Making Use of

Suresh Mahadevan

Making Use of Ruby

___Making Use of RUBY_

Suresh Mahadevan

Wiley Publishing, Inc.

Publisher: Robert Ipsen

Editor: Ben Ryan

Developmental Editor: Kathryn A. Malm

Managing Editor: Pamela Hanley

New Media Editor: Brian Snapp

Text Design & Composition: Wiley Composition Services

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where Wiley Publishing, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by Suresh Mahadevan. All rights reserved.
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning,
or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspointe Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-mail: permcoordinator@wiley.com.

Limit of Liability /Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:
ISBN # 0-471-21972-X
Printed in the United States of America

10987 654321

Contents

Introduction
Scenario

Chapter 1 An Introduction to Ruby
Getting Started
About Ruby
Determine the Requirements of the Project
Obtain Ruby and Its Documentation
Determine the System Requirements of Ruby
Install Ruby
Installing Ruby on Windows
Installing Ruby on UNIX
Different Modes of Running Ruby
Interactive Ruby
Normal Program Mode
Summary

Chapter 2 Ruby — A Pure Object-Oriented Language
Getting Started
Features of Object Orientation
Data Encapsulation
Data Abstraction
Inheritance
Polymorphism
Identifying the Features of Object Orientation
Identify the Various Classes
Result
Identify the Characteristics and Functions of Each Class
Result

X,

>
O R W NN = B

_ s
_ = O O

e e e S e e eyl
(e INe BN BN e)Nlo Mo e NN "NEV IR |

vi Contents

Identify the Inheritance Feature
Result
Identify the Data Encapsulation and Data Abstraction Feature
Result
Implementing Object Orientation in Ruby
Create the Identified Class
Creating a Class
Variables in a Class
Declare the Initialize Method
Creating Objects the Simple Way
Creating Objects by Passing Parameters to the new Method
Declare the Methods for Displaying the Details
of the Customer and the Number of Customers
Members in a Class
Create Two Objects of the Customer Class to Check
if the Correct Output is Displayed
Save and Execute the Code
Inheritance
Access Control
Create a Child Class Called Transaction
of the Parent Class Customer
Result
Call the Relevant Methods for Displaying the Customer
Details as Well as the Transaction Details
Result
Save and Execute the Code
Summary

Chapter 3 Programming Basics
Getting Started
Datatypes
Declare the Variables to Store the Details
Numbers
Strings
Write the Code to Display the Details
Verify the Output
Arrays, Hashes, and Ranges
Arrays
The Method new
The Method type
The Method length
Hashes
Ranges
The max Function
The min Function
The include Function
The to a Method

19
19
19
19
20
20
20
21
21
21

23
23

25
25
26
27

30
30

31
31
32
33

35
35
36
37
37
38
39
40
40
40
41
42
42
42
42
43
43
43
44

Contents vii
Declare an Array to Store All the Customer Names 45
Write the Code to Display the Customer Names 45
Declare a Hash of Customers with Customer Names
as the Key 45
Write the Code to Display the Customer Details 46
Save and Execute the Code 46
Verify the Details 46
Summary 46
Chapter 4 Control Structures, Blocks, and Expressions 49
Getting Started 49
Control Structures 50
The if . . else Loop 51
The while Loop 53
The for Loop 54
Identify the Array and Hash of Customers 55
Write the Code to Store the Names of Customers 56
Write the Code to Display the Elements of the New Array 56
Save and Execute the Code 57
Verify the Output 57
Blocks and Regular Expressions 57
The yield Statement 57
Passing Parameters with the yield Statement 58
Iterators 59
each 59
collect 60
Write the Code for the Block to Display the Array Elements 61
Demonstrate the Use of Iterators 61
Save and Execute the Code 62
Verify the Output 62
Regular Expressions 62
Regular Expressions in Detail 65
$ Variables 65
Some More Types of Regular Expressions 66
Object Orientation 68
Declare the Necessary Arrays and the Regular Expression 70
Write the Code to Display the Output 71
Save and Execute the Code 73
Verify the Output 73
Summary 74
Chapter 5 Methods and Modules 75
Getting Started 75
Methods 77
Return Values from Methods 78
Using a Variable Number of Parameters 79
Methods and Blocks 81

viii Contents
Class Methods 81
Declare the Class 82
Declare the Method 83
Create a Class 83
Save and Execute the Code 84
Verify the Output 84
Modules 85
Defining a Module 85
The require Statement 86
Modules and Classes 86
Mixins 87
Declare the Modules 88
Declare the Class 89
Display the Information 89
Save and Execute the Code 89
Verify the Output 90
Summary 90
Chapter 6 Input and Output 91
Getting Started 91
Input and Output 92
gets Statement 92
putc Statement 93
print Statement 93
The Class File 93
File.new 94
File.open 95
Sysread 96
Syswrite 96
each_byte 96
gets 97
File Methods 97
10.readlines 97
10.foreach 98
Identify the Method to Be Used to Create a File Object 98
Write the Code to Enter Details into the File 99
Save and Execute the Code 100
Verify the Output 100
Summary 101
Chapter 7 Exceptions 103
Getting Started 103
Handling Exceptions 104
Class Exception 107
Raising Exceptions 108

Contents ix
Catch and Throw 109
Identify the Necessary Changes to Be Made to Jim’s Code 110
Write the Code to Implement the Necessary Changes 111
Save and Execute the Code 112
Test the Code for Exceptions 112
Summary 113
Chapter 8 Multithreading 115
Getting Started 115
Single-Threaded Applications 116
Multithreaded Applications in Ruby 118
Creating a Web Server 119
Identify the Different Classes to Be Used 119
Implement the Web Page 120
Complete Processing of All the Current Requests
Before Shutting Down the Web Server 122
Implement the Mutex Class 123
Implement the Thread Scheduler 124
Thread Priority 124
Save and Execute the Code 126
Verity the Output 126
Multiprocessing 126
Summary 129
Chapter 9 CGI Programming 131
Getting Started 131
CGI 132
Capturing HTML Parameters 137
Cookies 138
Sessions 141
eRuby 142
Creating and Submitting a Form 144
Create a Page in HTML for Accepting the
Customer Information 144
Create a CGI Script that Will Display the Form Values 145
Verify the Code 145
Summary 146
Chapter 10 GUI Programming with Tk 147
Getting Started 147
Introduction to Tk 148
Loading the Tk Module 149
Creating the GUI Application Window 149
Adding Widgets to the Application 149

Entering the Main Event Loop 150

X

Contents

Chapter 11

Chapter 12

Creating a GUI Application
Identify the Components of the User Interface
Identify the Tk Widgets to Design the User Interface
The Label Widget
The Entry Widget
The Button Widget
The Listbox Widget
The CheckButton Widget
The RadioButton Widget
The Frame Widget
Write the Code for the User Interface
Execute the Code
Summary

Running Ruby on Windows

Getting Started
Ruby and Windows

Using WIN320OLE
Write the Code to Create a Chart in Excel
Write the Code to Insert Data into Word
Save and Execute the Code

Summary

Networking
Getting Started
Basic Concepts
TCP versus UDP
Sockets
The Class TCPSocket
The Class TCPServer
Accessing the Network
Distributed Ruby
Accessing Web Pages Using Net::HTTP
Moving Files Around Using Net::FTP
Sending Mail Using Net::SMTP
Reading Mail Using Net::POP3
Sending Automatic Emails
Write Code to Find All Appropriate Customers
Generate an Email Message for All Identified Customers
Send the Message to the Customer
Save and Execute the Code
Verify the Output
Summary

Appendix A Ruby Extensions

Appendix B Safety Issues

Index

151
152
152
153
154
160
161
163
164
165
166
167
169

171
171
172
173
173
177
177
177

179
180
180
181
181
182
182
184
184
189
190
191
192
193
193
195
196
197
197
197

199
207
211

Introduction

In this information age, portability is one of the important features that
everybody looks forward to in a programming language. Language being
portable means that it should be able to run on any operating system.
Moreover, it should be able to provide a similar performance on all the
operating systems. Users will find Ruby extremely useful in terms of porta-
bility. Ruby can be run on most versions of UNIX, DOS, Windows 95/
98/NT, Mac, and OS/2.

Ruby is a portable, interpreted, object-oriented programming language.
It combines remarkable power with very clear syntax. Moreover, its high-
level built-in data structures, combined with dynamic typing and dynamic
binding, make it very attractive for scripting.

Do you want to know whether Ruby is popular? Based on recent reports,
Ruby is more popular than Python, another scripting language, in Japan.
Check this URL—www.ruby-lang.org/en/magazine.html—to find various
articles in different information technology (IT) magazines.

Our job is to solve problems, not spoonfeed compilers, so we like dynamic lan-
guages that adapt to us, without arbitrary, rigid rules. We need clarity so we
can communicate using our code. We value conciseness and the ability to
express a requirement in code accurately and efficiently. The less code we
write, the less that can go wrong. (And our wrists and fingers are thankful,
too.)

We want to be as productive as possible, so we want our code to run the first
time; time spent in the debugger is time stolen from the development clock. It

xi

Xii

Introduction

also helps if we can try out code as we edit it; if you have to wait for a 2-hour
make cycle, you may as well be using punch cards and submitting your work
for batch compilation.

When we discovered Ruby, we realized that we’d found what we’d been look-
ing for. More than any other language with which we have worked, Ruby
stays out of your way. You can concentrate on solving the problem at hand,
instead of struggling with compiler and language issues. That’s how it can
help you become a better programmer: by giving you the chance to spend your
time creating solutions for your users, not for the compiler.

Dave Thomas and Andy Hunt,
The Pragmatic Programmer’s Guide

Most of all, Ruby puts the fun back into programming. When was the last
time you had fun writing a program—a program that worked the first time; a
program that you could read next week, next month, or next year and still
understand exactly what it does? We find Ruby to be a breath of fresh air in
the dense, often hectic world of programming. In fact, we see nothing but
smiles after we present Ruby to programmers.

www.rubycentral.com

This book is an attempt to bridge the ever-increasing gap between the
market demand and the availability of Ruby expertise. The first step to
becoming an expert is to get an in-depth knowledge of Ruby, and this is
exactly what this book has to offer. It begins with the basics of scripting and
moves seamlessly over to the programming intricacies.

Along with conceptual information, this book also will provide exten-
sive practical exercises to allow readers to gain valuable real-life exposure
in creating different types of applications.

The aim of this book is to make learning an enjoyable and energizing
process.

Overview of Ruby

Ruby has features that are similar to those of Smalltalk, Perl, and Python.
Perl, Python, and Smalltalk are scripting languages. Smalltalk is a true
object-oriented language. Ruby, like Smalltalk, is a perfect object-oriented
language. Using Ruby syntax is much easier than using Smalltalk syntax.

Introduction

xifi

Therefore, Smalltalk users will find learning and playing around with
Ruby quite easy. A special feature of Ruby is that it has the useful features
of Perl, Python, and Smalltalk. For instance, Ruby comes in with regular
expressions, which is one of the major features of Perl and Python. In addi-
tion, you can easily access the operating-system features in both Perl and
Python.

History of Ruby

Yukihiro Matsumoto of Japan is the founder of Ruby. Ruby was created in
1993. However, it was only after 1995 that it became popular. The updated
news for Ruby lovers is that Ruby has become more popular than Python
in Japan. Until recently, Ruby’s adoption outside Japan was hampered by
the lack of documentation in English. There are not many books available
on Ruby. This makes it extremely difficult for Ruby to penetrate the other
parts of the world. However, the year 2002 may just be the beginning of the
rise in the popularity of Ruby because a lot of books in English will be
released in 2002.

.m You can find the name Yukihiro Matsumoto on the Ruby mailing list at
www.ruby-lang.org. Matsumoto is also known as Matz in the Ruby community.

Before, we move on to discuss the features of Ruby, we will conclude this
section with what Matz has to say about the evolution of Ruby:

Well, Ruby was born on February 24, 1993. 1 was talking with my
colleague about the possibility of an object-oriented scripting language. I
knew Perl (Perl4, not Perl5), but I didn't like it really, because it had the smell
of a toy language (it still has). The object-oriented language seemed very
promising.

I knew Python then. But I didn't like it, because I didn’t think it was a true
object-oriented language—OQ features appeared to be add-on to the lan-
quage. As a language maniac and OO fan for 15 years, I really wanted a gen-
uine object-oriented, easy-to-use scripting language. I looked for but couldn’t
find one.

So I decided to make it. It took several months to make the interpreter run. I
put it the features I love to have in my language, such as iterators, exception
handling, and garbage collection.

Then I reorganized the features of Perl into a class library and implement them.
I posted Ruby 0.95 to the Japanese domestic newsgroups in December 1995.

xiv

Introduction

Features of Ruby

Ruby is an open-source, general-purpose, interpreted, and powerful
server-side scripting language. Ruby also is freely available on the Web,
but it is subject to a license. You can obtain the license from the URL
www.ruby-lang.org/en/license.txt. With Ruby, programming becomes
very easy. One of the major advantages is that Ruby provides a simple
interpreter, unlike other programming languages. Using other program-
ming language compilers, a programmer spends maximum effort in trying
to get over the complexities of the compiler instead of concentrating on the
actual coding part. This becomes frustrating at times for the programmer.
With Ruby, you need not worry about all these issues; you can concentrate
specifically on coding. The another advantage is Ruby is an untyped lan-
guage. With untyped languages, you need not bother to define everything
before you start executing the code. However, one thing you need to
remember is that Ruby is an interpreted language. Interpreted languages
are slower when compared to compiled languages. Let us discuss some of
the salient features of Ruby.

Easy

Ruby has a clean and easy syntax that allows a new developer to learn
Ruby very quickly and easily. It will require a lesser effort for people who
have some programming knowledge. The syntax of Ruby is similar to that
of many programming languages such as C++ and Perl. Therefore, it
becomes very easy for programmers to learn Ruby and start writing pro-
grams. Ruby is a perfect object-oriented language, unlike some languages,
such as Python, which only supports the concept of object orientation. In
fact, Ruby is a simplification of these languages, and it does not require any
extra effort to learn an unfamiliar concept, syntax, or keyword.

With Ruby, you will be surprised at the amount of code you can churn out
in a day. The reason is that after you learn the basic syntax, which is easy
compared with other languages, you will not have many errors in your
code. In addition, the Ruby interpreter is fantastic. There are no major has-
sles in using it. Because of all these factors, the time you spend in debugging
code is minimal. Fortunately, in Ruby you do not have to go through the
pain of putting semicolons at the end of each and every statement. All these
features make Ruby a very good and simple language to work with.

Introduction

XV

Scalable

UNIX shell scripting languages are fairly easy and can handle simple tasks
very easily and efficiently. However, when you add more features to a
script, the script becomes very large, complicated, and slow. You are unable
to reuse your code, and even small projects require huge scripts. Ruby pro-
vides a better structure for large programs. You can write modules in Ruby
and then reuse those modules across different code. Ruby also provides
many built-in modules to help you in system management tasks, network-
ing, socket programming, and graphic user interface (GUI) programming.

Object-Oriented

As stated earlier, Ruby is a true object-oriented programming language. All
the features of Ruby are implemented as objects. Ruby shows all the char-
acteristics of an object-oriented language. Ruby shows multiple inheri-
tance indirectly like Java. Java implements multiple inheritance by using
interfaces, whereas Ruby implements the same by using mixins.

Extensible

There are many libraries that provide functionality that may be useful to
have in your programs. It does not make sense to rewrite all these libraries
in Ruby. In addition, there are occasions when you may need performance
that is better than the performance of an interpreted language such as
Ruby. It will be useful, therefore, if you could write the time-critical code in
an efficient language and simply call it from your Ruby code. Ruby helps
you to take care of both these situations. Using Ruby, you can easily write
extensions in C/C++ that hook seamlessly into Ruby’s environment. It
would seem that they are simply other pieces of Ruby code. You can create
Ruby extensions in C/C++ using dynamic or static binding.

You can even go the other way around and embed a complete Ruby
interpreter into a C program, allowing you to use its scripting facilities
rather than having to write your own purpose-built engine. The fact is that
with Ruby extensions the sky is the limit!

xvi

Introduction

Rich Core Library

Many development modules are built into Ruby. A programmer can make
use of these modules directly. In addition to modules that work on all plat-
forms, the library has modules that are specific to a particular platform or
environment.

Ruby built-in modules perform all types of usual tasks, such as HTTP,
FTP, POP, SMTP, and many other services. Using the rich core library, you
can write applications for downloading a Web page, connecting to a data-
base, developing a GUI, and so on.

Web Scripting Support and Data Handling

Ruby can be used for developing Internet and intranet applications. You
can even write a Web server using Ruby. You can write Common Gateway
Interface (CGI) scripts using Ruby. You can even embed Ruby programs
into Hypertext Markup Language (HTML). You also can write high-end
Extensible Markup Language (XML) applications using Ruby.

Object Distribution

Using distributed Ruby, you can create a server object and expose that
object. Next, you can write a client program and access the server object.
This becomes similar to Java’s Remote Method Invocation (RMI). All this
can be done very easily in Ruby.

Databases

You can use the built-in objects from the various libraries that are available
to make Ruby talk to a database. Using Ruby, you can easily connect to
DB2, MySQL, Oracle, and Sybase. ODBC drivers are being written to con-
nect Ruby to popular databases.

GUI Programming

There are several GUISs, such as Tcl/ Tk, GTK, and OpenGL. You can down-
load the extensions for these GUIs from the Ruby Application Archive
(RAA). The Ruby Application Archive is a Web page that acts as a reposi-
tory for many Ruby applications.

Introduction

xvii

Exception Handling

You execute a program, and suddenly, an unknown error pops up. The
program will end abruptly without knowing what to do and exit. Excep-
tional cases such as these are termed exceptions. To handle such exceptions,
you need to add exception-handling code in your main code. With Ruby,
exception handling becomes clean and simple. Using exception handling
in Ruby, the programmer needs to make less effort to debug an error.

Portable

Ruby can be installed in Windows and POSIX environments. Code written
under Windows can be run under Linux and vice versa unless you are
not trying to access features specific to that operating system. Therefore,
when you say a code is portable, it means lesser expenditure and wider
distribution.

Freeware

Ruby is a freeware and can be redistributed freely in the source form sub-
ject to the license we discussed earlier. Programmers and users are allowed
to use Ruby’s source code in any desired way. You can download the Ruby
source code, modify the code, and even distribute the code. Ruby is also
free for commercial use. You can make applications in Ruby and upload it
to the RAA for other users to access. In the same way, you can download
many of the applications created by different users from this archive page.

Ruby versus Other Languages

Languages can be divided into two types, compiled languages and script-
ing languages. Applications created using compiled languages are faster
than those created using scripting languages. With compiled languages,
you can easily access the operating system features, whereas with scripting
languages you cannot. However, nowadays the distinction between com-
piled and scripting languages is not the same. Scripting languages are as
fast as compiled languages. In addition, you can access the operating sys-
tem features by using scripting languages such as Perl, Python, and Ruby.

Ruby can be compared with other programming languages easily
because of its resemblance to many programming languages, such as C,

xviii Introduction

Perl, Python, Java, Smalltalk, and the shell scripts of UNIX. You actually
can find a lot of syntax common between Ruby and C. Ruby can be com-
pared with Perl and Python because both Perl and Python are scripting
languages. What you can do in Ruby you also can do in Perl and Python.
The only difference is that Ruby is much more flexible than Perl and
Python. Creating applications in Ruby is much easier than creating appli-
cations in Perl and Python. Ruby can be compared with Smalltalk because
both are true object-oriented programming languages. Ruby is similar to
Java only in terms of showing multiple inheritance. Both Ruby and Java
implement multiple inheritance indirectly, unlike C++, which shows mul-
tiple inheritance directly.

How This Book Is Organized

This book shrugs away from the traditional content-based approach and
uses the problem-based approach to deliver the concepts of Ruby. Prob-
lems used in the book are presented against the backdrop of real-life sce-
narios. Each problem is followed by a task list that helps you to solve the
given problem, in the process delivering the concepts and their implemen-
tation. This practical approach will help you to understand the real-life
application of the language and its use in various scenarios. Moreover, to
provide appropriate learning experience, the concepts will be supported
adequately by case studies that will be formulated in such a way that they
provide you with a frame of reference.

This book is organized into two parts. The first part involves program-
ming with Ruby using arrays, hashes, methods, and modules. And the sec-
ond part delves into developing advanced applications with Ruby using
CGI, GUI, and networking features.

Chapter 1 introduces you to Ruby. It also guides you to where you can
obtain Ruby and its documentation. Finally, it instructs you on how to
install Ruby and discusses the different modes in which you can run Ruby.

Chapter 2 deals purely with object orientation. This chapter gives you an
overview of object-orientation concepts. You also learn to implement object
orientation by using Ruby.

Chapter 3 introduces you to the different data types in Ruby. It discusses
how to implement arrays and hashes in Ruby. You will move a step further
and learn how to implement ranges in Ruby.

Chapter 4 introduces you to the various control structures supported by
Ruby. Then you will learn to implement blocks and iterators in Ruby.
Finally, you will learn the important concept of regular expressions.

Introduction

Xix

Chapter 5 discusses different kinds of methods. You will learn to pass an
array to a method. Then the chapter will introduce you to modules. Finally,
you will implement mixins by using modules.

Chapter 6 deals with the various input and output statements. It also
deals with the various methods related to the file and input-output (I/0)
classes.

Chapter 7 deals with exceptions. You will learn to handle exceptions.
You also will learn about the exception class. Then you will learn how
to raise exceptions. Finally, you will learn about the catch and throw
methods.

Chapter 8 discusses a most interesting concept—multithreading. You
will learn to create and manipulate threads. You will learn about the mutex
class. You will learn how to schedule threads. Finally, you will get to know
about multiprocessing.

Chapter 9 goes to the Web. It discusses CGI programming. You will learn
how to write CGI scripts by using the CGI class. Then you also will learn
about cookies and sessions. Finally, you will learn about eRuby.

Chapter 10 moves one step ahead and discusses GUI programming
using Tk. You will learn about the various widgets you can use in a GUI
application.

Chapter 11 discusses running Ruby on Windows. It discusses the
Win32API class. Finally, you will learn to use automation features in Ruby.

Chapter 12 delves into network programming in Ruby using sockets. It
discusses the TCPServer and TCPSocket classes. Then it discusses distrib-
uted Ruby. Finally, you will learn how to implement HTTP, FTP, SMTP, and
POP3 protocols using Ruby.

Finally, Appendix A gives a brief introduction to Ruby Extensions with
C, and Appendix B discusses the concept of tainting.

Who Should Read This Book

This book will be a guide for readers with basic knowledge of program-
ming. For those with intermediary knowledge of Ruby, the book covers the
advanced concepts of Ruby too. This book will be of great help to people
with the following job titles:

m Software engineers

m Web application developers

m Information application developers

XX

Introduction

This book will provide the necessary skills to create GUI, networking,
and Web applications. It also will talk about extending and embedding
Ruby applications.

Tools You Will Need

For performing the tasks in this book, you will need a Pentium 200-MHz
computer with a minimum of 64 MB of RAM (128 MB of RAM recom-
mended). You also will need the following software:

m Linux 7.1 or Windows 95/98/2000/NT operating system
m Apache 1.3.19-5 Web server

m Internet Explorer 5.0 or above Web browser

m Ruby 1.6.6

What's on the Web Site

The following will be available on the site www.wiley.com/compbooks/
Makinguse:

m Ruby 1.6.6
m All the code snippets used in this book

Scenario

All problem statements in this book are based on the scenario of Knowl-
edge, Inc. The following section delineates the setup of Knowledge, Inc.,
and its future plans.

Knowledge, Inc.

Knowledge, Inc., was set up by Mark Bates, who wanted to set up a library
equipped with all kinds of books and use his library to spread knowledge.
In 1973, Mark established a small library in California and soon extended
the services that his library offered to cover various states, such as Georgia
and Texas. Today, Knowledge, Inc., is a major bookshop with various out-
lets across the United States.

The transformation of the library into a bookstore took place in 1980.
One fine day in the autumn of 1980, Harry, Mark’s friend and business
partner, came up with the idea of opening a bookshop. Mark appreciated
the idea, and in 1981, Knowledge, Inc., opened its first bookshop outlet in
California. Knowledge, Inc., grew at a rate of 150 percent annually, and
today it is one of the largest bookstores in the United States.

The services that Knowledge, Inc., offers extend over all the major states
and cities of the United States. Knowledge, Inc., has 26 outlets across the
country. These outlets also perform selling operations. At present, the out-
lets not only sell books and other knowledge-based materials directly but
also receive orders for books over the telephone. Knowledge, Inc., fills
orders received on the telephone through various courier services.

xxi

xxii

Scenario

Knowledge, Inc., found general acceptance through its dedicated and
personalized customer service. The financial presentation in the last gen-
eral body meeting indicates that the profits of Knowledge, Inc., have
increased manifold. The board members have decided to increase profits
further by going online on the Web.

In the last board meeting, the following developments took place:

m Most of the competitors of Knowledge, Inc., either own Web sites or
are in the process of launching e-commerce services.

m Recent customer feedback shows that most professionals want to
buy online.

m The existing customers are in favor of online library transactions.

m Overhead is increasing because Knowledge, Inc., has to employ
many people to manage the growing business.

After extensive research into current trends in the book market, Peter
Garner, the head of the Marketing Department, proposed the following
approaches to tackle the current problems:

m With the rise of the Internet, online selling has become very
productive.

m Most people are in favor of online buying because it saves time
and is easy to access.

m The Internet is an effective medium to reach new customers.
It also will hasten use of the traditional approach to acquiring
new customers.

m Online selling will help to save resources because the automation
of services will reduce team size.

In the next couple of years, Knowledge, Inc., is targeting the creation of
a customer base all around the world. At present, it plans to target cus-
tomers through its online Web site. Using the Web site, it also can increase
the number of its customers within the United States.

At the end of the board meeting, the proposal to set up an online site for
Knowledge, Inc., was supported unanimously. The Electronic Data Pro-
cessing (EDP) Department will handle the task of creating the online site.
Paul Anderson has been nominated as the project manager. He is the head
of a team of competent designers and programmers. A quality assurance
team and a graphics team also have been assigned to support the develop-
ment team. The management wants the online bookstore to be developed
in an upcoming scripting language, Ruby.

Scenario xxiii

In the next few months, the team will endeavor to ensure zero-defect
software development that is in line with client requirements. After the
online site for Knowledge, Inc., has been set up, customers will be able to
log onto the Web site www.knowledgethruweb.com and carry out transac-
tions without any difficulty.

An Introduction to Ruby

OBJECTIVES

In this chapter, you will learn to:
v~ Identify the scenarios where Ruby can be used
1+~ Obtain Ruby and its documentation
v Examine system requirements of Ruby
v~ Install Ruby
1+~ Identify the different modes of running Ruby

Getting Started

This chapter gives you an insight into Ruby. This chapter will also discuss
the system requirements for Ruby. In addition, you will learn about the
Web sites where you can obtain Ruby documentation. We also will discuss
the Web sites from which you can download various Ruby applications.

Chapter 1

About Ruby

Problem Statement

Knowledge, Inc., plans to go online with a Web site that allows it to sell its
books through the Web. The development team of Knowledge, Inc., has
programmers who have about five to six years” experience in Perl. How-
ever, the development team of Knowledge, Inc., is not very keen on devel-
oping the Web site in Perl. One of the main reasons for this is that members
of the team want to use a new language. Another reason for this is that
even after having used Perl for so many years, members of the team
believe that Perl has a cumbersome syntax. They want to learn a language
that is relatively new and simple. Top management has agreed to develop
the Web site in a language that is similar to but better than Perl. However,
management wants the project to be completed in a very short time.

After having long discussions with various experts, management has
decided to develop the Web site in a new and upcoming language known
as Ruby. Top management has hired Mike, who has about nine years’ expe-
rience in programming. He has worked in Ruby for nearly three years.
Management has selected Mike to be the technical lead in this project.

Mike has been given the task of understanding the requirements of
the project, obtaining Ruby for the development team, and getting Ruby
running.

Task List

Determine the requirements of the project.
Obtain Ruby and its documentation.
Determine the system requirements of Ruby.
Install Ruby.

Discuss the different modes of running Ruby.

L W W W WA

Determine the Requirements of the Project

Before deciding on the software application and hardware platforms to use
for this project, let us understand the requirements of the project (Table 1.1).

An Introduction to Ruby

3

Table 1.1 Requirements of Knowledge, Inc.

Development time The entire application needs to be developed in
three months.

Speed Knowledge, Inc., wants a computerized system that
enables customers to buy books easily and quickly.

Accessibility Knowledge, Inc., wants a system that enables customers
to buy books online from any part of the world.

Unique features Because Knowledge, Inc., also has its own library for
its customers, management wants a system that
automatically notifies customers of the return date
of the books through email messages.

Other features Management wants the application to be powerful,
robust, and scalable.

Obtain Ruby and Its Documentation

As we learned from Matz, Ruby 0.95 was posted to Japanese domestic
groups in December 1995. Afterwards, various versions of Ruby were
released. At present, the latest stable version is Ruby 1.6.7. Like other open-
source-code projects, Ruby also follows the same version-numbering sys-
tem. In this system, the even version numbers are stable, whereas the odd
version numbers are unstable. For example, versions 1.0, 1.2, 1.4, and 1.6
are stable, and versions 1.1, 1.3, and 1.5 are unstable.
You can download Ruby from one of these two sites:

m www.ruby-lang.org

m www.rubycentral.com

You can get all the relevant information about Ruby on these two sites.
You can get the online book about Ruby, Pragmatic Programmers Guide for
Ruby, by Dave Thomas and Andrew Hunt, as a downloadable in the form
of an HTML or PDF document on the site www.ruby-lang.org. All the doc-
umentation for Ruby has existed only in the Japanese language. The Prag-
matic Programmers Guide for Ruby is the first English documentation for
Ruby. You can get frequently asked questions (FAQs) regarding Ruby from

Chapter 1

the site www.rubycentral.com. You also can get software downloads for
Linux and Windows at these sites. You can get the various slides of the dif-
ferent presentations made for Ruby across the world. You also have the
Ruby Application Archive (RAA) Web page. This Web page can be found
at www.ruby-lang.org/en/raa.html. The RAA consists of Ruby applica-
tions posted by various Ruby followers. Finally, you have the mailing list
that consists of members of the Ruby community. You can join this mailing
list and exchange mail with members of this community.

Determine the System Requirements of Ruby

Ruby can run on Windows and all versions of UNIX. Even the Macintosh
operating system supports Ruby. The hardware requirements for installing
Ruby are the same as the hardware requirements for the underlying oper-
ating system on which you have chosen to run Ruby. Therefore, you do not
require any special hardware for installing Ruby.

Install Ruby
In this section we will look at installing Ruby on both Windows and UNIX.

Installing Ruby on Windows

You download Ruby installation files for Windows from either the Ruby-
Central site or the Wiley site. The URLs for both are:

m http://dev.rubycentral.com/downloads/ruby-install.html

m www.wiley.com/compbooks/makinguse

From these sites, download the RubyXXX-X.exe files, where XXX-X is
the latest version number, to your local computer. When you double-click
the file, the Ruby installation wizard starts. Follow the different steps in

the wizard and you will get Ruby installed for Windows. Here are the
detailed steps for installing Ruby on Windows:

1. Double-click the RubyXXX-X.exe file. The Ruby installation wizard
starts (Figure 1.1).

2. Click Next to move to the Important Information page of the wizard
(Figure 1.2). This page displays the contents of the Readme.txt file.

An Introduction to Ruby

& Ruby 1.6.4 Setup (Installer Version 3)

Ruby 1.6.4

T T T o T | e

‘Welcome to the InstallShield Wizard for Ruby
1643

The InstallShield® 'wizard vall install Ruby 1.6.4.3 on your
computer. To continue, click Next,

Figure 1.1 Ruby installation wizard.

& Ruby 1.6.4Setup (Installer Versian 3)

Ruby 1.6:4

by 1.6.4 Setup linstaller Varsion 3)

Impatant Information

AEADME Ixt:

welome b Ruby

PLEASE AEAD THE RELEASE nobes provded with thz
inatalal for lastminue updates and hints:

Thiz detibution cortaing

The Puby Intemieter. Theanizs. and extersions
Te/Th Wirdowing enviorment [For GTE, ses below]

Fifluby Windovng envrorment
Decumertation
£

Figure 1.2 The Important Information page of the installation wizard.

6

Chapter 1

3. Click Next to move to the Choose Destination Location of the wiz-
ard (Figure 1.3). By default, on the Windows platform Ruby installs
in the C:\Ruby folder. You can change the destination folder by
clicking the Browse button and choosing the destination folder.

4. Click Next to move to the Setup Type page of the wizard (Figure 1.4).
By default, Typical is selected. The Typical setup installs the most
common components of Ruby. You can choose compact or custom
installation type, depending on your requirements.

5. Click Next to move to the Start Copying Files page of the wizard
(Figure 1.5). Before copying files, the wizard summarizes the options
you have selected. You can change the selected options by going
back to the appropriate page.

& Ruby 1.6.4Setup (Installer Versian 3)

Ruby 1.6:4

uby 1.6.4 Setup (Installer Yersion 3}

Choose Deslination Location
Sakect fakar where Setup #il atal fles

Selup vl instal by 1.6.4.3 in the seleched loider
By clicking on Mot

‘fau may choose = diferert iclder By cicking on the Browss o,
Buk the path name = MUST NOT COMTAIN spaces .

Figure 1.3 The Choose Destination Location page of the installation wizard.

An Introduction to Ruby

7

& Ruby 1.6.4Setup (Installer Versian 3)

Ruby 1.6:4

Selup Type
Select the Setvp Trps to inatal

Click the ype cf S=iup pau peefer, then click Neal.

& Typical Progam wil be istalad with the meat camman opfianz - Recammended for
et ugals

" Campact Program wil be inztalad with minmum requined optices.

“fau may chiocee the aptiors vou want b imstal. Recommended for advanced
ugeis

Figure 1.4 The Setup Type page of the installation wizard.

& Ruby 1.6.4Setup (Installer Versian 3)

Ruby 1.6:4

Stanl Copying Files
Revizw setfings before copying filss.

S2lup has encugh irformalian b it copying the program les. IF pou went |o review oo
o any settings. cick Back [Fyou ane satisfied with the setings. cick Nest b begin
i flee:

Current Setfings

Iretall R i
el

Inatallaion Type:
Typica - Bas= languzge. ibeaies, hela fies, doc, samples:, Tel' Tk, FrRuby

Figure 1.5 The Start Copying Files page of the installation wizard.

Chapter 1

.-‘: Ruby 1.6.4 Setup (Installer Version 3)

Ruby 1.6:4

uby 1.6.4

Setup Status

Fluity 1.6 4.3 Sehun is peifoering the: requesied apesations

Instaling:
chiubhintouby] Bhind

Figure 1.6 The Setup Status page of the installation wizard.

6. Click Next to start copying the Ruby files. The Setup Status page
displays the status of copied files (Figure 1.6).

7. When setup finishes copying files to the destination folder, the Edit
Environment? page appears (Figure 1.7). This page displays the values
of Ruby environment variables, such as PATH and RUBY_TCL_DLL.
If you accept the default settings, click OK. Otherwise, click Cancel
and edit the settings. When you accept the settings, the Ruby Installer
displays the message “Settings updated successfully.” Figure 1.8
shows this message.

PN @PT | @CNG @CTG @CNT @CTT | @H1 @H2 @HS @H4
#- Edit Environment? @
The installer can set the fallawing environment

wanables for pou and create batch files for
“irb" and “rd2".

TCL_LIBRARY =g \rubytchlibhbel2 3
RUBY_TCL_DLL=c: wubytchbinktclB3. dil
RUBY_TE_DLLsc:\rubyitel\bin'tad dil

WARMING! ruby.exe alieady exizts in path,
Adding new by, exe ahead of existing one.

Add c\ubybbin bo PATH

Press "0K" to accept, or "Cancel’ # you prefes
to zet theze values yourself.

Cancel |

Figure 1.7 The Edit Environment? page.

An Introduction to Ruby

Ruby Installer gl

Settings updated successfully

Figure 1.8 The Ruby Installer message.

8. When you click OK on the Ruby Installer message box, the installa-
tion wizard displays the InstallShield Wizard Complete page, stating
that the setup has finished successfully (Figure 1.9).

9. Click Finish. The setup will ask you to reboot the computer.

Installing Ruby on UNIX

If you have UNIX on your computer, you need to download the UNIX ver-
sion of Ruby. The files for the UNIX version are in a compressed format.
After you download your version of Ruby, you will need to unpack
the downloaded files. For UNIX, the GNA gzip program performs the
required action. The GNA gzip program is available at www.gnu.org/
software/gzip /gzip.html.

.m The installation procedure for Linux is the same as UNIX installation.

& Ruby 1.6.4Setup (Installer Version 3)

Ruby 1.6.4

InztallShicld Wizard Complete

Salup haz firishad irstaling Fubp 1.6.4.3 on your compuler.

Figure 1.9 The InstallShield Wizard Complete page of the installation wizard.

Chapter 1

Table 1.2 Software Specifications for Using Ruby with Windows

SOFTWARE SPECIFICATION

Operating System Windows 98

Web server Apache 1.3.22

Web browser Internet Explorer 5.5
Ruby Version 1.6.5

You can choose among a number of software platforms for running
Ruby. For the development of this book, the following software configura-
tion is used (see Table 1.2).

.m In this book, the multithreading code is executed in Red Hat Linux 7.1.

Different Modes of Running Ruby

You can run Ruby in two modes: the interactive mode and the normal pro-
gram mode.

Interactive Ruby

You can start interactive Ruby by typing ruby at the command prompt.
The advantage of using interactive Ruby is it allows you to see results there
and then. Let us learn to use interactive Ruby:

C: \WINDOWS>ruby
puts "Good Morning"
D (ctrl + D)

The output is:

Good Morning

You type ruby at the command prompt and press the Enter key. The cur-
sor comes to the next line and waits for the user to type. Just type puts
"Good Morning" and type the end-of-file character. (In this computer, it
is Control + D.) You get the output of the statement at the command
prompt (Figure 1.10).

An Introduction to Ruby

C:\WINDOWS=ruby
puts "Good Morning"
Good Morning

Figure 1.10 Interactive Ruby.

Normal Program Mode

You execute Ruby programs from the command prompt. You type ruby
followed by the file name. For example:

ruby test.rb

where test . rb is the filename containing the Ruby code.

In UNIX systems you need to take care that the first line of every script
should be a special comment line, something like #! /usr/local/bin/
ruby. This comment line tells UNIX that the program ruby should run the
particular script.

Summary

In this chapter you learned that:

m The founder of Ruby is Yukihiro Matsumoto, also known as Matz to
the Ruby community.

m You can find all the latest information about Ruby on these two
Web sites:

m http://www.ruby-lang.org
m http://www.rubycentral.com

m Ruby runs on a variety of platforms, such as Windows, Mac OS, and
the various versions of UNIX.

m Ruby can be started in two different modes:
m [nteractive mode

m Normal program mode

Ruby — A Pure Object-Oriented
Language

OBJECTIVES:

In this chapter, you will learn to:
v~ Understand the meaning of object orientation

v~ Learn to implement object orientation by using Ruby

Getting Started

Since the early days of programming, programmers have devised ways and
means to reduce the complexity of programs. In the beginning, machine
instructions were directly fed into the computer with the help of switches.
However, it was tedious to remember the instructions. Moreover, these
instructions were machine-dependent. This implied that programmers
needed to remember the corresponding instructions for different machines.
Then came assembly-level programming, which used mnemonic codes for
machine instructions. With the introduction of assembly-level language,
programming became much simpler. In assembly-level language, a trans-
lator called an assembler was used to convert these mnemonic codes into

13

14

Chapter 2

machine instructions. However, the problem was that even these mnemonic
codes were not completely machine-independent. Therefore, there was
always a search for a complete machine-independent language.

Then followed the development of higher-level languages, such as
BASIC, Pascal, and FORTRAN. With the introduction of these higher-level
languages, programming became completely machine-independent and
simpler. However, the need for better and faster code brought about the
concept of object-oriented programming. An object-oriented program can
be compared to the real-world scenario. Our entire world can be broadly
classified into several classes and objects. Similarly, an object-oriented pro-
gram involves classes and objects. For example, if human being is consid-
ered as a class, man and woman are instances of this class. By the same
reason, man and woman are objects of the Human class.

The features of the object-oriented programming language include data
abstraction, data encapsulation, polymorphism, and inheritance. In this
chapter, you will look at these features in detail. You will also learn to
implement object-orientation by using Ruby. In addition, you will learn
how to use classes and objects and help Knowledge, Inc., a bookstore in the
United States, to maintain its customer details. You will also use different
kinds of variables provided by Ruby, such as class variables, to help iden-
tify the number of users who have visited the bookstore’s Web site. You
will use the inheritance feature of object orientation to display customer
details with transactional details for Knowledge, Inc.

Features of Object Orientation

Object orientation has become a buzzword with many meanings. It is a
design methodology, a paradigm, and a form of programming. As a design
methodology, we can use object-oriented techniques to design software
systems. But it is more than a design methodology, it is a whole new way
of thinking about problems. Object-oriented design allows us to think
about the actual, real world entities of the problem we are attempting to
solve. Beginning the design with concepts from the real-world problem
domain allows the same concepts to be carried over to implementation,
making the design and implementation cycle more seamless. Once a
design has been conceived, a programming language can be chosen for
implementation.

Ruby — A Pure Object-Oriented Language 15

The benefits of using the object-oriented approach are:

m Easier analysis and design.

m Code reuse

m FEase of maintenance and enhancement
|

Fewer and shorter iterations

The two components of object-orientation are classes and objects. You
may want to know what classes and objects are. A class is a broad term to
describe a group of data members. Take the example of any vehicle. It com-
prises wheels, horsepower, and fuel or gas tank capacity. The characteris-
tics of a vehicle can also include the number of occupants that the vehicle
can accommodate. These characteristics form the data members of the
class Vehicle. You can differentiate one vehicle from the other with the help
of these characteristics. A vehicle can also have certain functions, such as
halting, driving, and speeding. Even these functions form the data mem-
bers of the class Vehicle. You can, therefore, define a class as a combination
of characteristics and functions. A class Vehicle can be defined as:

Class Vehicle
{
Number no_of_wheels
Number horsepower
Characters type_of_tank
Number Capacity
Function speeding
{
}
Function driving
{
}
Function halting
{
}
}

By assigning different values to these data members, you can form sev-
eral instances of the class Vehicle. For example, an airplane has three wheels,
horsepower of 1,000, fuel as the type of tank, and a capacity of 100 liters. In
the same way, a car has four wheels, horsepower of 200, gas as the type
of tank, and a capacity of 25 litres. Therefore, you can say that airplane and
car are objects of the class Vehicle. In this way, you can instantiate several
objects of a class.

Chapter 2

Because an object-oriented programming language is very much like
the real world, it also supports features such as data encapsulation, data
abstraction, polymorphism, and inheritance. Let us look at each of these
features in detail. One more important concept we will discuss is access
control.

Data Encapsulation

While driving a car, does the driver need to think about what happens in
the engine either while stepping up the acceleration or while applying the
brake? The truth is that the driver need not be concerned with the func-
tioning of the internal mechanisms of the car. It could be said that the dri-
ver remains unaware about the internal mechanisms of the car. In the same
way, the data in a class cannot be accessed from outside the class. This is
called data encapsulation. It is also termed data hiding.

Data Abstraction

From the preceding example, you know that the driver need not be both-
ered about the internal mechanisms of the car because that data is hidden
from him. However, he still has access to the steering wheel, the accelera-
tor, the brake, the seats, and various other parts of the car. This is termed as
data abstraction. The data of the class, which is accessible after some data
is hidden, is termed data abstraction.

Inheritance

If an automobile manufacturer wants to produce a new model of a car,
does it go about creating a car from scratch or does it build on the existing
functionality? The automobile manufacturer will build on the existing fea-
tures because the basic functions of a car remain the same. Therefore, the
new model consists of the basic characteristics and functionality. This is

termed inheritance where the characteristics pass on from the parent class to
the child class.

Polymorphism

Polymorphism simply means existing in different forms. A class, which is
inherited from another class, will exhibit all the characteristics of its parent
class. Now if you have identical data members or data members with the
same name in these classes, that particular data member will exhibit poly-
morphism. For example, you have a method, Driving, in the class Vehicle

Ruby — A Pure Object-Oriented Language

17

and the class Car that is inherited from the class Vehicle also explicitly
defines another method by the name Driving. The method Driving exhibits
polymorphism.

Identifying the Features of Object Orientation

Problem Statement

Knowledge, Inc. comprises two departments, Accounts and Library. The
Accounts Department decides on the reading charges for a book. It also
decides on the number of days for which a book can be issued to a cus-
tomer. The Accounts Department decides whether the customer should be
fined or not after a book is returned. The Library section is in charge of the
maintenance of books, updating the collection with the latest books, and
issuing books. The Library section can also decide on the reading charge of
the book and the number of days for issuing the book.

However, the levying of a penalty is the prerogative of the Accounts sec-
tion. The Library section does not have anything to do with levying
penalty. In addition to these functions, both departments perform a com-
mon function, which is appraising employees. The Accounts section has
30 employees, and these employees operate 20 computers among them-
selves. The Library section has 25 people and five computers. Identify the
classes, characteristics, and functions of these classes. Identify the various
features of object orientation supported in the case study.

Task List

Identify the various classes.

Identify the characteristics and functions of each class.
Identify the inheritance feature.

Identify the data encapsulation and data abstraction feature.

AN W WA

Identify the Various Classes

Result

In the preceding example, you will examine the three broad classifications.
There are three classes. Identify each class. One is class Department,
the second class is Accounts, and the third class is Library.

18 Chapter 2

Class Department
{

}

Class Accounts

{

}

Class Library

{

}

Identify the Characteristics and Functions of Each Class

Result

You will now examine the different characteristics and functions of each of
these classes. The Accounts department and the Library Department per-
form certain unique functions and a common function, which is employee
appraisals. The class Department will show the common function,
employee appraisals. Both departments also show the same characteristics,
which are the number of people and the number of computers. You will
now learn to classify these characteristics and functions into each of these
classes.

Class Department

{

Number no_of_people
Number no_of_computers
Function employee_appraisal
{

}

}

Class Accounts

{

Function reading_charge
{

}

Function return_date

{

}

Function levying fine
{

}

}

Class Library

Ruby — A Pure Object-Oriented Language

{

Function maintenance
{

}

Function issuing
{

}

Function updating
{

}

}

The Class Department shows the common characteristics, which are
no_of_peopleand no_of_computers. It also shows the common func-
tion, which is employee_appraisal. The other two classes show their
respective common functions.

Identify the Inheritance Feature

Result

As you have seen, the Class Department shows the common features
of both classes. Therefore, you decide on the Class Department as the
parent class and the two classes, Class Accountsand Class Library,
as child classes. We can, therefore, say that the Class Accounts and the
Class Library are inherited from their parent class, Department.

Identify the Data Encapsulation and
Data Abstraction Feature

Result

The Library section can access the reading_charge function and
return_date function of the Accounts class. However, it cannot access
the levying_ fine function of the Accounts class. Therefore, you can
say that the 1evying_fine function is hidden or encapsulated from the
Library class. The earlier case study supports data encapsulation in the
form of the levying fine function and data abstraction in the form of
the reading charge and return_date functions.

20

Chapter 2

Implementing Object Orientation in Ruby

Problem Statement

Knowledge Inc. needs to keep track of all customer details, such as cus-
tomer ID, customer name, and customer address. The company also wants
to keep track of the number of customers.

You will now look at the tasks to solve the problem.

Task List

v Create the identified class.
v Declare the initialize method.

v Declare the methods for displaying the details of the customer and
the number of customers.

1 Create two objects of the Customer class to check if the correct
output is displayed.

1 Save and execute the code.

Create the Identified Class

To implement object-oriented programming by using Ruby, you need to
tirst learn how to create objects and classes in Ruby.

Creating a Class

A class in Ruby always starts with the keyword class followed by the
name of the class. The name should always be in initial capitals. The class
Customer can be displayed as:

class Customer
end

You terminate a class by using the keyword end. All the data members
in the class are between the class definition and the end keyword.Because
the class has been defined, you will now define the class variable. Before
defining the class variable, you will need to check out the different vari-
ables supported by Ruby.

Ruby — A Pure Object-Oriented Language

21

Variables in a Class

Ruby provides four types of variables: local, global, instance, and class.
Local variables are the variables that are defined in a method. Local vari-
ables are not available outside the method. On the other hand, instance
variables are available across methods for any particular instance or object.
Instance variables are unique for every object and are not available across
several objects. That means that instance variables change from object to
object. Instance variables are preceded by the at sign (@) followed by the
variable name. Class variables are available across different objects. A class
variable belongs to the class and is a characteristic of a class. They are
preceded by the sigh @@ and are followed by the variable name. All
three variables are declared inside the class. Class variables are not avail-
able across classes. If you want to have a single variable, which is available
across classes, you need to define a global variable. The global variables are
always preceded by the dollar sign ($).

In relation to the different variables supported by Ruby, you need to deter-
mine why class variables should be used for the case study instead of any
other variables. Each person who visits the site of Knowledge, Inc. has to
enter customer details. These details are stored in the database. Each time
the person creates his or her details, an instance of the class Customer
is created. Therefore, using the class variable @@no_of_customers, you
can determine the number of objects that are being created. This enables in
deriving the number of customers.

class Customer
@@no_of_customers=0
end

Declare the Initialize Method

Before learning about the initialize method, you need to know the reason
for using such a method for a class. Here, you will learn about two con-
cepts. One is creating objects by a simple method, and the other is creating
objects by passing parameters.

Creating Objects the Simple Way

Objects are instances of the class. You will now learn how to create objects
of a class in Ruby. You can create objects in Ruby by using the method new

22

Chapter 2

of the class. This method new is a unique type of method, which is prede-
fined in the Ruby library. The new method belongs to the class methods.
You will learn more about class methods in the subsequent chapters. We can
create two objects custl and cust2 of the class Customer as shown
below.

custl = Customer. new
cust2 = Customer. New

Here, custl and cust2 are the names of two objects. You write the
object name followed by the equal to sign (=) after which the class name
will follow. Then, the dot operator and the keyword new will follow.

Creating Objects by Passing Parameters to the new Method

You learned how to create objects by using the new method. How will you
initialize the properties of the object at the time of its creation? In Ruby,
this can be done easily by passing parameters to the new method. You will
now learn to do this. You create two objects, cust1 and cust2, by using
parameters.

custl=Customer.new("0001", "Valerie", "22, New State road, Atlanta")
cust2=Customer.new("0002", "Esmer", "10, New Empire road, Texas")

Here, we see that the cust1 object is created by passing three parame-
ters: 0001, Valerie, and 22, New State road, Atlanta. The cust2
object is created by passing 0002, Esmer, and 10, New Empire road,
Texas as the parameters.

When you plan to declare the new method with parameters, you need to
declare the method initialize at the time of the class creation. This
initialize method is a special type of method, which will be executed
when the new method of the class is called with parameters.

We can declare the code as follows:

class Customer

@@no_of_customers=0

def initialize(id, name, addr)
@Qcust_id=id
@cust_name=name
@cust_addr=addr

end

end

In the above code, you declare the initialize method with id, name,
and addr as local variables. In the initialize method, you pass on the

Ruby — A Pure Object-Oriented Language

23

values of these local variables to the instance variables @cust_id,
@cust_name, and @cust_addr. Why do you need to pass the values from
the local variables to instance variables? The reason is that the local vari-
ables hold the values that are passed along with the new method. In short,
these local variables hold the characteristics of the object that is created. The
unique characteristics of an object are always stored in instance variables.

Declare the Methods for Displaying the Details
of the Customer and the Number of Customers

Members in a Class

The data members in a class include variables and functions. In Ruby, func-
tions are called methods. Each method in a class starts with the keyword
def followed by the method name. The method name should always be in
lowercase letters. You end a method in Ruby by using the keyword end.
You will now learn how to define a simple method.

class Sample

def samp
statement 1
statement 2
end
end

In the above example, statement 1 and statement 2 are part of the
body of the method samp inside the class Sample. You will learn to add
some logical statements instead of only statement 1and statement 2.
You start with a simple output statement, such as puts. The puts state-
ment is used to display content on the display device. There are some other
commands such as printf that can also be used for output. Right now,
you will learn only to display a statement on our display device.

puts "Hello world"

The code displays Hello world on to the screen followed by a new
blank line. The statement, which needs to be displayed, should always be
enclosed in double quotation marks.

If you want to display the values of variables on the screen, you can use
the following piece of code:

i=5
puts i

24

Chapter 2

To display the variables, you write the variable name after the keyword
puts. This piece of code will produce the output 5 followed by a blank line.
You will now define the class Sample:

class Sample
def samp
puts "This is sample code"
end
end

How will you pass parameters to the method? To do this, you declare the
function with a local variable.

You have learned how to declare methods. For your case study, you will
declare two methods, displayDetails and total_no_of_customers.
The displayDetails method will display the details of the customer
while the total_no_of_customers method will display the total num-
ber of customers at Knowledge, Inc.

class Customer

@@no_of_customers=0

def initialize(id, name, addr)
@Qcust_id=id
@cust_name=name
@cust_addr=addr

end

def displayDetails()
puts "Customer id #@cust_id"
puts "Customer name #@cust_name"
puts "Customer address #@cust_addr"
end
def total_no_of_customers ()
@@no_of_customers += 1
puts "Total number of customers: #@@no_of_ customers"
end
end

The displayDetails method contains three puts statements display-
ing the Customer ID, the Customer name, and the Customer address. The
puts statement

puts "Customer id #@cust_id"

will display the text Customer id followed by the value of the variable
@cust_idin asingle line. When you want to display the text and the value
of the instance variable in a single line, you need to precede the variable

Ruby — A Pure Object-Oriented Language

25

name with the hash symbol (#) in the puts statement. The text and the
instance variable along with the hash symbol (#) should be enclosed in
double quotation marks.

The second method, total_no_of customers, is a method that con-
tains the class variable @@no_of_customers. The expression @@no_of_
customers+=1 adds 1 to the variable no_of_customers each time the
method total_no_of_customers is called. In this way, you will always
have the total number of customers in the class variable.

Create Two Objects of the Customer Class to Check
if the Correct Output Is Displayed

You will now create two objects, cust1 and cust2, for the Customer class.

custl=Customer.new("0001", "Valerie", "22, New State road, Atlanta")
cust2=Customer.new("0002", "Esmer", "10, New Empire road, Texas")

Here, we create two objects of the Customer class as cust1 and cust2
and pass the necessary parameters with the new method. The initial-
ize method is invoked, and the necessary properties of the object are
initialized.

Once the objects are created, you need to call the methods of the class by
using the two objects. If you want to call a method or any data member,
you write the following;:

custl.displayDetails ()
custl.total_no_of_customers/()

The object name should always be followed by a dot, which is in turn fol-
lowed by the method name or any data member. We have seen how to call
the two methods by using the cust1 object. Using the the cust2 object,
you can call both methods as shown below:

cust2.displayDetails ()
cust2.total_no_of_customers()

Save and Execute the Code

It is always better to use Notepad or Editpad while working in Windows.
After writing the code, save the file as the Customer.rb file. To execute the
code, type Ruby Customer.rb at the command prompt. (See Figure 2.1.)

26 Chapter 2

C:\Ruby>ruby Customer.rb

Customer id 0001

Customer name Valerie

Customer address Z2, New state road, Atlanta
Total number of customers : 1

Customer id 0002

Customer name Esmer

Customer address 10, New Empire road, Texas
Total number of customers : 2

Figure 2.1 The case study example.

Inheritance

The concept of inheritance makes object-oriented programming language
closer to reality. In the real world, features are handed down from one gen-
eration to another. In the same way, in object orientation, one class inherits
features from its parent class. This parent class can be called super class
or base class. The inherited class will be called the child class. What
do you understand by the statement that features are inherited by one class
from another class? This means that each data member of the parent class
becomes a data member of the child class. A child class, in addition, can
have its own data members. This will be explained with an example.

For example, every animal has certain common characteristics, such as
eyes, legs, ears, and tail. However, does this mean that all animals are the
same? The answer is no. You know that there are animals that differ mas-
sively in food habits. Even birds and human beings are closely related to
the animals. They can also be classified as animals. Therefore, all the ani-
mals have certain characteristics that are common and certain characteris-
tics that are special. Animals are the super class and the different kinds of
animals are the child class. You will learn how to implement inheritance in
Ruby. For example, take the sample code as shown below.

class Vehicle
def driving
puts "Every vehicle can drive"
end
end
class Plane < Vehicle
def flying
puts "Only planes can fly"
end
end
objPlane=Plane.new
objPlane.driving
objPlane.flying

Ruby — A Pure Object-Oriented Language 27

The vehicle class consists of the method driving, and the Plane
class shows the method £1ying. If you want to make the Plane class as a
child class of the Vehicle class, then write as follows:

Child class < Parent class

In the above example it will become:

Class Plane < Vehicle

As a result, you can even call the driving method by using a Plane
object. This is despite the fact that the method does not belong to the P1ane
class. This is called the power of inheritance, which eliminates data redun-
dancy to a great extent.

There is another important concept in object orientation, called access
control.

Access Control

It is very important to determine how much class you want to expose to
the outside world. What do you mean exactly by exposing a class? Each
class has data members in the form of variables and methods. In object
orientation, you can restrict the access to these data members from outside
the class by specifying access controls. In Ruby, you have three types of
access controls: public, private, and protected. What is the differ-
ence between public, private, and protected access controls? When
you specify a data member as public, this particular data member can be
accessed from outside the class. By default, all the data members in Ruby
are public except the initialize method. The initialize method is
always private.

When you make a data member in a class as protected, that particular
data member can be accessed only by those classes that inherit from this
class. This implies that only the child classes can access the protected data
members of the parent class. The rest of the world cannot access it. Now,
private, as the name suggests, is private to the class. This particular data
member can be accessed only from within the class. Not even the child
classes can access the private data members of their parent. Now, you will
see how to create these access controls in Ruby. Consider a class:

class Car
def methodl
end

28 Chapter 2

This method1 by default is public. You can even write as:

Class Car
public
def methodl
end

end

To declare a protected or private member, replace the keyword public
with an appropriate access control.

class Car
protected
def methodl
end

end

This will make methodl protected. You have seen how to declare one
data member as protected. How will you make three data members in a
class protected?

class Car

protected
def methodl
end

protected
def method2
end

protected
def method3
end

end

The above method becomes a little tedious if there are large numbers of
data members in your class. Here, Ruby helps you by allowing you to
declare the access specifier only once. All the data members following this
particular data member will have the same level of access. You will declare
the above class in a different way.

class Car
protected
def methodl
end

def method2

Ruby — A Pure Object-Oriented Language

29

end

def method3
end
end

Now, if you declare your class in this way, all three methods become pro-
tected. The method methodl is declared as protected. All the data members
following this method will become protected unless stated otherwise. You
will now see one more example to make the preceding statement clear.

Consider that you want to declare a class with three protected meth-
ods, two private methods, and one public method. See how Ruby
makes this simpler for you.

You will first declare the public method, followed by two private
methods, and then the last three protected methods.

class Car
def methodl
end
private
def method2
end
def method3
end
protected
def method4
end
def method5
end
def method6
end

end

In the above example, you use all three access specifiers. Before methodl
no access specifier is mentioned. Hence, by default, it becomes a public
member. A private access specifier is mentioned before method2. This
method, therefore, becomes a private method. Now, all the methods follow-
ing this method will be private unless stated otherwise. Before method3,
there is no access specifier. Hence, method3 also becomes private. Now
before method4, the protected access specifier is mentioned. Hence,
method4 becomes protected. Now, all the methods following method4
will be protected unless stated otherwise. Before method5 and methods,
there are no access specifiers mentioned. Hence, method5 and method6
become protected.

You will now look at implementing inheritance in your case study.

30

Chapter 2

D

Problem Statement

Knowledge, Inc. needs to keep track of the number of times a particular
customer has visited its site and the total amount of purchases he has made
to date. The transaction details should be displayed with the customer
details.

Let us look at the tasks to solve the problem.

Task List

1 Create a child class Transaction of the parent class Customer
and declare the initialize method.

v (Call the relevant methods for displaying the customer details and
the transaction details.

v Save and execute the code.

Create a Child Class Called Transaction
of the Parent Class Customer

Result

You will first display the class Customer. Then, you will create the
Transaction class. The Transaction class will inherit all the features
of the Customer class.

class Customer
@@no_of_customers=0

def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr

end

def displayDetails()
puts "Customer id #@cust_id"
puts "Customer name #@cust_name"
puts "Customer address #@cust_addr"
end

def total_no_of_customers()
@@no_of_customers += 1
puts "Total number of customers: #@E@no_of_ customers"
end
end

Ruby — A Pure Object-Oriented Language

31

This is the Customer class, which you created earlier. Now, you will cre-
ate the Transaction class.

class Transaction < Customer
def initialize(id, name, addr, no_of_times, amount)
super (id, name, addr)
@no_of_times=no_of_times
@amount=amount
end
def tranDetails()
puts "Number of times you have visited is #@no_of_times"
puts "Total purchases at this site made by you: #@amount"
end
end

The above statement class Transaction < Customer clearly states that
the Transaction class is a child class of the Customer class. If you look
at the initialize method of this class, you will see that the three parameters
id, name, and addr that are passed to it are the same as those passed to the
initialize method of the Customer class. Therefore, the best thing
would be to pass these three variables to the Customer class. Thereisa
method called super, which allows you to do that. You can call the super
method with the parameters you want to pass. This super method will in
turn invoke the initialize method of the Customer class. The other
two local variables no_of_times and amount would be stored in the
instance variables in this class itself. The tranDetails method displays
the number of times the customer has visited the site and the total amount
of purchases made by the customer at the site.

Call the Relevant Methods for Displaying the Customer
Details as Well as the Transaction Details

Result

You will first create the two objects of the class Transaction by using the
new method.

custl_tran=Transaction.new("0001", "Valerie", "22, New State road,
Atlanta", 5, 500)
cust2_tran=Transaction.new("0002", "Esmer", "10, New Empire road,

Texas", 10, 400)

Now, the displayDetails method is also available to the Transaction
class object. Because you need to display the Customer ID, the Customer
name, the Customer address, the number of times the customer has visited

32

Chapter 2

the site, and the total amount of purchases made, you call both methods,
displayDetails and tranDetails, by using the custl_ tran and
cust2_tran objects.

custl_tran.displayDetails()
custl_tran.tranDetails ()
cust2_tran.displayDetails ()
cust2_tran.tranDetails ()

Save and Execute the Code

Save the file as a Transaction.rb file. To execute the code, type Ruby
Transaction.rb at the command prompt. (See Figure 2.2.)

Until now, you have seen examples of single inheritance. However,
everything in the real world cannot be explained on the basis of single
inheritance. A class does not necessarily inherit all its features from one
parent class only. For example, computers can be considered as an electronic
device as well as a machine. In such situations, the child class will have more
than one parent class. Such a feature is called multiple inheritance. Not all
object-oriented programming languages support multiple inheritance. The
language C++ directly supports multiple inheritance. Java does not support
multiple inheritance directly but shows multiple inheritance partially by
using interfaces. Similarly, Ruby also does not support multiple inheritance
directly but shows multiple inheritance partially by using mixins. You will
learn more about mixins later.

C:\Ruby>ruby Transaction.rb

Customer id 0001

Customer name Valerie

Customer address 22, New state road, Atlanta
Mumber of times wou have visited is 5

Total purchases at this site made by wyou: 500
Customer id 0002

Customer name Esmer

Customer address 10, New Empire road, Texas
HNumber of times wou have visited is 10

Total purchases at this site made by wvou: 400

Figure 2.2 The case study example.

Ruby — A Pure Object-Oriented Language 33

Summary

In this chapter, you learned:

The need for object orientation.
You were introduced to classes and objects.

You learned that the features of object orientation are data encapsu-
lation, data abstraction, inheritance, and polymorphism.

The different types of variables are local, global, class, and instance.
You can create an object by using the new method.

You can also create an object by using the new method with
parameters.

Finally, you learned about access control in Ruby by using private,
protected, and public.

Programming Basics

OBJECTIVES

In this chapter you will learn:
v~ To assign different data types to variables
v~ To declare arrays and hashes in Ruby

+ To use ranges

Getting Started

Programming is all about data manipulation or actually playing with data.
What does the term programming actually mean? In a broader sense, pro-
gramming is nothing but copying or transferring selected data from one
location to another. For example, transferring data from a Web site to a
database is one type of programming. Today, programming deals more
with displaying data in a particular format. This is the reason why there is
a concept of front end and back end. For example, a computer game dis-
plays graphics in a particular manner within a specified time interval, giv-
ing the effect of animation. Similarly, network programming is concerned

35

36

Chapter 3

with transferring data over the network or virus programming, which
involves writing code for deleting data and replacing it with junk data.

In programming, you often need to access memory either directly or
indirectly. Some programming languages, such as C and C++, allow you to
access memory directly, whereas other programming languages, such as
Visual Basic and Java, do not. One common aspect across all programming
languages is the use of variables to store data in memory. Therefore, vari-
ables play a big role in any form of programming.

What are variables? Variables are reserved memory locations. This means
that when you declare a variable, what you actually do is reserve some
space in memory. Who decides how much memory is to be reserved and
what should be stored in this memory? These decisions are made by
assigning data types to variables. Based on the data type of the variable,
the compiler allocates memory and also decides what can be stored in
reserved memory. Therefore, by assigning different data types to variables,
you can store integers, decimals, or characters in these variables. Consider
another situation in which you need to store a large amount of related data.
One method is to declare multiple variables and then recall the names of all
these variables. A simpler method is to use arrays or hashes in Ruby.

In this chapter you will learn how to use variables, arrays, and hashes in
Ruby by using the Knowledge, Inc., case study. You will store and display
customer details by using different variables. You also will learn to use
arrays and hashes to store all the information about customers. Finally, you
will learn about ranges and the various methods supported by ranges.

Datatypes

Problem Statement

Anya buys two fiction books, Beyond 2020 and The Arrival of Doomsday. She
also buys a book, Mastering Ruby. Beyond 2020 costs $55.80, The Arrival
of Doomsday costs $25, and Mastering Ruby costs $44.20. You need to calcu-
late the total amount Anya has to pay Knowledge, Inc. You also need to
display the details of the purchases that Anya made. The details include
the names of the books, their prices, and the total amount. After displaying
all the details, you need to show the messages “Goodbye Anya” and
“Thanks for Purchasing Online.”

Programming Basics

37

Task List

v+ Declare the variables to store the details.
1 Wirite the code to display the details.

v~ Save and execute the code.

v \Verify the output.

Declare the Variables to Store the Details

The names of books consist of characters, and the prices of books consist of
numbers. Let us examine how Ruby handles numbers and characters.

Numbers

The entire set of numbers can always be divided into two, integers and
decimals. In the area of programming, decimals are also termed floats. In
Ruby, every integer is stored as an object either of the class Fixnum or the
class Bignum. The question that arises next is, When is a number stored as
a Fixnum and when is it stored as a Bignum? The answer is whenever a
number is within the range -2 and 2% - 1, then it is stored as an object of
the class Fixnum. Whenever a number is beyond this range, it is stored as
an object of the class Bignum. Therefore, the classes Bignum and Fixnum
are related to integers. All decimal numbers are stored as objects of
the class Float. You can find out the datatype of a particular number by
calling the method type. Consider the following examples:

Example 1:

a=>5
puts a.type

The output of this code is Fixnum.

Example 2:

a = 5.888
puts a.type

The output of this code is Float.

Example 3:

a = 9999999999
puts a.type

The output of this code is Bignum.

38

Chapter 3

The number 9999999999 is not in the range -2 and 2% -1. Therefore,
this number is stored as an object of the class Bignum.

Strings

The character handling in Ruby is done by using strings. A string is nothing
but a group of characters. In Ruby, a string is always stored as an object of
the class String. Strings are always enclosed within delimiters. Ruby sup-
ports both single and double quotes as delimiters. Two other types of
delimiters that are supported by Ruby are $g and $0. When using $q or
%Q, the character following $g or $Q becomes the delimiter.

Consider the following examples:

Example 1:
c=%g(hello world)

Here the parentheses are the delimiters. Therefore, the variable ¢
contains the string hello world.

Example 2:
c=%Q hello world

Here the space becomes the delimiter. Therefore, the variable ¢
contains only hello because %0 is followed by a space. In addition,
a space after the word hello causes the string to be stored in c as
hello.

Example 3:
c=%ghelloworldh

Here the delimiter becomes the letter h, and the variable ¢ contains
all the characters in the string until the letter h is reached again.
Therefore, the variable ¢ contains elloworld. The letter h is
ignored because it is the delimiter.

In the case study you will store the names and prices of the books in vari-
ables. You declare the variables as shown below:

fiction_bookl="Beyond 2020"
fiction_book2="The Arrival of Doomsday"
computer_bookl="Mastering Ruby"
cost_bookl1=55.80

cost_book2=25.00

cost_book3=44.20

Programming Basics

39

You also declare a variable that stores the total amount for all the books:

total_cost = cost_bookl+cost_book2+cost_book3

Because you need to display the user name, Anya, you declare a string
variable to store the name:

name="Anya"

You also need to declare two string variables to store the text Goodbye
Anya and Thanks for Purchasing Online:

textl="Goodbye Anya"
text2="Thanks for Purchasing Online"

Here you use double quotes as the string delimiter.

Write the Code to Display the Details

Let us look at the code to display the customer name, the details of the
books, and the total amount of the sale:

puts "Name : #{name}"

puts "Book Name: #{fiction_bookl}"+" "+"Cost of the bookl:
#{cost_bookl}"

puts "Book Name: #{fiction_book2}"+" "+"Cost of the book2:
#{cost_book2}"

puts "Book Name: #{computer_bookl}"+" "+"Cost of the book3:

#{cost_book3}"
puts "Total cost of the purchases: #{total cost}"

You can see how the puts statement is used differently. Let us consider
the first statement:

puts "Name : #{name}"

You use the puts statement as shown here when you want the text and
the value of the variable in the same line. The output of this puts state-
ment is:

Name : Anya

To get this output, you first write the text and then the hash (#) symbol
followed by the variable name in curly braces. One thing you need to

40

Chapter 3

ensure is that the text along with the variable name is enclosed in double
quotes. Now consider the second puts statement:

puts "Book Name: #{fiction_bookl}"+" "+"Cost of the bookl:
#{cost_bookl}"

Here you use the plus (+) operator if you want to concatenate strings. In
the preceding statement, we concatenated the book name, three spaces,
and the cost of the book.

To display the text Goodbye Anya and Thanks for Purchasing
Online, you can write:

puts textl
puts text2

Verify the Output

Verify that all the values are displayed correctly and are in the proper for-
mat. Figure 3.1 shows the output.

Arrays, Hashes, and Ranges

Arrays

When you declare a variable, you reserve a memory location. However, for
situations in which you need to store a large amount of related data, you
use arrays. This helps to reduce the number of variable names you need to
remember because all the memory locations belonging to an array can be

C:\Ruby»rruby Customer_ anya.rb

Name : Anva

Book Name: Beyond Z0Z0 Cost of the bookl: 55.8

Book Mame: The arrival of the Doomsday Cost of the bookZ: Z2Z5.0
Book Name: Mastering Ruby Cost of the book3: 44.2

Total cost of the purchases: 125.0

Goodbye Anva

Thanks for Purchasing Online

Figure 3.1 The screen output.

Programming Basics

41

referenced by one name. How do you then differentiate one memory loca-
tion from another? To access the individual elements of the array, you use
an integer as the key. In Ruby, an array can contain a mixture of strings and
numbers. Let us look at different ways to declare an array:

sample = ['Cat', 'Cow', 'Mouse']

We declared an array sample containing three elements: Cat, Cow, and
Mouse. The elements of the array should always be enclosed in square
brackets. Each element of the array should be separated by a comma. If
you want to remove the commas and quotes, you can use the following
statement:

sample = %w[Cat Cow Mouse]

You can even have an array containing a mixture of both strings and
numbers as elements:

sample = [1,2,3, 'Ken']

Ruby is a pure object-oriented language. Therefore, even an array is a
class. The class Array supports many methods, which are predefined in
the Ruby library. Let us look at some of them.

The Method new

You can create an array by using the method new of the class Array. This
is another method of creating an array:

sample = Array.new

After the array is created, you need to assign elements to the array. This
can be done as shown below:

sample[0]="Cat"

sample[l]="Cow"
sample[2]="Mouse"

The first element in the array always has the index value of zero. There-
fore, sample[0] refers to the first element of that array:

sample[0]="Cat"

42

Chapter 3

Here Cat is stored as the first element of the array:

sample[l]="Cow"
sample[2]="Mouse"

Using the preceding statements, Cow and Mouse become the second and
third elements of the array, respectively.

The Method type
The method type displays the datatype of the variable:

puts sample.type

The output of this code is Array.

The Method length

The method length gives the number of elements in the array. Consider
the following statement:

puts sample.length

The output is 3.

Hashes

Hashes are similar to arrays. In a hash, you declare two sets of elements.
One set of elements is called keys, and the other set is called values. Using the
keys, you can access the values in a hash. Therefore, you access the array
elements by using integers, and you access the hash elements by using key
elements. You will learn how to access hash elements later.

Ranges

A range is a series of numbers. The range of numbers from 20 to 25 includes
20,21, 22,23, 24, and 25. When you refer to the financial year of the company,
it actually ranges within one year. Therefore, a range can be used in every-
thing right from numbers, days, months, and years. Ruby also supports
ranges in its own way. There are two types of range operators. One is a two-
dot operator (. .), and the other is a three-dot operator (. . .). When do you
use the two-dot operator, and when do you use the three-dot operator?

Programming Basics 43

Let us see some examples. Suppose that you want a range of numbers
between 1 and 100 with both 1 and 100 inclusive. You use the two-dot oper-
ator. You define:

rangel = 1..100

Now the variable rangel will contain all the numbers between 1 and
100, both inclusive. The variable rangel actually becomes an array.

In a similar manner, you also can define the range using the three-dot
operator:

range2 = 1...100

However, here the range2 variable will hold all the values between
1 and 100, except the higher value, 100.

There are certain functions, such as max, min, and include, that you
can use with these ranges. Let us see how to use these functions.
The max Function

As the name suggests, this function gives the highest number in the range:

puts rangel.max

The output of this code is 100.

The min Function
As the name suggests, this function gives the lowest number in the range:

puts rangel.min

The output of this codeis 1.

The include Function

The include function can be used to check whether a particular number
is within a range or not. The include function always will return a true
or false. For example:

rangel.include? (6)

This code returns true because rangel contains numbers from 1 to 100.

44

Chapter 3

You saw how different functions are used with a range. What if you want
to display the full range in the form of a list? Here you will use another
function, to a.

The to a Method

rangel = 1..100
puts rangel.to_a

This code outputs the values 1 to 100 in a sequence as a list form. Or you
can directly write:

rangel = (1..100).to_a
puts rangel

Problem Statement

The Sales Department of Knowledge, Inc., needs the daily sales report from
the Web site for Thursday. On that day, five customers purchased books.
You need to display the names of these customers. You also need to display
the total purchases made by each of these customers. The names of the cus-
tomers and the total purchases made are given in Table 3.1.

Task List

Declare an array to store all the customer names.

Write the code to display the customer names.

Declare a hash of customers with the customer names as the key.
Write the code to display the customer details.

Save and execute the code.

Verify the details.

L W W W W A

Table 3.1 The Sample Input

CUSTOMER NAMES TOTAL PURCHASES

Ken $234

William $200
Catherine $124.30
Steve $148.30

Mark $175

Programming Basics

45

Declare an Array to Store All the Customer Names

You can declare an array by any of the methods discussed earlier. You will
name the array customer_array.

customer_array = ['Ken', 'William', 'Catherine', 'Steve', 'Mark']

Write the Code to Display the Customer Names

To access the elements of the array customer_array, you can write the
following code:

puts customer_array[0]
puts customer_arrayl[l]
puts customer_arrayl[2]
puts customer_arrayl[3]
puts customer_arrayl[4]

This provides all five elements of the array. You also can access the ele-
ments of the array by using negative values:

puts customer_arrayl[-5]
puts customer_array[-4]
puts customer_array[-3]
puts customer_array[-2]
puts Customer_array[-1]

The zeroth element maps to the -5 element, the first element maps to the
-4 element, and so on.

Declare a Hash of Customers with
Customer Names as the Key

Let’s look at how to declare a hash:

Customer_hash = {
'Ken' => 234,
'William' => 200,
'Catherine' => 124.30,
'Steve' => 148.30,
'Mark' => 175

}

customer_hash has five elements. The customer names become the
key. Just as in an array, you can use an integer as the key to access the array

46

Chapter 3

elements. Here you use the customer names as the key to access the total

purchases made. While declaring the hash, you need to map the key ele-

ments you want to access using the => (equal to and greater than) operator.
You can map the user Mark with 175 using the following statement:

'Mark'=>175

One more important point you need to remember is that a hash can be
used only with curly braces ({ }) and not with square brackets ([]).

Write the Code to Display the Customer Details

Ken']
William']

puts customer hash['
[

puts customer hash['Catherine']
[
[

puts customer hash

Steve']
Mark']

puts customer hash
puts customer hash

Save and Execute the Code

Save the code as customer details.rb, and then execute the code from
the command prompt.

Verify the Details

Verify whether all the values are displayed correctly and are in the proper
format.

Summary

In this chapter you learned that:

m Integers are stored as objects of class Fixnum or Bignum.

m Decimals are stored as objects of class Float and characters are
stored as objects of class String.

m Arrays are groups of continuous memory locations with a single
name.

Programming Basics

47

m Array elements can be accessed by using an integer as the key.
m Hashes are similar to arrays and that hashes use two sets of elements.

m One set of hash elements is called a key and the other set is called a
value.

Using these key elements, you can access the value elements. Ranges can
be useful, as can the various methods supported by ranges.

Control Structures,
Blocks, and Expressions

OBJECTIVES

In this chapter you will learn to:
1+~ Use control structures
v Understand and implement blocks and iterators

v Use regular expressions

Getting Started

Decision making is one of the key aspects you need to consider in pro-
gramming. It is possible that your code may have two or more conditions
specified. In such a situation, your code should be programmed to carry
out the correct steps depending on the conditions satisfied. In most of the
programming languages, you can write decision-making statements by
using if..else statements. Only the syntax changes in different pro-
gramming languages. You will learn to write 1f..else statements in
Ruby. Now consider a different situation in which you want to display all

49

50

Chapter 4

the elements of an array. If the array has 100 elements, then you need to
write the puts statement 100 times. This amounts to a lot of unnecessary
and unwanted code. Programming languages provide looping structures
that help you to tackle such situations. You will learn about two looping
structures in Ruby, the while loop and the for loop.

Nowadays, systems are highly automated and are complicated to create.
The code that makes up these systems runs into a huge number of lines.
Therefore, it has become important to create well-structured code. What
happens if one of the programmers constructing a particular code sud-
denly quits the company? Unless the code has meaningful variables and
functions that are defined and is structured properly, a new programmer
will have a lot of difficulty understanding the code. Most of the program-
ming languages include functionality with which you can structure code.
Ruby provides blocks to structure code.

One of the ways to access array (or hash) elements is to use looping
structures such as the while loop and the for loop. Another way to access
the elements of an array or a hash is by using iterators. Iterators are special
methods that can be used to access elements one by one. In this chapter
you will learn about the different iterators used in Ruby.

You learned about strings in Chapter 3. Strings consist of a group of
characters in a particular sequence or pattern. These characters can be any
letter from a through z or from A through Z or can be any digit from 0
through 9. These characters also can be any of the special characters, such
as{,}, ()% & " #$, |, or \. What if you want to find a particular charac-
ter or sequence of characters in a string? For example, you may have a
string, Hello Everybody. Good Morning! Today is 22nd
December (Tuesday). Now this string consists of nine words: Hello,
Everybody, Good, Morning, Today, is, 22nd, December, and Tues-
day. The string also consists of special characters, such as a period (.), a
space, an exclamation mark (!), and parentheses (()). Suppose that you
want to find the word body in this string. Then you need to specify the
word body in between two slashes — /body/— and then compare it with
the string by using any of the conditional statements. This word becomes a
regular expression. Therefore, you can define a regqular expression as a
sequence of characters or a pattern of characters found in a string. Regular
expressions are always enclosed within two slashes.

Control Structures

We can implement control structures in Ruby by using the if. .else,
while, and for statements.

Control Structures, Blocks, and Expressions

The if . . else Loop

Unlike other programming languages, which use braces in if..else
statements, Ruby uses the keyword end. Let’s see how to implement it:

if Condition 1
Statement 1
Statement 2

else
Statement 3
Statement 4

end

Going by this syntax, if condition 1 is satisfied, then statement 1
and statement 2 are executed. If condition 1 becomes false, then
statement 3 and statement 4 areexecuted. You always terminate the
if statement by using the keyword end. There is also another type of if
statement. Thisisthe if. . .elsif. . .else statement:

if Condition 1
Statement 1
Statement 2

elsif Condition 2
Statement 3
Statement 4

else
Statement 5
Statement 6

end

If Condition 1 is not true, then control goes to the elsif statement. If
Condition 2 isalsonotsatisfied, then control goes to the else statement.
We will look at samples of codes for both types of statements:

count = 10
if count==10

puts "Count is equal to 10"
else

puts "Count is not equal to 10"
end

In this example, the condition is whether the count variable is equal to 10
or not. Here you can see that there are two types of equals operators being
used. One is single equals (=), and the other is double equals (==). The sin-
gle equals operator is an assignment operator. The assignment operator
assigns a value to a variable. Therefore:

52

Chapter 4

count = 10

assigns the value 10 to the variable count.
The double equals (==) operator is always used in conditional state-
ments to check the condition. Therefore:

count == 10

checks whether or not the count variable has the value 10.
Let’s see the code forthe 1 f. .elsif. .else statement:

if count<10

puts "Count is less than 10"
elsif count>=10 and count<=100

puts "Count is between 10 and 100"
else

puts "Count is greater than 100"
end

In this code, you check whether the value of count is less than 10,
between 10 and 100, or greater than 100. The condition of less than 10 is
checked by using the lesser than (<) operator. The condition of between 10
and 100 is checked by using two condition statements joined by the key-
word and. One of the two condition statements checks for greater than or
equal to 10 by using the greater than or equal to (>=) operator, and the
other checks for lesser than or equal to 100 by using the lesser than or equal
to (<=) operator. Only when both the conditions are true is the statement
puts "Count is between 10 and 100" executed. Even if one of the
conditions is false, then control goes to the else statement, and then puts
"Count is greater than 100" is executed.

There is another way in which you can represent an i f statement. Let us
check out how to write a simple code both ways:

First method:

count = 10
if count==10

puts "Count is equal to 10"
else

puts "Count is not equal to 10"
end

The same code can be written in the second method as follows:

count = 10
if count==10 then puts "Count is equal to 10" else puts "Count is not
equal to 10" end

Control Structures, Blocks, and Expressions

53

In the second method, you can write the entire i f else statement in one
line as a sentence. The only thing you need to remember is you should add
the then keyword.

.m In the first method you can also use the then keyword but it is optional.

There is one more control structure, unless, which is similar to the 1 f
statement. The unless statement also uses the optional else like the 1 f
statement. Let us check out a sample code.

count = 10

unless count==10

puts "Count is not equal to 10"
else

puts "Count is equal to 10"

end

The output of this code is:

Count is equal to 10

From the above code, you can infer that the if and unless statements
work exactly the same way.

The while Loop

Loops are used when you want to execute a piece of code repeatedly. If you
want to display an asterisk five times, then write puts "*" five times.
However, you can do the same by using a while loop, as shown below:

1=0

while i<5
puts "*"
i=i+l

end

This displays the output * five times in different lines on the screen.
Therefore, the while loop syntax is:

while condition
statement 1
statement 2
end

54

Chapter 4

All the statements between the statement while condition and the
keyword end become the while loop.

Let’s look at the code in detail. First, you initialize a counter i1=0.Then
you come to the while loop. Thewhile loop has a condition that checks
whether i is less than 5. Only when this condition is satisfied are the state-
ments in the while loop executed.

Because 1=0, the condition i<5 becomes true, and the statements in the
while loop are executed. The last statement in the while loop is:

i=i+1

This statement increases the value of the counter 1 by one. Then the con-
dition is checked again. Because i=1, the condition i<5 again becomes
true. Then the counter is again increased by one, and the condition is
checked. This continues until the counter reaches the value 5. When the
value of the counter becomes 5, the condition 1<5 becomes false, and the
control comes out of the while loop.

This is how the while loop is implemented in most of the programming
languages, including Ruby. However, with Ruby things can always be
done in a better and easier manner. The preceding four statements of the
while loop can be represented in a single line as follows:

5.times{puts "*"}

Wow! Such a simple syntax! This is plain English. Just looking at the
statement you know what will be the output.

The for Loop
To use the for loop in Ruby, you need to define a range; that is:
for i in 0..10

puts "%k n
end

Here we have defined the range 0. . 10. The statement for i in 0..10
will allow i to take values in the range from 0 to 10 (including 10). And
even the for loop also is terminated with the keyword end.

Problem Statement

The customer names of Knowledge, Inc., are stored in an array,
Customer_array. A hash, Customer_hash, stores the names of cus-
tomers as the key and the types of books they are interested in as the values.

Control Structures, Blocks, and Expressions

55

Management is planning to introduce some more fiction books in the store.
Therefore, it needs to know the names of customers who have purchased
fiction books in the past. You need to store the names of these customers in
a separate array. Table 4.1 shows such an array.

Task List

Identify the array and hash of customers.

Write the code to store the names of customers.

Write the code to display the elements of the new array.
Save and execute the code.

A W WA

Identify the Array and Hash of Customers

You will declare an array, Customer_array, to store the customers’
names and a hash, Customer hash, to store the customers’ names and
their choices of books:

customer_array = ['Ken',6 'William', 'Catherine', 'Mark', 'Steve', 'Sam']
customer_hash = {

'Ken' => 'Fiction',

'William' => 'Mystery',

'Catherine' => 'Computer',

'Mark' => 'Fiction',

'Steve' => 'Sports',

'Sam' => 'Fiction'

Table 4.1 Customer Array

CUSTOMER NAMES TYPE OF BOOKS

Ken Fiction
William Mystery
Catherine Computer
Mark Fiction
Steve Sports

Sam Fiction

56

Chapter 4

Write the Code to Store the Names of Customers

You will first declare a new array:

customer_array2= Array.new

You will display the names of customers who are interested in fiction
books and store the names in a separate array:

j=0
for i in 0...customer_array.length
if customer_hash[customer_array[i]]=='Fiction'

puts "#{customer_array[i]} has brought fiction books"
customer_array2[jl=customer_array[i]
j=3+1

end

end

You have two arrays, customer_array and customer_array2. The
customer_array?2 array stores the names of all customers who are inter-
ested in fiction books. You need to use two counters, 1 and j. The variable
i is the counter for customer_array, and j is the counter for cus-
tomer_array?2. As stated earlier, the hash customer_ hash has cus-
tomers’ names as the key and the types of books as its values. Therefore, in
the if statement, that is:

if customer_hash|[customer_array[i]]=='Fiction'

the elements of the array customer_array become the key for the hash
customer_hash. Then, for each array element, the value of the hash is
checked. If the value is Fiction, then the corresponding customer name
is displayed on the screen and also stored in the new array, customer
array?.

Write the Code to Display the Elements of the New Array

i=0

while 1 < customer_array?2.length
puts "The customers of fiction books are #{customer_array2[i]}"
i=i+1

end

This code displays the elements of the new array.

Control Structures, Blocks, and Expressions

57

D:\Wiley\Codes>ruby looping.rb

Ken has bought fiction books

Mark has bought fiction books

Sam has bought fiction books

The customers of fiction books are Ken
The customers of fiction boocks are Mark
The customers of fiction books are Sam

Figure 4.1 The screen output.

Save and Execute the Code

Save the code as 1ooping.rb, and execute it at the command prompt.

Verify the Output

Verify whether the elements of the new array have all customer names
belonging to the Fiction category (Figure 4.1).

Blocks and Regular Expressions

You use blocks mainly to structure programs. A block consists of chunks of
code. You assign a name to a block. The code in the block is always
enclosed within braces ({}). A block is always invoked from a function
with the same name as that of the block. This means that if you have a
block with the name test, then you use the function test to invoke this
block. You invoke a block by using the yield statement. You will learn to
invoke a block by using a simple yield statement. You will also learn to
use a yield statement with parameters for invoking a block. You will
check the sample code with both types of yield statements.

The yield Statement

Let’s look at an example of the yield statement:

def test
puts "You are in the method"
yield
puts "You are again back to the method"
yield
end
test {puts "You are in the block"}

58

Chapter 4

The output of this code is:

You are in the method
You are in the block
You are again back to the method
You are in the block

The code consists of a method called test that invokes the block test.
Both the method name and the block name should be the same. First, the
statementputs "You are in the method" will be executed. Then the
yvield statement will transfer control from the method to the block. The
block, which consists of only one statement, puts "You are in the
block", will be executed. After this, control is transferred to the next state-
ment (the statement following the yield statement) in the method.
Finally, control is transferred back to the block because there is another
yield statement.

Passing Parameters with the yield Statement

You also can pass parameters with the yield statement. Let’s look at how:

def test
yvield 5
puts "You are in the method test"
yvield 100

end

test {|i| puts "You are in the block #{i}"}

The output of this code will be:

You are in the block 5
You are in the method test
You are in the block 100

In the preceding code, the yield statement is written followed by para-
meters. You can even pass more than one parameter. In the block, you place
a variable between two vertical lines (| |) to accept the parameters. There-
fore, in the preceding code, the yield 5 statement passes the value 5 as a
parameter to the test block. Now look at the following statement:

test {|i| puts "You are in the block #{i}"}

Here the value 5 is received in the variable i. Now observe the following
puts statement:

puts "You are in the block #{i}"

Control Structures, Blocks, and Expressions

The output of this puts statement is:

You are in the block 5

If you want to pass more than one parameters, then the yield state-
ment becomes:

vield a, b

and the block is:

test {|a, b| statement}

The parameters will be separated by commas.

Iterators

Iterators are nothing but methods supported by collections. Objects that
store a group of data members are called collections. In Ruby, arrays and
hashes can be termed collections. Iterators return all the elements of a col-
lection, one after the other. We will be discussing two iterators here, each
and collect. Let’s look at these in detail.

each

The each iterator returns all the elements of an array or a hash. Check the
output of this code:

a=1[1,2,3,4,5]
a.each {| i | puts i}

The output of this code will be

U W N

You always associate the each iterator with a block. It returns each
value of the array, one by one, to the block. The value is stored in the vari-
able i and then displayed on the screen.

60

Chapter 4

collect

The collect iterator returns all the elements of a collection. The collect
method need not always be associated with a block. The collect method
returns the entire collection, regardless of whether it is an array or a hash.
We will first implement the collect method without a block.

a = 1[1,2,3,4,5]
b = Array.new
b = a.collect
puts b

In this code, you have an array, a, that has five elements. You call the
collect method of the array. The output of the method also will be an
array. Therefore, you create another array, b, and store the output of the
collect method of array a in array b. Then you can display array b. This
way you can do copying using the collect method. However, the col-
lect method is not the right way to do copying between arrays. There is
another method called a clone.

a=[1,2,3,4,5]
b = a.clone
puts b

Using the clone method is the actual way of copying between arrays.
Now, let us implement the collect method with a block.

a=1[1,2,3,4,5]
b = a.collect{|x| 10*x}
puts b

You normally use the collect method when you want to do something
with each of the values to get the new array. For example, this code pro-
duces an array b containing 10 times each value in a.

Problem Statement

The names of the customers of Knowledge, Inc., are stored in the array
customer_array. The array elements are as follows:

customer_array = %$w [Anya Ken William Mark Stevel

Demonstrate the use of blocks and iterators and display the names of the
customers.

Control Structures, Blocks, and Expressions

Task List

Write the code for the block to display the array elements.
Demonstrate the use of iterators.

Save and execute the code.

Verify the output.

AW W WA

Write the Code for the Block to Display
the Array Elements

You will declare the array customer_array as a global variable so that
you can access it both inside and outside the methods.

Scustomer_array = $w[Anya Ken William Mark Steve]

Now you declare a method customer_names from which you can call
the block by using the yield statement. The code will be as follows:

Scustomer_array = $w[Anya Ken William Mark Steve]
def customer_names

for i in 0...$customer_array.length
yvield S$Scustomer_array[i]

end

end

customer_names { |name| puts "Customer Name: #{name}"}

In this code, the for loop is used to access each element of the array.
From the for loop, the yield statement passes the elements of the array
one by one as parameters to the block. Let’s consider the block now. The
block receives the array elements in the variable name, and the puts
statement outputs the value of this variable. Note that the
customer_array variable is a global variable. Therefore, whenever you
need to refer to this variable, you need to precede the variable with a dol-
lar () sign.

Demonstrate the Use of Iterators

Let’s first use the clone method and copy all the elements of the
customer_array into another array, customer_array2. Then, using
the each iterator, display all the elements of customer_array?2.

customer_array2=$customer_array.clone
customer_arrayZ.each{|name| puts "Customers are #{name}"}

62

Chapter 4

The clone method accesses each element of customer_array and
transfers it to customer_array?2. Then, using the each iterator, you can
access all the elements of customer_array?2.

Save and Execute the Code

Save the code as block. rb, and execute it from the command prompt.

Verify the Output

Verify whether elements of both the arrays are displayed and are the same
(Figure 4.2).
Let’s now look at regular expressions.

Regular Expressions

Before you use regular expressions, you need to understand the various types
of syntax used to represent them. Table 4.2 describes the types of syntax.

Using the conventions noted in Table 4.2, you can form your own regu-
lar expressions and use them to search for a pattern of characters in a
string. Let’s examine some patterns of characters:

Patternl = /Perl/
Pattern2 = /\d\d\s./
Pattern3 = /a*b*c*/
Patternd = /a+bc+/
Pattern5 = /ab?/

D:WWileyhCodes=ruby Block.rb
Customer Name: Anva
Customer Name: Ken
Customer Name: William
Customer Name: Mark
Customer Name: Steve
Customers are Anyva
Customers are Ken
cCustomers are William
Customers are Mark
Customers are Steve

Figure 4.2 The screen output.

Control Structures, Blocks, and Expressions

63

Table 4.2 Syntax for Regular Expressions

SYNTAX WHAT IT STANDS FOR

\d Matches a digit

\s Matches white spaces
Period (.) Matches any character
\w Matches any character that appears in a general word

Patternl is the simplest of all patterns, which consists of the word
Perl. You can use this pattern to find Perl in any string. Pattern2
searches for two digits followed by a space, which is followed by any char-
acter. For example, 55 D and 36 C both fall into Pattern2. Pattern3,
Pattern4, and Pattern5 are a bit different. Notice the three additional
symbols shown here, namely, *, +, and 2. The asterisk character searches
for zero or more occurrences of a character. Therefore, if you specify a*,
then the pattern searches for zero or more occurrences of the letter a. The
plus sign searches for one or more occurrences of a character. Therefore, if
you have a+, then the pattern would look for one or more occurrences of
the letter a. In the same manner, the question mark searches for zero or one
occurrence of a character. Table 4.3 lists our explanations.

Table 4.3 Symbols Used in Patterns

SYMBOL EXPLANATION

* Zero or more occurrences of the character preceding it

+ One or more occurrences of the character preceding it

? Zero or one occurrence of the character preceding it

64

Chapter 4

Therefore, Pattern3 searches for zero or more occurrences of a, which
is followed by zero or more occurrences of b. This, in turn, is either fol-
lowed by zero or additional occurrences of c. Patternd searches for one
or more occurrences of a, which is followed by one occurrence of b, fol-
lowed by one or more occurrences of c. Pattern5 searches for one occur-
rence of a, which is followed by zero or one occurrence of b. You have
learned to create basic patterns. Now you will learn to use these patterns
with conditional statements. The following code will explain this:

str = "The exact time is 11:58PM"
expr = /\d\d:\d\d/
if str=~expr
puts "Pattern found"
else
puts "Search for some other pattern"
end

In this code, you search for a pattern that consists of two digits followed
by a colon and then by two digits. To search for the expression in the string
str, you use the if statement. To compare a string with an expression,
you use the =~ operator. Therefore, you find that to create a regular expres-
sion, you only need to enclose the expression within two slashes. Ruby is a
pure object-oriented programming language. Therefore, even these expres-
sions should be considered as objects, which is true. Every expression that
you create becomes an object of the class Regexp. Therefore, when you
write:

expr = /\d\d:\d\d/

the variable expr becomes an object of the class Regexp. You can check
this by calling the method type of the class:

puts expr.type

This statement will generate the output Regexp.

Because expr is an object, you also can create it using the method new of
its class. This becomes another method of creating a regular expression.

Let’s view both methods together to understand the code:

expr = /\d\d:\d\d/
expr = Regexp.new('\d\d:\d\d")

You have learned about the basics of regular expressions. Now you will
learn about regular expressions in more detail.

Control Structures, Blocks, and Expressions

65

Regular Expressions in Detail

You have learned to use regular expressions. Now, let’s see what
$ variables are.

8 Variables

Whenever you compare a regular expression with a string and a match is
found, Ruby creates a number of variables. Let’s discuss these variables
one by one. The $& variable contains the matched characters of the string.
The $' variable contains all the characters that appear before the match,
and s ' contains all the characters after the match. The $~ variable also con-
tains the matched characters. In addition, there are nine variables—$1
through $9—that hold parts of the match. Let’s learn about the values of
these variables by using the following code:

str = "The exact time is 11:58PM and it is going to be midnight"
expr = Regexp.new (' (\d\d): (\d\d) (..)")
if str=~expr

puts "Pattern found"
else

puts "Search for some other pattern"
end
puts "The characters before the match : #{$ "
puts "The matched characters are: #{S$&}"
puts "The characters after the match are: #{$'}"
puts "The matched characters are: #{S$~}"
puts "The first part of the match is: #{$1}"
puts "The second part of the match is: #{$2}"
puts "The third part of the match is: #{$3}"
puts $4
puts $5

Figure 4.3 shows the output of this code.

D:\Wiley\Codes>ruby $ expr.rb

Pattern found

The characters before the match : The exact time is
The matched characters are: 11:58FM

The characters after the match are: and it 1s going to be midnight
The matched characters are: 11:58PM

The first part of the match is: 11

The second part of the match is: 58

The third part of the match is: FM

nil

nil

Figure 4.3 The output.

66

Chapter 4

As you can see, the first line of output is Pattern found, which indi-
cates that the expression is found in the string. Therefore, Ruby creates a
number of $ variables. The $' variable displays the characters before the
match, thatis, The exact time is.The $& variable outputs the matched
characters, that is, 11:58pm. The $' variable outputs the characters after
the match, thatis, and it is going to be midnight. The $~ vari-
able also outputs the matched characters, 11:58pm. The $1, $2, and $3
variables generate the output consisting of the first, second, and third parts
of the match, respectively. $1, $2, and $3 display 11, 58, and PM, respec-
tively. The $4 variable outputs nil because there is no fourth part to the
match. For the same reason, the output generated by the $5 through $9
variables is also nil.

You may wonder how exactly these parts are created in matched charac-
ters. You can divide an expression into a number of parts by using paren-
theses. The number of parentheses in the expression becomes equal to the
number of parts of the matched characters. Therefore, if you do not have
any parentheses, the value of $1 to $9 variables will be nil.

You have learned about the different variables formed when you match
a regular expression with a string. A variable will become populated with
values only when the expression or that pattern is found in the string.
Otherwise, these variables show the value as nil.

Some More Types of Regular Expressions

What if you want to check whether a particular expression occurs at the
start or end of a string? In such situations, you use the caret sign (*) and the
dollar sign (s). Just precede the expression with the caret sign, and now,
when you compare the expression with the string, Ruby checks for the
expression at the start of the string. In the same way, when you add a dol-
lar sign at the end of the expression, Ruby checks for the occurrence of the
expression at the end of the string. Just as we have the caret and dollar
signs, we also have \2, \Z, and \z. \A is similar to the caret sign. It checks
for the occurrence of the expression at the start of the string. \z and \z
check for the end of the string. However, if the string terminates with \n,
which is a new line character, then \ Z ignores the \n character. \ Z checks
for the occurrence of the expression just before \n. \z always checks for
the end of the string, regardless of how the string is terminated. Let’s see
some examples:

exprl = /\A\d\d/
expr2 = /(.)S$/

Control Structures, Blocks, and Expressions

67

The exprl expression searches for two digits at the start of the string,
and expr2 matches any character at the end of the string. Now how will
you search for a period in a string?

There are certain special characters, such as a plus (+), a hyphen (-), an
asterisk (*), and a period (.). If you want to find these characters in a
string, then you need to precede them with a backslash (\) in your expres-
sion. For example, if you want to find out whether a string ends with a
period or not, write:

exprl = /\./

Just precede the period with a backslash. If you do not include the back-
slash, then Ruby will match the period with any character. The same
applies for all the other special characters.

There also can be one more type of regular expression. In this type, you
can specify an expression in square brackets ([]). How is this different
from other regular expressions that you have seen? When you specify a set
of characters in brackets and compare them with the string, Ruby looks for
a match with any one of the characters in the brackets. For example:

exprl = [abcde]

Ruby will search for one of the characters (a, b, ¢, d, or e) in the string.
The only difference is that in all the previous regular expressions Ruby
searches for a pattern of characters in the string, whereas here it searches
for only a particular character from the series of characters specified in the
brackets. Because the preceding characters a, b, ¢, d, and e are in sequence,
you also can specify the expression as [a-e]. Therefore:

m [A-Z] represents all letters in uppercase.
m [a-z] represents all letters in lowercase.
m [0-9] represents all digits.

In these types of regular expressions, you can use a caret sign ("), but it
has a different meaning;:

m ["A-Z] stands for all other characters except the uppercase letters.
In the same way, you can use the caret sign with lowercase letters
and digits.

m ["A-Za-z] stands for no letters, regardless of whether they are in
uppercase or lowercase.

68 Chapter 4

This regular expression matches only digits or special characters. You
also can specify all the other special characters inside the brackets. Let’s
consider a code sample:

str = "Hello Good Morning!! What is your name?"
exprl=/[1@%"&* () {}:"; '?><@*()]/

if str=~exprl

puts "Special character found"

else

puts "Not found"

end

The output of this code is:

Special character found

The special character found is !. You can include all the special charac-
ters within brackets.

What if you want to check for two patterns in a string simultaneously?
Then you need to specify two patterns separated by a vertical bar (|). Let’s
see how to use this type of regular expression:

str = "Hello Good Morning!! What is your name?"
exprl = /[!@z$%"]|abcd/
if str =~ exprl

puts "Match found"
else

puts "Match not found"
end

Now, in the same expression, you check for two patterns. The two pat-
terns are [1@z$%”] and abcd. Ruby checks for one of these two patterns
in the string str. This vertical bar can be compared with an OR operator.
Only when one of the two patterns is found will the condition become true;
otherwise, it is false. Because str contains the exclamation point (!), the
condition is true, and therefore, the output is Match found.

Object Orientation

Let’s now look at the object-oriented part of regular expressions. As you
already know, every regular expression is actually an object of the class
Regexp. The class Regexp supports a method called match that accepts a
string to be matched as the parameter. If the match is successful, then the
method returns an object of the class MatchData; otherwise, it returns

Control Structures, Blocks, and Expressions

nil. Then you access the values of all the different $ variables using this
MatchData object. Let’s examine how this is done:

exprl=/(\s*) (a+) (b+) (c+)/

ml=exprl.match("The string is abbcccd")

puts "The data type of ml is: #{ml.type}"

puts "The matched characters are: #{ml[0]}"

puts "The first part of the match is: #{ml1[1]}"

puts "The second part of the match is: #{ml[2]}"

puts "The third part of the match is: #{ml1[3]}"

puts "The fourth part of the match is: #{ml[4]}"

puts ml[5]

puts "The characters preceding the match are: #{ml.pre_match}"
puts "The characters after the match are: #{ml.post_match}"

Figure 4.4 shows the output of this code.
As you can see from the output, the datatype of m1 is MatchData. Here:

m ml[0] displays the matched characters, abbccc

m ml.pre_match displays the characters before the match, The
string is

m ml.post_match displays the characters after the match, d
ml [1] displays the first part of the match, (space)

ml [2] displays the second part of the match, a

m1 [3] displays the third part of the match, bb

ml [4] displays the fourth part of the match, ccc

]

ml [5] displays the fifth part of the match, nil

In the same way,m1[6], m1[7],m1[8],andml [9] will have values of
nil.

D:\Wiley\Codes>ruby Cbject expr.rb

The data type of ml is: MatchData

The matched characters are: abbccc

The first part of the match is:

The second part of the match is: a

The third part of the match is: bb

The fourth part of the match is: ccc

nil

The characters preceding the match are: The string is
The characters after the match are: d

Figure 4.4 The output.

70

Chapter 4

Table 4.4 Date of Birth Data

CUSTOMER NAME DATE OF BIRTH

Anya 02/12/1975
Ken 12/25/1973
William 01/01/1970

Problem Statement

Knowledge, Inc., stores information regarding the birthdates of customers
in mm/dd/yyyy format. A string picks up these data and displays them.
At present, the database contains this information for only three cus-
tomers. Table 4.4 shows the data.

Strings strl, str2, and str3 pick up the respective information about
Anya, Ken, and William. The contents of strl, str2, and str3 are as
follows:

strl = "Anya's birthdate is 02-12-1975"
str2 = "Ken's birthdate is 12-25-1973"
str3 = "William's birthdate is 01-01-1970"

You need to change the contents of strl, str2, and str3 to display
them as follows:

strl = "Anya's birthdate is 12 February 1975"
str2 = "Ken's birthdate is 25 December 1973"
str3 = "William's birthdate is 1 January 1970"

Task List

Declare the necessary arrays and the regular expression.
Write the code to display the output.

Save and execute the code.

Verify the output.

AW W WA

Declare the Necessary Arrays and
the Regular Expression

You declare a regular expression that extracts only the date of birth from
the string. Then you declare three arrays. One will store the days, the sec-
ond will store the months, and the third will store the years.

Control Structures, Blocks, and Expressions

71

strl="Anya's birthdate is 02-12-1975"
str2="Ken's birthdate is 12-25-1973"
str3="William's birthdate is 01-01-1970"
exprl=/(\d\d) - (\d\d) - (\d\d\d\d) /

day = Array.new

month = Array.new

year = Array.new

You declare an expression expr1 that will search for two digits followed
by a hyphen. This is followed by two digits, which are followed by a
hyphen. Finally, the hyphen is followed by four digits in the three strings
strl, str2,and str3.

You declare three arrays. One is day, which will store the days of the
respective birth dates; the second is month, which will store the months;
and the third array, year, stores the years.

Write the Code to Display the Output

if strl=~exprl

Month[0]=$1
Day[0]=5$2
Year[0]=$3

end
if str2=~exprl

Month[1]=$1
Day[1]1=$2
Year[1]=S3
end
if str3=~exprl

Month[2]=$1

Day[2]=5$2

Year[2]=S3
end

Whenever a match happens, Ruby creates a number of $ variables. The
$~ variable contains the matched characters. The variables $1 through $9
contain parts of the match.

In the first 1 f statement, when the match happens, the $~ variable con-
tains 02-12-1975. The $1 variable contains the first part of the match,
which is 02. The $2 variable contains the second part, which is 12. The $3
variable contains the third part, which is 1975. You store the values of

72

Chapter 4

these $ variables in the respective arrays. This implies that the value of the
$1 variable is transferred to the Month array. The $2 variable value is
transferred to the Day array. The $3 variable value is transferred to the
Year array. Note that it is important that you store the values of these $
variables in separate variables, especially when you need to use the match
statement more than once. This is due to the fact that whenever the match
succeeds between a string and expression, a new set of $ variables is cre-
ated, and the preceding set is overwritten. There is no way in which you
can access the values of the preceding set of $ variables unless you store the
variables in separate variables.

With the second i f statement, the $~, $1, $2, and $3 variables have the
values 12-25-1973, 12, 25, and 1973, respectively. With the third if
statement, the $~, $1, $2, and $3 variables have the values 01-01-1970,
01, 01, and 1970, respectively. You store the values of these variables in
their respective arrays.

Therefore, the values of the respective arrays are as follows:

m The Month array has the values 02, 12, and 01.
m The Day array has the values 12, 25, and 01.
m The Year array has the values 1975, 1973, and 1970.

Thus we have separated the days, months, and years from the
mm/dd/yyyy format. Now, because you have gotten the month numbers,
you need to map these numbers to the month names. Let’s declare a hash
with month numbers as keys and month names as values:

hashl={

‘01" => "January",
'02' => "February",
'03' => "March",
'04' => "April",
'05' => "May",

'06' => "June",
'07' => "July",
'08' => "August",
'09' => "September",
'10' => "October",
'11' => "November",
'12' => "December"

Control Structures, Blocks, and Expressions 73

As you can see, each month number maps to the month name. The
month numbers for which you need to find out the month names are
stored in the Month array. Thus we can write:

hashl[Month[0]]. This gives the corresponding name for the
month number that is stored as the first element of the Month array.

hashl[Month[1]] and hashl[Month[2]]. This gives the corre-
sponding names for the month numbers stored in the second and
third elements of the Month array.

You create a new array, Month names, and store the names of the
months in this array:

Month_names=Array.new

Month_names[0] =hashl [Month[0]]
Month_names[1]=hashl [Month[1]]
Month_names[2]=hashl [Month[2]]

Finally, you need to display the output. You can write:

puts "Anya's birthday falls on #{Day[0]} #{Month_names[0]} #{Year[0]}"
puts "Ken's birthday falls on #{Day[1l]} #{Month_names[1]} #{Year[1l]}"
puts "William's birthday falls on #{Day[2]} #{Month_names[2]}
#{Year([2]}"

Save and Execute the Code

Save the code as birthdates.rb, and execute it from the command
prompt.

Verify the Output
Verify whether the output is displayed as stated in the problem (Figure 4.5).

D:\Wiley\Codes>ruby birthdates.rb

Enva's birthday falls on 12 February 1975
Ken's birthday falls on 25 December 1273
William"™s birthday falls on 01 January 1970

Figure 4.5 The screen output.

74

Chapter 4

Summary

In this chapter you learned that:

m The different control structures are i f. .else, the while loop, and

the for loop.

There is one more kind of if statement, namely,
if..elsif. .else.

To structure codes, you can use blocks.
You can access each element of a collection using iterators.

Each iterator always is associated with a block, whereas with the
collect iterator, this is not the case.

You can find a pattern of characters in a string using regular
expressions.

Regular expressions can be created either by specifying the pattern
of characters to be found in between the two slashes or by using the
object-oriented approach.

Whenever an expression matches a string, Ruby creates a load of $
variables.

Methods and Modules

OBJECTIVES

In this chapter you will learn to:
v~ Define methods with different types of arguments
v~ Pass an array to a method
v~ Define modules

v~ Implement multiple inheritance using modules

Getting Started

In the preceding chapters you learned to define and implement methods.
You learned about two types of methods. One is a simple method, which
does not accept any parameter, and the other is a method that accepts one
or more parameters. You can represent a simple method like this:

def methodl
end

75

76

Chapter 5

You can represent a method that accepts parameters like this:

def method2 (varl, wvar2)
end

Whenever you call the simple method, you write only the method name,
such as:

methodl

However, when you call a method with parameters, you write the
method name along with the parameters, such as:

methodl 25, 35

Whatever the type of method, every method performs some type of pro-
cessing and returns a value. In Ruby, methods always return at least one
value. In this chapter you will learn to trap these values.

The most important drawback to using methods with parameters is that
you need to remember the number of parameters whenever you call such
methods. For example, if a method accepts three parameters and you pass
only two, then Ruby displays an error. Therefore, you need to remember
the exact number of parameters before calling such methods. In such situ-
ations in Ruby you can define a method that accepts any number of para-
meters. The number of parameters to be passed to the method is not fixed.
Such methods are methods that accept variable numbers of parameters. In
this chapter, you will learn to declare methods with a variable number of
parameters and also learn about methods that allow you to pass an array
as a parameter. You also will learn about class methods.

Consider a situation in which you have a group of functions and you
want to reuse these functions in some other code. One of the ways to do
this is to rewrite the same functions. However, this amounts to a lot of code
redundancy. Traditional programming languages such as C and C++
would include the entire group of functions in the new code. Java also does
the same thing with the help of the import statement. Similar to the
include statement of C and the import statement of Java, you have the
require statement of Ruby. Using the require statement, you can
include all the required files whose code you want to reuse. However,
using the require statement sometimes leads to code ambiguity. The
best solution is to use modules. You will learn about modules and how to
implement mixins using modules in this chapter.

Methods and Modules

77

Methods

You know how to declare a method with arguments. Let us examine how a
method is declared with default arguments with the help of this sample
code:

def test(al="Ruby", a2="Perl")
puts "The programming language is #{al}"
puts "The programming language is #{a2}"
end
test "C", "C++"
test

Figure 5.1 shows the output of this code.

.m Method names should begin with a lowercase letter. If you begin a
method name with an uppercase letter, Ruby might think that it is a constant
and hence can parse the call incorrectly.

In the preceding code, look at the way the method test is declared. The
method test takes in two arguments, al and a2. In the definition itself,
you can see that al is assigned the value Ruby, and a2 is assigned the
value Perl. This means that whenever the method test is called without
parameters, al and a2 will have the default values Ruby and Perl,
respectively. When parameters are passed, al and a2 will take the values
of the parameters. Therefore:

test "C", "C++"

will make the value of a1 become C and the value of a2 become C++. With
the statement:

test

al and a2 will have the default values Ruby and Perl.

The programming language is C

The programming language is C++
The programming language is Ruby
The programming language is Perl

Figure 5.1 The screen output.

78 Chapter 5

Return Values from Methods

Here you will examine how to pass values from methods. As you know,
every method in Ruby returns a value by default. Let us declare a method
and trap the values it returns. Thus:

def test
i = 100
end
j = test
j o= j+1
puts j

produces an output of 101.

From this output, you can judge that the method test returns the value
i. To capture the value of i, you write:

j = test

This is a variable followed by the equals operator, which is followed by
the call to the function.

What if you declare two or more variables in the method?

def test
i
]
k

100
10

1}
o

end

This method, when called, will return the last declared variable. The pre-
ceding code will return the value of k. What if you want to return the value
of 1? In this case, you can write:

def test
i =100
j =0
k = 10
i
end

It is quite simple. You only need to write the name of the variable you
want to return at the end of the method. There is one more way to return
values from methods. This involves using the return statement followed
by the name of the variable.

Methods and Modules

79

Therefore, your method becomes:

def test
i =100
j =0
k =10
return i
end

This code returns the value of the variable i.

You have examined all the different ways to return a value from the
method. The question that arises is, Can a method return more than one
value? Yes. In Ruby you can return more than one value from a method.
Let us see the code to do this:

def test
i =100
j=0
k =10

return i, j, k
end
var = test
puts var

The output of this code will be:
100

0
10

Therefore, when you call the method test by using:

var = test

the method returns three values for the var variable. Therefore, the var
variable becomes an array of three elements. The return statement is the
only approach that can return more than one value from a method.

Using a Variable Number of Parameters

Suppose that you declare a method that takes two parameters. Whenever
you call this method, you need to pass two parameters along with it.

Chapter 5

However, Ruby allows you to declare methods that work with a variable
number of parameters. Let us examine a sample of this:

def sample (*test)
puts "The number of parameters is #{test.length}"
for i in 0...test.length
puts "The parameters are #{test[i]}"
end
end
sample "Anya", "25", "F"

In this code, you have declared a method sample that accepts one
parameter test. However, this parameter is a variable parameter. This
means that this parameter can take in any number of variables. In plain
words, you can say that test is an array and that the elements of the array
test will be the parameters that will be passed when you call the method
sample. You call the method sample with values Anva, 25, and F. These
three values will become the elements of the array test. Therefore, the
output becomes that shown in Figure 5.2.

In the preceding example, you passed a number of variables as parame-
ters and accepted these variables as a single argument. What has actually
happened is that the variables have been converted into the elements of an
array. You also can do exactly the opposite. This means that you can pass
an array as a parameter whenever you call the method, and in the method,
you can accept the array in the form of its individual elements. In short,
you will pass one parameter and accept it in different variables. Let us look
at some sample code:

def sample (al, a2, a3, a4, ab)
puts "First element: #{al}"
puts "Second element: #{a2}"
puts "Third element: #{a3}"
puts "Fourth element: #{ad}"
puts "Fifth element: #{a5}"

end

arrayl = Sw(l 2 3 4 5)

sample (*arrayl)

Figure 5.3 shows the output of this code. From the output, you can make
out that arrayl thatis passed to the method sample is broken into indi-
vidual elements in the method.

The number of parameters is 3
The parameters are Anva

The parameters are 25

The parameters are F

Figure 5.2 The screen output.

Methods and Modules 81

First element: 1
decond element: 2
Third element: 3
Fourth element: 4
Fifth element: 5

Figure 5.3 The screen output.

Methods and Blocks

You have seen how a block and a method can be associated with each other in
Chapter 4. You normally invoke a block by using the yield statement from
a method that has the same name as that of the block. Therefore, you write:

def test
yvield
end
test{ puts "Hello world"}

This example is the simplest way to implement a block. You call the test
block by using the yield statement. In fact, you also can pass a block as a
parameter to the method. You will learn how to do this now:

def test(&bloc)
bloc.call
end
test { puts "hello world"}

Here you call the method test with the block as a parameter. To accept
the block, you use a variable preceded by an ampersand (&). Then you
use the call method to invoke the block. Therefore, you can have the
statement:

bloc. call

Class Methods

Whenever you want to access a method of a class, you first need to instanti-
ate the class. Then, using the object, you can access the members of the class.
What if you want to access a method without instantiating a class? In such
cases, you can use class methods. Let us see how a class method is declared:

class Accounts
def reading_charge
end
def Accounts.return_date
end
end

82

Chapter 5

See how the method return_date is declared. It is declared with the
class name followed by a period, which is followed by the name of the
method. You can access this class method directly as follows:

Accounts.return_date

To access this method, you need not create objects of the class
Accounts.

Problem Statement

Knowledge, Inc., has two departments, the Library Department and the
Accounts Department. Both the departments perform common functions,
such as handling resources and performing employee appraisals. Resources
are in the form of a number of people and a number of computers. Declare
a method resources that accepts the number of resources a department
has in the form of variable parameters and returns all the values. Display
the string Employee appraisal happens once a yearin the method
employee appraisal. Make employee appraisal a class method.
Store the name, age, gender details, and invoice total of each customer. In
addition, with the help of the block, display the string The total amount
purchased by x is y.In this string, x represents name of the customer,
and y represents total amount. Demonstrate how you will pass a block as a
parameter to a method.

Task List

Declare the class.

Declare a method.

Create a class.

Save and execute the code.
Verify the output.

L W W W WA

Declare the Class

Create a class by the name Department, and define the method
resources with a one-variable parameter. The method resources should
return all the parameters that are passed to it. Thus:

class Department
def resources(*res)
@no_of_people=res[0]
@no_of_comp=res[1l]

Methods and Modules

83

return @no_of_people, @no_of_comp
end
end

You declare a method resources in the class Department. The
method resources has a variable parameter, res. This variable will accept
two parameters in res [0] and res[1]. The first and second parameters
will be stored in the variables @no_of_people and @no_of_comp,
respectively. Both the variables will be returned together by using the
return statement.

Declare the Method

In the class Department, declare the method employee_appraisal asa
class method. You can call this method without creating an object of the
class Department. In this method, write the necessary puts statement:

def Department.employee_appraisal
puts "Employee appraisal happens once a year"
end

Create a Class

Create a class called Customer with name, age, and gender details and
invoice total as its characteristics. Also pass a block as a parameter to the
method initialize. Use the block to display the string The total
amount purchased by x is y.In this string, x represents name of the
customer, and y represents the total amount. Thus:

class Customer
def initialize (name, age, sex,amt, &purchases)

@name=name
Qage=age
@sex=sex
@purchases=purchases
@amt=amt
@purchases.call (Gamt, @name)

end
end
Department .employee_appraisal
Deptl=Department.new
y=Deptl.resources (25,10)
puts "Number of people are #{y[0]}"
puts "Number of computers are #{yI[1l]}"
custl:Customer.new(“Anya",35,"F",2500){|amount, name| puts "The total

84

Chapter 5

amount purchased by #{name} is #{amount}"}
cust2=Customer.new("Ken",25,"M",1800) { |amount, name| puts "The total
amount purchased by #{name} is #{amount}"}

You declare a class Customer with the method initialize. The
method accepts the variables name, age, sex, and amt as parameters. The
method also accepts a block as a parameter in the variable purchases.
Therefore, the variable purchases is preceded by an ampersand (&). The
values in the variables name, age, sex, amt, and &purchases are stored
in the instance variables @name, Qage, @sex, @Qamt, and @purchases.
Thus the statement:

@purchases.call (@amt, @name)

calls the block associated with the method new of the class Customer that
has @amt and @name as parameters:

custlzCustomer.new("Anya","35","F","2500"){|amount, name\ puts "The
total amount purchased by #{name} is #{amount}"}

This statement creates an object cust1 of the class Customer, and the
method new passes Anya, 35, F, and 2500 as parameters:

{|amount, name| puts "The total amount purchased by #{name} is
#{amount} "}

The previously mentioned block is also passed as a parameter to the
method initialize:

Deptl=Department.new
yv=Deptl.resources (25,10)

puts "Number of people are #{y[0]}"
puts "Number of computers are #{y[1l]}"

Deptl becomes the object of the class Department. Using Dept1l, you
call the method resources with 25 and 10 as parameters. All the values
returned by the method resources are stored in the variable y. The
method resources returns two values that are stored as v [0] and y [1]
and then are displayed in the puts statement.

Save and Execute the Code

Save the code as Methods . rb, and execute it from the command prompt.

Verify the Output
Verify whether proper values are displayed by the block (see Figure 5.4).

Methods and Modules

85

Humber
The total amount purchased by Anya iz 2500
The Lotal amount purchased by Een is 1800

Figure 5.4 The screen output.

Modules

Modules are similar to classes. Variables, constants, and functions consti-
tute a module. If modules are similar to classes, then why do you need to
have two different concepts that implement the same thing? The reason is
that according to the object-orientation concept, a class is a broad definition
for a particular term. Only if variables and functions together constitute a
meaning can you join them together to form a class. What if the variables
and functions do not join to yield a proper definition? The answer is that
you can still join them together and form a module.

Defining a Module
Let us examine how to define a module:

module Week
First_day = "Sunday"
def Week.weeks_in_month
puts "You have four weeks in a month"
end
def Week.weeks_in_year
puts "You have 52 weeks in a year"
end
end

Here, you have a module, Week, with a constant, First_day. Constants
always begin with a capital letter. Two methods, weeks_in_month and
weeks_in_year, also form part of the module. Like class methods, when-
ever you define a method in a module, you specify the module name
followed by a dot and then the method name. How do you access the data
members of the module? There is a difference in the way you access a
constant in a module:

puts Week::First_day
puts Week.weeks_in_month
puts Week.weeks_in_year

To access a constant, you use two colons. You can access a method in a
module in the same way that you access class methods.

Chapter 5

The require Statement

The require statement is similar to the include statement of C and
C++ and the import statement of Java. All these statements generally are
used to avoid rewriting previously written code. Using these statements,
you can reuse the existing libraries of programming languages. For exam-
ple, if you include these two examples in your code, namely:

require "Sample.rb"
require "Math.rb"

you can access all the functions that are defined in the two files,
Sample.rb and Math.rb. However, what if both the files contain some
functions with common names? This will result in code ambiguity. To
avoid code ambiguity, you can use modules. This is another advantage of
using modules.

Modules and Classes

Can you actually use a module and a class together? The answer is yes. You
can embed a module within a class and then use all the existing data mem-
bers of the module in the class. To embed a module in a class, you use the
include statement in the class:

include modulename

Therefore, you can write:

class Decade
include Week
no_of_vyrs=10
def no_of_months
puts Week::First_day
number=10*12
puts number
end
end
dl=Decade.new
puts Week::First_day
Week.weeks_in_month
Week.weeks_in_year
dl.no_of_months

In this way, you can use an entire module within a class.

Methods and Modules

87

Mixins

C++ is a programming language that supports multiple inheritance
directly. What is multiple inheritance? By now, you know what inheritance
is. Inheriting the features of a parent class is inheritance. When a class can
inherit features from more than one parent class, the class is supposed to
show multiple inheritance. Java supports multiple inheritance indirectly by
using interfaces. Ruby’s answer to multiple inheritance is modules. A mod-
ule does not provide you with a direct way of implementing multiple
inheritance, but it offers you an indirect way. Ruby also terms multiple
inheritance a mixin. Let us examine the following sample code to gain an
understand of mixin:

module A
def al
end
def a2
end
end
module B
def bl
end
def b2
end
end
class Sample
include A
include B
def sl
end
end
samp=Sample.new
samp.al
samp.a?2
samp.bl
samp . b2
samp.sl

Module A consists of the methods al and a2. Module B consists of the
methods bl and b2. The class Sample includes both modules A and B.
The class Sample can access all four methods, namely, a1, a2, b1, and b2.
Therefore, you can see that the class Sample inherits from both the mod-
ules. Thus you can say the class Sample shows multiple inheritance or a
mixin.

Chapter 5

D

Problem Statement

The Library Department has two sections, Novels and Magazines. Each
section is responsible for the maintenance of books related to that section.
Each section also maintains a record of the total number of books in the sec-
tion. You should demonstrate multiple inheritance in the class 1ibrary
from the module Novel and the module Magazine. Novel hasa method,
no_of_novels, and Magazine has a method, no_of_mag. The Library
Department has two functions, maintenance and issuing. The method
maintenance should display the string This is the maintenance
section of the library, and the method issuing should display
the string This is the issuing section of the library.In
addition, you should display the number of novels and the number of
magazines in the library.

Task List

Declare the modules.
Declare the class.

Display the information.
Save and execute the code.
Verify the output.

L W W W WA

Declare the Modules

Declare two modules, Novel and Magazine, with no_of_novels and
no_of_mag as their methods, respectively. Thus:

module Novel
def no_of_novels
@no_of_novels=100
return @no_of_novels
end
end
module Magazine
def no_of_mag
@no_of_mag=350
return @no_of_mag
end
end

You declared two modules, Novel and Magazine. The Novel module
shows the method no_of novels with @no_of novels as the instance
variable. The Magazine module shows the method no_of_ mag with @no__
of_mag as the instance variable.

Methods and Modules

Declare the Class

Declare the class Library with two methods, maintenance and issuing.
Display the respective strings in both the methods. Show multiple inheri-
tance in this class from both modules. Thus:

class Library
include Novel
include Magazine
def maintenance
puts "This is the maintenance section of the library"
end
def issuing
puts "This is the issuing section of the library"
end
end

The include statement is used to include a module in a class. Thus:

include Novel
include Magazine

These statements will include both the modules in the class Library
showing multiple inheritance. You also declare two methods, maintenance
and issuing, in the class.

Display the Information

Now display the number of novels and the number of magazines in the
library:

Lib=Library.new

n=1lib.no_of_novels

puts "The number of novels is : #{n}"
m=1lib.no_of_mag

puts "The number of magazines is : #{m}"
lib.maintenance

1lib.issuing

You create an object, 1ib, of the class Library and then call the meth-
ods no_of_novels and no_of_mag by using this object. Whatever the
methods no_of novels and no_of_ mag return is stored in the variables
n and m, respectively.

Save and Execute the Code

Save the code as Module. rb, and execute it from the command prompt.

90

Chapter 5

The number of novels is @ 100

The numbsr of magszines 1s : 3al
Thiz is the maintenans T
Thiz is the is=uing section of the library

Figure 5.5 The screen output.

Verify the Output

Verify the values of the number of novels and the number of magazines
(see Figure 5.5).

Summary

In this chapter you learned:

m How to return values from methods.

That you can return one or more values from methods.
That you can declare a variable number of arguments.
That you can even pass an array to a method.

That modules are similar to classes.

That you can implement a module in a class.

That you can implement multiple inheritance or mixins by using
these modules.

Input and Output

OBJECTIVES

In this chapter you will learn to:
v~ Use input and output statements

” Use the File and 10 class methods

Getting Started

Without some way to interact with the outside world, most of our programs
would be rather pointless. At the very least, we need to provide input to
tell the program what specific set of data we want processed (or what para-
meters to use in its processing), and we need some way for the program to
inform us of the results.

All of Ruby’s input-output (I/O) facilities are derived from the class I0.
The streams we normally expect in programs running under UNIX or Win-
dows are provided as global instances of I0: $stdin, $stdout, and
$stderr. $stdin allows access to the standard input stream. By default,
the standard input stream is the keyboard. $stdout allows access to the

91

92

Chapter 6

standard output stream. By default, the standard output stream is the
screen. $stderr allows access to the standard error stream. By default, the
standard error stream is the screen.

The class IO provides all the basic methods, such as read, write, gets,
puts, readline, getc, and printf. There are versions of class IO meth-
ods available in the top-level execution environment that appear not to be
associated with any particular object instance. This seems to violate Ruby’s
generally object-oriented nature. However, these methods, in fact, are pro-
vided by the module Kernel and actually are methods of class Object,
which includes Kernel as a mixin. These top-level methods simply call
the equivalent methods on an appropriate instance of T0. For example, the
top-level gets is actually a call to $stdin.gets, and the top-level puts
is a call to $stdout.puts. The remainder of this chapter enumerates all
the methods of I0 and explains their purposes and uses. The next section
discusses some of the statements related to input and output.

Input and Output

gets Statement

In previous chapters, you assigned values to variables and then printed the
output. However, in most situations, you will need to do more than just
print assigned values. For example, you might need to accept a value from
a user and then print the corresponding output based on the user’s choice.
In such situations, you need to accept values from users. To do so, you use
the gets statement. The following code shows you how to use the gets
statement. This code will prompt the user to enter a value, which will be
stored in a variable val. The puts val statement instructs the program
to display the value stored in the variable val. Thus:

puts "Enter a value"

val = gets
puts val

When you run this code, first the screen will show the following output
with the cursor on the next line waiting for an input:

Enter a value

Whatever the user enters, that value would be stored in the variable val
and subsequently displayed on the screen.

Input and Output

93

putc Statement

Unlike the puts statement, which outputs the entire string onto the screen,
the putc statement can be used to output one character at a time. For
example, the output of the following code is just the character H:

str="Hello"
putc str

print Statement

The print statement is similar to the puts statement. The only difference
is that the puts statement goes to the next line after printing the contents,
whereas with the print statement the cursor is positioned on the same
line. Let us examine an example to check out the difference:

puts "Hello World"
puts "Good Morning"

The output of this code is:

Hello World
Good Morning

Now let’s use the print statement and see what the output will be:

print "Hello World"
print "Good Morning"

The output of this code is:

Hello WorldGood Morning

Note the difference in the two outputs. In the first case, puts "Hello
World" will display Hello World on the screen. Then the second puts
statement, puts "Good Morning", will display Good Morning on the
next line. However, using the print statement, the output is not the same.
After printing Hello World, the second print statement prints the con-
tents Good Morning on the same line.

The Class File

Until now, you have been reading and writing to the standard input (key-
board) and standard output (monitor) devices. What would you do if you

94

Chapter 6

wanted to accept input from a file instead of the keyboard? Other program-
ming languages such as C and C++ have streams to handle such situations.
Ruby’s answer to streams is the class File. The class File is the child class
of the base class I0. The class I0 handles all the various input and output
methods. In this section you will learn about the various methods in the
class File.

File.new

As the name implies, you can create a new object of the class File using
the method new. The following code snippet illustrates this:

filel = File.new("Sample", "r")

This statement creates a new object £ilel. The method new takes in two
parameters, the name of the file and the mode of the file. The preceding
code instructs the program to open the file sample in the read mode. This
tile will be assigned to the object £ilel. Once the file is assigned to the
object filel, you can read from the file using the object £ilel. Other
than the read mode, there are several other modes in which you can open
a file. Table 6.1 lists all the different modes in which you can open a file.

Table 6.1 The Different Modes of Opening a File

MODES WHAT IT IMPLIES

T Read-only mode. The file pointer is placed at the beginning
of the file. This is the default mode.

T+ Read-write mode. The file pointer will be at the beginning
of the file.
w Write-only mode. Overwrites the file if the file exists. If the

file does not exist, creates a new file for writing.

w+ Read-write mode. Overwrites the existing file if the file
exists. If the file does not exist, creates a new file for
reading and writing.

a Write-only mode. The file pointer is at the end of the file if
the file exists. That is, the file is in the append mode. If the
file does not exist, it creates a new file for writing.

a+ Read and write mode. The file pointer is at the end of the
file if the file exists. The file opens in the append mode. If
the file does not exist, it creates a new file for reading and
writing.

Input and Output

95

Consider the following statement:

filel = File.new("Sample", "r")

In this case, you have specified only the file name. This is not enough!
You need to specify the full path for the file unless the file is in the current
working directory.

Thus the preceding statement should be written as:

filel = File.new("C:\Ruby\Sample", "r")

Even this statement will cause problems. The reason is the use of the
backslash character (\) while specifying the path. In Ruby, the backslash
character has a special meaning. Thus you need to escape this special
meaning of backslash. You can do this by using another backslash charac-
ter. You close the file using the method close of the file object.

Thus the correct statement would be:

filel = File.new("C:\\Ruby\\Sample", "r")
filel.close

File.open

This method is similar to the File.new method. This method can be used
to create a new file object and assign that file object to a file. However, there
is one difference. The difference is that the File.open method can be
associated with a block, whereas you cannot do the same using the
File.new method. Whenever you associate a block with a File.open
method, the method creates an object and passes it directly to the block.
The file gets closed automatically when the block finishes. Let us examine
a code snippet to demonstrate the File.open method:

file2 = File.open("C:\\Ruby\\Sample"){|f| puts "The file object is
#{£)")

The output of this code is:

The file object is #<File: 0x459a6d8>

The first line of the output displays the ID of the object created. The
object ID will differ every time you run the sample code. One more impor-
tant thing you need to remember is that the File.open method creates a

96

Chapter 6

tile object and passes it directly to the block. You cannot access the file
object anywhere outside the block. Thus, if you write a statement such as:

puts file2

the output shown will benil.

Sysread

You can use the method sysread to read the contents of a file. You can
open the file in any of the modes when using the method sysread. Thus:

file3 = File.new("C:\\Ruby\\Sample", "r")
file3.sysread(20)

This statement will output the first 20 characters of the file. The file
pointer will now be placed at the 21st character in the file.

Syswrite

The method syswrite writes the contents of the file. Thus it becomes nec-
essary for the file to be opened in one of the write or append modes. This
method writes at the position where the file pointer is placed. Let us look
at a snippet of code that illustrates the use of this function:

file4 = File.new("C:\\Ruby\\Sample", "r+")

This statement will open the file in the read and write mode. The file
pointer, by default, will be at the first character. Thus:

puts filed.sysread(20)

would output the first 20 characters of the file sample. The file pointer would
now be at the 21st character position. The statement:

filed.syswrite ("ABCDEF")

will write ABCDEF from the 21st character onward.

each_byte

This method belongs to the class File. The method each_byte is always
associated with a block. Consider the following code sample:

Input and Output

97

file5 = File.new("C:\\Ruby\\Sample")
file5.each_byte{|ch| putc ch}

Characters are passed one by one to the variable ch and then displayed
on the screen.

gets

In the preceding section, you used the gets statement to accept input from
the standard input device, the keyboard. However, to accept input from a
file directly, you use the gets statement of the class File. The following
code shows the use of the gets statement:

file6 = File.new("C:\\Ruby\\Sample")

str=file6.gets
puts str

In this code, the £i1e6.gets statement will pass the contents of the file
Sample to the str variable. The puts str statement will output the con-
tents to the screen.

File Methods

Let us discuss some more methods related to the class File. Table 6.2 lists
and describes some of the commonly used methods.

10.readlines

In the preceding section you saw the methods of the class File. However,
recall that the class File is a subclass of the class I0. The class I0 also has
some methods that are exclusive to it. Let’s now discuss a few methods that

Table 6.2 Methods Related to the Class File

METHODS WHAT IT DOES

atime Returns the time when the file was last accessed

basename Returns the name of the file or the directory that appears last
in the path

ctime Returns the time when the file was last changed

dirname Returns the name of the directory to which the file belongs

ftype Returns the file type whether it is a file, directory, or socket

98

Chapter 6

are exclusive to the class T0. One of these methods is T0.readlines. This
method returns the contents of the file line by line. The following code dis-
plays the use of the method I0.readlines:

arr = IO0.readlines("C:\\Ruby\\Sample")
puts arr[0]
puts arr([1l]

In this code, the variable arr is an array. Each line of the file Sample will
be an element in the array arr. Therefore, arr [0] will contain the first
line, whereas arr [1] will contain the second line of the file.

10.foreach

This method also returns output line by line. The difference between the
method foreach and the method readlines is that the method fore-
ach is associated with a block. However, unlike the method readlines,
the method foreach does not return an array. Thus this code:

I10.foreach("C:\\Ruby\\Sample") { |bloc| puts bloc}

will pass the contents of the file Sample line by line to the variable bloc,
and then the output will be displayed on the screen.

Problem Statement

Knowledge, Inc. wants customer information such as first name, last name,
and email address to be stored in a file. As a programmer on the develop-
ment team of Knowledge, Inc., Jim is assigned the task of writing code to
accept the details from the customer and store those details in the file.

Task List

Identify the method to be used to create a file object.
Wirite the code to enter details into the file.

Save and execute the code.

Verify the output.

AW W WA

Identify the Method to Be Used to Create a File Object

The method File.newis used to create an object of a file. You will store all
the details of the customer in a file called customer_details.txt. Let

Input and Output

us examine the statement needed to create a file object £i1e0Obj and assign
the file customer details. txt to that file object:

fileObj = File.new ("C:\\Ruby\\customer_details.txt", "a")

In this statement, you have created a file object £i1eObj and assigned it
to the file customer_details. txt that is in the folder C: \Ruby. You
have opened the file in the append mode.

Write the Code to Enter Details into the File

First, you will accept the details such as first name, last name, and email
address from the customer and then store them into the customer
details. txt file. Thus:

puts "Enter your first name"
first_name=gets

puts "Enter your last name"
last_name=gets

puts "Enter your email address"
email=gets

This code accepts the details first name, last name, and email address
and stores them in the variables first_name, last_name, and email,
respectively. Then you need to store all these details into an array. Let us
first define an array:

customer_info=[]

This will create the array customer info. At present, it is empty.
Now you add the values of these variables as elements of the array
customer_info:

customer_info[0]=first_name
customer_info[l]=last_name
customer_info[2]=email

There is another method of adding elements to an array. Let us examine it:

customer_info.push (first_name)
customer_info.push (last_name)
customer_info.push(email)

The method push is a method of class Array. Thus you can call the
method and pass the value as a parameter to that method. Once you have

100 Chapter 6

stored all the values into an array, then you will use the method syswrite
to write the array contents into the file customer_details.txt. The
statement:

fileObj.syswrite (customer_info)

will store the contents of the array customer_info into the file
customer_details. txt.

Save and Execute the Code

Save the code as customer_info.rb, and execute it from the command
prompt.

Verify the Output

You can verify whether all the customer details have been entered properly
into the file by reading the contents of the file. You can read the contents of
the file by using the method 10. foreach. Let us examine how to use the
method I0. foreach:

puts "The contents of the file are as follows:"
I0.foreach("C:\\Ruby\\customer_details.txt"){|Info| puts Info}

The method IO.foreach will output the contents of the file
customer_details. txt line by line to the variable Info in the block.
Then the puts Info statement will output the contents to the screen.

Thus, if the customer enters these values:

First name: John
Last name: Doe
Email address: johndoe@serviceprovider.com

then the output will be as shown in Figure 6.1.

Enter your first name
Jonathan

Enter your last name
Greene

Enter your email address
jgreene@ivmail.com

Figure 6.1 Output when the given values are entered.

Input and Output

101

Summary

In this chapter you learned that:

The class Object is the base class of all the classes in Ruby.

The class Object includes the module Kernel that contains
various methods related to input and output such as puts, putc,
gets, and readline.

The class File is a subclass of the base class I0.

The class File also consists of various methods related to the file
suchas File.new, File.open, sysread, and syswrite.

Exceptions

OBJECTIVES

In this chapter you will learn to:
v~ Identify the need for exceptions
+* Handle exceptions
+” Use the class Exception
1~ Raise exceptions

+* Use methods catch and throw

Getting Started

In any program there are occasions when things go wrong. People enter
invalid data, files you expect to exist are not there (or you do not have per-
mission to access them), memory runs out, a programmer using your
library module passes the wrong parameters to one of your methods, and
so on. There are a number of ways to handle these sorts of issues. The sim-
plest idea is to just exit the program when anything goes wrong in the
method.

103

104 Chapter 7

A less-drastic approach is to have every method return some kind of sta-
tus information to say whether its processing was successful and then to
test those return values all the way through your code. This can lead to
quite messy code where the tests deviate from the main processing per-
formed by the program.

An alternative, which is currently in favor, is to use exceptions. When
something goes wrong (in other words, an exceptional condition occurs), an
exceptionisraised to indicate that something unexpected has happened.
At some higher level in the program there will be a piece of code that
watches for the appearance of that signal and handles it as is deemed
appropriate.

There also may be many exception handlers in a given program. Each
handler specifies what types of exceptions it knows how to process. An
exception percolates up until it encounters the first handler that can han-
dle that particular type. If no such handler exists, the exception eventu-
ally will reach the topmost level, and the program will terminate. This is
the approach taken by C++, Java, and Ruby.

Handling Exceptions

Imagine a program such as a text editor. The user needs to enter a name
into a Save As dialog and press the OK button. Because the user can spec-
ify an arbitrary place to put the file, it is possible that he or she does not
have permission to write there. How do we handle this situation?

We could try to work out whether writing to the file will succeed by
checking the user’s level of access and only attempting to write the file if
the user has permission. However, file access problems are not the only
issue. If the file system is almost full, we could run out of space in the mid-
dle of writing the file. Maybe the place the user wants to store the file in is
on a file server, and the network could go down in the middle. As you may
have gathered, trying to determine in advance that our action will succeed
is almost inevitably doomed to failure.

So how can we handle all the things that can go wrong, even things we
have not thought of? The answer is, of course, to use exceptions! Consider
the following code:

precious = create_masterpiece()
location = ask_user|()
begin
File.open(location, "w") do |file]
save_work (file, precious)

Exceptions

105

end
rescue

puts "Your save failed. The problem was #{S$!}."
end

Now, if something goes wrong, either when opening the file for writing
or in the middle of saving the data to it, the programmer will be notified.
Rather than our program terminating and the user losing his or her work,
he or she gets a second chance.

Everything from begin to rescue is protected. If an exception occurs
during the execution of this block of code, control is passed to the block
between rescue and end.

In this case, we have not indicated what kinds of exceptions we want to
catch because we do not really know all the things that could go wrong.
You will see how to be more specific in the following section. Notice the
global variable $! we used in our error message. This contains the excep-
tion that was raised, allowing us to look at what has happened so that we
can customize our handling appropriately.

To handle only certain types of exceptions, we specify them as part of the
rescue statement. For example, if all we want to handle are errors that
occur while writing a file to a disk, we could use the following statement:

rescue IOError
To specify more than one type, a comma-separated list can be specified:

rescue IOError, SystemCallError

If we are handling more than one type like this, we may want to know
which error occurred. We can use the type field of $! to determine what
happened:

rescue IOError, SystemCallError

if $!.type == IOError
$stderr.puts "A write to the disk failed -- s$!."
else
Sstderr.puts "There was a system call failure -- $!."
end
end

We can safely assume that if the exception is not an IOError, then it
must be a SystemCallError because it is guaranteed that the only
exceptions of the type specified in the rescue statement will end up in this
block of code. Any others either will have been handled further down or
will percolate further up.

106 Chapter 7

Ruby makes this simpler. We can provide separate blocks of code for
each type of exception:

rescue IOError

puts "A write to the disk failed -- $!."
rescue SystemCallError

puts "There was some a system call failure -- $!."
end

We also can make the code a little more readable by placing the raised
exception into a named variable to avoid having to use $!:

rescue IOError => io_error

puts "A write to the disk failed -- #{io_error}."
rescue SystemCallError => system_error

puts "There was some a system call failure -- #{system_error}."
end

What happens if there is another rescue statement somewhere further
down in the block of code we are protecting that also mentions one of these
exception types or that catches all types? Wait, this sounds a little strange.
Why would a rescue block catch an exception if it was not capable of han-
dling it? One good reason would be that the lower level has more informa-
tion as to what was happening at the time of the exception.

For example, if an IOError occurred, the lower-level code would know
precisely how far we had progressed in writing the data out when the
exception occurred. It therefore could output a more precise error message
and then reraise the exception so that our rescue block could catch it
and do whatever general processing we wish to, such as giving the user a
second chance to save the file.

Note that when we write rescue SomeError, what we are saying is
that we are willing to handle an exception of type SomeError or any
type that is derived from it. Therefore, if handling is to be done at different
levels in the code, the handler for a base class should be at a higher level
than that of any derived classes. If not, then the handlers for the derived
classes are redundant, unless the base class handler reraises the exceptions.

One final point about exception handlers: Sometimes it may be possible
to recover from an error condition. Consider our Save As example again. If
we could determine that the reason an IOError was raised was that the
tile system is full, then it might be possible to make more space available by
deleting some temporary files. Once we have done so, it would make sense
to make another attempt to save the data.

Exceptions

107

Ruby provides a retry command to achieve this, as in the following
example:

precious = create_masterpiece()
location = ask_user /()
begin
File.open(location, "w") do |file|
save_work (file, precious)
end
rescue IOError => io_error
puts "I/O error #{io_error}; attempting to make space."
remove_temp_files ()
retry
rescue SystemCallError => system_error
puts "A system call failed -- #{system_error}."
end

Class Exception

Ruby’s standard classes and modules raise exceptions. All the exception
classes form a hierarchy, with the class Exception at the top. The next level
contains seven different types:

Interrupt
NoMemoryError
SignalException
ScriptError

StandardError

SystemExit

No, you haven’t miscounted. There is one other exception at this level,
Fatal, but the Ruby interpreter only uses this internally.

Both ScriptError and StandardError have a number of subclasses,
but we do not need to go into the details here. The important thing is that
if we create our own exception classes, they need to be subclasses of either
class Exception or one of its descendants. Let’s look at an example:

class FileSaveError < StandardError
attr_reader :reason
def initialize(reason)

108 Chapter 7

@reason = reason
end
end

We'll look in detail at how exceptions are raised in the next section, but
for now let’s just look at one example:

File.open(path, "w") do |[file]|
begin
Write out the data ...
rescue
Something went wrong!

raise FileSaveError.new(S$!)

end

end

The important line here is raise FileSaveError.new($!). We call
raise to signal that an exception has occurred, passing it a new instance
of FileSaveError, with the reason being that specific exception caused
the writing of the data to fail.

Raising Exceptions

We saw in the preceding section that we could raise a specific exception by
constructing an instance of an object derived from the class Exception.
There are two other ways to raise an exception. First, if the argument to
raise is a string, then an exception of type RunTimeError is automati-
cally constructed and raised. For example:

raise "An error has occurred"

We discussed the final form, in passing, when we mentioned that han-
dlers for base exception classes normally should be at a higher level in the
code than their descendants. We then said that sometimes we wish to par-
tially handle an exception at one level of the code, where we have more
specific information about the problem, but then reraise it so that further
processing can be performed higher up. If we wish to raise the same excep-
tion that we are currently handling, we just need to issue a raise with no
parameters.

Exceptions

109

Catch and Throw

Sometimes we will find ourselves in a deeply nested piece of code only to
discover that, for some reason, we either no longer can or no longer need to
continue with the current processing. An example might be when we are
reading a complex data structure and find an error in the data that means
we know that the overall structure is invalid. We can handle this kind of
situation by using throw and catch. This is similar to how normal excep-
tions are raised and handled.

A catch block is defined by specifying a symbol that serves as a label,
as in the following example, which is a mock-up of a parser for Hypertext
Markup Language (HTML) tables:

line = gets
catch :syntaxError do
if line =~ /<table>/
while (line = gets) !~ /<\/table>/
if line =~ /<tr>/
while (line = gets) !~ /<\/tr>/
if line =~ /<td>/
Process this table data item
else
We didn't find the expected
<td> tag ...
throw :syntaxError
end
end
end
end
end
end

At the point where the throw :syntaxError occurs, we are nested
four levels deep. We potentially could recover from the syntax error by set-
ting a flag and testing it at every level. However, that is very messy. When
the throw is processed, the Ruby interpreter transfers control to the end of
the catch block with the corresponding label.

Note that it is not necessary for the throw to be nested within the catch
block. It simply needs to be somewhere in the scope containing the catch.

110 Chapter 7

b4

Problem Statement

As a programmer on the development team of Knowledge, Inc., Jim was
assigned the task of writing code to accept details such as first name, last
name, and email address from customers and store those details into a file.
Jim, not being experienced in Ruby, has come up with elementary code that
accepts customer details only once. Moreover, Jim has not provided any
solution in the code that can take care of unknown errors generated by the
code. Mike, being the technical lead in this project, has decided to take Jim
off this project and replace him with Adam. Adam has now been given the
responsibility of making the code handle more customers and also imple-
ment exceptions in the code. Mike also wants Adam to test the code for
exceptions.

Task List

Identify the necessary changes to be made to Jim’s code.
Write the code to implement the necessary changes.
Save and execute the code.

Test the code for exceptions.

AW W WA

Identify the Necessary Changes to Be Made
to Jim's Code

The code written by Jim is as follows:

fileObj = File.new ("C:\\customer_details.txt", "a")
puts "Enter your first name"
first_name=gets

puts "Enter your last name"
last_name=gets

puts "Enter your email address"
email=gets

customer_info=[]
customer_info[0]l=first_name
customer_info[l]=1last_name
customer_info[2]=email
fileObj.syswrite(customer_info)

According to Adam, Jim has implemented the methods of the class File
and the method gets correctly. To make this code robust, Adam has
decided to implement a control structure to handle the details of multiple
customers. The control structure he has decided to use is the while loop.
To implement exceptions, Adam will use the begin..rescue..end

Exceptions

111

statements to ensure that the code does not throw an unknown error while
opening the file.

Write the Code to Implement the Necessary Changes
Adam has decided to implement the while loop part first:

fileObj = File.new ("C:\\customer_details.txt", "a")
puts "Do you want to enter your details"
puts "Enter 1 for Yes and 0 for No"
choice=gets

choice=choice.to_1i

while (choice == 1)

puts "Enter your first name"
first_name=gets

puts "Enter your last name"
last_name=gets

puts "Enter your email address"
email=gets

customer_info=[]
customer_info[0]=first_name
customer_info[l]=last_name
customer_info[2]=email
fileObj.syswrite(customer_info)
puts "Do you want to enter again"
puts "Enter 1 for Yes and 0 for No"
choice=gets

choice=choice.to_i

end

The gets method accepts all values in the form of characters. Thus you
convert the character to an integer using the method to_i. Therefore, first
the choice variable contains the number 1 or 0 in the form of a character.
Then choice=choice.to_1i will convert the value of the choice vari-
able to an integer.

The next part is opening the file and reading the contents. Here Adam
has decided to implement exceptions because opening a file can generate
an error such as File not found. Let us look at the code:

begin
names=I0.readlines ("C:\\customer_details.txt")
count=names.length
for i in 0...count
puts "The contents of the file are #{names[i]}"
end
rescue
Sstderr.puts "You are in for trouble from Mike"
puts "The error occurred is #{S$!}"
end

112 Chapter 7

If the method IO.readlines is not able to find the file
customer_details.txt in the C drive, control would be transferred
directly to the rescue statement, and the statements between the rescue
and end keywords will be executed.

Save and Execute the Code

Save the code as Exceptions.rb, and execute the code from command
prompt.

Test the Code for Exceptions

To test the code, Mike wants Adam to enter any fictitious file name and
check to see whether the statements between the rescue and end key-
words are executed. Adam enters a file name as customer_detailsl.
txt and checks the code. The code now becomes:

begin
names=I0.readlines ("C:\\customer_detailsl.txt")
count=names. length
for i in 0...count
puts "The contents of the file are #{names[i]}"
end
rescue
$Sstderr.puts "You are in for trouble from Mike"
puts "The error occurred is #{S$!}"
end

You will enter details of two customers when asked for by the code. The
details are:

First name: Jonathan

Last name: Greene

Email address: jgreene@ivmail.com
First name: Jim

Last name: Anderson

Email address: Json@homework.com

Figure 7.1 shows the code output when the given details for customers
are entered. The figure also shows the implementation of exceptions.

Exceptions

113

Do you want to enter your details
Enter 1 for Yes and 0 for Ho

Enter your first name
Jonathan
Enter your last name

Greene

Enter you email address
jareene@ivmail.com

Do wou want to enter again
Enter 1 for Yes and 0 for He
1

Enter your first name
Jim

Enter your last name
finderson

Enter your email address
JsonChomework.com

De you want te enter again
Enter 1 for Yes and 0 for Ho
1]

You are in for trouble from Mike
The error occurred is Mo such file or directory - "CiVicustomer_details2. txt™

Figure 7.1 The code output.

Summary

In this chapter, you learned that:

Exceptions are used to handle unknown errors thrown by a program.

The code that might throw an error needs to be written between the
two keywords begin and rescue, and the code that will handle
that unknown error needs to be written between rescue and end.

The global variable s ! will give the type of error that has occurred.

IOError is the error that is generated during an input or output
operation.

SystemCallError is the error that defines other system errors.

There are seven exception classes derived from the class
Exception, and they are Interrupt, NoMemoryError,
SignalException, ScriptError, StandardError,
SystemExit, and Fatal.

You can raise your own custom exceptions by using the keyword
raise.

The catch and throw blocks can be used to handle complex data
structures.

Multithreading

OBJECTIVES

In this chapter you will learn to:
v~ Create threads
+* Manipulate threads
v~ Use the class Mutex
v~ Schedule threads

v~ Discuss multiprocessing

Getting Started

Many programs are designed to do just one thing at a time. However, situ-
ations often occur where some processing logically could be set aside if we
had the facility to do so. For example, it would be very annoying if your
mail application did not allow you to read any of your mail while it was
talking to your Internet connection either because it was downloading new

115

116 Chapter 8

mail or because it was sending the last message you posted. Similarly,
imagine if a Web server could interact with only a single user at a time.
Considering how many people want to access some Web sites, you could
be waiting a very long time to make it to the front of the queue!

As a final example, consider a word processor. When you decide to print
your document, it would be really painful if you were forced to wait for the
current version to print out before you could continue working on it, par-
ticularly if there were other documents queued up at the printer. Fortu-
nately, Web servers, mail applications, and word processors are designed
so that they do a number of things at the same time. Two of the most com-
mon methods used to achieve this are multithreading and multiprocessing.
Ruby provides both these features.

Each of these techniques involves splitting a problem into a number of
pieces and allowing them to run more or less in parallel (obviously, they
cannot truly run at the same time unless you have more than one central
processing unit, or CPU). The essential difference is that in multithreading
the pieces are parts of the same program, whereas in multiprocessing,
some of the tasks are handled by other programs.

For most of this chapter we will discuss multithreading. The last part of
this chapter discusses multiprocessing. The primary advantage of creating
multithreaded applications is that you can write efficient programs that
will make maximum use of the CPU by keeping idle time to a minimum.
Before getting down to designing multithreaded applications, let us first
understand the difference between a single-threaded and a multithreaded
application.

Single-Threaded Applications

Applications that have only one thread are called single-threaded applications.
This thread is the main thread of the application. In these applications, all
the processing is done in a linear fashion. In other words, the same thread
handles user inputs, as well any processing that does not require user
input. If that application is waiting for a user input, it cannot perform any
background task during that time because there is only one thread. There-
fore, single-threaded applications and the operation on which it is running
are not able to effectively switch between various independent tasks. Such
applications also take a longer time to execute.

Let’s try to comprehend this explanation better with the help of an exam-
ple, SingleThread. rb, that uses a single-threaded application. This pro-
gram contains two functions and executes them one after the other:

Multithreading 117

def funcl
i=0
while i<=3
puts "funcl at: #{Time.now}"

sleep(2)
i=i+1
end
end
def func2
j=0
while j<=3
puts "func2 at: #{Time.now}"
sleep(1l)
j=3+1
end
end
puts "Started At #{Time.now}"
funcl ()
func2 ()

puts "End at #{Time.now}"

In this code we have created two methods, funcl () and func2 (). We
also have used the method sleep () in these two methods. The method
sleep () takesany value as an argument and halts the execution for those
many number of seconds. The body of funcl () contains a call to the
method sleep () withanargument of 2 seconds. Similarly, func2 () con-
tains a call to the method sleep () with an argument of 1 second. This
means that whenever the program execution encounters these method
calls, the program execution will be halted for specified number of seconds.
Because funcl () and func2 () are called sequentially, the execution of
funcl () completes first before func2 () starts to execute. We have used
Time.now to indicate the current system time. The total program execution
takes 13 seconds. The output of execution of SingleThread.rb is as
shown in the Figure 8.1:

Started At Mon Jan 14 12:27:16 GMT+5:30 2002
funcl at: Mon Jan 14 12:27:16 GMT+5:30 Z002
funcl at: Mon Jan 14 12:27:18 GMT+5:30 2002
funcl at: Mon Jan 14 12:27:20 GMT+5:30 2002
funcl at: Mon Jan 14 12:27:22 GMT+5:30 2002
funciZ at: Mon Jan 14 12:27:24 GMT+5:30 2002
funcz at: Mon Jan 14 12:27:26 GMT+5:30 2002
funcZ at: Mon Jan 14 12:27:26 GMT+5:30 Z002
funcZ at: Mon Jan 14 12:27:27 GMT+5:30 2002
End at Mon Jan 14 12:27:28 GMT+5:30 2002

Figure 8.1 Output of SingleThread. rb after execution.

118 Chapter 8

Multithreaded Applications in Ruby

Let’s see how much time is taken to execute the same program using mul-
tithreading in Ruby:

def funcl
i=0
while i<=3
puts "funcl at: #{Time.now}"
sleep(2)
i=i+1
end
end
def func2
3=0
while j<=3
puts "func2 at: #{Time.now}"
sleep (1)
j=j+1
end
end
puts "Started At #{Time.now}"
tl=Thread.new{funcl ()}
t2=Thread.new{func2 ()}
tl.join
t2.join
puts "End at #{Time.now}"

Here, most of the code remains the same as the single-threaded applica-
tion code. We have created two threads, t1 and t2. The t1 thread executes
the method funcl. The t2 thread executes the method func2. The beauty
of threading is that when one thread sleeps, the other thread takes over the
CPU, and when this thread goes to sleep, some other thread takes over the
CPU. Therefore, CPU idle time is kept to a minimum. The preceding code
involves creating threads and joining threads. We will learn about these
two concepts in the next section. At present, you will just execute the code
(Figure 8.2). You will notice that the time taken to execute the code is only 9
seconds, whereas it took 13 seconds with single-threaded application.

Started At Mon Jan 14 12:29:12 GMT+5:30 2002
funcl at: Mon Jan 14 12:29:12 GMT45:30 2002
funcZ at: Mon Jan 14 12:29:12 GMT+5:30 2002
funcz at: Mon Jan 14 12:29:13 GMT+5:30 2002
funcl at: Mon Jan 14 12:29:14 GMT+5:30 2002
funcZ at: Mon Jan 14 12:29:14 GMT+5:30 2002
func? at: Mon Jan 14 12:29:15 GMT+5:30 2002
funcl at: Mon Jan 14 12:29:16 GMT+5:30 2002
funcl at: Mon Jan 14 12:29:18 GMT+5:30 2002
End at Mon Jan 14 12:29:2Z0 GMT+5:30 2002

Figure 8.2 Output of MultiThread.rb after execution.

Multithreading

.m The system date and time would change depending on when the code
is executed.

Creating a Web Server

Problem Statement

The development team of Knowledge, Inc., has been asked to create a Web
server by using Ruby. So the team is planning to use the concept of thread-
ing to create the Web server. Because the team is very new and does not
have much experience with Ruby, the members have decided to imple-
ment a sample Web server that would just show the current date and time
when accessed from the client machine. Mike, being the most experienced
in using Ruby, is the technical lead for this project. Mike has instructed the
development team to implement the concept of mutual exclusion and
thread scheduler.

Task List

Identify the different classes to be used.
Implement the Web page.

Complete the processing of all the current requests before shutting
down the Web server.

Implement the class Mutex.
Implement the thread scheduler.
Save and execute the code.
Verify the output.

X Y\

A W WA

Identify the Different Classes to Be Used

Let’s look at how you can code the Web server mentioned in the case study.
You might have a class called RequestHandler that processes a single
request from someone’s browser. Without some kind of parallel execution,
you would have only one RequestHandler instance at any given time,
and all other requests would have to queue up, waiting for our program to
finish processing the current request. However, using multithreading, you
can improve the overall response time by creating a new RequestHandler
instance each time a request is received and allowing that instance to run
on its own thread.

120 Chapter 8

Before you look at some code, you need to discuss how one might orga-
nize to receive the requests. Ruby provides a standard class called
TCPServer that hides all the complex details of the operating system
processes.

You simply need to specify on what IP address and port number
you are willing to accept those connections. In this case, you can specify
0.0.0.0 as the address because we are happy to accept any connections
that make it to our machine and port number 8888. The standard port
number for Hypertext Transfer Protocol (HTTP), the underlying protocol
that Web traffic uses, is 80, so hopefully using 8888 will not interfere with
any real server that is running on our machine. Let’s see how you could
write your multithreaded Web server:

require 'thread’

require 'socket'

class RequestHandler

def initialize(session)

@session = session

end

def process

Here, you will be adding all the details of responding to requests
end

end

server = TCPServer.new("0.0.0.0", "8888")
while (session = server.accept)
Thread.new(session) do |newSession]|
RequestHandler.new (newSession) .process
end

end

Implement the Web Page

As you can see, it did not take much work to make things multithreaded.
All you did was construct an instance of class Thread and pass it a block
of code to execute. Each time a connection comes in from a Web browser,
server.accept will return a TCPSocket object that is connected to the
browser. You simply pass this to the RequestHandler object when you
create it and then ask it to process the request.

To help you to try out an implementation of a Web server, here is a sim-
ple implementation of RequestHandler#process that always returns a
Web page containing the current time. Do not worry if you cannot under-
stand the details—just give it a try.

Multithreading 121

def process

while @session.gets.chop.length != 0

end

Send the current time as our response. First
the headers to tell the browser that this is
an HTTP response and that the content we are
sending is HTML

@session.puts "HTTP/1.1 200 OK"

@session.puts "content-type: text/html"
@session.puts "" # End of headers

Now, the HTML for your page (Time.now is the
current time)

@session.puts "<html>"

@session.puts " <body>"

@session.puts " <center>"
@session.puts " #{Time.now}"
@session.puts " <center>"
@session.puts " </body>"

@session.puts "</html>"

Finally, close the connection, so the browser
will know the response is finished ...
@session.close

end

Try running the complete program and then accessing it from your
favorite Web browser using the URL http://localhost: 8888.

You might be wondering what data a thread’s code can access. Each
thread has its own namespace, so any variables you create in its block of
code, including in other methods it calls, are local to that thread. This
means that threads cannot change each other’s data by mistake.

In addition to its own data, a thread can access any variables that were in
existence at the time the thread was created. Why didn’t we make use of
this in our case study? Why do we have a block local variable newSession
that is just a copy of session?

Once the thread has been created, it will effectively run in parallel with
the main code and with any other threads that have been created for previ-
ous requests but have not yet completed. If you had simply used session
instead of creating a copy of it, any new request received could overwrite
session before you finished creating the RequestHandler instance.

Thus you potentially could end up with a new handler connected to the
next browser that made a request rather than the one you intended. The
result would be that one of the requests would receive no response, and the
other would be sent two pages, with all the HTML code jumbled up
together!

122 Chapter 8

In contrast, newSession is local to the thread and hence will not be
modified when session changes. Thus you can use it safely to construct
the new handler.

Complete Processing of All the Current Requests
Before Shutting Down the Web Server

A Web server is intended to be running continuously. However, some pro-
grams are designed to execute for some period of time and then exit. For
example, the user normally will leave a word processor once he or she has
finished working on a document.

Normally, when the main thread of a program finishes, the Ruby inter-
preter will exit, killing any other threads that are still running. This obvi-
ously would be a problem if, say, a word processor were still in the middle
of sending a document to the printer when the user decided to shut it
down.

To avoid this type of problem, rather than simply exiting, a thread can be
suspended until another thread has completed. This is done using
Thread#join. For example, you could change your Web server so that it
can be shut down gracefully, making sure that the processing of any cur-
rent requests is finished before you exit:

server = TCPServer.new("0.0.0.0", "8888")
ScurrentRequests = []

SrequestedToShutDown = false

while !S$SrequestedToShutDown

session = server.accept

thread = Thread.new(session) do |newSession
RequestHandler.new (newSession) .process

end

ScurrentRequests.push (thread)

end

$currentRequests.each { |t| Thread.join(t) }

In this case, the Web server accepts requests until the global flag
$requestedToShutDown is set. This might be done, for example, as part
of RequestHandler’s processing of some predefined request.

Once the flag is set, the Web server drops out of its main loop. It then
runs through all the current handler threads, joining each in turn. By the
time all these joins complete, all requests will have been processed, so you
can exit safely.

Multithreading

123

Implement the Mutex Class

If you look at the code a little more closely, you will see that there is a bit of
a problem. Because the Web server normally will run for a very long time,
during which it will process potentially hundreds of thousands of requests,
our $currentRequests array is going to become rather large.

Obviously, all you can do is have each thread remove its own entry from
the array once it finishes handling the request it was assigned to process. In
theory, this is fairly easy to do because the class Array has a method
delete, so this can be coded as:

ScurrentThreads.delete (Thread.current)

Here, Thread. current returns the instance that is currently running,
which is what you want.

However, remember that all threads have access to this global variable
and they are running in parallel. Therefore, it is possible that while one
thread is in the middle of removing its entry from the array, another thread
could attempt to do the same thing, or the main thread could attempt to
add a new handler. In either case, this potentially could leave the array’s
contents scrambled.

This is a well-known issue in areas such as operating systems and lan-
guage interpreters that provide this kind of parallel processing. What you
require is mutual exclusion; in other words, you want only one thread to be
accessing the shared variable at a time.

Ruby provides the class Mutex to handle this situation. Here is how you
would recode using a Mutex:

server = TCPServer.new("0.0.0.0", "8888")
ScurrentRequests = []

SrequestedToShutDown = false

Smutex = Mutex.new

while !S$SrequestedToShutDown

session = server.accept

thread = Thread.new(session) do |newSession
RequestHandler.new (newSession) .process
Smutex.synchronize do
ScurrentRequests.delete (Thread.current)

end

end

Smutex.synchronize { S$currentRequests.push(thread) }
end

$currentRequests.each { |t| Thread.join(t) }

124 Chapter 8

The Ruby interpreter guarantees that only one thread will ever be
allowed to execute inside a block passed to Mutex#synchronize. If any
other thread attempts to enter such a block, it will be queued until the cur-
rent thread leaves its synchronized block.

Implement the Thread Scheduler

Sadly, there is still a problem here. If you happen to be very unlucky, the
new request might be handled before the main thread has a chance to add
its handler thread into the array. In this case, the delete method would
fail. How can you avoid this?

The Ruby interpreter contains a component called the thread scheduler
that provides facilities to allow us some control over how the threads in
our program execute. To solve your current problem, what you can do is
make sure that the new thread you have created does not begin executing
until you have a chance to push it into the array. You can achieve this by
telling the scheduler that the main thread is in a critical piece of processing
that should not be interrupted:

session = server.accept

Thread.critical = true

thread = Thread.new(session) do |newSession
RequestHandler.new (newSession) .process
Smutex.synchronize do

ScurrentRequests.delete (Thread.current)

end

end

smutex.synchronize { ScurrentRequests.push(thread) }
Thread.critical = false

Thread Priority

Another thing that is sometimes useful is the ability to give threads differ-
ent processing times. The scheduler also allows you to do this. All you
need to do is to set the thread’s priority variable. For example:

Sslow = 0

Sfast = 0

(Thread.new { loop { S$slow += 1 } }).priority = -2
(Thread.new { loop { S$fast += 1 } }).priority = -1
sleep 1

Thread.critical = true

puts "The slow thread counted to #{Sslow}"
puts "The fast thread counted to #{$Sfast}"

Multithreading

125

Here you have given the slow thread a priority lower than the fast
one. Notice, by the way, how you have stopped the two threads after the
main thread finishes sleeping by again setting Thread.critical. On
execution, this code produces:

The slow thread counted to 11675
The fast thread counted to 629474

.m This output can differ from computer to computer.

As you can see, a small difference in priority can make a big difference
when the code contains a tight loop like this. Additional features of the
scheduler are the ability to start and stop threads.

A given thread can suspend its own execution by calling Thread. stop
or explicitly give control back to the scheduler to allow it to start a different
thread by calling Thread.pass. One thread can allow another specific
thread to run by calling Thread. run.

Here is a simple example of the use of Thread.stop, Thread.pass,
and Thread. run:

Threads A and B both loop continually, printing one message,
sleeping for half a second, and then passing control to another
thread

threadA = Thread.new do

i=0

loop do

puts "Thread A: #{i += 1}"

sleep 0.5

Thread.pass

end

end

threadB = Thread.new do

i=0

loop do

puts "Thread B: #{i += 1}"

sleep 0.5

Thread.pass

end

end

Thread C also loops continually, printing a message. However,
it stops after each message, waiting to be woken up again by
another thread (in this case, the main program)

threadC = Thread.new do

i=0

loop do

puts "Thread C: #{i += 1}"

126 Chapter 8

Thread.stop

end

end

The main program loops continually, doing nothing other than
sleeping for half a second and then letting Thread C have a
go

loop do

sleep 0.5

threadC.run

end

One last thing: Just as Thread. join suspends the current thread until
a specific thread exits, Thread.value suspends it until the thread’s block
returns a value.

Save and Execute the Code

Save the code as WebServer.rb, and run the code from the command
prompt.

Verify the Output

1. Open any browser.
2. On the address bar, type http://localhost:8888.

3. Compare the output of the browser with Figure 8.3. You also can
check the output from the other client computers. If you are testing
on any other client computer, then on the address bar you need to
type http://computer name:8888, where computer name is
the name of the computer on which the Web server code is running.

In addition to the preceding concepts, you need to learn one more
important concept—multiprocessing. We discuss multiprocessing in the
following section.

Multiprocessing

Using Ruby, you can access UNIX multiprocessing facilities such as fork,
exec, and wait as long as the underlying operating system has the neces-
sary facilities to support them. When you call fork, the current process
splits into two pieces: aparent and a child. In the parent, fork returns

Multithreading 127

a http://localhost: BB88/ - Microsoft Internet Explorer

| Ele Edi View Favories Took Help |-
G e ‘ Q S | B 8 & . -

| Back EoriEns Stop Refrezh Home Search Favoites Histoy Mail Frirt Edit Dizcu
| Address [] titp:/ocalhost 3888 =] @B || Links >
=l

Fri Jan 04 18:24:35 GMT+5:30 2002

=

|&] Dore | |25 Localintranst

Figure 8.3 Browser output on the client machine.

the process ID of the child; in the child, it returns nil. This is how you
can tell which is which. After a fork, the two processes can continue to run
parts of the same program, as in the following example:

if (child = fork)
puts "I'm the parent; the child is #{child}"

else
puts "I'm the child"
end

Figure 8.4 shows the output of this code.

I am in the child i
I am in the parent; the child is 438647

Figure 8.4 Code output.

128 Chapter 8

I am in the parent the child has process ID 24874
[root@serverl Rubul® I an the child now executing
axec,rb wait.rb

Figure 8.5 Code output.

Often the reason you wish to fork is to run a different program. You can
achieve this using exec. What this does is replace the currently running
program with a different one that you specify. Here is an example:

if (child = fork)

puts "I'm the parent; the child has process ID #{child}"
else

puts "I'm the child; now executing 1ls .."

exec ("1ls")

end

Figure 8.5 shows the output of this code.

This program works fine. However, if the program the child runs takes
a while to do its work, there is a risk that the parent will exit before the
childhas finished. You can avoid this by explicitly waiting for the child.
Here is a modified version:

if (child = fork)

Wait for the "ls" to complete

Process.wait

This message is guaranteed to be output after
the output from 1ls

puts "I'm the parent; the child has finished"
else

puts "I'm the child; now executing 1ls .."

exec ("1ls")

end

Figure 8.6 shows the output of this code.

I an the child
ExEC,png exec.th wait.rb
I am the parent the child has finished

Figure 8.6 Code output.

Multithreading 129

Summary

In this chapter, you learned that:

m The pieces of the same program, when run in parallel, are termed
as multithreading and that, using Ruby, you can implement
multithreading.

m You can create a thread by using the method new of the class
Thread.

m The Ruby library provides a standard class called TCOServer that
handles all the complex details of the underlying operating system.
The method new of the class TCPServer accepts two parameters.
One is the IP address, and the second is the port number where
you want to receive the requests from the client.

m The method Thread.join can be used to suspend the main thread
from exiting until all its threads finish executing.

m The method synchronize of the class Mutex can be used by
threads to exclusively lock one of the resources.

m You can set a thread to be in a critical state by setting Thread.
critical=True.

m You can even set priority to threads by using the priority variable.

m A thread can suspend its own execution by calling the method stop
of the class Thread.

m A thread can give control back to the scheduler by calling the
method pass of the class Thread.

m A thread can make another thread run by calling the method run of
the class Thread.

= You can implement multiprocessing in Ruby by calling the UNIX
utilities fork, exec, and wait.

CGI Programming

OBJECTIVES

In this chapter you will learn:
v~ The basics of HTML
1+ To write CGI scripts by using the class cGI
v~ About cookies
+~ To maintain sessions
v~ To use eRuby

v~ To accept the values of a form and dynamically generate an HTML page
using CGl scripts

Getting Started

Web programming is one of the most important application areas of Ruby.
Ruby is now fast gaining popularity as an Internet programming language.
In the previous chapters you have executed Ruby programs from the com-
mand prompt. In this chapter you will learn to execute Ruby programs
from a Web browser.

131

132 Chapter 9

Before beginning, let us check what resources you will need to execute
Ruby code from the browser. First of all, you need a computer with Web
server software installed. Ruby works well with an Apache Web server.
You also need to install Ruby on the Apache Web server. Second, you need
a computer that has Web browser software application installed. This com-
puter becomes the client. You will use this client browser to run the Ruby
code stored on the Web server. This chapter mainly covers how to write
Web-based programs using Ruby. You also will learn about the common
gateway interface (CGI). Before you start writing CGI scripts, let us discuss
the basics of CGL

CaGl

The Common Gateway Interface (CGI) is a standard for interfacing exter-
nal applications with information servers, such as Hypertext Transfer Pro-
tocol (HTTP) or Web servers. Before the advent of CGI, there were only
static Web pages. These Web pages could only provide static information,
and no user interaction was possible. Therefore, there arose a need for a
specification that would make Web pages interactive. This is precisely
where CGI comes into the picture. Consider an example: A database of
books exists, and users want to browse through the catalog of books. The
browser will send the request to a Web server. The Web server now needs
to access the information from the database and send it to the browser.
However, the Web server is not familiar with the internals of the database.
How will the Web server access the database? Here is where the CGI pro-
gram provides the connect. The Web server, in turn, executes the CGI
script, which is responsible for handling database transactions. The CGI
script then passes the database transaction output to the Web server, which
in turn passes the output to the client browser. You need to remember that
the client browser has no knowledge of the CGI script executed on the Web
server.

In Ruby, you write CGI scripts by using the class CGI. The class CGI is a
in-built class provided by Ruby. Learning to write CGI scripts requires the
knowledge of Hypertext Markup Language (HTML). Therefore, let’s
revisit some of the concepts related to HTML.

HTML is a language derived from Standard Generalized Markup Lan-
guage (SGML). HTML has been the principal language for building Web
pages for quite some time now. HTML basically consists of tags and ele-
ments. In addition, HTML divides a Web page into two parts, the head and

CGI Programming

133

the body. The head consists of the title of the Web page. The head also con-
tains information regarding communication between the server and the
browser. The body contains the various elements of the page, such as text,
graphics, and animation. Let us see how to represent a simple Web page as
a set of HTML tags:

<HTML>

<Head>

<Title>Customer information form</Title>

</Head>

<Body bgcolor=#ccffff><pre>

<Hl><u> Please enter your details in this form </u></H1l>
<Hr>

<Form name=frml>

First name <Input type=text name=T1 size=20>

Last name <Input type=text name=T2 size =20>

Sex Male<Input type=Radio name=R1> Female<Input

type=Radio name=R1>

Home Address <Input type=text name=T3 size =20>

Street <Input type=text name=T4 size =20>

City <Input type=text name=T5 size =20>

State <Input type=text name=T6 size =20>

Phone <Input type=text name=T7 size =20>

<Input type = Submit value="Submit Form"> <Input

type=Reset value="Reset">
</Form></pre>

</Body>

</HTML>

The output of this code is an online customer information form with the
head (or the title) Customer information formand abody containing
the form elements, such as the text box for accepting customer name
(Figure 9.1).

Commonly used HTML elements are:

HTML. The HTML element consists of an opening tag and a closing
tag, which are represented as <HTML> and </HTML>, respectively.
All the elements of a Web page are enclosed within these two tags.
The opening tag indicates the beginning of the Web page, and the
closing tag indicates the end of the Web page.

Head. The Head element represents the title area of the Web page.
You represent the Head element between the two tags <Head> and
</Head>. The Head element consists of the Tit1le element, which
has the title of the Web page. You represent the Tit1le element
between the tags <Title>and </Title>.

134 Chapter 9

Body. The Body element represents the actual contents of the Web
page. You represent the Body element between the two tags <Body>
and </Body>. All the elements of the Web page are between these
two tags.

H1. The H1 element makes the text appear in the heading 1 font on
the Web page. You represent this element between the tags <H1> and
</H1>.

hr. The hr element draws a horizontal line on the Web page. You
represent the hr element by using the <hr> tag. No closing tag is
required for this element.

Pre. The Pre element gives the output as specified on the Web page.
It can be represented between the tags <Pre> and </Pre>.

Form. The Form element represents a form on the Web page. You use
a form on a Web page to accept data from a user. HTML allows you
to enter data in a form with the help of text fields, checkboxes, radio
buttons, and list boxes. You represent a form element on a Web page
between the tags <Form> and </Form>.

Text field. The text field allows you to type data in a form. You can
use a text field to accept values such as the first name, the last name,
the address, the phone number, and the email address. You represent
a text field on a Web page with the help of an input tag. The state-
ment <Input type=text name=T1 size =20> represents a text
field having the capacity to hold 20 characters and having the name
T1. The input tag is part of the form element.

Please enter your details in this form

First name I
Last name I

Sex Hale O Female
Home Address I
Streec I
Cicy I
State I
Phone I

Figure 9.1 Browser output of a Web page.

CGI Programming

135

Radio button. The radio button is used when you want to specity a
group of options from which a user should select one. You use radio
buttons when you want a user to select an option from a given set of
options. The statement <Input type=radio name=R1> specifies a
radio button named R1. All the radio buttons that belong to the same
group should have the same name.

Submit button. The submit button submits the data of a form to the
Web server. You create a Submit button with the statement <Input
type=submit Value="Submit Form">. The value Submit
Form appears on the submit button.

Reset button. The reset button clears the data on a form. You create a
reset button with the statement <Input type=Reset
Value="Reset">. The value Reset appears on the reset button.

llmj The HTML tags are not case-sensitive.

Suppose that you want to display the output Hello, Welcome to
the World of Ruby!! in alarge font. Let us see how to write it first in
HTML and then in Ruby:

<HTML>

<Head>

<Title> My First page </Title>

</Head>

<Body>

<hl> Hello, Welcome to the World of Ruby!! </hl>
</Body>

</HTML>

Now let’s see how to write the same code in Ruby:

#! /ruby/bin/ruby

print "Content-type:text/html \n\n"

print "<HTML><Head><Title>My First Page</Title></Head>"
print "<Body><hl>Hello, Welcome to the World of

Ruby! !</hl></Body></HTML>"

The first line is an important line. The first line of code instructs the Web
server about the interpreter to be used to execute the code. Here,
/ruby/bin/ruby means that the ruby.exe file is found in the bin
directory, which is in the Ruby directory. The Ruby directory, in turn, is in
the root directory. The next line, print "Content-type:text/html
\n\n", informs the Web server that the following lines of code are either in

136 Chapter 9

text or HTML format. The difference between writing HTML code and
Ruby code is that HTML code is not executed at the server level. It is exe-
cuted by the browser, and the output is shown in the browser. However,
Ruby code is executed on the Web server, and the output is passed on to the
browser and displayed in the browser. Therefore:

print "<HTML><Head><Title>My First Page</Title></Head>"
print "<Body><hl>Hello, Welcome to the World of
Ruby!!</hl></Body></HTML>"

Here, both the print statements are executed on the Web server, and the
output of the print statements, which is:

<HTML><Head><Title>My First Page</Title></Head>
<Body><hl>Hello, Welcome to the World of Ruby!!</hl></Body></HTML>

is sent to the browser. The browser then interprets these HTML tags and
shows the output.

The question that arises next is how to execute a file on a Web server. Let
us discuss the Apache Web server. To execute a file on the Apache Web
server, first copy the file in the cgi-bin directory, which is in the Apache
directory. The Apache directory is placed in the Apache Group directory,
which is on the server side. On the client side, you open the browser. On
the address bar, you type:

http://name/cgi-bin/test.rb

where name is the name of the Web server, cgi-bin is the directory in
which you have stored the file, and test.rb is the name of the file. The
Apache Web server runs the test.rb file by using the Ruby interpreter
and passes on the output to the browser.

Now let us examine how to write the preceding code using the class CGI:

#!/ruby/bin/ruby
require 'cgi'
cgi=CGI.new("html3")
cgi.out{
cgi.html{
cgi.head{cgi.title{"My First Page"}}
cgi.body{cgi.hl{"Hello, Welcome to the World of Ruby"}}
}
}

The first line of the code remains the same as in the preceding code. The
next line, require 'cgi', adds the file cgi.rb to the code. The code

CGI Programming

137

will now be able to access all the classes and methods of the file cgi . rb.
The next line, cgi=CGI.new("html3"), creates a new object of the class
CGI. The class CGI has a method for most of the tags. Therefore,
cgi.head, cgi.title, cgi.body, and cgi.hl will generate the head,
title, body, and H1 tags, respectively. The preceding CGI script will gener-
ate the HTML tag output shown below and pass the output to the browser.

<HTML><Head><Title>My First Page</Title></Head>
<Body><hl>Hello, Welcome to the World of Ruby</hl></Body></HTML>

You should notice that the output generated by the Ruby script and the
CGI script are the same. These HTML tags are then interpreted by the
browser, and the output is as shown in the Figure 9.2.

Capturing HTML Parameters

You must have visited Web sites that ask you for a login name and a pass-
word. After you log in, the Web site displays a welcome message and your
login name. How is this possible? The only way this can be achieved is that
the login page passes on the login name value to the page that displays the
welcome message. Therefore, you have the login page, which passes on a
parameter, and the welcome page, which traps this parameter value. Pass-
ing a parameter can be done easily using HTML forms. Let’s learn to trap
parameter values using CGI scripts. Consider the following code:

#!/ruby/bin/ruby

require 'cgi'

print "Content-type: text/html \n\n"
cgi = CGI.new

print "Name = "

print cgi['Name']

print"
"

print"
"

print "Type = "

print cgil['Type']

Hello, Welcome to the World of Ruby

Figure 9.2 Browser output.

138 Chapter 9

[ame = Ruby

Type = Scripting

Figure 9.3 Browser output of the CGI code.

This CGI script consists of two parameters, Name and Type. This CGI
script expects two values to be passed to it at the time of execution. Let’s
name this script egi.rb. If you call this script without parameters, you
just write http: //Apache/cgi-bin/cgi.rb on the address bar of the
Web browser, where Apache is the name of the Web server. If you call this
script with parameter values, you will need to write http://Apache/
cgi-bin/cgi.rb?Name=Ruby&Type=Scripting, where Ruby is the
value passed to the Name parameter and Scripting is the value passed to
the Type parameter. Therefore, while passing parameters at the time of
execution, you need to separate the path of the script from the parameters
by using a question mark (?). Then you write:

parameter name = parameter value

Next, you separate each parameter from the other by using the amper-
sand operator (&). Figure 9.3 shows the output of the preceding CGI code.

We have discussed how to accept information from a user. The informa-
tion accepted in a form is mostly stored on the server. However, sometimes
storing information on the client computer also helps. Now we will discuss
how we can store information on a client computer by using cookies.

Cookies

Cookies are bits of information stored on the client computer by a Web
server. When a user requests the same Web page again, the browser passes
these bits of information to the Web server along with the request. Using
this information, the Web server accordingly responds to the request.
These bits of information could be the login name and password of the
user, the Internet Protocol (IP) address of the computer, or the time of login.
These cookies are stored on the client computer for a certain period of time,
after which they are deleted. You will learn how to create these cookies in
Ruby. Let’s examine the code to create a cookie:

#!/ruby/bin/ruby
require 'cgi'
cgl = CGI.new("html3")

CGI Programming

139

cookieKey = "Knowledge-Inc"
currentCookie = cgi.cookies|[cookieKey]
ScustID = ""
Svisits = 0
if currentCookie.length == 0
ScustID = (999 * rand()).to_i + 1
Svisits = 1
else

currentCookie.value.each do |item|

words =
case words[0]

when "CustID"
ScustID = words[1]
when "Visits"

Svisits = words[1].

end
end
Svisits += 1

item.split("=")

to_1i

"CustID=#{S$custID}",

your first visit. Welcome!" +

assigned customer ID #{ScustID}."

This is visit number #{S$visits}."

ID is #{ScustID}." +

end
newCookie = CGI::Cookie.new(cookieKey,
"Visits=#{S$visits}");
cgi.out("cookie" => [newCookie]) do
cgi.html do
"\n" +
cgi.title() do
"Cookie Test"
end +
cgi.center () do
cgi.hl() do
"Cookie Test"
end +
begin
if $visits == 1
"" +
"I see this is
"<p>" +
"You have been
""
else
"" +
"Welcome back!
"<p>" +
"Your customer
""
end
end
end
end

end

+

+

140 Chapter 9

This code is a type of cookie test. It checks whether a customer has vis-
ited a site before. If a customer is visiting a site for the first time, the code
generates a random customer ID for the customer and displays the text
I see this 1is vyour first wvisit. Welcome!. The code also
displays the customer ID. If the customer has visited the site before, the
code will display the current number of the visit to the site along with the
customer ID.

In the preceding code, notice that you create a cookie by using the fol-
lowing lines:

newCookie = CGI::Cookie.new(cookieKey, "CustID=#{ScustID}",
"Visits=#{$visits}");

These lines of code will create a cookie object, newcookie. This cookie
will be an array that will have values such as CustID=123 Visits=5.
This means that the customer with customer ID 123 has visited the site five
times before and that this is his or her sixth visit. Note that Cookie is a
class in the CGI module. Figure 9.4 shows the output when a user visits the
Web page for the first time, and Figure 9.5 shows the output for a customer
who has visited the site before.

Now that you understand the use of cookies, we will discuss how you
can use sessions to ensure the security of a Web page.

Cookie Test

I see this is your first visit. Welcome!

You have been assigned customer ID 910.

Figure 9.4 Browser output for a new customer.

Cookie Test

Welcome hack! This is visit numher 2.

Your customer ID is 910.

Figure 9.5 Browser output for a customer who has visited the site before.

CGI Programming

141

Sessions

Consider that you are checking your email messages in your company
from one of the popular mail Web sites. You log in using your login name
and password. You check your email messages and then log off from the
Web site. Then you leave your computer unattended. Just imagine that one
of your colleagues comes to your computer and clicks the Back button of
the browser. The Back button of the browser takes you to the page that was
visited last on the browser. This means that the browser will display the
page that displayed your email messages. However, this never happens.
And this is due to the concept of sessions. What happens is that the moment
you log into your account, a session is created. This session lasts only until
you log out. Therefore, even if somebody tries to access the page by using
the Back button, the Web site either displays a page indicating that the ses-
sion has expired or takes the user back to the login page. Therefore, ses-
sions help you maintain the security of your Web page. You can implement
sessions on your Web site using Ruby. Let’s see how:

#! /ruby/bin/ruby

require 'cgi'

require 'cgi/session’

cgli = CGI.new("html3")

sessionKey = "Knowledge-Inc-Session"
sessionPrefix = "session."

session = CGI::Session.new(cgi, "session_key" => sessionKey,

"prefix" => gessionPrefix)
$lastAccess = session["lastAccess"]
Svisits = session["visits"]
if $visits == nil
Svisits =1
else

Svisits = $visits.to_i + 1

end
session["visits"] = $visits
session(["lastAccess"] = "#{Time.now}"

cgi.out() do
cgi.html do
"\n" +
cgi.title() do
"Session Test"
end +
cgi.center () do
cgi.hl() do
"Session Test"
end +

begin

if S$visits == 1

142 Chapter 9

"<pb>" +

"This is your first visit in this session. Welcome!" +
""

else

"" +

"This is visit number #{$visits} this session." +
"<p>" +

"Your last access was at #{$lastAccess}<p>" +
"The current time is #{Time.now}" +

""

end

end

end

end

end

The session code is similar to the cookie code. This code also checks
whether a customer has visited the site before. However, no customer ID is
generated for a new customer. The code displays This is your first
visit in this session. Welcome! fora customer visiting the site for
the first time. A customer who has visited the site once can see the current
number of the visit when he or she visits again. The date and time when
the site was last visited and the current date and time also are displayed.

In the preceding code, require 'cgi/session' adds the Session
class of the CGI module to the code. This line of code is very important
because you will use the method initialize of the class Session to
create a session. You create a session by using the following lines:

session = CGI::Session.new(cgi, "session_key" => sessionKey,

"prefix" => gessionPrefix)

These lines will create a session object called session. Then you cre-
ate session variables, such as visits and lastAccess, by using ses-
sion["visits"] and session["lastAccess"].

Until now you have seen how to execute Ruby code from a Web browser.
In the preceding examples you created separate files for HTML and Ruby.
What if you need to embed Ruby with HTML? To do this, you need to use
eRuby as the interpreter. eRuby is discussed in the next section.

eRuby

eRuby is an interpreter for running Ruby code embedded in HTML.
Embedded Ruby code in HTML can be compared with Active Server Pages
or Java Server Pages. Let’s discuss the following code to understand this:

CGI Programming

143

#!/ruby/bin/eruby

<html><head><title>eRuby Example</title>
<center><hl>eRuby Example</hl>

<% puts "The current time is #{Time.now}" %$></center>
</head></html>

This code consists of HTML tags. You embed the Ruby code in between
the HTML tags by using the percent symbol (%). Here you use eRuby as the
interpreter. Therefore, you need to provide the proper path for the
eruby . exe file:

#! /ruby/bin/eruby

This code means that the eruby . exe file is in the bin directory, which
is in the Ruby directory. The Ruby directory is placed in the root folder.
One more important thing you need to remember is to save the file with the
.rhtml extension in the cgi-bin directory of the Apache Web server. The
expression Time.now displays the current date and time. Even with all
this care, you might still come across the terrible screen of Internal Server
Error. Then you need to check the httpd.conf file of the Apache Web
server. The following two lines need to be present in the ht tpd. conf file
for the eRuby codes to execute:

AddType application/x-httpd-eruby .rhtml
Action application/x-httpd-eruby /cgi-bin/eruby

Thus, add these two lines in the httpd. conf file and get going. Figure
9.6 shows a simple eRuby program.

eRuby Example

The current time is Sat Jan 05 16:27:03 GMT+5:30 2002

Figure 9.6 A simple eRuby program.

144 Chapter 9

Creating and Submitting a Form

Problem Statement

The development team of Knowledge, Inc., has been entrusted with the job
of creating a page for accepting customer information. This page should
accept details such as customer name, age, address, sex, and email address.
Once the user clicks on the Submit button, a page should be displayed with
all the values entered by the user.

Task List

The tasks that we need to perform for solving this problem are
v Create a page in HTML for accepting the customer information.

1 Create a CGlI script that will display the form values.
v Verify the code.

Create a Page in HTML for Accepting
the Customer Information

Let’s examine the HTML code to create a Web page that accepts customer
information such as name, age, sex, address, and email address:

<HTML>

<Head>

<Title>Form Data</Title>

</Head>

<Body bgcolor=yellow>

<Pre>

<Center><Hl><u>Form Data </u></Hl></Center>
<Form name="frml" action="cgi_action.rb">

Name <input type=text name="Name">

Age <input type=text name="Age">

Address <input type=textarea name="Address">

Sex M <Input type=radio name="Sex"> F <Input type=radio

name="Sex">
E-mail address <input type=text name="E-mail">
<Input type="submit" Name="Submit" value="SUBMIT">

CGI Programming 145

</Form></Pre>
</Body>
< /HTML>

Create a CGI Script that Will Display the Form Values

In the form, you have a Submit button to submit the values of the form to
the Web server. Here is where the CGI script comes into picture. The CGI
script always resides on the server. Clicking the Submit button invokes the
specified CGI script on the server. In this example, the CGI script
cgi_action.rb is invoked. This CGI script then handles the form data.
Mostly, CGI script takes care of storing the form data in the database. Here
the CGI script will dynamically create an HTML page displaying the cus-
tomer details:

#! /ruby/bin/ruby
require 'cgi'

print "Content-type: text/html\r\n\r\n"
cgi=CGI.new

print "Name = "
print cgil['Name']
print "
"

print "
"

print "Age = "

print cgi['Age']
print "
"

print "
"

print "Address = "
print cgil['Address']
print "
"

print "
"

print "Sex = "
print cgi['Sex']
print "
"

print "
"

print "E-mail Address = "
print cgi['E-mail']

Verify the Code

Enter the values in the HTML page, and click the Submit button. Check
whether an HTML page is generated and also check whether the values
displayed are the same as entered in the form (Figure 9.7).

146 Chapter 9

Mame = Mike

Age =26

Address =B 32 Stoneville
Sex = Male

E-mail Address = johnny@rwmail com

Figure 9.7 The HTML page generated by the CGI script.

Summary

In this chapter you learned:

m The basics of HTML by creating a simple HTML page for accepting
values from a user.

m How to create CGI scripts using the class CGI.

m How to execute Ruby codes on a Web server using a client machine
browser.

m How to pass parameters at the time of execution of the CGI script.

m That whenever you visit a Web page, the Web site stores some bits
of information in your machine. These bits of information are called
cookies. The Web server uses these cookies the next time you visit
the site.

m How to implement sessions using Ruby.

m How to embed Ruby codes in HTML using the % tags. You save
the file with a . rhtml extension and execute the file from the
Web browser. You need to remember to provide the path of the
eruby . exe file in the code.

m How to write CGI scripts that accept values from the form and
generates an HTML page that displays the entered values.

GUI Programming with Tk

OBJECTIVES

In this chapter you will learn to:
v~ Identify the significance of the Tk module
1+~ Identify the steps to create a GUI application
v~ ldentify the widgets provided by the Tk module

v~ Use various widgets in your application

Getting Started

Until now, the chapters in this book have discussed how to create applica-
tions that work on the command-line interface. You executed Ruby scripts
and viewed their output at the command prompt. If the application
required user input, you entered the input at the prompt.

147

148 Chapter 10

At times, text-based applications can be very monotonous for a user and
difficult to work with. This chapter can be helpful for those who want to
learn to develop user-friendly graphic interfaces. Imagine how exciting it
would be to enable a user to enter the required details in a window with
different controls for each detail where the user can activate or choose
options simply by pointing and clicking with a mouse instead of asking for
details on the Ruby prompt. Such applications that interact with a user by
means of an interface represented by using icons, menus, and dialog boxes
on the screen are called graphic user interface (GUI) applications.

In this chapter you will learn about Tk, the GUI framework for Ruby,
and use Tk to create GUI applications. As a part of this, you will learn
about various controls that can be included in a GUI You will further
enhance the skills you gain in this chapter by designing a GUI application.
Before moving on to the concepts related to Tk, let’s take a brief overview
of GUI applications.

A GUI application has a user interface. We can compare this with a paint-
ing. In the case of a painting, the canvas holds together various compo-
nents, such as lines, circles, and boxes. Similarly, a GUI application consists
of a number of controls, such as text boxes, labels, and buttons, that are
contained inside a window. You no doubt have come across a number of
GUI applications in day-to-day life. These applications can range from an
online registration form on a Web site to a calculator used in a home per-
sonal computer (PC).

Ruby enables you to create visually appealing GUI applications using
Tk. The next section discusses Tk.

Introduction to Tk

Tk is the standard GUI library for Ruby. When combined with Tk, Ruby
provides a fast and easy way to create GUI applications. Tk provides a
powerful object-oriented interface to the Tk GUI toolkit. Tk provides vari-
ous controls, such as buttons, labels, and text boxes, in a GUI application.
These controls are commonly called widgets.

As mentioned earlier, creating a GUI application using Tk is an easy task.
All you need to do is perform the following steps:

1. Load the Tk module.
2. Create the GUI application window.

GUI Programming with Tk

149

3. Add widgets to the GUI application.

4. Enter the main event loop.

Let’s now elaborate on how to perform these steps.

Loading the Tk Module

The Tk module contains all the classes and widgets required to create a
GUI application. To use this module in your application, you need to add
it to the application. The following code statement will help you load the
Tk module:

require Tk

Creating the GUI Application Window

Any GUI application should first contain a top-level window, or a root win-
dow, that can further contain the various objects required in the application.
The objects contained in the root window could be widgets, such as but-
tons and labels, or other windows. To create a root window for your appli-
cation, use the following statement:

top = Tkroot.new

The method new of the class Tkroot creates a root window for the
application and returns the reference of the window, which in this case is
assigned to the variable top.

Adding Widgets to the Application

Using Tk, you can add a number of widgets to your Ruby application.
These widgets can be stand-alone widgets or containers. Stand-alone wid-
gets are the ones that do not contain any other widgets, such as buttons,
checkboxes, and labels. Container widgets are the ones that contain other
widgets, such as frames and windows. A container widget is also called a
parent widget, and a contained widget is called a child widget. Various wid-
gets provided by Tk are listed in Table 10.1. You will learn to add widgets
to your application later in this chapter.

150 Chapter 10

Table 10.1 Widgets Provided by Tk

WIDGETS DESCRIPTION

Button The Button widget is used to display buttons in an
application.
Canvas The canvas widget is used to draw shapes, such as

lines, ovals, polygons, and rectangles, in an application.

Checkbutton The Checkbutton widget is used to display a number
of options as checkboxes. The user can select multiple
options at a time.

Entry The Entry widget is used to display a single-line text
field for accepting values from a user.

Frame The Frame widget is used as a container widget to
organize other widgets.

Label The Label widget is used to provide a single-line
caption for other widgets. It also can contain images.

Listbox The Listbox widget is used to provide a list of options
to a user.

Menubutton The Menubutton widget is used to display menus in an
application.

Menu The Menu widget is used to provide various commands
in a menu.

Message The Message widget is used to display a multiline text

field for accepting values from a user.

Radiobutton The Radiobutton widget is used to display a number
of options as radio buttons. The user can select only one
option at a time.

Scale The scale widget is used to provide a slider widget.

Scrollbar The Scrollbar widget is used to add scrolling
capability to various widgets, such as list boxes.

Text The Text widget is used to display text in multiple lines.

Toplevel The Toplevel widget is used to provide a separate

window container.

Entering the Main Event Loop

After you design an application by adding appropriate widgets, you need
to execute the application. When an application is executed, it enters an

GUI Programming with Tk

151

infinite loop. This loop includes waiting for an event, such as a mouse click;
processing the event; and then waiting for the next event. The statement
that helps your application enter the infinite loop is:

Tk.mainloop ()

Let’s put the pieces together and consolidate the code to display a win-
dow using the Tk module:

require 'Tk'
#Code to add widgets
Tk.mainloop ()

The output of this code is shown in Figure 10.1.
Now that you understand the basic steps involved in creating a GUI
application using Tk, let’s create a GUI application.

Creating a GUI Application

Problem Statement

The management of Knowledge, Inc., wants a form to be designed that will
accept customer details and the details of the book to be purchased. Mike,
the project leader, knows that Ruby works well with Tk. He wants his team
to create a sample form that will accept details such as first name, last
name, age, and gender from the customer. The form also should display a
list of sample books in a listbox. When the user clicks on a Submit button,
a message box should be displayed indicating the chosen option.

tk = 3

Figure 10.1 A sample window.

152

Chapter 10

A

Task List

Based on the problem statement, the following tasks can be identified:
Identify the components of the user interface of the form.
Identify the Tk elements to design the user interface.

Wirite the code for the user interface.

Execute the code.

A W WA

Identify the Components of the User Interface

The user-interface form should have the following components to gather
the required information from customers:

m Two text boxes to accept the customer name. The first text box will
accept the first name, and the second text box will accept the last
name.

A text box to accept the age of the customer.

Radio buttons to accept the gender of the customer.
A list of sample books.

A Submit button.

Identify the Tk Widgets to Design the User Interface

Table 10.2 describes the Tk widgets to be used for design of the form. Let’s
now look at the details of these components.

Table 10.2 Widgets to Be Used in the Window

WIDGET PURPOSE

Label To provide captions for various widgets

Entry To display a single-line entry field for accepting
values, such as the first name and the last name

Listbox To display the list of sample books

Radiobutton To accept the gender of a customer

Button To display a message box

GUI Programming with Tk 153

The Label Widget

The Label widget is used to display text or provide captions for other
widgets. For example, you can use a label to provide captions for various
other widgets present in a window. In addition, you can display bitmaps
and images in a label. Use the following syntax to display a text label in a
window:

1bl=TkLabel .new (top) {
text 'Hello World'
pack ()

}

This code creates a label with the text Hello World (Figure 10.2). In the
preceding code:

m Alabel is created by using the method new of the class TkLabel.
Here, top refers to the window on which the label is to be
displayed.

m The text option is used to specify the text to be displayed in the
label.

m The method pack is used to display the position of the label in the
window. You will learn more about the method pack later in this
chapter.

Table 10.3 lists some other options that you can use with a Label wid-
get. The following code statement implements some of these options of the
Label widget:

1bl=TkLabel .new(top) {
text 'Hello World'
background "yellow"
foreground "blue"

pack ()
}

Hello 'wharld

Figure 10.2 A sample window displaying a label.

154 Chapter 10

Table 10.3 Various Options of the Label Widget

bitmap Specifies the bitmap to be displayed

borderwidth Specifies the width of the label border
background Specifies the background color of the label
foreground Specifies the color of the text present in the label
font Specifies the font of the text to be displayed
justify Specifies the alignment of multiple lines of text, with

values such as left, right, or center

The Entry Widget

The Entry widget is used to accept single-line text strings from a user.
Let’s now look at the syntax to display an Entry widget in an application:

el = TkEntry.new(top)
el.pack()

Like the Label widget, you can use various options with the Entry
widget. Some of these options are listed in Table 10.4. The following code
statement implements some of these options of the Entry widget, and
Figure 10.3 shows a sample window displaying an Entry widget.

el = TkEntry.new(top) {
background "red"
foreground "blue"

pack ()

}

Table 10.4 Various Options of the Entry Widget

borderwidth Specifies the width of the Entry widget border
background Specifies the background color of the Entry widget
foreground Specifies the color of the text in the Entry widget
font Specifies the font of the text in the text field
relief Specifies the type of the border, with such values as

flat, groove, raised, ridge, Or sunken

GUI Programming with Tk

155

Entry =] E3

Figure 10.3 A sample window displaying an Entry widget.

Following is the complete code to display a 1abel and an Entry widget:

require 'tk'

top = TkRoot.new {title "Label and Entry Widget"}
#code to add a label widget
1bl = TkLabel.new(top) {
text 'Hello World'
background "yellow"
foreground "blue"

pack ()

}

#code to add a entry widget
el = TkEntry.new(top) {
background "red"

foreground "blue"

pack ()

}

Tk.mainloop

Figure 10.4 shows the output of this code.
In addition to these options, an Entry widget also provides a number of
methods. Table 10.5 lists some of these methods.

Label and Entry Wi._. [H=] E3

Hella wiorld

Figure 10.4 A sample window displaying a 1abel and an Entry widget.

156 Chapter 10

Table 10.5 Various Methods to Manipulate the Entry Widget

METHOD FUNCTION EXAMPLE
insert (index, text) This method inserts text El.insert(
at the given index. Some 'insert', "Hello")
of the values used to This statement inserts
specify index are insert Hello at the current
and end. cursor position.
delete (index) This method deletes El.delete (1)
the character at the This statement deletes
specified index. the character at the
index position 1.
delete(from, to) This method deletes El.delete(0, END)
the characters within This statement deletes
the specified range. all the characters present
in a string.
get () This method retrieves El.get ()
the contents present in This statement returns
the text field. the contents of the E1
widget.

You can see in Figure 10.4 that the widgets are randomly placed in the
window. This is so because we did not arrange the widgets in the parent
window. Tk provides you with various classes to help you organize the
placement of widgets in a window. These classes are also called geometry
managers.

Geometry Managers

Widgets in a window should be in proper layout so that they do not appear
scattered. In Ruby, geometry management is the technique used to organize
widgets in their container widget. Tk provides a powerful and flexible
model to manage the placement of widgets in a container.

To organize various widgets inside a window or another widget, Tk pro-
vides three classes or geometry managers: pack, grid, and place. Let’s
discuss these geometry managers briefly.

m The pack geometry manager organizes widgets in rows or columns
inside the parent window or the widget. To manage widgets easily,
the pack geometry manager provides various options, such as
fill, expand, and side.

GUI Programming with Tk 157

m The £i11 option is used to specify whether a widget should
occupy all the space given to it by the parent window or the wid-
get. Some of the possible values that can be used with this option
are none, x, y,or both. By default, the £i11 option is set to
none.

m The expand option is used to specify whether a widget should
expand to fill any extra space available. The default value is 0,
which means that the widget is not expanded. The other value
is 1.

m The side option is used to specify the side against which the
widget is to be packed. Some of the possible values that can be
used with this option are top, left, bottom, or right. By
default, the widgets are packed against the top edge of the par-
ent window.

m Let’s now rewrite the code to display the Label and an Entry wid-
get that we discussed in the preceding section using the pack geom-
etry manager:

require 'tk'

top = TkRoot.new {title "Label and Entry Widget"}
#code to add a label widget
1bl=TkLabel .new (top) {

text 'Hello World'

background "yellow"

foreground "blue"

pack ('padx'=>10, 'pady'=>10, 'side'=>'left")
}

#code to add a entry widget

el = TkEntry.new(top) {

background "red"

foreground "blue"

pack ('padx'=>10, 'pady'=>10, 'side'=>'left")
}

Tk.mainloop

m When you execute this code, a window containing both the widgets
appears, as shown in Figure 10.5.

Label and Entry Widget [E[=]
Hello ward - [

Figure 10.5 Organizing widgets by using the pack geometry manager.

158 Chapter 10

m The grid geometry manager is the most flexible and easy-to-use
geometry manager. It logically divides the parent window or the
widget into rows and columns in a two-dimensional table. You can
then place a widget in an appropriate row and column format by
using the row and column options, respectively. To understand the
use of row and column options, consider the following code:
require 'tk'
top = TkRoot.new {title "Label and Entry Widget"}

#code to add a label widget
1bl=TkLabel .new(top) {

text 'Hello World'
background "yellow"
foreground "blue"
grid('row'=>0, 'column'=>0)
}

#code to add a entry widget
el = TkEntry.new(top) {
background "red"

foreground "blue"
grid('row'=>0, 'column'=>1)
}

Tk.mainloop

When you execute this code, a window containing both the widgets
appears, as shown in Figure 10.6.

m The place geometry manager allows you to place a widget at the
specified position in the window. You can specify the position either
in absolute terms or relative to the parent window or the widget. To
specify an absolute position, use the x and y options. To specify a
position relative to the parent window or the widget, use the relx
and rely options. In addition, you can specify the relative size of
the widget by using the relwidth and relheight options pro-
vided by this geometry manager.

Label and Entry ... [Hi[=] E3
Helo w/ord [

Figure 10.6 Organizing widgets by using the grid geometry manager.

GUI Programming with Tk 159

Let’s now look at the code to implement the place geometry manager:
require 'tk'
top = TkRoot.new {title "Label and Entry Widget"}
#code to add a label widget
1bl=TkLabel .new (top) {
text 'Hello World'
background "yellow"
foreground "blue"
place('relx'=>0.0, 'rely'=>0.0)
}
#code to add a entry widget
el = TkEntry.new(top) {
background "red"
foreground "blue"
place('relx'=>0.4, 'rely'=>0.0)
}

Tk.mainloop

When you execute this code, a window containing both the widgets
appears, as shown in Figure 10.7.

Label and Entry Wi [H[=] E3
Hello world | [

Figure 10.7 Organizing widgets by using the place geometry manager.

160 Chapter 10

The Button Widget

The Button widget is used to add buttons in a Ruby application. These
buttons can display either text or images that convey the purpose of the
buttons. You can attach a function or a method to a button, which is called
automatically when you click the button. Consider the following statement
that is used to display a button:

bl=TkButton.new (top) {

text "submit"

command proc{lbl.configure ('background'=>'red"') }
pack ()

}

In this code:

m top represents the parent window.

m The text option is used to specify the text to be displayed on the
button.

m The command option is used to specify the function or procedure
that is called when a user clicks the button. In this case, the method
configure of the Label widget is called. You can set the options
of a widget by using the method configure.

Table 10.6 lists some of the options that can be used with the Button
widget, and Figure 10.8 shows a sample window.

Table 10.6 Various Options of the Button Widget

OPTION DESCRIPTION

background Specifies the background color of the button
foreground Specifies the color of the text in the button
font Specifies the font of the text.

relief Specifies the type of the border, such as f1lat,

groove, raised, ridge, and sunken

image Specifies the image to be displayed in the button

width, height Specify the size of the button

GUI Programming with Tk

161

Button Wid... [Hi[=] E3

submit

Figure 10.8 A sample window containing a button.

The Listbox Widget

The Listbox widget is used to display a list of items from which a user
can select a number of items. To create a list box in your application, use the
following syntax:

listl = TkListbox.new(top) {
pack ()
}

This code creates a blank list box, as shown in Figure 10.9. Therefore, you
need to add items to it. To do so, you use the method insert. The syntax
of this method is:

listl.insert (index, item)

In this syntax:

m index refers to the index position at which an item is to be inserted.
Some of the possible values of an index are insert and end. The
insert value places the item at the current cursor position, and the
end value places the item at the end.

m 1itemrefers to the value to be inserted and can be of the text type only.

For example:

listl.insert('end', "Rose")

inserts the item Rose at the end of the List1 list box.
Let’s now write a complete code to insert a list box in a window:

require 'tk'

listl = TkListbox.new (top)
listl.insert (1, "Python")
listl.insert (2, "Perl")
listl.insert(3,"C")
listl.insert (4, "PHP")
listl.insert (5, "JSP")
listl.insert (6, "Ruby")
listl.pack()

Tk.mainloop

162 Chapter 10

IS[= E3

Button Widget

Python
Perl

C

PHF
5P
Fiuby

Figure 10.9 A window containing the Listbox widget.

This code creates a Listbox widget containing the names of different

languages at the specified indices, as shown in Figure 10.9.

The Listbox widget provides a number of other methods that make
it easy to work with this widget. Some of these methods are listed in
Table 10.7.

Table 10.7 Methods Provided by the Listbox Widget

METHOD FUNCTION

This method retrieves
the index position of
the selected index.

curselection/()

EXAMPLE

Lbl.curselection()
This statement returns
the index position of the
currently selected item.

This method deletes
the item at the
specified index.

delete (index)

Lbl.delete(1l)
This statement deletes
the item at index position 1.

This method deletes
the items within the
specified range. For
example, you can use
0, 'end' to delete
all the items in the list.

delete(first, last)

Lbl.delete(0, 'end')
This statement deletes all
the items present in the
list box.

This method retrieves
the item present at the
specified index.

get (index)

El.get (1)

This statement returns the
item present at index position
1 of the list box.

GUI Programming with Tk

163

The CheckButton Widget

The CheckButton widget is used to display a number of options to a user
as toggle buttons. The user can then select one or more options by clicking
the button corresponding to each option. You also can display images in
the place of text. The syntax to display a checkbutton in an application is as
follows:

checkVar=TkVariable.new

cl = TkCheckButton.new(top) {
text "Music"

variable checkVar

pack ()

}

In this syntax:

m top refers to the parent window.
m The text option specifies the text to be displayed.

m The variable option attaches a Tk variable (checkVar) to the
checkbutton. You create a Tk variable by using the method new of
class Tkvariable. When you click the button, the value contained
in the variable is toggled between the on value and the off value,
which specifies whether the button is checked or unchecked. You
can set these values by using the onvalue and of fvalue options.

The preceding code creates a checkbutton Music, as shown in Figure 10.10.
Table 10.8 lists some of the methods that you can use with a checkbutton.

B utton Widget ==l &3

Puthon
Perl
C
PHF
J5P
Ruby

I Music

Figure 10.10 A window containing a Checkbutton widget.

164 Chapter 10

Table 10.8 Methods Provided by the checkbutton Widget

METHOD FUNCTION EXAMPLE
deselect () To deselect the button Cl.deselect ()
select () To select the button Cl.deselect ()
toggle () To reverse the toggle

state of the button Cl.toggle()

The RadioButton Widget

Like the CheckButton widget, the RadioButton widget is also used to
display a number of options to a user as toggle buttons. However, a user
can select only one option at a time. The syntax to display a radio button is:

require 'Tk'

top = TkRoot.new{title "Radio Button"}
radiovVar=TkVariable.new

rl = TkRadioButton.new(top) {
text "Male"

variable radioVar

value 1

}

rl.pack()

r2 = TkRadioButton.new(top) {
text "Female"

variable radioVar

value 2

}

r2.pack()

Tk.mainloop

This code creates two radio buttons, Male and Female, as shown in
Figure 10.11. You need to add these buttons to one group so that a user can
select only one of them at a time. To do so, ensure that the variable
option points to the same variable name (radiovVar).

Like the CheckButton widget, a RadioButton widget also supports
the methods select () and deselect (). These methods are used to
select and deselect the button, respectively.

GUI Programming with Tk

165

Button Widget [H=] E3

Python
Ferl
C
FHF
J5F
Ruby

™ Music
' Male

' Female

Figure 10.11 A window containing a RadioButton widget.

The Frame Widget

The Frame widget is a container widget that is used to organize other wid-
gets. Frame refers to a rectangular area on a parent window. To understand
the use of the Frame widget, consider a situation where you need to add a
number of radio buttons to your application. Organizing a large number of
radio buttons in the parent window is a tedious task. Therefore, to simplify
this process, you can add all the radio buttons to a frame and then add the
frame to the parent window. The syntax to create a frame is:

f1l = TkFrame.new (top) {
width 100

height 100

}

This code creates a frame of the size specified using the width and
height options. This frame is created in the top window.

The following code demonstrates the process of adding widgets to a
frame:

v = TkVariable.new
rl=TkRadioButton.new (fl) {
text "Male"

166 Chapter 10

variable v

value 1

}
r2=TkRadiobutton.new(f1l) {
text "Female"

variable v

value 2

}

Write the Code for the User Interface

After identifying the widgets required to design the user interface, write
the code for the user interface. Thus:

require 'tk'
top=TkRoot.new{title "Shopping Details"}
fname_label=TkLabel .new (top) {
text "First Name"
place('relx'=>0.0, 'rely'=>0.1)
}
fname_entry=TkEntry.new (top) {
place('relx'=>0.1, 'rely'=>0.1)
}
lname_label=TkLabel .new (top) {
text "Last Name"
place('relx'=>0.0, 'rely'=>0.2)
}
lname_entry=TkEntry.new (top) {
place('relx'=>0.1, 'rely'=>0.2)
}

age_label=TkLabel .new(top) {
text "Age"

place('relx'=>0.0, 'rely'=>0.3)
}

age_entry=TkEntry.new (top) {
place('relx'=>0.1, 'rely'=>0.3)
}

gender_label=TkLabel .new(top) {
text "Gender : "
place('relx'=>0.0, 'rely'=>0.4)
}

radiovVar=TkVariable.new

rl = TkRadioButton.new(top) {
text "Male"

variable radioVar

GUI Programming with Tk 167

value 1

place('relx'=>0.1, 'rely'=>0.4)
}

r2 = TkRadioButton.new (top) {
text "Female"

variable radioVar

value 2

place('relx'=>0.2, 'rely'=>0.4)
}

list = TkListbox.new (top) {
place('relx'=>0.8, 'rely'=>0.1)
}

list.insert (1, "Python")
list.insert (2, "Perl")
list.insert(3,"C")
list.insert (4, "PHP")
list.insert (5, "JSP")
list.insert (6, "Ruby")
submit=TkButton.new (top) {

text "SUBMIT"

command proc {
val=list.curselection()

sel = list.get(val)
Tk.messageBox ('message'=>"The book name chosen is #{sel} ")
}

place('relx'=>0.3, 'rely'=>0.8)
}

Tk.mainloop

To display the message box, you can use the method Tk .messageBox.
The message argument of the method contains the message to be dis-
played in the message box.

Execute the Code

1. Save the file as sample.rb, and execute it at the command prompt.
A window appears as shown in Figure 10.12.

2. In the window that appears, enter the following details:
m First name: John
m Last name: Smith
m Age:21
m Gender: Male

168 Chapter 10

Shopping D etails

Figure 10.12 Sample form.

3. Select Perl from the list of the books, and click the Submit button.
A message box appears as shown in Figure 10.13.

Figure 10.13 Message box displaying the name of the book.

GUI Programming with Tk 169

Summary

In this chapter you learned that:

m The Tk module is a collection of classes that help you create GUI
applications in Ruby:.

m The steps involved in creating a GUI application using Tk are as
follows:

m Add the Tk module.
m Create the application window.
m Add widgets to the application.
m Enter the main event loop.
m The Label widget is used to display text.

m The Entry widget is used to accept single-line text strings from a
user.

m The Button widget is used to display various types of buttons.

m The Listbox widget is used to display a list of items from which a
user can select one or more items.

m The CheckButton widget is used to display a number of options to
a user as a toggle buttons. A user can select more than one option by
clicking the buttons corresponding to the selected options.

m The RadioButton widget is also used to display a number of
options to a user as toggle buttons. However, a user can select only
one option at a time.

m The Frame widget is the container widget that is used to organize
other widgets.

Running Ruby on Windows

OBJECTIVES

In this chapter you will learn:
+ How Ruby runs on Windows
1~ About the advantage of using the rubyw. exe file
v~ About the class Win32APT

+ How to use Windows automation features in Ruby

Getting Started

This book primarily covers how Ruby behaves in a Windows environment.
However, Ruby actually was created for POSIX environments. Therefore,
Ruby can easily access the system features in POSIX environments. At this
point, you might wonder how Ruby works in Windows because Windows
does not provide a POSIX environment. Let’s see how this is possible.

171

172 Chapter 11

Ruby and Windows

When you download and run the one-click setup file for Ruby in Windows,
the setup file installs a Cygwin.DLL file. This creates a simulation of the
POSIX environment in Windows. Using this simulation, Ruby works effi-
ciently in Windows. When you install Ruby, various . exe files are copied
in the bin directory. One of these . exe files is rubywin. exe. Rubywin,
created by Masaki Suketa, provides a complete Integrated Development
Environment (IDE) for Ruby on a Windows platform. If you do not have
Rubywin, you can download it from the Ruby Application Archive. Ruby-
win is very simple to use. The other . exe files that will be of interest to you
are ruby.exe, eruby.exe, and rubyw. exe. The ruby . exe file is used
to run .rb files. The eruby.exe file is used to run .rhtml files. You
have learned about ruby.exe and eruby.exe. Let us see how to use
rubyw. exe.

The rubyw.exe file is used to execute .rbw files. You may want to
know what a . rbw file is. A . rbw file is similar to a . rb file. You can save
all the .rb files with the .rbw extension. You might have noticed that
when you double-click a .rb file, a command window pops up and
remains open until the program stops. As soon as the program stops, the
command window closes. However, when you run a . rbw file, no com-
mand window opens, and the program runs in the background. This can
be especially useful when you are trying to run a Web server application.
Double-click on that file. You will notice that a command window opens. It
does not close because the code is still running. If you try to close the
window, the Web server stops execution. Now save Webserver.rb as
Webserver.rbw and double-click that file. You will notice that the Web
server has started, but no window opens. The Web service is running in the
background. This is the advantage of . rbw files.

Windows automation is another feature supported by Ruby. To use Win-
dows automation, you require a client and an automation server such as
Microsoft Word, Excel, or PowerPoint. You can access the Microsoft office
features from the automation client. Ruby can act as an automation client.
Let’s discuss how to use automation in Ruby by taking the problem state-
ment of Knowledge, Inc.

Running Ruby on Windows

173

Using WIN320LE

Problem Statement

The management of Knowledge Inc. a book publishing company, wants to
conduct a study to determine the company’s place in the market in relation
to its competitors. The competitors are Portland Books, Oceanic Inc., and
Learn2grow.com. Management wants to compare the annual revenues and
annual profits of Knowledge Inc., against the annual revenues and profits
of the competitors depicted in an Excel chart format. The development
team is enthusiastic about learning Ruby. Therefore, management wants
the team to use automation in Ruby and create these Excel charts from
Ruby. Management also wants these data to be stored into a Word docu-
ment for reference.

Task List

v Wirite the code to create a chart in Excel.
v Write the code to insert data into Word.
v Save and execute the code.

Write the Code to Create a Chart in Excel

To use the automation features, Ruby provides a class WIN320LE. To access
the automation server features, you need to create an object of the class
WIN320LE. Let’s examine the process to do this:

excelobj = WIN320LE.new ("excel.application")

This would create a WIN320LE object excelobj for the Microsoft Excel
automation server. Similarly, you can create Microsoft Word and Power-
Point objects like this:

wordobj = WIN320LE.new ("word.application")
powerobj = WIN320LE.new ("powerpoint.application")

174 Chapter 11

To access WIN320LE methods, you need to first include the class
WIN320LE. You can do this by using the require statement:

require 'win32ole'

This statement will allow you to access all the methods of the class
WIN320LE.

The class WIN3 20LE has such methods as new and invoke. The method
new, as we know, is used to create a WIN320LE object. The method invoke
is used to handle all the methods unknown to the class WIN320LE. For
example, consider this statement:

excelobj['Visible']=TRUE

This statement is very important to start a particular application. How-
ever, the class WIN320LE does not recognize the method Visible. There-
fore, the method invoke handles such methods. We know that Microsoft
Excel consists of workbooks and worksheets. After you have started the
Microsoft Excel application, you need to add a workbook to it. You can do

this by typing:

excelobj.workbooks.add ()

This statement adds a workbook to the application. Now you can work
with the workbook. In the same way, you need to add documents to the
Microsoft Word application:

wordobj .documents.add ()

To add values in the cells in Microsoft Excel, you use the method Range.
You can add a value, say, 100, to the cell A6 by using the following statement:

excelobj.Range("a6") ['Value'] = 100

You can use the method select to select a range of cells. Consider a set
of the four cells, al, a2, a3, and a4, with the values 100, 200, 300, and
400, respectively. Let’s learn to use the method select:

excelobj.Range("al") ['Value'] = 100
excelobj.Range("a2") ['Value'] = 200
excelobj.Range("a3") ['Value'] = 300
excelobj.Range ("ad") ['Value'] = 400
excelobj.Range("al:ad") .select ()

Running Ruby on Windows 175

This would select the range of cells from a1l to a4.
Let us implement our learning of automation to create a chart in Excel to
address the problem of the Knowledge, Inc., management. Thus:

require 'win32ole'

puts "Graphical representation of the annual revenues and profits made

in the year 2001 by Portland books, Oceanic Inc, Learn2Grow.com, and

Knowledge Inc. "

puts "Enter the revenue of Portland books in millions"

portland_revenue=gets

puts "Enter the revenue of Oceanic Inc. in millions"

oceanic_revenue=gets

puts "Enter the revenue of Learn2Grow in millions"

learn_revenue=gets

puts "Enter the revenue of Knowledge Inc. in millions"

knowledge_revenue=gets

puts "enter the profits of the four companies"

puts "Enter the profit for Portland books"

portland_profit=gets

puts "Enter the profit for Oceanic Inc."

oceanic_profit=gets

puts "Enter the profit for Learn2Grow.com"

learn_profit=gets

puts "Enter the profit for Knowledge Inc."

knowledge_profit=gets

excel=WIN320LE.new ("excel.application")

excel['Visible']=TRUE

workbook=excel .workbooks.add ()

excel.Range("al") ['Value']=portland_revenue

excel.Range("a2") ['Value']=oceanic_revenue

excel.Range("a3") ['Value']=learn_revenue
)

excel.Range("ad") ['Value']=knowledge_revenue

excel.Range("al:a4d") .select()
excel.Range("bl") ['Value']=portland_profit
excel.Range ("b2") ['Value']=oceanic_profit
excel.Range ("b3") ['Value']=learn_profit
excel.Range ("b4") ['Value']=knowledge_profit

excel.Range("bl:b4d") .select ()
excelchartl=workbook.charts.add ()
excelchart2=workbook.charts.add ()
excelchartl['Type']=-4099
excelchart2['Type']=-4099
workbook.SaveAs "Graph.xls"
excel.Quit

In this code we have created two bar graphs. One bar graph is used to
compare revenues, and the other bar graph is used to compare profits. The

176 Chapter 11

code accepts the values for the revenues and profits from the user and then
inserts the values into Microsoft Excel cells. Then the code selects the range
of cells based on what you need to create a chart. For example, the cells
from al to a4 are selected to create a revenue chart, and the cells from bl
to b4 are selected to create a profit chart.

You can create a chart with this code:

excelchartl = workbook.charts.add()

This statement would create a chart object excelchartl. You also need
to specify the type of chart you require. Each chart in Excel has a constant
number assigned to it. For example, an x13Dbar chart has the constant

-4099 assigned to it. You can take a look at the Excel chart constants speci-
fied below:

xlRadar = -4151
x1XYScatter = -4169
x1Combination = -4111
x13DArea = -4098
x13DBar = -4099
x13DColumn = -4100
x13DLine = -4101
x13DPie = -4102
x13DSurface = -4103
x1Doughnut = -4120

You can specify a type for an Excel chart by:

excelchartl['Type']=-4099

You can use the method SaveAs of the workbook to save the Excel
workbook. In the preceding code we have assigned our workbook to the
object workbook. Therefore, we can write the following:

Workbook.SaveAs "Graph.xls"

This workbook would be saved in the default folder mentioned in the
Default File Location text box on the General tab of the Options dialog box.
You can access the Options dialog box by choosing Options from the Tools
mentu.

You quit the application by using the Quit statement:

excel.Quit

Running Ruby on Windows

177

Write the Code to Insert Data into Word

word=WIN320LE.new ("word.application")
word['Visible']=TRUE
worddoc=word.documents.add ()
worddoc.Content.Text="

Portland Books

Revenue: #{portland_revenue}
Profits: #{portland_profit}
Oceanic Inc.

Revenue: #{oceanic_revenue}
profits: #{oceanic_profit}

Learn2Grow.com

Revenue: #{learn_revenue}
profits: #{learn_profit}
Knowledge Inc.

Revenue: #{knowledge_revenue}
profits: #{knowledge_profit}

worddoc.SaveAs "Graph.doc"
worddoc.close

This code inserts the profits and revenues of all four companies.
If you want the text ABC to be inserted in the Word document, write the
following;:

wordobj = WIN320LE.new("word.application")
worddoc = wordobj.documents.add()
worddoc.Content.Text="ABC"

Save and Execute the Code

Save the code as Graph. rb, and execute it from the command prompt.

Summary

In this chapter you learned that:

m When you download the setup file for Ruby under Windows, the
setup file actually creates a simulation of the POSIX environment for
Windows. Using the simulation environment, Ruby works under
Windows.

178 Chapter 11

m Rubywin is a complete IDE for Ruby on Windows. The
Rubywin. exe file comes with the setup file.

m In Windows Explorer, each time you double-click a . rb file, the
code in the file executes, and the command prompt window pops
up and closes. However, when you double-click a . rbw file, the
window does not open, and the code executes in the background.

m Using the Windows 32 API functions, you can access the low-level
system features of the Windows operating system. Ruby provides
the class WIN32APT to access these functions.

m Ruby provides the Windows automation feature. Ruby acts like the
Windows automation client, and the Windows automation server is
Microsoft Word, Excel, or PowerPoint.

m To access the features of the automation server, Ruby provides a
class WIN320LE.

m All the methods unknown to the class WIN320LE are handled by the
method invoke of the class WIN320LE.

m The method Range is used to insert values into the cells in
Microsoft Excel.

m The method select is used to select a range of cells in
Microsoft Excel.

m You specify a type to a chart by using the method Type.

m You insert text into a Word document by using the method Content
of the Word document.

Networking

OBJECTIVES

In this chapter you will learn:
v~ About the basics of networking
v~ About the difference between TCP and UDP
v About sockets
1+~ About the class TCPSocket
1+~ About the class TCPserver
v~ About distributed Ruby
v~ To access Web pages using the class Net : :HTTP
v To move files using the class Net : : FTP
v~ To send email using the class Net : : SMTP

v~ To read email using the class Net : : POP3

179

180 Chapter 12

Getting Started

The average person interacts with networks on a daily basis, be it through
local-area networks (LANS) in our offices or the Internet. These networks
provide indispensable links that reduce the time it takes us to communi-
cate with each other. Ruby provides both general networking facilities and
specialized classes that interact with Web and mail servers.

Perhaps the most fascinating networking facility is dRuby, which allows
one program to interact directly with objects created by a program on
another computer, anywhere in the world, as though the object resides in
your own program!

In the following sections we will look at the basic facilities that are
required for programs to interact across networks, including how to spec-
ify which other computers and applications we wish to communicate with,
how to both initiate and accept connections, and how to use Ruby’s higher-
level classes to interact using standard Internet protocols such as the File
Transfer Protocol (FIP), Hypertext Transfer Protocol (HTTP), and Post
Office Protocol version 3 (POP3).

Basic Concepts

In most cases, there are two parties involved in any network communica-
tion. One is called the client, and the other is called the server. The browser
you use to surf the World Wide Web is a client, whereas the pages you
access are being provided to you by servers. Normally, a server accepts
requests from many different clients. The clients initiate the connections,
and the server accepts them.

To initiate a connection, a client needs to have some way to specify
which program it wishes to communicate with. Because a single computer
may run more than one server, for different purposes (e.g., a Web server
and a mail server), we need to specify both the computer and the server
with which we wish to make a connection.

The computer is specified by its Internet Protocol (IP) address. This is a set
of four numbers, separated by periods. For example, 127.0.0.1 is an
address that can be used to access programs on your own computer. Obvi-
ously, when we wish to access a computer on the other side of the world,
determining the address we need could be difficult. Fortunately, in addi-
tion to IP addresses, networked computers normally are also given a
mnemonic address consisting of a number of words separated by periods.

For example, www.ruby-lang.org is the name of the computer that runs
the Web server containing Ruby’s home page. The process by which a

Networking

181

name such as this is translated into the corresponding IP address is beyond
the scope of this book and normally happens transparently, so we really do
not need to discuss it here. We almost always can use the mnemonic and
ignore the numeric address.

Each server that runs on a computer accepts connections on a specific
port number. For example, most Web servers accept connections on port
number 80. When a server starts up, it indicates which IP address and
port number it requires clients to use to access it. It then loops, accepting
client requests and providing its services to them. Any client specifying the
same IP address and port number will cause a connection to be made at the
server.

.Im] Some of the codes in this chapter might not work if your computer is
connected to the Internet through a firewall. Your computer should have an
external IP address.

TCP versus UDP

In the preceding section we mentioned that a server accepts client requests
on a specific address and port number. There are two kinds of ports, Trans-
mission Control Protocol (TCP) and User Datagram Protocol (UDP). For
services that require medium to large amounts of data to be transferred, we
use the protocol known as TCP. Such requests are called connection-based.
For example, Web and mail servers use TCP. By contrast, the services pro-
vided by some programs require so little information to be transferred that
a persistent connection is not necessary. Such programs use UDP port
numbers. An example of this is a time server, where a single, very small
piece of information is sent in response to any request. This is called con-
nectionless access because no persistent connection is set up.

Obviously, both clients and servers need to specify whether they are
using TCP or UDP. Because most services are provided via TCP, we will not
discuss the details of UDP in this book.

Sockets

When we open a file, we are given a file handle, which differentiates one
file from another, so that we can work with more than one file at a time.
Similarly, when we create a connection between a client and a server, both
ends of the connection are given a handle, called a socket. When the client
writes data onto its socket, it appears, ready for reading, at the socket on
the server, and vice versa.

182 Chapter 12

Note that sockets are always bidirectional. In other words, they provide
the same type of interface as a file opened in read/write using a mode
of r+.

The Class TCPSocket

When a client wishes to connect to a server, the client constructs an instance
of the class TCPSocket. For example, to connect to Ruby’s Web server, we
could use the following code:

require 'socket'
socket = TCPSocket.new("www.ruby-lang.org", 80)
socket.puts "GET /en/index.html"
while (line = socket.gets)
puts line
end
socket.close

The statement require 'socket' gives the definition of the class
TCPSocket. We then construct an instance, passing the name of the host
running the Web server and the standard HTTP port number, namely, 80.

Once the TCPSocket object has been created, it works the same as any
other IO object. We write our request to get the English-language Ruby
home page /en/index.html and then read any lines that are returned.

The Class TCPServer

A simple server, wishing to accept connections, constructs an instance of
the class TCPServer. Normally, you should not hard-code the IP address
because it may change over time. There are two ways you can avoid doing
s0. You can either use a mnemonic address such as www . ruby-lang.org
or simply specify a numeric address such as 0.0.0.0. The latter repre-
sents any address by which the local machine can be accessed.

To create a simple Web server, you can accept connections on the IP
address 0.0.0.0 and the port number 80, as in the following code:

require 'socket'

server = TCPServer.new("0.0.0.0", 80)

loop do

Wait for a connection from a client
socket = server.accept

Read the client's request

while socket.gets.chop.length > 0

There's nothing to do here, because

we don't care what the specific

Networking 183

request is; we'll always send the

same response.

end

Write a header that says we can handle the
request

socket.puts "HTTP/1.1 200 OK"

Tell the client we're going to respond with
HTML data

socket.puts "Content-type: text/html"
socket.puts ""

Write a simple web page

socket.puts "<html>"

socket.puts "<body>"

socket.puts "<center>"

socket.puts "<hl>#{Time.now}</hl>"
socket.puts "</center>"

socket.puts "</body>"

socket.puts "</html>"

Close the connection

socket.close

end

Figure 12.1 shows the output of this code.

a http://localhost/ - Microsoft Internet Explorer

| Elo Edi Vew Favories Tock Hebp |H
[-0 QIENAAEI B I BR

[Agd'ese IE‘I hitpe/ocathost: 80 jJ

Thu Jan 24 15:18:02 GMT+5:30 2002

J |

|&] Dore | |25 Localintranst
Figure 12.1 Browser output.

184 Chapter 12

This code is relatively lengthy, but most of it is related to the fact that we
are sending Hypertext Markup Language (HTML). As with the client, the
most important thing is that we construct an instance of a networking class
TCPServer. We then loop, accepting requests using TCPServer.accept.
Each time the loop is executed, this will return a new TCPSocket instance
connected to a client. We process the request and then close the socket.

The rest of the code is what is required to handle an HTTP request. First,
we read everything up to a blank line, which tells us we have reached the
end of the headers. We then send some headers to specify that we are able
to handle the request (the "HTTP/1.1 200 OK") and that the data we are
sending the client are formatted as HTML (the "Content-type:
text/html").

Next we send our simple piece of HTML containing the current time as
generated by constructing an instance of class Time, returned by Time . now.
Finally, we close the socket and loop back to accept the next connection.

Accessing the Network

In the preceding section, you learned about the basics of networking. You
also learned about the TCPSocket and TCPServer classes. In this section,
you will go one step further and learn about how to access objects distrib-
uted in the network. You will also learn to write scripts to access Web
pages, transfer files, or send and receive mails.

Distributed Ruby

One of the most interesting networking facilities that Ruby provides is the
ability for one program to directly access an object residing inside another
program, executing its methods as though the object were part of the client.
This is similar to Java’s Remote Method Invocation (RMI) but a lot easier to
work with.

Here is a simple example of a server that provides access to a single
object, in this case a simple counter that provides methods for increment-
ing its value and for obtaining its current value:

require 'drb'

class Counter

attr_reader:count
def initialize

@count = 0

Networking

185

end
def increment
@count += 1

end
end
counter = Counter.new
DRb.start_service("druby://localhost:8888", counter)
DRb.thread.join

First, we require the drb library. The class Counter itself is just like any
other class. We have done nothing special to make it work across the
network.

The command:

DRb.start_service("druby://localhost:8888", counter)

makes the Counter instance counter available for access by other pro-
grams. It gives the instance a Uniform Resource Locator (URL) beginning
with druby: //,justasa Web page has a URL beginning withhttp: //.
We specify a port number on which the access will take place. The second
parameter to the DRb. start_service call is the object itself. Finally, we
join the thread that DRb.start_service created so that the server will
not exit.

Here is a simple client program that accesses the Counter object that
has been exported by the server:

require 'drb’'
DRb.start_service
counter = DRbObject.new(nil, "druby://localhost:8888")
5.times do
counter.increment
puts counter.count
end

Figure 12.2 shows the output of this code.

[y Y N % I e Y)

Figure 12.2 Output at the client end.

186 Chapter 12

Again, we require drb to gain access to Distributed Ruby’s facilities. We
again call DRb. start_service, but this time we do not specify an object
because we are not providing a service.

We gain access to the server’s Counter object by constructing an
instance of DRbObject, passing the same URL the server used to export
the object.

The DRbObject instance is a wrapper that organizes for any calls we
make to the methods of Counter to be shipped across the network to the
actual object in the server. That object will execute the requested method,
and the result will be shipped back to the client. To the client, it appears
that the object is local.

Obviously, if we have many objects we wish to export across the net-
work, rather than having a separate DRbObject instance for each one, it
makes more sense to create a single object containing them all. For exam-
ple, if we had multiple counters, we might do something like this:

require 'drb'
class Counter
attr_reader:count
def initialize
@count = 0
end
def increment
@count += 1
end
end
class TrackedCounter < Counter
attr_reader:name
attr_reader:createdAt
attr_reader:lastAccess
def initialize (name)
super ()
@name = name
@QcreatedAt = Time.now
@lastAccess = @createdAt
end
end
tracked = TrackedCounter.new("Tracked Counter")
DRb.start_service ("druby://localhost:8888", tracked)
DRb. thread.join

Networking

187

In this example we have created a slightly more complex class,
TrackedCounter, that extends Counter by giving it a name and adding
timestamps that track when the object was created and when it was last
accessed.

Here is a simple client program that accesses the tracked object that
has been exported by the server:

require 'drb’'
DRb.start_service
tracked = DRbObject.new(nil, "druby://localhost:8888")
5.times do

tracked.increment

puts "The count is #{tracked.count}"

puts "The last access date is #{tracked.lastAccess}"
end

Figure 12.3 shows the output of this code.

Now let’s look at a common error. Imagine that instead of deriving a
new class from Counter we had simply included a counter in Tracked-
Counter. This sounds like quite a reasonable approach. However, if we
try to do so, we will find that it ends up being a little messy. The reason is
that we will need to provide proxy methods for each of the methods of
Counter.

Why do we need to write proxies? Why can’t the client program just call
the methods of the encapsulated Counter instance? The answer is that we
want to always see the current value of the counter, not its value as it was
when we first obtained access to the TrackedCounter instance.

The count iz 1
The last access date is Thu Jan 24 15:26:28 GMT+5:30 2002
The count is 2
The last access date is Thu Jan 24 15:26:28 GMT+5:30 2002
The count is 3
The last access date is Thu Jan 24 15:26:28 GMT+5:30 200Z
The count is 4
The last access date is Thu Jan 24 15:26:28 GMT+5:30 2002
The count is 5
The last access date is Thu Jan 24 15:26:28 GMT+5:30 2002

Figure 12.3 Output at the client end.

188 Chapter 12

Here is an (incorrect) implementation of TrackedCounter using com-
position rather than inheritance:

require 'drb'
class Counter
attr_reader:count
def initialize
@count = 0
end
def increment
@count += 1
end
end
class TrackedCounter
attr_accessor:ourCounter
attr_reader :name
attr_reader:createdAt
attr_reader:lastAccess
def initialize (name)
@ourCounter = Counter.new
@name = name
@createdAt = Time.now
@lastAccess = @createdAt
end
end
bad = TrackedCounter.new("Bad Counter")
DRb.start_service("druby://localhost:8888", bad)
DRb.thread. join

As you can see, this class contains an instance of Counter, called
ourCounter, and we have provided an accessor so that the client code can
see it.

Now consider this piece of client code using our composite server class:

require 'drb'
DRb.start_service
bad = DRbObject.new(nil, "druby://localhost:8888")
puts "#{bad.name} was created at #{bad.createdAt}"
puts "Before: last access is #{bad.lastAccess}"
puts "#{bad.name} = #{bad.ourCounter.count}"

The important thing is that the calls to bad.createdAt and
bad.lastAccess work because they are methods of the class Tracked-
Counter, and we have a distributed instance of that class. However, the
call to bad.ourCounter.count fails because bad.ourCounter is a
normal object, not a distributed object. Hence, trying to call one of its meth-
ods remotely will fail. Thus you get the error as shown in Figure 12.4.

Networking

189

Bad Counter was created at Thu Jan 17 16:56:21 GMT+5:30 2002
Pefore: last acce i e Jan 17 16:56:21 cMT+5:30 2002
client.rb:6: undefined method “count”™ for #«<DREb:;DEbUnknown:0x4587HA0> (MameErrc

Figure 12.4 Error in the code.

Even if the object returned by our counter actually was a Counter, we
would still have a problem. This instance would be local to our client pro-
gram. Thus, if the remote Counter subsequently were incremented, we
would not see the new value. Similarly, if we were to increment our
counter, the remote one would not be updated.

Effectively, what we are seeing here is that dRuby provides only a shal-
low interface to the objects we export. If we want to give the client access to
anything lower down, we need to provide methods that do that access on
the server side and pass back the results.

For the reasons discussed here, if we wish to export a container of objects
such as an array or hash using dRuby, we need to provide accessors to get
at the contents of those containers.

Accessing Web Pages Using Net::HTTP

We normally use a browser to view the pages provided by servers on the
World Wide Web. However, it sometimes might be handy if we could
access the contents of pages using a script. For example, many news sites
are updated on a daily basis. We can pull down the contents from a num-
ber of such sites each morning and summarize them or translate them into
another format that is more useful to us. For instance, we might like to
transfer the information into our personal organizer to read on the way to
work.

We saw earlier in this chapter how we could write a small client using
TCPSocket to access the contents of a page. This is such a common task
that the standard Ruby library provides a class Net : : HTTP that encapsu-
lates the details to save us coding it ourselves.

Here is an equivalent to our preceding example, this time using
Net: :HTTP:

require 'net/http’

Connect to the server on port 80 ...

home = Net::HTTP.new("www.ruby-lang.org", 80)

Retrieve the text of the main page (response will
contain "OK" if our access was successful)

190 Chapter 12

response, text = home.get ("/en/index.html", nil)
Display the page's content ...
puts text

This is obviously much simpler than the code we wrote ourselves! Note
that we provide basically the same information we did previously: the
mnemonic address of the server, www. ruby-1lang. org; the port number,
80; and the specific page we wish to download, /en/index.html.

Moving Files Around Using Net::FTP

The class Net : : FTP provides access to the FIP used to move files between
computers. It can be used to both download and upload files. Here is a
simple program that downloads the latest stable snapshot of Ruby from
the Ruby server:

require 'net/ftp'

Connect to the FTP server on the Ruby home site ...
ftp = Net::FTP.new("ftp.ruby-lang.org")

Log in anonymously ...

ftp.login

Use passive mode, in case we're behind a firewall

that requires it ...

ftp.passive = true

Change to the right directory ...

files = ftp.chdir ("/pub/ruby")

Download the latest Ruby snapshot (storing it locally,
using the same name)

snapshot = "stable-snapshot.tar.gz"

ftp.getbinaryfile (snapshot, snapshot)

#Finally, close the connection to the FTP server
ftp.close

We gain access to the server by constructing an instance of Net : : FTP.
We then log in to the server; in this case, we do not specify a name or pass-
word (that is, we are logging in anonymously).

Why we set the instance variable passive to true is beyond the scope of
our discussion. This is often necessary if we are behind a firewall, which is
the case for most users. Setting it should not cause any problems if we are
not behind a firewall, so we simply do it every time.

The snapshot is always found in a particular directory on the FIP server,
so we move there. We do not really need to do this; we could instead spec-
ify the full path for the file as part of the next step. However, by doing this,
if something goes wrong, we will be able to tell more easily whether it was
because we got the directory wrong or because the file was not there
(because our program would abort on a different line in these two cases).

Networking

191

Finally, we download the file. We use binary mode because it is a com-
pressed Tape Archive (TAR) file, and then we close the connection.

Sending Mail Using Net::SMTP

To send email messages, you generally talk to a Simple Mail Transfer
Protocol (SMTP) server. Ruby provides the class Net : : SMTP for this pur-
pose. Suppose that you want to send email to Fred Bloggs, whose email
address is fred@bloggs . com. Here is the code:

Gain access to a mail server

require "net/smtp"

LIBRARIAN = "librarian@knowledge.inc.com"

smtp = Net::SMTP.new (MAIL_SERVER)

smtp.start ()

Specify the recipient of this message

address = "fred@bloggs.com"

Send the e-mail

smtp.ready (LIBRARIAN, address) do |mail|
mail.write "Subject: A small test\r\n"
mail.write "\r\n"

mail.write "Hi Fred, \r\n"

mail.write "\r\n"

mail.write "We hope you are making the most\r\n"
mail.write "of the library's facilities.\r\n"
mail.write "\r\n"

mail.write "If you would like any assistance, \r\n"
mail.write "please do not hesitate to contact\r\n"
mail.write "us at any time.\r\n"

mail.write "\r\n"

mail.write "Yours sincerely,\r\n"

mail.write "\r\n"

mail.write "Our Friendly Library Staff\r\n"

end

.m While creating the instance of Net : : SMTP, replace MATL_SERVER with
the address of your mail server.

First, we define which mail server we would like to use to send the
message by constructing an instance of Net : : SMTP specifying the address
of the server. Then we connect to the mail server by using Net::
SMTP#start. If the mail server requires authentication, we pass our login
and password at this stage.

Finally, we call Library#ready, passing it the email address of the
recipient, and then we write the mail message to the I0 instance that is
connected to the server. We need to be careful to leave a blank line after all

192 Chapter 12

the headers. In this case we have only one header, the subject. Once the
block of code passed to Library#ready completes, the email will have
been accepted by the server and hopefully will be on its way to the
intended recipient.

Reading Mail Using Net::POP3

Ruby provides the class Net: : POP3 class for access to mail servers via
POP3, which is the de facto standard on the Internet. Here is a simple pro-
gram that reads the first message currently in a mailbox:

require "net/pop"

Connect to the POP3 server

pop = Net::POP3.new("pop3.zipworld.com.au")
Initiate a session, by logging in to the
mail server

pop.start ("harryo", "secret") do |pop]|

Read the first message

msg = pop.mails[0]

Print the 'From:' header line

puts msg.header.split("\r\n").grep(/"From: /)
Write the message to $stdout

puts "\nFull message:\n"

msg.all ($Sstdout)

end

And here is the output we received in a run of this program after sending
a simple test message to one mail server:

From: Harry Ohlsen <harryo@zip.com.au>

Full message:

Received: by mangalore (mbox harryo)

(with Cubic Circle's cucipop (v1.31 1998/05/13) Thu Dec 27 12:40:37
2001)

X-From_: harryo@zip.com.au Thu Dec 27 12:40:03 2001
Return-Path: <harryo@zip.com.au>

Message-Id: <200112270140.MAA02340@mangalore.zipworld.com.au>
Received: from there ([144.135.24.78]) by mtalO2bw.bigpond.com
(Netscape Messaging Server 4.15) with SMTP id GOzBM900.21J for
<harryo@zip.com.au>; Thu, 27 Dec 2001 11:46:57 +1000
Content-Type: text/plain;

charset="1is0-8859-15"

From: Harry Ohlsen <harryo@zip.com.au>

Reply-To: harryo@zip.com.au

To: harryo@zip.com.au

Subject: Testing, testing, testing!

Date: Thu, 27 Dec 2001 12:40:24 +1100

X-Mailer: KMail [version 1.3.1]

Networking

193

MIME-Version: 1.0
Content-Transfer-Encoding: 8bit
This is a quick demonstration message.

Now we will use the scenario of Knowledge Inc., to send automatic
email messages.

Sending Automatic Emails

Problem Statement

To provide better service to its customers, Knowledge Inc., would like to
send an automatic email message to any customer who has books due back
in the near future. We can run a script each night that finds any users to
whom we should send an email and use the class Net : : SMTP to send it.

Task List

Write code to find all appropriate customers.

Generate an email message for all identified customers.
Send the message to the customers.

Save and execute the code.

Verify the output.

A W W W WA

Write Code to Find All Appropriate Customers

First, we need to create a few simple classes to represent customers, their
loans, and the respective books:

class Book
attr_reader :title
def initialize(title)
@title = title
end
end
class Loan
attr_reader :book
attr_reader :dueDate
def initialize(book, loanPeriod)
@book = book
@dueDate = Time.now + (loanPeriod * DAYS)
end
end

194 Chapter 12

class Customer
attr_reader :name
attr_reader :emailAddress
attr_reader :loans
def initialize(name, emailAddress)
@name = name
@emailAddress = emailAddress
@loans = []
end
def add_loan (book, dueDate)
loan = Loan.new(book, dueDate)
@loans.push (loan)
end
end

We see that a book is simply represented by its title, a loan contains a ref-
erence to the book that has been borrowed plus the date it is due back, and
a customer has a name, an email address, and a list of his or her currently
outstanding loans. The method Customer#add_loan adds a book to the
list of loans for that customer.

Now we need to create the class Library that tracks all the library’s
customers and what loans they have:

DAYS = 24 * 60 * 60 # Number of seconds in a day
SOON = 4# Definition of "soon", in days
MAIL_SERVER = "mail-hub" # The mail server
class Library
attr_accessor :customers
def initialize
@customers = []
end
def add_customer (customer)
@customers.push (customer)
end
def send_reminders
today = Time.now
For each customer
@customers.each do |customer|
Create an array of loans that are due soon ...
dueSoon = []
For each loan ...
customer.loans.each do |loan|
See how many days there are until it
is due to be returned ...
days = loan.dueDate - today
If the due date is close, add it to
the list
if days <= (SOON * DAYS)

Networking

195

dueSoon.push (loan)

end

end
If this customer has any loans due soon, send
them an e-mail, detailing which books they are
and when they are due

if dueSoon.length > 0
mail_reminders (customer, dueSoon)

end

end

end
end

Library#add_customer adds a new person to the library’s list of cus-
tomers. Library#send_reminders finds all the customers who have
books on loan that are due soon, creating an array of loans that are due for
return soon. If a given customer has any outstanding loans that are due
sometime soon, Library#send reminders calls Library#mail
reminder to send the email.

Generate an Email Message for All Identified Customers

We need to run through the list of loans that are due soon and create an
appropriate message:

MAIL_SERVER = "mail-hub"
def create_email (customer, dueSoon)
message = ""
message << "Subject: Loans due back within #{SOON} days\r\n"
message << "\r\n"
message << "Dear #{customer.name},\r\n"
message << "\r\n"
message << "The following books are due back soon:\r\n"
message << "\r\n"
dueSoon.each do |loan]|
message << " #{loan.dueDate.to_s[0, 10]}" <<
" #{loan.book.title}"
end
message
end

The most important thing here is that we have a header prefixed by
Subject:, followed by a blank line, which signifies the end of the head-
ers. We need to define MAIL_SERVER to be the network address of the
computer that contains the SMTP server.

196 Chapter 12

Send the Message to the Customer

Now we come to the most important part of this case study. How do we
send the email? Here is the code for Library#mail_reminders:

LIBRARIAN = "librarian@knowledge.inc.com"
def mail_reminders (customer, dueSoon)

Create the mail message

message = create_email (customer, dueSoon)
Gain access to a mail server

smtp = Net::SMTP.new (MAIL_SERVER)
smtp.start ()

Specify the recipient of this message
address = customer.emailAddress

Send the e-mail

smtp.ready (LIBRARIAN, address) do |mail|
mail << message

end

end

Finally, here is a code that uses the classes we have written to actually
send the email:

Create the library department

library = Library.new

Create a few customers

anthony = Customer.new("Anthony", "anthony@isp.com")
tom = Customer.new("Tom", "tom@isp.com")
harry = Customer.new("Harry", "harry@isp.com")
jerry = Customer.new("Jerry", "jerry@isp.com")
Create a few books

warAndPeace = Book.new("War and Peace")
prideAndPrejudice = Book.new("Pride and Prejudice")
mobyDick = Book.new("Moby Dick")

frankenstein = Book.new("Frankenstein")
dracula = Book.new("Dracula")

snowWhite = Book.new("Snow White")

Loan the customers some books
anthony.add_loan (warAndPeace, 3)
anthony.add_loan (mobyDick, 4)

tom.add_loan (dracula, 2)

harry.add_loan (snowWhite, 3)

jerry.add_loan (prideAndPrejudice, 5)
jerry.add_loan (frankenstein, 7)

Make them customers of the library
library.add_customer (anthony)
library.add_customer (tom)
library.add_customer (harry)
library.add_customer (jerry)

Ask the library to send out the reminders
library.send_reminders

Networking 197

Save and Execute the Code

Save all the code we have seen in the preceding sections as reminders. rb,
and execute it from the command prompt by typing ruby reminders.rb.

You obviously will need to find out what your actual mail server’s name
is and replace the email addresses of our fake customers with some real
addresses.

Verify the Output

Check that email messages are sent to the appropriate customers, in other
words, those who had loans that were due back in four days or less:
Anthony, Tom, and Harry. Check also that the email messages refer to the
correct loans.

Summary

In this chapter you learned that:

Network communication takes place between a client and server.
TCP is a connection-based protocol.

TCP is used when medium to large amounts of data need to be
transferred.

UDP is a connectionless-based protocol.
UDP is used when small amounts of data need to be transferred.

A socket is used to create a connection between a client and a server.
In a network connection, a socket is present at both the client end
and the server end. The client talks to the server by using the client
socket, whereas the server responds by using the server socket.

Creating an instance of the class TCPSocket creates a client socket,
whereas creating an instance of the class TCPServer creates a
server socket.

Using distributed Ruby, you can access from one program an object
of another program and execute the methods of the object. Distrib-
uted Ruby is similar to Java’s RMI.

Using the class Net : : HT'TP, you can invoke the HTTP and therefore
can access Web pages.

Using the class Net : : FTP, you can invoke the FTP and therefore
can move files from one computer to another.

198 Chapter 12

m Using the class Net : : SMTP, you can talk to a mail server and
therefore can send email.

m To send email, the SMTP is used.

m Using the class Net : : POP3, you can talk to a mail server and
therefore can read email.

m To read email, the POP3 is used.

Ruby Extensions

There are several existing libraries in different languages that provide
functionality that is useful for programs. It would not be logical for us to
rewrite all these libraries in Ruby when we can use them readily. Moreover,
at times, we may need better performance than can be obtained from an
interpreted language such as Ruby. In such a situation, it would be useful
to write or use the time-critical code in a more efficient language and sim-
ply call it from our Ruby code.

Fortunately, Ruby provides facilities that allow us to handle both these
situations. We can quite easily write extensions in C that hook seamlessly
into the environment of Ruby. They can be made to look to our programs
as though they are other pieces of Ruby code. We can even go the other
way and embed a complete Ruby interpreter into a C program. This would
allow us to use its scripting facilities instead of having to write our own
purpose-built engine.

199

200 Appendix A

Ruby with C

To give us something to talk about, here is a trivial example that imple-
ments a class called Simple with two instance variables, a Fixnum called
@i and an Array called @a:

#include "ruby.h"
/*
*
*/
static VALUE simple_initialize (VALUE self, int iVvalue)

{

Definition of Simple_initialize

rb_iv_set(self, "@i", iVvalue);
rb_iv_set (self, "@a", rb_ary new());
return self;

/*
* Define accessors for @i and Qa
*/
static VALUE simple_get_1i (VALUE self)
{
return rb_iv_get (self, "@i");
}
static VALUE simple_set_1i (VALUE self, int iValue)
{
return rb_iv_set(self, "@i", iValue);
}
static VALUE simple_get_a (VALUE self)
{
return rb_iv_get (self, "@a");
}
/*
** The code that constructs the Simple class itself
*/
void Init_Simple()
{
/*
* A variable to store the Simple class we are about
* to create
*/
VALUE cSimple;
/*
* Ask the Ruby interpreter to create a class
* called Simple
*/
cSimple = rb_define_class("Simple", rb_cObject);
/*
* Tell it what function to call to initialize
* an instance of Simple

Ruby Extensions 201

*/
rb_define_method(cSimple, "initialize",
simple_initialize, 1);

/*

* Define get and set accessors for @i and a get
* accessor for @a ...

*/
rb_define_method(cSimple, "i", simple_get_i, 0);
rb_define_method(cSimple, "i=", simple_set_1i, 1);
rb_define_method(cSimple, "a", simple_get_a, 0);

In this example we have included the header file ruby . h. This defines
all the C datatypes and functions that allow us to interact with the Ruby
interpreter.

The next thing that is prominent is the general use of the keyword
VALUE. This is a hold-all type that is used to store data in a form that can be
deciphered by the Ruby interpreter. Various functions are available to con-
vert between VALUE and all the standard C datatypes such as int and
double. There are also functions that create standard Ruby datatypes such
as Array and Hash.

Now let’s take a look at the ITnit_Simple function at the bottom of the
code. The interpreter calls this function when it encounters the require
'Simple' statement in our Ruby source code. The purpose of the
require 'Simple' statement is to create the class Simple. This involves
defining the new class and adding four methods: the initializer and three
accessor functions for the instance variables @i and @a.

We can see that rb_define_class () accepts two parameters. The
first is the name of the class we are creating. The second argument
rb_cObject is a reference to the standard Ruby class Object that will be
the parent for our new class. If we wanted the class Simple to have a dif-
ferent parent, we would specify that class here. We store the value returned
by rb_define_class () in our own variable called cSimple, which is
our reference to the newly created class. We need to pass that reference to
any functions that access our new class.

Next, we inform the interpreter to associate certain C functions with the
methods of the class Simple. First, we define Simple.initialize. We
pass in cSimple to inform rb_define method() about the class to
which we want to add the method. We then pass the name of the method,
which is initialize in this case. Then we pass the name of the function
we wish it to call when that method is referenced in our Ruby code (in this
case, simple_initialize()) and finally a number that specifies how
many arguments the method accepts (in this case, 1).

202 Appendix A

This causes the interpreter to organize in such a way that whenever
Simple.initializeis called, our C function simple_initialize()
will be called.

Let’s look at the code for simple _initialize (). Note that we said
that this function is passed one argument, but the code actually accepts
two! An instance method of a class will be called for many different objects.
Therefore, we need to know to which object each call refers.

This implies that, as its name suggests, the first parameter is the equiva-
lent of self for the object we are initializing. Therefore, we do not need to
include it while calculating the number of actual parameters to the
method. We instead refer only to the number of parameters that will be
passed to Simple.initialize in the Ruby code.

Each line of simple_initialize () uses the function rb_iv_set ()
to create an instance variable (this is what iv refers to) for the object we are
initializing.

In the case of @i, we simply pass the integer value that was provided.
For @a, however, we need to create a C representation of a Ruby Array. We
do this by calling rb_ary_new ().

Now let’s look at the other lines of Init_Simple. They associate three
more functions with the corresponding methods of our new class. The first
two define get and set accessors for @i, and the last one defines a get
accessor for @a.

Compiling a New Class

Before we can use our new class, we need to compile the C code and orga-
nize it in such a way that the Ruby interpreter can access it. Assuming the
absence of any syntax errors, this is quite easy. In Ruby, you can create a
Makefile for any specific environment. All we need to do is write a short
Ruby file and run it. Here is the file for our new class, which is conven-
tionally called extconf. rb:

require 'mkmf'
create_makefile("Simple")

Most of the real work happens inside mkmf, which contains the method
create_makefile. We pass this method the name of our class, and it
does the rest. After we run this code through the interpreter by typing
ruby extconf.rb, we will find a new file called Makefile in our directory.
This file contains carefully crafted compilation statements, which we will
not discuss here.

Ruby Extensions

203

Note that Makefile expects the C source code for our class to be stored
in a file whose name is the same as that of the class. However, this name is
specified in lowercase letters with an extension of .c. For example, for the
class Simple, the name of the file should be simple.c.

To compile the new class, type make. Assuming everything compiles
correctly, you should end up with a file called either Simple.so or
Simple.dll depending on whether you are running UNIX or Windows.
This is a dynamic library containing the compiled C code.

To make this new class accessible universally instead of only when you
are in the current directory, you need to execute the make install com-
mand. This will copy the library to the correct place for our installation.

Using Our New Class

After we have built our library, we can use the class Simple as though it
had been written directly in Ruby:

require 'Simple’

Construct an object of class Simple, with @i initialised
to 123 ...

= Simple.new(123)

Print the values of @i and @a. This calls

HH+ H= 0 H I

simple_get_i() and simple_get_a()

puts s.i # => 123

puts s.a.inspect # => []

Change the value of @i. This calls simple_set_i()
s.1 = 456

puts s.i # => 456

Append a couple of strings to @a ...
s.a.push("Hello")

s.a.push ("World!")

puts s.a.inspect # => ["Hello", "World!"]

When the interpreter encounters require 'Simple', it loads the
dynamic library recently created and calls Init_Simple (), which creates
the global object that represents this class. When asked to construct a new
instance of the class Simple by using the statement Simple.new, the new
object is allocated memory, and the argument of the new method is passed
to simple_initialize (). When the code reads the values of @i or @a,
the appropriate get function is called. When we ask for @i to be assigned
the new value 456, the interpreter calls simple_set_i (). Therefore, we
now have our own C code that implements a new class.

204 Appendix A

Interfacing to Existing Libraries

There might be situations where you would like to access an existing
C library. We now have all the tools we need to do this. For example, the
standard Ruby module Math provides access to the sin() and cos()
functions from the standard maths library but not to their inverse func-
tions asin () and acos ().

We write the following module called MoreMath with a few functions to
gain access to them:

#include "ruby.h"
#include "math.h"
/*
* Define module functions to access asin() and acos()
*/
static VALUE moremath_acos (VALUE module, VALUE x)
{
return rb_float_new(acos (NUM2DBL (X))) ;
}
static VALUE moremath_asin (VALUE module, VALUE x)
{
return rb_float_new(asin (NUM2DBL (X))) ;
}
/*
** The code that constructs the MoreMath module ...
*/
void Init_MoreMath ()
{
/*
* A variable to store the MoreMath module we are about
* to create ...
*/
VALUE mMoreMath;
/*
* Ask the Ruby interpreter to create a module
* called MoreMath ...

*/

mMoreMath = rb_define_module("MoreMath") ;

/*
* Define module functions to access acos() and asin()
*/

rb_define_module_function (mMoreMath, "acos", moremath_acos, 1);
rb_define_module_function(mMoreMath, "asin", moremath_asin, 1);

In this case, we have defined a new module called MoreMath instead of
a class. We have defined two module functions that simply pass on our
request to the standard library routines and return the results to the inter-
preter, converting them to the Ruby Float datatype first.

Ruby Extensions

205

Note the calls to NUM2DBL () and rb_float_new() in the two func-
tions we are exporting to the Ruby interpreter. The former converts a
VALUE into a normal C double. The latter uses a double to create a new
Ruby Float object.

Here is an example that uses MoreMath. It should be fairly straight-
forward if you remember a bit of basic trigonometry.

require 'MoreMath'

The cosine of PI is -1, so if we take acos(-1), we

should get PI ...

puts "PI = #{MoreMath.acos(-1)}" # => 3.141592654

Similarly, the sine of PI/2 is 1, so taking asin(1)

and multiplying by 2 should also give us PI ...

puts "PI = #{2 * MoreMath.asin(1l)}" # => 3.141592654

Let's just print what Math thinks PI is, to see whether
these values look correct ...

puts "Math::PT = #{Math::PI}" # => 3.141592654

Embedding a Ruby Interpreter into a C Program

We mentioned earlier about the facility to embed a copy of the Ruby inter-
preter in a C program. Imagine that we are building an image-manipulation
tool. It might be nice to allow users to script some of their complex tasks,
permitting them to perform a complex set of manipulations on hundreds
of images without any user interaction later being required.

One approach to create our image-manipulation tool would be to create
our own customized language in which the user can define the required
manipulations. However, as specified in relation to third-party libraries,
why do you need to reinvent the wheel when we have a useful scripting
engine — Ruby!

The interpreter has been designed carefully so that it also can be embed-
ded in an arbitrary C program. All we need to do is link it in with our pro-
gram, call a couple of functions to initialize it, and then we can begin using
Ruby for scripting.

Consider the following example:

int main(int argc, char *argvl[])
{
/*
* Initialise the image manipulation engine ...
*/
init_graphics_engine() ;
/*
* Initialise the Ruby interpreter ...
*/

206 Appendix A

ruby_init () ;

/*
* Define the name of the script ...
*/

ruby_script ("graphics") ;

/*

* Load the user's set of manipulations, in
* the form of a Ruby script ...

*/
rb_load_file("manipulations.rb");
/~k

* Execute their script ...

*/
ruby_run() ;

}

The comments in this code snippet explain pretty much everything you
need to know. We will assume that calling init_graphics_engine()
performs any startup that is required for our graphics tool. We then
initialize the Ruby interpreter, name the script, load the set of manipula-
tions the user wants to run in the form of a Ruby script from a file called
manipulations.rb, and then ask the embedded Ruby interpreter to
execute the script.

Image processing is a CPU-intensive task. Therefore, it is possible that
we create a few C extensions to perform various kinds of manipulations by
using the techniques described earlier. The script would then be written in
relation to the classes and/or modules those extensions provide.

Two existing examples of using an embedded Ruby interpreter are
eRuby and modRuby. Both allow the user to embed Ruby code into HTML
tiles similar to Cold Fusion, Active Server Pages (ASP) or Hypertext Pre-
Processor (PHP), providing dynamic content creation. Both take slightly
different approaches to the problem. eRuby is a program that accepts as its
input HTML containing embedded Ruby code. eRuby executes the embed-
ded Ruby code to generate pure HTML, which is then passed back to the
client’s browser. Alternatively, modRuby is a library module that hooks
into and becomes part of the Apache Web server.

Obtaining More Information

This short discussion has only scratched the surface of what is possible.
You will find a lot of the details in the file README . EXT that comes with the
source-code distribution of Ruby, which is something you will need before
you begin working with extensions.

Safety Issues

When we write and run programs, we can use the code to perform numer-
ous actions. However, it is important to protect these programs from inex-
perienced or malicious users, especially if these are accessible on the
Internet or even the local network.

Ruby is a very powerful language with features that allow dynamic exe-
cution of code that is created while the program runs. For example, eval
can be used to run a piece of Ruby code that does not even exist in the
source of our program. Consider the following example:

loop do
Sstderr.print "Enter An Expression: "
if (command = gets)
begin
puts " #{eval command}"
rescue
puts "That doesn't seem to be a valid expression."
end
else
break
end
end

207

208 Appendix B

Each time the user enters a string, we use eval to execute it and then
output the result. For example, if the user entered 2 + 2, the output would
be 4. This makes for a nice little calculator. If the user enters an invalid
expression, an exception will be raised so that the program does not abort.

We have used $stderr (normally unbuffered) because otherwise the
prompt would not be displayed. Now consider what happens if the user
enters system('rm *'). The program would evaluate that expression
and remove all the files in the current directory as a consequence.

It is possible that this is not a problem if the user is running this program
as a normal user. The reason is that the security mechanisms in the file sys-
tem ensure that a normal user cannot delete the important system files.
However, if this program were running as someone else, say, root, then we
would be in serious trouble.

Ruby uses the concept of tainting of objects and safety levels to reduce
these types of security risks.

Tainting

Ruby automatically marks any data that comes from outside the program
as tainted. This includes strings read from files or over a network connec-
tion and the values of environment variables. Anything we wrote directly
in the source code of our program can be considered inherently kosher
because if we did not want it that way, we would not have written it that
way. However, any data that are tainted because they came from outside
our source code should be viewed with suspicion.

Any other objects that have been created using tainted data are poten-
tially problematic. Therefore, the interpreter also marks as tainted any
object that is derived from a tainted object in some way.

The class Object, from which all other classes are derived, provides the
method tainted that allows us to determine whether a given object is
tainted. To see how tainting works, let’s look at few examples:

First, we'll just create a couple of variables directly
within our program ...

hello = "Hello"

puts hello.tainted? # => false

helloWorld = hello + ", world!"

puts hello.tainted? # => false

Now, let's look at something from our environment. The
following should work on a Unix machine ...

login = ENV["LOGNAME"]

puts login.tainted? # => true

myLogin = "My login name is #{login}"

Safety Issues

209

puts myLogin.tainted? # => true

Now, we know that our variable "hello" is currently

untainted, # so let's try appending the tainted

variable "login" ...

hello << ", my login is #{login}"

puts hello.tainted? # => true

But, "helloWorld", which was originally derived from
"hello" should not be affected, even though "hello"

has become tainted ...

puts helloWorld.tainted? # => false

Levels of Safety

Why do you need to mark objects as tainted? We have seen that using eval
on tainted object can cause problems. There are many other things for
which they should not be used, such as the paths of directories to be
removed and the names of programs to exec.

Instead of simply disallowing everything that potentially could be dan-
gerous when applied to tainted data, Ruby provides the global variable
$SAFE to allow the programmer to define the level of risk that is acceptable.

If $SAFE has a value of 0, which is normal unless the program is being
run setuid or setgidroot, there are no limitations on using tainted data.
The higher the value of $SAFE, the more tightly does the interpreter con-
strain the use of tainted objects.

We may start out at the default safety level of 0, create a few objects to be
used as the accepted environment in which our program will run, and then
increase $SAFE to avoid the user modifying that environment.

A
access control, 27-29
ampersand (&) operator, 138
Apache Web server, 132, 136
arrays
adding elements to, 99-100
declaring, 45
description of, 4042
displaying elements of, 56-57, 61
identifying, 55-56
methods and, 80-81
assembly-level language, 13-14
asterisk (*), 63
automatic e-mail, sending, 193-97
automation client, Ruby as, 172-77

B

Back button of browser, 141
backslash (\), 67, 95
Bignum class, 37

bin directory, 135

blocks, 50, 57-58, 81, 95-97
Body element, 134

body of Web page, 132-33
braces ({}), 57

brackets ([]), 67

browser, 131-32, 141
Button widget, 160-61

Index

C

caret (1), 66, 67

catch block, 109

CGI (Common Gateway Interface),
132-37, 145

CGI class, 132, 136-37

CheckButton widget, 163-64

child, waiting for, 128

child widget, 149

Choose Destination Location page, 6

C language, 36, 76, 199-206
C++ language, 32, 36, 76, 87, 104
classes
arrays as, 41
characteristics and functions
of, 18-19
compiling in C, 202-3
creating, 20, 83-84
data abstraction, 16, 19
data encapsulation, 16, 19
data members in, 23-25
declaring, 82-83, 89
description of, 15
identifying, 17-18
methods of, 81-82
modules and, 86
using C, 203
See also inheritance; objects;
variables; specific classes

211

212

Index

class variable, 21
client, 180
code
identifying changes to make in,
110-11
reusing, 86
saving and executing, 25-26
structuring with blocks, 50
syntax for, 39
testing for exceptions, 112-13
collection, 59
collect iterator, 60
Common Gateway Interface.
See CGI
conditional statements, 52
connection-based request, 181
connectionless access, 181
constant, accessing, 85
container widgets, 149
control structures, 50-54, 110, 111
cookie, creating, 138-40
Counter class, 185-89

D
data abstraction, 16, 19
data encapsulation, 16, 19
data type, assigning to variable, 36
decimals, 37
decision-making statement, 49-50
declaring
array, 45
class, 82-83, 89
hash, 45-46
method, 77, 83
module, 88
regular expression, 70-71
variable, 37-39
defining module, 85
delimiters, 38
Distributed Ruby (dRuby), 180,
184-89
double equals (==) operator, 52
downloading Ruby, 3

E
each iterator, 59
Edit Environment page, 8
e-mail, sending and reading, 191-97
embedding Ruby interpreter into
C program, 205-6
embedding Ruby with HTML.
See eRuby
end keyword, 51
Entry widget, 154-56
equals (=) operator, 51
error condition, recovering from, 106
eRuby, 14243, 206
Excel chart, creating, 173-76
Exception class, 107-8
exceptions
catch and throw, 109
exception handlers, 104-7
implementing, 110-12
raising, 108
testing code for, 112-13
exec, 128
executing
code, 25-26
file on Web server, 136
program from Web browser,
131-32
execution time, 116
extensions, 199-206

F
FAQ site, 34
file
access problem, handling, 104
executing on Web server, 136
moving, 190-91
opening, modes of, 94-95
reading and writing contents of, 96
File class
gets statement, 97
methods of, 94-100
overview of, 93-94
Fixnum class, 37

Index

213

Float class, 37

floats, 37

fork, calling, 126-28

for loop, 50, 54

form, creating and submitting,
144-46

Form element, 134

Frame widget, 165-66

functions. See methods

G

geometry management, 156-59

gets statement, 92, 97

global variable, 21, 209

GNA gzip program, 9

greater than or equal to (>=)

operator, 52

grid geometry manager, 158

GUI (graphic user interface)
Button widget, 160-61
CheckButton widget, 163-64
code for, 166-68
creating, 148-49
description of, 148
Entry widget, 154-56
Frame widget, 165-66
identifying components of, 152
Label widget, 153-54
Listbox widget, 161-62
RadioButton widget, 164-65
root window, creating, 149

H

hashes
declaring, 45-46
description of, 42
identifying, 55-56

hash (#) symbol, 39

Head element, 133

head of Web page, 132-33

H1 element, 134

hr element, 134

HTML (Hypertext Markup
Language), 132-37, 14243

HTML element, 133

HTML form, passing parameters
using, 137-38

Hypertext Transfer Protocol (HTTP),
120

|
if..else statement, 49, 51-53
if..elsif..else statement, 51-52
implementing Web server, 120-22
Important Information page, 5
include function, 43—-44
include statement, 86, 89
inheritance
description of, 16, 19, 26-27
implementing, 30-31
multiple, 32, 87, 89
initialize method, 22-23, 27,
83-84
input tag, 134
installation wizard, 5
installing
on UNIX, 9-10
on Windows, 4-9
InstallShield Wizard Complete
page, 9
instance variable, 21
instantiation, 15
integers, 37
interactive Ruby, 10-11
interactivity. See CGI
interface to existing C library, 204-5
I0 class
methods, 94-98, 100
overview of, 91-92
statements, 92-93
See also File class
IOError, 105, 106
IP (Internet Protocol) address,
180-81
iterators, 50, 59-62

214

Index

J
Java, 32, 36, 76, 87, 104

K
keys, 42

L
Label widget, 153-54
lesser than (<) operator, 52

lesser than or equal to (<=) operator,

52

Listbox widget, 161-62

local variable, 21

looping structures, 50, 53-54,
110, 111

M
mailing list, 4
Makefile, 202-3
MatchData object, 68-69
matching strings, 70-73
max function, 43
memory, accessing, 36
methods
Array class, 41-42, 123
arrays and, 80-81
blocks and, 81
calling, 31-32
CheckButton widget, 164
class type, 81-82
declaring, 77, 83
description of, 23
Entry widget, 156
File class, 94-100
initialize, 22-23,27,683-84
I0 class, 92, 94-98, 100
Listbox widget, 162
naming, 77
parameters and, 76, 79-81
push, 99-100
return values from, 78-79
to a,44

types of, 75-76

WIN320LE class, 174-75
min function, 43
mixin, 32, 87
modes, 10-11
modRuby, 206
module, 85-86, 88
multiple inheritance, 32, 87, 89
multiprocessing, 116, 126-28
multithreading, 116, 119-26
Mutex class, 123-24
mutual exclusion, 123

N
naming
method, 77
object, 25
Net: : FTP class, 190-91
Net : : HTTP class, 189-90
Net: : POP3 class, 192-93
Net : : SMTP class, 191-92
networking
Distributed Ruby, 184-89
overview of, 180-81
sockets, 181-82
TCPServer class, 182-84
TCP vs. UDP, 181
network programming, 35-36
normal program mode, 11
numbers, 37, 42-44

o0

Object class, 208

object-oriented programming
access control, 27-29
data abstraction, 16, 19
data encapsulation, 16, 19
features of, 14-16
polymorphism, 16-17
regular expression and, 68—-69
See also inheritance

objects, 15, 21-22, 25

online book about Ruby, 3

Index

215

opening file, 94-95

operators
ampersand (&), 138
conditional, 51-52
for ranges, 4243

P
pack geometry manager, 156-57
parameters and methods, 76, 79-81
parent widget, 149
passing parameters
creating object by, 22, 25
HTML form, using, 137-38
yield statement and, 58-59
pattern, searching for, 62-64, 66-68
percent symbol (%), 143
Perl, 2
place geometry manager, 158-59
plus (+), 63
polymorphism, 16-17
port number, 120, 181
POSIX environment, 171-72
Pragmatic Programmers Guide for
Ruby (Thomas and Hunt), 3
Pre element, 134
print statement, 93
priority of thread, setting, 124-26
programming, 35-36, 49-50, 103—4.
See also object-oriented
programming
push method, 99-100
putc statement, 93
puts statement, 39, 93

question mark (?), 63

R

radio button, 134
RadioButton widget, 164-65
raising exceptions, 108
ranges, 42-44

rbw file, 172
reading contents of file, 96
README . EXT file, 206
regular expression
$ variable, 65-66, 71-72
declaring, 70-71
description of, 50
examples of, 66—-68
object orientation and, 68-69
syntax for, 62-64
require statement, 76, 86
rescue statement, 105, 106
reset button, 134
retry command, 107
return statement, 78-79
root window;, creating, 149
Ruby directory, 135, 143
Ruby Installer, 8, 9
rubyw. exe file, 172
Rubywin, 172

S

$SAFE global variable, 209

saving code, 25-26

searching for pattern, 62-64, 66-68

security issues, 141-42, 207-9

server, 180

sessions, 141-42

Setup Status page, 8

Setup Type page, 6, 7

single-threaded application, 116-17

slash (/), 50

sockets, 181-82

software specifications for Win-
dows, 10

stand-alone widgets, 149

Start Copying Files page, 6, 7

$Sstderr, 92

$stdin, 91

Sstout, 91-92

string, 38-39, 66, 70-73. See also reg-
ular expression

submit button, 134, 145

suspending thread, 122, 125-26, 127

216

Index

syntax
for regular expression, 62-64
for writing code, 39
SystemCallError, 105
system requirements, 4

T

tainting, 208-9

TCPServer class, 120, 182-84

TCPSocket class, 182

TCP (Transmission Control

Protocol), 181

text field, 134

then keyword, 53

threading. See multithreading

Thread#join, 122

thread scheduler, 124-26, 127

three-dot (...) operator, 4243

throw statement, 109

Tk
entering infinite loop, 150-51
geometry management, 156-59
module, loading, 149
overview of, 148-49
widgets, 149-50
See also GUI

to a method, 44

two-dot (..) operator, 4243

)

UDP (User Datagram Protocol), 181
UNIX, 9-10, 126-27

unless statement, 53

\'
VALUE keyword, 201
values, 42,76, 78-79

variables
$, 65-66, 71-72
$!,105, 106
arrays and, 40-42, 45
declaring, 37-39
description of, 36
hashes, 42, 45-46
ranges, 42-44
$SAFE, 209
types of, 21
writing code, 39-40
version numbers, 3
vertical bar (|), 68
vertical lines (| |), 58
Visual Basic, 36

w
Web browser, 131-32, 141
Web page, 14446, 189-90
Web server, 119-26, 132, 136, 138—40,
182-84
Web sites
downloading Ruby, 34
GNA gzip program, 9
Ruby Application Archive, 4
Ruby home page, 180
while loop, 50, 53-54, 110, 111
widgets, 148, 149-50. See also GUI
Windows (Microsoft), 4-9, 10,
172-77
WIN320LE class, 173-74
Word document, 174, 177
writing contents of file, 96

Y
yield statement, 57-59, 81

