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X Preface

quantities of a transistor with bias and feedback elements included. Then a two-
port with a lossy transmission line in front is considered, and from that the noise
parameters of a transmission line are deduced. Then iuterconnection of two-ports
is considered in various ways, and a method by Pucel et al. making it possible to
compute the noise parameters at one high frequency from data at a lower frequency

edding theory as well as

is presented. This method makes extensiv
matrix formulation. Two special circuits are considered next. One is a transistor
with mixed transformer feedback and the other is a circuit with input at both base
and emitter. Finally formulae for noise parameter translormations froum comumon
emitter to common base and common collector are presented.

Chapters 7 and 8 deal with the basic theory of non-linear noisy networks and
systems. Chapter 7 presents the derivation of the theory, and chapter 8 presents ex-
amples and conclusion. Chapter 7 presents a unified method of analysis of low-level
noise in non-linear networks and systems. Low-level noise refers to that the noise
is a small pertubation of the deterministic signal regime. This book is the first to
present a method based on Volterra series. The basic representation of noise sources
is investigated. Both unmodulated (fundamental, independent) and modulated (de-
pendent) noise sources are treated. The noise sources are represented as the noise
response from a non-linear system with inputs given by a fundamental (unmodu-
lated) noise source and one or more controlling variables. The controlling vartables
may be any system variables in the non-linear network. In this way it is possible
to represent a wide variety of noise sources. Based on this representation a method
is derived to analyse noise in general non-linear networks and systems. Expressions
for the noise and deterministic response from the network are derived. To be able
to determine average noise powers, expressions for the ensemble cross-correlation
between Fourier series coefficients of the noise response at two arbitrary ports and
at arbitrary frequencies are derived. The noise response may be determined as the
dot product of a non-linear conversion vector and a noise vector at precalculated
frequencies. The non-linear conversion vector is described by multi-port Volterra
transfer functions determined from an equivalent circuit description of the network.
Fexamples to illustrate the method are included in chapter 8. The practical appli-
cations of the method of non-linear noise analysis are expected to be in the analysis

tion of noise in {near-sinusoidal) vsciliators, in mixers with moderate
local oscillator levels, and in frequency multipliers. Many oscillators are relatively
weakly non-lincar, but the non-linear 1/ f noise upconversion is still very important.
Because of this a non-linear noise analysis is required. More and more mixers are

being used in low-power applications, e.g. in partable communications cquipment,,

which means that the Volterra series based noise analysis may be almost ideal for
this purpose. Even though this type of mixers are not being switched on/off by the
local oscillator signals, the sideband noise is still of importance and the loading of

the mixer ports may have a significant imparct on the mixer performance. Also the
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method of non-linear noise analysis is expected to be useful in the determination of
noise models of non-linear devices.

Chapter 9 deals with the determination of multi-port Volterra transfer functions.
In the existing literature only one-port Volterra transfer functions containing one-
port non-linear elements are aliowed. The method developed in the present book
allows the determination of multi-port Volterra transfer functions containing multi-
port uon-linear elements (subsystems). This is a fundaimental requiretnent for the
noise theory, since there are generally more than one input port in the noise descrip-
tion of the networks. Moreover, in the analysis of (noise free) non-linear circuits
it has been pointed out that some models of MESFET's shouid contain multi-port
elements. but the theoretical methods required to determine the Volterra transfer
functions did not exist. The present method has been imnplemented in a symbolic
programming language which allows deterniination of the Volterra transfer functions
in algebraic form. Using this it is possible to determine Volterra transfer functions
up an order of about 8-10. Several examples are presented to illustrate the method,
and comparisons with the existing literature have been made i in some special cases.
The work on multi-port Volterra series may be of high interest in the development
of accurate non-linear models of devices with multi-dimensional non-linear elements

and in the analysis of systems with multi-port excitations.

J. Engberg &  T. Larsen
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Some milestones in the development
of noise theory

The first person to show the connection between “Spoutaneous Fluctuations”, as
noise was called then, and thermodyuamics experimentally was the Dutch scientist
Geertruida Luberta de Haas-Lorentz [1,2]. Using very sensitive mirror galvanome-
ters she showed that the electrons carrying the current behaved like molecules with
temperature and she proved the thermal origin of noise on the basis of the ther-
modynamic theory which independently was developed by Albert Einstein [3 4] and
Marian von Smoluchowski [5,6,7] and shown experimentally by Jean Baptiste Pe1 rin
(8]. In a third paper Albert Einstein [9] theoretically calculated a nojse voltage on
a capacitor. An interesting description of the dev elopment from the experiments of
Robert Brown ia 1827 and up to about 1906 is given by Haas-Lorentz in [2].

1.1 Johnson Noise

Quickly passing W. Schottky’s 1918 paper [10] on the theory of shot noise, the next
major development was Nyquist’s and Johnson's papers {11,12,13} in 1927-28. Here
Johnson showed experimentally and Nyquist theoretically the thermal noise from a
one-port. An outline of Nyquist's proof is ziven here.

In Figure 1.1 Mervthmo is assumed ideal. The ( ong) coaxial transmission line

is lossless and not ra

ing, and t . ess dlld open at the beginning
of the experiment. The mo resistances have the same surr unding temperature and

as they remaln in thermodynamic equilibrium the noise power A 51 transferred

2 to I must equal the noise power N, Then the two

switches are closed simultaneously. The Lwo noise powers are perfectly reflected at

the ends of the line and the energy thus frap > transmission line will form

oscillations at the fundamental mode and its harmonics with = voltage node at each
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‘ ng ]
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L !
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Trausmission line of length =

and characteristic impedance Zy = R

Figure 1.1: Nyquist’s theoretical model.

end. The frequencies of oscillations are

| =

h = 7 =20, f3=3FA,

V]

where ¢ is the speed of light and [ the length of the transmission line. This length
is imagined to be large (I — o).

At every frequency there are two degrees of freedom {~ electrical and magnetic
energy), and from the (classic) theory of thermodynamics it is known that each de-
gree of freedom has the energy of 5T wherek = 1.38x1
constant and 7" the absolute temperature in kelvins.

Af = fo — fu = n 37 — m determines the number of frequencies between
fmand frtoben — m = (fa = fm) 27’ Tle energy in the frequency band from

fm to fn is then

N=23 7 1--1
u .

JKR™" is Boltzmann’s

[Balf, = 2:3kT(n = m) = kT(fu - f)2 1

This trapped energy must be equal to the noise energy delivered from the two
resistances in the time 7 it takes for the power to be transferred from one end to
the other. Therefore

(Efn =2V ]
where [N]?:] is the thermal noise power from one resistor and r — i— This deter-

mines
(NJ = kT (fa = fu) = kTAF (W]

In the quantum mechanical theory Nyquist suggested that the energy &7 is
replaced by h f/{exp &4 — 1y where i = 6,626 x 1073 J 5 is Planek’s constant and

&7

thus the expression for thermal noise in the frequency band Af is

7 v fyxrl
Ny ! [ g fexrl
IYAS 57 b [BAS!

13

- Jas exp — — 1

Today most authors agree that the ZeTo-point energy term (% & T) should be included
In the quantum mechanical expression of the energy: see [14,15 16].

1.2. Receiver noise

Ot

1.2 Receiver noise

In the thirties and early forties noise in receivers was the great subject of interest.
It took some time to separate the noise from the source {(the antenna) from the
receiver noise itself. One early atlempt was made by Burgess [17], who introduced
a KA factor which was dependent only on the source resistance, the resistance of the
input network and the equivalent noise resistance of the first valve.

A figure of merit for receiver noise ~ the noise factor - was introduced by D.
O. North [18] and independently by K. Frinz [L9]. Two years later H. T. Frijs [20]
wrote a paper on the noise figure (which today is called noise factor) and a lot of
articles emerged discussing the definitions of North and Friis - a rivalry on which
Okwit [21] has written an interesting article.

The definitions were expressed a little differently, but they were all on the familiar
noise factor. Frianz did not call his definition anything, but he clearly used the
concept of available power. North also introduced the “operating noise factor” which
multiplied by the noise standard temperature, Tj equals the modern operating noise
temperature, T,,. Friis’s definition was very stringent. He used available power and
available gain and he also derived a formula for the noise factor of networks in
cascade.

One more thing that was discussed was the value of the standard poise
temperature. Values from 288.39 to 300 K had been proposed - see {21] and
[22, pp. 54-55] — until 290 K was chosen as the standard noise temperature by
IRE in 1962 [23].

1.3 Linear two- and multi-ports
In 1955 Rothe and Dahlke [24.25] enlarged the well-known {voltage and/or current
based) small-signal parameters (four complex numbers) to include noise by adding
four more numbers {two real and one complex). They also facilitated noise compu-
tations by replacing two partly correlated noise sources with two uncorrelated noise
sources and a correlation immittance. The four noise gnantities are called noise
parameters and they exist in many forms. Later, noise power wave hased noise
parameters were developed by Penfield, Mevs and others ag explained in Chapter t,
This theors was further developed to a lnear noisy network theory in 1959 by
Haus and Adler. collected in [26]. They introduced the noise measure and showed

that the mininium noise measure was mvariant by i noiseless compo-
neats. Also they introduced the extended noise factor for negative sources. In 1967
Bosma [27] introduced the characteristic noise temperature which can be related to
the noise measure. It is, however, seldom used - perhaps because the characteristic

noise temperature is negative for ordinary amplifiers.
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A very good review of the development of noise research up to the year 1930

written by A. van der Ziel [16].
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2

Noise in one-ports

With a background of Nyquist’s theory of thermal noise this chapter gives the
definitions of some noise quantities for one-ports. These are extended to allow
negative immittances! and calculation rules for noisy one-ports are developed.

2.1 Thermal noise

Nyquist {1] has shown that the thermal available noise power from a conductor

[K]is

==

¥q
at the physical temperatur
hf
exp[f4] — 1
where h = 6.626 x 1073 Js is Planck’s constant,? k = 1.3807 x 10-23 JK™1 is
Boltzmann’s constant,’ fis the frequency and Af is the bandwidth (of the measuring

ed
N = Nap = Af (W] (2.1)

system), both in Hz. It is assumed that the noise power density is constant in the
frequency range Af around fy or 0 < fo— %ﬁ < f< fo+ %ﬁ Forhf< kT, a
condition which at room temperature is fulfilled for f < 600 GHz, Equation (2.1)
is reduced to

N = EkTAf W] (2.2)
In the following it is - if not specifically stated — assumed that the frequency is low
enough for using Equation (2.2). If T = 290 K (17 °C) the available noise power
density is

N o= kT = 138%x107P x990 = 4.00 x 1972t W Hz ™!

*The term immittance is used when it is not necessary tn distingnish between impedance and
admittance.

fho= 6.5260735 x 107 4 0.60 ppm accerding to Handbeok of Chemistry and Physics, Tuth
ed., 1983,

Yk = 1380658 x 1072% 4 85 ppm according to Handbook of Chemistry and Physics, T0th ed..
1989.
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Figure 2.1: Reduction of thermal noise as a function of frequency for temperatures uf 2
77 and 4 K (room temperature and boiling points of nitrogen and lielinm).

~ =204 dB!WHz"‘ Due to the “nice” nnimerical value of ¥ the corresponding
temperature, which is close to normal room temperature, is called the standard

noise temperature {3,4] and denoted T.
To = 200 K 2.3)

It may also be noted that £7p/q = 0.0230 V, where ¢ =1.602x10"'° C is tle
magnitude of the electronic charge.

Please note that ¥ is used to denote noise power [W] and N is used for noise
power density [W Hz™!].

The noise in a one-port can be represented by either a Thevenin voltage source
or a Norton current source as shown in Figure 2.2. Loading these equivalent circuits

+ R+ 75X
( ' ) f?+1B
\T/Rn T/(J ‘

[ i

Figure 2.2: One-port equivalent circuits.

to obtain power match the source Jelivers

with the conjiugate of their immittane
the available power to the load. If the source venerates only thermal uoise this

pDower is expr

;;;,iﬁ f"'z".i' .
Vo= kTaj = MO = \1‘1,';) (W)

where (--) denotes the ensemble average over processes with identical statistical
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properties.® (le|?) and {{i{*) are the magnitude squares of the voltage and ciirent
measured in the frequenC" band Af with a “true” RMS-meter and R and G are

defined in Figure 2.2. From this expression the mean square noise voltage is given
by

{(le) = 4kTRAF VY (2.4)
and the mean square noise current by

(HiYY = 44TGAf [AZ] (2.5)

2.2 Definitions of noise quantities

In noise analysis it is { |e]?) (and (1i1%)) which is of interest in noise calculations, as
(e} is equal to zero. As (le|?) is dependent on the bandwidih A f this must also be
specified. Sometimes the quantities (leY/Af [V2Hz™!] or V{e[B7AT Fiv Hz‘fT]
are used® but mostly one of the following representations is preferred.

Since noise may have other origins than thermal effects and since it is convenient
to have equivalent representations for all types of noise, Equations (2.4) and (2.5)
are modified in such a way that they are valid for all kinds of noise. This can be done
in two ways. One possibility is to keep the temperature T fixed and then change the
values of the resistance R and of the conductance G until the equations are fulfilled
The values for R and G obtained in this way are called the equivalent noise resistance
R, and the equivalent noise conductance G, respectively. The other possibility is
to keep the resistance and the conductance at their physical values and then select
the temperature T such that the equations are fulfilled. This change of temperature
could also be performed in Equation (2.2). The thus obtained temperature is called
the noise temperature of the one-port.

In order to be able to characterize one-ports with negative real parts of their

mpedauce or admittance the available power according to custom is replaced by the

=B

exchangeable power® as inlroduced by Hans and Adler (3]. Thus the thermal avail-

replaced by the exchangeable noise power, Ne.in Equation (2.2).

2.2.1 The equivalent noise resistance

Definition 2.1 The equivalent noise resistance of a cne-port R, is defined
as
{1018y
H, = ——L_ ol (2.6
RS Af o ‘

*See Appendix A.
>The latter is mostlv used in dB relative to 1 nV Uz 3

5Qae soction 11
See section 3.1
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where {le/?) [V?] is the mean square {open circuited) noise voltage
at the terminals of the one-port in the frequency band Af Hz], & =
1.3807 x 107 JK~! is Boltzmann’s constant and 75 = 290 K is the stan-

dard noise temperature.

It is seen that the chosen fixed temperature in Equation (2.4) is Ty regardless
of the physical temperature of the one-port. A change in the mean square noise
voltage with temperature determines the variation of R, with temperature. Other
noise contributions than the thermal noise also change (increase) the equivalent
noise resistance. A variation of R, with frequency f occurs quite often, and A f
should be chosen so narrow that {|e]?)/Af is independent of the value of A £.7 The
quantity {|e|?)/Af can be regarded as the mean square noise voltage density. It is
seen that £, > 0 even if the one-port has a negative real part of its resistance.

A one-port characterized by R, generates as much noise as a metallic conduec-
tor (which only generates thermal noise) with the resistance R, at standard noise
temperature.. R, does not give any information about the ohmic resistance of the
one-port. The equivalent diagram of the one-port consists of a series connection
of its impedance, a noise voltage generator, the stochastic noise voltage which is
determined by

(lely = dkToR.Af  [VY (2.7)

and perhaps one or more deterministic voltage generators. According to custom a
noise voltage generator in a diagram is shown with the symbol of a normal voltage

generator with R, beside, as seen in Figure 2.2.

2.2.2 The equivalent noise conductance

Definition 2.2 The equivalent noise conductance of a one-port &, is de-

fined as

2]

6 = B o)
" 4kToAf >
where (|i}%) [A?] is the mean square (short circuited) noise current at
the terminals of the one-port in the frequency band Af [Hz], £ = 1.3807
X 1073 JK71 is Boltzmann’s constant and Ty = 290 K is the standard noise

temperature.

The same remarks as above for the equivalent noise resistance can be added

1

naceq oy current,

ly. Similarly, a noise

"This means that il Af — (1+£)Af then it follows that (lef*) — (1+2)(le|*) when = is a small

number.
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current generator is shown with the svmbol of a normal current generator with a
G, beside and the value of the current is determined bv

(% = 4kTyG.af  [AY (2.9)

2.2.3 The extended noise temperature

The above definitions for R, and G, have been chosen in such a way that they are
both positive whatever sign the immittance of the one-port has. In the follc;wing
definition of the noise temperature for a one-port the usual definition [4] has been
extended such that the sign of the extended nojse temperature shows if the one-port
is active® or passive [6].

Definition 2.3 The extended noise temperature of a one-port T..,. is the
exchangeable noise power density, N/ [W/Hz], divided by Boltzmann’s
constant, k£ = 1.3807 x 10=% JK-!,
. N
Tem = Te [I\J (210)
This definition is equivalent to that in Equations (2.4) and (2.5) keeping the
values of R and (7 at their physical values and then adjusting T antil the equations

are fulfilled. Thus definition 2.3 can he expressed by either

T. = M [['] B N
em ‘ikR/_\f A (le)

or

(i -
Lm = 7o (K (2.12)

1kGAS
B B H o . 1 H H -
The subscript em stands for extended, which refers to the extension of the noise
temperature to active one-ports, and mono for one-port.

I'lie extended noise temperature is negative when the one-port is active as NI
then is negative. This corresponds to a negative R or G in Equations (2.11) and
(2.12). Of course T, can not tell anything about the physical temperature except
in the case of pure thermal noise (of a one-port which then must be passive) where

T, equals the physical te

(el) = 4ETyR.AF = 4T, RAS

(i)Y = 4kToG.Af = LT GAf

the following n

04 e
“em _ iip ton
TO R - y

At c . : P .
Active means a one port with negative real part of its lmmittance.
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2 12
o = Gn R A Cn = R, G
2 ~
T, 1 7z, 1
Rn = pe A Gn = P
10 n Lg Rﬂ.

2.3 Calculation with noise quantities

In order to calculate the noise properties of series and parallel connections of uncor-
related® one-ports it is necessary to develop rules for series connection of one-ports
characterized by either R, or T.,, and similarly parallel connection of one-ports
characterized by either G, or T..,,.

Noise generators are represented by stochastic processes, and when those are
uncorrelated (independent) the following formulas for the equivalent mean square

noise voltage (}e|?) for series connected noise voltage generators and tle equivalent

mean square noise current {|i}°} for parallel connected noise current generators arc
valid:
[T
elf) = 20 = (el + (leaf) + o 4 (Jerl) [V (2.13)
1=135=1
[T
(= 203760 = (al) + (i) + -+ (lid) (A3 (214

2.3.1 Series and parallel connections of one-ports characterized by
equivalent noise resistances and conductances

he Thevenin equivalent of a noisy one-port is a series connection of an internal
impedance Z (passive or active), a {(stochastic) noise voltage generator R, generating
a mean square noise voltage given by Equation (2.4) and perhaps a (deterministic)
voltage generator E as shown in Figure 2.3,
From circuit theory the equivalent oue-port of I series connected one-ports as
shown in Figure 23 has Z =Y., Z; [Q] and E = L, E: (V). As the noise con-

tributions from the different one-ports are uncorrelated Equations (2.4) and (2.13)

give

I
AT R, Af = Y 4ETyR.Af (VY

=1

which leads to
I

R, = > K, ] (2,15}

pa—y cE L -

? Physically separated one-ports generally have stochastic independent and thus uncorrelated

noise generators.
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Figure 2.3: Series connection of noisy one-ports and the corresponding equivalent circuit.

In a very similar way, from Equations (2.5) and (2.14) it is found that

Go = > Gui [

where [ is the number of parallel connecred one-ports.

Example 2.1 In the figure a one-port is shown

where |, G, and R3 are known. Also known (_“,__J%L__,
are Giy's equivalent noise conductance G, , and ,_I_‘ j?T
R3's equivalent noise resistance R, ;. When the IH_’ ‘

one-port as such has the noise temperature Tem, :

G1's equivalent noise conductance G, can be [

calculated as shown for the following component values: G; = Gy = 10 m§, Ry =
2009, Goz=20mS, R, 3=300Qand T., =2 T,

t = T,
= Ry = 2 _ tem . .
R e + f3 250 Q@ A R, T, R =92R =50 0O

Roity = By — Rog =200 Q@ A Gansz = Bog2iG)+Go)? = 80 mS

Gy

G~:.1 = G71,1+2“Gn,2 = 60 IHS or Toma

T:‘. = 6T,

’N
{ —

B3

2.3.2  Series and parallel connections of one-psrts characterized by
extended noise temperatures

Ouutiing any deterministic voltage sources the series connection of f one-ports

characterized by their impedances and extended noise temperatures is shown in

Figure 2.4. As the imaginary parts of the impedances do not senerate noise onl

the real parts - the resistances — are shown in Fi

v

I

Equation {2.4)
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Ry, Tomy R2Temz Ry, Tems Ry, Lot

Figure 2.4: Series connection of noisy one-ports characterized by the cxtended noise tem .

peratures
into Equation (2.13) gives

I I

(lefy = Y akTomiRAF = 4kAFY ToniBi VY

i=1 i=1

From this equation and Equation (2.11) it follows that the extended noise temper-
ature for the series connected one-ports is

L; e LRi -

Tem = ___lleﬁ’;fy {I\]

As T.n; and R; have the same sign Equation (2. 17) is valid for both active and

passive one-ports. The only requirement is that Zz—l R, # 0.
Qs

Similarly, for I parallel connected one-ports one gets

[ -

i= T’Wlicl - C

. = ;:—IT“ (K] (2.18)
=1 VT

Example 2.2 A tunnel diode circuit is regarded as a one-port with the following data:
Gs =—2 mS and T,,n g = —7Ty. It is loaded by an admittance with G = 10 m$
and T, . = Tp. The extended noise temperature of the parallel circuit is determined
from Equation (2.18):

T, = Term,s Gs + ijm,L Gp _ —TTo(=2) + T5-10 - a3
o Gs + Gy, —2 + 10 —_—

Example 2.3 In order to isolate an unknown external
antenna from an internal ferrite antenna in a receiver \l/ .
the network shown in the figure is used. The nominal i 2
antenna impedance Z, = 300 Q and its noise tem- %
perature T, = 3000 K. In the network R; = 200 Q, i JRL r_]if'v
By = 100 Q and By = 62.5 Q and they all gener- ]T P
ate thermal noise at the ambient temperature of 17 °C. ! :};

a
regarded as a one-port with a given impedance, noise
temperature and signal voitage. The solution is found by computing the paralle! con-
nection of Z, and Ry (Equation (2.16) - Ry, T, s), then the series connection of R,

2.3. Calculation with noise quantities 17

and R; (Equation (2.15) - By, T, 1r) and finally the parallel connection of Ry and
Rs (Equation (2.16) - Rey, T oy).

A= 150 @ A T = TE+LE = 1645 K
Rip = 250 Q@ A Ty = Tag 7{%,- + Ty %“7 = 1103 K
qu = 50 Q A T.me-( = .Tn.,ll %‘ﬁ + TO % = 4326 K

The network divides the antenna voltage by 10 (and the power by 16.67) and the
antenna noise temperature (and noise power) is divided by 6.6 so the signal to noise
ratio is only slightly degraded (= 4 dB). At long- and medium-wave bands, where the
antenna noise temperature is above 300000 K, the degradation of the signal to noise
ratio is hardly noticeable (= 0.09 dB), so a lossy network can be used to isolate a receiver
from an unknown antenna impedance if the antenna noise temperature is relatively high

compared to ambient temperature.
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Noise characteristics of multi-ports

The multi-ports considered in this chapter can be single response two-ports, multi-
response two-ports or multi-ports with one or more responses at each port. In
single response two-ports only ore single input frequency gives an output at the
corresponding output frequency and - of less importance in noise theory — this input
frequency leads to no other outputs at other output frequencies. A multi-response
port can be considered as many ports as there are responses at the desired output
frequency at the output port. This means that multi-response ports are treated as
multi-ports with as many ports as the sum of ports times respoilses requires. It is
important to note that only one output port is considered and for spot {requency
analysis only a single output frequency is of interest. If more than one output port
is of interest each output port is treated separately one by one.

After a short look at some power gain definitions the following noise quantities
are introduced: effective input noise temperature. noise factor and operating noise
temperature. The noise measure is defined in Chapter 5. Of these the operating
noise temperature is intended to be used to describe the noise performance of a
system including source and load generated noise. The other definitions are used
to describe devices, stages and amplifiers and they are extended to cover negative
immittances as well [1,2]. Then the average values of the noise quantities are defined.
In a discussion of the neise quantities a definition of an outpnt operating noise
temperature is considered.

3.1 Power gains

Two types of power gain ar2 often used in noise theory, One i3 the available power
gain which is extended to include regative immittances and is then called the ex-
changeable power gaw. L'l vlhier is the transducer gain.

For a passive one-port source the available power P, is defined as the great-

19
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est power that can be drawn from the source by arbitrary variation of its
terminal current {or voltage) [2]. This power is the maximum power delivered
to the load when the load immittance is the complex conjugate of the source im-
mittance. Extending the above definition to active sources gives no meaning as the
“maximum” power is infinite and thus uot a stationary value (extremum). Howeyv-
er, a (negative) stationary value exists in this case so the exchangeable power P, is
defined as follows.

Definition 3.1 The exchangeable power of a one-port P, is the stationary

value (extremum) of the power output from the source, obtained by
arbitrary variation of the terminal current (or voltage).

For a Thevenin equivalent of a one-port where Z = R + 7 X and R # 0 definition
3.1 leads to

_ (e (lel*) ; 2 .
Poo= = SZ 3 7 (W] forR # 0 (3.1)

It is seen that F, is negative when the one-port is active (R < 0) and positive when
passive (R > 0).
The extended version of the available power gain, which is defined as the available
+1 o
L

Tt H PRSI S I I 1
power at the output divided by the available power at the source, is the exchangeable

o0

power gain G, defined by replacing the available powers by exchangeable powers.

Definition 3.2 The exchangeable power gain (. is defined as

P
. = il 39
¢ Pe,S ( )

where the exchangeable output power

{leal*)
P, = =1 W]
2,0 iR, A
and the exchangeable power at the source
loof2
P, 3 — < }eb’ ) JF\IV]
2, 4 Rs L

where e5,e,, Rs # 0 and R, # ( are the Thevenin voltage at the source

and output terminals and the corresponding resistances.

1t is seen that
Ge >0 when Rs/R, >0

G, <9 when Rs/R, <0

',

M ol H P P R 1 T 1
he transducer gain (' is defined as the nowe 1 to the load div
Lhe trapsqueer gam G k d % T TR0 tne joad di

by the power available from the source. As the available power is always positive
then Gt > 0 for passive loads and G < 0 for active loads. If active sources
are considered Gt = 0 as the available power approaches infinity. [t is therefore

leads to

necessary to extend the definition in the same way as above. Thi
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Definition 3.3 The extended transducer gain (.1 is defined as

G.r = (3.3)

where Py, is the power delivered to the load and Fe 5 is the exchangeable
power at the source.

It is seen that
Ger > 0 when Rs/Ry > 0

Ger < 0 when Rs/Rp < 0

where R5 and Ry, are the source and load resistances respectively.

3.2 Definitions of noise quantities

In this section the extended noise temperature, the extended noise factor (and fignre
and the operating noise temperature which also is given in an extended version are
defined. The extensions of the old definitions include the cases of active sources.
This s very convenient as a stage in a cascade of stages as source immittance has
the output immittance of the former stage. Often this stage is only stable when
loaded which means that the output immittance can well be negative.

The definition of the noise measure will be given in Chapter 5.

Usually the available or exchangeable power gain is used for definitions of spot
frequency noise quantities and the transducer or extended transducer gain for aver-
age noise quantities and this habit is majntained here. It is, however, not important
which type of gain is used as all noise quantities are defined as ratios of powers
and a change of e.g. exchangeable output powers in numerator and denominator to
powers delivered to the load does not change anything.

3.2.1 The effective noise temperature

The idea behind the definition of the noise temperature is to transfer the noise
power generated in the two- or multi-port to the source or sources. As a one-port
source with a known exchangeable noise power is characterized by ifs extended noise

temperature this quantity is used to characterize the two- or multi-port.

Definition 3.4 The extended effective (input) noise temperature 7,, of a
multi-port transducer is defined as the exchangeable output noise power
density at a specified output frequency of the transducer with noise free

- Svry s . P, L
sources, N [WHz™!] divided by Boltzmann’s constant & = 1.3807 x 10-3
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JK~! and by the sum of all exchangeable power gains from input respons-
es that give an output at the output port on the specified frequency,
. N! . )
T, = —— (K] (3.4)
ki Ges

=1

where [ is the number of responses from all the input ports and G is
the exchangeable power gain from port response i to the output port.

Note 1: There is only one output port and at that port only one frequency is
considered. As the definition uses the exchangeable output noise power density any
noise from the load has no influence on 7.,

Note 2: All other ports than the output port are considered input ports and
they should be loaded with any passive or active immittances except short or open

circuits.
Note 3: T.. is a function of the source immittance(s).

The subscript ee stands for extended Te where 7, is the standard symbol for
the IRE definition of effective input noise temperature [3].

For passive port terminations this definition is equivalent to the IRE definition.
The IRE definition states that the effective (extended) input noise temperature of a
multi-port transducer is the (extended) noise temperature which assigned simulta-
neously to all input ports of a noise free equivalent of the transducer yields the same
available (exchangeable) output noise power density at a specified output frequency
as the actual transducer with noise free sources.

With all input port terminations active, definition 3.4 gives a value of T, which
is negative and this corresponds to definition 2.3 of T,,,. If, however, some input
ports are terminated by passive immittances and some by active immittances Te,
can be of both signs. This situation is discussed below. In these cases with some or
all input terminations active the above IRE definition is equivalent to definition 3.4
when the alterations and the addition indicated in brackets are taken into account.

=
! ij" Noise free amplifieq V! i !7071 Noisy awplifier N,
L i ‘ -

i —

Figure 3.1: Tiusiration of the extended noise temperature definition for a single response

transducer.

The definition is illustrated in Figure 3.1 for a single response two-port where
at the right the noisv amplifier with a (fictitious) noise free source generates the

m— e
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exchangeable output noise power deusity &'.. Tle noise free - but otherwise equiv-
alent — amplifier to the left is connected to a source of whick the extended noise
temperature is varied in such a way that the exchangeable noise power density of this
amplifier is also V/. Then the extended noise temperature of that source is‘deﬁned
to be the extended noise temperature of the noisy amplifier. As N7 is a function of
frequency the extended noise temperature is also a function of frequency.

As mentioned above the interpretation of T.. with both active and pz;ssive input
terminations is a little difficult. Consider a three-port trausducer with one output
port and two input ports. The input ports are loaded with two immittances where
one is passive and one active and the output immittance may be either passive
or active. As T, is the same at both input ports and the exchangeable power
gains from the two ports have opposite signs, oue of the input ports lias assiened
an extended noise temperature of the opposite sign than the port resistanc: It
also seems that the noise power density at the output port consists of the difference
between two noise power densities. This can be accepted as fictitious reference noise
temperatures at the input ports, but it scems more natural if the temperature and
resistance had the same sign and that the powers were added. If the input ports
were loaded with either only active or only passive immittances, the noise powers
at the output port from the input ports would all have the same sign. V ’henAthjs is
not the case another ~ always positive — noise temperature is sometimes useful. It
can be expressed from the extended noise temperature by

!.T-:e Zz’lzl Gs,ii
N =1 1Ged

The idea behind Tep is that if all the input port responses are loaded by immittances

(3.5)

with noise temperatures of +T., (+ for a passive load and — for an active load)
and the transducer is replaced by a uoise free equivalent, then the exchangeablé
output noise power density is the same as that from the actual transducer with
noise free sources. It is seen that if and only if the loads to the input port responses
are either all passive or all active then Teo = |Teel. One of the main r;easons
for choosing definition 3.4 instead of T., as the definition of the extended noise
temperature is that for a single response two-port, the function Tee{ Zs), where Zs is
the source impedance, is the quadric siucface of a hyperboloid of twoysheets.1 This
is a consequence of the simple relations - for single respouse two-ports — between

the extended noise temperature and the extended noise factor defined betow
2.2.2 The noise factor

A miich used noise characteristic for twn-ports is the noise factor. It is, however. not

very practical to use with niulti-ports. where the noise temperature is preferable,

!See Appendix C.
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hat
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Ome Cases mole thau one response is considered. ‘L'he noise factor was the

©

first to be “exiended” to active sources [4].

Definition 3.5 The extended noise factor of a multi-port transducer, F,
(at a specified input frequency or specified input frequencies which all
give an output response at the same output frequency) is defined as the
ratio of (1) the total exchangeable noise power density at the output
port (and at the corresponding output frequency) when the extended
noise temperature of the source (or sources) is/are the standard noise
temperature (290 K) at all frequencies (and input ports), to (2) that
part of the exchangeable noise power density at the output port which
originates from the signal source (or sources) at the input frequency (or
frequencies) and at standard noise temperature.

Note 1: F, is not defined for a one-port.?

Note 2: For multi-ports with more than one signal response, either an extended
noise factor is defined for each signal response, or part (2) in the definition includes
noise from those port responses which are used for the input signals.

Note 3: F. is a function of the source immittance(s).

For two-ports this definition gives the source noise power density Ne"5 = kTp.
The exchangeable output noise power density N[ consists of two parts: the noise
power generated by the internal noise sources of the network N/ and the input noise
amplified by the exchangeable power gain of the network kTyGe. As definition 3.4
leads to N, = kT.. G, one gets

AT: o k TO Gv + k Tee Gﬂ Tee
", = = = — - = 1 — 3.6
ke NG, T, G tr, (9
T. = (R-1T K (3.7)

Please note that Equations (3.6) and {3.7) are only valid for a two-port with a single
input and a single output frequency. For multi-ports conversion from T.. to F, and
vice versa is more complicated and is discussed below,

Definition 3.3 is also consistent with H. T. Friis’s previous definition [6] when
- instead of the exchangeable power gain - the available power gain (7, is used.
Go = 5,/Ss where §, and S are the available signal output and source powers in
the frequency range of interest Af.

NIAS

G, Klaas

1

2Unfortunately the expression F, = 1 + T.m/To is sometimes used for a ore-port noise factor,

which is excluded by the definition.
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From the definition it is seen that
FI | for Rs >0
Fg < 1 for RS < 0
‘The noise factor for F, > 1 is often expressed in dB by
F.[dB] = 10log F, (3.8)

and then mostly called the noise figure. Also £, — | = Tee /Ty s called the extended
excess noise factor.

Example 3.1 In the figure below a two-port consists of three resistors with known
resistances and noise temperatures. When the source resistance fls is known it is
possible to determine the noise factor of the two-port by use of definition 3.5.

RZ T.m.2
|

g = 50¢
R 50 ¢ m?

1000 Tony = T,

Rl =
Ry = 1000 T..p = 13337, ?S ‘?1 | B
Ry =200Q  Tony = 18757, 0 el Temss

By use of Equations (2.18), (2.17) and (2.5) the square of the current in the short-
circuited output in a bandwidth of Af = LHz {Ji, /%) is found as follows:

G = Gs+ Gy =30 mS = B, =333
1HGs + Ty

Tom,e = -
e Us + G, ’
By = R, + By = 1333 0 = Gy = 7.5 m8§
T , = T‘m 2 ALZ;I + TemZRZ = 1957
emb = = 1.2
Rz + RZ o
G. =Gy + G5 = 125 mS
T TSWT.JG'[) + an 303 ~
Leme = " = = l.-}‘OTQ
C’«', : T3

L GLAf = 300 % 10-2 A2

is diy by 147, the total exchangeabie noise power density at the

[]

port is determined. To find that part which originates from the scurce jet T =

Temg = Tems = 0K and repeat the above calculations. The results are

1 1
— T

N /TU fipem.u =
6 10
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(i —~ 200 x 1072 47
) ! 4G -
F, = (I 911 )/ c) = 15

. {lio,121)/ (4 G.)

Example 3.2 Consider a transmission line made of metallic conductors and therefore
generating only thermal noise at the physical temperature of 17 °C (= Ty) and a loss of

= 1/G.. In order to find its noise figure the source must have the noise temperature
of Tp also. As a transmission line generates only thermal noise the transmission line
and source together can be regarded as a one-port at standard temperature and thus
its output noise power density is 7). The noise power density from the source is
kTo which is “amplified” by G. = 1/L. The ratio of these two noise power densities
determines the noise factor:

kTo/L

Now let the transmission fine have the physical temperature T);. To begin with let
Ttl = To, then

JVIMO + k‘To/L = kTy = IV,;TO = kTU(l - I/IL,)

A ;TI”

NS

Ty th neral expression is

n

-y
o’
o

.’V;Tﬁ = kT;[(l — I/L)

£ BD/D+ RTa(l - L) . ?L

-1
kTo/L A

Consider a heterodyne system with a normal response and an image response.
If it is used for a broadcast receiver the wanted signal is only present at the normal
response and the denominator in definition 3.5 includes only noise from the source
at the input response frequency, but the numerator contains noise from both the
normal and the image responses. If the receiver is for radio astronomy, signals are
present at both responses and therefore the denominator in definition 3.5 includes
noise from both input responses. Alternatively it may include one response and a
separate noise factor derived for each response. The distinction between the two
ke noise factor is given by calling them single and double sideband noise

re 3.2 the 7 4 J inputs can be loaded by active as well as passive immit-
tances, but signals, which are supposed to be uncorrelated, are applied to onlv [ of
them. Suppose the extended noise temperatire T, is given. then the exchan 1zeable

output noise density from the iransducer iisell V) can be calculated by

[+J
N, = kT. ) G, (3.9)

=1
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L — ]
I .
Multi-port transducer * N’
I+1
I+J |

Figure 3.2: A multi-port transducer with / responses with signals and J responses without
signals.

where G.; is the exchangeable power gain from port response i to the output port.
If the extended multi-response noise factor is chosen, definition 3.5 leads to
ETh Y G+ N

F, = 3.1
KT 5L G, (3.10)

From Equations (3.9) and (3.10) the relations between Tee and the multi-response
F. can be derived. Denoting the spot response factor

EI+J
R = 3.11
i[:l Ge,z ( )
the relations are T
T, = R (3.12
] (1+ ) (3.12)
E -
T, = \/? j T (K (3.13)

Example 3.3 Consider a three-port transducer with extended noise temperature 7, =
5Ty and the exchangeable power gain from ports 1 and 2 to the output G. | = 15 and
2 respectively. From Equation (3.9) and Definition 3.5 the single response

— 1
Gea = -1

2
extended noise factors are determined:

WoHz!

The same results
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When calculating the multi-respense extended noise factor, the spot response factor
R = 1 and Definition 3.5 gives
kTD(Ge,l + Ge,'Z) + [vé

F. = - = 6.0
kTO (Ge,l + Ge,?_)

which is the same as F, derived by Equation (3.12).

Example 3.4 Consider a mixer with exchangeable power gain for the normal response
Ge,1 and for the image response Ge 2. From definition 3.5

k Ty (Ge,l + GE,Z) + IV:I

F.s =
998 kTh G,

Fonen = ET0(Geq + Gea) + V]
DsE ETo(Cen + Gug)

This leads to
Ge 1 (}eﬁ ~
Fessp = 'IGT ~tepss = RF. psp
e, i
If Ge,l = Gc,2 = Ge = Fe,SSB = 2Fe,DSB

3.2.3 The operating noise temperature

The operating noise temperature T,p ~ sometimes called the system noise temper-
ature — is used to characterize a system under operating conditions and includes
all noise contributions which add to the ontput noise power delivered to the load.
Consider the system shown in Figure 3.3 where three sources contribute to the noise
power density delivered to the load. Oune contribution is the noise from the source
which could be an antenna with known noise temperature. For the time being only
passive sources and loads are considered. The available source noise power ampli-
fied by the transducer gain determines the contribution from the source to the noise
power density delivered to the load. The next noise source is from the two-port
considered (e.g. a receiver). This part is given by the 7., of the two-port and con-
tributes by definition 3.4 as the source at the noise temperature of T,.. The final
part is from the load itself. The load zenerates noise: some of this noise is absorbed
by the output port of the two-port {and changes T,., but often only slightly) and
the remaining part is reflected at the output port and then contributes to the noise
delivered to the load. This third part is usually very small compared to the other
two. While these are amplified by the normedly very big transducer gain of the

)
ated noise is red

system, the load-gener ced as it is divided between the load and

the output immittance of the transducer.
The IRE definition [5] has been changed in two respects. First it has been
extended to cover multi-ports with active as well as passive sources, and secondly
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Figure 3.3: Noise contributions to the load.

the noise power density considered at the output is the power delivered to the
noise free part of the load circuit. This is because the load noise often flows in the
opposite direction to the noise delivered to the load and thus reduce the operating
noise temperature [7]. The noise generated in the load and reflected at the output
port is included as in the IRE definition.

Definition 3.6 The extended operating noise temperature T.op 1s defined
as »

- Ny e ‘

Leop m U\J (-3.14)
where N} is the total noise power density delivered to the equivalent noise
free immittance of the load circuit, £ = 1.3807x 10"23JK~! is Boltzmann’s
constant, [ is the number of signal responses from all input ports where
signals are applied and Ger,i is the extended transducer gain from port

response ¢ to the output port.

Note 1: There is only one output port and at that port only one frequency is
considered.

Note 2: Noise generated in the load and reflected at the output of the trans-
ducer back to the noise free equivalent of the load is part of the numerator in
Equation (3.14).

Note 3: All ports other than the output port are considered input ports and
they should be loaded with any passive or active immittances except short or open
circuits.

Note 4: The denomirator of Equation (3.14) includes only gains from input
responses where signals are applied.

From

{
A’VE, = kT. ap Z GeT,i
=1
I+J 1+J
B TomiGeri + 5T S Gury + Vb [WHz!]
=1

i=1

il
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where N = [T}k T 1, I is the number of input responses with signals and I +.J
is the total number of input responses, it follows that

2 TomiGors N

Teop — ’R'Tee N 21:1[ 2m 1 Ty + - r [K] (315)
2oi=t GeT,i k3ot Ge
1 2

In most cases term 2 in Equation (3.15) is very small compared to term 1 so

I+J

i=1 Tem,iGr:T,z
7

Liz1 Ger

is a very good approximation. For single response two-ports Equation 3.16 reduces

Tewp ~ RTee+ (K] (3.16)

to
Teop = Tee + Tem K] (3.17)

In order to keep track of the signs a three-port is considered. The two signal
input ports are loaded with an active and a passive generator immittance and the
possible sign combinations are shown in Table 3.1. If instead only port 1 is applied
with a signal the sign combinations shown in Table 3.2 occur.

R | Rs1 sy Teop | Tecp
L TomaGer
~ o~ ~ | Gery | Gera | 0, Geri | RTw S Tty gq | Eq
=1 2T
Ni | Tomi | Tema 3.16 | 3.14
+ - + - + + + + + +
+ - + - + - - - - -
- - + + - + - - - -
- - + + - - + | + + |

e Rz Hs2 T. op T. op
2 y C Tem,Fer,s
~ ~ ~ Gerg | Gerz | 3 1o, Geri | R7Te Tt Eq. | Eq.
Np | Tema | Tome 3.16 | 3.14
+ - + - + + - - - | -
- - + + - + - - — —
N R R N D - -1 -
Table 3.2: Sign combinaticns regarding 1, . ter a three-part with one siznal res
In general
R
Teop >0 when '\_T~"{—:—-—*“ >0

Loi=t FeTy
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R
—{
2.i=1 GeT,i

where [ is the number of inputs with signals applied and R is the real part of the

Teop < 0 when <0

load impedance.

In most cases where Teo, is used both the source and load will be passive and
most often a single response transducer is considered.

It should be noted that T, is used in the common “figure of merit” G /T, where
G is the antenna gain and T = T op.

Example 3.5 The importance of only considering the lossless part of the load circuit is
iflustrated by calculation of the extended operating noise temperature of an attsnuator.
Consider the one in Example 2.3 and load it with Z; = 75 + 725 Q with a load noise
temperature 77, = 580 K. Computing the exchangeable power gain of the attenuator
one gets G, = 60.0 x 10™* and the method used in Example 3.2 determines

F. = 1/G. = 1687
= T.. = (F.-1)T, = 453K
This determines term 1 in Equation (3.15) to be T, + T, = 7543 K. in order to

compute term 2 let the load circuit be substituted by an equivalent noise free impedance
Z 1, in series with a noise voltage generator whose voltage is determined by

{le]® = 4kTLRelZ[)Af
The power delivered to the noise free part of the load is

(le?) Re[Z1]
|Zaut + ZL!2

eZg e”
Nt = R
L e<Zoul + ZL (Zout + ZL)‘>

In order to relate this notse power to a part of the operating noise temperature it is
divided by kG.1 A f where G.r for Z,,; = 30 Qis 55.4 x 1073

N 4{Re[Z, NV Ty, o
L2 = — (2] ~ = = 00K
‘quI‘Af IZOM - ZL#‘ (J‘ET

= T, = 22043K

definition is used the power density flow to the load is the same as above

=
-
b=y
]
b
g m

v noise temperatures, but the power density flow from the load to the

output of the attenuator will then be subtracted. This part of the power density fiow
is determined by the output terminal veltage I, the current inin the load circuit 7 and
{1l = 4 kT Re{Ziinf:
/ e Zout —e€" \
. _ prropey ez,
‘/\LQIRE = Re‘\[/1/ = Re<7 7. 7 C .)
\Lowt + ZL (Zow + Z1)

— {ef*) Re{Zo]

\Vry AT
| &out T ZLj
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Referring this power to an input temperature gives

]vL?[RE _ —-'lTL ReZDug RQZL]
kGeTAf - Geleout + ZL!2
= —066TK
> Tepprs = —2124K

~ a somewhat misleading figure. Further information on this is given in [7].

Example 3.6 Let a 12 GHz satellite-TV receiver require a G/T = 14dB. If 2 90 cm
reflector antenna has a gain of 38 dB and the noise temperature T..,, = 90 K, which
noise factor is then the maximum for the receiver?

T = T, = (38-14)dBK = 24dBK ~ 951K
2 Tee = Topp— Tema = 161K
T..
2> F.o= 1+22 = 15 ~ 1.92dB
Ty

If the actual receiver has a noise figure of 4 dB then the antenna diameter D, where
the antenna gain is proporticnal to D?, is determined by

F, = 251 (~ 1dB)
> T. = (F- 1T, = 438K
= Teop ~ 528K ~ 27.2dB
> G = (14+27.2)dB = 41.2dB
Ggfcm = 10%F = 210
= D = 09v210 = 131m

3.3 Average noise quantities and the noise bandwidth
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101 Anit in Sect . t¢ ail defined at a single (a spot) output
frequency and therefore often called spot noise quantities. Tley are functions of the
frequency and most useful to describe the noise behavionr of the circuit. Sometimes

1t is practical to characterize the noise properiies in a given irequency band with

one number instead of the more useful frequency function acd therefore the average
noise quantities are introduced. If the gain function of the circuit is not very flat
there may be some confusion as to how the reference amplification and the freqiiency
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band are defined. These problems are exposed and the equivalent noise bandwidth
is defined.

In the IRE definitions of average noise quantities the transducer gain is used.
When the definitions are extended to active sources it is necessary to replace it with
the extended transducer gain from Equation (3.3), but the really confusing problem
is when source immittance or load immittance changes sign in the frequency band
of interest. This leads to the possibility of zero exchangeable noise power and gives
results which can not be given a physical meaning. If the IRE definitions are going
to be extended to active devices it could be more interesting to look at the flow
of the noise powers. Then the results may be given an understandable physical
meaning, but the equations will be rather complicated. As extended average noise
quantities are used rather seldom, it is chosen to keep the mathematics as simple
as possible, and thus in cases with both positive and negative noise power flow the
values of the noise quantities do not right away give an impression of whether an
amplifier has good or bad noise properties.

3.3.1 The average effective noise temperature

The definition of the average extended noise temperature is given as a formula and
if all source immittances for all input frequencies have the same sign and the load
immittance also has the same sign for all output frequencies a more explanatory
equivalent formulation can be given.

Definition 3.7 The average extended effective (input) noise temperature
of a multi-port 7., is defined as

7= - Ll Telf)Geridf = fdf
ee - I

=1 fom GeT‘z(f - fz)df
where T,.(f) is the extended effective noise temperature of the multi-
port as a function of the frequency f, and Ger,il f — fi) is the extended
transducer gain from port response ¢ to the output port at an input

(X] (3.18)

frequency f — f; which originates a corresponding output frequency f.

If 7,(f) for all f have the same sign and also if Gerif — f) for all f and i
have the same sign, Equation {3.18) is seen as a weighted average of T... In words

this can be stated as follows:

ties and with source immittances which all {and for all frequencies) have the same
sign, the average extended effective {input) noise temperature T,, is the extended

noise temperature applied to all input immittances of a noise free equivalent of the
multi-port which delivers the same noise power to the load as the noisy multi-port

with noise free sources.



34 3. Noise characteristics of multi-ports

3.3.2 The average noise factor

For the average extended noise factor the saine cominents apply as for the average
effective noise temperature.

Definition 3.8 The average extended noise factor of a multi-port 7, is
defined as

oo ZE KRGS - J)df

‘ S Geralf — f)df

where F.(f) is the extended noise factor of the multi-port as a function
of the frequency f, Geri(f — f.) is the extended transducer gain from
port response : to the output port at an input frequency f - f; which
originates a corresponding output frequency f, I is the number of signal
responses and /+./ is the total number of responses from sources to load.

(3.19)

If F.(f) has the same sign for all f and Geri(f — fi) has the same sigh for all
fand ¢, Equation (3.19) can be seen as a weighted average of F,. In words this can
be stated as:

For a multi-port with a load immittance which has the same sign for all frequen-
cies and with source immittances which all (and for all frequencies) have the same
sign, the average extended noise factor F, is the ratio of (1) the total noise power
delivered to the load when the extended noise temperature of the source (or sonurces)
is/are the standard noise temperature (290 K) at all frequencies (and input ports),
to (2) that part of the noise power delivered to the load which originates from the
signal source (or sources) at standard noise temperature,

Defining the response factor

S IS Gari(f - £ df
S [P Geralf - £ df

as the ratio of “gain bandwidth product” of all responses to that of the signal

R = (3.20)

responses, the retation corresponding to Equation (3.12) is proved by

- \

- __ I‘P
o= Ri=—+1 3.21
i (TO * ) (3:21)
—i+J ren o~ /o oy oge S IET eeo o oo - e
— Laz=t do YT —J)G [ 2y Jg Lee(J)Goril) — fi)d o
Dl Jo7 Geral F~ fodf \ To 257 17 Ghgal f = 1) df J
S IR Garidf - f)df

e. d.

Sl [ Gori(f - fordf

[rom Eqnation (3.21) 7., is found to he
1 { )

T.. = <h’ - 1> Ty (3.22)

a
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3.3.3 The average operating noise temperature

The IRE definition [5] uses signal gain which invelves the signal bandwidth in the
definition of the average operating noise temperature. As many new medulation
schemes have been developed in the last decades it seems inconvenient to tie a noise
definition to the type of signal. Thus the signal gain is replaced by the extended
transducer gain from the signal input ports to the output port in the definition of
the average extended operating noise temperature.

Definition 3.9 The average extended operating noise temperature of a
multi-port T, is defined as

JE N df ]

I: o = ; 3.23)
s BV LT Gordf - fdf : (

where Ny(f) is the total noise power density delivered to the equiva-
lent noise free immittance of the load circuit at the output frequency f,
k= 1.3807x 1073 JX~! is Boltzmann’s constant, 7 is the number of signal
responses from all input ports where signals are applied and G.ri(f - f)
is the extended transducer gain from port response i to the output port
at an input frequency f - f; which causes the output frequency f.

Note 1: Noise generated in the load and reflected at the output of the trans-
ducer back to the noise free equivalent of the load is part of the numerator in
Equation (3.23).

Note 2: The resulting N;(f) may consist of parts with opposite signs at a
frequency f and also V() may change sign with varying frequency. This means
that when active immittances occur great care should be taken in interpreting the
value of T':O;.

Note 3: All ports other than the output port are considered input ports and
they should be loaded with any passive cr active immittances =xcapt short or open
circuits and the extended noise temperatures of these loads are the actual ones.

Note 4: The denominator of Equation (3.23) includes only gains from input
respouses where signals are appiied.

TFrom

./‘ AV,L(f)’{f = JCTWZ / ("l"l"":(,rr-f:,\ll’f
8]

ivd
k Z/ Tf&(f)G‘:T,Z(\f - .fi)([f
i=( Y0

I+J L0 o~ )
b S [T Gt s - i+ [T Ny a

JO
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follows

eop = R Tee

. ey 1;" Tem(f) Geril f = fi) df
i=1 foco GeT,i(f - fz) df
S5 NHA df
T o Gera(f - f) of

~

(3.24)

As stated in note 2 care should be taken in interpreting the value of ~T‘.:—op when
active immittances occur. Even a very noisy transducer may have almost zero Top
as the noise power may flow in opposite directions at different frequencies. On the
other hand in all those cases where the noise power parts delivered to the load add
up with the same sign the average extended noise temperature is a very descriptive

quantity.

3.3.4 The equivalent noise bandwidth

For each response a gain function exists. In many expressions in noise theory this
gain function is integrated over all f. It is often convenient to replace the integral
with the product of a fixed reference gain G.r, (often the maximum gain) aud
a bandwidth which is called the noise bandwidth By, when the gain function is
the (extended) transducer gain. Ever if the extended transducer gain can be used
the interpretation is most clear for the common transducer gain function which is
possitive for all f.

Definition 3.10 The (extended) equivalent noise bandwidth By is defined

as

j(;;o GeT(f) df
G’eTr
where G.7, is the reference value of the extended transducer gain func-
tion Ger(f) (at a corresponding reference frequency f,).

By = [Hz] (3.25)

Note 1: Usually Ger, is chosen as the maximum value of G.r+(f), but it can be
chosen freely, so it is important to know which Ger; (or f;) is used when the noise
bandwidth is specified.

As seen from Figure 3.4 it is important (o specify which 7.7, or fr is used
when the noise bandwidth is used. {t should be noted that all axes in Figure 3.4
are linearly scaled and that the area under the gain function is equal to the area
determined by G.7, By. The ratio of Bx/Byyp for n LC-circuits with identical Q

F - cv oand wi T 1 M Yo oitramn o T oo
quency and y mutuel coupling s given in Table 3.3.
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Example 3.7 A tuned amplifier consists of an LC-circuit, a transistor and another
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Figure 3.4: Examples of noise bandwidths: (a) a single LC-circuit, (b) a mistuned double
LC-circuit.

n: 1 2 3 4 5 5 20
By/Bsip: | 1571 12211 1,155 1 113 | 1.11 | 1.10 1.06

Table 3.3: By/Baap for n uncoupled identical LC-circuits,

between the two resonant circuits. The amplifier shows a Bz gp of 8 kHz. When the
average noise factor of the amplifier is # = 4.0 and the noise temperature of the source
is Tems = 380K (~ 2Tp) the problem is to find the signal to noise ratio at the load

for an inpet signal power level of i pW.

Ty & Tms+{(F-DTy = 5T,
c S .
2L { i = —
Y., T =5 T TTemT=——— = 3!20 ~ 37.14B
Ny, k T, By k5T51.221 Bagp
It is supposed that the signal gain G5 = S/Si is equal to the transducer gain
Gr = Np/(ET,, By), which usually is the case. If the power spectra of 5; and &7,

are different due to a special type of modulation and/or very frequency dependent 7.,

qd/n
the above calculation may give a wrong result. The IRE definition, which uses (g in the
definition of Ta; will of course give the correct result, but the problem is that the signal
spectrum then must be specified together with th I, figure to give a full description

¢

af the noisa in the

The response factor defined in Equation (3.20) can be expressed with use of

1ise bandwidths for multi-ports which are not loaded with short or open circuits



38 3. Noise characteristics of multi-ports

at any frequency as
[+

Zi:l GeT XY B[\",l
T

Lim1 Gerri By

where I 4+ J is the number of all responses of which I are supplied with signals.

]

3.4 Discussion of noise quantities

Most often noise quantities are used to describe the noise properties of two-ports.
In cascading these, one or more of the two-ports may be only conditionally stable.
This means that a source or load for one of the stages is active even if the cascaded
circuit is stable. This situation is quite common at higher frequencies. Therefore
in extending the gain and noise quantity definitions to include active sources and
loads, first priority was given to ensure that the well-known and often used formulae
could be used unchanged.

When extending to multi-ports this choice will in rare cases give some values for
extended noise quantities which ~ considered alone — do not give a correct feeling
for the noise properties of the device. This is due to the fact that the extended
definitions in special cases may have noise powers going in opposite directions and
thus being subtracted. It has been decided to accept this rarely occurring calamity
in order to preserve the simplicity of the often used formulae.

The same problem occurs for the average noise quantities if either the source,
the load or the gain of the device changes sign in the frequency band of interest. At
one frequency the noise power flows in one direction and at another in the opposite.
Thus the noise power integrated over the frequency band may be a small and rather
meaningless figure.

One way to get around these problems is to introduce vet another noise quan-
tity [7]. As all definitions of noise quantities consider only one output port no
ambiguity exists on the sign of the load at a given output frequency. By referring a
noise temperature to the output terminal many problems are solved. The proposed
output noise temperature is called the extended load operating noise temperature
and is defined for a multi rosponse transducer as

vl

efinition 3.11 The extended load operating noise temperature Terop of

T
a multi-response transducer is defined as

.
N,

op - I

T.

[

(3.26)

=

where N is the noise power density delivered to the equivalent noise
free immittance of the load circuit at the output frequency and k£ =
1.3807 x 107 JK~! is Boltzmann’s constant.
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If the extended load operating noise temperature should have an average equiy-
alent and the load immittance should change sign in the frequency band of interest
the same problem occurs once again. Two possibilities exist. One is to integrate
numerically in order to add all the power flow over the frequency range. The other
is just to integrate, which in some rare instances gives meaningless results without
further information. But is an average extended load operating noise temperature
needed? Perhaps an international, European or American standard committee on
noise might be a good idea. If so the number of recommended definitions might be
reduced. The first step could be to abolish the average definitions.
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Noise parameters

Most amplifiers consist of cascaded two-ports. In order to characterize the noisy be-
haviour of a two-port several sorts of noise parameters have been developed. Noise
parameters can also be developed for multi-ports, but would be more clumsy to
use. Two-ports are conveniently characterized by their small-signal parameters like
H,Y or § parameters. These consist of 8 (4 complex) numbers, which are func.
tions of frequency and bias point in particular and to a minor extent temperature,
radioactive radiation etc. They are, however, used extensively in practical circuit
design. By adding 4 more numbers (2 real and 1 complex) the noise properties of a
two-port can be included as well. Those 4 numbers are called noise parameters and
- in analogy to small-signal parameters — noise parameters exist in many forms.

In this chapter the noise parameters are derived, their use explained, and the
conversion formulae between different types of noise parameters given.

4.1 Noise voltages and currents

In 1955 Rothe and Dahlke [1] introduced noise parameters related to the chain or
ABC D small-signal parameters. These are based on noise voltages and curreats. In
a similar way noise power waves related to the scattering parameters have been used
by several authors, e.g. [2,3,4,5,6.7,8.,9], but they are still not used as extensively as
the Rothe and Dahlke type of noise parameters.

4.1.1 The equivalent noise two-port

In order to describe a noisy linear two-port, the s;

oy
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to cover the noise contrihutions as wall.

exampies of equivalent circuits are srown. In Figure 1.1{a) the noisy two-port is

characterized by hatching. In Figures 4.1(b), (¢}, and (d} the noisy two-port is

41



42 4. Noise parameters

replaced by a noise free but otherwise unchanged two-port and two partially corre-
lated noise generators. This is correct as long as the two-port is linear. Phy sically
the noise sources inside the two-port can contribute to ejther the input side, the
output side, or both. Mathematically two linear equations exist between the input

es and the noise appears in both equations.

- 1r2 I

=y
\\\\\\\§
5 il
CRE
T ot

_ F - _ g I -
]
(a) (h)
[1 [‘2
5O .
v, fa Va2

(c) (d)
Figure 4.1: Noisy linear two-ports.

The circuit equations corresponding to Figures 4.1(b), (c), and (d), where the
V’s and I's are complex Fourier series coefficients of voltages and currents, are

HE VAR
MR N
-

=

i

}

The noise vectors each represent two noise generators. As the noise is generated

A B Vs [ en ,
an o] (4.1)

"~

i

inside the two- port by various physical processes, the contributions to the two noise
ote ur fess correlated. It is therefore necessary to know the correla-

e two generalors. The correlation between two stochastic variables

.
L 1§
Y and Y is determined by the complex correlation coefficient

(XY

where |7| < 1. In Figure 4.1(b) the admittance matrix has been used and in Figure
4.1(c) the impedance matrix has been used. Rothe and Dahlke chose Figure 4.1(d)
corresponding to the chain or ABCD matrix and thns both noise generators are at
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the input side which is practical in noise theory as the noise quantities are referred
to the input side.

)
\_/ ]
€n
] 0.0
inl ! 'L.n'l I
o

Figure 4.2: Partition of the noise current generator into a correlated and an uncorrelated
part.

As shown in Figure 4.2(b) the noise current generator is partitioned into two
parts. i, = iy + iny, whera one part (i,;) is partially correlated with the noise
voltage generator and the other part (i,;) is uncorrelated. Thus (in1iz,) = 0. This
means that 7,; is proportional to e, with the complex proportionality factor Y,
which is called the correlation admittance. This leads to

i = Yyen (4.3)
(finl®) inal®) + (lina)®)

(enil) = (enin) + (enin,) = (ening) (4.4

Il

Inserting Equation (4.4) into Equation (4.2}, it follows that

v = Re[y] + jIm{y]
(eniy)
Ve (1iaf?)

(en h2)

S . T (4.6
N o)

4__,7 (;irﬂl?.\

l/{ H ‘Z\
(1815

|
LN
S
N

o

as

(enifa) » (ehim) = (e Y el - (e
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lfflg\iinlz>
(ml®) = (L= 1)

Equations (4.3} and (4.6) determine Y, by

—~
s
E)
L
[~
~
i

St (4.9)
{len]?)
and thus Y, = G, +78,

{[i]*)
{leal?)

— 7Im{y] % (4.10)

1
=
@
=

!
W P

Figure 4.3: Equivalent noise two-port.

v
Ly

The circuit in Figure 4.3 can be replaced by the circuit in Figure 4.4 where Y,
and -Y, are noise free which is shown by their noise temperatures of 0 K. The noise
generators are conveniently indicated with R, and G, by Equations (2.4) and (2.5)
replacing the bandwidth dependent e, and tn1. The two circuits are identical as
their open circuit voltages and short circuit currents are the same. The equivalent
noise two-port — such as the one in Figure 4.4 - are placed in front of the noise free
small signal two-port. When small signal analysis is performed, the noise voltage
generator is short circuited, e, = 0, the noise current generator is open circuited,
ia1 = 0, and Y, and -V, cancel each other, therefore the noise two-port will have
no efiect on the small signal anaiysis.

From the two noise generators in Equation (4.1) given by ({e,]?), {[in]?) and
their correlation coefficient v, the four noise parameters R, G, and Y, = G, 45 B,
shown in Figure 4.4 are determined.

oon
ger

noise two-port is shown in Figure 4.5. Again the four noise parameters r,, ¢, and
Zy = Ry + j X, are delermined by {leal®), {|iaf?*) and 7. Note that in general
Z, # 1/Y,.

4.1. Noise voltages and currents 43

Figure 4.5: Equivalent noise two-port in T form.

Two sets of noise parameters have now been defined. These are R, Gy, and 7,
which are most convenient to use in connection with ¥ parameters and 7,, g,, and
Z., which are convenient with Z parameters.

4.1.2 Y and Z noise parameters

From Figure 4.4 the noise factor can be derived. The amplifier following the noise
two-port is noise free so that the noise ratios on the output and input side of the
amplifier are the same and therefore the (noise free) amplifier does not contribute
to the noise factor. To find the noise factor, the exchangeable noise power densities
{tfom the source at 73 and from the two-port at the output terminals are found.
This is done by finding the current in a short circuit over the output terminals from
each of the three noise sources Gg, R, and G .. The noise power density is then the
sum of the three it] i h found by squaring the short circuit
7 four times the output conductance. This noise
power density is aiso the noise power density of the source admittance ai either
Ty (the contribution from the source) or 7., (the contribution from the two-port
transferred to the source) botl multiplied by the exchangeable power gain of the

two-nart.
i
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{1i&,)
IGs ¥ G, — G AT

kTG, =

(lig, ! I
kT:er = T
. 4(Gs + Gy, — G)AS
_ U+ Ueh s 4 v
- 1G5 AS

Definition 3.5 leads to Equation (3.12). Using Equations (2.7) and (2.9) leads to

{1l + (&) + (leh,D1Ys + Vo2

. (I

Il

L+ (Ga + Ral¥s + Y5f2) (4.11)

In a quite similar way from Figure 4.5 it can be derived that
1
= 4+ —_— YA Z 2 9
F. L+ 7 (rn + 90125 + Z,2) (4.12)

Note that £, > 1if Gg > 0 and £, < 1if Gs < 0. The two expressions for F,,
Equations (4.11) and (4.12), show how the extended noise factor depends on the
noise parameters and the source immittance.

In order to examine how the noise factor depends on the source immittance
Equation (4.11} can be written as

F. -1 2 (F.-1)? G, @G
- ==-G [Bs - (=B, = S5t (1) 22 - 20 g
[Gs ( o 7>] i85~ (-8 = B - (-0 E - )

which is recognized as the equation for a circle (F, constant) in the Ys-plane. The
circle has its centre in

. F, -1
(Gs, Bs) = ( 2'3 - Gy, —B»‘,> (4.14)
and its radius is
(F.—1)2 G, G
Rep o UGy G
“f Varr VT VR, TR, )

F.(Ys) is symmetrical around (F,, Gs, Bs) = (1 + 2R, G,, 0, = B,). Since van-
ishing of the right-hand side of Equation {4.13) always implies two roots for ., two
extrema for F, exist. These are as follows:

/
Foin = 142 KR,IG'A, + o BaGn + (RnGw)z) {(4.16)

for Ysor = \./Gn/Rn + GE - 7B, (4.17)
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Fimar = 142 (RHGW<—\/RHGHA+(RnG7F> (4.18)
for Ysorr = —1/Ga/R. + G2~ jB, (4.19)

The index SOF stands for Source Optimum with respect to the noise Factor and

is used for Gg > 0. SOF' is used when G5 < 0. Note from Equations (4.16) and
(4.18) that Fuim > Frnare- In Figure 4.6 the noise factor contours are shown.

~ 720 mS

— 740 mS |

1 L

-60mS —40mS —-20mS 0 mS 20 mS 40 mS 60 mS

Figure 4.6: Contours for constant extended noise factor in the source admittance plane

with data from Example 4.1.

Similarly, from Equation (4.12) a local minimum

I )
Femin = L 4 Kg"n“’v + \v/gnrn T '\gnR—«)-} (":O)
/
for
I > . o
Zsor = ofrafga 4 RS-0 (b2l
and a local maximum
femaz = L+ & (gnR.y = \/nTn + (_(]njf,,}‘) (4.22)
N
for
ZsoF = Velgn 15 - X {.23)
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Equatien (4.11}, which is ilusiraied in Figure 4.0, and kquation (4.12) give
information on the noise factor as a function of a chosen source immittance. [f
the minimum noise factor is the design criterion then Equation (4.17) or (4.21)
determines the source immittance and Equation (4.16) or (4.20) gives the value of
the minimum noise factor. If the source is active the F, ., gives the smallest noise
factor for the stage.

Sometimes the values of L nin, Ysor, and R, are used as noise paranieters and
similarly with F, ,i,, Zsor, and g,. This leads to

R, ,

Foo= Foqm 4 ET“(YS - Ysorl* (4.24)
S

Fe = Fomin + 25125 = Zsor |’ (4.25)
S

It should also be noted that the circles for constant Eey Fomin, and F.pqp can be
replaced by Tee, Tee min, and T nap as seen from Equation (3.13), T., = (F, — T,

Example 4.1 In order to draw the noise factor circles as a function of the source
admittance for an amplifier with the following noise parameters

£, = 25Q
G, = 4.3mS
Y, = 204 ;7.5mS

the first thing to do is to find F, ,;, and Fe maz from Equations (4.16) and (4.18) and
the corresponding source admittances from Equations (4.17) and (4.19):

Fomin = 142 (R,LG; +/RaGr 1 (R,,Gw)2>

= 1+2 (0.025 x 2.0 + \/0.025 X 4.8 + (0.025 x 2.0)2>

= 1.8 (2.55dB)

for
Ysor = ‘,—{lﬁ-G%—jB7
/ 48 . L C
= \/W+202—]70 = 14—]/.omS
¥oULe )
and
/ ! T _’\
Fimaz = 1+42(0.025x20 - 1/0.025x 4.5 + (0.025 200) = 0
for
) iz . .
Ysopr = - ames 202 —-j75 = —14 - j7.5mS
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The centres and radii for the noise factor contours are given by Equations (4.14) and

(4.15)

Go = (B2 as)

?‘Rn i

//!‘! 1\2 i i

[(fe = 1) Gy Gy
Rep = — _(F. -1 ki)
er \/ iR, (F. )Rq R,

Some results are shown in Table 4.1. It is now possible to draw Figure 4.6. If only passive

I, Y¢ = Gs + ] Bs [mS] Rep [mS]
3.0 380 - j7.5 35.3
2.5 28.0 — 7.5 24.2
2.0 18.0 = j7.5 11.3
1.8 4.0 — 77.5 0.0
0.4 =140 - j7.5 0.0
0.0 -220 - 475 17.0
-1.0 ~-42.0 - j7.5 39.6

Table 4.1: Centres and radii as function of F,.

source admittances are possible only the right-hand side of the figure is of interest.
From this figure the actual noise factors for different source admittances can be found.
However, they can also be found directly from Equation (411). fYs = 20 + j0 mS
then

1 ) 2
F. = 1*5;(GWRH'YD+Y~|)
1 5 = =212
— 1+E(L~5+[)020520+2+J'7]>
= 1.092 (2.82dB)

The designer has now to decide whether the amplifier should be noise matched, which
gives him an extra 8.27 dB, or if a noise figure of 2.832 dB is sufficient. A noise match
should be with as little loss as possible, as any losses degrade the noise factor. In this
case a loss of a quarter of a dB ruins as much as is gained. With transmission lines an
almost lossless match can be performed. If the input frequency is 600 MHz an 83.7 tnm
shorted 50 2 stub across the 20 m$S source admittance and a 30.3 mm 50 O lineiength

i perform the noise match {¢, — 1}. It should be noted that only a

narrow band match has been performed.

Example 4.2 An amplifier with the noise parameters R, =200Q, G, = 6.4 mS,
and ¥, = Z+ j L4 mS has a source impedance of 50 (. By adding a lossless admittance
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Pammn) to
i

i parailel with the input of the ampiifier the noise factor of the amplifier
can be improved. In order to determine by how many decibels, the noise factor without
this parallel admittance is computed as

- 1 12\
Foota = 14 = (Gn + B Ys + Y] )
TS E

= 1+ %(6.4 +0.020[(20 + 2)° + (0 + 147

2.000

A lossless admittance in parallel with the input of the amplifier changes the source
admittance from Y5 = 20 mS§ to Ys = Gs + j B where B, is the value of the
susceptance. If B, is chosen such that B4 4+ B, = 0 then the noise factor is at the
local minimum. This means that By = — B, = —14 mS and the new value of the
noise factor is

1 r
Fonew = 1+ (6.4 + 0.020 (20 + 2)2 +

L

(=14 + 14)2}) = 1.804
From this it follows that the improvement in the noise figure is

AF{dB] = 10log === = 0.448dB

If instead of a lossless admittance a complete noise match is performed the Femin =
1.800 could be obtained. It is, however, a much more complicated solution and the
extra 0.010 dB, which theory gives, would almost certainly be lost in the real matching
network’s internal losses.

4.2 Noise power waves

v applications have been replaced by § paraineters
it is natural to look for a set of noise parameters which are also based on the power
waves formulation and could work conveniently together with the ' parameters,
[n order to use the Rothe and Dahlke equivalent. from Figure 4.1 — redrawn in
Figure 4.7 - in the power wave representation, the T parameters are chosen. The

representation is in accordance with Kurokawa T10]. Without noise it follows that

AL [ Ty T ] [ B, 1 o
dlo= oLl (4.26)
R T T b Ay :
L Ltet 2pL ]
The signal power waves are defined as
VIi+ Zy 1]
A, = iz 4l (1.27)
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¢ , ®
A A & T
os J\ Noise fre '

i > V| linear Vs

7 WO-DOrE
V.LT VW3-DOTY

B = (4.28)
A2 = (4.29)
B, = (4.30)

where Z; and Z; are the complex reference impedances at ports 1 and 2, which
may be complex and also active. The only restrictions are that Re[Z1] # 0 and
RG{ZQ] ;é 0.

Including the noise sources in Figure 4.7 gives
W o= Vi—e, (4.31)
I = 5L -, {4.32)

Equations (4.26) - (4.32) can be expressed as

Nt ZL o Vo Zih g Vit Bk et Siln 33
2 V/1Re[Z1]] 2 ViRe[Z,]] 2VIiRelZa]l 2 /[RelZ]]
- Zr Vo — 23 I Vot Zols e, - 775
hWoZih _ b L+ - L= L (4.34)

2 /IRelZa)] TR R ez 2 IRal 210

Here the left-hand side can be defined as power waves 4, and By. The right-hand

side consists of a noise free part aad a nart otse sources. Thus, Lwo

noise power waves are defined as

i, = (4.35)
b — “r T Liin {1.367
) 2 /iRe[Z4]] ’

As seen from Equations (4.35) and (4.36), the noise power waves are introduced on
the input side of the two-port. (It should be noted that Meys [6] uses the same b,

but has changed sign on a,. Also Mevs has the real part of Z; positive.)
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Equation {4.26) can now be written as
A T T A4
1 1 4z 2 + Qn (4.37)
By Ty Tx B, ba ’

It is often practical to express Equation (4.37) by using § parameters. Isolating By
and B, it is found that

Ty TuwTy - Ty Ty T
B = 24 = A4; - =>=a, + b, (4.
| 7oAt o 2= Fan (1.38)
1 T 1
By = —A4 - =24, - — (4.
: TP I o (4.39)
which in terms of S parameters can be expressed as
B = S Ay + Si2 Ay — 511 an + b, (4.40)
Bz = Sgl Al + 522 Az - 521 an (4.41)

an
A 1_1[ Sn B
Sn 4532
. By S12 A
by

Figure 4.8: S parameter representation of a two-port with noise power waves.

Equations (4.40) and (4.41) are illustrated in the signal flow graph of Figure 4.8, It
should be noted that the noise power wave an in Figure 4.8 should be treated as an
internal noise source together with the § parameter representation.

4.2.1 The extended effective noise temperature

ip between tlie source power wave Bs, and the
exchangeable power of the source P. s, which is defined in Equation (3.1), is found
to be

From Appendix B the re

(1Bs1®) = pP.s(l—|IsP?)

——

,‘_.
U
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where p; = Re[Zi}/|Re[Zi]| and i refer to the port number, (|Bs|2) indicates the
ensemble average of | Bs|?, and
Zs = 7,

.= | el PS5
Is = |I'sle Zs + 77

(4.43)

As shown in Figure 3.1, Definition 3.4 for a linear two-port states that 7., is the
noise temperature of the source with a noise free equivalent of the two-port which
gives the same exchangeable output noise power as the (noisy) two-port with a noise
free source. Figure 4.9 shows the two cases. There the reference impedance of the
source is Z.s = Z] and also the reference impedance of the load, Z,;, = Z5. This
is so that an easy connection of source, load and two-port can be achieved as shown
in Figure 4.9 (b).

ap
1y
‘ 1 4 1 Sm Bs
ltl“5 5111 +522 ‘}FL
| D Su A
br,

(a): Noise free source (Bs = 0)

BS 1 ) 1 Al 1 521 Bz
{FS Su 4S9 UFL
By S12 A

(b): Noise free two-port {a, = 0, b, = 0)

Figure 4.9: Flow graph illustrating the T,, definition.

Calculating the exchangeable output noise power from Figure 4.9 gives

N =

*le,out

where . $12521 s

L= 51Ty
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iz the output reflection coeflicient of Lhe two- port, and
’ 2
N ll_SZZFLI /'B"l
e, ont D2 1 — Is, 12 {1 o2 >
J29i
1 - SpTef?
. Y224 L
= M

X <‘ SnBs “"\
1—(5111—\5‘,#510 "IFSF’ ; +511521F ILI / 46)

By definition N2, must be identically equal to ¥? ., from which

Bs = Tgb, — a,
and thus
(I1Bsl*) = {(Tsba ~ aa}(Tsby — an)")
= (lasl®) + ITs]*(162)® ~ 2Re(Ts(a2b,)] (4.47)
From Equation {4.42), this can be expressed as
Piles(L=Tsf®) = (lan*) + [Ts[ba1%) — 2Re[Ts(azb,)] (4.48)

The exchangeable source noise power determines the extended source noise temper-
ature T,.. Thus

Nos = kT.Af (4.49)

where Af is the noise bandwidth and

{anl) + [Tsl (16a*) — 2ReT's (a5 ba)]

T.. =
kAF(L = |Ts)?)

(4.50)

am FPanations £1 505
From Equations (4.50) and {4. -43) the sign of T, as a function of the signs of the

source impedance and the input reference impedance can be found as shown in Table
4.2

i

=17}, which
t

9
{lanl®) and {

/ i

can bn regar ila bIP power of the ingoing and outgoing power waves a

port 1, and as {a%h,), w‘nr‘] represents the cross-correlation between (he ingoing

ag

and outgoing noise power waves. A set of noise parameters, (T,, Ty, T, and P,

called T noise parameters, are defined as

{lanl?) = kT,AFf (4.51)
(Ial*) = kTuAf (4.52)
(anbn) = ET,Afel¥ (1.53)

ot
(1

4.2. Noise power waves

| Re[Zs] Re[Zy] [ Ts| T.
1 >0 >0 [ <1 >0
F >0 <0 > 1 0
i <0 > 0 >1 <

| <0 <0 <l <0

Table 4.2: Magnitude of |T's| and the sign of T.. as functions of the signs of Re[Zs] and
R(’,[ZI],
From this definition, the extended effective input noise temperature is given by

‘T ~ 2|05 Ty cos{is + 2y)
1 —|Tsf?

T,J-F[Fg
1

—
e
N
I

Ts € =

It should be noted that the definitions, Equations (4.51) - (4.53), are the same as
\/Ieys’s {6 7]. They are, however, used in a different way, as shown in Equations
(4.37) and (4.54) (for the real part of Z; positive). To distinguish them from each
other, the indices have been chosen differently.

The extended noise factor as a function of the T noise parameters and the source
reflection coefficient is found from inserting (4.54) into (3.12}:

Ty + [TsPT5 ~ 2|Ts| T, cos(os + )
Toll - |

Fa = 1+ " (453)

From the complex correlation coefficient (a%b,)/v/{1a,1%) {15,]2) it follows that
P n \ \iYn]

0 < T, < JTuTs (1.36)

where T, = 0 corresponds to no correlation between the ingoing and outgoing noise
power waves and T, = /T, T; corresponds to full correlation.

4.2.2 T noise parameters

Another set of noise parameters - the T noise parameters which are T,. Ts. and

L, explj »y] - has been defined above and the extended effective noise temperature

+o

T, expressed by the [ noige parameters in Equation 7 1.54). T.. can also be written
2e T :

as circles for consiant 7, in the source reflection coefficient plane. Friation (1.54)
can be written as
! - 12 2 ;
. Toe7or [ T, — pl. (157
5 - D= il 57)
| Ts +piTen) 0L + T2 Iy +mT..
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which, for T,. constant, is an equation for a circle with centre T'er and radius Rr
given by

Top = —— 20 -ity 158
“r Tg + 151 T‘,’H ( 35)

p) -

Tty - B (am

g T Pl ee) Tﬁ +nm Tee
When T,, is constant, then from Equation (3.12), F, = 1 + T.e/Tp is constant.
Therefore circles can also be drawn for F, constant with centre and radius given
by substituting T,. = (F. - 1) Ty from Equation (3.13) into Equations (4.58) and
(4.59).

If RZT = 0 then two extrema for 7., (or F.) are determined. These and their
corresponding source reflection coefficients are

Ry =

1 :
Teemin = 5 [Pl (To — Ty) + (Te + T3)% - 4T,$} (4.60)

1
- T _ ( )2 — 4 T2 ]
Forin = 14 o [T = T) + T ¥ TP —4T2] (w61

for
Tsor = Tsor
TA( E-]*Pw g
= ————— (1.62)
Te +Ts + p \/(To, + T3)? — 4712
To + T5 — p1/(To + T5)? - 472
_ —F e ‘.
= e {.63)
2T,
and
L ) I e a2
Teemaz = 3 [pn (T = Ts) = \J(Ta + Tp)? - 4T;} (4.64)
1 2 ) 2 ™
Fema.r = 1+ ﬁ [pl '(Ta - ‘.’3) - (Ta + Td)‘ — 4 [‘;]] (460)
for
Isor = Tsop
VT o4 @
= 2T, e - (4.66)
T, +15 - m \/(Ta + Ip)¢ - 4T2
To+ T3+ 1y JiTo +Ty)? —4T2
= u : eI (467

97
L~

i

t should be noted from Equations (4.60) and (4.64) and further from (4.61) and

o3
o

3

3
Vv
i
S

H
I
=3
Q.
5
1

i
v

o
o
Nt

S enar
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6 T 3 T
Im|[T m
/ m[ 5] /
Tee = =250 K
Tee = ~350 K
3+ 4
700 K
550 K
Tes min =A4TH K i

Re[Ts]

Figure 4.10: Contours for constant T., in the source reflection coefficient plane for p; =
+ 1 with data from Example 4.3.

The circles divide into two parts by a singularity when the centre goes towards
infinity for T3 + p;T.. = 0. These two parts are separated by a line n. which is
determined as
sin ¢, T, + T3

COS 5.y - 2T, sin ¢y

2

(4.

(=]
=)
g

o Tme‘Cr.w

Before drawing the circles for constant T.. (or constant F,) it is noteworthy to zee
from Equation {1.58) that the centres all ars located on the line m given by

sin oy

me m{Tor] = — Reil'ori (4.70)
) ) COS 2
The lines m and n intersect at the point
! (1.71)
T = ;(Tgm + Tsor) (1.71)
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Tt should also be noted that
Ty + Ty
Ponl = —=%£ > 1 (4.72)
ST
Sy
Tee as a function of the source reflection coefficient, 'y = ITs| expl; 1w5]is shown

in Figure 4.10. When the magnitude of this reflection coefficient s kept constant,
which corresponds to following a circle around the origin with radius |I's| in Figure
4.10, T, as a function of the phase is

Tee(ps) = %ﬂ—?;ﬁ - N lﬂ% cos(ps + ) (4.73)
This can be rewritten as
Teelps) = Tm — T, cos(s + i) (4.74)
where
7 2
Tm = p ]—lé%?%z (4.75)
T, = p % (1.76)

1521

It is seen that T..(s) is sinusoidal with a mean value T:. given by T,, and Ty, and
an amplitude 7, given by T, and thus by the magnitude of the cross-correlation
coefficient of the noise waves. An example of T.(s) is shown in Figure 4.11. If
¥s = —y then T,. is minimum for a passive source immittance and maximum for
an active source immittance.

When looking at T,. as a function of |I's| with pg = — ¥, which corresponds
to the line m in Figure 4.10, Equation (4.54) can be written as

T, + 'FSIZTQ - Q]FslT,y
1 - |Ts*

Tee(lrs{) = P

and illustrated in Figure 4.12.
From Figure 4.12 or Equation (4.54) it is seen that Tee — 0 for [I's] — 1,
because ({Bs|*) — 0 as seen from Equation (4.42). Also

= pnTls

= —PlT,J

Naming the halfplane. which contains the unit circle. as haltplane 1 and the
other as halfplane 2,
pr = +1: Halfplane I: Toemin < To. < o0 (In the unit circle)

- < T < =Ty

Tm - Ta COS(SD’Y)
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Tee(s)
Tm + Ta. [

Tm

T —Ta t
0 : ‘ ‘
0 - =Py ~2y T-oy ¥s
(a)
Tee(i25) 40 =7 =¥y Ba T vS

T — Ty +
Tw — Ty cos(%_c’:,)
Ml AN
- ~—

(b)

Figure 4.11: An example of the extended effective noise temperature 7,.(5) as a function
et R LS. t ‘

of the phase of the source reflection coefficient.

(a) Passive source (Re[Zi] > 0, iIls] < 1yor iRe[Z,] < 0. !Ts} > 1}

(b) Active source (RefiZ)] > 0. iTel > 1) or (Re[Z] < 0 ITg]
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Tee(iTs])
1000
. Ta
500
0 1 .3 4 5 [Ls]
—Tﬁ
—-500
—-1000
Passive Active
source source
(a)
TeE(|FS|)
1000
500 |-
Ty
0 t : I
1 4 5 Is|
—500
—1000
I\
Active Passive
source source
{b)
Figure 4.12: An exampi= of the ended effective noise temperature T,.{{i'5]} as a fuaction
of the magnitude of the zource reflection coefficient lor wg = — [

(a) Re(Zy) > 0.
(b} Re(Z;) < 0.
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Halfplane 2 - T3 € Te < Teppmas
po= -1 Halfplane {: - < Tee £ Teapmer (In the unit circle)
TH S Tr’e < o
lalfplane 20 Teermnin < Toe < T3

Example 4.3 In Figure 4.10 the circles for constant T, in the source reflection plane

are drawn. These are constructed for a transistor with the following T' noise parameters:

T. = 50K T3 = 200K 2257718 K

T.e97 =

First Tee min and Teemez are found from Equations (4.60) and (4.64) to be 475 K and
—125 K respectively. Then for T,. > 475 K and T.. < —125 K the centres and radii
of the circles of constant T.. are found from Equations (4.58) and (4.59). Some of the
results are shown in Table 4.3. The two lines n and m are found as n goes through the
origin and T'.,,, given by

{Tsor + Tsor)

T =

— k]

= 5(0.3334—3.000)@—1” = 1.667¢" 7S

and the line m is perpendicular to n in T,,,.

Tee Lot Rt
700 0.250 718 0.479
550 0.300e 713 0.300
475 0.333¢~718 0.000
—125 3.000 e~/ 13 0.000
—130 1.300 e/ 18 2.500
—250 ~4.500 7 1.8 6.021
—350 —1.500e~718 2,872

Table 4.3: Centras and radil as functicns <f noise temperature.

4.3 Transformations between sets of noise parameters

There are almost an infinite number of ways in which a set of noise parameters can

he defined. So far in this book five sets have heen defined. One further set of noise
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arafiiclers was iniroduced by Bachtold and Strutt {11} and it uses F, ., and Tg.
From Equation (4.24) one has

Tt

B : :
Fooo = Fomin + o 1Ys ~ Ysor|® {4.78)
Gs
A4s
’ . Zs - Z, 1 - Y57
15- = —_— =

Zs + 77 1+ Y52y
where Zg is the source impedance and Zy is the reference impedance for the input
port, one gets
. 1 -Ts
Ys = #’_
1521 + Zl

e Re[Z1])?] |?
4(Re[Z,})* |Tsor — Tl

Ys - Yo 2 - - . +.79

I¥s = Ysor| ITs Zi + Z:P [Tsor 2 + Zi° (+.79)

Gs =

L. .
s +Y5) =

I - Ts 1 - T3
UsZi + 2, " 152y + Z;

B

From this it follows that
Re[Z)](1 - [Ts5%)

Gs = — — 4.80
7 s 27 + 212 (4.80)
Equations (4.79), (4.80), and (4.78) lead to
4Re[Z] R, ITs - I'sor|?
Feo = Fomin + - 5 - « 4.31
Tsor 27 + Z4)? 1-|Ts? (431)

Here F, is expressed by F, min, Fsor,and R,. It is, however, convenient to introduce
a new neise parameter, Q. as

4Re[Z1] R
Une —_——l _I] —— (1.82)
(Tsor Z7 + Zy]
and £, can be written as
T2
Fe = Frm{n + an M ('QB)
) I~ |Isf* '
4.3.1 Transformation formulae
From ., R, and Y,
To Fﬂminv fln, and Ysor:
/ \
Fomin. = L+ 2Z{R.G, + /RGL + (RGO (4.3
emin \ v / /
R, = R, (4.85)
Ysor = /Gn/R. + G2 - jB, (4.86)

1.3. Transformations between sets of noise parameters

To rn, gn, and Z,:

G
Tn = =TT
(—’n/Rn + |}‘y’~
Gn = Gn + Hnu:ﬂz
¥+
7y = u

To Fomin, 9n, and Zsor:

Femin

Gn

Zsor

= 1+2 (R,ﬁ7 +/BaC + (Rn(;7)2>

= G, + RTI!Y‘Y%Z

\/Gn/Rn + G% + jB"r

GnfBr + |Y4}?

To F—:mmy QTLC7 and I'sop:?

chin

an

Isor

= 14 2(RG, + RaGu = (RGA1 )

4 Rel[Z] R,

1~ (/G B+ G~ i By) 7 7+ 7
1

14+ (\/Ga/Ra+G% ~jB+) 2}

2

1— (\/Gu/Re + G2 ~ jB.) 2,

1+ (\I/G,,_/Rn + G- iB,) 7

To Ty, Tg, and T, 7 ¥7:

2

o= 2 (120G, + B [1+ 2PN 4 2(RG - X15.))
‘ ] VT

T, - ‘:0‘ (ZFG. + B+ 20 - 2o, + 5e))
‘ N{aY l :

-
T, 7 = —— 1
(R NG

J‘_U (/5—"—72 - R?‘t (jil + R«'.
i

Fip T [X1 G + Ra( Y = By

7, = Ri +j X1 is the complex reference impedance at the input port

63

(4.90)

(4.91)

(4.92)

(£.96)

(497

[

(1.08)
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From Femi'n) Rn, and YSOF

To Gy, Bn,and Yy:

Fyin — 1)2
Gﬁ = CSOF(chin _ 1) - ( ,mL;an )
Rn = Rn
F —
Y. _ emin ~ G — B
Rl 2R, SOF JOsor

To 7, gn, and Z,:

(4RnGSOF - Femin + 1)(Femm - 1)

Tn = -
4R, IYSOFP
gn = Rn IYSOF|2
z _ Fomin = 1 = 2RYLGSOF + j2 R, Bsor
y =

To Femiﬂ: gn> and ZSOF:

To Fem{n: an: and I‘SOF:

Femin
QTLC
Usor
To Ty, Tg, and T, &7 %7:
Ty = —TO (
; [Ryf *
2RAR
T3 = To R,
[y (
+2R.(R

2 Rn {TSOF;2

Femin = Fsmin

gn = Ra|Ysor|®
Yﬂ
T — SOF_
SOF _‘YS__-OFIZ
- Femin
4 RE[ZJ Rn

L=Ys0r 7l o« 2
|1+y3~m«z; ZT + 74

1~ YsorZ)
1+ YsorZt

Rn[l + EZIEE_{YS")FZVEJ + Rl(F':min - 1)

P -
yoeorm — Xy
TS0 RL

o5

o
SOF}

~——

(I + 121" Ys0rl*) = By Fomin — 1)

1Gsor + -\7135"();-‘))

(4.99)
(4.100)

(4.101)

(4.102)
(4.103)

(4.104)

(4.105)
(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

Ty
FAT

T‘v ej S -
From Ty, gn, and Z,

i To Gr, Ra, and Yy:

To Femin, Rm and YSUF:

Femin

R, =
Ysor =

To Femin7 Gny and Zsop:

Femin

! gn =

Zsor =

I ~ . i
10 Fomin. Wne, a0d LSOF?

chin =

Q ac —

Tsor =

r'n + gniZ”r

4.3. Transformations between sets of noise parameters

(Rx [1 — [Ysor[(B — XP)] + 2R, Bsor)

+32p1ToRn(Bsor + X1)Ysorl®)

Tn
Gn = ——T"5T7
Tn/gn. + |Z’7|2
Rk, = 'rn‘i'gniZ"!Q
Z
Y, =

rn./gn. Jl_ ‘Z‘Yiz

1+ 2 (gan Ty gnr/n + (Uan)?)
\ /

)
l..

Jrdin + B+ j X,

Tn/gn + lZ’vlz

N

_——
142 (gnR.Y + y/gnr/n + (g'an)Z)

In

Vralgn + BE -0 X,

— N

1+ 2 gnfy + fgaln T Walty) )
AN i /

. R‘E{le"\rn + fz’n‘!/“":“.“
I rajgn v HE -5 XS 21 5 | 4
Y piin® o L7 By
|/rafan+ RE -3 Xy 27 7 |

\/rn/gn + R?y ‘jX’Y - Zl

[p {g L+ R2 _ 4 X 4 7t
wlGu 5 J T i

v Lo

(4.113)

(4.114)
(4.115)

{4.116)

(4.117)

(4.118)

(4.119)

(4.123)

(d.124)

(4.125)
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To Ta, T3, and T, e/ 77:
T, = 0 (ra + gn[tRy + RO + (X, + X
a1 IR1} n In |L -y 1 Ay <11
To ¢ r
. .
b= qpyletola E)” 4+ (X, +

T, = 2 (ra+ g [(B2 - BS) + (X, + X))

f

[ R
+12pmThgn (X, + Xy)

From F, miny gn, and Zsor

To G, Ry, and Y

(‘19711250[7 - J-L—emin + 1)(£’rmin - 1)

G, = .
o 49.1Zsor|*

R, = gn IZSOF|2

v _ Fsor —1-2g.Rs0F + j2¢,Xs0r
Y, =

2gn|Zsor|*

To Femin, Bn, and Ysop:

Fe min = Fe min
R, = g.lZsor|*
ZsoF¥*
Ysor = -

iz d 153
142S0F|”

To rn, gn, and Z,:

Tn = RSOF':Femin - 1) e T
("n
gn = Gn
Fomin = 1
Z, = —E"—— - Rsor — j Xsor
! 245 ’

To Fa mins anv and I‘SOF':

Fomin = Fomin
o aRe[&juaiZsow)?
ne = | = z 2
L/S! F = / H
Zsor+ 27 2+ Zl|
T _ Zsor — 24
SOF = L e
Zsor + Z7]

Noise parameters

(4.126)

(4.127)

(4.128)

(4.132)
(4.133)

(4.134)

(4.138)

(4.139)

(4.140)
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To Ty, Tp, and T, el
_ TO 2 2y Iy
Ta = (gn(]ZSOFl + |Zl' )+ Rl(kemzn - l)
[R1]
—2gn{RsorB1 + Xsor-’ﬁ)) (4.141)
T P
L = g (oiZsorl + 14) = BiFupin - 1)
1
+29n(Rsor Ry — X50FX1)> (4.142)
T, v — Logn (1Zs0rl* ~ (B} - X7) - 2Xs0r X))
|Ry
+]"2p1 Togn (_.L‘l — IYSOF) (4.143)
From F. nin, Qne, and Tsor
To G, Rn, and Y,
. L @ne(l = Ts0r?) = (Femin — 1)°
G, = RelZy](Femin = 1 - - = 4.144
: [2:]( ) OnlTsorZe = 2,2 ( )
- 2
Rn an!rsole + Z1| (414!5)
-LRQ{Zl]
v. = 2Re[Z1](Fomin = 1) + QnueliTsor*Z1 — Z7) + 27 Qne Im{Psp Z4]
L, =

O.nc ITSOFZf + th?.

To I mins Rru and }/SOF:

To r,, gn, and Z,:

K 17
rn = RelZy]{Fer

gn =

[ NErd
4 Re[d

3 = F
Lemin —  Lemun

an’rmfzf + Zl“Z

fn = 1Rel[Z1]

1 - T'sor

T rw o oF
VsorZi + 2,

Ysor =

 Yetl = (Tsorl) = (Femin = 1)
m ! Qnell = Tsor)?

an il - FSOFI2

1
I

(4.146)

(£147)

(4.148)
(4.149)

{(1.150)

(14.150)
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7, = 2BeAZ(Femn = 1) + Que (TsorP 27 = Zi = 2) Imspp 21])
! Qneil ~ Tsop)?
(4.152)
To Fermin, 9, and Zsor
Fsmin = Femz'n, (4153)
_ @nell = Tsop|® _
In = W (4.154)
I Zr + Z
Zsor = % (4.155)
- LSOF
To Ty, T, and T, e’ #7:
Ta = plTO(Femm -1 + anIFSOFlz) (4156)
Td - plTO(l - J-"—’»3171171 + 6271‘:) (41’_)7)
T,e%7 = p1TyQucilsor] e/ ¥sor (4.158)
From 7,, T3, and T, e/ ¥v
To G,, R,, and Y,:
[R1]
G, = —/+-
Ty
T.Ty — T?
X i S— — (1.159)
[ZHTo + Ty + 2T, cosipy) — 41X, T( X1 cos oy + Rysineg,)
1
R, = ———
4To| Rl

x (1204 + 1y + 2Ty cos ) ~ 4 X, T, (X, o5, + Rysing,))(4.160)

Y, =
(T = Ty) + J[XUTy + T3 — 27, cos ) — 2R, T sin )] (4.161)
EDY; T = 4.1ol)
2 *(To + Tp + 2Ty cos ) — 4 X057, (Xpcospy + Rysing,)

i = 14+ 1_ (pidT, T4 {4.162)
24
R, = _ 1 (jle2(Ta + Tp + 2T, cos,)
4 To| 1|

-4 X1T,(Xicos, + Rysing,)) (1.163)
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69
VB \J(Te + Tp)? — a2
Ysor ZiP(To + T + 27T, cos o) T (X Romol
] H ( ot g+ 21 c080,) - 4“111'("‘1“’5997 + R15m"€«,>
, 2R1T7 sin Py — A'\’U’iTa + Z} + ZT'y cos ‘{27) PN
TJ {Al(Ts + Tp + 2T, cos54) ~ 4 X11,( Xy cos o, + Ry sin o)
To 7, gn, and Z,:
BT Ty - T2
- Ea i ) (4.165)
(T, + Ty ~ 2T, cos )
To +Tp — 2T, cos Dy
n - - .166)
g 1 To | Ry (4.166)
~ (T, - Ty)
“ Ty + Ty - 2T, cos .,
27T, Rysin ., .
7 ‘ - X 4,167
’ (Ta + T — 2T, cos ¢, ! (4.167)
To Feminy Gn, and ZSOF:
1 ‘ - R
Femin = 14 g (p(Te = Tp) + Vo + T2 —4T2) (a.168)
To + Ts — 27T, cos Dy
gn = TSI (4.169)
A 1Rl \/(T"+T-3)2”4T3
sor = T, + T5; - 2T, cos o,
o 2T, Bysin .,
+ X, - - | (4.170
T Tu+ 15 - 2T, cos g, (4.170)
To F. min, Q.,c, and Tsop:
1 N ; = ) IETIE
Foin = 1+ 3T (!’1[1\ -~ Taj + \,'\1,] LT -4 (1T
. T/ Vo ST L Tz a7 1179
Yne = 27T, l\P111a+le)+\/(sz+T1;) 1]‘7) (4.172)
Tsor = lT (17w + T2) = o iIT + Ty)t = 472) (4.173)
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Noise measure and graphic
representations

In this chapter the extended effective noise temperature and the extended noise
factor for cascaded single response two-ports are derived. Then the extended noise
measure of a single response two-port is introdnced. The behaviour of the extended
gain and especially the extended noise measure in both the source admittance plane
and the source reflection coefficient plane are treated in the last two sections.

5.1 Two-ports in cascade

Often amplifiers consist of two-ports in cascade. This section computes the extended
noise factor and the extended noise temperature of two-ports in cascade.

— i ;
H | S Fe,l Tee.l Fe,2 Tee,'l TTTT .__7‘ Fe,m Teﬂ,m, l}—.
Gg‘l Gc.Z i———a—»—— F—J G“v"‘»
! o

Figure 5.1: Noisy two-ports in cascade.

The definition of extended effective noise temperature (Equation {3.4}) uses
the exchangeable output noise power density for the amplifier alone {without noise
from the source). Single response amplifiers mean that each two-port has only one

exchangeable gain at the appropriate frequency, thus

"Vc; = TEEGE = TeeGe,lGe‘Z T ‘(—;e.nx ‘_’"V HZ_IE (’) L)

il
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The output noise power density from Figure 5.1 is

i’vé = k (TBE,IGE,IGCQ o 'Ge,m. + Tee,2G5,2 . 'Ge,m + o+ Tee,m(;e,m) (52)
These two equations lead to
T e,z Tﬂe 3 TF:* m -
T. = Te. £ex e e K] (5.3
) . + Ge‘l * Ge,lGe,2 + Ge,lG'e,'l o 'Ge,m-l [\] (D )
m T
= Tee,l + = 15& = [K] ’ (54)
=2 H G

The extended noise factor is given by Equation (3.12) which for cascaded two-
ports looks like F, = 1 + T../T,. Together with Equations (5.3) and (5.4) this
leads to
Tee,l Tee,? T‘:E.3 +oe 4 T‘ze,m

TO GE,ITO (;e,l Ge,’ZTO Ge,IGe,Q o ("e‘m~17‘0
Fa =1 Fy-1,
Ge,l G.1Ge 2

Foa + Z GH (5.5)

— ] 1

F, = 1+

Fs,l +

In order to see how the signs behave the combination of two stages is examined.
. From Table 4.2 it is seen that T.. has the same sign as the source resistance Rg.
The formula for Te. of two stages in cascade is (Equation 5.3):

TfE.?
Ge,l

Tee = Tee.l +

This gives the signs as shown in Table 5.1.

Tee,l Ge,l T:c,2 Tﬂc
>0 >0 >0 >0
> 0 <N < 0 >0
<0 >0 <0 < 0
<0 < 0 >0 <0

£ i i M raceaAs
or Lwoe WO peris in cascade.

It is seen from Table 5.1 that the sign for T., for a two-stage amplifier is the
same as the sign of the source imunittance. Taking these two two-ports as a sing gle
two-port and then adding another two-port, the combination of three two ports also

5.1. Two-ports in cascade 73

follows the sign of the source immittance. This procedure can be repeated as often
a3 necessary, so

for Es > 0 then Tee > 0 and FF-1 > 0
and for Rs < 0 then T.. < 0 and F.-1 < 0

Example 5.1 An antenna amplifier consists of two identical stages each with the
following data:

Yii = 104 j21mS Yi2 = 0.50 — j0.86 mS
Yoo = 19 - j30mS Y2 = 1.0+ j3.0mS
R, = 250Q Gn = 4.8m$S

Y, = 20+ ;7.5mS

The source admittance is the antenna admittance which is Y5 = 20 mS.
The noise factor of the antenna amplifier is computed in the following way.

1 2
Fop = 1+ G—S(Gn + RalYs + Y412

1 . Cm =2 _ .
i (48 + 0.025120 + 2 + ;7.5 ) = 1m
Y| Gs
Re{{(Y11 + Ys5)Ysy — Yio Yo} (Y + Ys)~]
(19% + 30%)20
Re[{(10 +72.1+ 20)(1.0+ j3.0) = (0330 — 7 0.86)(19 — 7 30)}(10 + 7 2.1 + 20)]

Ge,l

= 17.3
Yia Yy
Y., = Yy — —2 =
et 2TV, v
- o (050 —70.86Y10 - 530)
= LU+ ] 3.0 — s 4 ;

10 + 721 + 20
= 161 + j4.00 mS

For = 14 = (Go + RalYours + V)
cut,1
I
_ L N . L . 2\ B < o
= 14—1'61(18 0.025{1.61 + j4.00 + 2.0 + j7.52) = 6.23
Ly = 6.23 -
Foo— iy —5— = 192+ T = 222
Gel 17.3

It is seen that the second stage has a rather high noise factor, but because of the also
rather high gain of the first stage it does not spoil the combined noise factor very much.
If a lossless matching network was added between the two amplifier stages in order to
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transform the output admittance of the first stage to the optimum source admittance for
minimum noise factor for the second stage the combined noise factor can be determined.
Instead of using F, , above the F, 5 min is used:

+RGy + (RG))

= 142 (0.025 X 2.0 4+ 1/0.025 x 4.8 + (0.025 x 2.0)2> = 138

Fe,?min = 142 (‘R"GW

The second stage source admittance is computed by Equation (4.17) to 14 — j 7.5 mS§.
As the exchangeable power gain is unchanged
18 -1

o= 192+ ——~ = 196
+ 17.3 9

Example 5.2 An antenna with impedance 50  and noise temperature To = 2900 K
is connected to an amplifier via a 50 Q cable. This cable has a {oss of 1.76 dB and its
temperature can be taken to be the standard temperature, Ty (17 °C). The noise factor
of the amplifier is 1.8.

The 50 Q2 cable has a loss of 1.76 dB and as its temperature is T [K] it is seen
from Example 3.2 that its noise factor is 1.50 ~ 1.76 dB and the gain is 1/1.50. For
the combination of cable and amplifier, the result is

Feamp — 1 1.8 -1 -
FB = Fc cable + ",ﬁmp_ = 1.50 + T = 2.7
' GE,CGb[C T8
Tee = (FE - :L)TO = 27 — 1)290 = 493K

From this the operating noise temperature for the antenna — cable — amplifier combi-
nation referred to the antenna terminal is

Teop = T, +T.. = 2000+ 493 = 3393 ~ 3400 K
It should be noted that a rise in noise factor from 1.5 to 2.7 7 — which often should be
avoided — is of no importance, when another noise source — hare the antenna noise — ic
dominating.

3.2 The noise measure

Take two two-ports with extended noise factors Fe and F,; and exchangeable
power gains G, ; and G, and find out which cascade combination is best — the one
with two-port one first or the one with two-port two first. T.et the result bo that

5.2. The noise measure

It

(]

F.12 < Fy2q. From Equation (5.5} it follows, for a passive source and G.; < 0or
Ggyl > 1 and (15'2 < Qor Cc,'l > 1, that

F,—1 L -1
For b —=5— < Fp+ 2272
el Gra o

It is seen that for two two-ports with a positive source immittance and an am-
plification which is either negative or greater than one, the choice should be the
two-port with the smaller extended noise measure, M., first, where the extended
noise measure is defined by

F, -1 )
M. = —~—0 (5.7)
L-z

If the source is chosen to be negative the same procedure shows that the negative
noise measure closest to zero is the best. Haus and Adler [1] have extended the
definition to the general case where F, and (3, may differ from the conventional £
and &, and denoted this extended definition of noise measure by M,.

In the discussion of the noise performance of amplifiers, it turns out to be im-
portant to bear in mind the algebraic sign that M, assumes under various physical
conditions. These are summarized in Table 5.9,

Bs R, G. F. |G ] M.
>0 >0 >0 >1 >11{>0
>0 >0 >0 >1 <1 }<o0
>0 <0 <0 >1 #11>0
<0 >0 <0 <1 #£1|<9p
<0 <0 >0 <1 >1|<g
<0 <0 >0 <1 <1 >0

‘L'able 5.2: Signs for M, under various conditions

Tt should be noted that, for a passive source. M, is positive for (7, >

corresponds fo a normal amplifier. and for (7, < 0. which hO]\lw for an amy
,
At

negative real part of the ontput immittance. A

15 Lo an ati venidator.

When m two-ports are going to be used for an amplifier the order of the two-
ports for minimum noise is

0 < »"Vl’e,l 5 :‘[‘:,2 < A"le,ij S S ~"1e,m (5.8)
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In contrast, when a postamplifier is specified and a single preamplifier is required
to precede the postamplifier, then one preamplifier must be chosen from several
possibilities [2]. Here the minimum noise measure does not give enough information
for the choice. This is demonstrated by writing the expression for the noise factor

cn

ngement as {ollows:

Foo—1
Fe, = F..+ 22
12 1 o
Fpl -1 1
= 1 —_— Fe -1
+<FC,2'—1+G3,1)( 2 - 1)

Il

1 F.i -1
1 1-11- - —— Foo— 1)
- [ ( Ge,l FS,2 - l)J ( v ’

Fors I+ {1 - (1 S —‘yi‘—”(f;g -1

Ge,l Fc,2 -1

i

Suppose that a second stage is given. The second stage noise factor can be kept con-
stant at the minimum value of Fl 2. for example, by keeping the source immittance
presented to stage two constant. Next, consider a candidate preamplifier with the
real part of its output immittance positive. A lossless, passive two-port can be used
to transform preamplifier output immittance to the value of stage two source im-
mittance for minimum £, ,. In subsequent comparisons of preamplifier candidates,
let a lossless two-port transforming network, such as discussed above, be included
with each preamplifier, with the net result that F, 2 stays constant at its minimum
value. It is seen that, given a particular second stage (the postamplifier), the first
stage should be chosen such that the expression

( 1 M.,
1 - — l - = 5.9
\ Gm) ( Fea - 1) (59)
is maximized.
3 M, T
! Gen ’ Mo (1-50) (1 - #) } Fas |
10 < Goi <1 : A"V{pvl < 1 < 0 i > Fe‘z i
’ G’e,l > 1 ! Moy > F.,VQ -~ 1 <0 ]I > Fey'_;- I
| Go>1 lo<cM,>F, -1 >0 | < F.o |
| — ! ‘ 1

Table 5.3 shows the noise factor of a cascaded amplifier for three cases of ex-
changeable gain of the first two-port. Cnly the third case gives a lower noise factor
for the cascaded amplifier. The first case in Tahle 5 3 corresponds to an attenuator;

5.2. The noise measure

-1
-1

its noise measure is negative and the cascaded noise factor greater than F,,. In
the second case, the preamplifier has a noise measure greater than the excess noise
factor (the noise factor minus one) of the second stage, and again the cascaded noise
factor is greater than Z, ;. The third case is the normal case. where the first stage
noise measure is less than the excess noise factor of the second stage. The cascaded
noise factor is lower than F, ;. Here it is interesting to note that, from preamplifiers
with the same noise measure, the one with the highest gain should be chosen.

The noise measure for m cascaded two-ports is derived from Equations (5.7),
(5.5}, and (5.6) as

Ge1 -1
M, = M, —e'lhleJGe,S ©Gepn

G.
Geg — 1 Gemn — 1
y[ﬂ_e‘“(*ﬂ Gy e M, =2 - 5.
+ M. g G, 1 U3 eym + M., G 1 (5.10)
or
m n
G, 1 ~
M, = Z (4‘/‘[&,1’ G’"‘ — H (e (5 11)
i=1 \ € J=i+1
It is, however, normally much simpler to find the cascaded noise measure by com

puting the noise factor and the exchangeable gain of the cascade two-ports and
using tlie definition of the noise measure (Equation (5.7)).
When looking at this definition it is seen that

lim M, = F. -1

Go—oo

This is also the case when cascading an infinite number of identical two-ports. Let
these all have the noise factor F, > 1 (~ a passive source) and gain G, > 1, then

F. -1 -1 Fo-1

Fowie = Fo+ et e i
1 . F1\2
= Fp—l\ } ("—,—l)(f‘\ 'Fp_l\ —_ e
LA =D+ (R = D)+ ’(\Ge) *
o
Gf

I e R T TN
L0, il GLOer noise

characteristics, the noise measure is also a function of the source immittance.

Example 5.3 This example illustrates the importance of the noise measure and the

effect of matching. Consider three ampiifiers having the following noise parameters:
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E.. = 25Q Gny = 48mS Y0 = 20+ j12mS
Raa = 240 Gpz = 4.3mS Y2 = 50+ 79mS
Roz = 6250 Gaz = 9.6mS V.3 = 80+ jl14mS

The amplifiers are unilateralized which means that their output admittances are constant
whatever the source admittance might be. Let all output admittances be 10 m$S and
let that be the value of the source admittance as well. The exchangeable power gains
of the amplifiers are

Gg‘l - 40 ng = 10 Gsyg = 10

'

When all three amplifiers are used in cascade find the order giving the lowest overall

noise factor. In order to find this the noise measure for each amplifier is computed.

1 s 2
Fe = 1+C1—S(G~1+Rﬂ')5+Y’YI)
1 . L
Foy = 14 — (4.8 +0.025/10 + 2 + ;12| ) = 2200
10
Fp o= 1+ = (48 +0024]10 + 5 + jO?) = 2214
1 .
Py = 1+ (9.6 -+ 0.00625/10 + 8 + J1aP) = 2285
u, = fzl
- 1
Ge
2.200 ~ 1
ﬂ[e‘l = &1—* = 1600
1 - L
4.
2214 — 1
AIEQ = 1 = 1349
, T
10
2 983 — 1
Mey = ——7— = L2
10

As 0 < M.z < M,3 < M., the best ampfifier is the one which consists of amplifier
stages with the numbers 2 — 3 ~ 1.

If each amplifier in front of its input terminal has a network which transforms the
10 mS of the source or the output admittance of the former amplifier to the optimum
admittance for minimum noise factor then th= arder of the amplifiers is changed. This
is demonstrated in the following:

Famin = 1+ 2 \RHGA, + \/Rn(}n + (RnG’y)z)
Fotmin = 14 2(0.025% 2.0 = 1/0.025 < 4.8 + (0.025 < 2.0)2> ~ 130
\ .

5.3. Graphic representation in the admittance plane 79
Fepmim = 142 (0.024 x 5.0 + \//0.024 x 4.8 4 (0.024 x 5.0)2> = 196
F.smin = 1+ 2 (0.00625 x 8.0 + 1/0-00625 x 9.6 + {0.00625 x \O,‘\

/
= 1.60

180 - 1

J"Icrnin,l = T = 1.067
-4
1.96 ~ 1

Meoming = —S—)G—l = 1.067
1 — L
10
1.60 — 1

A/[emin.f_’. = = 0.667
; .
o)

As 0 < Meming < Mepming = Momin2 then one of the two equal combinations 3 -

1-2o0r3-2-1 gives the best combined amplifier.
The two examined amplifier chains can be compared by computing their overall noise

factors or noise temperatures. The results are:

F., -1 F..-1
Fe' = F., — ; -
231 e2 + G2 i G.2Ges
2285 — 1 2.200 — 1
= 2214 = 2355
Tt Tox >
Teepar = (Foas1 — )75 = (2355 - 1)290 = 393K
196 -1  1.80 — 1
F: s = F.. = 1.60 + = 1704
312 e321 10 + 10 x 10 '
Teenrz = Teezzr = (L704 - 1)290 = 204K

It is interesting to note that the combination with matching networks generates about

half as much noise power as the combination without matching networks.

5.3 Graphic representation in the admittance plane

[n order to examine graphically the behaviour of the extended noeise measure it
is necessary to look at the involved parts, the extended noise factor and the ex-
changeable power gain. The extended woise {aclor is shown in Appendix C to be
a hyperboloid of two sheets. The exchangeable power gain is examined before the
extended noise measure is investigated. Fukui [3] was the first to be interested in

this subject and the present work is an enjargement of Fukul's work.
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5.3.1  Graphic representation of the exchangeable power gain

The exchangeable power gain for a two-port can be expressed as a function of the
two-port’s ¥ parameters and the source admittance as:

G. = RETES (5.12)
Re (A + YuIs)(Ya + Y5)'] o
where Ay = ¥11Ys — YoY% and for any index the admittance ¥ = G + jB.

Since the extended noise measure equation contains the exchangeable power gain
as 1/G, the contours for 1/G, as a function of Ys are found by rewriting Equation
(5.12) as follows:

- 2
3 |Y2:) Re[Yi2¥] G
2G.Gqy 2Ga 1
m{Yi2Ya] )
+|os - | Bn)} = R (5.13)
where

R:L = 12 ¥on|* L Pl { Yo Re[Yi2¥or] (“\ (5.14)
- 2G5, GG \4G.Gy = 20y ) VAR

and it is seen that when RZ > 0, the contours for constant 1/G, (and thus constant
G.) are circles in the Ys-plane. Extrema exist for 1/Ge if RL = 0, or when

1 1
— = 2 - e
Ge IY21|2 < G11622 Re[ 12 21]

* \/4 Gv :2 - 4G11G42I{e[}12}’21] - (Im[Ynggl])'Z) (515)

is real. The latter requires that

~

2 2 N RN
42 G 4 z 0 {3.16)

iz

This inequality is equivalent to k2 > 1, where k = L/C(C ~ Linvill’s factor) is a
common stability factor

: 2G11G22 - Re[YnYnJ PN
Bo= 3013
Yi2Ty] \ /
(Unconditional stability requires k& > 1. ) When £ > | extrema given by Equation
3.15) exist for
A% ! 1 st T tis s o v S
Yoz = %3 V*Uu(ln — 4GuGnReY1oVa] — (Im[Y1,¥4,])?
m(Y3.Y:
2(1;2,12” B ) (5.18)

5.3. Graphic representation in the admittance plane

v s}
s

Here the index SOG stands for Source Optimuin with respect to the exchangeable
Gain. It is easy to see that, in the expression for the extrema of 1/G., the two
extreme values have the same sign (which is the sign of k). The proof is:

\/4 (Jll(Jm - -lC 1J'MRP '“YfilJ — (TITI[Y}Z}':“MZ
< f..), GUG'U e RC{YIQ}/"ZI”
or (Im[Ylﬁal’.) < (RefYi2Y31])? q. e. d.

When &% < 1, RZ% > 0 for all values of 1/G.; so there are no extrema for 1/G.,
which thus is unlimited. The circles for constant 1/G. given by Equation (5.13) all
cross each other at the two points:

r 2
Im{112Y] | 1YY |2 < Re(Y(,Y5]\°
Ys = 0 - By 4 R (g RETen
° 1 2Gy = NEEYER ! 2Gy )
(5.19)
It should be noted that 1/G. is not defined for G5 = 0 where the two points

are situated. Figure 5.2 shows the contours for 1/G, as a function ol Y5 (a) with
extrema, and (b) without extrema.

1 2G11G27 - RO[Y’[:Y’Ql. ImeuYgﬂ , .
—,G~,B~> = ( ——— -, 0, > - — B ) 5.20)
<Ge o 1Yai? 2Gy ) o2)
Keeping Bs = Im[Y15Y4,]/(2G ) — Bi1 = Bog, which is the By value for all
the centres of the contour circles, then OL ((75) can be given in terms of the value

of G for the centre of a contour circle and the radins, Rg, of that circle can also
be expressed in terms of G, The centres satisty the equation for a straight line:

1 26y o 2G 111G — Re[Yi2¥7] 5.91)
G. T var Gee + Va2 (5.21)
and the radii are expressed as follows
! Y - -
Re = \!(§ l -y Rel}f)n]) (5.22)
Q N aflray
Fignre 5.3 shows three cases of (G’g‘); , which, together with Figurs 5.2

illustrates the behaviour of

(5.7

The extended noise measure was defined in Equation
,

o s j- inserting F, from E-
quation (.11} and G, from Equation /5.12) into Equation (5.7
2

) leads to

2

y Yl (e + RYs 4+ VP
0T NG © RellYy F Yer Ay + YoVl

S|
[a]
(o
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extrema.

5. Noise measure and graphic representations
fol

(b) 4GF Gy — 40 G oaRe[Y 12 Y1) — (Im[Y15Y9(])2 < 0

ema, and {b} without

5.3. Graphic representation in the admittance plane

Condition (a) from Figure 5.2 and 2 G115, — Re[¥12¥21] > 0

1
G.

Condition (a) from Figure 5.2 and 2 Gy1Gyp — Re[Y12Y21] < 0

83

Figure 5.3: 1/G, as a function of Gy for Bg = Im{Y12Y21]/(2Ga2) = By and Gay > 0.



84 5. Noise measure and graphic representations

Extrema of M,(Ys) can be found by setting the partial derivatives with respect to
Gs and Bgs equal to zero. This vields two equations of fourth order in G5 and
Bs with no explicit analytical solutions. As the expressions for both £, and 1/G,
are represented by circles, the theory of linear transformations of analytic functions
shows that Equation (5.23) must also represent circles and can be written as

(Gs ~ Gew)® + (Bs - Bow)' = RY, (5.24)
where
. —~1
Geyy = —o———
oM Yo |2Re + M.Goy
1 .
X {IY_)llzGa,R,—L - 51‘[8|Y21l2
1 . .
+A/[5G11G22 - :)‘ A[ERQ[}/I‘Z}QI]} (325)
S -1
oM [Y21{2Rn + M.Gy
Y 1 . ])
X ’Yzll‘B,YRn + M.B11Gyy — :iv[eImD—/IZLZRU (526\,
L Z
R [¥,]?
M (1Y212R, + M,G2)?
1 ) )
X {1\133 (qu‘? + |Y21|2 - 4G Gy + QRE[YIQY31]>
+ M, (RRefYi2Ynr(Yiy = Y,)'] = GraBal¥ey — Y, 2
— GGy = [Yu’G,R,)
- IYn!"GanB (5.27)
J

Equation (5.24) is valid when R%, > 0. By examining Equations (5.24) ~ (5.27
and by setting the expression in curly brackets in Equation {3.27) equal to A M? +
B M. + C where C' < 0, the following conclusions can be drawn:

7 ( 1 i 3 PR P |
Lo (Geoar( ML), Bear{3.)) is on a straight line in the Yy plane
oM = I8/« &+ D (v~ 1r 1 N —
iYari? + RelVioYer] + 2600, — G

x {26l By ~ Bu) + Im{Yi2Ya1]) Gonr + Golm[Yia¥yy]

+2GnIm[Y Y] - B, ([Varl® + Re[Yia¥al)} (5.98)

5.4. Graphic representation in the reflection plane 35

2. From Equation (5.25), or the expression:

) -1 ] 1 .
M (Gear) Gﬁf ni £ + Gy Pl R

% - 2G 111Gy + Re(¥1,Y5] + 204G

Vil = 2610 + RelVaYa)] — 2Gon(a 2
it is seen that M.(Gcay) is monotonic with one pole.
3. Since C < 0, then for 4 > 0 or
Yol + Ynf® - 461G + 2Re[YuVy] > 0 (5.30)

extrema will exist for M,. The signs for the extrema are different because
>

-4AC > 0and thus [B] < VB2 —44C. Note that the condition of
Equation (5.30) is the same as that for R% > 0 when 1/G, = 1.

4. When A4 < 0, [Bl > vVB? —4AC whenever B2 — 4 AC > 0, so that

the signs for the extrema are the same.

. Calling the extrema M, and M., where M.\ > M., the range for M, is

ot

Me > M,y > 0and M, < M,y < Ofor A > 0
M.y < M. < M., where sen{M,;] = sgn[M.q] for 4 < O

Figures 5.4 and 5.5 indicate the behaviour of tle noise neasure. The extreme
values are found from Equation (5.27) by setting B3, = 0, and the corresponding
optimum source admittance, Ysoas, from Equations {5.25) and (5.26).

5.4 Graphic representation in the reflection piane

As in the former section the exchangeable gain and the extended noise measire can

be illustrated as functions of the source reflaction ccefficient. As these quantities

are all traced as circles in the source admirtance plane it foll: 5
of linear transformations of analytic funetions that they should also be generalized
circles (a circle, a straight line, or a point) in the plane of the source reflection

coefficient. This section examines the behavionr of &, and M, as functions of the

source reflection coefficient.
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D

11[.7 2

M,

Figure 5.4: Contours for constant extended noise measure in the source admittanced

plane for A > 0 and the corresponding function nf extended noise measnre versns <onree

1 1

Us = Do

5.4. Graphic representation in the reflection plane 3

Figure 3.5: Contours for constant extended noise wire in the source admittanced
wlane for 4 2 N oand tha corrpnranding famabiom o ean ol B R
plane for /4 < 0 and the corresponding function of oxtended fise fumasure versus sourcs
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5.4.1 Graphic representation of the exchangeable power gain

The exchangeable power gain is defined as the ratio of the exchangeable power at
the output to the exchangeable power from the source by Equation (3.2) where

[l — S5,Tr)?

P, =
: P )

{1B21%) (5.31)

Pos = pppo it (5.32)

Here again

where ¢ refers to the port number;

512501 T s
1 - Suls

Ly

is the output reflection coefficient of the two-port, where I's is the source reflection
coefficient; and

{{B2]% _ {5212
{(1Bs]?) 1 — SuTsi?|l - S,If?

where Iz is the load reflection coefficient.

These equations give the following expression for the exchangeable power gain:

2 1Sa]? (1 - |Tg)?
Gg - R— _ P1 p}’ 921|' (1“ | El ) ’ —— (533)
U= 502 + [TsP(Sn]? — [As%) - 2Re[T5 (57; — 53,45)]

As in the former section the contours for constant 1/t7, (and thus constant G.)
are found to be circles, as Equation (5. 33) can be rewritten as:

Z

iTe _ k,“ - u22_xb

[ [
[T, |
| [S1l? = 12512 + pipo| Sz 2 |

=
W
S

whera

5.4. Graphic representation in the reflection plane 89
RE =
1571 = S2AL + (1S1]? - |as? + P1p2] Sl E-)p1pal Sy o = 1+ |52
(15ul? = [Asf + P1p2} 0?7 )?
(5.35)
Equation (5.34) shows that for 1/G. constant the contours for 1/G, are circles

with radii equal to the square root of the expression in Equation (! ..35) (Lnd with
centres, I'cq, given by

Si = SypA%
[Sul* — Ag)?

Tee (5.36)

ST
521!5

Extrema for 1/G, are found for R% = 0. The numerator in Equation (5.35) can
be written as

1 Ll

2 o 12 Nt 2 fo
18121 S11* + pipalSa}? (1511 + [S2]® = 1 — |A4] J oot i5nl o =0
When using the stability factor k, which here is
, L+ JAsP = 1512 — 18,12
&= o (5.37)

215125,

=

the extrema for 1/G, are given by

1 _ fslzi . ) -
& = T (t)lp;mj: ViE - T) (5.38)

It is seen that extrema only exist when &2 > 1. For &2 < 1 1/G, is unlimited as
all the circles pass through one point {for £ = 1) or two points (for k* < 1) on
the uait circle.

For k* > 1 it follows that

.01 S
min | ] = - L N NN~ ) (5.20)

]
Liiel ‘e mar 221

which gives Tsog (for source optimum gnin) by inserting Equation (5.39) into
Equation {5.35):

2050 - 5A%)

Ts0c = — e (5.40)
> T4+ 15112 — [800% ~ Ag? - Ipa|SipSa vk — 1 !

U+ IS0 = o — AL

= 2157 = Son
x[bﬁ bva;J l/:J' 1”1‘)

and that
[ 1] 1 [0 4 & ’1“1\) (5.12)
max | — = = Ta o pipak — Ve — SIS ¥4
e ten G NI / “



90 5. Noise measure and graphic representations

o
—

sogGr by inserting Equation {3.42) into Equation (5.36}:

which give g

2057 — Sy

Fsoor = L4 1Sul® = 19222 — |As]2 + 29102181250 1VET — 1 (543)
L4 19l = 150f - 18s° -~ 2pipa] S0 VT = 1
3155 = S
X (ST = 924%) {(5.44)

From Equations (5.39) and (5.42) it is seen that
GE7V‘LGI S GE min (5-”1"3)

This inequality is valid whatever the sign of pypy or k. It is also easy to see that
the sign of G.pmar and Gy is the same. Thus the signs shown in Table 5.4 are
obtained.

! P1p2 k Sgn[Ge ma:] = Sgn[(;emin}
+1 > +1 +
+1 < =1 —

| -1 > +1 -

| -1 < -1 | +

Table 5.4: Sign for G, may and Gomin as a function of p;py and k.

When examining 'spg and T'gog it is seen from Equations (5.40) and (5.44)
that
Tsocls50c0 = 1 = |Tsoclilsoer] = 1 (5.46)
This means that either T'sog or Tsoe is passive while the other is active. The
special case, when |Tspg] = [Tsoe| = 1, requires that Re[Zs] = 0. As the
exchangeable gain is defined only for Re[Zs] # 0 the unit circle is excluded from
the region of definition. 1t is also seen that

Tso = Tso)en (5:47)

L’!mn:*‘
T. = -
SOG pypy= - SOG pipy =41

From Equation 5.36 it is seen thai the centres are located on the straight line »

through the origin
, Sy, = 99l ... o
}In;fg(,] = ) E(’xl oy Kejloa] {\1).’19)

WEJ — JQQ.L\SJ

Another line of interest is the line ¢ which divides the circles into two parts.

This cotresponds to a singularity when the denominator in the expressions for [

5.4. Graphic representation in the reflection plane 91

and Ry (Equations (5.36) and {5.35)) equals zero. In order to locate the line g the
quantity Ccg — Rg, where Rer is on the line r,is investigated when the singnularity
is approached. The singularity is at

a DIDZESZHIZ

Te = m (5.50)
Let ?e < 0 from which it follows that [Sul? = 1ag2 > 0 A ?pr = +1 or
[S11]° = [As]® < 0 A pyps = —1. Coming from one side the point U, on the line
7 is determined by

Tyr (F'ea + Roel¥?)

lim
(1S11 1P =12 512)Ge 41921501 [2 =0+

where

a = 51.1 - bgg&; = ‘g!e]va

Tee + Ro ¢l 9=

' r /

i
i [ {1
i

x\1+\“1+‘ "IHST"MD

In approaching the limit the Taylor approximation VI+z =1+ Lrforsmall o

~

Uy

is used and

Uyp =

Iim 151*1 - 522’—\;"’ 1 - 1
(ISP =1a51)CedprpafSar [2—0+ | |57]2 ~ [As)% + p1p2|S2)? I'g

[&4

l(1511[2 - 1As1F + pyp
2

Approaching the point [ from the other side and keeping 7. < 0 the same
result. as above is obtained. Also when 151 — iAs)? < 0O A pipr = +1 or
15110° ~ 12512 2 0A pipa = —1 the result is the same when the limit is approached

throngh positive as well as ne

o

AR N T
BRAULYE Y ALUES,
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One important thing about the location of [y is that it is located just midway
between I'sge and Tgoar which is seen from Equations (5.40) and (5.44):

Iy = 3(Tsoc + Tsoc)
I+ [Sul® = [S2f® — jas]?
2187 — S

Another characteristic of [y is that it is always located on or outside the unit

(57, — SxuAy) (5.51)

circle. This is seen from

Trl > 1
Tor® > 1

(1= (80 + 1Suf® = |Asi)? > 4187, - SxpAa%2

(L= 152 + (19u[* - |As]*)?
F2(L = [S2)(5nl* = 1As)") > 4(1 ~ (Sl (Sul? - |As)
+ 4151252, |2
(1= [Snl® = 1Sul® + 1As®)? > 4]5,8,]

I | q. e. d.

For k? < 1 it follows that flg > 0 for all values of G,. It can be shown that
different circles corresponding to different constant G values all intersect each other
in two points on the unit circle for k2 < 1 and in one point on the unit circle for
k% = 1. In these points G, is not defined as G, is not defined on the unit circle.

The two (one) points are given by

L+ [Sul? = 18n)? - IASEQN

I = exp|j |y, t arccos —— -
s p[] <¢ s 215 = Spaq]

wilere

STi = S22A% = |ST - S22A%| el %7

It remains to be shown that the numerical value of the argument to the arccos
expression in Equation (5.52) is less than or equal to ore.

| c |2 A 12
[LA+ 150l = 150 - [As?)
! |
i I

I

2 5;1 - ASQQA;‘i
(1 - 15012 11517 — a2« gy S, A2
(1= 1500 + (150 - |as)h)?
+200 = 152050l — 1851 < 400 = (SIS0l - (Al

oAl [a) 12
Tt 012921
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\ .

Figure 5.6: Contours for constant exchangeable power gain in the source refloction coef-

ficient plane for %% > 1 and the cotresponding finction of exchangeabie power gain alony

the line y. A third part of the curve {hottom. left] 1s ontside the fianre - com

Figure 5.7
Figure 3.7,
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ure 5.7: Contours for constant exchangeable power zain tn the source relection coef-

NeE dqne o
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L2 - 02 A 22 i :
(U= 182" = [5ui® +{As]")? < 4]8728n )2
2 L
kEOX 1 q.e. d.
The equal sign is valid, when &% = [, and that corresponds to cne commeon point on

the unit circle where all constant (G, circles intersect. When &
intersect in two points on the unit circle.

5.4.2 Graphic representation of the extended noise measure

Inserting F. from Equation {4.55) and G. from Equation (5.12) into Equation (5.7)
the expression for the noise nieasure is

PUSn*(T, + Ts?Ts - 2T,Re[l'se/ #})

M,
D

—
ot
o4
(o]

where

D = Ty (USul? = pipail ~ 1S}

—1A519)} + 2 pipaRe[[T(8T, - 522-33)])

As M, can be illustrated as circles for constant M, in the admittance plane
it follows from the theory of analytic functions that A, also can be illustrated as
circles in the source reflection coefficient plane. Equation (5.33) can be written as
a set of circles:

2 2 -
I's — Tearl = Ry (5.54)
where
P N .
r putSu*The ™7 + pipo M To( 57 — S0A%) (5.55)
CAM = T 19 VT o T y e D.0D
pi1Sal* Ty + M.To{i5n ) + prpea([Sul? — [As1?)]
o g e o o a2
2 PSP The ™77 + pipa ML TH(5} ~ §22A%)]
R —_ o
A - <
(5.56)
Tle axtrema are found by seiting B3, = 0 in Equation (5.36). Doing this and
rearranging the equation the following expression is obtained:
AMI+BM, O = 0§ (5.37)
where
e 12 o2 fooo coy a2 e
A = ppe TS0+ 5t open Sl + i8alT) — 1A = 1 (a.0x)
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B = —pDf{Tu(l5ul® - [Asf) + Ta(1 ~ [52)%)
+ o) Sl (To = T3) = 2Ty Re[(S]; — S2pAA3) e 27]} (5.59)
C = —|Sul}(Tulp - T2) (5.60)

From Equation (4.56) it is seen that ¢ < 0 which is important to remember in
the following:

1.4>0 /—\
Al Y
When 4 > 0 then B2 —~4 AC > 0. This means that there exist two extrema — /W&w Re[T's]
for M.. It is also seen that |B| < v B? 4 AC from which it follows that the M. ez \
signs of the extrema are different. As A is positive it is seen from Equation
{5.57) that RZ, is negative between the two roots and thus Memin > 0 and \/

Mo oz < 0. This yields

- B+ VE - TAC

M. pmin = 51 > 0 (5.61)
i
|
- B - B -4 AC }
M, = < 0 (5.62
Memax 24 > L )
M,
2.4A<0ABY-44C >0
Here it is seen that two extrema exist as B* -4 AC > 0. As 4 < 0 and : L/
C < 0it follows that |B] > v'B? ~4 AC and thus the signs for the extrema i Re[T's]
are the same. It is also seen that the range for M, is between the extrema. ! —_———_——_’//\
Therefore .
-8B - VB - 4AC N
‘n"[sma:: = A ()63) |
- B+ VBT —{AC ) ! !
M. = Y 5.643
L. mi; 5 A {5.64)
3.A<0AN B ~44C <0 ' Figure 5.8: Contours for constant extended noise measure in the source refloction coefficient
C e e plane when A > 4 and the corresponding function of extended noise measure along the line
There are no real solutions for M,. L
The centres are located on a straight line, v, whose equation is found from the
complex Equation (5.55) by eliminating M. The resnit is
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/7

= T(In{5T) ~ SppAF cos 2y + Re[S7, — Sa0\3]sin ) (5.65)

It should be noted that this line generally does not go through the origin. Figures
5.8 and 5.9 show two examples of constant extended noise measure circles, one

corresponding to A4 > 0 and the other corresponding to 4 < 0.
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Noise of embedded networks

Noise parameters of a transistor or another active element are often given in data-
sheets, but what happens if bias network, feedback elements, or other external
elements are added to the original network? This js the subject of this chapter where
lumped elements, distributed elements, and combinations of two-ports are analyzed.
‘Then an example is given of a two-port with feedback via two transformers in such
a way that the rules analyzed in section 6.1 do not apply. Only three-poles are
considered, as most active elements have three poles which are the common reference
terminal, the input and the output terminals. Therefore formulae for transformation
of noise parameters from common emitter or source to common collector or drain
and to common base or gate are given. Finally, some thoughts on computer ajded
design of linear circuits with noise are expressed.

6.1 Lumped embedding

Consider a three-pole network as in Figure 5.1 to which linear and lumped one-ports
such as resistors, capacitors, and inductors are added by a number of successive par-
allel and series connections. It will ba convenient to define “embedded” and “em-
bedding” networks. The original network is called the embedded network (denoted
by 1, 2, and 3 in Figure 6.1), and the linear one-ports are called the embedding
network. The resulting network is also a three-pole network (denoted by ', 2/, and

3). A practical way to obtain the new signal para

6 stwork can be
explained as follows. Add the first set of parallel admittances to the Y parameters of
the embedded network. Transform the sesulting ¥ parameters 1o Z parametars and
add the first set of seties impedances. Then transform the resulting 7 parameters
back again to V parameters aud add rhe second set of parallei elements. Continue
Litis procedure until complete {121,

The noise parameters of the composite network are computed in a similar way.

101
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—___]
YEQ |
{ Y51
R e D 1 — 3,
e Embedded e
Za2 ‘J Z4) ! rmoedce Zc Zga

three-pole

o
]

£

7B 2
’

Figure 6.1: Three-pole embedded in lumped one-ports.

Like signal parameters, noise paraimeters have several forms as shown in Chapter 4.
The most useful forms of this application are the equivalent II and T noise two-ports
introduced by Rothe and Dahlke (3] and examined in Chapter 4. The transforma-
tion procedure is as follows. First, compute the noise parameters (in II form which
corresponds to ¥ parameters) of the network consisting of the embedded network
(with its noise parameters in II form) and the first set of parallel elements. Trans-
form the resulting noise parameters to T form, and combine the noise parameters (in
Y form) of the resulting network with those of the frst sct of added series elements.
Then transform the resulting noise parameters back to II form and add the effect
of the second set of parallel elements, continuing this procedure until complete.

Since the admittance of a parallel element and the impedance of a series element

The formulae. which are derived in [1], are given below. The unprimed entities
are the small signal and noise narameters of the three-port without new embedding,

and the primed entities are the parameters with a set of embedding elements,

Parallel embedding:

Yy, = Yu + Y+ ¥y {6.1)
Yy = Vo - Vg (6.2}

6.1. Lumped embedding

where

D, = |YB_Y21!2

E, = Gp+ Ge + |Yul*Ra

H,

il

[l
-
it

Series embedding:

vhere

D. — Zg+ Znt

- 5Lt 12

L: = Hp + Ho + [£21]7°0a
\

H, = (Zn+Z4—Zn)Rg + (2, + 2, + Zg) Rc

(20 = Z0ZB 2590 + (La + Zp + 7)1 2504 g,

bt
Q

(Y + Ya + Ya1) Gy + (Y1 + Y4 + Yz)Ge

+(N = Y)Y Y5 R + (Ya + Ys + Y,) Y02 R,
Yo ~ Yo ]* (G4 + Gn) +
FYi + Yy + YB[°Go +

Y + Yy L }"21!26'5
Y ~ Y)Y + (Vg

N

N
w2
=3
_{ -

b‘p

“

~
N

| .
t

“

N~y

o

=
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(6.3)

o>
s
H
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L: = |Zp+ Zo"Ba + ra) + |20y + Z4 — Zn|?R5
+1Zu + Za + Zg|*Re + (Zy — Z0u)78 + (44 + Zg + Z-,)Zzll'zgn

Transformation from Z to Y parameters:

¥y

Y12

Yo

Ya
R,
G,
Y‘f

where Ay

= r+ gn’Z’1|2

r'ﬂ.
[ Z02 4 rn/gn
7

~

|Z/7I2 + 'rn//gn

= ZuZn — Z12Zn

Transformation from Y to Z parameters:

Zu

Z12

where Ay

It is interesting to note that the

Ve
Ay

(6.22)

(6.23)

formulae work both ways: embedding and

deembedding. As an example take an encapsnlated trans

istor whose smal na
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parameters and noise parameters are measured. The etfect of (the known) stray
capacitors and stray inductors can be removed by adding the negative of the stray
elements. This is done such that the stray clements closest to the terminals of the
encapsulated transistor are removed first and then the second set of stray elements

until finally the small signal and noise parameters of the transistor chip are obtained.

12V

100 erL‘ ;—J_!Q kQ
;b

FSOQ | i’ 50 ou
T umo-sz

Figure 6.2: Transistor with bias and feedback and equivalent cireuit. Capacitors are
considered as shorts at the working frequency.

Example 6.1 A transistor amplifier stage as seen in Figure 6.2 consists of a transistor
with known Y and noise parameters and also bias and load resistors and finally a series
feedback resistor. The data for the transistor are

Yiz = 0.5 - j0.866 mS
Yoo = 125 — 529 mS§
Yo = 14+ 43 mS§
R, = 25 0 -
B2
IR mS
‘A—V = 2 + 7 TA IHS
These data give £, = 1.8 and Vsor = 14— 77.5mS. in order to compute the small
3 J p
signal and noise parameters of the stage, one has to apply Equations (6.22) - (6.28)

to get the transistor data into Z form. Then Equations (6.8) - (6.14) add the series
feedback resistor (while Z4y = Zo = 0 + 0). Equations (6.15) - (6.21) transform to
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the Y parameters and Equations {6.1) ~ (6.7) add the bias and collector resistor (with

Yg = 0). The final result, computed with a Fortran program where the equations used

are shown as subroutines in Appendix D, is:

Yiir = L1386 + 1548 mS
Yip = 04448 — j1.017 m$
Yoy = 2516 — 72.935 mS
Yoo = 02837+ 51469 mS

G, = 4.735 mS
Y, = 3442 + 53.432 S

This corresponds to Fipin = 2.606 and Ysor = 9.340 — 3.432 mS. The main part
of this noise degregation is due to the series feedback. The bias and collector resistors
raise the noise factor only slightly — from 1.800 to 1.807.

Zs

Figure 6.3: Feedback elements for simultaneous Input power maich and noise optimization.

Example 6.2 An optimization procedure for simultaneous input power match and
noise optimization using only one series and one shunt feedback element as shown in
Figure 6.3 has been developed. Since lossless feedback does not change the value of
the minimum noise measure (does not add noise), only lossless lements are considered.
The fact that 3, ;. is constant for lossiess feedback is a convenient check on results of
computer programs. What does change, of course, is the value of the source admittance,
Ysoar. for minimum noise measura.

For each pair of lossiess feedback elements a computer program — using the subrou-
tines in Appendix D — gives the values for the primed signal and noise parameters from
Equations (6.1) - (6.28). The minimum noise measure, M. min, and the corresponding
source admittance, Ysoas. from Equations (5.27), (5.25) and (5.26) are also computed.

6.1. Lumped embedding 10
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/
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e
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Figure 6.4: Transducer gain Gr (full lines) and load admittance G, By (dotted lines)
versus lossless feedback for unity VSWR and minimum noise measure.

When the source admittance, Ys = Ysoar is determined, input power matching occurs
when the load admittance, Y, is chosen to satisfy the relation:

. . Yi2¥y
Yo = T+ —
yn — Y§

This equation allows choosing the load admittance for mput power match and minimum

noise measure (Y.0,7). Then, with the source and load admittances equal to Yypoas

in (7
i, 7

(2}

and Y7oy respectively, the transducer

g ge is computed.
er

From these results various parameter curves are drawn with the values of the lossless
feedback elements as coordinates. Such a graph is shown in Figure 6.4, where the
real and imaginary parts of the lcad admittance and the transducer gain for that load
admittance are the parameters. The graph is to be read as follows.

Each point in the graph assigns a load admittance {GL, Br) to a feedback pair

{Bj, X;) such that input matching and minimum noise measure are attained simulta-
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neously. The corresponding transducer gain can also be read from Figure 6.4.

It should be roted that simultaneous input power match and minimum noise measure
without feedback can only be obtained with a transducer gain less than one. With only
series feedback (X; = 12 Q) the optimization is obtained with a transducer gain of
about 11.5 4B.

Lehmann and Heston {4] have constructed an integrated low noise amplifier on X-

band using this technique.

Gate Drain _

| ljwos10-12 5 jw0.6107125

24+ 5010790

*Source

Figure 6.5: Transistor with lumped encapsulation.

Example 6.3 Consider an encapsulated transistor as shown in Figure 6.5. Data for
the encapsulated transistor are

Yiu = 10 + 2.1 mS

Yi; = 0.5 — j0.866 mS

Yo, = 195 - §29 mS

Yoo = 1+ 73 mS
R, = 23 Q

G, = 4.8 mS

Y. = 24 375 mS

and the data for the encapsuiation are seen in Figure 6.5. By adding the negative

admittance of the two capacitors in parallel with the input ard output terminals they

. This is done by applying Equations (6.1) - (6.7). Using Equations (6.22) -
(6.28) the Z parameters appear. Then the resistances and inductances in series with
the intrinsic transistor are removed by adding the negative amount in Equations {6.8)
- (6.14). Finally conversion to the ¥ parameters js performed by the Equations /% 15)

6.2. Reference plane transformation of noise parameters 109

- (6.21). The results at 1 GHz - computed with a Fortran program! — are as follows-

Yii = 1441+ 038113 m$
Yio = 0.787 — j0.7576 mS
21 = 36.23 — j31.19 mS
Voo, = 1548 — jLild 1n§

R, = 2337
G, = 4269 m$

Y, = 1.260 + j6.552 mS

6.2 Reference plane transformation of noise parame-
ters

When working with noise parameters it is often convenient to know them at a ref-
erence plane different from that where the noise parameters are actually measured.
This is a kind of embedding as a piece of transmission line in front of a transistor can
be considered as an embedding element. The result leads to the noise parameters
of a transmission line as a two-port. In the next section this two-port can be an
embedding element in parallel or in cascade with other two-ports. In this section,
formulae are presented for transformation of noise parameters along a transmission
line with known characteristic impedance and known attenuation and phase con-
stants. It is assumed, however, that the temperature of the transmission line is the
standard noise temperature of 290 K [5).

When calculating the noise performance of an active element embedded in pas-
sive circuit elements, it is necessary, at microwave frequencies, to include distributed
elements as well as lumped elements. The most significant distributed element with
respect to noise performance is the transmission line leading to the first active |-
ement. This section considers the noise parameters of a network consisting of a
transmission line with known constants preceding an active two-port with known
noise parameters. The result can be used to trensform the noise parameters mea-

sured in one reference plane to another aiong the known transmission line. Tle

nsiormation works both ways; it adds the add:tional noise contribution when the
transmission line is made longer and subiracts noise when the reference plane is
moved closer to the active two-port. This feature is useful when correcting mea-
sured noise data of an active two-port and is carried out by adding a “negative”

length of transmission line.
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real and positive) and v = o + j 3 and
smission line in front of

Ii known two-

port wita noise parameters K., (7, and }'ZY the new (primed) noise parameters are

Zy [ s 5 L T oa .
R = —‘){e‘”" L Nel [e‘“' 4+ o2 2c052,f'31J

- {Zo (Gf + BQ> (eza' + e _ 2cos 2,51)

=2 206, (e - e} — 4 ZyB, sin2p!

T —QCOSQ,’()’l}} (5.29)
(71 = 11/ {E’lal + e~ _ 94 ZUC 11.20{ _ 64201]

=R, [ZO (G B+ 75 ) ( 2al _ €~3Q,>

= 26, (@ - 0]} (6.30)
B, = A {ZOC sin 280 + Ro [Zo (G2 + B2 - Z5?) sin 251

- 2B, cos231) } (6.31)
G, = i {e! = e 4 20, el 4 e 4 2 cos 2]

_ig_: (23 (62 + B2) (2t 4 el 4 2c0s231)

+ B (6.32)

reference plane B

s Zo (real and positive) and ¥ = o + 7 3. First,
; : as are normalize o o 17
all immittances are "Ouuahu—d to ZU OT tu = I/L,U.
R,

6.2. Reference plane transformation of noise parameters 111
A { B
s , ) ; B
i Tho.v=a+j3, Z Y,
)

=
¥4

Ty

Figure 6.6: Noise two-port with preceding transmission line.

_ (:"n.

.q”. - yro
. Y,
Yv = gyt bdr = }—
0
. Ys
ys = gs +ibs = =
Yo

The unknown normalized noise parameters are primed:

! 7 ’ - ! st
s 9 and Yy = gy +Jo

The unknown noise factor at reference plane A can be expressed by
, [2

1 i
F o= 14 (qn M lys + oy > 6.33
s [Us + ¥y { )

Using the definition of the extended noise factor as the total exchangeable noise
power at the output divided by that part of it which originates from the source at
standard temperature Ty, the noise factor at reference plane B can be cxpressed as

i
Foo= — —2 2 (6.34)

Here use is made of the fact that the one-port to the left of B in Figure 6.6, consisting

of a 5o admittance and a tra

urc

®

atife Ly, generates
noise as the real part of Y4 at Ty. T

he denominator g% represents that part of the

exchangeable noise power at the ontpnr which is genqratqd in the sonrce.

yscosh v + sinh ~/

IS = g3 + 7 "/S = P Ty Y N
(g5 + 1) + 63]e?! - {('Js - 1%+ bi}e"hf + [4bs cos 201 — 2(g3 + b% — L) sin 23]
((gs +1)% + b8le*> 4 [(g5 — 1)? + bdle=200 —dbysin 28] ~ 2(g% + b3 — 1) cos 251

7

{6.35)
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A ! B
A
Ys I
o8 To.v=a+ 45, Vs |0 Y5 yl
lQ ;
(a) (b)

Figure 6.7: Generator with shorted transmission line and equivalent ciranit.

The only remaining unknown in Equation {6.34) is now g%. Some of the noise
power generated in the source is dissipated in the lossy transmission line, and as
one only has to consider the noise generated in the source all other noise sonrces are
eliminated. The relation between the short circuit noise current at B {see Figure
6.7) and g% is

(B°) = 4kToAfg5Yo (6-36)
where k£ = 1.38 x 1072® JK~! (Boltzmann’s constant) and Af is a fre uency

increment in Hz. The currents /; and I; are related by
I = I coshyl (6.37)

Now I} can be calculated from Figure 6.7(b), where Y; represents the admittance
of the shorted transmission line looking into it at A:

¥
1 = — = cothyl
Yo
ol — =2l 59 sin 281 633
T el L oem2ad 9 05241 (6.38)
2 ly11?
(Ih") = ————54kToAfgsYs {6.39)
s + it
From Equations (6.36) ~ (6.39) the following exprossion for G4 can be calculated
[y i2
a0 = 4 Y - (6.401
95 plul 4 p=2al L 9 rns923) !,’,5 + 3’11’2 B \ /
where
Loy 12
911
B
lys + 0
(e25 — =242 L 4 gin295)
[gs(e?etie=2al_2 cng9; ?l\-&-pl“’—p‘““}? [bs{etotl e=2al_2 o5 231) 2sin2831)?

6.2. Reference plane transformation of noise parameters

Equation (6.34) is now completely determined by the known noise Parameters r,, g
and y, and the transmission line constants af and 31, as Y5 and its real part ¢ ate
expressed in Equation (6.35), and g% i
only el, 8l and ys.

With Equations (6.35) and (6.40) this expression for the noise factor must, for

s expressed in Eqnation (6.10), in terms of

all ys = gs + jbs, be identically equal with the noise factor expression in Equation
{6.33), and it is thus possible to determine the mew noise parameters in terms of
the old ones and the transmission line data by choosing four values of ys and then
solving the four identity equations for the new normalized noise parameters. The

results are:

+ ga [62&1 + 2 9 2;’51}
+rn (o2 + 02} (3 4+ ™~ 2c0s231)

+2¢, (82“1 - e_zc‘!) — 4b,sin28!

Lelol 4 p2ad —2C052ﬁl]} (6.41)
Lo oal 2al 2al —2al
g;:F{e‘“—f-e" 2+gn[ea e“}

+ 2¢, (82‘]1 — 6‘2““) } (6.42)
bfY = 2R’ {gn sin 280 + r, [(53; + b:‘; - 1) sin 231
a1l .
— 2bycos 231 ; (6.43)
r 1 s2al -2l 4, " 2al | =20l 9, c-)v,r'_”.!
G = gl —# Fgn (e Loe + 2cos 281
[/ 2 22N [ o —o o)
Fralgy ) ETT e + 2cos231)
+2¢, f\/e“‘ — ey 14 sin 230
J
2 N | -
£t el g ‘)}l” —Ta (5—,« T bfv) {B.44)
These equations are the normalized versions of Equations (6.20) - {6.32)

Example 6.4 For the purpose of illustrating the effect of a transmission line on noise

o
=
a

n active ejement with the following
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P

oise parameters from Dxample 6.4 as fiinctions of reference plane.

6.2. Reference plane transformation of noise parameters 115

noise parameters:

R, = 250, G, = 4.8mS, and Y, = 2+ ;12mS

the noise performance of a preceding transmission line of a length up to half a wavelength
(A/2) and three different attenuation constants (o = 0.0, 0.3 and 0.6 Np/A) has been
computed and expressed by Equations (4.84) - (4.86) as

+ Rl +]Z(,)j

YSOF‘ = \((;n/Rn + G% - ]B'y
and R,,.

The noise parameters as functions of normalized length and with the attenuation

Femin = (R C’

constant a as parameter are shown in Figure 6.8(a), (b) and (c¢). One obvious use of
this figure is to choose a length of the transmission line which makes the real part of
Ysor = 20 mS. Then the imaginary part can be removed by a stub and the transmission
line two-port combination has optimum noise performance for Y5 = 20 mS. Another
possibility is to choose the imaginary part of Ysop = 0 S and then add a quarter wave
transmission line transformer. This also gives a match with optimum noise figure, but,

of course, both cases are narrow band matchings.

6.2.1 The equivalent noise two-port of a lossy transmission line

The results above can be used to derive the equivalent noise two-port of a lossy
transmission line. Consider two two-ports in cascade. The first is the transmission
line and the second is a lossless line of length zero. Tle noise parameters of the
second two-port are all zero. The noise parameters of the transmission line are then
derived from the Equations (6.29) — (6.32) letting R,, G, and Y, be equal to zero.
Thus for a lossv transmission line the parameters are

ZO n ZO . )
R, = — (e“” - 6—2“l> “=sinh 20! (6.45)
4 2 ~ ;
1 elal + e=2ai _ 9
G», = T ( 20l — 2!
AU [ — e /
= ’:— ( coth2al — —;——7 \\ (6,48
Zy \ sinh 2af / L)
By =0 (6.47)
—~ | /r + Lol 9N
Gn_ = LI*{ = —ZS \ e)a{ . C*nLYL )
= ((‘nth?al — __1___ (6.48)
Zo \ sinh 2al/ !
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From these results it is easy to find Fi,;, and YsoF from Equations (4.84) and
(4.86):

szn = 142 [RnGw + \/RnGn + (RHG-Y)Z}

o2l + e—20l _ 9
= 1+2
: [ d
+‘/l(62a1 +oe2al _ 9y o i(;ﬁal L oe=2al _ 2\2]
V- TR ‘ 7
- 62011 (649)
Gn .
Ysor = ® T Gy -JjB,
4 (2l + e~ 2al _ 2 2ad —2al 232 )
= (2va —212)+(6v j—16 =3 ) -0
Z8 (e2o — em2al) Zg (2% — g2aly2
1
= Z_o (600)

It has been shown above that the minimum noise factor is obtained for a source
admittance equal to the characteristic admittance for the transmission line and that
the noise factor rises exponentially with the loss factor o and with the length [ of

the transmission line.

6.3 Noise parameters of interconnected two-ports

A network consisting of linear two-ports each with known small signal and noise
parameters can often be replaced by one two-port with small signal and noise pa-
rameters derived from the individual parameters. The small signal parameters are
computed by general circuit theory and for the noise parameters two methods exist.

One of these methods is to use the definition for the extended noise factor for
a two-port, Equation (3.6), or for the extended effective noise temperature, Equa-
tion (3.4). In these equations the ontput noise power density is computed from
contributions from the noise parameters, the scuice and perhaps some one-ports.
The same result is then computed from the nnknown noise parameters of the total
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a time to the input of the overall two-port, replacing the other individual two-ports
with their noise free equivalents. The second part is to combine these individual
two-ports to a noise two-port for the resulting network and from this extract the
resulting noise parameters.

The first of these two methods is used for the case of two parallel connected
two-porfs and for two two-ports in cascade. The first part of Albinsson’s method is
dependent on the circuit configuration, but the second part is very general and will
be examined in this section.

6.3.1 Two-ports in parallel

Equations have been derived for two two-ports in parallel. Fach two-port is de-
scribed by the chain or ABCD parameters and by the R, ., and Y, noise param-
eters. If more two-ports are connected in parallel they can be combined by taking
two at a time until complete. The parameters from one two-port are all primed and
from tle other double-primed. The resulting parameters are unprimed.

1
£, @ D, ABC D
G; b T I

,: @7! /1” B/l Cl! D/I

Figure 6.9: Two noisy two-ports in parallel and =quivalent cireuit.

its o Tigure 6.9 have the same excess noise factor which with
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chousing four values of this source immittance the four

1
parameters {rom the combined circuit is expressed as

it (6.51)

resulting equations may be solved for the new noise parameters.
The other method, introduced by Albinsson [6], consists of two parts. The first
part aims at transforming the noise parameters of each individual twn-port one at

at the sutput from noise generators belonging to the two two-ports, to the output
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noise power density from the source. As it is the ratio of power densities and as

they are proportional to the square of the output short circuit current, the
noise factor can also be expressed as

e+ LalP +  Lent + L a4 1L pol? (6.52)
o T IeRE '
where

. 3 B + B” P

folGs = B'D" + B"D' + YgB'B” Gs

[ _ Bl + B// I~

oGy = B! D" + B"p! + YSB/B// Ga

[ B B/ + B/I I

oGy = B'D" + B'D' + YSB/B” Gy

YsB' 4 V(B + B + D" - D'
Lp, = L

BID// + BND/ + }/'SBIBN
}'S'Bl + Y.Y”(B’ + BH) + D/ _ D//
Ign = = , Egy
O ftn B D" + B" D! + YSBrB// n

are the output short circuit currents from each noise generator. The identity can

now be expressed as

1 2 1 y 1
— (G £ . = — |G G
g (Gnt B+ ¥P) = o < L+ G
_LR/ ’YD-BH + }::(B/ + B”) + Do Dllz
' n %Bl + B//iz
SAYSHE + YJ(B 4+ B"y+ D' - DY)?
+Rn EB/ + BI/;'Z

rrom this identity the results for parallel connection are
RBP4+ BB
iBl + B//!Z
R/ Rr.'!Bly-/ - Bl/y/l 4+ D/I _ D/:'Z
G, = GL+ G+ T2 X ‘ [6.54)
e BB + R

RLB™[YI(B' + B") + D" — D'l + RUB"[Y/(B' + B") + D' — D"

e
R R

}’W = AT

T
s il #

L

{(6.55)

In this way it is possible to compute the noise parameters of a known transistor in
parallel with a feedback two-port. If this two-port consists of a piece of transmission
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line in series with a feedback element the noise parameters of the feedback two-
port should be computed first. It is therefore necessary to investigate the noise

parameters of two-ports in cascade.

6.3.2 Two-ports in cascade

The same procedure as above is used for calculating the noise parameters for the
equivalent fwo-port of twe two-ports in cascade. Again, if more two-ports are in
cascade, they are taken two at a time. Let the small signal and noise parameters of
the first two-port be primed, and let the parameters of the second be double-primed.
The resulting parameters are unprimed.

e

y .

ABCD 7 (] :
VY N !

A
Ys £n |
G < Y:r Gn [ —}A 1 :

Figure 6.10: Two uoisy two-ports in cascade and equivalent circuit.

Computing the noise currents just after the second-stage ncise two-port {and
thus before the noise free equivalent of the sacond stage, which does not add more

noise power but only amplifies it with the same amplification), gives

136‘5 = YDB/ Y [G‘
. |
LG = - [
* YshB" + LY
Vs - V!
lap, = o= Epn
" op o b
Logn = Ign
I 2 oA
f.py = VT v o) R
\ S - L
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From these equations the following identity can be derived:

G, + RLIYs + Y/1* + G"|B'Ys + DR

~(G +R|YD+L|) G—S(

+ BBV + DY+ A'Ys + O

¥

From this identity tle results for cascade connection are

I

R, R+ G"\B'\* + RIBY) + AP (6.56)

Y, = R;n [R;y; + GIB"D' + RI(BY) + &) (D'vy + ] 657)
G, = G, + R|Y

ot

Gv//IDI|2 R:,DIY4I T 01,2 _ HII|Y’Y[2 (658)

Equations (6.56) — (6.58) can be used to compute the noise parameters of a
feedback element which includes two-ports such as transmission lines used to connect
one or two lumped feedback elements. The total feedback element can then be
connected in parallel with a transistor and the noise parameters are computed by
Equations (6.33) ~ (6.55).

6.3.3 Albinsson’s method of interconnected two-ports

This method is divided into two parts. [n the network of two-ports the uoise pa-
rameters of each two-port in the first part is transformed to the input side of the
resulting network as the noise parameters R, ;, G, ; and Y, :. This part is dependent
of the network configuration and must be performed individually for the network
considered. As the network is linear the superposition principle is valid and the
second part is to perform this superposition.

In order to investigate this second part it should be kept iu mind that the nojse
parameters used by Albinsson are the Il noise parameters from (3] which are based
on Fignure 4.2. The noise voltage e, is the summation of the transferred noise
voltages e, ; and noise current 7, is the swinmation of the transferred noise currents
ini, thus

I

en = ) eni (6.59)
1=1

I =Y day (6.60)

As the voltages
tions (2.13) and (2.6) that

from the different two-ports are uncorrelated it foilows from Equa-

R, = Y Ru; (6.61)
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From Equations (4.9) and (4.5) it follows that

Thus

The uncorrelated part of the current in Figure 4.2, 4., determines ,,. From

= dng + e, (6.64)
it follows that ,
I
inl + Y:/ZED,l = Z(inl,i + Cn,iY—y,i) (06'—))
=1 =1
and thus ;
'inl = Z[i‘nl,i + en'i()f'(,i - ),’Y)] (666)

=1

and, as noise from the different two-ports is uncorrelated,
I
12 ~ \
Gn = Z(Gn,i + Rn,ily'v,i - )'yl-) (()67/
=1

This is another way to compute the noise parameters £, {(Equation (6. 61)), Y,
(Equation (6.62)) and G, (Equation (6.67)) of interconnected two- ports.

6.3.4 Matrix formulation

Hillbrand and Russer [7] have made a matrix formulation of parallel, series and
cascade connections of linear, noisy two-ports. Tle noisy two-ports are represented
either by an admittance representation with a noise free part and two noise current
sources, or by an impedance representation with two noise voltage sources, or hy a
chain representation with a noise current source and a noise voltage suurce both at

the input side. These representations are shown in Figure 6.11.

The noise free circuit matrices are the Y. Z and chain «

(6.68)

(o, 3)

(6.69)
AF ] Lugug) {upu3) | ’
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i @ noise free 0 o noise free >
two-port “ two-port
¥ i .

noise free
two-port

Figure 6.11: Admittance, impedance and chain representations.

i
C =
v o)

(wu') {ui%) } (6.70)

(fu™y  (ie7)
where A f is the bandwidth, the factor 2 occurs because the two-sided Fourier trans-
form has been used and (---) denotes thc ensemble average over processes with
identical statistical properties.®

Often the correlation matrices can be calculated without knowing the noise
sources. If the two-port considered consists of ouly passive elements the ihermal
noise from it results in a correlation matrix of either of the two forms:

Cy = ZkTRe[Y}
C; = 24TRe[Z]
where £ = 1.38 x 107%® J K~! is Boltzmaun’s constant and T [K] is the noise

temperature of the two-port.
For active two-ports the chain correfation matrix is given by

C, = 2T [ R YFomin — 1) = R Y& ]
o

»(chin - 1) - H'L)'.SO[: Rn D’SOF!z

o=

is the minimum

where R, is the equivalent noise resistance, F
Ysor is the correspouding source admittance.

Phese matrices «

¢ = T1CT! (6.72)

2See Appendix A.
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From admittance | From impedance | From chain
To admittance Lo Yiu Y'l'l =¥ 1
01 L Yo1 Yo Y50 0
To impedance “n ,Z” 1 Lo 1 -z,
Zo1 Za 01 0 -Zxn
To chain [ v B ] [ 1 “A('E } 10 1
L 1 D Bl L 0 - J L 01 ]

Table 6.1: Transformation matrices.

where C and €’ denote the correlation matrix of the original and resulting repre-
sentation, respectively. The transformation matrix T is given in Table 6.1 and the
dagger (A') denotes the Hermitian conjugate (of A).

Interconnections of two two-ports in parallel, in seties or in cascade result in a

correlation matrix given by

Cy = Cy, + Cy, {(paraliel) (6.73)
C; = Cz, + Cyz, (series) (6.74)
Ci = Cuq+ A C, Al (cascade) (6.75)
where the subscripts 1 and 2 refer to the two-ports to be connected.
The noise parameters are obtained from
c Im[Cq10] | TaC 4 2]
4,22 m|C a2 g .
Ysor = = - ( ’ j + 7 (—-‘— (5.76)
\ Care . Can T\ Can
Canz + Canlise .
Fomin = 1+ 22 o SOF (6.77)
Ry, = Cin (6.78)
The noise factor as a function of the source impedance 75 is given by
o J
21 C =
o= 1+ - (5.7
o T 2L T Re[Zs] 1o
where
o1
z = | | (B.8M
L 25 | ’
This method can be used instead of section 6.1 as demonstraced in [7]. [t is also
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In a more recent paper Dobrowolski [8] has used a wave representation and en-
larged the network to be considered. His network consists of interconnected passive
multiports which introduce only thermal noise and active linear two-ports. It is also
a requirement that the two-ports are interconnected two and two. Dobrowolski’s

results are applicable to computer aided design of noisy microwave cireuits.

6.4 Calculating noise parameters from deembedded
data*

Pucel et al. [9] have shown a procedure to calculate noise parameters as functions of
frequency for field effect transistors, FET’s, and high electron mobility transistors,
HEMT’s. This is especially important at frequencies so high that it is very difficult
to measure the noise parameters. If the noise parameters at one frequency and
the parasitic elements of a transistor (with its encapsulation) are well known, the
intrinsic elements and noise generators with their correlation can be computed by
deembedding. As for FET's and HEMT’s these noise parameters are approximately
independent of frequency and the behaviour of the intrinsic equivalent circuit is well
known, so it is possible to compute the S and noise parameters in a large frequency
range. Thus computation replaces measurement which is a great advantage as noise
parameter measurements are rather difficult at frequencies above 10 - 20 GHz. The
authors claim sufficient accuracy up to at least 40 GHz.

6.4.1 Matrix formulation of the deembedding procedure

Y, C,
—
Intrinsic
device
d d
Package

Figure 6.12: Y parameter and noise correlation ms

orrelation matrices of the packaged device, (de., and the intrinsic device, Cy, are

(s}

" Some of the text in this section is adapted from Pucel et al[9] (()1992 IEEE). Reprinted by
permission of IEEE.
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o
[}

related by the linear matrix equation

Cu = PC,P + DCD? (6.51)

\

where O denotes tiie admitrance correlation matrix of the packaged four-port
and P and D represent package and device transformation matrices exurmsul:,
in terms of the admittance parameters of the package and device. The dagarr
denotes the Hermitian (conjugate t transpose) of the associated matrix. Equation
(6.81) is used when the intrinsic parameters are embedded in parasitic elements of
the encapsulation.

Deembedding is performed by solving Equation (6.81) for C,:

Cy = D*Cy - PC,PHD!™ (6.82]

Under special conditions the matrix D may not possess an inverse, and the deem.-
bedding procedure fails. This may occur when certain non-reciprocal elements, such
as isolators, are considered part of tlie package.

In order to find the matrix transformation matrices P and D in terms of the Y
parameters of the package and the active device, some quantities are defined

Y, : four-port admittance matrix of the package.

Y, : two-port admittance matrix of the active device.
Ypa : two-port admittance matrix of the packaged device.

C, : neise correlation matrix of the package.

C; : noise correlation matrix of the active device.
Cya © noise correlation matrix of the packaged device.

np : vector of the uoise current sources of the package.

J4 © vector of the noise current sources of the active device,

! i}

I : identity matrix of order &,

[r Figure 6.13 the active devica is shown with noise current senerators and

7'!"
L] C
I
=
-
5
)
£
£
5
£
7
m
I
o
3)
e
P
E

serminal currents

to the outside world and *wo ports to _l~ active device. It is seen that the active

device is a two-port, the package a four-port and the packaged device a two-port.
The terminal voltages and currents of the package can be divided into two groups

7 ¢

the external ports {with subscript ¢) and another belonging

onoin tey
one belonging to

(e}
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Figure 6.13: Active two-port with noise current generators.
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Figure 6.14: Package with noise current generators.

the internal ports (subscript ). In this way the following vectors are defined:

s ) Y
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o Fv ]
v, v, '
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t I |
1 = . = [
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In the same manner the package noise source matrices are defiged:

a1

3

r
3 ny; = [
( e Rpi |

The admittance matrix of the package is partitioned into four 2 x 2 submatricos:

Y, = e (6.83)
Y. I Y,

and the signal and noise nodal equations for the package can be expressed in terms

of the above vectors and matrices either succinctly as

t = Yv+4n, (6.84)

or in partitioned form as
e = Y.v. + Y,u, +on, (6.85)
i = Y.v. + Vv, ~ N, (6.86)

A similar procedure is followed for the active device. With reference to Figure
6.13 the following current and voltage vectors are defined:

; L3 . Vi j Ja
d = s 2.4 = s = .
I Vs ¢ Ja

and the nodal equations for the active device can be written as

1y = Yo+ gy (6.87)

Applying the bonndary conditions

T4 = — 1, v - vy

7). inserting (.37} inte (5.86) and solvine for v; the {ollowing

to Equation (6.8
. o

guation 5 obtained:

keh = —{Y. + ‘r”z‘j‘!‘/}y," + 7n,.; o7t ‘\."; \-!/
fnserting Equation (6
2. = Y.v, — Y, (Y, + Yt')‘l()/z:-ve +ong, o+ 747+ Tpe

This forinula can also be writlen as
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R0\
)

for)

t. = Y.+ 1, (1
where the first term represents the signal component of the current and the second
term the noise component. It is evident that ¥, represents the admittance matrix
of the two-port packaged device. It is given by the expression

Y = Y.+ DY {6.90)

where the matrix D is defined as

D = -Y.v.+Y)™" {6.91)

The noise matrix term 1, denotes tlie sum of the contributions of the package
and the active device. In matrix form it can be represented as

i, = Pn,+ Dy, {6.92)

where
P = [L:D] (6.93)

Now the correlation noise matrix of the packaged device
Cpa = {1,2]) (6.94)

where {---) denotes the ensemble average over processes with identical statistical
properties. As no correlation exists between the noise sources in the device and
the package,

Cpa = P(n,nl) P' + D(j,jl) D (6.95)
The definitions
Co = (mpnl) and Cu = (j,5) (6.96)
lead to
Cp = PC,P' 4+ DC,yD! (6.97)
which is Equation (6.81). This equation can be reduced to one involving matrices
of order 2 only, when C}, is partitioned in the same way as Y. (Equation (6.83)).
Cpi = C+ DCy, + C, D+ D(Cy + Cy) DT (6.98)
?Please note that the statistical noise averages, hence corrclation matrices, are normalized to
2T Af, where & = 1.38 x 167> JK~' is Bolizmann’s constant, 7o = 290 K is the standard

noise temperature and Af is the noise bandwidth in Hz. The factor 2 (instead of 4) is chosen
because both positive and negative frequencies are included. fn any case, this factor cancels out in

the final noise parameter expressions.
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The deembedding procedure is to find Cy from (6.98) and thus
Ci = D7 (Cpu —C)D'™ = C.D'™ — D C. — C  (6.99)

This equation is equivalent to (6.82) but it includes only matrices of order 2.

r

It now remains to find the expressions for the correlation matrices Cpg and C, for
the packaged device and the package in order to be able to compute tha correlation
matrix Cy for the device from {6.99).

Twiss {10] has shown that for a linear and passive network, such as the package,

which generates only thermal noise, its noise correlation matrix is

r Cee Cez
c, = = iy, + Yp-*) {6.100)
C:t’ Cu

It should be noted that this equation does not require reciprocity, but in the rest of
this section reciprocity is assumed.

Hillbrand and Russer [7] have shown how the noise correlation matrix in ABCD
form relates to the noise parameters. Let C,4 denote this correlation matrix. From

[7] or Equation (6.71) it is seeu that

Cann = R, (6.101)
Canz = §(Femin — 1) = RYsor = R,V (6.102)
Can = :1,12 = K.Y, (6.103)
Cam = RulYsorf® = G, + RJVP (6.104)

Cpq is the correlation noise matrix in admittance form which is obtained from C4
hy

Ci = VO, V! (6.105)

pressed in terms of elements of the admittance matrix Y. (Equation

where V is e

e

[E—'
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from which

Fomin = 1+ 2(Can2 + Can¥ior) (6.108)
B, = Can (6.109)

- CA 22 ,IH] [(Vl 12] : . [H]{CA 1-»}
Ysor = ‘ = - — t ek (6.110
\j Can Can / Can (6.110)

or R, Gn and Y, are expressed in terms of C4 as

Rn = C'A_n (/6.111)
C Cys
Gn = Cap - —S2220 (6.112)
411
Cam
Y, = =—=—=— (6.113
7 Can (6.113)

In many cases this deembedding procedure, which here is performed with matrix
algebra, can be performed as shown in Example 6.3 in section 6.1 and in section
6.2, where sections of transmission line in a similar way can be removed from the
encapsulation by adding the negative lengths.

6.4.2 Calculating noise parameters at a new frequency

Now the correlation matrix of the active device Cj is known at one frequency. Since
the two-port is linear it is possible to write Cy as a superposition of two terms:

C, = TNT + SN,st (6.114)

where T and S are transformation matrices which are functions of the equivalent
circuit parameters. IV, represents the thermal noise contributions included with the
active device and is known from the eqnivalent circuit parameters. N represents
the noise {rom the noise generators in the intrinsic transistor and from [11] Equation
(6.114), IV can be expressed as

N = T'(C;—- SN Shrt— (6.11%)

Now consider a frequency change. The frequency dependence of N is known. 4

P,

N, represents thermal neise and thus the noise zenerators are independent of fre-

arieney hut rhe nHianes o F
ond hut ne nie L

e 1 B
Oien s i [RAR RN Ly dependaeny el

of the thermal noise generators in their transformation to the reference planes cor

*.V is often independent of frequency. e.g. in case of 2 #ET withont Ricker noice
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be calculated at the new frequency and the noise parameters are calculated in ac-

cordance with the method outlined below.

Deembedding procedure:

1. At some frequency, where the noise parameters F,,,,.. Ysor and R, are
known, calculate C4 from Equations (6.101) - (6.104).

2. From measurements or simulation calculate the package admittance Y, and
partition it as shown in Equation (6.83).

o

. Calculate the device admittance matrix Yy from its equivalent circuit.
4. Caleulate D by Equation (6.91).
5. Calculate V' by Equation (6.106).
6. Calculate Cpy by Equation (6.105).
7. Calculate and partition C, by Equation (6.100).
8. Calculate C; by Equation (6.99).
9. Calculate T, S and IV, for the particular device.
10. Calculate IV by Equation (6.115).
Change to a new frequency and at this frequency:
1. Calculate T, § and V,.
2. Calculate Cy by Equation (6.114) using N from step 10 above.

3. Determine Y, from measurement or simulation and partitiou as in Equation
(6.83).

4. Calculate Y} from the equivalent circuit of the device.
5. Calculate D by Lquation (6.91).
6. Calculate Y, by Equatiou (6.20).

7. Caleulate and par

o)

Calcnlate Cpy by fquation (6.93).
5. Calculate V' by Equation {8.106).
10. Calculate C, by Equation (6.107).

11. Calculate the new noise parameters from Equations (R 1) - (R.110),
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6.5 Transformer coupled feedback

Consider an active two-port with feedback consisting of two transformers — one
connected to give voltage series feedback and the other to give current parallel
feedback as shown in Figure 6.15. Let the two transformers be identical, This type
of circuit is often used but how does its noise two-port look? Neither of the above

mentioned methods leads to a result.

+ bl
VZ €hy €y
€a
AN L | L
- O Tamea Bl
C) Ys Vi la > Va .:
GS - Y‘v I_Y‘v — __:
L. ) M)
NG el \_J +
Ecl E’c2 Vl

Figure 6.15: Amplifier with double feedback.

The method used here is to compute the noise factor of the circuit in Figure
6.15 and also to compute the noise factor of its equivalent circuit with the unknown
noise two-port. As these two noise factor expressions are identical the new (primed)
noise parameters can be found by setting the two expressions equal for four different
values of source admittances with the real part positive. This method has also been
used to get the results in section 6.1.

In Figure 6.15 the two transformers are characterized by their Z parameters and

the transistor by its ¥ parameters:

[ 70 Zy |
z, = |72 (6.116)
L2 7]
Zy Z.)]
Z. = [ ‘ 6.117
= (6.117)
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{6.118)

i le-'
[ Yor Yo |

where Z; = 7y + jw Ly, Zy =134+ jwloand Zp = Jw M, corresponding to the
impedances of the two inductances and the mutual inductance. The noise currents
and voltages are all uncorrelated and the equivalent noise two-port of the amplifier
is shown. The noise currents ard voltages are determined from the noise parameters
by Equations (2.7) and (2.9).

As the noise sources are uncorrelated, the noise factor equals the sum of the out-
put noise powers originating fromn the noise sources and from the source at standard
noise temperature divided by the output noise power from the source at standard
noise temperature. There are seven noise sources and each of them gives a contri-
bution to the output noise power. Eight {numbered) equations can be written as
follows where the right sides of seven of the equations are either zero or contain a

noise source:

0
Vi + Zoly + Zol3 + Zoly = { . (6.119)
ey
[0
—Vg + lel + leg + Z[)[.4 = { e (6120)
—ep,
. 0
- V3 + Zoly + Zoly + Z Iy = { . (6121)
—es,
0
Vi + Zoly + 115 + 200, = { . (6.122)
—e,,
‘11 }’1211-"'11 -1 U] [1‘1 [01 {~la
h = 6.12;
[Yn Y’ZQJLY’3J+ 0 ~1]| 5] Lo 7] o (6.123)
’—YH QQHW] -0 | [n] [o] [-ev,-vin)
. . . + 1 | . = nr ! H
L Y [ (v ] "0 < ls] T (o] aw |
(6.1245
[
R (6.123)
i+ by = 0 (.126)

The noise sources are taken one at a time and in the other equations the zeros

are used. These equations can be written in matrix form as shown:
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6 -1 0 0 Zy Zy 0 2, 5

L0 Y, 0 -1 0 0 o n| - ¢ (6.127)
n 0 Yo 0 0 0 -1 0 I
Ys ¥Ys 0 0 1 1 0 0 Iy
Lo o0 1 1 0 0o 0o o0]]| ]

Here for each noise contribution a is equal to one of the seven vectors below con-
taining only one noise source each:

o 70 0 777 0o 77 -e] ( o 1 0 17 0]

0 —ey, 0 0 0 0 0

0 0 —es, 0 0 0 0

0 0 0 0 —ee, 0 0

0 0 0 0 0 —e, (Y, - Y1) i

0 0 0 0 -0 €q Y91 0

—ig. 0 0 0 0 0
Lo J Lo be lo Lol o o]
Solving Equation (6.127) seven times for I,, = I3 + I, where m = 0.1,...,6 it

follows from Cramer’s rule [13] that [, is of the form

(am¥s + bn)sm

I, = 5

where sy = ig,, 81 = €hys 82 = Ehy, S3 = €5, 84 = gy, S5 = €4, 8¢ = i, and D
is the determinant. a,, and b, are dependent on the matrix Y and Zo, Z1 and Z,.
It is not necessary to compute D as it is not used iu the following, but it is also of
the form ar¥s + hr. By use of the algebraic computer program Maple V [12] the

quantities ag — as and by - bg are computed as:

ay = 0
, co o, -2 Sy - ;
b = YuZoly — Y1225 - Yanli + VaZoZe + 272,
= YnZoZy = YnnZy — YnZ; + YnioZ, + 22,
51 - [)
- - 52
ay = =YnZiZy + YloZ + YulZoZy — YnlZi — 7 — 7,
by = =1 —YnZy + Y122,
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a3 = AvZoZ1Zy — AvZ3 + Y, 207, — Y1273
+YnZ1 2y - 2Y0 23 + VauZuZy + 2 Z
by = AMvZoZy + Y12y + Y2,

_ 2 R - . o

Ay = A}’ZOZ'B - AYleE - y11[122 + YUZQZZ + Y01 407
v o2 - ;
FYRZS - YnZiZy - YuZi - 2y - 2,

b4 = —-1- AYZ:" - }’11Z2 - },‘Z'ZZQ
as = AYZg - L\YzOZlZ2 - }/11Z021 + Y‘]]Z[]Z-} + 2}—_)_175‘
-Yaz,z, - Y21Z§ + Y, 202 - Y, 2027,
+ VYN ZEZy - Y Y0 Z 23 = V¥ 22 4 YoYaaZoZ: 2o
bs = ~AyZoZy - Y1nZo — Y2y + Yo Zo — VoY Z8 + YoY02 202,
6 = YnZiZy — YnZiZ5 = YnZi + YnZoZiZy + ZoZ ~ ZoZs
bs = —YnZi + YuZoZy + Zo

As |I,|? is proportional to the mth contribution to the output noise power it
follows that

6 2
m= Im 1 I3 - P
F, = Lﬁ;,';—' = 1+ (G + BLIYs + Y2 (6.128)

where Gs = Re[Ys]. As Gy is proportional to [so]* —and 4 £ Ty A f can be cancelled
in numerator and denominator — the identity reduces to

?n_ HamYs + by)s,,i? .
=1L mo s ) S} = G+ RLYs + YR (6.129)

I(Z()}':g + bofl

Introducing the two vectors

v = (a1s1. a28e., .., dgss) {6.130)

Uy, = (’)181 . ’l'_»:'_v X . ’.’;;B:;} \/5‘;.1.3}}

with the scalar product {u,v) = Y2, u, »* and norm }ui] = Vi uland as ag = 0,
tion {6.129) can be written as

{lv.Ys + "’OH2

TaE = G, 4+ R, |Ys + Y/ (6.132)
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mo- P, (6.133)
) Ibof?
2Re(Ys(vy,v0)] = 2RelYs¥/™[v,])? (6.134)
which gives for Y5 = 1:
Rel(moe)] = RefY]ffou )
and for Yy = 5:
Imf(v,,v,)] = T[] ], %]
or
(v,,v,}
Y)o= o (6.135
i EAE %)
Finally
Gribol® = o]l = [Jo,])?)¥)1?
- v, 2 H%H“'(U?vvx)f“
el lo. fj*
> oo lva? = |(vo,00)]?
Nt - 0 1
o ol Tl 7 . (6:135)

ni

and the expressions for the noise parameters R/, (7', and Y are found.

6.6 Mixed input

In order Lo oblain a low noise factor and simultaneously a good input power match,
it is sometimes the practice tc ground the input traasistor somewhere hetween the

nus apply the input signal to both base and emitter by
ossless transformer as shown in Figure 6.186.

—_

means of a

For such a circuit the noise parameters can be caleulated by expressing the ontput

expression can be made for /. This expression is identically equal to the standard
expression for F, (Equation (4.11)) for all source admittances and thus the following
equations are found:
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Figure 6.16: Mixad type input circuit.

2
; ng 4+ ng - o
G, = <T Gr (6.137)
1 2 y
‘n2Vv, 12
iy 21
R, = - — = — R, (6.138
" ni(ne + n3) Yoy + nyng ¥Vpu2 7 (6-138)
vy - (”2+”3\)2V . (”2+TL3)713EY
v ny / o H? }r;l !

— _““2 — (6.139)
J(l 131

6.7 Transformation to common base and common col-
lector

Equations (6.137) - (6.139) can be used to compute the common base {gate) noise
parameters expressed by the common emitter (source) noise and small signal pa-
rameters. Let n; = 0 and ny = n; and one gets:

b _ e
G, = & (6.140)
5 Vs 12
RY = __ifale R 6.141
m i}71 e + )222;2 " ( )
Ym,\ . Ay,
v: = (1 i I (6.142)
\ U A Y
\ Yzw_ / 2le
Traznsformation from common emitier {source) aoise partameters Lo common col-
L I

lector (drain) noise parameiers by use of the Z noise parameters gives the result:

. (6.143)

s (6.1.1d)
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Z A?c
VAT | 25+ 6.145
= ( ) Zar. (6:145)

These results are also given in [14] and {15]. but expressed in a different way.

6.8 Noise computations in computer aided design pro-

grams

One type of popnlar optimization program comprises those based on the adjoint
network. Without going into detail it is clear that uncorrelated noise contributions
should be added as powers or power densities. Every one-port contains one noise
generator which is uncorrelated to the other noise sources as they are physically
separated. The two-ports contain two partly correlated noise generators which are
separated into the equivalent noise two-port as shown in Chapter 4 and thus t-
wo uncorrelated sources and a correlation immittance emerge. As equivalent noise
multi-ports have not yet been developed to contain uncorrelated sources it is neces
sary to include correlation matrices.

Dobrowolski’s book on computer methods for microwase circuit analysis and
design {16] includes linear noise computation of one-, two- and multi-ports.
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Non-linear systems



7

Noise in non-linear systems: Theory

This chapter deals with the theory of time invariant non-linear noisy multi-port
non-autonomous systems. The type of non-linear system considered may contain
non-linear one- and multi-port non-linear elements and subsystems, the internal
noise sources may be unmodulated (independent) or modulated (dependent). the
systent may contain dc sources, and the multiple signal input ports may be excited
by multiple finite energy! signals (also de¢) and noise. The method of analysis is
based on the use of Volterra series which requires an equivalent cireuit description
of the non-linear noisy system. The main objective of the present chapter is to
derive expressions for the noise and deterministic response at arbitrary response
ports in the situation where low level noise is analyzed. Low level noise refers to the
situation where the noise is a small perturbation of the deterministic signal regime.
This means that the non-linear contributions caused by a non-linear mixing of noise

with noise are insignificant.

7.1 Introduction

For non-linear systems the principle of superposition is not valid. This, as 2 con-
sequence, implies that the (non-linear) transfer function seen from a given noise
source in a system to a given output response port does not only depend on the
system itself but also on the applied deterministic signals. This makes non-linear
noise analysis nmch more complicated than noise analysis of linear systems. The

purpose of the present chapter is to develop a method to anaivze low level noise

vlinear multi ner
variant non-linear mult gener-

al - the sense that the equivalent noise {Tee system mayv be described by a finite

(convergent) multi-port Volterra series. This suggests that the tvpe of system al-

Tovws {1y muitiple tuput ports which can be excired by

'In an observation time interval of finite length.

143
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(also dc) and noise, (ii) internal dc sources in the system, (iil) multiple unmodulat-
ed (independent) internal noise sources, and (iv) multiple niodulated (dependent)
internal noise sources which may be modulated by multiple arbitrary deterministic
signals. The system may have an arbitrary number of responses (or more generally,
arbilrary system variables} which way be, e.g., voltages or currents at any node
or branch respectively in the underlying network. The low level noise assumption
implies that only systems which are small signal linear may be analyzed — this
means that contributions caused by non-linear mixing of noise with noise have to
be insignificant. However, most of the known devices are small signal linear. Also
dc sources in the system are allowed. Traditionally, dc analysis has not been used
in relation to Volterra series analysis. This is because (i) it has not previously been
possible to analyze multi-port systems, which is required when dc is applied not
only to the signal input port, and (ii) Volterra series have traditionally only been
used for weakly non-linear systems in which case the influence of the deterministic
signals on the dc due to non-linear phenomena is insiguificant.

The objectivé of the present chapter is to determine the ensemble cross-correlation
(or autocorrelation) between response Fourier series coefficients at two arbitrary fre-
quencies at arbitrary response ports. This makes it possible to determine average
noise powers and average noise power densities which are used extensively in noise
analysis. Practical applications are expected to be in the analysis and optimization
of noise in mixers with moderate local oscillator levels, interconnected mixers and
oscillators, some types of frequency multipliers (e.g. FET types), oscillators (once
the oscillation frequency and amplitude are determined, using e.g. [1,2]), and com-
munications systems. The theoretical work may also be used in a combined analysis
of intermodulation and noise, and to analyze the noise properties when more compli-
cated deterministic excitations (multiple sinusoidal excitations) are used. Another
possible application is in the development of non-linear models of various devices.

The chapter is organized as follows. Section 7.2 presents preliminaries regarding
the type of system whicl is under consideration and discusses the mathematical rep-
resentation of deterministic signals and noise in the frequency domain. Section 7.3
outlines a method which can be used to represent modulated (dependent) as well
1+ in

nt) noise sources. Lastly in Section 7.4 & expressions are

e
derived for the responses of a non-linear noisy multi-port system.

7.2 Preliminaries

Two major prerequisites for the analysis of noise in nou-linear systems are to con-
sider (i) the system description, and (i) the mathematical representation of noise

and deterministic signals. These two problems are treated in the present se
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7.2.1 System description

The type of system under consideration is shown in Figure 7.1. This is a time invari-
ant non-linear non-autonomons multi-port system with multiple internal unmodu-
lated and modulated noise sources, and the system may also contain dc¢ sources.
For the analysis it is required that an equivalent circuit description of the non-
linear noisy system is available. That is, a detailed uon-linear network descrip-
tion of the system must be available. The system is excited by J input signals
{zi{fh-- 5 2s(f)} applied at ports {(x,1),....(z,7)} — these signals may all
include deterministic signals (also dc) and noise. The system has L responses
{ri(f).....7L{f)) which are present at ports {{r.1),...,(r,L)}. The response ri( )
at port (r,{)wherel € {1,2,..., L} may be any open circnit voltage or short circuit
curreut (or, more generally, an arbitrary system variable) at auy node or branch
respectively in the underlying non-linear network of the system, Using this system
formulation it is possible to determine tlie noise response, as well as the deterministic
signal response (including dc), at any place in the non-linear system. The equivalent
noise free non-linear system may contain one- and multi-port non-linear elements
and subsystems — e.g. non-linear capacitors. and current generators with a non-
linear dependence of two {or more) controlling variables. The primary objective of
the present chapter is to determine expressions for the responses {r1(f),...,rz(f)}
and their statistical properties, and to describe the information needed to deter-
mine the responses. The statistical properties include the determination of average
noise power densities and average noise powers at tle response ports as well as the
cross-correlation (and autocorrelation) between Fourier series coefficients at arbi-
trary response ports.

The type of system in Figure 7.1 can not readily be analyzed since it contains
internal noise and dc sources. The internal sources, as well as the noise sources
applied at the input ports, may be applied at separate external ports provided that
the internal topology of the underlying non-linear network is not changed. This is
shown in Figure 7.2 where the (nnmodulated as well as modulated) noise sources
{ni(f),.. . ng(f)} are applied at ports {{n. 1).....(n,Q)}. These noise sources also

describe the noise sources at the input ports. Thus the signals {sy(f),...,sx (£}
applied at ports {{s,1),...,(s, ')} are purely deterministic signals w huh may also
include dc.

mum order /. rhls order is

Allh-l‘
ed noise source. For e.\’nnzp‘m. if the
fo inudulaied neise source is 37
the analysis must be M o yield
correct results. In this example, of course, the Volterra transfer functions of orders

greater than 1 for the linear system are zero. Ouly the Volterra transfer functions

£ L.
1

t the modulated noise source of orders greater than 1 are non-zero. Suppose that
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[ 1
() () Iz, ) TR
T -
’ Non-linear noisy multi-port system )
: containing dc sources
-
2hH O @) COANNERTS

Figure T.1: Non-linear noisy time invariant multi-port system containing dc sources. Each
input signal z;(f) where j € {1,2,...,/}, which is a voltage or current generator, may
contain a deterministic (also dc) signal and noise. Each response r;(f) where I £ {1,2,..., L}
may be either a short circuit current or an open circuit voltage. The noise sources internally
in the system may be either unmodulated {independent) or modulated (depeundent). The

system may also contain dc¢ sources.

the non-linear system in itself is described up to some maximum order A, and the
maximum order of the transfer from unmodulated to modulated noise source is M,
then the overall maximum order M must be chosen as M = max{M,, M} to yield

correct results.

7.2.2 Representation of signals

Fourier series in Volterra series analysis are very attractive since brute force multi-
dimensional integration is replaced by addition of multiplicative terms which in a
sense is made in one dimension. This makes a Fourier series representation of the
signals computationally very efficient. Also the use of Fourier series has advantages
of a simple representation of sinusoidal signals, and in the determination of average
noise power densities at specified frequencies. Generaily the noise and determinissic
signals considered are extending over all time, -oc < ¢ < =0, and have infinite
energies. Thus for a real valued noisy signal z;(¢) where —oc < ¢ < 20 it is given

. T 2 . f : . . .
that Bm-—.. [0 fe;{8}}*dl — oo. This means that the noisy signal

n
absolutely integrable and thus it does not generally have a Fourier transform.
In (3] two standard types of suggestions are given for the frequency domain rep-
resentation of stationary (random) noise signals. The first suggestion is to represent
z;(t) in a time interval —7 < t < 7 and to assume r;(t) = 0 for 1| > + The
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m(f) nq(f)
) N
(n,1) (n, Q)
N T
3 !
s1(f) (s,1) {r, 1) | n(f)
) Non-linear noise free multi-port system ’
. not containing dc sources ’
] 1
i I
sx(f) (s, ) (r,L) Hrelf)
L

Figure 7.2: Non-linear noise free time invariant multi-port system not containing de sources
with externally applied sources. The signals {s,(f),...,sx{f)} represent the purely deter-
ministic signals (also dc) applied to the system and internal dc sources. The noise signals
{mi(f),-..,nq(f)} represent noise generated internally in the system and noise entering
the sy

ystem through the signal input ports. The noisc sources may be either unmodulated
or modulated.

g£a th
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frequency domain representation in this case is the (integral) Fourier transform of
z;{t) given as z;(f} = [T z,(t) exp{—j2n ft] dt. The second suggestion is to assume
that the noise signal z;(t) is periodic with period 27 such that z,(t) = z;(t + 2ir)
where i € Z is an integer. From this, the frequency domain representation is given
as a Fourier series. However, the assumption that z;(t) is periodic has the un-
fortunate consequence that the autocorrelation function is also periodic such that
{ei(ti} z;(t2)) = {z;(t1) z7(¢2 + 2i7)) wlere i € Z is an integer. This also implies
that the coefficients of the Fourier series are orthogonal — two Fourier series coeffi-
cients F;,(p1€) and Tj,(p2f) are said to be orthogoual if (%}, (p1€) T3, (p2€)) = 0 for
all integers p;, p2 € Z except for p; = p; where () denotes the ensemble average over
noise processes with identical statistical properties. Since {z;(t\) #7(t2)) is generally
not periodic for the type of signals considered in the present work this suggestion is
not useful. If the systems under consideration are linear (single response), which is
the case for the work in [3], then it is not a problen: that (z;(¢;) £3(t2)) is periodic,
because there is no need for any evaluation between Fourier series coefficients at
different frequencies. However, since the systems considered in the present work
are non-linear, periodicity of z;(¢) can not be assumed since there may very well
be a correlation between Fourier series coefficients at different frequencies. This is,
for example, the case for modulated noise sources — even in the case where the
fundamental noise source in itself {without modulation) generates white noise (it is
very simple to show special cases which illustrate this statement). Since it is most
useful to have some kind of a Fourier series representation in the present work, none
of the suggestions made in {3] are useful.

One way to achieve the goal of a Fourier series representation without the prob-
lems of orthogonal Fourler series coefficients due to periodicity of the signals is
described in the following. Assuming that the noise signal z;(t) has finite energy in
the finite time interval —r < ¢ < 7 where 7 > 0 then [7_|z;(¢)]?dt < oc. In this
case r;(t) can be represented as a Fourier series in the time interval —» <t < 7 as

20
T () = 3 Ei(p€) explj2rpét] (7.1)
p=—co
where
I;{pf) = grly" v;{l) exp[—j27plt]dt (7.2)
1
& = )_T [1.3)

In this case z,(t} is generally non-zero for ¢ > jr{ as opposed to the first method
in [3] where z;(t) = 0 for ¢t > |r|. The time interval [-7;7] is referred to as the

observation tiine interval. In Equation (7.1} the quantity Z;(p€) is a complex valued
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random variable in the random process describing the statis
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noise signal z;{t}. The (integral) Fourier transform of the noise signal z;(1) in
Equation (7.1) is given by

() = Flz(1)} (74
= /_ T;(t) exp[—j2x f1] dt (7.5)
=X Eip6) 8(f - pe) (7.6)

p=—o
= EJ(E») 6(!: - Scp) ) fp = Pf (77)
p=—20

wlhere F{-} denotes the (integral} Fourier transform, and 6(-) is the Dirac §-function
[4]. Note from Equation (7.6) that z;(f) Is a two-sided Fourier transform and thus
z;(f) is represented at both positive and negative frequencies. It is very impor-
tant to maintain both positive and negative frequencies since the mixing of various
frequency components is essential to the non-linear noise analysis, and is only cor-
rectly analyzed when both positive and negative [requencies are included. It is also
seen from Equation (7.6) that the frequency resolution in the spectrum of z;(f)is
given by £. This frequency resolution can be made arbitrarily small by choosing 7
sufficiently large.

To prove that Equation (7.1)is fulfilled in the time interval —7 < ¢ < 7 it snffices
to show that {|z;(t) — Lope—oo Lj{pE) exp{2xp€t]|?) = 0. This relation may be
proved using standard techniques based on the assumption that z;(t) is real [5].
It can also be shown that if the autocorrelation function {z;(z,) z3(t2)) is periodic
with period 27 then the coefficients of tlie Fourier series expansion are orthogonal.
However, in general this property is not valid since the autocorrelation function
(z;{t1) z3(t2)} is generally not periodic.

Following the above discussion for both deterministic siznals and noise leads to

Jie
. e o .
self) = 3 Selbi) 8 = ) (7.8)
=1
where the frequencies {1y ,..., We.g.} are organized such that i, # -+ £ Wk,
forall k€ {1.2,..., 4}, and
>0
ndl fY = ST ORAENSIF D T
2, &S -4 (7.9
PR
where g € {1,2,...,Q}.
As an example of a deterministic time dowain signal sg(7) where k € {1.2,..., K},

& sinusoidal signals as

)

o]

comnal oA QT o P and
consider a sum of a dc term a 1a
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o

Sk(t) = 0o + Z oy, cos(2mdp t + "'Plc,bk) (I.lO)
be=1

where 95, € Ry forall k € {1.2,...,K}and bp € {1,2,...,Bx},and dpq # -+ #
Ug.B, forall k € {1,2,...,K}. Thls eads to si(f) = Flsi{t)} as

se(f) = okp6(0)

. By
1 = . ,
+3 > ous explisen{bi} o sl 6(f —sgn{bi} Vi)
be=—B;
b #0
(7.11)
where sgn{-} is the sign function defined by
[ for >0
sgn{b} = 0 for =0 (7.12)
~1 for 6<0

Equation (7.11) can be written according to Equation (7.8) with Jx = 25 + 1 and

Yease-1 = Ursy, b € {1,2,..., Bi} (7.13)
Yeab, = —Tks, by € {1,2,..., Bg} (7.14)
Yreg+1 = 0 (7.13)

and

- 1 .
Se(viose-1) = 5 okb epliven], b€ {12, B (7.16)
’ 1 p -
Se(r2e,) = 5 ous oX0[—J¥ks] b€ {1,2,..., B}  (7.17)
Se(deaBerl) = 240 (7.18)

Thus, Equation (7.8) can readily be used.
The notation used in Equations (7.7)-(7.9) implies that sums of pure exponential
uts may be allowad. This type of inpnt may be of significant interest from a

retical point of view since exporential inputs are frequently used iu Volterra

18)
i Y
tl heo
series analysis.

~ T

7.3 Noise sources

In the analysis of non-linear noisy networks and systems it is sometimes necessary

to take into account modulated {dependen

+)N malea coanTeen ac ol
Uy f noise sources as wel
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{independent or fundamental) noise sources. That is. the noise generated in a given
device or network element may depend on some controlling quantity {or quantities)
in the system. For example, sliot noise in semiconductor devices is dependent on a
deterministic signal applied to it (mainly dc, but also the alternating signals may be
of importance if they are not much smaller than the dc signals) [6]. This is because
the shot noise is nsnally proporticnal to an instautaneous current -~ this may be
viewed as the dc operating point is changing with time due io the excitation. If
the deterministic signal is sufficiently large, this causes a modulation of the noise
source which in turn leads to correlated noise sidebands — this is even the case if
the fundamental noise sonrce (the noise source which is being modulated) generates
white noise. )

7.3.1 Basic theory

Noise sources are generally included as in Figure 7.3 in which the possibly modulat-
ed {dependent) noise source ne{ f) is identical with the response from a non-linear
noise free subsystem not containing dc sources with inputs {gal )y g ()}

i JdA 1 G, ig '
which are referred to as ¢ i ri s i 5 )

. Te I red to as controlling variables applied at ports g )i oos, (g, I}
and a fundamental (unmodulated, independent) noise source wo(f) where ¢ ¢
{1,2,...,Q}. The nen-linear noise free multi-port systern in Figure 7.3 must not con-
L:nln dc' sources. However, the controlling variables {u, (f),. g r,(f)} may have
a dc val als ise sourc (t) w e {L,:

ue, and also the fundamental noise source w,(¢) where g & {1,2,.. ., Q} may
have a non-zero mean value. The controlling variable u,, i fywhereq € {1.2... .. Q)
and i, € {1,2,...,1,} may be either an open circuit voltage or a short circuit
current (or actually any system variable) at any node or branch respectively in
the underlying network of the non-linear system. The non-linear system in Fig-
are 7.3 is described by a muitLport frequency domain Volierra series [7] with inputs
s s A s [ .
fw {f)oug 1 (f)y - oug ()} and ontput n(f) where g € {1,2,. Q) as
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11
walf) | 1)
—_
Non-linear noise free T
. multi-port system nqe(f)
) not containing dc sources |

(g, 1)

2
£
iy
-
=
L___J

Figure 7.3: Representation of modulated (dependent) and unmodulated (independent)
noise sources. The input signals {u,,1(f), ..., uy1,(f)} where ¢ € {1,2,...,Q} are con-
trolling variables at ports {(ug,1),..., (1, I;)} — deterministic currents and voltages at
any place in the non-linear noisy network. The signal w,(f) where ¢ € {1,2,...,Q} is
a fundamental (unmodulated) noise voltage or current source, and n,(f) is the (possibly)

modulated noise source.

7.3. Noise sources 153

M2 M
)= 3 3 3
mgo=0m;=0 my, =0

Lo L )

Loar(mo+my + -+ my)
(Gq)mn,mu ..... m_rq(-QO.I: s §2O7mg; Q],h cee QI,,mx; T
o ";qu,lr‘ K qu,mlq)

’wq(QO,l) o 'wq(QO,mo) ‘“q,l(Ql,l) .- 'uq,l(Ql,ml) co

g Q) g 1 (Qpym, )

f=Qop = = Qomg = U= = Qg — -
Q= = Q)

d - dQgmg Ay dy oy -
dQ Qg (7.10)

where

) 1 for ve{a,a+1,...,8-1,3
Loply) = 1€ 4 TR 3}
0 otherwise

and (Gq)mo,mx,m,mzq(') is the partly symmetrical multi-port frequency domain Volter-
ra transter function relating the inputs {wy(f), ug1(f),. .., u, 1,(f)} to the output
ng(f) of order mg + my +--- + my,. In Equation (7.19) the function £, ar(+) limits
the order mg+my + -+ -+ mp, to be from 1 to M. Thus, M is the order of truncation
of the multi-port Volterra series.

A partly symmetrical multi-port frequency domain Volterra transfer fanction is
defined as follows. Let Py {Zk1,...,Zx,, } denote permutation I, € {1,204}
=, 1

0%

of the o,! total number of permutations of the frequency variables {Z |,.. N

where k € {1,2,...,A'}. Then, a multi-port frequency domain Volterra transfer
function (F,; o, ,..0.(-) is said to be partly svmmetrical if

Fo2q /01500y =
L‘I ;,lq))x,...,og\» (k—'l,l =l =R ) SR 0 ]

- (R (D 1= = | R P i= . I
Vg oo F L =1 Ly ooy —Ll2;f KU YKL =Ko 0!

(7213

for ali the o1!:--ox! possible permutations of the variables. An unsywmmetrical
z cti tly syrnmetrical as
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(fﬂq,zq)ol,.“,c;\»(al,lg oty Elvol; """ =5 PRI :\'.og()
1 oy! ot
= ST M
o1 OK- =1 {e=1
— _ i P _ N
(-Fq.zq)ol,..,‘o,\» (PI.II{:l.b “ee ’:1,31}: """ ) PI\',.’_;;{:[\”,I PR 7:-1\'.;),-\»})
(7.22)

All permutations {Piy{-},..., Pr,mt{-}} are required to be different for all & €
{1,2,..., K} to assure (partlal) symmetry of (Fy; Ymy, . m ()

Note that the assumption of partly symmetrical transfer functions is aot a loss
of generality, since the response n4(f) where ¢ € {1,2,...,0} in Equation (7.19)
remains the same if a possibly unsymmetrical frequency domain Volterra transter
tunction is substituted with the corresponding partly syminetrical transfer function.
Note also from Equation (7.19) that there may be several different (kG7),,LG'm1,,_”m1q ()
multi-port frequency domain Volterra transfer functions of the same order mg +
my + -+ -+ my,. Observe from Equation (7.19) that even if (G )mg,m,,.. ,m,q(~) where

¢ {1,2,...,Q} is unsymmetrical then any variables {Qz‘q‘l,...,qu,mw} where

k€ {1,2,..., '} may be permuted and one still obtains the same result for ny(f).
The reason for using partly symmetrical Volterra traunsfer functions is that the
amount of computations required to determine the response may be significantly
reduced when the transfer functions are symmetrical compared to when the transfer
functions are unsymmetrical.

Full symmetry of a multi-port Volterra transfer function can generally not be
utilized. A fully symmetrical Volterra transfer function is defined by

(Fq.iq)m ..... o;g(El.1~ sy 51.3[: ey E[\'.ly cey EK,OK)

= (F'],i )01,---,31;(7’71{51,11-- '551‘91;
q

K-+ 2Ront)  (7.23)

where g € {1, 2, @}, and P;{-} denotes permutation number ! € {1,2,..., (0o +

<+ o )t} of the frequency variables.
generally not fulfilled since the signals are applied at A possibly different input
generally not

The full symmetry in Equation (7.23) is

excxtatmn ports. Thus, two signals from two different inpat ports may

changed o gi

ymuletrical, and a HIU ¥ :VHHHE'I'K?LI multi-

transler functions are generally

O
=3
=
\’__

port Volterra trauofpr function can not be substituted for the possicly unsynunetrical

Equation {719}

<

T ution of order 0 for n,(f) in Equation (7.19), which is identical to
the response when no signals {including dc) are applied, is excluded in the systems
an not
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is because the zeroth order contribution, identical to {Gy)en, 0f).in this case can
not give information on the non-linear interference between dc and other applied
deterministic signals. Actually, (G,)o0.._o() is a system contribution which is there
but it can unot interfere with otlier sugnals (it may be calied a ‘mathematical offset’ ).
It lies in the modelling of non-linear devices that the zeroth order contribution is
not of interest (it does uot describe any physical behaviour of the circuit). Note
that there may very well be interference between dc and other deterministic signals
and noise in the system in Figure 7.2. In much work on Volterra series analysis it
1s stated that the zeroth order contribution ((19)0'0”,_'0() represents the internal dc
sources in the system. However, this is generally not correct for the above reasons.
The upper limit for the order mg + m; + ... & my, is the maximum order M.
Actualy, M — ~o but for practical reasons A/ must be cliosen to have some finite
value. Of course, M must be chosen sufficiently large so as not to give incorrect
results because of too low a maximum order. For a given M it is sometimes useful
to determine limits for the amplitudes of the applied deterministic signals to ensure
that the residual components to n,(f) in Equation (7.19) of orders higher than A
are insignificant. This problem is also closely related to the functional modelling
of the non-linear elements in the system. The model of a non-linear element is
valid for the controlling variable in some finite interval. Therefore, it is a good
idea to calcnlate the deterministic contributious at the controlling variables for the
nou-linear elements to assure that the elements are not too strongly /weakly excited.
The response for the modulated noise source n,(f) where ¢ € {1,2,....Q} is
limited to exclude zeroth order noise contributions — actually, this is no umitation
as in this case the modulated noise source n,(f) is just a controlled non-linearity,
and this type of non-linear element (subsystem) is already included in the non-linear
noise free system in Figure 7.2. Using the above assumptions and treating only low
level noise, then

M—1 M-1 o rec . o o
n(f) = S ¥ / Y B [~
7y =0 mi =0 2o J—n0 J—0 J—o Jeo
q
Loai-ilmy -+ my)
(Gy)l.m o, (Qo1: Q1 ---:Ql.m,i """ 7Q!,,1--~-~
( 01}1‘41(011) 'L‘[,](“qu‘r )
(f‘ 01—Q»|—"- ‘Q"q"'“q}
Aoy dfy -l d8dp e (724

€ {1,2,...,Q}. Note from Equation

(
tom; = -+ = my = 01is simply a lin
e
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response when (i) all the controlling variables u,1(f) = -+ = ug,(f) = 0 where
q€{1,2,...,Q}, or (ii) when M = 1 meaning that the system is linear. Similarly,
if I, = 0 then n,(f) = (G)1(f) wye(f) in which case ny(f) is an unmmodulated noise
source given as a linear filtering of the fundamental (unmodulated) noise source
wgl f) where ¢ € {1,2,...,@}. Using the formulation in Equation {7.24) it is pos-
sible to introduce very complicated modulating functions in a simple way. For
,Q} may depend
on several deterministic signals in the non-linear network, and the non-linear net-

example, the modulated noise source n,(f) where ¢ € {1,2,...

work in Figure 7.3. In Table 7.1 some examples of modulated noise sources and the
corresponding modulating functions are shown.

7.3.2 Controlling variables

Since low level noise is assumed, which implies that the noise is a small per-
turbation of the deterministic signal regime, the controlling variables are deter-
mined as the contributions to {u,1(f),...,%,,(f)} due to the deterministic signals
{s1(f),---»sx(f)} only. Therefore the modulated noise sources {n;(f},...,ny(f)}
do not have any feedback impact on the controlling variables, which would be the
case for high level modulated noise sources. Thus ug;,(f) where ¢ € {1,2,...,0Q}

and i, € {1,2,...,;} can be determined as

M- M-1

0 co
/u.q,i'l(f) = Z Z / / ...... / /

01=0 0=0 o2 e e

Liy-1(or+ -+ oK)

(Fq,zq)ol,.,.,oA-(Ei,h sy El,u,} """ QEK,'., sy Ehﬁan)

$1(Z13) 51 (C00) oo silZra) K (ZR0, )

(f=Z11— =S m - ZK1 T ERey)
A= dZy e d=r1 A28 g (7.25)

1

where (I, Jor ..o (*) 15 @ partly symmetrical multi-port frequency domain Volterra

transfer function relating the input signals {s:(f),..., .85 f)} to the controlling
variable u, ; (/). The maximum order of the signals {5100, sn0{ N is 30 — 1
since the noise signal w,(f) where q € {1,2,...,@Q} in itself accounts for order 1

in the expression for n,(f) in Equation (7.24). In Equation (7.25) the signal s¢(f)
where £ € {1,2,...
of Equation (7.8) into Equation (7.25) leads to

, '} is given by the Fourier series in Equation (7.8). Insertion
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1l
'Il,q(ﬁ) [q ‘[ (Gv)l,ml....,mlq(' : )
Cywg(t) 0 Cy

) Cyn for mp =1t
Cyittg 1(t) Wyt 1 "
9, 1%g,1(2) wy(t) 0 otherwise

)2 pl lQll for myp = t

—

}
Corwg(t) Eu, (1 :
g1 wy(t) at g lt) 0 otherwise

d
Caatigalt) walt) L otherwise

/"_),TTqul(ngl + Ql,l) for m; = 1

~ 4
Can gl (1) wo(t)] ' 0 otherwise

c, 1/(]“27(}1'1) for m; = 1
0 otherwise

Coawy(t) fico ug1 () dr 1

C,1 for my =2
Cyu? () wqy(t) 1 i

0 otherwise

{
{
{jzncq,lno,l for my =1
0
it
|
{
{

8%

Crag(t) uq,2(t) wq(t)

0 otherwise

{ Cyr for my=my=1

Table 7.1: Examples of partly symmetrical muiti-port frequency domain Volterra transfer
functions (modulating functions) versus the time domain modulated noise function n,(t)
and the number of controlling variables [, where q € {1.2,...,Q}. A partly symmetrical
(G, i, () muiti-port frequency domain Volterra transfer function ia derived from

the expression fnr the time domain modulated noise function n,{¢) where 7 € Il 2 (‘)J\

T A T

by (integrai) Fourier transforming n,{t), then making a direct parameser identification from
7 5 'ty [ £ i

Equation (7.24)
4
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M-1  M-1 L Jy IS Ik
upio (/) = 3 - Z DD DI 2
21 =0 og=0j11=1 Ji,m =1 Jra=1 K05 =1

Liyv—for+---+or)

Fpidopore (P10 y o Wiy i SORigs e UK, )
Ao ) Sx(BR) Sk rge, )
8(f =Vt = = Vg, = YRiks = T YR,
(7.26)

The computational cost of determining the controlling variable u,; (f) where ¢ €
{1,2,...,Q} and ¢, € {1,2,...,[;} can be reduced significantly by using the sym-
metry properties of the partly symmetrical multi-port frequency domain Volterra

transfer function (Fy: )o, 05 () as

M-1 AM-1 J; S Jx
IS —
RTINS SECD DD DT S DS
01=0  op=0y,=1 Jl,ol—l Jxa=l IR =1
Liagoqloy + -+ og)
LM-1l01 i

Al(jl,‘.s e ~7j1 01\ T "41\'(,7[\'417' . -wj!‘:,a,'\')

K K 1
ol T] H (Nt deo))
k=1 k=1 jr=1
(Fq,iq)OI,“.,O[\’( Ylitar- o '9/»‘1‘_,'1101 yro VR G VI\'-J'I\‘,UI\.)
gl(lel,l) t 'gl(?f/jldl 101 ) """" g}\(w}\]f\l) o 'Ef\'(wl\ijl\’,o,\»)
6(f - lel,l — i Jley T - ¢[\'=.f;'\‘,1 T T 'l*/”l\"jlfag;)
(7.27)
where
: 1 for gei << ko _.
Ae(Gr1s - Frog) - : ok (7.28)
(0 otherwise
and
/V‘J,;{jl.‘,le ooy Jes, ) = number of {ji . b which
are equal to jx € {1,2...... Ji} (7.20)

The Ag(-) functions in Equation {7.27) may be used to significantly reduce the

number of sum-terms in the expression for the controlling variable u,, (f) where
gc{1,2,...,Q}and i, ¢ {1,2,...,[,}. Note from Equation (7.27) that the only
f) where g1.qp € {1,2,....0}

difference between determining u,, ;, (f) and wug, ., (

O ——
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with g # ga is that (£ 5, o,
spectively. This may also be used to reduce the number of computations required
to determine ug, (f) forall g € {1.2,...,Q} and 7, € {1,2...., [,}.

To avoid noise contributions to the output response r{ f) wh@rp lef1,2,...,0}

.ox () must be replaced with ([, Yo, .0n () re-

at port (r,!) due to frequencies caused by orders higher than M ~1 it is necessary to
keep track of the orders of the frequencies of the individual contributions to i, (f)
where g € {1,2,...,Q} and 1, € {1,2,...
defining frequency sets 81,8, .. .,

,1I,} in Equation (7.27). This is done by
Sar-1 as

il

0}(JL+"'+JK]X1

So {1,;»(;;0)\ p,c{0,1.2 Il =0} (7.30)

{Uor.-- Yo} (7.31)

i

where o € {1,2,..., M — 1} is the order of the given frequencies, and

NN T -
vip,y = W op, (7.32)
and
T
P, = [P1.1,-~~~,P1.J1v ~~~~~~ »Ph‘,h---vPI\jJKl
€ {0,1.2,..., 0} irtlaixt (7.33)
) ) ) T
P = [7.1’1,1; B2 T R IRI sy UK 1s oy l’/’l{,J‘;\»]
e R+ (7.34)
In Equation (7.30) the quantity i| - || denotes the sum of all elements in the vector,
ie.
el = pia++ps - PRIt PRI (7.33)
Equation (7 b\follow ssince pij, € Zou forallb € {1,2,..., N € {1,2,...,,]k}.
Note from Eyuation (7.30) that there may be one or more freauencwa which belon
to more than one Jf the sets 51,8z, .+ Su—1- Tor example, if the applied deter-

ministic excitation signals are sinuscids (not pure exponentiais) then an even order
ontribution of order 0y € {2,4,6....} gives some respanses at the same frequencies

as for lower order contributions oy £ {2, 4,.... 01 — 2}, Note that

Seo= U Udmed (7.36)
k=1 je=1

and thus Sl contains all f he applied frequenues regardless of ilie ports at which
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Sorr = {‘11041 + U0, Yo+ 010,
G Wor o, o + WK Jaeree o
------ Vo r, i, Yor, ¥,
Vg, Y, Yo m, + lﬂ[\'.J,\-} {7.37)
{(Vorins Wi, ) (7.38)

and in this case £y < E,(J1 + -+ Jx), which means that £, < (J, + -+ -+ Jr)°.
Furthermore

‘polx’fol + ‘Ilaz.e € 501+02 (7‘39)

where 0y,00 € {1,2...., M~ 1}, e, € {1,2,.., B, } and e, € {1,2,...,5,,}.
Thus, u,;,(f) in Equfmon (7.27) can be rewritten into the following:

M-1 E,
Ui} = D0 D g (Vo) 8 = Ws0) (7.40)
o=1 e=1
M-1
= 2 (S,) 8(f,S,) (7.41)
o=1
wlere
o > o T = v
f01,(S) = [l (o), T, (Vo) (7.42)
AT
8§(£,8) = las—won),.. 6/ -w,p)] (7.43)

and where ¢ € {1,2,...,Q}, i, € {1,2,...,[,} and E, is the number of diffzrent
frequencies of order o € {1,2,...,M — 1}. Table 7.2 shows the upper limit for £,
versus the order o and the number of input frequencies Jy +- - -+.Jx. E, is identical to
the upper limit listed in Table 7.2 when the input frequencies are incommniensurate np
to order o. Note from Table 7.2 that the upper limits in many cases are significantly
< (Jy+ -+ Jg)° condition

lower than ( 71 + oo+ Jx)° This is becanse the £ Ji)° conditior

does not use the fact that the addition of frequencies is associative.

A set of frequencies {wy,...,wg} is defined as incommensurate up to order » if

WP, W P, furall pi,# P,
- NOx1 N
aid p J,pz,dc{f),l,...,u}ox (7.44)
where w = [wy,...,wg]T, the vector l-norms P ol lIP2oll € {1,2,...,0}, 0 €

{1.2...., M} and for
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1. Exponential inputs exp{j{27wt + ¢1)],.. ., exp[j 2mwot + og)] where wy, ...,
wg € R with |w] # -+ # lwg|. Here the frequencies {w1,...,wg} may be

negative as well as positive.

N

. Sinusoidal inputs cos(2mwqt + &) ). . -+, COS(2TwQl + @) where w,...,wg €

(zero included).

Roy. Here all the frequencies {wq,...,wp} must be positive
If a set of frequencies {w,,...,wg} is not incommensurate up to order o, it is com-
mensurate for orders higher than or equal to o. Tn the literature, e.g. {8,9,10,11], the
commensurability concept does not depend on the order, which is not in accordance
with the above definition. However, the traditional definition actually assumes that
the order is infinite, which of course is not very relevant, since all practical uses of
the Volterra series technique are of limited order (traditionally order 2 or 3). For a
further discussion on this see {7, footnote 1]. From the definition it is seen that

1.I0 € {wi,.
0 =1 and commensurate for order 0 € {2,3,...,00}.

.,wg} then the set {wy,...,wg} is incommensurate up to order

2. Any set of frequencies {wy,...,wg} where w; # -+ # wp is incommensurate
9 fallad®)

up to at least order o = 1.

The concept of commensurability is very important in the analysis and is frequently
used in the following. The definition of commensurability does not depend on the
number of input ports for the non-linear system hut only on the overall frequencies
applied. Intuitively, a set of frequencies {wy,...,wg} is incommensurate up to order
o if a frequency w; € {wy,...,wg} can not be given as an intermodulation product
or harmonics of the other frequencies up to order o.

Upper limit for E,

0 Jit o+ g

tlal sl 4] 5] 8] 7] s
thrl2) 3] 41 51 6] 7 3
201316 10| 15) 210 28 36
BULIAI00200 35 56 84 10
U5 L5 35 T0 126 2100 330

Il

50 1E6 12056 1262520 1521 702
B LT 203210 162 | 6241 iTi6 |

Table 7.2: Upper limit for the number of frequencies E, versus the order o and the number
of apphed frequencies J; + - -+ Jk. Note that the upper iimit for £, applies io the situation

of pure exponential inputs.
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The coefficient °%,, (¥,.) where ¢ € {1,2,...,Q}, i, € {1,2....,1,}, 0 ¢
o 7

L2,...,M—-1}landec 11,2,...,E,} in Equation {7.40) may be determined by
.2T) and (7.40). ”ﬁ,‘;q(‘lloy

comparing Equations (7 ) is the Fourier series coefficient

of order o at the frequency ¥, . for port number (ug,4,) where g € {1,2,..., Q} and
o € {1,2,...,1,}. Note that only the controlling variables
l? '
{w(Hurl N} = U {nUs - ug (1)) (7.45)
=1

should be determined since one controlling variable may very well control more
than one noise source, and thus 7 € {0,1,...,0 +---
sources {ny(f),

+ In}. If none of the noise
ng{f)} are modulated then I = 0, and if none of the controlling
variables are identical, i.e. ﬂ,?:l {ug (). ...,
then I = I + -+ I.

Ug 1,(f)} = @ where § is the empty set,

7.3.3 Modulated noise source

The possibly modulated noise source n,(f) where ¢ € {1,2,...,Q} is given as the
response from a non-linear noise free system not containing internal sources with
the deterministic modulating input signals {u,(f),. ., tg1,(f)} and a fundamenta

(unmodulated) noise source w,( f). Insertion of Equation (7.40)into Equation ( 7.24)

leads to
M-1 M- oo
n(f) = 530S
m;=0 my, =0 p=—wc
E.,
Mo1 Bais M1 Form, M-1 Porp Mol fami,
a=ley =1 01,my =lep,my =1 071 =1erg =1 Olq,mgq:1 gy, =1
L‘l,_w_l(ol,l o opm +torat ot onm,)
M 1 B
(C"l)l My, (’E Q*’llv’fll""’\pol,mlvcl,m1"..
Lo y
) I"Olq,l,flq,17“'7 yafa,mlq*ch,mlq)

Wal(€p) P g1 (Woy ey ) -7

N 01 gy -
oo Mg,

Lo ,
P (Wop iy ey )

IRQ Y
? (Lo

L u‘!;"lr,« 'I,o_rq‘l Eron
A - — —_ .=
b(f Ep ‘LOLL‘!; 1 W'H,mlffl,m]

L . Lo e — W . ] (‘71(7\’
Mg REND AL PR 3 J

Note from Equation (7.46) that there are infinitely many sum terms in the expression

for ng( f). This is due to the fact that the fundamental {unmodulated) noise source
wy(fY where g € {1,2,...,Q} is represented 1s a Fourler series at an infinite number

B i L ——
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of frequencies. The effects of the modulating signals {uy1(f)},.-.,u,,7,(f)} where
q € {1,2,...,Q} are (among other things) to frequency shift the noise component
corresponding to a given frequency, and to change (modulate) the amplitude of the
fundamental noise source component. The computational cost of determining n,( f)
where ¢ € {i, @} in Equation (7.46) can be reduced significantly by using
the symmetry prope

rties of the partly symmetrical multi-port {requency domain

Volterra transfer function (Gq)lmlm_'m_,q('-) which leads to

AM—-1 M-1 0
n(f) = XX
my= mlq:Dp:—--?o

-1 Boyy -1 Form

PR 3D S

Low

or1=ley =1 ormy; =lepm =t

E
a1 Feryu M1 Slamy,

XX XX

Org1=lep =1 o[q‘,,.“,q:l ejq,ml =1

Liarciloai+ - F+orm +-0 - +orat -t onm, )
Ao, 'yal,m;) e ‘14.’7(01(,,17 . ~,01q,m,'l)
Ao eim ) 'A[,,(fflq,l- B Efq,m,q)
Iq
II m!
iy=1
Iy M-1 E”‘q

1T o "

=1 o,l-—l €,

~ .
(C"?)l,mpm."‘-lq (501 \I}‘Dl.u‘il,l L 'y‘)l,ml 1€1,my !

*y Oiq,m.‘q; eiq,ly “eey

.t k)
] ‘p”lq,l-’ilq,l ERRER pwmm“:.ﬂ,.m[q J
TENTLAT [ VoL OUmy Y
I”qk&p) ”/*.,l(q’,o“,sl,l ) ! ”7'1"\\1101.7711 V€1, )
oIy iy r CLpmiy s LD N
mitgr, (s, tha, Lyt Lozq‘m,q.ezq,m,q/
lft/F_,C_\U, .- .
Y Sy 119513 YLmy ety
b, . (TAT)
CIPRECES
where
\/)‘7 7(0; 1 "elq,m.q)
= Number of {{o; 1.0}, AR, Eigm,, )} which
IS IS o)
are eduai to [ )
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and A; (0i,1,. -~:0iq,m.q) and A; (e;,1,- --sfiq.m;q) are defined by Equation (7.28).
In Equation (7.46), Loar—1(-) is used with a different argument compared to
Equation (7.24). This is because otherwise there would be contributions of a to-
tal order greater than M. This is avoided by using Equation (7.46). Thus, from
Equation (7.46) it is seen that the (possibly) modulated noise source ng(f) where
q € {L,2,...,Q} can be written as the Fourier series in Equation (7.9) with some
rather complicated Fourlier series coefficients 7iy(£,) where p € Z is an integer. How-
ever, this requires that

Hp/EZ: ‘517' = fﬂ + \P'H.l,fx,] +F ‘Ijol,,—n,‘ﬁl,ml +-

g \polq,lv?!q‘l + (7.49)

Orqump, Clgamp,

for any integer p € Z, 0; ; € {1,2,...,M - 1}, and eil € {172s~"~E0;7,:} where
i €4{1,2,...,,}andl€{1,2,.. .,m; }. Equivalently, the requirement in Equation
(7.49) can be expressed as

g + .4+ Y . o

01,1,€1,1 21,my +81,my

)

Yo,

T

m
Ny

—
(1]
=

'

Plgmpg€lqmp,

oM =Ly e € {1,200 Es. .} where

mlﬁhneu of this reguireinent is

a
9

of no concern since the frequency resolution in the [Fourier series representatic

£ =1/(27) can be made a hnnrllv small by choosing 7 sufficiently large (2

time interval of observ 21510. . For n‘nm')lc if ail applied

4

then 2r = | fulfils the Palmalent requirements in J:auatlons (7.49) and 7.50).
Assuming that the requirements in Equations {7.49) and ({7.50) are fulhlled, then
the coefficient 7,(€,) where ¢ € {1,2,...,Q} in the Fourier series representation nf

na( fY in Equati
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M-—1 AM-—1
~ . _
B(&) = X 3
my=0 ml’:O
A1 By M-t Eorm,
01,1—1 e1,1=1 ‘71,ml—151,'n1:1
E
M-1 E"Iq.l M1 “lgmp,
—
DD NS
org1=ler 1 =1 Orgmp =R m, =1
, ,
Lirr—ifog g+ + Olimy +oeeren + Or,1+ -4 Ulq,ml,l)
Aora, . 00m, ) ~Ar oy, Ao O my )

Arlers,-erm) - “Aglena, .. S €lmy,)
[‘I
[T !
lq'
ig=1

I M- B,

. . ke
H H H{ O.q,ﬁ(q(o'q.l‘“"Oiq,anqveiq,17"'}€lq,m,q}!j

zq_l oxq_l c.q_l

(G )1’711, ,m,q(&u_ 01,1.€1,1 - =Y
_g ——

OIq,1+81q.1 Hginp lgmy

O1,my.€1,m;

\ \ .
I’Ol,l RS RRRERE Dol,ml €1, ¢

N ‘yﬂ"q,hflq,x PRI 014‘7"1q .s_rv’m[q/-

o
Wg (S.:) - \Ilol,lvel,l - T ‘Ilm,m: \e1,my
L Ly
lpull,,wflq,l DJ.’,,, m; vvlqmrq)
Q1,157 ‘Y LW YLmy 3y \
uqvl( I”‘J! 1021, ) ! LL“( I]‘Jl €1 my )
or. 177 oy \ Sig.m - -
.. 1 \ PN i \ ¥
gt {Wo, terg ) Vg g, (Wor e, ) (7.51)
7 q Mg Iq
Yor the noise response it is not of interest directly to operile on the expression
for n,(f) but rather on the Fourier series coefficient of £{0} in the expression for
n,{f). This is because (i) the noise ‘epresenttation has a (practically -— due to o
very small £) continuos frequency spectrum, and {ii} ouly tow level noise is included

in the analysis, in which case it is not necessary to consider contributions caused by

non-linear mixing of noise with noise. In Equation {7.51) a part of the arzument

frequency to w,(-) is
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\1101,1.61,1 +ooet \Ilm,m1 e1,my toee + \Darq,pﬂrq,x +ot \I’Olq,m,pl Eigmy,
€ Sopistormg ten Hory bRl iy (7.52)
M-t
e Us (7.53)
o=1
provided that my + - 4+ my, € {1,2,.... M — 1}, In Equation (7.51) the factor

L) a7-1 implies that there are only (possibly) non-zero contributions to n4(&,) for
my+e-tmy, € {0,1,..., M —1}. The contribution for m;+---+my, = 0is n,(6,) =
(G1o...006)W(Ep) which is the linear transfer from unmodulated to modulated
noise source (actually, this contribution is nnmodulated since it does not depend
on the controlling u-signals). This contribution is included in the formulation of

frequency sets by defining a frequency set 8 of order 0 as

-1
()
-
R

Sy = {¥oy} (
= {D} (

~]4

which means that Eg = 1. Using the above and collecting terms in Equation (7.51)

leads to

E lP e) “-q( - \po,e) (756)

""M?’

M-
ﬁa(Ep) = Z
where ¢ € {1,2,...,Q}, and £,,(¥,.) is a o’th order transfer coefficient from un-
modulated noise source w,y(£, = ¥, ) where o € {0, 1,..., 3 ~1}. e € {1,2...., £y}
to modulated noise source Fourier series coefficient 72,( '.fp). It is convenient to rewrite
f,(&,) where g € {1,2,...,Q} in Equation {7.56) into

Evffp) = t}(fp) ﬂ’u('sp) (75‘—)

where
t(E) = fere w t chx [7.38
“isp <L“1\51 R 1S P 4 ;
, [~ X1 = 0
w,(£) = [ - V) e C (7.59

and
Ar-1

(U0 = U S, {7.60)
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Note from Equations (7.30), (7.31) and (7.60) that £ € {1,2,.. . Ey+ E; + .-+
Epr_1}. 1f the input frequencies {#,..., N A YR - ¢, Ji} are incom-

mensurate up to order 3/ — 1 then £ = Ey+ £, + -+ EM—1~

Great care must be taken in determining ¢,(£,) where g € {1,2, .. @} from E-
quations (7.56) and (7.537) when frequencies {¢ 1, .. ., PLdps e e e s UK UK T
are cominensurate. This is because when the frequencies are comniensurate a given
t1,o(€p Vo) whereqe {1.2,...,Q}and e € {1,2,..., E} may e.g. consist of the sum
of £4,0, (€5, ¥e) and t, ., (&p, \I!E) where 01,0, € {0,1,..., M — l} and oy # 09. This
is not the case when the frequencies are incommensurate since in this case there is
only one #,(é,, ¥, ) of interest where ¢ € {1,2,...,Q}. 0 € {0,1,..., M — 1} and
e€{1,2,...,E}.

The cross-correlation between two arbitrary Fourier series coefficients of the two
modulaled noise sources ny (f) and n,,(f) where g1.q2 £ {1,2,....Q} is

<”q1(\“-) n.a\\w» = (tf-(fm) ﬂ’ (501 t? (E z) w

. (€0 )) (7.61)
where (-) indicates the ensemble average over noise processes with identical statisti-
cal properties, []* indicates the conjugate of a vector (or matrix), and [} indicates
the conjugate transpose (Hermitian conjugate) of a vector {or matrix). Equation
(7.61) can be written as

~ N _ T. et - - s .

(7igy (€, ) n’]3(£P2)> = &)V 0122000 S0 ) tqgkfpz) (7.62)
where W, 4,(&p,,&p,) Is @ noise cross-correlation matrix for the fundamental (un-
modulated) noise sources w, (f) and wy,(f) where q,q; € {L.2,...,@Q}, defined

as

W 2( PL:'SP:)
~ —+ .
= (g, (§n ) @, (%)) (7.63)
1’ <iv"]1{£,91 - 1) i[);z(fpg »l’}‘/} { Yy (S,Jv
L@ (& = WE) 0L, (&p, = Tal) oo (@, (&) = ¥) 55,(&p, — ¥i)) |
(7 AA)
(r.eh)

‘{/l, A ‘I/p;jv .\ane also from

=1
= W o5& (7.65)

192

This relation may be used to reduce some computations in the determination of the

O S Toat PR g

nolse {cross-jcorrelation mattices for the fundamential noise sources.
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7.3.4 Fundamental noise sources

A typical type of fundamental time domain noise source is a Gaussian white noise

process with spec1ﬁed mean and standard deviation. Traditionally, Gaussian white
t work the fun-

, but in the present
damental noise sources may liave nou-zero tean values. Due to this the noise is
actually not “white” since not all frequencies liave the same average power density.
However, this type of noise will be referred to as white noise even though it has a
non-zero mean. The fundamental time domain Gaussian white noise source with

mean f, and standard deviation o, has a time domain cross-correlation given by

(wo(t)wi(ta)) = oi8(tbi—t) + 43, ti,t € [-7;7] (7.66)

for noise source ¢ € {1,2,...,Q} where §(-) is the Dirac delta-function. [t can
be shown that the corresponding cross-correlation between two arbitrary frequency
domain Fourier series coefficients evaluated in the time interval [—7; 7] is given by

2 .
o7 sin{7(p1 — p2) osin{rp ] sin[zpo] N
~ P R Bl UAY 4 LRI 76
(€0 ) W3($721) 27 ﬁ‘(p1 - p2) Ha T P2 (7.67)
ol /(2r) +py for pr=p2=0
= U;/ ZT) for p1=p2 #0 (7.68)
0 otherwise

where pq, pp € Z. Note that there are only contributions to {@,(&p, ) 5(&p,)) when
p1 = pp. When py = po # 0 only the standard deviation is of importance, and when
p1 = ps = 0 both the standard deviation and the mean value are of importance.

In some cases it may be useful to make a comparative study by a discrete time
domain simmulation. In this case the description in time is discretized such that
tE {—ta, ooy —ti,toytry ..o ba) with 8y — 20 = 27/(24 + 1) forall A € {—-A+
~A+2,...,A}, and

L

I

o= A 7.69)
} 2+ 1 (7.69)
where A € {=A,...,=1,0,1,...,A}. Note from Equation (7.69) that t_, = —i:. In
this case it can be shown that the Fourier series coeflicient is given by
A .
RPN 1 o [ A i
(&) = vy z w{ty] e‘(pi—]”"rp ST (7.70)

! ~ Iy 101 A ~
where p e {—/A, ..., —4i,U, L,y : c
is represented as 2A + 1 frequency domain stochastic variables. Assuming that w,(t)
where ¢ € {1,2,...,Q} is a white noise Gaussian stochastic process with mean s,

and standard deviation o, it can be shown that

H
i
i
1
i
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N 5
- ) -\
oy +uy for Ay = A,

(o ( by, ) Wit = q T
{ q( 1\1) 1( \2)> 2 for A _75 Ay (’-‘1)
where A, A € {—=A,...,=1,0,1,...,A}. Then the cross-correlation between two
arbitrary frequency domain Fourier coefficients is
U;'/(,ZA+1)+;L§ for py=p,=0
(Wgl&p,) ©7(Ep,)y = o /i2A + 1) for pp=ps £0 (7.72)
0 for p1# p
Note that {|B,(£,){*) where g € {1,2,...,Q} and p € {-4A,...,—1,0, 1,...,A} s

the average signal power at the frequenc, £,. This means that

A

Sola&h = ekl (7.73)

p=

is the total average noise signal power.

7.3.5 Some special cases

The following are special cases related to Equation (7.62):

s If two zero mean noise sources wy,, (t) and wq,(2) where ¢y, ¢2 € {1,2,...,Q}

<

are uncorrelated then

Q# @
m=q A pr—p2# (¥, —¥.,)/¢
(7.74)

W’h#n (‘Em vfp;:) = 0 for

for all e1,e2 € {1,2,..., E}, where D € {0}EXE |5 the zero matrix.

¢ If the fundamental (unmodulated) noise source w,( /) where g € {1,2,...,Q}

generates Gaussian zero mean white noise with standard deviation & then

=1

W%{{-Emscp) = (721 lT

=]

3)

where T € {0, 1}5%# is the identity matrix. Note that W 19(8py:Epnt whern g €

£1,2....,Q% and py, py £ Z are integers can be the zero matrix of dimension

=3

X {7, but it can aiso be a non-zero and non-identity matrix of dimension

E x F depending on {¥,..., Vi, E_,,1 and £,, when the fundamental notse
sonree w.(t) where g £ {1,2,. .., ()} generates white noise.

o [f the noise source ny(t) where ¢ € {1.2,...,
and

(2} is unmodulated then I, = 0

(£ — .[n n ¢ ~Ex1
(&p) 0.0 C

=1
=
o

7sp
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Thus, in this case 7,(€,) = 1,(£,.0) @,(&,) where ¢ € {1,2,...,Q} as seen

from Equation (7.57).
As an example consider the following situation:

o Determine {7, (&, + W) 725(&,)) when {¥y,..., ¥g} = {0, -0, ¥} where ¥ #£ 0
and w,(t) is a zero mean white noise source with standard deviation ¢, and
autocorrelation function

e e [ o}/(2r) for p1=p;
(@g(Sp ) w300y = 0

~—
=~
~1
~1
~—>

otherwise
where g € {1,2,..

<’ﬁq(fp+lp)ﬁ;(fp)> = tq(Ep+lI’70) t;(fp,—lll)o,”(ZT\
+ (6 + W, (8,0 02 /(27) (T.78)

., @}. In this case

which is generally different froin zero. Note that the modulated noise source
ng(t) is correlated at two different frequencies §, +- ¥ and £, even when, as in
this case, the fundamental {unmodulated) noise source w,(t) is a zero mean

white noise source.

7.3.6 Algorithm

To determine the cross-correlation (%,,(&,,) %7, (€,,)) where q1,q2 € {1,2,....Q}

the following algorithm can be used:
1. Determine the frequency sets Sp,S1,Sa,. - ., Sar—1 from Equation (7.30).
2. Determine the controlling variables
{1 (We)s oo Uy (P} U {g, (Te), LB, 1, (W)} (7.79)

foralt ¥, € S;US;U---USy_; and ¢, g2 € {1,2,...,Q} nsing Equations
{7.40), (7.41) and (7.27).

3. Specifv the multi-port frequency domain Volterra transfer functions

(G Vmguim,, () wheremydedomy € (L. M-1h e {1,2.....Q},
( L) { !
and [Gg)iomyum,, () where my & oo+ my, € {r,2,.... M -1} and 7 €

t. Determine the transfer vectors t,, (. and ¢, (£,,) where g, 42 € {1,2,....0}
and m.pe € Z using Dguations (7.31(7.29)

. Specify the noise cross-correlaiion matrix W, ,,(&p,,8p,) where gi,q2 €
{1,2,...,Q} given by Equations (7.63)~(7.64).

o

(o)
jw)
(©
&
D
-
5
=
™

\\ from Fquation (7.62).
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7.4 Responses

o

m 2
The response r;{ f) where [ € {1,2 , L} frem port (r,{) Fignre 7.2 can be deter-

mined as the response from a multi-port Volterra system as

M

n(f) = Z Z Z Y

m1=0 my =0 0;=0

[of o oS

Lya{my+---+mp+o1+ - +og)

(Hf)m;,A..,m.!\nal..“,og(Ql,l- - -7Q1,m11 """ | Q,'\'.l7 cey Q]\' my

= ;EQ.I,...,EQJQ)
s1(Qy1) SKUQR) s ()
n(E) (S ) nQ{Zg,1) - no(Zg.e,)
- - = Qo — = Qra = = Qe
S m e = Ty, — e ~Zg1— = Z00,)
AQy 1 dQy e dg - dQp oy
T dEqu - dZg., (7.50)

where (_H;)ml‘_Hﬂm\.,glp_“gq(~) is a partly symmetrical multi-port frequency domain
Volterra transfer function relating the inputs {s;(f)....,. skl f)omi( f)y ..o, no( f1}
to the output m(f). The response ri( f) where { € {1,2,..., L} may conveniently
be separated into two coutributions: (i) a purely deterministic contribution riif),
and (ii) a noise contribution r,.;(f) such that

nlhy = raa(f) + oradf (7.81]

where ! € {1,2....
transfer of input signals to the outpnut port (r.f) where { € {1,2, ., L} and of

,L}. The deterministic response ry;( f) consists of the linear

1
intermodulation contributions of the applied deterministic input signals up to order

M. The noise response r, () consists of the linear transfer of the noise sowurces

to the output port {7, !} whore | = {1:
to intermodulation between

mixing of noise with aoise are not inciuded due to the low-level noiss assumption.

7.4.1 Deterministic response

The deterministic response ry (f) at port {r.{) where { € {1.2...., L} can he de-

ternined from Fauation {7.20% with o .- PR A R
LETTILIEA TT0IN LguauiCn (+.0U ) Witd 91 — -+ =2 0 = 1 ad



172 7. Noise in non-linear systems: Theory

mp=0 m =0

Loadme Lo toma-)

g SYI7 8N L [ nJ

(Hl)-rm ,,,,, m;\»,O,‘..,O(Ql,lw-',~Q1,m1; """ ;QF\',IM-'sQK,mg‘»)
31(91,1) o '-31(Ql,m1) """ SK(QK,l) e 'SK('Q[\’,m,\—)

f ~ g = Qm, — = Qra = = Qi)

Ay dQy oy e Ak - A e (7.82)

The deterministic response rq(f) where { € {1,2,..., L} is identical with the re-
sponse r;(f) when all noise generators are quiet, Le. ny(f) = --- = ng(f) =
Thus, using Equation (7.8) for si(f) in Equation (7.82) leads to the determination
of the coutribution ry(f) where [ € {1,2,...,L} as

M M i’ Ji S Iz
railh) = ngio ng;o j}il jl,mzlzzl ][\',Zl;—_l jz\',;,.‘-:l
Lip(mi+ -+ mg)
(HDmyom 0,00V d0a 0 - o0 Plijamgs 70 PGk UK o)
St(¥,) S (D1 gy ) Se(UKuxa) 5K (PR, jxem,,)
B(f = Yrjoy == Crjomy — — bR YRy
(7.83)

Using the symmetry properties of the partly symmetrical multi-port frequency do-
main Volterra transfer function (Hi)m,, . m.0,..0(:) leads to

M M Ji Jy S
rai(f) = Z Z Z Z ...... Z Z
mi=0  mg=0 jiu=l  Jimg=l Jka=l Jxmp=l

Lip(mi+ -+ mg)

S Jtmy) ARUK L -5 TR )
T

R -1
TT 1 {WaGkae s ime)t

k=1 =1

e 00U Gy s Py
P Y
TR R g )
.,1['1”, o ,‘\ .

. -51{(@[\',]1;,1) o5k ( UbA'.j;\’.m1\>)
B = briy = = P,

e — —_ o=y \ 7.R¢
7‘Jl’\1\1 *l‘d\mh ( )

~1
v el
.
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where Ai(je1,. .., Jkm,) is defined by Equation (7.28) and NilTrae -y m,) is
defined by Equaltion (7.29). Equation (7.84} can be rewritten as

C
r.i,l(__f) = Z 37(\/ \h( f- xo) (7.85)
c=1
where
ro= {”#‘(po)} Po € {0,1,2. . M}
ol € {12, 003} o
= {Xl*r"'yxc} (T

and #(p,) and p, are given by Equations (7.32) and (7.33) respectively. The fre-
quencies in the set X' are organized such that v, # --- # xc. The Tourier series
coefficients 74,(x.) where I € {1,2,...,L} and c € {1,2, ...,
from Equation (7.84).

Note from Equations (7.30), (7.60) and (7.86) that UXT'S, C X. The only
case where UM71S, = X is if and only if Yej =0forall ke {1,2,...,K} and

o=1

C} may be determined

Jx € {1,2,...,Jx}. This corresponds to hoth frequency sets consistine of dc and

harmonics of dc (which is also located at dc).
In some cases it is convenient to write the deterministic response at port (r, {)
where [ € {1,2,...,L} as

00

Y Fal&) 6(f - &) (7.38)

p=—0o

rai(f) =

In this case the deterministic signal is represented at the same frequencies as the
noise signals. However, for Equation (7.83) to be correct it must be that

: - 7. — b TIRYN : i
dpe Z: E,D = Wi, T l‘llu’l‘ml T T WK, Tt YR R m ‘\"8‘[’)
forall my,...,my € {0, 1 ...... MY, mi+--tmpe € {1,2,.. ] MY jere{1,2,..., 1)

for ke {1,2,...,K}and [ € {1, 2, .., mEt. Equlvalvntly. the requirement is

iy

Floa | b, s £ e & (no0)

5
Since & = 1/{2r) can be chosen arbitrarily small it is alwavs possible to choose
a § such that the requirements in Equations (7.8 and {7.90) are {ulfiled. The
furmulation in Equation {7.88) means that

rii&) = 0 for LEX (7.91)

& € XL where Vs given by Equation {7.86).
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7.4.2 Noise response

The contribution to r;{ f) where [ € {1,2.
can be determined from Equation (7.80) as

...,L} due to the noise sources, 7 :( f),

Q M-1 M-1 o . o © roo
dlf) = S e [T [
q=1m;=0 m g = v v v D

Los—1(my+---
(H)my g 0e0,0g=1,00.00 2115 - -

PR QR i Zet)
() s (Qumy)

s () sk (Qrm ) 74(Z40)
{(f=Qu— = Qm, —
= Q= = QR my,

Ay dQp --

'7521,m;; e

- qul)

a 1° '(’ZQ[\',m;\- “Eq,l (7'92)

In Equation (7.92) the sum over the g-variable means that the contributions to
Fou(f) are determined for each noise source successively by adding all the contribu-
tious from the individual noise sources. Insertion of Equations (7.8) and (7.19) into
Equation (7.92) leads to

M-1 M-1 g M Ji i o0
Pl Z POREED DIED DI DEELIEEE > >
q=1m;=0 mp=0 5,1=1 Jim =1 Jra=1 s -
Loa—1(my+ - +my)
(Hmyeomic Oreeog= 10,00y v vy By 37

i 6o

;
VR Groaa W Kogremee

Yoo St ya.(E)
/ NAVEN R mye 7 TINSEY
PR — y
LTy
™ [ 3
[T, £ J
TN R My -~/

mmetrical frequency domain multi-

D0g=1.0.,00 ) leads to
g og =100
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where [ € {1,2,..

Tﬂ.,l(f)

{1,2,...,

where

M1

~
:
:‘K‘
&
g

50

/:0.‘\/-1('”1 + -
./“l (_]1 Tresny

|| P1

M1
mp=0 51=1 Jimy =1 Jr =1 Jilmp=
A

jl ,,,,)"'.A[\'/ ~~_].1\',"7.‘-()

H my! H H {/\Jk Jedsee s ]'\..m’,\)!}_l

k=1 je=1

(Hl)ml_.A,rvu\',O,..A'U.oq:l,E) ..... of wl,jl.l v u"‘l’le'"l e
W Frare e YRR me &)

sl(ulJl,l)' I(Ulj"" )

- p~as
"[\ ( U[\.J;;_w.h. ) n','\fp)
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p=—00
M Jre Ty
Fra(£p) Z > Z Z Z """ > >
—
7=1m;=0 mp=0 j11=1 J1my =1 Jaa=1 IR,mpe =1
Loa—t{myi+ -+ mpg)
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Foul€,) where ] € {1,2, . L} ran he written as

e By — ) 7

S Fatl&) 6(S = &) (7.

94)

i(f) where [ €

95)

(T.96)
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Q
Failfs) = D Thal&) () (7.97)
=1
where
. 1T Ex1 - ae)
Ta(8) = [ra(E, ), (& ¥E)] € (7.98)
Ayl€) = [l — Wr)yoo iyl wg)} e (Ex (7.99)
In Equation (7.97) the vector 7(4(&,) where [ € {1,2,...,L} and ¢ € {1,2,....Q}

describes the non-linear conversion {rom the possibly modulated noise source 7ig(&,)
to the noise response 7, ;(£,) at port (r,!). Thus, the cross-correlation between two
L} at the

Fourier series coefficients 7,1 (&, ) and 7, 1,(&p,) where 11,0, € {1,2,...,
two response ports (7,{;) and (r,{;) can be deterinined as

Q 2 ~
(':n,h(‘fm) F':.,lz (f;,,)) = Z Tf,,ql(fp‘.) ‘Vn,qz(fmvfpz) T?z,q:g (fpz) (7-100)
gy =1q2=1
where
Nopar(&nrbp) = (7ig, (&) 71, (6,) (7.101)

In Equations (7.100) and (7.101), quy,n(fpl,fpz) is a noise cross-correlation matrix
describing the correlation between the possibly modulated noise sources {7, (&,, —
W),y (&, — ¥E)} and {7, (&, — U1),. .., g, (&, — ¥E)} applied to ports
(n.q1) and (n,qq) respectively where q,q2 € {1,2,...,

-

given. Using Equation (7.57) it can be shown that

@} at the varicus frequencies

Z Z dﬁ 5?1 - \‘31

Z\rql 142 (Epl ? 6}72 )

g1=1lep=1
X‘Tqunq:(fpi - ‘pfx VEP“ \I’E“) t7~ Sp2 T W‘lz)d?
(7.102)
where
T Ex1
d. = |di=0..,d 1 =0d=1d,=0,.,d=0" € {01}

(7.103)

w0

Thus, nsing Equations (7.100) and (7.101) give
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Q Q £ E
Fon(S) Trn(6)) = 2 3 % Z Tha(€p) dey £(6, = 02
1 2=ler=1ex=1
XWJv 5 ('fi‘ - “Ilelwfpz - )
X (Say = Vo) L, 71, L (60) (7.104)
where I1, 4 € {1,2,..., L}. Equation {7.104) can be rewritten as
Q Q E £
(Tni (Epy) ;;_IQ $p2) Z Z Z Z a!,,“ Z(Epp'pel\)
q1=lgo=1z2;1=1ep=1
XWQI Q(Epl - lD”l &-‘p - Weg) ajlzvq;,_,zz(fpz,\yq)
(7.105)
where [y, [, € {1,2,...,L}. and where
1 q,0(Eps “Iu.) = (& - Vo) dl Ti,(8,) (7.106)
where { € {1,2,...,L}.q€ {1,2,..., .Q}ande€ {1,2,..., F}. In Equation (7.106),

e e(&p, ¥e) s a vector de>c11b1mr the transfer of the fundamenta,l noise source
{67 vSp_“'e_\Ijl/v R w';(fp—
frequencies to the noise response 7, ;(&,) at port {r,[) where I € {1,2,...,L}.

—Wg)} where g € {1,2....,Q} at the given specified

7.4.3 Total response
The Tourier series coefficient for the response at port (/) where [ & {1,2,..., L}
at frequency §, where p € Z is given by

(&) = Faa&) + Tauly) (7.107)

where F1,(€,) is given by Equations (7.88)~{7.91), and .,(&,) is given by Equation
(7.97). Thus, the cross-correlation between two arbitrary Fourier series coefficients

at arbitrary ports and frequencies can be determined as

where [;,1y € {1,2,...,L} and p;,p2 € Z. In many cases the ensemble average of
a Tourier series coefficient is zero in whirh case the latter two terms in Equation

{7.108) vanish. The expression for (7, (&,, )70, (&) is given by Equation (7.105).
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It is recalled that (7, (&,,) 1, (€p2)) Where {1,103 € {1,2,...,L}and p;,pr, € Z is
a two-sided Fourier series coefficient cross-correlation. Thus, if for example the
average signal power is determined for the one-sided case with positive frequencies,
ie. pi,p2 € 2oy, then a factor 2 must be multiplied oun the right-hand side of

Equation (7.108) if the tinie domain response signals are real.
q P g

7.4.4 Some special cases

Consider the following situations:

o If (i) all the noise sources {ny(f),...,ng(f)} are unmodulated, and (ii) the
system is linear, then Equation (7.104) leads to

Q

Q
<7N‘T'-~11(£'Dl) 7:1,12 (épz» = Z Z T (S.D\ ) l’ll (f;‘l)

n=lp=1
X<7:EQ1 (émj '[552(5}?2,)) t;;(\tﬁz) ”Iiz,r;;"ifﬂz) (7'109)

2 Q
= Z Z (]][1 )ml=t),.,_,,v,vLI\-:(),O,,,,,O,oq1 :l,O,...,O(fx)l )

=1 ga=1

In this special case the analysis is very closely related to a nodal noise analysis

of a linear network.

o If (i) all the noise sources {ni(f),...,no(f)} are unmodulated, (ii) the
system is linear, and (iii) the fundamental {unmodulated) noise sources

{wi(f) - we(N)}

are all uncorrelated, then

2
~ 2 . 12
<lrn,!(£p)i4> = Z!(I[l)mlzo ..... m;‘;:O.O,...AO,o,I=1,0....,0(‘5;;)g
) 12 2 .
X!(Gq\,l(fg)} (B0 (7.111)

-
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8

Noise in non-linear systems:
Examples and Conclusion

This chapter contains three examples for the analysis of low-level noise in non-linear
networks and systems. The first example illustrates the properties of a moduiated
noise source. The second and third examples illustrate the analysis of noise in two
types of networks. The examples have been constructed to facilitate comparative
numerical simulations of the networks. The numerical simulations turn out to agree
very well with the predicted theoretical results.

Generally, the simulations are performed as follows. First a number of 2A + ]
fundamental noise samples, which are in accordance with the specified statistical
properties, are generated for each noise source by a pseudo random number gen-
erator. Then the modulated time domain noise samples are determined {rom the
modulating function, the fundamental noise samples are processed by the network
equation(s), and next these time domain samples are Fourier series transformed.
The Fourier series coefficients for the frequency points of interest are saved. Then
new noise samples are generated for the next iteration and so forth. Thus, the num-
ber of iterations is the same as the number of ensembles in the stochastic process
for the noise. Denoting the number of iterations by I', the value for {(Z10&y,) 6,0
where z; and z, are stochastic variables and p.p2 € {=A,..., -1,0, L. A} is
given by

(8.1)

coefficients for the ensembie number

; (") ¢ 3 =)
where T7(£, ) and z

(iteration nuinber) v at frequencies §pr and &, Equation (8.1} can be nsed o
illustrate the convergence of the result as more and more iteralions are processed.
If the result of a simulation is to be given as a single number it is most convenient

to take the average over a number of iterations. This can be dose as
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1 =N
(&) A& = LT 11 D (&) #iE))r (8.2)
r=0,

where the average is made over the simulated results for the iteration number T €
{Fl,Fl + 1,‘, .,Fg}.

8.1 Exampie 1

PRoBLEM: First an example of a modulated noise source is considered. The non-
linear noisy system under consideration is shown in Figure 8.1. For this system the
number of signal input ports ' = 1 and the number of controlling variables ¢ =
(and the number of output ports is L = 1 though this is not of interest in tlis
example, since ouly the noise source is investigated). The modulated noise source
current n; depends on the controlling current u; 1. The objective of the example
is to determine (R1(£,,) 77(&p,)) where p1, p2 € 2 are integers, and to compare the
theoretical results with numerical experiments. The maximum order is chosen to

be M = 3.

THEORY: The system in Figure 8.1 is excited by the deterministic signal s;{ f) given
by Equation (7.8) as

4
silf) = ) w60 — vu) (83)
n=l
where 11 = 11 > 0, Y12 = =P, 13 = J12 > 0, and P14 = —7; 5 with
01'1 7£ 1913 and
o 1 .
S5i(dy) = 5 011 exp7ei1] (8.4)
- 1 . -
S (=v11) = 3011 exp[—7 @r,1] (8.3)
1 . e
Sido) = 5 onz explien] (R.6)
-~ a ] T o
ST 20 = 5 0 eXPIT YLy (5.0}

and thus Jy = 4. The time domain noise signal nq(#) is given by

n(t) = Corura(t)wilt) + C;;'ufll(i)wl(i)‘ (3.3)
where the fundamental (unmodulated) noise source wy(t) is a white Gaussian noise
source with mean p; and standard deviation o;. Equations (7.24) and ({8.8) lead

[, =1 aad
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(d) Uy,
Linear or
31 non-linear G JT
g
network
e
(b\) (U3}

! Linear or
51 Cb non-linear

i network
{

Figure 8.1: Example I: Non-linear noisy system with a modulated noise source. (a)




184 8. Noise in non-linear systems: Examples and Conclusion

Cy for my =
(Gl)l.ml(QO,NQl.lv-'le,ml) = Cy for m; =2 (8.9)
0 otherwise

T'he frequency sets Sp, S; and Sy can be determined as

So = {¥u}, Eo=1 (8.10)
= {0} (8.11)
Sto= AU, Y, U5, Y 4T, Ey=4 (8.12)
= {J,1, 1,1, 1z — P12} (3.13)

Sy = {991, %02, Va3, Wy, U5, Ung, Var, Uos, Wao}, Ey=9
= {291, -271,1,201 2, =201 2.0, 910 + o, D10 — Yha,
a4+ D, =ty — Yig} (8.15)

and thus £ = 13, and

{1, ., W3} = {D11,~010 02, V12,2010, =20, 1, 201 2, =201 5,
D11+t = Ve, =000 + Y, Y1 — Ph2,0}
(3.16)

To determine the noise conversion vector £1(&,) it is observed that ny(f) = s1(f)
and thus

ua(f) = Y (U0)8(F ~ Pit) 4.‘1’7141(@'1,2)5”~ Ty2)
I}

- 1~ . Iod
(f= W)+ (W) 8(f - Pry) {8.17)
where
1~ - Y
“uriiPin) = s (3.1%)
Vi g) = &= (8.19)
Y Ts) = Fi{da) (8.20)
1>~ h 3
i1 (Pr4) = 5(=d12) (8.21)

using
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1 for o =1

0 otherwise

(F11)0(Z11, 0 Z06,) = {

I'rom Equations (7.57)=(7.59) and (8.38) it is seen that

nlS) = () wilE,) (8.23)

where

(&) = [C2§1(171.1)’ Cad1( =11}, Ca31(Vh 2), Ca31( vy 2),
Ca51{1)81(91.1), CoB1 (=t 1)51{~ 01 1),
0331(51,2);1(171,2)~ 0351(7171,2)51(“7)1.2%
203310010051 (F12), 20530(011)51 (=0 2).

20351 (—=V11)81(0h,2), 2035 (=d1,0)31{ =1 .2),

o

v~ g . L g v ~ 3 Al
2035 (0,1)81(=v11) + 2C3»91(‘1)1,2)31(—1/’1,z,’J

wi{&,) = [’@(f; =), (& + ), T{&p — 9pa),
W1{& + V12), w18y — 2911), T1(& + 291 1),
W1(&p — 2012}, @1 (& + 201 2). T1(& — Fr g — dh2),
F1(€p = Vi1 + Vi2), T1(&, + P10 = Y2,

. - T .
wi{ép + V11 + 2), U«’l(crp‘l (8.25)
Thus the cross-correlation between two arbitrary frequency domain Fourier series
coefficients 71(&;,) and 71(&,,) where p1,p; € 2 is given by

<ﬁ1(§p\)ﬁi<£m Noo= & (&) {(w1({&y, )@ '\E,vzn t;(s(pz) (8.26)

The result for (R,(&;,) A7(&p,)) remains unchanged for any cheice of maximum o1-
der as long as M > 3. The vectors £,($,) and @(&,) increase in dimension with
increasing 4 > 3 but merely introduce new zero elements. The cross-correlation
(n1(&p,) 17(&p, ) where py, pa € Z for the modulated noise source is zenerally differ-

S/

ent from 0 if

30,

,_
v

i | = {Q,g,q,ga,‘

$oy —S’,,z! = 1.2 1.24 1,2,11)1“‘, —31}123‘%{)1 i 23
:r’?‘}q‘l - L}hgi. i 1«1/]1_'1 + '}1“2, '71'1 + 241 2.
o+ 312, 120110 ~ 2010), {2010 — Y1 2], 291,
2010 4+ D1,2,2011 + 294 5, (3011 — Py ],

30513004 + 1)1_2.41).“1} (8.

o
-1
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The rross—correlation (Tzl(fm ﬁ;(fp,)) may be 0 even if ]Epl - Eml fulﬁls Equation
Note that (nl(fp,)nl(fpz,) may be dlfferent from 0 xf p1 7.-6 Po- Thla is due to the
modulation of the fundamental white noise source. When there are p; # pa which
fulfils Equation (8.27) then

ulfils Equation (8.27)

- L . -
{@1{&p,) @;{E0y )} is a nom-zero matrix with non-zero
Titc

L
off-diagonal elements, e.g. for ¥,y = 3 and 9,5 = can be shown that

(wr(J11) Wl (012)) =

[0 0 » 00O O 0 0 0 0 0 0 O
000 000 O0O OO0OO 0O 0 0
000 0 O0O0O0C OCOUO OO0 0 O
0t 000 0 0 0 0 0 0 0 0
000 0 00 0 0 0n¢ 0 0 0 0
0 0 000 0 0 0 0 0 0 0 O
06 000 0 00 0 0 0 0 0
000 0 00 0 0 0 0 0 0 28 0
00 0 00 O0 50 0 0 0 0 0
000 000 0C 0 00 0 0 0 7
00 0 00O 0 0 0 0 0 0 0 O
00 0 00 0 00 00 0 0
Lo 0 0 00 0 0 0 0 0 gt 0 0 |
(8.23)
where
02
ngt = 2—_ +oapl,  ae{0,1 (8.29)

The superscript ¢t for 2t denotes that the coefficient is used for the continuous time

case.

NuMEeRricAL EXPERIMENT: The frequency domain autocorrelation function for the

Fourier series coefficient of the modulated noise source 7,(&,) at an arbitrary fre-

quency £, where p € Z is given by Equation (7. 66). To investigate the correctness

of Equation (8.26) numerical simulations are performed according to the descriptinn

in Section 7.3. In this case it can be shown that the antocorrelation is given by
Id
(g ie iAo L s se e o
Uaeywsy, = 4 Yt S Hiz/ 2A + L+ {{&p, Tt for p=0 /2 20y
d . (3.9U)
TSR 1V a2l (N2 /0A £ 1) for n 40
Y TP sp gz o

The following numerical simulations have been performed to illustrate the properties
of the modulated noise source:
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Simulation 1 The autocorrelation ({7(&,){*)r with p = 17 is simulated versus the
iterations I'. The data and result of the siinulation are shown in
Figure 8.2. For this situation only the standard deviation and not the mean is
of importance as predicted from the theoretical result in Equation (8.30). The
simulated result ({7;(&,7)]%)3550¢ = 15.48 agrees with the theoretical result

(|71(&17)1%) = 15.42 with a deviation of 0.37 %.

Simulation 2 The autocorrelation (|7,(£,)*)r with p = 0 is simulated versus tle
number of iterations T. The data and result of the simulation are shown

in Figure 8.3. For this situation both the standard deviation and the mean
are of importance as predicted from the theoretical result in Equation (8.30).
The simulated result {|72,(&)|%)39995 = 23.74 agrees with the theoretical result
{IR1(&0)}%) = 23.76 with a deviation of —0.09 %.
Simulation 3 The autocorrelation (171(&,)[?)3090¢ with p = 7 is simulated versus
the amplitudes 911 = 21 of the input sinusoidais. The data and result of the
simulation are shown in Figure 3.1, All simulated values {j#;{&)]? )39900 agree
with the theoretical result (|71(€:){%) in Equation (8.30) with a deviation less
than £1.25 %. As seen from Figure 8.4 the noise level (|7 {5 | ) increases
with the amplitudes gy = 021 5 of the datermi that]

T
21 1,2 L aelerm

Simulation 4 The cross-correlation {7,{&,,) 77(&, )r with py = 4 and p, = 6 for
7 =1.0,%,1 =20 and V2 = 3.0 is simulated versus the nuinber of iterations
I' (thus, &, = & = V11 and &,, = S = ¥12). The data and results of the

1
i
i

simulations for Re[(7(&,,) 77 (..)0r)

3

Figures 8.5 and 8.6. The theoretical result for this situation can be predicted

and Im{{71(¢p, ) B7(&,, )] are shown in

from Equation (8.26) observing that

(#1(64) (&) =

0 0 7t 0 0 0 0 0 0 0 0 0 0]
00 0 0 0 0 0 0 0 g 0 0
0 0 0 0 mEF 0 0 0 0 0 0 0
0 o 0 0 0 D 00 0 0 0 0
00 0 0 0 0 0 0 gt 0 0 0
0 0 v g U D0 0 0 0 0 0 0
I ¢ ¢ Y T S B
B0 0 0 6 5 8 0 G 0 0 oo
0 0 0 0 0 0 o 0 0 0 0 0
O ¢ R R ) S R N7
g0 o 0 U U U U 0 0 0 0 0
0 0 0 0 0 ¥ 0 0 0 0 0 0 D

L0 0 0 0 0D 0 0 0 0 0 ¢ 0 0

(Q 31
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where
2
dt 7y 2 g
A - oapt, a€{0,1 8.32)
7, SirT T MM {0,1} (

The superscript dt for 77“‘ denotes that the coefficient is used for the discrete
time case. The simulated valie Re[{71(£4) 71(&))39999] = 14.37 agrees with
the theoretical result Re[{71(£,) 7;(&5))] = L4.26 with a deviatjon of 0.78 %.
The simulated value Im[{7, (&) 7(€,,))39905] = 0.00095 and the theorctical
1
1=

result is Im[{#1{&,,) n1(&pe))] = 0.

14 - =

13 1 1 L 1 L
0 3000 10004 15000 20000 25000 S0000
Number of iterations, I’

Figure 8.2: Fxample 1- A numerical experiment to illustrate the properties of the mod.

ulated noise source. The full line gives the sxmulabod values (171‘( \l Y versus number of

ilerations, and the dotted line is the thecreticai resuit wnl*tp)\ y predicted from Equation
3.

{8.30). The data for the experiment are: :'\. 2, p=17, 7 = 1.9,

oy = 2.4, l};'1 =20, 91 =1 g1 = 13, 0= 3.0, w12 = U4, Ch = 1.4, and Uy = 0.9,
The simulated ({7,(£,)}2)3392¢ = 1548 with a standard deviation of 0.0015. The theoretical

result is (|7 (£17)]?) = 15.42. This corresponds to a deviation of the simulated result from
the theoretical result of 0.37 %.
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26 T T 1 T T 1
|
(e —
n1{o))”
25 —

........................................ ‘W
\u A e /AVWWﬂ
23+ N
29 1 ! L H ]
0 5000 10000 15000 20000 25000 30000

Number of iterations, T’

Figure 8.3: Example 11 A numerical experimens to illustrate the properties of the mod-

ulated noise source. The full line gives the simulated values {[7;(&,)|*)¢ versus number of

iterations, and the dotted line is the theoretical result {|711{&,)]*) predicted from Equation

(3.30). The data for the experiment are: A = 32, joy = 0.8, 0y =52, p =0, 7 = 1§,

010 =21,911=20,211=00,002=19,7912=3.09,2=00 Ca=14, and C3 = 0.9.
5

8% = 23.74 with a standard deviation of 0.0029. The theoretical

e ,
ikigt |
resuis is {({1{6:)1%) = 23,76, This correspends to a deviation from the theorerical resnlt of

—0.09 %%,

The simulated {
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600 T T T T T T
(e -
ny(&r)
500 - / |
400 + =

300 F / i

200 -
100 4
—
0 " —»————/‘7’/6/ ! I )
0 1 2 3 4 5
211 =012

Figure 8.4: Example 1: A numerical experiment to illustrate the properties of the modulat-
ed noise source. The full line gives the theoretical values for {7, (£7){?) versus the amplitudes
01,1 = 01,2 for the modulating sinusoidals predicted from Fquation (8.30), and circles give
the simulated numerical values. The simulated values are the average of the last 100 iter-

ations of a total of 30000 iterations (ensembles). All the simulated values {7 (67)1%)35500

[

NS PR
uata 10T

the experiment are: A = 32, u; = 0.8, o}

e — 20

Y12=3.0, 912 =0.0,Cr =14, and {3 =0.9.
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17 7 T T T I
Re Ql?&)ﬁ'{(sd)}ﬂ —
Re[(71{£4)77(&5)))
16 & ]
|
15 T
MM\ .......................... e e T T T

A
ot T e e ]

13 ! ! : ;
0 5000 10000 15000 20000 25000 3C000
Number of iterations, I’

Figure 8.5: Example 11 A numerical experimens to illustrate the properties of the mod-

. . . . e “ic o\ 20000
ulated noise source. The full line gives the simulated values Re[(fi1(£;,) 7](,,))3539
with p; = 4 and p, = 6 versus number of iterations, and the dotted line is the theo-

retical result predicted {rom Equations {8.26) and (3.31). The data for the experiment

are: A =32, pp =08, 00 =52, pp =4 p2 =86, v =10, ¢r: = 2.1, I,
9

w1 = 0.0, o102 =1 o o= 30, wra = 09, Coh = 14 and 5 — 0.9, Ti
R,e[(ﬁl(ea)ﬁ;(w))%%,%j = 14.37 with a standard deviation of 0.0013. Tlie theoretica
is Re[(R1(84) n7i&s )] = 14.26. Lhis corresponds to a deviation from ihe theorslica
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0.6 T T T T T
. I RERENT _

0.0

ol _

—0.6 L 1 1 1 1

0 5000 10000 15000 20000 25000 30000
Number of iterations, I’

Figure 8.6: Example 1: A numerical experiment to illustrate the properties of the modu-
lated noise source. The full line gives the simulated values Im{{7,(£p, ) ] (&p, ))r] with py = 4
and p» = 6 versus number of iterations, and the dotted line is the theoretical result predict-
ed from Equations (8.26) and (8.31). The data for the experiment are: A = 32, 1, = 0.8,
o1 =52 pr =4, p2=6,7=10,0,, =219, =200, =00, 02=19 9, =230,
@12 =0.0,Cs =14, and C3 = 0.9. The simulated value Im{{7; (£4) 7; (£5))3965°] = 0.00095
with a standard deviation of .000%6. 'L'he theoretical result 15 tmi{n{Sq) n(&s )0 = .
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8.2 Example 2

PRrROBLEM: As a simple example of the theory, consider the non-linear time invari-
ant noisy system in Figure 8.7. For this system the number of signal input ports
is A = 1, the number of controlling variabies is ¢ = 1, and the number of output
ports is I, = 1. The deterministic input signal is a single sinuscidal signal, and the
single noise source is unmodulated. The objective of the example is to determine

the cross-correlation (7o 1{&,) 7n,1(&p,)) where py, pa € Z are integers.

l [ "

' L hilv)
.sl(f>® nn(D) m (] o

| |

.

Figure 8.7: Example 2; Non-linear noisy Van der Pool system with one noise sources and

one non-linear element.

THEORY: The system in Figure 3.7 is excited by the deterministic signal s1( f) given
by Equation (7.8) as

2
a(f) = 3 Bl 6 - du) (3.33)
=1
where ’lL’;’l = 791’1 > 0 and ‘lﬁl‘g = —L\){J, and
510011) = 5 o1 expli o] (8.34)
g Y 1 ro 1 -
Si{=Vi1) = 5010 expl—jpia] (8.35)

and thus J; = 2. The time domain noise signal n;(t) is given by

~ N v s
ey = Oy (5.55)
where w(t) is a coloured roise sonrce. Equations (7.2 and (236} lead to 7y = 0
and
(GinlQo1) = 1 (8.37)

The non-linear element is a current/voltage (non-linear conductance) element given

[
Dy
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oy = ()t = geri(t) (8.38)

where g,, 95 € R are real constants. For the system in Figure 8.7 the maximum
order cousidered is chosen to be A/ = & Note from Figure 8.7 that the Voiterra
transfer functions relating inputs s((f) and ny(f) to the output r1(f) of arbitrary
orders are non-zero even though the non-linear element described by Equation (8.38)
is of second order. The autocorrelation for the fundamental noise source w,(&,) is

chogsen to
CA05EH WO

o kif(m + 167 for pu=p
WP o= 1 .39
{(@1(&,,) W1 (&p,)) { 0 otherwise (8.39)

where £y, k7 € Ry are positive real coustants. The frequency sets Sy, Sy, S, Ss,
Sy4, S5, Se, and 87 can be determined as

So = {Yoa}, Eo=1 (8.40)
= {0} (3.41)
S o= (¥4, ¥0,), Ey=2 (8.42)
= {Ji1, —v1a2} (8.43)
Sy = {Way,Wap. Uosl, E,=3 {8.44)
= {2011, -291,1,0} (8.45)
Ss = {V¥31,¥32. Va3, ¥su},  Ez=4 (8.46)
= {3911, =301, 010, —P1a} (8.47)
Sy = {Uy, Wy, Wy, Uy, Vst Ey=5 (8.48)
= {4913, —491,1, 2011, —29,1,0} (3.49)
Ss = {Ws1, W52, W53, Us4, V55, Usg), Es=6 {8.50)
= {301, =571, 3011, =301, Y10 —Vial (8.51)
Ss = (Ws1.Tao Yes Pou ¥os, ¥o.5, U)o Fe =1 (5.52)
= {6011, —6, 400y, =41, 201, =200, 0 (8.53)
Sz o= {Wr, Ve, Wra Vg, Wrs, Wrg, Yo7, Wrst, bz =38 (8.54)

= {7911, —T91,1.5911, =5911, 300, =3V, Va0, ~ P10 ) (8.55)

8.2. Example 2

{‘1’1,..‘,‘1’15}

= {0,011, 11,2910, —201,1, 30 11, =300 0, =0

(4.56)

51}1_1. ~5'1)1'1. 61;1,17 *61}‘1’1, 1—17‘1,1, ~TI7‘1_1}

Using Equations (7.57)-(7.59) and (8.36) leads to

tl(.fp) =

[Cy,0,0,0.0,0,0,0,0,0,0,0,0,0, 0}

(8.57)

The conversicn vector 71,1(&,) can be determined using Equations (7.98) and (7.96)

as

where

T1,1(§p= ‘Dl)

1.1(&p, ¥2)

. T
Tialép) = {Tx,xkfp-,'l’;)v-~>Tx,1(£pa Wis)

(H1)01(55)

+ 2(H)21(V11, =910 6) S1(P1) s1(=vht)

+ 6 (H)aa (1. D11, =211, =915 6p)
(1) 510 $i(=P11) 510-Y11)

20 (Hidsa(ths, Pug, Vin, —dya. —dy s, =91 6y)

-4-

51000 51 (F01) 51001,1) $1(=D11) $1(=911) i (=d11)
{AD1a(P11: 6 — 1) 51{01,1)

~ o/
Jid

N \ o~

+ 3 ()3l Vg, — Vg — Vi
~ N a
SV L) LU L) o1 YL

1

+ W0 (H s (o =g, =l sl =

00005 () Sid) Si=Tg )

(=Yt}

(2 Dy o by ot =y =y =1 0 8

a5 N
+ 35 Y o b = o s

1

51(010) BlP10) 5Py S

S~ ) 5= ) 5=V 1)

(v
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(H)a(=v 156 + 91,0) 51(=911)
+ 3(Hi)aa(P,1, =911, 0,16 + D11)
51(91,1) 31(=01,1) 51(~v1,0)
10 CH s (P s, P =Py, —Phn, — 90 6 + 90
s1(7, 1) 91(191 1) 31(=v11) Si{=711) Si(=d11)
+ 35 (Hy)ra(P1, 91,1, 900, — V10, =Y0, =V =005 6 + d11)
51(P10) 51(P10) Sulh)
51(—191,1) 51(—171,1) 31(—01,1) 3‘1(—191,1)

(8.61)
(H1)21 (P11, 91136 — 204,1) 51(V11) 51(911)
+ A (H)ga(f1, 0191, =016 — 20100)
51(P91,1) 51(P1,0) 5P 0) S =Y11)
+ 15 (Hy)s (91,0, 01,1, V1,0, D11 =011 =15 6 — 201,1)
S1(h,1) 81(91) 51(911) 51{P11) S1(—V11) §r{ =Dy 1) (8.62)
(Hi)2a (=P 1. =116 +2001) Si(=d1,1) 51(=V1 1)
+ 4 (Hy g (911, =11, =01, =115 & + 201,1)
S1(9 1) 51(=P10) (=9 ,1) 51(—Y19)
+ 15 (H)s (Y11, 910, =11, =11, —D1,0, =Y, 6 + 2910)
51(91,1) 31(P11) 1(=01,1) 31(=011) S1(=D1,1) 51(—P11)
(8.63)

(H1)31(P1,1, %11, 91,158 — 3011) S1(P1,1) S1(D11) 51(011)
+ 5 (H1)s1(P1,0, 710, V1,1, g, =911 & — 391,1)
51(P1,1) 51(01,1) S1(P1) F1(P10) S1(—ta)

+ 21 (Hy)ra(911, 91,1, Y10, 71, 91, =011, =916 - 391,1)
31(1,1) 31(P10) S1(P10) 5101 1) 51(P1,1)
S1(=P11) 51 ( 1)1,1,)

8.2. Example 2

(Hiaa(=v11, =010, =010, 6 + 301,)
Si(=911) 31(=01,1) 51(=Y11)

+ 5 )5V, =901, =10, =011, 0 &, + 301,)
51(‘31.1>§1{“0]1,1) 31{=711) Si{—=%11) S1{~v11)

+ 2U{H1)ra(Pr1, Dy =200, =1, = Vi1, . =D 10 & + 3014)
Se(V1) S10001) F1(=v10) 51(=910) '
51(=P11) 51(=V11) S1(=v1 1)

(8.65)
(HD)sa(W11. 910,911, D106 — 4991 1)
§1(1)1.1)§1(’1)1,1)51(1)1,1)3‘1(1)1.1)
+6(H)s: (D11 910, e P, Vg, —91,05 8, — 401 4)
5191, $1(910) $10911) 810 1) 51(V110) F1 (=91 1)
(2.66)
(H1)aa(=P11. =11, —P1a, =015 6+ 491 )
=) Si=P ) Bl =y ) B =7y )
+ 6{A)en(Vi,10 =11, =Py, =010, =P, =010, & + 4011)
51(?31 1) 51{— J11) 01(—’)1 1) 51— ¥y, 1} \1(—1)1 ) 91( l}1 1)
(3.67)

(H1)s.1(P1.1, 1.1, V1.1, P10, D115 &p — B011)
5u(th,1) 510011) 31(V1,0) S1(91,0) $1(¥10)

+ T (H)71 (W1 9100910, O Y1, D = 01,156 — 5900)
5100100 81(01,1) 81(V0) $1{01 1) 51(P910) F1{(D00) F1( =91 1)

(3.68)
‘ g By .- =9
(HI)S,I(_7)1.1;_7)1,1~‘7)1,1~_7)1,‘u—jl.lv£p+ 311)
Si{=Y11) 31(=P10) 51(=V 1) S1( =D 1) §1 (=)
T H Y 0n s P s P, it —
.c. -4 -‘,.',’: 1\'
SN S~ S R =) B =)
Sf=dysi=a )
{%.69)

(His1(P1,0: V10 91,1, 911911, Pap; & — 69001)

i) s1(Waa) 5100000 51090 0 51 (910) 51 (W) (%.70)
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malép, ¥13) = (Hisa(=v1,1,=Y11, =011, =Y1,1, =911, = V1,136 + 6011) by use of Equations (7.103) and (7.106). It can be shown that the autocorrelation
D 7 1€ s giv
S{(=711) 31(=91,1) 51(=V10) S1(=Y,1) 51{=P1 1) {IFr1(&)17) is given by
g1(—’)1.1) (8'71) ~ 2 +2 ! £ 2 Q Q-
/\lrn,l(’sp)l, /\ = Clr; ; J,/; 12 HTIJ‘(CF)H_ (“‘83)
i SpPi

71‘1(59,31’14) = (1{1)71(0117011,191171)11-911-1)1171911%5;;—7’)1,1)
‘1\171 1 51{911) 31(01,0) S1(V11) 50(01 1)

pi
Note that the output autocorrelation ({7, (&)%) has the same frequency domain
shape as the autocorrelation for the fundamental noise source (@1 (EN%). The ouly
S1(V11) 51(Ph 1) (8.72) difference is the multiplication factor ' |7y 1(&,)]|?

of the input sinusoidal signal, and ou the linear and non-linear network parameters.

wlich depends on the amplitude
e Yis) = (Huora(=v11, Y11, —V10, =011, =11, =Y 0, =V

&+ T01,1) S1(—P1,1) Sl =v11) F1(=Vi0) NuMERIcAL EXPERIMENT: To investigate the correctuess of the theoratical results
S1{=011) S1(=V1.1) F1{=P1,1) B1(—P11) (8.73) presented in this example, numerical simulations are performed in accordance with

Section 7.3. To obtain the desired correlation properties for the fundamental noise
source wq(t) as given by Equation (3. 39), wi(!) is given by a linear filtering of a

noise signal &1(¢) which is a zero mear white Gaussian noise process with standard

Thus the autoeorrelation (¥, 1(&p, ) Fn1(Ep,)) where p1.py € Z can be determined ns-
ing Equation (7.104). The multi-port frequency domain Volterra transfer fuuctions

in E i 8.59)—(8.73) can be determined as
in Equations (8.59)-(8.73) can deviation o). Choosing the {requency domain transfer function of the linear flter

— . - ‘ Hyn{f) as
(Hidoa(Z11) = I (8.74) nt/.
4 1o
I Hi(f) = VE(2A 1) ——e (3.84)
(Hiha(2580) = —28{;m (8.75) o ¥ Vit if
gives the desired correlation properties for @,{£,). Thus the fundamental noise
- 5 2 Q 7 source is given by
(H)21(Q11,Q12,211) = 6RIg; (8.76)
_ . 73 — (86, = Hunlp) a1 (€ny) (3.85)
(H1)31(01,0, Q2 Q13 Z11) = 20193 (8.77) . ) . .
which leads to the derived correlation properties for w1(&,) as given by Equation
(375 (8.39). It is necessary to determine 1ur1damental uoise samples wilt_y),....w (ty)
(H)aa( Q0,2 Qo Q6 300) = 70 ngl (8.78) trom the noise samples ,(¢_4),... 51( ) taking into account the linear filtering.
One way to do this is first to gener s1(t-p), ., 21(tx) as a zero mean white
{(H)s (11, 01,2, 203014, Q155501) = 252 Ri'gs (8.79) Gaussian noise process with standard dewatlon 71, then determine all the Fouri-
er series coefficients 1(€_a),...,51(£4), then multiply Hin(S_4)... S Hpa(Ea) on
) - 126 3 the corresponding ¢-Fourier series coefficients to obtain Tr{E_a)e .., 01(E4), and
(H1)e (11, 01,2, Q103,00 Q15 Q153 Z1) = 924 20790 (R.20) . 2 . . - . o
S ' ’ then fiually translate the w-Fourier series coefficients to the time domain samples
wilt_y), ..., wi{ty) bv inverse Fourier series trausformations. Thus welt:) whern
B ) =N nya9 PS5 ,T ]1" AéE —:\,...,—L‘IJ,L‘..,A\ can ve determined from 2;{¢é_x).....21{ty) as
(0711, Q12 Q3 Qs Qs s 0 S = —H3217g; (8.81) { }
Thus, (Fo1(&p, Y72 [ E0. 1) can be determiued as .
SERINE S NSRS , e & .
- N A E e P P AR
i3 13 V=AY 47
e . e oy T T - > Y
(Frallp ) To (&) = 2, 2, Tialep ) dey Bitdp, = Yoy ) L 1 Ay (8.96)
o =ley=1 X iy, ) exp|—727- 3.8
s \;\ ) exp =2
XWalEy, =¥ 6, = V) =
HE L, =0, f’LTﬂ Til) (8.52) T'o increase the speed of computation observe that
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2 <) A r H r,z /‘\/‘\1 15 \ ]
+ = Re| ———""— 27— | 52(/
VAT ,\12 eh/zgﬂ,\l% xp|s2rap ] i ‘)J
(3.87)
where
A -
A1de
Sih) = 3 alt) expl jor } (3.88)
No=—i 2. \T 1
= 51(1‘0)
A FAA A\,
+ Z {51(8_,\2) exp‘_zerQ’\I_'_zl] + =1(ty,) exp[ ]27r2\+ J
\o= L !
(8.39)

with $2(=A1) = 93(\;) assuming that £,(¢) is real valued for all ¢ € [—7;r]. Note
from Equation (8.89) that

A

37 ai(ty,) (8.90)

pa
Ay=~A

5200) =
It is also important to note that for arbitrary finite py € Z and 7 € R then

lim  Hyn(6,) = 1 for o = VIA+1 (8.91)

Xy =Kp—

In this case @(€,,) = §1(&,) for all py € {-4,...,~1,0,1,...,A} which means

that wi(ty) = g (t\) forall A € {-A,...,-1,0,1..... A}. This gives a simple {(but

of course not complete) way to test the correctness of the implemented numerical
simulation.

The network equation for the non-linear noisy system in Iigure 8.7 is given by

1,
grity = s+ m() — — () (8.92)

24
Fan

Thus the svatem is described by a zecond- ducrr;m equation as

Fa P

o
e
pon)

{

_l’]z}%[l”fqi) + ) = didsdi) IL\}I/:L‘” = U (8.93)
The correct solution to this equation is given by
1 { ,, l
nty = s 1 1+ d g Rsi() £ (D) (3.94)
2g Ry L Y Ji
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by which the solution to the linearized system may be found as m(t) = Rils1{t) +
n1(t)] as g2 approaches 0 (this is not the case for the other possible solution to
Equation (8.92)).

Stmulation 1 The autocorrelation for the avise source ([@{&,)] 314582 s simu-
lated versus the frequency point p € {-A,...,=1,0,1 .,A}. The data

and results of the simulation are shown in Figure 8.8. All simulated val-
ues {|w1(£,)]2)49999 where [p| € {1,3,5,7,9,11,13.15} agree with the theo-
retical results (|%;(&,)|*) with deviations less than £1.3 %. To avoid mak-
ing assumptions on the simulation it is only possible to make direct noise
comparisons for |p| € {1,3,5,7,9,11,13,15} since the simulated results for
Ip| € {0,2,4,6,8,10,12,14,16} contain both a ncise contribution and a de-
terministic distribution which can not be separated without making some as-

sumptions.

Simulation 2 The autocorrelation for the vutput response {7(EN)A3090 with

p = 5 is simulated versus the amplitude 0, ; of the input sinusoidal for various
maximum orders M € {2,4,6,8}. The data and results of the simulation are
shown in Figure 8.9. As seen from Figure 3.9 the noise level increases with
amplitude py,;. Quite as expected from the theory, the agreement between the-
ory and experiments improves when the maximum order M for the theoretical
prediction increases. When M = 8 the experimental results ({7(£,)]%)49990
and the theoretical results (|71{&1,){?) agree with deviations less than +0.7 %

for 91,1 € {0.0,0.2, 0.4, ..., 1.6} as suggested from Figure 8.9.

2440000 ;
)38907 15 sim-

Simulation 3 The autecorrelation for the output response (|7,(¢,)|
ulated versus the frequency point p € {-A,...,-1,0,1,...,A}. The data
and results of the simulation are shown in Figure 8.10. Al simulated val-
ues (|7 (&))”‘éggg? where lp] € {1,3,5,7,9,11,13,15} agree with the theo-

%) with dewatlonb less than +1.6 %. To avoid mak-

ing assumptions on the simulation it is only possible to make direct noise
comparisons for |p{ € {1,3.5,7,9,11,13,15} since the simulated result for
ol € {0,2,4,6,8,10,
ministic contribution which can not be separated without making some as-

12,14} contains both a noise contribution and a deter-

sumptions.

8.3 Example 3

PROBLEM: As an example of the theory consider the non-linear time invariant noisy
system in Figure 8.11. For this system & = 1, @ = 2 and L = 1. The objective

. B . ,n 1
v {

4
[N PRI S, FAPRRPRPRN. ~ R
01 Lie cAample is to determine the AULOCOTIreIalion r

2 1(Ep)1”) where p € Z s an
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3.5 T T T T T
loeélﬂ}l(fp) zg ! )
IR ECRERESC = N\ |
2.5 F \ 4
\ \
2.0 -1
1.5 |- 4
1.0 - —
05 1 i 1 1 1
-15 ~10 -5 0 5 10 15

Frequency point, p

Figure 8.8: Example 2: A numerical experiment to illustrate the properties of the fun-
damental noise source. The full line gives the theoretical values for (|7 (£,)]%) versus the
frequency point p predicted from Equation (8.39), and circles give the simulated numer-
ical values. The simulated values are the average of the last 100 iterations of a total of
40000 iterations {ensembles). The simulated values agree with the theoretical predictions

with deviations less than £1.3 %. The data for the experiment are: A = 16, oy = 1.0,
np = DK IG_S, Ae =15, and 7 = 1.0
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2.0 T T T T l T i ‘ !
108 . (|7, ,1(55)|2%, M=2.
L9 P08 lm (G M = 1 — |
108 (\7n1(é5)]%), M =6 -
18 F0% - (170 1(£5)1%), M =8 —
105 ([71(€5)1%)33599
1.7

! ! 1 i !

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.3 2.0
Amplitude, 9y

Figure 8.9: Example 2: A numerical experiment to illustrate the properties of the fun-
damental noise source. The full and dotted lines give the theoretical values for {5 (015
with p = 5 versus the amplitude g; ) of the input signal for various choices of the maximum
order M, and the circles give the results for the experiments. '[he simulated values are the
average of the last 100 iterations of a total of 40000 iterations {ensembles). The simulated

values agree with the theoretical predictions for M = 3 with a deviation less than +0 7 %

for amplizudes 9,1 € {0.0,0.2,0.4, ..., 1.6). The data for the expariment are: A = 16,
= 10O 00T, A =0 x 107 ke = 150, T = L0, 1y = 10, 01 = 0.0, go = 0.1, and

Ry = 1.0
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22 T T T T T T
109 - ?,1‘1(522 M =8 —
20 H°. anl(gp DM =4 — ~
0°- ?é"l § ok M;(I)o})
13- 10 !" 133 ) )35900 N
18 - N
14 - .
12 - -
10 ~ _
8+ 4
6~ |
4 i L | 1
—-15 -10 -5 0 5 10 15

Frequency point, p

Figure 8.10: Example 2; A numerical experiment to illustrate the properties of the out-
put noise frequency spectrum. The full and dotted lines give the theoretical values for
(i7a 1(&5)[%) with p1,1 = 1.5 versus the frequency point p and for various maximum order-
s M € {1,4,8) predicted from Equation (8.39), and circles give the simulated numerical
values. The simulated values are the average of the last 100 iterations of a total of 40000
iterations (ensembles). The simulated values agree with the theoretical predictions with
deviations less than £1.6 %. The data [or the experiment are: A = 16, o; = 1.0, C}, = 0.07,
Ky =5 x 107° x, = 15.0, 7 = 1.0, J11=10,¢;,1,=00,92=01, and R = L.0.
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integer, and to compare the result with a direct analytical time domain simulation.

— ’
1(f)<1> m(f) A; uz,1(f) = r(f)

na{ f) T v{1
: | K

Figure 8.11: Example 3: Non-linear noisy system with two noise sources and one non-linear

element.
THEORY: The system in Figure 8.11 is excited by the deterministic signal s;(f)
given by Equation (7.8) as

2

silF) = D Sy 8(f - w1y) (8.95)
Ji=1
where ¥y 1 = J1; > 0 and 2 = -7, and
. 1 . )
si{(P11) = 5 21,1 exp(j ©1,1] (8.96)
- 1 . _
a(=thg) = 7 o1 exp[—7 ¢1,1] (8.97)

and thus Jy = 2. The time domain noise signal n;(#) is given by

’I'Ll'(f) = Cl ’IU[(f) (8q8>

where w;(¢) is a white noise source. Thus the noise source 2;(t) is unmodulated.
Equation {8.98) leads to [; = 0 and

(8.99)
The time domair nei modulated noise soures glven
by
~J
nylt) = Corwy{t)ug, it (3,100,
which leads to I; = 1 and
{ , for =1
2 or my =1
(GOm0 pe- o Q1my) = {n I (8.101)
Y otherwise



206 8. Noise in non-linear systems: Examples and Conclusion

Note that Equation (8.100) corresponds to the noise sonrce na(f) in a sense being
amplitude modulated by the controlling variable u;1(f). The non-linear element is

a voltage/current (non-linear resistance) element given by

, : S 5 _
o) = el ) = aif(t) + e () (8.102)

For the system in Figure 8.11 the maximum order considered is chosen to be M =

All Volterra transfer functions relating s1(f), m(f) and ny(f) to the response r(f)
of orders higher than 3 are zero, even though, due to the modulation of noise source
2, there are nou-zerv noise contributions to the response caused by a total order of
4. The two noise sources w; and w, are zero mean white noise Gaussian processes
with standard deviations oy and o,. The continuous time autocorrelations for the

two fundamental noise sources ;(£,) and @,(£,) are given by

N o 05/{2/‘) for p1 = p ‘
(@g(&p) W(6,)) = . (8.103)
0 otherwise
where g € {1;2}. The cross-correlation between two Fourier series coefficients for
the two fundamental noise sources can be shown to be (D1(€p,) W3{Epy ) = 0O for all

P1,P2 € Z. The frequency sets Sg, 81, Sy and S5 can be determined as

So = {¥ou}, Ey=1 (8.104)
= {0} (R.105)
Sl = {‘1/1,1,\1/1'3‘ . E1 =2 (8106)
= {Dir =11} (3.107)
Sy = {Wa1,¥3, %3}, £y=3 (8.108)
= {201,17*‘37}1‘170} (8.109)
Sz = (P31, P32, 933,954}, F3 =4 (8.110)
= {311, -39y 1,011, U1} (8.111)

and thas £ = 7, and

{"?17,..,“1}7} = {,U.’ 7/1,1,—"}1.1,2J1‘1‘.7201'1.31)1‘1,*31}1)1} (5‘1[2\1
Observe from Equations {7.571-(7.59) and 18.98) that this feads to £,(£,) as
. T .
6(&) = [C1,0,0.0.0,0,0] (8.113)

To determine £5(,) observe that
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Yy 1(Wry) = (R +R) )S1(P1a) (8.114)
Y1 (Uh2) = (Ry+ R) )31(=911) (8.115)
25‘2‘1(‘1’2,1) = a251(V1,1)51(Y11) (8.1186)
Y a(¥ag) = 4y S1{=711)51(—21) (8.117)
Ziz,l(‘l’z.s) = 2w 8 (V1.1)5(-v1,1) (8.118)
31(U31) = a3 51091,1)81(911)51(V11) (8.119)
Ypa(Ps2) = ay S1{=01,1)81(=91.1)51(=P1 1) (8.120)
YU31(W33) = 3ag Sl )80 1)8 (=Y ) (8.121)
352,1(‘1’3,4) = Jay 51(1)1,1)31\*’)1,1)51(-7)1,1) (8.122)

using the fact that

Ri+R for oy=1
_ — ;) for o; =2 ; o
(F21)0(Z11,- -, Z1,0,) 0@ for o = {(R.123)
Y otherwise

This means that the controlling variable uq;(f) includes up to third-order contri-
butions due to s;(f). Using the above controlled variable u3,:(f) and Equations
(8.100) and (8.101) leads to

t(&) = [2020251(01.1)§1(—01,1)7
Co( Ry + R) 50091 1) + 3 Coasi(91,0)51{91 1)81( =91 1),
Co(Ri 4+ R)5({~011)+3 C2a331(V1,1)&{~1 1)51( =) 1),
Chra25, (V1. a{dia)
Crazs1(=V1,0)51(=211), Caasd1(P1.1)31(D11)31(01.4),

. N T P2 N
Crazdy (V1103 ( )11)>1\*1)1111\ {2.124)

Nex \u the <

Onvers
(7.98) and (Om as

T14(€p W) = (Hidoa-gqa-106)
4—7(H\nn fy)l. ﬁﬁi‘izf

2 2—qq-1 Wit
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T.l,q(fpa ‘I’,Q )

I

(Hl)lﬁ——q,q—-l(ﬂl,l;‘fp = V1) 51(911)
+ 3 (H1)a2mg0-1(01,1, %11, =J11;& = P11)

851(P91,1) 51(41.1) S1(~y.0) (8.127)
m4(6, ¥3) = (.Hl)!,'z—g,;—z(—’h,::,p+191,;)§1(—~91'1)
+ 3 ()32 g0-1(F1,1, —7) 4, =&+ Y1)
$1(91,1) $1(=V1,1) 51 (=1 1) (8.128)

T1q(&, Uy) = (.Hl)?.,?—q,q—l(dl,lv791,1;£p—2191,1)51(191,1)31(191,1) (8.129)

Tl,q(fpv ‘I”S)

It

(H1)2,2-qq-1(=91,1, —V115&p + 291 1) S1(=011) (=1 q)

(8.130)
T1,4(&, ¥e) = (31)3,2—q,q—1('~"1,1=191,1-,"91,1~Tfp‘3171,1)
31(191,1)51(1)1,1)51(171,1) (8.131)
T14(€p, ¥7) = (51)3,2—q,q—1(—51,1,-’191,17—191,1;fp+3'191,1)
§1(=V1,1) 51(=91 1) 51(~D1 ) (8.132)

for ¢ € {1,2}. Thus the autocorrelation (I721(&)[*) where p € Z can be deter-
mined using Equation (7.104). The multi-port frequency domain Volterra transfer
functions in Equations (8.126}—(8.132) can be determined as

(Hi)oao(Z11) = B + R (8.133)
(Hi)op1(Z21) = R (8.134)
(H)10011:311) = 24, (8.135)
(H)iea(?i:Z21) = 24, (8.136)
(Hi)2p0(f, Q12:201) = 3ag (8.137)
(ol 2 Z01) = 3ag (8.138)
(Msp00800: Q12,0500 = 0 (8120}

(HI)B,O,I(QI,MQLZsQl,J;E?,l) = 0 {8.140)
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Thus the vectors 71.1(,) and 71,2{&5) are given by

T1a(&p) = {R1+R+6(1331(_01,1,)51(—01,1),2az§1wl,1),zagzl(—u1,y

and

T1al6) = [R60s5 (01030~ ), 20 (9 ). 2603 (= ),

- - _ - T
3as31{1 1)31(9 ;), 3ass(~J11)5:(=91.1), 0, 0} {8.142)

The autocorrelation (17 1{:)|%) is given by

Z T,{IQI(fp) dﬂl t;[; (é-p - ‘1—’51)
lep=1

[

2
(lil.l(fp)Iz) = Z—l Z—]

2=ler=le
574 c _ NPE N T e ey
xW q1.q2 (S‘ ‘pt‘l . fp ‘I'dzj t'{:\‘sp - ‘D’fz ! de2 Tl,'h(tp)

This leads to

7
g (&, Pe,) Tl‘,q2 (&, T.,)
=1

2 2 7 T T
(P& = 223 S 3 %

1=l =le;=ler=1-n=1 =
Xt';x (fp - ‘Ilvzx H ‘Il”vd) t;; (‘fﬂ - \pfav ql"q)
X<:E!I!(§P - \p’f! - q/‘fl ) {Z‘;z({? - sz - ‘p‘xz )> (.8'1"‘4)

where the autocorrelation of the fundamental uoise sources is given by Equation
(3.103).

gate the correctness of

—

e theoretical results

NUMERICAL EXPERIMENT: To invest
presented in this example, numerical simulations are performed in areardanes el

Section 7.3, In the simulation it is fest necessary to determine the controlling
variable w5 1(¢). This can be determined ag

R Lo S5 . ST . -

upi(t) = (R + Ris(H) + ays{il] + ng 704 (38.143)

where the contribution to the controlling variable due to the noise sources has been
ignored (low level noise is assumed). Once the controlling varicble u; 1 (¢) has bren

determined the response r1(¢) can be determined as



210 8. Noise in non-linear systems: Examples and Conclusion

ri(t) = [5108) + m)] Ry + [s1(t) + ni(t) + na(t)] R
+azs1(t) + m(t) + nol ) + assi(t) + ny(8) + nale)P

(8.146)

As a special case it is quite interesting to note that the autocorrelation in the
situation where the system is linear — but including the (non-linear) modulation
of noise source 2 — is given by

(1T (&) = (Rl + R)PCH(E(&)]?)
+ 5 R (Ry + 8 3o} (@2, — 1))
+ <¢mz(gp +01%)] (3.147)
which can be derived by setting a, = a3 = 0.

Simulation 1 The autocorrelation {[F,,;(£,)|?)r with p = 3 is simulated versus the
number of iterations I'. The data and result of the simulation are shown in
Figure 8.12. This simulation is for a linear system, i.e. a3 = a3 = 0, but where
noise source 2 is being modulated by the applied deterministic signal. The
simulated result (|7, 1(&)[2)33999 = 1.7523 x 10715 agrees with the theoretical

result {7, 1(£3)]%) = 1.7596 x 10™'% with a deviation of —0.42 %.

Simulation 2 The autocorrelation (|7, 1(£,)|?)43939 with p = 3 is simulated ver-

sus the amplitude g, of the deterministic input sinusoidal signal. The data
and result of the simulation are shown in Figure 8.13. All simulated val-
ues {|7,,1(£3)[%)3935° agree with the theoretical result (|7, 1(£3)[?} in Equation
(8.144) with a deviation less than £0.39 %. As seen from Figure 8.12 the noise
level (|7,(&7)]?) increases with the amplitudes 211 = 012 of the deterministic
excitation signals. For very small g;; only noise source 1 is of importance
since it, as opposed to noise source 2. is independent of a modulating signal.

Simulation 3 The autocorrelation (|7, 1(&,)]%)39999 with p = 3 is simulated ver-

sus the standard deviations o, = o9. The data and result of the simulation

are shown in Figure 8.14. All simulated values (|7, 1(&)[*) 39907 in the range
of oy = 7, from 1079 to 1072 agree with the theoretical result (17, 1 (60D

in Equation (8.144) with deviations less than £0.14 %. The simulation for

1 3 H Py < =
gy = o9 = 107" deviates from the theoretical resuit bv 6.0 %. This rather
1arge deviation is d'_e to fbe fact that tbe mixing of noisc with noise for in-

is mcluded in the numerical simulation.
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=) |

| 1 1 1 ! | i
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of iterations, I’

Figure 8.12: Example 3: A numerical experiment to illustrate the properties of noise
response 7o 1(€p). The full line gives the simulated values { {1 (€ \] \r versus number of
1terat10ns and the dotted line is the theoretical result {{7, 1(£p)1%) predicted from Equation

144). The simulated (J7,($)1%)30507 = 1.7523 x 107%% with a standard deviation of
2 7810 X 10‘19 The theoretical result is ({7, (£;7)]*) = 1.7596 x 1015 This corresponds to

a deviation of the simulated result from the theoretical result of —0.12 % T"w data for the
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180 —_————————————

T
Fn. 1/63 2
F Z 2y40c00

1017§
T2,1(83 39901

160 F10'7

140 ’r

120 b /—

& e & s 1

10-8 103 10~4 1073 102 10!
Amplitude, 01

Figure 8.13: Example 3: A numerical experiment ro illustrate the properties of noise
response 7 1(€p). The full line gives the theoretical values for (I7a.1(£,)1%) versus the anmipli-
tude of the input signal, and the circles give the simuiated values {|Fa,1(&)}*}3950; predicted
from Equation (8.144). The simulated values agree with the theoretical predictions with
a deviation less than £0.39 % for the amplitudss seen from the figure. The data for the
experiment are: A = 64, oy = 5.4%x 1077, 02 = 7.3x 1073, C; = 0.33, 2 = 0.27, R, = 13.1,

R=103,0:=2T4, a5 =760, p=3, 7 =03, ;1 =40, and o,y = 0.0

8.3. Example 3 213

10! T L e B e e e A

107t - . 4
10_7 B // ]

10719 ~ .

10713 | / .

10716 - B

i Lo - ! 1 . L e 1

10_19 % Rt n )
107° 1078 1077 10-8 1073 10t 1073 1072 10!
Standard deviation, o7, = oy

Figure 8.14: Example 3. A numerical experiment to illustrate the properties of noise
response 7n,1(6p). The full line gives the theorstical values for (|7n1(5)[%) versus the s-
tandard deviations of the noise sources o, = o3, and the circles give the simulated vaiues
{172.1(&)1%)30309 predicted from Equation {3.144). The simulated values agree with the the-
oretical predictions with deviations less than +0.17 % for standard deviations up to 10-2.
For oy = 02 = 107" the deviation between simulation and theory is 6.0 %. The data for the
experiment are: A =64, C; =0.33. C, = 0.27. Ry = 131, R=10.3, 1y = 274, a3 = 76.9,

p=3. 7=0519,;=4%0 and g, , =00
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8.4 Conclusion

A method has been presented to analyze noise in nou-autonomous non-linear multi-
port nietworks and systems where low level noise can be assumed. This means that
he systems must be small signal linear which is true for wany types of systems.

The system description and mathematical represeutation of noise Lave been dis-
cussed. The non-linear noisy system under consideration must be transferred to an
equivalent non-linear noise free system with external deterministic and noise gen-
erators (sources). This is required to apply the Volterra series technique.
terministic and noise signals are represented mathematically as Fourier series which
are computationally very efficient when Volterra series are used. The mathematical
representation of noise sources has been treated in detail. A noise source is given
as the response from a non-linear noise free multi-port system with a fundamen-
tal (unmodulated) noise source and possibly modulating signals as inputs. In this
way it is possible to represent unmodulated as well as modulated (dependent) noise
sources. The cross-correlation between Fourier series coefficients of any two (possi-
bly) modulated noise source signals can be described by a cross-correlation matrix
for the two fundamental noise sources at various frequencies, and vectors which
describe the transfers from fundamental noise sources to modulated noise sources.
This way to describe (possibly) modulated noise sources is very flexible, and it is
easy to describe even very complicated multi-signal modulations.

Expressions for the noise and deterministic signal response at arbitrary response
ports have been determined. The cross-correlation between two Fourier series coef-
ficients at arbitrary response poris has been determined from noise cross-correlation
matrices for the fundamental noise sources, and vectors describing the transfer from
fundamental to modulated noise sources and from modulated noise sources to the
noise responses at the response ports. Also, it has been shown how these rather
complicated transfers must be specified for the Volterra series technique.

Expressions have been derived for various average noise powers and noise power
densities. The quantities are usually of high interest in the analysis of noise. The
average neise powers and noise power densities have been determined from noise
cross-correlation matrices for the fundamental noise sources, and from the non-
linear transfer of the fundamental noise sources to the given response port.

Three examples have been shown to illustrate the use of the presented method.
Onec cxample shows the representation and the properties of a type of modulated
noise source. Two exampies show low to determine noise cross-correlations at a
response port for two tyvpe of circuits. All e\dmolea have been chosen to make
it possible to find an alternative \ :
results for the presented method and {rom the alternative {analytical) solutions are
in agreement, which indicates the correctness of the presented method. Generally it
is not possible to find alternative analytical solutions, and all three examples have

been carefully chosen to make comparisons possible.

9

Multi-port Volterra transfer functions

This final chapter deals with the determination of frequency domain Volterra trans-
fer functions of non-linear multi-port networks containing non-linear multi-port el-
ements (subsystems). A pure frequency domain method is derived which allows
commensurate as well as incomiensurate frequencies. The method is based on an
extension of the probing method to allow multi-port networks and commensurate
frequencies. A computer implementation of the method in an algebraic program-
ming language is made which aliows determination of Volterra transfer functions in
algebraic form up to eighth order on a low end workstation. Examples are present-
ed and the results are compared with existing literature in the special cases where
comparison is possible.

9.1 Introduction

In this chapter a method and algorithm are developed to determine multi-port
Volterra transfer functions of non-lincar multi-port networks which may contain noa-
linear multi-port elements {subsystems) -~ that is, non-linear elements (subsystems)
which are controlled by arbitrary variables. The purpose of this is twofold: (i)
multi-port Volterra transfer functions are a fundamental requirement {or the low-
and high-level noise analysis, and (ii} it has been pointed out in the literature that
the use of Volterra series is limited to one-port non-linear elements which precludes,
for example, the analysis of MESFET trensistors which onght to contain (at

—

¢

eas
two-dimensional non-linear elements [1,2]. The work of the present chapter is also
of importance in the analysis of the conversence properties of Volterra series since

erg

or functions wiay be determined. in

le on the genemi 111uit1~pUI‘L Voiterra series representation.

Previously, Bussgang, hrman and Graham [3], Maas [4,5] and Chua and Ng
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[6] have  investigated the determination of one-port Volterra transfer functions
using the method of non-linear currents by a combination of time and frequency
domain analysis. These analysis methods have been limited to one-port networks
containing one-port non-linear elements and generators controlled by one variable.
The method derived in the present work is based on an extension of the probing

U A recursively based

method to allow arbitrary (also commensurate) frequencies.
algorithm for the determination of Volterra transfer functions of non-linear rnulti-
port networks is derived. A computer implementation of the method in a symbolic
programming language is presented. This makes it possible to determine algebraic
expressions of the multi-port Volterra transfer functions. Finally, three examples

are considered.

The chapter is organized as follows. Section 9.2 gives some preliminaries re-
garding multi-port Volterra series where the symmetry properties of the transfer
functions are analyzed, and a modification of the probing method to allow com-
mensurate frequencies is presented. In section 9.3 the theoretical formulation for
the determination of multi-port Volterra transfer functions is presented. Section 9.
discusses the implementation of the method in a symbolic programming language
on a digital computer. Section 9.5 presents some types of time domain multi-port
Volterra kernels and the corresponding frequency domain transfer functions. In sec-
tion 9.6 three examples are presented to illustrate the mnethod. Finally, section 9.7

presents some concluding remarks.

9.2 Preliminaries

The frequency domain response v( f} at a frequency f from a non-linear multi-port
Volterra system (a system which can be described by a convergent Volterra series)

with K input ports and input signals {s1{f)....,sx(f)} is given by

'In Chua and Ng [7) et of frequencies {{1,...,Qn} is called incommensurate (and a fre-
quency base), if there does not exist a set of ratio ,rm} l\nnr all zern) such that
)+ -+ 1305 = 0. This is indeed a suthc t a necessary condition for the

conventional probing method to be valid. It can be 5hown that a sufficient and necessary condition
for the conventional probing method to be valid is that there does not nx"tl a set of integer numbers

1 ym where g1 + 1 gm + 1 € Zyg {not all zero
91, Ym 1ol PRSIPE! F S o

example, the Chua and Ng condition says that the probing mcthod can not be used Lor the set
of frequencies {§2; = 4,Q, = 7} since 111 + 722 = 0 for {ry = ~1/4,r2 = 1/7}. According to
the sufficient and necessary condition, the probing method can be used for the set of frequencies
{1 = 4,02 = 7} since 11 + 202 # 0 for all integer numbers q1,¢2 where ¢t +1,¢2 + 1 € Zoy

except for q1 = g2 = 0. This is also confirmed from Equations {9.9) and {3.10) in section 2.2.
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~ ke o0 0 co )
LYLEEEDDRIED DI S (S [ cotim
my=0 mi=0 7~ —20 —00 J—co ’
Hml, LR ‘\f BRI 7.f1,rzl; """ ;f[\',lv---sf}'{,m‘:;)
silfin) si(fimy ) e SE{fa, ) sk (frmg)
/
S =S oy = = S = o)
‘[fl,l "'dfl,m] """ ’ifK,l "'df.r\',mp; (91‘!
where
mo= [m,.omg]T e gl (9.2)
. I for ye{oa+la+2,...,3-1.3)
r /“(7) - ! s [ LRI s an
R 0 otherwise (9:3)
and || - || denotes the sum of all elements in the given vector, i.e

fmll = m + 5 my (0.4)

In Equation (9.1) the quantity Honyooompe () I8 2 (possibly) uusymmetrical multi-
port frequency domain Volterra transfer function of order [fml and é(-) is the Dirac
d-function [8]. In Equation (9.1) the zeroth order contribution corresponding to
lm|] = 0 has been excluded due to the factor ;. so{{lm|}). This contribution, which
is usually not of interest, is identical to the response v(f) when no input signals are
applied (the contribution may be called a mathematical offset). As pointed out in
the previous section, this is no restriction in the noise analysis since the internal
sources in the non-linear systems are applied at external ports.

9.2.1 Symmetry properties

For one-port Volterra systems (# = 1) it is usually assumed, without loss of general-
ity, that the one-port Volterra transfer function Hon, {fra,-- ., fx,,m\ is symmeatrical.

If the transfer functien is not syrametrical it can be replaced by times the sum

of all permutations of the unsvmmetrical transfer function. In this way a symmet-

ooy
il

etrical} transfer function i

ainiag asymineirical muiti-
port Volterra transfer function is not directly possible. As seen from Equation
(9.1) the response u(f) remains the same for any arbitrary permuiation of the

transfer function Hon, o (f110 0oy flomgiocoons fras ooy faom ) with respect to
1M1y 1,my 1 v R ! respect Lo
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variables from the same set {fz1,..., fi,m, } where k € {1.2,..., K}. This means,
for example, that two signals may generally be interchanged to yield the same
response v( f) unless they enter the system through two different input ports. Thus
a partly symmetrical Volterra transfer function, indicated by Sym{Hu,, . m. ()},

can be obtained as

Sym{Hml,...,mK(fl,ly-~-~,fl,m1; """ ;f[\',la"wff\",m[\’)}
_ Ir I r . s r \
= Hml,”.,m,(ul,lr--,hm pre VIR e JE mye)
-3 3
ml- - mg! =1  lg=1
Homa,mic (Pl,zl{fl,l, v P Yo Prae U fremi ) (95)

where Py, {fe1s-.-, fem, } indicates permutation number {x € {1.2,...,my!} of
{fea, - foom, } for k€ {1,2,..., K}, All permutations P 1{-},..., Pim.{-} are
required to be different for all ¥ € {1,2,..., K} to assure (partial) symmetry of
Hem,,...ms(-). The symmetrical transfer function Ho, . n, (-} can directly be substi-
tuted for the corresponding {possibly) unsymmetrical transfer function H,, ;i)
in Equation (9.1).

It should be noted that the (possibly) unsymmetrical Volterra transfer function
Hmy,...m(-) is not unique in the sense that there may be several distinct trans-
fer functions which give the same response v(f) in Equation (9.1) for the same
input. However, the (partly) symmetrical multi-port Volterra transfer function

Hpny,...m () is unique since

M, vm[\(f117"‘7fl,m1; """ ;f!\',lw-wfl\',m,g)

H
= H ...,m[\’(P‘,!j{fl.IY'")fl,ml}.f """ ;'PI\‘,“f{fI\.,lv"'7./"-}\—.'71‘:(}) ({)6\,

for all permutations Py {fi1,-.., fem,} where & € {1,2,...,K}, and
{e € {1.2,...,mg!}. The use of partly symmetrical multi-port Volterra transfer
functions, and not (possibly) unsymmetrical Volterra trausfer functions, implies

that the amount of computations needed to determine the response v{ f) to sinu-
soidal or complex 2xponential inputs may he substant.ad« reduced by exploiting the

uch are

avoid

o

symmetry properties ¢

tions of variables from the same set.

9.2.2 Determination of transfer functions

The time domain signal applied at input port £ € {1,2,.... K} is given by a sum

of I complex exponentials:
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Iy
r s
se(t) = 3 exp|F (27,0 + apy,) (9.7
=1
Thus si(f) = F{s()} = I22, selt) expl—j27 f11dt where F{-} denotes the {inte-
gral) Fourier transform is given by
I
sl = 20 expljdes]5(f - vr) (9.3)
)
Insertion of Equation (9.8) into (9.1) leads to
oo o I 11 Iy I
o(f) = Z ...... Z Z
my =0 mp=0 i 1=1 51.m1 =1 =l (8 mge =1
L1 (bm])
‘Hm| .A.A,ml\»(d}l,i;,p ey wl,zlvml yroeee N z—”"[{,i,\»}l 3oy ld}]\‘.i{( _— )
K my R my \ :
e‘(p[] ZT ¢A;H} (T~Zv Vi, ) (9.9}

k=t =1 k=1 1=1

It should be noted that in Equation (9.9) it is generally not possible to reduce the
amount of computations required by permutation of the variables, e.g. 45 1,...,4; s
since the multi-port Volterra transfer function Homyroimp () 18 orenr=r"dlv not part-
ly symmetrical in the sense described earlier. Choosing I, = my for all k ¢
{1,2,..., K} apartly symmetrical multi-port Volterra transfer function &

can be determined as

'7111----'711\'(')

i /, . A
Hrn.l,...,m;((wl,‘n ey Wyt va}\',l- . U,‘;\ M )
1

myl- - mp!

f ) K my . K me \ \

X Lcoefﬁuent of exp [j 5 E o‘kJ «5<f -3 wro) oin wf f)}
et

bok=1 o=t - k=1 {=1 / J

{@11‘....Q11m1,,_

is chosen as a phase base up to order i

,20} and provided that the set of phases
(fmi} as defined below.

NN a4 A ; P . .

Velinition 8.1 A set of phases {o11,..., 01 m,....... VORI OK, g} 18 de-

fined as a phase base up to order 4 ¢ Z, if for positive (zero included) inte

s inte

gers
{@, - qmyy e TE - s K mge |
K my R my
Z Z Gri Oky = Z Z Ok (9.11)
xk=1{=1 k=11=1
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only for qoy = 1 for all £ € {1,2,...,A} and [ € {1,2,...,
restriction that 3K ke €4{0,1,2,...,p}.

my} with the

When Equation (9.10) is used to determine the multi-port frequency domain Volter-

ra transfer function it will never be necessary to actually choose specific values of
the phase base. Only the properties which are associated with {¢11,....¢1,ms. .-

< ®R.1,- -, OK,m, } being a phase base will be used in the following. Note that
f {P11,- v Blmyyerren- ,OK1s- -+, OKmyt 1S a phase base then ¢p; # 0 for all

ke{l,2,....,K}and [ € {1,2,...,m}.

Note that Iy = mg forall k € {1,2,..
(9.10). If £y < my for one or more & € {1,2,...,
in {¥Yk1,.--,%km,} appears twice in the argument to Mm, .m,(-). In this case
Equation (9.10) does not follow since frequencies in the set {¥k1,...,¥gm,} for
the symmetrical Hp, . m () are not different. This is necessary to obtain a gen-
erally correct Ho,, . m () independeat of the argument frequencies. If [p > my
for k € {1,2,..., &} then Equation (9.10) can be derived. However, if [y > my
for k € {1,2,...,K} then the determinaticn of v{f) in Equation {9.9) requires
more calculations than are actually necessary. Thus, choosing Iy = mg for al-
Lk e {1,2,...,K} is the proper cheice for the analysis which leads to Equation
(9.10).

The conventional probing method to determine one-port Volterra transfer func-
tions uses only a sum of é-functions and no phases in the probing signal {3,6]. This
situation is a special case of Equation (9.8) when ¢ ; =0 forall k € {1,2,..., K}
and i¢ € {1,2,...,{k}, and precludes the situation of commensurate frequencies as
noted by Chua and Ng [6].

., K} is used in the derivation of Equation
L'} then at least one frequency

9.3 Theory

In Figure 9.1 the overall non-linear network under consideration is shown. The
non-linear network is separated into a purely linear network and @ purely non-
linear subsystems.? Non-linear subsystem number ¢ € {1,2,...,Q} is controlled
by a number of P(g) variables. There are R controlling variables for the overall
non-linear network represented by {zi(f),....,za(f)}. Thus P(g) € {1,2...., R}
for all ¢ £ {1,2,....Q}. There are ) controlled variables, identical to the num-
ber of non-linear subsystems, for the overall non-linear network represented by
{1l ), -, yo(f)}. Thus there are not necessarily equally many controlling as con-
trolled variables. For example, one controlling variable may control several con-

trolled variables, and one controlied variabie may be conirolled by severai controi-

’In case a non-linear subsystem contains a first order (linear) contribution this must be included

in the linear network and not in the non-linear subsystem.

]
SK(f)b
|
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ling variables. At the signal input ports independent voltage or current generators

{8:(f)s...,5x(f)} are applied. The tomplementary currents or voitages of the {volt-
age or current respectively) signal generators {s;(f),..., sk(f)} are not of interest

in this analysis. At the designated output port the response v( f) is either the open
circuited voltage or the short circuited curreat. Thus the complementary current or
voltage of the (voltage or current respectively) respouse v( f) is zero.

(Sl(f)

Linear multi-port network Lol f

I RN LT T
Non-linear subsystem 1 Non-linear subsystem Q
{zjl,l(f)""72:1'1,40(1)(-’()} C e e . {Ij(-!vl(f)"'"IJQ,P(Q)(/")}

nl(f) vo(f)

Figure 9.1: Non-linear network separated into a purely linear network and purely non-
linear subsystems.

Each non-linear subsystem in the overall non-linear network is described by the
general non-linear multi-port type shown in Figure 9.2, he Varivablea
{Iqul(f\),...,Iqu},lq)(f)} where 7, € {1.2,....R} for ¢ € {1,2....,Q) and r €
{1,2,..., P(q)} are the controlling voltage or current variables and v,(f) is the cor-
responding controlled voltage or current output variable for non-linear subs system

7 € {1.2,...,Q}. The subscripts for the controlling variables are collected in the
vect ! a1 P ; T - ~I‘lq X1l - .
vectors {Jy,..-.Jg} where 5, = o dypi)t € 20 for g - {1,3 RS
Each controlling input port is either shott or npen mrguitpd wid lience the port volt
age ot current resnectively is zero., The complementary enrre Pt e vt ags o F g e
g Rt respectively Is zefo. Lhe complementary carrent or voltage of the con-
trolled (voltage ar current resnectivelv) outnut variahle 2 ( F\ whara s~ [1 9O N
g D v)output vaniable y ( fywhere g € {1,2,..., Q]

is not of interest in the analysis. The general type of non-linear multi-port subsys-
tem shown in Figure 9.2 can be used for one-port non-linear elements as well as

1

multi-port non-linear subsystems. One-port non-linear elements are represented



222 9. Multi-port Volterra transfer functions

from Pigure 9.2 by appropriate use of feedback between the output and the input

port.
I

M
walf) ]
PR
Ha(f)
i B
woll) |
—t

Figure 9.2: The used type of general non-linear multi-port subsystem. At the con-
trolling signal input ports, {z;, ,(/),..., Zj, mp(f)} are the controlling variables where
Jor €{1,2,.. R}, r € {1,2....,P(9)} and q € {1,2,...,Q}. At the output port, y,(f)
is the controlled output '.ana‘\le for non-linear subsystem 7€ {1,2,...,Q}. P(q)is the
number of controlling variables for non-linear subsystem g € {1.2,...,@Q}. This multi-
port non-linear subsystem can also be used to represent non-linear one-port elements, e.g.
non-linear resistors and capacitors, by appropriate feedback between the output and input
ports.

The problem to be solved in the following is to determine the multi-port frequen-
¢y demain Volterra transfer function relating the input signals {s1(F)s .. v sr(f)}
to the output response v{ j).

9.3.1 Relations for the linear system

€ proper tles

n, after soma COHSJdQ!‘&LlOHQ be

3
s
-
=2
el
j=}
Q
:3
L—
=1
D
A
=
@
=
o
g
?;,
g
oy
(=
1]
g
@D
w
-
p
<!
pE
o
g
{)

ir gl f) 1' [oAg 1 [ B
|l T e | | s(f) (9.12)
Lot} Latin) bT(f)

where
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y(f) = () LuelH)T e o (9.13)
(f) = [ emH)T e B (9.14)
st = [silf), k(T e R (9.15)
and
[ AL(f) ALgr(f) ]
Alf) = : : e (9xA (9.16)
L Agalf) Ao.0(f) |
’_ Bia{f) Bix(f) 1
) = : : € N (9.17)
Ba{f) Box(f) |
alfy = Ja(f),.... ap(T e cRx (9.18)
) = i) b HT e oA (9.19)

As seen from Equations {9.16)~(9.19) the sizes of the system matrices and vectors
depend on the number of controlling variables, the number of controlled variables
and the number of signal input ports. Thus the sizes of A(f), B(f), a(f) and b(f)
do not depend on the number of linear elements in the overall network, However, it is
obvious that the linear system matrices and vectors get more complicated the more
linear elements there are in the network. That is , the number of multiplications and
additions required to determine A(f), B(f), a (f)and b(f) increases with the num-
ber of linear network elements. The svstam mat“ves and vectors of the linear net-
work A(f), B{f), a(f) and b(f} may be determined using standard techniques [9].
However, when the system vectors and matrices are determined, {y,{f),. el A}
should be interpreted as the port voitages or currents and not as urpnerltors since

{Un( f‘ c LQ. f1} are d»pﬂndwnl variables — the variabies

9.3.2 Non-linear response

An expression for the non-linear response v(f) is determined with the signals at

the A" signal input ports as given by Equation {9.8) and [, = my for all & <
{1,2,..., A'}. Thus the output response v{ f) is given by
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o) 20 my my My mE
LD SEED Vil SR SIS SEN
my=0 mp=0 i ;=1 i1,my =1 =1 1‘[\",-,-.}\,21
(M Iy

fy Lo N v gl .
Hmlv'“vm}'\'(‘,'/l SR @/1,11,,nl: VPR i "v’r/"i\,u\',ml\») .

ewp[ ZZ ék,lx,] ( IZi wu,/ (9.20)

k=1(=1 k=1{=1

From Equation (9.12) it is seen that another expression for v( f) is

(3]
—
~—

T af) + b7(f) s(f) (9.2

1l

u(f)
Thus

EN

bulf) skl f) (9.22)
=1
The controlling variable z-{f) where r € {1,2,..., R} in Equation (9.22) is relat-
ed to the known input signals {8:(f),-. . sw(f)} as a multi-port Volterra series.
., R} is given as the response

R
) = 3 adf)z(f) +

r=1

e

The controlling variable z.(f) where r € {1,2,.
from a non-linear multi-port Volterra system with frequnncy domain input signals

{s1(f),-- ., sk (f)} where si(f) with k ¢ {1,2,...,K} is given by Equation (9.8)
with Ik = my. Thus
20 o my my myo MK
L NT el
)= 3 Y Y DD
01=0 op=0 14y =1 1,0y =1 =1 Hope =1
[41,00(01 + -+ 01\')
(L Yon e i+t BB i)
N oop Kook \
el D3 o] 1(7- 5 v (8.23)
k=1 i=1 > k=1 I=1 /
where (H.)o;,..c;(*) is the multi-port {frequency demain Volterra transfer function
between input signals {si(f},... 85 (f)} and the controlling variable . (f). From

Equation {9.23) it can be seen that

K my
AR 1
= ¥y (9.24)
k=1!=1
for 24y € {1,2,...,m;} and where
Ty = number of {ip; .. 4} which are equal to { {9.25)
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fork e {1,2,...,
ke {1,2,...,

Thus

Then the response x,( f) where r € {1,2

z.(f)

where

q
Y
¢

and {r
{wr

:3.

which is just a coemc1e‘1t to expljoTq

caref] (:()nsmeratmns, be rewritten int

z-(f)

where

Jopd..

Klandle{1,2,..

225

K}andie {1,2,.. -+ mg}. This means that the gk, variable where

-y} fulfils the following two properties

VENEIS {O, L. vok} (926)
mg
doa = o (9.27)
=1
my my my K o
S o PRSI ol 35 o Y
1,1=1 i,0, =1 tre = :r\oR—I)AII‘l
o1 ot Ui LI RN my
N 5T oL 2 Qg
> 2. > DS gty (9.28)
q1,1=0 91,mqy =0 qre, =0 10,mpe =0 k=1 I=1
Ne—————e
21,1+ q1,m, =0y TEA TR m g ZoR
-, R} can be written as
oo 20 oy 01 or oK
S IED VD DTS SRR 5
01=0 ox=0 q11=0 q1,m; =9 gx,1=0 TUc,mpe =0
91,1+ -+ m, =0y R e ) =L)<
Lica(01+ -+ + o)
T re 4T s T ~ .
(IT>01+-~-+OK(¢ q) exp[jolq) §(f~vTq) (9.29)
wl x1 PR
P TRUPT S AP T (9.30)
B0t o By e e N R N L R!l'm”“ (9.31)
[Pri Blmp kb T e RITUIXE g 50

et q) has been introc 'ucea as acocmuont instead of (K)o, 0 (-

T - Voo PO A
Then, =, f) can, after some

more convenient {orm:

(9.33)
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1 1 fOI‘ a = ,/3
J/‘x 5 = f : .
«(?) l 0 otherwise (9.34)
o 9 0 R
— — <. o o
2. =2 2. o 2 > (9.35)
g 911=0 71,my =0 r,1=0 T, mp =0

The variables o and 8 in Equation {9.34) may generally be scalars or vectors. In
Equation (9.33), (z, ) (z,qu) is the (presently unknown) oth order coefficient of
exp(j q')TqJ 6(Ff —vTq) in r-(f). Substituting Equations (9.33) and (9.8) \nth
I = my into Equatlon (9.22) gives v(f) as

R oc
o(f) = D030 3 Adllal) ar(wTq) (2)e(wTq) explidTq] 8(f - wTq)
r=10=1 ¢q
K my
307 bulwky) expli dua] 8(F - de) (9.36)
A=1 (=1

Thus two expressions for the output response v( f) are obtained. In Equation (9.9)
the response v(f) is given by the mnulti-port Volterra transfer function which is
to be determined (with the substitutions mentioned earlier in this section), and
in Equation (9.36) the response v(f) is given by network specific vectors and the
non-linear controlling variables.

9.3.3 Transfer functions

From Equations (9.9), (9.10) and (9.36) the expression for an arbitrary first order
(Ilm|| = 1) frequency domain Volterra transfer function can be determined a

R
Ho,ome=10,.000e1) = > adte)) (z)1(¥ns) + bel(vny) (9.37)
r=1

for given k € {1,2,..., K} and l € {1,2,...,m;}. Using vector notation the expres-

sion for a first order frequency domain Volterra transfer function is given by

II’)O"‘

Tk

—1o. 0l = at(De)m (k) & L) (0.3%)

and where

z,(¥7q) = (z1)o(¥7q),...,(zr)(vTq)T € CF! (9.39)

is the oth order vector of the controlling variables at frequency y’)Tq. Thus to
determine the first order transfer function {rom a given input port k € {1,2, ..., A}
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and a given ! € {1,2,...,m}, the quantities a( i)y (@) and be(ihe;) must be
determined.

The multi-port Volterra transfer functions of second and higher order (Iml] €
{2,3,...,00}) can be determined from Equations (9.9, 19.10) and (9.36) as

fLm....,mN‘\ !r"’l,lv ey Vhmgy ot ) "i’]\'_l, ey 71"1‘[."1;‘_»)
1 R
- N7 a i Uasly Sy FETIATIN FP PN
= p a W ATr w 9.40
m1! 771[‘_! r[;; AL Ver il ey ({ )
Equation (9.40) can also be written in vector notation as
Hml,...,m;\-(t/'ljv sy li"l,:nl; """ H Z,/JI\"I-, s U’)l\‘,mk')
1 —

= ———— a’ (W) zymy(lllD (9.41)
O — o) zpmy (b1 {9.41)
for m|| € {2,3,...,2}. Thus to determine the multi-port frequency domain

Volterra transfer fupctlon of order 2 and higher, the system vector a{lj%]|) and

the {{m|fth order coefficients of the controlling variables at frequency i must be

determined.

9.3.4 Controlled variables

From Equation (9.12) the controlled variable vector y(f) is given by

w(f) = AHa(f) + B s(f) (9.42)
Thus
R i
Ylf) = D Az Y By s f) (9.43)
r=1 L=1
for a given ¢ € {1,2,...,Q}. Substituting Equations (9.8) with [, = my and (9.33)

into Fqnation (9.43) gives

2 ~n
PPN Ll i W S T
wiAS) =2 20 2 Nola) Ayslbt gl {rauigt ) explygtql S(f - ol
r=1 o=l
N g
+ LL B.z(Y/LNP\h\[jﬁr\{]l‘lj—t_y;\vl\, {() 143
k=1 =1
The response yof f) from the purely non-linear subsystem ¢ € {1,2,. ...Q} can also

be described by a multi-port Volterra serjes as
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I \2 \2.; [ o [0 roo
Yo\ JJ) = 2. L e [ ol

ny=0 np(q)=0 ‘/_'30 ‘/—00 /—'30 «/-r.o

La.00(lml])

(GQ)nl,...,nP(q)(el,l 3oy 91,711; """ ; 0P(q),17 cee, 0P(q),np(q;)

Pg) n, P(q) n, P(q) n,

IIIT =5, (005) 5(f— > Gr,p> ITIT 8., (9.45)

=1 p=1 : r=1 p=1 r=1 p=1

where

noo= [n,.npglT e zP@X (9.46)

and (Gq)nlr-anP(q)(.) is the partly symmetrical inulti-port frequency domain Volter-
ra transfer function between inputs {z5,.(f),.. 1 %5, oy (f)} and output y,(f) for
non-linear subsystem ¢ € {1,2,...,Q}.3 In case the original (G'!])Tll,.‘.,np(q)<') trans-
fer function is not partly symmetrical, it must be made partly symmetrical us-
ing for example Equation (9.5). The reason for requiring a partly symmetrical
(G'q)m,_,ﬂnp(q)(-) transfer function is that it significantly reduces the amount of comi-
putations that must be carried cut to determine the overall Ho\,.omg () partly
symmetrical transfer function. When (Gy)n, npq (") is partly symmetrical then
Humy,...m(+) automatically becomes partly symmetrical when the present method

is used. Note that y,(f) where g € {1,2,...,Q) contains only non-linear contribu-

tions. Insertion of Equation (9.33) into (9.45) gives

°In section 9.5 some common types of non-linear time domain relations between input-
s {z‘,q'l(t),.”,z‘,f7 pigy(t)} and output y(¢) are given as well as the corresponding multi-port

{Gadn,, oy (°) transfer functions.
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v {f)
0 0 0 20
SP VP SR 3D VI D) S
n; =0 np(y=0 o11=1 qm 01,n) =1 ql,nl
o0 o0

IDEED DS 2

OP(9)1=1 Gp(qy CP(a)npy =1 Qpy),

Pl
P(7) n,
Laoolllnd) T TT A, (ila, 1D
r=1I p=1
¢ o T
I\Gq)n;,...,np(q) ('L/’ SR TERES E[’Tlh,m yoe
T T
B} d/ qP(q),lv .. -v’lfl) q}"(q.),np“})
P(q) Tty
T .
I (25,00, (0 q-5)
r=1 p=1
r TP('J) ne 1 _Pla) a, \
I IS ICENED ) SPHN (9.47)
r=1 p=1 r=1 p=1
where
- T fimiix1
qrp = Qrpllee e s Qrp tomyseennn. ydrp K lss -« .o, Komyc S ZO+ ’
(9.48)
and the summation over q., is defined symbolically as
Or,p Or.p 9rp Orp
SRR S SR SRS 0.
9:rp Irp11=0 grpi1m, =0 Trp =0 qrp g, =0

WhererE{l,iZ,..A,P((])} and pe {1.2,..., n.}

As seen from Equations (9.38) and (9.41) it is necessary to determine )il
This is done using the fact that Equations (9.144) and {9.47) must be identical:
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(e8]

ny =0 Np(y=0 o1

gk
gk
]

Pa=l Doy 2Pap =t Tetanp,
Plg} n,
LZ >0 |n“) H H Orp( ‘qrpll
r=1 p=1

e T T .
\Gq)nl,.,.,n‘p(q ((/) q11:'~-7‘¢ lh,m)“‘

”
sl dp(g) s " qP(q)‘np(q;>

P(’I) ir
(IJ4r)Or‘p(\/lf/} qrp)
r=1 p=1
Plg) P(1) .
T ’ T
EXP[J¢ qrp] 81 F - ZZ%J
r=1 p=1 r=1 p=1
R o . ” r
= D203 Alal) 40T (20w q) expliéTal 6 - wTq)
r=1 0=1 @q
AN Mg
+ 0T Byl exply ouil 6(F - ves) (9.51)
k=1 (=1

The controlling variables can be determined by using the fact that the coefficient of
exp[ l|@l]] 6(f — {l1f|) on both sides of Equation (9.51) must be identical.

To determine the first order controlling variables = {¢y ) for given k € {1,2,...,
A} and e {1,2,...,m} Equation {9.51) is used to yield
R
DA (i) (e = = Boalyes) (0.52)
r=1

where ¢ € {1,2,...,Q}. Now all the first order controlling variables (%) can he

determined as

z(Ur) = —AN e bl (9.33)
where

- . : T xi =
briigl = By (o Do iy it e 09 (9.54)

Iy b Doy
Thus the vector be{in;) is the kth column vector of the B{y,) matrix. The
solution vector in Equation (9.53), €1(¢x ), can be determined provided the matrix
A(’wk,{) is unique and non-singular. If this is not the case, the original network

i : aniane snd nemocinois e
can be perturbed by some linear slements to obtain a unique and non-singnlar
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A(¥g) matrix. (Practically, the matrix A{tr 1) Is not determined since it is actually
only A~ (z,b“) that is used. This matrix may be determined by setting s(f) =
[0,0,...,0]7 € {0}**! and then using y( f) as excitation signals instead of z(f).
This technlque is used in Example 2 in Section 9.6. If Q # R then A(F) is non-
quadratic and then the inverse does not exist. This problem can be solved by

introducing fictitious controlling or controlied variables as follows:

o [f Q < R then introduce B — Q fictitions controiled sources which depend on
one or more of the controlling variables z((f),..., rr(f).

s If @ > R then introduce Q — R fictitions controlling variables which control
one or more of the controlled variables y;(f)...., volf).

To determine the second and higher order controlling variables Zm([[61]) where
flmil € {2,3,...,} use Equation {9.31) to vield

ny1=0 npqy=0 o11=1 g, , orny =1 gy
20 o0
PED DRSS >
2pP(2),1=1 G prgyy opy 7)."p(‘l!_l 97 SO TN
P(q) n,
Lasoliinl) TT TT Ae.oUige,lD
r=1 p=1

~ ST T .
(Gq)nx,n-,nmq)(‘/’ qy1---- % Tiyi "

T T
b qP(q),p-'-ﬂ.f) QP(q},np{?J

Plq) n,
iz]qr)er(u') Q—p)
r=1 p=1
P(q) nr , Ply) a,
exp[} DYDY q-p} "\f -y Sy 7)

(9.53). From tth
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Property 9.1

where

1 = [1,L,...... T e {1yimiba

for any given g € {1,2,...,Q}.

Proof 9.1 Follows directly since {¢11,. .., P1mys---- .. Y PR -

phase base.

Property 9.2
Qrp.kl € {07 1}

(9.56)

<y PR my } forms a

=]

(9.58)

forallr e {1,2,...,P(q)}, pe {1,2,..,n.}, k€ {1,2,...,K}, l € {1,2,...,mg}.

Proof 9.2 Since {¢1,1,.. ., P1,myy------ K1+ PR mge ; forms a phase base, then
only one of the coefficients of any o, where k € {1,2,..., K} andl € {1,2,....ms}

must be equal to I and all others must be equal to 0.

Property 9.3
HQr,pH = 0:p € {1,2,.~.,OC

Jorallre{1,2,...,P(¢)} and pc {1,2,...,n.}.

Proof 9.3 Follows directly from Equation (9.55).

Property 9.4

where the o-vector is defined in Equation {9.65).

}

a
(9.59)
[}
(6.50)
(9.61)
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Proof 9.4 Equation (9.60) follows directly from property 9.3 and Equation (9.61)
follows directly from property 9.2. m]

Property 9.5

0rp € {1.2,.. . Imfl — 1) (9.62)

forallr € {1,2,...,P(q)} and p € {1,2,...,n.}.

Proof 9.5 From Equation (9.55) it is given that v, € 11.2,...,00} for all r ¢

{1,2,...,P(Q)} and p € {1,2,...,n,}. From properties 9.3 and 9.4 and as ||n|| €
{2,3,...,cc} then |lo]] € {2,3,...,%}. ds loll = ilmii from Equations (9.50)
and (9.61) then o, € {1,2,...,lm]| ~ 1} for ail r & {L,2,..,P(q)} end p €
{1,2,...,n,.}. !
Property 9.6

Inji € {2,3,....[[mi]} (9.63)
forany g € {1,2 Q}
Proof 9.6 From Equation (9.55) it is directly seen that iIml € {2.3,...,20) for
any g € {1,2....,Q}. Similarly, from properiies 9.3 and 8.4 0t follows that |Inll
12,3, imi} Jor any 7 € {1,2,...,Q}. ]

Using these properties, the second and higher order controlling variables @)y (i)
can be determined as
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‘\’P(Q) 01,1 Ot,n; Op(g) OP(a).nprg)
n1=0 np(g)=0 o1,1=1 01,n, =1 oprg),1 =1 Op(q):’:':)zl
Z e Z ...... Z e Z
g, Q},n1 9ot qp(q)‘np(q‘
P(q) n, P(a) n,
ummnAJu )IIHAnm%w
r 1p= r=1 p=1
T T
(Gq)"um.np(q) (’d’ 91,15+ '71‘/’ Ging Y q}:’(q),lv o '7¢ QP(q),np(q))
P(q Ny
H H (Iqu)Urp ’d’ Qrp)
r=1p=1
R
= 3 Al @yl (9.64)
r=1

where 1 and Aq(-) are defined in Equations (9.57) and (9.34) respectively, and

in 1 -
o = [01,1,...,01,”17 ....... 0P(q),1w'--woP(q)‘nP\rq)]T S ‘ZL i (9.60)
N o= m|l - (m++n) (9.66)
Orp=
fmil = (n + -+ npy)) +1 = (011 + +0r—1,nr_1) if p=1
tmf] = (n, +---+ nP(q)) +p—(o114+ -+ o, ,m1) if pe{2,3,...,0}

(9.67)

for r € {1,2,...,P(¢q)} and p € {1,2,...,n,}. Equation (9.66) is derived from
property 9.6, and Equation (9.67) is derived from properties 9.4 and 9.5.

Now @jimy(||¥l) is determined by using all the zets of equations for 7 € {1,2,.
~Q}iu Equation (9.64) from which

ymy(ll) = (9.68)
wlhere
0
wmy{l¥l) = Deestug (DY € Xt (9.69)

has elements
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(ug hpmyi(lel))
N Ne(y  Owi Cimy Orta Ortanp
= L L L Z ...... Z
np=0 Np(y;=0 o1 =1 ot,ny =1 Ipig =1 Oprq‘,‘m =1
)
P(g) Plq)
S X T S T Qg
q],L "111,n1 qPi;)‘l 'ZI‘P(Q].nP(ﬂ =\ r=1
P(, nr (7) Tir
Contliol) 4 (303 a,,) Aorslla- i)
=1 p=1 / r=1 p=1
T T ) T
(Gq)m,-«-.np(q)<1,’ 1% Qipyi gy qP(q),h“'v’L‘/’TqP(:;),n._p(q))
P(q) n,
ITIT (25007, (9.70)
r=1 p=1
for g € {1,2,...,Q} where
(1 tor T ¢ e T
1 for 4. << ey, .
Q& ' o -
(Gt Grn,) io otherwise (9.71)
forr € {1,2,..., P(¢)} and
fou o1 Hitmii-1]T 1]77L‘|x1 -
e = [0 ] € (9.72)

Equation (9.70) has used the fact that the multi-port frequency domain Volterra
transfer function (Gq)nx,--mpm)(‘) is partly symmetrical for all ¢ ¢ {1.2,...,Q}.
The condition in Equation (9.71) is used to avoid contributions which are simply
permutations of {q, ;,...,q,, } where r ¢ {1,2.. P(q)}. As seen from Equations
{9.68) and (9.70) there must be summation over many g-variables. From Tquation
(9.70} it is seen that there are llm]| x {Inj| ¢-variables. According to the properties,
only ||mi] of these g-variables are different from 0 (those g-variables that are not 0

are 1}. Thus it would be more convenient to use a pointer wy; to indicate which

g-variable in the set {q 11/ ...,q R N RN s TP (), mp ke } is eqnal
to 1. In this case only HmH w- pomters are needed instead of [[mij x lnl| ¢- varmbl
Now the requirements ziven for the g-variables in Ex quation (9.70} — and in turn

in properties 9.2, 'J.l, 8.3 and 0.4 — must be transferred to the w-pointers, As
t

from the properties

r j ! —~
wee € {12, fnll} (0,713

for ke {1,2,...,K}and l € {1,2...., ms}.

Next the correct g, , vectors where r € {1,2,.. ., Plgijand pe {1.2.... n)

wusi be determined. To do this define vectors
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zhp(w) = [sr.p,l,l(w)y--‘7zr<p,1,m1('w)7--~
T
LR Z",;‘,.’\’.l('w): e 3,’,;,.".‘,7‘.;{(“’)} S 7il-m“)(1
(9.74)

re{,2,...,P(q)}and p€ {1,2,...,n,}, where

milx1 .
w = [wlyl....,wlyml, ...... .’Ll}}\"l,...,w,'\"mK]T S ZLI_ lix (9.1())
1 for wey=m+ - -+n_1+p .
z = o 9.76
Zripid () { 0 otherwise ( )
for ks {1,2,...,AYand I € {1,2,...,my}. Thus
9y =  Zrp(w) (3.77)

Using tiie above, a modified version of Equation (?.70) is obtained as

(uq)ilm”(n"f’!!)

M Ne(g) 01 O1,m Op(g) Orainp(g
ny=0 np(qy=0 o11=1 01,my =1 op(g)1=1 ’)F(q)'nP(q):
iml Il limii inll
wi =1 wy,m, =1 Wp,1= WR,m e =1
P(q) P(q)
[Tt IT Qzia(w), oo 2 ()
r=1 =1
Plg) n.
Ceo(lnfl) TT I Ao, (l=rs(w)l)
r=1 p=1
'\(/;J\' T3y P g) '(’U“’Tzl.l'\’w)ﬂ-'-71;:‘7:1.71!("‘1”};"'

) L T . \
Splzp (w0 Zpy g ()]

K}

(T 2 () .
(Zjgr Jorpl ¥ Zrp{w)) {973}

i
—
1_'.___

In Equation {9.78) it is not necessary to include A;(-) from Equation {9.70) because

the use of w pointers ensures that Ay(-) = 1.
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9.3.6 Algorithm

To determine the non-linear multi-port frequency domain Volterra transfer function
Hupy,....mpe(-) the following algorithm can be used.

1.

5.

Specify the number of controlling variables for :Lll Q non-linear subsystems,
{P(1),...,P(Q)}. Specify 7, = FPRT 213, P(q)] Tfor all g € {1,2,....Q»
where 7, contains all sub:cnpt numbers for the relevant controlling variables
z(f) = [z1(f),....zr(fNT. For example, if 7, = [1,2,4]T for non-linear
subsystem g € {1,2,“4,(2} then the corresponding controlling variables are

{z1()s 220 f) 24 ).

- Determine expressions for the system matrices and vectors of the linear system:

“H(): B(f), a(f) and b()).

- Specify the multi-port frequency domain Volterra transfer function

(Gy)ni,.. np () Tor all the non-linear subsystems q € {L,2,...,Q}.

. Determine the controlling vector Timi({l{)). This is dene by a recursive

method where higher order variables are determined from lower order variables
as follows:

¢ Determine z(vy,) forall & € {1,2,..., K} and { € {1,2,... my} using
Equation (9.53).

Determine z,(vTe) for all e where llell = 2 using Equations (9.68) and
(9.78). The vector e is given by

- . 1 )
€ = [er1reee) Climyyeenn. VK €Kmy] € {O,l}'l fix1
(9.79)
where the element e,; € {0,1} for all & ¢ {1,2,...,K} aad
e {1.2,4.. m,;.}.
. T . . . . .
¢ Determine z3(1)" €) for all e where |je]| = 3 using Equations (9.68) and
T e ;
» Determine z4{4" e} and so on.
LR I ]

# Determine zymy( ¥’ e) for all e where jle|l = (Il using Fauations (9.68)
and {9.78). The only e which fulfils this is & = 1. Thus the desired
controlling variables my|({[%]]) are determined.

Determine Hony o (1,0, s P myie oo PR Y ) using Equation
(9.38) if |lm]l = 1 and Equation (0,41} if |jm/| € {2,3. x}.
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9.4 Computer implementation

This section briefly discusses the computer implementation of the theory in Section
9.3 to determine non-linear multi-port frequency domain Volterra transier functions.
The implementation is made in the MAPLE V Reolease 3 symbolic programming
language which, for example, makes it possible to determine algebraic expressions
for the multi-port Volterra transfer functions. The source code for the program is

included in appendix E.

9.4.1 Some introductory considerations

It can be derived from the method described in section 9.3 that the number of

contributions of z,(17e) for a given 0 = lle]| € {1,2,.. ., [lm]]} is given by

. jlml!! ,
Liiml) = =y (!}Z!—o)! (9.80)

Thus the total number of evaluations required to determine Zyjmy|(I[1]) is given by

Imy|
T(lmlh) = > T(m) (8.81)
= oimi _ (9.82)

In Table 9.1, 7,(}lm|}) and T(|}m|}) are listed for some values of o and [[m]. When
the multi-port frequency domain Volterra transfer function of a given order llm]| is
to be determined, all lower order Volterra transfer functions at any permutation of
{my;...,mk} are determined at a very low computational cost. This is because all
the required countrolling = vectors have already been calculated. Thus Hyoc ()
where 01 + -+~ +ox € {1,2,...,lm| - 1} is easily determined using Equation {(9.33)
if o + -+ ox =1 and Equation (9.41)if 0y + -+ o € {2,3,..., 0}

It can also be shown that the number of Hpy .. (-) with different frequency
arguments that must be determined to evaluate the response v( f) is given by

}\ 1 ! f \
Dimg,....1 e Ig) = I7 AT+ 1) (T + iy — 1) {9.813

Aol ;

k=t K

iven of the number of different transfer functions (‘diffor-
qiency arguments are different ) that must be determined

versus the number of input ports and applied (incommensurate) frequencies.

When K > 1 there have to be determined several Hoy o (0) transfer functions
of the same order ||m||. The number of Hony . nge(-) of order ||m]| that must be

determined for given K is shown in Table 9.3
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Order Timil) ‘ 1
lml {o=1 0=2 0=3 o=4 0=53 o=g¢g o:ﬁTIT{flmi[‘),

1 1 U]

2 2 1 3

3 3 3 L T

4 4 6 | it 15

5 5 10 10 5 1 1

6 6 15 20 15 6 63

7 7 21 35 35 21 7 1 127

Table 8.1: Number of controlling vectors which must be determined. T,(|lm|)), for a given
order ||m|| versus the orders of the individual controlling variables o. If the frequencies
form a frequency base then the number of contrelling variables listed is the same as the
number of different frequencies at which the controlling variables must be determined. The
rows indicate that a parallel computer could be efficient in computing the Volterra transfer
functions as the calculation of different contributions of the same order o can run in parallel.

9.4.2 Precalculated tables

To make the program run relatively fast, tables are precalculated to determine valid
7, 0 and w vectors from Equation {9.78) where

P(q) n, P(q)
Loco(llnll) TT IT Acru(lizea(w)il) I Qlzen(w).. . zomfw)) = 1 (0.84)
r=1 p=1 r=1

In the computer implementation the valid o- and w-values are combined in one
pointer to give the location of each which countrolling r-variable jnvolved in the

KL =-=Ix || #H, | #H, | #H, | #H, | #H,
1 2 I 4] 5 6
1 1 o4l w0l 200 33 s
i 5 I 6§ 21 a6 126

2 [ R U )R T

2 s : 36 120 330 |
2 6 i120 0 T8 o4 1365 | |

|

Table 9.2: #H, is the number of different Hen, myp () where my + -~ 4+ mg = o that
must be evaluated at different frequencies to determine vl f) when the symmetry properties
of the Volterra transfer functions are ntilized.
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Order | Number of Hy, . m,. () of order [imj]
lml | K=1]K=2{K=3|K=4|K=5]|K=6
1 1 2‘ 3 4 5
2 i 3 i 6 10 15 21
3 1 4 10 20 35 56
4 1 5 15 35 70 126 |
5 1 6 21 56 126 252
6 1 7| 28 84 210 462

Table 9.3: Number of Hm,, ..mx(:) that must be determined for a given order m and
number of input ports K.

calculation of (%)“m”(”’l/’“) where ¢ € {1,2,...,Q}. These table entries are of the
form

H{ne,np ), il np()!}. {lin]| pointers to z-variables}} (9.85)

for a given P(q) and {jmf|. In (9.85) the coefficient is derived from the fact that
there are ny!---np(,! identical contributions to (ughpmy(1¥]]) due to permutations
of the partly symmetrical (Gq)nh_.,,n;,(q)(-‘) transfer function as seen from Equation
(9.78). The number of entries in this type of table versus the number of controlling
variables P(g) for the given non-linear subsystem and the order [|m] are shown in
Table 9.4.

Order Number of table entries

[mll | P(e)=1 P(g)=2 Plq)=3
2 1 4 9
3 4 20 54
4 14 92 306
5 51 452 1863
6 202 2428 123483
7 876 14212 88360

Table 9.4: Number of table entries for the determination o imy (1)1 versns the number
\

of controlling vaciables P{q) and order jjmi|.

Also tables are precalculated for the locations of the 21" — 1 evaluations re-
quired to determine Ty ([¥]1) as seen from Equation (9.82). To illustrate why
this type of table is necessary consider the following example.
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For a given order, o, compare z,({;) and z,(f22) where Q, # 2;. As has been
described previously, the oth order contribution is calculated from contributions of
order 1,2,...,0—1. Thus the frequencies at which = must be known for lower order
contributions to determine #.(f;) are not the same as those used to determine
©,({22). Thus it is necessary to know where to find the lower order contributions
dependent on the given frequency (actually a pointer to the given frequency).

During calculation reference from the former table to the latter is made.

9.4.3 Program

The program named volfun consists of three table-generating procedures, an initial-
ization procedure which defines arrays and reads tables into memory and a proce-
dure to calculate the multi-port frequency domain Volterra transfer function. Once
the tables are calculated only the latter two are used. The current version of the
program volfun allows determination of up to tenth order transfer functions and
non-linear subsystems with up to two input ports.

The program can be used in three different modes:

e ‘algt” — A full algebraic evaluation where tle multi-port frequency domain
Volterra transfer function is given by a single expression as a function of the
elements in the linear network and Volterra transfer functions of the non-linear

subsystems in the overall network. This is usually used for visual inspection
of relatively low order Volterra transfer functions.

e ‘algr’ - A recursive algebraic evaluation where a given oth order contribution
is given by lower order contributions of the controlling z-vectors. The result
from this mode can be directly translated into FORTRAN 77 code using an
internal Maple V procedure. This mode is used for relatively high orders and
where a high speed FORTRAN 77 version is to be determined.

* ‘num’ - A numerical evaluation of the Volterra transfer function. As this
version does not use hardware Hoating-point arithmetic this mode is usually
used for numerical evaluation of relatively low order Volterra transfer func-
tions. For higher order numerical evaluation the ‘algr’ mode is used to produce
FORTRAN 77 code

The user must specify: (i) the number K of signal input ports, (ii) the number
7} of controlled variables, {iii) the number Z of controlling variables. {iv) index

ists g, forall g & {1,2,...,0} to spe which variables control each of the non-

7
ear subsysiems, (v) procedures to calculate AT B(S), a(f) and b( f), (vi)
procedures to calculate the multi-port frequency domain Volterra transfer functions
(Gq)m,...,np(q)(') forall ¢ € {1,2.....Q} of the non-linear subsystems, and (vii)

mode of operation which may be either of tlhe types ‘algf’, ‘algr’ or ‘num’.
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9.5 Some types of non-linear subsystems

This section gives some examples of types of non-linear subsystems. The time
domain relation between inputs {z;,,(t).....2;, o, (t)} where j,. € {1,2...., R}
for r € {1,2,...,P(q)} and output y,(t) for subsystem ¢ & {i,2,...,Q} is giv-
en, and the corresponding multi-port Volterra transfer function from Equation

(9.45), (Ghny . ,np(q)(fh PPN M ST ey - 9p(, T"[’(q)) is presented with-
out derivation. In the following (X )m,m,np(q) is a real constant related to the trans-
fer of signals for the multi-port non-linear system in Figure 9.2

9.5.1 Typel

A common tvpe of non-linearity is given by the time domain input-output relation
VI visg 3

o0 s} P(q) )
Rt = N Y (Kydunpy, 11 ) (1) (9.86)
n1=0 np(y=0 r=1

It can be shown that the corresponding multi-port frequency doniain Volterra trans-

fer function is given by

(Gq)nl,...,n‘u(q}(81,17"'791,711; """ ;HP(q),lr'"agp(q),np(q)) = (}\"Q)ﬂl----ﬂlf‘(q)
(9.87)
This type of non-linearity (note from Equation (9.86) that it does not have memory)
can be used to represent e.g. a non-linear resistance, conductance, transresistance,

transconductance, and current and voltage gain transfer.

9.5.2 Type 2

Consider the foliowing type of non-linearity which contains memory:

oo 20 d Pq)
Wty = S S Ky 2T ] 0w
R o] i LA Pl tL.L; _,q,r"J
ny=0 nprqy=0 r=1
Tt can be shown that the corrmsponding mnlti-port frequency domain Volterra trans-
fer function is given by
(Gl “TVP(q) (1o Fungyeeees Pyt UP(g g

Plq) n,

= j2r (}\"1 TP gy Z Z grp (989)

r=1 p=1
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This type of non-linearity which contains memory can be used to represent e.z. a
non-linear current-voltage capacitance.

9.5.3 Type 3

Consider the following type of non-linearity which contains memory:

ya(t) = Z Z (Ko)as,.. W)/ H 2 ( (9.90)

n;=0 npr=0 r=1

It can be shown that the corresponding multi-port frequency domain Volterra trans-
fer function is given by

(Gq)m,\..,np(q) (_91,1’ e '91,n1§ """ : '9P(q),1~, ceey 9P(q).np(q))

(Kgdny,map
= —F {[,m (9.91)
]27 Zir=1 r=1 87‘ 2

This type of non-linearity which contains memory can be used to represent e.g. a
non-linear voltage—current capacitance.

9.5.4 Type 4

Consider the following type of non-linearity which contains memory:

I
P{n) e

20 [ore) . } d
Y(t) = Z T Z U\'?)mw-vn?(q) H ’:E Ijq.r(t)-‘,
r=1

n =0 P q)=0

(9.92)

It can be shown that the corresponding multi-port frequency dommain Volterra trans-

fer Function is given hy

((Jq)nlv"‘vn'Pfq)l»91117 s 91\'11 e ) gP(\r})'l', B t)P(q).n;;,ﬂ)
JEF Y
Plgi n.
— (40 teEne; sty TT » fonay
=) VRFITL e npg) 11 Yrop \adS )
r=1 p=1

This type of non-linearity which contains memory can be used to represent ag. a

non-linear current-voltage inductance.
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9.5.5 Type s

Consider the foilowing type of non-linearity which contains memory

P(q)

y(t) = i i (Kdatympgy 11 U_;, zjq,r(r)dr]ﬂr (9.94)

n1 =0 np(q)zﬂ r=1

[t can be shown that the corresponding multi-port frequency domaiu Volterra trans-
fer function is given by

(Gq)nl,...,n‘u(,”(gl,lv>~v91,ﬂ1; """ ;GP(q)‘lv‘"19P(q),ﬂ.p(qj)
("'C" T ,..0T 3
T o +---\+'1’) CF (9.95)
(52m)™ NN | g |

This type of non-linearity which contains memory can be used to represent e.g. a
non-linear voltage-current inductance.

9.6 Examples

The theory presented in the previous sections will be used to derive the non-linear
Volterra transfer functions in four examples. Maple V source code for a program
to determine algebraic expressions for transfer functions and for the example are

included i appendix E.

9.6.1 Example 1

Here the non-linsar Volterra transfer function between input s; and response u,
in Figure 9.3(2) will be determined. The time domain relation for the non-linear

conductance is given by

L) = b(v) = gty + g2 0D (9.96)
The modified non-linear systeni is shown in Tigure 9.3(b} where the linear and non
linear parts of the overall network have been separated. Using the algorithm in
section 9.3 the telation for the linear system is giv

n(f) = Aulf)zilf) + Bialf)si(f) {9.97)

where z,{f) is the controlling voltage across and y;(f) is the controlled current
through the non-linear condnetance. Thus it can be shown from Figure 9.3(b) that

9.6. Examples

[N
e
o

Fignre 9.3: Example 1: Non-linear network with one signal input vort and one non-linear
element. (a) Original network; (b) modified network where the non-linear subsystem is
separated from the linear system.

Aa(f) = —(o1+ 727 5C) (9.93)
Bia(f) = 1 (9.99)
Furtherniore
o(f) = alf)nil(f) + ol frsi(f) (5.100)
Thus as v(f) = z1(f) then
a(fy = 1 (9.101)
uif) =0 (9.102)
linear transfer
for ny = 2
(G)n (P11, 011 = 92 1=
) o ) 0 otherwise 19-103)

TTeimeg Ban e [ Y d S Y o . N i L. N . N
Using Equations {9.38) and (9.53) the first order transfer function is given by
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1
Ho(ty 1) = c N (s _ _ i (9.104
H1(¥11) (zan(h11) = PR (9.104)

(D BQY and /0 7R) na
[GZAsy Pl

0 11y 1
EL Ald (v.i35) as

| —

Ho(d g tn2) = (z1)2(¥11 +1,2) (9.105)

b

where (z)2(%1,1 + ¥1,2) can be derived from

(T 1+12) = —2(Gr)a(¥r1,%12) Hi(%11)
X Hi(ofy2) Hi(na + 2b1,2) (9.106)

Using Equation (9.103) gives

Hz(li'l.lv'@l,z) = - g2 Hl("l"l.l) f]1<u/'1,2) Hl(lf'l.l + ’i’l,z} (9-107)

The third order transfer function can be determined in a similar way as

Halaly « by 5 2k =) = (23 )al2s o L b 5 Loahe o) (9 1nQ)
A3 W1 Yz YiLsg vgsivin oo iz T o) [EEAT

| =

where (21)3(%11 + %12 + 1¥1,3) can be derived from

(z1)3(01,1 + 12 + 1 3)
= -2 {(Gl)z(ll’l,l, Yo+ 13) (oh() (31)2(P12 + 1 3)
+ (G1)a( 12,011 + Y13) (20i(r2) (21)2(¥10 + P13)
+ (G113, 011 + Yr2) (zih(¥1a) ()21 + '11’1,2)}
XM (10 + 12+ v13)

— 6 (Gr)a(r-t2, %) (sifdra) (moh(ez) (z0)i(¥ra)
XH(ya + Yo+ ths) (9.109)
Thus using Equation (9.103) the third order frequency domain Volterra transfer

function is given as

Haleh b2, 3) =

X{HI(IL’I,I +¥12) + Hi(g + 4 3)

+ Hy(vn 2 + 11’1,3)} (9.110)
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These results for the transfer functions are the same as those obtained by Bussgang,
Ehrman and Graham {3] using the traditional probing method.*

A somewhat similar example to the one in Figure 9.3 has been given by Maas
(10, pp. 179-186] which includes a Tvpe 5 non-linearity given in section 9.5. Using
the method in this chapter, results are obtained which are in agreement with Maas.

9.6.2 Example 2

Here the non-linear Volterra transfer function between input s, and respouse v,(i.)+
v, in Figure 9.4(a) will be determined. The overall network contains two single-port
non-linear elements where the time domain relatious are given as

7-’:(7:6)

tie
(a)ﬁl\ ﬂ1_>H Jll:(&)
si( 1) vz |

Figure 9.4: Example 2: Non-linear network with one signal input port and two non-linear
elements. (a) Original network; (b) modified network where the non-!

are separated fTom the linear system {note that the original network 15 perturbed by the
resistance H, to avold non-unique system matrices and vectors).

inear subsystems

(9.111)

1l
[~]

“1t should be noted that there are two ctrors in 3] regarding this example. In Equation {3.19}

the factor —% shouid be —2, and in Equation (3.20) the factor — L shonld be +2
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where ¢, is a real constant for all n; and

B0 = w = Y, [ e + g} oy

ny=1

where [, and g,, are real constants for all n,. A linear resistor, Ry, is introduced in
the modified network in Figure 9.4(b). This is necessary because the system matrices
and vectors otherwise will be non-unique (infinity clements in the matrices and
vectors). Each Volterra transfer function from Figure 9.4(h) is denoted with a prime.
Thus the wanted Volterra transfer function Ho (Y115, ¥1.m, ) is determined as

]

me(¢1,1v--~y¢’1,m,) = Rdfv ]I‘;,H.!r\”’r//lel"'?djlym,l) (9113)

From Figure 9.4(b) the system matrices and vectors can be determined as

L [ —(2nfRy o) —j2nf .
A = = y o (9.114
(/) jiw { jemf —(J2rfq + 1) )
B(f) { (9.115)
and
a(f) = [-By, 0]F (9.116)
o = (R (9.117)

The frequency domain Volterra transfer functions for the two non-linear elements

are determined from Types | and 5 in section 9.5 as

(GDny(Fr1.- s B0n) . S (9.118)

and
(G2)n, (0 Brn) = by Ny (9.119)
2)n; 1,15+ 371 ny = (j‘)r)"l Hl‘;"'f)}',” 1 n g
Using Equation {9.38) the first order controlling variables are determined as

(b)) = =
B (J2m¢a0 + 0)(j2w llR +er) —driyiy
r l T
X|gt g 1 (9.120)
J2miy g
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Then by use of Equation (9.53) the first order Volterra transfer function is deter-
mined as

/r ial ~ . \ It

Al A\ H. . -
Al ~ i U“ﬂp- urei(v ) + L‘lp) (9.121)
Bp—oo
1 J23¢,

J2reiy  j2mdnag 4+ [

Then. using Equations (9.63) and {9.78) the second order coutrolling variables are
determined as

N
Fo W . L L2
T P11+ V) = . (

L 1

a) (o)
) (T2)
Thus by use of Equations (9.41) and (9. 120} the second order frequency domain
Volterra transfer function is determined as

. /1
Hy(dng, 1) = lim L5 = Ro 01 2s(in g + v 2) ) (9.124)

Rp—zo \ //

— 2 _ [
I W - ; : - g2
4“2{,31.1'31,2 ‘4'-2’,&1.114'11,2

« j‘ZTl”y‘}vl + 0112)
J2r{ ) + 22)g1 +
J2miby Jomiy o _
X (9.125)

27dg + L oj2n Vi + L

Higher order Volterra transfer functions can be determined in the same way. Th
results obtained are in agreement with Chua and Ng [6] who have determined the
Volterra transfer functions up to second order.

9.6.3 Example 3

Here the non-linear Volterra transfer functions between inputs {sy,s2,53} and re-

sponse g, in Figure 9.5(a) will be determined. The overall network contains two
onc-port non-inear elements and one non-finear transconductance with che foilow-

ing !ime domain relations:

Lty = Gl = 2. Comi VL) {9.126)
T
3

Wit) = sy = S g oMt (9.127)
11 =1
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and
3
7 ig(my) L = (v = Z Jons Vi (1) (9.128)
G — ny =1
() 3 A |
N +11 - ’ where ¢g ., Gmn, and g,,, are real constants for n, € {1.2,3}. The modified
g ﬂ overall network is shown in Figure 9.5(b) where the non-linear conductance and
2. 3 .
a I 1 the non-linear transconductance are represented at the same controlled generator,
T ; y2(21,22). Thus the overall network has two controlling variables and two controlled
a . . .

: : variables. It should be noted that the controlling variable z, controls both the
non-linear capacitor and the non-linear transconductance. From Figure 9.5(b) the
svstemn matrices and vectors can be determined as

| ' i
Vi (g P
1 (745} . 'L AC) =Y 0 ‘l (9.129)
I B i = - 9.129)
a , T Yi(f) RYif) 0 o
B(f) = : PR {9.130
where
Ys(f) S (9.131)
) — 131
: B+ Zalf) '
Yilf) = Yif)y + j2nfeen (9.132)
Yolf) = gog + YL(F) + j27fCy; (9.133)
and
Iy ya{T1,22)
) a(f) = fo.1F (9.134)
N4 I3 H 3 A
I b(f) = {0,007 (9.135)
i From Equations (2.126), (9.127) and (9.128) and by use of Types | and 2 in sec-
L 1 N /L AF tion 9.5 the Volterra trausfer functions for the two non-linear suhsystems are derived
(] Im,1%1 go1 Cys “’“_r_: - I (1)ss Yo| v as
. L S \i) Lr[,
,« 1 E %
0 | i !
(Gl By os b1} =
, ) , , [ j2me n 01+ + 0 for m € 12,3}
Figure 9.5: Example 3: Non-linear network with thres non-lineat elements and three signal ] 7
i —\‘..& RN £ N e Ty SR ORI NS RO SUUR £ S | bl wlare dla naoe Tl 1 o 1] stherwise
iﬁyuu UL, \d.) ligtilal HeLwWOILK, \U) IMoaed (eLVWoOrK WIlerTe e noui-iidear bLlUby_LClll?’ k
re separated from the linear system. {9.136)

)
=]
jo ¥
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(Gz)ﬂl,ﬂg(el,ls'"}91,7‘,1,62,17" -~0'2.n.g) =
[ Jman, for ny €4{2,3} A ny;=0
{ Jomp dor w1 —0 A up€{2,3} {9.137)
1 0 otherwise

In this example there are &' = 3 signal input ports. This means that there are three
first order, six second order and ten third order Volterra transfer functions as seen
from Table 9.3. In the following only a few of these are shown as the equations
are quite lengthy. Using the algorithm in section 9.3 the following Volterra transfer
functions are obtained. The first order frequency domain Volierra transfer function
from port 1 is given by
Lo — m,1 Yl l§‘1,1)

Hioolr1) = TN (9.138)

The secend order frequency domain Volterra transfer function from port 1 is given

by

Hypoltb1,%,2) =
Y (¥1.1) Yt 2)
Yo+ i 2) Yo(ubia + U2 Yilwn 1) Yilwn 2) Yo(w11) Yo(#1,2)

x {jaw(«m,l +112) €2 i Yolthr1) Yi(thi)
~ o2 oy Yi{thr 1+ t12)

+ Gm2 Yi(11 + ¥r12) Yolita) Kv("‘,[)l,’))}' (9.129)

©
=]
(=9
.

he second order multi-port frequency domain Volterra transfer function from

input ports 1 and 3 is given by
. —20ma902 Ya(th1a
H1,0,1(7,’{’1,1,7/)3,1) — — =AU —— 5/( - ) T (9 140)
Yo(ra +tha1) Yi(wr 1) I ACIRIR AL RS

O
=
o

not by one two-port generator as in this work. Using one two-port non-linear element
instead of two one-port non-linear elements, the number of non-linear elements in
the modified network is reduced by 1 which reduces the sizes of the system matrices

A(f) and B(f).
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9.6.4 Example 4

Here the non-linear Volterra transfer function between input s, and response v, in
Figure 9.6(a) will be determined. In Figure 9.6, B =4 Q, R, =2 Q. and ¢ = 1/2

™

£

N

i NN
(D = J;U,?

(b) |

SO

SR P‘_

L
!Ilrill= v

! T2

ya(z2)

Figure 9.6: Example 4: Non-linear bridge network with one signai input port and two non-
linear elements. (a) Original network; (b) modified network where the non-linear subsystems

nA SATArAaFoars v bhe livass nvatiesnlo
ars scparated from the linear network.

The overall network contains twe single-port non-linear elements where the time

domain relations are given as

B = i = Y g (0.141)
LJ-"’ +
Pl ._3_ ~
vi{t) = vy} = = ) an it {9.142)
L2
=

where a; =1 H,a; = 1/3 HA. g = 1/2 S and g, = 1/5 SV. From Figure 0.6(b) the

system matrices and vectors can be determined as
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A7) = o (9.143)

/ J (9.144)

where D(s) = 2s% + 35 + 4 and 5 = j27 f has been used as frequency variable, and

a(sy = [1,07 (9.143)
) (9.116)

=

@

z
|

The Volterra transfer functions for the two non-linear elements are determined Irom
Equations {9.141)-(9.142) as

1/5 for ny =2

, B IR 3 = ) ll‘-\
(G (51,1 5 S1n,) 0 otherwise (3:147)
and
31 9 31 90/3 A ny =2
(G‘Z)m.(sl,lyu'-,‘shﬂ-l) = ()1H+ ‘112)/ horn (9:148)

0 otherwise

The results obtained are in agreement with Chua and Ng [6, Section 6.2] who have
determined the Volterra transfer functions up to secend order.

9.7 Conclusion

A method has been presented to determine the frequency domain Volterra transfer
functious of non-linear multi-port networks containing non-linear multi-port sub-
systems. The method is based on a generalization of the probing method to allow
arbitrary frequencies. The Volterra transfer functions are described as functions of

network specific vectors of the linear part of the overall network and as tuactions of

variables which control the non-linear multi-port subsysiems. A method hag been
derived to determine these controlling variables in recursive form.

The method has been implemented in a symbolic programming language ( Maple
V' Release 3}, which makes it possible to d@.,srm‘.n-ﬂ' algehraic expressions for the

1

T'his implementation can directly translale the resulting

o b efa

Yolterra transfer functions.
Volterra transfer functions in recursive algebraic form into FORTRAN 77 code.
Four examples have been presented. The resnlts obtained are in agreement with

existing literature in the cases where comparison has been possible.
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Mathematical concepts

This appendix discusses the mathematical representation of noise. First there is a
short introduction to stochastic processes which is the basis for the mathematical
treatment of noise. Next the representation of noise in the frequency domain using
a Fourier series expansion is discussed in detail. Finally. there is an investigation of

signal energies and powers of random variables.

A.1 Stochastic processes

Noise in electrical networks and systems can be considered as random fluctuations
in time of, for example, voltage. current or charge. Statistical methods are used to
describe the influence of such random uoise signals in a qualitative way. These are,
for example, to analyze the mean value (which is nsually assumed identical to zero),
variance, antocorrelation and spectral density of the noise signals.

Using stochastic processes an ensemble of realizations {; A(tg), ;Al), . ... vA( to)}
with similar statistical properties are observed at the same instant of time t3. The
ensemble average of the random noise variabie A(t)) is given as

N

1
. 1
U ] \ s
(/\{fo)) = Lm - ; 2A{tg) (;\.L)
Ne—oo N 4~
el

=[x PN, (3.2)

J—ac v
where (-} denotes the ensemble average over realizations with simiiar sintistical
properties, and P{A, 1 is the probability density function for the random variable

tn). Another inportant quantiity is the autocorreiation function defined as
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f{1y,13) = (/\(tx)/\ (t

z)) (A.3)
= lim

m Yf AAL (£2) (A

/ / Aoy AL PO L) A dA], (A5)

wliere P(Ay, As,) is the joint probability density function for the random variables
/\(tl) and /\(52)

Sometimes, the time average of a random noise signal is used which is a somewhat
different coucept from the eusemble average. The time average of the noise signal
»A(f) of a given realization n € {1,2,..., N} in the ensemble is defined as

- 1 77 )
A= lim 27/ DAt de (A.6)

where the bar denotes the time average. An auto-correlation function is defined as

AOACT = lim = [ MDA (A.T)

As the random noise fluctnations are usually observed versus time, it may seem
closest to the physical reality to use time averages instead of ensemble averages.
However, ensemble averages are very useful from a theoretical point of view. This is
because tlie (joint) probability density functions for the randomn variables in many
cases can be deduced from theoretical considerations. Thereby it is possible to
evaluate the statistical properties of the random variables without the need for time
averaging. Another important factor is that the ensemble average usually equals
the time average with regard to clectrical networks. In case (A(fy)) = T\L‘) the
uoise process is called ergedic, which means that the enserbie average is equal to
the time average for any realization n € {1,2,..., N }.

The fact that a set of randem variables are uncorrelated or independent is often
used in the analysis of noise. A set of variables {A((2), \y(6),..., Aa(t)} are said to
be ancorrelated if

A0 Aat) - Anrt)y = (O L)) - (g8 (A8)
and independeut if
PO el i) = PO POGL) - Plard i) (A9}

where P(---) is the (joint) probability density function. This ineans that if a set of
random variables are independent then they are also nncorrelated but not necessarily

vice versa.
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A.2  Fourier series representation

. L . L
Generally the noise signals considered are extending over all time, —nc < ¢ < .
and have infinite energies. Thus for a real valued random noise signal A(#) where

—o¢ < § < o6 it s given that

rT
lim RDPFd = - [
Jim [0 ar o (A.10)
This means that the noise sigrnal AM¢) is ot square integrable and thus it does not
generally have a Fourier transform.! Asswining that the noise signal \({) has finite

energy in the finite time interval —7 < ¢ < 7 where 7 > 0 then

/_ NPt < oo (A1D)

In this case the signal M¢) where —7 < ¢ < 7 can be represented as a Fourier series
given by

20
Mty = 30 A(pg) explyirpet] (A.12)
pP=—20
where
A»g) = 1 AU expl—j2zpt] dt {A.13

In Equation (A.12) the quantity K'pE\ is a complex valued random variable in the
random process describing the statistical properties of the random noise signal A{t).
In [1] two suggestions for the frequency domain representation of random noise
signals are given.
The first suggestion is to represent A\(!) in a time interval —r < ¢ < 7 and to

assume A(t) = 0 for [{] > 7. The trequeucv domain reprebmmr on in this case

is the
with pnrlod 27 such that A(t) = Mt + 2nr) tvhor; nois an intessr From this the
{requency donain representation is given as a Fourier series similar o ] Gradions

{A12), (AL13) and (A 14). However, the assumption that (1) is periodic has the

uufurluuate consequence that the antocarrelation function is also perindic such that
Rty ta) = Rty 1, i
S5 1

i
7

'It should be noted that it is a sufficient but actually not a necessary condition for a signal
to have a Fourier transform that it is square integrabie. For example the signal cos{2mft) where

—x0 < ¢ < 20 has a Fourler transform though it is not square integrable
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of the Fourier series are orthogonal.? Since 2{¢1,1;) is generally not periodic for the
type of signals considered in the present work this suggestion is not useful. If the
systems under consideration are linear (single response) then it is not a problem that
R(ty,t5) is periodic because there is noneed for any evaluation between Fourier series
coefficients at different frequencies. However, as some of the systems considered in
the present book are non-linear (multi-response) the periodicity of A(¢) can not
be assumed since there may very well be a correlation between two Fourier series
coefficients at different frequencies.

Since it is most useful to have some kind of Fourier series representation in the
present work, none of the suggestions inade in [1] are useful.

The Fourier transform of the random noise signal A(¢) in Equation (A.12) is
given by

20

AN = 20 AT - pe) (A.13)

p=—o0
where §(- - -) is the Dirac é-function.® It is seen from Equation {A.13) that the
frequency resclution in the spectrum of A(f) is given by £. This frequency resolu-
tion can be made arbitrarily small by choosing r sufficiently large. To prove that
Equation {A.12) is fulfilled in the time interval —7 < ¢ < r it suffices to show that

>© 12
<;/\(t) - Z Alp€) explj2xpét] > = 0 (A.16)

p=—0c0

The autocorrelation function for A(t) is expressed as a Fourier series as

Rti,t) = (ML) N () (A.17)
0
= Z ty,nEY exp{j2anét (A18)
n=—0g
versus time —7 <t; < rfera given —7 < {p < 1, and
- o0
R(tine) = 5/ R(t1. tz) exp[—j2rntis) di; (A.19)
-0

*Two Fourier series coefficients Ar(pi€) and Ap(p2é) are said to be orthogonal if

Nar ey M oal cowt _
\/Al'ptf‘: A3{p26)) = 0 for all integers py and pp excupt when pg = po
3The Dirac § function defined by

This as a consequence implies that
/ Sayda = 1 A Sca) = o) A g(@)s(f — a) = o()6(f ~a)

n extensive analysis of generalized functions has been made by Lighthill {
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Using the fact that |a]* = aa* in Equation (A.16 gives fonr terms. The first term
can be determined as

(MY = R4 (A.20)

The second and third terms express the correlation between the time domain sienal
and a Fourier series coefficient as

</\(z> S K‘(pf)exp[—ﬂr.nm/\

p=

-0
i T
= Z </\(t)£/ A*(1) exp{j2n7 ff\]dt1> expl—j2xpcil
p=—oC -T
o
= > B(t,pf) expl-j2rpsl] = R*(t,1) (A.21)
p=—w0 ‘
and
o \
<A~(s) ST A(pe) explj2 g]) = R(t,1) (A.22)
p==o0
The fourth and last term expresses the correlation between two Fourier series coef-
ficients as
0 o0
Z (A0 &) A*(p2€)) explj2mp €1 exp{— 72w pa€l]
P1=—00 p2=—
o
= Z E/ Z (Aty) A™p p2£)) exp{—j2xpa£t] expl m&tyldty
15 T py=—c
X ew[ﬂﬂm& ]
o
= Z R{t.pi&) explj2zp &t = R(L D {A.23)
Pr=—"0

Thus insertion of Equations (A.20) - (\\.23) into Equation (A.16) using Rt t) =
R™(t.t) since A(#) is a real valued signal completes the proof.
[t can be shown [3] that if the autocorrelation function R{t,, t.) is pericdic with

peflo i 7 then

Rty f) = Rl th+7) PAL24)
Thus the coefficients of the Fourier sertes expans ion are m-rnmvnp ] which means
that
~ A =
p: * c _ < D1 )] or py = p2 e
AP A (8D = ¢ {A.25)
{0 otherwise
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However, in general this property is not valid since the autocorrelation function
R{t;,t7) is generally not periodic.

Example A.1 Consider a white noise random variable A{t) extending over ail time

—oo < t < oo with the autocorrelation function

R(’[],t_)) = C(S([Z - [1) (A\ZG)
where ¢ is a positive real constant. The correlation between the frequency domain

representation of A(t) at two arbitrary frequencies f; and f; can be determined as

(ALf1) AT f2))

i

</oo A(t)) expl—j27 flz‘l]rltl/ A (ty) exp[_]Q"Tft)](ltn>

= / / h—h) evaL-ijT(flfl —fl’:’Z)J (i)flti[z
6(h - ‘ 1) {A.27)
This means that the correlation of white noise at two different frequencies, f; # fi, is

zero and that there is correlation not equal to zero only when the two frequencies are
identical, f; = f5.

Example A.2 Consider a white noise random variable A{#) in a finite time interval
—T1 < t < 7 where the correlation between two Fourier coefficients of arbitrary frequen-
cies fy and f5 is to be determined. The autocorrelation function for the time domain

random variable A(t) is

b(ty —t fi —-T <t
Rit,1) = 4 cflz=ih) for —r<i<r (A.28)
0 otherwise
The correlation between the two Fourier series coefficients is given by
AU = [ [ Geexy
X expl—y27 f161] exply27 fata] dty dta
c i : £ N H
= s [_Texp[—]2W(J1—f2)f2} (il‘,z
< sin{w( f; — f2)7] (1.99)

27 wlfi— fo)r
The sin{a}/a function in Equation {A.29) has the following properties as T approaches
infinity:
il f F £yl (v s.- £ £
wosindrlfy = folmy . 1= PP
im —t—= = X {A30)
r—eo 7 f1— foT | 0 otherwise
As the factor ¢ in Equation (A.29) generally increases with 7, the ensemble average of
the two Fourier series coefficients is zero for f; # f, and some non-zero quantity for

L= fr
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A.3 Signal energy and average power

The total energy £, of @ random noise signal A(t) averaged over the eusemble of

realizations is given by

I </ |/\1t)"rlt\; (A.31)
(/: | At exeliznnd dn

></_"n A*(f2) expl=27 foll dfs fu> (A.32)

- /i(!‘\.;f,);?) df (A.33)

Equation {A.33) is based on the assumption that A(t) is square integrable and that
o expli2e(fi = f2tldt = 6(f1 — f2). Tn Equation (A.31) the quantity &, can be
interpreted as the total energy in joules if the right-hand side of Equation {A.31)is
divided by 1 @ where A(%) is a voltage or muliiplied by 1 S where A(¢) is a current.
The case for A(f) in Equation (A.33) is similar. Note from Equatlon (A.31) that if
A(t) is not square integrable then &,y = ~. Usually the total energy of a random
noise signal is of no interest as the signals are only observed in some finite time
interval.

The average power in a random noise signal A\{t) observed in the time interval

—7 <t <7 isgiven by

. 1 /7 o

P o= }L&i/ (AP dt (A.34)
Lo

= Jim — [ (AP o (A.35)

If A(?) is represented as a Fourier series in the time interval —7 < ¢ < 7 then the

average power is given by

- o0
M 1 / Y f cl-\
P = lim — DNT Mg ) expli2ap &)
T 2T J_ N\ e T '
o= —o
x - \
v N A oY) eyl s £ N s AU
’ AT IR A S A [
F2=—00 !
o) Le}
~— < T g
= 5 N A p ) AT el
/ PAPER AV ST AR LT
P1=—m0 pp=—00

X 1m —/ exp[—j27x(py ~ p1)Et] dt (A.37)
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. 1/ . 1 for pp=p
lim — expl—J2w(py — p2)lt)dt = ° A3
=0 27 J_; Pl=s2(p2 - pi)ét] d { 0 otherwise (A.38)
Inseriion of Equation {A.38) into (A.37) gives
Po= 3 AR (A.39)

Thus the total average power is determined by summing the ensemble average of the
magnitude squared Fourier series coefficients at all the relevant frequencies. From
Equation (A.39) an average power density is defined as

PN = AN (A.10)

where it is assumed that 7 is chosen so large that there exists an integer p such that
p& = f. It should be noted that f in Equation (A.40) runs over both pesitive and
negative frequencies.

A.4 References
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(2] Lighthill, M. J.: “Introduction to Fourier analysis and generalized functions”, Cambridge
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B

Expressions for reflection coefficients
and exchangeable powers

In the first section of this appendix the reflection coefficients looking into an n-port
and also looking into the terminating immittances are derived. In the second section

the exchangeable power gain {rom an arbitrary port is derived.

B.1 Derivation of reflection coefficients

n-port

Figure B.1: Reflection coefficients aé port 7.

The veflection coefficients connected to port i are shown in Figure B.1. The refiection
coefficient 57; is given by

FJ
o/ 1
- 0o
Sy o= = (3.1
Ay
T3 i " PR S R T . I . ey
1he power waves A; and #, are expressed by the port voltage and current which
leads to

265
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Vi—-Zr L

g = T (B2

" Vi+ Zi L (B-2)

where Z; is the reference impedauce at port i. The input impedance a% port i is
Zipn; and then

Cinili = 20 L

Zinili + Z:1;

L
Alnl Z
— Zinp T (B.3)

ZLn,'L + Zl

5"

1

The reflection coeflicient I'r; is derived from the equation
Ay = TriBi + Br;: (B.-4)

This means that

A
Tri = f! (B.5)
lBT’l:u

is correct, as Br; = 0 when V7, = 0.

rr - V+7[! = Zr L+ Z T
i = Vis ZiLly, , | ik ZL
Zri — 7
- (B.6)

Zri + Z;

Coinparing Equations (B.3) and (B.6) it is seen that 5% has the reference
impedance conjugated in the numerator and I'7; in the denominator. Thus care
should be shown when using complex reference impedance.

Conjugate match is obtained when

=
ST = Zir-x or FT - b“
B.2 Incident power wave expressed by exchangeable

As the incident power wave Br; in Figure B.1 is an independent node, 81 ; can be

derived from

-

A = Tr:B; + By, (B.7)

B.2. Incident power wave expres.

and from Equation (B.7)

ssed by exchangeable power 267

BT,[ = tig,=0

A (BS

8)

The condition B; = 0 is fulfilled when port ¢ does not reflect power. This means

that S), = 0 or that Z;,, = Z;

as shown in Figure B.2.

[,' “““““
1 —t-
f I T
Vo o
T . Lo
I Y _ =
i | =4
Vi | -
Termination [si =0 | _ n-port

Figure B.2

: Refection free match at port i,

The incident power wave at port 2, #;. can now be written [1]

Az = BT,i =

From Figure B.2 V; and [; are expressed by Vr; and then inserte

Br;, =

New (|B7,]%) is derived:

Vi+ Z, [

7

2/iRelZ, ]

(iBrify = (BriBry
27, T 2y
_ Re [Zz](\l'l",’l !
- T it
Re[Zji{Zr: + Z;)°
Re{Z,;] ) ’\,;'t’,"d:/‘ ) 1{{.8{2]* ,‘ RL“Z:K n
M [ N [Red LT L1
IR I U P lary o8y
The rterm Re{Z3/iRel70 ensures that {18145 never hecomes negative, and
symbol p; is mtroduced as
Re[Z{] 1 for Re[Z] > 0 n
D= e = :
' [Re[Z:}} -1 for Re(Z] < O

{B.9)

d in Tquation (B.9):

100

~r

1)
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The second term is the termination’s exchangeable power:

_ v A
P.s, = A Re(Z7.] (B.12)

The third term is related to the reflectinn roefficiant nf the termination hy

ARe[ZT I Re(Z]  (Zri+ Z2) (% + 20)
|Z7: + Z7|* B |Zr; + 272
B ZriZi + Z1i; 27 + Z;'iZi + Z%,iZi.
a 127 + Z7)?
A Zra+ WL+ Z) (S - TN 27— 7))
B |Zr, + Z112
-1 |Zr: — Zi)*
- [Zr. + Z: 2
= 1|0 (B.13)
Thus
(1Brd®) = pi-Pes, (1 = D% (B.14)

As the left side of Equation {B.14) is always positive the signs of the right side add
up to be positive as well. This is shown in Table B.1.

Re[Zr:] RelZ | 1-{T7ri]* Ps, p {|Bril?)
>0 >0 >0 >0 >0 >0
>0 <0 <0 >0 <0 >0
< 0 >0 <0 <0 >0 >0
< 0 < 0 >0 <0 <090 >0

Table B.1: Signs of {{B7;]?) and of its three terms as a function of the signs of RelZ7 ;]
and Re[Z;].

Irom Table B.i it is seen how p; makes Equation (B.l4) positive. p; is only

necessary when Re[Z,] < 0.

B.3 Reference

(1] Kurokawa, K.: “Power waves and the scattering matrix”, [EEE Trans. on Microwave
Theory and Techniques, vol. MTT-13, pp. 194 - 202, March 1965.

C

Extended noise factor as a
hyperboloid of two sheets

The noise factor, F', expressed as a function of the source admittance and the
Y noise parameters (Equation (4.11)) is

F=1+ 2 (Go+ R Vs +1512) (C.1)

Let 2 = Gs, y = Bs and z = F, then Equation (C.1) can be written as

2, 2 Tz //.3 . 1 \ PN 2. 2. Gn 4
Ty - —+ {26, — i+ 2B y+ G+ B+ =2 =10 C.2
, N \ Rw/ T Y y Rn_ { )
In order to reduce Equaticn (C.2) to canonical form the roots of
t1-A 0 7 |
0 1-X 0 |=0 (C.3)
!
27?,1,1 6 A
Ra—-+/H%+1 \ Ra++/ R34 .
are found: Ay =1, Ay = ————i—ﬁﬂ—l——— and A3 = % Thus a translation to the
new coordinates r, = I,y =Y+ B-, and 2y =z —1 - 2RqG7 moves the quadric

surface to its centre.
A rotation given by

where
1
4 =
, ——
V2RI + 1+ Ba/BE + 1)
[io w1410, JRE 7 1
B = . — =
y AR 1)
269
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determines the new coordinates (.2, ¥z, 22).

Equation {C.1)} is now rewritten as

2 2 2
Y3 I3 2 -
:2- - b—z - ; =1 (( 'j)
where
o2 = 2(R
VEE+1- R,
o= iy
R.G:+G,
P 2{ R G2 + G)

and Equation (C.5) is recognized as a hyperboloid of two sheets with centre in
(Gs,Bs, I'y=(0,—B,, 1 +2 R, G.,).

Some useful FORTRAN subroutines

cC

a

Q

cc

SUBROUTINE DELTA (A,B,C,D,E

COMPUTES A 2x2 DETERMINANT IN DQUBLE PRECISICN
COMPLEX 4,B,C,D,E

DOUBLE PRECISICN AR,AI,BR,BI,CR,CI,DR,DI
AR=REAL(A)

AT=AIMAG(A)

BR=REAL(B)

BI=AIMAG(B)

CR=REAL(C)

CI=AIMAG(C)

DR=REAL(D)

DI=AIMAG(D)

ER=AR*DR-AI*DI-BR*CR+BI*CI
EI=AR#DI+AI*DR-BR#CI-BI*CR

E=CMPLX (ER,EI)

RETURN

END

ok ok * 4k *ok ok x K * ok kK Fokk %k * ko

SUBRCUTINE PARALF (Y11,Y12,Y21,Y22,YRN,YGN,YYG,YA,YB,7C,AY11,4A712,

1AY21,AY22, AYRN, AYGY, AYYG)

COMPUTES SIGNAL AND NOISE PARAMETERS WITH PARALLEL FEEDBACK

COMPLEX Yii,Y12,Y21,Y22,YYG,YA,¥YB,YC,AY11,AY12,AY21,4Y22,A7YG, AHY

AY11=Y11+YA+YB

AY12=Y12-Y3

AY21=Y21-7B

A722=Y22+YB+YC

GA=REAL{YA)

GB=REAL(YB)

GC=REAL(YC)

ADY=(CABS(Y3-Y2
Ri*(

AEY=GB+GC+YRN*



]

AHY=GB*(Y11+YA+Y21)+GC*AY11+YRN*(Y11-YYG)*YB*(CONIG(Y21) ) +YRN*(YYG

1+YA+YB)*((CABS(Y21))**2)

ALY=ADY*(GA+YGN) +GB*((CABS(Y11+YA+Y21))**2)+GC* ((CABS(AY11) ) **2)
1+YRN*((CABS((Y11-YYG) #YB+(YA+YB+YYG)*Y21))**2)

AYRN=AEY/ADY

AYGN=ALY/ADY-((CABS(AEY))*+*2)/(ADY+AEY)

AYYG=AHY/AEY

RETURN

END
C
cc * * ok *kk ok *kk ok ko ok * %k *
C

SUBROUTINE SERIEF (Z11,Z12,221,222,ZGN,ZRN,ZZG,ZA,2B,2C,AZ11,A212,
1AZ21,AZ22, AZGN,AZRN, AZZG)
cc COMPUTES SIGNAL AND NOISE PARAMETERS WITH SERIES FEEDBACK
COMPLEX 211,212,221,222,22G,2A,2B,ZC,AZ11,AZ12,A221,A222,A2ZG, AKZ,
1€221,C1,C2,C3
AZ11=Z11+ZA+ZB
AZ12=212+2B
AZ21=Z21+ZB
AZ22=722+ZB+ZC
CZ21=C0NIG(Z21)
B1=(CABS(Z21))**2
B2=(CABS(Z11+ZA-221) )**2
B3=(CABS(AZ11))#*=2
C1=(22G-Z11)+ZB
C2=(ZA+ZB+ZZG)*Z21
C3=-C1*CZ21
B4=(CABS(C1+C2) ) **2
RA=REAL(ZA)
RB=REAL(ZB)
RC=REAL(ZC)
ADZ=(CABS(ZB+221))**2
AEZ=RB+RC+B1+ZGN
AHZ=(Z11+ZA-Z21)*RB+AZ11*RC-C3*ZGN+(ZA+ZB+ZZG) *B1+ZGY
ALZ=ADZ*(RA+ZRYN)+B2+RB+B3*RC+B4*ZGN
AZGN=AEZ/ADZ
AZRN=ALZ/ADZ~ ((CABS(AHZ))**2)/(ADZ*AEZ)
AZZG=AHZ/AEZ
RETURN
ZND

S ERS]

(%1

Tk Ak ok *k¥k ko ok k ok LYY ko ok ok ok ok

(e}

SUBROUTINE YZTRAN (AY11,AY12,AY21,AY22,AYRN,AYGN,AYYG,AZ11,A212,
1AZ21,AZ22,AZGN,AZRN,AZZG)
cc TRANSFORMS SIGNAL AND NOISE PARAMETERS FROM Y FORM TO Z FORM

72 D. Some useful FORTRAN subroutines

cc

cc

COMPLEX AY11,AY12,AY21,AY22,AYYG,AZ11,AZ12,A221,4222,A2ZG, ADY, C
CALL DELTA (AY11,AV12,4Y21,4Y22,4ADY)
AZ11=AY22/ADY

AZ12=-AY12/ADY

AZ21=-AY21/ADY

AZ22=AY11/ADY

A=(CABS(AYYG) ) **2

B=4+AYGN/AYRN

AZGN=B*AYRN

AZRN=AYGN/B

C=CONJG(AYYG)

A22G=C/B

RETURN

END

ok *kk *okok k% *kk ok Akk s ok Xk LTS

SUBROUTINE ZYTRAN (AZ11,AZ12,AZ21,AZ22,AZGN,AZRN,AZZG,AY11,AY12
1AY21,AY22,AYRN,AYGN, AYYG)

TRANSFORMS SIGNAL AND NCISE PARAMETERS FROM Z FORM TO Y FORM
COMPLEX AZ11,AZ12,AZ21,AZ22,4722G,AY11,AY12,A721,4Y22,AYYG, ADZ,C
CALL DELTA (AZ11,A212,AZ21,4222,4D7)

A711=AZ22/ADZ

AY12=-AZ12/ADZ

AY21=-4Z21/ADZ

AY22=AZ11/ADZ

A=(CABS(AZZG))**2

B=A+AZRN/AZGN

AYRN=B*AZGN

AYGN=AZRN/B

C=CONJG(AZZG)

AYYG=C/B

RETURN

END

Kk * ek *kk ke Rk ok * ok kK e Kk ok

SUBROUTINE YSTRAN (Y11,Y12,Y21,Y22,RN,GN,YG,511,512,521,522,0¥,F0,
1R0)

TRANSFORMS SIGNAL AND NOISE PARAMETERS FROM Y FORM TO S FCAM WITH
50 OFM.

g

3

COMPLEX Y11,Y¥12,Y21,Y22,5

v oue o oww o~

L A5, TC, YR ¢
YR=1./50.

YA=YR+Y11

YB=YR+Y22

YC=Y12*Y21

YN=YA*YB-YC



D. Some useful FORTRAN subroutines

S11=({YR-Y11)*YB+YC)/YY

$22=((YR-Y22) *YA+YC) /YN

S$12=-2.*YR*Y12/YN

S21=-2. ¥YR*Y21/YN ]5)
GG=REAL(YG)

BG=AIMAG{YG)

A=SQRT (RN*GN+( (RN*GG) **2))

FO=1.42. % (RNAGGHA) Determination of Volterra transfer
C=CMPLX(YR+A/RN,BG) - .
QRN (CABS (C) ) ++2/¥R functions using Maple

A=YR**2- (CABS(YG))**2-GHN/RN
B=(CABS(C))**2
C=CMPLX(4,2.*YR*BG)

Ro=C/B The present appendix contains program listings for a Maple V Release 3 program to

Z;;U“ determine algebraic expressions for Volterra transfer functions. Also the Maple V'
source code for the examples in chapter 2 are included. The two functions 1istgen

Kkk kR kkk ke kkE kkk kkk kkk kEE kkk Rk and vtf must be in the same file called volfun. Before the functions can be used the
user must read the volfun file into a Mapie V session, and then run the command:

SUBRCUTINE SYTRAN (S11,512,521,522,Q¥,F0,R0,Y11,Y42,Y21,Y22,RN,GN, volfun[listgen](4):. This generates some tables that ate used by the volfun

1vG) program.

TRANSFCRMS SIGNAL AND NOISE PARAMETERS FROM S FORM WITH F, Q AND

GAMMA TC Y FORM. REFERENCE FOR 5 PARAMETERS IS 50 OHM.

COMPLEX S11,S12,521,522,R¢,Y11,Y12,Y21,Y22,YG,YA,YB,YC,YX

YR=1./50. E.1 Program listing for listgen source code

YA=1.+S11

YB=1.+822 BRERBARASBHSIBABAL B RBRR R B RR 31 SRR S ARG R S SRR R A ARBAR PR LB BB RR BB UR

YC=5S12%521

# listgen - listgen procedure for generating o-, m—, and n-tables
BRRRARRRBBRRARARRAR AR AR AR B R AR RABR BRERR RR RA AR AR R R AR UR BB SRR RS
listgen(MAXORDER)

YN=(YA*YB-YC)/YR
Y11=((1.~-S11)*YB+YC)/YY
¥22=((1.-S22)*YA+YC) /X
Y12=-2.%512/YN

Y21=-2.%321/YN

A=FO-1.

B=Qi*(1.-(CABS(RO))*=*2)
C=QN*(CABS(RO+1.))**2
GN=YR*A*(3~-4)/C

RN=C/ (4. *YR)

V6= (CMPLX (2. #4-3, 2. QU= (ATMAG(RO))) ) #YR/C w1 w2
RETURY ’

END

#
#
# MAXORDER: Maximum order for the table generation

volfun{listgen] := proc(MAXORDER)
local i, i1, i2, i3, i4, i5, i6, i7, i8, i8, i19, i21L, j, k, mL, Lambda,

lm, M, ML, Number, n, nl, n2, no, np, o, ord, order, ordL,
pt, ptil, pt2, R, S5m, si3, 3i4, sib5, si6, si7, si8, si9, sm, sn, so3,
so4, sob, soB, so7, so8, so9, T2, T3, T4, TS, T8, T7, T8, T9, Ti0, V,

»

##%# TEST FOR VALID INPUT DATA #zsz@usdasiguidsisdsugsdasdandsadngaanpagitans
if (nargs = 1) then
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ERRCR(‘Invalid argument‘)
fi
else
ERROR(‘Invalid number of arguments‘)
£i:

Ipriui{ working ...%):

#4% TATTIALIZATION ##t#w#susasanst FREHARR ARG ERARA BRI R 2 ¥
# Read in combinat package

with(combinat, choose, numbcomb, numbperm, permute):

#5 Dlistgen Attt R R A AR AR e

# Number of elements in i2lL list, Sm
Sm := 2"MAXORDER-1:

# Determine i21L and ordL lists

i21L := array(1..Sm):
ordL := array(0..Sm, [{0)=0]):
for m to Sm do ordL[m] := 1 od:

for ¥ to MAXORDER do
for m from 27 {M~1) to 2°M-! do
Im ;= m ~ 2°(M-1):
mL := [1]:
for i from M-1 by -1 to 1 do
if (Im >= 27(i-1)) then
lm := 1m - 2°(i-1):
mL := [1, op(mL)]:
ordL[m] := ordL(m] + 1
else
al := [0, op(mLl)]
fi
od:
121L{m] := mL
od
od:

# Mlistgen H#UARHAHEIHEIIIHTRERIIMBRRLAIRARN HBLBABSRBSHGRRR I BB DRS00
Local procedure 11 to determine lower limits for i varianlas
11 := proc(imo, n, iprey)

if (ime > n) them O elif (ino < n) then iprev+i else i fi

# Local procedure ul to determine upper limits for i variables

E.1. Program listing for listgen source code 27

~1

ul := proc(ino, n, Sm, inumd, si)
if (imo > n) then 0 else (Sm-inumb-si)/ino fi

end:

# Calculate all Mim.sm lists

for sm from 2 to MAXCRDER do
T.sm := array(1l..sm, [(1)=0])

od:

iV := array(1i..10):

for sm from 2 to MAXORDER do
Sm := 2°sm-1:
no := 0O: )
for n from 2 to sm do
for iV[10] from 11(10, n, 0) o ul(i0, n, Sm, 45, 0) do
for iV[9] from 11(9, n, iVv[{10]) to ul(9, n, Sm, 36, iV[10]) do
si9 := iV[i0] + iVv[9]:
so9 := ordL[iV([10]] + ordL{iv[9l]:
if (s09 > sm) then next fi:
for iv[8] from 11(8, n, iV{9]) to ul(8, n, Sm, 28, si9) do
si8 := si9 + iv[8]:
508 := 509 + ordL[iv{s]]:
if (so8 > sm) then next fi:
for iV[7] from 11(7, n, iv[8]) to ul(7, n, Sm, 21, si8) do
si7? := si8 + 1iV[7]:
so7 := so8 + ordL[iV[7]]:
if (so7 > sm) then next fi:
for iV([6] from 11(6, n, iV[7]) to ul(6, n, Sm, 15, si7) do
si6 := si7 + iV[6]:
506 := so7 + ordL[iVv[6]]:
if (s06 > sm) then next fi:
for iV[5] from 11(5, n, iV[6]) to ul(5, n, Sm, 10, si6) do
si5 := si6 + 1iV[5]:
505 := soB+ordL{iv{5]]:
if (so5 > sm) them next fi:
for iV{4] from 11(4, n, iV[5]) to ul(4, n, Sm, 6, si5) do
sid := s15 + iv[4]:
se4 := so5 + ordlfivial]:
if (s04 > sm) then next fi:
for iV([3] from 11(3, =, iv(41) to wl(3, n, Sm, 3, sid) do
$i3 1= s14 + iV{37:
503 = sod + ordL{iv[3ll:
1f (s03 » sm) the :
for iV[2] from 11(2, n, i¥[3]) to ul(2, n, Sm, 1, si3)
do
iV[1] := Sm - si3 ~ iv([2]:
1f (so3+ordL[iV[{2]]+ordL[iV[1]] = sm) then
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no := no + 1i:
Mim.sm[no] := [[al, [n], [n!], (seq(iV[n-k],
k=0..n-1)1]
i
od
od
od
od
od
od
od
od
od:
T.smln] := no
od:
Mim.sm[0] := no:

od:

# Calculate all M2m.sm lists
for sm from 2 to MAXORDER do
pt = 0:
for n1 from 0 %o sm do
for n2 from 0 to sm-nl do
sn := ni+n2:
if (sn >= 2) then
for no from T.sm{sn-1]+1 to T.sm[sn] do
V := permute(op(4, Mim.sm[nol)):
for np to numbperm(sn, sn) do
vi := [op(1..n1, op(ap,V}))]:
v2 := {op(ni+1..sn, op(np,V))]:
if (sort(vi) = v1) and (sort(v2) = v2) then

pt = pt+i:
M2m.smipt] := [Isnl], (n1,n2], [at!*n2!], [op(ep(mp, ¥))1]
od
od
fi
od
od:
MZm.smio]l := pt:
od:
#i# Nlistgen #utgs HEHR IS BARBRARB RS RGNS et AR n d g aad a g u g

# Determine Nlistgen lists
for order to MAXORDER do
no := 0:
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Lanbda := [seq(2"(o-1), o=1..order)]:

# case 1
for pt!l to order do

no := no+i:

N.order[no] := [[1, op(pti, Lambda)], [op(pti, Lambda)]]
od:
# case 2
V := choose{Lambda,2):

for ptl to numbcomb(order, 2) do

Number := convert(op(pt1, V), ‘+°):

no := no+i:

N.order[no] := [{2, Number], [cp(op(pti, V))11
od:

# case>=3
for ord from 3 to order do
7 := choose(Lambda, ord):
for ptil to numbcomb(order, ord) do
vi := op(pti, V):
v2 := choose(vl, 1):
Number := convert(vi, ‘+):
for pt2 from 2 to ord-1 do
v2 := [op(v2), op(choose(vl, pt2})]
od:
R := [convert(op(1, v2), ‘+)]:
for pt2 from 2 to nops(v2) do
R := [op(R), comvert(op(pt2, v2), ‘+)]

od:

R := sort(R):

ne := no+i:

N.order{no] := [[ord, Number], [op(R}I]

od
od
##4 SAVE RESULTS IN FILE ##f#aosddddtidiaiid tadasgiadigigndtiiiannis
# Save 0, M, and N lists in file ‘lists.mf
iprint{‘Saving o-, m—, and n~lists ia file: Iists.m'):
save i21L, Mim.(2..MAXORDER), M2m.(2..MAXGRDER)
(1 D

CMAXORDER), ‘lists.n

lprint(‘List generation completed‘)
end: # listgen
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b

2 Program listing for vtf source code

MAXORDER: The maximum order for which the system of analysis is used

sysdeflL: A system definition list specified as [X, Q, R, jL]

caltype: Calculation type specified as either ome of: (1) ‘algf' for
full algebraic evaluation, (2) ‘algr’ for recursive

AMpRARUR A R R R R S S S R R R B R S SRR R SR B AR A B 20
# vif - determination of a given Volterra transfer functicn
HRRBFRAIHRBBLLLRASBBSI LI BER U2 DB DS B DU RSB S SPHL IR BRI H I 5 # e T
# vtf(al, psil, MAXORDER, sysdefL, caltype)

-4

# mlL: List of orders specified as [mi,...,mK]

# psil: List of psi frequencies specified as

# [psi{1,1},...,psi{i,mt},...... ,psi{K,1}, .. . psi{K,mK}]

#

#

#

#

B

algebraic evaluation, and (3) ‘num‘ for numerical evaluation

volfunlvtf] := proc(mL, psil, MAXORDER, sysdefL, caltype)

local cfak, con, ImdFrqL, i, k, MmL, MptL, NL, NoCgVar, NptL, no, oxd,
order, portl, p, psi, psiGL, q, r, resp, result, Sm, sm, uresult,
usubresult:

global K, Q, R, jL, AI, B, a, b, u, bk:

### TEST FOR VALID INPUT DATA #2 FARHARARIRRARR HARHRAGRUBARR Y #a#t
if (nargs = 5) then

if not type([args],

[list(nonnegint), list, posint, [posint, posint, posint, list], name])

then

ERROR(‘Invalid arguments®)
fi:
if {convert(mL, ‘+‘) < nops(psil)) or (nops(mL) <> sysdefL{1]) then

ERROR( 'Unbalanced number of elements in argument lists‘)

1i:

if (nops(sysdefl) <> 4) or (nops(sysdefL[4]) <> sysdefL[2]) then
ERROR( ‘Invalid sysdefL‘)

Fh
"

a

el

ERROR(‘Invalid number of arguments‘)

TALIZE #n##5#0 a2 0y a R g i i st 3 S S 4444 PR 2 0 452 20t nn duy

e L TATTTN T
L

Mim.MAXORDER

4 g
o

ERROR( ‘Execute vaa[listgen] (MAXORDER) with MAXORDER = ‘, MAXORDER)
fi:
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# Load the necessary procsdures from the linalz package
with(linalg, dotprod, multiply, scalarmul, subvector):

# Unassign global variables
unassign(’X’, ’Q*, 'R’, 'jL’)

lprint(‘Initialization completed)
fi:
# Define global variables
if (K <> sysdefL[1]) or (§ <> sysdefL[2]) or (R <> sysdefL[3])
or (jL <> sysdefL[4]) then
K := sysdefL[1]:
Q := sysdefL{2]:
R := sysdefL[3]:
jL := sysdefL{4]:

# Define vectors and matrices
AI := array(i..R, i..Q, sparse):

3 := array(t..Q, 1..K, sparse):

a := array(l..R, sparse):

b := array(l..K, spaxse):

u := array(1i..Q, sparse):

bk := array(i..Q, sparse):

for resp to 2"MAXORDER-1 do
x.resp := array(i..R):
X.resp := array(1i..R)

od:

lprint(‘Global variables updated‘):
fi:

### CALCULATE #ag3adidddddd it 2 e i e d e B a S d R g R R R34 R 4R # AR VA AR AR %
# Calculate the sum sm=ml+...+mK

N

sm := convert{(mL, ‘+):

# Calculate the total numbsr of contributiocns, Sk

Sm := 27sm - 1:

# Detarmine tha port number iist, portl
portl := [seq(seq(k, i=1..op{k, mL}), k=1..K}]

# Calculate the intermodulation frequency list
ImdFrql := [seq(dotprod(i2lL[k], [op(1..nops(i21L[k]), psiL)]), %x=1..Sm)]:
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# Calculate all first order x vectors
for no to sm do
# Determine the input port number, k
k := op(no, portL):

# Determine where to put the response, X.resp
resp := op(2, op(i, N.smlnol)):

# Determine the frequency at which the x.resp vector is to be determined

psi := op(resp, ImdFrql):

# Update ths global inverted A matrix, AI
Alcal(psi):

# Update the B matrix and set bk equal %o minus the k’th column of B

Becal(psi):
bk := subvector(B, 1..4G, k):
bk := scalarmul(bk, -1):

# Determine the x.resp (or X.resp) vector
if (caltype = ‘num‘) then
x.resp := map(evalc, multiply{AI, bk))

elif (caltype = ‘algf’) then
x.resp := multiply(AI, bk)
else
X.resp := multiply(AI, bk)
fi
od:

# Now all first order x.resp vectors are determined

# Calculate all higher order x.resp vectors
for no from sm+i to Sm do
# Determine the order of the given response
order := op(1, op(1, ¥.sminol)):

# Determine where to put the response, x.resp
resp := op(2, op(1, N.sm[nol)):

# Define ¥ list ,NL

SL := op(2, ¥.smlnol):

F*

p{resp, ImdFrgl):

# Update the global inverted A matrix, AI
Alcal(psi):

Determine the frequency at which the x.resp vector is to be determined

E.2. Program listing for vtf source code

# Determine the u vector

for q to Q do
# Determine number oI controlling variables for nonlinsar element g,
# NoCgVar
NoCgVar := nops(op(g, iL)):

# Set element g in the u vector initially equal to €, urssult
uresult := 0:

[
&

for con to M.¥oCgVar.m.order{C]
# Define Mm list, MmL
MmL := M.NoCgVar.m.order{con]:

# Determine order of contribution number con, ord
ord := op(op(1, MmL)):

# Determine MptL, NptL and psiGL lists
MptL := op(4, MmL):

¥ptL := [seq(op(i, NL), i=cp(¥ptl))l:

psiGL := [seq(op(i, ImdFrql), i=op(Npil))]:

# Initialize subresult for uresult, usubresult
usubresult := G.q(op(2, MmL), psiGL):

if usubresult <> O then
# Determine x multiplication Iactors
for i to ord do
# Determine response number, p
p := op(1, Npzl):

# Determine the number of the controlling variable, r
for r while (i > converz(lop(i..z, op(2, MmL)}], ‘+°)) do od:

# Update usubresul:

usubresult := usubresult*x.plop(r, oplg, jL)}]
od:
uresult := uresult + op(op(3, MmL))*usubresult
fi
od:
ula] := uresult
od:
# Dotermine the x.resp (or L.resp) vecter
if (caltype = ‘num‘) then

x.resp ;= map(evalc, multiply(AI, u}}
elif (caltype = ‘algf‘) then
x.resp := multiply(AI, u)

283
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else
X.resp := multiply(AI, u)
£i
od:

# Now all higher order x.resp vectors are determined

# Determine the Volterra transfer functicn, first order
if sm=1 then

# Determine the frequency psii+...+psiX

psi := op(Sm, ImdFrqlL):

# Determine k

1

k := op(portL):
# Update the a and b vectors
acal(psi):

becal(psi):

# Calculate the first order Volterra transfer function

if (caltype = ‘num‘) or (caltype = ‘algf‘) then
result := dotprod(a, xi, ’orthogonal’) + blk]
else
result := [seq(x1f{nol=X1lnol, no=1..R),
H=dotprod(a, x1, ’orthogenal’)}+b(k]]
fi
fi:

# Determine the Volterra transfer function, second and higher order
if (sm > 1) then

# Detarmine the frequency psii+...+psik

psi := op(Sm, ImdFrql):

# Calculate the multi factorial ceefficient, mi! * ... * mK!
cfak := 1:

for i in mL do cfak := cfak*i! od:

# Update the a vector
acal(psi):

# Calculate the second and higher order Volterra tranzfer function

if (caltype = ‘num‘) or {caltype = ‘algf‘) then
result := dotprod{a, x.5m, ’'orthogomal'}/cfak
else
result := [seq(seq(x.resp[nol=X.resplnol, no=1..R), resp=i..S5m),
H=dotprod(a, x.Sm, ’orthogonal’}/cfak]
fi
i
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result

end: # vtf

E.3 Program listing for example 1

BGER R S  BRR RS R S B R R R BB By e e tR SR B Y

# example 1 - Test of vtf procedurs

RARBBARBRBR IR R BB U R AR AR BRREARRE XA BB BRI BARRB VA RS RS p2ig.g 2354 #RA#ERRRARY

# Ref.; J. J. Bussgang, L. Ehrman and J. W. Graham: "Analysis of Nonlinear

# Systems with Multiple Inputs", Proc. IEEE, Vol. 62, No. 8, August 1974,

# pp. 1088-1119.

# (! ¥Wote: Error in (3.19), -1/3 chould be -2/3, and in (3.20), ~1/3 should
# be +2/3.)

RABHRRR SRR BRRRRBGBRELAILRYR PR RR 2RI ARG AR AR R I PEARAARRRARAARUBEY
read ‘volfun’:

BB AR AR R AR R R AR R R A R A SR SR AR R AR R AR BB SRS B AN R 2

# Alcal - calculate the A inverse matrix

AIcal := proc(f)

global AI:

AI[1,1] := -H(£) # H(£)=1/(gl + I*2*Pixf+C)
end: # Alcal

Aaptad

RURRRARARB AR AR RAR SR AR ARAR AR R RA R P RUR BB RA AR RD IR R R AR B RY B AR DH BB R BRI ARY Y
# Bcal - calculate the B matrix

RERFRIRBRLRIRGRBRHA A BRI AR SRR G LR R LR LR R ARB Y2 URHF 355 FHERLEY

Bcal := proc(f)
global B:
Bl1,1] :=1
end: # Bcal

B g e T

AR RBRIL AV FAGI BB IR IHB AR ISR p e snny iy

BRARH AR AR RAARERRARA R AR NRA IR AR R AR BB AR IR A RAI RN B BRI B AR AR RIR BB BB BB R LR AR Y S
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# bcal - calculate the b vector

LR IRLYRBaY HLRBSBBHB SRR 2SR 22 B PR RSP R R BB R LR AR BRI RBE BB RS

beal := proc(f)

global b:
bi1l := 0
end: # becal

ARRBHARRRBRF U R MR RR AR R PR R R AR RIA AR BB RAA BB AR AR LR AR B IRARBTRARRRS LR A AR
# Gl - nonlinear Volterra transfer function for nonlinear element 1
BARAARBHARBRRRAR ARG RBREBBAIRBUHRBFR BB BAWRBRARGE R AR IR RBR AR BRBRRARHRRRAR SRR
G1 := proc(erdL, psil)

local order, result:

order := convert(ordL, ‘+°):

result := Q:

1f order = 2 themn result := g2 fi:

result

end: * Gl

B R S R R R R R R R R R SR R AL AR AR R AR SR R
# Main

HRRAR AR AR RR AR AR PSR SRR IR R ARR A R RBR YA FHARR AR B ARARRARAR A
H1 := volfun{vef]([1], [£11, 3, [1,1,1,[[1113, ‘algz‘);

H2 := volfun{vtf] ({21, [f1,£2], 3, [1,1,1,[{113]1, ‘algf);

H3 := volfun[vtf]([3], [f1,£2,£3], 3, [1,1,1,[[1113, ‘algt®);

E.4 Program listing for example 2

BRI R RS RSB R SERRRS R AR R AR ARG AL R BB AR RAIBARB AR BARRARRAAL

# example 2 - Test of vtf procedure
B RS RR R AR B AR R IR B IR R YRR LA RBRRRIBA RN GRS # HALBSBBERAR BB YR AR BB RSB R HRS

# Ref.; L. O. Chua and C.-Y. Ng: "Frequency-domain analysis of nonlinear
# systems: forrulation of transfer functiens", IEE Journal on Elsectrenic
# Circuits and Systems, November 1879, Vol.3, ¥o. 6, pp. 257-269.

GHESHSH AR AR RSB RBAR SR URB ISR ABR AR LR R BUBRERLR R LR ARRRBEIIRBRR IR

read ‘voliun’:

e e e e s L il ey s s s e e e s e e x e s s es ot e am ke e nsrd 3B ndnd £ 3 40 ap A8 R HIM A 4 0 A LA 0 At U 1A A e
R HRBERBEE $3.3.3.3.3.5.2.3.3.9.3.3.2.2.2. 3.5 8 8. £ 8. 8.1 : 4

# Alcal - calculate the A inverse matrix
HEARER R R R AR BB R R AR R R BAR BB AR RSB R BB UBBRBBRRB LG BALRYR % RERBURBERBBUBUR

AIcal := proc(s)

E.4. Program listing for example 2 IRT
local D:

glotal AI:

D := s"2+(Rp*gl + 1) + s*(Rp*ll + cl#gl) + cil*l1:

AI[1,1] := -s=*(s*g? + 11)/D:

AI[1,2] := s72/D:

AIl2,1] := -s"2/D:

AI[2,2] := -s*(s#*Rp + c1)/D

end: # Alcal

- 3-3.3.3.3.3 sREpsRRRR sy AR R IR AR RSB AL R U B BHB R L BB B U B AR R AER BB B4 8 45

FHE

# Bcal - calculate the B matrix

feededediddidi D drgededrdibedr B i P DS iep e 2] Fi e Be & 23 b pe e e e rps s B e o RAEZBHRRY Ra#g ARBBREY

Bcal := proc(s)

global B: -
B[1,1] := Rp:
B[2,1] := 0

end: # Bcal

RARAAARRIARRARRATRABAIR ARG FRAIFH28 #ian# HARZARARRRI BRI RAARR YR LB 34 392

# acal - calculate the a vector

e # w3 HEBFARFARBARSLIFAFTF T F IS Fr A EA #e HRAFAIHAFTLGE THwy
acal := proc(s)
global a:
al1] := -Rp:
af2] := ¢
end: # acal
FHRAFRAA AR I HAIAA LR G RPN B AN 2 HRFHARARA ARt R R R S a
# bcal - calculate the b vec*er
HARRARBRARFARRRRARRBR ARG ARG RAIL IR VAR AR i35 &2 FRdAanRRmaiAees
becal := proc(s)
global b:
b{1] := Rp

end: # bcal

JrpTRTen

Pro it Bed dn B i di B8 8 et i 5 e RE 3 i,
#1 P AR RARBIRAZFALRARD GG A AR B R S i S et et

# G1 - nonlinear Volterra transfer function for nenlinear elemens
B e R S Y o]

4

Gi := proc{ordL, psil)
]

result :=
if order = 2 then result := ¢2/(op(1, psil)*op(2, psil’ . fi:
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if order = 3 then result := c3/{op(1, psil)*op(2, psiL)*op(3, psil)) £i:
result
end: # Gi

RRARPXALAIRRFUBY FRABA IR RS RBR U RAAFRRREES R AR AR AR IRAR BRI R RBR R AR

# G2 - nonlinear Volterra transfer function for nonlinear element 2

HRARNBBRABRRARB YR ER BURBERRY R RJ{ 324484 fe g g 315 53020 e es 38 g o g Fadosed s %4

G2 := proc(ordL, psil)

local order, result:

order := op(1, ordL):

result := 0Q:

if order = 2 then result := 12/(op(1l, psiL)*op(2, psil))+g2 £i:

if order = 3 then result := 13/{op(1, psil)*op(2, psiL)*op(3, psil))+g3 fi:
result

end: # G2

RABABARRABRBGR AP S ARG R R S SRR R U HR R AR R RRRLERRARRL B HE A g B B Sy 2
# Main

RARBRBHARBBARERR DR B R A R S A S A S R R SR R A R R R RN AR

Hiprime := volfun[vtf]([1], [s1], 3, (1,2,2,[{11,02]31, ‘a1gt*):
H2prime := volfun[vtf]l([2}, [s1,s21, 3, [1,2,2,E011,02]1]3, ‘algs'):
H3prime := volfunlvef]([3], [s1,s2,s3], 3, [i,2,2,0[1],[2133, ‘algf’):

Hi := limit(Eiprime, Rp=infinity);
H2
H3 := limit(H3prime, Rp=infinity);

limit(H2prime, Rp=infinity);

E.5 Program listing for example 3

RERARARRR AR AR RERARGHAIY RAHRR HHAR4 ; RUIRERR
# example 3 - Test of vtf procedure
ARFRUBR SRR R AR S R RS GEa e Tt R s e TS b e Tk £ s 52 8 22 S S F ST R

* Ref.; T. Larzen, “Cetermination of Multi-Port Volterra Tvansfsr
1

# Fanctions”, Imt. j. cir. theor. appl., 15§92.
#*: # HUBBRARBRR BB LG RRE R ER BB RGP YABYPURLAS S By 2B URY

read ‘volfun’:

# Alcal - calculate the A inverse matrix

#HARRR AR SERY #ig #HHSRABBHBY SRy Fuuy
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AIcal := proc(z)

global AI:

AID1,1] = -1/¥i(£):

AIf1,2] := 0:

AT(2,1] = gml/(Yl(f}*Vc(f))

AI[2,2] := -1/Yo(f)

end: # Alcal

BRARURY Hanuas 88 FERBHARLERRL LR AR IRR LB S saRasn #i

# Bcal - calculate the B matrix

BABBABABBHBBEGRY BUBARPEA LGRS BB R HR T 224 HuRHARRY 3 # supnsn

Becal := proc(f)

global B:
BL1,1] := Ys(£f):

B[1,2] := Ri*Ys(£):

B[1,3] := 0:

8{2,1] := 0:

8[2,2] := 0:

B[2,3] := -t

end: # Bcal

# acal - calculate the a vector

BRBRABIY 2 RUAR LR AL DR SRS SR A BUBR GRS 4 ERBERBIRBLBRLBELHS

acal := proc(f)

global a:

al1] := o:

af2] :=

and: # acal

HRARRRBRERIRAGRRRWRRRLIRSRY A rdRAAN BRI ; ; RR#R AR FR#S

# bcal - calculate the b vector

beal := proc(f)

global b:
hl1] := Q-

»2] := 0:

b3] :=0

snd: # ocal

# G1 - nonlinear Volterra transfer function for nonlinear element 1
b:3.3:3.5,25.5 5. 5. 3.3 SRHBYBABERER # HESB AR R RS RE RSB e 2t LR e Y
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G! := proc(ordL, psil)
local order, result:
order := op(ordL):
result := 0:
if order = 2 then result := T*2*PixCg2*{op{1, psil.)+op(2, psil}) fi:
if order = 3 then
result := I*2*Pi*Cg3*{op(1, psil)+op(2, psil)+op(3, psil))
fi:
result
end: # G1

ARB AR SRR R R AR R AR BRI B R AR R YRR R R G RR AR AR H R R BR LR AL IR R R H Y
# G2 - nomnlinear Volterra transfer function IZor nonlinear element 2

AR R AR AR R AR A R R AR NP R R AR B AR R R R RA R R R AR AR AR AT AR IR HGRER R
G2 := proc(ordL, psil)

local orderl, order2, result:

orderl := op(1, ordL):

order2 := op(2, ordL):

result := 0:

if orderl = 0 and order2 = 2 then result := go2 fi:
if orderl = 0 and order2 = 3 than result := go3 fi:
if orderl = 2 and order2 = 0 then result := gm2 fi:
if orderl = 3 and order2 = 0 then result := gm3 fi:
result

end: # G2

R R S R R R R B R R A
# Main

R R S R R R R A R R R R g
H10C := volfunlvt2]([1,0,01, (113, 3, (3,2,2,00¢3,01,211], ‘algs‘);
H200 := volfun(vtf]([2,0,01, {f11,f123, 3, {2,2,2,0013,(1,213], ‘algf);
Hi01 := volfunlvtf]([1,0,1], [£i1,£311, 3, (3,2,2,01{41,{1,2113, ‘algt®)

(=3

)

™
rr

(v}
o]

m
.

I

oram listinge for example 4
gram listing for example

BURBYBLLRBABB B RSRS S PG RB ARSI RS DR R LS B USSR YL R A ISP UR AR B RE QB ILIL B R AR BBV R IR S IR
# example 4 - Test of vi{ procedure

B RN RRRRRARARRARARAR AR A IRRAARAERARA AR A AR RAFAHRAT R AARAR AR REIAAGEERER
# Ref.; L. 0. Chua and C.-Y. Ng: "Frequency-domain analysis of nonlinear

# systems: formulation of tramnsfer functions', IEE Journal on Electronic

# Circuits and Systems, November 1979, Vol.3, No. 6, pp. 257-269.
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- WO . a
BRABARBURIVIRIRBRRARY FREFIAR L EARRARLARINE LGRS R R B BB S 20 g sy

IRERIRLS

r2ad ‘voliun®:

BHHBYURBUBREP AR By Y Oy T

BRHLHYY Hi

# Alcal - calculate the A inverse matrix

BABABRR RIS LB RRLLRB LB HBREARB BRI £

ERadetdodnpis ot drbste o qus: prped rodns i fof & S5 3 S B B B P

AIcal := proc(s)

local D:

global AIl:

D = 2%s72 + 3%s + 4:
AIC1,17 := -3%(s"2 + 2)/D:
AI[1,2] := -3%s/D:

AI[2,1] := 3*s/D:

AI[2,2] := -2%s/D

end: # Alcal

BURBRRBRRE BB RLBARLBBR BRI U4 BRBURBBBBRB VLB E RSP ABAR R 14

PARBBRRBB LR HLS

# Bcal - calculate the B matrix

AR R AR AR AR R A AR AR AR IR R RS RER A PR BE RGP LA ARG AR BB BR AR B B B84

Becal := proc(s)
glooval B:
5[1,17 := -2/3:
B(2,1] := 2/s
end: # Bcal

FRIARARRABALHAIRER R R R R R R R R S E R R R AR AR R BRI AR IR LG22 0 838

# acal - calculate the a vector

B R A R R R R R R A A R A A S AR RN AR LR S S R B SR AL HIR R RS BP B LR AR A S H BBy

acal := proc(s)
glotal a:
alt] := 1:
af2] =0

end: # acal

HAARBYRRAFBYRRY RSP papan 2R BRI RLRARRRASYRN IR R RS IR

¢ btcal - calculate the b vector
"

< T
B R e e e 3 ]

~ 3
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3

# G1 - nonlinear Yolterra transfer function for rnonlinear element 1

HARBRFIBFRILRIARARRRUF AW RHAB BRI RBRA BB HAR BRI IR B BRI AR RS %
G1 := proc(ordL, psil)

local order, resnlt:

order := op(1, ordL):

result := 0Q:

if order = 2 then result := 1/5 fi:
result

end: # G1

RARAR R AR HRRRBRBER AR IR BB BB R AR ARRSARRRARRER LR RAR AR R BB HLRRR R BB H R IR R G R RHR
# G2 - nonlinear Volterra transfer function for nonlinear element 2

#uRg et RARY

FRFARFAFARGIRFRARSF ARG SR AR ARG RRAFIFRRRBRRIR NS

G2 := proc(ordL, psil)

local order, result:

order := op(1l, ordlL):

result := 0:

if order = 2 then result := (op(1, psil) + op(2, psil))/3 fi:

result

end: # G2

ARRBRABBIFFR IR BRI R A #ERARRA R RS dRfHA L RGR AR RARSRRIAINER
# Main

K1 := volfun[vt£]([1], [s1], 3, [1,2,2,([11,02112, ‘algt®);

g2 := volfun[vtf]([2], [si,s21, 3, [1,2,2,001],0211], ‘alzf‘);
volfun{vtsl([3], [s1,s2,s3]1, 3, [1,2,2,0011,0221]1, ‘algf‘),

=
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Series embcddmg, 103
Signal, 149

determivl stic, example, 149
3

response, 178
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Standard noise temperature, 5. 10



296
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