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Preface

Statistical methods for survival data analysis have continued to flourish in the
last two decades. Applications of the methods have been widened from their
historical use in cancer and reliability research to business, criminology,
epidemiology, and social and behavioral sciences. The third edition of Statisti-
cal Methods for Survival Data Analysis is intended to provide a comprehensive
introduction of the most commonly used methods for analyzing survival data.
It begins with basic definitions and interpretations of survival functions. From
there, the reader is guided through methods, parametric and nonparametric,
for estimating and comparing these functions and the search for a theoretical
distribution (or model) to fit the data. Parametric and nonparametric ap-
proaches to the identification of prognostic factors that are related to survival
are then discussed. Finally, regression methods, primarily linear logistic re-
gression models, to identify risk factors for dichotomous and polychotomous
outcomes are introduced.
The third edition continues to be application-oriented, with a minimum

level of mathematics. In a few chapters, some knowledge of calculus and matrix
algebra is needed. The few sections that introduce the general mathematical
structure for the methods can be skipped without loss of continuity. A large
number of practical examples are given to assist the reader in understanding
the methods and applications and in interpreting the results. Readers with only
college algebra should find the book readable and understandable.
There are many excellent books on clinical trials. We therefore have deleted

the two chapters on the subject that were in the second edition. Instead, we
have included discussions of more statistical methods for survival data analysis.
A brief summary of the improvements made for the third edition is given
below.

1. Two additional distributions, the log-logistic distribution and a general-
ized gamma distribution, have been added to the application of paramet-
ric models that can be used in model fitting and prognostic factor
identification (Chapters 6, 7, and 11).

xi



2. In several sections (Sections 7.1, 9.1, 10.1, 11.2, and 12.1), discussions of
the asymptotic likelihood inference of the methods covered in the
chapters are given. These sections are intended to provide a more general
mathematical structure for statisticians.

3. The Cox—Snell residual method has been added to the chapter on
graphical methods for survival distribution fitting (Chapter 8). In addi-
tion, the sections on probability and hazard plotting have been revised
so that no special graphical papers are required to make the plots.

4. More tests of goodness of fit are given, including the BIC and AIC
procedures (Chapters 9 and 11).

5. For Cox’s proportional hazards model (Chapter 12), we have now
included methods to assess its adequency and procedures to estimate the
survivorship function with covariates.

6. The concept of nonproportional hazards models is introduced (Chapter
13), which includes models with time-dependent covariates, stratified
models, competing risks models, recurrent event models, and models for
related observations.

7. The chapter on linear logistic regression (Chapter 14) has been expanded
to cover regression models for polychotomous outcomes. In addition,
methods for a general m : n matching design have been added to the
section on conditional logistic regression for case—control studies.

8. Computer programming codes for software packages BMDP, SAS, and
SPSS are provided for most examples in the text.

We would like to thank the many researchers, teachers, and students who
have used the second edition of the book. The suggestions for improvement
that many of them have provided are invaluable. Special thanks go to Xing
Wang, Linda Hutton, Tracy Mankin, and Imran Ahmed for typing the
manuscript. Steve Quigley of John Wiley convinced us to work on a third
edition. We thank him for his enthusiasm.
Finally, we are most grateful to our families, Sam, Vivian, Benedict, Jennifer,

and Annelisa (E.T.L.), and Alice and Xing (J.W.W.), for the constant joy, love,
and support they have given us.

E T. L
J W W

Oklahoma City, OK
April 18, 2001
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CHAPTER 1

Introduction

1.1 PRELIMINARIES

This book is for biomedical researchers, epidemiologists, consulting statisti-
cians, students taking a first course on survival data analysis, and others
interested in survival time study. It deals with statistical methods for analyzing
survival data derived from laboratory studies of animals, clinical and epi-
demiologic studies of humans, and other appropriate applications.

Survival time can be defined broadly as the time to the occurrence of a given
event. This event can be the development of a disease, response to a treatment,
relapse, or death. Therefore, survival time can be tumor-free time, the time from
the start of treatment to response, length of remission, and time to death.
Survival data can include survival time, response to a given treatment, and
patient characteristics related to response, survival, and the development of a
disease. The study of survival data has focused on predicting the probability of
response, survival, or mean lifetime, comparing the survival distributions of
experimental animals or of human patients and the identification of risk and/or
prognostic factors related to response, survival, and the development of a
disease. In this book, special consideration is given to the study of survival data
in biomedical sciences, although all the methods are suitable for applications
in industrial reliability, social sciences, and business. Examples of survival data
in these fields are the lifetime of electronic devices, components, or systems
(reliability engineering); felons’ time to parole (criminology); duration of first
marriage (sociology); length of newspaper or magazine subscription (market-
ing); and worker’s compensation claims (insurance) and their various influenc-
ing risk or prognostic factors.

1.2 CENSORED DATA

Many researchers consider survival data analysis to be merely the application
of two conventional statistical methods to a special type of problem: parametric
if the distribution of survival times is known to be normal and nonparametric
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if the distribution is unknown. This assumption would be true if the survival
times of all the subjects were exact and known; however, some survival times
are not. Further, the survival distribution is often skewed, or far from being
normal. Thus there is a need for new statistical techniques. One of the most
important developments is due to a special feature of survival data in the life
sciences that occurs when some subjects in the study have not experienced the
event of interest at the end of the study or time of analysis. For example, some
patients may still be alive or disease-free at the end of the study period. The
exact survival times of these subjects are unknown. These are called censored
observations or censored times and can also occur when people are lost to
follow-up after a period of study. When these are not censored observations,
the set of survival times is complete. There are three types of censoring.

Type I Censoring
Animal studies usually start with a fixed number of animals, to which the
treatment or treatments is given. Because of time and/or cost limitations, the
researcher often cannot wait for the death of all the animals. One option is to
observe for a fixed period of time, say six months, after which the surviving
animals are sacrificed. Survival times recorded for the animals that died during
the study period are the times from the start of the experiment to their death.
These are called exact or uncensored observations. The survival times of the
sacrificed animals are not known exactly but are recorded as at least the length
of the study period. These are called censored observations. Some animals could
be lost or die accidentally. Their survival times, from the start of experiment
to loss or death, are also censored observations. In type I censoring, if there are
no accidental losses, all censored observations equal the length of the study
period.

For example, suppose that six rats have been exposed to carcinogens by
injecting tumor cells into their foot pads. The times to develop a tumor of a
given size are observed. The investigator decides to terminate the experiment
after 30 weeks. Figure 1.1 is a plot of the development times of the tumors.
Rats A, B, and D developed tumors after 10, 15, and 25 weeks, respectively.
Rats C and E did not develop tumors by the end of the study; their tumor-free
times are thus 30-plus weeks. Rat F died accidentally without tumors after 19
weeks of observation. The survival data (tumor-free times) are 10, 15, 30�, 25,
30�, and 19� weeks. (The plus indicates a censored observation.)

Type II Censoring
Another option in animal studies is to wait until a fixed portion of the animals
have died, say 80 of 100, after which the surviving animals are sacrificed. In
this case, type II censoring, if there are no accidental losses, the censored
observations equal the largest uncensored observation. For example, in an
experiment of six rats (Figure 1.2), the investigator may decide to terminate the
study after four of the six rats have developed tumors. The survival or
tumor-free times are then 10, 15, 35�, 25, 35, and 19� weeks.
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Figure 1.1 Example of type I censored data.

Figure 1.2 Example of type II censored data.

Type III Censoring
In most clinical and epidemiologic studies the period of study is fixed and
patients enter the study at different times during that period. Some may die
before the end of the study; their exact survival times are known. Others may
withdraw before the end of the study and are lost to follow-up. Still others may
be alive at the end of the study. For ‘‘lost’’ patients, survival times are at least
from their entrance to the last contact. For patients still alive, survival times
are at least from entry to the end of the study. The latter two kinds of
observations are censored observations. Since the entry times are not simulta-
neous, the censored times are also different. This is type III censoring. For
example, suppose that six patients with acute leukemia enter a clinical study
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Figure 1.3 Example of type III censored data.

during a total study period of one year. Suppose also that all six respond to
treatment and achieve remission. The remission times are plotted in Figure 1.3.
Patients A, C, and E achieve remission at the beginning of the second, fourth,
and ninth months, and relapse after four, six, and three months, respectively.
Patient B achieves remission at the beginning of the third month but is lost to
follow-up four months later; the remission duration is thus at least four
months. Patients D and F achieve remission at the beginning of the fifth and
tenth months, respectively, and are still in remission at the end of the study;
their remission times are thus at least eight and three months. The respective
remission times of the six patients are 4, 4�, 6, 8�, 3, and 3� months.

Type I and type II censored observations are also called singly censored
data, and type III, progressively censored data, by Cohen (1965). Another
commonly used name for type III censoring is random censoring. All of these
types of censoring are right censoring or censoring to the right. There are also
left censoring and interval censoring cases. L eft censoring occurs when it is
known that the event of interest occurred prior to a certain time t, but the exact
time of occurrence is unknown. For example, an epidemiologist wishes to know
the age at diagnosis in a follow-up study of diabetic retinopathy. At the time of
the examination, a 50-year-old participant was found to have already develop-
ed retinopathy, but there is no record of the exact time at which initial evidence
was found. Thus the age at examination (i.e., 50) is a left-censored observation.
It means that the age of diagnosis for this patient is at most 50 years.

Interval censoring occurs when the event of interest is known to have
occurred between times a and b. For example, if medical records indicate that
at age 45, the patient in the example above did not have retinopathy, his age
at diagnosis is between 45 and 50 years.

We will study descriptive and analytic methods for complete, singly cen-
sored, and progressively censored survival data using numerical and graphical
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techniques. Analytic methods discussed include parametric and nonparametric.
Parametric approaches are used either when a suitable model or distribution
is fitted to the data or when a distribution can be assumed for the population
from which the sample is drawn. Commonly used survival distributions are the
exponential, Weibull, lognormal, and gamma. If a survival distribution is found
to fit the data properly, the survival pattern can then be described by the
parameters in a compact way. Statistical inference can be based on the
distribution chosen. If the search for an appropriate model or distribution is
too time consuming or not economical or no theoretical distribution adequate-
ly fits the data, nonparametric methods, which are generally easy to apply,
should be considered.

1.3 SCOPE OF THE BOOK

This book is divided into four parts.
Part I (Chapters 1, 2, and 3) defines survival functions and gives examples

of survival data analysis. Survival distribution is most commonly described by
three functions: the survivorship function (also called the cumulative survival
rate or survival function), the probability density function, and the hazard
function (hazard rate or age-specific rate). In Chapter 2 we define these three
functions and their equivalence relationships. Chapter 3 illustrates survival
data analysis with five examples taken from actual research situations. Clinical
and laboratory data are systematically analyzed in progressive steps and the
results are interpreted. Section and chapter numbers are given for quick
reference. The actual calculations are given as examples or left as exercises in
the chapters where the methods are discussed. Four sets of data are provided
in the exercise section for the reader to analyze. These data are referred to in
the various chapters.

In Part II (Chapters 4 and 5) we introduce some of the most widely used
nonparametric methods for estimating and comparing survival distributions.
Chapter 4 deals with the nonparametric methods for estimating the three
survival functions: the Kaplan and Meier product-limit (PL) estimate and the
life-table technique (population life tables and clinical life tables). Also covered
is standardization of rates by direct and indirect methods, including the
standardized mortality ratio. Chapter 5 is devoted to nonparametric tech-
niques for comparing survival distributions. A common practice is to compare
the survival experiences of two or more groups differing in their treatment or
in a given characteristic. Several nonparametric tests are described.

Part III (Chapters 6 to 10) introduces the parametric approach to survival
data analysis. Although nonparametric methods play an important role in
survival studies, parametric techniques cannot be ignored. In Chapter 6 we
introduce and discuss the exponential, Weibull, lognormal, gamma, and
log-logistic survival distributions. Practical applications of these distributions
taken from the literature are included.

    5



An important part of survival data analysis is model or distribution fitting.
Once an appropriate statistical model for survival time has been constructed
and its parameters estimated, its information can help predict survival, develop
optimal treatment regimens, plan future clinical or laboratory studies, and so
on. The graphical technique is a simple informal way to select a statistical
model and estimate its parameters. When a statistical distribution is found to
fit the data well, the parameters can be estimated by analytical methods. In
Chapter 7 we discuss analytical estimation procedures for survival distribu-
tions. Most of the estimation procedures are based on the maximum likelihood
method. Mathematical derivations are omitted; only formulas for the estimates
and examples are given. In Chapter 8 we introduce three kinds of graphical
methods: probability plotting, hazard plotting, and the Cox—Snell residual
method for survival distribution fitting. In Chapter 9 we discuss several tests
of goodness of fit and distribution selection. In Chapter 10 we describe several
parametric methods for comparing survival distributions.

A topic that has received increasing attention is the identification of
prognostic factors related to survival time. For example, who is likely to
survive longest after mastectomy, and what are the most important factors that
influence that survival? Another subject important to both biomedical re-
searchers and epidemiologists is identification of the risk factors related to the
development of a given disease and the response to a given treatment. What
are the factors most closely related to the development of a given disease? Who
is more likely to develop lung cancer, diabetes, or coronary disease? In many
diseases, such as cancer, patients who respond to treatment have a better
prognosis than patients who do not. The question, then, relates to what the
factors are that influence response. Who is more likely to respond to treatment
and thus perhaps survive longer?

Part IV (Chapters 11 to 14) deals with prognostic/risk factors and survival
times. In Chapter 11 we introduce parametric methods for identifying impor-
tant prognostic factors. Chapters 12 and 13 cover, respectively, the Cox
proportional hazards model and several nonproportional hazards models for
the identification of prognostic factors. In the final chapter, Chapter 14, we
introduce the linear logistic regression model for binary outcome variables and
its extension to handle polychotomous outcomes.

In Appendix A we describe a numerical procedure for solving nonlinear
equations, the Newton—Raphson method. This method is suggested in Chap-
ters 7, 11, 12, and 13. Appendix B comprises a number of statistical tables.

Most nonparametric techniques discussed here are easy to understand and
simple to apply. Parametric methods require an understanding of survival
distributions. Unfortunately, most of survival distributions are not simple.
Readers without calculus may find it difficult to apply them on their own.
However, if the main purpose is not model fitting, most parametric techniques
can be substituted for by their nonparametric competitors. In fact, a large
percentage of survival studies in clinical or epidemiological journals are
analyzed by nonparametric methods. Researchers not interested in survival

6 



model fitting should read the chapters and sections on nonparametric methods.
Computer programs for survival data analysis are available in several commer-
cially available software packages: for example, BMDP, SAS, and SPSS. These
computer programs are referred to in various chapters when applicable.
Computer programming codes are given for many of the examples.

Bibliographical Remarks

Cross and Clark (1975) was the first book to discuss parametric models and
nonparametric and graphical techniques for both complete and censored
survival data. Since then, several other books have been published in addition
to the first edition of this book (Lee, 1980, 1992). Elandt-Johnson and Johnson
(1980) discuss extensively the construction of life tables, model fitting, compet-
ing risk, and mathematical models of biological processes of disease pro-
gression and aging. Kalbfleisch and Prentice (1980) focus on regression
problems with survival data, particularly Cox’s proportional hazards model.
Miller (1981) covers a number of parametric and nonparametric methods for
survival analysis. Cox and Oakes (1984) also cover the topic concisely with an
emphasis on the examination of explanatory variables.

Nelson (1982) provides a good discussion of parametric, nonparametric, and
graphical methods. The book is more suited for industrial reliability engineers
than for biomedical researchers, as are Hahn and Shapiro (1967) and Mann et
al. (1974). In addition, Lawless (1982) gives a broad coverage of the area with
applications in engineering and biomedical sciences.

More recent publications include Marubini and Valsecchi (1994), Klein-
baum (1995), Klein and Moeschberger (1997), and Hosmer and Lemeshow
(1999). Most of these books take a more rigorous mathematical approach and
require knowledge of mathematical statistics.

    7



C H A P T E R 2

Functions of Survival Time

Survival time data measure the time to a certain event, such as failure, death,
response, relapse, the development of a given disease, parole, or divorce. These
times are subject to random variations, and like any random variables, form a
distribution. The distribution of survival times is usually described or charac-
terized by three functions: (1) the survivorship function, (2) the probability
density function, and (3) the hazard function. These three functions are
mathematically equivalent — if one of them is given, the other two can be
derived.

In practice, the three functions can be used to illustrate different aspects of
the data. A basic problem in survival data analysis is to estimate from the
sampled data one or more of these three functions and to draw inferences
about the survival pattern in the population. In Section 2.1 we define the three
functions and in Section 2.2, discuss the equivalence relationship among the
three functions.

2.1 DEFINITIONS

Let T denote the survival time. The distribution of T can be characterized by
three equivalent functions.

Survivorship Function (or Survival Function)
This function, denoted by S(t), is defined as the probability that an individual
survives longer than t:

S(t) �P (an individual survives longer than t)

�P(T � t ) (2.1.1)

From the definition of the cumulative distribution function F(t) of T,

S(t) � 1-P (an individual fails before t)

� 1 � F(t) (2.1.2)

8



Figure 2.1 Two examples of survival curves.

Here S(t) is a nonincreasing function of time t with the properties

S(t) ��
1 for t� 0

0 for t� �

That is, the probability of surviving at least at the time zero is 1 and that of
surviving an infinite time is zero.

The function S(t) is also known as the cumulative survival rate. To depict the
course of survival, Berkson (1942) recommended a graphic presentation of S(t).
The graph of S(t) is called the survival curve. A steep survival curve, such as
the one shown in Figure 2.1a, represents low survival rate or short survival
time. A gradual or flat survival curve such as in Figure 2.1b represents high
survival rate or longer survival.

The survivorship function or the survival curve is used to find the 50th
percentile (the median) and other percentiles (e.g., 25th and 75th) of survival
time and to compare survival distributions of two or more groups. The median
survival times in Figure 2.1a and b are approximately 5 and 36 units of time,
respectively. The mean is generally used to describe the central tendency of a
distribution, but in survival distributions the median is often better because a
small number of individuals with exceptionally long or short lifetimes will
cause the mean survival time to be disproportionately large or small.

In practice, if there are no censored observations, the survivorship function
is estimated as the proportion of patients surviving longer than t :

S� (t) �
number of patients surviving longer than t

total number of patients
(2.1.3)

where the circumflex denotes an estimate of the function. When censored
observations are present, the numerator of (2.1.3) cannot always be determined.
For example, consider the following set of survival data: 4, 6, 6�, 10�, 15, 20.

 9



Figure 2.2 Two examples of density curves.

Using (2.1.3), we can compute S� (5) � 5/6 � 0.833. However, we cannot obtain
S� (11) since the exact number of patients surviving longer than 11 is unknown.
Either the third or the fourth patient (6� and 10�) could survive longer than
or less than 11. Thus, when censored observations are present, (2.1.3) is no
longer appropriate for estimating S(t). Nonparametric methods of estimating
S(t) for censored data are discussed in Chapter 4.

Probability Density Function (or Density Function)
Like any other continuous random variable, the survival time T has a
probability density function defined as the limit of the probability that an
individual fails in the short interval t to t� �t per unit width �t, or simply the
probability of failure in a small interval per unit time. It can be expressed as

f (t) �
lim����

P[an individual dying in the interval (t, t��t)]
�t

(2.1.4)

The graph of f (t) is called the density curve. Figure 2.2a and b give two
examples of the density curve. The density function has the following two
properties:

1. f (t) is a nonnegative function:

f (t) � 0 for all t� 0

� 0 for t� 0

2. The area between the density curve and the t axis is equal to 1.

In practice, if there are no censored observations, the probability density
function f (t) is estimated as the proportion of patients dying in an interval per
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unit width:

f� (t) �
number of patients dying in the interval beginning at time t

(total number of patients)�(interval width)
(2.1.5)

Similar to the estimation of S(t), when censored observations are present,
(2.1.5) is not applicable. We discuss an appropriate method in Chapter 4.

The proportion of individuals that fail in any time interval and the peaks of
high frequency of failure can be found from the density function. The density
curve in Figure 2.2a gives a pattern of high failure rate at the beginning of the
study and decreasing failure rate as time increases. In Figure 2.2b, the peak of
high failure frequency occurs at approximately 1.7 units of time. The propor-
tion of individuals that fail between 1 and 2 units of time is equal to the shaded
area between the density curve and the axis. The density function is also known
as the unconditional failure rate.

Hazard Function
The hazard function h(t) of survival time T gives the conditional failure rate.
This is defined as the probability of failure during a very small time interval,
assuming that the individual has survived to the beginning of the interval, or
as the limit of the probability that an individual fails in a very short interval,
t��t, given that the individual has survived to time t:

h(t) �

lim����
P �

an individual fails in the time interval (t, t��t)
given the individual has survived to t �

�t
(2.1.6)

The hazard function can also be defined in terms of the cumulative
distribution function F(t) and the probability density function f (t):

h(t) �
f (t)

1 �F(t)
(2.1.7)

The hazard function is also known as the instantaneous failure rate, force of
mortality, conditional mortality rate, and age-specific failure rate. If t in (2.1.6)
is age, it is a measure of the proneness to failure as a function of the age of the
individual in the sense that the quantity �th(t) is the expected proportion of
age t individuals who will fail in the short time interval t��t. The hazard
function thus gives the risk of failure per unit time during the aging process. It
plays an important role in survival data analysis.

In practice, when there are no censored observations the hazard function is
estimated as the proportion of patients dying in an interval per unit time, given
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Figure 2.3 Examples of the hazard function.

that they have survived to the beginning of the interval:

h� (t) �
number of patients dying in the interval beginning at time t

(number of patients surviving at t)�(interval width)

�
number of patients dying per unit time in the interval

number of patients surviving at t
(2.1.8)

Actuaries usually use the average hazard rate of the interval in which the
number of patients dying per unit time in the interval is divided by the average
number of survivors at the midpoint of the interval:

h� (t) �

number of patients dying per unit time in the interval

(number of patients surviving at t) � (number of deaths in the interval)/2

(2.1.9)

The actuarial estimate in (2.1.9) gives a higher hazard rate than (2.1.8) and thus
a more conservative estimate.

The hazard function may increase, decrease, remain constant, or indicate a
more complicated process. Figure 2.3 is a plot of several kinds of hazard
function. For example, patients with acute leukemia who do not respond to
treatment have an increasing hazard rate, h

�
(t), h

�
(t) is a decreasing hazard

function that, for example, indicates the risk of soldiers wounded by bullets
who undergo surgery. The main danger is the operation itself and this danger
decreases if the surgery is successful. An example of a constant hazard function,
h
�
(t), is the risk of healthy persons between 18 and 40 years of age whose main

risks of death are accidents. The bathtub curve, h
�
(t), describes the process of
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Table 2.1 Survival Data and Estimated Survival Functions of 40 Myeloma Patients

Number of Patients
Surviving at Number of Patients

Survival Time Beginning of Dying in
t (months) Interval Interval S� (t) f� (t) h� (t)

0—5 40 5 1.000 0.025 0.027
5—10 35 7 0.875 0.035 0.044

10—15 28 6 0.700 0.030 0.048
15—20 22 4 0.550 0.020 0.040
20—25 18 5 0.450 0.025 0.065
25—30 13 4 0.325 0.020 0.072
30—35 9 4 0.225 0.020 0.114
35—40 5 0 0.125 0.000 0.000
40—45 5 2 0.125 0.010 0.100
45—50 3 1 0.075 0.005 0.080
�50 2 2 0.050 — —

human life. During an initial period, the risk is high (high infant mortality).
Subsequently, h(t) stays approximately constant until a certain time, after
which it increases because of wear-out failures. Finally, patients with tubercu-
losis have risks that increase initially, then decrease after treatment. Such an
increasing, then decreasing hazard function is described by h

	
(t).

The cumulative hazard function is defined as

H(t) ��
�

�

h(x) dx (2.1.10)

It will be shown in Section 2.2 that

H(t) ��logS(t) (2.1.11)

Thus, at t� 0, S(t) � 1, H(t) � 0, and at t��, S(t) � 0, H(t) ��. The
cumulative hazard function can be any value between zero and infinity. All log
functions in this book are natural logs (base e) unless otherwise indicated.

The following example illustrates how these functions can be estimated from
a complete sample of grouped survival times without censored observations.

Example 2.1 The first three columns of Table 2.1 give the survival data of
40 patients with myeloma. The survival times are grouped into intervals of five
months. The estimated survivorship function, density function, and hazard
function are also given, with the corresponding graphs plotted in Figure
2.4a—c.
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Figure 2.4 Estimated survival functions of myeloma patients.
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Figure 2.4 (Continued).

The estimated survivorship function, S� (t), is calculated following (2.1.3) at the
beginning or the end of each interval. For example, at the beginning of the first
interval, all 40 patients are alive, S� (0) � 1, and at the beginning of the second
interval, 35 of the 40 patients are still alive, S� (5) � 35/40 � 0.875. Similarly,
S� (10) � 28/40 � 0.700. The estimated density function f� (t) is computed follow-
ing (2.1.5). For example, the density function of the first interval (0—5) is
5/(40�5) � 0.025, and that of the second interval (5—10) is 7/(40�5) � 0.035.
The estimated density function is plotted at the midpoint of each interval
(Figure 2.4b). The estimated hazard function, h� (t), is computed following the
actuarial method given in (2.1.9). For example, the hazard function of the first
interval 5/[5(40 � 5/2)] � 0.027 and that of the second interval is 7/[5(35 � 7/
2)] � 0.044. The estimated hazard function is also plotted at the midpoint of
each interval (Figure 2.4c).

From Table 2.1 or Figure 2.4a, the median survival time of myeloma
patients is approximately 17.5 months, and the peak of high frequency of death
occurs in 5 to 10 months. In addition, the hazard function shows an increasing
trend and reaches its peak at approximately 32.5 months and then fluctuates.

2.2 RELATIONSHIPS OF THE SURVIVAL FUNCTIONS

The three functions defined in Section 2.1 are mathematically equivalent. Given
any one of them, the other two can be derived. Readers not interested in the
mathematical relationship among the three survival functions can skip this
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section without loss of continuity.

1. From (2.1.2) and (2.1.7),

h(t) �
f (t)

S(t)
(2.2.1)

This relationship can also be derived from (2.1.6) using basic definitions of
conditional probabilities.

2. Since the probability density function is the derivative of the cumulative
distribution function,

f (t) �
d

dt
[1 �S(t)] ��S�(t) (2.2.2)

3. Substituting (2.2.2) into (2.2.1) yields

h(t) ��
S�(t)
S(t)

��
d

dt
logS(t) (2.2.3)

4. Integrating (2.2.3) from zero to t and using S(0) � 1, we have

��
�

�

h(x) dx� logS(t)

or

H(t) ��logS(t)
or

S(t) � exp[�H(t)] � exp�� �
�

�

h(x) dx� (2.2.4)

5. From (2.2.1) and (2.2.4) we obtain

f (t) � h(t) exp[�H(t)] (2.2.5)

Hence, if f (t) is known, the survivorship function can be obtained from the
basic relationship between f (t), F(t), and (2.1.2). The hazard function can then
be determined from (2.2.1). If S(t) is known, f (t) and h(t) can be determined
from (2.2.2) and (2.2.1), respectively, or h(t) can be derived first from (2.2.3) and
then f (t) from (2.2.1). If h(t) is given, S(t) and f (t) can be obtained, respectively,
from (2.2.4) and (2.2.5). Thus, given any one of the three survival functions, the
other two can easily be derived. The following example illustrates these
equivalence relationships.

16    



Example 2.2 Suppose that the survival time of a population has the
following density function:

f (t) � e
� t� 0

Using the definition of the cumulative distribution function,

F(t) ��
�

�

f (x) dx��
�

�

e
� dx��e
� �
�

�

� 1 � e
�

From (2.1.2) we obtain the survivorship function

S(t) � e
�

The hazard function can then be obtained from (2.2.1):

h(t) �
e
�

e
�
� 1

A complete treatment of this distribution is given in Section 6.1.

Bibliographical Remarks

The three survival functions and their equivalents are discussed in every text
cited in the Bibliographical Remarks in Chapter 1.

EXERCISES

2.1 Consider the survival data given in Exercise Table 2.1. Compute and plot
the estimated survivorship function, the probability density function, and
the hazard function.

Exercise Table 2.1

Year of Number Alive at Number Dying in
Follow-up Beginning of Interval Interval

0—1 1100 240
1—2 860 180
2—3 680 184
3—4 496 138
4—5 358 118
5—6 240 60
6—7 180 52
7—8 128 44
8—9 84 32
�9 52 28
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2.2 Exercise Table 2.2 is a life table for the total population (of 100,000 live
births) in the United States, 1959—1961. Compute and plot the estimated
survivorship function, the probability density function, and the hazard
function.

Exercise Table 2.2

Age Number Living at Number Dying in
Interval Beginning of Age Interval Age Interval

0—1 100,000 2,593
1—5 97,407 409
5—10 96,998 233

10—15 96,765 214
15—20 96,551 440
20—25 96,111 594
25—30 95,517 612
30—35 94,905 761
35—40 94,144 1,080
40—45 93,064 1.686
45—50 91,378 2,622
50—55 88,756 4,045
55—60 84,711 5,644
60—65 79,067 7,920
65—70 71,147 10,290
70—75 60,857 12,687
75—80 48,170 14,594
80—85 33,576 15,034
85 and over 18,542 18,542

Source: U.S. National Center for Health Statistics, Life Tables 1959—1961,
Vol. 1, No. 1, ‘‘United States Life Tables 1959—61,’’ December 1964, pp. 8—9.

2.3 Derive (2.2.1) using (2.1.6) and basic definitions of conditional probabil-
ity.

2.4 Given the hazard function

h(t) � c

derive the survivorship function and the probability density function.

2.5 Given the survivorship function

S(t) � exp(�t�)

derive the probability density function and the hazard function.
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CHAPTER 3

Examples of Survival Data Analysis

The investigator who has assembled a large amount of data must decide what
to do with it and what it indicates. In this chapter we take several sets of
survival data from actual research situations and analyze them. In Example 3.1
we analyze two sets of data obtained, respectively, from two and three
treatment groups to compare the treatment’s abilities to prolong life. Example
3.2 is an example of the life-table technique for large samples. Example 3.3 gives
remission data from two treatments; the investigator seeks a well-known
distribution for the remission patterns to compare the two groups. In Example
3.4 we study survival data and several other patient characteristics to identify
important prognostic factors; the patient characteristics are analyzed individ-
ually and simultaneously for their prognostic values. In Example 3.5 we
introduce a case in which the interest is to identify risk factors in the
development of a given disease. Four sets of real data are presented in the
exercises so that the reader can plan analysis.

3.1 EXAMPLE 3.1: COMPARISON OF TWO TREATMENTS
AND THREE DIETS

3.1.1 Comparison of Two Treatments

Thirty melanoma patients (stages 2 to 4) were studied to compare the
immunotherapies BCG (Bacillus Calmette-Guerin) and Corynebacterium par-
vum for their abilities to prolong remission duration and survival time. The age,
gender, disease stage, treatment received, remission duration, and survival time
are given in Table 3.1. All the patients were resected before treatment began
and thus had no evidence of melanoma at the time of first treatment.

The usual objective with this type of data is to determine the length of
remission and survival and to compare the distributions of remission and
survival time in each group. Before comparing the remission and survival
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Table 3.1 Data for 30 Resected Melanoma Patients

Initial Treatment Remission Survival
Patient Age Gender� Stage Received� Duration� Time�

1 59 2 3B 1 33.7� 33.7�
2 50 2 3B 1 3.8 3.9
3 76 1 3B 1 6.3 10.5
4 66 2 3B 1 2.3 5.4
5 33 1 3B 1 6.4 19.5
6 23 2 3B 1 23.8� 23.8�
7 40 2 3B 1 1.8 7.9
8 34 1 3B 1 5.5 16.9�
9 34 1 3B 1 16.6� 16.6�

10 38 2 2 1 33.7� 33.7�
11 54 2 2 1 17.1� 17.1�
12 49 1 3B 2 4.3 8.0
13 35 1 3B 2 26.9� 26.9�
14 22 1 3B 2 21.4� 21.4�
f15 30 1 3B 2 18.1� 18.1�
16 26 2 3B 2 5.8 16.0�
17 27 1 3B 2 3.0 6.9
18 45 2 3B 2 11.0� 11.0�
19 76 2 3A 2 22.1 24.8�
20 48 1 3A 2 23.0� 23.0�
21 91 1 4A 2 6.8 8.3
22 82 2 4A 2 10.8� 10.8�
23 50 2 4A 2 2.8 12.2�
24 40 1 4A 2 9.2 12.5�
25 34 1 3A 2 15.9 24.4
26 38 1 4A 2 4.5 7.7
27 50 1 2 2 9.2 14.8�
28 53 2 2 2 8.2� 8.2�
29 48 2 2 2 8.2� 8.2�
30 40 2 2 2 7.8� 7.8�

Source: Data courtesy of Richard Ishmael.

� 1, male; 2, female.
� 1, BCG; 2, C. parvum.
�Remission and survival times are in months.

distributions, we attempt to determine if the two treatment groups are
comparable with respect to prognostic factors. Let us use the survival time to
illustrate the steps. (The remission time could be analyzed similarly.)

1. Estimate and plot the survival function of the two treatment groups. The
resulting curves are called survival curves. Points on the curve estimate the
proportion of patients who will survive at least a given period of time. For such
small samples with progressively censored observations, the Kaplan—Meier
product-limit (PL) method is appropriate for estimating the survival function.
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Table 3.2 Kaplan--Meier Product-Limit Estimate of Survival
Function S(t)

BCG Patients

Death time (t) 3.9 5.4 7.9 10.5 19.5
S� (t) 0.909 0.818 0.727 0.636 0.477

C. parvum Patients

Death time (t) 6.9 7.7 8.0
S� (t) 0.947 0.895 0.839

It does not require any assumptions about the form of the function that is
being estimated. We discuss this method in detail in Section 4.1. Computer
programs for the method can be found in BMDP (Dixon et al. 1990), SPSS
Version 10.1 (2000), and SAS Version 8.1 (2000). Examples for computer codes
will be given in Section 4.1.

Table 3.2 gives the PL estimate of the survival function S� (t) for the two
treatment groups. Note that S� (t) is estimated only at death times; however, the
censored observations were used to estimate S(t). The median survival time can
be estimated by linear interpolation. For BCG patients the median survival
time was about 18.2 months. The median survival time for the C. parvum group
cannot be calculated since 15 of the 19 patients were still alive. Most computer
programs give not only S� (t) but also the standard error of S� (t), and the 75-,
50-, and 25-percentile points.

Figure 3.1 plots the estimated survival function S� (t) for patients receiving
the two treatments: The median survival time (50-percentile point) for the BCG
group can also be determined graphically. The survival curves clearly show
that C. parvum patients had slightly better survival experience than BCG
patients. For example, 50% of the BCG patients survived at least 18.2 months,
whereas about 61% of the C. parvum patients survived that long.

2. Examine the prognostic homogeneity of the two groups. The next question
to ask is whether the difference in survival between the two treatment groups
is statistically significant. Is the difference shown by the data significant or
simply random variation in the sample? A statistical test of significance is
needed. However, a statistical test without considering patient characteristics
makes sense only if the two groups of patients are homogeneous with respect
to prognostic factors. It has been assumed thus far that the patients in the two
groups are comparable and that the only difference between them is treatment.
Thus, before performing a statistical test it is necessary to examine the
homogeneity between the two groups.

Although prognostic factors for melanoma patients are not well established,
it has been reported that women and the young have a better survival
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Figure 3.1 Survival curves of patients receiving BCG and C. parvum.

experience than men and the elderly. Also, the disease stage plays an important
role in survival. Let us check the homogeneity of the two treatment groups
with respect to age, gender, and disease stage.

The age distributions are estimated and plotted in Figure 3.2. The median
age is 39 for the BCG group and 43 for the C. parvum patients. To test the
significance of the difference between the two age distributions, the two-sample
t-test (Armitage, 1971; Daniel, 1987) or nonparametric tests such as the
Mann—Whitney U-test or the Kolmogorov—Smirnov test (Marascuilo and
McSweeney, 1977) are appropriate. However, the generalized Wilcoxon tests
given in Section 5.1 can also be used, since they reduce to the Mann—Whitney
U-test. Using Geham’s generalized Wilcoxon test, the difference between the
two age distributions is not found to be statistically significant. More about the
test will be given in Section 5.1.

The number of male and female patients in the two treatment groups is
given in Table 3.3. Sixty-four percent of the BCG patients and 42% of the C.
parvum patients are women. A chi-square test can be used to compare the two
proportions (see Section 14.1). It can be used only for r�c tables in which the
entries are frequencies, not for tables in which the entries are mean values or
medians of a certain variable. For a 2�2 table, the chi-square value can be
computed by hand. Computer programs for the test can be found in many
computer program packages, such as BMDP (Dixon et al., 1990), SPSS
Version 10.1 (2000), and SAS Version 8.1 (SAS Institute, 2000).

The chi-square value for treatment by gender in Table 3.3 is 1.29 with 1
degree of freedom, which is not significant at the 0.05 or 0.10 level. Therefore,
the difference between the two proportions is not statistically significant. The
number of stage 2 patients and the number of patients with more advanced
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Figure 3.2 Age distribution of two treatment groups.

Table 3.3 Treatment by Gender and Disease Stage

BCG C. parvum BCG C. Parvum
Disease

Gender Number % Number % Total Stage Number % Number % Total

Male 4 36 11 58 15 2 2 18 4 21 6
Female 7 64 8 42 15 3 and 4 9 82 15 79 24

— — — — — —
11 19 30 11 19 30

disease in the two treatment groups are also given in Table 3.3. Eighteen
percent of the BCG patients are at stage 2 against 21% of the C. parvum
patients. However, a chi-square test result shows that the difference is not
significant.

Thus we can say that the data do not show heterogeneity between the two
treatment groups. If heterogeneity is found, the groups can be divided into
subgroups of members who are similar in their prognoses.
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3. Compare the two survival distributions. There are several parametric and
nonparametric tests to compare two survival distributions. They are described
in Chapters 5 and 10. Since we have no information of the survival distribution
that the data follow, we would continue to use nonparametric methods to
compare the two survival distributions. The four tests described in Sections
5.1.1 to 5.1.4 are suitable. The performance of these tests is discussed at the end
of Section 5.1. We chose Gehan’s generalized Wilcoxon test here to demon-
strate the analysis procedure only because of its simplicity of calculation.

In testing the significance of the difference between two survival distribu-
tions, the hypothesis is that the survival distribution of the BCG patients is the
same as that of the C. parvum patients. Let S

�
(t) and S

�
(t) be the survival

function of the BCG and C. parvum groups, respectively. The null hypothesis is

H
�
: S

�
(t) � S

�
(t)

The alternative hypothesis chosen is two-sided:

H
�
: S

�
(t) � S

�
(t)

since we have no prior information concerning the superiority of either of the
two treatments. The slight difference between the two estimated survival curves
could be due to random variation. The one-sided alternative H

�
:S

�
(t) �S

�
(t)

should be considered inappropriate.
Using Gehan’s generalized Wilcoxon test, the difference in survival distribu-

tion of the two treatment groups is found to be insignificant (p� 0.33).
Therefore, we do not reject the null hypothesis that the two survival distribu-
tions are equal. Although our conclusion is that the data do not provide
enough evidence to reject the hypothesis, ‘‘not to reject the null hypothesis’’
does not automatically mean ‘‘to accept the null hypothesis.’’ The difference
between the two statements is that the error probability of the latter statement
is usually much larger than that of the former.

3.1.2 Comparison of Three Diets

A laboratory investigator interested in the relationship between diet and the
development of tumors divided 90 rats into three groups and fed them low-fat,
saturated fat, and unsaturated fat diets, respectively (King et al., 1979). The rats
were of the same age and species and were in similar physical condition. An
identical amount of tumor cells were injected into a foot pad of each rat. The
rats were observed for 200 days. Many developed a recognizable tumor early
in the study period. Some were tumor-free at the end of the 200 days. Rat 16
in the low-fat group and rat 24 in the saturated group died accidentally after
140 days and 170 days, respectively, with no evidence of tumor. Table 3.4 gives
the tumor-free time, the time from injection to the time that a tumor develops
or to the end of the study. Fifteen of the 30 rats on the low-fat diet developed
a tumor before the experiment was terminated. The rat that died had a
tumor-free time of at least 140 days. The other 14 rats did not develop any
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Table 3.4 Tumor-Free Time (Days) of 90 Rats on Three Different Diets

Rat Low-Fat Rat Saturated Fat Rat Unsaturated Fat

1 140 1 124 1 112
2 177 2 58 2 68
3 50 3 56 3 84
4 65 4 68 4 109
5 86 5 79 5 153
6 153 6 89 6 143
7 181 7 107 7 60
8 191 8 86 8 70
9 77 9 142 9 98

10 84 10 110 10 164
11 87 11 96 11 63
12 56 12 142 12 63
13 66 13 86 13 77
14 73 14 75 14 91
15 119 15 117 15 91
16 140� 16 98 16 66
17 200� 17 105 17 70
18 200� 18 126 18 77
19 200� 19 43 19 63
20 200� 20 46 20 66
21 200� 21 81 21 66
22 200� 22 133 22 94
23 200� 23 165 23 101
24 200� 24 170� 24 105
25 200� 25 200� 25 108
26 200� 26 200� 26 112
27 200� 27 200� 27 115
28 200� 28 200� 28 126
29 200� 29 200� 29 161
30 200� 30 200� 30 178

Source: King et al. (1979). Data are used by permission of the author.

tumor by the end of the experiment; their tumor-free times were at least 200
days. Among the 30 rats in the saturated fat diet group, 23 developed a tumor,
one died tumor-free after 170 days, and six were tumor-free at the end of the
experiment. All 30 rats in the unsaturated fat diet group developed tumors
within 200 days. The two early deaths can be considered losses to follow-up.
The data are singly censored if the two early deaths are excluded.

The investigator’s main interest here is to compare the three diets’ abilities
to keep the rats tumor-free. To obtain information about the distribution of
the tumor-free time, we can first estimate the survival (tumor-free) function of
the three diet groups. The three survival functions were estimated using the
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Figure 3.3 Survival curves of rats in three diet groups.

Kaplan—Meier PL method and plotted in Figure 3.3. The median tumor-free
times for the low-fat, saturated fat, and unsaturated fat groups were 188, 107,
and 91 days, respectively. Since the three groups are homogeneous, we can skip
the step that checks for homogeneity and compare the three distributions of
tumor-free time.

The K-sample test described in Section 5.3.3 can be used to test the
significance of the differences among the three diet groups. Using this test, the
investigator finds that the differences among the three groups are highly
significant (p� 0.002). Note that the K-sample test can tell the investigator
only that the differences among the groups are statistically significant. It cannot
tell which two groups contribute the most to the differences—whether the
low-fat diet produces a significantly different tumor-free time than the
saturated fat diet or whether the saturated fat diet is significantly different from
the unsaturated fat diet. All one can conclude is that the data show a significant
difference among the tumor-free times produced by the three diets.

3.2 EXAMPLE 3.2: COMPARISON OF TWO SURVIVAL PATTERNS
USING LIFE TABLES

When the sample of patients is so large that their groupings are meaning-
ful, the life-table technique can be used to estimate the survival distribution.
A method developed by Mantel and Haenszel (1959) and applied to life

26 EXAMPLES OF SURVIVAL DATA ANALYSIS



Table 3.5 Life Table for Male Patients with Localized Cancer of Rectum Diagnosed in
Connecticut, 1935--1944 and 1945--1954�

1935—1944 1945—1954
Interval
(t
�
) n�

�
d
�

w
�
�l

�
n
�

S� (t
�
) n�

�
d
�

w
�
�l

�
n
�

S� (t
�
)

1 388 167 2 387.0 0.5685 749 185 10 744.0 0.7513
2 219 45 1 218.5 0.4514 554 88 10 549.0 0.6309
3 173 45 1 172.5 0.3336 456 55 10 451.0 0.5539
4 127 19 0 127.0 0.2837 391 43 10 386.0 0.4922
5 108 17 0 108.0 0.2390 338 32 14 331.0 0.4446
6 91 11 1 90.5 0.2100 292 31 52 266.0 0.3928
7 79 8 0 79.0 0.1887 209 20 38 190.0 0.3514
8 71 5 0 71.0 0.1754 151 7 24 139.0 0.3337
9 66 6 1 65.5 0.1593 120 6 25 107.5 0.3151

10 59 7 0 59.0 0.1404 89 6 24 77.0 0.2905

Source: Myers (1969).

�Symbols: n�
�
, number of patients alive at beginning of interval t

�
; d

�
, number of patients dying

during interval t
�
; w

�
�l

�
, number of patients withdrawn alive or lost to follow-up during interval

t
�
; n

�
� n�

�
��

�
(w

�
�l

�
); S� (t

�
), cumulative proportion surviving from beginning of study to end of

interval t
�
.

tables by Mantel (1966) can be used to compare two survival patterns in the
life-table analysis.

Consider the data of male patients with localized cancer of the rectum
diagnosed in Connecticut from 1935 to 1954 (Myers, 1969). A total of 388
patients were diagnosed between 1935 and 1944, and 749 patients were
diagnosed between 1945 and 1954. For such large sample sizes the data can be
grouped and tabulated as shown in Table 3.5. The 10 intervals indicate the
number of years after diagnosis. For the tabulated life tables the survival
function S(t

�
) can be estimated for each interval t

�
. In Section 4.2 we discuss

the estimation procedures of S(t
�
) and density and hazard functions. The

survival, density, and hazard functions are the three most important functions
that characterize a survival distribution.

The S� (t
�
) column in Table 3.5 gives the estimated survival function for the

two time periods; these are plotted in Figure 3.4. Patients diagnosed in the
1945—1954 period had considerably longer survival times (median 3.87 years)
than did patients diagnosed in the 1935—1944 period (median 1.58 years). The
five-year survival rate is frequently used by cancer researchers and can easily
be determined from a life table. Patients diagnosed in 1935—1944 had a
five-year survival rate of 0.2390, or 23.9%. The patients diagnosed in 1945—
1954 had a rate of 0.4446, or 44.5%. In comparing two sets of survival data,
one can compare the proportions of patients surviving some stated period,
such as five years, or the five-year survival rates. However, one cannot
anticipate that two survival patterns will always stand in a superior— inferior
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Figure 3.4 Survival curves for male patients with localized cancer of the rectum,
diagnosed in Connecticut, 1935—1944 versus 1945—1954.

relationship. It is more desirable to make a whole-pattern comparison (see
Sections 4.3 and 5.2).

The Mantel—Haenszel method described in Section 5.2 is a whole-pattern
comparison and can be used to compare two survival patterns in life tables.
Application of this method to the data in Table 3.5 results in a chi-square value
of 51.996 with 1 degree of freedom. We can conclude that the difference
between the two survival patterns is highly significant (p� 0.001).

Estimates of the survival function or survival rate depend on the life-table
interval used. If each interval is very short, resulting in a large number of
intervals, the computation becomes very tedious and the life-table advantage
is not fully taken. One assumption underlying the life table is that the
population has the same survival probability in each interval. If the interval
length is long, this assumption may be violated and the estimates inaccurate;
this should be avoided except for rough calculations. Although the length of
each interval and the total number of intervals are important, they will not
cause trouble in most clinical studies since the study periods normally cover a
short period of time, such as one, two, or three years. Life tables with about
10 to 20 intervals of several months to one year each are reasonable. The
investigator should also consider the disease under study. If the variation in
survival is large in a short period of time, the interval length should be short.
However, in some demographic or other studies it is often of interest to cover
a life span from birth to age 85 or more. The number of intervals would be

28 EXAMPLES OF SURVIVAL DATA ANALYSIS



very large if short intervals were used. In this case five-year intervals are
sufficient to take into account the important variations in survival rate
estimates (Shryock et al., 1971).

3.3 EXAMPLE 3.3: FITTING SURVIVAL DISTRIBUTIONS TO
REMISSION DATA

The remission times of 42 patients with acute leukemia were reported by
Freireich et al. (1963) in a clinical trial undertaken to assess the ability of
6-mercaptopurine (6-MP) to maintain remission.� Each patient was ran-
domized to receive 6-MP or a placebo. The study was terminated after one
year. The following remission times, in weeks, were recorded:

6-MP (21 patients): 6, 6, 6, 7, 10, 13, 16, 22, 23, 6�, 9�, 10�, 11�, 17�,
19�, 20�, 25�, 32�, 32�, 34�, 35�

Placebo (21 patients): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17,
22, 23

Suppose that we are interested in a distribution to describe the remission times
of these patients but that no information is available as to which distribution
will fit. We need to find a distribution that fits the data well. If we can find one,
the remission experience can then be described by the properties of the
distribution, and the remission time of new patients can be predicted. Paramet-
ric tests can be used to compare the effectiveness of the two treatments, but
since there are a large number of well-known functions and distributions to
choose from, the search becomes an art as much as a scientific task.

The simplest and most efficient tool is the graph. Probability plotting can
be done for complete data; for data that include censored observations, hazard
plotting and the Cox—Snell method are more appropriate. It is not difficult to
use the computer to generate these plots. Detailed discussions of probability
plotting and hazard plotting are presented in Chapter 8. In both probability
and hazard plotting, a linear configuration indicates that the distribution fits
well and its parameters can be estimated from the graph.

Let us begin by trying to fit a distribution to the remission duration of 6-MP
patients. Since the data consist of both censored and uncensored observations,
we use the technique of hazard plotting. In this example we limit ourselves to
three distributions: the exponential, Weibull, and lognormal. In practice, more
distributions may need to be considered. Figures 3.5, 3.6, and 3.7 give the
hazard plots for the exponential, Weibull, and lognormal distributions, respec-
tively. A straight line is fitted to the points by eye in each of the plots. Among
these graphs, the Weibull distribution appears to provide the best fit to the
remission data. The straight line fits the points fairly closely. The estimates of

�Data are used by permission of the publisher.
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Figure 3.5 Exponential hazard plot of the remission times of 21 leukemia patients who
received 6-MP.

Figure 3.6 Weibull hazard plot of the remission times of 21 leukemia patients who
received 6-MP.
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Figure 3.7 Log-normal hazard plot of the remission times of 21 leukemia patients who
received 6-MP.

the parameters � and � of the Weibull distribution obtained from the line are
equal to 0.033 and 1.143, respectively (methods discussed in Chapter 8). After
knowing that the Weibull distribution provides a good fit, we can use an
analytical method, the maximum likelihood method, to obtain a more accurate
estimate of the parameters. Following the procedures discussed in Chapter 7,
the maximum likelihood estimates of � and � are �� � 0.03 and �	 � 1.354, which
are quite close to the graphical estimates.

After an appropriate distribution has been identified and parameters es-
timated, we can estimate the probability of having a given duration of
remission and other probabilities. For example, the probability of having a
remission time longer than 10 weeks can be predicted as

P(T 
 10) � e������ 	�� � e�(10*0.03)�
��
 � 0.822

For the placebo group, we can use the probability plotting technique since the
data are complete. Figures 3.8, 3.9, and 3.10 give the exponential, Weibull, and
lognormal probability plots. Comparing the three graphs, again, the straight
line in the Weibull plot appears to give the best fit. From the Weibull plot,
estimates of � and � are found to be 0.111 and 1.250, respectively. The
maximum likelihood estimates of � and � are, respectively, 0.105 and 1.371.
Again, the graphical estimates are very close to the maximum likelihood
estimates. Based on the maximum likelihood estimates of the parameters, we
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Figure 3.8 Exponential probability plot of the remission times of 21 leukemia patients
who received placebo.

can estimate the probability of having a remission time longer than 10 weeks.
Using the same formula as given above, the probability for a patient receiving
placebo to have a remission duration longer than 10 weeks is found to be 0.34,
which is smaller than that of a patient receiving 6-MP.

These graphical methods are subjective. The judgment as to whether the
assumed distribution fits the data is based on a visual examination rather than
on an objective statistical test. However, the methods are very simple and do
provide a great deal of information. Even in a case where none of the
distributions discussed in this book fit well, graphs can help find the reasons
and thus help modify the model. Therefore, graphical methods are usually
recommended as the first thing to try.

3.4 EXAMPLE 3.4: RELATIVE MORTALITY AND IDENTIFICATION
OF PROGNOSTIC FACTORS

One thousand and twelve Oklahoma Indians (379 men and 633 women)
with non-insulin-dependent diabetes mellitus (NIDDM) were examined in
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Figure 3.9 Weibull probability plot of the remission times of 21 leukemia patients who
received placebo.

���(F(t))

Figure 3.10 Log-normal probability plot of the remission times of 21 leukemia patients
who received placebo.
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1972—1980 and a mortality follow-up study was conducted in 1986—1989 (Lee
et al., 1993). The mean [standard deviation (SD)] age and duration of diabetes
at baseline examination were 52 (11) and 7 (6) years. The average duration of
follow-up was 10 (SD 4) years. As of December 31, 1989, 548 patients were
alive, 452 (187 men and 265 women) were dead, and 12 could not be traced.
Table 3.6 gives the survival time in years (T ) of the first 40 male patients along
with 12 potential prognostic factors: age, duration of diabetes (DUR) in years,
family history of diabetes (FAM), use of insulin within one year of diagnosis
(INS), use of diuretics (DIU), hypertension (HBP), retinopathy (EVD), pro-
teinuria (PRO), fasting plasma glucose (GLU) in milligrams per deciliter,
cholesterol (TC) in milligrams per deciliter, triglyceride (TG) in milligrams per
deciliter, and body mass index (BMI), which is defined as weight in kilograms
divided by height in meters squared.

Among other things, the authors compared the mortality experience of the
diabetic patients with that of the general population in Oklahoma over the
follow-up period. Taking changes in age distribution into consideration, the
patients were divided into five groups according to their age at baseline
examination: �35, 35—44, 45—54, 55—64, and �65. The expected survival rates
were calculated on a yearly basis following the methods described in Section
4.3 and using the death rates given in the 1970 and 1980 Oklahoma population
life tables. Death rates for the years between 1970 and 1980 and between 1980
and 1989 were estimated based on the 1970 and 1980 statistics and the
assumption that changes in death rates between 1970 and 1980 and after 1980
follow a linear trend. The observed and expected survival curves for the groups
were plotted (Figure 3.11), and ratios of the observed and expected number of
deaths (O/E ratios) by age were tabulated (Table 3.7).

Figure 3.11 shows that the diabetic patients had a much lower survivorship
than the general Oklahoma population for this age—gender distribution. At the
beginning of the fifteenth year after baseline examination, the relative survival
for the diabetic Oklahoma Indians was only 60%. The overall O/E ratios in
Table 3.7 are 2.92 [or standardized mortality ratio (SMR) 292] for men and
4.09 (or SMR 409) for women, which indicates a significantly higher mortality
rate in the diabetic Oklahoma Indians than in the general population.
Although patients in every group experienced excessive mortality, the younger
patients had the highest rate.

The relationship between the 12 potential prognostic variables and the
survival time of men was examined using univariate and multivariate methods.
The procedures are summarized below.

1. Examine the individual relationship of each variable to survival. One way
to analyze the data is first to determine which of the 12 variables could be
considered of significant prognostic importance. In addition to correlation
analysis of these variables, the survival times in subcategories are compared
(Table 3.8). Patients are grouped into subgroups in a meaningful way or in a
way that maximizes the observed difference in survival time between the
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Figure 3.11 Observed and expected survivorship from baseline examination for
dabetic Oklahoma Indians.

subgroups (subject to the constraint that each subgroup contains at least 10%
of the total number of patients).

The survivorship function for every subgroup of each variable was estimated
using the Kaplan—Meier method (discussed in Chapter 4) and plotted. Figure
3.12 gives an example. Survival functions among the subgroups were compared
by the logrank test (one of the available tests discussed in Chapter 5). Table
3.8 shows that except cholesterol and triglyceride, every one of the 12 variables
is significant. The median survival time decreases as age and duration of
diabetes increase. Patients with a family history of diabetes, elevated fasting
plasma glucose, hypertension, or retinopathy have significantly shorter survival
durations than those without these characteristics. Patients with baseline BMI
values greater than or equal to 30 had much better survivorship than did
patients with a lower BMI value.
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Figure 3.12 Survival curves of diabetic patients by hypertension status at baseline.

Table 3.7 Observed and Expected Number of Deaths and O/E Ratios During Follow-up
Period by Gender and Age at Baseline

Age at Males Females
Baseline
(yr) Observed Expected O/E Observed Expected O/E

�44 34 6.48 5.25 31 5.51 5.63
45—54 79 25.64 3.08 85 18.40 4.62
55—64 32 11.67 2.74 69 15.03 4.59
65� 42 20.32 2.06 80 25.86 3.09

Total 187 64.11 2.92 265 64.80 4.09

2. Examine the simultaneous relationship of the variables to survival. Exam-
ination of each variable can give only a preliminary idea of which variables
might be of prognostic importance. The simultaneous effect of the variables
must be analyzed by an appropriate multivariate statistical method to deter-
mine the relative importance of each. Cox’s (1972) proportional hazards model
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Table 3.8 Survival Time by Potential Prognostic Variable for Male Diabetic Patients

Number of Number of Median
Variable Patients Deaths Survival Time (yr) p Value

Age (yr)
�45 102 34 15.2
45—54 173 79 14.2 �0.001
55—64 53 31 9.1
�65 46 43 5.1

Family history of diabetes
No 104 62 11.4 �0.01
Yes 238 104 14.8

Duration of diabetes (yr)
�7 207 84 15.2
7—13 91 49 12.2 �0.001
�14 58 48 7.9

Use of diuretics
No 254 117 14.5 �0.001
Yes 102 64 10.0

Use of insulin �1 year
of diagnosis

No 317 157 13.9 �0.05
Yes 39 24 11.9

Hypertension
No 211 84 15.3 �0.001
Yes 151 99 9.8

Retinopathy
No 332 163 13.9 �0.001
Yes 24 18 6.5

Proteinuria
Negative 250 112 14.5
Slight 54 27 12.4 �0.001
Heavy 57 44 8.0

Fasting plasma glucose
�200 235 106 11.9 �0.05�200 139 81 8.4

Cholesterol
�240 300 144 14.8

0.12
�240 64 38 12.2

Triglyceride
�220 223 105 14.1

0.44�220 141 77 13.2

BMI
�30 189 114 11.8 �0.001�30 184 73 15.4
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can be applied. This model, presented in Chapter 12, is a regression model
that relates patient characteristics directly to the risk of failure and thus
indirectly to survival. The assumption of this model is that the hazards for
different strata of each independent (or prognostic) variable are proportional
over time. This assumption was verified by a graphical method (discussed in
Chapter 12) using each of the variables. Figure 3.13 gives an example of the
graph of log[�S(t)] versus t for the two hypertension groups. The two almost
parallel curves indicate that the hazards of dying are proportional. Therefore,
the assumption of the proportional hazards model is satisfied and the model
appropriate.

This model can be fitted by a stepwise procedure that results in a ranking
of the prognostic variables. The first variable selected to enter the model is the
most important single variable in predicting the risk of dying. The second
variable is the second most important, and so on. A significance level can be
obtained from a likelihood ratio test at each step, which indicates the level of
contribution given by the additional variable.

Using the proportional hazards model and a stepwise procedure, seven of
the 12 variables were identified as significant at the 0.05 level based on the
likelihood ratio test at each step. These variables, the regression coefficients,
and the significance levels based on the Ward test, which uses the regression
coefficient and its standard error (S.E.) are given in Table 3.9. The sign of the
coefficient indicates whether the variable is positively or negatively related to
the hazard of dying. For example, age and duration of diabetes are both
positively related to the risk of dying and therefore negatively related to the
survival time. Table 3.9 also gives the ratio of risk (or hazard) for values of
each variable unfavorable to survival to values of that variable favorable to
survival. For example, patients who were 60 years of age at baseline had a 3.05
times higher risk of dying during the follow-up period (10—16 years, average
13 years) than did patients who were only 40 years old at baseline. For
dichotomous variables, the ratio of risk is equal to exp(coefficient), which is
also interpreted as the relative risk of the variable adjusting for the other
variables. Consequently, the confidence interval for the relative risk can be
calculated (not shown in Table 3.9). Based on this set of data, the authors
conclude that age, hypertension, duration of diabetes, fasting plasma glucose,
BMI, proteinuria, and use of diuretics are significantly related to survival. The
multivariate method also showed that high values of BMI might be protective.

3.5 EXAMPLE 3.5: IDENTIFICATION OF RISK FACTORS

A study of the incidence of retinopathy in Oklahoma Indians with NIDDM
was conducted in 1987—1990 as part of a prospective study of diabetic
complications (Lee et al., 1992). Among the 312 patients who were free of
retinopathy at initial examination in the 1970s, 228 were found to have
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Figure 3.13 Curves of log[�logS(t)] for the two hypertension groups.

Table 3.9 Significant Variables (at 0.05 Level) Identified by Proportional Hazards
Model

Relative Risk� Ratio
Regression p Value of

Variable� Coefficient (Ward Test) Favorable Unfavorable Risk

Age 0.0558 �0.001 9.32 28.45 3.05
Hypertension: 0.6360 �0.001 1.00 1.89 1.89

1, yes, 0, no
Duration of 0.0559 �0.001 1.32 2.19 1.66

diabetes
Fasting plasma 0.0023 �0.010 1.35 1.58 1.17

glucose
BMI �0.0330 0.035 0.32 0.44 0.72
Proteinuria: 0.3744 0.025 1.00 1.45 1.45

1, yes, 0, no
Use of diuretics: 0.4191 0.030 1.00 1.52 1.52

1, yes; 0, no

�Variables are listed in order of entry into model with a p-value limit for entry of 0.05.
�Favorable categories are 40 years of age, no hypertension, duration of diabetes 5 years, fasting
plasma glucose 130mg/dL, BMI 35, no proteinuria, and no diuretics use. Unfavorable categories
are 60 years of age, hypertensive, duration of diabetes 14 years, fasting plasma glucose 200mg/dL,
BMI 25, having proteinuria, and diuretics use.
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developed the eye disease during the 10 to 16-year follow-up period (average
follow-up time 12.7 years). Twelve potential factors (assessed at time of baseline
examination) were examined by univariate and multivariate methods for their
relationship to retinopathy (RET): age, gender, duration of diabetes (DUR),
fasting plasma glucose (GLU), initial treatment (TRT), systolic (SBP) and
diastolic blood pressure (DBP), body mass index (BMI), plasma cholesterol
(TC), plasma triglyceride (TG), and presence of macrovascular disease (LVD)
or renal disease (RD). Table 3.10 gives the data for the first 40 patients. Among
other things, the authors related these variables to the development of
retinopathy.

1. Examine the individual relationship of each variable to the development of
diabetic retinopathy. Table 3.11 gives some summary statistics of the eight
continuous variables for patients who have developed retinopathy and for
those who have not. Notice that patients who have developed the disease were
younger at baseline and had much higher fasting plasma glucose, systolic and
diastolic blood pressure, and plasma triglyceride than did patients who have
not. Table 3.12 summarizes the contingency table analysis of retinopathy
incidence rates. The number of patients at risk of developing retinopathy and
the number of patients who developed the disease (and rate) are given by
subcategory of each potential risk factor. Using the chi-square test, it is found
that there was a significant difference in the retinopathy rate among the
subcategories of several variables using a significance level of 0.05: duration of
diabetes, fasting plasma glucose, systolic and diastolic blood pressure, and
treatment. It appears that patients with poor glucose control or high blood
pressure or treated with oral agents or insulin have a higher incidence of
retinopathy. In addition, patients with high triglyceride levels tend to have
higher incidence of retinopathy (p� 0.064). However, patients who had
developed macrovascular disease at the time of baseline examination had a
lower retinopathy incidence. The authors state that this may be due to the fact
that 68% of the patients who had macrovascular disease either died (54%)
during the follow-up period or were lost to follow-up (14%). Many of these
patients may have developed retinopathy, particularly the patients who have
died, but were not included. Therefore, the lower incidence of retinopathy in
patients who had macrovascular disease at baseline is probably the result of a
selection bias. Similarly, the large number of death plus the losses to follow-up
may also contribute to the drop in retinopathy rate in patients who had had
diabetes for more than 12 years at baseline. Among the 80 patients in this
duration of diabetes category, 56% have died and 10% did not participate in
the follow-up examination. The large number of deaths may also be responsible
for the finding that patients who survived long enough to develop retinopathy
were younger at baseline. The deceased patients were significantly older (mean
57 years) than the survivors who participated in the follow-up examination
(mean 48 years).
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Table 3.11 Summary Statistics for Eight Variables by Retinopathy Status at Follow-up

Retinopathy Status

No Yes

Variable Mean S.D. Mean S.D. p Value

Age 50.0 9.0 47.2 7.4 0.01
Duration of diabetes 4.2 4.5 4.8 4.4 0.34
Fasting plasma glucose 141.8 65.6 196.3 76.6 �0.0001
Systolic blood pressure 128.0 15.7 132.6 17.3 0.04
Diastolic blood pressure 80.3 10.8 84.9 10.1 �0.001
Body mass index 32.3 6.3 32.5 5.9 0.76
Cholesterol 204.4 66.0 206.8 58.7 0.76
Triglyceride 180.5 111.1 234.4 273.3 0.01

2. Examine the simultaneous relationship of the variables to the development
of retinopathy. Univariate analysis of each variable using the contingency table
or the chi-square test gives a preliminary idea of which individual variable
might be of prognostic importance. The simultaneous effect of all the variables
can be analyzed by the linear logistic regression model (discussed in Section
14.2) to determine the relative importance of each.

The 12 variables were fitted to the linear logistic regression model using a
stepwise selection procedure. The variables most significantly related to the
development of retinopathy were found to be initial treatment, fasting plasma
glucose, age, and diastolic blood pressure (p� 0.001). Table 3.13 gives the
regression coefficients of the four most significant variables (p� 0.05), the
standard errors, and adjusted odds ratios [exp(coefficient)]. The p values used
here are the significance levels based on the likelihood ratio test or the
improvement in the maximum likelihood due to the addition of the variable in
the stepwise procedure. This method is more powerful than the Wald test,
which is based on the standardized regression coefficients (Chapter 14). The
results are consistent with those in the univariate analysis.

On the basis of the regression coefficients, the probability of developing
retinopathy during a 10 to 16-year follow-up can be estimated by substituting
values of the risk factors into the regression equation,

log
P

1�P
� � 2.373� 1.495 (oral agent) � 0.882 (insulin)

� 0.014 (GLU) � 0.074 (age) � 0.048 (DBP)

For example, for a 50-year-old patient who is on oral agents and whose fasting
plasma glucose and diastolic blood pressure are 170 mg/dl and 95 mmHg,
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Table 3.12 Cumulative Incidence Rates of Retinopathy by Baseline Variables

Developed Retinopathy
Number of

Variable Persons at Risk Number Percent p value

Gender
Female 211 151 71.6

0.384Male 101 77 76.2
Age (yr)

�35 13 10 76.9
35—44 101 77 76.2

0.24245—54 155 115 74.2
�55 43 26 60.5

Duration of diabetes (yr)
�4 153 105 68.6
4—7 113 86 76.1

0.0338—11 23 22 95.7
�12 23 15 65.2

Fasting plama glucose (mg/dl)
�140 117 62 53.0
140—199 90 74 82.2 �0.001
�200 105 92 87.6

Systolic blood pressure (mmHg)
�130 145 95 65.5
130—159 149 115 78.8 0.016
�160 20 18 85.7

Diastolic blood pressure (mmHg)
�85 179 118 65.9
85—94 87 73 83.9 0.004
�95 46 37 80.4

Plasma cholesterol (mg/dl)
�240 267 193 72.3

0.442�240 45 35 77.8
Plasma triglyceride (mg/dl)

�250 237 167 70.5
0.064�250 75 61 81.3

Body mass index (kg/m�)
�28 73 49 67.1
28—33 121 94 77.7 0.261
�34 118 85 72.0

Renal disease
No 251 179 71.3

0.155Yes 61 49 80.3
Macrovascular disease

No 205 157 76.6
0.053Yes 107 71 66.4

Treatment (initial)
Diet alone 115 62 53.9
Oral agent 158 136 86.1 �0.001
Insulin 37 29 78.4
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Table 3.13 Results of Logistic Regression Analysis

Standard
Variable Coefficient Error exp(coefficient) Coefficient/S.E.

Constant �2.373 1.557
Initial treatment

Oral agent 1.495 0.330 4.459 4.53
Insulin 0.882 0.488 2.416 1.81

Fasting plasma
0.014 0003 1.014 4.67glucose

Age �0.074 0019 0.929 �3.89
Diastolic blood

0.048 0.015 1.049 3.20pressure

respectively, the chance of developing retinopathy in the next 10 to 16 years is
91%.

The linear logistic regression model is useful in identifying important risk
factors. However, complete measurements of all the variables are needed;
missing data are a problem. In this example, complete data are available on
most of the patients. This may not always be the case. Although there are
methods of coping with missing data (discussed in Section 11.1), none is
perfect. Thus it is extremely important for investigators to make every effort to
obtain complete data on every subject.

Bibliographical Remarks

It is impossible to cite all the published examples of survival data analysis
similar to those in this chapter. Other similar studies can be found in the
literature: for example, Biometrics, Biometrika, Cancer, Journal of Chronic
Disease, Journal of the National Cancer Institute, American Journal of Epi-
demiology, Journal of the American Medical Association, and New England
Journal of Medicine. An easy way to find examples is to use the National
Library of Medicine’s Web site and search the file PubMed with appropriate
keywords.

EXERCISES

The four sets of data below are taken from actual research situations. Although
the data can be used for various analyses throughout the book, the reader is
asked here only to describe in detail how the data can be analyzed. The data
appear in examples and other exercises in subsequent chapters.

3.1 Thirty-three patients with hypernephroma were treated with combined
chemotherapy, immunotherapy, and hormonal therapy. Exercise Table 3.1
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gives the age, gender, date treatment began, response status, date of death
or last follow-up, survival status, and results of five pretreatment skin
tests. The investigator is interested in the response and survival of the
patients and in identifying prognostic factors. How would you analyze the
data?

3.2 In a study undertaken to compare the treatments given to hyperneph-
roma patients and to relate response and survival to surgery, metastasis,
and treatment time, data from 58 patients were collected (Exercise Table
3.2). How would you analyze the data to answer these questions?
(a) Do patients who had nephrectomy have a higher response rate?
(b) Is the time of nephrectomy related to response and survival?
(c) Are there significant differences between the treatments?
(d) What are the most important variables related to response and

survival?

3.3 Exercise Table 3.3 gives the age, gender, family history of melanoma,
remission duration, survival time, stage, and results of six pretreatment
skin tests (the larger diameter is given) of 102 stage 3 and 4 melanoma
patients (Lee et al., 1982).
(a) Study the immunocompetence of melanoma patients by investigating

skin test results.
(b) Determine if age, gender, or pretreatment skin test results are predic-

tive to remission and survival time.
(c) Find theoretical distributions that describe the survival and remission

patterns.

3.4 One hundred and forty-nine diabetic patients were followed for 17 years
(a subset of data from Lee et al., 1988). Exercise Table 3.4 gives the
survival time from baseline examination, survival status, and several
potential prognostic factors at baseline: age, body mass index (BMI), age
at diagnosis of diabetes, smoking status, systolic blood pressure (SBP),
diastolic blood pressure (DBP), electrocardiogram reading (ECG), and
whether the patient had any coronary heart disease (CHD). Identify the
important prognostic factors that are associated with survival.
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CHAPTER 4

Nonparametric Methods of
Estimating Survival Functions

In this chapter we discuss methods of estimating the three survival (survivor-
ship, density, and hazard) functions for censored data. Unfortunately, the
simple method of Example 2.1 cannot be applied if some of the patients are
alive at the time of analysis and therefore their exact survival times are
unknown. Nonparametric or distribution-free methods are quite easy to
understand and apply. They are less efficient than parametric methods when
survival times follow a theoretical distribution and more efficient when no
suitable theoretical distributions are known. Therefore, we suggest using
nonparametric methods to analyze survival data before attempting to fit a
theoretical distribution. If the main objective is to find a model for the data,
estimates obtained by nonparametric methods and graphs can be helpful in
choosing a distribution.
Of the three survival functions, survivorship or its graphical presentation,

the survival curve, is the most widely used. Section 4.1 introduces the
product-limit (PL) method of estimating the survivorship function developed
by Kaplan and Meier (1958). With the increased availability of computers, this
method is applicable to small, moderate, and large samples. However, if the
data have already been grouped into intervals, or the sample size is very large,
say in the thousands, or the interest is in a large population, it may be more
convenient to perform a life-table analysis. Section 4.2 is devoted to the
discussion of population and clinical life tables. The PL estimates and life-table
estimates of the survivorship function are essentially the same. Many authors
use the term life-table estimates for the PL estimates. The only difference is that
the PL estimate is based on individual survival times, whereas in the life-table
method, survival times are grouped into intervals. The PL estimate can be
considered as a special case of the life-table estimate where each interval
contains only one observation.
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In Section 4.3 we discuss three other measures that describe the survival
experience: the relative survival rate, the five-year survival rate, and the
corrected survival rate. In Section 4.4 we describe two methods, direct and
indirect standardization, to adjust rates to eliminate the effect of differences in
population composition with respect to age and other variables. In addition, it
introduces the standardized mortality rate and standardized incidence rate.

4.1 PRODUCT-LIMIT ESTIMATES OF SURVIVORSHIP FUNCTION

Let us first consider the simple case where all the patients are observed to death
so that the survival times are exact and known. Let t

�
, t

�
, . . . , t

�
be the exact

survival times of the n individuals under study. Conceptually, we consider this
group of patients as a random sample from a much larger population of similar
patients. We relabel the n survival times t

�
, t

�
, . . . , t

�
in ascending order such

that t
���

� t
���

� · · ·� t
���
. Following (2.1.2) and (2.1.3), the survivorship func-

tion at t
���
can be estimated as

S� (t
���
)�

n� i

n
� 1�

i

n
(4.1.1)

where n� i is the number of people in the sample surviving longer than t
���
. If

two or more t
���
are equal (tied observations), the largest i value is used. For

example, if t
���

� t
���

� t
���
, then

S� (t
���
)� S� (t

���
)� S� (t

���
)�

n� 4

n

This gives a conservative estimate for the tied observations.
Since every person is alive at the beginning of the study and no one survives

longer than t
���
,

S� (t
�	�
)� 1 and S� (t

���
)� 0 (4.1.2)

In practice, S� (t) is computed at every distinct survival time. We do not have to
worry about the intervals between the distinct survival times in which no one
dies and S� (t) remains constant. Equations (4.1.1) and (4.1.2) show that S� (t) is
a step function starting at 1.0 and decreasing in steps of 1/n (if there are no
ties) to zero. When S� (t) is plotted versus t, the various percentiles of survival
time can be read from the graph or calculated from S� (t). The following example
illustrates the method.

Example 4.1 Consider a clinical trial in which 10 lung cancer patients are
followed to death. Table 4.1 lists the survival times t in months. The function
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Table 4.1 Computation of S� (t) for 10 Lung Cancer
Patients

t i S� (t)

4 1 

�	

� 0.9

5 2 �
�	

� 0.8

6 3 �
�	

� 0.7

8 4 �
�	

� 0.4

8 5 �
�	

� 0.4

8 6 �
�	

� 0.4

10 7 �
�	

� 0.2

10 8 �
�	

� 0.2

11 9 �
�	

� 0.1

12 10 	
�	

� 0.0

S� (t) is computed following (4.1.1) and plotted as a step function in Figure 4.1a
and as a smooth curve in Figure 4.1b. The estimated median survival time is 8
months from Figure 4.1a or 7.6 months from Figure 4.1b. A more accurate
estimate can be obtained using linear interpolation:

t S� (t)

6 0.7

m 0.5

8 0.4

8� 6

0.4� 0.7
�

8�m

0.4� 0.5

m� 8�
2(0.1)

0.3
� 7.3(months)

Theoretically, S� (t) should be plotted as a step function since it remains
constant between two observed exact survival times. However, when the
median survival time must be estimated from a survival curve, a smooth curve
(such as Figure 4.1b) may give a much better estimate than a step function, as
indicated in the example.
This method can be applied only if all the patients are followed to death. If

some of the patients are still alive at the end of the study, a different method
of estimating S� (t), such as the PL estimate given by Kaplan and Meier (1958),
is required. The rationale can be illustrated by the following simple example.
Suppose that 10 patients join a clinical study at the beginning of 2000;

66      



Figure 4.1 Function S� (t) of lung cancer patients in Example 4.1.

during that year 6 patients die and 4 survive. At the end of the year, 20
additional patients join the study. In 2001, 3 patients who entered in the
beginning of 2000 and 15 patients who entered later die, leaving one and five
survivors, respectively. Suppose that the study terminates at the end of 2001
and you want to estimate the proportion of patients in the population
surviving for two years or more, that is, S(2).
The first group of patients in this example is followed for two years; the

second group is followed for only one year. One possible estimate, the
reduced-sample estimate, is S� (2) � 1/10� 0.1, which ignores the 20 patients
who are followed only for one year. Kaplan and Meier believe that the second
sample, under observation for only one year, can contribute to the estimate of
S(2).
Patients who survived two years may be considered as surviving the first

year and then surviving one more year. Thus, the probability of surviving for
two years or more is equal to the probability of surviving the first year and
then surviving one more year. That is,

S(2) �P(surviving first year and then surviving one more year)

which can be written as

S(2) �P(surviving two years given patient has survived first year)

�P(surviving first year) (4.1.3)

The Kaplan—Meier estimate of S(2) following (4.1.3) is

S� (2) ��
proportion of patients surviving two years

given they survive for one year �
�(proportion of patients surviving one year) (4.1.4)
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For the data given above, one of the four patients who survived the first
year survived two years, so the first proportion in (4.1.4) is �

�
. Four of the 10

patients who entered at the beginning of 2000 and 5 of the 20 patients who
entered at the end of 2000 survived one year. Therefore, the second proportion
in (4.1.4) is (4
 5)/(10
 20). The PL estimate of S(2) is

S� (2) �
1

4
�

4
 5

10
 20
� 0.25� 0.3� 0.075

This simple rule may be generalized as follows: The probability of surviving
k (�2) or more years from the beginning of the study is a product of k
observed survival rates:

S� (k) � p
�
� p

�
� p

�
� · · · � p

�
(4.1.5)

where p
�
denotes the proportion of patients surviving at least one year, p

�
the

proportion of patients surviving the second year after they have survived one
year, p

�
the proportion of patients surviving the third year after they have

survived two years, and p
�
the proportion of patients surviving the kth year

after they have survived k� 1 years.

Therefore, the PL estimate of the probability of surviving any particular
number of years from the beginning of study is the product of the same
estimate up to the preceding year, and the observed survival rate for the
particular year, that is,

S� (t) � S� (t � 1)p
�

(4.1.6)

The PL estimates are maximum likelihood estimates.
In practice, the PL estimates can be calculated by constructing a table with

five columns following the outline below.

1. Column 1 contains all the survival times, both censored and uncensored,
in order from smallest to largest. Affix a plus sign to the censored
observation. If a censored observation has the same value as an uncen-
sored observations, the latter should appear first.

2. The second column, labeled i, consists of the corresponding rank of each
observation in column 1.

3. The third column, labeled r, pertains to uncensored observations only.
Let r� i.

4. Compute (n � r)/(n � r
 1), or p
�
, for every uncensored observation t

���
in column 4 to give the proportion of patients surviving up to and then
through t

���
.
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Table 4.2 Calculation of the PL Estimate of S� (t) for Data in Example 4.2

Remission Time Rank
t i r (n � r)/(n � r
 1) S� (t)

3.0 1 1 

�	



�	

� 0.900

4.0
 2 — — —

5.7
 3 — — —

6.5 4 4 �
�



�	

��
�
� 0.771�

6.5 5 5 �
�



�	

��
�
��

�
� 0.643�

8.4
 6 — — —

10.0 7 7 �
�



�	

��
�
��

�
��

�
� 0.482

10.0
 8 — — —

12.0 9 9 �
�



�	

��
�
��

�
��

�
��

�
� 0.241

15.0 10 10 0 0

� 0.643 is used as S� (6.5). It is a conservative estimate.

5. In column 5, S� (t) is the product of all values of (n � r)/(n � r
 1) up to
and including t. If some uncensored observations are ties, the smallest
S� (t) should be used.

To summarize this procedure, let n be the total number of patients whose
survival times, censored or not, are available. Relabel the n survival times in
order of increasing magnitude such that t

���
� t

���
� · · ·� t

���
. Then

S� (t) � �
t
���

�t

n� r

n� r
 1
(4.1.7)

where r runs through those positive integers for which t
���

� t and t
���
is

uncensored. The values of r are consecutive integers 1, 2, . . . , n if there are no
censored observations; if there are censored observations, they are not.
The estimated median survival time is the 50th percentile, which is the value

of t at S� (t) � 0.50. The following example illustrates the calculation procedures.

Example 4.2 Suppose that the following remission durations are observed
from 10 patients (n� 10) with solid tumors. Six patients relapse at 3.0, 6.5, 6.5,
10, 12, and 15 months; 1 patient is lost to follow-up at 8.4 months; and 3
patients are still in remission at the end of the study after 4.0, 5.7, and 10
months. The calculation of S� (t) is shown in Table 4.2.
The survivorship function S� (t) is plotted in Figure 4.2; the estimated median

remission time is m� 9.8 months. From the calculation we notice that S� (t) at
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Figure 4.2 Function S� (t) of Example 4.2.

t� t
���
is related to S� (t) at t� t

�����
and (4.1.6) can be rewritten as

S� (t
���
)�S� (t

�����
)

n� i

n� i
 1
(4.1.8)

where t
���
and t

�����
are uncensored observations. For example,

S� (12) �S� (10) � �
�
� 0.482� �

�
� 0.241

If there are no censored observations or losses before t, (4.1.7) is equivalent to
(4.1.1).
The variance of the PL estimate of S� (t) is approximated by

Var[S� (t)] � [S� (t)]� �
�

1

(n � r )(n � r
 1)
(4.1.9)

where r includes those positive integers for which t
���

� t and t
���
corresponds

to a death. For the data in Example 4.2, for example,

Var[S� (10)] � (0.482)� �
1

9� 10



1

6� 7



1

5� 6



1

3� 4�
� 0.0352

and the estimated standard error is 0.1876. In Example 4.1,

Var[S� (6)] � (0.7)� �
1

9� 10



1

8� 9



1

7� 8�� 0.0210
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and the estimated standard error is 0.145. The variance may be used to obtain
confidence intervals for S(t).
Calculation of the PL estimate of S(t) in Example 4.2 can also be obtained

by using statistical software. Let t denote the observed remission time (uncen-
sored or censored) in Table 4.2 and CENS denote an index (or dummy)
variable with CENS� 0 if t is censored and 1 otherwise. Assume that the data
have been saved in ‘‘C:�D4d2.DAT’’ as a text file, which contains two columns,
t and CENS, separated by a space.
The following SAS code can be used to obtain the PL estimate of S(t) in

Table 4.2. One can adopt this code to obtain the PL estimate of S(t) for any
observed uncensored or censored survival time data.

data w1;
infile ‘c:�d4d2.dat’ missover;
input t cens;

run;
proc lifetest data�w1 outsurv�wa;
time t*cens(0);

run;
title ’PL estimate of survival function’;
proc print data�wa;
run;

If BMDP 1L is used, the following code can be used.

/input file� ‘c:�d4d2.dat’.
variables� 2.
format� free.

/variable names� t, cens.
/form time� t.

status� cens.
response� 1.

/estimate method�product.
Print.

/end

If the SPSS KM procedure is used, the following code can be used.

data list file� ‘c:�d4d2.dat’ free
/ t cens.

km t
/status� cens event (1)
/print.

Example 4.3 Consider the tumor-free time in days of the 30 rats on a
low-fat diet in Table 3.4. Table 4.3 gives the calculations of the PL estimates of
S(t) and the standard error of S� (t). The estimated S(t) is plotted in Figure 3.3.
The median tumor-free time is approximately 189 days.
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The mean survival time � can be shown to equal the area under the
estimated survivorship function. To estimate �, we can use

�� ��
�

	

S� (t) dt

that is, �� is equal to the area under the estimated survivorship function. Thus,
if the times to death are ordered as t���� t���� · · ·� t��� (if there are m
uncensored observations) and t��� is the largest observation of all n observa-
tions [i.e., t���� t

���
when t

���
is an uncensored observation], � can be estimated

as

�� � 1.000t���
 S� (t���)(t��� � t���)
 S� (t���)(t��� � t���)
 · · ·


S� (t�����)(t��� � t�����) (4.1.10)

which is the sum of the areas of the rectangles under the survival curve formed
by the uncensored observations. Consider the data in Example 4.2: m� 6,
t���� 3.0, t���� 6.5, t���� 6.5, t���� 10, t���� 12, and t���� 15. The mean
survival time is estimated using (4.1.10) as

�� � 1.000� 3.0
 0.900(6.5� 3.0) 
 0.643(10� 6.5)


 0.482(12� 10) 
 0.241(15� 12)

� 3.000
 3.150
 2.251
 0.964
 0.723

� 10.088 months

However, if the largest observation in the data is censored and is used as
t��� in (4.10), � so obtained may be a low estimate. In such cases, Irwin (1949)
suggests that instead of estimating the mean survival time, one should choose
a time limit L and estimate the ‘‘mean survival time limited to a time L ,’’ say
�
���
, by using L for t��� in (4.1.10). For example, if in Example 4.2 the largest

observation is censored, that is, 15
, and if we let L � 16, then

�
����

� 3.000
 3.150;
 2.251
 0.964
 0.241(16� 12)

� 10.329 months

which is the mean survival time limited to 16 months.
The variance of �� is estimated by

Var(�� )��
�

A�
�

(n � r)(n � r
 1)
(4.1.11)

where r runs through those integers for which t
�
corresponds to a death, and

74      



A
�
is the area under the curve S� (t) to the right of t

���
. The kth A

�
in terms of

the m uncensored observations is

S� (t���)(t��	�� � k���)
S� (t��	��)(t��	�� � t��	��)
 · · · 
 S� (t�����)(t��� � t�����)

(4.1.12)

If there are no censored observations, (4.1.10) reduces to the sample mean
t	 �
 t

�
/n, and (4.1.11) reduces to

Var(�� ) �Var(t	 )�
� (t

�
� t	 )�
n�

(4.1.13)

which is not an unbiased estimate. Kaplan and Meier suggest that (4.1.11) and
(4.1.13) be multiplied by m/(m � 1) and n/(n � 1), respectively, to correct the
bias.
Consider the survival times in Example 4.1: The sample mean is t	 ��� � 8.2

months and the estimated variance of �� , by (4.1.13), is 0.616. If the factor
n/(n � 1)� 10/9 is multiplied, the estimated variance of � becomes 0.684.
To compute the variance of �� in Example 4.2, we first compute the five A

�
’s:

A
�
, A

�
, A

�
, A

�
, and A



. The first A

�
is

A
�
�S� (t���)(t��� � t���)
S� (t���)(t��� � t���)
 · · ·
S� (t���)(t��� � t���)

� 3.150
 2.251
 0.964
 0.723� 7.088

The second A
�
is

A
�
�S� (t���)(t��� � t���)
 · · ·
S� (t���)(t��� � t���)

� 2.251
 0.964
 0.723� 3.938

The third, fourth, and fifth A
�
’s are, respectively,

A
�
� 2.251
 0.964
 0.723� 3.938

A
�
� 0.964
 0.723� 1.687

A


� 0.723

Thus,

Var� (�� )�
(7.088)�
9� 10



(3.938)�
6� 7



(3.928)�
5� 6



(1.687)�
3� 4



(0.723)�
1� 2

� 1.942

The estimated standard error of �� is 1.394. If the factor m/(m � 1)� 6/5 is
included, these results become 2.330 and 1.526, respectively.
The Kaplan—Meier method provides very useful estimates of survival

probabilities and graphical presentation of survival distribution. It is the most
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Figure 4.3 Kaplan—Meier estimate of median survival time.

widely used method in survival data analysis. Breslow and Crowley (1974) and
Meier (1975b) have shown that under certain conditions, the estimate is
consistent and asymptomatically normal. However, a few critical features
should be mentioned.

1. The Kaplan—Meier estimates are limited to the time interval in which the
observations fall. If the largest observation is uncensored, the PL
estimate at that time equals zero. Although the estimate may not be
welcomed by physicians, it is correct since no one in the sample lives
longer. If the largest observation is censored, the PL estimate can never
equal zero and is undefined beyond the largest observation.

2. The most commonly used summary statistic in survival analysis is the
median survival time. A simple estimate of the median can be read from
survival curves estimated by the PL method as the time t at which
S� (t) � 0.5. However, the solution may not be unique. Consider Figure
4.3a, where the survival curve is horizontal at S� (t) � 0.5; any t value in
the interval t

�
to t

�
is a reasonable estimate of the median. A practical

solution is to take the midpoint of the interval as the PL estimate of the
median. Figure 4.3b presents a different case in which the straightforward
estimate (t

�
) tends to overestimate the median. A practical way to handle

this problem is to connect the points and locate the median.

3. If less than 50% of the observations are uncensored and the largest
observation is censored, the median survival time cannot be estimated. A
practical way to handle the situation is to use probabilities of surviving
a given length of time, say 1, 3, or 5 years, or the mean survival time
limited to a given time t.

4. The PL method assumes that the censoring times are independent of the
survival times. In other words, the reason an observation is censored is
unrelated to the cause of death. This assumption is true if the patient is
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still alive at the end of the study period. However, the assumption
is violated if the patient develops severe adverse effects from the treat-
ment and is forced to leave the study before death or if the patient
died of a cause other than the one under study (e.g., death due to
automobile accidents in a cancer survival study). When there is inap-
propriate censoring, the PL method is not appropriate. In practice,
one way to alleviate the problem is to avoid it or to reduce it to a
minimum.

5. Similar to other estimators, the standard error (S.E.) of the Kaplan—
Meier estimator of S(t) gives an indication of the potential error of S� (t).
The confidence interval deserves more attention than just the point
estimate S� (t). A 95% confidence interval for S(t) is S� (t) � 1.96 S.E. [S� (t)].

4.2 LIFE-TABLE ANALYSIS

The life-table method is one of the oldest techniques for measuring mortality
and describing the survival experience of a population. It has been used by
actuaries, demographers, governmental agencies, and medical researchers in
studies of survival, population growth, fertility, migration, length of married
life, length of working life, and so on. There has been a decennial series of life
tables on the entire U.S. population since 1900. States and local governments
also publish life tables. These life tables, summarizing the mortality experience
of a specific population for a specific period of time, are called population life
tables. As clinical and epidemiologic research become more common, the
life-table method has been applied to patients with a given disease who have
been followed for a period of time. Life tables constructed for patients are
called clinical life tables. Although population and clinical life tables are similar
in calculation, the sources of required data are different.

4.2.1 Population Life Tables

There are two kinds of population life tables: the cohort life table and current
life table. The cohort life table describes the survival or mortality experience
from birth to death of a specific cohort of persons who were born at about the
same time, for example, all persons born in 1950. The cohort has to be followed
from 1950 until all of them die. The proportion of death (survivor) is then used
to construct life tables for successive calendar years. This type of table, useful
in population projection and prospective studies, is not often constructed since
it requires a long follow-up period.
The current life table is constructed by applying the age-specific mortality

rates of a population in a given period of time to a hypothetical cohort of
100,000 or 1,000,000 persons. The starting point is birth at year 0. Two sources
of data are required for constructing a population life table: (1) census data on
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the number of living persons at each age for a given year at midyear and (2)
vital statistics on the number of deaths in the given year for each age. For
example, a current U.S. life table assumes a hypothetical cohort of 100,000
persons that is subject to the age-specific death rates based on the observed
data for the United States in the 1990 census. The current life table, based on
the life experience of an actual population over a short period of time, gives a
good summary of current mortality. This type of life table is regularly
published by government agencies of different levels. One of the most often
reported statistics from current life tables is the life expectancy. The term
population life table is often used to refer to the current life table.
In the United States, the National Center for Health Statistics publishes

detailed decennial life tables after each decennial census. These complete life
tables use one-year age groups. Between censuses, annual life tables are also
published. The annual life tables are often seen in five-year age intervals and
are called abridged life tables. Tables 4.4 and 4.5 are, respectively, a complete
decennial life table for the total U.S. population for 1989—1991 and an
abridged life table for the same population for 1998. The abridged table in
Table 4.5 was constructed based on a complete life table.
Current life tables usually have the following columns:

1. Age interval [x to x
 t). This is the time interval between two exact ages
x and x
 t; t is the length of the interval. For example, the interval
20—21 includes the time interval from the 20th birthday up to the 21st
birthday (but not including the 21st birthday).

2. Proportion of persons alive at beginning of age interval but dying during the
interval (

�
q


). The information is obtained from census data. For

example, (
�
q


) for age interval 20—21 is the proportion of persons who

died on or after their 20th birthday and before their 21st birthday. It is
an estimate of the conditional probability of dying in the interval given
the person is alive at age x. This column is usually calculated from data
of the decennial census of population and deaths occurring in the given
time interval. For example, the mortality rates in Table 4.4 are calculated
from the data of the 1990 Census of Population and deaths occurring in
the United States in the three years 1989—1991. This column is the
foundation of the life table from which all of the other columns are
derived.

3. Number living at beginning of age interval (l


). The initial value of l



, the

size of the hypothetical population, is usually 100,000 or 1,000,000. The
successive values are computed using the formula

l


� l


��
(1�

�
q

��

) (4.2.1)

where 1�
�
q

��

is the proportion of persons who survived the previous age
interval. For example, in Table 4.4, t� 1, l

�	
� l

�

(1�

�
q
�

)�
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98,314(1� 0.00101)� 98,215, which is the number of persons living at
the beginning of age 20.

4. Number dying during age interval (
�
d


)

�
d


� l



(
�
q


)� l



� l


	�
(4.2.2)

For example, the number of persons dying during age interval 20—21,

�
d
�	

� 98,215(0.00104)� 102 (or
�
d
�	

� 98,215� 98,113� 102).

5. Stationary population (
�
L


and T



). Here

�
L


is the total number of years

lived in the ith age interval or the number of person-years that l


persons,

aged x exactly, live through the interval. For those who survive the
interval, their contribution to

�
L


is the length of the interval, t. For those

who die during the interval, we may not know exactly the time of death
and the survival time must be estimated. The conventional assumption is
that they live one-half of the interval and contribute t/2 to the calculation
of

�
L


. Thus,

�
L


� t(l


	�

�

� �
d


) (4.2.3)

For example, in Table 4.4,
�
L
�	

� 98,113
 102/2� 98,164. If we do know
the exact survival time of those who die in the interval,

�
L


should be

computed accordingly.
The symbol T



is the total number of person-years lived beyond age t

by persons alive at that age, that is,

T


� �

j�x �
L
�

(4.2.4)

and

T


�

�
L



 T


	�
(4.2.5)

For example, in Table 4.4, T
	
�7,536,614, which is the sum of all

�
L


values

in column 5, and T
�
� 7,437,356, which is

T
	
�

�
L
	
�7,536,614� 99,258.

6. Average remaining lifetime or average number of years of life remaining at
beginning of age interval (e�

�
). This is also known as the life expectancy at

a given age, which is defined as the number of years remaining to be lived
by persons at age x:

e�


�

T


l



(4.2.6)

The expected age at death of a person aged x is x
 e�


. The e�



at x� 0 is

the life expectancy at birth. For example, according to the U.S. life
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table for 1989—1991 the life expectancy at birth is 75.37 years and that at
age 40 is 37.98 years. This means that according to the mortality rates of
1989—1991 newborns are expected to live 75.37 years and those at age 40
are expected to live another 37.98 years. The life expectancy of a
population is a general indication of the capability of prolonging life. It
is used to identify trends and to compare longevity. Table 4.5 shows that
according to the mortality rates of 1998, the newborns and those at age
40 are expected to live 76.7 and 38.8 years, respectively. The overall life
expectancy indicates an improvement in longevity in the United States
over the time period.

Population life tables can be constructed for various subgroups. For
example, there are published life tables by gender, race, cause of death, as well
as those which eliminate certain causes of death.

4.2.2 Clinical Life Tables

The actuarial life table method has been applied to clinical data for many
decades. Berkson and Gage (1950) and Cutler and Ederer (1958) give a
life-table method for estimating the survivorship function; Gehan (1969)
provides methods for estimating all three functions (survivorship, density, and
hazard).
The life-table method requires a fairly large number of observations, so that

survival times can be grouped into intervals. Similar to the PL estimate, the
life-table method incorporates all survival information accumulated up to the
termination of the study. For example, in computing a five-year survival rate
of breast cancer patients, one need not restrict oneself only to those patients
who have entered on study for five or more years. Patients who have entered
for four, three, two, and even one year contribute useful information to the
evaluation of five-year survival. In this way, the life-table technique uses
incomplete data such as losses to follow-up and persons withdrawn alive as
well as complete death data.
Table 4.6 shows the format of the clinical life table. The columns are

described below.

1. Interval [t
�

 t

�	�
). The first column gives the intervals into which the

survival times and times to loss or withdrawal are distributed. The
interval is from t

�
up to but not including t

�	�
, i� 1, . . . , s. The last

interval has an infinite length. These intervals are assumed to be fixed.

2. Midpoint (t
��

). The midpoint of each interval, designated t
��
, i� 1, . . . ,

s� 1, is included for convenience in plotting the hazard and probability
density functions. Both functions are plotted as t

��
.

3. Width (b
�
). The width of each interval, b

�
� t

�	�
� t

�
, i� 1, . . . , , s� 1,

is needed for calculation of the hazard and density functions. The width
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of the last interval, b
�
, is theoretically infinite; no estimate of the hazard or

density function can be obtained for this interval.

4. Number lost to follow-up (l
�
). This is the number of people who are lost

to observation and whose survival status is thus unknown in the ith
interval (i� 1, . . . , s).

5. Number withdrawn alive (w
�
). People withdrawn alive in the ith interval

are those known to be alive at the closing date of the study. The survival
time recorded for such persons is the length of time from entrance to
the closing date of the study.

6. Number dying (d
�
). This is the number of people who die in the ith

interval. The survival time of these people is the time from entrance to
death.

7. Number entering the ith interval (n�
�
). The number of people entering the

first interval n�
�
is the total sample size. Other entries are determined

from n�
�
� n�

���
� l

���
�w

���
� d

���
. That is, the number of persons

entering the ith interval is equal to the number studied at the beginning
of the preceding interval minus those who are lost to follow-up,
withdrawn alive, or have died in the preceding interval.

8. Number exposed to risk (n
�
). This is the number of people who are

exposed to risk in the ith interval and is defined as n
�
� n�

�
��

�
(l
�

w

�
).

It is assumed that the times to loss or withdrawal are approximately
uniformly distributed in the interval. Therefore, people lost or with-
drawn in the interval are exposed to risk of death for one-half the
interval. If there are no losses or withdrawals, n

�
� n�

�
.

9. Conditional proportion dying (q�
�
). This is defined as q

�
� d

�
/n

�
for

i� 1, . . . , s� 1, and q�
�
� 1. It is an estimate of the conditional

probability of death in the ith interval given exposure to the risk of
death in the ith interval.

10. Conditional proportion surviving (q�
�
). This is given by p�

�
� 1� q�

�
, which

is an estimate of the conditional probability of surviving in the ith
interval.

11. Cumulative proportion surviving [S� (t
�
)]. This is an estimate of the

survivorship function at time t
�
; it is often referred to as the cumulative

survival rate. For i� 1, S�� (t
��
)� 1 and for i� 2, . . . , s, S� (t

�
)�

p�
���

S� (t
���
). It is the usual life-table estimate and is based on the fact

that surviving to the start of the ith interval means surviving to the start
of and then through the (i� 1)th interval.

12. Estimated probability density function [ f� (t
�
)]. This is defined as the

probability of dying in the ith interval per unit width. Thus, a natural
estimate at the midpoint of the interval is

f� (t
�
)�

S� (t
�
)�S� (t

���
)

b
�

�
S� (t

�
)q�

�
b
�

i� 1, . . . , s� 1 (4.2.7)
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13. Hazard function [h� (t
��
)]. The hazard function for the ith interval,

estimated at the midpoint, is

h� (t
��
)�

d
�

b
�
(n

�
��

�
d
�
)
�

2q�
�

b
�
(1
 p�

�
)

i� 1, . . . , s� 1 (4.2.8)

It is the number of deaths per unit time in the interval divided by
the average number of survivors at the midpoint of the interval.
That is, h� (t

��
) is derived from f� (t

��
)/S� (t

��
) and S� (t

��
)��

�
[S� (t

�	�
)


S� (t
�
)] since S(t

�
) is defined as the probability of surviving at the

beginning, not the midpoint, of the ith interval:
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(4.2.9)

which reduces to (4.2.8).
Sacher (1956) derives an estimate of the hazard function by assuming

that hazard is constant within an interval but varies among intervals.
His estimate is

h� (t
��
)�

�log p�
�

b
�

(4.2.10)

In a Monte Carlo study, Gehan and Siddiqui (1973) show that (4.2.9) is
less biased than (4.2.10).

The large-sample approximate variances of the estimated survival functions,
S� (t

�
), f� (t

��
), and h� (t

��
) in the ith interval are
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and

Var[h� (t
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)]�

[h� (t
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)]�

n
�
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1

2
h� (t

��
)b

��
�

� (4.2.13)

Equation (4.2.11) is given by Greenwood (1926); Gehan (1969) derived (4.2.12)
and (4.2.13). These may be used to obtain approximate confidence intervals for
the various survival functions.
The graph of S� (t

�
) can be used to find an estimate of the median. Or let

(t
�
, t

�	�
) be the interval such that S� (t

�
)� 0.5 and S� (t

�	�
)
 0.5. Then the
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median survival time t
�
can be estimated by linear interpolation:
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where f� (t
��

) is defined in (4.2.7).
Another interesting measure that can be obtained from the life table is the

median remaining lifetime at time t
�
, denoted by t

��
(i), i� 1, . . . , s� 1. If at t

�
the proportion of individual survival is S� (t

�
), the proportion of individual

survival at t
��
(i) is �

�
S� (t

�
). That is, one-half of the people who are alive at time
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are expected to be alive at time t
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Here S� (t
�
) is the estimated proportion surviving beyond the lower limit of the

interval containing the median.
The variance of t

��
(i) is approximately

Var[t�
��
(i )]�

[S� (t
�
)]�

4n
�
[ f� (t

��
)]�

(4.2.16)

Example 4.4 The following survival data for 2418 males with angina
pectoris, originally reported by Parker et al. (1946), were also included in
Gehan’s (1969) paper. Survival time is computed from time of diagnosis in
years. The life table uses 16 intervals of one year. Table 4.7 gives estimates of
the various survival functions, the median remaining lifetime, and their
standard errors. The survivorship function, S� (t), is plotted at t and the hazard
and density functions, h� (t) and f� (t), are plotted at the midpoint of the interval
(Figure 4.4).
The graph of the estimated hazard function shows that the death rate is

highest in the first year after diagnosis. From the end of the first year to the
beginning of the tenth year, the death rate remains relatively constant,
fluctuating between 0.09 and 0.12. The hazard rate is generally higher after the
tenth year. Hence, the prognosis for a patient who has survived one year is
better than that for a newly diagnosed patient if factors such as age, gender,
and race are not considered. A similar interpretation is reached by examining
the estimated median remaining lifetimes. Initially, the estimated median
remaining lifetime is 5.33 years. It reaches a peak of 6.34 years at the beginning
of the second year after diagnosis and then decreases. The median survival
time, either read from the survival curve or using (4.2.14), is 5.33 years and the
five-year survival rate is 0.5193 with a standard error of 0.0103.
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Figure 4.4 Survival functions of male patients with angina pectoris.
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Assume that survival time t (year) from each of 2418 males with angina
pectoris in Example 4.4 has the same format as the data file ‘‘C:�D4d2.DAT’’
defined in Example 4.2 and is saved in ‘‘C:�D4d4.DAT’’. Then the following
SAS code can be used to produce a clinical life table such as Table 4.7.

data w1;
infile ‘c:�d4d4.dat’ missover;
input t cens;

run;
proc lifetest data�w1 outsurv�wa method� life intervals� 0 to 15 by 1;
time t*cens(0);

run;
title ‘Life table of the survival times’;
proc print data�wa;
run;

If BMDP 1L is used, the respective code is

/input file� ‘c:�d4d4.dat’ .
variables� 2.
format� free.

/variable names� t, cens.
/form unit� year.

time� t.
status� cens.
response� 1.

/estimate method� life.
Print.

/end

If the SPSS SURVIVAL procedure is used, the respective code is

data list file� ‘c:�d4d4.dat’ free
/ t cens.

survival tables� t
/status � cens (1) for t
/intervals� thru 15 by 1
/print.

4.3 RELATIVE, FIVE-YEAR, AND CORRECTED SURVIVAL RATES

Another approach to large-scale survival data is the calculation of the relative
survival rate or annual survival ratio. The relative survival rate evaluates the
survival experience of patients in terms of the general population. Greenwood
(1926) first suggested this approach for evaluating the efficacy of cancer
treatment: If the average survival time of the patients treated equals that of a
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random sample of persons of the same age, gender, occupation, and so on, the
patients could be considered ‘‘cured.’’ Cutler et al. (1957, 1959, 1960a, b, 1967)
adopted Greenwood’s idea of comparing the survival experience of cancer
patients with that of the general population to ascertain (1) the ratio of
observed to expected survival rates and (2) whether, in time, the mortality rate
declines to a ‘‘normal’’ level.
The relative survival rate is defined as the ratio of the survival rate

(probability of surviving one year) for a patient under study (observed rate) to
someone in the general population of the same age, gender, and race (expected
rate) over a specified period of time. To provide a more precise measure of the
relationship of the observed and expected survival rates, Cutler et al. suggest
computing the ratio for each individual follow-up year. A relative rate of 100%
means that during a specific follow-up year the mortality rates in the patient
and in the general population are equal. A relative rate of less than 100%
means that the mortality rate in the patients is higher than that in the general
population. Cutler et al. use the survival rates in the Connecticut and U.S. life
tables for the general population.
Using the notations in Table 4.6, the survival rate observed at time t

�
is p�

�
,

the expected survival rate can be computed as follows: Suppose that at time t
�

there are n�
�
individuals alive for whom age, gender, race, and time of

observation are known. Let p*
��
be the survival rate of the j th individual from

general population life tables (with corresponding age, gender, and race). The
expected survival rate is

p*
�
�
1

n�
�

��
��

���

p*
��

(4.3.1)

Then the relative survival rate at time t
�
is defined by

r
�
�

p�
�

p*
�

(4.3.2)

Example 4.5 taken from Cutler et al. (1957) illustrates the interpretation of
relative survival rates.

Example 4.5 A total of 9121 breast cancer cases were diagnosed in
Connecticut hospitals from 1935 to 1953. The Connecticut life table for white
females, 1939—1941, is used in calculation of the expected survival rate. Table
4.8 gives the observed and expected survival rates as well as the relative
survival rates. Figure 4.5a graphically shows these data: the survival curves for
the breast cancer patients and the general population. The relative survival
rates are plotted in Figure 4.5b. For this group of patients, the relative survival
rates, although increasing during 13 successive years, are less than 100%
throughout the 15 years of follow-up. During each of the 15 years, the
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Table 4.8 Relative Survival Rates of Breast Cancer
Patients in Connecticut, 1935--1953

Survival Rates (%) Relative
Years after Survival Rate
Diagnosis Observed Expected (%)

0—1 82.9 97.2 85
1—2 83.3 97.1 86
2—3 85.9 96.9 89
3—4 86.8 96.7 90
4—5 89.2 96.6 92
5—6 90.0 96.4 93
6—7 89.9 96.4 93
7—8 91.6 96.2 95
8—9 92.0 96.1 96
9—10 92.7 96.1 96
10—11 92.9 95.9 97
11—12 94.0 95.8 98
12—13 94.1 95.3 99
13—14 91.5 95.3 96
14—15 90.6 94.9 95

Source: Cutler et al. (1957).

breast cancer patient mortality rate is greater than that of the general
population.
Other measures of describing survival experience of cancer patients are the

five-year survival rate and the corrected rate. The five-year survival rate is
simply the cumulative proportion surviving at the end of the fifth year. For
example, the five-year survival rate for the males with angina pectoris in
Example 4.4 is 0.5193. The five-year survival rate is no longer a measure of
treatment success for patients with many types of cancer since the survival of
cancer patients has improved considerably in the last few decades.
Berkson (1942) suggests using a corrected survival rate. This is the survival

rate if the disease under study alone is the cause of death. In most survival
studies, the proportion of patients surviving is usually determined without
considering the cause of death, which might be unrelated to the specific illness.
If p



denotes the survival rate when cancer alone is the cause of death, Berkson

proposes that

p


�

p

p
	

(4.3.3)

where p is the observed total survival rate in a group of cancer patients and p
	

is the survival rate for a group of the same age and gender in the general
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Figure 4.5 Survival rates of breast cancer patients in Connecticut, 1935—1953.

population. Rate p


may be computed at any time after the initiation of

follow-up; it provides a measure of the proportion of patients that escaped a
death from cancer up to that point. If a five-year survival rate is 0.5 and it is
corrected for noncancer deaths and if we find that five-year survival rate of the
general population is 0.9, the corrected survival rate is 0.5/0.9, or 0.56.

4.4 STANDARDIZED RATES AND RATIOS

Rates and ratios are often used in demography and epidemiology to describe
the occurrence of a health-related event. For example, the standardized
mortality (or morbidity) ratio (SMR) is frequently used in occupational
epidemiology as a measure of risk, and the standardized death rate is
commonly used in comparing mortality experiences of different populations or
the same population at different times.
The concept of the SMR is very similar to that of the relative survival rate

described above. It is defined as the ratio of the observed and the expected
number of death and can be expressed as

SMR�
observed number of deaths in study population

expected number of deaths in study population
� 100 (4.4.1)

where the expected number of deaths is the sum of the expected deaths from
the same age, gender, and race groups in the general population. The
standardized morbidity ratio can similarly be calculated simply by replacing
the word deaths by disease cases in (4.4.1). If only new cases are of interest, we
call the ratio the standardized incidence ratio (SIR).
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Table 4.9 Population and Deaths of Sunny City and Happy City by Age

Sunny City Happy City

Age-Specific Age-Specific
Rates Rates

Age Population Deaths (per 1000) Population Deaths (per 1000)


25 25,000 25 1.00 55,000 110 2.0
25—44 40,000 50 1.25 20,000 50 2.5
45—64 20,000 200 10.00 21,000 315 15.0
�65 15,000 1,200 80.00 4,000 650 162.5
Total 100,000 1,475 100,000 1,125

The standardized death rate is only one of the many rates used to describe
the health status of a population or to compare the health status of different
populations. If the populations are similar with respect to demographic
variables such as age, gender, or race, the crude rate, or ratio of the number of
persons to whom the event under study occurred to the total number of
persons in the population, can safely be used for comparison.
The level of the crude rate is affected by demographic characteristics of the

population for which the rate is computed. If populations have different
demographic compositions, a comparison of the crude rates may be mislead-
ing. As an example consider the two hypothetical populations, Sunny City and
Happy City, in Table 4.9. The crude death rate of Sunny City is 1000(1475/
100,000) or 14.7 per 1000. The crude death rate of Happy City is 1000(1125/
100,000), or 11.25 per 1000, which is lower than that of Sunny City even though
all age-specific rates in Happy City are higher. This is mainly because there is
a large proportion of older people in Sunny City. A crude death rate of a
population may be relatively high merely because the population has a high
proportion of older people; it may be relatively low because the population has
a high proportion of younger people. Thus, one should adjust the rate to
eliminate the effects of age, gender, or other differences. The procedure of
adjustment is called standardization and the rate obtained after standardization
is called the standardized rate.
The most frequently used methods for standardization are the direct method

and the indirect method.

Direct Method
In this method a standard population is selected. The distribution across the
groups with different values of the demographic characteristic (e.g., different
age groups) must be known. Let r

�
, . . . , r

�
, where k is the number of groups,

be the specific rates of the different groups for the population under study. Let
p
�
, . . . , p

�
be the proportions of people in the k groups for the standard

population. The direct standardized rate is obtained by multiplying the specific
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rates r
�
by p

�
in each group. The formula for the direct standardized rate is

R
������

�
�
�
���

r
�
p
�

(4.3.2)

As an example, consider the data in Table 4.9. If we choose a standard
population whose distribution is shown in the second column of Table 4.10,
the direct standardized death rate for Sunny City and Happy City is, respect-
ively, 9.37 and 17.84 per 1000. These standardized rates are more reliable than
the crude rates for comparison purposes.

Indirect Method
If the specific rates r

�
of the population being studied are unknown, the direct

method cannot be applied. In this case, it is possible to standardize the rate by
an indirect method if the following are available:

1. The number of persons to whom the event being studied occurred (D) in
the population. For example, if the death rate is being standardized, D is
the number of deaths.

2. The distribution across the various groups for the population being
studied, denoted by n

�
, . . . , n

�
.

3. The specific rates of the selected standard population, denoted by
s
�
, . . . , s

�
.

4. The crude rate of the standard population, denoted by r.

The formula for indirect standardization is

R
��������

�
D

��
���

n
�
s
�

r (4.3.3)

The summation in (4.3.3) is the expected number of persons to whom the event
occurred on the basis of the specific rates of the standard population. Thus, the
indirect method adjusts the crude rate of the standard population by the ratio
of the observed to expected number of persons to whom the event occurred in
the population under study.
Table 4.11 represents an example for the death rate in the states of

Oklahoma and Arizona in 1960 (data are from Grove and Hetzel, 1963). The
U.S. population in 1960 is used as the standard population. The crude death
rate of Oklahoma (9.7 per thousand) is higher than that of Arizona (7.8 per
thousand). However, the indirect standardized rates show a reverse relation-
ship (8.6 for Oklahoma and 9.6 for Arizona). This, again, is because of the
differences in age distribution. There is a higher proportion of people below the
age of 25 in Arizona and a higher proportion of people above the age of 54 in
Oklahoma.
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Results for the adjusted rates depend on the standard population selected.
Hence, this selection should be done carefully. When discussing death rate by
age, Shryock et al. (1971) suggest that a population with similar age distribu-
tion to the various populations under study be selected as a standard. If the
death rate of two populations is being compared, it is best to use the average
of the two distributions as a standard.
It should be remembered that specific rates are still the most accurate and

essential indicators of the variations among populations. No matter which
method is used, standardized rates are meaningful only when compared with
similarly computed rates. Kitagawa (1964) also criticizes the standardized rate
because if the specific rates vary in different ways between the two populations
being compared, standardization will not indicate the differences and some-
times will even mask the differences. Nevertheless, if the specific rates are not
available, if a single rate for a population is desired, or if the demographic
composition of the population being compared is different, the standardized
rate is useful.

Bibliographical Remarks

Kaplan and Meier’s (1958) PL method is the most commonly used technique
for estimating the survivorship function for samples of small and moderate size.
However, with the aid of a computer, it is not difficult to use the method for
large sample sizes.
Berkson (1942), Berkson and Gage (1950), Cutler and Ederer (1958), and

Gehan (1969) have written classic reports on life-table analysis. Peto et al.
(1976) published an excellent review of some statistical methods related to
clinical trials. The term life-table analysis that they use includes the PL method.
Other references on life tables are, for example, Armitage (1971), Shryock et al.
(1971), Kuzma (1967), Chiang (1968), Gross and Clark (1975), and Elandt-
Johnson and Johnson (1980).
Relative survival rates and corrected survival rates have been used by Cutler

and co-workers in a series of survival studies on cancer patients in Connecticut
in the 1950s and 1960s (Cutler et al., 1957, 1959, 1960a, b, 1967; Ederer et al.,
1961). Discussions of SMR, standardized rates, and related topics can be found
in many standard epidemiology textbooks: for example, Mausner and Kramer
(1985), Kahn (1983), Kelsey et al. (1986), Shryock et al. (1971), Chiang (1961),
and Mantel and Stark (1968).

EXERCISES

4.1 Consider the survival time of the 30 melanoma patients in Table 3.1.
(a) Compute and plot the PL estimates of the survivorship functions

S� (t) of the two treatment groups and check your results with Table
3.2 and Figure 3.1.
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Exercise Table 4.1

Number
Time from Number Lost Withdrawn Number Number
Diagnosis to Follow-up, Alive, Dying, Entering,
(yr) l

�
w
�

d
�

n�
�

0—5 18 0 731 949
5—10 16 0 52 200
10—15 8 67 14 132
15—20 0 33 10 43

(b) Compute the variance of S� (t) for every uncensored observation.
(c) Estimate the median survival times of the two groups.

4.2 Do the same as in Exercise 4.1 for the remission durations of the two
treatment groups in Table 3.1.

4.3 Compute and plot the PL estimates of the tumor-free time distributions
for the saturated fat and unsaturated fat diet groups in Table 3.4.
Compare your results with Figure 3.4.

4.4 Consider the remission data of 42 patients with acute leukemia in
Example 3.3.
(a) Compute and plot the PL estimates of S(t) at every time to relapse

for the 6-MP and placebo groups.
(b) Compute the variances of S� (10) in the 6-MP group and of S� (3) in

the placebo group.
(c) Estimate the median remission times of the two treatment groups.

4.5 (a) Compute the survival time for each patient in Exercise Table 3.1.
(b) Estimate and plot the overall survivorship function using the PL

method. What is the median survival time?
(c) Divide the patients into two groups by gender. Compute and plot

the PL estimates of the survivorship functions for each group. What
is the median survival time for each?

4.6 Consider the skin test results in Exercise Table 3.1. For each of the five
skin tests:
(a) Divide patients into two groups according to whether they had a

positive reaction. Measurements less than 10�10 (5�5 for mumps)
are considered negative.

(b) Estimate and plot the survivorship functions of the two groups.
(c) Can you tell from the plots if any skin tests might predict survival

time?

4.7 Consider the data of patients with cancer of the ovary diagnosed in
Connecticut from 1935 to 1944 (Cutler et al. 1960b). Exercise Table 4.1
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Exercise Table 4.2 Survival Data of Female Patients with Angina Pectoris

Year After Number Entering Number Lost to
Diagnosis Interval Follow-up Number Dying

0—1 555 0 82
1—2 473 8 30
2—3 435 8 27
3—4 400 7 22
4—5 371 7 26
5—6 338 28 25
6—7 285 31 20
7—8 234 32 11
8—9 191 24 14
9—10 153 27 13
10—11 113 22 5
11—12 86 23 5
12—13 58 18 5
13—14 35 9 2
14—15 24 7 3
15
 14 11 3

Source: R. L. Parker et al., JAMA, 131(2), 95—100 (1946). Copyright 1946. American Medical
Association.

reproduces the data in life-table format. Provide a life-table like Table
4.5. What do you find out?

4.8 Do a complete life-table analysis for the two sets of data given in Table
3.5. Plot the three survival functions.

4.9 Do a complete life-table analysis of the data given in Exercise Table 4.2.
Plot the three survival functions.

4.10 Consider the survival times of the melanoma patients in Exercise Table
3.4. Do a complete life-table analysis of the survival time. Plot the three
survival functions.

4.11 Consider the data given in Exercise Table 4.3. Compute the direct
standardized death rate for the states of Oklahoma and Montana using
the U.S. population of 1960 as the standard.

4.12 Given the population of Japan and Chile (Exercise Table 4.4), compute
the indirect standardized death rate for the two countries using the U.S.
death rate of 1960 in Table 4.11 as the standard.

104      



Exercise Table 4.3

Oklahoma Average Montana Average
Death Rate Death Rate

U.S. Population, Proportion, (per 1000) (per 1000)
Age 1960 (thousands) p

�
r
�

r
�


1 4,112 0.023 25.5 25.8
1—4 16,209 0.091 1.2 1.2
5—14 35,465 0.198 0.5 0.5
15—24 24,020 0.134 1.2 1.6
25—34 22,818 0.127 1.6 1.8
35—44 24,081 0.134 2.9 3.1
45—54 20,486 0.114 6.9 7.5
55—64 15,572 0.087 14.8 16.3
65—74 10,997 0.061 32.4 37.3
75—84 4,634 0.026 79.0 87.3
85
 929 0.005 190.4 202.8
Total 179,323 1.000

Source: Grove and Hetzel (1963).

Exercise Table 4.4

Population
(thousands)

Age Japan Chile


1 1,577 228
1—4 6,268 876
5—14 20,223 1,817
15—24 17,627 1,323
25—34 15,727 1,034
35—44 11,057 779
45—54 9,018 603
55—64 6,573 395
65—74 3,724 212
75—84 1,438 83
�85 188 22

———— ———
Total 93,419 7,374

Observed deaths 706,599 95,486

Source: Shryock et al. (1971).
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C H A P T E R 5

Nonparametric Methods for
Comparing Survival Distributions

The problem of comparing survival distributions arises often in biomedical
research. A laboratory researcher may want to compare the tumor-free times
of two or more groups of rats exposed to carcinogens. A diabetologist may
wish to compare the retinopathy-free times of two groups of diabetic patients.
A clinical oncologist may be interested in comparing the ability of two or more
treatments to prolong life or maintain health. Almost invariably, the disease-
free or survival times of the different groups vary. These differences can be
illustrated by drawing graphs of the estimated survivorship functions, but that
gives only a rough idea of the difference between the distributions. It does not
reveal whether the differences are significant or merely chance variations. A
statistical test is necessary.

In Section 5.1 we introduce five nonparametric tests that can be used for
data with and without censored observations. Section 5.2 is devoted to the
Mantel—Haenszel test, which is particularly useful in stratified analysis, a
method commonly used to take account of possible confounding variables. In
Section 5.3 we discuss the problem of comparing three or more survival
distributions with or without censoring.

5.1 COMPARISON OF TWO SURVIVAL DISTRIBUTIONS

Suppose that there are n
�

and n
�

patients who receive treatments 1 and 2,
respectively. Let x

�
, . . . , x

��
be the r

�
failure observations and x�

����
, . . . , x�

��
the

n
�
� r

�
censored observations in group 1. In group 2, let y

�
, . . . , y

��
be the r

�
failure observations and y�

����
, . . . , y�

��
the n

�
� r

�
censored observations. That

is, at the end of the study n
�
� r

�
patients who received treatment 1 and

n
�
� r

�
patients who received treatment 2 are still alive. Suppose that the

observations in group 1 are samples from a distribution with survivorship
function S

�
(t) and the observations in group 2 are samples from a distribution
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with survivorship function S
�
(t). Then null hypothesis to consider is

H
�

:S
�
(t) �S

�
(t) (treatments 1 and 2 are equally effective)

against the alternative

H
�
: S

�
(t) �S

�
(t) (treatment 1 more effective than 2)

or

H
�
: S

�
(t) �S

�
(t) (treatment 2 more effective than 1)

or

H
�
: S

�
(t) �S

�
(t) (treatments 1 and 2 not equally effective)

When there are no censored observations, standard nonparametric tests can
be used to compare two survival distributions. For example, the Wilcoxon
(1945) test or the Mann—Whitney (1947) U-test can test the equality of two
independent populations, and the sign test can be used for paired (or depend-
ent) samples (Marascuilo and McSweeney, 1977). In the following we introduce
five nonparametric tests: Gehan’s generalized Wilcoxon test (Gehan, 1965a,b),
the Cox—Mantel test (Cox 1959, 1972; Mantel, 1966), the logrank test (Peto
and Peto, 1972), Peto and Peto’s generalized Wilcoxon test (1972), and Cox’s
F-test (1964). All the tests are designed to handle censored data; data without
censored observations can be considered a special case.

5.1.1 Gehan’s Generalized Wilcoxon Test

In Gehan’s generalized Wilcoxon test every observation x
�

or x�
�

in group 1 is
compared with every observation y

�
or y�

�
in group 2 and a score U

��
is given

to the result of every comparison. For the purpose of illustration, let us assume
that the alternative hypothesis is H

�
: S

�
(t) �S

�
(t), that is, treatment 1 is more

effective than treatment 2.
Define

U
��
� �

�1 if x
�
� y

�
or x�

�
� y

�
0 if x

�
� y

�
or x�

�
� y

�
or y�

�
�x

�
or (x�

�
, y�

�
)

�1 if x
�
� y

�
or x

�
� y�

�

and calculate the test statistic

W �
���
���

���
���

U
��

(5.1.1)

where the sum is over all n
�
n
�

comparisons. Hence, there is a contribution to
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the test statistic W for every comparison where both observations are failures
(except for ties) and for every comparison where a censored observation is
equal to or larger than a failure. The calculation of W is laborious when n

�
and n

�
are large. Mantel (1967) shows that it can be calculated in an alternative

way by assigning a score to each observation based on its relative ranking. In
Gehan’s computation each observation in sample 1 is compared with each in
sample 2. If the two samples are combined into a single pooled sample of
n
�
� n

�
observations, it is the same as comparing each observation with the

remaining n
�
� n

�
� 1. Let U

�
, i� 1, . . . , n

�
� n

�
, be the number of remaining

n
�
� n

�
� 1 observations that the ith is definitely greater than minus the

number that it is definitely less than. The n
�
� n

�
U

�
’s define a finite population

with mean 0 and it is true that Gehan’s

W �
���
���

U
�

(5.1.2)

where summation is over the U
�

of sample 1 only. From either (5.1.1) or (5.1.2),
it is clear that W would be a large positive number if H

�
is true. Mantel also

suggests that the permutational variance of W be used instead of the more
complicated variance formula derived by Gehan. The permutational distribu-
tion of W can be obtained by considering all�

�
n
�
� n

�
n
�
��

(n
�
� n

�
)!

n
�
! n

�
!

ways of selecting n
�

of the U
�

at random. The test statistic W under H
�

can be
considered approximately normally distributed with mean 0 and variance�

Var(W ) �

n
�
n
�

������
���

U�
�

(n
�
� n

�
)(n

�
� n

�
� 1)

(5.1.3)

Since W is discrete, an appropriate continuity correction of 1 is ordinarily used
when there are neither ties nor censored observations. Otherwise, a continuity
correction of 0.5 would probably be appropriate.

Since W has an asymptotically normal distribution with mean zero and
variance in (5.1.3), Z�W/�Var(W ) has standard normal distribution. The
rejection regions are Z�Z� for H

�
, and Z� �Z� for H

�
, and �Z��Z�	� for

H
�

where P(Z �Z� �H�
) � �.

� n! is read n factorial: n! � n(n � 1)(n � 2) � 3.2.1.
� This is called the permutational variance because it is obtained by considering the per mutational
distribution of all (n

�
� n

�
)!/n

�
! n

�
!W ’s
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The number U
�

can be computed in two stages. For each observation, the
first stage yields, unity plus the number of remaining observations that it is
definitely larger than, that is, R

��
. The second stage yields R

��
, which is unity

plus the number of remaining observations that the particular observation is
definitely less than. Then U

�
�R

��
�R

��
. The computations of R

��
and R

��
can

be accomplished systematically in steps, as illustrated in the following hypo-
thetical example.

Example 5.1 Ten female patients with breast cancer are randomized to
receive either CMF (cyclic administration of cyclophosphamide, methatrexate,
and fluorouracil) or no treatment after a radical mastectomy. At the end of two
years, the following times to relapse (or remission times) in months are
recorded:

CMF (group 1): 23, 16�, 18�, 20�, 24�

Control (group 2): 15, 18, 19, 19, 20

The null hypothesis and the alternatives are

H
�
: S

�
� S

�
(the two treatments are equally effective)

H
�
: S

�
� S

�
(CMF more efficient than no treatment)

The computations of R
��

, R
��

, and U
�

are given in Table 5.1. Thus,
W � 1 � 2 � 5 � 4 � 6 � 18, Var(W ) � (5)(5)(208)/[(10)(9)] � 57.78, and
Z� 18/�57.78� 2.368. Suppose that the significance level used is �� 0.05,
Z

�
��
� 1.64; then the Z value computed is in the rejection region. Therefore,

we reject H
�

at 0.05 level and conclude that the data show that CMF is more
effective than no treatment. In fact, the approximate p value corresponding to
Z� 2.368 is 0.009.

Note that the sum of all n
�
� n

�
U

�
’s equals zero. This fact can be used to

check the computation.

5.1.2 Cox--Mantel Test

Let t
��


� · · ·� t
��


be the distinct failure times in the two groups together and
m

��

be the number of failure times equal to t

�
, or the multiplicity of t

�
, so that

�
�
���

m
��


� r
�
� r

�
(5.1.4)

Further, let R(t) be the set of people still exposed to risk of failure at time
t, whose failure or censoring times are at least t. Here R(t) is called the risk set
at time t. Let n

��
and n

��
be the number of patients in R(t) that belong to
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Table 5.1 Mantel’s Procedure of Calculating Ui for Gehan’s Generalized Wilcoxon Test

Observations of Two
Samples in Ascending
Order 15 16� 18 18� 19 19 20 20� 23 24�

Computation of R
��

Step 1. Rank from left to
right, omitting
censored
observations 1 2 3 4 5 6

Step 2. Assign next-higher
rank to censored
observations 2 3 6 7

Step 3. Reduce the rank
of tied observations
to the lower rank
for the value 3

Step 4. R
��

1 2 2 3 3 3 5 6 6 7

Computation ofR
��

Step 5. Rank from right
to left 10 9 8 7 6 5 4 3 2 1

Step 6. Reduce the rank of
tied observations to
the lowest rank for
the value 5

Step 7. Reduce the rank
of censored
observations to 1 1 1 1 1

Step 8. R
��

10 1 8 1 5 5 4 1 2 1
U

�
�R

��
�R

��
�9 1� �6 2� �2 �2 1 5� 4� 6�

� From group 1.

treatment groups 1 and 2, respectively. The total number of observations,
failure or censored in R(t

��

), is r

��

� n

��
� n

��
. Define

U� r
�
�

�
�
���

m
��

A

��

(5.1.5)

I�
�
�
���

m
��


(r
��


�m
��


)

r
��


� 1
A

��

(1 �A

��

) (5.1.6)

where r
��


is the number of observations, failure or censored, in R(t
��


) and A
��
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Table 5.2 Computations of Cox--Mantel Test

Number in Risk Set of:

Distinct Sample 1 Sample 2
Failure Time, t

�
m

��

n
��

n
��

r
��


A
��


15 1 5 5 10 0.5
18 1 4 4 8 0.5
19 2 3 3 6 0.5
20 1 3 1 4 0.25
23 1 2 0 2 0

is the proportion of r
��


that belong to group 2. An asymptotic two-sample test

is thus obtained by treating the statistic C�U/�I as a standard normal
variate under the null hypothesis (Cox, 1972). The following example illustrates
the procedure.

Example 5.2 Consider the remission data and the hypotheses in Example
5.1. There are k� 5 distinct failure times in the two groups, r

�
� 1 and r

�
� 5.

To perform the Cox—Mantel test, Table 5.2 is prepared for convenience:

U� 5 � (0.5 � 0.5 � 2 � 0.5 � 0.25)

� 5 � 2.25

� 2.75

I�
1�9

9
(0.5�0.5) �

1�7

7
(0.5�0.5) �

2�4

5
(0.5�0.5) �

1�3

3
(0.25�0.75)

� 0.25 � 0.25 � 0.4 � 0.1875

� 1.0875

Therefore, C� 2.75/�1.0875 � 2.637 �Z
�
��

� 1.64 and we reject H
�

at 0.05
level and reach the same conclusion as in Example 5.1. The p value correspond-
ing to Z� 2.637 is approximately 0.004.

5.1.3 Logrank Test

Mantel’s (1966) generalization of the Savage (1956) test, often referred to as the
logrank test (Peto and Peto, 1972), is based on a set of scores w

�
assigned to

the observations. The scores are functions of the logarithm of the survival
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function. Altshuler (1970) estimates the log survival function at t
��


using

�e(t
��


) �� �
j�t

��


m
��


r
��


(5.1.7)

where m
��


and r
��


are as defined in Section 5.1.2. The scores suggested by Peto
and Peto are w

�
� 1 � e(t

��

) for an uncensored observation t

��

and �e(T ) for

an observation censored at T. In practice, for a censored observation t�
�

,
w
�
��e(t

��

), where t

��

is the largest uncensored observation that t

��

� t�

�
.

Thus, the larger the uncensored observation, the smaller its score. Censored
observations receive negative scores. The w scores sum identically to zero for
the two groups together. The logrank test is based on the sum S of the w scores
of the two groups. The permutational variance of S is given by

Var(S) �
n
�
n
�
������

���
w�
�

(n
�
� n

�
)(n

�
� n

�
� 1)

(5.1.8)

which can be rewritten as

V ��
�
�
���

m
��


(r
��


�m
��


)

r
��


�
n
�
n
�

(n
�
� n

�
)(n

�
� n

�
� 1)

(5.1.9)

The test statistic L � S/�Var(S ) has an asymptotically standard normal
distribution under the null hypothesis. If S is obtained from group 1, the critical
region is L ��Z� , and if S is obtained from group 2, the critical region is
L �Z� , where � is the significance level for testing H

�
: S

�
� S

�
against

H
�

: S
�
�S

�
. The following example illustrates the computational procedures.

Example 5.3 Consider the data and hypotheses in Example 5.1. The test
statistic of the logrank test can be computed by tabulating m

��

, r

��

, m

��

/r

��

,

and e(t
��


) as in Table 5.3. Since every observation in the two samples, censored
or not, is assigned a score, it is convenient to list them in column 1. Columns
2 to 5 pertain only to the failure times; e(t

��

) is the cumulative value of m

��

/r

��

,

Altshuler’s (1970) estimate of the logarithm of the survivorship function
multipled by �1. For example, at t

��

� 18, e(t

��

) � 0.100 � 0.125 � 0.225; at

t
��


� 19, e(t
��


) � 0.225 � 0.333 � 0.558. The last column, w
�
, gives the score for

every observation. For an uncensored observation w
�
� 1 � e(t

��

), for example,

at t
�
� 18, w

�
� 1 � 0.225 � 0.775. Since e(t

��

) is an estimate of a function of

the survivorship function, which we assume to be constant between two
consecutive failures, e(t�

�
) is equal to e(t

��

) for t

��

� t�

�
. Thus w

�
for censored

observations t�
�

equals �e(t
��


), where t
��


� t�
�

. For example, w
�

for 16� is
�e(15), or �0.100, and that for 18� is �e(18), or �0.225. Tied observations
like the two 19’s receive the same score: 0.442. The 10 scores w

�
sum to zero,

which can be used to check the computation.
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Table 5.3 Computations of Logrank Test

Remission Times
in Both Samples,
t
�

m
��


r
��


m
��

/r

��

e(t

��

) w

�

15 1 10 0.100 0.100 0.900�

16� — — — — �0.100
18 1 8 0.125 0.225 0.775�

18� — — — — �0.225
19 2 6 0.333 0.558 0.442�

20 1 4 0.250 0.808 0.192�

20� — — — — �0.808
23 1 2 0.500 1.308 �0.308
24� — — — — �1.308

� From sample 2.

The statistic S� 0.900 � 0.775 � 0.442 � 0.442 � 0.192 � 2.751. The vari-
ance of S, computed by (5.8) is 1.210. Hence, the test statistic L � 2.751/

�1.210 � 2.5 and the p value is approximately 0.0064, data showing that CMF
treatment is superior. The logrank statistic S can be shown to equal the sum
of the failures observed minus the conditional failures expected computed at
each failure time, or simply the difference between the observed and expected
failures in one of the groups. A similar version of the logrank test is a
chi-square test which compares the observed number of failures to the expected
number of failures under the hypothesis. Let O

�
and O

�
be the observed

numbers and E
�

and E
�

the expected numbers of death in the two treatment
groups. The test statistic

X��
(O

�
�E

�
)�

E
�

�
(O

�
�E

�
)�

E
�

(5.1.10)

has approximately the chi-square distribution with 1 degree of freedom. A large
X� value (e.g., �X�

��
��
) would lead to the rejection of the null hypothesis in

favor of the alternative that the two treatments are not equally effective
(�� 0.05).

To compute E
�

and E
�

, we arrange all the uncensored observations in
ascending order and compute the deaths expected at each uncensored time and
sum them. The number of deaths expected at an uncensored time is obtained
by multiplying the deaths observed at that time by the proportion of patients
exposed to risk in the treatment group. Let d

�
be the number of deaths at time

t and n
��

and n
��

be the numbers of patients still exposed to risk of dying at
time up to t in the two treatment groups. The deaths expected for groups 1
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Table 5.4 Computation of E1 of Logrank Test

Relapse time, t d
�

n
��

n
��

e
��

e
��

15 1 5 5 0.5 0.5
18 1 4 4 0.5 0.5
19 2 3 3 1.0 1.0
20 1 3 1 0.75 0.25
23 1 2 0 1.0 0

Total 3.75 2.25

and 2 at time t are

e
��

�
n
��

n
��

� n
��

� d
�

e
��

�
n
��

n
��

� n
��

� d
�

(5.1.11)

Then the total numbers of deaths expected in the two groups are

E
�
� �

��� �

e
��

E
�
� �

��� �

e
��

In practice, we only need to compute the total number of deaths expected
in one of the two groups, for example, E

�
, since E

�
is the total observed number

of deaths minus E
�

. The following example illustrates the calculation pro-
cedure.

Example 5.4 Let us use the hypothetical data in Example 5.1 again. The
remission times in months are:

CMF (group 1): 23, 16�, 18�, 20�, 24�

Control (group 2): 15, 18, 19, 19, 20.

Consider the following null and alternative hypotheses:

H
�

:S
�
� S

�
(the two treatments are equally effective)

H
�

:S
�
� S

�
(the two treatments are not equally effective)

Table 5.4 gives the calculation of E
�
. For example, at t� 18, four patients

in group 1 and four in group 2 are still exposed to the risk of relapse, and there
is one relapse. Thus, d

�
� 1, n

��
� n

��
� 4, and e

��
� 0.5.

The total number of relapses expected is E
�
� 3.75. Since there are a total of

six deaths (O
�
� 1, O

�
� 5) in the two groups, E

�
� 6 � 3.75 � 2.25. Using
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(5.1.10), we have

X��
(1 � 3.75)�

3.75
�

(5 � 2.25)�

2.25
� 5.378

Using Table C-2, the p value corresponding to this X� value is less 0.05
(p� 0.02). Therefore, we reach the same conclusion: that there is a significant
difference in remission duration between the CMF and control groups.

Computer software is available to perform a number of two-sample tests
with censored observations. For example, SAS, SPSS, and BMDP provide
procedures for the logrank and Cox—Mantel tests. We use the remission time
of the 10 breast cancer patients in Example 5.1 to illustrate the use of these
software packages. To compare the two groups, we create the following three
variables: t, remission time; CENS � 0 if t is censored and 1 otherwise; and
TREAT � 1 if receiving CMF and �2 if no treatment. Assume that the data
have been saved in ‘‘C:�D5d1.DAT’’ as a text file, which contains three
columns, separated by a space (t is in the first column, CENS the second
column, and TREAT the third column), and the data in each row are for the
same patient. The following SAS code can be used to perform the logrank test.

data w1;
infile ‘c:�d5d1.dat’ missover;
input t cens treat;

run;
proc lifetest data � w1;

time t*cens(0);
strata treat;

run;

If BMDP procedure 1L is used, the following code can be used to perform
the Cox—Mantel test.

/input file � ‘c:�d5d1.dat’ .
variables � 3.
format � free.

/variable names � t, cens, treat.
/form time � t.

status � cens.
response � 1.

/group codes(treat) � 1, 2.
Names(treat)� treated, control.

/estimate method � product.
Group � treat.
Stat � mantel.

/end
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If procedure KM in SPSS is used, the following code can be used to perform
the Cox—Mantel test.

data list file � ‘c:�d5d1.dat’ free
/ t cens treat.

km t by treat
/status � cens event (1)
/test � logrank.

These codes can be modified to perform tests comparing more than two groups
simply by replacing TREAT in the codes with the group variable defined.

5.1.4 Peto and Peto’s Generalized Wilcoxon Test

Another generalization of Wilcoxon’s two-sample rank sum test is described by
Peto and Peto (1972). Similar to the logrank test, this test assigns a score to
every observation. For an uncensored observation t, the score is u

�
�

S	 (t�) �S	 (t�) � 1, and for an observation censored at T, the score is
u
�
� S	 (T ) � 1, where S	 is the Kaplan—Meier estimate of the survival function.

If we use the notation of Section 5.1.2, the score for an uncensored observation
t
��


is u
�
�S	 (t

��

) � S	 (t

����

) � 1 and S	 (t

��

) � 0 and that for a censored observa-

tion is t�
�

is u
�
� S	 (t

��

) � 1, where t

��

� t�

�
. These generalized Wilcoxon scores

sum to zero. The test procedure after the scores are assigned is the same as for
the logrank test. The following example illustrates the computational pro-
cedures.

Example 5.5 Using the same data and hypotheses as in Example 5.1, the
calculations of the scores u

�
for Peto and Peto’s generalized Wilcoxon test are

given in Table 5.5. Using the scores of group 1, we obtain

S� �0.100 � 0.212 � 0.605 � 0.408 � 0.803 ��2.128

Var(S) � (5)(5)
(0.9)� � �� (�0.803)�

10 � 9
� 0.765

Thus, Z��2.128/�0.765� �2.433 ��Z
�
��

��1.64. We reject H
�

at the
0.05 level and reach the same conclusion as in the last three examples: that the
data show that CMB is more effective than no treatment.

5.1.5 Cox’s F-test

Cox’s F-test (Cox, 1964) is based on ordered scores from the exponential
distribution. It is for singly censored or complete samples; it is not applicable
to progressively censored data. The procedure is as follows:

116      



Table 5.5 Computations of Peto and Peto’s
Generalized Wilcoxon Test

t
��


S	 (t) u
�

15 0.900 1 � 0.900 � 1 � 0.900
16� — 0.900 � 1 ��0.100�

18 0.788 0.900 � 0.788 � 1 � 0.688
18� — 0.788 � 1 ��0.212�

19 0.657 0.788 � 0.657 � 1 � 0.445
19 0.526 0.526 � 0.657 � 1 � 0.183
20 0.395 0.395 � 0.526 � 1 ��0.079
20� — 0.395 � 1 ��0.605�

23 0.197 0.197 � 0.395 � 1 ��04.08�

24� — 0.197 � 1 ��0.803�

� Group 1.

1. Rank the observations in the combined sample.

2. Replace the ranks by the corresponding expected order statistics in
sampling the unit exponential distribution [ f (t) � e��]. Denote by t

��
the

expected value of the rth observation in increasing order of magnitude,

t
��

�
1

n
���

1

n� r� 1
r� 1, . . . , n (5.1.12)

where n is the total number of observations in the two samples. In
particular,

t
��

�
1

n

t
��

�
1

n
�

1

n� 1




t
��

�
1

n
�

1

n� 1
� �� 1

(5.1.13)

For n not too large, they can easily be computed by using tables of
reciprocals. When two or more observations are tied, the average of the
scores is used.

3. For data without censored observations, the entire set of n observations
is replaced by the set of scores �t

��
� so obtained. The sample mean scores

denoted by t

�

and t

�

of the two samples with n
�
, n

�
observations are then

computed. The ratio t

�
/t

�

has been shown to follow an F distribution
with (2n

�
, 2n

�
) degrees of freedom. Critical regions for testing H

�
: S

�
�S

�
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against H
�

(S
�
�S

�
), H

�
(S

�
� S

�
), and H

�
(S

�
�S

�
) are, respectively,

t

�
/ t


�
�F

���������
, t


�
/ t


�
�F

���������� , and t

�
/t

�
�F

���������	�
or t


�
/

t

�
�F

�����������	� .

4. The calculation of F is slightly different for singly censored data. Let r
�

and r
�

be the number of failures and n
�
� r

�
and n

�
� r

�
the number of

censored observations in the two samples. Then there are p� r
�
� r

�
failures in the combined sample and n� p censored observations. Cox
(1964) suggests using the scores t

��
, . . . , t

	�
as before for the failures and

t
�	��
�

for all censored observations. The mean score, for example, for the
first group is

t

�
�

r
�
t
 �
�
� (n

�
� r

�
)t
�	��
�

r
�

(5.1.14)

where t
 �
�

is the mean score of the failures. The mean score for the second
group is calculated in a similar way. The F-statistic t


�
/t


�
, has an

approximate F-distribution with (2r
�

, 2r
�
) degrees of freedom.

This test is for the hypothesis that the two samples are from populations
with equal means. It can also determine if the second population mean is k
times the first population mean, for a given k, by dividing the observations in
the second sample by k before ranking and applying the test. The set of all
values k not rejected in such a significance test forms a confidence interval. The
following example illustrates the computation.

Example 5.6 In an experiment comparing two treatments (A and B) for
solid tumor, suppose that the question is whether treatment B is better than
treatment A. Six mice are assigned to treatment A and six to treatment B. The
experiment is terminated after 30 days. The following survival times in days are
recorded. Our null and alternative hypotheses are H

�
:S



�S

�
and

H
�

: S



�S
�

.

Treatment A: 8, 8, 10, 12, 12, 13

Treatment B: 9, 12, 15, 20, 30�, 30�

That is, all the mice receiving treatment A die within 13 days and two mice
receiving treatment B are still alive at the end of the study. Do the data provide
sufficient evidence that treatment B is more effective than treatment A?

To compute the test statistic, it is convenient to set up a table like Table 5.6.
The first column lists all the observations in the two samples. The second
column contains the ordered exponential scores t

��
. In this case, n

�
� 6, n

�
� 6,

n� 12, r
�
� 6, and r

�
� 4. The scores are computed following (5.1.12) and

(5.1.13). For example, t
��

for t
�
� 10 is equal to 1/12 � 1/11 � 1/10 � 1/9

or simply the previous t
��

plus 1/9, that is, 0.274 � 1/9 � 0.385. The
tied observations receive an average score: for example, for t

�
� 12,
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Table 5.6 Computations of Cox’s F-Test for Data in Example 5.6

t
��

of t
��

of
t
�

t
��

Sample A Sample B

8 �
��

� 0.0831 0.129 —

8 �
��

� �
��

� 0.174 � 0.129
0.129 —

9 �
��

� �
��

� �
��

� 0.174 � 0.100 � 0.274 — 0.274

10 0.274 ��
�
� 0.385 0.385 —

12 0.385 ��
�
� 0.510 0.661 —

12 0.510 ��
�
� 0.661 � 0.661 0.661 —

12 0.653 ��
�
� 0.820 — 0.661

13 0.820 ��
�
� 1.020 1.020 —

15 1.020 ��
�
� 1.270 — 1.270

20 1.270 ��
�
� 1.603 — 1.603

30� 1.603 ��
�
� 2.103 — 2.103

30� 2.103 — 2.103
——— ———
2.985 8.014

t
��

��
�

(0.510 � 0.653 � 0.820) � 0.661. The last two columns of Table 5.6 give
the scores for the two samples and the sums are entered at the bottom. Thus
t




� 2.985/6 � 0.498 and t

�
� 8.014/4 � 2.004 according to (5.1.14) and

F�
t



t

�

�
0.498

2.004
� 0.249

with (12, 8) degrees of freedom. The critical region is F�F
������
��

�

1/F
������
��

� 1/2.8486 � 0.351 for �� 0.05.� Hence, the data provide strong
evidence that treatment B is superior to treatment A.

5.1.6 Comments on the Tests

The tests presented in Sections 5.1.1 to 5.1.5 are based on rank statistics
obtained from scores assigned to each observation. The first four tests are
applicable to data with progressive censoring. They can be further grouped
into two categories: generalization of the Wilcoxon test (Gehan’s and Peto and
Peto’s) and the non-Wilcoxon test (Cox—Mantel and logrank test). In the
logrank test, if the statistic S is the sum of w scores in group 2, it is the same
as U of the Cox—Mantel test. This can be seen in Examples 5.2 (U� 2.75) and
5.3 (S� 2.751); the small discrepancy is due to rounding-off errors.

�F
�������

� 1/F
��������� .
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The only reason to choose one test over another in a given circumstance is
if it will be more powerful, that is, more likely to reject a false hypothesis. When
sample sizes are small (n, n

�
� 50), Gehan and Thomas (1969) show that Cox’s

F-test is more powerful than Gehan’s generalized Wilcoxon test if samples are
from exponential or Weibull distributions and if there are no censored
observations or the observations are singly censored. Comparisons of Gehan’s
Wilcoxon test to several other tests are reported by Lee et al. (1975). They
show that when samples are from exponential distributions, with or without
censoring, the Cox—Mantel and logrank tests are more powerful and more
efficient than the generalized Wilcoxon tests of Gehan and Peto and Peto.
There is little difference between the Cox—Mantel and logrank tests and
between the two generalized Wilcoxon tests. When the samples are taken from
Weibull distributions with a constant hazard ratio (i.e., the ratio of the two
hazard functions does not vary with time), the results are essentially the same
as in the exponential case. However, when the hazard ratio is nonconstant,
the two generalizations of the Wilcoxon test have more power than the other
tests. Thus, the logrank test is more powerful than the Wilcoxon tests in
detecting departures when the two hazard functions are parallel (proportional
hazards) or when there is random but equal censoring and when there is no
censoring in the samples (Crowley and Thomas, 1975). The generalized
Wilcoxon tests appear to be more powerful than the logrank test for detecting
many other types of differences, for example, when the hazard functions are not
parallel and when there is no censoring and the logarithm of the survival times
follow the normal distribution with equal variance but possibly different
means.

The generalized Wilcoxon tests give more weight to early failures than later
failures, whereas the logrank test gives equal weight to all failures. Therefore,
the generalized Wilcoxon tests are more likely to detect early differences in the
two survival distributions, whereas the logrank test is more sensitive to
differences in the right tails. Prentice and Marek (1979) show that Gehan’s
Wilcoxon statistic is subject to a serious criticism when censoring rates are
high. If heavy censoring exists, the test statistic is dominated by a small number
of early failures and has very low power.

There are situations in which neither the logrank nor Wilcoxon test is very
effective. When the two distributions differ but their hazard functions or
survivorship functions cross, neither the Wilcoxon nor logrank test is very
powerful, and it will be sensible to consider other tests. For example, Tarone
and Ware (1977) discuss general statistics of similar form (using scores) and
Fleming and Harrington (1979) and Fleming et al. (1980) present a two-sample
test based on the maximum of a Smirnov-type statistic designed to measure the
maximum distance between estimates of two distributions. The latter approach
is shown to be more effective than the logrank or Wilcoxon tests when two
survival distributions differ substantially for some range of t values, but not
necessarily elsewhere. These statistics have not been widely applied. Interested
readers are referred to the original papers.

120      



5.2 MANTEL--HAENSZEL TEST

The Mantel—Haenszel (1959) test is particularly useful in comparing survival
experience between two groups when adjustments for other prognostic factors
are needed. The test has been used in many clinical and epidemiological studies
as a method of controlling the effects of confounding variables. For example,
in comparing two treatments for malignant melanoma, it would be important
to adjust the comparison for a possible confounding variable such as stage of
the disease. In studying the association of smoking and heart disease, it would
be important to control the effects of age. To use the Mantel—Haenszel test,
the data are stratified by the confounding variable and cast into a sequence of
2�2 tables, one for each stratum.

Let s be the number of strata, n
��

be the number of individuals in group j,
j� 1, 2, and stratum i, i� 1, . . . , s, and d

��
be the number of deaths (or failures)

in group j and stratum i. For each of the s strata, the data can be represented
by a 2�2 contingency table:

Number of Number of
Group Deaths Survivors Total

1 d
��

n
��

� d
��

n
��

2 d
��

n
��

� d
��

n
��

Total D
�

S
�

T
�

The null hypothesis to be tested can be stated as

H
�

: p
��

� p
��

p
��

� p
��




p
��

� p
��

where p
��
�P (death � group j, stratum i ). Thus, the test permits simultaneous

comparison over all the s contingency tables of the difference in survival or
death probabilities for the two groups.

The chi-square test statistic without continuity correction� is given by

X��
[��

���
d
��

���
���

(d
��

)]�

��
���

Var(d
��

)
(5.2.1)

� According to Grizzle (1967), the distribution of X� without continuity correction is closer to the
chi-square distribution than the X� with continuity correction. His simulations show that the
probability of Type I error (rejecting a true hypothesis) is better controlled without the continuity
correction at �� 0.01, 0.05.
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where

E(d
��

) �
n
��
D

�
T
�

(5.2.2)

Var(d
��

) �
n
��
n
��
D

�
S
�

T �
�
(T

�
� 1)

(5.2.3)

are the mean and variance, respectively, of the number of deaths in group i
computed conditionally on the contingency table marginal totals. This statistic
follows the chi-square distribution with 1 degree of freedom. Thus, a computed
chi-square value larger than the table chi-square value for the significance level
chosen indicates a significant difference in survival between the two groups.
The following two examples illustrate the use of the test.

Example 5.7 Five hundred and ninety-five persons participate in a case
control study of the association of cholesterol and coronary heart disease
(CHD). Among them, 300 persons are known to have CHD and 295 are free
of CHD. To find out if elevated cholesterol is significantly associated with
CHD, the investigator decides to control the effects of smoking. The study
subjects are then divided into two strata: smokers and nonsmokers.

The following tables give the data for smokers:

Elevated
Cholesterol? With CHD Without CHD Total

Yes 120 20 140
No 80 60 140

Total 200 80 280

and for nonsmokers:

Elevated
Cholesterol? With CHD Without CHD Total

Yes 30 60 90
No 70 155 255

Total 100 215 315
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Using (5.2.2) and (5.2.3), we obtain

E(d
��

) �
140 � 200

280
� 100 E(d

��
) �

90 � 100

315
� 28.571

Var(d
��

) �
140 � 140 � 200 � 80

(280)�(280 � 1)
� 14.337

Var(d
��

) �
90 � 225 � 100 � 215

(315)�(315 � 1)
� 13.974

Using (5.2.1) and d
��

� 120, d
��

� 30, we have

X� �
(150 � 128.571)�

14.337 � 13.974
� 16.220

which is significant at the 0.001 level. Thus, elevated cholesterol is significantly
associated with CHD after adjusting for the effects of smoking.

Example 5.8 Table 5.7 gives survival data in life-table format of male cases
with localized cancer of the rectum in Connecticut for 1935—1944 and
1945—1954. We use Mantel and Haenszel’s chi-square test to see if the survival
distribution of patients diagnosed in 1935—1944 is the same as for patients
diagnosed in 1945—1954. The null hypothesis is that the two survival distribu-
tions are the same. It is not necessary to set up 10 contingency tables for the
10 intervals. The chi-square value is easily calculated by constructing columns
7 to 12 directly from the life table. Using the sums in columns 1, 10, and 12,
we obtain

X��
(330.0 � 246.50)�

132.491
� 52.624

which is significant at the 0.001 level. Thus, the data show a significant
difference between the survival distributions of patients diagnosed in 1935—
1944 and 1945—1954.

It should be noted that this chi-square test statistic, when applied to life
tables, gives more weight to those deaths that occur in an early time interval
rather than later. That is, if the two groups are subject to the same probability
of surviving through the entire study period, (5.2.1)—(5.2.3) will give high
mortality for the group in which early deaths occur. Mantel (1966) gives the
following illustration.

Consider two groups of 100 persons each. Both have 50 deaths. In group 1
all deaths occur in the first interval, and in group 2 all deaths occur in the
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second interval. The contingency table for the first interval is:

Group Deaths Survivors Total

1 50 50 100
2 0 100 100

Total 50 150 200

and for the second interval is:

Group Deaths Survivors Total

1 0 50 50
2 50 50 100

Total 50 100 150

From these two tables we have E(d
��

) � 100�50/200 � 25 and E(d
��

) �

100�50/150 � 16.67. The total deaths expected is 25 � 16.67 � 41.67, so the
50 deaths in group 1 is 20% larger than expected. Thus, a significant chi-square
value may be obtained if early survival patterns differ significantly in the two
groups.

5.3 COMPARISON OF K (K � 2) SAMPLES

In this section the two-sample problem is generalized to a situation in which
the data consist of K (K � 2) samples, one sample from each of the K
treatment populations. The problem is to decide whether the K independent
samples can be regarded as coming from the same population, or in practical
terms, to see if the survival data from patients receiving the K treatments
provide enough evidence to conclude that the K treatments are not equally
effective. This problem has been considered by many statisticians: for example,
Kruskal and Wallis (1952), Mantel and Haenszel (1959), Breslow (1970), and
Peto and Peto (1972). In this section two nonparametric tests for the problem
are presented. The first is Kruskal and Wallis’s (1952) H-test for uncensored
data. The second is a generalization of the H-test for censored data (Peto and
Peto, 1972). Both use ranks instead of the original observations and are simple
to apply.

5.3.1 Kruskal--Wallis Test

The Kruskal—Wallis H-test (Kruskal and Wallis, 1952; Hollander and Wolfe,
1973; Marascuilo and McSweeney, 1977), analogous to the F-test in the usual
analysis of variance, uses ranks rather than original observations; it is also
called the Kruskal—Wallis one-way analysis of variance by ranks. It assumes
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that the variable (survival time) under study has an underlying continuous
distribution.

Let N be the total number of independent observations in the K samples,
n
�

the number of observations in the jth sample, j� 1, . . . , K, and t
��

the ith
observation in the j th sample. The null hypothesis H

�
states that the K samples

come from the same population (or clinically, the K treatments are equally
effective).

In computation of the Kruskal—Wallis H-test, we first rank all N observa-
tions from smallest to largest. Let r

��
be the rank of t

��
. Compute, for j� 1, . . . , K,

R
�
�

��
�
���

r
��

R

�
�

R
�

n
�

R
 �
1

2
(N � 1) (5.3.1)

where R
�

and R

�

are, respectively, the sum of the ranks and the average rank
of the j th treatment, and R
 is the overall average rank. Then the Kruskal—
Wallis H-statistic is

H�
12

N(N � 1)



�
���

n
�
(R


�
�R
 )� (5.3.2)

�
12

N(N � 1)



�
���

R�
�

n
�

� 3(N � 1) (5.3.3)

Under the null hypothesis, H has an asymptotic (n
�
’s approaching infinity or

n
�
’s are large) chi-square distribution with K� 1 degrees of freedom. Thus, for

large n
�
’s, the approximate test procedure at the � level is to reject H

�
if

H���
����
�� . When K� 3 and the number of observations in each of the three

samples is 5 or fewer, the chi-square approximation is not sufficiently close. For
such cases, exact permutational distributions of H are available and percentage
points �

�
are given in Table B-4 of Appendix B. The test procedure is to reject

H
�

if H� �
��� , where �

��� satisfies the equation P(H ��
��� �H�

) � �.
When there are tied observations, each is assigned the average of the ranks.

To correct for the effects of ties, H is computed by (5.3.3) and then divided by

1 �
1

N��N

�
�
���

T
�

(5.3.4)

where g is the number of tied groups, and T
�
� t�

�
� t

�
, with t

�
being the number

of tied observations in a tied group. In counting g, an untied observation is
considered as a tied group of size 1. Thus, a general expression of H corrected
for ties is

H�
[12/N(N� 1)] ��

���
(R�

�
/n

�
) � 3(N � 1)

1 ���
���

T
�
/(N� �N)

(5.3.5)
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Table 5.8 Cholesterol Values of 12 Subjects on Three
Different Diets

Diet 1 Diet 2 Diet 3

229 145 231
176 181 208
187 147 217
208 187 199

Table 5.9 Computation of H for Data in Example 5.9

Ordered Ranks of Ranks of Ranks of
Observations Ranks Diet 1 Diet 2 Diet 3

145 1 — 1
147 2 — 2
176 3 3
181 4 — 4
187 5.5 — 5.5
187 5.5 5.5
199 7 — — 7
208 8.5 8.5
208 8.5 — — 8.5
217 10 — — 10
229 11 11
231 12 — — 12

R
�

28 12.5 37.5

Note that when there are no ties, g�N, t
�
� 1 for all j, and T

�
� 0, and (5.3.5)

reduces to (5.3.3). The following example illustrates the use of the test.

Example 5.9 In a study of the relationship between cholesterol level and
diet, three diets are given randomly to 12 men whose initial cholesterol levels
are almost the same. Table 5.8 shows the cholesterol levels of the 12 people
after having their assigned diet for a given period of time. The purpose of the
study is to decide if the three diets are equally effective in controlling
cholesterol level.

The null hypothesis H
�

states that there is no difference in cholesterol level
of men having the three diets, and the alternative H

�
says that the cholesterol

levels of men having the three different diets are different. To compute the
H-statistic, we first rank the observations as in Table 5.9 and compute R

�
. In

this case N� 12, n
�
� n

�
� n

�
� 4, g� 10, and T

�
� 0 except for j� 5, 7.
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Hence, ��
���

T
�
� 2(8 � 2) � 12, and by (5.3.5),

H�
[12/(12�13)](784/4 � 156.25/4 � 1406.25/4) � 3(13)

1 � 12/(1728 � 12)
� 6.168

From Table B-4 we find that P(H�6.038 �H
�

)�0.037 and P(H�6.269 �H
�
)

�0.033; we reject H
�

at the �� 0.035 level. There is evidence of significant
differences among the diets.

5.3.2 Multiple Comparisons Based on the Kruskal--Wallis Test

If the null hypothesis that the K samples are from the same distribution is
rejected, we might ask which particular samples are from different distribu-
tions. In Example 5.9 we reject the null hypothesis that the three diets are
similar. The investigator may also be interested in knowing which particular
diets differ from one another. In this section we introduce some nonparametric
methods for multiple comparison based on Kruskal—Wallis rank sums. An
excellent treatment of multiple comparisons is given by Miller (1966).

To decide which treatments differ from one another, there are �
�
K(K � 1)

decisions to make, one for each pair of treatments. The null hypothesis can be
written as

H
�
: samples i and j are from the same population for

i� 1, . . . , K� 1, j� i� 1, . . . , K, i� j

Let the probability of at least one wrong decision when H
�

is true be controlled
by � and the probability of making all correct decisions when H

�
is true be

1 � �. To make the �
�
K(K � 1) decisions, we introduce the following compari-

son procedures.

1. When sample sizes are equal, that is, n
�
� n

�
��� n



� n, and n is

small, we reject the hypothesis that the ith and jth samples, i� j, are from
the same distribution if

�R
�
�R

�
�� y(�, K, n) (5.3.6)

where y(�, K, n) satisfies the equation

P(�R
�
�R

�
� � y(�, K, n) �H

�
, i� j ) � 1 � � (5.3.7)

and R
�
, R

�
, . . . , R



are given in (5.3.1). Some approximate values of y are

given in Table B-5.

2. When sample sizes are equal to n and n is large, we introduce Miller’s
(1966) procedure, that is, to reject the hypothesis that the ith and j th
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Table 5.10 Multiple Comparisons for Data in
Example 5.9

i j �R
�
�R

�
� Decision

1 2 �28 � 12.5�� 15.5 Not significant
1 3 �28 � 37.5�� 9.5 Not significant
2 3 �12.5 � 37.5�� 25.0 Significant

samples, i� j, are from the same distribution if

�R

�
�R


�
� � q(a, K)[ �

��
K(Kn � 1)]�	� (5.3.8)

where R

�

, . . . , R




are given in (5.3.1) and q(�, K) is the upper � percentile
point of the range of K independent standard normal variables. Table
B-6 gives the q(�, K) values for some K and �.

3. For cases of small unequal sample sizes n
�
, . . . , n



, a conservative

procedure is to reject the hypothesis that the ith and jth samples, i� j,
are from the same distribution if

�R

�
�R


�
� � (x��
)�	� �

1

12
N(N � 1)�

�	�

�
1

n
�

�
1

n
�
�
�	�

(5.3.9)

where N is the total number of observations. Values of x
��


are given in
Table B-4.

4. When n
�
, . . . , n



are large, Dunn (1964) suggests the following procedure.

Reject the hypothesis that the ith and jth samples, i� j, are from the
same distribution if

�R

�
�R


�
��Z�	�
�
��
� �

1

12
N(N� 1)�

�	�

�
1

n
�

�
1

n
�
�
�	�

(5.3.10)

where Z�	�
�
��
�
is the upper 100�/[K(K � 1)] percentage point of the

standard normal distribution (see Table B-1).

Example 5.10 Let us use the data in Example 5.9. To examine which
particular diets differ from one another, we apply (5.3.6). Since K� 3, there are
three possible comparisons. The calculation is shown in Table 5.10. For K� 3,
n� 4, and from Table B-5, y(0.045, 3, 4) � 24; hence for (i, j ) � (2, 3), (5.3.6) is
satisfied. Thus, at �� 0.045, we conclude that diets 2 and 3 are significantly
different.
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Table 5.11 Initial Remission Times of Leukemia Patients

1 2 3

4, 5, 9, 10, 12, 13, 10, 8, 10, 10, 12, 14, 8, 10, 11, 23, 25, 25,
23, 28, 28, 28, 29 20, 48, 70, 75, 99, 103, 28, 28, 31, 31, 40,
31, 32, 37, 41, 41, 162, 169, 195, 220, 48, 89, 124, 143,
57, 62, 74, 100, 139, 161�, 199�, 217�, 12�, 159�, 190�, 196�,
20�, 258�, 269� 245� 197�, 205�, 219�

5.3.3 Test for Censored Data

In Section 5.1 we introduced three nonparametric tests based on scores for
comparing two samples with censored observations; Gehan’s generalized
Wilcoxon test (if Mantel’s procedure is used), Peto and Peto’s generalized
Wilcoxon test, and the logrank test. The K-sample test discussed in this section
can be considered an extension of these tests and the Kruskal—Wallis test.

Suppose that we have a set of N scores w
�
, w

�
, . . . , w

�
obtained according

to the manner of scoring in one of the three tests mentioned above. The sum
of the N scores is zero. Let S

�
be the sum of the scores in the j th sample. The

null hypothesis H
�

states that the K samples are from the same distribution.
To test H

�
we calculate

X��
�

���

(S�
�
/n

�
)

s�
(5.3.11)

where

s��
��

���
w�
�

N� 1
(5.3.12)

Under the null hypothesis X� has approximately chi-square distribution with
K� 1 degrees of freedom (Peto and Peto, 1972). Thus, we reject H

�
if X�

exceeds the upper 100� percentage point of the chi-square distribution with
K� 1 degrees of freedom, that is, if X� ���

����
�� .
Example 5.11, using the scoring method of Mantel (1967) for Gehan’s

generalized Wilcoxon test, illustrates the K-sample test for censored data.

Example 5.11 Consider the initial remission times of leukemia patients (in
days) induced by three treatments as given in Table 5.11. In this case, K� 3,
N� 66, n

�
� 25, n

�
� 19, and n

�
� 22. A table similar to Table 5.1 may be set

up to compute the score for every observation. The computation is left to the
reader as an exercise. The sums of scores in the three samples are S

�
��273,

S
�
� 170, and S

�
� 103. The sum of squares of the scores �w�

�
� 89,702.

Hence, from (5.3.11) and (5.3.12), X�� 3.612. From Table B-2, ��
���
��

� 5.991;
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thus we do not reject H
�
. The data do not show significant differences among

the three initial treatments.

Bibliographical Remarks

Gehan’s test was first proposed in 1965. The Cox—Mantel test was first
discussed by Cox in 1959, then by Mantel in 1966, and finally, by Cox again
in 1972. The scores for the logrank test was proposed by Peto and Peto in 1972
along with another generalization of the Wilcoxon test. In the same paper, they
also discuss the K-sample test for censored data. The logrank test is also
discussed in Peto et al. (1977). Cox’s F-test was developed in 1964 and the
Mantel—Haenszel chi-square test can be found in Mantel and Haenszel (1959)
and Mantel (1966). The Kruskal—Wallis one-way analysis of variance can be
found in most standard textbooks under nonparametric methods. Readers who
are interested in the theoretical development or more properties of these tests
should read the original papers cited above. Applications of these tests are
given in the original papers or can easily be found in medical and epidemiologi-
cal journals.

EXERCISES

The first five exercises are continuations of Exercises 4.1 to 4.4 and 4.6.

5.1 For the survival times given in Table 3.1, compare the survival distribu-
tions of the two treatment groups using:
(a) Gehan’s generalized Wilcoxon test
(b) The Cox—Mantel test

5.2 For the remission data given in Table 3.1, compare the remission time
distributions of the two treatment groups using:
(a) The logrank test
(b) Peto and Peto’s generalized Wilcoxon test

5.3 For the data given in Table 3.4, compare the tumor-free time distribu-
tions of the three diet groups.

5.4 For the remission data of 42 leukemia patients given in Example 3.3, use
the two generalized Wilcoxon tests to see if 6-MP is more effective than
placebo in prolonging remission time.

5.5 For the first four skin tests given in Exercise Table 3.1, use the
Cox—Mantel and logrank tests to see if there is a significant difference in
survival between patients with positive (�5 mm for mumps,�10 mm for
others) and negative (�5 mm for mumps, �10 mm for others) reactions.
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Exercise Table 5.1

Percentage of Male Female
Standard
BMI� Case Control Case Control

�140 130 160 60 65
�140 85 55 55 50

� Standard BMI: male, 22.1; female, 20.6. Percentage of standard
BMI � (observed BMI/standard BMI)�100.

Exercise Table 5.2

1 2 3

10.5 10.0 12.0
9.0 12.0 13.0
9.5 12.5 15.5
9.0 11.0 14.0
8.5 12.0 12.5

10.0 10.5 15.0

5.6 Compute the test statistic W of Gehan’s generalized Wilcoxon test by
using (5.1.1) for the data in Example 5.1. Do you get the same result as
in Example 5.1?

5.7 Consider the data in Example 5.11. Use Mantel’s procedure for Gehan’s
generalized Wilcoxon test to compute a score for each observation and
the sum of scores for each of the three treatment groups.

5.8 Using the data in Table 3.1, compare the age distributions of the two
treatment groups using Cox’s F-test.

5.9 Consider the data in Exercise Table 5.1. Is elevated percent standard
BMI associated with renal cell carcinoma after controlling the effects of
gender?

5.10 Consider the survival data of men with angina pectoris in Table 4.6 and
women with the same disease in Exercise Table 4.2. Is there a significant
difference between the survival distributions of men and women?

5.11 In a study of noise level and efficiency, 18 students were given a very
simple test under three different noise levels. It is known that under
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Exercise Table 5.3

1 2 2 3

4 1 3 5
5 4 7 15
9 9 14 20

12 12 20 31
20� 15 27 39
25 23 30 47
30� 30 32� 55�

50� 67�

normal conditions, they should be able to finish the test in 10 minutes.
The students were randomly assigned to the three levels. Exercise Table
5.2 gives the time required to finish the test. Are the three noise levels
significantly different? If they are, determine which levels differ from one
another.

5.12 Exercise Table 5.3 gives the survival time in weeks of 30 brain tumor
patients receiving four different treatments. Are the four treatments
equally effective?
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CHAPTER 6

Some Well-Known Parametric
Survival Distributions
and Their Applications

Usually, there are many physical causes that lead to the failure or death of a
person at a particular time. It is very difficult, if not impossible, to isolate these
physical causes and account mathematically for all of them. Therefore, choos-
ing a theoretical distribution to approximate survival data is as much an art
as a scientific task. In this chapter, several theoretical distributions that have
been used widely to describe survival time are discussed, their characteristics
summarized, and their applications illustrated.

6.1 EXPONENTIAL DISTRIBUTION

The simplest and most important distribution in survival studies is the
exponential distribution. In the late 1940s, researchers began to choose the
exponential distribution to describe the life pattern of electronic systems. Davis
(1952) gives a number of examples, including bank statement and ledger error,
payroll check errors, automatic calculating machine failure, and radar set
component failure, in which the failure data are well described by the
exponential distribution. Epstein and Sobel (1953) report why they select the
exponential distribution over the popular normal distribution and show how
to estimate the parameter when data are singly censored. Epstein (1958) also
discusses in some detail the justification for the assumption of an exponential
distribution. The exponential distribution has since continued to play a role in
lifetime studies analogous to that of the normal distribution in other areas of
statistics.
The exponential distribution is often referred to as a purely random failure

pattern. It is famous for its unique ‘‘lack of memory,’’ which requires that the
age of the animal or person does not affect future survival. Although many
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Figure 6.1 Exponential distribution: (a) survivorship function; (b) probability density
function; (c) hazard function.

survival data cannot be described adequately by the exponential distribution,
an understanding of it facilitates the treatment of more general situations.
The exponential distribution is characterized by a constant hazard rate �,

its only parameter. A high � value indicates high risk and short survival; a low
� value indicates low risk and long survival. Figure 6.1 depicts the survivorship
function, the density function, and the hazard function of the exponential
distribution with parameter �. When � � 1, the distribution is often referred to
as the unit exponential distribution.
When the survival time T follows the exponential distribution with a

parameter �, the probability density function is defined as

f (t)� �
�e���
0

t� 0, �� 0

t� 0
(6.1.1)

The cumulative distribution function is

F(t)� 1� e��� t� 0 (6.1.2)

and the survivorship function is then

S(t) � e��� t� 0 (6.1.3)

So that, by (2.2.1), the hazard function is

h(t)� � t� 0 (6.1.4)

a constant, independent of t. Figure 6.1 gives the graphical presentation of the
three functions.
Because the exponential distribution is characterized by a constant hazard

rate, independent of the age of the person, there is no aging or wearing out,
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and failure or death is a random event independent of time. When natural
logarithms of the survivorship function are taken, log S(t)���t, which is a
linear function of t. Thus, it is easy to determine whether data come from an
exponential distribution by plotting log S� (t) against t, where S� (t) is an estimate
of S(t). A linear configuration indicates that the data follow an exponential
distribution and the slope of the straight line is an estimate of the hazard rate �.
The mean and variance of the exponential distribution with parameter � are,

respectively, 1/� and 1/��. The median is (1/�) log 2. The coefficient of variation
is 1.
A more general form of the exponential distribution is the two-parameter

exponential distribution with probability density function

f (t)��
�e�������

0

t�G

t�G
(6.1.5)

Then

F(t)� �
1� e�������

0

t�G

t�G
(6.1.6)

S(t)� �
e�������

0

t�G

t�G
(6.1.7)

and

h(t)��
0

�
0� t�G

t�G
(6.1.8)

The term G is a guarantee time within which no deaths or failures can occur,
or a minimum survival time. If G� 0, (6.1.5) —(6.1.8) reduce to (6.1.1)—
(6.1.4) for the one-parameter exponential. The mean and the median of the
two-parameter exponential distribution are, respectively, G� 1/� and
(log 2� �G)/�.

Example 6.1 In a study of new anticancer drugs in the L1210 animal
leukemia system, Zelen (1966) used the exponential distribution successfully as
the model for survival time. The system consists of injecting a tumor inoculum
into inbred mice. These tumor cells then proliferate and eventually kill the
animal, but survival time may be prolonged by an active drug. Figure 6.2
shows the survival curve in a semilogarithmic scale of the untreated mice
inoculated at different cell dilutions. Twenty-five mice were inoculated at each
dilution. The reasonably linear configurations suggest that the survival dis-
tributions follow the exponential distribution quite well. The four straight lines
fitted to the points are almost parallel, indicating that the hazard rate was
independent of the inoculum size. Table 6.1 gives the estimated values of the
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Figure 6.2 Survival curves of untreated mice inoculated with serial 10-fold dilutions of
leukemia L1210: (�) 10� cells; (�) 10	 cells; (�) 10
 cells; (�) 10� cells. (From Zelen,
1966.)

Table 6.1 Estimates of G, �, and Mean Survival Time
for Untreated Mice with Serial Leukemia Dilutions

Dilution G� �� Mean Survival Time

10� 8.0 0.78 9.3
10	 10.0 0.78 11.3
10
 11.9 0.76 13.2
10� 13.9 0.67 15.4

Source: Zelen (1966).

guarantee times G, hazard rates �, and the mean survival times (in days) for
the various dilutions. (Estimation procedures are discussed in Chapter 7.) Note
that the estimated hazard rates, �, are very close.
The probability that a mouse receiving 10� cells of inoculum will survive

more than 20 days is, from (6.1.7),

S(20) � e���
�������� 0.0001

and the median survival time is 8.9 days.
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Figure 6.3 Survival curves of mice treated with cyclophosphamide on day 3 after
inoculation of 10� tumor cells: (�) control; (�) 80mg/kg; (�) 160mg/kg. (From Zelen,
1966.)

Figure 6.3 gives the survival curves of mice treated with different doses of
cyclophosphamide on day 3 after receiving a 10� tumor inoculum. Table 6.2
gives the estimates of G, �, and the mean survival time. Mice receiving 160
mg/kg of the drug show a remarkably improved surivival pattern over the
control group.
The probability that a mouse receiving 80 mg/kg of cyclophosphamide will

survive more than 20 days is, from (6.1.7),

S(20)� e��������������� 0.279

The median survival time is approximately 18 days.

6.2 WEIBULL DISTRIBUTION

The Weibull distribution is a generalization of the exponential distribution.
However, unlike the exponential distribution, it does not assume a constant
hazard rate and therefore has broader application. The distribution was
proposed by Weibull (1939) and its applicability to various failure situations
discussed again by Weibull (1951). It has then been used in many studies of
reliability and human disease mortality.
The Weibull distribution is characterized by two parameters, � and �. The

value of � determines the shape of the distribution curve and the value of �
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Table 6.2 Estimates of G, �, and Mean Survival Time
for Treated Mice on Day 3

Dose (mg/kg) G� �� Mean Survival Time

Control 8.7 1.12 9.6
80 15.6 0.29 19.0
160 21.5 0.10 31.5

Source: Zelen (1966).

Figure 6.4 Hazard functions of Weibull distribution with �� 1.

determines its scaling. Consequently, � and � are called the shape and scale
parameters, respectively. The relationship between the value of � and survival
time can be seen from Figure 6.4, which shows the hazard rate of the Weibull
distribution with �� 0.5, 1, 2, 4. When �� 1, the hazard rate remains constant
as time increases; this is the exponential case. The hazard rate increases when
�� 1 and decreases when �� 1 as t increases. Thus, the Weibull distribution
may be used to model the survival distribution of a population with increasing,
decreasing, or constant risk. Examples of increasing and decreasing hazard
rates are, respectively, patients with lung cancer and patients who undergo
successful major surgery.
The probability density function and cumulative distribution functions are,

respectively,

f (t) � ��(�t)���e����� � t� 0, �, �� 0 (6.2.1)
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Figure 6.5 Density curves of Weibull distribution with �� 1.

and

F(t)� 1� e������ (6.2.2)

The survivorship function is, therefore,

S(t)� e������ (6.2.3)

and the hazard function, the ratio of (6.2.1) to (6.2.3), is

h(t) � ��(�t)��� (6.2.4)

Figure 6.5 gives the Weibull density function with scale parameter �� 1 and
several different values of the shape parameter �.
For the survival curve, it is simple to plot the logarithm of S(t),

logS(t) ��(�t)� (6.2.5)

Figure 6.6 gives log S(t) for �� 1 and �� 1,�1,�1. When �� 1 is a straight
line with negative slope. When �� 1, negative aging, logS(t) decreases very
slowly from 0 and then approaches a constant value. When � � 1, positive
aging, logS(t) decreases sharply from 0 as t increases. Equation (6.2.5) can also
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Figure 6.6 Curves of log
�
S(t) of Weibull distribution with �� 1.

be written as

log[�logS(t)]� � log
�
�� � log

�
t (6.2.6)

The mean of the Weibull distribution is

��
	(1� 1/�)

�
(6.2.7)

and the variance is


��
1

�� �	 �1�
2

���	� �1�
1

��� (6.2.8)

where 	(�) is the well-known gamma function defined as

	(�) ��
�

�

x���e��dx

� (� � 1)! when � is a positive integer (6.2.9)

Values of 	(�) can be found in Abramowitz and Stegun (1964). The coefficient
of variation is then

CV� �
	(1� 2/�)
	�(1� 1/�)

� 1�
���

(6.2.10)

The Weibull distribution can also be generalized to take into account a
guarantee time G during which no deaths or failures can occur. The three-
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Figure 6.7 Survival curves of rats exposed to carcinogen DMBA. (From Pike, 1966.
Reproduced with permission of the Biometrics Society.)

parameter Weibull probability density function is

f (t)� ���(t �G)��� exp[���(t �G)�] (6.2.11)

Consequently,

S(t)� exp[���(t �G)�] (6.2.12)

and

h(t)� ���(t �G)��� (6.2.13)

Example 6.2 Pike (1966) applied the Weibull distribution to a two-group
experiment on vaginal cancer in rats exposed to the carcinogen DMBA. The
two groups were distinguished by pretreatment regime. The times in days, after
the start of the experiment, at which the carcinoma was diagnosed for the two
groups of rats were as follows:

Group 1: 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230,

234, 246, 265, 304, 216�, 244�

Group 2: 142, 156, 173, 198, 205, 232, 232, 233, 233, 233, 233, 239, 240,

261, 280, 280, 296, 296, 323 204�, 344�

Assuming that G� 100 and � � 3, Pike obtained ��
�
� (4.51�10�
)��
 for

group 1 and ��
�
� (2.38�10�
)��
 for group 2. Analytical estimation procedure

is discussed in Chapter 7. Figure 6.7 plots the survival curves of the two groups.
The step functions are nonparametric estimates similar to the Kaplan—Meier

142 -   



Table 6.3 Calculation of Survivorship Functions for Group 2 of Rats Exposed to DMBA

Kaplan— Modified
Meier Kaplan—Meier S� (t) Obtained

Estimates, Estimates�, from Weibull
Time r n� r� 1

n� r

n� r� 1 S� (t) S� (t) Plotted Fit

142 1 21 0.9524 0.9524 0.9546 0.9825
156 2 20 0.9500 0.9048 0.9091 0.9590
163 3 19 0.9474 0.8572 0.8637 0.9421
198 4 18 0.9444 0.8095 0.8182 0.7990
204� — 17 1.0000 0.8095 0.8182 0.7647
205 6 16 0.9375 0.7589 0.7700 0.7588
232 7 15 0.9333 0.7083 0.7218 0.5778
232 8 14 0.9286 0.6577 0.6737 0.5778
232 9 13 0.9231 0.6071 0.6255 0.5706
233 10 12 0.9167 0.5565 0.5773 0.5706
233 11 11 0.9091 0.5059 0.5292 0.5706
233 12 10 0.9000 0.4553 0.4810 0.5706
239 13 9 0.8888 0.4047 0.4320 0.5271
240 14 8 0.8750 0.3541 0.3847 0.5198
261 15 7 0.8571 0.3035 0.3365 0.3697
280 16 6 0.8333 0.2529 0.2883 0.2489
280 17 5 0.8000 0.2023 0.2402 0.2489
296 18 4 0.7500 0.1517 0.1920 0.1660
296 19 3 0.6667 0.1011 0.1439 0.1660
323 20 2 0.5000 0.0506 0.0958 0.0710
344� — 1 1.0000 0.0506 0.0958 0.0313

� Instead of (n � r)/(n � r� 1), Pike uses (n � r� 1)/(n � r� 2) in the Kaplan—Meier product-
limit estimate to avoid (n � r)/(n � r� 1)� 0.

Source: Pike (1966). Reproduced with permission of the Biometric Society.

estimate. The smooth curves are obtained from the Weibull fits. Table 6.3
shows the calculation of the plotting points for group 2.
It is obvious that the Weibull distributions with G� 100, � � 3,

��
�
� (4.51�10�
)��
, and ��

�
� (2.38�10�
)��
 fit the carcinoma-free time of

the two groups of rats very well.

6.3 LOGNORMAL DISTRIBUTION

In its simplest form the lognormal distribution can be defined as the distribu-
tion of a variable whose logarithm follows the normal distribution. Its origin
may be traced as far back as 1879, when McAlister (1879) described explicitly
a theory of the distribution. Most of its aspects have since been under study.
Gaddum (1945a, b) gave a review of its application in biology, followed by
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Figure 6.8 Hazard of the lognormal distribution with different parameters.

Boag’s (1949) applications in cancer research. Its history, properties, estimation
problems, and uses in economics have been discussed in detail by Aitchison and
Brown (1957). Later, other investigators also observed that the age at onset of
Alzheimer’s disease and the distribution of survival time of several diseases such
as Hodgkin’s disease and chronic leukemia could be rather closely approxi-
mated by a lognormal distribution since they are markedly skewed to the right
and the logarithms of survival times are approximately normally distributed.
Consider the survival time T such that logT is normally distributed with

mean � and variance 
�. We then say that T is lognormally distributed and
write T as �(�,
�). It should be noted that � and 
� are not the mean and
variance of the lognormal distribution. Figure 6.8 gives the hazard function of
the lognormal distribution with different values for the parameters. The hazard
function increases initially to a maximum and then decreases (almost as soon
as the median is passed) to zero as time approaches infinity (Watson and Wells
1961). Therefore, the lognormal distribution is suitable for survival patterns
with an initially increasing and then decreasing hazard rate. By a central limit
theorem, it can be shown that the distribution of the product of n independent
positive variates approaches a lognormal distribution under very general
conditions: for example, the distribution of the size of an organism whose
growth is subject to many small impulses, the effect of each of which is
proportional to the momentary size of the organism.
The popularity of the lognormal distribution is due in part to the fact that

the cumulative values of y� log t can be obtained from the tables of the
standard normal distribution and the corresponding values of t are then found
by taking antilogs. Thus, the percentiles of the lognormal distribution are easy
to find.

144 -   



The probability density function and survivorship function are, respectively,

f (t)�
1

t
�2�
exp��

1

2
�
(log t��)�� t� 0, 
 � 2 (6.3.1)

and

S(t)�
1


�2� �
�

�

1

x
exp ��

1

2
�
(log x��)�� dx (6.3.2)

Let a� exp(��). Then ��� log a, (6.3.1) and (6.3.2) can be written as

f (t)�
1

t
�2�
exp��

1

2
�
(log at )�� (6.3.3)

and

S(t)�
1


�2� �
�

�

1

x
exp��

1

2
�
(log ax)�� dx (6.3.4)

� 1�G �log
at


� (6.3.5)

where G(y) is the cumulative distribution function of a standard normal
variable

G(y)�
1

�2� �
�

�

e����� du (6.3.6)

The lognormal distribution is specified completely by the two parameters �
and 
�. Time T cannot assume zero values since log T is not defined for T � 0.
Figure 6.9 gives the lognormal frequency curves for � � 0, 
�� 0.1, 0.5, 2, from
which an idea of the flexibility of the distribution may be obtained. It is
obvious that the distribution is positively skewed and that the greater the value
of 
�, the greater the skewness. Figure 6.10 shows the frequency curves for

�� 0.5, �� 0, 0.5, 1. It is obvious that � and 
� are, respectively, scale
parameters and not location and scale parameters as in the normal distribu-
tion. The hazard function, from (6.3.3) and (6.3.5), has the form

h(t)�
(1/t
�2�) exp[� (log at)�/2
�]

1�G(log at/
)
(6.3.7)

and is plotted in Figure 6.8.
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Figure 6.9 Lognormal density curves with �� 0.

Figure 6.10 Lognormal density curves with 
�� 0.5.

The mean and variance of the two-parameter lognormal distribution are,
respectively, exp(���

�

�) and [exp(
�) � 1] exp(2��
�). The coefficient of

variation of the distribution is then [exp(
�)� 1]���. The median is e� and the
mode is exp(��
�).
The two-parameter lognormal distribution can also be generalized to a

three-parameter distribution by replacing t with t�G in (6.3.1). In other
words, the survival time log(T �G) follows the normal distribution with mean
� and variance 
�. In certain situations the value of G may be determined a
priori and should not be regarded as an unknown parameter that requires
estimation. If this is so, the variable T �G may be considered in place of T
and the distribution of T �G has all the properties of the two-parameter
lognormal distribution. However, the estimation procedures developed for the
two-parameter case are not directly applicable to the distribution of T �G.
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Figure 6.11 Lognormal probability plot of the survival time of 234 male patients with
chronic lymphocytic leukemia. (From Feinleib and MacMahon, 1960. Reproduced by
permission of the publisher.)

Example 6.3 In a study of chronic lymphocytic and myelocytic leukemia,
Feinleib and MacMahon (1960) applied the lognormal distribution to analyze
survival data of 649 white residents of Brooklyn diagnosed from 1943 to 1952.
The analysis of several subgroups of patients follows. The survival time of each
patient is computed from the date of diagnosis in months. Analytical method
is used to fit the lognormal distribution to the data. The method is discussed
in Chapters 7 and 8.
Figure 6.11 gives the probability plot of the survival time of 234 male

patients with chronic lymphocytic leukemia, in which the horizontal axis for
the survival time is in logarithmic scale and the vertical axis is in normal
probability scale. When plotting 1� S(t) on this graph paper, a straight line is
obtained when the data follow a two-parameter lognormal distribution. An
inspection of the graph shows that the distribution is concave. Gaddum
(1945a,b) has pointed out that such a deviation can be corrected by subtracting
an appropriate constant from the survival times. In other words, the three-
parameter lognormal distribution can be used. Figure 6.12 gives a similar plot
in which the survival time of every patient plus 4 is plotted. The configuration
is linear and hence empirically it seems valid to assume that the lognormal
distribution is appropriate.
Similar graphs for male patients with chronic myelocytic leukemia and for

female patients with chronic lymphocytic or myelocytic leukemia are given in
Figures 6.13 and 6.14. Parameters of the lognormal distribution are estimated.
Feinleib and MacMahon report that the agreement between the observed and
calculated distributions is striking for each group except for women with
chronic lymphocytic leukemia. The corresponding p values for the chi-square
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Figure 6.12 Lognormal probability plot of the survival time in months plus 4 of 234
male patients with chronic lymphocytic leukemia. (From Feinleib and MacMahon,
1960. Reproduced by permission of the publisher.)

goodness-of-fit test are as follows:

Chronic Myelocytic Chronic Lymphocytic

Male 0.86 0.73
Female 0.57 0.016

Since a large p value indicates close agreement, it is concluded that the
three-parameter lognormal distribution adequately describes the distribution
of survival times for each subgroup except women with chronic lymphocytic
leukemia. The shape of the observed distribution for the latter group suggests
that it might actually be composed of two dissimilar groups, each of whose
survival times might fit a lognormal distribution.

6.4 GAMMA AND GENERALIZED GAMMA DISTRIBUTIONS

The gamma distribution, which includes the exponential and chi-square
distribution, was used a long time ago by Brown and Flood (1947) to describe
the life of glass tumblers circulating in a cafeteria and by Birnbaum and
Saunders (1958) as a statistical model for life length of materials. Since then,
this distribution has been used frequently as a model for industrial reliability
problems and human survival.
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Figure 6.13 Lognormal probability plot of the survival time in months plus 4 of 162
male patients with chronic myelocytic leukemia. (From Feinleib and MacMahon, 1960.
Reproduced by permission of the publisher.)

Figure 6.14 Lognormal probability plot of the survival time in months plus 4 of female
patients with two types of leukemia. (From Feinleib and MacMahon, 1960. Reproduced
by permission of the publisher.)

Suppose that failure or death takes place in n stages or as soon as n
subfailures have happened. At the end of the first stage, after time T

�
, the first

subfailure occurs; after that the second stage begins and the second subfailure
occurs after time T

�
; and so on. Total failure or death occurs at the end of the

nth stage, when the nth subfailure happens. The survival time, T, is then
T
�
�T

�
�	�T

�
. The times T

�
, T

�
, . . . , T

�
spent in each stage are assumed to
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Figure 6.15 Gamma hazard functions with �� 1.

be independently exponentially distributed with probability density function
� exp(��t

	
), i� 1, . . . , n. That is, the subfailures occur independently at a

constant rate �. The distribution of T is then called the Erlangian distribution.
There is no need for the stages to have physical significance since we can
always assume that death occurs in the n-stage process just described. This
idea, introduced by A. K. Erlang in his study of congestion in telephone
systems, has been used widely in queuing theory and life processes.
A natural generalization of the Erlangian distribution is to replace the

parameter n restricted to the integers 1, 2, . . . by a parameter � taking any real
positive value. We then obtain the gamma distribution.
The gamma distribution is characterized by two parameters, � and �. When

0�� � 1, there is negative aging and the hazard rate decreases monotonically
from infinity to � as time increases from 0 to infinity. When � � 1, there is
positive aging and the hazard rate increases monotonically from 0 to � as time
increases from 0 to infinity. When �� 1, the hazard rate equals �, a constant,
as in the exponential case. Figure 6.15 illustrates the gamma hazard function
for �� 1 and �� 1, �� 1, 2, 4. Thus, the gamma distribution describes a
different type of survival pattern where the hazard rate is decreasing or
increasing to a constant value as time approaches infinity.
The probability density function of a gamma distribution is

f (t)�
�

	(�)
(�t)���e��� t� 0, �� 0, �� 0 (6.4.1)

where 	(�) is defined as in (6.2.9). Figures 6.16 and 6.17 show the gamma
density function with various values of � and �. It is seen that varying � changes
the shape of the distribution while varying � changes only the scaling.
Consequently, � and � are shape and scale parameters, respectively. When
�� 1, there is a single peak at t� (� � 1)/�.
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Figure 6.16 Gamma density functions with �� 1.

Figure 6.17 Gamma density functions with � � 3.

The cumulative distribution function F(t) has a more complex form:

F(t)� �
�

�

�
	(�)

(�x)���e��� dx (6.4.2)

�
1

	(�) �
��

�

u���e�� du

� I(�t, �) (6.4.3)

where

I(s, �)�
1

	(�) �



�

u���e��du (6.4.4)

known as the incomplete gamma function, is tabulated in Pearson (1922, 1957).
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For the Erlangian distribution, it can be shown that

F(t)� 1�
���


���

e���(�t)�
k!

(6.4.5)

Thus, the survivorship function 1�F(t) is

S(t)��
�

�

�
	(�)

(�x)���e��� dx (6.4.6)

for the gamma distribution or

S(t)� e��
���


���

(�t)�
k!

(6.4.7)

for the Erlangian distribution.
Since the hazard function is the ratio of f (t) to S(t), it can be calculated from

(6.4.1) and (6.4.7). When � is an integer n,

h(t)�
�(�t)���

(n � 1)! ����
���
(1/k!)(�t)�

(6.4.8)

When �� 1, the distribution is exponential. When ���
�
and ���

�
�, where �

is an integer, the distribution is chi-square with � degrees of freedom. The mean
and variance of the standard gamma distribution are, respectively, �/� and �/��,
so that the coefficient of variation is 1/��.
Many survival distributions can be represented, at least roughly, by suitable

choice of the parameters � and �. In many cases, there is an advantage in using
the Erlangian distribution, that is, in taking � integer.
The exponential, Weibull, lognormal, and gamma distributions are special

cases of a generalized gamma distribution with three parameters, �, �, and �,
whose density function is defined as

f (t)�
��
�
	(�)

t
��� exp [�(�t)
] t� 0, � � 0, �� 0, �� 0 (6.4.9)

It is easily seen that this generalized gamma distribution is the exponential
distribution if �� � � 1, the Weibull distribution if � � 1; the lognormal
distribution if �� �, and the gamma distribution if � � 1.
In later chapters (e.g., Chapters 7 and 9), we discuss several parametric

procedures for estimation and hypothesis testing. To use available computer
software such as SAS to carry out the computation, we use the distributions
adopted by the software. One of the very few software packages that include
the gamma or generalized gamma distribution is SAS. In SAS, the generalized
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Table 6.4 Lifetimes of 101 Strips of Aluminum Coupon

370
706
716
746
785
797
844
855
858
886
886
930
960
988
990
1000
1010
1016
1018
1020
1055

1085
1102
1102
1108
1115
1120
1134
1140
1199
1200
1200
1203
1222
1235
1238
1252
1258
1262
1269
1270
1290

1293
1300
1310
1313
1315
1330
1355
1390
1416
1419
1420
1420
1450
1452
1475
1478
1481
1485
1502
1505
1513

1522
1522
1530
1540
1560
1567
1578
1594
1602
1604
1608
1630
1642
1674
1730
1750
1750
1763
1768
1781
1782

1792
1820
1868
1881
1890
1893
1895
1910
1923
1940
1945
2023
2100
2130
2215
2268
2440

Source: Birnbaum and Saunders (1958).

gamma distribution is defined as having the following density function:

f (t)�
������
�
	(�)

t
��� exp [��(�t)
], t� 0, �� 0, �� 0 (6.4.10)

To differentiate this form of the generalized gamma distribution from the
generalized gamma in (6.4.9), we refer to this distribution as the extended
generalized gamma distribution. It can be shown that the extended generalized
gamma distribution reduces to the Weibull distribution when � � 0 and � � 1,
the lognormal distribution when ���, the gamma distribution when � � 1,
and the exponential distribution when � � �� 1.

Example 6.4 Birnbaum and Saunders (1958) report an application of the
gamma distribution to the lifetime of aluminum coupon. In their study, 17 sets
of six strips were placed in a specially designed machine. Periodic loading was
applied to the strips with a frequency of 18 hertz and a maximum stress of
21,000 pounds per square inch. The 102 strips were run until all of them failed.
One of the 102 strips tested had to be discarded for an extraneous reason,
yielding 101 observations. The lifetime data are given in Table 6.4 in ascending
order. From the data the two parameters of the gamma distribution were
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Figure 6.18 Graphical comparison of observed and fitted cumulative distribution
functions of data in Example 6.4. (From Birnbaum and Saunders, 1958.)

estimated (estimation methods are discussed in Chapter 7). They obtained
�� � 11.8 and �� � 1/(118.76�10
).
A graphical comparison of the observed and fitted cumulative distribution

function is given in Figure 6.18, which shows very good agreement. A
chi-square goodness-of-fit test (discussed in Chapter 9) yielded a �� value of
4.49 for 6 degrees of freedom, corresponding to a significance level between 0.5
and 0.6. Thus, it was concluded that the gamma distribution was an adequate
model for the life length of some materials.

6.5 LOG-LOGISTIC DISTRIBUTION

The survival time T has a log-logistic distribution if log(T ) has a logistic
distribution. The density, survivorship, hazard, and cumulative hazard func-
tions of the log-logistic distribution are, respectively,

f (t) �
��t���

(1� �t�)�
(6.5.1)

S(t) �
1

1� �t�
(6.5.2)
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h(t) �
��t���

1� �t�
(6.5.3)

H(t)� log(1� �t�) (6.5.4)

t� 0, �� 0, � � 0

The log-logistic distribution is characterized by two parameters �, and �. The
median of the log-logistic distribution is �����. Figure 6.19(a) to (c) show the
log-logistic hazard, density, and survivorship functions with �� 1 and various
values of � � 2.0, 1, and 0.67.
When � � 1, the log-logistic hazard has the value 0 at time 0, increases to a

peak at t� (� � 1)���/����, and then declines, which is similar to the lognormal
hazard. When �� 1, the hazard starts at ���� and then declines monotonically.
When �� 1, the hazard starts at infinity and then declines, which is similar to
the Weibull distribution. The hazard function declines toward 0 as t ap-
proaches infinity. Thus, the log-logistic distribution may be used to describe a
first increasing and then decreasing hazard or a monotonically decreasing
hazard.

Example 6.5 Byers et al. (1988) used the log-logistic distribution to
describe the rate of spread of HIV between 1978 and 1986. Between 1978 and
1980, over 6700 homosexual and bisexual men in San Francisco were enrolled
in studies of the prevalence and incidence of sexually transmitted hepatitis B
virus (HBV) infections. Blood specimens were collected from the participants.
Four hundred and eighty-eight men who were HBV-seronegative were ran-
domly selected to participate in a study of HIV infection later. These men
agreed to allow the investigators to test the specimens collected previously
together with a current specimen. For those who convert to positive, the
infection time is only known to have occurred between the previous negative
test and the time of the first positive one. The exact time is unknown. The time
to infection is therefore interval censored. The investigators tried to fit several
distributions to the interval-censored data, including the Weibull and log-
logistic by maximum likelihood methods (discussed in Chapter 7). Based on
the Akaike information criterion (discussed in Chapter 9), the log-logistic
distribution was found to provide the best fit to the data. The maximum
likelihood estimates of the two parameters are �� � 0.003757 and �� � 1.424328.
Based on the log-logistic model, the median infection time is estimated to be
50.4 months, and the hazard function approaches its peak at 27.6 months.

6.6 OTHER SURVIVAL DISTRIBUTIONS

Many other distributions can be used as models of survival time, three of which
we discuss briefly in this section: the linear exponential, the Gompertz (1825),
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(a)

(b)

(c)

Figure 6.19 (a) Hazard function of the log-logistic distribution; (b) density function of
the log-logistic distribution; (c) Survivorship function of the log-logistic distribution.
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Figure 6.20 Hazard function of linear-exponential model.

and a distribution whose hazard rate is a step function. The linear-exponential
model and the Gompertz distribution are extensions of the exponential
distribution. Both describe survival patterns that have a constant initial hazard
rate. The hazard rate varies as a linear function of time or age in the
linear-exponential model and as an exponential function of time or age in the
Gompertz distribution.
In demonstrating the use of the linear-exponential model, Broadbent (1958),

uses as an example the service of milk bottles that are filled in a dairy,
circulated to customers, and returned empty to the dairy. The model was also
used by Carbone et al. (1967) to describe the survival pattern of patients with
plasmacytic myeloma. The hazard function of the linear-exponential distribu-
tion is

h(t)� �� �t (6.6.1)

where � and � can be values such that h(t) is nonnegative. The hazard rate
increases from � with time if �� 0, decreases if � � 0, and remains constant (an
exponential case) if �� 0, as depicted in Figure 6.20.
The probability density function and the survivorship function are, respec-

tively,

f (t) � (� � �t) exp[�(�t��
�
�t�)] (6.6.2)

and

S(t) � exp[�(�t��
�
�t�)] (6.6.3)

The mean of the linear-exponential distribution is �(�/�) � (�/2)����L (��/2�),
where

L (x)� e� �
�

�

y��� e�� dy
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Table 6.5 Values of L(x) and G(x)

x L (x) G(x)

0 0.886 �
0.1 0.951 2.015
0.2 1.012 1.493
0.3 1.067 1.223
0.4 1.119 1.048
0.5 1.168 0.923
0.6 1.214 0.828
0.7 1.258 0.753
0.8 1.300 0.691
0.9 1.341 0.640
1 1.381 0.596
2 1.712 0.361
3 1.987 0.262

Source: Broadbent (1958).

Figure 6.21 Gompertz hazard function.

is tabulated in Table 6.5. A special case of the linear-exponential distribution,
the Rayleigh distribution, is obtained by replacing � by �

�
� (Kodlin, 1967). That

is, the hazard function of the Rayleigh distribution is h(t) � ���
�
�t.

The Gompertz distribution is also characterized by two parameters, � and
�. The hazard function,

h(t)� exp(� � �t) (6.6.4)

is plotted in Figure 6.21. When �� 0, there is positive aging starting from e�;
when �� 0, there is negative aging; and when �� 0, h(t) reduces to a constant,
e�. The survivorship function of the Gompertz distribution is

S(t)� exp��
e�
�
(e�� � 1)� (6.6.5)
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Figure 6.22 Step hazard function.

and the probability density function, from (6.6.4) and (2.2.5), is then

f (t)� exp�(� � �t)�
1

�
(e�
�� � e�)� (6.6.6)

The mean of the Gompertz distribution is G(e�/�)/e�, where

G(x)� e� �
�

�

y��e��dy

is tabulated in Table 6.5.
Finally, we consider a distribution where the hazard rate is a step function:

h(t)��
a
�

a
�
�

a
���

a
�

0� t� t
�

t
�
� t� t

�

t
���

� t� t
���

t� t
���

(6.6.7)

where t
�
, t

�
, . . . , t

�
are different time points. Figure 6.22 shows a typical hazard

function of this nature for k� 5. Using (2.2.4), the survivorship function can
be derived:

S(t)��
exp(�a

�
t) 0� t� t

�
exp[�a

�
t
�
� a

�
(t � t

�
)] t

�
� t� t

�
�

exp[�a
�
t
�
� a

�
(t
�
� t

�
)� 	� a

�
(t � t

���
) t� t

���

(6.6.8)
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The probability density function f (t) can then be obtained from (6.6.7) and
(6.6.8) using (2.2.5):

f (t)��
a
�
exp(�a

�
t) 0� t� t

�
a
�
exp[�a

�
t
�
� a

�
(t � t

�
)] t

�
� t� t

�
�

a
�
exp[�a

�
t
�
� a

�
(t
�
� t

�
)�	� a

�
(t � t

���
) t� t

���

(6.6.9)

One application of this distribution is the life-table analysis discussed in
Chapter 4. In a life-table analysis, time is divided into intervals and the hazard
rate is assumed to be constant in each interval. However, the overall hazard
rate is not necessarily constant.
The nine distributions described above are, among others, reasonable

models for survival time distribution. All have been designed by considering a
biological failure, a death process, or an aging property. They may or may not
be appropriate for many practical situations, but the objective here is to
illustrate the various possible techniques, assumptions, and arguments that can
be used to choose the most appropriate model. If none of these distributions
fits the data, investigators might have to derive an original model to suit the
particular data, perhaps by using some of the ideas presented here.
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Johnstone (2001), and Mafart et al. (2002).

EXERCISES

6.1 Summarize the distributions discussed in this chapter, answering the
following questions.
(a) What distributions describe constant hazard rates? Give the range of

parameter values.
(b) What distributions describe increasing hazard rates? If there are more

than one, discuss the differences between them.
(c) What distributions describe decreasing hazard rates? If there are more

than one, discuss the differences between them.
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6.2 Suppose that the survival distribution of a group of patients follows the
exponential distribution with G� 0 (year), �� 0.65. Plot the survivor-
ship function and find:
(a) The mean survival time
(b) The median survival time
(c) The probability of surviving 1.5 years or more

6.3 Suppose that the survival distribution of a group of patients follows the
exponential distribution with G� 5 (years) and � � 0.25. Plot the surviv-
orship function and find:
(a) The mean survival time
(b) The median survival time
(c) The probability of surviving 6 years or more

6.4 Consider the following two Weibull distributions as survival models:
(i) G� 0, � � 1, �� 0.5

(ii) G� 0, � � 0.5, �� 2
For each distribution, plot the survivorship function and the hazard
function and find:
(a) The mean
(b) The variance
(c) The coefficient of variation
Which distribution gives the larger probability of surviving at least 3 units
of time?

6.5 Suppose that the survival time follows the lognormal distribution with
�� 1 and 
 � 0.5. Find:
(a) The mean survival time
(b) The variance
(c) The coefficient of variation
(d) The median
(e) The mode

6.6 Suppose that pain relief time follows the gamma distribution with � � 1,
�� 0.5. Find:
(a) The mean
(b) The variance
(c) The coefficient of variation

6.7 Suppose that the survival distribution is (1) Gompertz and (2) linear-
exponential, and � � 1, � � 2.0. Plot the hazard function and find:
(a) The mean
(b) The probability of surviving longer than 1 unit of time

6.8 Consider the survival times of hypernephroma patients given in Exercise
Table 3.1. From the plot you obtained in Exercise 4.5, suggest a
distribution that might fit the data.
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CHAPTER 7

Estimation Procedures for
Parametric Survival Distributions
without Covariates

In this chapter we discuss some analytical procedures for estimating the most
commonly used survival distributions discussed in Chapter 6. We introduce the
maximum likelihood estimates (MLEs) of the parameters of these distributions.
The general asymptotic likelihood inference results that are most widely used
for these distributions are given in Section 7.1. We begin to used the general
symbol b� (b

�
, b

�
, . . . , b

�
) to denote a set of parameters. For example, in

discussing the Weibull distribution, b
�
could be � and b

�
could be �, and p� 2.

b is called a vector in linear algebra. Readers who are not familiar with linear
algebra or are not interested in the mathematical details may skip this section
and proceed to Section 7.2 without loss of continuity. In Sections 7.2 to 7.7 we
introduce the MLEs for the parameters of the exponential, Weibull, lognormal,
gamma, log-logistic, and Gompertz distributions for data with and without
censored observations. The related BMDP or SAS programming codes that
may be used to obtain the MLE are given in the respective sections.

7.1 GENERAL MAXIMUM LIKELIHOOD ESTIMATION
PROCEDURE

7.1.1 Estimation Procedures for Data with Right-Censored Observations

Suppose that persons were followed to death or censored in a study. Let t
�
,

t
�
, . . . , t

�
, t�

���
, . . . , t�

�
be the survival times observed from the n individuals,

with r exact times and (n� r) right-censored times. Assume that the survival
times follow a distribution with the density function f (t, b) and survivorship
function S(t, b), where b� (b

�
, . . . , b

�
) denotes unknown p parameters

b
�
, . . . , b

�
in the distribution. As shown in Chapter 6, an exponential distribu-

tion has one (p� 1) parameter �, the Weibull distribution has two (p� 2)
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parameters � and �, and so on. If the survival time is discrete (i.e., it is observed
at discrete time only), f (t, b) represents the probability of observing t and S(t, b)
represents the probability that the survival or event time is greater than t. In
other words, f (t, b) and S(t, b) represent the information that can be obtained
from an observed uncensored survival time and an observed right-censored
survival time, respectively. Therefore, the product ��

���
f (t

�
,b) represents

the joint probability of observing the uncensored survival times, and
��

�����
S(t�

�
, b) represents the joint probability of those right-censored survival

times. The product of these two probabilities, denoted by L (b),

L (b) �
�

�
���

f (t
�
, b)

�
�

�����

S(t�
�
, b)

represents the joint probability of observing t
�
, t

�
, . . . , t

�
, t�

���
, . . . , t�

�
. A similar

interpretation applies to continuous survival. L (b) is called the likelihood
function of b, which can also be interpreted as a measure of the likelihood of
observing a specific set of survival times t

�
, t

�
, . . . , t

�
, t�

���
, . . . , t�

�
, given a

specific set of parameters b. The method of the MLE is to find an estimator of
b that maximizes L (b), or in other words, which is ‘‘most likely’’ to have
produced the observed data t

�
, t

�
, . . . , t

�
, t�

���
, . . . , t�

�
. Take the logarithm of

L (b) and denote it by l(b),

l(b) � log L (b) �
�

�
���

log[ f (t
�
, b)] �

�
�

�����

log[S(t�
�
, b)] (7.1.1)

Then the MLE b� of b is the set of b�
�
, . . . , b�

�
that maximizes l(b):

l(b� ) �max
��� b

(l(b)).

It is clear that b� is a solution of the following simultaneous equations, which
are obtained by taking the derivative of l(b) with respect to each b

�
:

�l(b)
�b

�

� 0 j� 1, 2, . . . , p (7.1.2)

The exact forms of (7.1.2) for the parametric survival distributions discussed in
Chapter 6 are given in Sections 7.2 to 7.7. Often, there is no closed solution for
the MLE b� from (7.1.2). To obtain the MLE b� , one can use a numerical
method. A commonly used numerical method is the Newton—Raphson iter-
ative procedure, which can be summarized as follows.

1. Let the initial values of b
�
, . . . , b

�
be zero; that is, let

b��	� 0
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2. The changes for b at each subsequent step, denoted by ���	, is obtained by
taking the second derivative of the log-likelihood function:

���	���
��l(b��
�	)

�b �b	 �

� �l(b��
�	)

�b
(7.1.3)

3. Using ���	, the value of b��	 at j th step is

b��	� b��
�	� ���	 j� 1, 2, . . .

The iteration terminates at, say, the mth step if 
���	
 � �, where � is a given
precision, usually a very small value, 10
� or 10
�. Then the MLE b� is defined
as

b� � b��
�	 (7.1.4)

The estimated covariance matrix of the MLE b� is given by

V� (b� ) �Co� v(b� ) ���
��l(b� )
�b �b	�


�
(7.1.5)

One of the good properties of a MLE is that if b� is the MLE of b, then g(b� ) is
the MLE of g(b) if g(b) is a finite function and need not be one-to-one. The
concept of the Newton—Raphson method for p� 1 is illustrated in detail in
Appendix A.

The estimated 100(1� 
)% confidence interval for any parameter b
�
is

(b�
�
�Z�
��v

��
, b�

�
�Z�
��v

��
) (7.1.6)

where v
��
is the ith diagonal element of V� (b� ) and Z�
� is the 100(1� 
/2)

percentile point of the standard normal distribution [P(Z�Z�
�) � 
/2]. For
a finite function g(b

�
) of b

�
, the estimated 100(1� 
)% confidence interval for

g(b
�
) is its respective range R on the confidence interval (7.1.6), that is,

R� �g(b
�
) : b

�
� (b�

�
�Z�
��v

��
, b�

�
�Z�
��v

��
)� (7.1.7)

In case g(b
�
) is monotone in b

�
, the estimated 100(1� 
)% confidence interval

for g(b
�
) is

[g(b�
�
�Z�
��v

��
), g(b�

�
�Z�
��v

��
)] (7.1.8)
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7.1.2 Estimation Procedures for Data with Right-, Left-, and
Interval-Censored Observations

If the survival times t
�
, t

�
, . . . , t

�
observed for the n persons consist of uncen-

sored, left-, right-, and interval-censored observations, the estimation pro-
cedures are similar. Assume that the survival times follow a distribution with the
density function f (t, b) and the survivorship function S(t, b), where b denotes all
unknown parameters of the distribution. Then the log-likelihood function is

l(b) � log L (b) � � log[ f (t
�
, b)]� � log[S(t

�
, b)]

� � log[1� S(t
�
, b)]� � log[S(v

�
, b) � S(t

�
, b)] (7.1.9)

where the first sum is over the uncensored observations, the second sum over
the right-censored observations, the third sum over the left-censored observa-
tions, and the last sum over the interval-censored observations, with v

�
as the

lower end of a censoring interval. The other steps for obtaining the MLE b� of
b are similar to the steps shown in Section 7.1.1 by substituting the log-
likelihood function defined in (7.1.1) with the log-likelihood function in (7.1.9).

The computation of the MLE b� and its estimated covariance matrix is
tedious. The following example gives the general procedure for using SAS to
carry out the computation.

Example 7.1 If the survival time observed contains uncensored, right-,
left-, and interval-censored observations, one needs to create a new data set
from the observed data to use SAS to obtain the estimates of the parameters
in the distribution. For an observed survival time t (uncensored, right-, or
left-censored), we define two variables LB and UB as follows: If t is uncensored,
take LB�UB� t; if t is left-censored, LB� . and UB� t; and if t is
right-censored, then LB� t and UB�., where ‘‘.’’ means ‘‘missing’’ in SAS. If
a survival time is interval-censored, [i.e., one observed two numbers t

�
and t

�
,

t
�

� t
�
and the survival time is in the interval (t

�
, t

�
)], let LB� t

�
and UB� t

�
.

Assume that the new data set (in terms of LB and UB) has been saved in
‘‘C:�EXAMPLEA.DAT’’ as a text file, which contains two columns (LB in the
first column and UB the second column) separated by a space.

As an example, the following SAS code can be used to obtain the estimated
covariance matrix defined in (7.1.5) and the MLE of the parameters of the
Weibull distribution for the survival data observed in the text file ‘‘C:�EXAM-
PLEA.DAT’’. One can replace d�weibull in the following code with the
respective distribution in Sections 7.2 to 7.6 (see the SAS code in these sections
for details) to obtain the estimate.

data w1;
infile ‘c:�examplea.dat’ missover;
input lb ub;

run;
proc lifereg;
model (lb,ub)�/covb d�weibull;

run;
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7.2 EXPONENTIAL DISTRIBUTION

7.2.1 One-Parameter Exponential Distribution

The one-parameter exponential distribution has the following density function;

f (t) � �e
�� (7.2.1)

survivorship function;

S(t) � e
�� (7.2.2)

and hazard function;

h(t) � � (7.2.3)

where t� 0, � � 0. Obviously, the exponential distribution is characterized by
one parameter, �. The estimation of � by maximum likelihood methods for
data without censored observations will be given first followed by the case with
censored observations.

Estimation of � for Data without Censored Observations
Suppose that there are n persons in the study and everyone is followed to death
or failure. Let t

�
, t

�
, . . . , t

�
be the exact survival times of the n people. The

likelihood function, using (7.2.1) and (7.1.1), is

L �
�

�
���

�e
��
�

and the log-likelihood function is

l(�) � n log � � �
�

�
���

t
�

(7.2.4)

From (7.1.2), the MLE of � is

�� �
n

��
���

t
�

(7.2.5)

Since the mean � of the exponential distribution is 1/� and a MLE is invariant
under an one-to-one transformation, the MLE of � is

�� �
1

��
�

��
���

t
�

n
� t� (7.2.6)
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It can be shown 2n�� /� has an exact chi-square distribution with 2n degrees of
freedom (Epstein and Sobel, 1953). Since � � 1/� and �� � 1/�� , an exact
100(1� 
)% confidence interval for � is

�� ��
����
�
�
2n

� � �
�� ��

����
�
2n

(7.2.7)

where ��
���� is the 100
 percentage point of the chi-square distribution with 2n

degrees of freedom, that is, P(��
��

� ��
����) � 
 (Table B-2). When n is large

(n� 25, say), �� is approximately normally distributed with mean � and
variance ��/n. Thus, an approximate 100(1� 
)% confidence interval for � is

�� �
�� Z�
�
�n

� � � �� �
�� Z�
�
�n

(7.2.8)

where Z�
� is the 100
/2 percentage point, P(Z�Z�
�) � 
/2, of the standard
normal distribution (Table B-1).

Since 2n�� /� has an exact chi-square distribution with 2n degrees of freedom,
an exact 100(1� a)% confidence interval for the mean survival time is

2n��
��
����
�

� � �
2n��

��
����
�
�

(7.2.9)

The following example illustrates the procedures.

Example 7.2 Consider the following remission times in weeks for 21
patients with acute leukemia: 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 8, 8, 9, 10, 10, 12, 14, 16,
20, 24, and 34. Assume that remission duration follows the exponential
distribution. Let us estimate the parameter � by using the formulas given
above.

According to (7.2.5), the MLE of the relapse rate, �, is

�� �
21

198
� 0.106 per week

The mean remission time � is then 198/21� 9.429 weeks. Using the analytical
procedures given above, confidence intervals for � and � can also be obtained.

A 95% confidence interval for the relapse rate �, following (7.2.7), is
approximately

(0.106)(24.433)
42

� � �
(0.106)(59.342)

42

or (0.062, 0.150). A 95% confidence interval for the mean remission time,
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following (7.2.9), is

(42)(9.429)
59.342

� � �
(42)(9.429)
24.433

or (6.673, 16.208).
Once the parameter � is estimated, other estimates can be obtained. For

example, the probability of staying in remission for at least 20 weeks, estimated
from (7.2.2), is S� (20) � exp[�0.106(20)]� 0.120. Any percentile of survival
time t

�
may be estimated by equating S(t) to p and solving for t

�
, that is,

t
�
� �log p/�� . For example, the median (50th percentile) survival time can be

estimated by t
���

� �log 0.5/�� � 6.539 weeks.

Estimation of � for Data with Censored Observations
We first consider singly censored and then progressively censored data.
Suppose that without loss of generality, the study or experiment begins at time
0 with a total of n subjects. Survival times are recorded and the data become
available when the subjects die one after the other in such a way that the
shortest survival time comes first, the second shortest second, and so on.
Suppose that the investigator has decided to terminate the study after r out of
the n subjects have died and to sacrifice the remaining n� r subjects at that
time. Then the survival times for the n subjects are

t
��	

� t
��	

� � � t
��	

� t�
����	

��� t�
��	

where a superscript plus indicates a sacrificed subject, and thus t�
��	
is a censored

observation. In this case, n and r are fixed values and all of the n� r censored
observations are equal.

The likelihood function, using (7.1.1), (7.2.1), and (7.2.2), is

L �
n!

(n� r)!

�
�
���

�e
����	(e
����	)�
�

and from (7.1.2), the MLE of � is

�� �
r

��
���

t
��	

� ��
�����

t�
��	

(7.2.10)

The mean survival time � � 1/� can then be estimated by

�� �
1

��
�

��
���

t
��	

� ��
�����

t�
��	

r
(7.2.11)

It is shown by Halperin (1952) that 2r�/�� has a chi-square distribution with 2r
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degrees of freedom. The mean and variance of �� are r�/(r� 1) and ��/(r� 1),
respectively. The 100(1� 
)% confidence interval for � is

�� ��
����
�
�
2r

� � �
�� ��

����
�
2r

(7.2.12)

When n is large, the distribution of �� is approximately normal with mean � and
variance ��/(r� 1). An approximate 100/(1� 
)% confidence interval for � is
then

�� �
�� Z�
�

�r� 1
� � � �� �

�� Z�
�
�r� 1

(7.2.13)

Epstein and Sobel (1953) show that 2r�� /� has a chi-square distribution with
2r degrees of freedom. Thus a 100/(1� 
)% confidence interval for � (see also
Epstein, 1960b) is

2r��
��
����
�

� � �
2r��

��
����
�
�

(7.2.14)

They also develop test procedures for the hypothesis H
�
: � � �

�
against the

alternative H
�
: � � �

�
. One of their rules of action is to accept H

�
if �� � c and

reject H
�
if �� � c, where c� (�

�
��
����)/2r and 
 is the significance level. Or if the

estimated mean survival time calculated from (7.2.11) is greater then c, the
hypothesis H

�
is rejected at the 
 level. The following example illustrates the

procedure.

Example 7.3 Suppose that in a laboratory experiment 10 mice are exposed
to carcinogens. The experimenter decides to terminate the study after half of
the mice are dead and to sacrifice the other half at that time. The survival times
of the five dead mice are 4, 5, 8, 9, and 10 weeks. The survival data of the 10
mice are 4, 5, 8, 9, 10, 10�, 10�, 10�, 10�, and 10�. Assuming that the
failure of these mice follows an exponential distribution, the survival rate � and
mean survival time � are estimated, respectively, according to (7.2.10) and
(7.2.11) by

� �
5

36� 50
� 0.058 per week

and �� � 1/0.058� 17.241 weeks. A 95% confidence interval for � by (7.2.12) is

(0.058)(3.247)
(2)(5)

� � �
(0.058)(20.483)

(2)(5)
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or (0.019, 0.119). A 95% confidence interval for � following (7.2.13) is

2(5)(17.241)
20.483

� � �
2(5)(17.241)

3.247

or (8.417, 53.098).
The probability of surviving a given time for the mice can be estimated from

(7.2.2). For example, the probability that a mouse exposed to the same
carcinogen will survive longer than 8 weeks is

S� (8) � exp[�0.058(8)]� 0.629

The probability of dying in 8 weeks is then 1� 0.629� 0.371.
A slightly different situation may arise in laboratory experiments. Instead of

terminating the study after the rth death, the experimenter may stop after a
period of time T, which may be six months or a year. If we denote the number
of deaths between 0 and T as r, the survival data may look as follows:

t
��	

� t
��	

� � � t
��	

� t�
����	

�� � t�
��	

�T

Mathematical derivations of the MLE of � and � are exactly the same and
(7.2.10) can still be used. The sampling distribution of �� for singly censored
data is also discussed by Bartholomew (1963).

Progressively censored data come more frequently from clinical studies
where patients are entered at different times and the study lasts a predeter-
mined period of time. Suppose that the study begins at time 0 and terminates
at time T and there are a total of n people entered. Let r be the number of
patients who die before or at time T and n� r the number of patients who are
lost to follow-up during the study period or remain alive at time T. The data
look as follows: t

�
, t

�
, . . . , t

�
, t�

���
, t�

���
, . . . , t�

�
. Ordering the r uncensored

observations according to their magnitude, we have

t
��	

� t
��	

� � � t
�
, t�

���
, t�

���
, . . . , t�

�

The likelihood function, using (7.1.1), (7.2.1), and (7.2.2), is

L �
�

�
���

�e
����	
�

�
�����

e
����

and the log-likelihood function is

l(�) � n� � �
�

�
���

t
�
� �

�
�

�����

t�
�

(7.2.15)
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and from (7.1.2), the MLE of the parameter � is

�� �
r

��
���

t
��	

� ��
�����

t�
�

(7.2.16)

Consequently,

�� �
1

��
�

��
���

t
��	

� ��
�����

t�
�

r
(7.2.17)

is the MLE of the mean survival time. The sum of all of the observations,
censored and uncensored, divided by the number of uncensored observations,
gives the MLE of the mean survival time. To overcome the mathematical
difficulties arising when all of the observations are censored (r� 0), Bar-
tholomew (1957) defines

�� �
�

�
���

t�
�

(7.2.18)

In practice, this estimate has little value.
Distributions of the estimators are discussed by Bartholomew (1957). The

distribution of �� for large n is approximately normal with mean � and variance:

Var(�� ) �
��

�
�
���

(1� e
�	�)

(7.2.19)

where T
�
is the time that the ith person is under observation. In other words,

T
�
is computed from the time the ith person enters the study to the end of the

study. If the observation times T
�
are not known, the following quick estimate

of Var(�� ) can be used:

Var� (�� ) �
�� �
r

(7.2.20)

Thus an approximate 100(1� �)% confidence interval for � is, by (7.1.6),

�� �Z�
��Var� (�� ) � � � �� �Z�
��Var� (�� ) (7.2.21)

The distribution of �� is approximately normal with mean � and variance:

Var(�� ) �
��

��
���

(1� e
�	�)
(7.2.22)
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Again, a quick estimate is

Var� (�� ) �
�� �
r

(7.2.23)

An approximate 100(1� 
)% confidence interval for � is then, by (7.1.6),

�� �Z�
� �Var� (�� ) � � � �� �Z�
��Var� (�� ) (7.2.24)

The exact distribution of �� derived by Bartholomew (1963) is too cumbersome
for general use and thus is not included here.

Example 7.4 Consider the remission duration of the 21 leukemia patients
receiving 6-MP in Example 3.3. The remission times in weeks were 6, 6, 6, 7,
10, 13, 16, 22, 23, 6�, 9�, 10�, 11�, 17�, 19�, 20�, 25�, 32�, 32�, 34�,
and 35�. The hazard plot given in Figure 3.6 shows that the exponential
distribution fits the data very well. Maximum likelihood estimates of the
relapse rate and the mean remission time can be obtained, respectively, from
(7.2.16) and (7.2.17):

�� �
9

109� 250
� 0.025 per week �� �

1

0.025
� 40 weeks

The graphical estimate of � obtained in Example 3.3 is 0.027, which is very
close to the MLE. Thus, the remission duration of leukemia patients receiving
6-MP can be described by an exponential distribution with a constant weekly
relapse rate of 2.5% and a mean remission time of 40 weeks. The probability
of staying in remission for one year (or 52 weeks) or more is estimated by

S� (52) � exp[�0.025(52)]� 0.273

Using (7.2.20) and (7.2.23) for the variance of �� and �� , the 95% confidence
intervals for � and � are, respectively, (0.009, 0.041) and (13.867, 66.133).

Example 7.5 The results in Examples 7.2 to 7.4 can also be obtained by
using available statistical software. Let t denote the observed survival time
(exact or censored) and CENS be an index (or dummy) variable with
CENS� 0 if t is censored and 1 otherwise. Assume that the data have been
saved in ‘‘C:�EXAMPLE.DAT’’ as a text file, which contains two columns (t
in the first column and CENS in second column for the same study subject),
separated by a space.

The following SAS code for procedure LIFEREG can be used to obtain
the estimated covariance matrix defined in (7.1.5) and the MLE of the
parameter of the exponential distribution for the observed survival data in
‘‘C:�EXAMPLE.DAT’’.
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data w1;
infile ‘c:�example.dat’ missover;
input t cens;

run;
proc lifereg;
model t*cens(0) � /covb d� exponential;

run;

The respective BMDP code for program 2L is

/input file� ‘c:�example.dat’ .
variables� 2.
format� free.

/print level�brief.
cova. survival.

/variable names� t, cens.
/form time� t.

status� cens.
response� 1.

/regress accel� exponential.
/end

If SAS is used, the estimated parameter of the exponential distribution can
be obtained by

�� � exp(�INTERCEPT),

where INTERCEPT is the name of output estimated parameter in SAS
procedure LIFEREG. In BMDP 2L,

�� � exp(�CONSTANT)

where CONSTANT is given by the program.

7.2.2 Two-Parameter Exponential Distribution

In the case where a two-parameter exponential distribution is more appropri-
ate for the data (Zelen, 1966), the density and survivorship functions are
defined, respectively, as

f (t) ��
�e
���

	

0

t�G� 0, � � 0

t�G
(7.2.25)

and

S(t) ��
e
���

	

1

t�G� 0, � � 0

t�G
(7.2.26)

where G is called the guarantee time, the minimum survival time before which
no deaths occur.
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Estimation of � and G for Data without Censored Observations
If t

�
, t

�
, . . . , t

�
are the survival times of the n patients, using (7.1.1), (7.1.2),

(7.2.25), and (7.2.26), the MLE of � is

�� �
n

�
�
���

(t
�
�G� )

(7.2.27)

where G� is an estimate of G that is the smallest observation in the data,

G� �min(t
�
, t

�
, . . . , t

�
) (7.2.28)

and the mean survival time is estimated by �� �G� � 1/�� .

Example 7.6 Consider the survival times in months of 11 patients following
initial pulmonary metastasis from ostenogenic sarcoma considered by Burdette
and Gehan (1970). The data were 11, 13, 13, 13, 13, 13, 14, 14, 15, 15, and 17.
Suppose that the two-parameter exponential distribution is selected. The
guarantee time G is estimated by the smallest observation (i.e., G� � 11), and
the hazard rate �� estimated by (7.2.27) is

�� �
11

(11� 11) � (13� 11) ��� (17� 11)
� 0.367

Thus, the exponential model tells us that the minimum survival time is 11
months, and after that the chance of death per month is 0.367. Similarly, the
probability of surviving a given amount of time can then be estimated from
(7.2.26). For example, the estimated probability of surviving 18 months or
longer is

S� (18) � exp[�0.367(18� 11)]� 0.077

Estimation of � and G for Data with Censored Observations
We first consider singly censored data. Suppose that an experiment begins with
n animals and terminates as soon as the first r deaths occur. For this case, we
introduce the estimation procedures derived by Epstein (1960a).

Let the first r survival times be t
��	

� t
��	

� � � t
��	

and let T * be the total
survival observed between the first and the rth death:

T *� (n� 1)(t
��	

� t
��	
) � (n� 2)(t

��	
� t

��	
) � �� (n� r� 1)(t

��	
� t

��
�	
)

��(n� 1)t
��	

� t
��	

� t
��	

��� t
��
�	

� (n� r� 1)t
��	

�
�

�
���

t
��	

� nt
��	

� (n� r)t
��	

(7.2.29)
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The best estimates for G and � in the sense that they are unbiased and have
minimum variance are given by

G� � t
��	

�
��
n

(7.2.30)

and

�� �
T *

r� 1
(7.2.31)

Then � can then be estimated by �� � 1/�� .
Confidence intervals for the mean survival time � are easy to obtain from

the fact that 2(r� 1)�� /� � 2T */� has a chi-square distribution with 2(r� 1)
degrees of freedom. Thus, for r� 1, the 100(1� 
)%confidence interval for � is

2(r� 1)��
��
���
�	��
�

� � �
2(r� 1)��

��
���
�	��
�
�

(7.2.32)

or

2T *

��
���
�	��
�

� � �
2T *

��
���
�	��
�
�

(7.2.33)

To find confidence intervals for G, we use the fact that x
�
� 2n(t

��	
�G)/�

and x
�
� 2(r� 1)�� /� are independent and have a chi-square distribution with

2 and 2(r� 1) degrees of freedom, respectively. Thus the ratio

Y �
x
�
/2

x
�
/2(r� 1)

�
n(t

��	
�G)

��
�
n(r� 1)(t

��	
�G)

T *
(7.2.34)

follows the F-distribution with 2 and 2(r� 1) degrees of freedom. Let
F
�����
�	�� be the 100
 percentage point of the F

�����
�	
distribution [i.e.,

P(Y �F
�����
�	��) � 
] (Table B-3 in Appendix B), and then a 100(1� 
)%

confidence interval for G is

t
��	

�
��
n
F

�����
�	�� �G� t
��	

(7.2.35)

or

t
��	

�
T *

n(r� 1)
F

�����
�	�� �G� t
��	

(7.2.36)

Epstein and Sobel (1953) show that this interval is the shortest in the class of
intervals being used. If for some particular values of r and 
 the value F

�����
�	��
is not tabulated in the F-table, Epstein (1960a) suggests using the following
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confidence intervals for G:

t
��	

�
�� (r� 1)

n
g
�
� �G� t

��	
(7.2.37)

or

t
��	

�
T *

n
g
�
� �G� t

��	
(7.2.38)

where

g
�
�� �

1


�
�
��
�	

� 1 (7.2.39)

is computable for any 
 and r. Example 7.7 illustrates the procedures.

Example 7.7 In a laboratory experiment 20 mice are injected with a tumor
inoculum. These tumor cells multiply and eventually kill the animal. Suppose
that the investigator decides to terminate the experiment after 10 deaths. The
first occurs 30 days after the experiment starts. The total survival observed
between the time when the first and tenth deaths occur is 600 animal days.
Assuming that the survival distribution of these mice is exponential, the
shortest 95% confidence interval for G can be obtained by (7.2.36). Since
F
���������

� 3.555, the interval is

30�
600

(20)(9)
(3.555) �G� 30

or (18.150, 30).
The mean survival time estimated by (7.2.31) is �� � 66.667 days, and the

95% confidence interval for � computed from (7.2.33) is

2(600)

31.526
� � �

2(600)

8.231

or (38.064, 145.790).
When data are progressively censored, Gehan (1970) derives an estimate for

G and a modified MLE for the hazard rate �. Suppose that r out of the n
individuals in the study die before the end of the study and n� r individuals
are alive at the time of the last follow-up or termination. The n survival times
are denoted by

t
��	

� t
��	

� � � t
��	
, t�

����	
, . . . , t�

��	

An estimate of G obtained by

G� �max�t��	 �
1

n��
, 0� (7.2.40)
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and the variance of G� is

Var(G� ) �
1

(n�� )� �1�
1

r� 1� (7.2.41)

When n is large, G and Var(G� ) can be estimated by

G� � t
��	

(7.2.42)

and

Var� (G� ) �
1

(n�� )�
(7.2.43)

A modified MLE for � is

�� �
r� 1

��
���

t
��	

� ��
�����

t�
��	

� nt
��	

(7.2.44)

with variance

Var(�� ) �
��

r� 1
(7.2.45)

Any percentile of survival time t
�
may be estimated by equating S(t) to p and

solving for t�
�
; that is, t�

�
��(log

�
p)/�� �G� .

The following example illustrates the procedures.

Example 7.8 Suppose that 19 patients with brain tumor are followed in a
clinical trial for a year. Their survival times in weeks are 3, 4, 6, 8, 8, 10, 12,
16, 17, 30, 33, 3�, 8�, 13�, 21�, 26�, 35�, 44�, and 45�. In this case n� 19,
r� 11, t

��	
� 3, ���

���
t
��	

� 147, and ���
����

t�
��	

� 195. The hazard rate � per week
and its variance may be estimated by (7.2.44) and (7.2.45) as

�� �
10

147� 195� 19(3)
� 0.035

and

Var� (�� ) �
(0.035)�

10
� 0.0001

The guarantee time G and its variance may then be estimated by (7.2.40) and
(7.2.41):
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G� �max �3�
1

19�0.035
, 0�� 1.496

and

Var� (G� ) �
1

(19�0.035)� �1�
1

10�� 2.487

Thus, after a guarantee time of approximately 1.5 weeks, the chance of death
per week is 0.035. The estimated median survival time is

t�
���

��
log 0.5

0.035
� 1.496� 21.3 weeks

The probability of surviving at least six months (or 26 weeks) is estimated by

S� (26) � exp[�0.35(26� 1.496)]� 0.424

7.3 WEIBULL DISTRIBUTION

The Weibull distribution has the density and survivorship functions

f (t) � ���t�
� exp[�(�t)�]

S(t) � e
���	� t� 0, � � 0, � � 0 (7.3.1)

The MLE of the parameters � and � involves equations to be solved simulta-
neously. Numerical methods such as the Newton—Raphson iterative procedure
(7.1.13) can be applied. We begin with the case where no censored observations
are presented.

Let t
�
, t

�
, . . . , t

�
be the exact survival times of n individuals under investiga-

tion. If their survival times follow the Weibull distribution, the log-likelihood
function is

l(�, �) � n log � � n� log � �
�

�
���

[(� � 1) log t
�
� ��t�

�
] (7.3.2)

The MLE of � and � in (7.3.1) can be obtained by solving the following two
equations simultaneously:

n� �� �� �
�
���

t
�
�� � 0 (7.3.3)

n

��
� n log �� �

�
�
���

log t
�
� �� �� �

�
���

t
�
�� (log�� � log t

�
) � 0 (7.3.4)
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Next, let us consider a typical laboratory experiment in which subjects are
entered at the same time and the experiment is terminated after r of the n
subjects have failed (or after a fixed period of time T ). In both of these cases
the data collected are singly censored. The ordered survival data are

t
��	

� t
��	

� � � t
��	

� t�
����	

��� t�
��	

If the time to failure follows the Weibull distribution with the density function
given in (7.3.1), the MLE of � and � may be obtained by solving the following
two equations simultaneously:

r� �� �� �
�

�
���

t
�
�� � (n� r)t��

��	�� 0 (7.3.5)

r

��
� r log �� �

�
�
���

log t
�

� �� �� �
�

�
���

t
�
�� (log �� � log t

�
) � (n� r)t��

��	
(log �� � log t

��	
)�� 0 (7.3.6)

When data are progressively censored, we have

t
��	

� t
��	

� � � t
��	
, t�

����	
, . . . , t�

��	

If the survival distribution is Weibull defined by (7.3.1), the log-likelihood
function is

l(�, �) � r log � � r� log � �
�

�
���

[(� � 1)log t
��	

� ��t�
��	
]�

�
�

�����

��t��
��	

(7.3.7)

The MLE of � and � may be obtained by solving the following two equations
simultaneously:

r� �� �� �
�

�
���

t
�
�� �

�
�

�����

t�
�

���� 0 (7.3.8)

r

��
� r log �� �

�
�
���

log t
�
� �� �� �

�
���

t
�
�� (log �� � log t

�
)

� �� �� �
�

�����

t
�
��� (log �� � log t�

�
) � 0 (7.3.9)

The following example illustrates the use of available computer software to
obtain the MLE of � and �.
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Example 7.9 Referring to Example 7.5, for the observed survival data in
the file ‘‘EXAMPLE.DAT’’, we can use either SAS or BMDP to obtain the
estimated parameters of the Weibull distribution. The codes given in Example
7.5 can be used except that d� exponential in the SAS code must be changed
to d�weibull and accel� exponential in BMDP code be changed to ac-
cel�weibull. If SAS is used, the estimated parameters of the Weibull distribu-
tion are

�� � exp(�INTERCEPT) and �� �
1

SCALE

where INTERCEPT and SCALE are produced by SAS procedure LIFEREG.
If BMDP is used,

�� � exp(�INTERCEPT) and �� �
1

SCALE

where CONSTANT and SCALE are given by procedure 2L.

7.4 LOGNORMAL DISTRIBUTION

If the survival time T follows the lognormal distribution with density function

f (t) �
1

t��2�
exp��

1

2��
(log t� �)�� (7.4.1)

the mean and the variance are exp(� ��
�
��) and [exp(��) � 1] exp(2� � ��),

respectively. Estimation of the two parameters � and �� has been investigated
either by using (7.4.1) directly or by using the fact that Y � logT follows the
normal distribution with mean � and variance ��. In the following, we discuss
the estimation of � and �� for samples with and without censored observations.

7.4.1 Estimation of � and �2 for Data without Censored Observations

Estimations of � and �� for complete samples by maximum likelihood methods
have been studied by many authors: for example, Cohen (1951) and Harter and
Moore (1966). But the simplest way to obtain estimates of � and �� with
optimum properties is by considering the distribution of Y � logT. Let t

�
,

t
�
, . . . , t

�
be the survival times of n subjects. The MLE of � is the sample mean

of Y given by

�� �
1

n

�
�
���

log t
�

(7.4.2)

The MLE of �� is

�� ��
1

n �
�

�
���

(log t
�
)� �

(��
���

log t
�
)�

n � (7.4.3)
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The estimate �� is also unbiased but �� � is not. The best unbiased estimates of
� and �� are �� and the sample variance s�� �� �[n/(n� 1)]. If n is moderately
large, the difference between s� and �� � is negligible.

One of the properties of the MLE is that if ��� is the MLE of �� , g(��� ) is the
MLE of g(�� ) if g(�� ) is a finite function. Therefore, the MLEs of the mean and
variance of T are, respectively, exp(�� ��

�
�� �) and exp[(�� �� 1)] exp(2�� � �� �).

It is known that �� � y� is normally distributed with mean � and variance
��/n. Hence, if � is known, a 100(1� 
)% confidence interval for � is
�� �Z



�
�/�n. If � is unknown, we can use Student’s t-distribution. A

100(1� 
)% confidence interval for � is �� � t�
����
�	
s/�n� 1, where t�
����
�	

is the 100
/2 percentage point of Student’s t-distribution with n� 1 degrees of
freedom (Table B-7).

Confidence intervals for �� can be obtained by using the fact that n�� /��

has a chi-square distribution with n� 1 degrees of freedom. A 100(1� 
)%
confidence interval for �� is

n�� �
��
��
�	��
�

� �� �
n�� �

��
��
�	��
�
�

(7.4.4)

The following hypothetical example illustrates the procedures.

Example 7.10 Five melanoma (resected) patients receiving immunotherapy
BCG are followed. The remission duration in weeks are, in order of magnitude,
8, 16, 23, 27, and 28. Suppose that the remission times follow a lognormal
distribution. In this case, parameters are estimated by (7.4.2) and (7.4.3) as
follows:

t log t (log t)�

8 2.079 4.322
16 2.773 7.690
23 3.135 9.828
27 3.296 10.864
28 3.332 11.102

——— ———
14.615 43.806

�� �
14.615

5
� 2.923

�� ��
1

5 �43.806�
1

5
(14.615)��� 0.217

s��
5�� �
5� 1

� 0.271
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The mean remission time is exp(2.923� 0.217/2), or 20.728, weeks and the
standard deviation of the remission time is �[exp(0.217)� 1]
exp(5.846� 0.217)��
�, or 10.204, weeks. A 95% confidence interval for � is

2.923� 2.776 �
0.521

�4 �� � � 2.923� 2.776 �
0.521

�4 �
or (2.200,3.646). A 95% confidence interval for ��, following (7.4.4), is

5(0.217)
11.1433

� �� �
5(0.217)
0.4844

or (0.097, 2.240).

7.4.2 Estimation of � and �2 for Data with Censored Observations

We first consider samples with singly censored observations. The data consist
of r exact survival times t

��	
� t

��	
� � � t

��	
and n� r right-censored survival

times that are at least t
��	
, denoted by t�

��	
. Again, we use the fact that Y � logT

has normal distribution with mean � and variance ��. Estimates of � and ��

can be obtained from the transformed data y
�
� log t

�
. Many authors have

investigated the estimation of � and ��: for example, Gupta (1952), Sarhan and
Greenberg (1956, 1957, 1958, 1962), Saw (1959), and Cohen (1959, 1961). We
shall discuss the methods of Sarhan and Greenberg and Cohen because of the
available table that reduces computation time and efforts.

The best linear estimates of � and � proposed by Sarhan and Greenberg are
linear combinations of the logarithms of the r exact survival times:

�� �
�

�
���

a
�
log t

��	
(7.4.5)

and

�� �
�

�
���

b
�
log t

��	
(7.4.6)

where the coefficients a
�
and b

�
are calculated and tabulated by Saharan and

Greenberg for n� 20 and are partially reproduced in Table B-8. The variance
and covariance of �� and �� are tabulated in Table B-9.

The following example illustrates the procedure.

Example 7.11 Suppose that in a study of the efficacy of a new drug, 12 mice
with tumors are given the drug. The experimenter decides to terminate the
study after 9 mice have died. The survival times are, in weeks, 5, 8, 9, 10, 12,
15, 20, 21, 25, 25�, 25�, and 25�. Assume that the times to death of these
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mice follow the lognormal distribution. In this case n� 12, r� 9, and
n� r� 3. Using (7.4.5), (7.4.6), and Table B-8, �� and �� can be calculated as

�� � 0.036 log 5� 0.0581 log 8� 0.0682 log 9� 0.0759 log 10� 0.0827 log 12

�0.0888 log 15� 0.0948 log 20� 0.1006 log 21� 0.3950 log 25

� 2.811

�� � �0.2545 log 5� 0.1487 log 8� 0.1007 log 9� 0.0633 log 10

� 0.0308 log 12� 0.0007 log 15� 0.0286 log 20� 0.0582 log 21

� 0.5119 log 25

� 0.747

The variance of �� and �� given in Table B-9 are, respectively, 0.0926 and 0.0723
and the covariance of �� and �� is 0.0152.

Cohen’s (1959, 1961) MLEs for the normal distribution can be used for
n� 20. Let

y� �
1

r

�
�
���

log t
��	

(7.4.7)

and

s��
1

r �� (log t
��	
)� �

(� log t
��	
)�

r � (7.4.8)

Then the MLEs of � and �� are

�� � y� � �� ( y� � log t
��	
) (7.4.9)

and

�� � � s�� �� ( y� � log t
��	
)� (7.4.10)

where the value of �� has been tabulated by Cohen (1961) as a function of a and
b. The proportion of censored observations, b, is calculated as

b�
n� r

n

and

a�
1� Y (Y � c)

(Y � c)�

where Y � [b/(1 � b)] f (c)/F(c), f (c) and F(c) being the density and distribu-
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tion functions, respectively, of the standard normal distribution, evaluated at
c� (log t

��	
� �)/�. Table 7.1 gives values of �� for b� 0.01 to 0.90 and a� 0.00

to 1.00. For a censored sample, after computing a� s�/(y� � log t
��	
)�, and

b� (n� r)/n, enter Table 7.1 with these values of a and b to obtain �� . For
values not tabulated, two-way linear interpolation can be used.

The asymptotic variances and covariance are the following:

Var(�� ) �
��

n
m

�

Var(�� ) �
��

n
m

�
(7.4.11)

Cov(�� , �� ) �
��

n
m

�

where m
�
, m

�
, and m

�
are also tabulated by Cohen (1961). The table is

reproduced in Table 7.2. For any censored sample, compute c� � (log t
��	

� �� )/��
and then enter the appropriate columns of Table 7.2 with y� �c� , and
interpolate to obtain the required values of m

�
, i� 1, 2, 3, if the experiment was

terminated after a predetermined time. If the experiment was terminated after
a given proportion of animals have died, enter Table 7.2 through the percent
censored column with percentage censored� 100b and interpolate to obtain
the required value of m

�
.

To illustrate the use of Tables 7.1 and 7.2 for the computation of �� , �� �,
Var(�� ), Var(�� ), and Cov(�� , �� ), consider Example 7.12, adapted from Cohen
(1961).

Example 7.12 Suppose that in a laboratory experiment 300 insects were
followed until 119 died within seconds, y� � 1,304.832 seconds, s�� 12,128.250,
and log t

����	
� 1,450.000 seconds. In this case n� 300 and r� 119. Accord-

ingly,

a� �
12,128.25

(1,304.832 � 1,450)�
� 0.575 b�

300� 119

300
� 0.603

From Table 7.1, �� is approximately 1.36. Using (7.4.9) and (7.4.10), we obtain

�� � 1,304.832� 1.36(1,304.832� 1,450) � 1,502.26 seconds

�� � � 12,128.250� 1.36(1,304.832� 1,450)�� 40,788.55

and �� �� 201.96 seconds.
For the variance and covariance of �� and �� , we enter Table 7.2 with

percentage censored 100b� 60.3 and interpolate linearly to obtain m
�
� 2.002,
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Table 7.2 Estimated Values of m1, m2. and m3 for Var(�� ), Var(�� ),
and Cov(�� ,�� )

Percentage
y m

�
m

�
m

�
Censored

�4.0 1.00000 0.500030 0.000006 0.00
�3.5 1.00001 0.500208 0.000052 0.02
�3.0 1.00010 0.501180 0.000335 0.13
�2.5 1.00056 0.505280 0.001712 0.62
�2.4 1.00078 0.506935 0.002312 0.82
�2.3 1.00107 0.509030 0.003099 1.07
�2.2 1.00147 0.511658 0.004121 1.39
�2.1 1.00200 0.514926 0.005438 1.79
�2.0 1.00270 0.518960 0.007123 2.28
�1.9 1.00363 0.523899 0.009266 2.87
�1.8 1.00485 0.529899 0.011971 3.59
�1.7 1.00645 0.537141 0.015368 4.46
�1.6 1.00852 0.545827 0.019610 5.48
�1.5 1.01120 0.556186 0.024884 6.68
�1.4 1.01467 0.568417 0.031410 8.08
�1.3 1.01914 0.582981 0.039460 9.68
�1.2 1.02488 0.600046 0.049355 11.51
�1.1 1.03224 0.620049 0.061491 13.57
�1.0 1.04168 0.643438 0.076345 15.87
�0.9 1.05376 0.670724 0.094501 18.41
�0.8 1.06923 0.702513 0.116674 21.19
�0.7 1.08904 0.739515 0.143744 24.20
�0.6 1.11442 0.782574 0.176698 27.43
�0.5 1.14696 0.832691 0.217183 30.85
�0.4 1.18876 0.891077 0.266577 34.46
�0.3 1.24252 0.959181 0.327080 38.21
�0.2 1.31180 1.03877 0.401326 42.07
�0.1 1.40127 1.13198 0.492641 46.02
0.0 1.51709 1.24145 0.605233 50.00
0.1 1.66743 1.37042 0.744459 53.98
0.2 1.86310 1.52288 0.917165 57.93
0.3 2.11857 1.70381 1.13214 61.79
0.4 2.45318 1.91942 1.40071 65.54
0.5 2.89293 2.17751 1.73757 69.15
0.6 3.47293 2.48793 2.16185 72.57
0.7 4.24075 2.86318 2.69858 75.80
0.8 5.2612 3.3192 3.3807 78.81
0.9 6.6229 3.8765 4.2517 81.59
1.0 8.4477 4.5614 5.3696 84.13
1.1 10.903 5.4082 6.8116 86.43
1.2 14.224 6.4616 8.6818 88.49
1.3 18.735 7.7804 11.121 90.32
1.4 24.892 9.4423 14.319 91.92
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Table 7.2 Continued

Percentage
y m

�
m

�
m

�
Censored

1.5 33.339 11.550 18.539 93.32
1.6 44.986 14.243 24.139 94.52
1.7 61.132 17.706 31.616 95.54
1.8 83.638 22.193 41.664 96.41
1.9 115.19 28.046 55.252 97.13
2.0 159.66 35.740 63.750 97.72
2.1 222.74 45.930 99.100 98.21
2.2 312.73 59.526 134.08 98.61
2.3 441.92 77.810 182.68 98.93
2.4 628.58 102.59 250.68 99.18
2.5 899.99 136.44 346.53 99.38

Source: Cohen (1961).

m
�
� 1.635, and m

�
� 1.051. Substituting these values and �� � � 40,788.55 into

(7.4.11), we obtain

Var(�� ) �
40,788.55(2.022)

300
� 274.91

var(�� ) �
40,788.55(1.635)

300
� 222.30

Cov(�� , �� ) �
40,788.55(1.051)

300
� 142.90

When the data are progressively censored, let t
�
, t

�
, . . . , t

�
be the uncensored

and t�
���

, t�
���

, . . . , t�
�

be the censored observations, the likelihood function,
using (7.4.1) and (7.1.1), is

l(�, ��) ��
r log(2���)

2
�

�
�
���
�log t� �

(log t
�
� �)�

2�� �
�

�
�

�����

log��
�

���

1

x�2���
exp��

1

2��
(logx� �)�� dx�

and the MLE of � and �� can be obtained by solving the following two
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equations:

�
�
���

log t
�
� �

��
�

�
�

�����

�
�

���

logx� �

x���2���
exp��

1

2��
(logx� �)�� dx

�
�

���

1

x�2��
exp��

1

2��
(logx� �)�� dx

� 0

�
n

2��
�

�
�
���

(log t
�
� �)�

2��

�
�

�
�����

�
�

���

(logx� �)�

x2���2���
exp��

1

2��
(logx� �)�� dx

�
�

���

1

x�2���
exp��

1

2��
(logx� �)�� dx

� 0

Again, this can be done by applying the Newton—Raphson iterative procedure.
The following example illustrate the use of SAS and BMDP to obtain

estimates of the lognormal parameters.

Example 7.13 Referring to Example 7.5, for the observed survival data in
the file ‘‘EXAMPLE.DAT’’, by changing d� exponential in SAS code to
d� lnormal and accel� exponential in BMDP code to accel� lnormal we
can obtain the estimated parameters of the lognormal distribution. If SAS is
used, the estimated parameters of the lognormal distribution are

�� � INTERCEPT and �� �� SCALE�

where INTERCEPT and SCALE are the names of output estimated par-
ameters in SAS procedure LIFEREG. If BMDP is used,

�� �CONSTANT and �� ��SCALE�

where CONSTANT and SCALE are given by procedure 2L.

7.5 STANDARD AND GENERALIZED GAMMA DISTRIBUTIONS

The density function of the standard gamma distribution is

f (t) �
�

�(�)
(�t)�
� exp(��t) t� 0, �, � � 0 (7.5.1)
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where

�(�) ��
��
�
x�
� e
� dx

(� � 1)! if � is an integer
(7.5.2)

In this section we discuss the MLE of � and � for data with and without
censored observations.

7.5.1 Estimation of � and � for Data without Censored Observations

Suppose that the n patients under study are followed to death and their exact
survival times t

�
, t

�
, . . . , t

�
are known. The MLE of � and � can be obtained

by solving simultaneously the two equations

n��
��

�
�

�
���

t
�
� 0 (7.5.3)

and

n log �� �
n�	(�� )
�(�� )

�
�

�
���

log t
�
� 0 (7.5.4)

where �	(�) is the derivative of �(�),

�	(�) ��
�

�

x�
� log(x)e
� dx (7.5.5)

From (7.5.3), we have

�� �
n��

��
���

t
�

(7.5.6)

On eliminating �, we substitute (7.5.6) into (7.5.4) and obtain

�	(�� )
�(�� )

� log �� � log
(��

���
t
�
)�
�

��
���

t
�
/n

� 0 (7.5.7)

to solve for �� . This can be done by using the Newton—Raphson iterative
procedure. Tables for the solution of (7.5.7) for �� as a function of R are given
by Greenwood and Durand (1960), where R is the ratio of the geometric mean
to the arithmetic mean of the n observations:

R�
(��

���
t
�
)�
�

��
���

t
�
/n

(7.5.8)
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Wilk et al. (1962a) show that the relationship between �� and 1/(1�R) is linear.
A table of �� values of as a function of 1/(1�R) given in their paper is
reproduced in Table B-10. Thus if R and 1/(1�R) are computed from the
sample, a MLE of � can be found from Table B-10. For values not tabulated,
linear interpolation can be used. Having �� so determined, �� can be obtained
from (7.5.6).

In the method of moments (Fisher, 1922), the estimators are obtained
simply by equating the population mean and variance to the sample mean and
variance. The moment estimators of � and � are

�*�
��
���

t
�

��
���

(t
�
� t� )�

(7.5.9)

and

�*�
(��

���
t
�
)�

n��
���

(t
�
� t� )�

(7.5.10)

Both types of estimators give biased estimates. The moment estimators are
easy to calculate but are inefficient in the sense that their variances are larger
than the variance of the MLE. To reduce the bias, Lilliefors (1971) suggests
correction factors for these two types of estimators. The corrected MLE of �
and � are, respectively,

��
�
�

��
1� 3/n

(7.5.11)

and

��
�
�

��
�
t� �1�

1

n��
�
� (7.5.12)

The corrected moments estimators of � and � are

�*
�
�

�*
1� 2/n

�
3

n
(7.5.13)

and

�*
�
�

�*
�
t �1�

1

n�*
�
� (7.5.14)

Lilliefors shows by the Monte Carlo method that the corrected MLE and
the method-of-moment estimates are approximately unbiased. In addition, as
long as � � 2, the corrected moments estimators have no more bias than the
corrected MLE and for n� 10 have considerably less bias. For n� 10, 20 and
� � 2, the variance is close to that of the MLE.
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Example 7.14 Ten patients with melanoma achieve remission after surgery
and therapy. They are followed to relapse. The durations of remission in
months are recorded as follows: 5, 8, 10, 11, 15, 20, 21, 23, 30, and 40. Assuming
that the distribution of remission duration is standard gamma, we first
calculate the MLE of � and � according to Wilk et al. (1962a). To compute R,
we obtain ��

���
t
�
� 183 and (��

���
t
�
)�
�� � 15.43. Therefore R� 0.84 and

1/(1�R) � 6.25. From Table B-10, �� � 2.89830 for 1/(1�R) � 6.0 and
�� � 3.14984 for 1/(1�R) � 6.5. By linear interpolation, for 1/(1�R) � 6.25,
�� � 3.02407. From (7.5.6), �� � 0.16525. The corrected MLEs obtained from
(7.5.11) and (7.5.12) are ��

�
� 2.326 and ��

�
� 0.122. The moment estimates of �

and � following (7.5.9) and (7.5.10) are �*� 0.173 and �*� 3.171. With the
correction factors, �*

�
� 0.1225 and �*

�
� 2.3425, which are very close to the

corrected MLE.

7.5.2 Estimation of � and � for Data with Censored Observations

When data are singly censored, the survival times can be ordered as

t
��	

� t
��	

� � � t
��	

� t�
����	

��� t�
��	

where r persons in the study have exact survival times recorded and n� r
others have their lives terminated after the rth death occurs. In this case, the
maximum likelihood procedure becomes much more complicated.

Let � � �t
��	
, P� [��

���
t
��	
]�
�/t

��	
, and S� ��

���
t
��	
/rt

��	
. The MLE of � and

� and can be obtained by solving simultaneously

logP�
n�	(�)
r�(�)

�
n

r
log � ��

n

r
� 1�

J	(�, �)
J(�, �)

(7.5.15)

and

S�
�
�
�

1

� �
n

r
� 1�

e
	
J(�, �)

(7.5.16)

where

J(�, �) � �
�

�

t�
�e
	� dt (7.5.17)

and

J 	(�, �) �
�
��
J(�, �) � �

�

�

t�
� log te
	�dt (7.5.18)

Wilk et al. (1962a) generate, for a grid of values of P and S and n/r, tables of
values of �� and �� � �� /�� based on the solutions of (7.5.15) and (7.5.16). The
tables are reproduced in Table B-11. Thus, to find �� and �� , one needs to
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compute P and S first. For specific values of P, S, and n/r, �� and �� may be
looked up from Table B-11. Then �� can be obtained from �� � �� /[�� t

��	
].

Interpolations may be needed when any of the values of P, S, and n/r are not
tabulated.

Example 7.15, adapted from Wilk et al. (1962a), illustrates the procedure of
calculating �� , �� , and �� when Table B-11 is used. This method can also be used
in the case of a complete sample (no censored observations); that is, r� n. If
it is obvious that some of the observations may be outliers (too large or too
small), it is reasonable not to use them in estimation. In this case, r is the
number of observations used in the estimation procedure.

Example 7.15 Consider an experiment with n� 34 animals. The following
data are the lifetimes t

�
in weeks of 34 animals: 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 9, 10,

10, 11, 11, 11, 13, 13, 13, 13, 13, 17, 17, 19, 19, 25, 29, 33, 42, 42, 52, 52�, 52�,
and 52�. The study is terminated when 31 animals have died and the other 3
are sacrificed. In our notation, n� 34 and r� 31.

1. Compute n/r, P, and S:

n

r
�

34

31
� 1.10

S�
� t

�
rt

��	

�
487

(31)(52)
� 0.30

To compute P, it is easier first to compute log P:

logP�
1

r
� log t

��	
� log t

��	
�

1

31
�33.90207� 1.716��0.622385

Hence P� 0.24.

2. Consider the entries for n/r� 1.10 and P� 0.24 in Table B-11:

S� 0.28: �� � 1.986 �� � 0.365

S� 0.32: �� � 1.449 �� � 0.410

Using linear interpolation, approximate estimates of � and � are �� � 1.72
and �� � 0.39.

3. Finally, �� � 1.72/(0.39�52) � 0.085.

For a more accurate two-way interpolation, the reader is referred to Wilk
et al. (1962a).
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When the data are progressively censored, let t
�
, t

�
, . . . , t

�
be the uncensored

and t�
���

, t�
���

, . . . , t�
�
be the censored observations; the likelihood function is

l(�, �) � log L (�, �) � n� log � � n log�(�)

�
�

�
���

[(� � 1) log t
�
� �t

�
]�

�
�

�����

log��
�

���

x�
�e
��dx�

and the MLE of � and � can be obtained by solving the two equations

n�
�

�
�

�
���

t
�
�

�
�

�����

�
�

���
x�e
�� dx

�
�

���
x�
�e
�� dx

� 0

n log � �
n�	(�)
�(�)

�
�

�
���

log t
�
�

�
�

�����

�
�

���
x�
�e
�� log(x) dx

�
�

���
x�
�e
�� dx

� 0

using the Newton—Raphson iterative procedure.

7.5.3 Estimation of �, �, and � in the Extended Generalized Gamma
Distribution for Data with or without Censored Observations

The extended generalized gamma distribution has density function defined in
(6.4.10),

f (t) �  
 �����t��
�
exp[��(�t)�]

�(�)
t� 0, � � 0, � � 0 (7.5.19)

Let us consider the case 
 � 0. Let t
�
, t

�
, . . . , t

�
be the uncensored and

t�
���

, . . . , t�
�

the censored observations from n persons and the survival times
follow the generalized gamma distribution. Then the likelihood function is

l(�, �, 
) � n
� log � � n log 
 � n� log � � n log�(�)

�
�

�
���

[(
� � 1)log t
�
� �(�t

�
)�]

�
�

�
�����

log��
�

���
x��
� exp[��(�x)�] dx�
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and the MLE of �, �, and 
 can be obtained by solving the three equations

n
�
�

� �
��
�
�

�
���

t�
�
� �
��
�

�
�

�����

�
�

���
x��
��� exp(��(�x)�) dx

�
�

���
x��
� exp(��(�x)�) dx

� 0 (7.5.20)

n
 log � � n log � � n�
n�	(�)
�(�)

�
�

�
���

[
 log t
�
� (�t

�
)�]

�
�

�
�����

�
�

���
x��
� exp[��(�x)�][
 log(x) � (�x)�] dx

�
�

���
x��
� exp(��(�x)�) dx

� 0 (7.5.21)

n� log � �
n



�

�
�
���

[� log t
�
� �(�t

�
)� log(�t

�
)]

�
�

�
�����

�
�

���
x��
� exp[��(�x)�][� log

�
(x) � �(�x)� log(�x)] dx

�
�

���
x��
� exp[��(�x]�) dx

� 0 (7.5.22)

using the Newton—Raphson iterative procedure.
If all the observed survival times are uncensored, the respective equations

for the MLE of �, �, and 
 can be obtained simply by replacing r with n in
(7.5.20)—(7.5.22). The SAS procedure LIFEREG can be used to obtain the
MLE of �, �, and 
 in the extended generalized gamma distribution.

Example 7.16 Referring to Example 7.5, for the observed survival data in
the file ‘‘EXAMPLE.DAT‘, by changing d� exponential in the SAS code to
d� gamma, one can obtain the MLE of the parameters of the extended
generalized gamma distribution:

�� � exp(�INTERCEPT) 
� �
SHAPE1

SCALE
�� �

1

SHAPE1�

where INTERCEPT, SHAPE1, and SCALE are given by the SAS LIFEREG
procedure.
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7.6 LOG-LOGISTIC DISTRIBUTION

The log-logistic distribution has the density function

f (t) �

�t�
�

(1 � 
t�)�
(7.6.1)

and survivorship function

S(t) �
1

1� 
t�
(7.6.2)

where t� 0, 
 � 0, � � 0. Let t
�
, t

�
, . . . , t

�
be the uncensored and t�

���
,

t�
���

, . . . , t�
�

the censored observations from n persons and the survival times
follow the log-logistic distribution. Then the MLE of 
 and � can be obtained
from solving the following two simultaneous equations:

r� 
�2
�

�
���

t�
�

1� 
t�
�

�
�

�
�����

t��
�

1� 
t��
�
�� 0 (7.6.3)

r

�
�

�
�
���

log(t
�
) � 
 �2

�
�
���

t�
�
log(t

�
)

1� 
t�
�

�
�

�
�����

t��
�

log(t�
�
)

1� 
t��
�
�� 0 (7.6.4)

using the Newton—Raphson iterative procedure. If all the survival times
observed are uncensored, the respective equations for the MLE of 
 and � can
be obtained simply by replacing r with n in (7.6.3) and (7.6.4).

Example 7.17 Referring to Example 7.5, for the observed survival data in
file ‘‘EXAMPLE.DAT‘, replacing d� exponential in the SAS code by
d� llogistic and accel� exponential in the BMDP code by accel� llogistic,
we can obtain the estimated parameters of the log-logistic distribution. If SAS
is used, the estimated parameters of the log-logistic distribution are


� � exp��
INTERCEPT

SCALE � and �� �
1

SCALE

where INTERCEPT and SCALE are given by the SAS LIFEREG procedure.
If BMDP is used,


� � exp��
CONSTANT

SCALE � and �� �
1

SCALE

where CONSTANT and SCALE are produced by the BMDP procedure 2L.
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Example 7.18 Assume that the tumor-free time of the 30 rats in the low-fat
diet group in Table 3.4 follows the log-logistic distribution. The estimates of
the two parameters from either SAS or BMDP are 
� � 0.000025484 and
�� � 2.01866. Therefore, from Section 6.5, the median survival time for this
group is 188.64 days, and the hazard function approach the peak at 190.37
days.

7.7 OTHER PARAMETRIC SURVIVAL DISTRIBUTIONS

The Gompertz distribution (Section 6.6) has the following survivorship and
probability density functions:

S(t) � exp��
e�
�
(e�� � 1)� (7.7.1)

f (t) � exp�(� � �t) �
1

�
(e���� � e�)� (7.7.2)

7.7.1 Estimation of � and � for Data with or without Censored Observations

Assume that t
�
, t

�
, . . . , t

�
are the observed survival times from n individuals and

the survival times follow the Gompertz distribution, without loss of generality,
and assume that t

�
, t

�
, . . . , t

�
are uncensored and t�

�
, t�

���
, . . . , t�

�
right-censored.

The MLE of � and � can be obtained by solving the equations

r�
e�
� �

�
�
���

[1� exp(�t
�
)] �

�
�

�����

[1� exp(�t�
�
)]�� 0 (7.7.3)

�
�
���

t
�
�
e�
�� �

�
�
���

[1� (�t
�
� 1) exp(�t

�
)] �

�
�

�����

[1� (�t�
�

� 1) exp(�t�
�
)]�� 0

(7.7.4)

using the Newton—Raphson iterative procedure.
If all t

�
, t

�
, . . . , t

�
are uncensored, the MLE of � and � can be obtained

similarly by replacing r with n in (7.7.3) and (7.7.4). The MLE of the
parameters of the other models in Section 6.6 can be obtained in a similar
manner.

Bibliographical Remarks

In addition to the papers cited in this chapter, Gross and Clark (1975) have
chapters on estimation and inference in the exponential distribution and on the
estimation of parameters of three distributions, including the Weibull and
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gamma. Mann et al. (1974), Lawless (1982), and Nelson (1982) also provide a
chapter on the estimation procedures for survival distributions, including the
exponential, Weibull, gamma, and lognormal. A more recent book is by Klein
and Moeschberger (1997). Readers with a background in mathematical statis-
tics and an interest in mathematical treatment of estimation procedures are
referred to these books.

EXERCISES

7.1 Consider the survival times given in Exercise 8.2. Assuming that they
follow the one-parameter exponential distribution, obtain:
(a) The MLE of �
(b) The MLE of �
(c) The 95% confidence intervals for � and �

7.2 Assuming that the correct entries between errors in Exercise 8.3 follow the
two-parameter exponential distribution, obtain:
(a) An estimate of G
(b) The MLE of �
(c) The MLE of �
(d) The probability of 100 correct entries between two errors

7.3 Consider the survival data in Exercise 8.5. Obtain the MLE of the
parameter(s) and mean survival times, assuming:
(a) A one-parameter exponential distribution
(b) A Weibull distribution

7.4 In a study of deep venous thrombosis, the following blood clot lysis times
in hours were recorded from 20 patients: 2, 3, 4, 5.5, 9, 13, 16.5, 17.5, 12.5,
7, 6, 17.5, 11.5, 6, 14, 25, 49, 37.5, 49, and 28. Assume that the blood clot
lysis times follow the lognormal distribution.
(a) Obtain MLEs of the parameters � and ��.
(b) Obtain 95% confidence intervals for � and ��.

7.5 Consider the following tumor-free times in days of 10 animals: 2, 3.5, 5,
7, 9, 10, 15, 20, 30, and 40. Assume that the tumor-free times follow the
log-logistic distribution. Estimate the parameters 
 and �.
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CHAPTER 8

Graphical Methods for
Survival Distribution Fitting

The use of probability models for survival experience has played an increasing-
ly important role in biomedical sciences. Survival models summarize the
survival pattern, suggest further studies, and generate hypotheses. In this
chapter we introduce three graphical methods for survival distribution fitting.

In Section 8.1 we discuss the advantages of the graphical techniques. In
Section 8.2 we discuss probability plotting, including how to make probability
plots and how to estimate parameters from them. In Section 8.3 we discuss the
theory and applications of hazard plotting for censored data. In Section 8.4 we
introduce the Cox—Snell residual method.

8.1 INTRODUCTION

Graphical methods have long been used for display and interpretation of data
because they are simple and effective. Often used in place of or in conjunction
with numerical analysis, a plot of data serves a number of purposes simulta-
neously that no numerical method can. The basic idea of the three graphical
methods is to see if the survival time itself, or a function of it, has a linear
relationship with the distribution function and the cumulative hazard function
of a given parametric distribution, or a function of the distribution function
and the cumulative hazard function. If such a linear relationship exists, it can
be demonstrated graphically as a straight line. Thus, if one chooses the
appropriate distribution and makes a probability, or hazard, plot, the result
will be a straight line fit to the data. Parameters of the distribution chosen can
be estimated from the probability or hazard plots without tedious numerical
calculations. Such estimates may be adequate and useful for preliminary
purposes. However, prior information is often not sufficient to choose a
suitable distribution, and the plot may not be a straight line. If the plot is not
a straight line, there is no need to estimate the parameters and an alternative
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Figure 8.1 Two curved normal probability plots.

Figure 8.2 Two skewed density functions.

distribution may be selected. If the Cox—Snell residual plotting method is used,
estimates of the parameters must be obtained first.

A nonlinear plot can provide insight into the data. There are several pos-
sible interpretations. First, the wrong theoretical distribution might have
been used. Second, the sample might be from a mixture of populations. In the
latter case, it is necessary to separate the data accordingly and make a separate
plot for each population. If one or two points are way out of line, they might
be the results of errors in collecting and recording the data or they might not
be from the same population. Other reasons for peculiar looking plots and
interpretations of them are discussed by King (1971) and Hahn and Shapiro
(1967).

Consider the normal probability plots in Figures 8.1a and b. The plot in
Figure 8.1a is convex, indicating that the data have a long tail to the left and
could be from a distribution with a negatively skewed density function such as
in Figure 8.2a. On the contrary, the concave plot in Figure 8.1b indicates that
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the data have a long tail to the right and could be from a distribution with a
positively skewed density function such as in Figure 8.2b. From the discussion
in Chapter 6, we may try to fit a lognormal or gamma distribution.

The advantages of graphical methods can be summarized as follows:

1. They are fast and simple to use, in contrast with numerical methods,
which may be computationally tedious and require considerable analyti-
cal sophistication. The additional accuracy of numerical methods is
usually not great enough in practice to warrant the effort involved.

2. Probability and hazard plots provide approximate estimates of the
parameters of the distribution by simple graphical means.

3. They allow one to assess whether a particular theoretical distribution
provides an adequate fit to the data.

4. Peculiar appearance of a plot or points in a plot can provide insight into
the data when the reasons for the peculiarities are determined.

5. A graph provides a visual representation of the data that is easy to grasp.
This is useful not only for oneself but also in presenting data to others,
since a plot allows one to assess conclusions drawn from the data by
graphical or numerical means.

8.2 PROBABILITY PLOTTING

The basic ideas in probability plotting are illustrated by the following example.

Example 8.1 Consider the white blood cell counts (WBCs) of 23 pediatric
leukemia patients given in Table 8.1, ranging from 8000 to 120,000. A sample
cumulative distribution is constructed by ordering the data from smallest to
largest, as shown in Table 8.1. A sample cumulative distribution curve can then
be made by plotting each WBC value versus the percentage of the sample equal
to or less than that value. That is, the ith ordered data value in a sample of n
values is plotted against the percentage 100i/n. Note that for tied observations,
we compute and plot the sample distribution only for the one with the largest
i value. This gives a conservative estimate of the survivorship function. For
example, the third value of WBC, 10, is plotted against a percentage of
100�3/23� 13%.

A plot of the cumulative distribution function for most large populations
contains many closely spaced values and can be well approximated by a
smooth curve drawn though the points. In contrast, a sample cumulative
distribution function has a relatively small number of points and thus some-
what ragged appearance. To approximate the population cumulative distribu-
tion function, one draws a smooth curve through the data points, obtaining a
best fit by eye. Such a curve from the WBC data is given in Figure 8.3. It is an
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Table 8.1 Ordered WBCs Data and Sample Cumulative
Distribution for Example 8.1

Sample
Distribution

WBC Order,
(10�) i i/23 (i � 0.5)/23 ���(F )�

8 1
8 2 0.087 0.065 �1.512

10 3 0.130 0.109 �1.233
15 4 0.174 0.152 �1.027
20 5 0.217 0.196 �0.857
30 6 0.261 0.239 �0.709
50 7
50 8
50 9
50 10
50 11 0.478 0.457 �0.109
60 12
60 13 0.565 0.543 0.109
75 14
75 15 0.652 0.630 0.333
80 16
80 17 0.739 0.717 0.575
90 18
90 19
90 20 0.870 0.848 1.027
100 21 0.913 0.891 1.233
110 22 0.957 0.935 1.512
120 23 1.000 0.978 2.019

����( · ) denotes the inverse of the standard normal distribu-
tion function.

estimate of the cumulative distribution function of the population and is used
to obtain estimates and other information about the population.

An estimate of the population median (50th percentile) is obtained by
entering the plot on the percentage scale at 50%going horizontally to the fitted
line and then vertically down to the data scale to read the estimate of the
median. For the WBC data, an estimate of the population median is 65,000.
The median is a representative of nominal value for the population since half
of the population values are above it and half below. An estimate of any other
percentile can be obtained similarly by entering the plot at the appropriate
point on the percentage scale going horizontally to the fitted line and then
vertically down to the data scale where the estimate is read. For example, an
estimate for the 25th percentile is 40,000.
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Figure 8.3 Sample cumulative distribution curve of the WBC data.

One can obtain an estimate of the proportion of the population that has a
WBC below a specific value in a similar way. For example, to find the
proportion of the population with a WBC of 10,000 or less, you enter the plot
on the horizontal axis at the given value, 10, go vertically up to the line fitted
to the data, and then horizontally to the probability scale, where the estimate
of the population proportion is read, 8%. An estimate of the proportion of a
population between two given values is obtained by first getting an estimate of
the proportion below each value and then taking the difference. For example,
the estimate of the population proportion with WBC between 10,000 and
65,000 is 50� 8� 42%.

As mentioned above, a smooth curve can be fitted by eye to a sample
cumulative distribution function to obtain an estimate of the population
distribution function. Also, one can fit data with a theoretical cumulative
distribution function by using a probability plot and then use this plot to
estimate the parameters in the theoretical cumulative distribution function. The
distribution may be the normal, lognormal, exponential, Weibull, gamma, or
log-logistic. To make a probability plot, one generally uses (i� 0.5)/n or
i/(n � 1) to estimate the sample cumulative distribution function at the ith
ordered value of the n observations in the sample. The (i� 0.5)/n for the WBC
data are given in Table 8.1.

The probability plot is so constructed that if the theoretical distribution is
adequate for the data, the graph of a function of t (used as the y-axis) versus
a function of the sample cumulative distribution function (used as the x-axis)
will be close to a straight line. The parameters of the theoretical distribution
can then be estimated from a fitted line. This is carried out as follows.

Step 1. A theoretical distribution for the survival time t has to be selected.

Step 2. The sample cumulative distribution function is estimated by using
(i� 0.5)/n or i/(n � 1), i� 1, 2, . . . , n, for the ith ordered t value. For tied
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Figure 8.4 Normal probability plot of the WBC data in Example 8.1.

observations have the same value, the sample cumulative distribution function
is plotted against only the t with the largest i value.

Step 3. Plot t or a function of it versus the estimated sample cumulative
distribution or a function of it.

Step 4. Fit a straight line through the points by eye. The position of the
straight line should be chosen to provide a fit to the bulk of the data and may
ignore outliers or data points of doubtful validity.

Figure 8.4 gives a normal probability plot of the WBC versus ���(F), where
���( · ) is the inverse of the standard normal distribution function. The values
of ���(F� (WBC

���
)) are shown in Table 8.1. The plot is reasonably linear. The

straight line fitted by eye in a probability plot can be used to estimate
percentiles and proportions within given limits in the same manner as for the
sample cumulative distribution curve. In addition, a probability plot provides
estimates of the parameters of the theoretical distribution chosen. The mean
(or median) WBC estimated from the normal probability plot in Figure 8.4 is
56,000 [at ���(F) � 0, F� 0.5 and WBC� 56,000]. At ���(F) � 1,
WBC� 91,000, which corresponds to the mean plus 1 standard deviation.
Thus, the standard deviation is estimated as 35,000.

We now discuss probability plots of the exponential, Weibull, lognormal,
and log-logistic distributions.
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Table 8.2 Probability Plotting for Example 8.2

Order, F,
t i (i � 0.5)/21 log[1/(1� F)]

1 1
1 2 0.071 0.074
2 3
2 4 0.167 0.182
3 5 0.214 0.241
4 6
4 7 0.310 0.370
5 8
5 9 0.405 0.519
6 10 0.452 0.602
8 11
8 12 0.548 0.793
9 13 0.595 0.904
10 14
10 15 0.690 1.173
12 16 0.738 1.340
14 17 0.786 1.540
16 18 0.833 1.792
20 19 0.881 2.128
24 20 0.929 2.639
34 21 0.976 3.738

Exponential Distribution
The exponential cumulative distribution function is

F(t) � 1� exp[�(�t)] t� 0 (8.2.1)

The probability plot for the exponential distribution is based on the relation-
ship between t and F(t), from (8.2.1),

t �
1

�
log

1

1�F(t)
(8.2.2)

This relationship is linear between t and the function log[1/(1� F(t))]. Thus,
an exponential probability plot is made by plotting the ith ordered observed
survival time t

���
versus log[1/(1�F� (t

���
))], where F� (t

���
) is an estimate of F(t

���
),

for example, (i� 0.5)/n, for i � 1, . . . , n.
From (8.2.2), at log�1/[1�F(t)]� � 1, t� 1/�. This fact can be used to

estimate 1/� and thus � from the fitted straight line. That is, the value t
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Figure 8.5 Exponential probability plot of the data in Example 8.2.

corresponding to log�1/[1�F(t)]� � 1 is an estimate of the mean 1/� and its
reciprocal is an estimate of the hazard rate �.

Example 8.2 Suppose that 21 patients with acute leukemia have the
following remission times in months: 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 8, 8, 9, 10, 10, 12,
14, 16, 20, 24, and 34. We would like to know if the remission time follows the
exponential distribution. The ordered remission times t

���
and the log�1/

[1�F(t)]� are given in Table 8.2. The exponential probability plot is shown
in Figure 8.5. A straight line is fitted to the points by eye, and the plot indicates
that the exponential distribution fits the data very well. At the point log[1/
(1�F(t))] � 1.0, the corresponding t, approximately 9.0 months, is an esti-
mate of the mean 1/� and thus an estimate of the hazard rate is �� � 1/9� 0.111
per month. An alternative is to use (7.2.5) to estimate �, �� � 21/198� 0.107,
which is very close to the graphical estimate.

Weibull Distribution
The Weibull cumulative distribution function is

F(t) � 1� exp[�(�t)�] t� 0, � � 0, � � 0 (8.2.3)

The probability plot for the Weibull distribution is based on the relationship

log t� log
1

�
�

1

�
log�log

1

1�F(t)� (8.2.4)
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between t and the cumulative distribution function F of t obtained from (8.2.3).
This relationship is linear between log t and the function log(log�1/[1�F(t)]�).
Thus, a Weibull probability plot is a graph of log(t

���
) and log(log�1/

[1�F� (t
���
)]�), where F� (t

���
) is an estimate of F(t

���
), for example, (i� 0.5)/n, for

i � 1, . . . , n.
The shape parameter � is estimated graphically as the reciprocal of the slope

of the straight line fitted to the graph. If the fitted line is appropriate, then at
log(log�1/[1�F(t)]�) � 0, the corresponding log(t) is an estimate of log(1/�)
from (8.2.4). This fact can be used to estimate 1/� and thus � graphically from
a Weibull probability plot. At log(log�1/[1�F(t)]�) � 0.5, (8.2.4) reduces to
log t� log(1/�) � 0.5/�. This equation can be used to estimate �.

Estimates of the parameters can also be obtained from the method described
in Chapter 7 if the Weibull distribution appears to be a good fit graphically.
The following hypothetical example illustrates the use of the Weibull probabil-
ity plot. The small number of observations used in the example is only for
illustrative purposes. In practice, many more observations are needed to
identify an appropriate theoretical model for the data.

Example 8.3 Six mice with brain tumors have survival times, in months of
3, 4, 5, 6, 8, and 10. Log(t

���
) plotted against log(log�1/[1� (i� 0.5)/6]�) for

i � 1, . . . , 6 is shown in Figure 8.6. A straight line is fitted to the data point by
eye. From the fitted line, at log(log�1/[1� F(t)]�) � 0, the corresponding
log(t) � 1.9, and thus an estimate of 1/� is approximately 6.69 [�exp(1.9)]
months and an estimate of � is 0.150. At log(log�1/[1�F(t)]�) � 0.5, the
corresponding log(t) � 2.09, and thus an estimate of � � 0.5/(2.09—1.9) � 2.63.
The maximum likelihood estimates of � and � obtained from the SAS
procedure LIFEREG are 2.75 and 0.148, respectively. The graphical estimates
of � and � are close to the MLE.

Lognormal Distribution
If the survival time t follows a lognormal distribution with parameters � and
		, log t follows the normal distribution with mean � and variance 		.
Consequently, (log t��)/	 has the standard normal distribution. Thus, the
lognormal distribution function can be written as

F(t) �� �
log t��

	 � t � 0 (8.2.5)

where �( · ) is the standard normal distribution function and � and 	 are,
respectively, the mean and standard deviation of log t.

A probability plot for the lognormal distribution is based on the following
relationship obtained from (8.2.5):

log t �� �	���(F(t)) (8.2.6)

206      



Figure 8.6 Weibull probability plot of the data in Example 8.3.

The function ���( · ) is the inverse of the standard normal distribution func-
tion or its 100F percentile. This relationship is linear between the value
log t and the function ���(F(t)). Thus, a log-normal probability plot is a
graph of log(t

���
) versus ���(F� (t

���
)), where F� (t

���
) is an estimate of F(t

���
).

From (8.2.6), at ���(F(t)) � 0, log t� �; and at, ���(F(t)) � 1, 	� log t��.
These facts can be used to estimate � and 	 from a straight line fitted to the
graph.

Example 8.4 In a study of a new insecticide, 20 insects are exposed.
Survival times in seconds are 3, 5, 6, 7, 8, 9, 10, 10, 12, 15, 15, 18, 19, 20, 22,
25, 28, 30, 40, and 60. Suppose that prior experience indicates that the survival
time follows a lognormal distribution; that is, some insects might react to the
insecticide very slowly and not die for a long time. The log(t

���
) versus

���[(i � 0.5)/20], i� 1, . . . , 20, are plotted in Figure 8.7. The plot shows a
reasonably straight line. From the fitted line, at ���(F(t)) � 0, log t is an
estimate of �, which is equal to 2.64, and at ���(F(t)) � 1, log t� 3.4 and thus
	� 3.4� 2.64� 0.76. ���(F(t)) can be obtained by applying Microsoft Excel
function NORMSINV.
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Figure 8.7 Lognormal probability plot of the data in Example 8.4.

Log-Logistic Distribution
The log-logistic distribution function is

F(t) �

t�

1� 
t�
t� 0, �� 0, 
 � 0 (8.2.7)

A probability plot for the log-logistic distribution is based on the following
relationship obtained from (8.2.7):

log t�
1

�
log �

1

1� F(t)
� 1��

1

�
log 
 (8.2.8)

Thus, a log-logistic probability plot is a graph of log(t
���
) versus log(�1/

[1�F� (t
���
)]� � 1), where F� (t

���
) is an estimate of F(t

���
), for example, (i� 0.5)/n,

for i � 1, . . . , n. From (8.2.8), at log�[1/(1�F )] � 1� � 0, log t ��(1/�) log 
;
and at log�[1/(1�F )] � 1� � 1, log t� (1/�)(1 � log 
). These facts can be
used to estimate � and 
. The following example illustrates the log-logistic
probability plot.

Example 8.5 Consider the following survival times of 10 experimental rats
in days: 8, 15, 25, 30, 50, 90, 95, 100, 150, and 300. Figure 8.8 plots log(t

���
)
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Figure 8.8 Log-logistic probability plot of the data in Example 8.5.

against log(�1/[1� (i� 0.5)/10]� � 1) for i � 1, . . . , 10. To estimate � and 
,
from the fitted line, at log(�1/[1�F(t)]� � 1) � 0, log t� 4.0; and at log(�1/
[1�F(t)]� � 1) � 1, log t� 4.6. Thus, we have two equations:

4.0��
1

�
log 
 and 4.6�

1

�
(1� log 
)

From these two equations, �� � 1.667 and 
� � 0.0013.

8.3 HAZARD PLOTTING

Hazard plotting (Nelson 1972, 1982) is analogous to probability plotting, the
principal difference being that the survival time (or a function of it) is plotted
against the cumulative hazard function (or a function of it) rather than the
distribution function. Hazard plotting is designed to handle censored data.
Similar to probability plotting, estimates of parameters in the distribution can
be determined from the hazard plot with little computational effort.

To determine if a set of survival time with censored observation is from a
given theoretical distribution, we construct a hazard plot by plotting the
survival time (or a function of it) versus an estimation cumulative hazard (or
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a function of it). The cumulative hazard function can be estimated by following
the steps below.

Step 1. Order the n observations in the sample from smallest to largest without
regard to whether they are censored. If some uncensored and censored
observations have the same value, they should be listed in random order. In
the list of ordered values, the censored data are each marked with a plus.

Step 2. Number the ordered observations in reverse order, with n assigned to
the smallest data value, n� 1 to the second smallest, and so on. The numbers
so obtained are called K values or reverse-order numbers. For the uncensored
observation, K is the number of subjects still at risk at that time.

Step 3. Obtain the corresponding hazard value for each uncensored observa-
tion. Censored observations do not have a hazard value. The hazard value for
an uncensored observation is 1/K. This is the fraction of the K individuals who
survived that length of time and then failed. It is an observed conditional
failure probability for an uncensored observation.

Step 4. For each uncensored observation, calculate the cumulative hazard
value. This is the sum of the hazard values of the uncensored observation and
of all preceding uncensored observations. For tied uncensored observations,
the cumulative hazard is evaluated only at the smallest K among the uncen-
sored observations.

The table in the following example illustrates the procedure.

Example 8.6 Consider the remission data of the 21 leukemia patients
receiving 6-MP in Example 3.3. Table 8.3 illustrates the procedure for estima-
ting the cumulative hazard function.

We now discuss the basic idea underlying hazard plotting for the exponen-
tial, Weibull, lognormal, and log-logistic distributions.

Exponential Distribution
The exponential distribution has constant hazard function h(t) � �. Thus, the
cumulative hazard function is

H(t) � �t (8.3.1)

From (8.3.1), the time can be written as a linear function of the cumulative
hazard H,

t�
1

�
H(t) (8.3.2)

Thus, t plots as a straight-line function of H. The slope of the fitted line is the
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Table 8.3 Estimation of Cumulative Hazard

Reversed Cumulative
Order, Hazard, Hazard,

t K 1/K H� (t)

6 21 0.048
6� 20
6 19 0.053
6 18 0.056 0.156
7 17 0.059 0.215
9� 16
10 15 0.067 0.281
10� 14
11� 13
13 12 0.083 0.365
16 11 0.091 0.456
17� 10
19� 9
20� 8
22 7 0.143 0.598
23 6 0.167 0.765
25� 5
32� 4
32� 3
34� 2
35� 1

mean survival time 1/� of the distribution. More simply, 1/� is the value of t
when H(t) � 1. This fact is used to estimate 1/� from an exponential hazard
plot.

Example 8.7 Using the estimated cumulative hazard values H� (t) in Table
8.3, we construct the exponential hazard plot in Figure 3.5 by plotting each
exact time t against its corresponding H� (t). The configuration appears to be
reasonably linear, suggesting that the exponential distribution provides a
reasonable fit. In Chapter 3 we see that the Weibull distribution gives a better
fit than the exponential. We use the data here just to demonstrate how the
parameter can be estimated.

To find an estimate for the mean remission time of the leukemia patients,
we can use H(t) � 0.5 since the time for which H� 1 is out of the range of
the horizontal axis. At H(t) � 0.5, t� 16.9, from (8.3.2), an estimate of
� is 0.5/16.9� 0.0296. Thus, an estimate of the mean remission time is 34
weeks.
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Figure 8.9 Cumulative hazard functions of the Weibull distribution with ��0.5, 1, 2, 4.

Weibull Distribution
The Weibull distribution has the hazard function

h(t) � ��(�t)��� t� 0

The cumulative hazard function is

H(t) � (�t)� t� 0 (8.3.3)

and is plotted in Figure 8.9 for four different values of �: 0.5, 1, 2, and 4. From
(8.3.3), the time t can be written as a function of the cumulative hazard
function, that is,

t�
1

�
[H(t)]�
� (8.3.4)

Taking the logarithm of (8.3.4), we obtain

log t� log
1

�
�

1

�
logH(t) (8.3.5)

Since log t is a linear function of logH(t), a plot of log t against logH(t) is a
straight line. For logH(t) � 0 or H(t) � 1, (8.3.5) reduces to log t� log(1/�),
and thus the corresponding time t equals 1/�. This fact is used to estimate 1/�
and consequently, �. The slope of the fitted straight line is 1/�, or at
logH(t) � 1, (8.3.5) can be written as �� 1/(log t� log �). This equation can
be used to estimate �.
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Figure 8.10 Weibull hazard plot of the data in Example 8.8.

Example 8.8 Consider the following survival times in months of 14
patients: 15, 25, 38, 40�, 50, 55, 65, 80�, 90, 140, 150�, 155, 250�, 252.
Figure 8.10 is the hazard plot with log t versus log H(t) of the data. From the
fitted line, at logH(t) � 0, log t � 4.8. Thus, t� 121.5 and the estimate of � is
�� � 1/t� 0.0082. Similarly, at, logH(t) � 1, log t � 5.6, and thus �� � 1/
(5.6� 4.8) � 1.25.

Lognormal Distribution
The density function of a lognormal distribution is

f (t) �
1

t	�2�
exp��

1

2		
(log t��)	�

�
1

t	
g �

log t� �
	 � t� 0 (8.3.6)

where g(x) is the standard normal density function. The lognormal cumulative
distribution function is

F(t) � ��
log t��

	 � t � 0 (8.3.7)
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Figure 8.11 Cumulative hazard functions of the lognormal distribution with 	 � 0.1,
0.5, 1.0.

where �( · ) is the standard normal distribution function. Thus, by (2.10), the
hazard function can be written as

h(t) �

1

t	
g�

log t��
	 �

1���
log t� �

	 �
(8.3.8)

The cumulative hazard function, plotted in Figure 8.11 for three values of 	, is

H(t) ��log�1���
log t ��

	 �� (8.3.9)

From (8.3.9), the logarithm of the survival time t as a function of the
cumulative hazard H is

log t� ��	���[1� e�����] (8.3.10)

where ���( · ) is the inverse of the standard normal distribution function.
Thus, log t is a linear function of ���[1� e�����]. The log-normal hazard

plot is a graph of log t versus ���[1� e�����]. From (8.3.10), at
���[1� e�����]� 0, log t��; and at ���[1� e�����]� 1, log t�� �	.
These facts can be used to estimate � and 	.

Example 8.9 Consider the following remission times in months of 18
cancer patients: 4, 5, 6, 7, 8, 9�, 12, 12�, 13, 15, 18, 20, 25, 26�, 28�, 35,
35�, 56. Figure 8.12 gives the log-normal hazard plot. From the fitted line by
eye, at ���[1� e�����]� 0, log t� 2.8; and at ���[1� e�����]� 1,
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Figure 8.12 Lognormal hazard plot of the data in Example 8.9.

log t� 3.76. Thus, the estimate of � is 2.8 and the estimate of 	 is
3.76� 2.8� 0.96.

Log-Logistic Distribution
The cumulative hazard function of the log-logistic distribution is

H(t) � log(1� 
t�)
This equation can be written as

log t�
1

�
log�exp[H(t)] � 1��

1

�
log 
 (8.3.11)

Thus, log t is a linear function of log�exp[H(t)] � 1�. A log-logistic hazard plot
is a graph of log t versus log�exp[H(t)] � 1�. From (8.3.11), at
log�exp[H(t)] � 1�� 0, log t��(1/�) log 
; and at log�exp[H(t)] � 1� � 1,
log t� (1/�) � (1/�) log 
. These facts can be used to estimate � and 
.

8.4 COX--SNELL RESIDUAL METHOD

The Cox—Snell (1968) residual method can be applied to any parametric
model. The Cox—Snell residual r

�
for the ith individual with observed survival

time t
�
, uncensored or censored, is defined as

r
�
��logS� (t

�
) i � 1, 2, . . . , n (8.4.1)
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where S� (t) is the estimated survival function based on the MLE of the
parameters. If the observed t

�
is censored, the corresponding r

�
is also censored.

Since the cumulative hazard function H(t) ��logS(t), the Cox—Snell residual
r
�
is an estimated cumulated hazard value at t

�
. The important property of the

Cox—Snell residual is that if the model selected fits the data, r
�
’s follow the unit

exponential distribution with density function f
�
(r) � e��.

Let S
�
(r) denote the survival function of the Cox—Snell residual r

�
. Then

S
�
� 
�

�
f
�
(x) dx� 
�

�
e�� dx� e��, and

�logS
�
(r) � �log(e��) � r (8.4.2)

Let S�
�
(r) denote the Kaplan—Meier estimate of S

�
(r). It is clear from (8.4.2)

that the plot of r
�
versus �log S�

�
(r

�
) should be a straight line with unit slope

and zero intercept if the fitted survival distribution is appropriate, regardless
of the form of the distribution.

The procedure for using Cox—Snell residuals can be summarized as follows.

1. Use the methods shown in Sections 7.1 to 7.7 to find the MLE of the
parameters of the selected theoretical distribution.

2. Calculate Cox—Snell residuals r
�
��logS� (t

�
), i� 1, 2, . . . , n, where S� (t

�
)

is the estimated survival function with the MLE of the parameters.

3. Apply the Kaplan—Meier method to estimate the survival function S
�
(r)

of the Cox—Snell residuals r
�
’s obtained in step 2, then using the estimate

S�
�
(r), calculate �logS�

�
(r

�
), i� 1, 2, . . . , n.

4. Plot r
�
versus �log S�

�
(r

�
), i � 1, 2, . . . , n. If the plot is closed to a straight

line with unit slope and zero intercept, the fitted distribution is appropri-
ate.

From (8.4.1), if an individual survival time is right-censored, say, t�
�

and
the fitted model is correct, the corresponding Cox—Snell residual
�logS(t�

�
) �H(t�

�
) is smaller than the residual evaluated at an uncensored

observation with the same value t
�
since H(t) is a monotone-increasing function

of t. To take this into account, two modified Cox—Snell residuals have been
proposed for censored observations (Crowley and Hu, 1977). One is based on
the mean, and the other is based on the median (�log 2� 0.693) of the unit
exponential distribution by assuming that difference between H(t

�
) and H(t�

�
)

also follows the unit exponential distribution. For a censored observation t�
�
,

the modified residual r�
�
is defined as

r�
�

� r
�
� 1 (8.4.3)

or

r�
�

� r
�
� 0.693 where r

�
��logS� (t

�
) (8.4.4)

Example 8.10 Consider the tumor-free time data observed from rats fed
with saturated diets in Table 3.4. We select the lognormal distribution for this
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Figure 8.13 Cox—Snell residual plot for the fitted lognormal model on the tumor-free
time data for rats fed with saturated diets.

set of data for illustrative purposes. Using methods discussed in Chapter 7, the
MLE of the parameters obtained are � � 4.76458 and 	 � 0.56053. We then
calculate the Cox—Snell residuals r

�
��log S(t

�
) ��log[1�F(t

�
)], where

F(t) is the distribution function of the lognormal distribution. An easy way to
compute r

�
for the lognormal distribution is to use the relationship between the

normal and lognormal distributions, i.e., the distribution function of the
lognormal distribution, F(t), is equivalent to �[(log t� �)/	], where �( ) is the
distribution function of the standard normal distribution. We can use Micro-
soft Excel function NORMSDIST to calculate �(t). Thus, for the lognormal
distribution,

S(t
�
) � 1��([log(t

�
) � 4.76458]/0.56053)

Using the specific notation of NORMSDIST, ln for log,

r
�
� �ln(1�normsdist�[ln(t

�
) � 4.76458]/0.56053�)

The r
�
’s so obtained are given in Table 8.4. The next step is to obtain the

Kaplan—Meier estimate of the survival function S(r
�
), and compute �logS(r

�
).

These values are also given in Table 8.4.

Figure 8.13 gives the graph of r
�
versus �logS�

�
(r

�
), i � 1, . . . , 22. The graph

is close to a straight line with unit slope and zero intercept. Therefore, a
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Table 8.4 Kaplan--Meier Estimate of Survivorship
Function for the Cox--Snell Residuals from the Fitted
Lognormal Model on Tumor-Free Time Data for Rats
Fed with Saturated Diets

t r� S�
�
(r)	 �logS�

�
(r)

0.000 1.000 0.000
43 0.037 0.967 0.034
46 0.049 0.933 0.069
56 0.098 0.900 0.105
58 0.110 0.867 0.143
68 0.181 0.833 0.182
75 0.239 0.800 0.223
79 0.275 0.767 0.266
81 0.294 0.733 0.310
86 0.342 0.667 0.405
86 0.342 0.667 0.405
89 0.373 0.633 0.457
96 0.447 0.600 0.511
98 0.469 0.567 0.568
105 0.548 0.533 0.629
107 0.571 0.500 0.693
110 0.606 0.467 0.762
117 0.690 0.433 0.836
124 0.776 0.400 0.916
126 0.800 0.367 1.003
133 0.889 0.333 1.099
142 1.004 0.267 1.322
142 1.004 0.267 1.322
165 1.305 0.233 1.455
170� 1.371�
200� 1.769�
200� 1.769�
200� 1.769�
200� 1.769�
200� 1.769�
200� 1.769�

� r, ordered Cox—Snell residuals from the fitted lognormal model.
	S

�
(r), Kaplan—Meier estimate of survivorship function for the

Cox—Snell residuals.

lognormal model may be appropriate for the tumor-free times observed. In
Chapter 9 (Example 9.2) we will see that the lognormal model was not rejected
based on a goodness-of-fit test. Thus the result is consistent with those
obtained by using the analytical method. A weakness of the Cox—Snell residual
method is that the plot does not indicate the kind of departure the data have
from the model selected if the configuration is not linear.
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Bibliographical Remarks

Probability plotting has been widely used since Daniel’s (1959) classical work
on the use of half-normal plot. A quite complete and excellent treatment of
probability plotting is given by King (1971). Although examples given are
applications to industrial reliability, its interpretation of probability plots of
many distributions, such as the uniform, lognormal, Weibull, and gamma, are
applicable to biomedical research. Recent applications of probability plotting
include Leitner et al. (1986), Horner (1987), Waters et al. (1991), and
Tsumagari et al. (2000).

Hazard plotting was developed by Nelson (1972, 1982). Applications in-
cluded Gore (1983) and Wurpel et al. (1986).

EXERCISES

8.1 Show that the Cox—Snell residuals defined in (8.4.1) follow the unit
exponential distribution with density function f (r) � exp(�r).

8.2 Consider the following survival times of 16 patients in weeks: 4, 20, 22,
25, 38, 38, 40, 44, 56, 83, 89, 98, 110, 138, 145, and 27.
(a) Does the exponential distribution provide a reasonable fit to the

survival data? Use the probability plotting technique.
(b) Estimate graphically the parameter � of the exponential distribution

and consequently, the mean survival time.

8.3 To computerize patients’ records, a data clerk is hired to transcribe
medical data from the patients’ charts to computer coding forms. The
number of correct entries between errors is listed in chronological order
of occurrence over a period of five days as follows: 73, 12, 40, 65, 100,
15, 70, 40, 110, 64, 200, 6, 90, 102, 20, 102, 90, 34. The assumption is that
the data clerk, during the five days, would not change her error rate
appreciably. Use the technique of probability plotting to evaluate the
assumption above. What is your conclusion?

8.4 Twenty-five rats were injected with a give tumor inoculum. Their times,
in days, to the development of a tumor of a certain size are given below.

30 53 77 91 118
38 54 78 95 120
45 58 81 101 125
46 66 84 108 134
50 69 85 115 135

Which of the distributions discussed in this chapter provide a reasonable
fit to the data? Estimate graphically the parameters of the distribution
chosen.
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8.5 In a clinical study, 28 patients with cancer of the head and neck did not
respond to chemotherapy. Their survival times in weeks are given below.

1.7 8.3 14.0 22.7 6.0� 13.1�
5.1 9.6 15.9 33.0 7.4� 13.4�
5.3 11.3 16.7 3.7� 8.0� 16.1�
6.0 12.1 17.0 5.0� 8.3�
8.3 12.3 21.0 5.9� 9.1�

(a) Make a hazard plot for each of the following distributions: exponen-
tial, Weibull, lognormal, and log-logistic.

(b) Which distribution provides a reasonable fit to the data? Estimate
graphically the parameters of the distribution chosen.

8.6 Thirty-one patients with advanced melanoma treated with combined
chemotherapy, immunotherapy, and hormonal therapy have survival
times as given below.

26.3� 16.1 24.0 4.3 31.3�
94.0 49.6 77.9 97.6� 17.6�
9.1 27.3 16.6� 7.3 16.3
34.6� 61.9� 3.4 75.6�
9.4 46.6� 10.9 14.3
25.7 22.4� 13.0 56.4
88.7 7.1 64.4� 9.1

(a) Make a hazard plot for each of the following distributions: exponen-
tial, Weibull, lognormal, and log-logistic.

(b) Which distribution provides a reasonable fit to the data? Estimate
the parameters of the distribution chosen.

8.7 Consider the survival times of the hypernephroma patients in Exercise
Table 3.1 (see Exercise 4.5). Make a hazard plot for the distribution you
chose in Exercise 6.8. Did you make a good selection? If not, try two
other distributions.

8.8 Consider the following survival times in weeks of 10 mice with injection
of tumor cells: 5, 16, 18�, 20, 22�, 24�, 25, 30�, 35, 40�. Make an
exponential hazard plot. Does the exponential distribution provide a
reasonable fit? If not, is the lognormal distribution better?

8.9 Consider the following survival times in months of 25 patients with
cancer of the prostate. Use a graphical method to see if the survival time
of prostate cancer patients follows the exponential distribution with
�� 0.01: 2, 19, 19, 25, 30, 35, 40, 45, 45, 48, 60, 62, 69, 89, 90, 110, 145,
160, 9�, 10�, 20�, 40�, 50�, 110�, 130�.

8.10 Make a log-logistic hazard plot of the following data and estimate the
two parameters: 20, 30, 32�, 40, 60, 100, 150, 200�, 300.
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CHAPTER 9

Tests of Goodness of Fit
and Distribution Selection

In Chapter 8 we discuss three graphical methods for checking if a parametric
distribution fits the observed data. Parametric distributions can be grouped
into families. First, any given distribution with different parameter values forms
a family. Second, if a distribution includes other distributions as its special
cases, this distribution is a nesting (larger) family of these distributions. For
example, the distributions introduced in Chapter 6 belong to more than one
nested family. First, the Weibull distribution reduces to the exponential when
�� 1. Therefore, the exponential distribution is a special case of the Weibull
and the two distributions are said to belong to one family, the Weibull family.
Second, consider the standard gamma distribution; when �� 1, it reduces to
the exponential, and when ���

�
and ���

�
�, it becomes the chi-square

distribution with � degrees of freedom. Thus, the gamma distribution includes
the exponential and chi-square as a family. Now let us consider the generalized
gamma distribution. It reduces to the exponential if � � �� 1, the Weibull if
�� 1, the lognormal if � ��, and the gamma if �� 1. Thus, the generalized
gamma distribution includes these four distributions and represents a large
family of distributions. The relationship of the generalized gamma distribution
to the exponential, Weibull, lognormal, and gamma distributions allows us to
evaluate the appropriateness of these distributions relative to each other and
to a more general distribution. It is known that the generalized gamma
distribution is a special case of the generalized F-distribution and therefore
belongs to the generalized F family (Kalbfleisch and Prentice, 1980) Because
of its complexity, we do not cover the generalized F family.

In this chapter we discuss several analytical procedures for comparing
parametric distributions and assessing goodness of fit. In Section 9.1 we
introduce several widely used statistics for testing the appropriateness of a
distribution. Readers who are not familiar with linear algebra or are not
interested in the mathematical details may skip this section without loss of
continuity. In Section 9.2 we discuss statistics for testing whether a distribution
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is appropriate by comparing it with other distributions in the same family or
a more general family. Section 9.3 covers the selection of a distribution based
on Baysian information criteria. Section 9.4 covers the statistics for testing
whether a given distribution with known parameters is appropriate. All the test
statistics discussed in Sections 9.1 to 9.4 are based on asymptotic likelihood
inferences. In Section 9.5 we introduce the test statistic of Hollander and
Proschan (1979) for testing whether a distribution with given parameters is
appropriate. Computer codes for BMDP or SAS that can be used to carry out
the test procedures are provided.

9.1 GOODNESS-OF-FIT TEST STATISTICS BASED ON
ASYMPTOTIC LIKELIHOOD INFERENCES

We take the exponential distribution as an example to see how to construct
statistics to test whether it is appropriate for the observed survival times. As
noted in Chapter 6, the Weibull family with �� 1, the gamma family with
�� 1, and the generalized gamma family with � � �� 1 reduce to the
exponential distribution. Therefore, to test if the exponential distribution is
appropriate for the observed survival time, we can first fit a Weibull distribu-
tion and test if �� 1, or fit a gamma distribution, then test if � � 1, or fit a
generalized gamma distribution, then test if �� � � 1. Similarly, to test
whether the family of Weibull distributions, or the gamma distributions, or the
lognormal distributions is appropriate for the survival data observed, we can
fit a generalized gamma distribution (their nesting distribution) and then test
if � � 1, or �� 1, or with � ��, respectively. Thus, testing the appropriateness
of a family of distributions is equivalent to testing whether a subset of the
parameters in its nesting distribution equal to some specific values. If the data
can be assumed to follow a certain distribution but the values of its parameters
are uncertain, we need to test only that the parameters are equal to certain
values. In the following, we separately introduce test statistics for testing
whether some of the parameters in a distribution are equal to certain values
and whether all parameters in a distribution are equal to certain values.
Readers who are interested in a detailed discussion of these statistics are
referred to Kalbfleisch and Prentice (1980).

9.1.1 Testing a Subset of Parameters in a Distribution

Let b� (b
�
,b

�
) denote all the parameters in a parametric distribution, where

b
�
and b

�
are subsets of parameters, and let the hypothesis be

H
�
: b

�
� b

�
(9.1.1)

where b
�
is a vector of specific numbers. Let b� be the MLE of b, b�

�
(b

�
) the

MLE of b
�
given b

�
� b

�
, and V�

�
(b� ) the submatrix of the covariance matrix in
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(7.1.5), V� (b� ), corresponding to b
�
. Under H

�
and some mild assumptions, both

of the following two statistics have an asymptotic chi-square distribution with
degrees of freedom equal to the dimension of (or the number of parameters in)
b
�
.

Log-likelihood ratio statistic:

X
�
� 2[l(b� ) � l(b�

�
(b

�
), b

�
)] (9.1.2)

Wald statistic:

X
�

� (b�
�
� b

�
)�V� ��

�
(b� )(b�

�
� b

�
) (9.1.3)

If the number of parameters in b
�
is equal to q, for a given significant level

�, H
�
is rejected if X

�
� ��

���
when the likelihood ratio statistic is used; or if

X
�

���
����� or X

�
	��

�������, (two-sided test) or X
�

���
��� (one-sided test)

when the Wald’s statistic is used, where ��
��� , ��

����� and ��
������� are the

100(1� �), 100(1� �/2), and 100�/2 percentile points of the chi-square dis-
tribution with q degrees of freedom; that is,

P(��
�
� ��

���) � � and P(��
�
� ��

�����) �P(��
�
	��

�������) �
�
2

Example 9.1 Suppose that we wish to test whether the observed data are
from an exponential distribution. We can use a Weibull distribution and test
whether its shape parameter, �, is equal to 1. The Weibull distribution has two
parameters, � and �; thus b� (�, �) and the null and alternative hypotheses are:

H
�
: � � 1 (the underlying distribution is an exponential distribution)

(9.1.4)

H
�
: � � 1 (the underlying distribution is a Weibull distribution)

Let b� � (�� , �� ) be the MLE of b, l
�
(b� ) � l

�
(�� , �� ) and l

�
(�� ) be the log-likelihood

of the Weibull and exponential distributions, respectively, l
�

(�� ) � l
�
(�� (1), 1),

where �� (1) is the MLE of � in the Weibull distribution given �� 1. The
log-likelihood ratio and Wald statistics defined in (9.1.2) and (9.1.3) in this case
become

X
�
� 2[l

�
(�� , �� ) � l

�
(�� (1), 1)] (9.1.5)

and

X
�

� (�
 � 1)V� ��
�

(�� , �
 )(�
 � 1) (9.1.6)
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respectively, where V�
�
(�� , �
 ) is the second diagonal element of the covariance

matrix

V� (�� , �
 ) ���
��l

�
(�� , �
 )

���

��l
�
(�� , �
 )

�� ��

��l
�
(�� , �
 )

�� ��
��l

�
(�� , �
 )

��� �
��

(9.1.7)

and

V� ��
�

(�� , �
 ) ��
[��l

�
(�� , �
 )/���][��l

�
(�� , �
 )/���] � (��l

�
(�� , �
 )/�� ��)�

��l
�
(�� , �
 )/���

(9.1.8)

For a given significant-level �, H
�
is rejected if X

�
���

��� , when the likelihood
ratio statistic is used; or if X

�
���

����� or X
�

	��
�������, when the Wald

statistic is used.
It must be pointed out that failure to reject H

�
in (9.1.4) does not imply that

an exponential distribution provides the best fit to the data. On the other hand,
rejection of H

�
does not indicate that a Weibull distribution is the choice

either. Further testing of other distributions is needed. The details and
examples are given in Section 9.2.

Since the gamma and generalized gamma distribution also include the
exponential as a special case, similar test statistics can be constructed to test
the null hypothesis that the data are from the exponential distribution by using
the gamma, the generalized gamma, or the extended generalized gamma
distribution.

9.1.2 Testing All Parameters in a Distribution

To test whether all of the parameters in b equal a given set of known values
b
�
, the null hypothesis is

H
�
: b� b

�
(9.1.9)

and the following three test statistics can be used.

Log-likelihood ratio statistic:

X
�
� 2[l(b� ) � l(b

�
)] (9.1.10)

Wald statistic:

X
�

��(b� � b
�
)�

��l(b
�
)

�b �b�
(b� � b

�
) �or� �(b� � b

�
)�

��l(b� )
�b �b�

(b� � b
�
)�

(9.1.11)
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Score statistic:

X
�
��

�l(b
�
)

�b �
�
��

��l(b
�
)

�b �b� �
�� �l(b

�
)

�b �or� �
�l(b

�
)

�b �
�
V� (b� )

�l(b
�
)

�b �
(9.1.12)

where V� (b� ) is the estimated covariance matrix in (7.1.5). Under H
�
and the

assumption that b� has approximately multinormal distribution, each of the
three statistics has an asymptotic chi-square distribution with p (the dimension
of b or the number of parameters in b) degrees of freedom.

For a given significant-level �, H
�

is rejected if X
�
���

	�� , when the
likelihood ratio statistic is used; or if X

�
� ��

	���� or X
�

	��
	������ , when the

Wald statistic is used; or if X
�
� ��

	���� or X�
	��

	������, when the score statistic
is used.

It must be pointed out that rejection of H
�
in (9.1.9) means only that the

given distribution with the known parameters b
�
, not the family of distribu-

tions to which the given distribution belongs, is not appropriate for the
observed data. It is possible that a distribution with different b

�
in the family

may be appropriate.

9.2 TESTS FOR APPROPRIATENESS OF A FAMILY OF
DISTRIBUTIONS

The usual method for testing whether a distribution is appropriate for the
observed data is to compare the distribution with a larger or more general
family that includes the distribution of interest as a special case (Hagar and
Bain, 1970).

Let l
�
(�), l

�
(�, �), l



(�, �), l

��
(�, 
�), and l




(�, �, �) denote, respectively,

the log-likelihood function defined in (7.1.1) based on the exponential, Weibull,
gamma, lognormal, and extended generalized gamma distribution, and l

�
(�� ),

l
�

(�� , �
 ), l


(�� , �
 ), l

��
(�
 , 

 �), and l




(�
 , �� , �
 ) denote the respective log-likelihood

values where �� , (�� , �
 ), (�� , �
 ), (�
 , 

 �), and (�
 , �� , �
 ) are the MLE. For example, the
log-likelihood of the exponential distribution can be obtained from

l
�

(�� ) �
�
�

	�

log(�� e��� t

) 


�
�


	���

log(e��t�

 ) � r log �� � ��

�
�

	�

t


� ��

�
�


	���

t�



for a set of observed survival times t
�
, . . . , t

�
, t�

���
, . . . , t�

�
. The log-likelihood

value and the estimated covariance matrix in (7.1.5) and parameters for each
of the distributions discussed in Sections 7.2 to 7.6 can be obtained from SAS
or BMDP. The results can be used to construct the log-likelihood ratio statistic
and the Wald statistic defined in (9.1.2) and (9.1.3). In the following, we
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introduce several tests for the appropriateness of a family of distributions based
on the log-likelihoods. Construction of the respective Wald statistics is left to
the reader as exercises.

1. Testing the hypothesis that the underlying distribution is exponential. The
null hypothesis is

H
�
: The underlying distribution is an exponential distribution

If the Weibull distribution is used, testing the null hypothesis above is
equivalent to testing the following null and alternative hypotheses:

H
�
: � � 1 (the underlying distribution is an exponential distribution)

H
�
: � � 1 (the underlying distribution is a Weibull distribution)

Let �� (1) be the MLE of � in the Weibull distribution given �� 1, the
log-likelihood ratio statistic is

X
�
� 2[l

�
(�� , �
 ) � l

�
(�� (1), 1)] (9.2.1)

which has an asymptotic chi-square distribution with 1 degree of freedom. For
a given level of significance �, H

�
is rejected if X

�
���

��� . Note that
l
�

(�� (1), 1) � l
�

(�� ).
Similarly, a log-likelihood ratio statistic can be constructed by using the

gamma or the extended generalized gamma distribution. These will be left to
the reader as exercises.

2. Testing the hypothesis that the underlying distribution is Weibull. The null
hypothesis is

H
�
: The underlying distribution is a Weibull distribution

We can use the extended generalized gamma distribution and test whether its
parameter � equals 1. Thus the null and alternative hypotheses can be stated as

H
�
: � � 1 (the underlying distribution is a Weibull distribution)

H
�
: � � 1 (the underlying distribution is an extended generalized

gamma distribution)

Let �� (1) and �
 (1) be the MLE of � and � in the extended generalized gamma
distribution given � � 1. According to Section 6.4, an extended generalized
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gamma distribution with �� 1 is a Weibull distribution. The likelihood ratio
statistic is

X
�
� 2[l




(�
 , �� , �
 ) � l




(�
 (1), �� (1), 1)] (9.2.2)

which follows asymptotically the chi-square distribution with 1 degree of
freedom. H

�
is rejected at a significance level of � if X

�
���

��� . Note that
l




(�
 (1), �
 (1), 1) � l
�

(�� , �
 ).
3. Testing the hypothesis that the underlying distribution is standard gamma.

The null hypothesis is

H
�
: The underlying distribution is a gamma distribution

Following the same logic in Section 6.4, the null hypothesis above is equivalent
to the following if the extended generalized gamma distribution is used.

H
�
: �� 1 (the underlying distribution is a standard gamma distribution)

H
�
: �� 1 (the underlying distribution is a generalized gamma distribution).

The likelihood test statistic is

X
�
� 2[l




(�
 , �� , �
 ) � l




(1, �� (1), �
 (1))] (9.2.3)

where �
 (1) and �� (1) are the MLE of � and � given � � 1, which has an
asymptotic chi-square distribution with 1 degree of freedom under H

�
. The

rejection rule is the same as that for the exponential or Weibull distribution.
Note that l




(1, �� (1), �
 (1)) � l



(�� , �
 ).

4. Testing the hypothesis that the underlying distribution is lognormal. The
null hypothesis is

H
�
: the underlying distribution is a lognormal distribution

The log-likelihood test statistic is

X
�
� 2[l




(�
 , �� , �
 ) � l

��
(�
 , 

 �)]

which has an asymptotic chi-square distribution with 1 degree of freedom
under H

�
. The rejection rule is the same as that for the exponential or Weibull

distribution.

For the log-logistic and extended generalized gamma distributions, it can be
shown that a generalized F-distribution (Kalbfleisch and Prentice, 1980)
includes the exponential, Weibull, lognormal, gamma, generalized gamma,
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Table 9.1 Summary of Goodness-of-Fit Tests for
Testing Whether a Family of Models Is Appropriate for
the Observed Data�

Hypothesized
Model LL X

�
df

Generalized gamma l




Lognormal l
��

2(l




� l
��
) 1

Gamma l



2(l




� l


) 1

Weibull l
�

2(l




� l
�
) 1

Exponential l
�

2(l




� l
�
) 2

Exponential l
�

2(l


� l

�
) 1

Exponential l
�

2(l
�

� l
�
) 1

�LL, log-likelihood; X
�
, likelihood ratio chi-square statistic; df,

degrees of freedom.

extended generalized gamma, and log-logistic distributions as special cases.
Therefore, one can follow the same logic to construct either the log-likelihood
ratio or the Wald statistic to test the appropriateness of a family of generalized
gamma or log-logistic distributions. However, methods for testing the appro-
priateness of a generalized F-distribution remain unknown. Unless we can find
a more general distribution that includes the generalized F-distribution as a
special case, there is no formal way to check whether the generalized F-
distribution is appropriate. However, the generalized gamma distribution is a
rich family and includes a considerable number of distributions. It should be
sufficient for most applications. All the tests introduced in this section are
summarized in Table 9.1.

As pointed out in Section 9.1, when using any of the testing procedures
above, failure to reject H

�
does not imply that the hypothesized distribution

provides a perfect fit to the data. On the other hand, rejection of H
�
does not

mean that the distribution under the alternative hypothesis is the best choice
either. In practice, with the help of available computer software, it is easy to fit
several distributions simultaneously and then select the most appropriate one,
usually the simplest one, as the final choice for the data. The following
examples illustrate the procedure.

Example 9.2 Consider the tumor-free times of the 30 rats that are fed with
a saturated diet in Table 3.4. Using SAS, we obtain the MLE of the parameters
and the log-likelihoods for the exponential, Weibull, lognormal, and generaliz-
ed gamma distributions. The results are given in Table 9.2. For example, the
MLE of � in the exponential distribution is 5.054 and the corresponding
log-likelihood is �35.359, and the MLE of the two parameters in the Weibull
distribution are �� � 5.002 and �
 � 0.500 and the corresponding log-likelihood
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is �29.398. To test the null hypothesis that the underlying distribution is an
exponential distribution versus the alternative hypothesis that the underly-
ing distribution is Weibull (or extended generalized gamma), the likelihood
ratio test statistic X

�
� 2(35.359�29.398)� 11.922 [or 2(35.359� 25.478) �

19.762]. The probability of observing such a chi-square value is 	0.001;
therefore, the exponential distribution is rejected and the Weibull or the
generalized gamma is preferred.

However, the Weibull distribution is also rejected at the 0.001 level relative
to the extended generalized gamma distribution (X

�
� 7.840, p	 0.001). This

implies that the extended generalized gamma distribution may be better.
However, the extended generalized gamma distribution is not significantly
better than the lognormal distribution (X

�
� 2.326, p� 0.127). Thus, among

these distributions, the lognormal and extended generalized gamma distribu-
tions are our choices. Because of its simplicity, we may select the lognormal
distribution as the choice for this set of data.

Example 9.3 Table 9.3 contains a set of remission times from 137 cancer
patients. These remission times are a subset of the data from a bladder cancer
study and are used here only for illustrative purposes. The results of goodness
of fit tests based on asymptotic likelihood inferences are shown in Table 9.4.
From this table, we see that the exponential distribution is not rejected relative
to the Weibull distribution based on the statistic defined in (9.2.1) (X

�
� 0.638,

p� 0.425). The hypothesis that the underlying distribution is exponential
versus the alternative hypothesis that the distribution is the extended general-
ized gamma is rejected (X

�
� 6.772, p� 0.034). Furthermore, the Weibull and

lognormal distributions are also rejected in favor of the extended generalized
gamma (X

�
� 6.135, 8.120, p� 0.013 and 0.004, respectively). This implies that

the exponential distribution may not be an appropriate distribution since the
Weibull distribution (its nesting distribution) is rejected. Therefore, we may
accept the extended generalized gamma as our final choice of distribution for
the data.

9.3 SELECTION OF A DISTRIBUTION USING BIC OR AIC
PROCEDURES

The test procedures discussed in Section 9.2 require knowledge of the distribu-
tion family to which the distribution of interest belongs. In this section we
introduce a simpler selection procedure called the Baysian information criterion
(BIC; Schwarz, 1978). This criterion is based on the log-likelihood l(b� ), the
number of parameters in the distribution (p), and the total number of
observations (n). For each candidate distribution, compute

r� l(b� ) �
p

2
log n (9.3.1)
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Table 9.3 Remission Times (Months) of 137 Cancer
Patients

t t t t

4.50 32.15 3.88 13.80
19.13 4.87 3.02
 5.85
14.24 5.71 19.36
 7.09
7.87 7.59 20.28 5.32
5.49 3.02 46.12 4.33

2.02 4.51 5.17 2.83
9.22 1.05 0.20 8.37
3.82 9.47 36.66 14.77
26.31 79.05 10.06 8.53
4.65
 2.02 4.98 11.98
2.62 4.26 5.06 1.76
0.90 11.25 16.62 4.40
21.73 10.34 12.07 34.26
0.87
 10.66 6.97 2.07
0.51 12.03 0.08 17.12
3.36 2.64 1.40 12.63
43.01 14.76 2.75 7.66
0.81 1.19 7.32 4.18
3.36 8.66 1.26 13.29
1.46 14.83 6.76 23.63
24.80
 5.62 8.60
 3.25
10.86
 18.10 7.62 7.63
17.14 25.74 3.52 2.87
15.96 17.36 9.74 3.31
7.28 1.35 0.40 2.26
4.33 9.02 5.41 2.69
22.69 6.94 2.54 11.79
2.46 7.26 2.69 5.34
3.48 4.70
 8.26 6.93
4.23 3.70 0.50 10.75
6.54 3.64 5.32 13.11
8.65 3.57 5.09 7.39
5.41 11.64 2.09
2.23 6.25 7.93
4.34 25.82 12.02

where b� denotes the MLE of all the parameters in the distribution.
The candidate distribution with the largest r value is the distribution that
fits the data the best. It has been shown that for some distribution families
and under mild assumptions, for sufficiently large n, the distribution select-
ed by the BIC procedure approaches the true underlying distribution, if
it exists.
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In general, the larger the number of parameters p in a distribution, the larger
the log-likelihood l(b� ) in (9.3.1). Thus the first term represents the gain by using
a distribution with more parameters. But the larger the p, the larger the second
term in (9.3.1) is, which represents a penalty by having more parameters in the
distribution. Therefore, the BIC provides a balance between the gain and the
penalty.

Another widely used criterion is called an information criterion (AIC;
Akaike, 1969), in which r is defined as

r� l (b� ) � 2p (9.3.2)

Example 9.4 The values of the BIC and AIC for the various distributions
considered in Examples 9.2 and 9.3 are listed in the last two columns in Tables
9.2 and 9.4. Based on Table 9.2, the lognormal distribution would be selected
by either the BIC or AIC procedure, which is consistent with the results
obtained in Example 9.2. The results in Table 9.4 show that the log-logistic
distribution, rather than the extended generalized gamma distribution, should
be selected based on either the BIC or AIC procedure.

9.4 TESTS FOR A SPECIFIC DISTRIBUTION WITH KNOWN
PARAMETERS

In this section we introduce the likelihood ratio statistic for testing if the
survival data observed follow a given distribution with known parameters. We
use the same notations as in Section 9.2. In addition to the exponential,
Weibull, lognormal, gamma, generalized gamma distributions, we also consider
the log-logistic distribution. Let l

��
(�, �) and l

��
(�
 , �
 ) denote its log-likelihood

function and the log-likelihood with (�
 , �
 ), the MLE of (�, �).

1. Testing the hypothesis that the underlying distribution is exponential with
known parameter �

�
. The null hypothesis is

H
�
: the underlying distribution is the exponential distribution with � � �

�

The likelihood ratio test statistic based on (9.1.10) is

X
�
� 2[l

�
(�� ) � l

�
(�

�
)] (9.4.1)

X
�
has an asymptotic chi-square distribution with 1 degree of freedom under

H
�
. H

�
is rejected if X

�
�X�

��� , where � is the significance level. Similarly, the
Wald test statistic and the score statistic can be derived by following (9.1.11)
and (9.1.12). This is left to the reader as exercises.

Example 9.5 Consider the following survival times in weeks of 10 mice
with a given tumor: 1, 3, 5, 8, 10
, 15, 18, 19, 22, 25
. We test the following

        233



null hypothesis:

H
�
: the underlying distribution of the observed data is
exponential with �� 0.06

In this case, n� 10, r� 8, ��

	�

t


� 91, and ��


	���
t�



� 35. The MLE of �
based on (7.2.16) is

�� �
8

91
 35
� 0.0635

and l
�
(�� ) � 8(log 0.0635) � 0.0635(91) � 0.0635(35)� �30.055. Under H

�
,

l
�
(�

�
) � 8(log 0.06) � 0.06(91) � 0.06(35) ��30.067. Thus, following (9.4.1),

X
�
� 2[�30.055� (�30.067)] � 0.024. X�

������
� 3.84; therefore, we cannot

reject the null hypothesis that the data are from the exponential distribution
with � � 0.06.

2. Testing the hypothesis that the underlying distribution is Weibull with
known parameters �

�
and �

�
. The null hypothesis is

H
�
: the underlying distribution is Weibull with known parameters � � �

�
and � � �

�

Based on (9.1.10), the likelihood ratio test statistic is

X
�
� 2[l

�
(�� , �
 ) � l

�
(�

�
, �

�
)] (9.4.2)

Under H
�
, X

�
has an asymptotic chi-square distribution with 2 degrees of

freedom. H
�
is rejected if X

�
�X�

��� where � is the significance level.

3. Testing the hypothesis that the underlying distribution is lognormal with
known parameters �

�
and 
�

�
. Similar to the procedures above, the likelihood

ratio test statistic is

X
�
� 2[l

��
(�
 , 

 �) � l

��
(�

�
, 
�

�
)] (9.4.3)

Under H
�
, X

�
has an asymptotic chi-square distribution with 2 degrees of

freedom.

4. Testing the hypothesis that the underlying distribution is standard gamma
with known parameters �

�
and �

�
. The likelihood ratio test statistic is

X
�
� 2[l



(�� , �
 ) � l



(�

�
, �

�
)] (9.4.4)

Under H
�
, X

�
is asymptotically chi-square distributed with 2 degrees of

freedom.
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5. Testing the hypothesis that the underlying distribution is generalized gamma
with known parameters �

�
, �

�
, and �

�
. The likelihood ratio test statistic is

X
�
� 2[l




(�
 , �� , �
 ) � l




(�

�
, �

�
, �

�
)] (9.4.5)

Under H
�
, X

�
is asymptotically chi-square distributed with 3 degrees of

freedom.

6. Testing the hypothesis that the underlying distribution is log-logistic with
known parameters �

�
and �

�
. The likelihood ratio test statistic is

X
�
� 2[l

��
(�
 , �
 ) � l

��
(�

�
, �

�
)] (9.4.6)

Under H
�
, X

�
has an asymptotic chi-square distribution with 2 degrees of

freedom.

Note that the respective Wald and score statistics can be constructed for
these tests by following (9.1.11) and (9.1.12). These are left to the reader as
exercises. As noted in Section 9.3, the log-likelihood and estimated covariance
matrix and parameters in (9.1.10)—(9.1.12) for each of the distributions dis-
cussed in Sections 7.2 to 7.6 can be obtained from SAS or BMDP. The other
terms in these test statistics can also be obtained by using SAS or BMDP. The
following example illustrates the use of SAS and BMDP.

Example 9.6 To use the likelihood ratio statistic (9.4.1) to test the null
hypothesis in Example 9.5, H

�
: �� �

�
� 0.06, we need to calculate the

log-likelihood l
�
(�� ) and l

�
(�

�
). l

�
(�� ) can be obtained by applying either the

SAS or BMDP codes in Example 7.5. We now show how to use SAS or BMDP
to calculate l

�
(�

�
). Suppose that the survival data of the 10 mice in Example

9.5 are saved in the file ‘‘C:�EXAMPLE.DAT’’. If SAS is used, we specify that
the distribution is exponential by using D�EXPONENTIAL in the ‘‘model’’
statement and letting INTERCEPT� 2.813 [� � log �

�
�

�log(0.06)]. If BMDP is used, we specify the distribution by letting AC-
CEL�EXPONENTIAL and CONSTANT� 2.813. The following SAS or
BMDP codes can be used to obtain the l

�
(�

�
) and the terms needed for the

Wald and score statistics in (9.1.11) and (9.1.12).

SAS code:

data w1;
infile ‘c:�example.dat’ missover;
input t cens;

run;
proc lifereg;
model t*cens(0)�/maxit�0 covb itprint d�exponential intercept�2.813;

run;
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BMDP code:

/input file� ‘c:�example.dat’ .
variables� 2.
format� free.

/print level�brief.
cova. iterations.

/variable names� t, cens.
/form time� t.

status� cens.
response� 1.

/regress iteration� 0.
accel� exponential.
constant� 2.813.

/end

Similarly, to obtain the log-likelihood ratio statistic, the Wald and the score
statistics in (9.1.10)—(9.1.12) for testing null hypotheses about the parameters
of other distributions, we can follow the same procedure but change the D�

and ACCEL� statements to reflect the distribution under the null hypothesis.
We also need to provide values for the input variables INTERCEPT and
SCALE, for Weibull, lognormal, and log-logistic distributions, if SAS is used.
For the extended generalized gamma distribution, we need to provide a value
for SHAPE1. BMDP does not have a procedure for the gamma distribution.
For the Weibull, lognormal, and log-logistic distributions, we need to provide
values for CONSTANT and SCALE. All of these input variables are based on
the distribution and their relationship to the parameters under the null
hypothesis (see notes at the end of each of the SAS or BMDP codes in Section
7.2 to 7.6).

9.5 HOLLANDER AND PROSCHAN’S TEST FOR
APPROPRIATENESS OF A GIVEN DISTRIBUTION WITH KNOWN
PARAMETERS

Another test for the appropriateness of a parametric distribution with known
parameters was proposed by Hollander and Proschan (1979). Let
0� t


��
	 t


��
	 t


��
	� 	 t


��
be a set of distinct ordered survival times and

some of the t


�
’s may be censored. If censored observations are tied with

uncensored observations, treat the censored observations of tie as being greater
than the uncensored of the tie. Let S(t) be the underlying survivorship function
and S

�
(t) the survivorship function of the specific distribution. The null

hypothesis is

H
�
:S(t) �S

�
(t)
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Using the Kaplan—Meier product-limit method, S(t) is estimated as

S� (t) ��
���
�
�	�

�
n� j

n� j
 1�
�
��

t

����

	 t� t

��
, k� 1, . . . , n

0 t� t

��

(9.5.1)

where �

��

� 1 if t

��

is uncensored and �

��

� 0 if t

��

is censored. Hollander and
Proschan’s test statistic for the null hypothesis that the data are from a
distribution with survivorship function S(t) is

C� �
��� �������	�

����	��
����

S
�
(t



�
) f� (t



�
) (9.5.2)

where f � (t


�
) is the jump of the Kaplan—Meier estimates at consecutive

uncensored observation and at the largest observation, uncensored or not,

f� (t


�
) �

1

n


��
�
�	�
�
n� j
 1

n� j �
���
��

. (9.5.3)

Under the null hypothesis,

C*�
�n(C � 0.5)




(9.5.4)

follows approximately the standard normal distribution, where 

 is an estimate
of the standard deviation of C and



 � �
1

16

�
�

	�

n

n� i
 1
[S�

�
(t


���

) �S�
�
(t


�
)] (9.5.5)

To test H
�
: S� S

�
versus H

�
:S�S

�
, we reject H

�
if C*	 �Z� ; to test H

�
versus H

�
:S	S

�
, we reject H

�
if C*�Z� ; and to test H

�
versus H

�
:S�S

�
,

we reject H
�
if C*	 �Z��� or C*�Z��� , where Z� is the upper � percentile

point of the standard normal distribution.
The procedure for the calculation of C* can be summarized as follows.

1. Compute the Kaplan—Meier estimate S� (t) for each uncensored observa-
tion.

2. Compute the jump of the Kaplan—Meier distribution at each t


�
uncen-

sored, that is, f� (t


�
), which is the difference of F� (t) � 1�S� (t) at two

consecutive uncensored observations.

3. Compute S
�
(t



�
) for each observation.
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4. Multiply S
�
(t


�
) by f� (t



�
) and sum over all uncensored t



�
’s to obtain C.

5. Compute 

 � according to (9.5.5) and consequently, C* according to
(9.5.4).

Example 9.7 Consider the survival times in weeks of 10 mice in Example
9.5: 8, 5, 10
, 1, 3, 18, 22, 15, 25
, and 19. We wish to test that the survival
time follows an exponential distribution with �� 0.06. The null and alternative
hypotheses are

H
�
:S(t) �S

�
(t)

H
�
:S(t) �S

�
(t)

where S
�
(t) � exp(�0.06t).

Following the procedure outlined above, we first arrange the observations in
ascending order and compute the Kaplan—Meier estimates as shown in column
(d) of Table 9.5. The jumps are given in column (e). For example, the first jump
is between S� (0) and S� (1) or 1� 0.9� 0.1. Column (f) gives the survival
function under the null hypothesis, for example, S

�
(3) � exp(�0.06�3) �

0.835. Following (9.5.2), column (g) gives the value of C� 0.4808. The last
three columns are for calculation of the estimated variance of C. Thus,



 ��
1

16
(1.3166) � 0.0823

and

C*�
�10(0.4808 � 0.5)

�0.0823
��0.2116

For � � 0.05, Z���� 1.96, C* does not fall in the rejection region. From Table
B-1 we obtain that the p value corresponding to C*��0.2116 is approxi-
mately 0.84. Therefore, we conclude that there is insufficient evidence to say
that the data are not from an exponential distribution with �� 0.06. Figure
9.1, which plots the Kaplan—Meier estimates and the hypothesized theoretical
distribution S

�
(t) � exp(�0.06t), demonstrates a close agreement between the

two. The result is consistent with that obtained in Example 9.5, where the
likelihood ratio test is used.

Bibliographical Remarks

Readers with a background in mathematical statistics and an interest in
mathematical details about asymptotic likelihood theory, likelihood ratio,
Wald’s, and score statistics are referred to Cox (1961, 1962a), Atkinson (1970),
Hagar and Bain (1970), Cox and Hinkley (1974), and Kalbfleisch and Prentice
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Figure 9.1 Kaplan—Meier estimator S� (t) and the hypothesized survival function
S
�
(t) � exp(�0.06t).

(1980). There have been many papers about the AIC and BIC criteria in the
literature since the introduction of AIC by Akaike (1969). The asymptotic
properties of the two criteria and their relationships with other criteria were
discussed by Akaike (1974), Parzen (1974), Schwarz (1978), Hannan (1979),
Shibata (1980), Wang (1984, 1989), Rissanen (1986), and Wei (1992). Interested
readers are referred to these papers for details.

When there are no censored observations, the chi-square goodness of fit test
introduced by Karl Pearson in 1900 can be used to test any distributional
assumption. In addition, tests for the exponential and lognormal (Shapiro and
Wilk, 1965a, b) are available.

EXERCISES

9.1 Derive the likelihood ratio and Wald test statistics following (9.1.2) and
(9.1.3) for the following null hypothesis:

H
�
: The underlying distribution is exponential

versus the alternatives

(a) H
�
: The underlying distribution is gamma

(b) H
�
: The underlying distribution is generalized gamma
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9.2 Derive the Wald test statistics following (9.1.3) for the following null and
alternative hypotheses

H
�
: The underlying distribution is Weibull

H
�
: The underlying distribution is generalized gamma

9.3 Derive the respective Wald test statistics by following (9.1.3) for the null
hypothesis that the distribution is the standard gamma versus the
alternative hypothesis that the distribution is the generalized gamma.

9.4 Derive the Wald and score statistics for testing the null hypotheses in
Section 9.4 by following (9.1.11) and (9.1.12).

9.5 Consider the survival time of 28 cancer patients in Exercise 8.5.
(a) Obtain the log-likelihoods for the exponential, Weibull, lognormal,

and generalized gamma distributions. Perform the likelihood ratio
test and select the best distribution among these four distributions.

(b) Use the BIC and AIC procedures to select the best distribution
among the four distributions in part (a) plus the log-logistic distribu-
tion.

(c) Compare the results obtained in parts (a) and (b) and those obtained
in Exercise 8.5.

9.6 Consider the survival time of 31 patients with advanced melanoma in
Exercise 8.6.
(a) Select the best distribution using the likelihood ratio, Wald, and

score statistics among the exponential, Weibull, gamma, lognormal,
and generalized gamma distributions.

(b) Use the BIC and AIC procedures to do the same as in part (a) with
the addition of the log-logistic distribution.

(c) Compare the results obtained in parts (a) and (b) and those obtained
in Exercise 8.6.

(d) Compare the MLE of the parameters with those estimates obtained
by using the graphical methods in Exercise 8.6.

9.7 Do the same as in Exercise 9.5 for the data in Exercise Table 3.1.

9.8 Consider the following survival time in weeks of 10 mice with injection
of tumor cells: 5, 16, 18
, 20, 22
, 24
, 25, 30
, 35, 40
. Do the data
follow the exponential distribution with �� 0.02?
(a) Use the likelihood ratio test.
(b) Use Hollander and Proschan’s test statistic.
(c) Plot the Kaplan—Meier estimator of S(t) and the hypothesized

distribution.
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9.9 Consider the following survival time in months of 25 patients with
cancer of the prostate. Test the hypothesis that the survival time of
prostate cancer patients follows the exponential distribution with
�� 0.01: 2, 19, 19, 25, 30, 35, 40, 45, 45, 48, 60, 62, 69, 89, 90, 110, 145,
160, 9
, 10
, 20
, 40
, 50
, 110
, 130
.

9.10 The Gompertz distribution belongs to the Gompertz—Makeham dis-
tribution family and the Gompertz—Makeham distribution (Makeham,
1860) has the following hazard function:

h(t) � �
 exp(� 
 �t) � � 0

Construct a likelihood ratio statistic and Wald’s statistic to test the appro-
priateness of a Gompertz distribution.
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CHAPTER 10

Parametric Methods for Comparing
Two Survival Distributions

In Chapter 5 we discussed several nonparametric tests for comparing two
survival distributions. If the distributions follow a known model, parametric
tests are more powerful than nonparametric tests, but their computation is
more tedious. In this chapter we first discuss the likelihood ratio test in general
for comparing two survival distributions in Section 10.1. Readers who are not
familiar with linear algebra may skip this section without loss of continuity. In
Sections 10.2 to 10.4 we present either the likelihood ratio test or other tests
for the comparison of two survival patterns that follow the exponential,
Weibull, and gamma distributions.

10.1 LIKELIHOOD RATIO TEST FOR COMPARING TWO
SURVIVAL DISTRIBUTIONS

Let x
�
, . . . , x

��
, and y

�
, . . . , y

��
be the observed exact or censored survival times

of n
�
and n

�
subjects from two groups. Assume that the survival times from the

two groups follow the same distribution with different parameters. We use the
general notation b� (b

�
, b

�
, . . . , b

�
) to denote the set of parameters of the

distribution, p� 1. Let l
�
(b

�
), i� 1, 2, denote the log-likelihood function for the

observed survival times from each group, where b
�
� (b

��
, . . . , b

��
,

b
����

, . . . , b
��
) � (b

��
, b

��
), and b

��
� (b

��
, . . . , b

��
) and b

��
� (b

����
, . . . , b

��
) are

two subsets of the p parameters, i� 1, 2. Then the joint log-likelihood function
for the two groups is l(b

�
, b

�
) � l

�
(b

�
) � l

�
(b

�
). Let b�

�
denote the MLE of b

�
,

and b�
��

(b
�
) denote the MLE of b

��
given b

��
� b

�
, where b

�
is known.

For example, if the survival time of the two groups follows the Weibull
distribution with a scale parameter � and a shape parameter �. Then p � 2,
b
�
� (�

�
, �

�
), and b

�
� (�

�
, �

�
), where �

�
, �

�
and �

�
, �

�
are the respective

parameters in the two Weibull distributions. Let l
�
(�

�
, �

�
) and l

�
(�

�
, �

�
) denote

the log-likelihood functions of the observed survival times from two groups;
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then the joint log-likelihood function for the two groups is

l(�
�
, �

�
, �

�
, �

�
) � l

�
(�

�
, �

�
) � l

�
(�

�
, �

�
)

In this case, b
��
may be a singleton �

�
, and similarly, b

��
may be �

�
.

The following tests are widely used in comparing two survival distributions.

Case 1. All parameters are unknown. When b
�
, i � 1, 2, are unknown, we

test the hypothesis

H
�
: b

�
� b

�
� b (10.1.1)

that is, that the two groups have the same survival distribution with equal but
unknown parameters b. The log-likelihood ratio test statistic

X
�
��2[l(b� , b� ) � l(b�

�
, b�

�
)]

� 2[l
�
(b�

�
) � l

�
(b�

�
) � l(b� , b� )] (10.1.2)

has an asymptotic chi-square distribution with p degrees of freedom. For a
given significance level �, H

�
is rejected if

X
�
� ��

��� (10.1.3)

or equivalently, if

P(��
�
�X

�
) �� (10.1.4)

where ��
�
denotes the chi-square random variable with p degrees of freedom,

and ��
��� is its 100(1� �) percentile points, P(��

�
���

���) � �.
In the case of comparing two Weibull distributions, it reduces to

H
�
: �

�
� �

�
� � and �

�
� �

�
� �

where � and � are unknown,

X
�
� 2[l

�
(��

�
, �	

�
) � l

�
(��

�
, �	

�
) � l(�� , �	 , �� , �	 )]

and H
�
is rejected if X

�
���

��� , or equivalently, if P(��
�
�X

�
) ��.

Case 2. A subset of the parameters of the two survival distributions are
known and equal, say, b

��
� b

��
� b

�
, where the values of b

�
are known. The

null hypothesis is the equality of the remaining parameters, or

H
�
: b

��
� b

��
� b

��
(10.1.5)
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where b
��
is unknown. The log-likelihood ratio statistic is

X
�
� 2[l

�
(b

�
, b�

��
(b

�
)) � l

�
(b

�
, b�

��
(b

�
)) � l((b

�
, b�

��
(b

�
)), (b

�
, b�

��
(b

�
))]

(10.1.6)

where b�
��

(b
�
) is the MLE of b

��
given b

��
� b

�
, and so are the others. X

�
has

an asymptotic chi-square distribution with degrees of freedom equal to the
number of parameters in b

��
(or b

��
).

In the case of comparing two Weibull distributions, we may assume that
�
�
� �

�
� �

�
(or �

�
� �

�
� �

�
), where the value of �

�
(or �

�
) is known, and test

the null hypothesis

H
�
: �

�
� �

�
� � (or �

�
� �

�
� �)

Then

X
�
� 2[l

�
(�

�
, �	

�
(�

�
)) � l

�
(�

�
, �	

�
(�

�
)) � l(�

�
, �	 (�

�
), �

�
, �	 (�

�
))]

(or X
�
� 2[l

�
(��

�
(�

�
), �

�
) � l

�
(��

�
(�

�
), �

�
) � l(�� (�

�
), �

�
, �� (�

�
), �

�
)]

and H
�
is rejected if X

�
���

��� , equivalently, if P(��
�
�X

�
) ��.

Case 3. A subset of the parameters of the two survival distributions are
equal but unknown, say, if b

��
� b

��
� b

��
and the values of b

��
are unknown.

The null hypothesis is the equality of the remaining parameters, or

H
�
: b

��
� b

��
� b

��
(10.1.7)

where b
��
is unknown and needs to be estimated. In addition, b

��
also needs to

be estimated. The log-likelihood ratio statistic,

X
�
� 2[l((b�

��
, b�

��
), (b�

��
, b�

��
)) � l (b� , b� )] (10.1.8)

has an asymptotic chi-square distribution with degrees of freedom equal to the
number of parameters in b

��
(or b

��
).

For the case of comparing two Weibull distributions, the derivation of X
�

in (10.1.8) is left to the reader as an exercise.

Case 4. A subset of the parameters of the two survival distributions are
known but not equal, say, if b

��
� b

��
, b

��
� b

��
, and b

��
and b

��
are known
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but b
��

� b
��
. The null hypothesis is the equality of the remaining parameters,

or

H
�
: b

��
� b

��
� b

��
(10.1.9)

The log-likelihood ratio statistic

X
�
� 2[l

�
(b

��
, b�

��
(b

��
)) � l

�
(b

��
, b�

��
(b

��
))

� l((b
��
, b�

��
(b

��
, b

��
)), (b

��
, b�

��
(b

��
, b

��
)))] (10.1.10)

has an asymptotic chi-square distribution with degrees of freedom equal to the
number of parameters in b

��
or b

��
.

For the case of comparing two Weibull distributions, the derivation of X
�

in (10.1.10) is left to the reader as an exercise.

10.2 COMPARISON OF TWO EXPONENTIAL DISTRIBUTIONS

Suppose that two survival distributions follow the exponential model with
parameters �

�
and �

�
, respectively. Two tests can compare the distributions:

the likelihood ratio test and an F-test suggested by Cox (1953). These two tests
can test the hypothesis that the two exponential distributions are equal
whether or not the samples include censored observations.

10.2.1 Likelihood Ratio Test

Suppose that there are n
�
and n

�
individuals in groups 1 and 2, respectively,

x
�
, . . . , x

��
uncensored and x�

����
, . . . , x�

��
censored in group 1, and y

�
, . . . , y

��uncensored and y�
����

, . . . , y�
��
censored in group 2. Thus, in group 1, there are

r
�
uncensored and n

�
� r

�
censored observations. In group 2, there are r

�
uncensored and n

�
� r

�
censored observations. If it is known that the survival

times of the two groups follow the exponential distribution with density
function f

�
(t) � �

�
e	�� �, i � 1, 2, testing the equality of two exponential distribu-

tions is equivalent to testing the hypothesis H
�
: �

�
� �

�
. This is because the two

exponential distributions are characterized by the two parameters �
�
and �

�
.

Thus, the null hypothesis is H
�
: �

�
� �

�
� � and the alternative hypothesis is

H
�
: �

�
� �

�
. According to (10.1.2), the test statistic for the likelihood ratio test

is

X
�
��2 log

L (�� , �� )
L (��

�
, ��

�
)

(10.2.1)
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where the denominator is the likelihood function for the two groups combined,

L (��
�
, ��

�
) � �� ��

�
�� ��
�
exp����

� �
��


�
�

x
�
�

��



�
����

x�
� �

� ��
� �

��


�
�

y
�
�

��



�
����

y�
� �� (10.2.2)

and ��
�
and ��

�
are the MLE of �

�
and �

�
, respectively, from groups 1 and 2.

From Section 7.2,

��
�
�

r
�


��
�
�

x
�
�
��

�
����
x�
�

��
�
�

r
�


��
�
�

y
�
�
��

�
����
y�
�

(10.2.3)

The numerator in (10.2.1) is the likelihood function for the combined sample
under the null hypothesis, that is, �

�
� �

�
� �,

L (�� , �� ) � �� ����� exp���� �
��


�
�

x
�
�

��



�
����

x�
�

�
��


�
�

y
�
�

��



�
����
��
(10.2.4)

where �� is the MLE of � obtained from the combined sample,

�� �
r
�
� r

�

��

�
�
x
�
�
��

�
����
x�
�

�
��
�
�

y
�
�
��

�
����
y�
�

(10.2.5)

From Section 10.1, X
�
has an approximate chi-square distribution with 1

degree of freedom for samples of at least 25 (n
�
� n

�
� 25) under the null

hypothesis. For a given significance level �, H
�
is rejected if X

�
���

��� , or
equivalently, if P(��

�
�X

�
) ��.

The test procedure can be summarized as follows:

1. Compute ��
�
and ��

�
following (10.2.3).

2. Compute L (��
�
, ��

�
) in (10.2.2) using the given data and ��

�
and ��

�
obtained

in step 1.

3. Compute �� following (10.2.5).
4. Compute L (�� , �� ) in (10.2.4).
5. Compute X

�
in (10.2.1). If X

�
���

��� (Table B-2), reject H
�
and conclude

that the two exponential survival distributions are not equal. Otherwise,
the data do not provide enough evidence to reject the null hypothesis.

If there are no censored observations in the data, (10.2.1)—(10.2.5) are also
applicable simply be letting n

�
� r

�
, n

�
� r

�
and omitting the terms involving
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x�
�

and y�
�
. The likelihood ratio test is primarily for two-sided tests and is

difficult to apply to a one-sided test. It is approximate and should be used with
caution when the sample size is small. The power of the test, similar to that of
other likelihood tests, is not high. That is, if the likelihood ratio test is used
regularly, one is more likely not to reject the null hypothesis when the two
survival distributions are not equal.

Example 10.1 Consider the remission data of the two treatment groups
given in Example 5.1. The remission times in months are as follows:

CMF: 23, 16�, 18�, 20�, 24�

Control: 15, 18, 19, 19, 20

Assume that the two distributions are exponential with parameters �
�
and �

�
,

respectively. Using the likelihood ratio test, we test the following null hypoth-
esis

H
�
: �

�
� �

�
� � (the two treatments are equally effective)

against

H
�
: �

�
� �

�
(the two treatments are not equally effective)

Following the above, we proceed as follows:

1. Compute ��
�
and ��

�
in (10.2.3): In this case, n

�
� n

�
� 5, r

�
� 1, r

�
� 5,


��
�
�

x
�
� 23, 
��

�
����
x�
�

� 78, 
��
�
�

y
�
� 91, 
��

�
����
y�
�

� 0,

��
�
�

1

23� 78
�

1

101
� 0.0099

��
�
�

5

91
� 0.0549

2. Compute L (��
�
, ��

�
) in (10.2.2):

L (��
�
, ��

�
) � (0.0099)(0.0549)� exp[�0.0099(101)� 0.0549(91)]

� 1.2290(10)	��

3. Compute �� in (10.2.5):

�� �
1� 5

23� 78� 91
�

6

192
� 0.0313
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4. Compute L (��
�
, ��

�
) in (10.2.4):

L (��
�
, ��

�
) � (0.0313)� exp[�0.0313(192)]� 2.3085(10)	��

5. Compute X
�
in (10.2.1):

X
�
��2 log

2.3085(10)	��

1.2290(10)	��
� �2 log(0.1878)� 3.344

From Table B-2 we obtain ��
���
��

� 3.84. Thus we cannot reject H
�
at the

0.05 level. Recall that in Chapter 5 the null hypothesis was rejected at the 0.05
level by using the four nonparametric tests.

10.2.2 Cox’s F-Test for Exponential Distributions

If the times to failure can be assumed to follow the exponential distribution in
both treatment groups, an F-test suggested by Cox (1953) can be used to test
for treatment differences whether or not censored observations are present.
Suppose that we wish to test the hypothesis H

�
: �

�
� �

�
against either the

one-sided alternative H
�
: �

�
��

�
(or H

�
: �

�
��

�
) or the two-sided alternative

H
�
: �

�
� �

�
. An efficient test is to take t�

�
/t�
�
as having an F-distribution with

(2r
�
, 2r

�
) degrees of freedom, where

t�
�
�


��
�
�

x
�
�
��

�
����
x�
�

r
�

(10.2.6)

t�
�
�


��
�
�

y
�
�
��

�
����
y�
�

r
�

(10.2.7)

The test procedures are (1) for H
�
, reject H

�
if t�

�
/t�
�
�F

��������� ; (2) for H
�
,

reject H
�
if t�

�
/t�
�
�F

���������	� ; and (3) for H
�
, reject H

�
if t�

�
/t�
�
�F

����������� or
t�
�
/t�

�
�F

���������	���, where � is the significance level and F
��������� is the upper

100� percentage point of the F-distribution with (2r
�
, 2r

�
) degrees of freedom.

Similarly, the hypothesis that �
�
/�

�
� k can be tested by referring kt�

�
/t�
�
to the

table of the F-distribution.
When there are no censored observations, that is, n

�
� r

�
, n

�
� r

�
, the

second terms of the numerators in (10.2.6) and (10.2.7) are zero. Then the test
statistic t�

�
/t�
�
has an F-distribution with (2n

�
, 2n

�
) degrees of freedom.

Confidence intervals for the ratio �
�
/�

�
can be obtained from the fact that

�
�
t�
�
/�

�
t�
�
has the F-distribution with (2n

�
, 2n

�
) degrees of freedom. It follows

that a 100(1� �)%confidence interval for the ratio of two hazard rates �
�
/�

�
is

t�
�

t�
�

F
���������	����

�
�

�
�

�
t�
�

t�
�

F
����������� (10.2.8)
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Example 10.2 Thirty-six patients with glioblastoma multiforme were
divided into two groups; the experimental group contained 21 patients who
had surgery and chemotherapy, and the control group contained 15 patients
who had surgery only. The survival times in weeks are available about one year
after the start of the study (Burdette and Gerhan, 1970):

Experimental: 1, 2, 2, 2, 6, 8, 8, 9, 13, 16, 17, 29, 34, 2�,9�, 13�, 22�,

25�, 36�, 43�, 45�

Control: 0, 2, 5, 7, 12, 42, 46, 54, 7�, 11�, 19�, 22�, 30�, 35�,

39�

The hypotheses are

H
�
: �

�
� �

�
(no difference in survival between experimental
and control groups)

H
�
: �

�
��

�
(difference in survival favoring experimental group)

In this case, n
�
� 21, n

�
� 15, r

�
� 13, r

�
� 8, � x

�
� 147,� x�

�
� 195,

� y
�
� 168, and � y�

�
� 163. Hence

t�
�
�

147� 195

13
� 26.308 t�

�
�

168� 163

8
� 41.375

and t�
�
/t�
�
� 0.636 with (26,16) degrees of freedom. For � � 0.05, F

�������
��
is

approximately 2.23; hence the hypothesis H
�
is not rejected and the data do

not provide enough evidence that the survival time is longer in the experimen-
tal group. A 95% confidence interval for the ratio �

�
/�

�
is

41.375

26.308
(0.419) �

�
�

�
�

�
41.375

26.308
(2.625)

or (0.659, 4.128). The estimate of ��
�
/��

�
according to (10.2.3) is 1.58. Hence the

data show that the death rate per week of the experimental group is close to
that of the control group.

In Example 10.2, the guarantee time in both groups is zero. In the case
where a group has a nonzero guarantee time, it can be subtracted from every
observation in the group and the test then applied. Monte Carlo studies
(Gehan and Thomas, 1969; Lee et al., 1975) show that when samples are from
exponential distributions, with or without censoring, the F-test is the most
powerful test among the parametric or nonparametric tests discussed in this
chapter and Chapter 5.
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10.3 COMPARISON OF TWO WEIBULL DISTRIBUTIONS

It is well known that if the survival time T has a Weibull distribution with
shape parameter �, then T � has an exponential distribution. Thus, if �

�
and �

�
for the two groups are known, the most powerful Cox’s F-test described in
Section 10.2 can be applied to the transformed observations. However, in
practice, �

�
and �

�
are probably unknown, and so are the scale parameters, �

�
and �

�
. In this case, the likelihood ratio tests described in Section 10.1 can be

applied to test whether the observed survival times from the two groups have
the same Weibull distribution. To test the equality of two Weibull distribu-
tions, it suffices to test �

�
� �

�
and �

�
� �

�
. If the hypothesis �

�
� �

�
is rejected,

we need not test the hypothesis �
�
� �

�
. If the hypothesis �

�
� �

�
is not

rejected, we do need to test �
�
� �

�
. In the following, we introduce an

additional two-sample test proposed by Thoman and Bain (1969) for uncen-
sored samples.

Assume that independent random samples of equal size (n
�
� n

�
� n) are

obtained from Weibull distributions f
�
(t) and f

�
(t), where

f
�
(t) � �

�
�
�
(�

�
t)��	� exp[�(�

�
t)��] i � 1, 2 (10.3.1)

To test �
�
� �

�
, we use the property of the maximum likelihood estimator �	

(Thoman et al., 1969; Thoman and Bain, 1969). To test the null hypothesis
H

�
: �

�
� �

�
against H

�
: �

�
��

�
, we use the fact that (�	

�
/�

�
)/(�	

�
/�

�
) � �	

�
/�	

�
under H

�
. The percentage points of �	

�
/�	

�
are given in Table B-12. We compute

the MLE of �
�
and �

�
, that is, �	

�
and �	

�
, and compare �	

�
/�

�
with the percentage

points for a given � in Table B-12. Reject H
�
at � level if �	

�
/�	

�
� l� . For

example, if n
�
� n

�
� n� 10, a computed �	

�
/�	

�
� 1.897 would lead to rejection

of H
�
at a significance level of 0.05. For �� 0.50, percentage points l� can be

calculated by using the relationship l�� 1/l
�	� .

The procedure described above can be generalized to test H
�
: �

�
� k�

�
against H

�
: �

�
� k
�

�
. For the case when k� k
, the rejection region becomes

�	
�
/�	

�
� kl� , where � is the significance level.

If the hypothesis H
�
: �

�
� �

�
is rejected, the two Weibull distributions are

not the same. However, if the hypothesis is not rejected, we need to test the
equality of the two scale parameters �

�
and �

�
. A test of H

�
: �

�
� �

�
against

H
�
: �

�
��

�
suggested by Thoman and Bain (1969) rejects H

�
if

G ��
�
(�	

�
� �	

�
)(log ��

�
� log ��

�
) � z� (10.3.2)

where z� is such that P(G � z� �H�
) � 1� � and �	

�
, �	

�
, ��

�
, and ��

�
are the MLEs

of �
�
, �

�
, �

�
, and �

�
respectively. The percentage points z� are given in Table

B-13. For example, if the common sample size is 10, the hypothesis H
�
: �

�
� �

�
is rejected if G � 0.918 at significance level 0.05. A test of H

�
: �

�
� �

�
against

H
�
: �

�
��

�
can be constructed in a similar fashion. The critical points z� can

be obtained from Table B-13 by using the fact that z���z
�	� .
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Table 10.1 Survival Times of Patients in Two Treatment Groups

Treatment 1 Treatment 2

5, 10, 17, 32, 32, 33, 34, 36, 43, 44, 44, 48,
48, 61, 64, 65, 65, 66, 67, 68, 82, 85,
90, 92, 92, 102, 103, 106, 107, 114, 114,
116, 117, 124, 139, 142, 143, 151, 158, 195

20.9, 32.2, 33.2, 39.4, 40.0, 46.8, 57.3,
58.0, 59.7, 61.1, 61.4, 54.3, 66.0, 66.3, 67.4,
68.5, 69.9, 72.4, 73.0, 73.2, 88.7, 89.3,
91.6, 93.1 94.2, 97.7, 101.6, 101.9, 107.6,
108.0, 109.7, 110.8, 114.1, 117.5, 119.2,
120.3, 133.0, 133.8, 163.3, 165.1

Example 10.3 illustrates the test procedures. The data are adapted and
modified from Harter and Moore (1965). Forty observations are generated
from a Weibull distribution with �

�
� 0.01 and �

�
� 2 and another 40 from a

Weibull distribution with �
�
� 0.01 and �

�
� 3. The resulting data are shown

in Table 10.1. For illustrative purposes, we consider the two samples as two
treatment groups.

Example 10.3 Consider the survival times of the patients in the two
treatment groups in Table 10.1. The null hypothesis is that the two populations
have the same shape parameter; that is, H

�
: �

�
� �

�
against H

�
: �

�
��

�
.

The MLEs are �	
�
� 1.945, �	

�
� 2.715, and hence �	

�
/�	

�
� 1.396, which is

significant at the 0.05 level (l
�
��

� 1.342 for n� 40) but not significant at the
0.02 level (l

�
��
� 1.453 for n � 40). If we choose �� 0.05 and reject H

�
, the

decision is correct. An error of not rejecting H
�
would be committed if an � of

0.02 or 0.01 is chosen. This is because the two shape parameters are very close
(�

�
� 2, �

�
� 3).

To illustrate the procedure of testing the equality of the scale parameters,
let us assume that the hypothesis H

�
: �

�
� �

�
is not rejected. To test H

�
: �

�
� �

�
against H

�
: �

�
��

�
, we need the MLEs of �

�
and �

�
. Harter and Moore obtain

��
�
� 0.010776 and ��

�
� 0.010471. From (10.3.2) we obtain

G ��
�

(1.945� 2.715)(4.559� 4.530) � 0.068

From Table B-13, the critical region for n� 40 is G� 0.404. Hence we do not
reject H

�
. This decision is correct since �

�
� �

�
� 0.01. Note that the MLEs of

�
�
, �

�
, �

�
, and �

�
are very close to their real values.

10.4 COMPARISON OF TWO GAMMA DISTRIBUTIONS

Suppose that x
�
, . . . , x

�
, and y

�
, . . . , y

�
are the survival times of patients

receiving two different treatments and that they follow the gamma distribution
with the density function given in (6.4.1). Let �

�
and �

�
be the parameters of
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Table 10.2 Survival Times of 40 Patients Receiving
Two Different Treatments

Treatment 1(x) Treatment 2(y)

17, 28, 49, 98, 119 26, 34, 47, 59, 101,
133, 145, 146, 158, 160, 112, 114, 136, 154, 154,
174, 211, 220, 231, 252, 161, 186, 197, 226, 226,
256, 267, 322, 323, 327 243, 253, 269, 308, 465

the x population and �
�
and �

�
be those of the y population. The likelihood

ratio tests introduced in Section 10.1 can be used to test whether the survival
times observed from the x population and the y population have different
gamma distributions. The estimation of the parameters is quite complicated
but can be obtained using commercially available computer programs. In the
following we introduce an F-test for testing the null hypothesis H

�
: �

�
� �

�
against H

�
: �

�
� �

�
, under the assumptions that the x

�
’s and y

�
’s are exact

(uncensored) survival times, and that �
�
and �

�
are known (usually assumed

equal).
Let x� and y� be the sample mean survival times of the two groups. The test

is based on the fact that x� /y� has the F-distribution with 2n�
�
and 2n�

�
degrees

of freedom (Rao, 1952). Thus the test procedure is to reject H
�
at the � level if

x� /y� exceeds F
�������������, the 100(�/2) percentage point of the F-distribution

with (2n�
�
, 2n�

�
) degrees of freedom. Since the F-table gives percentage points

for integer degrees of freedom only, interpolations (linear or bilinear) are
necessary when either 2n�

�
or 2n�

�
is not an integer.

The following example illustrates the test procedure. The data are adapted
and modified from Harter and Moore (1965). They simulated 40 survival times
from the gamma distribution with parameters �

�
� �

�
� � � 2, �� 0.01. The

40 individuals are divided randomly into two groups for illustrative purposes.

Example 10.4 Consider the survival time of the two treatment groups in
Table 10.2. The two populations follow the gamma distributions with a
common shape parameter �� 2. To test the hypothesis H

�
: �

�
� �

�
against

H
�
: �

�
� �

�
, we compute x� � 181.80, y� � 173.55, and x� /y� � 1.048. Under the

null hypothesis, x� /y� has the F-distribution with (80,80) degrees of freedom. Use
�� 0.05, F

�������
���
� 1.45. Hence, we do not reject H

�
at the 0.05 level of

significance. The result is what we would expect since the two samples are
simulated from the same overall sample of 40 with � � 0.01.

To test the equality of two lognormal distributions, we use the fact that the
logarithmic transformation of the observed survival times follows the normal
distributions, and thus we can use the standard tests based on the normal
distribution. In general, for other distributions, such as log-logistic and the
generalized gamma, the log-likelihood ratio statistics defined in Section 10.1
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can be applied to test whether the survival times observed from two groups
have the same distribution. Readers can follow Example 10.2.1 in Section 10.2
and use the respective likelihood functions derived in Chapter 7 to construct
the needed tests.

Bibliographical Remarks

In addition to the papers cited in this chapter, readers are referred to Mann et
al. (1974), Gross and Clark (1975), Lawless (1982), and Nelson (1982).

EXERCISES

10.1 Derive the likelihood ratio tests in (10.1.8) and (10.1.10) for testing the
equality of two Weibull distributions.

10.2 Derive the likelihood ratio test in (10.1.2) for testing the equality of two
log-logistic distributions with unknown parameters.

10.3 Consider the remission data of the leukemia patients in Example 3.3.
Assume that the remission times of the two treatment groups follow the
exponential distribution. Test the hypothesis that the two treatments are
equally effective using:
(a) The likelihood ratio test
(b) Cox’s F-test
Obtain a 95% confidence interval for the ratio of the two hazard rates.

10.4 For the same data in Exercise 10.3, test the hypothesis that �
�
� 5�

�
.

10.5 Suppose that the survival time of two groups of lung cancer patients
follows the Weibull distribution. A sample of 30 patients (15 from each
group) was studied. Maximun likelihood estimates obtained from the
two groups are, respectively, �	

�
� 3, ��

�
� 1.2 and �	

�
� 2, ��

�
� 0.5. Test

the hypothesis that the two groups are from the same Weibull distribu-
tion.

10.6 Divide the lifetimes of 100 strips (delete the last one) of aluminum
coupon in Table 6.4 randomly into two equal groups. This can be done
by assigning the observations alternately to the two groups. Assume that
the two groups follow a gamma distribution with shape parameter
�� 12. Test the hypothesis that the two scale parameters are equal.

10.7 Twelve brain tumor patients are randomized to receive radiation ther-
apy or radiation therapy plus chemotherapy (BCNU) in a one-year
clinical trial. The following survival times in weeks are recorded:
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1. Radiation�BCNU: 24, 30, 42, 15�, 40�, 42�

2. Radiation: 10, 26, 28, 30, 41, 12�

Assuming that the survival time follows the exponential distribution, use
Cox’s F-test for exponential distributions to test the null hypothesis
H

�
: �

�
� �

�
versus the alternative H

�
: �

�
��

�
.

10.8 Use one of the nonparametric tests discussed in Chapter 5 to test the
equality of survival distributions of the experimental and control groups
in Example 10.2. Compare your result with that obtained in Example
10.2.
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CHAPTER 11

Parametric Methods for Regression
Model Fitting and Identification
of Prognostic Factors

Prognosis, the prediction of the future of an individual patient with respect to
duration, course, and outcome of a disease plays an important role in medical
practice. Before a physician can make a prognosis and decide on the treatment,
a medical history as well as pathologic, clinical, and laboratory data are often
needed. Therefore, many medical charts contain a large number of patient (or
individual) characteristics (also called concomitant variables, independent vari-
ables, covariates, prognostic factors, or risk factors), and it is often difficult to
sort out which ones are most closely related to prognosis. The physician can
usually decide which characteristics are irrelevant, but a statistical analysis is
usually needed to prepare a compact summary of the data that can reveal their
relationship. One way to achieve this purpose is to search for a theoretical
model (or distribution), that fits the observed data and identify the most
important factors. These models, usually regression models, extend the
methods discussed in previous chapters to include covariates. In this chapter
we focus on parametric regression models (i.e., we assume that the survival
time follows a theoretical distribution). If an appropriate model can be
assumed, the probability of surviving a given time when covariates are
incorporated can be estimated.
In Section 11.1 we discuss briefly possible types of response and prognostic

variables and things that can be done in a preliminary screening before a
formal regression analysis. This section applies to methods discussed in the
next four chapters. In Section 11.2 we introduce the general structure of a
commonly used parametric regression model, the accelerated failure time
(AFT) model. Sections 11.3 to 11.7 cover several special cases of AFT models.
Fitting these models often involves complicated and tedious computations and
requires computer software. Fortunately, most of the procedures are available
in software packages such as SAS and BMDP. The SAS and BMDP code that
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can be used to fit the models are given at the end of the examples. Readers may
find these codes helpful. Section 11.8 introduces two other models. In Section
11.9 we discuss the model selection methods and goodness of fit tests.

11.1 PRELIMINARY EXAMINATION OF DATA

Information concerning possible prognostic factors can be obtained either from
clinical studies designed mainly to identify them, sometimes called prognostic
studies, or from ongoing clinical trials that compare treatments as a subsidiary
aspect. The dependent variable (also called the response variable), or the
outcome of prediction, may be dichotomous, polychotomous, or continuous.
Examples of dichotomous dependent variables are response or nonresponse,
life or death, and presence or absence of a given disease. Polychotomous
dependent variables include different grades of symptoms (e.g., no evidence of
disease, minor symptom, major symptom) and scores of psychiatric reactions
(e.g., feeling well, tolerable, depressed, or very depressed). Continuous depend-
ent variables may be length of survival from start of treatment or length of
remission, both measured on a numerical scale by a continuous range of values.
Of these dependent variables, response to a given treatment (yes or no),
development of a specific disease (yes or no), length of remission, and length
of survival are particularly common in practice. In this chapter we focus our
attention on continuous dependent variables such as survival time and re-
mission duration. Dichotomous and multiple-response dependent variables are
discussed in Chapter 14.
A prognostic variable (or independent variable) or factor may be either

numerical or nonnumerical. Numerical prognostic variables may be discrete,
such as the number of previous strokes or number of lymph node metastases,
or continuous, such as age or blood pressure. Continuous variables can be
made discrete by grouping patients into subcategories (e.g., four age subgroups:
�20, 20—39, 40—59, and �60). Nonnumerical prognostic variables may be
unordered (e.g., race or diagnosis) or ordered (e.g., severity of disease may be
primary, local, or metastatic). They can also be dichotomous (e.g., a liver either
is or is not enlarged). Usually, the collection of prognostic variables includes
some of each type.
Before a statistical calculation is done, the data have to be examined

carefully. If some of the variables are significantly correlated, one of the
correlated variables is likely to be a predictor as good as all of them.
Correlation coefficients between variables can be computed to detect signifi-
cantly correlated variables. In deleting any highly correlated variables, infor-
mation from other studies has to be incorporated. If other studies show that a
given variable has prognostic value, it should be retained.
In the next eight sections we discuss multivariate or regression techniques,

which are useful in identifying prognostic factors. The regression techniques
involve a function of the independent variables or possible prognostic factors.
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The variables must be quantitative, with particular numerical values for each
patient. This raises no problem when the prognostic variables are naturally
quantitative (e.g., age) and can be used in the equation directly. However, if a
particular prognostic variable is qualitative (e.g., a histological classification
into one of three cell types A, B, or C), something needs to be done. This
situation can be covered by the use of two dummy variables, e.g., x

�
, taking

the value 1 for cell type A and 0 otherwise, and x
�
, taking the value 1 for cell

type B and 0 otherwise. Clearly, if there are only two categories (e.g., sex), only
one dummy variable is needed: x

�
is 1 for a male, 0 for a female. Also, a better

description of the data might be obtained by using transformed values of the
prognostic variables (e.g., squares or logarithms) or by including products such
as x

�
x
�

(representing an interaction between x
�
and x

�
). Transforming the

dependent variable (e.g., taking the logarithm of a response time) can also
improve the fit.
In practice, there are usually a larger number of possible prognostic factors

associated with the outcomes. One way to reduce the number of factors before
a multivariate analysis is attempted is to examine the relationship between each
individual factor and the dependent variable (e.g., survival time). From the
univariate analysis, factors that have little or no effect on the dependent
variable can be excluded from the multivariate analysis. However, it would be
desirable to include factors that have been reported to have prognostic values
by other investigators and factors that are considered important from biomedi-
cal viewpoints. It is often useful to consider model selection methods to choose
those significant factors among all possible factors and determine an adequate
model with as few variables as possible. Very often, a variable of significant
prognostic value in one study is unimportant in another. Therefore, confirma-
tion in a later study is very important in identifying prognostic factors.
Another frequent problem in regression analysis is missing data. Three

distinctions about missing data can be made: (1) dependent versus independent
variables, (2) many versus few missing data, and (3) random versus nonrandom
loss of data. If the value of the dependent variable (e.g., survival time) is
unknown, there is little to do but drop that individual from analysis and reduce
the sample size. The problem of missing data is of different magnitude
depending on how large a proportion of data, either for the dependent variable
or for the independent variables, is missing. This problem is obviously less
critical if 1% of data for one independent variable is missing than if 40% of
data for several independent variables is missing. When a substantial propor-
tion of subjects has missing data for a variable, we may simply opt to drop
them and perform the analysis on the remainder of the sample. It is difficult to
specify ‘‘how large’’ and ‘‘how small,’’ but dropping 10 or 15 cases out of several
hundred would raise no serious practical objection. However, if missing data
occur in a large proportion of persons and the sample size is not comfortably
large, a question of randomness may be raised. If people with missing data do
not show significant differences in the dependent variable, the problem is not
serious. If the data are not missing randomly, results obtained from dropping
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subjects will be misleading. Thus, dropping cases is not always an adequate
solution to the missing data problem.
If the independent variable is measured on a nominal or categorical scale,

an alternative method is to treat individuals in a group with missing informa-
tion as another group. For quantitatively measured variables (e.g., age), the
mean of the values available can be used for a missing value. This principle can
also be applied to nominal data. It does not mean that the mean is a good
estimate for the missing value, but it does provide convenience for analysis.
A more detailed discussion on missing data can be found in Cohen and

Cohen (1975, Chap. 7), Little and Rubin (1987), Efron (1994), Crawford et al.
(1995), Heitjan (1997), and Schafer (1999).

11.2 GENERAL STRUCTURE OF PARAMETRIC REGRESSION
MODELS AND THEIR ASYMPTOTIC LIKELIHOOD INFERENCE

When covariates are considered, we assume that the survival time, or a
function of it, has an explicit relationship with the covariates. Furthermore,
when a parametric model is considered, we assume that the survival time (or
a function of it) follows a given theoretical distribution (or model) and has an
explicit relationship with the covariates. As an example, let us consider the
Weibull distribution in Section 6.2. Let x � (x

�
, . . . , x

�
) denote the p covariates

considered. If the parameter � in the Weibull distribution is related to x as
follows:

�� e�(a
�
���

���
a
�
x
�
) � exp[�(a

�
� a�x)]

where a� (a
�
, . . . , a

�
) denote the coefficients for x, then the hazard function of

the Weibull distribution in (6.2.4) can be extended to include the covariates as
follows:

h(t,x) � ���t���� �t���e�(a
�
���

���
a
�
x
�
)� � �t��� exp[�(a

�
� a�x)�] (11.2.1)

The survivorship function in (6.2.3) becomes

S(t, x)� (e���)exp(��(a
�
�a�x)) (11.2.2)

or

log[�logS(t, x)]���(a
�
� a�x) � � log t (11.2.3)

which presents a linear relationship between log[�logS(t, x)] and log t and the
covariates. In Sections 11.2 to 11.7 we introduce a special model called the
accelerated failure time model.
Analogous to conventional regression methods, survival time can also be

analyzed by using the accelerated failure time (AFT) model. The AFT model
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for survival time assumes that the relationship of logarithm of survival time T
and the covariates is linear and can be written as

logT � a
�
�

�
�
���

a
�
x
�
��	 (11.2.4)

where x
�
, j� 1, . . . , p, are the covariates, a

�
, j� 0, 1, . . . , p the coefficients, �

(�
 0) is an unknown scale parameter, and 	, the error term, is a random
variable with known forms of density function g(	, d) and survivorship function
G(	, d) but unknown parameters d. This means that the survival is dependent
on both the covariate and an underlying distribution g.
Consider a simple case where there is only one covariate x with values 0 and

1. Then (11.2.4) becomes

logT � a
�
� a

�
x��	

Let T
�
and T

�
denote the survival times for two individuals with x� 0 and

x� 1, respectively. Then, T
�
� exp(a

�
� �	), and T

�
� exp(a

�
� a

�
� �	)�

T
�
exp(a

�
). Thus, T

�

T

�
if a

�

 0 and T

�
�T

�
if a

�
� 0. This means that the

covariate x either ‘‘accelerates’’ or ‘‘decelerates’’ the survival time or time to
failure— thus the name accelerated failure time models for this family of models.
In the following we discuss the general form of the likelihood function of

AFT models, the estimation procedures of the regression parameters (a
�
, a, �,

and d) in (11.2.4) and tests of significance of the covariates on the survival time.
The calculations of these procedures can be carried out using available
software packages such as SAS and BMDP. Readers who are not interested in
the mathematical details may skip the remaining part of this section and move
on to Section 11.3 without loss of continuity.
Let t

�
, t

�
, . . . , t

�
be the observed survival times from n individuals, including

exact, left-, right-, and interval-censored observations. Assume that the log
survival time can be modeled by (11.2.4) and let a�� (a

�
, a

�
, . . . , a

�
), and

b�� (a�, d�, a
�
, �). Similar to (7.1.1), the log-likelihood function in terms of the

density function g(	) and survivorship function G(	) of 	 is

l(b) � log L (b) � � log[g(	
�
)]�� log[G(	

�
)]

� log[1�G(	
�
)]�� log[G(�

�
)�G(	

�
)] (11.2.5)

where

	
�
�
log t

�
� a

�
���

���
a
�
x
��

�
(11.2.6)

�
�
�
log �

�
� a

�
� ��

���
a
�
x
��

�
(11.2.7)
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The first term in the log-likelihood function sums over uncensored observa-
tions, the second term over right-censored observations, and the third term
over left-censored observations, and the last term over interval-censored
observations with �

�
as the lower end of a censoring interval. Note that the last

two summations in (11.2.5) do not exist if there are no left- and interval-
censored data.
Alternatively, let



�
� a

�
�

�
�
���

a
�
x
��

i� 1, 2, . . . , n (11.2.8)

Then (11.2.4) becomes

logT �
 ��	 (11.2.9)

The respective alternative log-likelihood function in terms of the density
function f (t, b) and survivorship function S(t, b) of T is

l(b) � log L (b) �� log[ f (t
�
, b)]�� log[S(t

�
, b)]

� � log[1� S(t
�
, b)]�� log[S(�

�
, b)� S(t

�
, b)] (11.2.10)

where f (t, b) can be derived from (11.2.4) through the density function g(	) by
applying the density transformation rule

f (t, b)�
g((log t�
)/�)

�t
(11.2.11)

and S(t, b) is the corresponding survivorship function. The vector b in (11.2.10)
and (11.2.11) includes the regression coefficients and other parameters of the
underlying distribution.
Either (11.2.5) or (11.2.10) can be used to derive the maximum likelihood

estimates (MLEs) of parameters in the model. For a given log-likelihood
function l(b), the MLE b� is a solution of the following simultaneous equations:

�(l(b))
�b

�

� 0 for all i (11.2.12)

Usually, there is no closed solution for the MLE b� from (11.2.12) and the
Newton—Raphson iterative procedure in Section 7.1 must be applied to obtain
b� . By replacing the parameters b with its MLE b� in S(t

�
, b), we have an

estimated survivorship function S(t, b� ), which takes into consideration the
covariates.
All of the hypothesis tests and the ways to construct confidence intervals

shown in Section 7.1 can be applied here. In addition, we can use the following
tests to test linear relationships among the regression coefficients a

�
, a

�
, . . . , a

�
.
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To test a linear relationship among x
�
, . . . , x

�
is equivalent to testing the

null hypothesis that there is a linear relationship among a
�
, a

�
, . . . , a

�
. H

�
can

be written in general as

H
�
:La� c (11.2.13)

where L is a matrix or vector of constants for the linear hypothesis and c is a
known column vector of constants. The following Wald’s statistics can be used:

X
�

� (La� � c)�[LV�
�
(a� )L�]��(La� � c) (11.2.14)

where V� �(a� ) is the submatrix of the covariance matrix V� (b� ) corresponding to a.
Under the H

�
and some mild assumptions, X

�
has an asymptotic chi-square

distribution with � degrees of freedom, where � is the rank of L. For a given
significance level �, H

�
is rejected if X

�

 ���	�
� or X�

����,1��/2.
For example, if p� 3 and we wish to test if x

�
and x

�
have equal effects on

the survival time, the null hypothesis is H
�
: a

�
� a

�
(or a

�
� a

�
� 0). It is easy

to see that for this hypothesis, the corresponding L� (1,�1, 0) and c� 0 since

La� (1, �1, 0)(a
�
, a

�
, a

�
)� � a

�
� a

�

Let the (i, j ) element of V�
�
(a� ) be �

��
; then the X

�
defined in (11.2.14) becomes

X
�

� (a�
�
� a�

�
) �(1, �1, 0) �

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��
��

1

�1

0��
��

(a�
�
� a�

�
)

�
(a�

�
� a�

�
)�

�
��

� �
��

� 2�
��

X
�
has an asymptotic chi-square distribution with 1 degree of freedom (the

rank of L is 1).
In general, to test if any two covariates have the same effects on T , the null

hypothesis can be written as

H
�
: a

�
� a

�
(or a

�
� a

�
� 0) (11.2.15)

The corresponding L� (0, . . . , 0, 1, 0, . . . , 0, �1, 0, . . . , 0) and c� 0, and the
X

�
in (11.2.14) becomes

X
�

�
(a�

�
� a�

�
)�

�
��
� �

��
� 2�

��

(11.2.16)
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which has an asymptotic chi-square distribution with 1 degree of freedom. H
�

is rejected if X
�


 ��
�	�
� or X�

���
�	���
� .

To test that none of the covariates is related to the survival time, the null
hypothesis is

H
�
: a� 0 (11.2.17)

The respective test statistics for this overall null hypothesis are shown in
Section 9.1. For example, the log-likelihood ratio statistics there becomes

X
�
��2[l(0, d� (0), a�

�
(0), �� (0)) � l(b� )] (11.2.18)

which has an asymptotic chi-square distribution with p degrees of freedom
under H

�
, where p is the number of covariates; d� (0), a�

�
(0), and �� (0) are the

MLE of d, a
�
, and � given a� 0.

11.3 EXPONENTIAL REGRESSION MODEL

To incorporate covariates into the exponential distribution, we use (11.2.4) for
the log survival time and let � � 1:

logT
�
� a

�
�

�
�
���

a
�
x
��
� 	

�
�


�
� 	

�
, (11.3.1)

where 

�
� a

�
���

���
a
�
x
��
, 	

�
’s are independently identically distributed (i.i.d.)

random variables with a double exponential or extreme value distribution
which has the following density function g(	) and survivorship function G(	):

g(	) � exp[	� exp(	)] (11.3.2)

G(	) � exp[�exp(	)] (11.3.3)

This model is the exponential regression model. T has the exponential
distribution with the following hazard, density, and survivorship functions.

h(t, �
�
)� �

�
� exp���a��

�
�
���

a
�
x
����� exp(�


�
) (11.3.4)

f (t, �
�
)� �

�
exp(��

�
t) (11.3.5)

S(t, �
�
)� exp(��

�
t) (11.3.6)

where �
�
is given in (11.3.4). Thus, the exponential regression model assumes a

linear relationship between the covariates and the logarithm of hazard. Let
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h
�
(t, �

�
) and h

�
(t, �

�
) be the hazards of individuals i and j ; the hazard ratio of

these two individuals is

h
�
(t, �

�
)

h
�
(t, �

�
)
�

�
�

�
�

� exp[�(

�
�


�
)]� exp��

�
�
	��

a
	
(x

	�
�x

	�
)� (11.3.7)

This ratio is dependent only on the differences of the covariates of the two
individuals and the coefficients. It does not depend on the time t. In Chapter
12 we introduce a class of models called proportional hazard models in which
the hazard ratio of any two individuals is assumed to be a time-independent
constant. The exponential regression model is therefore a special case of the
proportional hazard models.
The MLE of b� (a

�
, a

�
, . . . , a

�
) is a solution of (11.2.12), using (11.2.10),

where f (t, �) and S(t, �) are given in (11.3.5) and (11.3.6). Computer programs
in SAS or BMDP can be used to carry out the computation.
In the following we introduce a practical exponential regression model.

Suppose that there are n� n
�
� n

�
�� � n

	
individuals in k treatment

groups. Let t
��
be the survival time and x

���
, x

���
, . . . , x

���
the covariates of the

jth individual in the ith group, where p is the number of covariates considered,
i� 1, . . . , k, and j� 1, . . . , n

�
. Define the survivorship function for the jth

individual in the ith group as

S
��
(t) � exp(��

��
t) (11.3.8)

where

�
��
� exp(�


��
) and 


��
���a���

�
�

��

a


x

��� (11.3.9)

This model was proposed by Glasser (1967) and was later investigated by
Prentice (1973) and Breslow (1974). The term exp(�a

��
) represents the

underlying hazard of the ith group when covariates are ignored. It is clear that


��
defined in (11.3.9) is a special case of (11.3.4) by adding a new index for the

treatment groups. To construct the likelihood function, we use the following
indicator variables to distinguish censored observations from the uncensored:

�
��
��

1 if t
��
uncensored

0 if t
��
censored

According to (11.2.10) and (11.3.8), the likelihood function for the data can
then be written as

L (�
��
)�

	
�
���

��
�
���

(�
��
)��� exp(��

��
t
��

)
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Substituting (11.3.9) in the logarithm of the function above, we obtain the
log-likelihood function of a

�
� (a

��
, a

��
, . . . , a

�	
) and a� (a

�
, a

�
, . . . , a

�
):

l(a
�
, a) �

	
�
���

��
�
���
���� �a���

�
�

��

a


x

���� t

��
exp�a�� �

�
�

��

a


x

����

�
	
�
���
�a��r� �

�
�

��

a


s
�

� exp(a

��
)

��
�
���

t
��
exp�

�
�

��

a


x

���� (11.3.10)

where

s
�

�

��
�
���

�
��
x

��

is the sum of the lth covariate corresponding to the uncensored survival times
in the ith group and r

�
is the number of uncensored times in that group.

Maximum likelihood estimates of a
��
’s and a



’s can be obtained by solving

the following k� p equations simultaneously. These equations are obtained by
taking the derivative of l(a

�
, a) in (11.3.10) with respect to the k a

��
’s and p a



’s:

r
�
� exp(a�

��
)

��
�
���

t
��
exp�

�
�

��

a�


x

���� 0 i� 1, . . . , k (11.3.11)

	
�
���
�s�
 � exp(a�

�
)

��
�
���

t
��
x

��
exp�

�
�

��

a�


x

����� 0 l� 1, . . . , p (11.3.12)

This can be done by using the Newton—Raphson iterative procedure in Section
7.1. The statistical inferences for the MLE and the model are the same as those
stated in Section 7.1. Let a�

�
and a� be the MLE of a

�
and a in (11.3.10), and

a�
�
(0) be the MLE of a

�
given a� 0. According to (11.2.18), the difference

between l(a�
�
, a� ) and l(a�

�
(0), 0) can be used to test the overall null hypothesis

(11.2.17) that none of the covariates is related to the survival time by
considering

X
�
��2(l(a�

�
(0), 0) � l(a�

�
, a� )) (11.3.13)

as chi-square distributed with p degrees of freedom. A X
�
greater than the 100�

percentage point of the chi-square distribution with p degrees of freedom
indicates significant covariates. Thus, fitting the model with subsets of the
covariates x

�
, x

�
, . . . , x

�
allows selection of significant covariates of prognostic

variables. For example, if p� 2, to test the significance of x
�
after adjusting for

x
�
, that is, H

�
: a

�
� 0, we compute

X
�
��2[l(a�

�
(0), a�

�
(0), 0)� l(a�

�
, a�

�
, a�

�
)]
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Table 11.1 Summary Statistics for the Five Regimens

Additive
Therapy

Geometric Median
6-MP MTX Number of Number in Mean� of Mean Remission

Regimen Cycle Cycle Patients Remission WBC Age (yr) Duration

1 A-D NM 46 20 9,000 4.61 510
2 A-D A-D 52 18 12,308 5.25 409
3 NM NM 64 18 15,014 5.70 307
4 NM A-D 54 14 9,124 4.30 416
5 None None 52 17 13,421 5.02 420
1, 2, 4 — — 152 52 10,067 4.74 435
3, 5 — — 116 35 14,280 5.40 340
All — — 268 87 11.711 5.02 412

Source: Breslow (1974). Reproduced with permission of the Biometric Society.

�The geometric mean of x
�
, x

�
, . . . , x

�
is defined as (��

���
x
�
)�
�. It gives a less biased measure of

central tendency than the arithmetic mean when some observations are extremely large.

where a�
�
(0) and a�

�
(0) are, respectively, the MLE of a

�
and a

�
given a

�
� 0. X

�
follows the chi-square distribution with 1 degree of freedom. A significant X

�
value indicates the importance of x

�
. This can be done automatically by a

stepwise procedure. In addition, if one or more of the covariates are treatments,
the equality of survival in specified treatment groups can be tested by
comparing the resulting maximum log-likelihood values. Having estimated the
coefficients a

��
and a



, a survivorship function adjusted for covariates can then

be estimated from (11.3.9) and (11.3.8).
The following example, adapted from Breslow (1974), illustrates how this

model can identify important prognostic factors.

Example 11.1 Two hundred and sixty-eight children with newly diagnosed
and previously untreated ALL were entered into a chemotherapy trial. After
successful completion of an induction course of chemotherapy designed to
induce remission, the patients were randomized onto five maintenance regi-
mens designed to maintain the remission as long as possible. Maintenance
chemotherapy consisted of alternating eight-week cycles of 6-MP and methot-
rexate (MTX) to which actinomycin-D (A-D) or nitrogen mustard (NM) was
added. The regimens are given in Table 11.1. Regimen 5 is the control. Many
investigators had a prior feeling that actinomycin-D was the active additive
drug; therefore, pooled regimens 1, 2, and 4 (with actinomycin-D) were
compared to regimens 3 and 5 (without actinomycin-D). Covariates considered
were initial WBC and age at diagnosis. Analysis of variance showed that
differences between the regimens with respect to these variables were not
significant. Table 11.1 shows that the regimen with lowest (highest) WBC
geometric mean has the longest (shortest) estimated remission duration. Figure
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Figure 11.1 Remission curves of all patients by WBC at diagnosis. (From Breslow,
1974. Reproduced with permission of the Biometric Society.)

11.1 gives three remission curves by WBC; differences in duration were
significant. It is well known that the initial WBC is an important prognostic
factor for patients followed from diagnosis; however, it is interesting to know
if this variable will continue to be important after the patient has achieved
remission.
To identify important prognostic variables, model (11.3.9) was used to

analyze the effect of WBC and age at diagnosis. Previous studies (Pierce et al.,
1969; George et al., 1973) showed that survival is longest for children in the
middle age range (6—8 years), suggesting that both linear and quadratic terms
in age be included. The WBC was transformed by taking the common
logarithm. Thus, the number of covariates is p� 3. Let x

�
, x

�
, and x

�
denote

log
��

(WBC), age, and age squared, and a
�
, a

�
, and a

�
be the respective

coefficients. Instead of using a stepwise fitting procedure, the model was fitted
five times using different numbers of covariates. Table 11.2 gives the results.
The estimated regression coefficients were obtained by solving (11.3.11) and

(11.3.12). Maximum log-likelihood values were calculated by substituting the
regression coefficients with the estimates in (11.3.10). The X

�
values were

computed following (11.3.13), which show the effect of the covariates included.
The first fit did not include any covariates. The log-likelihood so obtained is
the unadjusted value l(a�

�
(0), 0) in (11.3.13). The second fit included only x

�
or

log
��

(WBC), which yields a larger log-likelihood value than the first fit.
Following (11.3.13), we obtain

X
�
��2(l(a�

�
(0), 0) � l(a�

�
, a�

�
)) ��2(�1332.925� 1316.399)� 33.05
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Table 11.2 Regression Coefficients and Maximum Log-Likelihood Values for Five Fits

Regression Coefficient
Covariates Maximum

Fit Included Log-Likelihood b
�

b
�

b
�

�� df

1 None �1332.925
2 x

�
(log

��
WBC) �1316.399 0.72 33.05 1

3 x
�
, x

�
(age) �1316.111 0.73 0.02 33.63 2

4 x
�
, x

�
(age squared) �1327.920 �0.24 0.018 10.01 2

5 x
�
, x

�
, x

�
�1314.065 0.67 �0.14 0.011 37.72 3

Source: Breslow (1974). Reproduced with permission of the Biometric Society.

with 1 degree of freedom. The highly significant (p� 0.001) X
�
value indicates

the importance of WBC. When age and age squared are included (fit 4) in the
model, the X

�
value, 10.01, is less than that of fit 2. This indicates that WBC

is a better predictor than age as the only covariate. To test the significance of
age effects after adjusting for WBC, we subtract the log-likelihood value of fit
2 from that of fit 5 and obtain

X
�
� �2(�1316.399� 1314.065)� 4.668

with 3� 1� 2 degrees of freedom. The significance of this X
�
value is marginal

(p� 0.10). Comparing the maximum log-likelihood value of fit 2 to that of fit
5, we find that log WBC accounts for the major portion of the total covariate
effect. Thus, log(WBC) was identified as the most important prognostic
variable. In addition, subtracting the maximum log-likelihood value of fit 5
from that of fit 3 yields

X
�
� �2(�1316.111� 1314.065)� 4.092

with 1 degree of freedom. This significant (p� 0.05) value indicates that the
age relationship is indeed a quadratic one, with children 6 to 8 years old having
the most favorable prognosis. For a complete analysis of the data, the
interested reader is referred to Breslow (1974).
To use SAS to perform the analysis, let T be the remission duration, TG an

indicator variable (TG� 1 if in regimen groups 1, 2, and 4; 0 otherwise), CENS
a second indicator variable (CENS� 0 when t is censored; 1 otherwise), and
x1, x2, and x3 be log

��
(WBC), age, and age squared, respectively. Assume that

the data are saved in ‘‘C:�RDT.DAT’’ as a text file, which contains six columns,
and that each row (consisting of six space-separated numbers) gives the
observed T, CENS, TG, x1, x2, and x3 from a child. For instance, a first row
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in RDT.DAT may be

500 1 0 4.079 5.2 27.04

which represents that a 5.2-year-old child with initial log
��

(WBC)� 4.079 who
received regimen 3 or 5 relapsed after 500 days [i.e., t� 500, CENS� 1,
TG� 0, x1� 4.079, x2� 5.2, and x3 (age squared) � 27.04].
For this data set, the following SAS code can be used to perform fits 1 to 5

in Table 11.2 by using procedure LIFEREG.

data w1;
infile ‘c:�rdt.dat’ missover;
input t cens tg x1 x2 x3;

run;
proc lifereg;
model 1: model t*cens(0) � tg / d� exponential;
model 2: model t*cens(0) � tg x1/ d� exponential;
model 3: model t*cens(0) � tg x1 x2/ d� exponential;
model 4: model t*cens(0) � tg x2 x3/ d� exponential;
model 5: model t*cens(0) � tg x1 x2 x3/ d� exponential;

run;

For BMDP procedure 2L the following code can be used for fit 5.

/input file� ‘c:�rdt.dat’.
variables� 6.
format� free.

/print level�brief.
/variable names� t, cens, tg, x1, x2, x3.
/form time� t.

status� cens.
response� 1.

/regress covariates� tg, x1, x2, x3.
accel� exponential.

/end

11.4 WEIBULL REGRESSION MODEL

To consider the effects of covariates, we use the model (11.2.4); that is, the
log-survival-time of individual i is

logT
�
� a

�
�

�
�
	��

a
	
x
	�

��	
�
�


�
� �	

�
(11.4.1)

where 

�
� a

�
���

	��
a
	
x
	�
and 	 has the distribution defined in (11.3.2) and
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(11.3.3). This model is the Weibull regression model. T has the Weibull
distribution with

�
�
� exp��



�

�� and ��
1

�
(11.4.2)

and the following hazard, density, and survivorship functions that are related
with covariates via �

�
in (11.4.2):

h(t, �
�
, �)� �

�
�t��� (11.4.3)

f (t, �
�
, �)� �

�
�t��� exp(��

�
t�) (11.4.4)

S(t, �
�
, �)� exp(��

�
t�) (11.4.5)

The hazard ratio of any two individuals i and j, based on (11.4.3) and (11.4.2),
is

h
�
h
�

� exp��


�
�


�
� �� exp��

1

�
�
�
	��

a
	
(x

	�
�x

	�
)�

which is not time-dependent. Therefore, similar to the exponential regression
model, the Weibull regression model is also a special case of the proportional
hazard models.
The following example illustrates the use of the Weibull regression model

and of computer software packages.

Example 11.2 Consider the tumor-free time in Table 3.4. Suppose that we
wish to know if three diets have the same effect on the tumor-free time. Let T
be the tumor-free time; CENS be an index (or dummy) variable with
CENS� 0 if T is censored and 1 otherwise; and LOW, SATU, and UNSA be
index variables indicating that a rat was fed a low-fat, saturated fat, or
unsaturated fat diet, respectively (e.g., LOW� 1 if fed a low-fat diet; 0
otherwise). The data from the 90 rats in Table 3.4 can be presented using these
five variables. For example, the three observations in the first row of Table 3.4
can be rearranged as

T CENS LOW SATU UNSA
140 1 1 0 0
124 1 0 1 0
112 1 0 0 1

Assume that the rearranged data are saved in the text file ‘‘C:�RAT.DAT’’,
which contains the data from the 90 rats in five columns as above and the five
numbers in each row are space-separated. This data file is ready for almost all
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of the statistical software packages for parametric survival analysis currently
available, such as SAS and BMDP. Suppose that the tumor-free time follows
the Weibull distribution and the following Weibull regression model is used:

logT
�
� a

�
� a

�
SATU

�
� a

�
UNSA

�
��	

�
� 


�
��	

�
(11.4.6)

where 	
�
has a double exponential distribution as defined in (11.3.2) and

(11.3.3). Note that from (11.4.3) and (11.4.2),

log h(t, �
�
, �)� log �

�
� log(�t���)

� �


�

�
� log(�t���)

�
�a

�
� a

�
SATU

�
� a

�
UNSA

�
�

� log(�t���) (11.4.7)

Denote the hazard function of a rat fed an unsaturated, saturated, and low-fat
diet as h

�
, h

�
, and h



, respectively. From (11.4.7), log h

�
� (�a

�
� a

�
)/

�� log(�t���), log h
�
� (�a

�
� a

�
)/� � log(�t���), and log h



��a

�
/

�� log(�t���). Thus, the logarithm of the hazard ratio of rats fed a low-fat
diet and those fed a saturated fat diet is log(h



/h

�
)� a

�
/�, and the similar ratios

of rats fed a low-fat diet and those an unsaturated fat diet, and of rats fed a
saturated fat diet and those fed an unsaturated fat diet are, respectively,
log(h



/h

�
)� a

�
/� and log(h

�
/h

�
)� (a

�
� a

�
)/�. These ratios are constants and

are independent of time. Therefore, to test the null hypothesis that the three
diets have an equal effect on tumor-free time is equivalent to testing the
following three hypotheses: H

�
: h



/h

�
� 1 or a

�
� 0, H

�
: h



/h

�
� 1, or a

�
� 0,

and H
�
: h

�
/h

�
� 1 or a

�
� a

�
. The statistic defined in Section 9.1.1 can be used

to test the first two null hypotheses, and the statistic defined in (11.2.16) can
be used for the third one. Failure to reject a null hypothesis implies that the
corresponding log-hazard ratio is not statistically different from zero; that is,
there are no statistically significant differences between the two corresponding
diets. For example, failure to reject H

�
: a

�
� 0 means that there are no

significant differences between the hazards for rats fed a low-fat diet and rats
fed a saturated fat diet. When all three hypotheses H

�
: a

�
� 0, H

�
: a

�
� 0, and

H
�
: a

�
� a

�
are rejected, we conclude that the three diets have significantly

different effects on tumor-free time. Furthermore, a positive (negative) es-
timated implies that the hazard of a rat fed a low-fat diet is exp(a

�
/�) times

higher (lower) than that of a rat fed a saturated fat diet. Similarly, a positive
(negative) estimated a

�
and (a

�
� a

�
) imply, respectively, the hazard of a rat

fed a low-fat diet is exp(a
�
/�) times higher (lower) than that of a rat fed an

unsaturated fat diet, and the hazard of a rat fed a saturated fat diet is
exp[(a

�
� a

�
)/�] times higher (lower) than that of a rat fed an unsaturated fat

diet.
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To estimate the unknown coefficients, a
�
, a

�
, a

�
, and �, we construct the

log-likelihood function by replacing 
 in (11.4.2), (11.4.4), and (11.4.5) with
(11.4.6). Next, place the resulting f (t

�
, �

�
, �) and S(t

�
, �

�
, �) in the log-likelihood

function (11.2.10). The log-likelihood function for the observed 90 exact or
right-censored tumor-free times, t

�
, t

�
, . . . , t

��
, in the three diet groups is

l(a
�
, a

�
, a

�
, �)� � log[ f (t

�
, �

�
, �)]� � log[S(t

�
, �

�
, �)]

� � [log � � (�� 1) log t
�
� �


�
� t�

�
exp(��


�
)]

�� [�t�
�
exp(��


�
)]

� � �log � � (�� 1) log t
�
� �(a

�
� a

�
SATU

�
� a

�
UNSA

�
)

�t�
�
exp[��(a

�
� a

�
SATU

�
� a

�
UNSA

�
)]�

����t�
�
exp[��(a

�
� a

�
SATU

�
� a

�
UNSA

�
)]�

The first term in the log-likelihood function sums over the uncensored
observations, and the second term sums over the right-censored observations.
The MLE (a�

�
, a�

�
, a�

�
, �� ) of (a

�
, a

�
, a

�
,�) where � � 1/� is a solution of (11.2.12)

with the above log-likelihood function by applying the Newton—Raphson
iterative procedure. The results from SAS are shown in Table 11.3, where
INTERCPT� a

�
and SCALE� �. The MLE �� � 0.43, a�

�
��0.394,

a�
�
��0.739, and a�

�
� a�

�
��0.345. H

�
: a

�
� 0 (or h



/h

�
� 1), H

�
: a

�
� 0 (or

h


/h

�
� 1), and H

�
: a

�
� a

�
� 0 (or h

�
/h

�
� 1) are rejected at significance level

p� 0.0065, p� 0.0001, and p� 0.0038, respectively. The conclusion that the
data indicate significant differences among the three diets is the same as that
obtained in Chapter 3 using the k-sample test. Furthermore, both a�

�
and a�

�
are negative and h�



/h�

�
� exp(a�

�
/�� )� exp(�0.916) � 0.40, h�



/h�

�
� exp(a�

�
/

�� )� exp(�1.719)� 0.18, and h�
�
/h�

�
� exp((a�

�
� a�

�
)/�� )� exp(�0.802)� 0.45.

Thus, based on the data observed, the hazard of rats fed a low-fat diet is 40%
and 18% of the hazard of rats a saturated fat diet and an unsaturated fat diet,
respectively, and the hazard of rats fed a saturated fat diet is 45% of that of
rats fed an unsaturated fat diet.
The survivorship function in (11.4.5) can be estimated by using (11.4.2) and

the MLE of a
�
, a

�
, a

�
, and �:

S� (t, �, �)� exp(��� t�� )

� exp��exp��
1

��
(a�

�
� a�

�
SATU� a�

�
UNSA)� t1/���

� exp[�exp(�12.56� 0.92�SATU� 1.72�UNSA)t�
��]

Based on S� (t, �
�
, �), we can estimate the probability of surviving a given time

for rats fed with any of the diets. For example, for rats fed a low-fat diet,
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Table 11.3 Analysis Results for Rat Data in Table 3.4 Using a Weibull
Regression Model

Regression Standard
Variable Coefficient Error X

�
p exp(a�

�
/�� )

INTERCPT (a�
�
) 5.400 0.113 2297.610 0.0001

TRTSA(a�
�
) �0.394 0.145 7.407 0.0065 0.40

TRTUS(a�
�
) �0.739 0.140 28.049 0.0001 0.18

SCALE(�� ) 0.430 0.043

a�
�
� a�

�
�0.345 0.119 8.355 0.0038 0.45

(SATU� 0 and UNSA� 0), the probability of being tumor-free for 200 days is

S�
���

(200)� exp[�exp(�12.56)(200)�
��]

� exp[�0.00000353(200)�
��]� 0.132

and for rats fed an unsaturated fat diet, (SATU� 0 and UNSA� 1), the
probability is 0.011.
Following is the SAS code used to obtain Table 11.3, based on the Weibull

regression model in (11.4.6).

data w1;
infile ‘c:�rat.dat’ missover;
input t cens low satu unsa;

run;
proc lifereg covout;
model t*cens(0) � satu unsa / d�weibull;

run;

The respective BMDP procedure 2L code based on (11.4.6) is

/input file� ‘c:�rat.dat’.
variables� 5.
format� free.

/print level�brief.
/variable names� t, cens, low, satu, unsa.
/form time� t.

status� cens.
response� 1.

/regress covariates� satu, unsa .
accel�weibull.

/end
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11.5 LOGNORMAL REGRESSION MODEL

Let 	 in (11.2.4) be the standard normal random variable with the density
function g(	) and survivorship function G(	),

g(	) �
exp(�	�/2)

�2�
(11.5.1)

G(	) � 1��(	) � 1�
1

�2� �
�

��

e�
�
� dx (11.5.2)

where � is the cumulative distribution function of the standard normal
distribution. Then the model defined by (11.2.4) for the survival time T of
individual i,

logT
�
� a

�
�

�
�
	��

a
	
x
	�

��	
�
�


�
� �	

�

is the lognormal regression model. T has the lognormal distribution with the
density function

f (t, 

�
, ��)�

exp[�(log t�

�
)�/2��]

�2��t
(11.5.3)

and the survivorship function

S(t, 

�
, ��)� 1�� �

log t� 

�

� � (11.5.4)

It can be shown that the hazard function h(t, �, a
�
, a

�
, . . . , a

�
) of T with

covariate x
�
, x

�
, . . . , x

�
and unknown parameters and coefficients �, a

�
,

a
�
, . . . , a

�
can be written as

log h(t, �, a
�
, a

�
, . . . , a

�
)� log h

�
[t exp(�
)]� 
 (11.5.5)

where h
�
( · ) is the hazard function of an individual with all covariates equal to

zero. Equation (11.5.5) indicates that h(t, �, a
�
, a

�
, . . . , a

�
) is a function of h

�
evaluated at t exp(�
), not independent of t. Thus, the lognormal regression
model is not a proportional hazards model.

Example 11.3 Consider the survival time data from 30 patients with AML
in Table 11.4. Two possible prognostic factors or covariates, age, and cellular-
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Table 11.4 Survival Times and Data for Two Possible
Prognostic Factors of 30 AML Patients

Survival Time x
�

x
�

Survival Time x
�

x
�

18 0 0 8 1 0
9 0 1 2 1 1
28� 0 0 26� 1 0
31 0 1 10 1 1
39� 0 1 4 1 0
19� 0 1 3 1 0
45� 0 1 4 1 0
6 0 1 18 1 1
8 0 1 8 1 1
15 0 1 3 1 1
23 0 0 14 1 1
28� 0 0 3 1 0
7 0 1 13 1 1
12 1 0 13 1 1
9 1 0 35� 1 0

ity status are considered:

x
�
��

1 if patient is� 50 years old

0 otherwise

x
�
��

1 if cellularity of marrow clot section is 100%

0 otherwise

Let us use the lognormal regression model

log T
�
� a

�
� a

�
x
��

� a
�
x
��

��	
�

(11.5.6)

and



�
� a

�
� a

�
x
��

� a
�
x
��

(11.5.7)

The unknown coefficients and parameter a
�
, a

�
, a

�
, � need to be estimated.

We construct the log-likelihood function by replacing 
 in (11.5.3) and (11.5.4)
with (11.5.7), then replacing f (t

�
, 
,��) and S(t

�
, 
,��) in the log-likelihood

function (11.2.5) with their expression (11.5.3) and (11.5.4), respectively. The
resulting log-likelihood function for the exact and right-censored survival times
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Table 11.5 Asymptotic Likelihood Inference for Data on 30 AML Patients Using a
Lognormal Regression Model

Regression Standard
Variable� Coefficient Error X

�
p

INTERCPT (a
�
) 3.3002 0.3750 77.4675 0.0001

x
�
(a

�
) �1.0417 0.3605 8.3475 0.0039

x
�
(a

�
) �0.2687 0.3568 0.5672 0.4514

SCALE (�) 0.9075 0.1409

�x
�
� 1 if patient �50 years old, and 0 otherwise; x

�
� 1 if cellularity of marrow clot section is

100%, and 0 otherwise.

observed from the 30 patients with AML is

l(a
�
, a

�
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�
, �)�� ��

(log t
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�� ��
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� (a

�
� a

�
x
��

� a
�
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2��
� log(�t
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�2�)�

� � �log �1��
(log t

�
� (a

�
� a

�
x
��

� a
�
x
��
)

� ��
The first term in the log-likelihood function sums over the uncensored
observations, and the second sums over the right-censored observations. The
MLE (a�

�
, a�

�
, a�

�
, �� ) of (a

�
, a

�
, a

�
, �) can be obtained by applying the

Newton—Raphson iterative procedure. The hypothesis-testing procedures dis-
cussed in Section 9.1.2 can be used to test whether the coefficients a

�
and a

�
are equal to zero. Table 11.5 shows that a

�
is significantly (p� 0.0039) different

from zero, while a
�
is not (p� 0.4514). The signs of the regression coefficients

indicate that age over 50 years has significantly negative effects on the survival
time, while a 100% cellularity of marrow clot section also has a negative effect;
however, the effect is not of significant importance to the survival time.

Let T be the survival time and CENS be an index (or dummy) variable
with CENS� 0 if T is censored and 1 otherwise. Assume that the data are
saved in a text file ‘‘C:�AML.DAT’’ with four numbers in each row, space-
separated, which contains successively T, CENS, x1, and x2.
Let T be the survival time and CENS be an index (or dummy) variable with

CENS� 0 if T is censored and 1 otherwise. Assume that the data are saved in
a text file ‘‘C:�AML.DAT’’ with four numbers in each row, space-separated,
which contains successively T, CENS, x1, and x2. The following SAS code is
used to obtain the results in Table 11.5.
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data w1;
infile ‘c:�aml.dat’ missover;
input t cens x1 x2;

run;
proc lifereg;
model 1: model t*cens(0) � x1 x2 / d� lnormal;

run;

If BMDP is used, the following 2L code is suggested.

/input file� ‘c:�aml.dat’.
variables� 4.
format� free.

/print level�brief.
/variable names� t, cens, x1, x2.
/form time� t.

status� cens.
response� 1.

/regress covariates� x1, x2.
accel� lnormal.

/end

11.6 EXTENDED GENERALIZED GAMMA REGRESSION MODEL

In this section we introduce a regression model that is based on an extended
form of the generalized gamma distribution defined in Section 6.4. Assume that
the survival time T of individual i and covariates x

�
, . . . , x

�
have the relation-

ship given in (11.4.1), where 	 has the log-gamma distribution with the density
function g(	) and survivorship function G(	):

g(	) �
���[exp(�	)/��]�
�� exp[�exp(�	)/��]

�(1/��)
(11.6.1)

G(	) ��
I�
exp(�	)

��
,
1

��� if �� 0

1� I �
exp(�	)

��
,
1

��� if �
 0 �	�	� �	

(11.6.2)

(11.6.3)

This model is the extended generalized gamma regression model. It can be
shown that T has the extended generalized gamma distribution with the
density function

f (t, �, �, �)�
��������

�
t���� exp[��(�

�
t)�]

�(�)
(11.6.4)

and survivorship function

S(t, �, �, �)��
I(�(�

�
t)�, �)

1� I(�(�
�
t)�, �)

if � � 0

if � 
 0

(11.6.5)
(11.6.6)
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where

�
�
� exp(�


�
) � �

�
�

��
1

��
(11.6.7)

�(x) is the complete gamma function defined in (6.2.9), I(a, x) is the incomplete
gamma function defined in (6.4.4), and � is a shape parameter. We used the
extended generalized gamma distribution in (11.6.4) here because it is the
distribution used in SAS. The derivation is left to the reader as an exercise
(Exercise 11.12).
The estimation procedures for the parameters, regression coefficients, and

the covariate adjusted survivorship function are similar to those discussed in
Sections 11.3 and 11.4.

Example 11.4 Consider the survival times (T ) in days and a set of
prognostic factors or covariates from 137 lung cancer patients, presented in
Appendix I of Kalbfleisch and Prentice (1980). The covariates include the
Karnofsky measure of the overall performance status (KPS) of the patient at
entry into the trial, time in months from diagnosis to entry into the trial
(DIAGTIME), age in years (AGE), prior therapy (INDPRI, yes or no),
histological type of tumor, and type of therapy. There are four histological
types of tumor: adeno, small, large, and squamous cell and two types of
therapies: standard and experimental. The values of KPS have the following
meanings: 10—30 completely hospitalized, 40—60 partial confinement, 70—90
able to care for self. Assume that the survival time follows the extended
generalized gamma regression model, we wish to identify the most significant
prognostic variables.
First we define several index (or dummy) variables for the categorical

variables and the censoring status. Let CENS� 0 when the survival time T is
censored and 1 otherwise; INDADE� 1, INDSMA� 1, and INDSQU� 1 if
the type of cancer cell is adeno, small, and squamous, respectively, and 0
otherwise; INDTHE� 1 if the standard therapy is received and 0 otherwise;
and INDPRI� 1 if there is a prior therapy and 0 otherwise. The model is

logT
�
� a

�
� a

�
KPS

�
� a

�
AGE

�
� a

�
DIAGTIME

�
� a

�
INDPRI

�

� a
�
INDTHE

�
� a

�
INDADE

�
� a

�
INDSMA

�
� a

�
INDSQU

�
� �	

�

(11.6.8)

where the density function of 	
�
is defined in (11.6.1). Thus,



�
� a

�
� a

�
KPS

�
� a

�
AGE

�
� a

�
DIAGTIME

�
� a

�
INDPRI

�
� a

�
INDTHE

�

� a
�
INDADE

�
� a

�
INDSMA

�
� a

�
INDSQU

�
(11.6.9)

To estimate a
�
, . . . , a

�
, �, a

�
, and �, we construct the log-likelihood function by

replacing 
 in (11.6.7) and (11.6.4)—(11.6.6) with (11.6.9), then replacing f (t
�
, b)

and S(t
�
,b) in the likelihood function (11.2.10) by those in (11.6.4) and (11.6.5)

or (11.6.6). The MLE (a�
�
, . . . , a�

�
, �� , a�

�
, �� ) of (a

�
, . . . , a

�
, �, a

�
, �) can be
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Table 11.6 Asymptotic Likelihood Inference on Lung Cancer Data Using a Generalized
Gamma Regression Model

Regression Standard
Variable Coefficient Error X

�
p

INTERCPT (a
�
) 2.176 0.719 9.143 0.003

INDADE (a
�
) �0.759 0.286 7.034 0.008

INDSMA (a
�
) �0.594 0.264 5.059 0.025

INDSQU (a
�
) 0.150 0.291 0.266 0.606

KPS (a
�
) 0.034 0.005 46.443 0.000

AGE (a
�
) 0.008 0.009 0.845 0.358

DIAGTIME (a
�
) 0.000 0.009 0.001 0.980

INDPRI (a
�
) �0.089 0.216 0.171 0.679

INDTHE (a
�
) 0.168 0.185 0.823 0.364

SCALE (�) 1.000 0.071
SHAPE (�) 0.450 0.223

INTERCPT (a
�
) 2.748 0.396 48.247 0.000

INDADE (a
�
) �0.766 0.280 7.492 0.006

INDSMA (a
�
) �0.534 0.258 4.284 0.039

INDSQU (a
�
) 0.144 0.280 0.264 0.608

KPS (a
�
) 0.033 0.005 45.497 0.000

SCALE (�) 1.004 0.070
SHAPE (�) 0.473 0.206

obtained in a manner similar to that used in Examples 11.2 and 11.3. The
hypothesis-testing procedure defined in Section 11.2 can be used to test
whether the coefficients a

�
, a

�
, . . . , a

�
are equal to zero. The first part of Table

11.6 shows the results from SAS (where INTERCPT� a
�
, SCALE��, and

SHAPE� �).
Table 11.6 shows that a

�
, a

�
, and a

�
are significantly (p� 0.05) different

from zero, whereas the other covariates are not (p
 0.05). That is, only KPS
and the type of cancer cell have significant effects on the survival time. In
particular, adeno cell carcinoma and small cell carcinoma have significant
negative effects on survival time. Patients who have better Karnofsky perform-
ance status have a longer survival time. If we wish to include only KPS and
cell type in the model, the lower part of Table 11.6 gives the results.
Assume that the coded data are saved in ‘‘C:�LCANCER.DAT’’ as a text

file with 10 numbers in a row, space-separated, which contains data for T,
CENS, KPS, AGE, DIAGTIME, INDPRI, INDTHE, INDADE, INDSMA,
and INDSQU, in that order. The SAS code used to obtain Table 11.6 is

data w1;
infile ‘c:�lcancer.dat’ missover;
input t cens kps age diagtime indpri indthe indade indsma indsqu;

run;
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proc lifereg;
Model 1: model t*cens(0) �kps age diagtime indpri indthe indade indsma indsqu /

d� gamma;
Model 2: model t*cens(0)� kps indade indsma indsqu / d� gamma;

run;

11.7 LOG-LOGISTIC REGRESSION MODEL

Assume that the relationship between the survival time T
�
for individual i and

a set of covariates, x
�
, . . . , x

�
can be expressed by the AFT model in (11.4.1),

where 	
�
has a logistic distribution with the density function

g(	) �
exp(	)

[1� exp(	)]�
(11.7.1)

and survivorship function

G(	) �
1

1� exp(	)
(11.7.2)

This model is the log-logistic regression model. Then T has the log-logistic
distribution defined in Section 6.5. The parameter � in the distribution is a
function of the covariates:

�
�
� exp��



�

�� ��
1

�
(11.7.3)

Substituting (11.7.3) in the survivorship function in (6.5.2), we obtain

log
S(t, b)

1�S(t, b)
��log(�t�)�



�

� � log t (11.7.4)

or

log
S(t, b)

1� S(t, b)
�
a
�
�

�
1

�
�
�
	��

a
	
x
	
� � log t (11.7.5)

where b� (a
�
, a

�
, . . . , a

�
, �). Since S(t

�
, b) is the probability of surviving longer

than t, S(t
�
, b)/[1�S(t

�
, b)] is the odds of surviving longer than t. Let OR

�
and

OR
�
denote the odds of surviving longer than t for individuals i and j,

respectively. The logarithm of the odds ratio is

log
OR

�
OR

�

�
1

�
�
�
	��

a
	
(x

	�
�x

	�
) (11.7.6)

This ratio is independent of time. Therefore, the log-logistic regression model
is a proportional odds model, not a proportional hazards model.
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Example 11.5 We fit the log-logistic regression model above to the data in
Example 11.6.1 using only KPS and the three cancer cell type index variables.
That is,

logT
�
� a

�
� a

�
KPS

�
� a

�
INDADE

�
� a

�
INDSMA

�
� a

�
INDSQU

�
� �	

�

(11.7.7)

where the density function of 	
�
is defined in (11.7.1). Thus,



�
� a

�
� a

�
KPS

�
� a

�
INDADE

�
� a

�
INDSMA

�
� a

�
INDSQU

�
(11.7.8)

To estimate b� (a
�
, a

�
, . . . , a

�
, �)�, we construct the log-likelihood function by

using the � and � in (11.7.3) as parameters in the density and survivorship
functions of the log-logistic distribution in Section 6.5. The resulting log-
likelihood function for the 137 observed exact or right-censored survival times is

l(b) �� �
�


�
�

� log��
1��

�
log t

�
� 2 log�1� exp�

�

�

� � t�

� ��
� � ��log �1� exp�

�

�

� � t��

� ��

�� ��
1

�
(a

�
� a

�
KPS

�
� a

�
INDADE

�
� a

�
INDSMA

�
� a

�
INDSQU

�
)

� log��
1��

�
log t

�

� 2 log�1� exp��
1

�
(a

�
� a

�
KPS

�
� a

�
INDADE

�
� a

�
INDSMA

�

� a
�
INDSQU

�
)� t�

� ��

� � �log �1� exp��
1

�
(a

�
� a

�
KPS

�
� a

�
INDADE

�
� a

�
INDSMA

�

� a
�
INDSQU

�
)� t�

� ��

The first term in the log-likelihood function sums over the uncensored
observations, and the second sums over the right-censored observations. The
MLE (a�

�
, . . . , a�

�
, a�

�
, �� ) of (a

�
, . . . , a

�
, a

�
, �) are given in Table 11.7, with their
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Table 11.7 Asymptotic Likelihood Inference on Lung Cancer Data Using a
Log-Logistic Regression Model

Regression Standard
Variable Coefficient Error X

�
p exp(a

�
/a)

INTERCPT (a
�
) 2.451 0.344 50.911 0.000 —

INDADE (a
�
) �0.749 0.261 8.217 0.004 0.275

INDSMA (a
�
) �0.661 0.240 7.565 0.006 0.321

INDSQU (a
�
) 0.029 0.264 0.012 0.913 1.051

KPS (a
�
) 0.036 0.004 66.885 0.000 1.064

SCALE (�) 0.581 0.043 — — —

standard errors, likelihood ratio test statistics (X
�
), and p values. The results

are similar to those obtained from fitting the general gamma regression model
in Example 11.4.
In addition, using (11.7.5) and (11.7.6), we can obtain odds ratios for the

covariates. For example, let the odds of surviving to time t for four patients
with the same KPS but different cell type (adeno, small, squamous and large)
be denoted by OR

��
, OR

��
, OR

��
, and OR

��
, respectively; then the log-odds

ratios of the individuals with adeno, small, and squamous cell types to the one
with large cell type are, respectively,

log
OR

��
OR

��

�
a
�
�

log
OR

��
OR

��

�
a
�
�

log
OR

��
OR

��

�
a
�
�

Replacing a
�
, a

�
, a

�
, and � with their estimates, we have

OR
��

OR
��

� exp�
a�
�
�� �� 0.275

OR
��

OR
��

� exp�
a�
�
�� �� 0.321

OR
��

OR
��

� exp�
a�
�
�� �� 1.051

These results mean that in lung cancer patients, persons with adeno and small
cell type have odds of only about one-fourth and one-third, respectively, of
those with large cell type. The odds of persons with large cell carcinoma are
not significantly different from those of patients with squamous cell carcinoma.
Further, when ignoring cell type, exp(a�

�
/�� ) represents an increase (or decrease)

in the odds for any 1-unit increase in the KPS measure. In this case,
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exp(a�
�
/�� )� 1.064; thus for a 1-unit increase in the KPS measure, the odds

increase by 6.4%. The results are, in general, consistent with those obtained in
Example 11.4.
The following SAS code can be used to obtain the results in Table 11.7.

data w1;
infile ‘c:�lcancer.dat’ missover;
input t cens kps age diagtime indpri indthe indade indsma indsqu;

run;
proc lifereg;
model t*cens(0) �kps indade indsma indsqu / d� llogistic;

run;

The following BMDP 2L code is also applicable.

/input file� ‘c:�lcancer.dat’.
variables� 10.
format� free.

/print level� brief.
/variable names� t, cens, kps, age, diagtime, indpri, indthe, indade, indsma, indsqu.
/form time� t.

status� cens.
response� 1.

/regress covariates�kps, indade, indsma, indsqu.
accel� llogistic.

/end

11.8 OTHER PARAMETRIC REGRESSION MODELS

In this section we discuss two models in which the survival time T is assumed
to follow the exponential distribution with density and survivorship functions
as defined in (6.1.1) and (6.1.3), respectively, and the mean survival time 1/� or
hazard rate � has the following linear relationship with the covariates:

Model 1:
1

�
�

� a
�
�

�
�
���

a
�
x
��

Model 2: �
�
� a

�
�

�
�
���

a
�
x
��

Model 1 is considered by Feigl and Zelen (1965) and extended to include
censored data by Zippin and Armitage (1966). Model 2 is used by Byar et al.
(1974).
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Model 1
Suppose that n patients are entered in a study; r of these die and s� n� r are
still alive at the end of the study. Let t

�
, . . . , t

�
be the exact survival times of

the r deaths and t�
�
, . . . , t�

�
be the s censoring times. Furthermore, let x

��
,

i� 1, . . . , n, j� 1, . . . , p, be the observed value of the j th covariate of the ith
patient. The model assumes that the mean survival time is linearly related to
the covariates:

1

�
�

� a
�
�

�
�
���

a
�
x
��
�

�
�
���

a
�
x
��

(11.8.1)

where x
��

� 1. The term a
�
represents the underlying hazard in the sense that

1/a
�
is the hazard rate �

�
when covariates are ignored or all x

��
’s are zero. Then

the likelihood function of the n survival times under the model (11.8.1) can be
written as

L (a
�
, a

�
, . . . , a

�
)�

�
�
���
�

�
�
���

a
�
x
���

��
exp��t��

�
�
���

a
�
x
���

��

�
�

�
�
	��

exp��t�	 �
�
�
���

a
�
x
�	�

��

� (11.8.2)

The log-likelihood is then

l(a
�
, a

�
, . . . , a

�
)��

�
�
���

log�
�
�
���

a
�
x
����

�
�
���

t
� �

�
�
���

a
�
x
���

��

�
�
�
	��

t�
	 �

�
�
���

a
�
x
�	�

��
(11.8.3)

The maximum likelihood estimates of a
�
, j� 0, 1, . . . , p

�
, may be obtained

by solving simultaneously the p� 1 equations:

�
�
�
���
�

�
�
���

a
�
x
����

�
�
���

t
� �

�
�
���

a
�
x
���

��
�

�
�
	��
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	 �

�
�
���

a
�
x
�	�

��
� 0

�
�
�
���

x
�� �

�
�
���

a
�
x
���

��
�

�
�
���

t
�
x
�� �

�
�
���

a
�
x
���

��

�
�
�
	��

t�
	
x
�	 �

�
�
���

a
�
x
�	�

��
� 0 j� 1, . . . , p

(11.8.4)

Again, this can be done by Newton—Raphson iterative procedures described in
Section 7.1.
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After obtaining the MLE, a�
�
, j� 0, 1, . . . , p, the log-likelihood function can

be used to test the significance of the covariates. The procedure is exactly the
same as those used in Example 11.1.
The survivorship function (for the ith patient) adjusted for the covariates

can be obtained from

S�
�
(t) � exp(���

�
t)

� exp ��t �
�
�
���

a�
�
x
���

��

� (11.8.5)

Model 2
Byar et al. (1974) developed another exponential model relating survival time
to concomitant information for prostate cancer patients in which the individual
hazard is linearly related to the possible prognostic variables:

�
�
� a

�
�

�
�
���

a
�
x
��
�

�
�
���

a
�
x
��

(11.8.6)

where x
��

� 1. Similar to the model of Feigl and Zelen (1965), a
�
is the

underlying hazard rate when covariates are ignored, force of mortality or the
intercept.
Suppose that r of the n patients are dead and s� n� r are still alive at the

end of the study; then the likelihood function is

L (a
�
, a

�
, . . . , a

�
)�

�
�
���
�

�
�
���

a
�
x
��� exp���

�
�
���

a
�
x
��� t��

�
�

�
	��

exp���
�
�
���

a
�
x
�	� t�	 � (11.8.7)

Taking the logarithms of (11.8.7), we obtain the log-likelihood function

l(a
�
, a

�
, . . . , a

�
)�

�
�
���
�log�

�
�
���

a
�
x
�����

�
�
���

a
�
x
��� t���

�
�
	��

�
�
�
���

a
�
x
�	� t�	
(11.8.8)

To obtain the MLEs of the a
�
’s, we need to solve simultaneously the following

p� 1 equations:

�
�
���
�

x
��

��
���

a�
�
x
��

�x
��
t
���

�
�
	��

x
�	
t�
	

� 0 j� 0, 1, . . . , p (11.8.9)
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These equations can be solved simultaneously by using the Newton—Raphson
iterative procedure.
After the MLEs of a

�
, j� 0, 1, . . . , p, are obtained, the log-likelihood

function can be used to test the significance of the covariates by following the
same procedure as that used in Example 11.1.
The survivorship function for the ith individual adjusted for the covariates

can be estimated from

S�
�
(t) � exp(���

�
t)

� exp��t
�
�
���

a�
�
x
��� (11.8.10)

11.9 MODEL SELECTION METHODS

To identify important risk factors using a parametric approach, one needs to
select a most appropriate parametric model and identify the most significant
subset of covariates. In this section we first discuss, for a given parametric
model, how to choose an optimal subset of the covariates that have statistically
significant effects on the survival time. Second, we consider if the significant
covariates are known, how to determine which parametric model is most
appropriate. Third, we discuss a method that can be used to compare among
parametric models with different subsets of covariates.

11.9.1 Selection of Most Significant Covariates for a Known Parametric Model

For a known parametric model, the following methods can be used to select
an optimal subset of the covariates in the sense that the subset selected has the
most statistically significant effects on the survival time among all subsets of
the covariates. These methods include the forward, backward, stepwise, AIC,
and BIC selection procedures commonly used in ordinary regression analyses.
We give only a brief outline here. Interested readers are referred to books on
ordinary regression analysis.

Forward Selection Procedure
The forward selection procedure is an adding process in which one covariate
is selected and added to the model at every step. First, we have to estimate the
specific parameters that define the parametric model and the coefficients of the
adjusting covariates, if any, that are forced into the model. For example, to
have age- and gender-adjusted results, age and gender must be included in the
model, whether or not they are significant. Then the adjusted chi-square
statistics for each covariate not in the model are computed and the largest of
these statistics is identified. If the largest chi-square statistic is significant at the
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� level specified (usually, �� 0.15) for entry, the corresponding covariate is
added to the model.
Let a

�
be the vector of the parameters or coefficients of covariates already in

the model and l( · ) be the log-likelihood function. The forward selection
procedure will select x

�
, which is not yet in the model, to enter the model if the

difference between the log-likelihood values with x
�
and without x

�
is largest

among all the x
	
’s that are not in the model. That is, the coefficient a

�
of x

�
satisfies

X
�
� 2[(l(a�

�
, a�

�
) � l(a�

��
(0))]

�max
	

�2[l(a�
	
, a�

�
) � l(a�

�	
(0))], for any x

	
that is not in the model�

(11.9.1)

and X
�

��

�	� where a	 is the coefficient of x	 not yet in the model, (a� 	 , a� �), is
the MLE of (a

	
, a

�
), a�

�	
(0) is the MLE of a

�
given a

	
� 0, and ��

�	� is the �-level
critical point of the chi-square distribution with 1 degree of freedom. In the
forward selection procedure, once a covariate is entered into the model, it will
never be removed. The process is repeated until none of the remaining
covariates meet the level � specified for entry or until a predetermined number
of covariates have been entered.

Backward Selection Procedure
The backward selection procedure is an elimination process in which all the
covariates are included in the model at the beginning and are removed one by
one according to a significance criterion. The specific parameters that define
the parametric model and the coefficients of all the covariates are estimated
first. Then the Wald test is used to examine each covariate. The least significant
covariate that does not meet the specified level � (usually, �� 0.15) for
staying in the model is removed. That is, covariate x

�
will be removed from the

model if

X
�

�
a� �
�
v�
��

�min
	
�
a� �
	
v�
		

for any x
	
that is in the model� (11.9.2)

and X
�

���
�	� where a� is the corresponding coefficient for x� and v

�
��
is the

estimated variance of a�
�
. In the backward selection procedure, once a covariate

is removed from the model, it remains excluded. The process is repeated until
all the covariates remained in the model meet the specified significance level �
for staying or until a predetermined number of covariates remain in the model.
The advantages of the backward procedure have been discussed by Mantel
(1970).
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Stepwise Selection Procedure
The stepwise selection procedure is a combination of forward and backward
selection procedures. At first, it is similar to the forward selection procedure;
however, covariates already in the model do not necessarily remain. Covariates
already in the model may be removed later if they are no longer significant. The
stepwise selection process terminates if no significant covariate can be added to
the model or if the covariate just entered into the model is removed and no
more covariates can be added.

Information Criterion (AIC and BIC) Procedures
The Baysian information criterion (BIC) selection procedure discussed in
Section 9.3 can be used to select the best parametric model with covariates.
This can be done easily by replacing the log-likelihood function l(b� ) in (9.3.1)
with the log-likelihood function with subsets of covariates defined in previous
sections of this chapter. The subset of covariates that produces the largest r
value in (9.3.1) among all possible subsets is the choice. If the number of
covariates is large, one may apply the forward, backward, and stepwise
selection method first to reduce the number of candidate covariates, then use
the BIC procedure. The AIC criterion can be applied in a similar manner.

11.9.2 Selection of a Parametric Model with a Fixed Subset of Covariates

If the most significant subset of covariates is known, selection of an appropriate
parametric model can be carried out by using a procedure similar to those based
on the likelihood functions and discussed in Section 9.2. The procedures are
exactly the same except that all the likelihood functions are replaced by those
with covariates, for example, those given in (11.3.10) and Examples 11.2 and
11.5. With computer software packages available commercially, the procedure
can easily be applied. The following example illustrates the application.

Example 11.6 Consider the lung cancer patients who did not receive any
prior therapy in Example 11.4. Assume that the three covariates KPS,
INDADE, and INDSMA are most significant. For these three fixed covariates,
the log-likelihood values based on the exponential, Weibull, lognormal, log-
logistic, and generalized gamma models are given in Table 11.8. From this
table, the lognormal, Weibull and exponential models (relative to the general-
ized gamma model), with the three covariates, are rejected at �� 0.0325, 0.016
and 0.024, respectively. It appears that the exponential model, relative to the
Weibull, is not rejected (p� 0.194). However, since the exponential model
belongs to the Weibull distribution family and the Weibull model has been
rejected, the exponential model with the three covariates is not appropriate for
the data, as noted earlier in Chapter 9. Thus, we conclude that none of the
three models (exponential, Weibull, and lognormal), with covariates, provide
an appropriate fit to the data. In Example 11.7 we will see that the log-logistic
model is the best fit among all these models.
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Table 11.8 Goodness-of-Fit Tests Based on Asymptotic Likelihood Inference on Lung
Cancer Data

Distribution LL� LLR� p� BIC AIC

Extended �132.793 — — �146.517 �144.793
generalized gamma

Log-logistic �131.230 — — �142.667 �141.230
Lognormal �135.022 4.459� 0.035 �146.459 �145.022
Weibull �135.669 5.752� 0.016 �147.106 �145.669
Exponential �136.512 7.438� 0.024 �145.661 �144.512
Exponential �136.512 1.686� 0.194 — —

�LL, log-likelihood; LLR, log-likelihood ratio statistic; p, probability that the respective chi-square
random variable 
LLR.
�Lognormal relative to extended generalized gamma.
�Weibull relative to extended generalized gamma.
�Exponential relative to extended generalized gamma.
�Exponential relative to Weibull.

Using the data file ‘‘C:�LCANCER.DAT’’ described in Example 11.4, the
following SAS code can be used to obtain Table 11.8.

data w1;
infile ‘c:�lcancer.dat’ missover;
input t cens kps age diagtime indpri indthe indade indsma indsqu;
if indpri� 0;

run;
proc lifereg;
Model 1: model t*cens(0)� kps indade indsma / d� exponential;
Model 2: model t*cens(0)� kps indade indsma / d�weibull;
Model 3: model t*cens(0)� kps indade indsma / d� lnormal;
Model 4: model t*cens(0)� kps indade indsma / d� gamma;
Model 5: model t*cens(0)� kps indade indsma / d� llogistic;

run;

11.9.3 Selection of a Parametric Model and an Optimal Subset of Covariates
Simultaneously: AIC and BIC Procedures

The extended AIC and BIC criteria, which include covariates, can be applied
not only to select the most significant covariates for a given parametric model,
but also, simultaneously, to select the best parametric model. The procedure
may be tedious if the number of covariates to be considered is large. However,
in practice, the number of covariates worthy of consideration in a model is
usually reduced after univariate analyses, as described in Section 11.1. There-
fore, the AIC or BIC procedure may not be too difficult to apply. With the aid
of software packages, we can apply the forward, backward, and stepwise
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selection methods in Section 11.9.1 first to fit different parametric regression
models to the data and then include in the AIC or BIC procedure all or a
subset of the significant covariates identified in each fit.

Example 11.7 Consider the lung cancer data of Example 11.6. We apply
the methods of Section 11.9.1 to select the best subset of covariates separately
for the exponential, Weibull, lognormal, log-logistic, and generalized gamma
models. The same three covariates (KPS, INDADE, and INDSMA) are
selected (at the 0.05 level) as the most significant covariates in every of these
parametric models. The last column of Table 11.8 gives the r values of the BIC
for the different parametric models with the same three covariates. Based on
these values, the log-logistic model with the three covariates should be selected
as the final model for the data since its BIC or AIC value is the largest among
all the models. However, it is not known if the log-logistic model is significantly
better than the other models.

11.9.4 Cox--Snell Residual Procedure with Covariates

The AFT models in Sections 11.2 to 11.7 assume the following linear relation-
ship between log T and the p covariates:

logT
�
� a

�
�

�
�
	��

a
	
x
	�

��	
�
�


�
� �	

�
(11.9.3)

where 	
�
has survival function G(	). Once a specified parametric model and a

subset of covariates are selected, to assess the goodness of fit of this model, one
approach is to compute the regression residuals

	�
�
�
log t

�
� 
�

�
��

i� 1, 2, . . . , n (11.9.4)

where


�
�
� a�

�
�

�
�
	��

a�
	
x
	�

and a�
�
, a�

�
, a�

�
, . . . , a�

�
and �� are the MLE of a

�
, a

�
, a

�
, . . . , a

�
and �, respectively,

and t
�
’s are observed survival times. An 	�

�
is taken as censored if the

corresponding t
�
is censored. If the model fitted is correct, the corresponding

survival function G(	) is the survival function of the fitted model. For example,
if T indeed follows the log-logistic regression model with a selected subset of
covariates, the corresponding 	�

�
’s should follow the log-logistic distribution.

Moreover, if the fitted model is correct, the Cox—Snell residuals defined in
(8.4.1) are

r
�
��logG(	�

�
; d� ) ��logG �

log t
�
�
�

�
��

; d� � i� 1, 2, . . . , n (11.9.5)
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Figure 11.2 Cox—Snell residuals plot from the fitted exponential model on lung cancer
data.

where d� is the MLE of the parameters of the distribution. Let S� (r) denote the
estimated survival function of r

�
’s. From Section 8.4, the graph of r

�
versus

�logS� (r
�
), i� 1, 2, . . . , n, should be closed to a straight line with unit slope

and zero intercept if the fitted model for the survival time T is correct. This
graphical method can be used to assess the goodness of fit of the parametric
regression model.

Example 11.8 Figures 11.2 to 11.6 show the Cox—Snell residuals plots
from fitting the exponential, Weibull, lognormal, log-logistic, and extended
generalized gamma models, respectively with the three covariates KPS, IN-
DADE, and INDSMA, to the lung cancer data in Example 11.6. The five
graphs look similar, and all are close to a straight line with unit slope and zero
intercept. No significant differences are observed in these graphs. The results
obtained are similar to those from Examples 11.6 and 11.7. The differences
among the five distributions are small with the log-logistic distribution being
slightly better than the others.
Using the same data file ‘‘C:�LCANCER.DAT’’ as in Example 11.6.1, the

following SAS code can be used to obtain the Cox—Snell residuals based on
the exponential, Weibull, lognormal, log-logistic, and generalized gamma
model with the three covariates, KPS, INDADE, and INDSMA.

   291



Figure 11.3 Cox—Snell residuals plot from the fitted Weibull model on lung cancer
data.

Figure 11.4 Cox—Snell residuals plot from the fitted lognormal model on lung cancer
data.
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Figure 11.5 Cox—Snell residuals plot from the fitted log-logistic model on lung cancer
data.

data w1;
infile ‘c:�lcancer.dat’ missover;
input t cens kps age diagtime indpri indthe indade indsma indsqu;
if indpri� 0;

run;
proc lifereg noprint;
a: model t*cens(0) �kps indade indsma / d� exponential;
output out�wa cdf� f;
b: model t*cens(0) �kps indade indsma / d�weibull;
output out�wb cdf� f;
c: model t*cens(0) �kps indade indsma / d� lnormal;
output out�wc cdf� f;
d: model t*cens(0) �kps indade indsma / d� gamma;
output out�wd cdf� f;
e: model t*cens(0) �kps indade indsma / d� llogistic;
output out�we cdf� f;

run;
data wa;
set wa;
model� ‘Exponential’;

data wb;
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Figure 11.6 Cox—Snell residuals plot from the fitted extended generalized gamma
model on lung cancer data.

set wb;
model� ‘Weibull’;

data wc;
set wc;
model� ‘LNnormal’;

data wd;
set wd;
model� ‘Gamma’;

data we;
set we;
model� ‘LLogistic’;

data w2;
set wa wb wc wd we;
rcs��log(1� f);

run;
proc sort;
by model;

run;
proc lifetest notable outs�ws noprint;
time rcs*cens(0);
by model ;
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run;
data ws;
set ws;
mls��log(survival);

run;
title ‘Cox-Snell Residuals (rcs) and -log(estimated survival function of rcs) (mls)’;
proc print data�ws;
var model rcs mls;

run;
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EXERCISES

11.1 Consider the data given in Exercise Table 3.1. In addition to the five
skin tests, age and gender may also have prognostic value. Examine the
relationship between survival and each of the seven possible prognostic
variables as in Table 3.12. For each variable, group the patients
according to different cutoff points. Estimate and draw the survival
function for each subgroup by the product-limit method and then use
the methods discussed in Chapter 5 to compare survival distributions
of the subgroups. Prepare a table similar to Table 3.12. Interpret your
results. Is there a subgroup of any variable that shows significantly
longer survival times? (For the skin test results, use the larger diameter
of the two.)

11.2 Consider the seven variables in Exercise 11.1. Use the Weibull re-
gression model to identify the most significant variables. Compare your
results with that obtained in Exercise 11.1.

11.3 Consider the data given in Exercise Table 3.3. Examine the relationship
between remission duration and survival time and each of the nine
possible prognostic variables: age, gender, family history of melanoma,
and the six skin tests. Group the patients according to different cutoff
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points. Estimate and draw remission and survival curves for each
subgroup. Compare the remission and survival distributions of sub-
groups using the methods discussed in Chapter 5. Prepare tables
similar to Table 3.8.

11.4 Perform the following analyses: (1) Use the exponential, Weibull,
lognormal, generalized gamma, or log-logistic regression models sepa-
rately to identify the significant variables in Exercise 11.3 for their relative
importance to remission duration and survival time. (2) Select a model
among these final models using the BIC or AIC method. (3) Calculate
separately the respective likelihood for the exponential, Weibull, lognor-
mal, or generalized gamma regressionmodelwith the fixed variables in the
model selected in step (2), then use themethod in Section 11.9.2 to choose
a model and see whether this model is the model selected in step (2).

11.5 Perform the same analyses as in Exercise 11.4 for survival time in the
157 diabetic patients given in Exercise Table 3.4.

11.6 Using the notations in Example 11.2, show that if we use the follow-
ing model to replace the model defined in (11.4.6), logT

�
� a

�
� a

�
LOW

�
� a

�
UNSA

�
� �	

�
�


�
��	

�
, the hypothesis H

�
: h

�
� h

�
is

equivalent to H
�
: a

�
� 0.

11.7 Following Examples 11.2 and 11.3, obtain the log-likelihood function
based on (11.6.8) for the 137 observed exact and right-censored survival
times from the lung cancer patients.

11.8 Using the same notation as in Example 11.5, show that if we
use the model logT

�
� a

�
� a

�
KPS

�
� a

�
INDLAR

�
� a

�
INDSMA

�
�a

�
INDSQU

�
��	

�
, where INDLAR� 1 if the type of cancer is large,

and 0 otherwise, to replace the model defined in (11.7.8), the hypotheses
H

�
: a

�
�0 and H

�
: a

�
� 0 are equivalent to H

�
:OR

��
�OR

��
and

H
�
:OR

��
�OR

��
, respectively. Moreover, if we use the model

log T
�
� a

�
� a

�
KPS

�
� a

�
INDLAR

�
� a

�
INDADE

�
� a

�
INDSQU

�
��	

�
to replace the model defined in (11.7.8), the hypothesis H

�
: a

�
� 0

is equivalent to H
�
:OR

��
�OR

��
.

11.9 Let 	 be a survival time with the density function g(	)�exp[	�exp(	)].
Show that the survival time T defined by logT �
 ��	 has the
Weibull distribution with �� exp(�
/�) and � � 1/� by applying the
density transformation rule in (11.2.11).

11.10 Let 	 be a survival time with the standard normal distribution N(0, 1).
Show that the survival time T defined by log T�
 ��	 has the
lognormal distribution by applying the density transformation rule in
(11.2.11).
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11.11 Let u be a survival time with the density function f (u),

f (u) �
exp[u/��� exp(u)]

�(1/��)

where �( · ) is the gamma function defined in (6.2.8).
(a) Show that the survival time 	 defined by 	� 
/�� (log ��)/� has

the following density function,

g(	) �
���[exp(�	)/��]�
�� exp[�exp(�	)/��]

�(1/��)
�	�	� �	

and survival function,

G(	) ��
I �
exp(�	)

��
,
1

��� if � � 0

1� I �
exp(�	)

��
,
1

��� if � 
 0

where I( · , · ) is the incomplete gamma function defined as in (6.4.4).
(b) Show that the survival time T defined by logT�
� �	 has the

extended gamma density function defined in (11.6.4).

11.12 If 	 has a logistic distribution with the density function

g(	) �
exp(	)

[1� exp(	)]�

show that the survival time T defined by logT �
��	 has the log-logistic
distribution with �� exp(�
/�) and �� 1/� by applying the density
transformation rule in (11.2.11).
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CHAPTER 12

Identification of Prognostic Factors
Related to Survival Time:
Cox Proportional Hazards Model

In Chapter 11 we discussed parametric survival methods for model fitting and
for identifying significant prognostic factors. These methods are powerful if the
underlying survival distribution is known. The estimation and hypothesis
testing of parameters in the models can be conducted by applying standard
asymptotic likelihood techniques. However, in practice, the exact form of the
underlying survival distribution is usually unknown and we may not be able
to find an appropriate model. Therefore, the use of parametric methods in
identifying significant prognostic factors is somewhat limited. In this chapter
we discuss a most commonly used model, the Cox (1972) proportional hazards
model, and its related statistical inference. This model does not require
knowledge of the underlying distribution. The hazard function in this model
can take on any form, including that of a step function, but the hazard
functions of different individuals are assumed to be proportional and indepen-
dent of time. The usual likelihood function is replaced by the partial likelihood
function. The important fact is that the statistical inference based on the partial
likelihood function is similar to that based on the likelihood function.

12.1 PARTIAL LIKELIHOOD FUNCTION FOR SURVIVAL TIMES

The Cox proportional hazards model possesses the property that different
individuals have hazard functions that are proportional, i.e., [h(t �x

�
)/h(t � x

�
)],

the ratio of the hazard functions for two individuals with prognostic factors or
covariates x

�
� (x

��
,x

��
, . . . , x

��
)�, and x

�
� (x

��
, x

��
, . . . , x

��
)� is a constant

(does not vary with time t). This means that the ratio of the risk of dying of
two individuals is the same no matter how long they survive. In Sections 11.3
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and 11.4, we showed that the exponential and Weibull regression models
possess this property. This property implies that the hazard function given a
set of covariates x� (x

�
,x

�
, . . . , x

�
)� can be written as a function of an

underlying hazard function and a function, say g(x
�
, . . . , x

�
), of only the

covariates, that is,

h(t � x
�
, . . . , x

�
) � h

�
(t)g(x

�
, . . . , x

�
) or h(t �x)� h

�
(t)g(x) (12.1.1)

The underlying hazard function, h
�
(t), represents how the risk changes with

time, and g(x) represents the effect of covariates. h
�
(t) can be interpreted as the

hazard function when all covariates are ignored or when g(x) � 1, and is also
called the baseline hazard function. The hazard ratio of two individuals with
different covariates x

�
and x

�
is

h(t �x
�
)

h(t �x
�
)
�
h
�
(t)g(x

�
)

h
�
(t)g(x

�
)
�
g(x

�
)

g(x
�
)

(12.1.2)

which is a constant, independent of time.
The Cox (1972) proportional hazard model assumes that g(x) in (12.1.1) is

an exponential function of the covariates, that is,

g(x) � exp�
�
�
���

b
�
x
��� exp(b�x)

and the hazard function is

h(t � x)� h
�
(t) exp�

�
�
���

b
�
x
��� h

�
(t) exp(b�x) (12.1.3)

where b� (b
�
, . . . , b

�
) denotes the coefficients of covariates. These coefficients

can be estimated from the data observed and indicate the magnitude of the
effects of their corresponding covariates. For example, if there is only one
covariate treatment, let x

�
� 0 if a person receives placebo and x

�
� 1 if a

person receives the experimental drug. The hazard ratio of the patient receiving
the experimental drug and the one receiving placebo based on (12.1.2) and
(12.1.3) is

h(t � x
�
� 1)

h(t � x
�
� 0)

� exp(b
�
)

Thus, the two treatments are equally effective if b
�
� 0 and the experimental

drug introduces lower (higher) risk for survival than placebo if b
�
� 0 (b

�
� 0).

It can be shown that (12.1.3) is equivalent to

S(t � x) � [S
�
(t)] exp(��

���
b
�
x
�
) � [S

�
(t)] exp(b�x) (12.1.4)
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Thus the covariates can be incorporated into the survivorship function. The
use of (12.1.3) can be exemplified as follows.

1. Two-sample problems. Suppose that p� 1; that is, there is only one
covariate, x

�
, which is an indicator variable:

x
��

��
0 if the ith individual is from group 0

1 if the ith individual is from group 1

Then according to (12.1.3), the hazard functions of groups 0 and 1 are,
respectively, h

�
(t) and h

�
(t) � h

�
(t) exp(b

�
). The hazard function of group

1 is equal to the hazard function of group 0 multiplied by a constant
exp(b

�
), or the two hazard functions are proportional. In terms of the

survivorship function,

S(t) � [S
�
(t)]�

where the constant c� exp(b
�
) (Nadas, 1970). The two-sample test develop-

ed from (12.1.3) is the Cox—Mantel test discussed in Chapter 5. It is now
apparent that the test is based on the assumption of a proportional
hazard between the two groups.

2. Two-sample problems with covariates. The covariates in (12.1.3) can either
be indicator variables such as x

�
in the two-group problem above or

prognostic factors. Having one or more covariates representing prognos-
tic factors in (12.1.1) enables us to examine the relation between two
groups, adjusting for the presence of prognostic factors.

3. Regression problems. Dividing both sides of (12.1.3) by h
�
(t) and taking

its logarithm, we obtain

log
h
�
(t)

h
�
(t)

� b
�
x
��

� b
�
x
��

��� b
�
x
��

�
�
�
���

b
�
x
��
� b�x

�
(12.1.5)

where the x’s are covariates for the ith individual. The left side of (12.1.5) is
a function of hazard ratio (or relative risk) and the right side is a linear
function of the covariates and their respective coefficients.

As mentioned earlier, h
�
(t) is the hazard function when all covariates are

ignored. If the covariates are standardized about the mean and the model used
is

log
h
�
(t)

h
�
(t)

� b
�
(x

��
�x�

�
) � b

�
(x

��
�x�

�
) ��� b

�
(x

��
�x�

�
) � b�(x

�
�x� )

(12.1.6)
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where x� � � (x�
�
, x�

�
, . . . , x�

�
) and x�

�
is the average of the jth covariate for all

patients, the left side of (12.1.6) is the logarithm of the ratio of risk of failure
for a patient with a given set of values x�

�
� (x

��
,x

��
, . . . , x

��
) to that for an

average patient who has an average value for every covariate.
In this chapter we focus on the use of (12.1.5), and the main interest here is

to identify important prognostic factors. In other words, we wish to identify
from the p covariates a subset of variables that affect the hazard more
significantly, and consequently, the length of survival of the patient. We are
concerned with the regression coefficients. If b

�
is zero, the corresponding

covariate is not related to survival. If b
�
is not zero, it represents the magnitude

of the effect of x
�
on hazard when the other covariates are considered

simultaneously.
To estimate the coefficients, b

�
, . . . , b

�
, Cox (1972) proposes a partial

likelihood function based on a conditional probability of failure, assuming that
there are no tied values in the survival times. However, in practice, tied survival
times are commonly observed and Cox’s partial likelihood function was
modified to handle ties (Kalbfleisch and Prentice, 1980; Breslow, 1974; Efron,
1977). In the following we describe the estimation procedure without and with
ties.

12.1.1 Estimation Procedures without Tied Survival Times

Suppose that k of the survival times from n individuals are uncensored and
distinct, and n� k are right-censored. Let t

��	
� t

��	
��� t

��	
be the ordered

k distinct failure times with corresponding covariates x
��	
, x

��	
, . . . , x

��	
. Let

R(t
��	
) be the risk set at time t

��	
. R(t

��	
) consists of all persons whose survival

times are at least t
��	
. For the particular failure at time t

��	
, conditionally on the

risk set R(t
��	

), the probability that the failure is on the individual as observed is

exp���
���

b
�
x
���	

	
�
l �R(t

��	
) exp���

���
b
�
x
��
) ��

exp(b�x
��	

)
�
l �R(t

��	
) exp(b�x

�
)�

Each failure contributes a factor and hence the partial likelihood function is

L (b) �
�


���

exp���
���

b
�
x
���	

	
�
l �R(t

��	
) exp���

���
b
�
x
��
) ��

�


���

exp(b�x
��	

)
�
l�R(t

��	
) exp(b�x

�
)� (12.1.7)

and the log-partial likelihood is

l(b) � log L (b) �
�
�
���

�
�
���

b
�
x
��
�

�
�
���

log� �
l �R(t

��	
)

exp�
�
�
���

b
�
x
����

�
�
�
���
�b�x��	� log� �

l �R(t
��	
)

exp(b�x
�
)�� (12.1.8)
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The maximum partial likelihood estimator (MPLE) b� of b can be obtained by
the steps shown in (7.1.2)—(7.1.4). That is, b�

�
, . . . , b�

�
are obtained by solving

the following simultaneous equations:

�(l(b))
�b

� 0

or

�l(b)
�b

�

�
�
�
���

[x
���	

�A
��
(b)] � 0 u� 1, 2, . . . , p (12.1.9)

where

A
��

(b) �
�
l �R(t

��	
) x��

exp���
���

b
�
x
��
)

�
l�R(t

��	
) exp���

���
b
�
x
��
	

�
�
l�R(t

��	
) x��

exp(b�x
�
)

�
l �R(t

��	
) exp(b�x

�
)

(12.1.10)

by applying the Newton—Raphson iterated procedure. The second partial
derivatives of l(b) with respective to b

�
and b

�
, u, v� 1, 2, . . . , p, in the

Newton—Raphson iterative procedure are

I
��
(b) �

��l(b)

�b
�
�b

�

��
�
�
���

C
����	

(b
�
, . . . , b

�
) ��

�
�
���

C
����	

(b) u, v� 1, 2, . . . , p

(12.1.11)

where

C
����	

(b) �
�
l �R(t

��	
) x��

x
��
exp���

���
b
�
x
��
)

�
l �R(t

��	
) exp���

���
b
�
x
��
)

�A
��
(b)A

��
(b) (12.1.12)

The covariance matrix of the MPLE b� , defined similarly as V� (b) defined in
(7.1.5), is

V� (b� ) �Cov� (b� ) ���
��l(b� )
�b�b��


�
(12.1.13)

where ���l(b� )/�b�b� is called the observed information matrix with �I
��

(b� ) as
its (u, v) element and where I

��
(b) is defined in (12.1.11). Let the (i, j ) element

of V� (b� ) in (12.1.13) be v
��
; then the 100(1� 
)% confidence interval for b

�
is,

according to (7.1.6),

�b�
�
�Z����v

��
, b�

�
�Z����v

��
	 (12.1.14)

12.1.2 Estimation Procedure with Tied Survival Times

Suppose that among the n observed survival times there are k distinct
uncensored times t

��	
� t

��	
�� � t

��	
. Let m

��	
denote the number of people
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who fail at t
��	
or the multiplicity of t

��	
; m

��	
� 1 if there are more than one

observation with value t
��	
; m

��	
� 1 if there is only one observation with value

t
��	
. Let R(t

��	
) denote the set of people at risk at time t

��	
[i.e., R(t

��	
) consists of

those whose survival times are at least t
��	
] and r

�
be the number of such

persons. For example, in the following set of survival times from eight subjects,
�15, 16�, 20, 20, 20, 21, 24, 24�, n� 8, k� 4, t

��	
� 15, t

��	
� 20, t

��	
� 21,

t
�
	

� 24, m
��	

� 1, m
��	

� 3, m
��	

� 1, and m
�
	

� 2. Then R(t
��	
) includes all

eight subjects. R(t
��	
) � �those subjects with survival times 20, 21, and 24�,

R(t
��	
) � �those subjects with survival times 21 and 24�, and R(t

�
	
) � �those

subjects with survival time 24�; thus, r
�
� 8, r

�
� 6, r

�
� 3, and r



� 2.

To discuss the methods for ties, we introduce a few additional notations.
From every R(t

��	
), we can randomly select m

��	
subjects. Donate each of these

m
��	
selections by u

��	
. There are

	
�

C

��	

� r
�
!/[m

��	
! (r

�
�m

��	
)!] possible u

��	
’s. Let

U
�
denote the set that contains all the u

��	
’s. For example, from R(t

��	
), we can

randomly select any m
��	

� 3 out of the 6 (r
�
� 6) subjects. There are a total of

�
C

�
� 20 such selections (or subsets), and one of u

��	
’s is, for example, �three

subjects with survival times 20, 20, and 24�. U
�
� �u

��	
, u

��	
, . . . , u

���	
� contains

all 20 subsets. Now let us focus on the tied observations. Let
x
�
� (x

��
, x

��
, . . . , x

��
)� denote the covariates of the kth individual,

zu(j) ��k � u
��	
x
�
� (z1u(j) , z2u(j) , . . . , zpu(j))�, where zlu(j) is the sum of the lth covariate

of the m
��	
persons who are in u

��	
. Let u*

��	
denotes the set of m

��	
people who

failed at time t
��	
, and zu*(i) ��k � u*

��	
x
�
� (z*1u*(i) , z*2u*(i) , . . . , z*pu*(i) )�, where z*lu*(i) be

the sum of the lth covariate of the m
��	
persons who are in u*

��	
(failed at time

t
��	

). For example, for the set of survival times above, z*1u*(2) equals the sum of
the first covariate values of three persons who failed at time 20. With these
notations we are ready to introduce the following method for ties.

Continuous Time Scale
In the case of a continuous time scale, for the m

��	
persons failing at t

��	
, it is

reasonable to say that the survival times of the m
��	
people are not identical

since the ties are most likely to be the results of imprecise measurements. If the
precise measurements could be made, these m

��	
survival times could be ordered

and we could use the likelihood function in (12.1.7). In the absence of
knowledge of the true order (the real case), we have to consider all possible
orders of these observed m

��	
tied survival times. For each t

��	
, the observed m

��	
tied survival time can be ordered in m

��	
! (m

��	
factorial) different possible ways.

For each of these possible orders we will have a product as in (12.1.7) for the
corresponding m

��	
survival times. Therefore, when the survival time is meas-

ured at a continuous time scale, construction and computation of the exact
partial likelihood function is a very tedious task if m

��	
is larger. Readers

interested in the details of the exact partial likelihood function are referred to
Kalbfleisch and Prentice (1980) and Delong et al. (1994). The formula provided
by Delong et al. makes computation of the partial likelihood function for tied
continuous survival times more feasible. We will not discuss the exact partial
likelihood function further due to its complexity. Among the statistical sof-
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tware packages, SAS includes a procedure based on the exact partial likelihood
function. Use of this procedure is illustrated in Example 12.3.

To approximate the exact partial likelihood function, the following two
likelihood functions can be used when each m

��	
is small compared to r

�
.

Breslow (1974) provided the following approximation:

L
�

(b) �
�



���

exp(z�u*(i)b)
[�l �R(t

��	
) exp(x�

�
b)]m��	

(12.1.15)

An alternative approximation was provided by Efron (1977):

L
�

(b) �
�


���

exp(z�u*(i) b)


��	

���
[�l �R(t

��	
) exp(x�

�
b) � [( j� 1)/m

��	
] �l � u*

��	
exp(x�

�
b)]

(12.1.16)

Discrete Time Scale
If survival times are observed at discrete times, the tied observations are true
ties: that is, these events really happen at the same time. Cox (1972) proposed
the following logistic model:

h
�
(t) dt

1� h
�
(t) dt

�
h
�
(t) dt

1� h
�
(t) dt

exp�
�
�
���

b
�
x
����

h
�
(t) dt

1� h
�
(t) dt

exp(b�x
�
)

This model reduces to (12.1.3) in the continuous time scale. Using the model
and replacing the ith term in (12.1.7) with the following term with tied
observations at t

��	
:

exp(z�u*(i)b)
�u

��	
�U

�
exp(z�u(j) b)

the partial likelihood function with tied observations at a discrete time scale is

L


(d) �

�


���

exp(z�u*(i)b)
�u

��	
�U

�
exp(z�

���	
b)

(12.1.17)

The ith term in this expression represents the conditional probability of
observing the m

��	
failures given that there are m

��	
failures at time t

��	
and the

risk set R(t
��	

) at t
��	
. The number of terms in the denominator of the ith term

is
	�
C


��	
� r

�
!/[m

��	
! (r

�
�m

�
)!], as noted earlier, and will be very large if the m

��	
is large. Fortunately, a recursive algorithm proposed by Gail et al. (1981)
makes the calculation manageable. Equation (12.1.17) can also be considered
as an approximation of the partial likelihood function for continuous survival
times with ties by assuming that the ties are true as if they were observed at a
discrete time scale.
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As shown in many papers in literature, in most practical situations, the three
partial likelihood functions above are reasonably good approximations of the
exact partial likelihood function for continuous survival time with ties. When
there are no ties on the event times (i.e., m

��	
� 1), (12.1.15) —(12.1.17) reduce to

(12.1.7). The maximum partial likelihood estimate of b in (12.1.15)—(12.1.17)
can be estimated using procedures similar to those in (12.1.8)—(12.1.14).

Once the coefficients are estimated, relative risk (or relative hazard) in
(12.1.2) or (12.1.5) can be obtained. For example, if x

�
represents hypertension

and is defined as

x
�
��

1 if patient is hypertensive

0 otherwise

the hazard rate for hypertensive patients is exp(b�
�
) times that for normotensive

patients. That is, the risk associated with hypertension is exp(b�
�
) adjusting for

the other covariates in the model. A 100(1� 
)% confidence interval for the
relative risk can be obtained by using the confidence interval for b

�
. Let

(b
��
, b

��
) be the 100(1� 
)% confidence interval for b

�
; a 100(1� 
)%

confidence interval for the relative risk is (exp(b
��
), exp(b

��
)) according to

(7.1.8). This application of the proportional hazards model has been used
extensively, particularly by epidemiologists.

The following three examples illustrate the use of Cox’s regression model.

Example 12.1 Consider the survival data from 30 patients with AML in
Table 11.4. Recall that the two possible prognostic factors are

x
�
��

1 if patient is �50 years

0 otherwise

x
�
� �

1 if cellularity of marrow clot section is 100%

0 otherwise

We fit the Cox proportional hazard model to the data. The results are
presented in Table 12.1 In this case, Breslow’s approximation in (12.1.15) is
used to handle ties. The positive signs of the regression coefficients indicate that
the older patients (�50 years) and patients with 100% cellularity of the
marrow clot section have a higher risk of dying. Furthermore, age is signifi-
cantly related to survival after adjustment for cellularity. The results are
consistent with those from fitting the lognormal regression model in Example
11.3. The coefficients of the binary covariates can be interpreted in terms of
relative risk. The estimated risk of dying for patients at least 50 years of age is
2.75 times higher than that for patients younger than 50. Patients with 100%
cellularity have a 42% higher risk of dying than patients with less than 100%
cellularity.
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Table 12.1 Results of a Proportional Hazards Regression Analysis of Data in
Table 11.4

Regression Standard
Covariate Coefficient Error p Value exp(coefficient)

x
�

(age) 1.01 0.46 0013 2.75
x
�

(cellularity) 0.35 0.44 0.212 1.42

The 95% confidence intervals for b
�

(age) and b
�

(cellularity) are 1.01� 1.96
(0.46) or (0.11, 1.91) and 0.35� 1.96 (0.44) or (�0.51, 1.21), respectively.
Consequently, the 95% confidence intervals for the relative risks are
(e����, e����) or (1.12, 6.75) and (e
����, e����) or (0.60, 3.35), respectively. The
small number of patients (30) may have contributed to the large standard
errors of b�

�
and b�

�
and consequently, the wide confidence intervals. The lower

bound of the confidence interval for age is only slightly above 1. This suggests
that the importance of age should be interpreted carefully. In general, if the
number of subjects is small and the standard errors of the estimates are large,
the estimates may be unreliable.

When the two covariates are considered simultaneously, the risk for a
patient with x

�
� 1 and x

�
� 1 relative to patients with x

�
� 0 and x

�
� 0 can

be estimated. The relative risk is estimated as exp(1.01� 0.35) � 3.90 for a
patient who is over 50 years of age and whose cellularity is 100%, compared
to patients who are younger than 50 and whose cellularity is less than 100%.

Using the same data set ‘‘C:�AML.DAT’’ defined in Example 11.3, the
following SAS code can be used to obtain the results in Table 12.1.

data w1;
infile ‘c:�aml.dat’ missover;
input t cens x1 x2;

run;
proc phreg;
model t*cens(0) � x1 x2 / rl;

run;

If BMDP 2L is used, the following code is applicable.

/input file� ‘c:�aml.dat’ .
variables� 4.
format� free.

/print cova.
/variable names� t, cens, x1, x2.
/form time� t.

status� cens.
response� 1.

/regress covariates� x1, x2.
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If SPSS is used, the following code suffices.

data list file� ‘c:�aml.dat’ free
/ t cens x1 x2.

coxreg t with x1 x2
/status� cens event (1)
/print� all.

Example 12.2 In a study (Buzdar et al., 1978) to evaluate a combination
of 5-flourouracil, adramycin, cyclophosphamide, and BCG (FAC-BCG) as
adjuvant treatment in stage II and III breast cancer patients with positive
axillary nodes, 131 patients receiving FAC-BCG after surgery and radiation
therapy were compared with 151 patients receiving surgery and radiation
therapy only (control group).

Cox’s regression model was used to identify prognostic factors and to
evaluate the comparability of the two treatment groups. The model was fitted
to the data from 151 patients to determine the variables related to length of
remission. The possible prognostic variables considered were age (years),
menopausal status (1, premenopausal; 0, other), size of primary tumor (2, �3
cm; 4, 3—5 cm; 7, �5 cm), state of disease (2, stage II; 3, stage III), location of
surgery (1, M. D. Anderson Hospital; 0, other), number of nodes involved (2,
�4; 7, 4—10; 12, �10), and race (1, Caucasian; 2, other). The covariates were
selected by the forward selection method outlined in Section 11.9. Three
variables—number of nodes involved, state of disease, and menopausal
status—were selected for use in the model, all related significantly (p� 0.1) to
disease-free time. The regression equation including these variables only is

log
h
�
(t)

h
�
(t)

� 0.111(number of nodes� 6.16) � 0.8122(stage� 2.39)

� 0.872(menopausal� 0.26)

Table 12.2 gives the details of the fit. Relative risk was taken as h
�
(t)/h

�
(t), the

ratio of the risk of death per unit of time for a patient with a given set of
prognostic variables to the risk for a patient whose prognostic variables were
average in value. The relative risk for each variable was calculated by
considering favorable or unfavorable values of that variable, assuming that
other variables were at their average value. Note that the risk of relapse per
unit time for a patient with 12 positive nodes is 3.04 (ratio or risk) times that
for a patient with only two positive nodes. The risk of relapse per unit time for
a stage III patient was 2.25 times that of a stage II patient.

The Cox’s regression model was also fitted to the combined group of
FAC-BCG and control patients, including type of treatment (0, control; 1,
FAC-BCG), menopausal status, size of primary tumor, and number of involved
nodes as potential prognostic variables. The regression equation with three
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Table 12.2 Patient Characteristics Related to Disease-Free Time in Cox’s Regression
Model Fit to Control Patients

Maximum Relative Risk�
Prognostic Regression Significance Log Ratio of
Variable Coefficient Level (p) Likelihood Favorable Unfavorable Risks

Number of
nodes 0.1110 �0.01 �257.407 0.63 1.91 3.04

Stage 0.8122 0.016 �254.533 0.73 1.64 2.25
Menopausal
status 0.8720 �0.1 �250.576 0.80 1.91 2.39

Source: Buzdar et al. (1978). Reprinted by permission of the editor.

�Favorable variables: number of nodes� 2, stage II, postmenopausal. Unfavorable variables:
number of nodes� 12, stage III, premenopausal.

Table 12.3 Patient Characteristics Related to Survival, Treatment Included

Maximum Relative Risks�
Prognostic Regression Significance Log Ratio of
Variable Coefficient Level (p) Likelihood Favorable Unfavorable Risks

Treatment �1.8792 �0.01 �201.200 0.37 2.42 6.55
Menopausal 0.9644 0.01 �197.719 0.73 1.91 2.62
status

Size of 0.1611 0.05 �195.865 0.72 1.61 2.24
primary tumor

Source: Buzdar et al. (1978). Reprinted by permission of the editor.

�Favorable variables: treatment—FAC-BCG, postmenopausal, size of primary tumor 2 cm.
Unfavorable variables: no adjuvant treatment, premenopausal, size of primary tumor 7 cm.

significant (p� 0.05) variables obtained was as follows:

log
h
�
(t)

h
�
(t)

��1.8792(treatment� 0.47) � 0.9644(menopausal status� 0.33)

� 0.1611(size of primary tumor� 4.04)

Table 12.3 gives the details of the fit. The most important variable in predicting
survival time was the type of treatment (FAC-BCG favorable); other signifi-
cantly important variables were menopausal status and size of primary tumor.
The risk of death per unit of time for a patient receiving no adjuvant treatment
(control group) was 6.55 times that for a patient receiving the treatment,
showing that FAC-BCG can prolong life considerably.

308        



Example 12.3 Suppose that demographic, personal, clinical, and labora-
tory data are collected from an interview and physical examination of 200
participants in a study of cardiovascular disease (CVD). These participants,
aged 50—79 years and free of CVD at the time of the baseline examination, are
then followed for 10 years. During the follow-up period, 96 of the 200
participants develop or die of CVD. We use this set of simulated data to
illustrate further the use of the proportional hazards model in identifying
important risk factors. Table 12.4 gives a subset of the simulated data of 68
participants.

The event time T of interest is CVD-free time, which is defined as the time
in years from baseline examination to the first time that a participant was
diagnosed as having CVD or confirmed as a CVD death. CVD includes
coronary heart disease (CHD) and stroke. The covariates of interest are age
(AGE), gender (SEX� 1 if male and �0 if female); smoking status
(SMOKE� 1 if current smoker, and 0 otherwise); body mass index
(BMI�weight in kilograms divided by height in meter squared); systolic
blood pressure (SBP); logarithm of ratio of urinary albumin and creatinine
(LACR); logarithm of triglycerides (LTG); hypertension status (HTN� 1 if
SBP� 140 mmHg or DBP� 90 mmHg or under treatments of hypertension,
and �0 otherwise); and diabetes status (DM� 1 if fasting glucose� 126
mg/dL or under the treatments of diabetes, and �0 otherwise). For the CVD
outcome of interest, we let DG denote the type of CVD. DG� 0 if the
participant is free of CVD at the end of the study or confirmed as a non-CVD
death (thus the CVD-free time is censored), �1 if the participant had a stroke,
�2 if the participant had a CHD, and �3 if the participant had other CVDs.
It is of interest to compare the risk of CVD among the three age groups: 50—59,
60—69, and 70—79. We create two dummy variables: AGEA� 1 if aged 50—69,
�0 otherwise; and AGEB� 1 if aged 60—69, and �0 otherwise. Thus for a 70
to 79-year-old, AGEA� 0 and AGEB� 0. We also create a variable to denote
the censoring status: CENS� 0 if t is censored, and� 1 if uncensored.

To illustrate the different methods to handle ties, we fit the Cox proportional
hazards model with the following six covariates: AGEA, AGEB, SEX,
SMOKE, BMI, and LACR. The approximated partial likelihood function
defined in (12.1.15)—(12.1.17) as well as the exact partial likelihood function
(Delong et al., 1994) are applied. As noted in Sections 11.3 and 11.4, the
exponential and Weibull regression models are also proportional hazard
models. Therefore, for comparisons we also fit an exponential and a Weibull
regression model with the same covariates to the data. The estimated re-
gression coefficients obtained from the proportional hazards model with
approximated discrete, Breslow, Efron, and exact partial likelihood functions
as well as those from the exponential and Weibull regression models are given
in Table 12.5. All of the estimates based on the Cox model and an approxi-
mated partial likelihood function are very closed to those based on the exact
partial likelihood. Those based on Efron’s approximation are almost identical
to those (different only at the fourth decimal place) based on the exact partial
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Table 12.5 Results from Fitting a Cox Proportional Hazards Model Based on Different
Methods for Ties on the CVD Data

Regression Coefficient

Variable Breslow Discrete Efron Exact Exponential Weibull

AGEA �1.3478 �1.3662 �1.3558 �1.3560 �1.2550 �1.0436
AGEB �0.7709 �0.7828 �0.7753 �0.7755 �0.7107 �0.5966
SEX 0.7134 0.7233 0.7187 0.7189 0.6862 0.5659
SMOKE 0.3762 0.3810 0.3776 0.3776 0.3440 0.2855
BMI 0.0253 0.0256 0.0255 0.0255 0.0233 0.0194
LACR 0.1735 0.1759 0.1739 0.1740 0.1658 0.1357

likelihood function. The estimated regression coefficients based on the two
parametric models, particularly the exponential regression model, are also
close to those based on the Cox hazards model. From the signs of the
coefficients, we see that men, current smokers, and persons with high BMI and
albumin—creatinine ratios have a higher hazard (risk) of CVD and shorter
CVD-free time. The coefficients of the two age variables are both negative,
indicating that persons in the younger age groups have a lower hazard (risk)
of CVD.

Suppose that ‘‘C:�EX12d2d1.DAT’’ contains eight successive columns, for T,
CENS, AGEA, AGEB, SEX, SMOKE, BMI, and LACR, and that the numbers
in each row are space-separated. The following code for the SAS PHREG and
LIFEREG procedures can be used to obtain the results in Table 12.5.

data w1;
infile ‘c:�ex12d2d1.dat’ missover;
input t cens agea ageb sex smoke bmi lacr;

run;
proc phreg;
model t*cens(0) � agea ageb sex smoke bmi lacr / ties�breslow;

run;
proc phreg;
model t*cens(0) � agea ageb sex smoke bmi lacr / ties�discrete;

run;
proc phreg;
model t*cens(0) � agea ageb sex smoke bmi lacr / ties� efron;

run;
proc phreg;
model t*cens(0) � agea ageb sex smoke bmi lacr / ties� exact;

run;
proc lifereg;
Model a: model t*cens(0)� agea ageb sex smoke bmi lacr / d� exponential;
Model b: model t*cens(0) � agea ageb sex smoke bmi lacr / d�weibull;

run;
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12.2 IDENTIFICATION OF SIGNIFICANT COVARIATES

As noted earlier, one principal interest is to identify significant prognostic
factors or covariates. This involves hypothesis testing and covariate selection
procedures, similar to those discussed in Chapter 11 for parametric methods.
The differences are that the Cox proportional hazard model has a partial
likelihood function in which the only parameters are the coefficients
associated with the covariates. However, statistical inference based on the
partial likelihood function has asymptotic properties similar to those based
on the usual likelihood. Therefore, the estimation procedure (discussed in
Section 12.1) is similar to those in Section 7.1, and the hypothesis-testing
procedures are similar to those in Sections 9.1 and 11.2. For example, the
Wald statistic in (9.1.4) can be used to test if any one of the covariates has no
effect on the hazard, that is, to test H

�
: b

�
� 0. By replacing the log-likelihood

function with the log partial likelihood function, the log-likelihood ratio
statistic, the Wald statistic, and the score statistic in (9.1.10), (9.1.11), and
(9.1.12) can be used to test the null hypothesis that all the coefficients are
equal to zero, that is, to test

H
�
: b

�
� 0, b

�
� 0, . . . , b

�
� 0

or H
�
: b� 0 in (9.1.9). Similarly the forward, backward, and stepwise selection

procedures discussed in Section 11.9.1 are applicable to the Cox proportional
hazard model.

The following example, using the SAS PHREG procedure, illustrates these
procedures.

Example 12.4 We use the entire CVD data set in Example 12.3 to
demonstrate how to identify the most important risk factors among all the
covariates. Suppose that the effects of age, gender, and current smoking status
on CVD risk are of fundamental interest and we wish to include these variables
in the model. In epidemiology this is often referred to as adjusting for these
variables. Thus, AGEA, AGEB, SEX, and SMOKE are forced into the model
and we are to select the most important variables from the remaining
covariates (BMI, SBP, LACR, LTG, HTN, and DM), adjusting for age, gender,
and current smoking status.

The SAS procedure PHREG is used with Breslow’s approximation for ties
(default procedure) and three variable selection methods (forward, backward,
and stepwise). Two covariates, BMI and LACR, are selected at the 0.05
significance level by all three selection methods. The final model, in the form
of (12.1.5), including only the four covariates that we purposefully included and
the two most significant ones identified by the selection method, is
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Table 12.6 Asymptotic Partial Likelihood Inference on the CVD Data from the Final
Cox Proportional Hazards Model�

95% Confidence
Interval

Regression Standard Wald Relative
Variable Coefficient Error Statistic p Hazards Lower Upper

Final Model for the Cohort CVD Data

AGEA �1.3558 0.2712 24.9910 0.0001 0.258 0.151 0.439
AGEB �0.7753 0.2618 8.7709 0.0031 0.461 0.276 0.769
SEX 0.7187 0.2193 10.7457 0.0010 2.052 1.335 3.153
SMOKE 0.3776 0.2208 2.9235 0.0873 1.459 0.946 2.249
BMI 0.0255 0.0124 4.2113 0.0402 1.026 1.001 1.051
LACR 0.1739 0.0446 15.2112 0.0001 1.190 1.090 1.299

b
�
� b

�
�0.580 4.9443 0.0262 0.560

b
�
� b



1.096 11.5409 0.0007 2.993

b
�
� b



0.341 1.3001 0.2542 1.407

Hypothesis Testing Results (H
�
: all b

�
� 0)

Log-partial-likelihood ratio statistic 42.1130 0.0001
Score statistic 43.1750 0.0001
Wald statistic 41.3830 0.0001

�The covariates, except AGEA, AGEB, SEX, and SMOKE, in the final model are selected among
BMI, SBP, LACR, LTG, HTN, and DM.

log
h(t

�
)

h
�
(t
�
)
� b

�
AGEA

�
� b

�
AGEB

�
� b

�
SEX

�
� b



SMOKE

�

� b
�
BMI

�
� b

�
LACR

�

��1.3558AGEA
�
� 07753AGEB

�
� 0.7187SEX

�

� 0.3776SMOKE
�
� 0.0255BMI

�
� 0.1739LACR

�
(12.2.1)

The regression coefficients, their standard errors, the Wald test statistics, p
values, and relative hazards (relative risks as they are termed by many
epidemiologists) are given in Table 12.6. The estimated regression coefficients
b�
�
, i� 1, 2, . . . , 6, are solutions of (12.1.9) using the Newton—Raphson iterated

procedure (Section 7.1). The estimated variances of b�
�
, i� 1, 2, . . . , 6, are the

respective diagonal elements of the estimated covariance matrix defined in
(12.1.13). The square roots of these estimated variances are the standard errors
in the table. The Wald statistics are for testing the null hypothesis that the
covariate is not related to the risk of CVD or H

�
: b

�
� 0, i� 1, . . . , 6, respect-

ively. For example, the Wald statistic equals 10.7457 for gender with a p value
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of 0.0010 and b� 0.7187. It indicates that after adjusting for all the variables
in the model (12.2.1), gender is a significant predictor for the development of
CVD, with men having a higher risk than women. The relative hazard (or risk)
is exp(b�

�
), and for the covariate gender, it is exp(0.7187) � 2.052, which implies

that men aged 50—79 years have about twice the risk of developing CVD in 10
years. The 95% confidence interval for the relative risk is (1.335, 3.153), which
is calculated according to (7.1.8). For a continuous variable, exp(b�

�
) represents

the increase in risk corresponding to a 1-unit increase in the variable. For
example, for BMI, exp (0.0255) � 1.026; that is, for every unit increase in BMI,
the risk for CVD increases 2.6%.

To compare hazards among different age groups, between genders, or
between smokers and nonsmokers, let h

����
(t), h

����
(t), h

����
(t), h

���
(t),

h
���

(t), h
��
(t), and h

���
(t) denote hazard functions for participants that are

50—59, 60—69, 70—79 years old, male, female, current smoker, and not current
smoker, respectively. The log hazard ratio of a person in the 50 to 59-year
age group to a person in the 70 to 79-year group assuming the two people are
of same gender and the same current smoking status, BMI and LACR, is
log[h

����
(t)/h

����
(t)] � b

�
; similarly, log[h

����
(t)/h

����
(t)] � b

�
and

log[h
����

(t)/h
����

(t)] � b
�
� b

�
. Assuming that the two people are in the

same age group and have the same BMI and LACR, the log hazard ratio of
male to females is

log
h
���

(t)

h
���

(t)
� b

�

Similarly, assuming that the two people are in the same age group, of the same
gender, and have the same BMI and LACR, the hazard ratio of a smoker to a
nonsmoker is

log
h
��
(t)

h
���

(t)
� b




Thus, testing whether risk of CVD are the same among different age groups is
equivalent to testing H

�
: b

�
� 0, H

�
: b

�
� 0, and H

�
: b

�
� b

�
� 0. Similarly, to

test if the risk of CVD is the same between males and females or between
smokers and nonsmokers is equivalent to tasting the null hypothesisH

�
: b

�
� 0

or H
�
: b



� 0, respectively.

To consider more than one covariate, we also can formulate the null
hypothesis by using (12.2.1). For example, if we wish to compare male
nonsmokers to female smokers, from (12.2.1),

log
h
���
���
h
���
��

� b
�
� b
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assuming that they are in the same age group and have the same BMI and
LACR. Thus to test if these two groups of people have the same risk of CVD,
we test the null hypothesis H

�
: b

�
� b



� 0. Similarly, to compare male

smokers to female nonsmokers, we can test the null hypothesisH
�
: b

�
� b



� 0.

These null hypotheses are in the form of linear combinations of the coefficients.
Using the notations in Section 11.2, the hypotheses H

�
: b

�
� b

�
� 0 and

H
�
: b

�
� b



� 0 are the hypotheses in (11.2.13) with c� 0, L� (1�1 0 0 0 0),

and L� (0 0 1 1 0 0), respectively. The Wald statistics in Table 12.6 are
calculated according to (11.2.14). By assuming that the patients have the same
BMI and LACR, we can construct hypotheses to compare subgroups defined
by age groups, gender, and current smoking status.

The last part of Table 12.6 shows the results of testing the null hypothesis
that none of these covariates have any effect on the development of CVD. The
log partial likelihood ratio, Wald, and score statistics, X

�
, X

�
, and X

�
are

calculated according to (9.1.10), (9.1.11), and (9.1.12), respectively. Table 12.6
indicates that the hypotheses, H

�
: b

�
� 0, H

�
: b

�
� 0, H

�
: b

�
� b

�
� 0,

H
�
: b

�
� 0, H

�
: b

�
� 0, H

�
: b

�
� 0, and H

�
: b

�
� b



� 0 are rejected at a signifi-

cance level of p� 0.05. However, the hypotheses H
�
: b



� 0 and

H
�
: b

�
� b



� 0 are not rejected at a 0.05 level. The null hypothesis

H
�
: all b

�
� 0, i� 1, . . . , 6, is rejected with p� 0.0001 by using any of these

tests.
Assuming that the other covariates are the same, based on the relative

hazards shown in the table, we conclude that (1) participants aged 50—59
and 60—69 have, respectively, about 25% and 50% lower CVD risk than
those aged 70—79 (H

�
: b

�
� 0 and H

�
: b

�
� 0 are rejected); (2) participants

aged 50—59 have 50% lower CVD risk than those aged 60—69 (H
�
: b

�
� b

�
� 0

is rejected); (3) men’s CVD risk is twice as high as that of women (H
�
: b

�
� 0

is rejected); (4) BMI and LACR have a significant effect on CVD risk
(H

�
: b

�
� 0 and H

�
: b

�
� 0 are rejected) and the risk increases about 3% and

19%, respectively, for every 1-unit increase in BMI and LACR, respectively; (5)
male smokers have a CVD risk three times higher than that of female
nonsmokers (H

�
: b

�
� b



� 0 is rejected); (6) male nonsmokers have CVD risk

similar to that of female smokers (H
�
: b

�
� b



� 0 is not rejected); (7) consider-

ing current smoking status alone, smokers had similar CVD risk as non-
smokers (H

�
: b



� 0 is not rejected). This example is solely for the purpose of

illustrating the use of the proportional hazards model and the interpretation
of its results. Other hypotheses of interest can be constructed in a similar
manner. The construction of null hypotheses for comparisons among sub-
groups defined by AGEGROUP*SEX*SMOKE are left to the reader as
exercises.

Suppose that ‘‘C:�EX12d4d1.DAT’’ is a text data file that contains
12 successive columns for T, CENS, AGEA, AGEB, SEX, SMOKE, BMI,
LACR, SBP, LTG, HTN, and DM. The following SAS code is used to obtained
the results in Table 12.6.
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data w1;
infile ‘c:�ex12d4d1.dat’ missover;
input t cens agea ageb sex smoke bmi lacr sbp ltg htn dm;

run;
proc phreg data�w1;
model t*cens(0) � agea ageb sex smoke bmi lacr sbp ltg htn dm /

include� 4 selection� f ;
run;
proc phreg data�w1;
model t*cens(0) � agea ageb sex smoke bmi lacr sbp ltg htn dm /

include� 4 selection�b;
run;
proc phreg data�w1 outest�wcov covout;
model t*cens(0) � agea ageb sex smoke bmi lacr sbp ltg htn dm /

include� 4 selection� s;
run;
proc phreg data�w1;
model t*cens(0) � agea ageb sex smoke bmi lacr sbp ltg htn dm /

include� 4 selection� score best� 3;
run;
data wcov;
set wcov;
if -type-� ‘cov’;
keep agea ageb sex smoke bmi lacr sbp ltg htn dm;

run;
title ‘The estimated covariance of the estimated coefficients’;
proc print data�wcov;
run;

The following SPSS code can be used to select an optimal subset of
covariates among all covariates by the forward and backward selection
methods defined in Section 11.9.1 and to obtain the estimated coefficients and
the other results in Table 12.6.

data list file� ‘c:�ex12d4d1.dat’ free
/ t cens agea ageb sex smoke bmi lacr sbp ltg htn dm.

coxreg t with agea ageb sex smoke bmi lacr sbp ltg htn dm
/status� cens event (1)
/method� fstep bmi lacr sbp ltg htn dm
/criteria pin (0.05) pout (0.05)
/print� all.

coxreg t with agea ageb sex smoke bmi lacr sbp ltg htn dm
/status� cens event (1)
/method�bstep bmi lacr sbp ltg htn dm
/criteria pin (0.05) pout (0.05)
/print� all.
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If BMDP 2L is used, the following code is applicable when selecting an
optimal subset of covariates among all covariates by the stepwise selection
method defined in Section 11.9.1 and to obtain the results in Table 12.6.

/input file� ‘c:�ex12d4d1.dat’ .
variables� 12.
format� free.

/print cova.
/variable names� t,cens, agea, ageb, sex, smoke, bmi, lacr, sbp, ltg,

htn, dm.
/form time� t.

status� cens.
response� 1.

/regress covariates� agea, ageb, sex, smoke, bmi, lacr, sbp, ltg, htn,
dm.

Step�phh.

Example 12.5 If we do not force age, gender, and current smoking status
on the model and are not interested in the three age groups, we can fit the
proportional hazard model with age as a continuous variable and the other
covariates: SEX, SMOKE, BMI, SBP, LACR, LTG, HTN, and DM. Using
Breslow’s method for ties, the stepwise selection method, and the SAS pro-
cedure PHREG, the final model with significant (p� 0.05) covariates is

log
h(t)

h
�
(t)

� 0.697AGE� 0.7528SEX� 0.1111LACR� 0.3987LTG

(12.2.2)

The details are given in Table 12.7; all four covariates in the model have
positive coefficients, indicating that the risk of developing CVD increases with
age, gender, albumin/creatinine ratio, and triglyceride values. The relative
hazards represent the increase in risk of CVD per unit increase in the
covariates. For example, for every 1-unit increase in log(albumin/creatinine),
the risk of developing CVD increases 12% after adjusting for age, gender, and
log triglyceride. Men have more than twice the risk of CVD as women. The
global null hypothesis that all four coefficients equal zero (H

�
: all b

�
� 0) is

rejected by all three tests, as given in the lower part of Table 12.7.

12.3 ESTIMATION OF THE SURVIVORSHIP FUNCTION WITH
COVARIATES

When parametric regression models (Chapter 11) are used, we can estimate the
survivorship function simply by replacing the parameters and coefficients in the
survival function with their estimates. This is not the case when the Cox
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Table 12.7 Asymptotic Partial Likelihood Inference on the CVD Data from the Final
Cox Proportional Hazards Model Selected by the Stepwise Model Selection Method�

95% Confidence
Interval for

Relative Hazards
Regression Standard Chi-Square Relative

Variable Coefficient Error Statistic p Hazards Lower Upper

AGE 0.0697 0.0136 26.1393 0.0001 1.07 1.04 1.10
SEX 0.7528 0.2192 11.7893 0.0006 2.12 1.38 3.26
LACR 0.1111 0.0459 5.8602 0.0155 1.12 1.02 1.22
LTG 0.3987 0.1976 4.0722 0.0436 1.49 1.01 2.20

H
�
: All coefficients equal zero

Log-partial-likelihood ratio statistic 44.002 0.0001
Score statistic 44.278 0.0001
Wald statistic 42.527 0.0001

�The covariates in the final model are selected among AGE, SEX, SMOKE, BMI, LACR, LTG,
HTN, and DM using the stepwise selection method.

proportional hazards model is used since we do not know the exact form of
the baseline hazard function or the survival function. In this section we
introduce briefly two estimators of the survival function, one proposed by
Breslow (1974) and the other by Kalbfleisch and Prentice (1980). These
estimates are available in commercial software packages. Readers interested in
details are referred to the corresponding publications.

As indicated earlier, under the Cox model, the survivorship function with
covariates x

�
’s is

S(t, x) � [S
�
(t)]exp(��

���
b
�
x
�
) (12.3.1)

Once the regression coefficients, the b
�
’s, are estimated, we need only estimate

the underlying survivorship function, S
�
(t). From the estimated survivorship

function, we can easily estimate the probability of surviving longer than a given
time for a patient with a given set of covariates x

�
, . . . , x

�
.

By assuming that the baseline hazard function is constant between each pair
of successive observed failure times, Breslow has proposed the following
estimator of the baseline cumulative hazard function:

H�
�
(t) � �

t
��	
�t

m
��	

�l �R(t
��	
) exp(x�

�
b� )

(12.3.2)
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Following (2.15), the baseline survival function can be estimated as

S�
�
(t) � exp[�H�

�
(t)] � 


t
��	
�t �exp�

m
��	

�l �R(t
��	
) exp(x�

�
b� )�� (12.3.3)

and the survivorship function for a person with a set of covariates
x� (x

�
, . . . , x

�
) is

S� (t, x) � [S�
�
(t)] exp(��

���
b�
�
x
�
) � [S�

�
(t)] exp(b� �x) (12.3.4)

Under mild assumptions, S� (t, x) has an asymptotic normal distribution with
mean S(t, x). Since S(t, x) � exp[�H(t, x)], the variance estimator Var� (S� (t, x))
of S� (t, x) is

Var� (S� (t, x)) � [S� (t, x)]�Var� (H� (t, x))

We will not give H� (t, x) here because of its complexity. The asymptotic
confidence bands for the survivorship function is

�S� (t, x)�Z����Var� (S� (t, x)) , S� (t, x) �Z����Var� (S� (t, x)) 	 (12.3.5)

where Z��� is the upper 100(1� 
/2) percentile point of the standard normal
distribution.

An alternative estimator has been suggested by Kalbfleisch and Prentice in
which the baseline survivorship function S

�
(t) is estimated to be a step function

and

S�
�
(t) �

�
�


���


�
�

t
��
�	

� t� t
��	
, i� 1, . . . , k� 1 (12.3.6)

where 
�
�
� 1 and 
�

�
, 
�

�
, . . . , 
�

�
are the solution of the following k simultaneous

equations:

�
j� u*

��	

exp(x�
�
b� )

1� 
�
�
exp(x�

�
b� ) � �

l �R(t
��	
)

exp(x�
�
b� ) i� 1, . . . , k (12.3.7)

When there are no ties,


�
�
� �1�

exp(x�
��	
b� )

�l�R(t
��	
) exp(x�

�
b� )�

exp(�x�
��	
b� )

i� 1, . . . , k (12.3.8)

and

S�
�
(t) �

�
�


���
�1�

exp(x�
� �	
b� )

�l �R(t
��	
) exp(x�

�
b� )�

exp(�x�
��	
b� )

t
��
�	

� t� t
��	

i� 1, . . . , k� 1
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Thus,

S� (t, x) � [S�
�
(t)] exp(b� �x) (12.3.9)

Under mild assumptions, the Kalbfleisch and Prentice estimator in (12.3.9) also
follows an asymptotic normal distribution with mean S(t, x) and a variance
that can be estimated. Thus confidence bands for the survivorship function can
also be constructed.

Using (12.3.4) with S
�
(t) in (12.3.3) or (12.3.6), the survivorship function can

be estimated with any given values of x
�
, . . . , x

�
. If the observed average of

every covariate, x�
�
, . . . , x�

�
is used, the estimated survivorship function can be

interpreted as the survivorship function of an ‘‘average’’ person.
Both the Breslow and Kalbfleisch—Prentice estimators are available in the

SAS procedure PHREG. The Breslow estimator is also available in BMDP
(program 2L) and SPSS (program COXREG). The following example illus-
trates the procedures.

Example 12.6 Again, we use the CVD data in the Example 12.3, the data
set ‘‘C:�EX12d2d1.DAT’’, and the SAS procedure PHREG. We use the average
of each of the covariates in (12.2.1), and therefore the estimated survivorship
function is for an average person. The Kalbfleisch—Prentice and Breslow
estimates of the survival function, defined in (12.3.9) and (12.3.4) (Efron
adjustment for ties is used), and the lower and upper 95% confidence bands,
calculated based on (12.3.5), are shown in Figures 12.1 and 12.2. These
estimated survival functions, using all the covariates in the model with average
values, are often referred to as the global covariate—adjusted survivorship
functions. The two figures are almost identical, which indicates that the two
methods produce very similar results for this set of data. From Figure 12.1 it
appears that the global covariates—adjusted survivorship function decreases
somewhat more rapidly after 3.5 years. This means that the process to develop
CVD accelerates after 3.5 years.

Using the data set ‘‘C:�EX12d2d1.DAT’’ defined in Example 12.3, the SAS
code used for this example is the following.

data w1;
infile ‘c:�ex12d2d1.dat’ missover;
input t cens agea ageb sex smoke bmi lacr;

run;
proc phreg data�w1 noprint;
model t*cens(0) � agea ageb sex smoke bmi lacr / ties� efron;
baseline out�base1 survival� survival l� lowb u�uppb / method�p l;

run;
title ’K-P estimate of the survival function and its lower and upper bands’;
proc print data�base1;
var t survival lowb uppb;

run;
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Figure 12.1 Kalbfleisch—Prentice estimate of survivorship function and its 95%
confidence bands at the averages of the covariates from the fitted Cox proportional
hazards model on the CVD data.

proc phreg data�w1 noprint;
model t*cens(0) � agea ageb sex smoke bmi lacr / ties� efron;
baseline out�base1 survival� survival l� lowb u� uppb / method� ch;

run;
title ’Breslow estimate of the survival function and its lower and upper bands’;
proc print data�base1;
var t survival lowb uppb;

run;

The following SPSS code can be used to obtain the Breslow estimate of the
survival function and its standard error at each uncensored observation. The
confidence bands can then be calculated according to (12.3.5).

data list file� ‘c:�ex12d2d1.dat’ free
/ t cens agea ageb sex smoke bmi lacr.

coxreg t with agea ageb sex smoke bmi lacr
/status� cens event (1)
/print� all.
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Figure 12.2 Breslow estimate of the survivorship function and its 95% confidence
bands at the averages of the covariates from the fitted Cox proportional hazards model
on the CVD data.

The corresponding BMDP 2L code is

/input file� ‘c:�ex12d2d1.dat’ .
variables� 8.
format� free.

/print cova.
Survival.

/variable names� t,cens, agea, ageb, sex, smoke, bmi, lacr.
/form time� t.

status� cens.
response� 1.

/regress covariates� agea, ageb, sex, smoke, bmi, lacr.

In addition to the global covariates—adjusted survivorship function defined
as S� (t, x� ), where x� � (x�

�
, x�

�
, . . . , x�

�
), the survivorship function can be estimated

with any specific values of one or more of the covariates and interactions. We
can also estimate the probability of surviving longer than a given time for
individuals with a given set of values for covariates. The following is an
example.
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Figure 12.3 Breslow estimate of survivorship functions at the averages of BMI and
LACR from SEX*SMOKER subgroups in aged 70—79 participants from the fitted Cox
proportional hazards model on the CVD data.

Example 12.7 For the same model as in Example 12.6, we can estimate the
covariate-specific survivorship function for female nonsmokers, female
smokers, male smokers, and male nonsmokers. Let us use the 70—79 age group
and assume that BMI and LACR are at the average of the respective
SEX—SMOKE subgroup. Thus, the specific covariate vector (AGEA, AGEB,
SEX, SMOKE, BMI, LACR) for female nonsmokers is (0, 0, 0, 0, 30.69, 4.62),
where 30.69 and 4.62 are the average values of BMI and LACR for female
nonsmokers. Similarly, the specific covariate vectors for female smokers, male
nonsmokers, and male smokers are, respectively, (0, 0, 0, 1, 31.19, 2.67), (0, 0,
1, 0, 28.19, 3.43), and (0, 0, 1, 1, 25.76, 3.47). The estimated survival curves are
shown in Figure 12.3. Similarly, Figures 12.4 and 12.5 give the estimated
survival curves of the four groups in persons aged 60—69 years and 50—59
years, respectively. The groups show that in all these age groups, females have
a lower risk of developing CVD (longer CVD-free time) than males. Female
nonsmokers have a slightly lower risk than female smokers and the differences
increase as age decreases. However, among males, the differences in the risk of
CVD between smokers and nonsmokers are almost negligible in the youngest
group and much larger in the two older groups. Male smokers have the highest
risk of developing CVD (shortest CVD-free time) among the four groups.
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Figure 12.4 Breslow estimate of survivorship functions at the averages of BMI and
LACR from SEX*SMOKER subgroups in aged 60—69 participants from the fitted Cox
proportional hazards model on the CVD data.

12.4 ADEQUACY ASSESSMENT OF THE PROPORTIONAL
HAZARDS MODEL

The validity of statistical inferences that leads to the identification of important
risk or prognostic factors depends largely on the adequacy of the model
selected. The proportional hazards model is used widely in medical and
epidemiological studies. The adequacy of this model, including the assumption
of proportional hazards and the goodness of fit, needs to be assessed. In this
section we introduce several methods for this purpose. A major reason for
selecting these methods to present here is the availability of computer software
that can perform the calculations.

12.4.1 Checking the Proportional Hazards Assumption

The proportional hazards models defined in (12.1.1) and (12.1.3) assume that
the hazard ratio of two people is independent of time. This requires that
covariates not be time-dependent. If any of the covariates varies with time, the
proportional hazards assumption is violated. This fact can be used to test the
assumption by including a time—covariate interaction term in the model and
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Figure 12.5 Breslow estimate of survivorship functions at the averages of BMI and
LACR from SEX*SMOKER subgroups in aged 50—59 participants from the fitted Cox
proportional hazards model on the CVD data.

testing if the coefficient for interaction is significantly different from zero. For
example, we can add an interaction term x

�
t or x

�
log t in the model, that is,

log
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With the added interaction term, the partial likelihood function becomes more
complicated. Fortunately, computer software is available to carry out the
calculations. Testing procedures similar to those discussed earlier (e.g., the
Wald test), can be used to test the null hypothesis H

�
: b

��
� 0. If H

�
is rejected,

we conclude that Cox’s proportional hazard model is not appropriate for the
data. The interaction term with log t can be included in the model for each of
the covariates separately. If none of the corresponding p null hypotheses
H

�
: b

��
� 0 is rejected, we may conclude that the proportional hazards assump-

tion is appropriate.
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Table 12.8 Asymptotic Partial Likelihood Inference on the CVD Data from the Cox
Proportional Hazards Model with Time-Dependent Covariate

95% Confidence
Interval for

Relative Hazards
Regressor Regressor Standard Wald Relative
Variable Coefficient Error Statistic p Hazards Lower Upper

(a)

AGE 0.068 0.014 25.249 0.0001 1.07 1.04 1.1
SEX 0.759 0.218 12.056 0.0005 2.14 1.39 3.28
LACR 0.111 0.046 5.781 0.0162 1.12 1.02 1.22
LTG 0.915 0.435 4.420 0.0355 2.50 1.06 5.86
LTG* �0.390 0.298 1.710 0.1910 0.68 0.38 1.22
log(t�1)

(b)

AGE 0.071 0.014 26.635 0.0001 1.07 1.05 1.1
SEX 0.741 0.220 11.327 0.0008 2.10 1.36 3.23
LACR �0.087 0.120 0.519 0.4714 0.92 0.72 1.16
LTG 0.395 0.199 3.917 0.0478 1.48 1 2.19
LACR* 0.143 0.079 3.269 0.0706 1.15 0.99 1.35
log(t�1)

(c)

AGE 0.038 0.033 1.330 0.2488 1.04 0.97 1.11
SEX 0.764 0.220 12.020 0.0005 2.15 1.39 3.31
LACR 0.111 0.046 5.888 0.0152 1.12 1.02 1.22
LTG 0.417 0.197 4.469 0.0345 1.52 1.03 2.24
AGE*log(t
�1) 0.023 0.023 1.046 0.3064 1.02 0.98 1.07

Example 12.8 Consider the fitted proportional hazards model in (12.2.2) for
the CVD data. To check the proportional hazards assumption, we add a term
L TG�log(t� 1) to the model. We use t� 1 instead of t to avoid negative
values. Table 12.8(a) gives the results. The p value for the interaction term is
0.1910. Similarly, the results in Table 12.9(b) and (c) suggest that
LACR�log(t� 1) and AGE�log(t� 1) are not significant either. Since gender
is time-independent, we may conclude that the data satisfy the proportional
hazards assumption since every covariate in the model is time-independent.

Another method to check the proportional hazards assumption is to stratify
the data based on some values of a covariate, fit a stratified Cox proportional
hazards model (this is discussed in Chapter 13), and then construct the
survivorship function separately for the each stratum and plot

log(�log(S�
�
(t; x�

�
))) j� 1, 2, . . . ,m
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Figure 12.6 Log[�log(S(t))] plots for the age-stratified Cox proportional hazards
model on the CVD data.

against time t, where m is the number of strata defined by the covariate, x�
�
is the

vector of the average values of the other covariates for the jth stratum, and S�
�
(t;x�

�
)

is the estimated survivorship function of the jth stratum evaluated at t and x�
�
. If

the hazards are proportional, them curves should be parallel. Nonparallel curves
indicate departure from the proportional hazards assumption. This is because if
hazard functions from any two people are proportional, it can be shown from
(12.1.1) that, for any j� k and 1� j, k�m, there exists a constant d

��
such that

S�
�
(t; x�

�
) � (S�

�
(t; x�

�
))
�� (12.4.1)

Taking the logarithm twice, we have

log[�log(S�
�
(t; x�

�
))]� log d

��
� log[�log(S�

�
(t; x�

�
))] (12.4.2)

Thus the curves of log[�log(S�
�
(t; x�

�
))] and log[�log(S�

�
(t; x�

�
))] versus t should

be parallel.

Example 12.9 Consider again the fitted model in (12.2.2); using the
stratified analysis (more details are given in Chapter 13), we plot
log[�logS�

�
(t; x�

�
)] against t for two age strata (50—64 and 65—79 years) and

two gender strata separately, where x�
�
denotes the average values of the other

covariates for the jth stratum. These graphs are given in Figures 12.6 and 12.7,
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Figure 12.7 Log[�log(S(t))] plots for gender-stratified Cox proportional hazards
model on the CVD data.

respectively. The two curves in Figure 12.6 are roughly parallel. The two curves
in Figure 12.7 are also parallel over time. The results suggest that the
proportional hazards assumption holds.

In Chapter 11 we discussed several parametric models. Among these models,
the exponential and the Weibull are proportional hazards models, but the
others are not. Thus, if one of the other models provides a good fit to data, we
would know that the data do not meet the proportional hazards assumption.
This procedure can also be served as an alternative for checking the propor-
tional hazards assumption.

12.4.2 Assessing Goodness of Fit by Residuals

There are several other graphical methods available for assessing the goodness
of fit of a proportional hazards model. These graphical methods are based on
residuals and are often used as diagnostic tools. In multiple regression
methods, residuals are referred to as the difference between the observed and
the predicted values (based on the regression model) of the dependent variable.
However, when censored observations are present and only a partial likelihood
function is used in the proportional hazards model, the usual concept of
residuals is not applicable. In the following we introduce three different types
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of residuals: the extended Cox—Snell, deviance, and Schoenfeld residuals. These
can be plotted versus the survival time or a covariate. The pattern of the graph
provides some information about the appropriateness of the proportional
hazards model. It also provides information about outliers and other patterns.
Similar to other graphical methods, interpretation of the residual plots may be
subjective.

The Cox—Snell method discussed in Section 8.4 can easily be extended to
the proportional hazards model. The extended Cox—Snell residual, R

�
, for the

ith individual with observed survival time t and covariates at values x
�
is

defined as R
�
� �logS� (t

�
;x

�
), which is the estimated accumulated hazard

based on the proportional hazards model. If the t
�
observed is censored, the

corresponding R
�
is also censored. If the proportional hazards model is

appropriate, the plot of R
�
and its Kaplan—Meier estimate of survival function

(S� (R)) would appear as a 45° straight line. The Cox—Snell residual method is
useful in assessing the goodness of fit of a parametric model (Section 11.9.4).
However, it is not so desirable for a proportional hazards model where a
partial likelihood function is used and the survivorship function is estimated
by nonparametric methods.

The deviance residuals (Therneau et al., 1990) are defined as

R
��

� sign(R
��

)�2[�R
��

� �
�
log(�

�
�R

��
)] i� 1, 2, . . . , n (12.4.3)

where sign ( · ) is the sign function, which takes value 1 if its argument is
positive, 0 if zero, and �1 if negative, R

��
is the martingale residual (Fleming

and Harrington, 1991) for the ith individual,

R
��

� �
�
�R

�
i� 1, . . . , n

and �
�
� 1 if the observed survival time t

�
is uncensored and 0 otherwise.

The martingale residuals have a skewed distribution with mean zero
(Anderson and Gill, 1982). The deviance residuals also have a mean of zero but
are symmetrically distributed about zero when the fitted model is adequate.
Deviance residuals are positive for persons who survive for a shorter time than
expected and negative for those who survive longer. The deviance residuals are
often used in assessing the goodness of fit of a proportional hazards model.

Another residual method was proposed by Schoenfeld (1982) and modified
by Grambsch and Therneau (1994). The original Schoenfeld residuals are
defined for each person and each covariate and are based on the first derivative
of the log-likelihood function in (12.1.9). A Schoenfeld residual for the jth
covariate of the ith person with the observed survival time t

�
is

R
��
� �

� �x���
�l�R(t

��	
) x��

exp(b� �x
�
)

�l �R(t
��	
) exp(b� �x

�
) � j� 1, 2, . . . , p ; i� 1, 2, . . . , n

(12.4.4)
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where b� is the maximum partial likelihood estimator of b. The Schoenfeld
residuals are defined only at uncensored survival times; for censored observa-
tions they are set as missing. Since b� is the solution of (12.1.9), the sum of the
Schoenfeld residuals for a covariate is zero. Thus asymptotically, the Schoen-
feld residuals have a mean of zero. It can also be shown that these residuals
are not correlated with one another.

Grambsch and Therneau (1994) suggested that the Schoenfeld residuals be
weighted by the inverse of the estimated covariance matrix of R

�
�

(R
��
, . . . ,R

��
)� denoted by V� (R

�
), that is,

R*
�
� [V� (R

�
)]
�R

�
(12.4.5)

The weighted Schoenfeld residuals have better diagnostic power and are used
more often than the unweighted residuals in assessing the proportional hazards
assumption. To simplify the computations, Grambsch and Therneau (1994)
suggested an approximation of [V� (R

�
)]
� in (12.4.5):

[V� (R
�
)]
�� rV� (b� )

where r is the number of events or the number of observed uncensored survival
times and V� (b� ) is the estimated covariance matrix of b� in (12.1.13). With this
approximation, the weighted Schoenfeld residuals in (12.4.5) can be approxi-
mated by

R*
�
� rV� (b� )R

�
(12.4.6)

The graphs of deviance and Schoenfeld residuals against survival time or a
covariate can be used to check the adequacy of the proportional hazards model.
The presence of certain patterns in these graphs may indicate departures from
the proportional hazards assumption, while extreme departures from the main
cluster indicate possible outliers or potential stability problems of the model.

Example 12.10 Consider the proportional hazards model (12.2.2) for the
CVD data. Using the estimated survivorship function with covariates, we
obtain the extended Cox—Snell residual R

�
values and plot the Kaplan—Meier

estimate of the survivorship function of the R
�
’s. Figure 12.8 gives the extended

Cox—Snell residual plot. The configuration is very close to a 45° line, indicating
that the proportional hazards model (12.2.2) provides a reasonable fit to the
data.

Figure 12.9 plots the deviance residuals against t. Roughly speaking, the
residuals are distributed symmetrically around zero between �3 and 3 with no
peculiar patterns. Larger positive (negative) residuals are associated with
smaller (larger) t values. The deviance residuals suggest that the proportional
hazards model provides a reasonable fit to the data.
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Figure 12.8 Cox—Snell residuals plot from the fitted Cox proportional hazards model
on the CVD data.

The weighted Schoenfeld residuals versus AGE, LACR, and LTG are given
in Figures 12.10 to 12.12. In all these graphs, the residuals are distributed
symmetrically around zero except that in Figure 12.12, there are two outliers
in the upper right corner. These extremely large residuals are from people with
exceptionally high values of triglyceride. A large number of the residuals equal
zero or are very close to zero, particularly those for AGE and LACR,
suggesting that the model is accurate in predicting the risk of developing CVD
for these people.

We also fit several parametric models to the data. Table 12.9 gives the
goodness of fit assessments for five parametric models. The likelihood ratio test
results suggest that the Weilbull regression model provides an adequate fit
(p� 0.2534). The Weilbull fit also gives the largest BIC and AIC values,
suggesting that the Weilbull fit is best among these five models. As mentioned
earlier, the Weilbull model is a proportional hazards model. Thus, the
parametric model fitting provides additional evidence that the proportional
hazards model is adequate.

Using the data set ‘‘C:�EX12d4d1.DAT’’ in Example 12.4, the following SAS
code is used to obtain the Cox—Snell, deviance, and weighted Schoenfeld
residuals for AGE, LTG, and LACR in Example 12.10.
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Figure 12.9 Deviance residuals from the fitted Cox proportional hazards model on the
CVD data.

data w1;
infile ‘c:�ex12d4d1.dat’ missover;
input t cens agea ageb sex smoke bmi lacr sbp ltg age htn dm;

run;
proc phreg data�w1 noprint;
model t*cens(0) � age sex lacr ltg / ties� efron;
output out�out1 logsurv� ls resdev� rdev wtressch� rage r2 rlacr rltg;

run;
data out1;
set out1;
rcs� -ls;

run;
proc lifetest data�out1 notable outs�ws noprint;
time rcs*cens(0);

run;
data ws;
set ws;
mls� -log(survival);

run;
title ‘Cox-Snell Residuals (rcs) and -log(estimated survival function of rcs) (mls)’;
proc print data�ws;
var rcs mls;
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Figure 12.10 Weighted Schoenfeld residuals from the fitted Cox proportional hazards
model on the CVD data.

Figure 12.11 Weighted Schoenfeld residuals from the fitted Cox proportional hazards
model on the CVD data.
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Figure 12.12 Weighted Schoenfeld residuals from the fitted Cox proportional hazards
model on the CVD data.

run;
title ‘Deviance residuals (rdev) and weighted Schoenfeld residuals for AGE, LACR and
LTG’;
proc print data�out1;
var t age lacr ltg rage rlacr rltg rdev;

run;

The following SPSS code can be used to obtain Cox—Snell and Schoenfeld
residuals for AGE, and LACR and LTG.

data list file� ‘c:�ex12d4d1.dat’ free
/ t cens agea ageb sex smoke bmi lacr sbp ltg age htn dm

coxreg t with age sex lacr ltg
/status� cens event (1)
/print� all
/save�hazard resid presid.
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Table 12.9 Goodness-of-Fit Tests Based on Asymptotic Likelihood Inference in Fitting
the CVD Data�

Model LL LLR p BIC AIC

Generalized
gamma �198.842 — — �217.113 �212.842

Log-logistic �203.322 — — �218.983 �215.322
Lognormal �206.017 14.3505 0.0002 �221.678 �218.017
Weibull �199.494 1.3046 0.2534 �215.155 �211.494
Exponential �203.061 8.4385� 0.0147 �216.112 �213.061
Exponential �203.061 7.1339� 0.0076 �216.112 �213.061

�LL, log likelihood; LLR, log-likelihood ratio statistic; p, probability that the respective chi-square
random variable �LLR.
�Compared to the generalized gamma fit.
�Compared to the Weibull fit.

use of prognostic factors is that of Armitage and Gehan (1974). Many studies
of prognostic factors have been published. A few recent ones are cited here:
Well et al. (1998), Shipley et al. (1999), Marrison and Siu (2000), Seaman and
Bird (2001), Bolard et al. (2001), Vasan et al. (2001), Young et al. (2001),
Meisinger et al. (2002), Feskanich et al. (2002), Williams et al. (2002), and
Bliwise et al. (2002).

Cox’s regression model has stimulated the interest of many statisticians. A
large number of papers on this model and related areas have been published
since 1972. In addition to the articles cited earlier, the following are a few
examples: Sasieni (1996), Alioum and Commenges (1996), Farrington (2000),
Vaida and Xu (2000), and Zhang and Klein (2001). Survival data analysis
methods are closely related to counting processes, particularly the proportional
hazards model and residual analysis. The counting process approach requires
a strong background in probability theory and stochastic processes and is
beyond the scope of this book. Interested readers are referred to Fleming and
Harrington (1991) and Andersen et al. (1993).

EXERCISES

12.1 (a) Consider the data in Exercise Table 3.1. In addition to the five skin
tests, age and gender may also have prognostic values. Examine the
relationship between survival and each of seven possible prognostic
variables, as in Table 3.8. For each variable, group the patients
according to different cutoff points. Estimate and draw the survival
function for each subgroup using the product-limit method and then
use the methods discussed in Chapter 5 to compare the survival
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distribution of the subgroups. Prepare a table similar to Table 3.8.
Interpret your results. Is there a subgroup of any variable that shows
significantly longer survival times? (For the skin test results, use the
larger diameter of the two.)

(b) Consider the seven variables in part (a). Use Cox’s model to identify
the most significant variables. Compare your results with those
obtained in part (a).

12.2 (a) Consider the data given in Exercise Table 3.3. Examine the relation-
ship between remission duration and survival time for each of the
nine possible prognostic variables: age, gender, family history of
melanoma, and the six skin tests. Group the patients according to
different cutoff points. Estimate and draw remission and survival
curves for each subgroup. Compare remission and survival distribu-
tion of subgroups using the methods discussed in Chapter 5. Prepare
tables similar to Table 3.8.

(b) Use Cox’s regression model to identify the significant variables in
part (a) for their relative importance to remission duration and
survival time. Check the appropriateness of the proportional hazards
model using the significant variables identified and the stratified
analysis and weighted Shoenfeld residuals. Interpret the results.

12.3 Use the proportional hazards model to identify the most important
factors related to survival time in the 157 diabetic patients in Exercise
Table 3.4. Check the appropriateness of the model using all the methods
discussed in Section 12.4 and interpret the results.

12.4 (a) Construct a table similar to Table 3.8 using the data given in Table
3.6.

(b) Use the proportional hazards model to identify the most important
factors related to survival time.

(c) Is the proportional hazards model appropriate for this data set?

12.5 Using the data given in Table 12.4, perform similar analyses as in
Examples 12.3 to 12.10 and discuss the results obtained.
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CHAPTER 13

Identification of Prognostic Factors
Related to Survival Time:
Nonproportional Hazards Models

In Chapter 12 we discussed the proportional hazards model for the identifica-
tion of important prognostic factors, in which the covariates are assumed to
be independent of time. We also assume that there is only one cause of failure;
that is, the event or failure is allowed to occur only once for each person, and
there is no correlation among failure times of different persons. However, in
practice, the covariates may be observed more than once during the study, and
their values change with time, failure may be due to more than one event or
cause, the same event or failure may recur during a follow-up study, and the
event or failure time observed may be from related persons in a family or from
the same person at different times. In this chapter we discuss several models
for these situations. The first two models are extensions of the proportional
hazards model to handle time-dependent covariates and to perform stratified
analysis. Other models introduced in this chapter are for multiple causes of
failure, recurrent events, and related observations.

13.1 MODELS WITH TIME-DEPENDENT COVARIATES

In the Cox proportional hazards model, the ratio of hazard functions for any
two persons is assumed to be independent of time t, or the covariates are not
time-dependent. However, it is common in practice that a study include both
time-dependent and time-independent covariates. For example, in a longitudi-
nal study of heart disease, certain demographic variables, such as gender and
race, do not change with time and are usually collected only once at the
baseline examination. Other variables, such as lipids, may vary with time and
are often collected in subsequent examinations. The partial likelihood function
allowing time-dependent covariates has the same form as that in (12.1.7) except
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that the covariates are now a function of time. That is, the partial likelihood
function with time-dependent covariates is

L (b) �
�
�
���

exp[��
���

b
�
x
����
(t
���
)]

� l�R(t
���
) exp[��

���
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�
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���

exp[b�x
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)]� (13.1.1)

where k is the number of distinct failure times, R(t
���

) is the risk set that contains
all persons at risk at time t

���
, x

�
(t
���
) � (x

��
(t
���
), x

��
(t
���
), . . . , x

��
(t

���
))� denotes

the covariates observed from person l at the ordered uncensored event time t
���
,

and b�� (b
�
, b

�
, . . . , b

�
)� denotes the unknown coefficients. For covariates that

are not time varying, their values are constant over time. For example, let x
��

denote gender of person k, then x
��
(t) �x

��
(0) �x

��
for all t. Thus, in practice,

we usually have a mixture of non-time-dependent and time-dependent covari-
ates in the likelihood function. The estimation procedure for the coefficients, b

�
,

is similar to that discussed in Chapter 12. We can also apply the model
selection methods mentioned in Chapter 11 to select the optimal subset of
covariates as the most important prognostic or risk factors.

There are two kinds of time-dependent covariates: (1) covariates that are
observed repeatedly at different follow-up time points prior to the occurrence
of the event or the end of a study or the censored time; and (2) covariates that
change with time according to a known mathematical function and covariates
that have different values due to therapy, age, or the changes in medical
conditions.

The following example illustrates how the Cox proportional hazards model
is extended to fit observed survival or event time data with the first kind of
time-dependent covariates, that is, covariates observed several times before the
event.

Example 13.1 A study was conducted to examine whether biomarker
profiles could be used for risk assessment and bladder cancer detection in a
cohort of workers occupationally exposed to benzidine and at risk of bladder
cancer (Hemstreet et al., 2001). These workers were free of bladder cancer at
the time of initial (or baseline) examination and were reexamined at least once
based on their risk assessments in a seven-year period. The event time
considered in this study is the cancer-free time from baseline examination to
last follow-up. To simplify the analysis, we consider only four covariates: age,
level of benzidine exposure, and two biomarkers, M1 and M2. The level of
benzidine exposure (LEX) is scored based on the worker’s job position in the
factory and is considered fixed (time independent). In addition, age (AGEB)
and the two biomarkers M1B (�0 is negative, �1 if positive) and M2B (�0
if negative, �1 if positive) were measured at baseline examination (they are not
changed with time). At subsequent examinations, age (AGET) and the two
biomarkers, M1T and M2T, were measured again (they are changed with time)
with the status of bladder cancer and the cancer-free time from baseline
examination to subsequent examination (TR). We selected a subset of 61
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persons from this study for this example. The data reproduced in Table 13.1
are solely for the purpose of illustrating the proportional hazards model with
time-dependent covariates. Thus, the results should not be interpreted as the
true findings of this large study.

Table 13.1 gives the baseline and follow-up data from the 61 participants
selected from the study. We use ID numbers to distinguish the data observed
from different participants. For example, the person in the table with ID� 4
had LEX� 36, diagnosed as M1 positive and M2 negative (M1B� 1 and
M2B� 0), and was 47.82 years old (AGEB� 47.82) at the baseline examin-
ation (time 0). He was diagnosed with negative M1 and M2 (M1T� 0 and
M2T� 0) and without cancer at 42.94 months (TR� 42.94) from the baseline
examination and at 51.39 years of age (AGET� 51.39) (thus 42.94 was
considered a censored event time, CS� 0). His third examination was conduc-
ted at 67.06 months (TR� 67.06) and he was still cancer free with both M1
and M2 negative (M1T� 0 and M2T� 0) at 53.40 years old (AGET� 53.40)
(thus 67.06 was considered a censored event time, CS� 0). In other words, for
this person, AGET� 51.39, M1T� 0, and M2T� 0 during the time interval
(0, 42.94] and AGET� 53.40, M1T� 0, and M2T� 0 during the time interval
(42.94, 67.06]. The event time TR was censored at the end of the first time
interval (TR� 42.94 months, CS� 0) and also at the end of the second time
interval (TR� 67.06 months, CS� 0). The left endpoint of a time interval is
denoted as TL in the table. Thus, in this example, covariates LEX, AGEB,
M1B, and M2B are fixed for all time intervals, but AGET, M1T, and M2T are
time-dependent covariates, which may change from one interval to another.

To facilitate better understanding of (13.1.1.), we use only the data from the
first six people to illustrate how to construct the likelihood function (13.1.1.).
If we have only the data from the first six people, there are two (k� 2) distinct
uncensored cancer-free times, t

���
� 14.65 (observed from the person with

ID� 2) and t
���

� 24.61 (observed from the persons with ID� 1). At t
���
, all

six people are at risk and R(t
���
) contains all six. At time t

���
, only four people

(ID� 1, 3, 4, and 6) are at risk and R(t
���
) contains these four. The person with

ID� 5 is censored at 14.78 months, prior to t
���
. Table 13.2 gives those in the

risk sets for t
���

and t
���

with values of the seven covariates.
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Table 13.1 Cancer-Free Times for Workers Exposed to Some Chemical Elements�

ID LEX AGEB M1B M2B AGET M1T M2T CS TR TL

1 180 58.64 0 0 60.70 1 0 1 24.61 0.00
2 69 40.99 0 0 42.21 1 0 1 14.65 0.00
3 36 57.14 0 0 60.72 0 0 0 42.97 0.00
4 36 47.82 1 0 51.39 0 0 0 42.94 0.00
4 36 47.82 1 0 53.40; 0 0 0 67.06 42.94
5 36 34.85 1 0 36.08 0 0 0 14.78 0.00
6 15 64.24 0 0 67.66 0 1 0 41.03 0.00
7 15 60.72 0 0 64.14 0 0 0 41.00 0.00
8 15 58.97 0 0 61.54 0 0 0 30.82 0.00
8 15 58.97 0 0 62.01 1 0 0 36.40 30.82
8 15 58.97 0 0 62.41 1 0 0 41.26 36.40
8 15 58.97 0 0 63.00 0 0 0 48.33 41.26
8 15 58.97 0 0 63.54 0 0 0 54.83 48.33
8 15 58.97 0 0 64.03 1 0 0 60.71 54.83
8 15 58.97 0 0 64.49 0 0 0 66.17 60.71
8 15 58.97 0 0 65.06 1 0 0 73.07 66.17
9 15 49.95 0 0 49.95 0 0 0 41.00 0.00
10 15 69.19 0 0 72.61 0 0 0 41.03 0.00
11 15 48.98 0 0 52.41 0 0 0 41.20 0.00
12 15 65.52 0 0 68.95 0 0 0 41.17 0.00
13 15 47.86 0 0 47.86 0 0 0 41.43 0.00
14 15 47.82 0; 0 51.28 0 1 0 41.43 0.00
14 15 47.82 0 0 52.41 0 0 0 54.97 41.43
15 15 43.49 1 0 46.53 0 0 0 36.50 0.00
15 15 43.49 1 0 46.94 0 0 0 41.43 36.50
15 15 43.49 1 0 47.53 0 0 0 48.46 41.43
15 15 43.49 1 0 48.56 0 0 0 60.85 48.46
16 15 41.28 0 0 44.74 0 1 0 41.56 0.00
16 15 41.28 0 0 45.86 0 0 0 54.93 41.56
17 15 49.09 0 0 52.54 0 0 0 41.43 0.00
18 15 46.03 0 0 49.45 0 0 0 41.03 0.00
19 15 64.41 0 0 67.85 0 0 0 41.23 0.00
20 164 52.52 0 0 53.54 1 1 1 12.32 0.00
21 15 61.51 0 0 64.94 0 0 0 41.10 0.00
22 144 64.59 0 0 68.01 1 0 0 41.13 0.00
22 144 64.59 0 0 68.60 1 1 1 48.16 41.13
23 192 62.26 0 1 64.88 1 0 0 31.47 0.00
23 192 62.26 0 1 65.27 0 0 1 36.17 31.47
24 54 57.56 0 0 57.95 1 0 1 4.67 0.00
25 264 60.03 0 0 73.03 1 0 0 36.07 0.00
25 264 60.03 0 0 73.71 1 0 0 44.19 36.07
25 264 60.03 0 0 64.17 1 0 0 49.68 44.19
25 264 60.03 0 0 65.15 1 0 1 61.44 49.68
26 40 44.30 0 0 45.48 1 0 0 14.13 0.00
26 40 44.30 0 0 46.49 1 0 1 26.25 14.13
27 265 52.84 0 1 53.98 0 0 0 13.73 0.00
27 265 52.84 0 1 55.43 0 0 0 31.18 13.73
27 265 52.84 0 1 55.83 0 0 0 35.91 31.18
27 265 52.84 0 1 56.42 0 0 1 42.97 35.91
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Table 13.1 Continued

ID LEX AGEB M1B M2B AGET M1T M2T CS TR TL

28 132 68.19 0 1 69.31 0 0 1 13.50 0.00
29 24 62.22 1 1 64.39 0 0 0 26.02 0.00
29 24 62.22 1 1 64.85 0 0 0 31.54 26.02
29 24 62.22 1 1 65.22 0 0 0 36.01 31.54
29 24 62.22 1 1 65.82 0 1 0 43.27 36.01
29 24 62.22 0 1 66.89 1 0 1 56.02 43.27
30 132 68.27 0 0 70.12 0 0 1 22.14 0.00
31 178 64.07 0 0 64.07 1 0 1 21.95 0.00
32 50 65.88 0 0 65.88 0 0 0 25.43 0.00
33 50 70.82 0 1 74.40 0 0 0 42.97 0.00
34 50 60.53 0 1 63.54 0 0 0 36.14 0.00
34 50 60.53 0 1 64.67 0 0 0 49.68 36.14
34 50 60.53 0 1 66.18 0 0 0 67.88 49.68
35 50 62.99 0 0 66.00 0 0 0 36.11 0.00
36 50 63.01 1 1 65.15 0 0 0 25.76 0.00
36 50 63.01 1 1 66.01 0 0 0 36.04 25.76
36 50 63.01 1 1 66.60 0 0 0 43.07 36.04
36 50 63.01 1 1 67.68 1 0 0 56.05 43.07
37 50 63.86 0 0 66.89 0 0 0 36.40 0.00
38 50 61.15 0 0 62.33 0 0 0 14.16 0.00
38 50 61.15 0 0 63.32 0 0 0 26.02 14.16
38 50 61.15 0 0 63.78 0 0 0 31.57 26.02
38 50 61.15 0 0 64.75 0 0 0 43.20 31.57
38 50 61.15 0 0 65.30 1 0 0 49.87 43.20
39 50 61.02 0 0 64.03 1 0 0 36.14 0.00
40 50 61.08 0 0 61.08 0 0 0 36.17 0.00
41 50 49.50 0 1 52.51 0 0 1 36.14 0.00
42 50 49.81 0 0 52.81 0 0 0 35.94 0.00
43 50 49.09 0 0 52.10 0 0 0 36.17 0.00
44 50 47.07 0 0 50.08 0 0 0 36.14 0.00
45 50 63.69 0 1 64.84 0 0 0 13.90 0.00
45 50 63.69 0 1 66.30 0 0 0 31.41 13.90
45 50 63.69 0 1 66.69 0 0 0 36.01 31.41
45 50 63.69 0 1 67.28 0 0 0 43.10 36.01
46 50 55.77 0 0 58.77 0 0 0 36.01 0.00
47 50 60.84 0 1 61.99 1 0 0 13.83 0.00
47 50 60.84 0 1 64.98 0 0 0 49.71 13.83
48 50 50.09 1 1 51.24 1 0 0 13.90 0.00
48 50 50.09 1 1 52.70 0 0 0 31.41 13.90
48 50 50.09 1 1 53.09 0 0 0 36.01 31.41
48 50 50.09 1 1 54.23 0 0 0 49.77 36.01
48 50 50.09 1 1 54.76 0 0 0 56.05 49.77
48 50 50.09 1 1 55.75 0 0 0 67.98 56.05
49 50 62.41 1 0 63.53 0 0 0 13.50 0.00
49 50 62.41 1 0 65.38 0 0 0 35.61 13.50
50 50 73.88 0 1 78,03 0 0 0 49.81 0.00
51 50 44.68 0 0 47.68 1 0 0 35.98 0.00
51 50 44.68 0 0 49.36 0 0 0 56.12 35.98
52 50 62.67 0 0 65.66 0 0 0 35.91 0.00

(Continued overleaf )
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Table 13.1 Continued

ID LEX AGEB M1B M2B AGET M1T M2T CS TR TL

53 275 74.28 0 1 75.34 1 1 0 12.75 0.00
53 275 74.28 0 1 77.28 0 0 0 36.04 12.75
53 275 74.28 0 1 77.70 1 0 0 41.07 36.04
53 275 74.28 0 1 78.26 1 0 1 47.80 41.07
54 57 39.52 0 0 43.50 0 0 0 47.80 0.00
5 57 76.22 1 0 79.23 1 0 0 36.07 0.00
5 57 76.22 1 0 79.64 0 0 0 41.10 36.07
5 57 76.22 1 0 80.21 0 0 0 47.84 41.10
5 57 76.22 1 0 81.24 0 0 0 60.29 47.84
56 57 62.41 0 0 65.83 0 0 0 41.10 0.00
57 57 67.64 0 0 71.06 0 0 0 41.10 0.00
58 57 80.61 0 0 84.03 0 1 0 41.10 0.00
58 57 80.61 0 0 85.14 0 0 0 54.37 41.10
59 57 67.78 1 0 67.68 1 0 0 72.12 0.00
60 0 47.35 0 1 47.35 0 1 0 13.83 0.00
60 0 47.35 0 1 49.84 0 0 0 43.70 13.83
61 0 40.98 1 0 42.13 0 0 0 13.83 0.00
61 0 40.98 1 0 43.59 0 0 0 31.38 13.83
61 0 40.98 1 0 44.62 0 0 0 43.70 31.38
61 0 40.98 1 0 46.55 0 0 0 66.92 43.70

� ID, participant ID number; LEX, level of exposure; AGEB, age at the baseline examimation; M1B
and M2B, index functions of measure 1 and 2 at the baseline; M1B� 1 if measure 1 is positive
and 0 if not; M2B� 1 if measure 2 is positive and 0 if not; AGET, age at the end of each time
interval; M1T and M2T, index functions of measure 1 and 2 at the end of each time interval;
M1T� 1 if measure 1 is positive and 0 if not; M2T� 1 if measure 2 is positive and 0 if not; CS� 0
if censored and 1 if not; TR, cancer-free time in months (or the right endpoint of time interval);
TL, left endpoint of time interval.

where
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is the column vector of covariates from person 2, whose cancer-free time is
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���
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) � (180, 58.64, 0, 0, 60.70, 1, 0) and x
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)’s in the denominator
are the observed covariate vectors from the four persons (ID� 1, 3, 4, and 6)
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Table 13.3 Asymptotic Partial Likelihood Inference on Cancer-Free Time Data from
Fitted Model with Time-Dependent Covariates

95%
Confidence Interval

Regression Standard Chi-Square Hazards
Variable Coefficient Error Statistic p Ratio Lower Upper

LEX 0.007 0.003 5.593 0.018 1.01 1.00 1.01
M1T 1.361 0.645 4.449 0.035 3.90 1.10 13.81

in R(t
���
) (see Table 13.2 for details). The partial likelihood function for this

reduced data set is the product of these two terms.
The partial likelihood function for the entire data set in Table 13.1 can be

constructed in a similar way and estimates of the coefficients can be obtained
using the Newton—Raphson method. The data format style in Table 13.1 is
referred to as a counting process data format. The results of fitting this model
with time-dependent covariates and a stepwise selection method are given in
Table 13.3. The coefficients indicate that high levels of exposure and positive
M1 at follow-up examination are positively related to the risk of a short
cancer-free time. Assuming that other measures are the same, a person with a
positive M1 at follow-up examination will have 3.9 times higher risk to develop
bladder cancer than will someone with a negative M1. For every 1-unit
increase in LEX, the risk will increase by 1%.

Suppose that the text data file ‘‘C:�EX1311.DAT’’ contains the data in
Table 13.1 and the successive 11 columns give ID, LEX, AGEB, M1B, M2B,
AGET, M1T, M2T, CS, TR, and TL. The following SAS code can be used to
obtain the results in Table 13.3.

data w1;
infile ‘c:�ex13d1d1.dat’ missover;
input id lex ageb m1b m2b aget m1t m2t cs tr tl;

run;
title ‘‘Selected Cox proportional hazards model with time dependent covariates’’;
proc phreg data�w1;
model (tl,tr)*cs(0) � lex ageb m1b m2b aget m1t m2t / rl ties� efron selection� s;
where tl�tr;

run;

For the second type of time-dependent covariate (i.e., the covariate known
to change with time according to a mathematical function), we simply use the
known mathematical function to replace the covariate. Following is a hypo-
thetical example to illustrate the use of SAS, SPSS, and BMDP.
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Example 13.2 Suppose that we wish to fit the proportional hazards model
to a set of survival data that has been saved in a text file ‘‘C:�EX1312.DAT’’.
This set of data consists of survival time t, an indicator variable CENS
(�1 for an uncensored observation and 0 for a censored observation) and
three covariates, X1, X2, and X3. Furthermore, assume that X3 is known to
change with time according to the function X3�log(t
 1). In this case, the
following SAS, SPSS, and BMDP code can be used to incorporate this
time-dependent covariate with known mathematical relationship with time
into the model.

data w1;
infile ‘c:�ex1312.dat’ missover;
input t cens x1 x2 x3;

run;
proc phreg data�w1;
model t*cens(0) � x1 x2 z/ rl ties� efron;
z� x3*log(t
 1)

run;

If the SPSS COXREG procedure is used, the code is

data list file� ‘c:�ex1312.dat’ free
/ t cens x1 x2 x3.

time program
Compute z� x3*log(t
 1).
coxreg t with x1 x2 z

/status� cens event (1)
/print� all
/save�hazard resid presid.

For the BMDP 2L procedure, the code is

/input file� ‘c:�ex1312.dat’ .
variables� 6.
format� free.

/print cova.
/variable names� t,cens, x1, x2, x3.
/form time� t.

status� cens.
response� 1.

/regress covariates� x1, x2, z.
add� z.

/function z� x3*ln(time
 1).
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13.2 STRATIFIED PROPORTIONAL HAZARDS MODELS

The proportional hazards model in (12.1.3) assumes that the ratio of the
hazard functions of any two people with prognostic variables x

�
and x

�
is a

constant, independent of time. This assumption may not always be met in
practical situations. To accommodate the nonproportional cases, Cox’s model
can be generalized using the concept of stratification (Kalbfleisch and Prentice,
1980). The data can be stratified by a covariate: for example, age. If we consider
two strata, say age �50 and �50 years, the model in (12.1.3) becomes two
models:

h
�
(t � x) �h

��
(t) exp�� b

�
x
��� h

��
(t) exp(b�x

�
) (13.2.1)

where i� 1, 2 for the two age strata. Notice that the underlying hazard
function h

��
(t) is assumed to be different for the two strata; however, the

regression coefficients are the same for all strata. That is, we assume that the
hazards for patients may be proportional within each stratum but not among
different strata (or levels). The partial (marginal) likelihood function for all
observations from the m strata is defined as

L (b) �
�
�
���

L
�
(b) (13.2.2)

where L
�
(b) is the partial (marginal) likelihood function for the jth stratum.

The regression coefficients b can be estimated by the Newton—Raphson
method. For stratified models, the baseline survivorship function for each
stratum is estimated separately based on the estimated regression coefficients
b� and the data in that stratum alone by using the methods discussed in Section
12.3.

Example 13.3 Consider the data given in Example 12.1.1. Suppose that we
are not sure if the risk of dying for patients at least 50 years of age is
proportional to that for patients less than 50 years and decide to do a stratified
analysis. Two regression equations are therefore assumed:

h
�
(t �x

�
) � h

��
(t) exp(b

�
x
�
)

h
�
(t �x

�
) � h

��
(t) exp(b

�
x
�
)

where h
�
(t � x

�
), the hazard function for patients under 50 years of age, and

h
�
(t �x

�
), the hazard function for patients at least 50 years, are functions of

cellularity, and h
��
(t) and h

��
(t) are the underlying hazard functions for the two

groups. The results of the stratified analysis, b�
�
� 0.22, SE(b�

�
) � 0.44, p� 0.31,

and exp(b�
�
) � 1.24, are close to those obtained earlier in the unstratified model.
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Table 13.4 Asymptotic Partial Likelihood Inference on CVD-free Time Data from
Fitted Models

95%
Confidence Interval

Regression Standard Chi-Square Hazards
Variable Coefficient Error Statistic p Ratio Lower Upper

Unstratified Model for All CVDs

AGE 0.070 0.014 26.139 0.0001 1.07 1.04 1.10
SEX 0.753 0.219 11.789 0.0006 2.12 1.38 3.26
LACR 0.111 0.046 5.860 0.0155 1.12 1.02 1.22
LTG 0.399 0.198 4.072 0.0436 1.49 1.01 2.20

Gender-Stratified Model for All CVDs

AGE 0.063 0.013 23.430 0.0001 1.07 1.04 1.09
LACR 0.149 0.043 11.828 0.0006 1.16 1.07 1.26

Gender-Specific Proportional Hazards Models

Female
SBP 0.022 0.006 13.962 0.0002 1.02 1.01 1.03
DM 0.986 0.373 6.973 0.0083 2.68 1.29 5.57

Male
AGE 0.069 0.018 14.453 0.0001 1.07 1.03 1.11
LACR 0.125 0.058 4.555 0.0328 1.13 1.01 1.27

However, this may not always be the case. Because the model is stratified by
age group and no specific relationship is assumed between the hazard ratio of
patients at least 50 years old and those under 50, tests of significance of the
regression coefficients for the other variables are adjusted for age.

Example 13.4 In Example 12.5 we used the stepwise selection method to
fit the proportional hazards model to the CVD data in Example 12.3. We
reanalyze the data using a gender-stratified proportional hazards model.
Results from the unstratified model and the stratified model (with a stepwise
selection procedure) are given in Table 13.4.

The unstratified model identifies AGE, SEX, LACR (logarithm of the ratio
of urinary albumin and creatinine), and LTG (logarithm of triglycerides) as
significant covariates for the time to CVD. The gender-stratified model with
the stepwise selection procedure identifies AGE and LACR as the most
significant covariates. The coefficients are close to those obtained in the
unstratified model. The log[-log(S(t))] at the averages of covariates AGE and
LACR for the two strata are plotted in Figure 12.7. The two curves look
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parallel to each other. It suggests that stratification for this set of data does not
provide more information for the study. Moreover, the sex-specific propor-
tional hazards model (at the bottom of Table 13.4) show that systolic blood
pressure (SBP) and diabetes are significant covariates related to the risk of
CVD in women and AGE and LACR in men. Thus, the gender-specific models
provide more information and suggest that there are differences in CVD risk
factors among men and women.

The method of stratification is useful in cases when the observations from
different strata are considered independent, conditional on the stratified
variable, or one is not interested in the effect of the stratified variable itself on
the outcome but in the interactions of the stratified variable with the other
covariates in the model and does not know the exact forms of the interactions.
It is clear that modeling observations from different strata separately can
provide more information than either stratification or unstratification if the
sample size in each stratum is large enough.

Using the data file ‘‘C:�EX12d4d1.DAT’’ defined in Example 12.4, the
following SAS code can be used to obtain the results in Table 13.4 and
Figure 12.7.

data w1;
infile ‘c:�ex12d4d1.dat’ missover;
input t cens agea ageb sex smoke bmi lacr sbp ltg age htn dm;

run;
title ‘‘Unstratified model’’;
proc phreg data�w1;
model t*cens(0) � age sex bmi lacr sbp ltg smoke htn dm / selection�b
ties� efron;

run;
title ‘‘gender stratified model’’;
proc phreg data�w1;
model t*cens(0) � age bmi lacr sbp ltg smoke htn dm / selection�b
ties� efron;

strata sex;
run;
proc phreg data�w1 noprint;
model t*cens(0) � age lacr / ties� efron;
strata sex;
baseline out�bas1 loglogs� lmls;

run;
title ‘‘Log-logS from fitting a gender stratified model’’;
proc print data�bas1;
var sex age lacr t lmls;

run;
proc sort data�w1;
by sex;

run;
title ‘‘gender-specific models’’;
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proc phreg data�w1;
model t*cens(0) � age bmi lacr sbp ltg smoke htn dm / selection�b
ties� efron;

by sex;
run;

The following SPSS code can also be used. In this case, the data for women
and men are assumed to be in the files ‘‘C:�EX12d4d1a.DAT’’ and
‘‘C:�EX12d4d1b.DAT’’ separately.

data list file� ‘‘c:�ex12d4d1.dat’’ free
/ t cens agea ageb sex smoke bmi lacr sbp ltg age htn dm.

coxreg t with age sex bmi lacr sbp ltg smoke htn dm
/status� cens event (1)
/method�bstep age sex bmi lacr sbp ltg smoke htn dm
/criteria pin (0.05) pout (0.05)
/print� all

coxreg t with age bmi lacr sbp ltg smoke htn dm
/status� cens event (1)
/strata� sex
/method�bstep age bmi lacr sbp ltg smoke htn dm
/criteria pin (0.05) pout (0.05)
/print� all

coxreg t with age lacr
/status� cens event (1)
/strata� sex
/print� all
/save� lml.

data list file� ‘‘c:�ex12d4d1a.dat’’ free
/ t cens agea ageb sex smoke bmi lacr sbp ltg age htn dm.

coxreg t with age bmi lacr sbp ltg smoke htn dm
/status� cens event (1)
/method�bstep age bmi lacr sbp ltg smoke htn dm
/criteria pin (0.05) pout (0.05)
/print� all

data list file� ‘‘c:�ex12d4d1b.dat’’ free
/ t cens agea ageb sex smoke bmi lacr sbp ltg age htn dm.

coxreg t with age bmi lacr sbp ltg smoke htn dm
/status� cens event (1)
/method�bstep age bmi lacr sbp ltg smoke htn dm
/criteria pin (0.05) pout (0.05)
/print� all

For the BMDP 2L procedure, the following code can be used.

/input file� ‘c:�ex12d4d1.dat’ .
variables� 13.
format� free.

    351



/print cova.
Survival.

/variable names� t,cens, agea, ageb, sex, smoke, bmi, lacr, sbp, ltg,
age, htn, dm.

/form time� t.
status� cens.
response� 1.

/regress covariates� age, smoke, bmi, lacr, sbp, ltg, htn, dm.
strata� sex.
step� phh.

/input file� ‘c:�ex12d4d1a.dat’ .
variables� 13.
format� free.

/print cova.
Survival.

/variable names� t,cens, agea, ageb, sex, smoke, bmi, lacr, sbp, ltg,
age, htn, dm.

/form time� t.
status� cens.
response� 1.

/regress covariates� age, smoke, bmi, lacr, sbp, ltg, htn, dm.
step� phh.

/input file� ‘c:�ex12d4d1b.dat’ .
variables� 13.
format� free.

/print cova.
Survival.

/variable names� t,cens, agea, ageb, sex, smoke, bmi, lacr, sbp, ltg,
age, htn, dm.

/form time� t.
status� cens.
response� 1.

/regress covariates� age, smoke, bmi, lacr, sbp, ltg, htn, dm.
step� phh.

13.3 COMPETING RISKS MODEL

All the methods for prognostic factor analysis discussed so far deal with a
single type of failure time for each study subject. This may be a perfectly
acceptable way to proceed in many cases. However, in some situations, failure
on an person may be due to several distinct causes. It may be desirable to
distinguish different kinds of events that may lead to failure and treat them
differently in the analysis. For example, to evaluate the efficacy of heart
transplants, one would certainly want to treat deaths due to heart failure
differently from deaths due to other causes, such as accident and cancer. In a
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mortality study, it may be more interesting to study separately deaths due to
heart disease, diabetes, cancer, and others than to combine all the causes. These
different causes of failure are considered as competing events, which introduce
competing risks. Thus, problems arising in the analysis of data with multiple
causes are commonly referred to as competing risk problems. We will see later
that competing risk analysis, in general, requires no inference methods other
than those introduced in Chapters 11 and 12. We focus on using the
proportional hazards model to identify significant prognostic or risk factors
when competing risks are present. Readers interested in additional details are
referred to Kalbfleisch and Prentice (1980).

Let T be the survival time, x the covariate vector, and J the type or cause
of failure. We define a type- or cause-specific hazard function h

�
(t; x)

h
�
(t; x) � lim

��	�

P(t	 T � t

t, J� j �T � t, x)

t

, j� 1, . . . ,m (13.3.1)

In words, h
�
(t; x) is the instantaneous failure rate of cause j at time t given x

and in the presence of other (m
 1) causes of failure. The only difference
between (13.3.1) and the hazard function defined in Chapter 2 is the appear-
ance of J� j. Equation (13.3.1) is a type- or cause-specific hazard function,
which is very much the same as the ordinary hazard function except that the
event is of a specific type. The overall hazard of failure is the sum of all the
type-specific hazards, that is,

h(t; x) ��
�

h
�
(t; x) (13.3.2)

provided that the failure types are mutually excluded. Based on (2.15), we can
define the function

.
S
�
(t; x)� exp�
�

�

�

h
�
(u; x) du�, j� 1, . . . , m (13.3.3)

However, these functions cannot, in general, be interpreted as survivorship
functions when m� 1. Let t

��
� t

��
��� t

���
denote the failure times for

failures of type j, j� 1, . . . , m. Assuming proportional hazards, the hazard
function in (13.3.1) can be written as

h
�
(t; x)� h

��
(t) exp(b�

�
x), j� 1, . . . ,m (13.3.4)

which can be generalized for time-dependent covariates by replacing x with
x(t), that is,

h
�
(t; x) � h

��
(t) exp[b�

�
x(t)], j� 1, . . . ,m (13.3.5)
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The partial likelihood function for the model in (13.3.5) is

L �
�
�
���

�
��

���

exp[b�
�
x
��
(t

��
)]

�l �R(t
��
) exp[b��x�

(t
��
)]

(13.3.6)

where R(t
��

) is the risk set at t
��
. The estimation of the coefficients and

identification of significant covariates can be carried out exactly the same way
as described in Chapters 11 and 12 by treating failure times of types other than
j as censored observations. This is perhaps the most important concept in
competing risks analysis. It is because the basic assumption for a competing
risks model is that the occurrence of one type of event removes the person from
risk of all other types of events and the person will no longer contribute to the
successive risk set. Furthermore, there is nothing to prevent one from choosing
different types of models for different h

�
(t; x)’s. For example, in a mortality

study we might choose a proportional hazards model for heart disease and a
parametric model for diabetes.

The coefficient vector b
�
in (13.3.6) indicates the effects of the covariates for

event type j. If any covariates are not related to a particular type or cause, they
may be set to 0. If b

�
are the same for all j, the model in (13.3.5) reduces to the

proportional hazards model in Chapter 12. The following example illustrates
the proportional hazards model with competing risks.

Example 13.5 Let us again use the CVD data in Example 12.3. The event
types are non-CVD (DG� 0), stroke (DG� 1), CHD (DG� 2), and the other
CVDs (DG� 3). If one is interested in all CVD no matter whether it is stroke,
CHD, or the other CVDs, the competing risks model reduces to a general CVD
event model, the times (T) to CVD for DG� 1, 2, 3 are uncensored event
times, and the other times are censored (DG� 0). An indicator variable, CS,
can be used to indicate the censoring status; that is, CS� 1 if DG� 1, 2, 3,
and CS� 0 otherwise. The result from fitting the proportional hazards model
with the backward selection method is given in section (a) of Table 13.5.

If one considers strokes only, the indicator variable CS has to be defined
differently; that is, CS� 1 if DG� 1 and CS� 0 if DG� 0, 2 and 3. This
means that in addition to non-CVD, the event time of CHD and the other
CVDs are treated as censored observations. Note that we will remove a person
from the risk set after his or her first CVD event time in constructing the
likelihood function for the modified data even if the event was not a fatal event.
For stroke, age is the only significant variable [section (b) in Table 13.5]. We
call this model a marginal model for strokes. Similarly, if only CHD, other
CVDs, or either stroke or CHD are of interest, the respective modification will
be CS� 1 if DG� 2 and CS� 0 otherwise (CHD only); CS� 1 if DG� 3
and CS� 0 otherwise (other CVD only); or CS� 1 if DG� 1, 2 and CS� 0
otherwise (either stroke or CHD). The results of these three fits with the
backward selection method are shown in Table 13.5 (c)—(e). The results suggest
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Table 13.5 Asymptotic Partial Likelihood Inference on CVD Event Time Data from
the Fitted Competing Risks Models

95%
Confidence Interval

Regression Standard Chi-Square Hazards
Variable Coefficient Error Statistic p Ratio Lower Upper

(a) Model for All CVDs

AGE 0.070 0.014 26.139 0.0001 1.07 1.04 1.10
SEX 0.753 0.219 11.789 0.0006 2.12 1.38 3.26
LACR 0.111 0.046 5.860 0.0155 1.12 1.02 1.22
LTG 0.399 0.198 4.072 0.0436 1.49 1.01 2.20

(b) Marginal Model for Strokes

AGE 0.072 0.021 12.092 0.0005 1.08 1.03 1.12

(c) Marginal Model for CHDs

AGE 0.069 0.020 11.622 0.0007 1.07 1.03 1.12
SEX 0.970 0.329 8.716 0.0032 2.64 1.39 5.02
BMI 0.040 0.017 5.162 0.0231 1.04 1.01 1.08
LTG 1.106 0.266 17.234 0.0001 3.02 1.79 5.09

(d) Margial Model for Other CVDs

AGE 0.087 0.033 6.874 0.0087 1.09 1.02 1.17
SEX 1.100 0.555 3.937 0.0472 3.01 1.01 8.91
LACR 0.315 1.101 9.745 0.0018 1.37 1.12 1.67

(e) Marginal Model for Strokes or CHDs

AGE 0.072 0.015 23.555 0.0001 1.07 1.04 1.11
SEX 0.692 0.239 8.362 0.0038 2.00 1.25 3.20
LTG 0.665 0.200 11.095 0.0009 1.94 1.32 2.88

that significant risk factors differ for different types of CVD events. Age is the
only factor common to all the CVD events.

Thus, competing risks models provide an opportunity to separate any one
or more specific types of event or cause of death from all other types or causes.
In practice, it is not necessary to fit a model to every type or cause.

Suppose that ‘‘C:�EX13d3d1.DAT’’ is a text data file that contains 14
columns similar to Table 12.4 and the successive columns give T, CENS, DG,
AGEA, AGEB, SEX, SMOKE, BMI, LACR, SBP, LTG, AGE, HTN, and
DM. The following SAS code can be used to obtain the model for stroke in
Table 13.5. These codes can easily be modified to obtain the results for CHD,
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other CVD, and stroke/CHD.

data w1;
infile ‘c:�ex13d3d1.dat’ missover;
input t cens dg agea ageb sex smoke bmi lacr sbp ltg age htn dm;

run;
title ‘‘Model for stroke event times’’;
proc phreg data�w1;
model t*dg(0, 2, 3) � age sex smoke bmi lacr sbp ltg htn dm

/ rl selection�b ties� efron;
run;

The following SPSS code can be used.

data list file� ‘‘c:�ex13d3d1.dat’’ free
/ t cens dg agea ageb sex smoke bmi lacr sbp ltg age htn dm.

coxreg t with age sex bmi lacr sbp ltg smoke htn dm
/status�dg event (1)
/method�bstep age sex bmi lacr sbp ltg smoke htn dm
/criteria pin (0.05) pout (0.05)
/print� all

The following code is for the BMDP 2L procedure.

/input file� ‘c:�ex13d3d1.dat’ .
variables� 14.
format� free.

/print cova.
Survival.

/variable names� t,cens, dg, agea, ageb, sex, smoke, bmi, lacr, sbp, ltg,
age, htn, dm.

/form time� t.
status�dg.
response� 1.

/regress covariates� age, sex, smoke, bmi, lacr, sbp, ltg, htn, dm.
step� phh.

13.4 RECURRENT EVENTS MODELS

So far we have considered events or failures that are allowed to occur only
once. Even in competing risks models, the occurrence of one type of event
removes a person from the risk set thereafter. However, in practice the failures
on an individual may be recurrences of essentially the same event, such as
tumor recurrences after surgeries, or may be successive events of entirely
different types, such as strokes and heart attacks. When data include recurrent
events, regression models such as the proportional hazards model become
much more mathematically complicated and often involve counting process
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theory, which is beyond the scope of this book. A number of regression models
have been proposed in the literature. In this section we introduce three models
that can be considered as extensions of the Cox proportional hazards model.
We keep the mathematics to a minimum and use examples to show how these
models can be used to identify important prognostic or risk factors with the
aid of available computer software. The three models are based on Prentice et
al. (1981), Andersen and Gill (1982), and Wei et al. (1989). All three models are
proportional hazards models, and the likelihood functions of these models are
constructed differently, primarily in the risk set at the uncensored observations.
Readers interested in details are referred to the papers cited above.

Prentice et al. Model
In their 1981 paper, Prentice, Williams, and Peterson (PWP) proposed two
models for recurrent events. Both PWP models can be considered as extensions
of the stratified proportional hazards model with strata defined by the number
and time of the recurrent events. The hazard function is extended beyond the
person’s first event to cover subsequent events. In the first PWP model,
follow-up time starts at the beginning of the study (true time 0) and the hazard
function of the ith person can be written as

h(t � b


, x

�
(t)) � h

�

(t) exp[b�



x
�
(t)] (13.4.1)

where the subscript s represents the stratum that the person is in at time t. The
first stratum includes people who have at least one recurrence or are censored
without recurrence, the second stratum includes people who have at least two
recurrences or are censored after the first recurrence, and so on. A person
moves from stratum 1 (s� 1) to stratum 2 (s� 2) following his or her first
recurrent event and remains in stratum 2 until the second recurrent event takes
place or becomes a censor observation (no more recurrent event). The h

�

(t) in

(13.4.1) is the stratum-specific underlying hazard. Notice that in (13.4.1), the
coefficients are stratum-specific also.

Let t

�

��� t

�
�

denote the d


ordered distinct failure times in stratum s,

x

�
(t

�

) the covariate vector of a subject in stratum s who fails at time t

�
, x


�
(t

�

)
the covariate vector of subject l in stratum s at time t


�
, and R(t, s) the set of

persons at risk in stratum s just prior to time t. Note that the risk set R(t, s)
includes only those persons who have experienced the first s
 1 recurrent
events. Then the partial likelihood for the first model in (13.4.1) is

L (b) � �
s�1

�

�
���

exp[b�


x

�
(t


�
)]

�l �R(t

�
,s) exp[b�


x

�
(t

�
)]

(13.4.2)

The following example illustrates the construction of the likelihood function
and the necessary data arrangements for using SAS, SPSS, or BMDP to carry
out the analysis.
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Example 13.6 We use the tumor recurrence data from bladder cancer
patients (Andrews and Herzberg, 1985; Wei et al., 1989) in a clinical trial to
compare three treatments, which was conducted by the Veterans Administra-
tion Cooperative Urological Research Group (Byar, 1980). All patients had
superficial bladder tumors when they entered the study. These tumors were
removed and the patients were randomized into three treatment groups:
placebo, thiotepa, and pyridoxine. During the follow-up period many patients
had one or more recurrences of tumors and new tumors were removed when
discovered. In this example we use the tumor recurrence data from 86 patients
who received either placebo or thiotepa. Only the first four recurrence times
are considered. The data set, reproduced in Table 13.6, includes treatment
(1, placebo; 2, thiotepa) follow-up time, initial number of tumors (N), initial
tumor size (S) in centimeters, and recurrent time. Each recurrent time of a
patient was measured from the date of first treatment.

In this case, the event of interest is tumor recurrence and the strata are
defined by the number of recurrences (NRs).To use SAS and other software to
fit data with the model (13.4.1), the data must be rearranged in a certain format
by stratum. To facilitate illustration, we select six patients from Table 13.6 and
place the data of these six patients in Table 13.7. The follow-up and recurrence
times are also shown in Figure 13.1. From the figure we see that stratum 1
includes patients 1 (censored at 9 months), 2 (censored at 59 months), 3 (first
recurrent at 3 months), 4 (first recurrent at 12 months), 5 (first occurrence at
6 months), and 6 (first occurrence at 3 months). The time intervals, (TL, TR],
are (0,9], (0,59], (0,3], (0,12], (0,6], and (0,3], respectively. These intervals are
used to determine the risk set in the stratum-specific likelihood function in
(13.4.2), and the patients in the stratum were at risk only in these time intervals.
To use software packages such as SAS, BMDP, and SPSS, we need to
rearrange the data by stratum. Table 13.8 gives the rearranged data. Note that
the six patients in stratum 1 are arranged in ascending order according to the
right end of the time interval. Also introduced in this table are T1—T4, N1—N4,
and S1—S4, giving the treatment received, initial tumor number, and initial
tumor size of the patients for the four strata, respectively. These variables are
set to be zero in the other strata except the stratum they are in. For example,
for patients in stratum 1, T2—T4, N2—N4, and S2—S4 are set to be zero because
these six patients are in stratum 1, not in stratum 2, 3, or 4. Stratum 2 includes
those patients who had one recurrence and had either another recurrence or
were censored at end of follow-up. Therefore, stratum 2 has patients 3
(censored at 14 months after the first recurrence), 4 (second recurrence at 16
months), 5 (second recurrence at 12 months), and 6 (second recurrence at 15
months). The time intervals between successive recurrences for these four
patients are (3, 14], (12,16], (6,12], and (3,15], respectively. The rearranged
data in order of the right end of the intervals are given in Table 13.8. Strata 3
and 4 are constructed in a similar way. Once the data are rearranged exactly
as in Table 13.8, SAS and other software can be used to perform the analysis.

This data arrangement also facilitates explanation of the likelihood function
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Table 13.6 Tumor Recurrence Data for Patients with Bladder Cancer�

Recurrence Time
Treatment Follow-up Initial Initial
Group Time Number Size 1 2 3 4

1 0 1 1
1 1 1 3
1 4 2 1
1 7 1 1
1 10 5 1
1 10 4 1 6
1 14 1 1
1 18 1 1
1 18 1 3 5
1 18 1 1 12 16
1 23 3 3
1 23 1 3 10 15
1 23 1 1 3 16 23
1 23 3 1 3 9 21
1 24 2 3 7 10 16 24
1 25 1 1 3 15 25
1 26 1 2
1 26 8 1 1
1 26 1 4 2 26
1 28 1 2 25
1 29 1 4
1 29 1 2
1 29 4 1
1 30 1 6 28 30
1 30 1 5 2 17 22
1 30 2 1 3 6 8 12
1 31 1 3 12 15 24
1 32 1 2
1 34 2 1
1 36 2 1
1 36 3 1 29
1 37 1 2
1 40 4 1 9 17 22 24
1 40 5 1 16 19 23 29
1 41 1 2
1 43 1 1 3
1 43 2 6 6
1 44 2 1 3 6 9
1 45 1 1 9 11 20 26
1 48 1 1 18
1 49 1 3
1 51 3 1 35
1 53 1 7 17
1 53 3 1 3 15 46 51
1 59 1 1
1 61 3 2 2 15 24 30
1 64 1 3 5 14 19 27

(Continued overleaf )
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Table 13.6 Continued

Recurrence Time
Treatment Follow-up Initial Initial
Group Time Number Size 1 2 3 4

1 64 2 3 2 8 12 13
2 1 1 3
2 1 1 1
2 5 8 1 5
2 9 1 2
2 10 1 1
2 13 1 1
2 14 2 6
2 17 5 3 3 1 3 5
2 18 5 1
2 18 1 3 17
2 19 5 1 2
2 21 1 1 17 19
2 22 1 1
2 25 1 3
2 25 1 5
2 25 1 1
2 26 1 1 6 12 13
2 27 1 1 6
2 29 2 1 2
2 36 8 3 26 35
2 38 1 1
2 39 1 1 22 23 27 32
2 39 6 1 4 16 23 27
2 40 3 1 24 26 29 40
2 41 3 2
2 41 1 1
2 43 1 1 1 27
2 44 1 1
2 44 6 1 2 20 23 27
2 45 1 2
2 46 1 4 2
2 46 1 4
2 49 3 3
2 50 1 1
2 50 4 1 4 24 47
2 54 3 4
2 54 2 1 38
2 59 1 3

Source: Wei et al (1989) and StatLib web site: http//lib.stat.cmu.edu/datasets/tumor.

�Treatment group: 1, placebo; 2, thioteps. Follow-up time and recurrence time are measured in
months. Initial size is measured in centimeters. Initial number of 8 denotes eight or more initial
tumors.
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Figure 13.1 Graphical presentation of recurrence times of the six patients in Table 13.7
(numbers in circle indicate the number of recurrences).

Table 13.7 Six of 86 Bladder Cancer Patients from the Tumor Recurrence Data�

Recurrence Time
Patient Treatment Follow-up Initial Initial
ID Group Time Number Size 1 2 3 4

1 1 9 1 2
2 0 59 1 1
3 1 14 2 6 3
4 0 18 1 1 12 16
5 1 26 1 1 6 12 13
6 0 53 3 1 3 15 46 51

�Treatment group: 0, placebo; 1, thiotepa. Following-up time and recurrence time are measured
in months. Initial size is measured in centimeters for the largest initial tumor.

in (13.4.2). We use stratum 2 to show the second product in (13.4.2). In stratum
2 (s� 2), d



� 3 (there are three uncensored observations: patients 5, 6 and 4,

according to the ordered recurrent times, 12, 15, and 16 months). Therefore,
the second product is the product of three terms, one for each of these three
patients. Using the notations in (13.4.2), we renumber them as patient i� 1, 2,
and 3, respectively. The risk set at the first uncensored time t

��
in stratum 2
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Table 13.8 Rearranged Data from Table 13.7 for Fitting PWP Model with
NR-Indexed Coefficients�

ID NR TL TR CS T1 T2 T3 T4 N1 N2 N3 N4 S1 S2 S3 S4

3 1 0 3 1 1 0 0 0 2 0 0 0 6 0 0 0
6 1 0 3 1 0 0 0 0 3 0 0 0 1 0 0 0
5 1 0 6 1 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 9 0 1 0 0 0 1 0 0 0 2 0 0 0
4 1 0 12 1 0 0 0 0 1 0 0 0 1 0 0 0
2 1 0 59 0 0 0 0 0 1 0 0 0 1 0 0 0
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
5 2 6 12 1 0 1 0 0 0 1 0 0 0 1 0 0
3 2 3 14 0 0 1 0 0 0 2 0 0 0 6 0 0
6 2 3 15 1 0 0 0 0 0 3 0 0 0 1 0 0
4 2 12 16 1 0 0 0 0 0 1 0 0 0 1 0 0
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
5 3 12 13 1 0 0 1 0 0 0 1 0 0 0 1 0
4 3 16 18 0 0 0 0 0 0 0 1 0 0 0 1 0
6 3 15 46 1 0 0 0 0 0 0 3 0 0 0 1 0
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
5 4 13 26 0 0 0 0 1 0 0 0 1 0 0 0 1
6 4 46 51 1 0 0 0 0 0 0 0 3 0 0 0 1

� ID, patient ID number; NR, number of recurrence, where 1� first recurrence, 2� second
recurrence, and so on; TL and TR, left and right ends of time interval (TL, TR) defined by the
successive rcurrence times and the follow-up time, where TR denotes either the successive
recurrence time or the follow-up time; CS, censoring status, where 0� censored, 1� uncensored;
T1 to T4, treatment group; N1 to N4, initial number of tumors; S1 to S4, initial size.

(observed from patient 5), or R(t
��
, 2) includes patients in stratum 2, whose

recurrent times, censored or not, are at least 12 (t
��
) months. Therefore,

R(t
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(13.4.3)

where the x’s represent the covariate vector (T1, T2, T3, T4, N1, N2, N3, N4,
S1, S2, S3, S4). For example, x

��
� (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0). It is clear that
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Table 13.9 Rearranged Data from Table 13.7 for Fitting PWP Model with Common
Coefficients�

ID NR TL TR CS TRT N S

3 1 0 3 1 1 2 6
6 1 0 3 1 0 3 1
5 1 0 6 1 1 1 1
1 1 0 9 0 1 1 2
4 1 0 12 1 0 1 1
2 1 0 59 0 0 1 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
5 2 6 12 1 1 1 1
3 2 3 14 0 1 2 6
6 2 3 15 1 0 3 1
4 2 12 16 1 0 1 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
5 3 12 13 1 1 1 1
4 3 16 18 0 0 1 1
6 3 15 46 1 0 3 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
5 4 13 26 0 1 1 1
6 4 46 51 1 0 3 1

�TRT, treatment group; N, initial number; S, initial size.

in this model the regression coefficients are stratum specific. They represent the
importance of the coefficient for patients in different strata or patients who had
different numbers of recurrent events. If the primary interest is the overall
importance of the covariates, regardless of the number of recurrences or if it
can be assumed that the importance of covariates is independent of the number
of recurrences, T1—T4, N1—N4, and S1—S4 can be combined into a single
variable. As shown in Table 13.9, the three covariates are named TRT, N, and
S for the six patients, and coefficients common to all strata can be estimated.
Data sets that have been so rearranged are ready for SAS and other software.

To use SAS and other software, the entire data set in Table 13.6 must first
be rearranged as in Table 13.8 or 13.9. This can also be accomplished using a
computer.

Table 13.10 gives the results from fitting the PWP model to the bladder
tumor data in Table 13.6 with stratum-specific coefficients and common
coefficients. None of the stratum-specific covariates is significant except N1, the
initial number of tumors in stratum 1 patients (p� 0.0017). There is no
significant difference between the two treatments in any stratum, and the size
of the initial tumor has no significant effect on tumor recurrence. When
stratification is ignored, the results are similar (the second part of Table 13.10).
The number of initial tumors is the only significant prognostic factor, and the
risk of recurrence increase would increase almost 13% for every one-tumor
increase in the number of initial tumors.
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Table 13.10 Asymptotic Partial Likelihood Inference on the Bladder Cancer Data from
Fitted PWP Models with Stratum-specific or Common Coefficients

95%
Confidence Interval

Regression Standard Chi-Square Hazards
Variable Coefficient Error Statistic p Ratio Lower Upper

Model with Stratum-Specific Coefficients

T1 
0.526 0.316 2.774 0.0958 0.591 0.318 1.097
T2 
0.504 0.406 1.539 0.2148 0.604 0.273 1.339
T3 0.141 0.673 0.044 0.8345 1.151 0.308 4.305
T4 0.050 0.792 0.004 0.9493 1.052 0.223 4.963
N1 0.238 0.076 9.851 0.0017 1.269 1.094 1.472
N2 
0.025 0.090 0.075 0.7840 0.976 0.818 1.164
N3 0.050 0.185 0.072 0.7887 1.051 0.731 1.511
N4 0.204 0.242 0.712 0.3987 1.227 0.763 1.971
S1 0.070 0.102 0.470 0.4931 1.072 0.879 1.308
S2 
0.161 0.122 1.722 0.1894 0.852 0.670 1.083
S3 0.168 0.269 0.390 0.5321 1.183 0.698 2.005
S4 0.009 0.339 0.001 0.9786 1.009 0.519 1.961

Model with Common Coefficients

TRT 
0.333 0.216 2.380 0.1229 0.716 0.469 1.094
N 0.120 0.053 5.029 0.0249 1.127 1.015 1.251
S 
0.008 0.073 0.014 0.9071 0.992 0.860 1.144

In the second PWP model, the follow-up time starts from the immediately
preceding event or failure time. Analogous to (13.4.1), the second PWP model
can be written in terms of a hazard function as

h(t � b
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where t
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denotes the time of the preceding event. The time period between
two consecutive recurrent events or between the last recurrent event time and
the end of follow-up is called the gap time.
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stratum s and R� (u, s) denote the set of subjects at risk in stratum s just prior
to gap time u. Again, R� (u, s) includes only those subjects who have experienced
the first s
 1 strata. Then we have the partial likelihood for the second model
(13.4.4):
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(13.4.5)
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Table 13.11 Rearranged Data from Table 13.9 for
Fitting PWP Gap Time Model with Common
Coefficients

ID NR GT CS TRT N S

3 1 3 1 1 2 6
6 1 3 1 0 3 1
5 1 6 1 1 1 1
1 1 9 0 1 1 2
4 1 12 1 0 1 1
2 1 59 0 0 1 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
4 2 4 1 0 1 1
5 2 6 1 1 1 1
3 2 11 0 1 2 6
6 2 12 1 0 3 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
5 3 1 1 1 1 1
4 3 2 0 0 1 1
6 3 31 1 0 3 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
6 4 5 1 0 3 1
5 4 13 0 1 1 1

Note that risk sets in (13.4.5) are defined by the ordered distinct gap times in
the strata rather than by the failure times themselves.

Using the notations in Table 13.9, let GT denote the gap time, then
GT�TR—TL. Replacing TR and TL in Tables 13.8 and 13.9 by GT, the data
are ready for SAS and other software. Table 13.11 is the corresponding table
for the same six patients in Table 13.9 using gap times. Using the notation of
Example 13.6, the second product in (13.4.5) for stratum 2 is
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Note that this is different from (13.4.3), due to a different definition of the risk
set.

The results from fitting the PWP gap time model to all the data in Table
13.6 with stratum-specific coefficients and common coefficients are given in
Table 13.12. Again, the number of initial tumors is the only significant
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Table 13.12 Asymptotic Partial Likelihood Inference on the Bladder Cancer Data from
the Fitted PWP Gap Time Models with Stratum-Specific or Common Coefficients

95%
Confidence Interval

Regression Standard Chi-Square Hazards
Variable Coefficient Error Statistic p Ratio Lower Upper

Model with Stratum-Specific Coefficients

T1 
0.526 0.316 2.774 0.0958 0.591 0.318 1.097
T2 
0.271 0.405 0.448 0.5034 0.763 0.345 1.687
T3 0.210 0.550 0.146 0.7022 1.234 0.420 3.626
T4 
0.220 0.639 0.119 0.7301 0.802 0.229 2.807
N1 0.238 0.076 9.851 0.0017 1.269 1.094 1.472
N2 
0.006 0.096 0.004 0.9469 0.994 0.823 1.200
N3 0.142 0.162 0.774 0.3791 1.153 0.840 1.582
N4 0.475 0.203 5.492 0.0191 1.609 1.081 2.394
S1 0.070 0.102 0.470 0.4931 1.072 0.879 1.308
S2 
0.119 0.119 1.003 0.3166 0.888 0.703 1.121
S3 0.278 0.233 1.425 0.2326 1.321 0.836 2.086
S4 0.043 0.290 0.022 0.8822 1.044 0.592 1.842

Model with Common Coefficients

TRT 
0.279 0.207 1.811 0.1784 0.757 0.504 1.136
N 0.158 0.052 9.258 0.0023 1.171 1.058 1.297
S 0.007 0.070 0.011 0.9157 1.007 0.878 1.156

covariates. There are no major differences between the two PWP models for
this set of data. It is impossible to compare the coefficients obtained in the two
models. The first model defines time from the beginning of the study and
therefore is recommended if the entire course of recurrent events is of interest.
The second model is the choice if the primary interest is to model the gap time
between events.

Suppose that the text file ‘‘C:�EX13d4d1.DAT’’ contains the successive
columns in Table 13.8 for the entire data set in Table 13.6: NR, TL, TR, CS,
T1, T2, T3, T4, N1, N2, N3, N4, S1, S2, S3, and S4, and the text file
‘‘C:�EX13d4d2.DAT’’ contains the seven successive columns in Table 13.9: NR,
TL, TR, CS, TRT, N, and S. The following SAS code can be used to obtain
the PWP models in Table 13.10.

data w1;
infile ‘c:�ex13d4d1.dat’ missover;
input nr tl tr cs t1 t2 t3 t4 n1 n2 n3 n4 s1 s2 s3 s4;

run;
title ‘‘PWP model with stratified coefficients‘;
proc phreg data�w1;
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model (tl, tr)*cs(0) � t1 t2 t3 t4 n1 n2 n3 n4 s1 s2 s3 s4 / ties� efron;
where tl� tr;
strata nr;

run;
data w1;
infile ‘c:�ex13d4d2.dat’ missover;
input nr tl tr cs trt n s;

run;
title ‘‘PWP model with common coefficients‘;
proc phreg data�w1;
model (tl, tr)*cs(0) � trt n s / ties� efron;
where tl�tr;
strata nr;

run;

Suppose that the text file ‘‘C:�EX13d4d3.DAT’’ contains 15 successive
columns similar to Table 13.8 but with gap time GT. The 15 columns are NR,
GT, CS, T1, T2, T3, T4, N1, N2, N3, N4, S1, S2, S3, and S4. The text file
‘‘C:KEX13d4d4.DAT’’ contains the successive six columns from Table 13.11: NR,
GT, CS, TRT, N, and S. The following SAS, SPSS, and BMDP codes can be
used to obtain the PWP gap time models in Table 13.12.

SAS code:

data w1;
infile ‘c:�ex13d4d3.dat’ missover;
input nr gt cs t1 t2 t3 t4 n1 n2 n3 n4 s1 s2 s3 s4;

run;
title ‘‘PWP gap time model with stratified coefficients’’;
proc phreg data�w1;
model gt*cs(0) � t1 t2 t3 t4 n1 n2 n3 n4 s1 s2 s3 s4 / ties� efron;
strata nr;

run;
data w1;
infile ‘c:�ex13d4d4.dat’ missover;
input nr gt cs trt n s;

run;
title ‘‘PWP gap time model with common coefficients‘;
proc phreg data�w1;
model gt*cs(0) � trt n s / ties� efron;
strata nr;

run;

SPSS code:

data list file� ‘c:�ex13d4d3.dat’ free
/ nr gt cs t1 t2 t3 t4 n1 n2 n3 n4 s1 s2 s3 s4.

coxreg gt with t1 t2 t3 t4 n1 n2 n3 n4 s1 s2 s3 s4
/status� cs event (1)

   367



/strata� nr
/print� all.

data list file� ‘c:�ex13d4d4.dat’ free
/ nr gt cs trt n s.

coxreg gt with trt n s
/status� cs event (1)
/strata� nr
/print� all.

BMDP 2L code:

/input file� ‘c:�ex13d4d3.dat’ .
variables� 15.
format� free.

/print cova.
Survival.

/variable names�nr, gt, cs, t1, t2, t3, t4, n1, n2, n3, n4, s1, s2, s3, s4.
/form time� gt.

status� cs.
response� 1.

/regress covariates� t1, t2, t3, t4, n1, n2, n3, n4, s1, s2, s3, s4.
strata�nr.

/input file� ‘c:�ex13d4d4.dat’ .
variables� 6.
format� free.

/print cova.
Survival.

/variable names�nr, gt, cs, trt, n, s.
/form time� gt.

status� cs.
response� 1.

/regress covariates� trt, n, s.
strata�nr.

Anderson--Gill Model
The model proposed by Andersen and Gill (1982), the AG model, assumes that
all events are of the same type and are independent. The risk set in the
likelihood function is totally different from that in the PWP models. The risk
set of a person at the time of an event would contain all the people who are
still under observation, regardless of how many events they have experienced
before that time. The multiplicative hazard function h(t, x

�
) for the ith person is

h(t, x
�
) � Y

�
(t)h

�
(t) exp[b�x

�
(t)]

where Y
�
(t), an indicator, equals 1 when the ith person is under observation (at

risk) at time t and 0 otherwise and h
�
(t) is an unspecified underlying hazard
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Table 13.13 Rearranged Data from Table 13.7 for
Fitting AG Model

ID TL TR CS TRT N S

1 0 9 0 1 1 2
2 0 59 0 0 1 1
3 0 3 1 1 2 6
3 3 14 0 1 2 6
4 0 12 1 0 1 1
4 12 16 1 0 1 1
4 16 18 0 0 1 1
5 0 6 1 1 1 1
5 6 12 1 1 1 1
5 12 13 1 1 1 1
5 13 26 0 1 1 1
6 0 3 1 0 3 1
6 3 15 1 0 3 1
6 15 46 1 0 3 1
6 46 51 1 0 3 1
6 51 53 0 0 3 1

function. The partial likelihood for n independent persons is

L (b) �
�
�
���

�
���
�

Y
�
(t) exp(b�x

�
)

��
���

Y
�
(t) exp(b�x

�
)�

�����
(13.4.6)

where 

�
(t) � 1 if the ith person has an event at t and �0 otherwise. Details

of this likelihood function and the estimation of the coefficients can be found
in Fleming and Harrington (1991) and Andersen et al. (1993). Similar to the
PWP models, software packages are available to carry out the computation
provided that the data are arranged in a certain format. The following example
illustrates the terms in (13.4.6) and the data format required by SAS.

Example 13.7 We use again the data in Table 13.6 to fit the AG model.
To explain the terms in the likelihood function, we use the data of the six
people in Table 13.7. In this model, every recurrent event is considered to be
independent. Therefore, we can rearrange the data by person and by event time
‘‘within’’ an individual. Table 13.13 shows the rearranged data. For example,
the person with ID� 4 had two recurrences, at 12 and 16, and the follow-up
time ended at 18. The time intervals (TL, TR] are (0, 12], (12, 16], and (16,18],
and 12 and 16 are uncensored observations and 18 censored, since there was
no tumor recurrence at 18. For patients with ID� 1 and 2 (i� 1, 2), the
respective second product terms in (13.4.6) are equal to 1 since 


�
(t) � 0, i� 1,

2, for all t. For patient 3 (i� 3), 

�
(t) � 1 only at t� 3 (the first tumor

recurrence time of the patient). Thus, the respective second product has only

   369



Table 13.14 Asymptotic Partial Likelihood Inference on the Bladder Cancer Data from
the Fitted AG Model

95%
Confidence Interval

Regression Standard Chi-Square Hazards
Variable Coefficient Error Statistic p Ratio Lower Upper

TRT 
0.412 0.200 4.241 0.0395 0.663 0.448 0.980
N 0.164 0.048 11.741 0.0006 1.178 1.073 1.293
S 
0.041 0.070 0.342 0.5590 0.960 0.836 1.102

one term at t� 3 and the denominator of this term sums over all the patients
who are under observation and at risk at time t� 3. From Figure 13.1 it is
easily seen that the sum is over all six patients; that is, the respective second
product is

exp(b�x
	
)

��
���

exp(b�x
�
)

(13.4.7)

For patient 4 (i� 4), the second product in (13.4.6) contains two terms. One
is for t� 12 (the first recurrence time), and at t� 12, patients 2, 3, 4, 5, and 6
are still under observation, and therefore the denominator of the term sums
over patients 2 to 6. The other term is for t� 16 (the second recurrence time)
and the denominator sums over patients 2, 4, 5, and 6. Patient 3 is no longer
under observation after t� 14. Thus, the second product term for i� 4 is

exp(b�x
�
)

��
���

exp(b�x
�
)
�

exp(b�x
�
)

exp(b�x
�
) 
��

���
exp(b�x

�
)

(13.4.8)

Similarly, we can construct each term in (13.4.6) and the partial likelihood
function.

Using SAS, we obtain the results in Table 13.14. The AG model identifies
treatment and number of initial tumor as significant covariates. Compared
with placebo, thiotepa does slow down tumor recurrence.

Readers can construct the SAS codes for the AG model by using Table 13.13
and by following the codes given in Example 13.6.

Wei et al. Model
By using a marginal approach, Wei, Lin, and Weissfeld (1989) proposed a
model, the WLW model, for the analysis of recurrent failures. The failures may
be recurrences of the same kind of event or events of different natures,
depending on how the stratification is defined. If the strata are defined by the
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times of repeated failures of the same type, similar to the strata defined in the
PWP models, it can be used to analyze repeated failures of the same kind. The
difference between the PWP models and the WLW model is that the latter
considers each event as a separate process and treats each stratum-specific
(marginal) partial likelihood separately. In the stratum-specific (marginal)
partial likelihood of stratum s, people who have experienced the (s
 1)th
failure contribute either one uncensored or one censored failure time depending
on whether or not they experience a recurrence in stratum s, and the other
subjects contribute only censored times (forced as censored times). Therefore,
each stratum contains everyone in the study. This is different from the PWP
models, in which subjects who have not experienced the (s
 1)th failure are
not included in stratum s. If the strata are defined by the type of failure, the
WLW model acts like the competing risks model defined in Section 13.3, and
the type-specific (marginal) partial likelihood for the jth type simply treats all
failures of types other than j in the data as censored.

For the kth stratum of the ith person, the hazard function is assumed to
have the form

h
��
(t) �Y

��
(t)h

��
(t) exp(b�

�
x
��
), t� 0 (13.4.9)

where Y
��
(t) � 1, if the ith person in the kth stratum is under observation, 0,

otherwise, h
��
(t) is an unspecified underlying hazard function. Let R

�
(t
��

)
denote the risk set with people at risk at the ith distinct uncensored time t

��
in

the kth stratum. Then the specific partial likelihood for the kth stratum is

L
�
(b

�
) �

�
�
���
�

exp(b�
�
x
��
)

�l �R
�
(t
��
) exp(b�

�
x
��

)�
��

(13.4.10)

where 

�
� 1 if the ith observation in the kth stratum is uncensored and 0

otherwise. The coefficients b
�
are stratum specific. In practice, if we are

interested in the overall effect of the covariates, we can assume that the
coefficients from different strata are equal (provided that there are no qualitat-
ive differences among the strata), combine the strata and draw conclusions
above the ‘‘average effect’’ of the covariates. We again called the coefficients of
these covariates common coefficients. The event time is from the beginning of
the study in this model.

Similar to the PWP and AG models, the data must be arranged in a certain
format in order to use available software to carry out estimation of the
coefficients and tests of significance of the covariates. Using the same data as
in Examples 13.6 and 13.7, the following example illustrates the terms in the
stratum-specific likelihood function and the use of software.

Example 13.8 First, we use the same six patients to illustrate the compo-
nents in the stratum-specific likelihood function in (13.4.10). The format the
data have to be in for the available software, such as SAS, SPSS, and BMDP,
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Table 13.15 Rearranged Data from Table 13.7 for Fitting WLW Model with
NR-Indexed Coefficients

ID NR TR CS T1 T2 T3 T4 N1 N2 N3 N4 S1 S2 S3 S4

3 1 3 1 1 0 0 0 2 0 0 0 6 0 0 0
6 1 3 1 0 0 0 0 3 0 0 0 1 0 0 0
5 1 6 1 1 0 0 0 1 0 0 0 1 0 0 0
1 1 9 0 1 0 0 0 1 0 0 0 2 0 0 0
4 1 12 1 0 0 0 0 1 0 0 0 1 0 0 0
2 1 59 0 0 0 0 0 1 0 0 0 1 0 0 0
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
1 2 9 0 0 1 0 0 0 1 0 0 0 2 0 0
5 2 12 1 0 1 0 0 0 1 0 0 0 1 0 0
3 2 14 0 0 1 0 0 0 2 0 0 0 6 0 0
6 2 15 1 0 0 0 0 0 3 0 0 0 1 0 0
4 2 16 1 0 0 0 0 0 1 0 0 0 1 0 0
2 2 59 0 0 0 0 0 0 1 0 0 0 1 0 0
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
1 3 9 0 0 0 1 0 0 0 1 0 0 0 2 0
5 3 13 1 0 0 1 0 0 0 1 0 0 0 1 0
3 3 14 0 0 0 1 0 0 0 2 0 0 0 6 0
4 3 18 0 0 0 0 0 0 0 1 0 0 0 1 0
6 3 46 1 0 0 0 0 0 0 3 0 0 0 1 0
2 3 59 0 0 0 0 0 0 0 1 0 0 0 1 0
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
1 4 9 0 0 0 0 1 0 0 0 1 0 0 0 2
3 4 14 0 0 0 0 1 0 0 0 2 0 0 0 6
4 4 18 0 0 0 0 0 0 0 0 1 0 0 0 1
5 4 26 0 0 0 0 1 0 0 0 1 0 0 0 1
6 4 51 1 0 0 0 0 0 0 0 3 0 0 0 1
2 4 59 0 0 0 0 0 0 0 0 1 0 0 0 1

is similar to that in the PWP and AG models except that all six people are in
each of the four strata (Table 13.15). The first stratum (NR� 1) is exactly the
same as in Table 13.8. The six patients are ordered according to the magnitude
of the event time (censored or not, TR). In stratum 2(NR � 2), the three people
(with ID� 4, 5, and 6) whose times to the second tumor recurrence are
uncensored observations. Patients 1 and 2 had censored time at 9 and 59,
respectively. Patient 3, who had no second recurrence and was observed until
14 months, is considered censored at 14. The other strata are constructed in a
similar manner. Using the data arrangement in Table 13.15, we can see that for
the second stratum, the likelihood function in (13.4.10) has three terms, one for
each of persons 5, 6, and 4, whose 


�
� 1 (CS� 1 in the table). For patient 4,

the risk set at time t� 16 has two individuals (ID� 4 and 2); for patient 5,
the risk set at time t� 12 contains five individuals (ID� 2, 3, 4, 5, and 6); and
for patient 6, the risk set at time t� 15 has three individuals (ID� 2, 4, and
6). Let x

��
be the covariate vector of the patient with ID� j in stratum 2; then
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Table 13.16 Rearranged Data from Table 13.7 for
Fitting WLW Model with Common Coefficients

ID NR TR CS TRT N S

3 1 3 1 1 2 6
6 1 3 1 0 3 1
5 1 6 1 1 1 1
1 1 9 0 1 1 2
4 1 12 1 0 1 1
2 1 59 0 0 1 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
1 2 9 0 1 1 2
5 2 12 1 1 1 1
3 2 14 0 1 2 6
6 2 15 1 0 3 1
4 2 16 1 0 1 1
2 2 59 0 0 1 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
1 3 9 0 1 1 2
5 3 13 1 1 1 1
3 3 14 0 1 2 6
4 3 18 0 0 1 1
6 3 46 1 0 3 1
2 3 59 0 0 1 1
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
1 4 9 0 1 1 2
3 4 14 0 1 2 6
4 4 18 0 0 1 1
5 4 26 0 1 1 1
6 4 51 1 0 3 1
2 4 59 0 0 1 1

the likelihood function in (13.4.10) is

L
�
(b

�
) �

�
�
���
�

exp(b�
�
x
��
)

�l �R
�
(t
��
) exp(b�

�
x
��

)�
��

�
exp(b�

�
x
��
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��
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 exp(b�
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��

)
(13.4.11)

Note that (13.4.11) is different from (13.4.3). The likelihood function for the
other strata and for the entire data set in Table 13.6 can be constructed in a
similar manner. If we ignore the stratum-specific effect and are interested only
in the average overall effect of the covariates, we combine T1—T4, N1—N4,
and S1—S4. The rearranged data for the six patients are given in Table 13.16.
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Table 13.17 Asymptotic Partial Likelihood Inference on the Bladder Cancer Data from
the Fitted WLW Models with Stratum-Specific or Common Coefficients

95%
Confidence Interval

Regression Standard Chi-Square Hazards
Variable Coefficient Error Statistic p Ratio Lower Upper

Model with Stratum-Specific Coefficients

T1 
0.526 0.316 2.774 0.0958 0.591 0.318 1.097
T2 
0.632 0.393 2.588 0.1077 0.531 0.246 1.148
T3 
0.698 0.460 2.308 0.1278 0.496 0.202 1.225
T4 
0.635 0.576 1.215 0.2703 0.530 0.171 1.639
N1 0.238 0.076 9.851 0.0017 1.269 1.094 1.472
N2 0.137 0.902 2.229 0.1354 1.147 0.958 1.373
N3 0.174 0.105 2.750 0.0973 1.189 0.969 1.460
N4 0.332 0.125 7.112 0.0077 1.394 1.092 1.780
S1 0.070 0.102 0.470 0.4931 1.072 0.879 1.308
S2 
0.078 0.134 0.337 0.5614 0.925 0.712 1.203
S3 
0.214 0.183 1.371 0.2416 0.807 0.565 1.155
S4 
0.206 0.231 0.800 0.3712 0.813 0.517 1.279

Model with Common Coefficients

TRT 
0.585 0.201 8.460 0.0036 0.557 0.376 0.826
N 0.210 0.047 20.230 0.0001 1.234 1.126 1.352
S 
0.052 0.070 0.548 0.4592 0.950 0.828 1.089

The results from fitting the WLW models to the entire data set in Table
13.6 are given in Table 13.17. The model with stratum-specific coefficients
suggests that more initial tumors accelerate tumor recurrence and the acceler-
ation is particularly faster for the first recurrence and the third and fourth
recurrences. The signs of the coefficients for T1—T4 suggest that thiotepa may
slow down tumor growth, but the evidence is not statistically significant. The
model with common coefficients suggests that thiotepa is significantly more
effective in prolonging the recurrence time. The results suggest that when
looking at each stratum independently, there is no strong evidence that
thiotepa is more effective than placebo. However, the combined estimate of the
common coefficient provides stronger evidence that thiotepa is more effective
over the course of the study.

13.5 MODELS FOR RELATED OBSERVATIONS

In Cox’s proportional hazards model and other regression methods, a key
assumption is that observed survival or event times are independent. However,
in many practical situations, failure times are observed from related individuals
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or from successive recurrent events or failures of the same person. For example,
in an epidemiological study of heart disease, some of the participants may be
from the same family and therefore are not independent. These families with
multiple participants may be called clusters. In this case, the regression
methods we introduced earlier may not be appropriate. Several types of models
introduced especially for related observations are discussed by Andersen et al.
(1993), Liang et al. (1995), Klein and Moeschberger (1997), and Ibrahim et al.
(2001). Details about these models are beyond the scope of this book. In the
following, we introduce briefly the frailty models.

The frailty models assume that there is an unmeasured random variable
(frailty) in the hazard function. This random variable accounts for the variation
or heterogeneity among individuals in a cluster. It is also assumed that the
frailty is independent of censoring. Let n be the total number of participants in
the study, some of them related and forming clusters. Let v

�
be the unknown

random variable, frailty, associated with the ith cluster, 1	 i� n. The frailty
model associated with the proportional hazards model can be written in terms
of the log hazard function as

log[h
��
(t; x

��
� v

�
)]� log[h

�
(t)] 
 v

�

 b�x

��
(13.5.1)

for 1	 j	m
�
and 1	 i� n, where b denotes the p�1 column vector of

unknown regression coefficients, x
��
is the covariate vector of the jth person in

the ith cluster, m
�
is the number of individuals in the ith cluster, and h

�
(t) is an

unknown underlying hazard function. Compared with the Cox proportional
hazards model, the difference here is the random effect v

�
. Because v

�
remains

the same in the ith cluster, the association between failure and covariates
within each cluster in this model is assumed to have a symmetric pattern. In a
family study, this model can be used, for example, to model failure times
observed from siblings by treating each family as a cluster. This model was
proposed by Vaupel et al. (1979) and developed and discussed by many
researchers, including Clayton and Cuzick (1985). The main approach to this
model is to assume that v

�
follows a parametric distribution.

The frailty model in (13.5.1) can be extended to handle more complicated
situations. For example, the frailty can be a time-dependent variable [replace
v
�
by v

�
(t) in (13.5.1)]. The frailty model with v

�
(t) can be used to model

successive or recurrent failure time as an alternative to the models in Section
13.4. Another example is that there may be more than one type of frailty in
each cluster, and v

�
in (13.5.1) can be replaced by v

�

 u

�
or v

�

 u

�

w

�
, and

so on.
Inferences of these frailty models are also based on either a likelihood

function or a partial likelihood function. Since the models involve a parametric
distribution, the likelihood or partial likelihood functions are complicated and
are beyond the level of this book.

The frailty models have not been used widely primarily because of the lack
of commercially available software. There are some computer programs
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available; for example, a SAS macro is available for a gamma frailty model at
the Web site of Klein and Moeschberger (1997), and another program is
described by Jenkins (1997).
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EXERCISES

13.1 Consider the cancer-free times from the participants with IDs 15 to 23
in Table 13.1. Follow Example 13.1 to construct the partial likelihood
function based on the observed cancer-free times from these nine partici-
pants.

13.2 Consider the survival times from 30 resected melanoma patients in Table
3.1. Let AGEG denote age group, AGEG� 1 if age �45 and AGEG� 2
otherwise. Fit the survival times with an AGEG-stratified Cox propor-
tional hazards model with the covariates age, gender, initial stage, and
treatment received. Discuss the association of the treatment received with
the survival time.

13.3 Using the data in Table 12.4, following Example 13.5 and the sample
codes for SAS, SPSS, or BMDP, fit the competing risk model for stroke,
CHD, other CVD, or STROKE/CHD separately, and discuss the results
obtained.

13.4 Using the rearranged data in Tables 13.7 to 13.13 and following
Examples 13.6 to 13.8, complete construction of the remaining terms in
the partial likelihood function based on the PWP model (13.4.2), PWP
gap time model (13.4.3), and AG model (13.4.9), and the remaining three
marginal likelihood functions based on the WLW model (13.4.13).
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CHAPTER 14

Identification of Risk Factors
Related to Dichotomous and
Polychotomous Outcomes

In biomedical research we are often interested in whether a certain survival-
related event will occur and the important factors that influence its occurrence.
Such events may involve two or more possible outcomes; examples are the
development of a given condition and response to a given treatment. If the
given condition is diabetes and we are only interested in whether someone
develops the disease (yes or no), the outcome is binary or dichotomous. If we
are interested in whether the person develops impaired glucose tolerance,
diabetes, or remains having normal glucose tolerance, there are three possible
outcomes, or we say the outcome is trichotomous. Similarly, response to a given
treatment can have dichotomous (response or no response) or polychotomous
outcomes (complete response, partial response, or no response).

To determine whether one is likely to develop a given disease, we need to
know the important characteristics (or factors) related to its development.
High- and low-risk groups can then be defined accordingly. Factors closely
related to the development of a given disease are usually called risk factors or
risk variables by epidemiologists. We shall use these terms in a broader sense
to mean factors closely related to the occurrence of any event of interest. For
example, to find out whether a woman will develop breast cancer because one
of her relatives did, we need to know whether a family history of breast cancer
is an important risk factor. Therefore, we need to know the following:

1. Of age, race, family history of breast cancer, number of pregnancies,
experience of breast-feeding, and use of oral contraceptives—which are
most important?

2. Can we predict, on the basis of the important risk factors, whether a
woman will develop breast cancer or is more likely to develop breast
cancer than another person?
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In this chapter we introduce several methods for answering these ques-
tions. The general approach is to relate various patient characteristics
(or independent variables, or covariates) to the occurrence of an event
(dependent or response variable) on the basis of data collected from
patients in each of the outcome groups. In the case of dichotomous out-
comes, there are two outcome groups. For example, to relate variables such
as age, race, and number of pregnancies to the development of breast cancer,
we need to collect information about these variables from a group of breast
cancer patients as well as from a group of healthy normal women. For an event
with polychotomous outcomes, we need to collect data from each outcome
group.

Often, a large number of patient characteristics deserve consideration.
These characteristics may be demographic variables such as age; genetic
variables such as gene variant or phenotype; behavioral variables such as
smoking or drinking behavior and use of estrogen or progesterone medic-
ation; environmental variables such as exposure to sun, air pollution, or
occupational dust; or clinical variables such as blood cell counts, weight, and
blood pressure. The number of possible risk factors can be reduced through
medical knowledge of the disease and careful examination of the possible risk
factors individually.

In Section 14.1 we present two methods for examination of individual
variables. One is to compare the distribution of each possible risk variable
among the outcome groups. The other method is the chi-square test for a
contingency table. This test is particularly useful when the risk variables are
categorical: for example, dichotomous or trichotomous. In this case, a 2�c or
r�c contingency table can be set up and a chi-square test performed. In
Section 14.2 we discuss logistic, conditional logistic, and other regression
models for binary responses and for examining the possible risk variables
simultaneously. Models for multiple outcomes are discussed in Section 14.3.

14.1 UNIVARIATE ANALYSIS

14.1.1 Comparing the Distributions of Risk Variables Among Groups

When the outcome is binary, it is often convenient to call an observation a
success or a failure. Success may mean that a survival-related event occurred,
and failure that it failed to occur. Thus, a success may be a responding
patient, a patient who survives more than five years after surgery, or a
person who develops a given disease. A failure may be a nonrespond-
ing patient, a patient who dies within five years after surgery, or a person
who does not develop a given disease. A preliminary examination of the
data can compare the distribution of the risk variables in the success and
failure groups. This method is especially appropriate if the risk variable is
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Table 14.1 Ages of 71 Leukemia Patients (Years)

Responders 20, 25, 26, 26, 27, 28, 28, 31, 33, 33, 36, 40, 40, 45, 45, 50, 50, 53 56,
62, 71, 74, 75, 77, 18, 19, 22, 26, 27, 28, 28, 28, 34, 37, 47, 56, 19

Nonresponders 27, 33, 34, 37, 43, 45, 45, 47, 48, 51, 52, 53, 57, 59, 59, 60, 60, 61, 61,
61, 63, 65, 71, 73, 73, 74, 80, 21, 28, 36, 55, 59, 62, 83

Source: Hart et al. (1977). Data used by permission of the author.

continuous. If, for example, the risk factor x is weight and the dependent
variable y is having cardiovascular disease, we may compare the weight
distribution of patients who have developed disease to that of disease-free
patients. If the disease group has significantly higher weights than those of the
disease-free group, we may consider weight an important risk factor. Common-
ly used statistical methods for comparing two distributions are the t-test for
two independent samples if the assumption of normality holds and the
Mann—Whitney U-test if the normality assumption is violated and a non-
parametric test is preferred.

Similarly, if there are more than two possible outcomes, we can use analysis
of variance or the Kruskal—Wallis nonparametric test to compare the multiple
distributions of a continuous variable. The following example compares the age
distribution of responders with that of nonresponders in a cancer clinical trial.

Example 14.1 Consider the ages of 71 leukemia patients—37 responders
and 34 nonresponders (response is defined as a complete response only)—
given in Table 14.1. Figure 14.1 gives us the estimated age distributions of the
two groups. By using the Mann—Whitney U-test (or Gehan’s generalized
Wilcoxon test), we find that the difference in age between responders and
nonresponders is statistically significant (p � 0.01). In consequence, a question
may arise as to what age is critical. Can we say that patients under 50 may
have a better chance of responding than do patients over 50? To answer this
question, one can dichotomize the age data and use the chi-square test,
discussed next.

14.1.2 Chi-Square Test and Odds Ratio

The chi-square test and the odds ratio are most appropriate when the
independent variable is categorical. If the independent variable is dichotomous,
a 2�2 table can be used to represent the data. Any variables that are not
dichotomous can be made so (with a loss of some information) by choos-
ing a cutoff point: for example, age less than 50 years. For multiple-
outcome events, 2�c or r�c tables can be constructed. The independent
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Figure 14.1 Age distribution of responders and nonresponders.

variables are then examined to find which ones (in some sense) provide the
best risk associations with the dependent variable. We first consider binary
outcomes and independent variables that have two categories; that is, we set
up a 2�2 contingency table similar to Table 14.2 for each independent variable
and look for a high degree of proportionality.

The first step is to calculate the sample proportion of successes in the two
risk groups, a/C

�
and b/C

�
. Further analysis of the table is concerned with the

precision of these proportions. A standard chi-square test can be used.
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Table 14.2 General Setup of a 2�2 Contingency Table

Risk Factor

Present (E ) Absent (E� ) Total

Dependent variable
Success a b R

�
Failure c d R

�
Total C

�
C

�
N

Proportion of successes (success rate) a/C
�

b/C
�

If the rates of success for the two groups E and E� are exactly equal, the
expected number of patients in the ijth cell (ith row and jth column) is

E
��
� N�

R
�

N
�

C
�

N
�

R
�
�C

�
N

(14.1.1)

For example, in the top left cell, the expected number is

E
��

�
R

�
�C

�
N

since the overall success rate is R
�
/N and there are C

�
individuals in the E

group. Similar expected numbers can be obtained for each of the four cells. Let
O

��
be the number of patients observed in the ijth cell. Then the discrepancies

can be measured by the differences (O
��
�E

��
). In a rough sense, the greater the

discrepancies, the more evidence we have against the null hypothesis that the
success rates are the same for the two groups. The chi-square test is based on
these discrepancies. Let

X��
�
�
���

�
�
���

(O
��
�E

��
)�

E
��

(14.1.2)

Under the null hypothesis, X� follows the chi-square distribution with 1 degree
of freedom (df). The hypothesis of equal success rates for groups E and E� is
rejected if X� ���

��� , where ��
��� is the 100� percentage point of the chi-square

distribution with 1 degree of freedom. An alternative way to compute X� is

X��
(ad � bc)�N

R
�
R

�
C

�
C

�

(14.1.3)
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The odds ratio (Cornfield, 1951) is a commonly used measure of association
in 2�2 tables. The odds ratio (OR) is the ratio of two odds: the odds of success
when the risk factor is present and the odds of success when the risk factor is
absent. In terms of probabilities,

OR�
P(success � E)/P(failure � E )
P(success � E� )/P(failure �E� )

(14.1.4)

Using the notation in Table 14.2, P(success �E) and P(failure � E) may
be estimated by a/C

�
and c/C

�
, respectively. Similarly, P(success � E� ) and

P(failure �E� ) may be estimated, respectively, by b/C
�
and d/C

�
. Therefore,

the numerator and denominator of (14.1.4) may be estimated, respectively,
by

a/C
�

c/C
�

�
a

c

and

b/C
�

d/C
�

�
b

d

Consequently, the OR may be estimated by

OR� �
a/c

b/d
�

ad

bc
(14.1.5)

which is also referred to as the cross-product ratio.
Several methods are available for an interval estimate of OR: for example,

Cornfield (1956) and Woolf (1955). Cornfield’s method, which requires an
iterative procedure, is considered more accurate but more complicated than
Woolf’s method. Woolf suggests using the logarithm of OR. The standard error
of log OR� may be estimated by

SE� (logOR� ) ��
1

a
�

1

b
�

1

c
�

1

d�
���

(14.1.6)

Then a 100(1� �)% confidence interval (CI) for log OR is

logOR� 	Z���SE� (logOR� )

The confidence interval for OR can be obtained by taking the antilog of the
confidence limits for log OR. If logOR

�
and logOR

�
are the upper and lower
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confidence limits for logOR, elogOR� and elogOR� are the upper and lower
confidence limits for OR.

Notice that in (14.1.5), if b or c is zero, OR� is undefined. If any one of the
four cell frequencies is zero, the estimated standard error in (14.1.6) is also
undefined. Should this occur, some statisticians (Haldane, 1956; Fleiss, 1979,
1981) suggest that 0.5 be added to each cell before using (14.1.5) and (14.1.6)
to solve the computational problem. However, if the cell frequencies are as
small as zero, the addition of 0.5 to each cell will substantially affect the
resulting estimate of OR and its standard error (Mantel, 1977; Miettinen,
1979). The estimates so obtained must be interpreted with caution.

An odds ratio of 1 indicates that the odds of success are the same whether
or not the risk factor is present. An odds ratio greater than 1 means that the
odds in favor of success is higher when the risk factor is present, and therefore
there is a positive association between the risk factor and success. Similarly, an
odds ratio of less than 1 signifies a negative association between the risk factor
and success. The interpretation should not be based totally on the point
estimate. A confidence interval is always more meaningful, just as in any other
estimation procedure.

The chi-square statistic in (14.1.2) may be used to test the null hypothesis
that there is no association between the risk factor and success, or H



: OR� 1.

The following example illustrates the chi-square test and odds ratio.

Example 14.2 In the study of the response rate of 71 leukemia patients
(Example 14.1), age is considered one of the possible risk variables. The
following 2�2 table is constructed.

Age� 50 Age	 50 Total

Response 27 10 37
Nonresponse 12 22 34
Total 39 32 71

The question is whether the response rates in the two age groups differ
significantly or whether age is associated with response.

The X� value according to (14.1.3) is

X��
(594� 120)�(71)
(37)(34)(39)(32)

� 10.16

with 1 degree of freedom. Reference to Table B-2 shows that the probability of
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getting a X� value of 10.16 if the two response rates are equal in the population
is less than 0.01. Hence the difference between the two response rates is
significant at the 1% level.

The estimate odds ratio, according to (14.1.5), is

OR�
(27)(22)
(10)(12)

� 4.95

The data show that the odds in favor of response are almost five times higher
in patients under 50 years of age than in patients at least 50 years old. The
difference is significantly different, as indicated by the chi-square test above.

To obtain a confidence interval for OR, we first compute log OR� � 1.60.
The estimated standard error of log OR� following (14.1.6) is

SE� (logOR� ) ��
1

27
�

1

10
�

1

12
�

1

22�
���

� 0.515

A 95% confidence interval for log OR is 1.60	 1.96(0.515), or (0.59, 2.61), and
a 95% confidence interval for OR is (e
��
, e����), or (1.80, 13.60). The wide
interval may be due to the small cell frequencies. Note that the standard error
of log OR� is inversely related to the cell frequencies.

In this example, the cutoff point, 50, was chosen arbitrarily. It is often of
interest to try more than one cutoff point if the number of observations in each
cell is not too small.

There are cases where the independent variable has c� 2 classes. The
chi-square test can be extended to 2�c tables. The odds ratio method can also
be extended to handle polychotomous independent variables. It is done by
selecting one of the classes as the reference class (the E� group) and calculating
the measure of association of each of the other classes relative to the reference
class. For multiple-outcome events, the chi-square test can be extended to r�c
tables. The expected frequencies are computed just as in (14.1.1), and compu-
tation of X� [chi-square distributed with (r � 1)(c� 1) degrees of freedom] is
the same as in (14.1.2) except that the sum is over all r�c cells. For details, see
Snedecor and Cocharan (1967, Sec. 9.7). The following example illustrates the
procedures.

Example 14.3 Suppose that in the study of response rates of leukemia
patients, another possible risk variable is the marrow absolute leukemic infil-
trate, which is defined as the percentage of the total marrow that is either blast
cells or promyelocytes. It is believed that patients should be classified into three
classes: 
45%, 46—90%, and �90%. The 2�3 table is given below. Numbers
in parentheses are expected frequencies. For example, 18.68� (39)(34)/71.
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Marrow Absolute Infiltrate


45% 46—90% �90% Total

Response 4 (8.34) 20 (20.32) 13 (8.34) 37
Nonresponse 12 (7.66) 19 (18.68) 3 (7.66) 34
Total 16 39 16 71

Response rate, (%) 25 51 81
OR� 1 3.16 13.0
95% CI for OR (0.86, 11.52) (2.40, 70.46)

The question is whether the difference in marrow absolute leukemic infiltrate is
related to response. The value of X� is

X��
(4� 8.34)�

8.34
�

(12� 7.66)�
7.66

� ��
(3� 7.66)�

7.66
� 10.17

The number of degrees of freedom is 3� 1� 2. With X� � 10.17 and 2 degrees
of freedom, the probability that the three absolute infiltrate groups have the
same response rate is less than 0.01. The data suggest that patients with a high
percentage of marrow absolute infiltrate tend to have a high response rate.
Marrow absolute infiltrate may be an important factor in predicting response.

The OR� s given in the table above are calculated using the 
45% class as
the reference class (or group). For example, for the �90% class, the odds ratio
is 13�12/4�3� 13. The 95% confidence intervals for the ORs are obtained
using (14.1.6). Although the odds ratio for the 46—90% group is larger than 1,
the 95% confidence intervals covers 1. Therefore, the point estimate, 3.16,
cannot be taken too seriously. It appears that the major difference is between
the �90% and 
45% groups.

Individual examination of each independent variable can provide only a
preliminary idea of how important each variable is by itself. The relative
importance of all the variables has to be examined simultaneously using
multivariate methods. In the following section we discuss the linear logistic
regression analysis.

14.2 LOGISTIC AND CONDITIONAL LOGISTIC REGRESSION
MODELS FOR DICHOTOMOUS RESPONSES

14.2.1 Logistic Regression Model for Prospective Studies

In a typical prospective study, a random sample of subjects is taken and the
values of the independent variables are measured at a given time (usually called
baseline measurements). The subjects are then followed for a given period of
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time and the outcome (dependent) variable is measured at the end of the
follow-up. Therefore, for a prospective study, the independent variables are
regarded as fixed quantities during the follow-up, but the outcomes are random
and unknown. The purpose of a prospective study is to examine the outcomes
and relate them to the baseline measurements. Examples of prospective studies
are cohort epidemiologic studies and clinical trials.

Suppose that there are n subjects and to some of whom the event of interest
occurred. They are called successes; the others are failures. Let y

�
� 1 if the ith

subject is a success and y
�
� 0 if the ith subject is a failure. Suppose that for

each of the n subjects, p independent variables x
��
, x

��
, . . . , x

��
are measured.

These variables can be either qualitative, such as gender and race, or quanti-
tative, such as blood pressure and white blood cell count. The problem is to
relate the independent variables, x

��
, . . . , x

��
, to the dichotomous dependent

variable y
�
.

Let P
�
be the probability of success, P

�
�P(y

�
� 1 � x

��
, . . . , x

��
), for the ith

subject. The logistic regression model, proposed by Cox (1970) assumes that
the dependence of the probability of success on independent variables is

P
�
� P( y

�
� 1 �x

�
) �

exp(��
��


b
�
x
��
)

1� exp(��
��


b
�
x
��
)

(14.2.1)

and

1�P
�
� P( y

�
� 0 �x

�
) �

1

1� exp(��
��


b
�
x
��
)

(14.2.2)

where x
�
� (x

�

� x

��
), x

�

� 1, and b

�
are unknown coefficients. The logarithm

of the ratio of P
�
and 1�P

�
is a simple linear function of the x

��
’s.

Let

�
�
� log

P
�

1�P
�

�
�
�
��


b
�
x
��

(14.2.3)

�
�
� log[P

�
/(1 �P

�
)] is called the logistic transform of P

�
and (14.2.3) is a linear

logistic model. Another name for �
�
is log odds. Thus, the model relates the

independent variables to the logistic transform of P
�
, or log odds. The

probability of success P
�
can then be found from (14.2.3) or (14.2.1). In many

ways (14.2.3) is the most useful analog for dichotomous response data of the
ordinary regression model for normally distributed data.

To estimate the coefficients b
�
’s, Cox suggests the maximum likelihood

method. Let y
�
, y

�
, . . . , y

�
be observations with dichotomous values on n

subjects. The likelihood function based on the binomial distribution contains a
factor (14.2.1) whenever y

�
� 1 and (14.2.2) whenever y

�
� 0. Thus, the likeli-
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hood function is

L (b


, b

�
, . . . , b

�
) �

�
�
���

P��
�
(1 �P

�
)����

�
��

���
exp(y

�
��

��

b
�
x
��
)

��
���

[1� exp(��
��


b
�
x
��
)]

�
exp(��

��

b
�
t
�
)

��
���

[1� exp(��
��


b
�
x
��
)]

(14.2.4)

where t
�
� ��

���
x
��
y
�
. The log-likelihood function is

l(b


, b

�
, . . . , b

�
) � log L �

�
�
��


b
�
t
�
�

�
�
���

log�1� exp�
�
�
��


b
�
x
���� (14.2.5)

The maximum likelihood estimates of b
�
’s that maximize the log-likelihood

function in (14.2.5) can be obtained by solving the following p equations
simultaneously:

t
�
�

�
�
���

x
��
exp(��

��

b
�
x
��
)

1� exp(��
��


b
�
x
��
)
� 0 j � 0, 1, . . . , p (14.2.6)

This can be done by an iterative procedure such as the Newton—Raphson
procedure. The second derivative of l in (14.2.5) is

I*
����

�

�l


b
��


b
��

��
�
�
���

x
���

x
���
exp(��

��

b
�
x
��
)

1� exp(��
��


b
�
x
��
)

j
�
� 0, . . . , p; j

�
� 0, . . . , p (14.2.7)

Let I
����

� (�1)I*
����

. Then the estimated inverse of the I matrix, I� ��, is the
asymptotic covariance matrix of the b

�
’s. If we use the notation in Section 7.1

and let b� � (b�


, b�

�
, . . . , b�

�
)� denote the MLE of b, the estimated covariance

matrix of the MLE b� is V� (b� ) � (v
��
) � (�
�l (b� )/
b 
b�)�� � I� ��, where v

��
denotes the ijth element of V� (b� ) or the ijth element of I� ��.

The coefficients so obtained indicate the relationships between the variables
and the log odds in favor of success. For a continuous variable, the correspond-
ing coefficient gives the change in the log odds for an increase of 1 unit in the
variable. For a categorical variable, the coefficient is equal to the log odds ratio
(see Section 14.1).

An approximate 100(1� �)% confidence interval for b
�
is

b�
�
	 Z����v

��
(14.2.8)

where Z��� is the 100(1� �/2) percentile of the standard normal distribution.
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To test the hypothesis that some of the b
�
’s are zero, a likelihood ratio test

can be used. For example, to test H


: b

�
� 0, the log-likelihood ratio test

statistic is

X
�
��2[l(b�



, b�

�
, . . . , b�

���
, 0, b�

�	�
, . . . , b�

�
) � l (b�



, b�

�
, b�

�
, . . . , b�

�
)]

(14.2.9)

where the first term is the maximized log-likelihood subject to the constraint
b
�
� 0. If the hypothesis is true, X

�
is distributed asymptotically as chi-square

with 1 degree of freedom.
An alternative test for the significance of the coefficients is the Wald test,

which can be written as

X



�
b� �
�

v
��

(14.2.10)

Under the null hypothesis that b
�
� 0, X



has an asymptotic chi-square

distribution with 1 degree of freedom. Although the Wald test is used by many,
it is less powerful than the likelihood ratio test (Hauck and Donner, 1977;
Jennings, 1986). In other words, the Wald test often leads the user to conclude
that the coefficient (consequently, the respective risk factor) is not significant
when, in fact, it is significant.

Similar to earlier discussion of model selection, forward, backward, and
stepwise variable selection methods can be used to select the risk factors that
are significantly associated with a dichotomous response. The independent
variables x

��
in this model do not have to be the original variables. They can

be any meaningful transforms of the original variables: for example, the
logarithm of the original variable, logx

��
, and the deviation of the variable

from its mean, x
��
� x�

�
.

From (14.2.1) and (14.2.2), the logarithm of the odds ratio for ith and kth
subjects is

log
P
�
/(1 �P

�
)

P
�
/(1 �P

�
)
�

�
�
���

b
�
(x

��
�x

��
) (14.2.11)

Thus, an estimate of the odds ratio can be obtained by replacing b
�
in (14.2.11)

with its MLE, b�
�
.

From the estimated regression equation, a predicted probability of success
can be computed by substituting the values of the risk factors in the equation.
Using these predicted probabilities, a goodness-of-fit test can be performed to
test the hypothesis that the model fits the data adequately. Several such tests
are available (Lemeshow and Hosmer, 2000): for example, the Pearson chi-
square test, the Hosmer—Lemeshow (Hosmer and Lemeshow, 1980) test, a test
statistic suggested by Tsiatis (1980), and the score of Brown (1982). In the
following, we introduce the Hosmer—L emeshow test.
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Let p
�
be the estimate of P

�
obtained from the fitted logistic regression

equation for the ith subject, i � 1, . . . , n. The p
�
’s can be arranged in ascending

order from smallest to largest. Those probabilities and the corresponding
subjects are then divided into g groups according to some cutoff points of the
probability. For example, let g� 10 and the cutoff points of the probability be
equal to k/10, k� 1, 2, . . . , 10. Thus, the first group contains all subjects whose
estimated probabilities are less than or equal to 0.1, the second group contains
all subjects whose estimated probabilities are less than or equal to 0.2, and so
on. Let n

�
be the number of subjects in the kth group. The estimated expected

number of successes for the kth group is

E
�
�

��
�
���

p
�

k � 1, 2, . . . , g

The Hosmer—Lemeshow test statistic is defined as

C�
�
�
���

(O
�
�E

�
)�

n
�
p�
�
(1 � p�

�
)

(14.2.12)

where O
�
is the observed number of successes in the kth group and p�

�
is the

average estimated probability of the kth group, that is,

p�
�
�

1

n
�

��
�
���

p
�

Under the null hypothesis that the model is adequate, the distribution of C in
(14.2.12) is well approximated by the chi-square distribution with g� 2 degrees
of freedom. The test is basically a chi-square test of the discrepancy between
the observed and predicted frequencies of success. Thus, a C value larger than
the 100� percentage point of the chi-square distribution (or p value less than
�) indicates that the model is inadequate.

Similar to other chi-square goodness-of-fit tests, the approximation depends
on the estimated expected frequencies being reasonably large. If a large number
(say, far more than 20%) of the expected frequencies are less than 5, the
approximation may not be appropriate and the p value must be interpreted
carefully. If this is the case, adjacent groups may be combined to increase the
estimated expected frequencies. However, Hosmer and Lemeshow warn that if
fewer than six groups are used to calculate C, the test would be insensitive and
would almost always indicate that the model is adequate.

Most statistical software packages provide programs for logistic regression
analysis: for example, SAS (procedures LOGISTIC, PHREG, and CATMOD),
BMDP (procedures LR and PR), and SPSS (procedures NOMREG, PROBIT,
PLUM, and LOGISTIC). Most of them provide estimates of the coefficients
and test statistics, variable selection procedures, and tests of goodness of fit.
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Example 14.4 In a study of 238 non-insulin-dependent diabetic patients,
10 covariates are considered possible risk factors for proteinuria (the outcome
variable). The logistic regression method is used to identify the most important
risk factors and to predict the probability of proteinuria on the basis of these
risk factors. The 10 potential risk factors are age, gender (1, male; 2, female),
smoking status (0, no; 1, yes), percentage of ideal body mass index, hyperten-
sion (0, no; 1, yes), use of insulin (0, no; 1, yes), glucose control (0, no; 1, yes),
duration of diabetes mellitus (DM) in years, total cholesterol, and total
triglyceride. Among the 238 patients, 69 have proteinuria (y

�
� 1).

Using the stepwise procedure in BMDP, it is estimated that at step 1, the
model contains only b



and b�



� �0.896 and l(b�



) in (14.2.5) is �143.292. At

step 2, duration of diabetes is added to the model because its maximum
log-likelihood value is the largest among all the covariates. The MLEs of the
two coefficients are b�



��1.467 and b�

�
��0.055, and l(b�



, b�

�
) ��139.429.

Since

X
�
��2[l(b�



) � l(b�



, b�

�
)] � 7.726

which is significant (p� 0.005), the duration of DM is related significantly to
the chance of proteinuria. The Hosmer—Lemeshow test statistic for goodness of
fit with only duration of DM in the model, C� 9.814 with 8 degrees of
freedom, gives a p value of 0.278.

At step 3, gender is added to the model because its addition yields the largest
maximum log-likelihood value among all the remaining covariates. The maxi-
mum log-likelihood value, l(b�



, b�

�
, b�

�
) ��137.749, b�



��1.453, b�

�
��0.060,

and b�
�
��0.279. To test if gender is significantly related to proteinuria after

duration of DM, we perform the likelihood ratio test

X
�
��2[l(b�



, b�

�
) � l(b�



, b�

�
, b�

�
)] � 3.360

which is significant at p � 0.067. The stepwise procedure terminates after the
third step because no other covariates are significant enough to enter the
regression model; that is, none of the other covariates have a p value less than
0.15, which is set by the program (BMDP). If any covariate already in the
regression becomes insignificant after some other variables are in, the insignifi-
cant variable would be removed. The p values for entering and removing a
variable can be determined by the user. The default values for entering and
removing a variable are, respectively, 0.10 and 0.15. Thus, the procedure
identifies duration of DM and gender as the two most important risk factors
based on the data given. A question that may be raised at this point is whether
one should include gender in the equation since its significance level is larger
than the commonly used 0.05. The recommendation is to include it since it is
close to 0.05 and since the p value should not be the only basis for determining
whether a covariate should be included in the model. In addition, the
Hosmer—Lemeshow goodness of fit test statistic C � 5.036, when gender is
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Table 14.3 Estimated Coefficients for a Linear Logistic Regression Model Using Data
from Diabetic Patients

Estimated Standard
Variable Coefficient Error Coefficient/SE exp(coefficient)

Constant �1.453 0.264 �5.504 0.234
Duration of DM 0.060 0.020 2.956 1.062
Sex �0.279 0.152 �1.836 0.756

included, yields a p value of 0.754. Thus, inclusion of this covariate improves
considerably the adequacy of the model. Thus, the final regression equation
with the two significant risk factors is

log
P
�

1�P
�

��1.453� 0.060 (duration of DM) � 0.279 (gender)

Table 14.3 gives the details for the estimated coefficients.
The signs of the coefficients indicate that male patients and patients with a

longer duration of diabetes have a higher chance of proteinuria. Furthermore,
for each increase of one year in duration of diabetes, the log odds increase by
0.060. Probabilities of proteinuria can be estimated following (14.2.1). For
example, the probability of developing proteinuria for a male patient who has
had diabetes for 15 years is

P �
e�
����

1� e�
����
� 0.303

where �0.832 is obtained by substituting the values of the two covariates in
the fitted equation; that is, �1.453�0.060(15)�0.279(1)��0.832. Similarly,
for a female patient who has the same duration of diabetes, the probability is
0.248.

In addition to individual variables, interaction terms can be included in the
logistic regression model. If the association between an independent variable
x
�
and the dependent variable y is not the same in different levels of another

variable, x
�
, there is interaction between x

�
and x

�
. To check if there is

interaction, one can include the product of x
�
and x

�
in the regression model

and test the significance of this new variable. The following example illustrates
the procedure.

Example 14.5 It is well known that adriamycin is effective for treating
certain types of cancer. It is also well known that adriamycin is highly toxic.
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Some patients develop congestive heart failure (CHF), but others who receive
a similar dose of adriamycin do not. In an attempt to detect factors that would
increase the risk of developing adriamycin cardotoxicity, various patient
characteristics of 53 cancer patients were studied. Seventeen of these patients
developed CHF and 36 patients did not. After a careful investigation, it was
found that the total dose (z

�
) and percentage decrease in electrocardiographic

QRS voltage (z
�
) are most closely related to CHF. Table 14.4 shows the data

and some summary statistics. The following linear logistic regression model
with transformed variables z

�
� z

�
� z�

�
and x

�
� z

�
� z�

�
is used:

�� log
p

1� p
� b



� b

�
x
�
� b

�
x
�
� b

�
x
�
x
�

The stepwise procedure selects percentage decrease in QRS as the most
important variable, followed by the total dose (TD) and interaction
(TD�QRS). The logistic regression analysis results are given in Table 14.5.
The stepwise log-likelihood values given in the last column indicate that only
QRS is significant since 2(�10.185� 33.254)� 46.138, which yields a p value
less than 0.001. Neither the total dose nor the interaction is significant.

Suppose that the last three columns of Table 14.4, Y, Z1, and Z2, are stored
in a text data file ‘‘C:�EX14d2d2.DAT’’, separated by a space. The following
SAS, SPSS, or BMDP codes can be used to obtain the results in Table 14.5.

SAS code:

data w1;
infile ‘c:�ex14d2d2.dat’ missover;
input y z1 z2;
x1� z1-517.679;
x2� z2-26.019;
x12� x1*x2;

run;
proc logistic data�w1 descending;
model y� x1 x2 x12/ selection� s plcl plrl lackfit;

run;

SPSS code (forward selection method):

data list file� ‘c:�ex14d2d2.dat’ free
/ y z1 z2.

Compute x1� z1-517.679.
Compute x2� z2-26.019.
Compute x12� x1*x2.
Logistic regression y with x1 x2 x12

/method� fstep
/print� all.
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Table 14.4 Total Dose and Percent Decrease in QRS of
53 Patients Receiving Adriamycin

Total Percent Decrease
Patient CHF
, y Dose, z

�
in QRS, z

�

1 1 435 41
2 1 600 71
3 1 600 51
4 1 540 40
5 1 510 63
6 1 740 79
7 1 825 61
8 1 535 44
9 1 510 53
10 1 483 27
11 1 460 53
12 1 460 60
13 1 550 65
14 1 540 58
15 1 310 41
16 1 500 64
17 1 400 44
18 0 440 9
19 0 600 42
20 0 510 19
21 0 410 24
22 0 540 �24
23 0 575 39
24 0 564 35
25 0 450 10
26 0 570 6
27 0 480 6
28 0 585 21
29 0 420 14
30 0 470 1
31 0 540 33
32 0 585 33
33 0 600 4
34 0 570 2
35 0 570 5
36 0 510 12
37 0 470 �1
38 0 405 44
39 0 575 14
40 0 540 �10
41 0 500 �43
42 0 450 23
43 0 520 �1

(Continued overleaf )
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Table 14.4 Continued

Total Percent Decrease
Patient CHF
, y Dose, z

�
in QRS, z

�

44 0 495 29
45 0 585 40
46 0 450 30
47 0 450 23
48 0 500 12
49 0 540 �11
50 0 440 7
51 0 480 �22
52 0 550 20
53 0 500 19

Source: Minow et al. (1977).


 1, yes; 0, no; z�
�
� 517.679, z�

�
� 26.019.

Table 14.5 Linear Logistic Regression Analysis Results of Data in Table 14.4

Estimated Standard
Variable Coefficient Error Coefficient/SE Log Likelihood

Constant �3.757 1.576 �2.384 �33.254
QRS 0.254 0.102 2.480 �10.185
TD �0.024 0021 �1.160 �9.225
TD�QRS 0.001 0.001 0.677 �8.803

BMDP codes for procedure LR:

/input file� ‘c:�ex14d2d2.dat’ .
variables� 3.
format� free.

/variable names� y, z1, z2.
/transform x1� z1-517.679.

x2� z2-26.019.
x12� x1*x2.

/regress depend� y.
Interval� x1, x2, x12.
Model� x1, x2, x12.
Start� in, in, in.
Move� 0, 0, 0.
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Method�mlr.
/print cell�used.
/end

When the independent variables are dichotomous or polychotomous, the
logistic regression coefficients can be linked with odds ratios. Consider the
simplest case, where there is one independent variable, x

�
, which is either 0 or

1. The linear regression model in (14.2.1) and (14.2.2) becomes

P(y� 1 � x
�
) �

eb


�b

�
x
�

1� eb


�b

�
x
�

P(y � 0 � x
�
) �

1

1� eb


�b

�
x
�

Values of the model when x
�
� 0, 1 are

P(y� 1 �x
�
� 0) �

eb



1� eb



P(y � 1 � x
�
� 1) �

eb


�b

�

1� eb


�b

�

P(y � 0 � x
�
� 0) �

1

1� eb



P(y � 0 � x
�
� 1) �

1

1� eb


�b

�

The odds ratio in (14.1.4) is

OR�
P(y� 1 � x

�
� 1)/P( y� 0 �x

�
� 1)

P(y� 1 � x
�
� 0)/P( y� 0 �x

�
� 0)

�
eb



�b

�

eb



� eb
�

and the log odds ratio is log(OR) � log(eb
�) � b

�
[this can also be derived

directly from (14.2.11)]. Thus, the estimated logistic regression coefficient also
provides an estimate of the odds ratio, that is, OR� � eb�

�. If (b
��
, b

��
) is the

confidence interval for b
�
, the corresponding interval for OR is (eb

��, eb
��).

Example 14.6 Consider the age (x) and response (y) data from the 71
leukemia patients presented in Table 14.6 (Examples 14.1 and 14.2). The
logistic regression analysis results are given in Table 14.7. Notice that
exp(b

�
) � exp(1.5994)� 4.95, which is equal to the estimate of OR obtained in

Example 14.2 using (14.1.5), and the standard error of b�
�
is the same as that

of logOR� except for a small rounding-off error. The confidence interval for OR
can also be obtained from the logistic regression analysis results.
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Table 14.6 Age and Response Data of 71 Leukemia
Patients

Response x� 50(1) x	 50(0) Total

Yes (1) 27 10 37
No (0) 12 22 34
Total 39 32 71

Table 14.7 Results of Logistic Regression Analysis of Data in Table 14.6

Estimated Standard
Variable Coefficient Error Coefficient/SE exp(coefficient)

Constant (b�


) �0.7885 0.3814 �2.067 0.45

Age(b�
�
) 1.5994 0.5156 3.102 4.95

The relationship between the logistic regression coefficient and odds ratio
can be extended to polychotomous variables by creating dummy variables (or
design variables). The following example illustrates the procedure.

Example 14.7 Consider the data in Example 14.3. The variable marrow
absolute infiltrate (MAI) has three levels. As in Example 14.3, the 
45% level
is considered as the reference group. In this case, two design variables will be
used and their values are assigned as follows:

D
�
��

1 if MAI� 46—90%

0 otherwise
D

�
��

1 if MAI� 90%

0 otherwise

For MAI, the design variable values and the respective number of responders
(Event) and total number of patient in each MAI level (N) are listed in the
following table.

MAI(%) D
�

D
�

Event N


45 0 0 4 16
46—90 1 0 20 39
�90 0 1 13 16

Using these design variables, the logistic regression analysis gives the results in
Table 14.8.
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Table 14.8 Results of Logistic Regression Analysis of Data in Example 14.7 and Two
Design Variables

Estimated Standard
Variable Coefficient Error Coefficient/SE exp(coefficient)

Constant �1.0986 0.5774 �1.903 0.33
MAI (D

�
) 1.1499 0.6603 1.742 3.16

MAI (D
�
) 2.5649 0.8623 2.974 13.00

The coefficient corresponding to D
�
, 1.1499, is the log odds ratio between

the 46—90% group and the 
45%group. The odds ratio is exp(1.1499)� 3.16,
which is exactly equal to the estimate obtained in Example 14.3. Similarly, the
coefficient corresponding to D

�
is the log odds ratio between the �90% group

and the 
45% group. The odds ratio obtained from the regression coefficient,
13.00, is the same as that obtained in Example 14.3.

The estimated standard error for D
�
, 0.6603, is also the standard error of

logOR� . A 95% confidence interval for the coefficient is 1.1499	 1.96(0.6603),
or (�0.1443, 2.4441), and consequently, a 95% confidence interval for OR is
(e�
�����, e������), or (0.86, 11.52), which is identical to that obtained in
Example 14.3 using Woolf’s estimate of SE(log OR).

Suppose that the data in Example 14.6 are arranged in four columns for D
�
,

D
�
, Event, and N as in the table above and are saved in a text data file

‘‘C:�EX14d2d4.DAT’’. The values of D
�
, D

�
, Event, and N in each row are

separated by a space. The following SAS, SPSS, or BMDP codes can be used
to obtain the results in Table 14.8.

SAS code:

data w1;
infile ‘c:�ex14d2d4.dat’ missover;
input d1 d2 event n;

run;
proc logistic data�w1 ;
model event/n� d1 d2 / plcl plrl;

run;

SPSS code:

data list file� ‘c:�ex14d2d4.dat’ free
/ d1 d2 event n.

Probit event OF n WITH d1 d2
/model� logit
/log� 2.718
/print� all.
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BMDP code for procedure LR:

/input file� ‘c:�ex14d2d4.dat’ .
variables� 4.
format� free.

/variable names� d1, d2, event, n.
/regress count is n.

fcount is event.
Interval�d1, d2.

/print cell�used.
/end

For a continuous independent variable, the logistic regression coefficient
gives the change in log odds for an increase of 1 unit in the variable. In general,
for an increase of m units in the variable, the log odds ratio is equal to m times
the logistic regression coefficient. The derivation is left to the reader as an
exercise.

When more than one independent variable is included in the logistic
regression model, each estimated coefficient can be interpreted as an estimate of
the log odds ratio statistically adjusting for all the other variables. For
example, in Example 14.4, the regression coefficient for the gender variable,
�0.279, is an estimate of the log odds ratio for females versus males, adjusting
for duration of diabetes. Or the adjusted odds ratio for females versus males is
estimated as exp(�0.279) � 0.76; suggesting that female diabetic patients have
a lower risk of having proteinuria than that of male patients, after adjusting for
duration of diabetes. This interpretation, commonly used by epidemiologists,
is appropriate if the linear relationship between the log odds and the indepen-
dent variables holds.

Press and Wilson (1978) compare the logistic regression method to the
discriminant analysis and find that if the independent variables are normal
with identical covariance matrices, discriminant analysis is preferred. Under
abnormality, the logistic regression method is preferred. In particular, if the
independent variables are dichotomous, we cannot expect to predict accurately
the probability of success with a discriminant function, even with a large
amount of data. Their examples show that the logistic regression gives a higher
correct classification rate.

14.2.2 Logistic and Conditional Logistic Regression Model for
Retrospective Studies

As mentioned earlier, the logistic regression model defined in (14.2.3) is
originally designed for prospective studies, where a set of covariates or
independent variables are measured at a baseline examination on a group of
people without the disease of interest. These subjects are then followed for a
period of time and development of the disease among them are recorded during
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follow-up. The model can be extended to analyze data from retrospective
studies, such as a case—control study. In a case—control study, cases (subjects
with the disease of interest) and controls (subjects without the disease) are first
selected and risk factor data such as exposure variables and other covariates
are collected retrospectively. For example, in a case—control study of lung
cancer and cigarette smoking, a group of lung cancer patients and a group of
people without lung cancer are selected. Their smoking histories are then
collected along with other risk factors. Therefore, in a case—control study,
participants are selected first based on their disease status, and their history of
risk factor exposures is collected later. The purpose of a case—control study is
to estimate the association between the risk factors and the disease under
study. Using probability terms, we are dealing with the probability that the risk
factors take on certain values given that a person is a case or a control. We
denote this conditional probability by P(x � y), where x denote the covariates
and y the outcome variable. Using the same notation, the probability of
interest in a prospective study is P(y � x). Based on conditional probability
theory, P(x � y) can be written as

P(x � y) �
P(y � x)P(x)

P(y)
(14.2.13)

where y� 1 for cases and 0 for controls. Thus, P(x � y) is a function of P( y �x),
P(x), and P(y).

The likelihood function of the logistic regression model for a retrospective
study, similar to (14.2.4), is the product of terms in the form of P(x � y) in
(14.2.13) for the cases and controls selected [(P(x � y� 1) from a case and
P(x � y� 0) from a control)]. We introduce here two most widely used
approaches to this likelihood function. One approach considers the probability
of case/control selection. Since in case—control studies, the cases and controls
are selected from the population and the likelihood function is based on subject
selection, we introduce an indicator variable to denote whether a person is
selected (s � 1) or is not selected (s� 0). Let n

�
and n



be, respectively, the

numbers of selected cases and controls in the study. The likelihood function is

L
��

�
��
�
���

P(x
�
� y

�
� 1, s� 1)

�

�
���

P(x
�
� y

�
� 0, s � 1) (14.2.14)

Define

�
�
�P(s � 1 � y� 1)

to be the probability that a diseased person is selected for the study as a case
and

�


�P(s � 1 � y� 0)
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to be the probability that a disease-free person is selected for the study as a
control. Assume that the sampling probabilities depend only on disease status
and not on the covariates. Using Bayes’ theorem in probability theory and
(14.2.1), it can be shown (the derivation is left to the reader as an exercise) that
the probability that a person is diseased given that he or she has risk factors
x and was selected for the study can be written as

P(y
�
� 1 �x

�
, s� 1) �

exp(b*


� ��

���
b
�
x
��
)

1� exp(b*



���
���

b
�
x
��
)

(14.2.15)

where

b*


� b



� log

�
�

�



(14.2.16)

According to the conditional probability in (14.2.13), the first term in the
likelihood function in (14.2.14) is

P(x
�
� y

�
� 1, s� 1) �

exp(b*


� ��

���
b
�
x
��
)

1� exp(b*



���
���

b
�
x
��
) �

P(x
�
� s� 1)

P(y� 1 � s� 1)� (14.2.17)

Similarly, the second term in (14.2.14) for y
�
� 0 can be obtained:

P(x
�
� y

�
� 0, s� 1) �

1

1� exp(b*


� ��

���
b
�
x
��
) �

P(x
�
� s� 1)

P( y � 0 � s� 1)� (14.2.18)

Substituting (14.2.17) and (14.2.18) into (14.2.14), we obtain the likelihood
function for a case—control study:

L
��

� L (b*


, b

�
, . . . , b

�
)�

�
�
���

P(x
�
� s� 1)

P(y � s � 1)
(14.2.19)

where n � n


� n

�
, L (b*



, b

�
, . . . , b

�
) is the likelihood function for prospective

studies in (14.2.4) except that the intercept term b


is replaced by b*



in

(14.2.16). If we assume that the probability distribution of the covariates, P(x),
contains no information about the parameters of interest, or P(x) is indepen-
dent of the coefficients b

�
, and the selection is independent of x, then

maximizing L
��
to obtain estimates of b

�
is equivalent to maximizing only L (b*



,

b
�
, . . . , b

�
) since P(y� 1 � s � 1) � n

�
/n and P(y� 0 � s� 1) � n



/n. This im-

plies that we can use the computer program for prospective studies to analyze
case—control study data except that the intercept term cannot be interpreted
meaningfully unless �

�
and �



are known.

In most practical situations, the assumption made above about P(x) is
reasonable. Historically, in early applications of the logistic regression method,
the covariates were assumed to have multivariate normal distribution. Then
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estimation of the coefficients, b
�
in (14.2.19), would involve the distribution P(x)

and thus became much more complicated. However, in practice, many of the
covariates are categorical or discrete and are therefore distinctly nonnormal.
Thus, it is appropriate to allow P(x) to remain completely arbitrary and use
simply L (b*



, b

�
, . . . , b

�
) in (14.2.19) in case—control studies.

Another approach to the likelihood function based on (14.2.13) is to
consider a conditional probability instead. Suppose that n

�
cases and n



controls were selected in a case—control study and n � n

�
� n



; let x

�
,

x
�
, . . . , x

�
be the risk factor sets of the n subjects without specifying which of

them pertain to the cases and which to the controls. Then the conditional
probability that the first n

�
x’s are observed from the n

�
cases and the

remainder are from the n


controls may be written as

���
���

P(x
�
� y � 1) ��

����	�
P(x

�
� y � 0)

��l
�
,...,l

��
�(���

���
P(x

��
� y� 1) ��

����	�
P(x

�
�

� y� 0))
(14.2.20)

where the summation in the denominator is over the n!/(n
�
! n



!) possible ways

of selecting n
�
individuals as cases from the n subjects, with the remaining n



as controls. By using (14.2.13) and (14.2.1), (14.2.20) reduces to

���
���

exp(��
���

b
�
x
��
)

��l
�
,...,l

��
� ���

���
exp(��

���
b
�
x
�
�
�
)

(14.2.21)

Comparing with (12.1.17), (14.2.21) can be considered as a special case of
(12.1.17) in which there is only one distinct uncensored failure time, say at
t� 1, and all of the n

�
persons failed at t� 1. The remaining n



subjects

survive longer than 1 and are censored, say at t� 2, while all n subjects are at
risk at t� 1. This interpretation of (14.2.21) permits us to apply the method
and computer software for the Cox proportional hazards model with a discrete
time scale and ties to obtain an estimate of b in the logistic regression model
and to perform the corresponding inferences. The procedure is illustrated in
Example 14.8. When n

�
and n



are large enough, it can be shown that an

analysis based on this conditional probability will produce results equivalent to
those based on the likelihood function defined in (14.2.19) (Efron, 1975;
Farewell, 1979; Breslow and Day, 1980). When n

�
and n



are large, one may

prefer using (14.2.19) to (14.2.21) since the former is easier. However, for a
case—control study with a matched or stratified design, analysis based on the
conditional probability defined in (14.2.21) is a better choice than (14.2.19)
(Efron, 1975; Farewell, 1979; Breslow and Day, 1980). In the following section
we discuss the application of logistic regression analysis for two widely
accepted matched designs in case—control studies.

1 : R Matched Design
A widely used case—control design is to have one or more controls matched
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for each case based on matching variables such as age and gender. Suppose
that for each case there are R(	1) matched controls. Let x

���
denote the

observed value of the jth covariate ( j� 1, . . . , p) from the kth subject (k� 1
for the case and k � 2, . . . ,R � 1 for matched controls) in the ith matched set
(i � 1, . . . , n). The n matched sets are considered as the samples from the n
different strata defined by the matching variables. Following (14.2.21) with
n
�
� 1 and n



�R, the conditional probability for the matched set (1 case and

R controls) in the ith stratum is

exp(��
���

b
�
x
���
)

exp(��
���

b
�
x
���
) � ��	�

���
exp(��

���
b
�
x
���
)
�

1

1���	�
���

exp[��
���

b
�
(x

���
�x

���
)]

(14.2.22)

and thus the conditional likelihood function for all n strata is the product of
the n terms in (14.2.22), that is,

�
�
���

1

1� ��	�
���

exp[��
���

b
�
(x

���
� x

���
)]

(14.2.23)

When R� 1, that is, a one-to-one pair matching, the conditional likelihood
function obtained from (14.2.23) reduces to

L (b
�
, . . . , b

�
)�

�
�
���

1

1�exp[��
���

b
�
(x

���
�x

���
)]

�
�

�
���

exp[��
���

b
�
(x

���
�x

���
)]

1�exp[��
���

b
�
(x

���
�x

���
)]

(14.2.24)

Compared with the likelihood function for the ordinary logistic regression in
(14.2.4), the conditional likelihood function (14.2.24) can be treated as a special
case of (14.2.4) with y

�
� 1, b



� 0, and x

��
can be replaced by the difference in

x
��
between the case and its matched control. This fact permits the use of

computer programs for ordinary logistic regression in one-to-one matched
case—control studies. The procedure is as follows:

1. Let n be the number of case—control pairs.

2. Use x
���

� x
���
, the difference between covariates for the case (x

���
) and

its matched control (x
���

), as the independent variable in the model.

3. Let y
�
� 1 for all pairs.

4. Delete the intercept term b


from the model.
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n1 : n0 Matched Design or Stratified Design
Suppose that there are n

�
cases and n



controls in the ith stratum and

n� n
�
� n



. Let x

���
denote the observed value of the jth covariate

( j� 1, . . . , p) from the kth subject (k� 1, 2, . . . , n
�
for the n

�
cases and

k� n
�
� 1, . . . , n for the n



controls) in the ith stratum (i � 1, . . . ,m). From

(14.2.21), the contribution of the ith stratum to the conditional likelihood
function is

���
���

exp(��
���

b
�
x
���
)

��k
�
,...,k

��
� ���

���
exp(��

���
b
�
x
���

�

)
(14.2.25)

where the summation in the denominator is over all the n!/(n
�
! n



!) possible

ways to select n
�
out of the n subjects as cases and the remaining n



as controls.

The term in (14.2.25) has the same mathematical form as (14.2.21). Thus, as
discussed earlier, the computer software for the proportional hazards model
can be used to estimate the coefficients.

In both 1 :R and n
�
: n



matched designs, most of the other features in the

ordinary logistic regression model fitting, including the use of design (dummy)
variables and statistical inferences, remain the same. However, the goodness of
fit test of Hosmer and Lemeshow is not applicable to matched designs. Readers
who are interested in assessing the logistic regression model in matched
case—control studies are referred to Pregibon (1984) and Moolgavkar et al.
(1985).

The following example illustrates the basic procedure for the one-to-one
matched design using (14.2.24).

Example 14.8 To study the effect of obesity, family history of diabetes, and
level of physical activity to non-insulin-dependent diabetes (NIDDM), 30
nondiabetic persons are matched with 30 NIDDM patients by age and gender.
Obesity is measured by body mass index (BMI), which is defined as weight in
kilograms divided by height in meters squared. Family history of diabetes (FH)
and levels of physical activity (PHY) are binary variables. Table 14.9 gives the
partially fictitious data. Following the procedure given above, the results of
fitting the three variables using BMDP are given in Table 14.10.

Suppose that text data file ‘‘C:�EX14d2d5.DAT’’ contains six successive
columns of data: BMIC, FHC, PHYC, BMIN, FHN, and PHYN, as in Table
14.9, separated by a space. The following SAS, SPSS, or BMDP code can be
used to generate the results in Table 14.10.

SAS code:

data w1;
infile ‘c:�ex14d2d5.dat’ missover;
input bmic fhc phyc bmin fhn phyn;
bmi� bmic-bmin;
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Table 14.9 Data of 30 Matched Case--Control Pairs

Case (Diabetic) Control (Nondiabetic)

Pair BMI FH
 PHY� BMI FH
 PHY�

1 22.1 1 1 26.7 0 1
2 31.3 0 0 24.4 0 1
3 33.8 1 0 29.4 0 0
4 33.7 1 1 26.0 0 0
5 23.1 1 1 24.2 1 0
6 26.8 1 0 29.7 0 0
7 32.3 1 0 30.2 0 1
8 31.4 1 0 23.4 0 1
9 37.6 1 0 42.4 0 0
10 32.4 1 0 25.8 0 0
11 29.1 0 1 39.8 0 1
12 28.6 0 1 31.6 0 0
13 35.9 0 0 21.8 1 1
14 30.4 0 0 24.2 0 1
15 39.8 0 0 27.8 1 1
16 43.3 1 0 37.5 1 1
17 32.5 0 0 27.9 1 1
18 28.7 0 1 25.3 1 0
19 30.3 0 0 31.3 0 1
20 32.5 1 0 34.5 1 1
21 32.5 1 0 25.4 0 1
22 21.6 1 1 27.0 1 1
23 24.4 0 1 31.1 0 0
24 46.7 1 0 27.3 0 1
25 28.6 1 1 24.0 0 0
26 29.7 0 0 33.5 0 0
27 29.6 0 1 20.7 0 0
28 22.8 0 0 29.2 1 1
29 34.8 1 0 30.0 0 1
30 37.3 1 0 26.5 0 0


 1, yes; 0, no.
� 1, physically active; 0, sedentary.

fh� fhc-fhn;
phy�phyc-phyn;
y� 1;

run;
proc logistic data�w1;
model y� bmi fh phy / noint plcl plrl lackfit;

run;
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Table 14.10 Results of a Logistic Regression Analysis of Data in Table 11.13

Estimated Estimated
Variable Coefficient Standard Error Coefficient/SE exp(coefficient)

BMI 0.090 0.065 1.381 1.094
FH 0.968 0.588 1.646 2.633
PHY �0.563 0.541 �1.041 0.569

SPSS code:

data list file� ‘c:�ex14d2d5.dat’ free
/ bmic fhc phyc bmin fhn phyn.

Compute bmi�bmic-bmin.
Compute fh� fhc-fhn.
Compute phy�phyc-phyn.
Compute y� 1.
Logistic regression y with bmi fh phy

/origin
/print� all.

BMDP LR code:

/input file� ‘c:�ex14d2d5.dat’ .
variables� 6.
format� free.

/variable names� bmic, fhc, phyc, bmin, fhn, phyn.
/transform bmi� bmic-bmin.

fh� fhc-fhn.
phy�phyc-phyn.
y� 1.

/regress depend� y.
Interval� bmi, fh, phy.
Model� bmi, fh, phy.
Start� in, in, in.
Constant�out.
Move� 0, 0, 0.
Method�mlr.

/print cell�used.
/end

The following example illustrates the estimating procedures for the 1 :R and
n
�
: n



matched case—control designs.

Example 14.9 Table 14.11 lists a subset of simulated data from a case—
control diabetes study that is based on a cohort study of heart disease with a
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Table 14.11 A Subset of Age-Group and Gender-Matched DM Data in Example 14.9


AGE AGEG SEX SBP DBP LACR HDL LINSUL SMOKE DMS DM SN

51.8 50 1 148 91 1.35 37 2.81 0 1 0 1
50.9 50 1 116 95 1.04 43 2.74 0 1 0 1
50.9 50 1 114 85 1.26 64 1.98 1 1 0 1
50.9 50 1 120 80 1.56 52 2.53 1 1 0 1
54.6 50 1 119 71 1.55 30 2.87 0 2 0 1
50.8 50 1 123 78 1.40 33 3.31 0 2 0 1
53.3 50 1 119 75 1.69 40 2.13 1 3 1 1
72.0 70 0 129 73 1.06 25 2.69 0 1 0 2
73.1 70 0 120 68 0.87 30 2.76 0 1 0 2
72.8 70 0 111 66 2.52 73 3.17 0 2 0 2
70.3 70 0 115 65 3.16 42 2.96 0 2 0 2
72.1 70 0 140 66 3.18 52 3.48 0 2 0 2
72.8 70 0 136 72 3.36 59 3.22 0 2 0 2
71.1 70 0 133 85 2.95 73 3.25 0 3 1 2
56.4 55 1 110 74 0.58 43 2.18 0 1 0 3
55.7 55 1 122 77 1.18 34 2.76 1 1 0 3
56.9 55 1 114 74 1.10 25 2.62 0 1 0 3
58.5 55 1 104 74 1.24 23 2.58 0 1 0 3
55.2 55 1 128 77 1.25 43 2.77 0 2 0 3
55.9 55 1 130 83 1.34 44 2.34 1 2 0 3
57.4 55 1 116 79 2.23 38 2.46 1 3 1 3
60.7 60 0 136 85 2.04 42 3.66 0 1 0 4
62.0 60 0 115 74 1.32 33 2.85 0 1 0 4
64.7 60 0 155 89 2.55 46 3.73 1 1 0 4
64.4 60 0 191 107 3.66 34 2.67 1 2 0 4
60.5 60 0 109 74 0.89 64 2.88 0 2 0 4
62.4 60 0 106 72 0.88 35 3.44 1 2 0 4
62.8 60 0 234 91 7.28 49 2.38 1 3 1 4
73.2 70 0 119 72 1.00 47 2.53 0 1 0 5
73.0 70 0 128 70 2.87 51 2.62 0 1 0 5
72.2 70 0 124 69 1.43 33 2.49 0 1 0 5
73.7 70 0 128 72 2.12 38 3.30 0 2 0 5
71.7 70 0 111 68 3.16 64 3.14 0 2 0 5
71.2 70 0 104 67 3.00 40 3.30 0 2 0 5
74.5 70 0 140 82 2.84 46 2.95 1 3 1 5
58.2 55 0 112 77 2.84 71 2.23 0 1 0 6
57.3 55 0 111 77 2.23 41 2.57 0 1 0 6
58.7 55 0 120 76 1.85 60 2.57 0 1 0 6
57.2 55 0 120 73 0.55 48 3.10 0 2 0 6
57.2 55 0 112 73 0.49 45 2.86 0 2 0 6
55.5 55 0 120 73 �0.53 49 3.12 0 2 0 6
59.5 55 0 156 76 3.22 59 3.14 1 3 1 6
78.4 75 0 119 75 1.28 53 1.72 1 1 0 7
77.8 75 0 112 74 1.39 44 1.80 1 1 0 7
75.5 75 0 123 74 1.41 72 1.93 0 1 0 7
78.3 75 0 149 84 0.53 40 2.84 0 1 0 7
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Table 14.11 Continued

AGE AGEG SEX SBP DBP LACR HDL LINSUL SMOKE DMS DM SN

76.9 75 0 153 75 3.78 43 2.95 0 2 0 7
75.4 75 0 144 77 4.57 45 2.54 0 2 0 7
77.9 75 0 156 86 5.38 39 3.34 0 3 1 7
68.0 65 0 123 70 1.62 48 2.49 0 1 0 8
66.2 65 0 131 72 1.71 56 2.47 0 1 0 8
65.8 65 0 136 80 3.82 56 2.84 1 1 0 8
68.8 65 0 120 66 2.20 45 2.45 0 1 0 8
68.0 65 0 162 60 2.35 62 3.86 0 2 0 8
67.9 65 0 115 54 2.33 39 3.92 0 2 0 8
67.8 65 0 132 79 2.68 42 2.47 0 3 1 8
63.1 60 1 123 80 1.81 46 1.93 1 1 0 9
61.3 60 1 122 78 1.41 85 1.88 0 1 0 9
60.8 60 1 131 83 2.43 31 1.90 1 1 0 9
61.8 60 1 109 69 1.27 61 2.35 1 2 0 9
63.1 60 1 114 73 1.04 38 2.53 0 2 0 9
60.7 60 1 130 76 0.84 46 2.59 0 2 0 9
62.2 60 1 133 85 2.10 37 3.04 0 3 1 9
78.7 75 0 147 85 0.48 58 2.62 0 1 0 10
77.4 75 0 167 84 0.92 71 2.66 0 1 0 10
78.0 75 0 165 85 0.44 49 3.02 0 1 0 10
75.2 75 0 117 70 2.05 42 2.88 0 2 0 10
77.8 75 0 151 75 4.27 41 2.76 0 2 0 10
78.5 75 0 137 74 2.13 40 2.86 0 2 0 10
78.5 75 0 156 81 5.33 52 327 0 3 1 10
56.5 55 0 108 71 1.58 41 2.27 0 1 0 11
58.8 55 0 104 73 2.55 34 2.53 0 1 0 11
55.7 55 0 135 77 2.06 106 2.32 1 1 0 11
57.8 55 0 110 74 2.59 49 2.37 0 1 0 11
57.3 55 0 153 91 0.54 44 3.13 0 2 0 11
55.4 55 0 141 94 1.47 61 3.15 0 2 0 11
56.9 55 0 123 78 3.72 40 3.18 0 3 1 11
53.3 50 0 113 74 1.19 46 2.71 0 1 0 12
50.8 50 0 143 89 3.45 78 1.84 0 1 0 12
50.3 50 0 136 79 �1.44 48 2.48 1 2 0 12
55.0 50 0 131 77 0.23 49 2.57 1 2 0 12
54.4 50 0 132 77 �0.08 34 2.45 0 2 0 12
53.3 50 0 135 77 0.48 37 2.93 1 2 0 12
50.7 50 0 114 78 2.52 41 4.37 0 3 1 12


AGEG� 50 if 50
age�55, �55 if 55
age�60, �60 if 60
age�65, �65 if 65
age�70, �70
if 70
age�75, �75 if 75
age�80; SEX� 1 if male and �0 if female; SMOKE� 1 if current
smoker and 0 otherwise; SBP, systolic blood pressure; DBP, diastolic blood pressure; LACR,
logarithm of the ratio of urinary albumin and creatinine; HDL, high-density lipoprotein in
cholesterol; LINSUL, logarithm of insuline; DM� 1 if fasting glucose	126 mg/dL and �0
otherwise; DMS, diabetic status defined by ADA fasting glucose criterion: DMS� 1 if normal
fasting glucose, �2 if impaired fasting glucose, and �3 if diabetic; SN, stratum number.
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Table 14.12 Results from the Conditional Logistic Regression Model for the DM Data
in Example 14.9

95%
Confidence Interval
for Odds Ratio

Regression Standard Chi-Square Odds
Variable Coefficient Error Statistic p Ratio Lower Upper

AGE 0.327 0.161 4.127 0.0422 1.39 1.01 1.90
DBP 0.046 0.020 5.639 0.0176 1.05 1.01 1.09
LACR 0.395 0.133 8.776 0.0031 1.48 1.14 1.93
LINSUL 0.860 0.288 8.900 0.0029 2.36 1.34 4.16

baseline and second examinations (about five years after the baseline examin-
ation). In this study, 33 persons with diabetes at the second examination are
selected, and for each of these cases, six age group (in five-year interval)- and
gender-matched diabetes-free controls are selected randomly from all partici-
pants without diabetes in the second examination. There are 33 strata and each
stratum contains one case (DM� 1) and its six matched controls (DM� 0),
for a total of 231 participants. The demographic, physical, blood, and urinary
data collected at the baseline examination of the first 12 strata are listed in
Table 14.11 and arranged by stratum. The conditional logistic model based on
(14.2.20) is used for these 1:6 matched data to identify risk factors for diabetes.
The stepwise selection method is used to select the significant risk factors. The
results are shown in Table 14.12. AGE, DBP, LACR, and LINSUL are
significant risk factors for diabetes. The larger the values of AGE, DBP, LACR,
and LINSUL, the higher is the risk of being diabetic.

As noted earlier, for (14.2.21), the computer software for a Cox proportional
model with discrete time scale can be used to obtain an estimate of parameter
b. Suppose that the text data file ‘‘C:�EX14d2d6.DAT’’ contains 12 successive
columns, separated by a space, with data as in Table 14.11: AGE, AGEG, SEX,
SBP, DBP, LACR, HDL, LINSUL, SMOKE, DMS, DM, and SN. The
following SAS code shows how the SAS procedure for the proportional
hazards model with discrete time scale can be used to obtain an estimate of
parameter b for the conditional logistic regression model in a matched
case—control study (the results are given in Table 14.12). In the SAS code, first,
we define a nominal variable (for survival time), TIME, and let TIME� 1 if a
case (DM� 1), and� 2 if a control (DM� 0). This is accomplished by the
statement ‘‘time� 2-dm;’’. Second, DM is also used to indicate censoring
status, DM� 0 meaning censored, and� 1 uncensored. Thus, a case will have
an uncensored time 1 and a control will have a censored time 2.

data w1;
infile ‘c:�ex14d2d6.dat’ missover;
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Table 14.13 Data from Example 14.9 If Stratified by Age
Group Only

Number of Number of
Stratum AGEG DMs Non-DMs Total

1 50—54 9 54 63
2 55—59 8 48 56
3 60—64 4 24 28
4 65—69 4 24 28
5 70—74 5 30 35
6 75—79 3 18 21

— —— ——
Total 33 198 231

Table 14.14 Results from the Conditional Logistic Regression Model for the Data in
Example 14.9 with Strata Defined by Age Groups

95%
Confidence Interval
for Odds Ratio

Regression Standard Chi-Square Odds
Variable Coefficient Error Statistic p Ratio Lower Upper

DBP 0.050 0.020 6.304 0.0120 1.05 1.01 1.09
LACR 0.391 0.124 9.876 0.0017 1.48 1.16 1.89
HDL �0.037 0.019 4.034 0.0446 0.96 0.93 1.00
LINSUL 0.694 0.292 5.668 0.0173 2.00 1.13 3.55

input age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn;
time� 2-dm;

run;
proc phreg data�w1 noprint;
model time*dm(0) � age sbp dbp lacr hdl linsul smoke

/ ties�discrete selection� s;
strata sn;

run;

Using the same data, if we stratify by age group only, Table 14.13 lists the
number of cases and controls in each age group (stratum). This can be
considered as an example of a stratified design with a different numbers of cases
and controls in each stratum: stratum 1 has a 9 : 54 match, stratum 2 an 8 : 48
match, and so on. The results from the conditional logistic regression model
based on this new stratification are given in Table 14.14.
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The following SAS code can be used to generate the results in Table 14.14.
The code can be modified to perform conditional logistic regression analysis
for data from any n

�
: n



matched design or a stratified design.

data w1;
infile ‘c:�ex14d2d6.dat’ missover;
input age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn;
time� 2-dm;

run;
proc phreg data�w1 noprint;
model time*dm(0) � age sex sbp dbp lacr hdl linsul smoke

/ ties�discrete selection� s;
strata ageg;

run;

14.2.3 Other Models for Dichotomous Outcomes

In the logistic regression model (14.2.3), the left side is a function of the
probability of success, P

�
, and the right side is the linear combination of

covariates. The function, called a link function, defines the relationship between
the covariates and P

�
. In general, a link function represents the underlying

biological, physical, or epidemiological relationship between the mean of the
dependent variable (probability of success) and the covariates x

�
, x

�
, . . . , x

�
. In

the logistic regression model the link function, say g, is the logit function of P
�
,

that is,

g(P
�
) � logit(P

�
) � log

P
�

1�P
�

and g(P
�
) is assumed to be linearly related to the covariates, that is,

log
P
�

1�P
�

�
�
�
��


b
�
x
��

or

P
�
�

exp(��
��


b
�
x
��
)

1� exp(��
��


b
�
x
��
)

(14.2.26)

Two other forms of link function g(P) that assume a linear relationship with
the covariates have been proposed and used in the literature. In the following,
we introduce these two link functions and the corresponding regression model.

1. T he probit (or normit) function. This is the link function defined by the
inverse of the cumulative standard normal distribution function, ���( · ):

g(P
�
) ����(P

�
) (14.2.27)
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The corresponding model is

���(P
�
) �

�
�
��


b
�
x
��

or

P
�
�� �

�
�
���

b
�
x
��� (14.2.28)

2. The complementary log-log link function. This function is defined by

g(P
�
) � log[�log(1�P

�
)] (14.2.29)

The corresponding model is

log[�log(1�P
�
)]�

�
�
��


b
�
x
��

or

P
�
� 1� exp ��exp�

�
�
��


b
�
x
���� (14.2.30)

The logistic regression model in (14.2.26) is for binary outcomes such as
diseased versus nondiseased. The model (14.2.28) can be thought of as an
alternative model for binary outcome. In addition, it can be used to model
those binary outcomes that are defined by a cutoff point on the basis of a
normally distributed variable. For example, the cutoff point may be defined by
the last quintile or quartile of a continuous measurement in an epidemiological
study. When the binary outcomes are defined by a cutoff point in an
asymmetric distribution, the model in (14.2.30) may be appropriate. The model
(14.2.30) can also be considered as a version of the Cox proportional hazards
model for grouped survival times (Kalbfleisch and Prentice, 1973).

Let y
�
, y

�
, . . . , y

�
be the observations with dichotomous values on the n

subjects: y
�
� 1 for success and y

�
� 0 for failure. Similar to (14.2.4), the

likelihood functions for the models in (14.2.28) and (14.2.30) can be obtained
by replacing the corresponding P

�
in the following formula:

L (b


, b

�
, . . . , b

�
) �

�
�
���

P��
�
(1 �P

�
)����

The MLEs of the coefficients and the asymptotic likelihood inferences are
similar to those given in Section 14.2.1 for the ordinary logistic regression
model except that interpretation of the odds ratio is not possible for the latter
two models. The procedure LOGISTIC in SAS provides options for all three
models.
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Table 14.15 Asymptotic Partial Likelihood Inference from the Regression Models with
Different Link Functions for the Data in Example 14.9

95%
Confidence Interval
for Odds Ratio

Regression Standard Chi-Square Odds
Variable Coefficient Error Statistic p Ratio Lower Upper

Model with L ogit L ink Function

INTERCPT �8.419 1.792 22.061 �0.0001
DBP 0.044 0.018 5.673 0.0172 1.05 1.01 1.08
LACR 0.343 0117 8.627 0.0033 1.41 1.13 1.79
LINSUL 0.870 0.287 9.191 0.0024 2.39 1.38 4.27

Hosmer—Lemeshow test statistic 18.9460 0.0152

Model with Inverse Normal Link Function

INTERCPT �4.532 0.953 22.597 �0.0001
DBP 0.023 0.010 5.302 0.0213
LACR 0.186 0.065 8.060 0.0045
LINSUL 0.445 0.156 8.146 0.0043

Hosmer—Lemeshow test statistic 7.386 0.4956

Model with Log-Log Link Function

INTERCPT �7.740 1.530 25.589 �0.0001
DBP 0.038 0.016 5.919 0.0150
LACR 0.305 0.096 10.153 0.0014
LINSUL 0.785 0.241 10.592 0.0011

Hosmer—Lemeshow test statistic 17.415 0.0261

Example 14.10 Consider the data in Example 14.9 as nonstratified data,
Table 14.15 gives the results from the regression models defined in (14.2.26),
(14.2.28), and (14.2.30) by using the stepwise selection method. Based on
Hosmer—Lemeshow test statistics, the regression model with the inverse
normal link function gives a good fit to the data (p � 0.4956), whereas the
other two models do not (p� 0.0152 and p� 0.0261). All three models identify
DBP, LACR, and LINSUL as significant covariates for the development of
diabetes.

The following SAS, SPSS, and BMDP codes may be used to generate the
results in Table 14.15.

SAS code:

data w1;
infile ‘c:�ex14d2d6.dat’ missover;
input age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn;

run;
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title ‘‘Regression model with the logit link function-generalized logistic regression’’;
proc logistic data�w1 descending;
model dm� age sex sbp dbp lacr hdl linsul smoke

/ selection� s lackfit link� logit;
run;
title ‘‘Regression model with the inverse normal link function‘;
proc logistic data�w1 descending;
model dm� age sex sbp dbp lacr hdl linsul smoke

/ selection� s lackfit link�probit;
run;
title ‘‘Regression model with the log-log link funtion‘;
proc logistic data�w1 descending;
model dm� age sex sbp dbp lacr hdl linsul smoke

/ selection� s lackfit link� cloglog;
run;

SPSS code for the model in (14.2.28) with the forward selection method:

data list file� ‘c:�ex14d2d6.dat’ free
/ age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn.

Logistic regression dm with age sex sbp dbp lacr hdl linsul smoke htn
/method� fstep
/print� all.

BMDP code for procedure LR and the model in (14.2.28):

/input file� ‘c:�ex14d2d6.dat’ .
variables� 12.
format� free.

/variable names� age, ageg, sex, sbp, dbp, lacr, hdl, linsul, smoke,
dms, dm, sn.

Use� age, sex to smoke.
/regress depend�dm.

Interval� age, sex to smoke.
Method�mlr.

/print cell�used.
/end

14.3 MODELS FOR POLYCHOTOMOUS OUTCOMES

The regression models in Section 14.2 can be extended to handle outcomes that
have more than two categories. These categories may be nominal, for example,
different types of heart disease or psychological conditions; or ordinal, for
example, different levels of glucose intolerance or different severity of communi-
cation disorders. An outcome variable with more than two possibilities is called
polychotomous or polytomous. In this section we discuss first the model for
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nominal polychotomous outcomes (generalized logistic regression model), then
the model for ordinal polychotomous outcomes (ordinal regression model).
Details regarding these models can be found in Aitchison and Silvey (1957),
McCullagh (1980), Green (1984), McCullagh and Nelder (1989), Hosmer and
Lemeshow (1989, 2000), Cox and Snell (1989), Afifi and Clark (1990), Agresti
(1990), Collett (1991), and Ananth and Kleinbaum (1997).

14.3.1 Models for Nominal Polychotomous Outcomes:
Generalized Logistic Regression Models

Let Y
�
denote the outcome for individual i. The outcome can be one of the m

nominal categories, such as different cell types of lung cancer. Let Y
�
� k denote

that Y
�
belongs to the kth category and k� 1, 2, . . . ,m. Suppose that for each

of n subjects, p independent variables x
�
� (x

��
, x

��
, . . . , x

��
)� are measured.

These variables can be either qualitative or quantitative. Let P(Y
�
� k � x

�
) be

the probability that Y
�
� k given the p measured covariates x

�
; then

��
���

P(Y
�
� k � x

�
) � 1. Without loss of generality, using the last catalog as the

reference, the generalized logistic regression model

log
P(Y

�
� k �x

�
)

P(Y
�
� m � x

�
)
� a

�
�

�
�
���

b
��

x
��

k� 1, 2, . . . ,m � 1 (14.3.1)

can be used to study the association of the covariates x to the outcome. To
simplify the notation, let u

��
� a

�
���

���
b
��

x
��
. Similar to (14.2.1) and (14.2.2),

the model in (14.3.1) assumes that the dependence on the covariates of the
probability of being in the kth category is

P(Y
�
� k �x

�
) ��

exp(u
��

)
1�����

���
exp(u

��
)

k� 1, 2, . . . ,m � 1

1

1�����
���

exp(u
��
)

k� m

(14.3.2)

This model reduces to the logistic regression model in (14.2.1) and (14.2.2)
when m � 2.

Let k
�
, . . . , k

�
be the outcomes observed for the n subjects. Then the

log-likelihood function based on the n outcomes observed is the logarithm of
the product of all P(Y

�
� k

�
�x

�
)’s from the n subjects, that is,

l(a
�
, a

�
, . . . , a

���
, b

�
, b

�
, . . . , b

���
) � log L � log �

�
�
���

P(Y
�
� k

�
� x

�
)� (14.3.3)

where P(Y
�
� k

�
� x

�
) is given in (14.3.2) and b

�
� (b

��
, . . . , b

��
)�, k � 1,

2, . . . ,m � 1. There are a total of (m� 1)(p� 1) unknown coefficients. The
estimation and hypothesis testing procedures for the coefficients are similar to
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those in the logistic regression model for dichotomous outcomes. Strictly
speaking, the models in (14.3.1) are not logistic regression models if m � 2.
Therefore, the interpretation of the coefficients in these models needs to be
clarified. Let us consider modeling the relationship between gender and
cardiovascular disease status, NORMAL, STROKE, and CHD (coronary
heart disease). Let the outcome variable Y be defined as Y � 1 if CHD, �2 if
STROKE, and �3 if NORMAL, and the covariate SEX defined as SEX� 1
if male and �0 if female. Then the two models according to (14.3.1) are

log
P(Y

�
� 1 � SEX

�
)

P(Y
�
� 3 � SEX

�
)
� a

�
� b

�
· SEX

�

log
P(Y

�
� 2 �SEX

�
)

P(Y
�
� 3 �SEX

�
)
� a

�
� b

�
· SEX

�

It is clear that neither of them is a logistic regression model. In the following,
we show how to interpret the coefficients b

�
and b

�
in these models. From the

first model,

log
P(Y � 1 � SEX� 1)/P(Y � 3 �SEX� 1)
P(Y � 1 � SEX� 0)/P(Y � 3 �SEX� 0)

� log
P(Y � 1 �SEX� 1)
P(Y � 3 �SEX� 1)

� log
P(Y � 1 �SEX� 0)
P(Y � 3 �SEX� 0)

� (a
�
� b

�
) � a

�
� b

�

and thus

P(Y � 1 � SEX� 1)/P(Y � 3 � SEX� 1)
P(Y � 1 � SEX� 0)/P(Y � 3 � SEX� 0)

� exp(b
�
) (14.3.4)

Now let us cast the data into a 3�2 contingency table as in Table 14.16. The
left side of (14.3.4) can be estimated by

( f /n
�
)/(b/n

�
)

(e/n


)/(a/n



)
�

fa

be

However, if only the data from the normal and CHD participants are used,

fa

be
�

[ f /(b � f )]/[b/(b � f )]

[e/(e � a)]/[a/(e � a)]
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Table 14.16 Nominal Cross-Classification of
Cardiovascular (CVD) Status by Gender

SEX
CVD
Status (Y) Female (0) Male (1)

NORMAL (3) a b
STROKE (2) c d
CHD (1) e f

— —
Total n



n
�

which is an estimate of

P(CHD �Male)/[1�P(CHD �male)]
P(CHD � female)/[1�P(CHD � female)]

or the ratio of the odds of a male having CHD to the odds of a female having
CHD. Therefore, the exp(b�

�
) obtained from the first model can be interpreted

as an estimate of the ratio of the odds of a male having CHD to the odds of
a female having CHD if only the data from the normal and CHD participants
are used. Similarly, exp(b�

�
) obtained from the second model can be interpreted

as an estimate of the ratio of the odds of a male having STROKE to the odds
of a female having STROKE if only the data from the normal and STROKE
participants are used. The same interpretation also holds for coefficients of
continuous covariates in the models of (14.3.1); that is, an exponentiated
coefficient for a continuous covariate is the odds ratio of a 1-unit increase in
the covariate assuming that other covariates are the same.

Example 14.11 We use the data in Example 14.9 and assume that DM
(Y � 1), IFG (Y � 2), and NFG (Y � 3) are three nominal categories. Let the
referent category be NFG. For simplicity, only two covariates, systolic blood
pressure (SBP) and log insulin (LINSUL), are included. Table 14.17 gives the
results from fitting these covariates to the model (14.3.1).

log
P(i th participant is DM)
P(i th participant is NFG)

� log
P(Y

�
� 1 � x

�
)

P(Y
�
� 3 � x

�
)

��7.648� 0.026SBP
�
� 1.047LINSUL

�

log
P(i th participant is IFG)
P(i th participant is NFG)

� log
P(Y

�
� 2 � x

�
)

P(Y
�
� 3 � x

�
)

��4.949� 0.011SBP
�
� 0.876LINSUL

�
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Consequently,

log
P(i th participant is DM)
P(i th participant is IFG)

� log
P(Y

�
� 1 � x

�
)

P(Y
�
� 2 � x

�
)

� log
P(Y

�
� 1 � x

�
)

P(Y
�
� 3 � x

�
)
� log

P(Y
�
� 2 �x

�
)

P(Y
�
� 3 �x

�
)

� (�7.648� 4.949) � (0.026� 0.011)SBP
�

� (1.047� 0.876)LINSUL
�

��2.699� 0.015SBP
�
� 0.171LINSUL

�

Thus, the odds ratio is 1.03 [exp(0.026)] times (or 3% higher) for a 1-unit
increase in SBP, and 2.85 [exp(1.047)] times (or 185% higher) for a 1-unit
increase in LINSUL from the model for DM vs. NFG. The odds ratio is 2.40
[exp(0.876)] times (or 140% higher) for a 1-unit increase in LINSUL from the
model for IFG versus NFG. SBP is not significant in the model for IFG versus
NFG (p� 0.2346). Neither SBP nor LINSUL is significant in the model for
DM versus IFG (p � 0.2239 and p � 0.6066, respectively). One can also follow
the examples in Chapter 7, 9, 11, and 12 to perform additional statistical
inferences. For instance, we can test whether the coefficients for SBP in the first
two models are equal (whether the odds ratio for a 1-unit increase of SBP in
the model for DM versus NFG is equal to that in the model for IFG versus
NFG), that is, H



: b

�
� b

�
� 0 (where the subscripts 3 and 4 are the orders of

the coefficients given by SAS). From (11.2.13), under H


, Wald’s statistic,

X



� (b�
�
� b�

�
)�/(v

��
� v

��
� 2v

��
), has an asymptotic chi-square distribution

with 1 degree of freedom, where v
��

and v
��

are the estimated variance of b
�

and b
�
, respectively, and v

��
is the estimated covariance of b

�
and b

�
. From

Table 14.17, the hypothesis is not rejected (p � 0.2239). Similarly, the hypoth-
esis H



: b

�
� b

�
� 0 is not rejected (p� 0.6066); that is, there is insufficient

evidence to say that the change in odds ratio for a 1-unit increase in LINSUL
in the model for DM versus NFG is not equal to that in the model for IFG
versus NFG.

The following SAS, SPSS, and BMDP codes can be used to obtain the
results in Table 14.17.

SAS code:

data w1;
infile ‘c:�ex14d2d6.dat’ missover;
input age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn;
y� 4-dms;

run;
title ‘‘Generalized logistic regression model’’;
proc catmod data�w1;
direct sbp linsul;
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model y� sbp linsul
/ ml covb;

contrast ‘Equal coefficients for SBP’ all—parms 0 0 1 �1 0 0;
contrast ‘Equal coefficients for LINSUL’ all—parms 0 0 0 0 1 �1;

run;

SPSS code:

data list file� ‘c:�ex14d2d6.dat’ free
/ age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn.

Compute y� 4-dms.
nomreg y with sbp linsul

/print�fit history parameter lrt.

BMDP PR code:

/input file� ‘c:�ex14d2d6.dat’ .
variables� 12.
format� free.

/variable names� age, ageg, sex, sbp, dbp, lacr, hdl, linsul, smoke,
dms, dm, sn.

Use� age, sex to smoke.
/transform y� 4-dms.
/group codes(y) � 1, 2, 3.

Names(y) � DM, IFG, NFG.
/regress depend� y.

Level� 3.
Type� nom.
Interval� age, sex to smoke.
enter� .05, .05.
remove� � .05, .05.

/print cell�model.
/end

14.3.2 Model for Ordinal Polychotomous Outcomes:
Ordinal Regression Models

If the outcomes involve a rank ordering, that is, the outcome variable is
ordinal, several multivalued regression models are available. Readers interested
in these models are referred to McCullagh and Nelder (1989), Agresti (1990),
Ananth and Kleinbaum (1997), and Hosmer and Lemeshow (2000). In the
following discussion, we introduce the most frequently used model, the propor-
tional odds model. In this model, the probability of an outcome below or equal
to a given ordinal level, P(Y 
 k), is compared to the probability that it is
higher than the level given, P(Y � k).

Let Y
�
be the outcome of the ith subject. Assume that Y

�
can be classified into

m ordinal levels. Let Y
�
� k if Y

�
is classified into the kth level and
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k� 1, 2, . . . ,m. Suppose that for each of n subjects, p independent variables
x
�
� (x

��
, x

��
, . . . , x

��
)� are measured. These variables can be either qualitative

or quantitative. If the logit link function defined in Section 14.2.3 is used, similar
to the logistic regression model (14.2.3), we consider the following models:

logit(P(Y
�

 k � x

�
)) � log

P(Y
�

 k � x

�
)

1�P(Y
�

 k � x

�
)
� a

�
�

�
�
���

b
�
x
��

k� 1, 2, . . . ,m � 1 (14.3.5)

or, equivalently, let u
��

� a
�
���

���
b
�
x
��
,

P(Y
�

 k � x

�
) �

exp(a
�
���

���
b
�
x
��
)

1� exp(a
�
���

���
b
�
x
��
)
�

exp(u
��
)

1� exp(u
��
)

k� 1, 2, . . . ,m � 1 (14.3.6)

Therefore,

P(Y
�
� k � x

�
) �P(Y

�

 k �x

�
) �P(Y

�

 k � 1 � x

�
)

��
exp(u

��
)

1� exp(u
��
)

k� 1

exp(u
��
)

1� exp(u
��
)
�

exp(u
����

)

1� exp(u
����

)
k� 2, . . . ,m� 1

1�
exp(u

����
)

1� exp(u
����

)
k�m

(14.3.7)

If m � 2, that is, there are only two outcome levels, (14.3.7) reduces to the
logistic regression model in (14.2.3). The models in (14.3.5) can be thought of
as having only two outcomes [(Y 
 k ) versus (Y � k)] and therefore are
logistic regression models. Thus, interpretation of the coefficients, b

�
, such as

the exponentiated coefficient [exp(b
�
)] for a discrete or a continuous covariate

is similar to that in a logistic regression model.
Let k

�
, . . . , k

�
be observed outcomes from n subjects. Then the log-likelihood

function based on the n outcomes observed is the logarithm of the product of
all P(Y

�
� k

�
�x

�
)’s from the n subjects, that is,

l(a
�
, a

�
, . . . , a

���
, b

�
, b

�
, . . . , b

�
) � log L � log�

�
�
���

P(Y
�
� k

�
�x

�
)� (14.3.8)

where P(Y
�
� k

�
�x

�
) is as given in (14.3.7). The maximum likelihood estimation

and hypothesis-testing procedures for the coefficients are similar to those
discussed previously. If the probit link function in (14.2.27) is used, the models
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and formula corresponding to (14.3.5)—(14.3.7) are

���(P(Y
�

 k �x

�
)) � a

�
�

�
�
���

b
�
x
��

k � 1, 2, . . . ,m� 1

P(Y
�

 k �x

�
) ��(u

��
) k� 1, 2, . . . ,m � 1

P(Y
�
� k �x

�
) �P(Y

�

 k �x

�
) �P(Y

�

 k� 1 �x

�
)

��
�(u

��
) k � 1

�(u
��
) ��(u

����
) k � 2, . . . ,m � 1

1� �(u
����

) k �m

If the complementary log-log link function in (14.2.29) is used, the models and
formula corresponding to (14.3.5)—(14.3.7) are

log[�log(1� P(Y
�

 k � x

�
))]� a

�
�

�
�
���

b
�
x
��

k� 1, 2, . . . ,m � 1

P(Y
�

 k � x

�
) � 1� exp[�exp(u

��
)] k� 1, 2, . . . ,m� 1

P(Y
�
� k � x

�
) �P(Y

�

 k �x

�
) �P(Y

�

 k � 1 � x

�
)

��
1� exp[�exp(u

��
)] k� 1

exp[�exp(u
����

)]� exp[�exp(u
��
)] k� 2, . . . ,m � 1

exp[�exp(u
����

)] k�m

The log-likelihood function based on these two models can be obtained by
replacing P(Y

�
� k

�
�x

�
) in (14.3.8) with the respective expressions above.

Example 14.12 Now consider the NFG, IFG, and DM categories in
Example 14.9 that represent three levels of severity in glucose intolerance. DM
(diabetes) is defined as fasting plasma glucose (FPG) 	 126 mg/dL, IFG
(impaired fasting glucose) as FPG between 110 and 125 mg/dL, and NFG
(normal fasting glucose) as FPG� 110 mg/dL. Thus, it is reasonable to
consider the outcome variable as ordinal. Let the outcome variable Y� 1 if
DM, 2 if IFG, and 3 if NFG. We fit the models in (14.3.5) using the SAS
procedure LOGISTIC with all the covariates. The SAS program allows users
to use a variable selection method (forward, backward, and stepwise). In this
case, we use the stepwise selection method, and the results are given in the first
part of Table 14.18. The stepwise method identifies SBP and LINSUL as
significant independent variables. For k� 1 [i.e., we compare diabetes with
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nondiabetes (NFG� IFG)] the estimated model in (14.3.5) is

log
P(Y

�

 1 �x

�
)

1�P(Y
�

 1 � x

�
)
� log

P(participant i is diabetic)
P(participant i is nondiabetic)

� �6.753� 0.019SBP
�
� 0.925LINSUL

�

For k� 2, the estimated model in (14.3.5) is

log
P(Y

�

 2 � x

�
)

1� P(Y
�

 2 � x

�
)
� log

P(participant i is either DM or IFG)
P(participant i is NFG)

��5.485� 0.019SBP
�
� 0.925LINSUL

�

According to (14.3.7), we can estimate the probability of developing DM, IFG,
or remaining NFG. For example, the probability of developing IFG is

P(Y
�
� 2 � x

�
) �P(participant i is IFG)

�
exp(�5.485� 0.019SBP

�
� 0.925LINSUL

�
)

1� exp(�5.485� 0.019SBP
�
� 0.925LINSUL

�
)

�
exp(�6.753� 0.019SBP

�
� 0.925LINSUL

�
)

1� exp(�6.753� 0.019SBP
�
� 0.925LINSUL

�
)

Thus, for a person whose systolic blood pressure is 140 mmHg and whose log
insulin is 3, the probability of developing IFG can be obtained by plugging
these values into the preceding equation. The result is

P(participant is IFG) �
0.951

1� 0.951
�

0.268

1� 0.268

� 0.276

As noted earlier, the coefficients in these models can be interpreted as those
in the ordinary logistic regression model for binary outcomes. In this example,
the higher SBP and LINSUL are, the higher the odds of having DM than of
not having DM, or the higher the odds of having either DM or IFG than of
being NFG. The odds ratio is 1.02 [exp(0.019)] times (or 2% higher) for a
1-unit increase in SBP assuming that LINSUL is the same, and 2.52 times (or
152% higher) for a 1-unit increase in LINSUL assuming that SBP is the same.
From the table, SBP and LINSUL are related significantly to the diabetic
status in all models with different link functions.

SAS and SPSS can also be used for the other two link functions: the inverse
of the cumulative standard normal distribution and the complementary log-log
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link functions introduced in Section 14.2.3. Table 14.18 includes the results
from models with these two link functions. The results are very similar to those
obtained using the logit link function.

The following SAS, SPSS, and BMDP codes can be used to obtain the
results in Table 14.18.

SAS code:

data w1;
infile ‘c:�ex14d2d6.dat’ missover;
input age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn;

run;
title ‘‘Ordinal regression model with logic link function’’;
proc logistic data�w1 descending;
model dms� age sex sbp dbp lacr hdl linsul smoke

/ selection� s lackfit link� logit;
run;
title ‘‘Ordinal regression model with inverse normal link function‘;
proc logistic data�w1 descending;
model dms� age sex sbp dbp lacr hdl linsul smoke

/ selection� s lackfit link�probit;
run;
title ‘‘Ordinal regression model with complementary log-log link function’’;
proc logistic data�w1 descending;
model dms� age sex sbp dbp lacr hdl linsul smoke

/ selection� s lackfit link� cloglog;
run;

SPSS code:

data list file� ‘c:�ex14d2d6.dat’ free
/ age ageg sex sbp dbp lacr hdl linsul smoke dms dm sn.

Compute y� 4-dms.
plum y with sbp linsul

/link� logit
/print�fit history parameter.

plum y with sbp linsul
/link� probit
/print�fit history parameter.

plum y with sbp linsul
/link� cloglog
/print�fit history parameter.

BMDP PR code for the logit link function only:

/input file� ‘c:�ex14d2d6.dat’ .
variables� 12.
format� free.
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/variable names� age, ageg, sex, sbp, dbp, lacr, hdl, linsul, smoke,
dms, dm, sn.
Use� age, sex to smoke.

/transform y� 4-dms.
/group codes(y) � 1, 2, 3.

Names(y) � DM, IFG, NFG.
/regress depend� y.

Level� 3.
Type� ord.
Interval� age, sex to smoke.
enter� .05, .05.
remove� � .05, .05.

/print cell�used.
/end

Note that the model for ordinal polychotomous outcomes in BMDP PR is
defined as

log
P(Y

�
� k � x

�
)

1� P(Y
�
� k � x

�
)
� ��

�
�

�
�
���

��
�
x
��
� u�

��
k� 1, 2, . . . ,m � 1

Compared with (14.3.5), ��
�
��a

�
, k� 1, 2, . . . ,m � 1; ��

�
��b

�
, j � 1,

2, . . . , p.
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EXERCISES

14.1 Consider the study presented in Example 3.5 and the data for the 40
patients in Table 3.10.
(a) Construct a summary table similar to Table 3.11.
(b) Construct a table similar to Table 3.12.
(c) Use the chi-square test to detect any differences in retinopathy rates

among the subgroups obtained in part (b).
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(d) On the basis of these 40 patients, identify the most important risk
factors using a linear logistic regression method.

14.2 Consider the data for the 33 hypernephroma patients given in Exercise
Table 3.1. Let ‘‘response’’ be defined as stable, partial response, or
complete response.
(a) Compare each of the five skin test results of the responders with

those of the nonresponders.
(b) Use a linear logistic regression method to identify the most import-

ant risk factors related to response.
(i) Consider the five skin tests only.

(ii) Consider age, gender, and the five skin tests.

14.3 Consider all nine risk variables (age, gender, family history of
melanoma, and six skin tests) in Exercise 3.3 and Exercise Table 3.3.
Identify the most important prognostic factors that are related to
remission. Use both univariate and multivariate methods.

14.4 Consider the data of 58 hypernephroma patients given in Exercise
Table 3.2. Apply the logistic regression method to response (defined as
complete response, partial response, or stable disease). Include gender,
age, nephrectomy treatment, lung metastasis, and bone metastasis as
independent variables.
(a) Identify the most significant independent variables.
(b) Obtain estimates of odds ratios and confidence intervals when

applicable.

14.5 Consider the case where there is one continuous independent variable
X

�
. Show that the log odds ratio for X

�
�x

�
�m versus X

�
�x

�
is

mb
�
, where b

�
is the logistic regression coefficient.

14.6 Using the data in Table 12.4, define the index function CVD as
CVD� 1 if dg	 1, and CVD� 0 otherwise, and fit a logistic re-
gression model for CVD by using the stepwise selection method to
select risk factors among the same factors as those noted at the bottom
of Table 12.7. Compare the results obtained with those in Table 12.7.

14.7 Assuming that P(a person is sampled � y, x) �P(a person is sampled � y),
that is, the sampling probability is independent of the risk factors x,
derive (14.2.15).

14.8 By using (14.2.14) and (14.2.1), show that (14.2.20) reduces to (14.2.21).

14.9 Derive (14.3.2).
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14.10 Consider the data in Table 12.4. Fit the generalized logistic regression
model in (14.3.1) for DG with covariates AGE, SEX, LACR, and LTG
by using the SAS CATMOD, SPSS NOMREG, or BMDP PR
procedure. Select risk factors among those noted at the bottom of
Table 12.7 using the stepwise selection method in the BMDP PR
procedure. Compare the results with those given in Table 13.5.

14.11 Using the same notation and data as in Table 14.11, (1) fit the outcome
variable Y with the generalized logistic regression model in (14.3.1) with
SEX as the covariate; (2) fit a logistic regression for the binary outcome
DM versus NFG, with SEX as the covariate, by using the data from
DM and NFG participants only; (3) fit a logistic regression for the
binary outcome IFG versus NFG, with SEX as the covariate, by using
the data from IFG and NFG participants only; (4) compare the
coefficients obtained from (2) and (3) with the coefficients obtained
from (1), and (5) report what you have found.

14.12 Perform the same analyses as in Exercise 14.11 but use SBP as the
covariate, and discuss your findings.
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A P P E N D I X A

Newton--Raphson Method

The Newton—Raphson method (Ralston and Wilf, 1967; Carnahan et al., 1969)
is a numerical iterative procedure that can be used to solve nonlinear
equations. An iterative procedure is a technique of successive approximations,
and each approximation is called an iteration. If the successive approximations
approach the solution very closely, we say that the iterations converge. The
maximum likelihood estimates of various parameters and coefficients discussed
in Chapters 7, 9, and 11 to 14 can be obtained by using the Newton—Raphson
method. In this appendix we discuss and illustrate the use of this method, first
considering a single nonlinear equation and then a set of nonlinear equations.

Let f (x) � 0 be the equation to be solved for x. The Newton—Raphson
method requires an initial estimate of x, say x�

�
, such that f (x�

�
) is close to zero

preferably, and then the first approximate iteration is given by

x�
�
�x�

�
�

f (x�
�

)

f �(x�
�
)

(A.1)

where f �(x�
�

) is the first derivative of f (x) evaluated at x �x�
�
. In general, the

(k � 1)th iteration or approximation is given by

x�
���

�x�
�
�

f (x
�
)

f �(x
�
)

(A.2)

where f �(x�
�
) is the first derivative of f (x) evaluated at x� x�

�
. The iteration

terminates at the kth iteration if f (x�
�
) is close enough to zero or the difference

between x�
�

and x�
���

is negligible. The stopping rule is rather subjective.
Acceptable rules are that f (x�

�
) or d�x�

�
�x�

���
is in the neighborhood of

10�� or 10��.

Example A.1 Consider the function

f (x) � x	� x� 2
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Figure A.1 Graphical presentation of the Newton—Raphson method for Example A.1.

We wish to find the value of x such that f (x) � 0 by the Newton—Raphson
method. The first derivative of f (x) is

f �(x) � 3x
� 1

Since f (�1) � 2 and f (�2) ��4, graphically (Figure A.1), we see that the
curve cuts through the x axis [ f (x) � 0] between �1 and �2. This gives us a
good hint of an initial value of x. Suppose that we begin with x�

�
��1;

f (x�
�

) � 2 and f �(x�
�
) � 2. Thus, the first iteration, following (A.1), gives

x�
�
� �1 �

2

2
��2

and f (x�
�

) ��4 and f �(x�
�
) � 11. Following (A.2), we obtain the following:

Second iteration:

x�


��2 �

4

11
��1.6364

f (x�



) ��0.7456 f �(x�



) � 7.0334
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Third iteration:

x�
	
� �1.6364 �

0.7456

7.0334
��1.5304

f (x�
	

) ��0.054 f �(x�
	
) � 6.0264

Fourth iteration:

x�
�
��1.5304 �

0.054

6.0264
��1.52144

f (x�
�
) ��0.00036 f �(x�

�
) � 5.9443

Fifth iteration:

x�
�
� �1.52144�

0.00036

5.9443
��1.52138

f (x�
�

) � 0.0000017

At the fifth iteration, for x� �1.52138, f (x) is very close to zero. If the
stopping rule is that f (x) � 10��, the iterative procedure would terminate after
the fifth iteration and x��1.52138 is the root of the equation x	� x� 2 � 0.
Figure A.1 gives the graphical presentation of f (x) and the iteration.

It should be noted that the Newton—Raphson method can only find the real
roots of an equation. The equation x	 �x � 2 � 0 has only one real root, as
shown in Figure A.1; the other two are complex roots.

The Newton—Raphson method can be extended to solve a system of
equations with more than one unknown. Suppose that we wish to find values
of x

�
, x



, . . . , x

�
such that

f
�
(x

�
, . . . , x

�
) � 0

f


(x

�
, . . . , x

�
) � 0

�

f
�

(x
�

, . . . , x
�

) � 0

Let a
��

be the partial derivative of f
�

with respect to x
�
; that is, a

��
� � f

�
/�x

�
.
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The matrix

J �

a
��

� a
��

a

�

� a

�

� �

a
��

� a
��

is called the Jacobian matrix. Let the inverse of J, denoted by J��, be

J���

b
��

� b
��

b

�

� b

�

� �

b
��

� b
��

Let x�
�
, x�



, . . . , x�

�
be the approximate root at the kth iteration; let f �

�
, . . . , f �

�
be the corresponding values of the functions f

�
, . . . , f

�
, that is,

f �
�
� f

�
(x�

�
, . . . , x�

�
)

�

f �
�
� f

�
(x�

�
, . . . , x�

�
)

and let b�
��

be the ijth element of J�� evaluated at x�
�

, . . . , x�
�

. Then the next
approximation is given by

x���
�

�x�
�
� (b�

��
f �
�
� b�

�

f �


��� b�

��
f �
�
)

x���



�x�


� (b�


�
f �
�
� b�




f �


��� b�


�
f �
�
) (A.3)

�

x���
�

�x�
�
� (b�

��
f �
�
� b�

�

f �


��� b�

��
f �
�

)

The iterative procedure begins with a preselected initial approximate x�
�

,
x�



, . . . , x�
�

, proceeds following (A.3), and terminates either when f
�

, f


, . . . , f

�
are close enough to zero or when differences in the x values at two consecutive
iterations are negligible.

Example A.2 Suppose that we wish to find the value of x
�

and x



such that

x

�
� x

�
x


� 2x

�
� 1 � 0 x	

�
�x

�
� x



� 2 � 0
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In this case, p � 2:

f
�
� x


�
� x

�
x


� 2x

�
� 1 f



�x	

�
�x

�
� x



� 2

Since � f
�
/�x

�
�2x

�
�x



� 2, � f

�
/�x



�x

�
, � f



/�x

�
�3x


�
�1, and � f



/�x



� 1,

the Jacobian matrix is

J ��
2x

�
�x



� 2

3x

�
� 1

x
�

1 � (A.4)

Let the initial estimates be x�
�
� 0, x�



� 1, f �

�
��1, and f �



��1:

J��
�1 0

�1 1� J��� �
�1 0

�1 1�
Iteration 1. Following (A.3), we obtain

x�
�
� 0 � [(�1)(�1) � 0(�1)] ��1 x�



� 1 � [(�1)(�1) � 1(�1)] � 1

With these values, f �
�
� 1, f �



��1, and

J��
�3 �1

2 1� J��� �
�1 �1

2 3�
Iteration 2. From (A.3) we obtain

x

�
��1 � [(�1)(1) � (�1)(�1)] ��1 x




� 1 � [(2)(1) � (3)(�1)] � 2

With these values, f 

�
� 0 and f 




� 0. Therefore, the iteration procedure

terminates and the solution of the two simultaneous equations is x
�
��1,

x


� 2.

The number of iterations required depends strongly on the initial values
chosen. In Example A.2, if we use x�

�
� 0, x�



� 0, it requires about 11 iterations

to find the solution. Interested readers may try it as an exercise.
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APPENDIX B

Statistical Tables
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Table B-1 Normal Curve Areas

Source: Abridged from Table 1 of Statistical Tables and Formulas, by A. Hald, John Wiley & Sons,
1952. Reproduced by permission of John Wiley & Sons.
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Table B-2 Percentage Points of the �2-Distribution

Source: ‘‘Tables of the Percentage Points of the ��-Distribution,’’ by Catherine M. Thompson,
Biometrika, Vol. 32, pp. 188—189 (1941). Reproduced by permission of the editor of Biometrika.
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Table B-4 Upper Tail Probabilities for the Null Distribution of the Kruskal--Wallis H
Statistic: k � 3, n1� 1(1)5, n2 � n1(1)5, 2� n3 � n2(1)5
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)
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Table B-4 (continued)

Source: Table F of A Nonparametric Introduction to Statistics, by C. H. Kraft and C van Eedan,
Macmillan, New York, 1968. Reproduced by permission of the Macmillan Publishing Company.
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Table B-5 Selected Critical Values for All Treatments: Multiple Comparisons Based on
Kruskal--Wallis Rank Sums

Source: ‘‘Rank Sum Multiple Comparisons in One- and Two-Way Classification,’’ by B. J.
McDonald and W. A. Thompson, Biometrika, Vol. 54, pp. 487—497 (1967). Reproduced by
permission of the editor of Biometrika. The starred values are from ‘‘Distribution-Free Multiple
Comparisons,’’ Ph.D. thesis (1963), P. Nemenyi, Princeton University, with permission of the
author. 459



Table B-6 Selected Critical Values for the Range of k Independent N(0, 1) Variables:
k � 2(1)20(2)40(10)100

For a given k and �, the tabled entry is q(�, k, �).

Source: ‘‘Table of Range and Studentized Range,’’ by H. L. Harter, Ann. Math. Statist., Vol. 31, pp.
1122—1147 (1960). Reproduced by permission of the editor of the Annals of Mathematical
Statistics.
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Table B-7 Percentage Points of the t-Distribution

Source: ‘‘Table of Percentage Points of the t-Distribution,’’ by Maxine Merrington, Biometrika,
Vol. 32, p. 300 (1941). Reproduced by permission of the editor of Biometrika.
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Table B-8 Coefficients (ai and bi) of the Best Estimates of the Mean (�) and Standard
Deviation (�) in Censored Samples Up to n � 20 from A Normal Population
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Table B-8 (continued)
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Table B-8 (continued)
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Table B-10 1/(1� R) and �� for the Estimation of the Parameters of the Gamma
Distribution When There Are No Censored Observations

Source: ‘‘Estimation of Parameters of the Gamma Distribution Using Order Statistics,’’ by M. B.
Wilk, R. Gnanadesikan, and Marilyn J. Huyett, Biometrika, Vol. 49, pp. 525—545 (1962).
Reproduced by permission of the editor of Biometrika.
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Table B-11 �� (P,S) and �� (P, S) for Various Values of n/r: n/r � 1.0

For P� 0.52 read S from the left-hand margin, and for P � 0.56 read S from the right-hand
margin. Note that the figures in region 2 are printed in bold roman type and those in region 3 in
bold italic type; the remainder of the table (outside of regions 2 and 3) is region 1.
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Table B-11 (continued)
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Table B-11 (continued)
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Table B-11 (continued)
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Table B-11 (continued)
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Table B-11 (continued)
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Table B-11 (continued)
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Table B-11 (continued)
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Table B-11 (continued)
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Table B-11 (continued)

Source: ‘‘Estimation of Parameters of the Gamma Distribution Using Order Statistics,’’ by M. B.
Wilk, R. Gnanadesikan, and Marilyn J. Huyett, Biometrika, Vol. 49, pp. 525—545 (1962).
Reproduced by permission of the editor of Biometrika.
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Table B-12 Percentage Points l� Such That P(�� 1/�� 2 � l�)� 1��

Source: ‘‘Two Sample Test in the Weibull Distribution,’’ by D. R. Thoman and L. J. Bain,
Technometrics, Vol. 11, pp. 805—815 (1969). Reproduced by permission of the editor of Techno-
metrics.
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Table B-13 Percentage Points z� Such That P(G� z�)� 1��

Source: ‘‘Two Sample Test in the Weibull Distribution,’’ by D. R. Thoman and L. J. Bain,
Technometrics, Vol. 11, pp. 805—815 (1969). Reproduced by permission of the editor of Techno-
metrics.
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