN) shell are resolved. The influence of further neighbors decreases rapidly with
increasing distance and they contribute only to the broadening of the NN satellite
lines. Study of reference alloys and compounds shows that the effect of foreign atoms
is nearly additive–every atom substituted for a matrix atom in the NN shell shifts
the resonance frequency by a given, element specific, amount. In binary alloy the
satellite lines corresponding to 1, 2, 3, . . . foreign atoms in the NN shell are thus
nearly equally spaced [13–19].

The well studied case of bulk systems can be transposed to the interfaces be-
tween two elements. At a perfect interface, all sites are equivalent but different from
those in the bulk of the magnetic phase. Hence the spectrum has only one satellite
line beside the bulk line. Perfect interfaces are rare and, usually, interface spectra
extend over a broad spectral range corresponding to a spread of nearest-neighbor
configurations around the probed nuclei. The NN distribution in the sample is mea-
sured by the satellite intensities in the spectrum. This, in turn, can be compared with
the distribution of local configurations that would result from a model structure of
the interface. Indeed modeling the spectral shape does provide more quantitative
information about intermixing at the interfaces (short-range admixture). By consid-
ering a model (topological and chemical) of the interface structure, configuration
probabilities (line intensities) can be calculated, and these are used to reconstruct
the spectrum. The spectral refinement procedure is applied to the topological and
chemical parameters of the model. The fitting procedure assesses the applicability
of the model and, if it can be accepted, its refined parameters give direct insight into
the short-range order at the interfaces. Figure 3 illustrates some models that have
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Fig. 2. Co NMR spectra from some fcc CoX diluted alloys
showing the presence of satellites on the low frequency side
of the main line for Cu and Ru (non-magnetic impurities)
and on the high frequency side for Fe (magnetic impurity).

been successfully used to describe the interface spectra of Co/X multilayers [27, 33,
63]. The first interface is sharp with only monoatomic step defects; it is found in
epitaxially grown multilayers of non-miscible elements such as Co and Cu. The sec-
ond is a diffuse interface with a concentration profile over several atomic planes in
which atoms are mixed at random; this is commonly found in multilayers of highly
miscible elements such as Co and Ru. The last interface model combines the two
first – each atomic plane consists of pure and alloyed patches; it is particularly useful
for describing rough interfaces and discontinuous layers [44]. It is clearly apparent
that the expected spectral shapes are quite different for the different models, which
shows that the different types of interface structure can be easily distinguished. Such
models can be adapted to spherical granules.

8.2.3 A Typical Example

The Co NMR spectrum observed in a Cu/Co/Cu/NiFe/FeMn spin valve is shown in
Fig. 4. The sample comprises small columnar grains with a 〈111〉 growth orientation.
It is exemplary for two reasons – firstly it is typical of the kinds of device used as
reading heads for magneto-recording applications and, secondly, the bulk of the Co
layer and the Co/Cu interfaces contain all the structural features and defects which
can be found in metallic multilayers.
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Fig. 3. Basic interface models for
the simulation of buried inter-
face spectra. All simulated spec-
tra correspond to nine atomic
planes in the magnetic layer. (a)
Monoatomic step defect model
(d, the average distance between
steps, and l, the average distance
between kinks, are the variables
of the model, in atomic distance
units). (b) Diffuse interface model
with a linear concentration pro-
file (atomic plane concentrations,
C , are the free variables). (c) Al-
loy and pure Co patches – hybrid
model consisting of clusters with
sharp interfaces separated by dif-
fuse areas. (C , concentration of
the alloy in the atomic plane, and
A, surface fraction of the alloy in
the plane, are the variables of the
model).

Fig. 4. Co NMR spectrum recorded in a
typical Cu/Co multilayer showing indica-
tions of many defects present in Co layers.
The left part shows the interfacial compo-
nent magnified ten times relative to the
bulk components on the right. The thick
vertical bars represent the spectrum that
should be observed for a perfect Co/Cu
multilayer.

It is clearly apparent that the layered structure is far from perfect. The spectrum
can be coarsely separated into three parts:
• a main line at 215 MHz corresponding to bulk Co with the fcc structure. The fre-

quency is slightly lower than that for pure fcc Co (217 MHz), because of the expan-
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sive strains resulting from the difference between Co and Cu lattice constants [28,
29];

• a set of shoulders at higher frequencies corresponding to Co in hcp-like environ-
ments (bulk hcp Co at 225–228 MHz, stacking faults at 220–225 MHz); and

• a set of lines below 200 MHz corresponding to Co atoms with at least one Cu
atom among their 12 nearest neighbors (Co atoms at the Co/Cu interfaces). The
relative intensity of this spectral component shows that there is a fraction of Co
equivalent to 2.5 monolayers involved per interface instead of 1 monolayer for a
perfect interface.
Indeed the shape of this extended tail is typical of diffuse interfaces although a

small fraction of sharp interface areas is apparent from the peak at 165 MHz, which
corresponds to Co with three Cu nearest neighbors at perfect 〈111〉 interfaces.

Figure 4 also contains a significant feature between 200 and 210 MHz. This fre-
quency range corresponds to Co atoms located at the boundaries of the numerous
thin columnar grains [33, 36]. The consequences of the detailed structure of such
spin valves on their magnetic and magneto-resistive properties will be discussed in
Section 8.4.

8.2.4 Summary

Because it probes atomic configurations in real space and at a short distance NMR
efficiently complements standard diffraction techniques (and even diffuse scattering
investigations) in the absence of translation symmetry. In terms of probed distances
and element selectivity NMR can be compared with the EXAFS technique; although,
in contrast to EXAFS, it measures distances indirectly only, it furnishes much more
detailed information about local chemical configurations than a mere average num-
ber of neighbors.

The short presentation above has shown how NMR can be used to investigate the
structure of nanocomposites and, in particular, that of buried interfaces. Quantita-
tively, concentration profiles with atomic resolution, densities of step defects, and
sizes of grains, clusters or islands can be evaluated, thus characterizing the interface
roughness on the atomic distance scale.

Combined with information about local magnetism, it provides unique insights
into the correlation between the structure and magnetic properties, for example the
magnetic profile at interfaces or the magnetic anisotropy or exchange stiffness in
different parts of the artificial structures. This is the topic of subsequent sections.

8.3 Magnetization and Magnetic Anisotropy

8.3.1 Principles – Hyperfine Field in Ferromagnets

The total static field H0 experienced by nuclei in condensed matter is expressed as
the vectorial sum:
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H0 = Hext + HM = Hext + Hdip + HF (1)

where HF is the field resulting from the electron spin and orbital moments within the
ion radius and Hdip is the dipolar field resulting from other moments in the sample.

The classical dipolar field is, for convenience, split into three components:

Hdip = Hdem + HLor + HLoc (2)

where Hdem is the demagnetizing field related to the macroscopic shape of the sample,
HLor is the Lorentz spherical cavity field, 4π M/3 (emu) or M/3 (S.I.), and HLoc is
the field arising from moments within the Lorentz sphere except the central one.
Hdem + HLor = 0 for a spherical sample and HLoc = 0 for cubic site symmetry.

The hyperfine field H F is the sum of three contributions within the ion radius [64,
65]:

H F = H Fcon + H Fdip + H Forb (3)

where H Fdip is the dipolar field from electron spins outside the nucleus volume,
H Forb is the orbital field associated with a not fully quenched orbital moment, and
HFcon is the Fermi contact field, which originates from the spin polarization of all
electrons (essentially s shells) within the volume of the nucleus.

It is usual to group HLoc, H Fdip, and the anisotropic part of H Forb into what is
called the anisotropic hyperfine field H Fani (strictly speaking, a traceless second rank
tensor). The existence of a finite H Fani is evidence of the low symmetry (lower than
cubic) of the site.

The contact field H Fcon, a spin contribution, is isotropic. For 3d ferromagnetic ma-
terials, it is the largest contribution to the hyperfine field (for Co, H Fcon ≈ 200 kOe).
Three contributions to the spin polarization at the nucleus can be distinguished:

H Fcon = H Fcore + H Fcond + H Ftran (4)

H Fcore arises from the core polarization because of the exchange interaction
between s electrons of the inner shells and the outer non-s electrons that carry
the on-site magnetic moment; it is generally negative, i. e. antiparallel to the local
moment. The two other terms originate from the spin polarization of the s conduction
electrons in metals–H Fcond arises from the s spin polarization because of the on-site
magnetic moment of the atom itself, and H Ftran arises from the s spin polarization
because of the neighbor moments (transferred hyperfine field).

In ferromagnetic materials, owing to the spontaneous magnetization, the field
experienced by the nuclei is usually largely dominated by H F (100–400 kOe for the
magnetic 3d elements). The resonance can be, and often is, observed without applying
an external magnetic field. Actually the role of an external DC field in ferromagnetic
NMR is merely the same as in standard magnetometry – it is used to saturate the
magnetization or to follow the magnetization process. All the measurements are,
however, performed at selected frequencies and, therefore, yield information about
the local magnetization and magnetization process in different parts of the sample.
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8.3.2 Local Magnetization

8.3.2.1 Hyperfine Field and Local Magnetic Moments

In Eq. (4) for the contact hyperfine field the magnitude of the first two terms is
proportional to the on-site magnetic moment, µl , whereas the magnitude of the third
term is, crudely, proportional to the number of nearest neighbor magnetic atoms, ni ,
and their magnetic moments, µ j :

H Fcon = acoreµl + acondµl + atran
∑

niµ j (5)

where the a values are hyperfine coupling coefficients [11–14]. This expression shows
immediately that information about the local moment is contained in the measure-
ment of H F . Such an equation should not, however, be interpreted too strictly–
lengthy calculations are needed to compute the hyperfine field [4–9] and Eq. (5)
should be regarded as an empirical experimental approach. Indeed acore is almost
independent of the system in which the element is involved whereas acond and atrans
depend on the detailed electronic structure and hence, for instance, on composi-
tion [7]. If H Fcore dominates H F , which is usual for Co or Fe, it is possible to obtain
reasonable estimates of the magnetic moment or, at least, to compare the magnitude
of these moments at different sites and/or elements. This should always be done with
caution, particularly for metallic systems.

Despite this uncertainty it must be stressed that hyperfine spectroscopy provides
the most local information, site and element specific, about electronic magnetic prop-
erties. As such it complements macroscopic magnetic measurements, which give spa-
tial (and often orientational) averages, magnetic dichroism experiments, which are
element-specific but which yield only a spatial average of the magnetic moment, and
neutron diffraction measurements, which are local in the reciprocal space.

8.3.2.2 Hyperfine Field and Magnetization Profile at Interfaces

When interfaces are thick and diffuse (as indicated by the intensity of the interface
spectrum), the spectrum shape is analyzed in terms of a concentration profile through
several monolayers. The same analysis also yields the average H F in each atomic
plane, which gives insight into the magnetization profile at the interfaces.

For example, NMR studies have furnished evidence of large, alloy like, admixtures
at the interfaces between Co/Ru multilayers. Table 1 lists the Ru concentration
(CRu) and the hyperfine field profiles deduced from analysis of the spectrum given
in Fig. 5. By integration over this H F profile, a loss of magnetization is deduced
which compares well with the number of dead (non-magnetic) layers obtained by
magnetic measurements. NMR yields more detailed insight into the magnetization
at the interface, however, than merely the number of dead layers. Table 1 compares
the H F profile with the moment profile computed ab-initio [66] in a multilayer
with a comparable concentration profile. Experiment and theory agree rather well
although the experimental H F decreases slightly faster than the theoretical moment
with increasing Ru concentration. Indeed, H F is not exactly proportional to the local
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Table 1. Ru concentration (%) and Co hyperfine field profile at the interface of Co/Ru mul-
tilayers as deduced from NMR. Theory: ab-initio calculation of the Co moment at a Co–Ru
interface with linear concentration profile [66].

NMR Theory
CRu H FCo/H Fbulk µCo/µbulk CRu%

Bulk Co 0 1.00 1.00 0
Plane 0 0 0.99 1.03 0
Plane 1 2.5 0.94 0.97 0
Plane 2 17 0.75 0.89 25
Plane 3 50 0.40 0.63 50
Plane 4 82 0.04 0.13 75
Bulk Ru 100 – – 100

Fig. 5. Reconstruction of a Co32Å/Ru32Å
multilayer spectrum showing the contribu-
tion of each plane involved in the interface.

moment because of a minor contribution of neighboring moments (the number of
which decreases as the Ru content increases); to a first approximation, however, the
H F profile is a reasonable estimate of the moment profile.

The existence of a magnetization gradient at thick interfaces has several conse-
quences on the magnetic properties that should be taken into account in the interpre-
tation of the experimental data. The demagnetizing field involves magnetic poles in
the interface volume and not only surface poles. This affects estimates of the surface
anisotropy, particularly when the thickness of the magnetic layers is comparable with
the interface thickness.

The planes that carry a weak moment at liquid He temperatures eventually be-
come non-magnetic at room temperature; this can change the effective thickness of
the non-magnetic spacer or introduce a loose-spin type biquadratic coupling [67].
As a consequence the temperature-dependence of the magneto-resistive effect can
differ significantly from theoretical expectations that involve only the thermal vari-
ation of the spin-dependent scattering. Indeed, whereas the magneto-resistance is
expected to decrease with increasing temperature, cases of increasing M R with in-
creasing T have been observed in Co/Ru superlattices, and in some samples with
thin Ru layers ferromagnetic coupling is observed at 4.2 K but antiferromagnetic or
biquadratic (perpendicular) coupling at 300 K [68].
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8.3.3 Local Anisotropy

The three examples described below show how evolution of the spectrum as a func-
tion of the DC field strength and orientation enables discrimination between differ-
ent parts of composite materials, to furnish evidence of their different magnetization
processes or to enable measurement of their different magnetic anisotropy.

8.3.3.1 Magnetic Phase Separation – Single-domain and Multidomain Particles

When a small DC external field is applied to a multidomain ferromagnet the reso-
nance frequency does not shift immediately, as expected; this means that the internal
field does not increase as immediately as the external field. Indeed, because the do-
main walls move while the sample magnetizes, the demagnetizing field increases,
which compensates more or less for the increase of the external field. In contrast, in
a single domain and isotropic particle the resonance line starts shifting as −γn Hext
from the smallest field values (the minus sign is included, because, in transition met-
als, H F is antiparallel to the magnetization and to Hext).

The bimodal distribution of the sizes of Co clusters embedded in silica has been
demonstrated in this way. The samples were prepared by sol–gel synthesis then
reduced in a hydrogen atmosphere at temperatures in the range 600–1000 ◦C. As is
apparent from in Fig. 6 the NMR spectra of the samples comprise two main lines –

Fig. 6. 59Co spectra of cobalt granules in
silica showing two sizes of population – at
217 MHz, large fcc Co clusters, multidomain,
at 223 MHz, small fcc Co clusters, single do-
main and superparamagnetic at high temper-
ature. The high-frequency tail at the lower
annealing temperature (800 ◦C) is a result
of bad crystallization (stacking faults). The
shift between the two lines in zero field is
because of the demagnetizing field (6 kOe)
in the single-domain spheres. (a) The de-
pendence of the single domain line (sample
annealed at 1000 ◦C) on the external field.
(b) The different temperature dependence
of the two populations of granules (sample
annealed at 800 ◦C). The top frequency axis
is for the spectrum observed at 300 K (the
shift is because of thermal variation of the
magnetization).
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at 217 MHz a standard line arising from large, multidomain, fcc Co clusters that does
not shift with increasing field, and, 6 MHz higher, another line that shifts exactly as
−γCo Hext (γCo ≈ 1 MHz kOe−1).The latter line arises from single-domain fcc Co
particles. Without the results of the in-field measurement, the 223 MHz line in zero
field could have been misinterpreted as arising from hcp Co. Actually the 6 MHz
up shift of this line relative to the 217 MHz line of fcc Co is because of the 6 kOe
demagnetizing field that adds to H F [69]. The existence of the two kinds of cluster is
explained by the direct reduction of Co ions to metallic Co in the small clusters, and
the formation of Co silicide at an early stage of the thermal/reduction treatment;
indeed for reduction temperatures below 800 ◦C small clusters only are observed
in the spectrum. The large clusters are subsequently formed after reduction of the
silicide at higher reduction temperatures.

The temperature dependence of the line intensities (Fig. 6b) shows that most of the
small clusters become superparamagnetic and, hence, disappear from the spectrum
between 4 K and 77 K . Assuming that the anisotropy constant of the clusters is equal
to that of bulk fcc Co, this range of blocking temperatures implies that the radius of
the small grains lies in the 10 to 30-Å range whereas that of the multidomain clusters
must be larger than 300 Å, in agreement with electron microscopy observations. In
the future such thermal dependence, associated with relaxation measurements, might
provide much unique information on the dynamics of small magnetic particles.

8.3.3.2 Local Magnetic Anisotropy – Dependence of NMR on DC Field Strength

When Hext is large enough to yield a single domain state, it can be shown (Sec-
tion 8.4.1) that the NMR signal intensity varies as 1/(Hext + Han), where Han is the
local anisotropy field. The local magnetic anisotropy can, therefore, be measured
by studying the dependence of signal intensity on DC field strength. This has been
used by Thomson et al. [70] to measure selectively the magnetic anisotropy of Co/Cu
multilayers at the interfaces and in the bulk of the Co layers. Figure 7 shows an ex-
ample fit of the signal intensity to the theoretical dependence in a Co/Cu multilayer.
Results from measurements on two multilayers grown on different substrates are
given in Table 2. The data indicate that the two samples have quite different bulk
anisotropy (as measured at the bulk frequency) and that the anisotropy at the inter-
faces (measured on the main interface line – 3 Cu NN) are much lower than in the
bulk, and are similar for both samples.

Interestingly, the similar values of the anisotropy fields at the interfaces compares
well with the similar values of the coercive fields measured on these multilayers. As

Table 2. Local anisotropy fields measured by NMR in the bulk and at the interfaces of
two different Co/Cu multilayers as compared with the macroscopic coercive field (all val-
ues in Oe) [70].

Sample Local Han, bulk Local Han, interface Coercive field

Cu/[Co/Cu]n 550 340 260
Au/[Co/Cu]n 1230 360 260
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Fig. 7. Variation of the spin echo intensity as
a function of the external DC field strength
recorded on the bulk peak of a Co/Cu mul-
tilayer. The line is a fit to the theoretical de-
pendence I/(Hext+Han) from which the local
anisotropy field Han is deduced [70].

first noticed by the authors, this is a strong indication that the magnetization reversal
in the magnetic layer is initiated at the interfaces.

A similar approach has been used to study the orthorhombic distortion and the re-
sulting in-plane anisotropy of Co/Pt superlattices, although, in this case, the external
field was applied perpendicular to the easy axis [71].

8.3.3.3 Local Magnetic Anisotropy – Dependence of NMR on
DC Field Orientation

When the external field is made still larger, to (nearly) saturate the sample, the
local magnetic anisotropy of the various parts of a sample can be investigated by
monitoring the dependence of the resonance frequency on the orientation of the
field. This kind of experiment closely parallels torque magnetometry measurements.
It must be performed on a single crystal, or at least, an oriented sample. Because
the resonance frequency is proportional to the vector sum of the external field and
the internal fields Hdip and H F (Eq. 1), it is possible to measure the angles between
H F , the moment, and the external field, which yields quantitatively the magnetic
anisotropy.

The method has been used by van Alphen and co-workers [58, 59] to determine
local magnetic anisotropy in thin Co films. A typical NMR spectrum of a Co [111] film
is shown in Fig. 8. This figure shows two spectra of the same film recorded with the
magnetic field applied parallel (circles) and perpendicular (squares), respectively,
to the film plane. The overall shift of the spectrum for Hext perpendicular to the
film plane is because of the demagnetizing field of 18 kOe, as expected for a Co
film. As seen in many imperfect cobalt samples, four distinct resonance lines can
be distinguished. The most intense arises from fcc Co. The signals at the high field
side of this fcc line arise from stacking faults and the hcp phase. Whereas fcc Co and
stacking faults have an isotropic or nearly isotropic (respectively) hyperfine field,
the hyperfine field of hcp Co is anisotropic by 8 kOe [54, 55]. This implies that the
hcp resonance line shifts 8 MHz less than the isotropic lines when the field is applied
perpendicular to the film plane. This is exactly what can be observed in Fig. 8 for



310 8 NMR of Nanosized Magnetic Systems, Ultrathin Films, and Granular Systems

Fig. 8. Spectra of a Co thin film grown along the 〈111〉 fcc or 〈001〉 hcp orientation with an
external field in-plane and perpendicular to the plane (the shift resulting from the external
field has been subtracted for comparison with zero field measurements). The overall shift of
the spectrum by 18 MHz is because of the demagnetizing field, but the true hcp line shifts only
by 10 MHz, because of its hyperfine field anisotropy. The lines labeled fcc and hcp correspond
to perfect fcc and hcp structures, sp1 and sp2 are the lines arising from stacking faults. X is an
unidentified line that lies at the hcp frequency for M⊥c (Hext in plane) but is isotropic, unlike
the true hcp line [58, 59].

the line at 226 MHz (field parallel). From this experiment, performed on series of
Co thin films prepared under different conditions, the isotropic and the anisotropic
fractions in the spectra have been measured and the overall film anisotropy has been
calculated by weighted averaging according to:

Krmav = (1 − x)Kdem + x Khcp (6)

where x is the volume fraction of the anisotropic phase, Kdem is the shape (dipolar)
anisotropy acting on the fcc phase and the defects, and Khcp is the effective anisotropy
(magnetocrystalline + dipolar) acting on the hcp fraction. Kdem and Khcp have been
assumed to take the same values as in perfect fcc and hcp films, respectively. The
‘average’ anisotropy energy estimated from NMR and the results from direct mag-
netization measurements are compared in Fig. 9. The agreement between the two
determinations is reasonable but not perfect. Perfect agreement is expected only
in two limit cases–when the two phases are totally decoupled magnetically (macro-
scopic average of the anisotropy energy), and when the phases are fully coupled
magnetically (self averaging of the anisotropy, because of exchange coupling).

The difference between the two determinations of the film anisotropy shows that
none of these cases is valid, because grains of the two phases are magnetically coupled
but the exchange coupling length is not large enough compared with the grain size.
The effective anisotropy energies within each of the coupled phases has subsequently
been measured by analyzing the angular dependence of the resonance frequency of
their respective line in the spectrum. Table 3 lists the values found by NMR in two
of the previous Co films. It can be seen that the local magnetic anisotropy measured
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Fig. 9. Magnetic anisotropy of a series of Co
thin films, grown on mica, as a function of
deposition temperature. Squares, VSM mea-
surements; circles, as deduced from the NMR
phase analysis. The line is a guide for the
eyes [58, 59].

Table 3. Local magnetic anisotropies (MJ m−3) measured by NMR in thin Co films containing
a mixture of hcp and fcc phases [58, 59].

Sample/Phase fcc Kloc NMR hcp Kloc NMR

Co on mica (400 ◦C) −1.12 ± 0.04 −0.84 ± 0.15
Co on mica (500 ◦C) −0.90 ± 0.06 −0.45 ± 0.09
Keff thin film, pure phase −1.27 −0.42

on the fcc and hcp lines does, indeed, differ from that of the respective single phase
values; there is less difference between the two phases and the values depend on the
relative amounts of hcp and fcc phases. This is exactly what is expected from a partial
averaging, because of finite exchange coupling between the fcc and hcp grains.

8.4 Magnetic Stiffness – Anisotropy, Coercivity, and Coupling

8.4.1 Principles – NMR in Ferromagnets, Restoring Field,
and Enhancement Factor

In magnetic materials [72], the nuclei are not directly excited by the external radio-
frequency field H1 but by the oscillation of H F after the electronic moment response
to H1. The position at rest of the electronic moment is determined by its minimum
energy (magnetic anisotropy, dipolar and exchange energy, etc.). Their small oscil-
lation amplitude under the external r. f. field H1 can be expressed as �θ = H1/Hr ,
where Hr is the restoring field traducing the restoring torque exerted on the mo-
ments upon small orientation changes. This is the same torque that is probed in
ferromagnetic resonance (FMR) but here it is assumed that the electronic moments
follow the r. f. field adiabatically, i. e. one is far from any electronic resonance. For
example, the restoring field takes the value of the anisotropy field for a uniaxial,
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single-domain particle, in other words 1/Hr is proportional to the local transverse
electronic susceptibility and will obviously be different in different materials. The
r. f. oscillation of the electronic moments is. In turn, transferred to the hyperfine field
H F , inducing its oscillating transverse component H⊥ that is directly responsible for
the nuclear transitions. Hence, the value of H⊥ reads:

H⊥ = H F�θ = H1(H F/Hr) (7)

The ratio H H⊥/H1 (= H F/Hr) is called the NMR enhancement factor η. As far
as the received signal is concerned, the precessing transverse nuclear magnetization
exerts a torque on the electronic magnetization which is thus driven into rotation
(or oscillation) in accordance with the torque balance equation

mn× = me × Hr (8)

where mm and me are the transverse (perpendicular to H F and M) components of
the nuclear and electronic magnetization respectively. Thus the electronic magne-
tization acquires an oscillating component η times larger than the rotating nuclear
component. The actual signal in the probe coil is mostly induced by me and it is thus
enhanced by the same factor η as the r. f. excitation. Thus, in ferromagnets, the zero
field NMR signal should read:

S(ω, H1) = ηωξn(ω)H F. sin[θ(ηH1)] (9)

= η sin[θ(ηH1)]ω
2 N (ω)γ h̄2 I (I + 1)/3kB T

where ξn(ω) and N (ω) are, respectively, the nuclear susceptibility and the nucleus
density –. the ‘true’ NMR intensity – and θ is the turn angle of the nuclear magne-
tization after the pulse sequence. Actually there is a spread of enhancement factor
values within a sample, which results from the distribution of magnetization ori-
entation, of demagnetizing field, etc. [73]. The actual distribution of enhancement
factors is the convolution product of these distributions and tends to a log–normal
distribution. From this it is found [74] that the spin echo intensity in a single phased
magnetic material can be expressed as a function of the external r. f. field amplitude,
H1, according to:

S(ω, H1) = K 〈η〉 exp[− log2(H1/H1opt)/2σ 2]ω2 N (ω)γ I (I + 1)/T (10)

where H1opt is the r. f. field value for which the signal is maximum, σ is the width
of the Gaussian distribution in log(H1). The maximum NMR signal is reached when
the nuclear spins experience an effective r. f. field strength such that, after the pulse
sequence, the nuclear magnetization is perpendicular to H F . This happens when
the average H⊥ reaches the value Hopt such that, for a single pulse of duration
τ, Hopt = π(2γ τ). The value of Hr can, therefore, be written as:

Hr = (2τ/π)γ H F.H1opt = (2τ/π)ωH1opt = β H1opt (11)
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where β is a sample-independent instrumental factor (calibrated against a sample for
which Hr is well defined). Measurement of H1opt enables evaluation of Hr and 〈η〉
for any sample; this is necessary to obtain the true intensity, N (ω), from raw spectra.
NMR results can, moreover, now be discussed in terms of restoring field, a material
property that is easily understood, rather than in terms of – instrument dependent
– optimum excitation field, or in terms of enhancement factor – a notion for the
specialists. Several experiments have shown (Section 8.4.2.1) that the measured Hr
is indeed quantitatively comparable with more conventional macroscopic data (for
example the anisotropy field, the coercive field, or the exchange bias field) [70, 75].
In the following text, H1 is always expressed in units of Hr (i. e. β H1 is used instead
of H1.

From Eq. (10) it follows that, in a single-phase material, the signal intensity has a
Gaussian dependence upon log(H1). To measure Hr and 〈η〉 one must record a set
of spectra for several values of the r. f. power. This set of observed spectra can be
plotted as a 3D picture (signal intensity S as a function of frequency and H1 strength)
or contour curves, similar to those shown later in Figs 16, 11, and 12, respectively.
If the r. f. field strength is scaled as β H1, then Hr is directly read as the position
of the maximum signal intensity and the variation of Hr with frequency is given
by the locus of this maximum. Considering that each frequency range is associated
with a specific region of a composite sample, the S(ω, β H1) curves shed some light
on structural properties governing, at the atomic scale, the magnetic stiffness of the
composite and the coupling strength between its components. Simply speaking, the
3D curves image directly the structural inhomogeneity, along the frequency axis, and
the magnetic inhomogeneity, along the r. f. field axis.

8.4.2 Local Magnetic Stiffness

8.4.2.1 Magnetic Stiffness – Dependence of NMR on r. f. Field Strength

It has been shown above that the local restoring field can be measured in zero external
field by monitoring the dependence of the NMR signal on the r. f. field strength.
The next examples illustrate three instances in which the dominant contributions
to the restoring energy have different origins (from, mostly, coercivity/anisotropy
within the layers to, mostly, exchange coupling between layers). Figure 10 shows the
dependence of Hr (averaged over the NMR spectrum) on the Co film thickness (tCo)
in various spin valves and multilayers.

The first example (Fig. 10, left) is an example of a hard/soft Cu/Co/Cu/NiFe mul-
tilayer with nearly uncoupled layers (Cu thickness = 50 Å). The process of magneti-
zation of the Co layer is dominated by coercivity. Hr is roughly independent of Co
thickness and corresponds well to the coercive field of the Co layers (200 to 300 Oe)
measured in the samples [35].

A contrasting example (Fig. 10, right) is that of Co/Cu multilayers designed to have
large antiferromagnetic coupling but a very low coercivity at room temperature [76].
The magnetization process is dominated by the antiferromagnetic coupling between
the layers and Hr varies roughly as the reciprocal Co thickness, as expected for a
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Fig. 10. Restoring field (average value on the Co spectrum) as function of inverse Co thickness
in different magneto-resistive multilayers. Full lines are results from macroscopic measure-
ments (coercive and exchange bias field). Left, Cox /Cu50Å/NiFe50Å/Cu50Å Hard/soft mul-
tilayers; center, Cox /Cu22Å/NiFe/FeMn Spin valves; right, Cox /Cu20Å AF coupled multi-
layers.

surface mechanism. For Co thicknesses below 10Å, however, Hr increases more than
expected from 1/tCo behavior and analysis of the spectra [44] shows that Co layers
are no longer continuous when the thicknesses is below 10 Å. The observed deviation
of 300 to 800 Oe is then attributed to the larger anisotropy of the small Co grains
compared with that of the continuous Co layers. The NMR measurements were
performed at 4.2 K and, indeed, the coercive field that was measured at 4.2 K on the
magneto-resistance loop reaches 700 Oe for the thinnest Co layer, in agreement with
the observed departure from linearity in the NMR result. At higher temperatures
the coercivity decreases rapidly; it vanishes above 100 K .

The third example (Fig. 10, center) is the intermediate behavior of
Co/Cu/NiFe/FeMn spin valves, for which there is residual coupling between Co and
NiFe layers (the slope of Hr against 1/tCo) and the coercivity (the intercept at infi-
nite Co thickness) is weak. The bulk contribution (Hb = 29 ± 6 Oe) and the surface
contribution (As = 750 ± 250 Oe Å) to Hr agree very well with the coercive field Hc
(21±3 Oe) and the residual coupling field Hi (Hi tCo = 630±60 Oe Å), respectively,
which are measured directly on the magnetization loop [37].

These examples are given to show how the average Hr can be quantitatively
related to more conventional macroscopic data. The average Hr is always found
to be slightly larger than the corresponding macroscopic data. Better agreement is
always found between the local restoring field measured on the softest part of the
layered structure and the macroscopic coercive field. Indeed, the main interest in
NMR measurement stems from the possibility of select parts of the sample, i. e. of
looking at specific frequencies, and to measure their local magnetic stiffness. This is
illustrated in the subsections below.
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8.4.2.2 Structure and Magnetic Stiffness

The behavior of the spin valve Cu10Å/Co75Å/Cu22Å/NiFe50Å/FeMn80Å is again pre-
sented as a typical example. Figure 11a shows the frequency-dependence of the
restoring field acting on Co moments in the sample and Fig. 11b shows the contour
curves S(ω, β H1). Two observations can be made. Firstly, the interface moments (be-
low 190 MHz) are softer than the bulk moments (210–230 MHz). This is a general
observation for all the layers, from many sources, which have been investigated and
is in full agreement with results obtained in-field (Section 8.3.2.2). Secondly, the mo-
ments at grain boundaries in very small grains (190–210 MHz) are even softer than
the interface moments and at least twice as soft as regular bulk moments. Because
they can involve up to 20 % of the Co atoms in some samples, they are likely to
influence substantially the magnetization process of the samples [36].

All studies of Co based multilayers show that the different regions of the Co layers
can be classified in order of increasing magnetic stiffness (in the 〈111〉 plane) as: (i)
regions with a large density of grain boundaries (small grains), (ii) interfaces, (iii)
regions with a large density of stacking faults, (iv) hcp phase (M⊥c), (v) fcc phase,
(vi) hcp phase (M‖c). Depending on whether one wants the Co layer soft or stiff,
one should use appropriate preparation conditions favoring the former or the latter
regions. For example, a large Cu thickness favors the fcc Co phase and increases the
Co layer stiffness; in contrast, high deposition rates favor small grains and magnetic
softness [34].

Thermal annealing of the same sample results in reduced magneto-resistance,
which disappears completely when high annealing temperatures (360 ◦C) are

Fig. 11. Structural and magnetic inhomo-
geneity in the Cu/Co75Å/Cu22Å/NiFe50Å/
FeMn spin valve (as deposited). (a)
Frequency-dependence of the restoring
field strength, showing the magnetic soft-
ness of grain boundaries (190–210 MHz)
and interfaces (below 190 MHz) and the
hardness of the bulk of the layers (above
210 MHz). (b) Detailed contour view (de-
pendence of NMR intensity on frequency
and rf field) of the upper frequency range
showing the distribution of restoring field
corresponding to that of Co grains sizes and
other crystallographic defects.
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Fig. 12. Top: BH loops observed in Cu/Co75Å/Cu22Å/NiFe/FeMn spin valves (as deposited and
after annealing at 280 ◦C and 360 ◦C). Bottom: Contour plots of Co NMR intensity against
frequency and r. f. field. Annealing at 280 ◦C results in no significant structural change –
the shift of the curves towards larger restoring fields is because of larger coupling with the
pinned NiFe layer. After annealing at 360 ◦C the narrowing of the distribution of restoring
field is indicative of better magnetic homogeneity because of the growth of fcc crystal grains
and the disappearance of the soft grain boundaries. The coercivity of the Co layer increases
considerably.

used [37]. The evolution of the structure and of the magnetization process of the
Co layer during the annealing treatment is illustrated by the contour plots S(ω, β H1)

presented in Fig. 12, bottom. After the first annealing step (280 ◦C) the shape of the
contour curve does not change, it is merely shifted towards larger r. f. fields, i. e. the
grain structure of the Co layer is not affected nor are its intrinsic magnetic proper-
ties. The larger restoring field results mainly from greater coupling between the free
Co layer and the pinned NiFe layer – the sub-loops of the two magnetic layers (Co
and NiFe) in the magnetization curve (Fig. 12, top) start to merge. In contrast, after
annealing at 360 ◦C the structure of Co changes significantly, the soft grain boundary
characteristics disappear (i. e. the average Co grain size has increased considerably)
and the S(ω, H1) plots are indicative of much better magnetic homogeneity (much
narrower distribution of restoring fields) but at the expense of the soft character
of the Co layer – indeed the average restoring field reaches values ten times larger
(approximately 300 Oe) than in the as-deposited spin valve. The growth of the grains
has been confirmed by electron microscopy.

For this spin valve and for other giant magneto-resistance devices a magneto-
resistive effect can be observed assuming:
• there is a significant spin-dependent scattering in the bulk or at the interface of

the magnetic layers; and
• the magnetization in successive magnetic layers is antiparallel or, at least, largely

non-collinear.
The second requirement is fulfilled by different means – by taking advantage of

antiferromagnetic coupling between the magnetic layers or, in spin valves, by pinning
the magnetization orientation of one of the layers (here NiFe) while leaving the other
layer (here Co) free to rotate under the external field.
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While modifying the structure of the system, the annealing treatment can affect
the spin-dependent scattering as well as the coupling and the magnetization process
of the two layers. Observations show that the reduced magneto-resistance is mostly
because of changes of the magnetization process of the free layer. At moderate
annealing temperature the problem arises mainly from greater coupling between
the free and the pinned magnetic layers of the spin valve. Although the structural
origin for this increased coupling has not been clearly identified, it is suspected that
it results from magnetic bridges, because of diffusion of the magnetic elements in
the grain boundaries of the Cu spacer layer. For the highest annealing temperature
the reason for the complete loss of magneto-resistance has been clearly identified–
the structure of the free Co layer changes and its coercivity increases strongly; this
suppresses the possibility of antiparallel alignment of the magnetization of the two
magnetic layers.

8.4.2.3 Magnetic Stiffness Profile at Interfaces

The (nearly) universal soft character of the interface planes is shown in Fig. 13 for
sputtered Co30Å/Cu multilayers from different sources. Similar behavior has been
also observed in Co/Ru and Co/Cr multilayers. All samples in which the interfaces
are found to be softer than the bulk of the magnetic layer have different amounts of
interfacial admixture (two or more mixed planes).

The general character of the observation shows that the magnetic moments do
not rotate coherently in the magnetic layer – in contrast with the behaviour usually
assumed; the moments rotate more easily in the interface atomic planes than in
bulk planes, which implies that they are partly decoupled. It also implies that the
average anisotropy must be weaker in the interface planes than in the bulk planes.
These two assessments might be surprising, because of the large exchange coupling
in Co and because of the surface anisotropy, respectively. Actually the experimental
observation is not unexpected.

Fig. 13. Frequency dependence of the restor-
ing field (normalized to the value in the bulk
of the layer) in different . . . Cu/Co30Å/Cu. . .
multilayers. This shows the softer character
of the interfaces (below 200 MHz) compared
with the bulk of the Co layers (210-230 MHz)
as observed in most multilayers. Inserts indi-
cate the number of mixed Co-Cu atomic planes
at the interfaces.
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As far as the anisotropy is concerned, it must be noted that in the samples studied
the magnetization lies in plane and the magnetization process involves in-plane
rotations – the anisotropy between in-plane and perpendicular to plane orientations
is not relevant. The element admixture also breaks the in-plane symmetry, however,
which can result in a large site anisotropy, depending on the arrangement of impurity
atoms around each Co atom. This anisotropy is, however, random in strength and
orientation and such a random anisotropy is readily averaged out by the exchange
coupling as long as the exchange energy is larger than the anisotropy energy. This
explains the lower anisotropy at the interface.

As far as the exchange energy is concerned, experimental observation shows that
it is considerably reduced relative to the coupling energy in bulk Co. This is certainly
a consequence of the smaller number of magnetic neighbors and the reduction of the
moment in the mixed interfaces. To estimate the reduction of the exchange energy a
simple model of the magnetic layer has been developed. This is built on the basis of
a large moment nµ (for the n bulk planes) coupled on both sides to a moment µ (for
the two interface planes). The central moment is pinned by a uniaxial anisotropy
and the two interface moments are free from any anisotropy (in accordance with the
remark above). Energy minimization, in a Stoner-Wohlfarth approach, shows that
the interface moments rotate twice as much as the bulk moments (as is observed
experimentally) when the coupling energy is approximately twenty times larger than
the anisotropy energy of the central moment. In comparison, the exchange energy in
bulk hcp Co is approximately one thousand times larger than the magneto-crystalline
anisotropy. Current experimental observations indicate, therefore, that the exchange
coupling between external interface planes and inner planes is only a few percent of
the bulk Co value as soon as there are two or more mixed planes at the interfaces.

Two exceptions have been found to the softer character of the interface moments;
they are, however, consistent with this explanation. The first exception is an example
of a well mixed interface but, in contrast with all other samples, the two elements are
magnetic (bcc Co/Fe superlattices) [48]. In these circumstances there is absolutely no
stiffness difference between bulk and interface planes (Fig. 14a). Indeed the exchange
coupling is certainly not reduced at the interface when both atomic species are
magnetic, so the interface moments are tightly bound to those in the bulk of the layers.
The second exception is the nearly perfect interface in a sample prepared by slow
thermal evaporation of a single Co layer on a (111)-oriented single crystal of copper.
Despite the presence of some fcc grains in a mostly hcp phase, the experimental
spectrum is very close to perfect – in other words there is nearly no Co-Cu admixture
at the interface. In these circumstances (Fig. 14b) the restoring field is as large (on
average) at the interface as in the bulk (although there is a visible inhomogeneity
associated with the hcp/fcc admixture).

It is commonly assumed that thin ferromagnetic layers behave as a single mo-
ment along the growth direction, owing to their small thickness compared with the
exchange coupling length in bulk samples. NMR observations show that often this
is not so. The two exceptions (the only ones yet observed) emphasize the condition
that the full layer rotates uniformly under an external field – interdiffusion with
non-magnetic atoms must be very weak, otherwise the magnetic moments at the
interfaces are partly decoupled from the bulk magnetic moments.



8.4 Magnetic Stiffness – Anisotropy, Coercivity, and Coupling 319

Fig. 14. Spectrum and restoring field in bcc
Co/Fe multilayers (a) and in a single Co layer
on a 〈111〉 single crystal of Cu with nearly per-
fect interface but a mixture of large hcp and fcc
grains (b).

8.4.2.4 Exchange-coupling Oscillations

It is generally found in metallic multilayers that the coupling between the magnetic
layers oscillates between ferromagnetic and antiferromagnetic as a function of the
non-magnetic spacer thickness: this results from an RKKY- like mechanism [77].
Similar oscillations are found for the magneto-resistance which appears only when
the coupling is antiferromagnetic. The exchange coupling strength oscillations are
also readily observed on the restoring field measured by NMR.

In Co/Ru multilayers, for example, the coupling between Co layers oscillates
with varying Ru thickness between ferromagnetic and antiferromagnetic with a pe-
riod of approximately 11 Å [78]. Figure 15 shows the variation of the restoring field

Fig. 15. Magneto-resistance and magnetic
stiffness oscillations in Co32Å/Rut multilay-
ers as a function of Ru thickness.
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strength measured by NMR as a function of Ru thickness in Co32ÅRux multilay-
ers. It is apparent that the variation of Hr parallels the oscillating evolution of the
magneto-resistance ratio, as expected. Quantitatively, however, the magnetic re-
sponse of interface and bulk planes are different, i. e. the diffuse interface planes
are partly decoupled from the bulk planes. Not only are the interface planes softer,
on average, than the bulk planes, it is also apparent that the amplitude of the oscil-
lations of Hr is larger at the interfaces than in the bulk. The reason for this is that
the antiferromagnetic coupling acts through the Ru spacer; its contribution to the
restoring energy is, therefore, expected to be larger at the interface planes than in
the bulk of the Co layers.

Analysis of the magnetization and of magneto-resistance loops in Co/Ru multilay-
ers has already suggested significant spin misorientation inside the Co layers [79]. It
was assumed that rotation of the interface moments under the external field was re-
tarded by the AF coupling more than that of the bulk moments. This was interpreted
as a result of the competition, at interfaces, between a weakened ferromagnetic
coupling with the inner Co planes and strong antiferromagnetic coupling through
the Ru spacer.NMR observation confirms this speculation. For samples with thinner
(10 Å) Co layers, and according to the analysis of the macroscopic measurements, the
interface moments would even be stiffer than the bulk moments when the antifer-
romagnetic coupling is maximum. Unfortunately, no NMR signal could be observed
in these samples because the restoring fields were too large (> 5 kOe), owing to AF
coupling, with respect to the available H1 strength (r. f. power).

8.4.2.5 Inhomogeneity of the Magnetization Process

The examples so far presented have pointed out the magnetic differences between
the different parts of magnetic layers (bulk phases, grain boundaries, interfaces)
that can be detected as a result of their different NMR frequencies. The variation
of the NMR signal with r. f. field strength can also furnish evidence of more global
magnetic inhomogeneity, for example distribution of coercive field among layers
or distribution of magnetic coupling strength between layers. Such inhomogeneity is
revealed by the observation of very broad S(H1) curves with several peaks, i. e. a large
distribution of restoring field at any frequency. The usefulness of the observation is
illustrated by the example (Fig. 16) of two Co/Cu multilayers, with a Cu thickness
of approximately 10 Å, that is responsible for a strong antiferromagnetic coupling
between the Co layers [78]. The magnetization loops of the two samples (Fig. 16,
bottom) are quite similar – both increase rapidly at low field and this is followed by a
slow saturation up to 5 kOe. Such curves can be interpreted as resulting from coupling
inhomogeneities, parts of layers being antiferromagnetically coupled, others being
ferromagnetically coupled (because of magnetic bridges, pin-holes in the Cu layer,
or fluctuations of Cu thickness). Alternatively, after the experimental evidence for
biquadratic coupling, i. e. 90◦ orientation between the magnetization of adjacent
layers [80], and theoretical developments relating to this [67], it is also tempting to
interpret magnetization curves like these in terms of homogeneous perpendicular
(or non-collinear) coupling.
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Fig. 16. Co/Cu multilayers with large antifer-
romagnetic coupling (tCu ≈ 1 nm) showing
similar magnetization loops (top) but very
different amounts of coherence in their mag-
netization process (bottom). (a) Broad dis-
tribution of restoring field (inhomogeneous
coupling). (b) Homogeneous magnetization
process (homogeneous non collinear cou-
pling).

NMR observation if the first multilayer (Fig. 16a) reveals very broad distribution
of the restoring field in the 3D curves S(ω, H1), which proves the inhomogeneous
nature of the magnetization process. This is because of fluctuations of anisotropy
or coupling strength. The magnetization loop can, therefore, hardly be attributed to
biquadratic coupling – it results from distribution of anisotropy or coupling strength
from place to place in the sample where the magnetization rotates incoherently.
In contrast, the distribution of Hr is narrower in the second multilayer (Fig. 16b);
this is consistent with a homogeneous, coherent magnetization process. The curves
peak at a low value (< 100 Oe), which is expected for biquadratic coupling. This
low value of Hr corresponds to the initial rotation of the net moment of the whole
multilayer, as for ferromagnetic coupling. The occurrence of biquadratic coupling
can, therefore, be considered in this second example. Any other magnetic structure
with a net remanent magnetization and tightly coupled magnetic layers is, however,
also compatible with the NMR results.

Presently, the kind of analysis illustrated here is often limited to qualitative conclu-
sions about the magnetic homogeneity of the samples and only large inhomogeneities
are visible. Indeed, even in homogeneous samples the S(H1) curve is intrinsically
broad and a deconvolution procedure must be applied to extract the true restoring
field distribution. As illustrated below, however, it is rather easy to separate two
different magnetic phases in a sample if their restoring field differs by more than a
factor of three.

8.4.2.6 Magnetic Phase Separation – Soft and Hard Phases

If a material consists of several phases with largely different magnetic stiffness, more
than one Gaussian shape is needed to describe the signal intensity as a function of the
excitation field. A possible ambiguity of the method arises because in a single-phase,
multidomain material two main restoring mechanisms act on the moments; one which
acts on the domain wall displacement (the propagation field) and the other on domain
rotation (the anisotropy field). Thus if domain rotations and domain wall movements
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were both excited in the experiment two Gaussians would also be needed. In such
circumstances, however, the two contributions must have the same spectral shape.
If the spectra recorded under the different r. f. conditions differ in shape, several
magnetic phases are present in the sample. In favorable circumstances, i. e. when the
different phases in a sample have largely different structure and magnetic stiffness,
it is thus possible to separate the spectra arising from each of the phases and to
determine their average restoring field.

The occurrence of granular CoCu alloys, obtained by melt spinning, with giant
magneto-resistance [51] illustrates this possibility. The shapes of the spectra of such
alloys change substantially as a function of the r. f. field strength (Fig. 17). The H1 de-
pendence of the spin echo intensity at two exemplary frequencies (200 and 215 MHz)
is shown in Fig. 18a. At both frequencies two Gaussian shapes must be used, one
corresponding to Hr ≈ 0.9 kOe and the other to Hr ≈ 6.4 kOe. At 200 MHz the
amplitudes of the two components are comparable, whereas at 215 MHz the harder
component is clearly dominant. The individual spectra of the two components are
obtained by the fitting S(H1) with two distributions at each frequency. Figure 18b
shows the NMR spectrum recorded for β H1 = 2 kOe, and those of its hard and
soft components. The spectrum corresponding to the softer component is typical of
a CoCu alloy; it has a characteristic satellite structure separated by approximately
16 MHz on the low-frequency side of the Co peak, corresponding to Co first co-
ordination shells with one, two, etc., Cu neighbors [18]. The other ferromagnetic
component in the sample is a hard phase, the dominating feature of which is a strong
Co peak, showing the presence of pure fcc Co granules. The low-frequency tail of this
line is strikingly similar to the spectrum observed in Co/Cu multilayers with rough
interfaces but limited interdiffusion.

The measured restoring field of the hard component is close to that expected for an
assembly of non-interacting single-domain particles of fcc Co. Indeed the restoring
field in a single domain fcc Co grain is equal to the anisotropy field, i. e. 3 kOe,
a value that would be obtained if H1 was optimally oriented perpendicular to the

Fig. 17. 59Co NMR spectra from a Co10Cu90
melt-spun ribbons recorded at 4.2 K at different
r. f. power (H1 in unit of restoring field). They
show the large change in shape arising from a
mixture of hard an soft phases.
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Fig. 18. Co10Cu90 melt-spun granular alloy.
Top: dependence of spin echo intensity on H1
strength at two exemplary frequencies, show-
ing the existence of two magnetic phases (two
restoring fields). Bottom: 59Co spectrum and
its decomposition into the spectra of the soft
and hard phases.

magnetization. For an assembly of particles with random magnetization orientation,
however, the expected average restoring field is twice as large, i. e. 6 kOe, which is
close to the value observed experimentally. The smaller value of the restoring field
observed for the alloyed component (approximately 0.9 kOe) is understood to result
from self averaging of the random anisotropy due to the CoCu admixture as a result
of the exchange interaction.

In contrast with multilayers, in which the geometry of the composite is rather well
controlled, the distribution of sizes and the composition of the magnetic clusters in
nanogranular alloys prepared by metallurgical means varies considerably; this results
in large differences between magnetic properties. The most obvious consequence is
distribution of blocking temperatures, i. e. some of the particles are ferromagnetic,
blocked, but others are superparamagnetic. It is often speculated that the anisotropy
constant of the particles is independent of their size and composition and the distri-
bution of blocking temperatures is analyzed in terms of size distribution only. This
example shows that the assumption can be clearly invalid.

8.5 Conclusion

NMR investigations on many Co-X multilayers and granular alloys [81] have shown
how the structure of Co layers or clusters can be correlated with their magnetic
properties, for example their magnetization profile at the interfaces or the anisotropy
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and magnetic stiffness of different parts of the composite structure. In summary,
because they contribute to the NMR spectrum at different frequencies, different
regions of the magnetic layers can be selected and their magnetic properties can be
separately probed.

In the bulk of Co layers, it has been shown that the fcc fraction is usually magnet-
ically stiffer than the hcp fraction. This is observed for most multilayers in which the
magnetization lies and rotates in-plane, perpendicular to the hcp c-axis. In samples
with numerous small columnar grains the softness of these grains has been proved
directly; they lead to very soft layers.

A very general observation is that, unless the interfaces are very sharp, the mag-
netic layer cannot be considered as rotating as a whole under the external field. In
most systems the moments at the interfaces rotate more easily than those in the
bulk, despite the small layer thickness compared with the domain wall width in bulk
Co. This is interpreted as resulting from reduction of the magnetic moments and
weakening of the exchange stiffness, because of element admixture at the interfaces.
A consequence of the softer character of the interface moments is that the mag-
netization reversal of the layer is quite probably initiated at interfaces. Another
consequence of the partial decoupling of the interface moments is that the antifer-
romagnetic coupling through the spacer, which acts primarily on the interfaces, can
be transferred only partly to the bulk of the magnetic layers.

In addition to the magnetic inhomogeneity expected from the intrinsic com-
posite design of the nanomaterials, such as the magnetization and magnetic stiff-
ness profiles at multilayer interfaces, NMR can also image directly any large, and
usually unwanted, inhomogeneity of coupling and/or anisotropy between the mag-
netic components. One can then discriminate between various interpretations of
the process of magnetization of the composite structure. Ultimately, such studies
facilitate identification both structurally (geometry and chemical nature) and mag-
netically (anisotropy and stiffness) of the different magnetic phases that might be
present in a composite sample.
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[34] P. Panissod, and C. Mény, J. Magn. Magn. Mater. 1993, 126, 16–18.
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9 Interlayer Exchange Interactions
in Magnetic Multilayers

P. Bruno

9.1 Introduction

Magnetic multilayers typically consist of alternate stacks of ferromagnetic and non-
ferromagnetic spacer layers. The typical thickness of an individual layer ranges be-
tween a few atomic layers (AL) to a few tens of AL. The magnetic layers usually
consist of elemental metallic ferromagnets (Fe, Co, Ni) or alloys thereof (e. g. permal-
loy). The spacer layers can consist of any transition or noble metal; they are either
paramagnetic (Cu, Ag, Au, Ru, Pd, V, etc.) or antiferromagnetic (Cr, Mn).

Because of the spacer layers, the magnetic layers are, to first approximation, mag-
netically decoupled from each other, i. e. their basic magnetic properties such as
magnetization, Curie temperature, magnetocrystalline anisotropy, magneto-optical
response, etc., are essentially those of an individual layer. This approximation, how-
ever, is not sufficient for accurate descrition of the magnetism of multilayers, and
one must consider the magnetic interactions which couple successive magnetic layers
through spacer layers.

The various interactions giving rise to an interlayer magnetic interaction are: (i)
the dipolar interaction and (ii) the indirect exchange interaction of the Ruderman–
Kittel–Kasuya–Yosida (RKKY) type.

For a homogeneously magnetized layer consisting of a continuous medium, there
is no dipolar stray field, so that dipolar interlayer coupling can arise only as a result of
departures from this idealized situation. This is the case when one considers the real
crystalline structure of the layer. It is, however, easy to show that the dipolar stray
field decays exponentially as a function of the distance from the magnetic layer, with
a decay length of the order of the lattice parameter, so that this effect is completely
negligible compared with the interaction as a result of exchange, to be discussed
below. Significant dipolar interlayer interactions can, nevertheless, arise from corre-
lated roughness imperfections of the layers (“orange peel” effect) as first pointed out
by Néel [1]. This effect, however, becomes negligible for the high quality multilayers
that can be fabricated nowadays. Finally, dipolar interactions are important when the
magnetic layers are not saturated and split into magnetic domains; this interaction
leads in particular to a correlation between the magnetic domains of the successive
magnetic layers. This phenomenon is, therefore, extrinsinc and we shall disregard it
below by restricting ourselves to homogeneously magnetized layers.

The indirect exchange interaction has a completely different physical origin. It
is mediated by conduction electrons which are scattered successively by the mag-
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netic layers. Historically, this type of interaction was first proposed by Ruderman
and Kittel to describe the indirect interactions between nuclear spins in a metal
[2], and then extended to electronic magnetic moments by Kasuya [3] and Yosida
[4]. This interaction has received a much attention, in particular in the context of
dilute magnetic alloys. Neither theoretical predictions, nor the experiment results,
were, however, sufficiently precise to enable fully understanding of this mechanism
and quantitative testing of the theoretical predictions. Indirect exchange interactions
have received intensly renewed attention since 1990 in the context of magnetic mul-
tilayers – indeed, in contrast with the situation of a dilute alloy, in which the distance
between magnetic impurities is randomly distributed, multilayers enable controlled
variation of the distance between successive magnetic layers and their crystallo-
graphic orientation; this enables a very detailled study of indirect exchange interact-
ions.

In this chapter we present an overview of the state-of-the-art of our understanding
of interlayer coupling as a result of indirect exchange interactions in transition metal
multilayers. In Section 2 we give a short overview of the experimental observations.
This is followed by an overview of the theoretical approaches that have been used to
describe the interlayer exchange coupling (Section 3). Theoretical description based
upon the idea of spin-dependent quantum confinement is presented in Section 4. The
behavior obtained in the limit of large spacer thickness is discussed in Section 5, and
the dependence of interlayer exchange coupling on magnetic layer thickness and on
overlayer thickness are treated in Sections 6 and 7, respectively. The amplitude and
phase of interlayer coupling oscillations are discussed in Section 8.

9.2 Survey of Experimental Observations

Interlayer magnetic interactions were first reported in rare-earth superlattices [5,
6]. Rare-earth multilayers will not, however, be considered here, and the reader is
refered to recent review papers on this subject [7, 8].

For transition metals systems, antiferromagnetic interlayer exchange coupling in
Fe/Cr/Fe layers was first reported by Grünberg et al. [9]. They observed an anti-
ferromagnetic interlayer interaction, decaying regularly with increasing Cr spacer
thickness. Phenomenologically, the interlayer interaction energy per unit area can
be expressed as

E(θ) = J cos θ, (1)

where θ is the angle between the magnetizations of the two magnetic layers, and J is
called the interlayer coupling coupling constant. With the sign convention adopted
here, a positive (negative) value of J relates to an antiferromagnetic (ferromagnetic)
type of coupling. One should pay attention to the fact that other conventions for the
sign and normalization of the coupling constant are frequently found in the literature.
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In practice, an antiferromagnetic interlayer interaction is easily revealed and mea-
sured by performing a magnetization measurement (or measurement of any property
proportional to the magnetization, for example magneto-optical Kerr or Faraday ef-
fect) as a function of an applied magnetic field. In zero field, because of the antiferro-
magnetic interaction, the magnetization of successive magnetic layers is antiparallel
to each other, resulting in zero remanent magnetization (if the magnetic moments
of the layers are equivalent). When an external field is applied the Zeeman energy
tends to align the magnetization of both layers in the field direction, so that the
magnetization progressively increases until a saturation field is reached; the value of
the latter gives a quantitative measure of the antiferromagnetic interaction strength.
One should be aware, however, that it is not always easy to distinguish this behavior
from the effect of magnetocrystalline anisotropy, or magnetic domains. Hence, for
a convincing measurement it is necessary to perform a quantitative micromagnetic
analysis of the influence of the latter effects [10, 11].

A ferromagnetic interaction is much more difficult to detect and measure quanti-
tatively, because the application of an external magnetic field has no direct action on
the mutual orientation of the magnetizations of the successive magnetic layers and
thus cannot probe their mutual interaction. It is, nevertheless, possible to measure
ferromagnetic interlayer interactions by means of magnetometry by using specially
devised structures. This can be achieved by pinning the magnetization of one mag-
netic layer, leaving the other one free to align itself along an external magnetic field.
The pinning of the magnetization of a ferromagnetic layer can be achieved by cou-
pling it to an antiferromagnetic layer [12], or by coupling it to another ferromagnetic
layer via a strong antiferromagnetic coupling [13], or by using a magnetic layer with
a strong magnetic anisotropy and coercivity [14].

The discovery, by Parkin et al. [15], of spectacular oscillatory variation of the
interlayer coupling depending on spacer layer thickness in Fe/Cr and Co/Ru mul-
tilayers has stimulated intense research activity in this field. Systematic studies by
Parkin revealed, furthermore, that the oscillatory behavior is observed for spacer
layers consisting of almost any transition or noble metal and is therefore essentially
a universal feature of this phenomenon [16].

The generic behavior of oscillatory interlayer exchange coupling is an interaction
which oscillates periodically in sign and magnitude, with an amplitude which decays
as 1/D2, where D is the spacer thickness. The oscillation periods depend on the
nature and crystalline orientation of the spacer metal, but not on the nature or
thickness of the magnetic layers. Typical values of oscillation periods are between 2
and 10 AL. The strength of the interaction, on the other hand, depends both on the
characteristics of the spacer and of the magnetic layers.

To enable very precise investigation of the dependence on thickness of the in-
terlayer coupling and to avoid problems resulting from unsufficient reproducibility
in sample growth conditions and layer thicknesse, Fuss et al. [17] introduced a new
technique, which consists in using samples in which the spacer is prepared as a wedge
of continuously varying (average) thickness, obtained by moving a shutter close to
the sample during deposition. By using Kerr effect, magnetometry can be performed
locally by scanning a focused laser on the sample. This ingenious method turned out
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to be essential for successfully revealing full richness of thickness variation of the
interlayer exchange coupling.

In particular, in confirmation of theoretical predictions (see below) it has been
found experimentally that multiperiodic oscillatory coupling exists in Fe/Au(001)/Fe
[17–19], Co/Cu(001)/Co [20–22], and Fe/Ag(001)/Fe [23] multilayers.

The dependence on spacer thickness of the coupling constant J can therefore
generally be expressed as:

J =
∑
α

Aα

D2 sin (qα D + φα) (2)

where the index α labels the various oscillatory components. The strength of inter-
layer exchange coupling, as expressed by Aα (which the dimension of an energy), is
typically of the order of 1 to 10 meV, which (for a spacer thickness of 1 nm) corre-
sponds to a value of the order of 0.1 to 1 mJ m−2 for the coupling constant J .

Although the greatest dependence on thickness is the dependence on spacer
layer thickness, (weak) oscillatory dependence on magnetic layer thickness has
been observed for the Co/Cu(001)/Co system by Bloemen et al. [24] and for the
Fe/Cu(001)/Co system by Back et al. [25], and dependende on the thickness of a
non-magnetic coverage layer has been observed for the Co/Cu(001)/Co system by
de Vries et al. [26], for the Fe/Au(001)/Fe system by Okuno and Inomata [27], and
for the Co/Au(111)/Co system by Bounouh et al. [28], in accordance with theoretical
predictions (see below for a detailed discussion).

Although the most frequent behavior for the interlayer exchange coupling is of the
form given by Eq. (1), Rührig et al. [29] have observed in the Fe/Cr(001)/Fe system
a special kind of coupling in which the magnetization of successive magnetic layers
tends to be perpendicular to each other, rather than either parallel or antiparallel,
as follows from Eq. (1). This behavior can be understood if one assumes that the
coupling is of the form

E(θ) = J1 cos θ + J2 cos2 θ (3)

In combination with the effect of cubic magnetocrystalline anisotropy, the above
coupling can, indeed, lead to a 90 degree configuration for suitable values of the
coupling constants J1 and J2. This effect has been observed in other systems also. This
additional coupling contribution is often dubbed “biquadratic” coupling. Although
such coupling can, in principle, arise from intrinsic mechanism, this effect is usually
too small to explain the experimental observations, and it is believed that other
(extrinsic) mechanisms related to structural defects are responsible. This effect will
not be considered further in this paper; the interested reader can find up-to-date
discussions on this topic in recent review papers [30, 31].

Note that interlayer exchange coupling has been observed not only for metallic
spacer layers, but also for semiconducting spacer layers [32–35]. This effect is, how-
ever, believed to have a mechanism different from that operating for metallic spacer
layers, and will not be discussed further here.
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9.3 Survey of Theoretical Approaches

9.3.1 RKKY Theory

The striking similarity between the oscillatory behavior observed experimentally and
that obtained from the RKKY interaction between magnetic impurities suggests,
of course, that the two phenomena have a common mechanism. This prompted
researchers to attempt to describe interlayer exchange coupling by adapting the
RKKY theory [36–40].

This approach rapidly achieved significant success. In particular, Yafet [36] first
explained the oscillatory behavior and the 1/D2 decay law (compared with a 1/D3

decay obtained for the RKKY interaction between impurities). Extending the the-
ory to take proper account of the real electronic structure of the spacer material
(as opposed to the free electron approximation used so far), Bruno and Chappert
[38, 39] derived the selection rule giving the oscillation period(s) of the oscillatory
coupling in terms of the (bulk) Fermi surface of the spacer. By applying this selec-
tion rule, they calculated the oscillation periods for noble metal spacers; their results
(including the prediction of multiperiodic oscillations) were soon confirmed quanti-
tatively by experiment (see discussion below), giving strong support to the RKKY
theory. Because of the approximations used, however, the RKKY theory did not
enable quantitative description the amplitude and phase of the oscillatory coupling.

9.3.2 Quantum Well Model

Independently, an (apparently) different mechanism was soon proposed by Edwards
et al. [41] and by other authors [42–45]. In this approach the coupling is ascribed to
the change of density of states resulting from the spin-dependent confinement of the
electrons (or holes) in the quantum well provided by the spacer layer. Remarkably,
this approach yielded exactly the same oscillatory behavior and decay as the RKKY
interaction. On the other hand, the description of the amplitude and phase was more
satisfactory, although early attempts to calculate these were based on assumptions
that were too crude (free electron model, single tight-binding model) to yield realistic
quantitative results. More realistic calculations have subsequently been performed
on the basis of the quantum-well model [46–48].

9.3.3 sd-Mixing Model

Yet another approach was based upon the sd-mixing model [49–51], proposed earlier
by Anderson [52] and Caroli [53] to described the interaction between magnetic
impurities in metals. This approach yielded the same result as the RKKY theory for
the oscillation periods and decay law of the coupling. Description of the amplitude
and phase of the coupling was more physical than that provided by the RKKY theory.
Bruno [51], in particular, showed that the amplitude and phase in terms of a (suitably
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adapted) Friedel sum rule [54] for the magnetization and charge of an the magnetic
“impurities.”

9.3.4 Unified Picture in Terms of Quantum Interferences

The coexistence of a variety of apparently different mechanisms predicting essen-
tially similar behavior for the coupling led to a somewhat puzzling and controversial
situation regarding the true nature of the mechanism of interlayer exchange coupling.
This puzzle was solved when Bruno [55, 56] and subsequently Stiles [57] showed that
the different approaches indeed corresponded to different approximations of a same
mechanism. They reformulated it in a physically appealing picture in which the am-
plitude and phase of the oscillatory coupling are expressed in terms of the amplitude
and phase of reflection coefficients for the electrons at the interfaces between the
spacer and the magnetic layers.

This approach has been used by several authors to perform quantitative calcula-
tions for realistic systems [58–60].

Furthermore, thanks to its physical transparency, this approach has enabled qual-
itative prediction of new behavior, for example oscillations depending on magnetic
layer thickness [61] and on overlayer thickness [62].

9.3.5 First-principles Calculations

Finally, numerous authors have performed first-principles calculations of interlayer
exchange coupling for realistic systems [63–72]. Besides modeling the approaches
mentioned above, first-principles calculation plays a very important rôle in elucidat-
ing the mechanism of interlayer exchange coupling: on one hand, it provides a test of
the qualitative predictions of the simplified models, while on the other hand it yields
quantitative predictions for realistic systems than can be compared critically with ex-
perimental observations. The most widely investigated system is the Co/Cu/Co(001)
system, which has served as a benchmark for the theory of interlayer exchange cou-
pling. While early attemps yielded doubtful results, essentially because of the great
difficulty of such numerical calculation, the most recent results have given results
than can be considered satisfactory in many respects (see discussion below).

9.4 Quantum Confinement Theory of Interlayer Exchange Coupling

The purpose of this section is to present as simply as possible the mechanism of
interlayer exchange coupling in terms of quantum interferences as a result of electron
confinement in the spacer layer. The emphasis here will be on physical concepts rather
than on mathematical rigor. This discussion is based on that given in Ref. [74].
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9.4.1 Elementary Discussion of Quantum Confinement

For the sake of clarity, we shall first consider an extremely simplified model, namely
the one-dimensional quantum well, which nevertheless contains the essential physics
involved in the problem. We shall then progressively refine the model to make it more
realistic.

The model consists in a one-dimensional quantum well representing the spacer
layer (of potential V = 0 and width D), sandwiched between two “barriers” A and B
of respective widths LA and LB, and respective potentials VA and VB. Note that we
use the term “barrier” in a general sense, i. e., VA and VB are not necessarily positive.
The barrier widths, LA and LB, can, furthermore, be finite or infinite, without any
restriction.

9.4.1.1 Change of the Density of States as a Result of Quantum Interferences

Let us consider an electron of wavevector k+ (with k+ > 0) propagating towards the
right in the spacer layer; as this electrons arrives at barrier B, it is partially reflected to
the left, with a (complex) amplitude rB ≡ |rB|eiφB. The reflected wave of wavevector
k− is in turn reflected from barrier A with an amplitude rA ≡ |rA|eiφA, an so on.
(For the one-dimensional model, of course, k− = −k+; this property will, however,
generally not be true for three-dimensional systems to be studied below.) The module
|rA(B)| of the reflection coefficient expresses the magnitude of the reflected wave,
whereas the argument φA(B) represents the phase shift resulting from the reflection
(note that the latter is not absolutely determined and depends on the choice of the
coordinate origin).

The interferences between the waves as a result of the multiple reflections on
the barriers induce a modification of the density of states in the spacer layer, for
the electronic state under consideration. The phase shift resulting from a complete
round trip in the spacer is


φ = q D + φA + φB (4)

with

q ≡ k+ − k− (5)

If the interferences are constructive, i. e., if:


φ = 2nπ (6)

where n is an integer, one has an increase in the density of states; conversely, if the
interferences are destructive, i. e., if


φ = (2n + 1)π (7)

one has a reduction in the density of states. Thus, to a first approximation, we expect
the modification of the density of states in the spacer, 
n(ε), to vary with D in the
manner:
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n(ε) ≈ cos (q D + φA + φB) . (8)

We expect, furthermore, that this effect will proportional to the amplitude of the
reflections at barriers A and B, i. e., to |rArB|; finally, 
n(ε) must be proportional to
the width, D, of the spacer and to the density of states per unit energy and unit width:

2
π

dq

dε
(9)

which includes a factor of 2 for spin degeneracy. We can also include the effect of
higher-order interferences, because of n round trips in the spacer; the phase shift 
φ

is then multiplied by n and |rArB| is replaced by |rArB|n . Gathering all the terms, we
obtain:


n(ε) ≈ 2D

π

dq

dε

∞∑
n=1

|rArB|n cos n (q D + φA + φB)

= 2
π

Im

(
iD

dq

dε

∞∑
n=1

(rArB)n eniq D

)

= 2
π

Im

(
i

dq

dε

rArB eiq D

1 − rArB eiq D

)
(10)

As will appear clearly below, it is more convenient to consider the integrated density
of states:

N (ε) ≡
∫ ε

−∞
n(ε′) dε′. (11)

The modification 
N (ε) of the integrated density of states because of electron con-
finement is:


N (ε) = 2
π

Im
∞∑

n=1

(rArB)n

n
eniq D

= − 2
π

Im ln
(

1 − rArB eiq D
)

(12)

A simple graphical interpretation of the above expression can be obtained by noting
that Im ln(z) = Arg (z), for z complex; thus, 
N (ε) is given by the argument, in the
complex plane, of a point located at an angle 
φ = q D + φA + φB on a circle of
radius |rArB| centred in Fig. 1. This graphical construction is shown in Fig. 1.

The variation of 
N (ε) as a function of D is shown in Fig. 2, for different values of
the confinement strength |rArB|. For weak confinement (a), 
N (ε) varies with D in
sinusoidal manner. As one the confinement strength is increased (b), the oscillations
are distorded, because of higher-order interferences. Finally, for full confinement (c),

N (ε) contains jumps that correspond to the appearance of bound states. We note,
however, that the period, �, of the oscillations of 
N (ε) does not depend on the
confinement strength, but only on the wavevector q ≡ k+ − k−, i. e. � = 2π/q.
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Fig. 1. Graphical interpretation of Eq. (12).

Fig. 2. Variation of 
N (ε) as a function of D, for different values of the confinement strength:
(a) |rArB| = 0.1, (b) |rArB| = 0.8, (c) |rArB| = 1 (full confinement). Note the different scales
along the ordinate axis.

So far, we have implicitely restricted ourselves to positive energy states. Negative
energy states (i. e., of imaginary wavevector) are forbidden in the absence of barriers
A and B, because their amplitude diverges either on the right or on the left, so that
they cannot be normalized. This matter of fact is no longer-true in the presence of
the barriers if VA (or VB, or both VA and VB) is negative – the negative energy states,
i. e. varying exponentially in the spacer, can be connected to allowed states of A or B.
To treat these states consistently we simply have to extend the concept of reflection
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coefficient to states of an imaginary wavevector, which is straightforward. One can
check that, with this generalization, Eq. (12) acounts properly for the contribution
of the evanescent states. Physically, this can be interpretated as coupling of A and B
by a tunnel effect [73, 74].

9.4.1.2 Energy Associated with the Quantum Interferences in the Spacer

Let us now study the modification of the energy of the system which results from the
quantum interferences. To conserve the total number of electrons it is convenient
to work within the grand-canonical ensemble, and to consider the thermodynamic
grand-potential, which is given by:

� ≡ −kBT
∫ +∞

−∞
ln

[
1 + exp

(
εF − ε

kBT

)]
n(ε) dε

= −
∫ +∞

−∞
N (ε) f (ε) dε. (13)

At T = 0, this reduces to:

� ≡
∫ εF

−∞
(ε − εF ) n(ε) dε

= −
∫ εF

−∞
N (ε) dε (14)

The energy 
E associated with the interferences is the contribution to � correspond-
ing to 
N (ε):


E = 2
π

Im
∫ +∞

−∞
ln

(
1 − rArB eiq D

)
dε. (15)

9.4.1.3 Three-dimensional Layered System

Generalization of the above discussion to the more realistic case of a three-
dimensional layered system is immediate. Because the system is invariant by trans-
lation parallel to the plane, the in-plane wavevector k‖ is a good quantum number.
Thus, for a given k‖, one has an effective one-dimensional problem analogous to
that discussed above. The resulting effect of quantum intereferences is obtained by
summing on k‖ over the two-dimensional Brillouin zone. The modification of the
integrated density of states per unit area is:


N (ε) = − 1
2π3 Im

∫
d2k‖ ln

(
1 − rArB eiq⊥ D

)
(16)

and the interference energy per unit area is:


E = 1
2π3 Im

∫
d2k‖

∫ +∞

−∞
f (ε) ln

(
1 − rArB eiq⊥ D

)
dε (17)
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9.4.1.4 Quantum Size Effect in an Overlayer

A thin overlayer deposited on a substrate is a system of considerable interest. One of
the barriers (say, A) is the vacuum, and barrier B is the substrate itself. The potential
of the vacuum barrier is Vvac = εF + W , where W is the the work function; thus it is
perfectly reflecting for occupied states, i. e. |rvac| = 1. The reflection on the substrate
(or coefficent rsub) can, on the other hand, be total or partial, depending on the band
matching for the state under consideration.

The spectral density of the occupied states in the overlayer can be investigated
experimentally by photoemission spectroscopy; in addition, by using inverse photoe-
mission one can study the unoccupied states. If, furthermore, these techniques are
used in the “angle-resolved” mode, they give information about the spectral density
locally in the k‖ plane.

For an overlayer of given thickness, the photoemission spectra (either direct or
inverse) contain maxima and minima corresponding, respectively, to the energies
for which the interferences are constructive and destructive. When the confinement
is total, narrow peaks can be observed; these correspond to the quantized confined
states in the overlayer, as was pointed out by Loly and Pendry [75].

Quantum size effects arising because of electron confinement in the photoemis-
sion spectra of overlayers have been observed in a variety of non-magnetic systems
[76–84]. The systems Au(111)/Ag/vacuum and Cu(111)/Ag/vacuum, in particular,
are excellent examples of this phenomenon [81, 83].

9.4.1.5 Paramagnetic Overlayer on a ferromagnetic Substrate –
Spin-polarized Quantum Size Effect

So far our discussion has been concerned with non-magnetic systems exclusively.
Qualitatively new behavior can be expected when some of the layers are ferromag-
netic. An example of particular interest is that of a paramagnetic overlayer on a
ferromagnetic substrate.

In the interior of the overlayer the potential is independent of the spin; the
propagation of electrons is, therefore, described by a wavevector k⊥, which is spin-
independent. The reflection coefficient on the vacuum barrier, rvac, is also spin-
independent. The ferromagnetic substrate, however, constitutes a spin-dependent
potential barrier; thus the substrate reflection coefficients for electrons with a spin
parallel to the majority and minority spin directions of the substrate are, respectively,
r↑

sub and r↓
sub. It is convenient to define the spin average:

r sub ≡ r↑
sub + r↓

sub

2
(18)

and the spin asymmetry:


rsub ≡ r↑
sub − r↓

sub

2
. (19)
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In this case the electron confinement in the overlayer gives rise to a spin-dependent
modulation of the spectral density as the overlayer thickness is changed; the period
of the modulation is the same for both spins, whereas the amplitude and phase are
expected to be spin-dependent.

The quantum size effects in paramagnetic overlayers on a ferromagnetic substrate
have been investigated by several groups [85–98]. The systems studied most are Cu
overlayers on a Co(001) substrate and Ag overlayers on a Fe(001) substrate. Ortega
and Himpsel [86, 87] observed a quantum size effect in the normal-emission photo-
electron spectra of a copper overlayer on a fcc cobalt (001) substrate. They observed
peaks arising as a result of quantum size effects, and an oscillation of the photoemis-
sion intensity in both, the photoemission and in the inverse photoemission spectra.
These quantum size effects manifest themselves also in the form of oscillatory behav-
ior in the photoemission intensity at the Fermi level; because the observed oscillation
period (5.9 atomic layers) is close to the long period of interlayer exchange coupling
oscillations in Co/Cu(001)/Co, it was suggested that the two phenomena should be
related to each other: Ortega and Himpsel also claimed that the observed oscillations
in photoemission are spin-dependent and mostly arise from minority electrons. This
conjecture has been confirmed directly, by Garrison et al. [89] and by Carbone et
al. [90], independently, by means of spin-polarized photoemission. They found that
both the intensity and the spin-polarization have oscillatory behavior with the same
period (5–6 atomic layers) but opposite phases; this indicates that the quantum-size
effect does indeed take place predominantly in the minority-spin band, as proposed
by Ortega and Himpsel [86, 87]. Kläsges et al. [96] and Kawakami et al. [98] have re-
cently observed spin-polarized quantum-size effects in a copper overlayer on cobalt
(001) for a non-zero, in-plane wavevector corresponding to the short period oscilla-
tion of interlayer exchange coupling in Co/Cu(001)/Co; they observed short-period
oscillations of the photoemission intensity, in good agrement with the short-period
oscillations of interlayer coupling. This observation provides a further confirmation
of the relationship between quantum-size effects in photoemission and oscillation
of interlayer exchange coupling.

Photoemission studies of quantum size effects have also been performed on other
types of system, e. g. a ferromagnetic overlayer on a non-magnetic substrate, or
systems comprising more layers [99–103].

Photoemission spectroscopy undoubtedly constitutes a method of choice for in-
vestigating quantum-size effects in metallic overlayers; this is because its unique
features enable selectivity in energy, in-plane wavevector, and spin.

Besides photemission, spin-polarized quantum-size effects in paramagnetic over-
layers on a ferromagnetic substrate also cause oscillatory behavior (which depends
on overlayer thickness) of spin-polarized secondary electron emission [104, 105], lin-
ear [106–111], and non-linear [112, 113] magneto-optical Kerr effect, and magnetic
anisotropy [114, 115]. These effects usually, however, involve a summation over all
electronic states, and so quantitative analysis of these quantum-size effects may be
fairly complicated.
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9.4.2 Interlayer Exchange Coupling Because of Quantum Interferences

Let us now consider a paramagnetic layer sandwiched between two ferromagnetic
barriers A and B. The reflection coefficients on both sides of the paramagnetic spacer
layer are now spin dependent. A priori the angle, θ , between the magnetizations
of the two ferromagnetic barriers can take any value; for the sake of simplicity,
however, we shall restrict ourselves here to the ferromagnetic (F) (i.e. θ = 0) and
the antiferromagnetic (AF) (i. e. θ = π) configurations.

For the ferromagnetic configuration, the energy change per unit area because of
quantum interference is easily obtained from Eq. (17), i. e.:


EF = 1
4π3 Im

∫
d2k‖

∫ +∞

−∞
f (ε)

×
[
ln

(
1 − r↑

Ar↑
Beiq⊥ D

)
+ ln

(
1 − r↓

Ar↓
Beiq⊥ D

)]
dε (20)

In this equation the first and the second terms correspond, respectively, to majority-
and minority-spin electrons. The antiferromagnetic conguration is obtained by re-
versing the magnetization of B, i. e. by interchanging r↑

B and r↓
B; thus the correspond-

ing energy per unit area is:


E AF = 1
4π3 Im

∫
d2k‖

∫ +∞

−∞
f (ε)

×
[
ln

(
1 − r↑

Ar↓
Beiq⊥ D

)
+ ln

(
1 − r↓

Ar↑
Beiq⊥ D

)]
dε (21)

Thus, the interlayer exchange coupling energy is

EF − E AF = 1
4π3 Im

∫
d2k‖

∫ +∞

−∞
f (ε)

× ln




(
1 − r↑

Ar↑
Beiq⊥ D

) (
1 − r↓

Ar↓
Beiq⊥ D

)
(

1 − r↑
Ar↓

Beiq⊥ D
) (

1 − r↓
Ar↑

Beiq⊥ D
)

 dε (22)

which can be simplified to:

EF − E AF ≈ − 1
π3 Im

∫
d2k‖

∫ ∞

−∞
f (ε) 
rA
rB eiq⊥ D dε (23)

in the limit of weak confinement. The above expression for the IEC has a rather
transparent physical interpretation. First, as the integrations on k‖ over the first two-
dimensional Brillouin zone and on the energy up to the Fermi level show, the IEC
is a sum of contributions from all occupied electronic states. The contribution of a
given electronic state, of energy ε and in-plane wavevector k‖, consists of the prod-
uct of three factors – the two factors 
rA and 
rB express the spin-asymmetry of
the confinement, because of the magnetic layers A and B, respectively, whereas the
exponential factor eiq⊥ D describes the propagation through the spacer and is respon-
sible for the interference (or quantum-size) effect. Thus, this approach establishes
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an explicit and direct link between oscillatory IEC and quantum size effects such as
are observed in photoemission.

9.5 Asymptotic Behavior for Large Spacer Thicknesses

In the limit of large spacer thickness, D, the exponential factor oscillates rapidly
with ε and k‖, which leads to substantial cancellation of the contributions to the IEC
because of the different electronic states. Because the integration over energy is
abruptly stopped at εF, however, states located at the Fermi level give predominant
contributions. Thus the integral on ε can be calculated by fixing all other factors to
their value at εF, and by expanding q⊥ ≡ k+

⊥ − k−
⊥ around εF, i. e.:

q⊥ ≈ q⊥F + 2
ε − εF

h̄v+−
⊥F

, (24)

with:

2

v+−
⊥F

≡ 1

v+
⊥F

− 1

v−
⊥F

. (25)

The integration (see Ref. [74] for details) yields:

EF − E AF = 1
2π3 Im

∫
d2k‖

i h̄v+−
⊥F

D

rA
rBeiq⊥F D

×F(2π kBT D/h̄v+−
⊥F ), (26)

where:

F(x) ≡ x

sinh x
. (27)

In the above equations, q⊥F is a vector spanning the complex Fermi surface; the
velocity v+−

⊥F is a combination of the group velocities at the points (k‖, k+
⊥F ) and

(k‖, k−
⊥F ) of the Fermi surface.

Next, the integration on k‖ is performed by noting that for large spacer thickness
D the only significant contributions arise from the neighboring critical vectors kα

‖ for
which q⊥F is stationary. Around such vectors, q⊥F may be expanded as

q⊥F = qα
⊥F −

(
kx − kα

x

)2

κα
x

−
(

ky − kα
y

)2

κα
y

(28)

where the crossed terms have been canceled by proper choice of the x and y axes;
κα

x and κα
y are combinations of the curvature radii of the Fermi surface at (kα

‖ , k+α
⊥ )

and (kα
‖ , k−α

⊥ ).
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The integral is calculated by using the stationary phase approximation [74], and
one obtains:

EF − E AF = Im
∑
α

h̄vα
⊥κα

2π2 D2 
rα
A
rα

Beiqα
⊥ D

×F(2πkBT D/h̄vα
⊥) (29)

where qα
⊥, vα

⊥, 
rα
A, 
rα

B correspond to the critical vector kα
‖ , and:

κα ≡ (
κα

x

)1/2
(
κα

y

)1/2
(30)

in Eq. (30), one takes the square root with an argument between 0 and π .
This analysis shows that in fine, the only remaining contributions in the limit

of large spacer thickness D arise from the neighborhood of states having in-plane
wavevectors kα

‖ such that the spanning vector of the Fermi surface q⊥F = k+
⊥F − k−

⊥F
is stationary with respect to k‖ for k‖ =kα

‖ , and the corresponding contribution
oscillates with a wavevector equal to qα

⊥F . This selection rule was first derived in the
context of the RKKY model [117]; it is illustrated in Fig. 3. There may be several
such stationary spanning vectors and, hence, several oscillatory components; they
are labelled by the index α.

The above selection rule enables prediction of the dependence of the oscillation
period(s) of the interlayer exchange coupling on spacer thickness, merely by inspect-
ing the bulk Fermi surface of the spacer material. In view of an experimental test of
these predictions, noble metal spacer layers seem to be the best suited candidates;
there are several reasons for this choice:
– Fermi surfaces of noble metals are known very accurately from de Haas-van

Alphen and cyclotron resonance experiments [116];
– because only the sp band intersects the Fermi level, the Fermi surface is rather

simple, and does not depart very much from a free-electron Fermi sphere; and
– samples of very good quality with noble metals as a spacer layer could be prepared.

Fig. 4 shows a cross-section of the Fermi surface of Cu, indicating the stationary
spanning vectors for the (001), (111), and (110) crystalline orientations [117]; the
Fermi surfaces of Ag and Au are qualitatively similar. For the (111) orientation, a
single (long) period is predicted; for the (001) orientation, both a long period and a

Fig. 3. Sketch showing the wavevector qα
⊥ giving the

oscillation period of the oscillatory interlayer ex-
change coupling for a non-spherical Fermi surface.
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Fig. 4. Cross-section of the Fermi
surface of Cu along the (11̄0)

plane passing through the origin.
The solid dots indicate the recip-
rocal lattice vectors. The dashed
lines indicate the boundary of the
first Brillouin zone. The horizon-
tal, oblique, and vertical, solid ar-
rows indicate the vectors qα

⊥ giv-
ing the oscillation period(s) for
the (001), (111), and (110) orien-
tations, respectively.

short period are predicted; for the (110) orientation, four different periods are pre-
dicted (only one stationary spanning vector is seen in Fig. 4, the three others being
located in other cross-sections of the Fermi surface). These theoretical predictions
have been confirmed successfully by numerous experimental observations. In partic-
ular, the coexistence of a long and a short period for the (001) orientation has been
confirmed for Cu [20–22, 98, 122], Ag [23], and Au [17–19]; and the experimental pe-
riods have been found to be in excellent agreement with the theoretical predictions.
Theoretically predicted and experimentally observed oscillation periods in Table 1.

Table 1. Comparison of the theoretical predictions of Ref. [117] with experimental obser-
vations of the dependence of oscillation periods of interlayer exchange coupling on spacer
thickness.

Spacer Theoretical periods System Experimental periods Ref.

Cu(111) � = 4.5 AL Co/Cu/Co(111) � ≈ 5. AL [118]
Co/Cu/Co(111) � ≈ 6. AL [119]
Fe/Cu/Fe(111) � ≈ 6. AL [120]

Cu(001) �1 = 2.6 AL Co/Cu/Co(001) � ≈ 6. AL [121]
�2 = 5.9 AL Co/Cu/Co(001) �1 ≈ 2.6 AL [20]

�2 ≈ 8. AL
Co/Cu/Co(001) �1 ≈ 2.7 AL [22]

�2 ≈ 6.1 AL
Fe/Cu/Fe(001) � ≈ 7.5 AL [106]

Ag(001) �1 = 2.4 AL Fe/Ag/Fe(001) �1 ≈ 2.4 AL [23]
�2 = 5.6 AL �2 ≈ 5.6 AL

Au(001) �1 = 2.5 AL Fe/Au/Fe(001) �1 ≈ 2. AL [17]
�2 = 8.6 AL �2 ≈ 7–8 AL

Fe/Au/Fe(001) �1 ≈ 2.5 AL [18, 19]
�2 ≈ 8.6 AL

Au(111) � = 4.8 AL Co/Au/Co(111) � ≈ 4.5 AL [14]
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In a further attempt to test theoretical predictions of the periods of oscillatory
coupling, several groups [123–125] have undertaken to modify, in a controlled man-
ner, the size of the Fermi surface (and hence, the period of the coupling) by alloying
the spacer noble metal (Cu) with a metal of lower valence (Ni); in both experiments,
the change in oscillation period as a result of alloying has been found to be in good
agreement with the expected change in the Fermi surface.

9.6 Effect of Magnetic Layer Thickness

As already mentioned, the influence of the IEC on the ferromagnetic layer thickness
is contained in the reflection coefficients 
rA and 
rB. If the ferromagnetic layers
are of finite thickness, reflections usually occur at the two interfaces bounding the
ferromagnetic layers, giving rise to interferences [61] and, hence, to oscillations of
the IEC which depend on ferromagnetic layer-thickness. A more detailed discussion
of this effect is given in Refs. [74, 61]. This behavior was first predicted from calcula-
tions based on a free-electron model [126]. The dependence of the amplitude of the
oscillations of the IEC on ferromagnetic layer-thickness is generally much smaller
than the dependence on spacer thickness, and does not give rise to changes of the
sign of the IEC. Experimentally this effect was confirmed by Bloemen et al. [24] for
Co/Cu/Co(001) and by Back et al. [25] for Fe/Cu/Co(001). It has also been confirmed
theoretically by Nordström et al. [127], Lang et al. [128], Drchal et al. [129], and Lee
and Chang [59].

9.7 Effect of Overlayer Thickness

More surprising behavior (at first sight) is the dependence of the IEC on the thick-
ness of an external overlayer. One might naı̈ely believe that layers external to the
basic ferromagnet/spacer/ferromagnet sandwich should not influence the interaction
between the two ferromagnetic layers. This view is incorrect, in particular when the
system is covered by an ultrathin protective overlayer. In these circumstances, the
electrons can to reach the vacuum barrier, which is perfectly reflecting, so that strong
confinement and interference effects occur in the overlayer; this leads to weak but
significant oscillatory variation of the IEC as a function of the overlayer thickness
[62].

This effect, which follows directly from the quantum interference (or quantum
size-effect) mechanism, has been proposed and experimentally confirmed indepen-
dently by de Vries et al. [26] for the Co/Cu/Co(001) system with a Cu(001) overlayer,
by Okuno and Inomata [27] for the Fe/Au/Fe(001) system with an Au(001) overlayer,
and by Bounouh et al. [28] for Co/Au/Co(0001) with an Au(111) overlayer. In all
this work, the dependence of the observed period(s) of the oscillations on overlayer
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Table 2. Comparison of theoretical predictions of Ref. [62] and experimental observations of
the dependence of the oscillation periods of interlayer exchange coupling overlayer thickness.

Overlayer Theoretical System Experimental Ref.
periods periods

Cu(001) �1 = 2.6 AL Cu/Co/Cu/Co/Cu(001) � ≈ 5. AL [26]
�2 = 5.9 AL

Au(001) �1 = 2.5 AL Au/Fe/Au/Fe/Au(001) �1 ≈ 2.6 AL [27]
�2 = 8.6 AL �2 ≈ 8.0 AL

Au(111) � = 4.8 AL Au/Co/Au/Co/Au(111) � ≈ 5. AL [28]

thickness were found to be in good agreement with theoretically predicted values.
This effect has also been confirmed by means of first-principles calculations for the
Co/Cu/Co(001) system with different types of overlayer [130–132]. The dependence
of the oscillation periods on overlayer thickness predicted theoretically are com-
pared with those observed experimentally in Table 2. A more detailed discussion of
this effect can be found in Refs. [62, 130, 132].

9.8 Strength and Phase of Interlayer Exchange Coupling

In contrast with the excellent agreement between theory and experiment obtained
for oscillation periods, the situation for the amplitude and phase of oscillations is
less satisfactory. According to the theory expounded above, the coupling takes the
following form in the limit of large spacer thickness (asymptotic limit):

J =
∑
α

Aα

D2 sin (qα D + φα) . (31)

Because the coupling constant J has the dimension of energy per unit area, the
parameters Aα characterizing the coupling strength of the different components of
the oscillation have the dimensions of energy. By taking typical values of the Fermi
wavevector and velocity, it is easy to see from Eq. (29) that they are typically of the
order of 1 to 10 meV.

Theoretical and experimental values of the oscillation amplitude strengths, Aα ,
for different systems are compared in Table 3. (Note that different theoretical results
with each other we include in this discussion only calculations pertaining to semi-
infinite magnetic layers.) We observe a variety of rather strong discrepancy between
theory and experiment, and also among various theoretical studies. Although the
agreement seems to be rather good for the Co/Cu(111)/Co system, more experimen-
tal and theoretical data are required to disclose whether the apparent agreement is
conclusive or accidental.
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Table 3. Comparison of theoretical predictions and experimental observations for the depen-
dence of oscillation amplitudes, Aα , of interlayer exchange coupling on spacer thickness. For
Cu(001) and Au(001) spacers A1 and A2 correspond, respectively, to the short-period and
long-period oscillations.

System Theory Ref. Experiment Ref.

Co/Cu(111)/Co A ≈ 3.7 meV [133] A ≈ 7.6 meV [20]
A ≈ 4.2 meV [60] A ≈ 3.4 meV [137]

A ≈ 2.5 meV [138]

Co/Cu(001)/Co A1 ≈ 42. meV [133] A1 ≈ 1.6 meV [20, 21, 122]
A2 ≈ 0.13 meV A2 ≈ 1.4 meV
A1 ≈ 72. meV [60]
A2 ≈ 0.75 meV
A1 ≈ 35. meV [129]
A2 ≈ 3.5 meV
A1 ≈ 35. meV [47]
A2 ≈ 0.035 meV

Fe/Au(001)/Fe A1 ≈ 12.5 meV [60] A1 ≈ 8.1 meV [19]
A2 ≈ 6.9 meV A2 ≈ 1.1 meV

9.8.1 Co/Cu(001)/Co

The Co/Cu(001)/Co system has been most investigated theoretically and is consid-
ered to be a model system to test the predictions of theory. The theoretical results
reported in Table 3 correspond to semi-infinite magnetic layers, whereas the experi-
mental data have been obtained for magnetic layers of finite thickness. As discussed
in Section 6 the strength of the coupling varies with magnetic layer thickness, which
can be a source of discrepancy between theoretical and experimental results. Another
possible source of discrepancy arises from unavoidable imperfections (roughness, in-
termixing) of the experimental samples.

Let us first address the short-period oscillatory component (labeled with the sub-
script 1). As discussed in Section 5 above, this component arises from four equiv-
alent in-plane wavevectors k‖1 located on the � − X high-symmetry line of the
two-dimensional Brillouin zone [74]. Because the majority-spin band structure of
fcc Co well matches that of Cu, |r↑

1 | ≈ 0. For minority-spin fcc Co, on the other hand,
there is a local gap in the band structure of symmetry compatible with the Cu states,
which leads to total reflection, i. e., |r↓

1 | = 1. Thus, |
r1| ≈ 0.5 [133, 134] and |
r1|
is (almost) independent of Co thickness [129]. The various theoretical values for the
amplitude A1 listed in Table 3 agree rather well with each other, except for that from
Ref. [60] which is almost a factor of 2 larger than the values obtained by other authors
[129, 133, 47]. This discrepancy might be because of an error in the estimation of the
radius of curvature κ1, of the Fermi surface, and of the Fermi velocity, v⊥1, which are
quite tricky to obtain accurately for k‖1.

Turning now to the comparison between theory and experiment, we notice that the
calculated values of A1 are considerably larger than those measured. There might be
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at least two reasons for this discrepancy. The first is the effect of interface roughness,
which generally tends to reduce the amplitude of the coupling oscillations [117];
this effect is particularly pronounced for short-period oscillatory components, as is
indeed confirmed experimentally [22]. The second reason is of intrinsic character
– the theoretical values of A1 given in Table 3 correspond to the asymptotic limit,
whereas the experimental data have been obtained for spacer thicknesses below
15 AL. As is clearly apparent from Fig. 6a of Ref. [129] and from Fig. 13 (bottom)
of Ref. [47], the asymptotic regime is attained only for thicknesses above 20 to
40 AL; below this value the envelope of the oscillations deviates significantly from
D−2 behavior, and the apparent amplitude in the range relevant to experiments is
typically a factor of 2 smaller than the asymptotic amplitude. This pre-asymptotic
correction is attributed to the strong energy-dependence of r↓

1 [47].
Let us now discuss the long-period oscillatory component. As appears from Table

3, the situation is quite confusing – not only do the various theoretical results disagree
with each other, but some [133, 60, 47] underestimate the coupling strength compared
with the experimental result [20, 21, 122], a difference which cannot be explained by
the effect of roughness or interdiffusion.

The long-period oscillatory component arises from the center � of the two-
dimensional Brillouin zone. Here again, for the same reason as above, |r↑

2 | ≈ 0.
The minority-spin reflection coefficient, is on the other hand, considerably smaller
than for the short-period oscillation, and |r↓

2 | ≈ 0.15 [74], so that |
r2| ≈ 0.05
[74, 133]. This very small spin-dependent confinement explains the very small values
of A2 obtained by authors who rely on the asymptotic expression, Eq. (29), obtained
from the stationary phase approximation [133, 60, 47]. As seen from Fig. 2 of Ref.
[135] and from Fig. 2 of Ref. [60], however, r↓

2 increases very strongly with k‖ and
full reflection is reached at a distance 0.1 × π/a from �; indeed, the low reflectivity
arises only in a narrow window around �. As discussed in Ref. [136], this gives rise to
a strong preasymptotic correction, and explains why the stationary-phase approxi-
mation yields an underestimated value of A2. If, on the other hand, the k‖ integration
is performed without using the stationary-phase approximation, as in Ref. [129], a
much higher value of A2 is obtained; the latter is larger than the experimental value
[20, 21, 122] by a factor of 2.5, which seems plausible in view of the effect of roughness
and interdiffusion.

Our knowledge of the phase of the oscillations is much more restricted as this
aspect of the problem has so far attracted little attention, with the notable exception
of the work of Weber et al. [22]. On general grounds, for total reflection (as for
r1↓), one expects the phase to vary with magnetic layer thickness and/or with the
chemical nature of the magnetic layer; conversely, for weak confinement (as for r↓

2 ),
one expects the phase to be almost invariant [74]. These general trends were, indeed,
confirmed experimentally by Weber et al. [22].
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9.8.2 Fe/Au(001/Fe

Because of the excellent lattice matching between Au and bcc Fe (with rotation
of the cubic axes of the latter by 45o), and the availability of extremely smooth Fe
substrates (whiskers) [18, 19], Fe/Au(001)/Fe is an excellent system for a quantitative
testing of theory.

In contrast with Co/Cu(001) discussed above, for Fe/Au(001) one has total reflec-
tion of minority-spin electrons both at k‖1 (short-period oscillation) and k‖2 (long-
period oscillation), and |r↓| is almost independent of k‖ around these points, as is
clearly apparent from Fig. 1 of Ref. [134]. The associated preasymptotic correction
should, therefore, not be very strong.

Indeed, as is apparent from Table 3, the predicted amplitudes are quite large, both
for the short-period and long-period oscillatory components [60]. These predictions
are fairly well confirmed by state-of-the-art experimental studies [19], although the
predicted amplitude of the long-period component is too large by a factor of 6.

Clearly, even for this almost ideal system, further work is required to achieve
satisfactory quantitative agreement between theory and experiment.

9.9 Concluding Remarks

As has been discussed in detail in this review, there is much experimental evidence
that the mechanism of quantum confinement presented above is actually appropriate
for explaining the phenomenon of oscillatory interlayer exchange coupling. This
mechanism is entirely based upon a picture of independent electrons. This might
seem paradoxical at first sight, because exchange interactions are ultimately a result
of Coulomb interaction between electrons. This independent-electron picture can
in fact be, justified theoretically and is based upon the “magnetic force theorem.”
A thorough discussion of this fundamental (but somewhat technical) aspect of the
problem is given elsewhere [139, 140].

Despite the successes of the quantum confinement mechanism, several questions
remain to be clarified for full understanding of the phenomenon. In particular, the
validity of the asymptotic expression (29) must be assessed more quantitatively than
has been achieved so far; a first attempt at addressing this issue is given in Ref. [136].
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10 Magnetization Dynamics on the
Femtosecond Time-scale in Metallic Ferromagnets

Jean-Yves Bigot, Eric Beaurepaire, Luca Guidoni, and Jean-Claude Merle

10.1 Introduction

The prospect of improving the switching speed of magnetic devices used for the stor-
age of digital information has instigated several investigations during recent years.
To change the magnetic state of such devices one can either use a time-dependent
magnetic field or a light pulse simultaneously with a biased static magnetic field.
In both instances several factors intrinsic to the magnetic material and to the inter-
action process between the applied fields and the material, influence the switching
behavior of the device. In this context it is important to investigate the fundamental
mechanisms involved in the magnetization dynamics of ferromagnetic metals. The
techniques which are based on modification of the magnetization induced by a short
optical pulse are particularly interesting, because progress in laser technology over
the past 20 years now enable unprecedented temporal resolution on the femtosecond
time-scale. The application of these techniques to the study of magnetic materials
therefore provides deeper insights into the physical mechanisms responsible for the
energy relaxation associated with the magnetization dynamics. Let us consider first
the different time-scales which can be associated with a change of the magnetic
state of a ferromagnetic metallic thin film. Figure 1 shows different mechanisms
and their corresponding temporal ranges. Starting with the slowest mechanisms, the
first time-scale is that of the motion of magnetic domains in an applied field. This
corresponds to the propagation of domain walls and results in an increase in the
size of those domains which have a net magnetization parallel to the applied field.
More rigorously, one must distinguish between the nucleation of the domains and
the propagation of the domain walls [1]. The fundamental processes involved are
dipolar magnetic interaction and magnetocrystalline anisotropy. The time-scale for
the motion of magnetic domains (>10−8 s) varies depending on the structure and
inhomogeneity of the particular film which is being considered [2]. For example, the
presence of structural defects or chemical inhomogeneity (for alloys) tends to pin
the domain walls, resulting in slower and more complex switching patterns.

The second mechanism concerns the magnetization reversal of a single domain.
For magnetic inhomogeneous films this corresponds to the rotation of domains with
magnetization misaligned with the applied field; it occurs when the energy brought
by the field overcomes the anisotropy energy barrier. The time-scale associated with
this mechanism (10−10–10−8 s) also depends on extrinsic factors. In particular, it is
shorter when the demagnetizing field associated with surrounding domains and/or
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c
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Fig. 1. Characteristic time-scales of dynamic
magnetic phenomena.

the particular geometry of the domain itself is important [3]. A lower limit for the
time associated with the magnetization reversal can be obtained by considering the
dynamics of a single domain. Assuming that the switching occurs within a period T of
the magnetization precession around the demagnetizing field HD, then T = 2π/γ HD
with γ = gmB/h̄, and one obtains for a field HD ≈ 350 Oe (∼2.8 × 104 A m−1) a typ-
ical time-scale of T ≈ 10−9 s. A third important mechanism shown in Fig. 1 is the
damping of the magnetization dynamics. At the microscopic level, this corresponds
to dissipation of the energy stored in the magnetic system into the lattice vibrations.
The corresponding fundamental process is the interaction between the spin-waves
and the phonons. The quantum description of this interaction process gives an ex-
pected time-scale of (10−11–10−10 s). Several phenomenological models can be used
to describe the magnetization damping. They all consist in adding a relaxation term
to the derivative of the magnetization vector dM/dt . In the Bloch model [4] this is
taken into account by means of a term −M/τ1 or −M/τ2 where τ1 and τ2 are the
relaxation of magnetization parallel and perpendicular, respectively, to the quantifi-
cation axis. In the Landau-Lifshitz [5] and Gilbert [6] models, the damping of the
magnetization dynamics is taken into account via the phenomenological relaxation
terms (λ/M2

s )M ∧ (M ∧ H) or (α/M2
s )M ∧ dM/dt . In the semiclassical description of

magnetization dynamics both the precession and the damping have to be taken into
account.

The shortest delays shown in Fig. 1, are the quantum fluctuations of the magneti-
zation. They correspond to local changes of the magnetization which result from the
broad energy spectrum, W , associated with the spin distribution. Because the spin
density operator does not commute with the Hamiltonian, local spin fluctuations on
a time-scale τq ≈ 2π h̄/W are expected. For itinerant ferromagnetic materials, the
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bandwidth of the spin density of states is typically of the order of 1 eV (1.6×10−19 J),
corresponding, therefore, to fluctuations of ∼10−15 s. This quantum process is too
fast to be observed with the conventional techniques used in magneto-optics and the
magnetization dynamics is averaged over this time-scale.

More interesting is the temporal region represented by the grey area in Fig. 1.
So far little information has been obtained in this temporal range lying between
10−14 and 10−11 s. It is an interesting range to explore using the techniques available
in ultrafast optical spectroscopy. Although the transitions induced in the ferromag-
netic metal with an optical pulse of a few tens of femtoseconds conserve the spin,
rapid changes of the magnetization can occur. Such changes occur via the electron–
electron interaction in the non-equilibrium electron system. Several mechanisms can
participate in this ultrafast magnetization dynamics. For instance, the excitation of
Stoner pairs via the Coulomb and exchange interaction, the scattering of d electrons
by conduction quasi-particles, and the spin-orbit interaction have to be considered
on a time-scale of a few hundreds of femtoseconds. Finally, energy relaxation from
the electrons to the lattice also influences the dynamics of the magnetization. The
typical relaxation time for this process is a few picoseconds.

The aim of this paper is to consider modifications of the magnetic properties of fer-
romagnetic thin films associated with the ultrafast processes mentioned above, i. e. in
the temporal range 10−14–10−11 s. In particular, we focus on experimental results ob-
tained during the last five years in this field, which we term femtomagnetism [7–11].
The paper is organized as follows. In Section 2 we introduce some theoretical aspects
of magnetization dynamics. We first describe the process of heating a metal with an
ultrashort laser pulse (Section 2.1). A phenomenological model consisting of three
interacting reservoirs enables us to define the relevant processes leading to optically
induced demagnetization (Section 2.2). In Section 2.3 we describe a model of spin
dephasing which takes into account the electron correlation [12]. In this model, the
loss of coherence of the initially excited states leads to an ultrafast charge and spin
dynamics with a characteristic time of ∼10 fs. In Section 3 we describe different tech-
niques which enable measurement of spin dynamics (Section 3.1) and we describe in
detail the techniques used for the time-resolved magneto- optical Kerr effect
(MOKE) (Section 3.2). The electron and spin relaxation observed is reported in
Section 4. Electron dynamics in thin nickel films after excitation with femtosecond
laser pulses without applied magnetic field, is first considered (Section 4.1). Two dis-
tinct regimes are considered, corresponding to electron thermalization and energy
transfer to the lattice. In addition, coherent effects in which a polarization rotation
is associated with pure non-linear optical effects is discussed. The magnetization
dynamics of several ferromagnetic materials is then reported (Section 4.2). In Sec-
tion 5 we conclude by focusing on some of the questions raised and indicating future
directions.
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10.2 Models

10.2.1 Heating Metals with Ultrashort Laser Pulses

In this section we discuss relaxation processes after the absorption of an ultrashort
laser pulse by a metal. Four steps are usually considered in the laser heating of metals;
in some circumstances these might overlap in time [13–22]:
1. the photon energy is deposited within the skin-depth of the metal (∼20 nm),

exciting electron–hole pairs (quasi-particles);
2. electron–electron interaction leads to the thermalization of the quasi-particles;
3. the energy is exchanged between the quasi-particles and the phonons;
4. the energy propagates in the medium.
The absorption of energy occurs via intra- and inter-band optical transitions. The
energy distribution of the excited states then changes in time, because of electron–
electron scattering, until it reaches a Fermi–Dirac distribution. This process is char-
acterized by a thermalization time τth after which the electrons have a well-defined
high temperature. The energy then relaxes from the electrons to the lattice, because
of the electron–phonon interaction with a characteristic relaxation time τel. The next
step is heat propagation, when the energy is dissipated into the environment. In the
context of this paper, this propagation effect, which can be described by the Fourier
equation and which occurs in the nanosecond time-scale, will be ignored.

Historically, athermal electron distribution was originally neglected. The problem
was formulated in the so-called two- temperature model [23] and was solved to com-
pare the rates of thermionic and thermoelectric emission from laser-exposed surfaces
[24]. In this model, the rate equations for the electron and lattice temperatures (Te
and Tl) are given by:

Ce(Te)dTe/dt = −Gel(Te − Tl) + P(t) (1a)

Cl(Tl)dTl/dt = Gel(Te − Tl) (1b)

where Ce and Cl are the electronic and lattice specific heats, Gel is the electron–
phonon coupling constant and P the laser power density absorbed by the material.
The laser power density is included in Eq. (1a) only, because the energy is initially
deposited in the electron system. Gel is related to the microscopic behavior of the
electron–phonon interaction [25]; typical values for metals are 1016–1017 W m−3 K−1.
Measurements of Gel from ultrafast spectroscopy provide valuable information
about the electron–phonon coupling strength [17]. In the perturbative limit, i. e.
for a weak temperature elevation Te(t) − Tl(t) 
 Tl(0), the specific heat coefficients
are constant and Eqs (1a) and (1b) become linear. Te decays exponentially with a
characteristic time τel = Cel/Gel ≈ 1 ps.

A more detailed approach consists in taking into account the athermal electron
population. The relevant dynamic quantity is now the number of excited particles
n(ε, t) per energy unit. The time dependence of n is divided into contributions arising
from electron–electron and electron–phonon scattering:

dn/dt = (dn/dt)e-e + (dn/dt)e-ph (2)
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The computation of n from this rate equations model requires knowledge of the
electron and phonon spectra and a many-body description of the quasiparticle in-
teractions. Only for free electron metals has it been considered in some detail [26,
27]. Within the random phase approximation the electron–electron term in Eq. (2)
is given by:

(
dn

dt

)
e- e

= n

τ0(ε
2
F/ε2)

+ 6

τ0ε
2
F

∫ ∞

ε

(ε′ − ε)n(ε′, t)dε′ (3)

The first term in Eq. (3) represents the scattering of electrons with excess energy
ε by the ground-state electrons. The quantity τ0(ε

2
F/ε2) has the physical meaning of

an energy-dependent lifetime and it can be described within the Fermi liquid theory
[28]. For gold, τ0 is typically 0.6 fs but the average value 〈τee〉 = τ(ε2

F/〈ε2〉) amounts
rather to ∼100 fs. The second term arises from electrons excited into levels at energy
ε in the scattering process. The electron–phonon scattering rate is given by:

(
dn

dt

)
e-ph

≈ −q̇
∂n

∂ε
≈ − q̇n(ε, t)

〈ε〉

where q is the rate of energy transfer from the particle to the lattice and is pro-
portional to the usual McMillian’s coefficient. The corresponding relaxation time is,
therefore, given by 〈τep〉 = 〈ε〉/q̇.

Computations of 〈τee〉 and 〈τep〉 with values realistic for gold show that the
electron–electron interaction dominates at short times (less than a few hundreds
of femtoseconds) only [26]. When an energy-resolved description of the athermal
electron population is not necessary, a phenomenological description can be used.
The electronic distribution is separated into a thermalized part, characterized by
its temperature Te, and an athermal contribution characterized by a parameter, N ,
which represents the volumic density of the non-thermal electrons. In this case, three
coupled differential equations are necessary [21]:

dN/dt = −αN − βN (4a)

Ce(Te)dTe/dt = −Gel(Te − Tl) + αN (4b)

Cl(Tl)dTl/dt = Gel(Te − Tl) + βN (4c)

where α (or β) describes coupling between the non-thermalized and thermalized
electrons (or phonons).

To describe accurately the dynamics of the optical response of a metallic film, one
must consider Eqs (4a)-(4c) together with a model for the medium dielectric function.
Two contributions, associated with intra-band and inter-band optical transitions, must
be considered. The intra-band term is usually taken into account by use of a Drude-
like dielectric function. The inter-band term concerns mostly transitions from the
d bands to the conduction states. The occupation of these states depends on the
temperature Te(t).
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10.2.2 Three-temperature Model of Ferromagnets

Because the specific heat of ferromagnetic metals is usually split into electronic,
magnetic and lattice contributions [29] a first approach to modeling the ultrafast spin
dynamics is to extend the two-temperature model by adding an equation related to
the spin subsystem.

Ce(Te)dTe/dt = −Gel(Te − Tl) − Ges(Te − Ts) + P(t) (5a)

Cl(Tl)dTl/dt = Gel(Te − Tl) − Gsl(Tl − Ts) (5b)

Cs(Ts)dTs/dt = Ges(Te − Ts) + Gsl(Tl − Ts) (5c)

It is straightforward to incorporate in Eqs (5a)–(5c) an additional equation, in
the same way as in Eqs (4a)–(4c), to take into account the nascent non-equilibrium
electron population [30]. Figure 2a shows a numerical solution to Eqs (5a)–(5c)
applied to a nickel film, using a predictor corrector Adam method. The laser
source term is a Gaussian pulse of 100-fs duration. The values of the electronic
and lattice specific heats used are: Ce = γ Te, with γ = 6 × 103 J m−3 K−2;
Cl = C(300K) − Ce(300K) = 2 × 106 J m−3 K−1, where the total specific heat C at
300 K is ∼4×106 J m−3 K−1. The spin specific heat, Cs, which has a pronounced peak
at the Curie temperature, Tc = 631 K, is deduced from the temperature-dependent
total specific heat by subtracting the linear contributions from Ce and Cl. The cou-
pling constants G ij (i, j = e, l, s) are, respectively: Gel = 8 × 1017 W m−3 K−1;

Fig. 2. Simulated time evolution of the electron,
spin and lattice temperatures. The numerical solu-
tions are obtained by use of a set of values cor-
responding to Ni films. (a) Numerical solutions of
Eqs (5a)–(5c) (three baths model). (b) Numerical
solutions obtained taking into account the nascent
non-equilibrium electronic population (inset). The
solutions are calculated using a predictor corrector
Adam method; in (b) 1/α = 70 fs.
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Ges = 6 × 1017 W m−3 K−1; Gsl = 0.3 × 1017 W m−3 K−1. The value of Gel is com-
patible with those generally obtained for the cooling of the electron gas in metals
[17, 18]. Ges and Gsl are two free variables which have been adjusted to reproduce
the observed dynamics which we will describe in Section 4.

The temporal behavior in Fig. 2a shows that initially the energy is deposited in
the electron subsystem, leading to a maximum of Te (650 K) which is reached just
after excitation. The increase of spin temperature, Ts, is delayed in respect of Te. It
reaches its maximum value (580 K) in ∼1 ps. Simultaneously, the energy is transferred
from the electrons and spins to the lattice, and Te, Ts, and Tl slowly, i. e. in a few
picoseconds, reach the equilibrium temperature 540 K. When the initial non-thermal
electron distribution is taken into account via a rate equation similar to Eq. (4a), the
dynamics are different only within the first few hundred femtoseconds. Figure 2b
shows the corresponding simulation with 1/α = 70 fs. The inset represents the time
evolution of the non-equilibrium population N (t) which is delayed compared with
the pulsed excitation P(t). To estimate the effect of the electronic specific heat on
the dynamic behavior of the three baths we have considered a temperature variation
Ce(Te) beyond the low-temperature linear regime. This is achieved by use of the
definition Ce = dU/dTe, with the energy, U , given by U = ∫

E D(E) f (E, Te, µ)dE .
D is the density of energy and f is the Fermi–Dirac distribution at temperature Te,
and depends on the chemical potential, µ(Te), which is computed self-consistently.
Using the density of states of nickel [31] we obtain the electronic specific heat shown
in Fig. 3a. The corresponding linear model Ce = γ Te is displayed for comparison. As
seen in Fig. 3b, taking into account this more accurate description of the electronic
specific heat Ce, does not alter the qualitative temporal behavior of the three baths.

Fig. 3. (a) Electronic specific heat of nickel calcu-
lated from the density of states reported in Ref. [31].
The corresponding linear approximation Ce = γ Te
is shown for comparison. (b) Numerical solutions
of the three-baths model obtained by taking into ac-
count the more accurate description of the electronic
specific heat, Ce. Comparison with Fig. 2a shows that
the qualitative temporal behavior of the three baths
model is unchanged.
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The above model raises two important questions. First, is it legitimate to describe
the dynamics with three different temperatures? Second, what is the physical mean-
ing of the electron–spin and spin–lattice coupling constants Ges and Gsl? These two
questions are at the center of recent observations of ferromagnetic films which we
will describe in detail in Section 4. There is currently no satisfying microscopic the-
ory which accounts for the observed spin dynamics induced by femtosecond optical
pulses. Our current understanding of the situation, based on experimental results,
is: (i) energy is initially deposited in the electron subsystem only, because the spins
are conserved in the optical transitions; (ii) the magnetization is strongly modified
on a time-scale during which the lattice temperature has not yet changed signifi-
cantly. These two facts argue in favor of a mechanism involving efficient transfer of
the energy from the electrons to the spins, without any major contribution from the
lattice. The corresponding coupling, Ges, might then correspond to the spin–orbit
interaction. One should not, however, exclude spin-flip processes occurring in the
interacting electron gas. Such processes can be assisted by the scattering between
the d electrons with the conduction electrons, leading to a change of the major-
ity (Nd↑) and minority (Nd↓) spin populations and therefore in the magnetization
Md ≈ (Nd↑ − Nd↓). In these circumstances there is a priori no reason for the elec-
tron and spin temperatures to follow the same dynamics. In addition, the relative
electron and spin dynamics may be different depending on the populations which
are involved or probed with the laser pulses.

Concerning the coupling, Gsl, between the spins and the lattice, the mechanism
generally considered is the interaction between phonons and spin waves. It is impor-
tant to stress that in the ultrafast dynamic regime the concept of spin waves might
not apply. Indeed, for short temporal delays, the low-frequency magnons are not
involved. The rate of energy transfer between the spin subsystem and the lattice
might, therefore, be different, depending on the conditions of excitation. When us-
ing nanosecond or subnanosecond optical pulses [32], the slow increase of the lattice
temperature induces a corresponding change in the magnetization with a time con-
stant τm. The microscopic mechanism is the coupling of the spins with the anisotropic
fluctuations of the crystal field produced by the phonons. This coupling is mediated
by spin-orbit interaction [33, 34]. Microscopic calculation shows that τm scales with
the magnetocrystalline anisotropy energy. Typical values are τm = 48 ps for Gd and
310 ps for Ni, in agreement with experimental results [32, 35]. These values are also
compatible with the 45-ps spin–lattice relaxation time in gold [36]. Except for mate-
rials with very large magnetocrystalline anisotropy, this mechanism is not expected
to play an important role in the ultrafast regime described in this review. Note that
the anisotropic fluctuations of the magnetization correspond to the damping mecha-
nism which appears in the phenomenological models of Landau–Lifschitz or Gilbert,
which were mentioned in the introduction. Another effect which might influence the
spin–lattice relaxation is the dependence of the phonon frequency on the magnetiza-
tion [37]. This is because of a modification of the screened ion-ion interaction by the
magnetization associated with the itinerant electrons in the ferromagnet. This correc-
tion should not, however, significantly alter the spin dynamics on the sub-picosecond
time-scale.
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10.2.3 Model of Spin Dephasing

As detailed in Section 4, an out-of-equilibrium regime is experimentally observed for
the ultrafast heating of the electrons, spins, and phonons. This requires a mechanism
for coupling electrons and spins. In the preceding section we suggested that it could
be modeled with two baths (electrons and spins) with different temperatures. This
phenomenological model, however, does not give any insight into the underlying mi-
croscopic processes. Ideally, one should consider the full time-dependent many-body
problem of interacting charges and spins. For 3d ferromagnets the main difficulty is
that several aspects should be considered simultaneously:
• The band structure of ferromagnetic transition metals comprises exchange splitting

d and s bands; crystal field, exchange, and hybridization play an equally important
role.

• The description of electron correlation should take into account d-s interactions
and inter- and intra-site Coulomb interaction.

• Magneto-optical properties can be computed only if spin–orbit interaction is taken
into account.
A first approach to this problem was proposed by Hubner and Zang [12]. They

considered the electronic Hamiltonian:

∑
i, j,k,l,σ ′,σ ′′,σ ′′′

Uiσ, jσ ′,lσ ′′′,kσ ′′c+
iσ c jσ ′ck′′cl ′′′ +

∑
ν,σ,k

Eν(k)nν,σ (k) + Hso

where i, j, k, l are orbital indices andσ the spin index (σ =↑or↓). Uiσ, jσ ′,lσ ′′′,kσ ′′ is the
intra-site electron interaction described by three parameters (Coulomb repulsion,
U , exchange energy, J , and exchange anisotropy, �J ) obtained from spectroscopic
data for the atom (for Ni, U0 = 12 eV, J0 = 0.99 eV, �J0 = 0.12 eV). Eν(k) is the
single-particle energy dispersion of band ν, nνσ the particle number operator, and
Hso the spin-orbit Hamiltonian. A further approximation has been made to enable
solution of this Hamiltonian. It consists in neglecting the off-diagonal terms in the
momentum space for the electron interaction. The properties of the ground state
are discussed in ref. [34]. The time-dependent calculations have been performed
assuming an excitation centered 2 eV above the ground state. The excited state is
prepared by assuming a Gaussian distribution of width W (W = 0.1–20 eV) which
mimics the wavelength dispersion of a short pulse.

The spin and charge dynamics can be characterized by the intrinsic quantities
Sz(t) = 〈�(0)|Ŝz |�(t)〉 and N (t) = 〈�(0)|N̂ |�(t)〉. |�(0)〉 is the initial state many-
body wave function; |�(t)〉 = e−i Ht/h |�(0)〉; Ŝz is the spin operator in the direction
of the quantification axis, and N̂ the electron number operator. The time evolution
of Sz and N , during the first 100 fs, computed for a Gaussian width of 0.1 eV, is
depicted in Fig. 4 [38]. Both dynamics are characterized by rapid decay and weak
oscillations. The decay time of the spins (50 fs) is, however, larger than the decay
time of the charges (20 fs). The relaxation of N (t) and Sz(t) has been attributed to
a dephasing process between the different excited eigenstates: the more eigenstates
contribute to the excited state (namely for the shortest pulses), the faster is the
dephasing. The longer dephasing time for the spin can be explained qualitatively,
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Fig. 4. Intrinsic physical quantities as defined in text: (a)
|Sz(t)| and (b) |N (t)|, as a function of time, t . The initial
state is prepared 2 eV above the ground state with a
Gaussian broadening of 0.1 eV [38].

because fewer excited eigenstates (singlets are excluded) are involved for Sz(t) than
for the computation of N (t).

10.3 Magneto-optical Response and Measurement Techniques

10.3.1 Magneto-optical Response

10.3.1.1 Linear Magneto-optics

Magneto-optical (MO) techniques are popular tools for probing the magnetic prop-
erties of thin films. They are very sensitive and enable the measurement of minute
quantities of materials (down to a fraction of a monolayer). The linear magneto-
optical effects (the Faraday effect in transmission geometry or the Kerr effect in
reflection geometry) produce a modification of the state of polarization of a probe
beam after its interaction with a magnetized sample. Experimentally the Faraday
and polar Kerr effects result from the application of a magnetic field perpendicular
to the plane of the film. They usually produce larger effects than the longitudinal
Kerr effect, which is obtained with a magnetic field which lies both in the plane of
incidence and in the plane of the film [39]. The simplest description of the MO effect
is the classical Voigt model [40], in which the electrons of the metal, with density N,
are submitted to a friction force −mγ dr/dt and the Lorentz force −e(ν∧B0 +E). The
solution of the equation of the electron motion enables computation of the dielectric
tensor from the expression for the polarization P(ω) = χ̂(B0)E. In the presence of
a uniform magnetic field of module B0 = |B0| along the z direction, the dielectric
tensor of an isotropic medium with permittivity εxx acquires non-diagonal elements:

ε̂ = 1 + 4πξ̂ =

 εxx εxy 0

εyx εxx 0
0 0 εxx



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With, to first order in B0:

εxy(ω) = ω2
p�ω(

ω2 + iωγ
)2 − �2ω2

where ω2
p = Ne2/mε0, is the plasma frequency and � = eB0/m, is the cyclotron

resonance frequency. Knowledge of ε̂ enables determination of the transmitted and
reflected waves for a thin film, even for complex geometry, from the use of the
Fresnel relations (although closed formulas cannot necessarily be obtained) [41,
42]. For example, for a planar Kerr effect at normal incidence, it is found that the
eigenmodes of the electric field are circular waves (σ+, σ−). The Kerr rotation and
ellipticity are given by:

�K = θK + iεk = −σxy

σxx

√
1 + i 4π

ω
σxx

(6)

where σ̂ is the conductivity tensor: (ε̂ = 1 + 4π i σ̂ /ω) and n the complex refractive
index. Measurement of these quantities enables determination of the non-diagonal
part of the dielectric tensor ε̂. Experimental Kerr rotations in metals do not exceed
1 ◦ for wavelengths ranging from the near-ultraviolet (UV) to the near-infrared (IR).
The ratio of the diagonal to non-diagonal elements of the dielectric tensor is typi-
cally of the order of 10−2. The corresponding B0 is typically 103 T and its origin is
the Weiss molecular field rather than an external applied magnetic field. We also
note that the microscopic mechanism responsible for the friction force in the Voigt
model is related to the electron–electron collisions. In metals the electromagnetic
absorption originates from this mechanism via intra-band transitions. These transi-
tions dominate optical spectra in the IR. In the visible and UV parts of the spectrum,
inter-band transitions are also important.

The calculation of the Kerr or Faraday rotation requires that inter-band optical
transitions using a microscopic model of the susceptibility tensor should be taken
into account. In metals, it is a difficult task because the strong correlation between
the electrons and the coupling of the optical and magnetic fields with the charges
and spins must be taken into account. This many-body problem is generally treated
with a simplified Hamiltonian model. For example, Bennet and co-workers [43]
considered a sum of one-body Hamiltonians, H0n , where the Coulomb interaction
e2/rnm between the electrons is replaced by an effective one-body operator:

H0n = p2
n

2mn
+ V (rn) + h̄Pn

4m2
nc2 sn × ∇V (rn) + Vef f (rn)

where Pn = pn+ e
c Amag(rn). The light- matter interaction is treated by a semi-classical

Hamiltonian HRn for each electron n (n = 1, N):

HRn = e
mnc2 �n · Alight(rn)

where �n = Pn + sn × ∇V(rn). Pn , sn , and V (rn) are, respectively, the momentum,
the Pauli spin operator, and the periodic potential of the electron, n, of mass mn . The
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vectors Amag(rn) and Alight(rn) are the potential vectors of the applied magnetic and
radiation fields. The term sn × ∇V (rn) represents the spin-orbit interaction.

Neglecting local field effects, the conductivity tensor components σi j are related
to the density of power P absorbed at the photon energy h̄ω in the metal by:

P = N
2

�e
∑

ij

σ ∗
ij E∗

j Ei = Nh̄ω
∑
α �=β

Wβα

Application of time-dependent perturbation theory to the Hamiltonian HRn gives
the transition probabilities Wβα per unit time at energy h̄ω between the states |α〉
and |β〉 separated by the energy h̄ωβα :

Wβα = 2π

h̄

E E ∗ e2

4m2ω2
|〈β|πν |α〉|2 [δ(h̄ωβα − h̄ω) + δ(h̄ωβα + h̄ω)]

where πν (ν = x, y, or ν = +, −) are the components of the generalized momentum
� with the definition π± = (πx ± πy)/

√
2. The real and imaginary parts of the

non-diagonal component of the conductivity are then given by:

�eσxy = Nπe2

h̄m2

∑
β �=α

{
|〈β|π−|α〉|2
(ω2

βα − ω2)
− |〈β|π+|α〉|2

(ω2
βα − ω2)

}
(7a)

�mσxy = Nπe2

2h̄m2

∑
β �=α

δ(ωβα − ω)
[
|〈β|π−|α〉|2 − |〈β|π+|α〉|2

]
(7b)

These two expressions enable deduction of the Kerr and Faraday rotations as
described above. The important quantities to determine are the inter-band prob-
ability transitions |〈β|π±|α〉| which contain two different contributions, associated,
respectively, with a splitting of the states and with the spin–orbit coupling of the
electron. Argyres [44] has shown that it is the spin–orbit coupling which dominates
for ferromagnetic materials.

Ab initio calculation of the dielectric tensor has been performed for ferromagnetic
3d metals and wavelengths in the IR to the UV region. Agreement with experimental
results is good. The important result is that inter-band transitions dominate the
magneto-optical response in the visible part of the optical spectrum.

The theory above applies to the magneto-optical response of a ferromagnetic
material excited with a plane wave. In the dynamic case one would, ideally, have to
consider time-dependent interactions between the excited electrons. This difficult
task can, to a first approximation, be reduced to a simpler one by considering a time-
dependent electron temperature by using, for instance, the two-temperature model
of Section 2.1. The time-dependent magnetization then depends on the dynamics of
the electronic population distributed apart from the Fermi level. This approach is,
however, valid only when the electrons are thermalized and it does not, therefore,
enable description of the early spin dynamics. It also does not take into account the
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dynamic aspect of the coupling between the electron and spin systems which was
introduced qualitatively in Section 2.2 with a three-temperature model.

10.3.1.2 Non-linear Magneto-optics

Magnetic second-harmonic generation (M-SHG) is a recent tool which enables study
of the magnetic properties of surfaces [45] and buried interfaces [46]. The specificity
of this method comes from the non-centrosymmetry of the interfaces, which is at the
origin of SHG. Because non-linear optical effects require a large peak power and
short pulses, they are a priori compatible with pump and probe measurements of
ultrafast dynamics.

The second-order non-linear polarization is given by:

Pi (2ω) = χ
(2)
i jk (M)E j (ω)Ek(ω)

The term χ(2) can be split into the contributions, even (χ(2)
even) and odd (χ(2)

odd) with
respect to the magnetization. To the lowest order in the magnetization, χ

(2)
even is re-

garded as independent of the magnetization and χ
(2)
odd as proportional to the magneti-

zation. Denoting by φ the phase difference between the complex quantities χ
(2)
even and

χ
(2)
odd, and disregarding Fresnel factors that take into account the actual experimental

geometry, the second-harmonic intensity I (2ω) is given by:

I (2ω, ±M) ∝ I 2(ω)

[∣∣∣χ(2)
even

∣∣∣2 +
∣∣∣χ(2)

odd(M)

∣∣∣2 ± 2
∣∣∣χ(2)

even

∣∣∣ ∣∣∣χ(2)
odd(M)

∣∣∣ cos φ

]
(8)

This expression shows that I (2ω) provides direct magnetic information. De-
spite very low efficiency (typically, I (2ω)/I (ω) ≈ 10−14 even for a peak power of
∼1012 W m−2), M-SHG furnishes detailed surface/interface-sensitive magnetic in-
formation. It has also been shown experimentally [46] and theoretically [47] that
non-linear MO effects give rise to non-linear Kerr rotations which can be two orders
of magnitude larger than linear Kerr rotation. Recent significant experiments re-
lated, for example, to surface magnetism, quantum-well states or imaging of surface
domains can be found in refs. [48–50].

10.3.2 Time-resolved magneto-optical techniques

In this section, we describe different techniques which enable determination of the
time-dependent magnetization. In particular, we describe in detail the apparatus
used by the authors to perform the time-resolved magneto-optical measurements
reported in Section 4.
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10.3.2.1 Time-resolved Magneto-optical Measurements

Time-resolved magneto-optical measurements have been performed using a fem-
tosecond laser system and a static magnetic field. The femtosecond pulses are pro-
duced by use of a tunable titanium sapphire laser. The pulses issued from an oscillator
operating at 80 MHz are amplified in a regenerative amplifier pumped by a Nd:YLF
(yttrium lithium fluoride) laser with a repetition rate of 5 kHz. The maximum en-
ergy per pulse is ∼200 ÌJ tunable in the range 760–860 nm and the pulse duration
is ∼100 fs. Part of the amplified beam can be frequency-doubled (380–430 nm) in
a 1-mm thick BBO crystal to enable frequency non-degenerate pump–probe mea-
surements. The intensity ratio of the pump and probe beams is 20:1 and their spot
diameters focused on the samples are, respectively, ∼100 Ìm and ∼50 Ìm. The over-
lap of the two beams is monitored with a CCD camera. Figure 5 shows the laser
arrangement and the experimental configuration.

Early experiments performed in nickel films used a different laser system. The
femtosecond pulses were produced by a colliding pulsed mode locked cavity operat-
ing at 620 nm and amplified at 5 kHz with a copper vapor laser. The duration of the
amplified pulses was 80 fs and the maximum pulse energy was 10 ÌJ, with a central
wavelength at 620 nm. Both laser set-ups enabled the performance of different types
of measurement.

(i) When measuring electron dynamics no magnetic field is applied. The differen-
tial transmission of a thin film �T/T (t) = (Ton − Toff)/Toff is measured as a function

Fig. 5. Laser arrangement and experimental configuration used in order to measure the spin
dynamics and transient reflectivity/transmittivity in ferromagnetic thin films.
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of the temporal delay, t , between the pump and probe, Ton or Toff, respectively, being
the probe transmission with or without the pump. Similarly the differential reflection
�R/R(t) is measured simultaneously. The detection scheme is a synchronous detec-
tion using a chopper and a lock-in amplifier. The simultaneous measurement of the
differential transmission and reflection as a function of pump-probe delay enables
retrieval of the time-dependent complex dielectric function ε(t) of the metal. We
note �ε1 and �ε2, the corresponding changes of the real and imaginary part of ε(t)
induced by the pump pulse. They are the physical quantities of interest in under-
standing the electron dynamics. The dielectric function is retrieved by following the
same procedure that was used by Rosei and Lynch [51] to analyze static thermo-
modulation measurements. In this procedure the Fabry-Pérot transmission, T , and
reflection, R, of a thin metallic film of thickness, l, are functions of the refractive
index, n, the wavelength, λ, and the film thickness, l. They can be differentiated with
respect to a small variation of the refractive index �n = �n1 + i�n2 to give:

(BC − AD)�ε1 = B(�T/T ) − D(�R/R) (9a)

(BC − AD)�ε2 = C(�R/R) − A(�T/T ) (9b)

where A, B, C , and D depend on n, λ, and l, and the dielectric function is obtained
from ε = ε1 − iε2 = n2. This procedure requires that the properties of the material
are known. In particular the thickness of the film and its linear complex refractive
index must be determined accurately. In our experiments they were determined by a
combination of X-ray diffraction at grazing incidence and by ellipsometric measure-
ments. In the static thermomodulation experiments, in which the temperature of the
lattice, �l, is increased by application of a current to the sample, Eqs (9a) and (9b)
correspond to the spectral variation of the dielectric functions �ε1(ω)and �ε2(ω).
Here they correspond to the temporal variation �ε1(t) and �ε2(t). In this case the
change of the dielectric function comes from modification of the electronic distribu-
tion induced by the laser pulse or, equivalently, induced by a change of the electronic
temperature ��e = �e(t)−�e(α) when the electrons are in a well-defined thermal
distribution.

(ii) When measuring the spin dynamics an electromagnet enables variation of the
static magnetic field H in the range ±3 kOe (±240 A m−1), which is set parallel to
the plane of the sample. The polarizations of the pump and probe beams are either
s, p or σ+ and they can be varied independently. As sketched in Fig. 6, the magneto-
optical signal is obtained by analyzing the probe beam at an angle of 90 ◦ +θε relative
to its incident polarization direction, θε, being set to a few degrees.

The signal can be written:

I (H, t) = I0 sin2(θε + �K(H, t)) ≈ I0θε + 2I0�K (H, t)

where I0 is the transmitted probe intensity and �k is the Kerr rotation (�K 
 θε).
The Kerr signal is superposed on a background and the sensitivity of this method
is, therefore, limited by the fluctuations of the laser. Improvement of the technique
by use of a polarization-sensitive balanced optical bridge, consisting of a Wollaston
prism and a low-noise differential detector, has been proposed [10]. For a high repe-
tition rate laser system the technique can be further improved by modulation of the



370 10 Magnetization Dynamics on the Femtosecond Time-scale

Fig. 6. Polarimetric configuration used in the time-
resolved magneto-optical Kerr measurements.

polarization [52], which has the additional advantage of enabling simultaneous mea-
surement of both the Kerr ellipticity and rotation. The Kerr configuration enables
two types of measurement. The “magnetization” curve M(H, t0) ≈ I (H, t0) − I0θε

can be measured for a fixed pump–probe delay, t0, as a function of the magnetic field,
which is varied slowly. Alternatively, the magnetization dynamics, M(H0, t), can be
measured for a fixed magnetic field, H0, as a function of the pump-probe delay, t . In
both each data point corresponds to an average over ∼1000 pulses.

Fig. 7 shows the typical Kerr hysteresis obtained at room temperature for the
22-nm thick Ni film (Fig. 7a) and the 48-nm thick CoPt3 film (Fig. 7b). The nickel

Fig. 7. Typical hysteresis loops obtained by the magneto-optical Kerr effect (MOKE), using a
continuous wave (CW) laser (λ = 670 nm). (a) Longitudinal Kerr ellipticity for a 22-nm thick
Ni film covered by a 100-nm thick MgF2 protective layer. (b) Polar Kerr rotation for a 48-nm
thick CoPt3 film.
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polycrystalline thin films were evaporated on to a glass substrate under high vacuum.
The CoPt3 films, consisting of the alloy Co0.25Pt0.75, were grown at 690 K on a 16-
nm Ru (0001) buffer layer deposited on a mica substrate. The growth conditions
were chosen to optimize the perpendicular anisotropy [53]. Characterization of the
magnetization as a function of temperature shows that the remanence magnetization
vanishes at 635 K. The ferroparamagnetic transition occurs over a broad temperature
range, which can be explained by the chemical disorder present in the alloy.

10.3.2.2 Time-resolved Second-harmonic Generation

Magnetic second-harmonic generation is another technique which has been used
to perform measurements of magnetization dynamics on a femtosecond time-scale
on Ni and Co surfaces [8, 54]. In these experiments, the temporal resolution is also
obtained by a pump-probe technique but, instead of measuring the modifications
induced by the pump on the probe, the intensity variations of the second harmonic
field generated by the probe are detected. Both the pump and the probe beams
must be of high intensity (so that the second-harmonic generation (SHG) yield is
measurable). They are produced by a Ti:sapphire regenerative amplifier. Temporal
resolution down to 40 fs has been reported [55]; the typical energy density on the
sample is ∼6 mJ cm−2. In this type of experiment, the raw signal is the SHG intensity
obtained with different orientations of a static magnetic field, H , parallel to the plane
of the sample. Careful filtering of the fundamental component I (ω) is achieved with
color filters and spatial dispersion with a prism. I (2ω) is measured with a photomul-
tiplier and the probe beam is chopped to enable phase-sensitive detection. Experi-
mental results using these techniques are reported in Section 4.

10.3.2.3 Spin-resolved Photoemission

Spin-resolved photoemission is a well-known technique for study of the electronic
and magnetic properties of ferromagnets [56, 57]. More recently, it has been used to
study dynamic effects [9, 32, 58]. In such experiments, an intense pump pulse excites
the sample and electrons are photoexcited in the vacuum by use of a time-delayed
probe pulse of shorter wavelength. The spin polarization of the photoelectrons is then
measured by a spin detector (e. g. a Mott detector). Because most metals have work
functions in the range 4–6 eV, UV laser pulses must be used. This can be achieved,
for instance, with the fourth harmonic of a Ti:sapphire laser. The photoelectrons
emitted by the sample have a short mean free path in metals (typically a few inter-
atomic distances), so the technique is very sensitive to the surface. This technique
is powerful, because it enables direct measurement of the spin polarization in the
energy–momentum space. It suffers, however, from the very low efficiency of the
spin detection, and also from experimental difficulties inherent in the detection of
electrons in the presence of an applied magnetic field. Experimental results using
these techniques are reported in the next section.
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10.4 Experimental Studies – Electron and Spin Dynamics
in Ferromagnets

10.4.1 Electron Dynamics

In this section, we consider pump-probe dynamics in d-band metallic thin films in
the absence of an applied magnetic field. As discussed in Section 2.1, two main
temporal regimes must be distinguished during the first few picoseconds: the initial
thermalization of the electron gas to a hot Fermi-Dirac distribution, and the energy
transfer to the lattice. The first regime is characterized by electron–electron scattering
whereas the temperature equilibrium between the electron and lattice subsystems
is achieved via the electron–phonon interaction. We now analyze these two regimes
in more detail.

10.4.1.1 Electron Thermalization and Relaxation to the Lattice

In Fig. 8a we have depicted the dynamics of the differential transmission �T/T (t)
and reflection �R/R(t), obtained with a nickel film with a thickness, l, of 22 nm,
covered with a 100-nm thick MgF2 protecting layer.

The density of the pump energy absorbed by the film is 0.8 mJ cm−2. The pump and
probe are linearly polarized and parallel to each other. The corresponding temporal
variation of the real and imaginary parts of the dielectric function, �ε1(t) and �ε2(t),

Fig. 8. Optical transients for a 22-nm thick Ni film
measured with pulses of duration 60 fs at λ =
620 nm. (a) Differential transmission �T/T (t) and
reflection �R/R(t), measured for a nickel film with
a thickness, l, of 22 nm. (b) Temporal variation of
the real and imaginary parts of the dielectric func-
tion, �ε1(t) and �ε2(t), calculated using Eqs (7a)
and (7b).
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obtained by use of Eq. (9), are represented in Fig. 8b. Several features can be observed
in Figs 8a and 8b. First, a coherent peak is present in the transmission signal at t = 0.
It is present only when the pump and probe pulses overlap in time. Second, the
maxima of both the transmission and reflection signals occur with a time delay of
∼250 fs. Finally both �T/T and �R/R relax with a longer time constant. The first
effect corresponds to the non-linear coherent interaction between the pump and
probe pulses. Formally, it can be accounted for in the time-dependent perturbation
of the material polarization via third-order terms with the following time ordering of
the pump and probe field amplitudes: Epump(t1)Eprobe(t2)E∗

pump(t3) with t1 < t2 < t3
[59, 60]. It shows up as a coherent peak in the temporal variation of the imaginary
part of the dielectric function which has an important contribution near t = 0. It is,
on the other hand, hardly visible in �ε1, which has a weak contribution during the
pump and probe overlap.

The effect of temporal delay between the maxima of �ε1 and �ε2 is related to
the thermalization of the electron gas. As mentioned in Section 1.2, the primary step
in the electron dynamics is redistribution of the electrons which have been excited
with a large excess of energy relative to the Fermi level. This process is mediated
via the electron–electron interaction. It lasts a few hundred femtoseconds, because
it depends on phase space filling, owing to Pauli exclusion. To understand how this
thermalization process influences the dynamics of the real and imaginary parts of
the dielectric function, one must decompose the dynamics of the optical processes
into two components corresponding to intra-band and inter-band transitions
[61, 62]. As seen in Fig. 8b for �ε2, a fast decrease of the signal occurs during the first
250 fs. This contribution can be attributed to the dynamics of the non-thermalized
electrons probed via inter-band transitions from the d levels to the conduction band.
After ∼250 fs, the value of �ε2 is essentially related to the thermalized electrons as
probed via the intra-band processes. The succeeding dynamics then correspond to
the cooling of the electrons via the electron–phonon interaction.

For �ε1, the situation is different because the signal reaches its maximum value
within the first 250 fs. According to the preceding remarks it is indicated that it is
mostly the intra-band component which is probed. It should, however, be stressed
that the dynamics of�ε1 can be very different, depending on the probe wavelength. A
first intuitive thought is that �ε1 should also be sensitive to the thermalization process
via all the inter-band transitions, because �ε1 can be obtained by a Kramers–Kronig
transform of �ε2. This is, however, precisely at the root of the complex spectral
behavior of the inter-band part of �ε1, as is known, for instance, for the noble metals
[61, 62]. With nickel, the complicated density of states of the 3d bands might be the
origin of the negligible contribution of the inter-band component of �ε1 when the
probe energy is close to 2 eV.

Let us now focus on another ultrafast mechanism, which is not related to the
magnetization of the material and which is observed when analyzing the state of
polarization of the pump-probe transmission and reflectivity signals.
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10.4.1.2 Optical Orientation

As detailed in Section 3.2, the magneto-optical techniques used to measure the
magnetization of a ferromagnetic material are based on the modification of the
state of polarization of an incident beam when it is reflected or transmitted by the
sample. In such experiments it is important to study the polarization changes of
the laser beam for different applied magnetic fields to obtain reliable information
about the magnetization. This point becomes particularly relevant when several laser
fields interact in the metal. In these circumstances pure optical effects, which do not
require any magnetization of the sample, also lead to a change in the polarization of
the incident beams. Such effects, which in non-linear optics have the generic name
of optical orientation, might hinder the true modification of the magnetization in a
ferromagnetic material. To illustrate this aspect we consider in this section the effect
of an intense laser beam (the pump) on the state of polarization of a second weak
laser beam (the probe).

Let us assume that the two incident fields are degenerate monochromatic fields of
frequency ω and respective complex amplitudes EP(ω) and ES(ω). In the direction
of the probe beam, ES, the component P(3)

i (ω) (i = x, y, z ) of the third order
polarization is given by:

P(3)

i =
∑
jkl

Pχ
(3)

ijkl(ω, ω, −ω, ω)EPj(ω)E∗
Pk(ω)ESl(ω)

where P indicates the permutations of the fields and χ(3)(ω) is the third-order non-
linear susceptibility tensor. Using the intrinsic permutation symmetry and assuming
an isotropic medium, only two components of χ(3) are linearly independent; we
designate these by χ1122 and χ1221. When the pump and probe fields propagate along
z, and using the basis of linear polarizations, it is easy to show that [63, 64]:(

P(3)
x

P(3)
y

)
=6

[
(2χ1122 + χ1221)EPx E∗

Px + χ1122 EPy E∗
Py χ1122 EPx E∗

Py + χ1221 E∗
Px EPy

χ1122 EPy E∗
Px + χ1221 EPx E∗

Py (2χ1122 + χ1221)EPy E∗
Py + χ1122 EPx E∗

Px

](
ESx
ESy

)

Let us now determine the amplitudes of the probe beam ESi (i = x, y) after
propagation. When the pump is polarized along the x axis the Maxwell equations
for a probe field ESi (i = x, y) lead to an equation of propagation which can be
decomposed along the normal axis Ox and Oy:

∂2ESi

∂z2 − εL

c2

∂2ESi

∂t2 = 4π

c2

∂2P(3)

i

∂t2

where εL is the linear dielectric function. For a probe polarized parallel either to the
Ox or to the Oy axis the solution is a plane wave propagating with a velocity c/

√
εi

(i = x, y), with:

εx = εL + 24π |EP |2(2χ1122 + χ1221); εy = εL + 24π |EP |2χ1122

Because the non-linear dielectric functions εx and εy are complex quantities, the
pump beam induces both birefringence and dichroism in the non-linear material.
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A probe beam which is initially polarized in a direction different from Ox and Oy
therefore acquires an elliptic polarization. An induced elliptic probe polarization also
occurs when the pump beam has circular polarization. It is then easier to decompose
the probe polarization into its right and left circular components ES+ and ES− which
propagate with different velocities c/

√
ε±.

The extension of the above considerations to pulsed pump and probe excitation is
straightforward. The pump pulse induces a time-dependent polarization anisotropy
in the non-linear medium which induces rotation of the polarization axis of a linearly
polarized probe beam. It must be pointed out that this coherent effect is different
from the coherent peak mentioned in the preceding section. The optical orientation is
a process which is present during the relaxation time of the polarization anisotropy,
that is during the dephasing time T2 of the electronic states involved in the non-
linear process. The coherent peak is, in contrast, present during pump and probe
temporal overlap only. Because the dephasing time of the non-linear polarization is
extremely fast in metals (T2 < 20 fs), both effects are generally mixed in pump-probe
experiments where the pulse duration is longer. Therefore the temporal profile of
the probe beam-induced ellipticity follows the envelope of the pump pulse.

The important point we have stressed in this paragraph is that the optical orien-
tation is a coherent effect which might have no connection with the sample magne-
tization. One should not, therefore, draw any conclusion about the spin dynamics
from such effects. It is only when resonant optical processes occur, for example the
excitonic transitions in semiconductors, that a circularly polarized optical pulse can
induce spin effects related to the conservation of the orbital and spin momentum [71].
In ferromagnetic materials it is via the spin–orbit coupling and exchange interaction
that one expects to obtain optically induced spin dynamics.

10.4.2 Demagnetization Dynamics

In this section, we discuss experimental results concerning the ultrafast magnetiza-
tion dynamics of Ni and CoPt3 thin films.

10.4.2.1 Nickel Films

Spin dynamics in thin and ultrathin Ni films has been studied by several groups
[7–9, 52, 55]. This material has the lowest Curie temperature among ferromagnetic
transition metals (631 K).

The first report on the spin dynamics of a metallic ferromagnet on the femtosec-
ond time-scale can be found in ref. [7]. Measurements were performed on a 22-nm Ni
film deposited on optical glass and protected by a dielectric layer. The experimental
conditions used are detailed in Section 3.2. In Fig. 9, the remanence Kerr signal MM
is presented as a function of pump-probe delay. MM, which is obtained from the hys-
teresis loops measured at each delay t , drops by approximately 40 % during the first
picosecond. Its recovery time is much longer (several tens of picoseconds). To gain
more insight into the magnetization dynamics, in Fig. 10 we compare the saturation



376 10 Magnetization Dynamics on the Femtosecond Time-scale

Fig. 9. Remanence Kerr signal as a function of delay
for a 22-nm thick Ni film after excitation by a 60-fs
pump pulse at 620 nm with an intensity of 7 mJ cm−2.
Each data point, corresponding to a time delay, is
obtained from the measurement of a complete hys-
teresis loop (see text) [7]. The line is a visual guide.

Fig. 10. Comparison of the transient reflectiv-
ity (�R/R(t)) (circles) and the MOKE signal
(squares) of a 22-nm Ni film after excitation by
120-fs duration pump pulses at 800 nm. Pump and
probe beams are p polarized. The line is a fit as-
suming exponential relaxation of the magnetiza-
tion.

magneto-optical Kerr effect (MOKE) signal MS(t) with the differential transmission
signal during the first picosecond. In this experiment MS(t) is measured in a static sat-
urating magnetic field. �T/T reaches a maximum at t ≈ 250 fs with a rising time only
limited by the temporal resolution of 120 fs, and then decreases. MS(t), on the other
hand, decreases continuously over the entire temporal range displayed. The charac-
teristic time of this magnetization dynamics, measured at 800 nm, is tm ≈ 200 fs. It
is obtained by a convolution of the pulse envelope with an exponential decay (solid
line in Fig. 10).

The magnetization dynamics of two Ni films of thickness 0.6 and 1.2 nm, deposited
on a Ag(100) single crystal was also studied by femtosecond time- and spin-resolved
two-photon photoemission [9]. Two distinct types of magnetization dynamics were
observed in this experiment:

(i) the spin polarization of photoemitted electrons drops rapidly (<300 fs), in
agreement with the previous MOKE experiment [7]; and

(ii) a plateau then occurs until ∼300 ps, which is followed by a smoother mag-
netization decrease. The magnetization of a 0.6-nm film, which has a low Curie
temperature (Tc = 360 K) vanishes after a delay of ∼800 ps.

J. Hohlfeld and co-workers conducted pump and probe second-harmonic gener-
ation experiments. They considered both a polycrystalline bulk Ni–air interface [8]
and epitaxial Ni ultrathin films (studied in ultrahigh vacuum) [54]. The measured
quantity is the time- and magnetization-dependent SHG intensity I (2ω, M, t). The
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following normalized quantities can be defined: �I ±(t) = [I ± − I ±
0 ]/I ±

0 , where:

I ± = I (2ω, M, t) ± I (2ω, −M, t)

and I (2ω, ±M) are defined in Eq. (8). The 0 subscript corresponds to the signal
measured in the absence of the pump beam. To the lowest order in M and with the
definitions of Section 3.1, χ

(2)
odd(t, M) = χ

(2)
odd,0(t)M(t) and χ

(2)
even(t, M) = χ

(2)
even,0(t).

This approximation leads to:

I += |χ(2)
odd,0(t)|2 M(t)2 − |χ(2)

odd,0(0)|2 M(0)2 + |χ(2)
even,0(t)|2 − |χ(2)

even,0(0)|2
χ

(2)
odd,0(0)|2 M(0)2 + |χ(2)

even,0(0)|2
(10a)

I −= |χ(2)
even,0(t)||χ(2)

odd,0(t)|M(t) cos[φ(t)] − |χ(2)
even,0(0)||χ(2)

odd,0(0)|M(0) cos[φ(0)]

χ
(2)
even,0(0)||χ(2)

odd,0(0)|M(0) cos[φ(0)]
(10b)

With the further assumption that χ
(2)
odd,0(t) and χ

(2)
even,0(t) are time- independent and

that the magnetization has a square-root dependence on the electron temperature:

M(t) = M(T0)[1 − const(Te(t) − T0)]1/2 (11)

Hohlfeld and co-workers [8] found that:

�I + = const[T0 − Te(t)] (12a)

�I − = M(Te(t))/M(T0) cos φ − 1 (12b)

With the above assumptions, the authors discovered, for temporal delays
t > 300 fs, quadratic dependence of 1�I + on �I −, which they interpreted as vari-
ation of the magnetization with the electron temperature similar to the static curve
M(T ). For short time delays the deviation from this quadratic behavior was inter-
preted as a magnetic response faster than the electron thermalization. As discussed
below, this interpretation is misleading.

Later results obtained by the same group, using the same technique with a time
resolution of 40 fs showed no detectable delays between the magnetization and the
electron temperature [55]. In that paper, the magnetic and electronic responses are
associated with other quantities. Instead of using Eqs (12a) and (12b) they used:

S± = [I (2ω, M, t)]1/2 ± [I (2ω, −M, t)]1/2

Assuming |χ(2)
even,0(t)|  |χ(2)

odd,0(t)|M(t) they found S+(t) and S−(t) related re-
spectively to the electronic and magnetic dynamics.

B. Koopmans et al. measured the spin dynamics from time-resolved MOKE ex-
periments for buried Ni layers (thickness in the nanometer range) epitaxially grown
on Cu(111) [52]. The system is interesting because an unusual spin reorientation, be-
cause of the strains induced by the lattice mismatch, occurs as a function of thickness.
The easy magnetic axis is out of plane for a film thickness in the range 0.9–4 nm. The
authors used a double modulation set-up – the pump beam intensity is modulated
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by means of a mechanical chopper and the probe beam polarization is modulated
by means of a photoelastic device. This configuration enables measurement of the
dynamics of both rotation and Kerr ellipticity. During the first 500 fs the results show
that these two quantities have different dynamics. The authors therefore concluded
that there is no simple relationship between the magneto-optical signals and the
magnetization on the sub-picosecond time-scale.

10.4.2.2 CoPt3 Alloy Films

Cox Pt1−x compounds have enhanced magnetic properties because of the combi-
nation of the high exchange energy of Co and the high spin-orbit energy of Pt. It
was shown in the early 1990s that CoPt3 alloy films have large perpendicular mag-
netocrystalline anisotropy, large Kerr rotations at short wavelengths, and a Curie
temperature close to room temperature [65]. These properties make them good can-
didates for high-density magneto-optical recording. The ultrafast spin dynamics of
these systems have been studied by two groups [10, 66].

G. Ju et al. studied 20-nm thick (poly-)crystalline CoPt3 films deposited on glass
substrates, using optical pulses at 434 nm with the high repetition rate of 76 MHz.
They measured the differential reflectivities of the sample

(
�R
R (t)

)
σpump,σprobe

in four

different combinations of pump and probe polarizations: σpump = σ±, σprobe = σ±.
The sample was placed in a static magnetic field. The transient Kerr ellipticity was
given by:

�εK ,σ±(t) =
(

�R

R
(t)

)
σ±,σ+

−
(

�R

R
(t)

)
σ±,σ−

With a pump intensity of ∼1 ÌJ cm−2, the authors observed that the measured
transient Kerr ellipticity depends on the pump polarization only for the shortest
time delay (≤ 1 ps). From this, it was inferred that the response can be split into
a thermalized spin population �εK th(t) = 1

2 [�εKσ+(t) + �εKσ−(t)], and a non-
thermal spin population �εK nonth(t) = 1

2 [�εKσ+(t) − �εKσ−(t)]. The non-thermal
contribution appears as a nearly symmetric peak, with FWHM ≈ 1 ps. On the other
hand, the thermalized spin contribution has a rise time of 1.6 ps and a longer decay
time (∼10 ps).

The authors of this present review studied epitaxial CoPt3 films of thickness 48 nm
under much higher pump intensity (∼10 mJ cm−2 at λ = 800 nm) using the experi-
mental technique described in Section 3.2 [66]. Under these conditions, the magnetic
hysteresis of the film disappears for a pump-probe time delay of approximately 500 fs.
It was observed that the film can be driven to the paramagnetic phase with a char-
acteristic time of 100 ± 60 fs, comparable with the duration of the pulses used in
the experiment (120 fs). The observed dynamics are also only weakly dependent on
the polarization state (circular or linear) of the pump beam. This suggests that the
dominant mechanism of the spin dynamics does not imply direct transfer of angular
momentum from the photon to the spins.
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10.4.2.3 Discussion

As reported in the preceding paragraphs, the experimental results obtained by the
different groups led to a variety of interpretations of the spin dynamics. In this
context, two main questions should be addressed. How accurate is the interpretation
of a magneto-optic signal, obtained with a given technique, in terms of spin dynamics?
How much is the spin dynamics influenced by the particular sample which is studied?
We will now discuss the different results with these two questions in mind.

To attribute the observed magneto-optical signals to a magnetization effect it is
important to study the dynamics for different conditions of the applied magnetic
field, H . Even though ferromagnetic materials have a spontaneous magnetization,
this magnetization is sensitive to extrinsic parameters which lead to different mag-
netic domains and which might be altered after each pump pulse excitation. It is,
therefore, important to restore the initial magnetic state of the sample between each
laser pulse. Another advantage is that the symmetry of the pump-probe response
can be checked under a reversed applied field, ±H . It is with this in mind that the
time-resolved magneto-optic Kerr experiments were performed on Ni and CoPt3 by
the authors of this review [7, 66]. In each experiment full magnetic hysteresis M(H)

was measured as a function of the pump probe delay, t . For CoPt3, the disappearance
of the hysteresis for t > 500 fs can be unambiguously related to complete demag-
netization of the sample, irrespective of domain structure. Let us emphasize that in
these experiments it is the probe beam which is frequency modulated and not the
pump as in conventional transmission or reflectivity pump-probe experiments.

The magneto-optic SHG experiments, performed with a reversed applied field,
also furnish information about the magnetization dynamics. Different results have,
however, been obtained with the same technique but using a different temporal res-
olution. In a first experiment [8] the magnetization dynamics were found to precede
those of the electrons. In a later experiment [55], performed with 40-fs temporal
resolution, no delay between M(t) and the electron dynamics was observed. In both
experiments the magnetization response to the pump pulse is shorter than that ob-
served in ref. [7]. This discrepancy might be explained by two major differences
between the techniques. First, with magneto-optic SHG it is the surface of the sam-
ple which is mainly probed, rather than the bulk as in the linear Kerr or Faraday
pump-probe geometry. The faster magnetization dynamics reported by Holfeld and
co-workers might, then, be related to a different behavior of magnetic states at the
surface as compared to the bulk. Second, the interpretation of the SHG experiments
in terms of separated electronic and magnetic contributions must to be viewed cau-
tiously. The expressions for �I ±(t) in Eqs (10a) and (10b) contain mixed electronic
and magnetic terms. A first analysis of the SHG experiments [8] assumes two strong
approximations:χ(2)

even,0 andχ
(2)
odd,0 are independent of time, and the electronic temper-

ature, Te(t), has parabolic dependence on the magnetization. The first assumption is
certainly not valid for early time delays. The second approximation is not consistent,
because substitution of Eq. (11) into Eq. (10b) instead of Eq. (10a) would lead to the
opposite interpretation, that the electronic response precedes the magnetic response.
Another analysis of the SHG experiments [55] assumes the weaker approximation:
|χ(2)

even,0(t)|  |χ(2)
odd,0(t)| to separate the electronic and magnetic contributions.
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The work of Koopmans and co-workers [52] shows that even though the Kerr
rotation and ellipticity have different dynamics in nickel it is difficult to extract inde-
pendent information about the magnetization and electronic contributions at early
time delays. This is mainly because of the contribution of a non-magnetic Kerr ro-
tation. Such a contribution is discussed in Section 4.1 where we have stressed the
effects of the coherent pump-probe coupling and the optical orientation, which are
not related to the magnetization. These remarks show that to determine the magne-
tization dynamics, determination of the ferromagnetic hysteresis loops M(H, t) is a
key measurement [7].

The photoemission experiments performed by Scholl and co-workers [9] have
focused both on the short- and long-term delay behavior of the magnetization. The
initial sub-picosecond demagnetization observed is consistent with the Kerr pump-
probe results [7]. The authors attribute it to the excitation of Stoner pairs. This expla-
nation is compatible with ultrafast demagnetization of the metal related to the initial
hot electron distribution induced by the pump pulse [67]. To evaluate this effect we
have considered a d-band model with spin-up N+ and spin-down N− distributions
similar to nickel. The magnetization dynamics M(t) are then simply assumed to be
given by M(t) ≈ [N+(Te) − N−(Te)] where the time-dependent electronic tempera-
ture Te(t) is given by the two-temperature model (Section 2.1). The corresponding
dynamics are presented in Fig. 11, which shows that the right order of magnitude
for the demagnetization is obtained with this simple Stoner-like model. We also find
that when the electronic temperature is increased the maximum demagnetization
which is attained is ∼60 %. This value is close to that observed in nickel films up
to the breaking threshold of the samples [7]. The model does not, however, enable
reproduction of the observed delay between the electronic and magnetic responses
which, as stressed earlier might depend on the particular electron population which
is probed.

Photoemission experiments performed on ultrathin films of nickel [9] also reveal
reduction of the spin polarization on the time-scale of 500 ps; this is attributed to
phonon-magnon scattering. This mechanism is consistent with the fact that the inter-
action of the long-wavelength spin waves with the lattice is effective for long temporal
delays. Similar observations have been reported recently for antiferromagnetic spin
waves in Cr2O3 [68]. One should stress that the long time-scale which is necessary
to obtain a complete demagnetization of ultrathin Ni films is not observed with the

Fig. 11. Magnetization dynamics in a metallic film
calculated by taking into account the hot elec-
tron distribution induced by the pump pulse. The
data are computed considering a d-band metal with
spin-up N+ and spin-down N− distributions simi-
lar to the distributions of nickel. The basic assump-
tion is that M(t) ≈ [N+(Te) − N−(Te)] depends
on t only via the time-dependent electronic tem-
perature Te(t) (obtained using a two-temperature
model).
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thicker films studied by Beaurepaire et al. and by Hohlfeld and co-workers [7, 55].
This might be because of the low Curie temperature of the ultrathin films or possible
heat propagation effects in the metallic Cu substrate supporting the 1.2-nm Ni films.

Finally, let us return to the question of out-of-equilibrium dynamics of the charges
and spins. As mentioned earlier, it is now well-accepted that femtosecond pulses ex-
cite nascent electron distributions which are not thermalized and that the correspond-
ing thermalization time, because of electron–electron scattering, lasts a few hundred
femtoseconds. One might wonder if in this athermal regime non-equilibrium spin
populations are also manifested. An attempt to observe this regime has been made
with CoPt3 films [10] (Section 4.2). The authors observed a peak in the �εKnonth(t)
signal which is interpreted as manifestation of a coherent spin population relaxing
with a time constant of ∼600 fs. Such a “long” coherence time is, however, in dis-
agreement with recent similar studies of nickel films performed without an applied
magnetic field [69]. In these experiments, the coherent contribution lasts during the
pulse excitation, i. e. 40 fs. Both results raise the question of the distinction between
electronic and spin coherence effects in connection with the discussion of optical
orientation described in Section 4.1.

10.5 Conclusion

In conclusion, we have reviewed different experiments showing that ultrafast de-
magnetization of ferromagnetic metallic thin films can be induced with femtosecond
optical pulses. In particular, we have focused on the demagnetization dynamics ob-
served in Ni and CoPt3 thin films [7, 66]. This effect is determined by comparing
the time-dependent polarization anisotropy, measured in the magneto-optical Kerr
configuration, obtained with the two polarities ±H of an applied static magnetic
field. This configuration enables us to distinguish between true magnetic effects and
spurious polarization rotation effects associated with optical orientation of a probe
beam induced by the pump. The demagnetization process is complete in CoPt3 thin
films and occurs within ∼150 fs. More importantly, the demagnetization occurs be-
fore heating of the lattice occurs via the electron–phonon interaction. In addition,
the electron dynamics, measured without a magnetic field, is faster than the magne-
tization dynamics.

These experimental results show unambiguously that the two components of the
electron gas corresponding to the charges and the spins do not follow the same dy-
namics. Other experiments, based on the time-resolved non-linear magneto-optical
Kerr effect [8, 55] and on spin-resolved photoemission [9], lead to different spin
dynamics for nickel. For magnetic second-harmonic generation the authors con-
clude that there is no significant delay between the electron and spin responses. We
believe that this different behavior is because of the surface sensitivity of the tech-
nique and/or the difficulty in separating the electronic and magnetic components of
the non-linear response. The spin-resolved photoemission results confirm the initial
ultrafast demagnetization. Scholl et al. [9] have also studied the long delay magne-
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tization dynamics which is interpreted by magnon–phonon interactions. This long
delayed spin behavior has not, however, been reproduced by the second-harmonic
studies. These discrepancies emphasize the need for further experimental work to
clarify the initial magnetization dynamics in ferromagnets.

The understanding of ultrafast demagnetization of ferromagnetic materials sets
new challenges, both fundamental and from the standpoint of applications. A first
approach to describing the dynamic behavior of the magnetization has been to con-
sider three distinct reservoirs, which exchange energy via coupling terms which at the
microscopic level correspond to electron–spin, electron–phonon, and spin-phonon
interaction. This phenomenological approach, however, raises the question of the
electron–spin interaction. A first possibility is that spin-orbit coupling might be im-
portant. This requires systematic study of magnetization in metals with different
spin-orbit coupling. A second possibility is that the initial hot electron distribution
which is excited by the pump pulse leads to the excitation of Stoner pairs (via addi-
tional scattering processes). Both mechanisms require spin-flip processes and, there-
fore, the total angular momentum is expected to change. One might wonder if such
a change is correlated with excitation by light. The demagnetization observed with
the pump-probe Kerr configuration on CoPt3, using different pump polarizations
(linear or circular), does not reveal such an effect. The question of the conservation
of the total momentum in the time-scale when the lattice is still cold thus remains an
open question.
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