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Preface 

Linear filters today enjoy a rich theoretical framework based on the early and im- 
portant contributions of Gauss (1795) on Least Squares, Wiener (1949) on optimal 
filtering, and Widrow (1970) on adaptive filtering. Linear filter theory has consis- 
tently provided the foundation upon which linear filters are used in numerous practical 
applications as detailed in classic treatments including that of Haykin [99], Kailath 
[ 1 lo], and Widrow [ 1971. Nonlinear signal processing, however, offers significant 
advantages over traditional linear signal processing in applications in which the un- 
derlying random processes are nonGaussian in nature, or when the systems acting on 
the signals of interest are inherently nonlinear. Practice has shown that nonlinear sys- 
tems and nonGaussian processes emerge in a broad range of applications including 
imaging, teletraffic, communications, hydrology, geology, and economics. Nonlinear 
signal processing methods in all of these applications aim at exploiting the system’s 
nonlinearities or the statistical characteristics of the underlying signals to overcome 
many of the limitations of the traditional practices used in signal processing. 

Traditional signal processing enjoys the rich and unified theory of linear systems. 
Nonlinear signal processing, on the other hand, lacks a unified and universal set 
of tools for analysis and design. Hundreds of nonlinear signal processing algo- 
rithms have been proposed in the literature. Most of the proposed methods, although 
well tailored for a given application, are not broadly applicable in general. While 
nonlinear signal processing is a dynamic and rapidly growing field, large classes of 
nonlinear signal processing algorithms can be grouped and studied in a unified frame- 
work. Textbooks on higher-and lower-order statistics [ 1481, polynomial filters [ 1411, 
neural-networks [ 1001, and mathematical morphology have appeared recently with 
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the common goal of grouping a "self-contained" class of nonlinear signal processing 
algorithms into a unified framework of study. 

This book focuses on unifying the study of a broad and important class of nonlinear 
signal processing algorithms that emerge from statistical estimation principles, and 
where the underlying signals are nonGaussian processes. Notably, by concentrating 
on just two nonGaussian models, a large set of tools is developed that encompasses a 
large portion of the nonlinear signal processing tools proposed in the literature over 
the past several decades. In particular, under the generalized Gaussian distribution, 
signal processing algorithms based on weighted medians and their generalizations 
are developed. The class of stable distributions is used as the second nonGaussian 
model from which weighted myriads emerge as the fundamental estimate from which 
general signal processing tools are developed. Within these two classes of nonlinear 
signal processing methods, a goal of the book is to develop a unified treatment on 
optimal and adaptive signal processing algorithms that mirror those of Wiener and 
Widrow, extensively presented in the linear filtering literature. 

The current manuscript has evolved over several years while the author regularly 
taught a nonlinear signal processing course in the graduate program at the University 
of Delaware. The book serves an international market and is suitable for advanced 
undergraduates or graduate students in engineering and the sciences, and practicing 
engineers and researchers. The book contains many unique features including: 

0 Numerous problems at the end of each chapter. 

Numerous examples and case studies provided throughout the book in a wide 
range of applications. 

0 A set of 60+ MATLAB software m-files allowing the reader to quickly design 
and apply any of the nonlinear signal processing algorithms described in the 
book to an application of interest. 

0 An accompanying MATLAB software guide. 

0 A companion PowerPoint presentation with more than 500 slides available for 
instruction. 

The chapters in the book are grouped into three parts. 
Part I provides the necessary theoretical tools that are used later in text. These 

include a review of nonGaussian models emphasizing the class of generalized Gaus- 
sian distributions and the class of stable distributions. The basic principles of order 
statistics are covered, which are of essence in the study of weighted medians. Part I 
closes with a chapter on maximum likelihood and robust estimation principles which 
are used later in the book as the foundation on which signal processing methods are 
build upon. 

Part I1 comprises of three chapters focusing on signal processing tools developed 
under the generalized Gaussian model with an emphasis on the Laplacian model. 
Weighted medians, L-filters, and several generalizations are studied at length. 
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Part I11 encompasses signal processing methods that emerge from parameter esti- 

The chapter sequence is thus assembled in a self-contained and unified framework 
mation within the stable distribution framework. 

of study. 
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1 
Introduction 

Signal processing is a discipline embodying a large set of methods for the repre- 
sentation, analysis, transmission, and restoration of information-bearing signals from 
various sources. As such, signal processing revolves around the mathematical manip- 
ulation of signals. Perhaps the most fundamental form of signal manipulation is that 
of filtering, which describes a rule or procedure for processing a signal with the goal 
of separating or attenuating a desired component of an observed signal from either 
noise, interference, or simply from other components of the same signal. In many 
applications, such as communications, we may wish to remove noise or interference 
from the received signal. If the received signal was in some fashion distorted by the 
channel, one of the objectives of the receiver is to compensate for these disturbances. 
Digital picture processing is another application where we may wish to enhance or 
extract certain image features of interest. Perhaps image edges or regions of the 
image composed of a particular texture are most useful to the user. It can be seen 
that in all of these examples, the signal processing task calls for separating a desired 
component of the observed waveform from any noise, interference, or undesired com- 
ponent. This segregation is often done in frequency, but that is only one possibility. 
Filtering can thus be considered as a system with arbitrary input and output signals, 
and as such the filtering problem is found in a wide range of disciplines including 
economics, engineering, and biology. 

A classic filtering example, depicted in Figure 1.1, is that of bandpass filtering a 
frequency rich chirp signal. The frequency components of the chirp within a selected 
band can be extracted through a number of linear filtering methods. Figure l . lb  
shows the filtered clwp when a linear 120-tap finite impulse response (FIR) filter is 
used. This figure clearly shows that linear methods in signal processing can indeed 

1 



2 INTRODUCTION 

Figure 1. I Frequency selective filtering: (a)  chirp signal, (b)  linear FIR filter output. 

be markedly effective. In fact, linear signal processing enjoys the rich theory of linear 
systems, and in many applications linear signal processing algorithms prove to be 
optimal. Most importantly, linear filters are inherently simple to implement, perhaps 
the dominant reason for their widespread use. 

Although linear filters will continue to play an important role in signal process- 
ing, nonlinear filters are emerging as viable alternative solutions. The major forces 
that motivate the implementation of nonlinear signal-processing algorithms are the 
growth of increasingly challenging applications and the development of more power- 
ful computers. Emerging multimedia and communications applications are becoming 
significantly more complex. Consequently, they require the use of increasingly so- 
phisticated signal-processing algorithms. At the same time, the ongoing advances of 
computers and digital signal processors, in terms of speed, size, and cost, makes the 
implementation of sophisticated algorithms practical and cost effective. 

Why Nonlinear Signal Processing? Nonlinear signal processing offers ad- 
vantages in applications in which the underlying random processes are nonGaussian. 
Practice has shown that nonGaussian processes do emerge in a broad array of applica- 
tions, including wireless communications, teletraffic, hydrology, geology, economics, 
and imaging. The common element in these applications, and many others, is that 
the underlying processes of interest tend to produce more large-magnitude (outlier 
or impulsive) observations than those that would be predicted by a Gaussian model. 
That is, the underlying signal density functions have tails that decay at rates lower 
than the tails of a Gaussian distribution. As a result, linear methods which obey the 
superposition principle suffer from serious degradation upon the arrival of samples 
corrupted with high-amplitude noise. Nonlinear methods, on the other hand, exploit 
the statistical characteristics of the noise to overcome many of the limitations of the 
traditional practices in signal processing. 
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Figure 1.2 Frequency selective filtering in nonGaussian noise: (a) linear FIR filter output, 
(b) nonlinear filter. 

To illustrate the above, consider again the classic bandpass filtering example. This 
time, however, the chirp signal under analysis has been degraded by nonGaussian 
noise during the signal acquisition stage. Due to the nonGaussian noise, the linear 
FIR filter output is severely degraded as depicted in Figure 1 . 2 ~ .  The advantages 
of an equivalent nonlinear filter are illustrated in Figure 1.2b where the frequency 
components of the chirp within the selected band have been extracted, and the ringing 
artifacts and the noise have been suppressed'. 

Internet traffic provides another example of signals arising in practice that are 
best modeled by nonGaussian models for which nonlinear signal processing offer 
advantages. Figure 1.3 depicts several round trip time delay series, each of which 
measures the time that a TCP/IP packet takes to travel between two network hosts. 
An RTT measures the time difference between the time when a packet is sent and the 
time when an acknowledgment comes back to the sender. RTTs are important in re- 
transmission transport protocols used by TCPAP where reliability of communications 
is accomplished through packet reception acknowledgments, and, when necessary, 
packet retransmissions. In the TCP/IP protocol, the retransmission of packets is based 
on the prediction of future RTTs. Figure 1.3 depicts the nonstationary characteristics 
of RTT processes as their mean varies dramatically with the network load. These 
processes are also noncaussian indicating that nonlinear prediction of RTTs can lead 
to more efficient communication protocols. 

Internet traffic exhibits nonGaussian statistics, not only on the RTT delay data 
mechanisms, but also on the data throughput. For example, the traffic data shown in 
Figure 1.4 corresponds to actual Gigabit (1000 Mb/s) Ethernet traffic measured on a 
web server of the ECE Department at the University of Delaware. It was measured 
using the TCPDUMP program, which is part of the Sun Solaris operating system. To 

'The example uses a weighted median filter that is developed in later sections. 
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Figure 7.3 RTT time series measured in seconds between a host at the University of 
Delaware and hosts in (a)  Australia (12:18 A M  - 3:53 AM); (b)  Sydney, Australia (12:30 AM - 
4:03 AM); (c) Japan (2:52 PM - 6:33 PM); (6) London, UK (1O:oO AM - 1:35 PM). All plots 
shown in 1 minute interval samples. 

generate this trace, all packets coming to the server were captured and time-stamped 
during several hours. The figure considers byte counts (size of the transferred data) 
measured on l0ms intervals, which is shown in the top plot of Figure 1.4. The 
overall length of the recordings is approximately four hours (precisely 14,000s). The 
other plots in Figure 1.4 represent the "aggregated" data obtained by averaging the 
data counts on increasing time intervals. The notable fact in Figure 1.4 is that the 
aggregation does not smooth out the data. The aggregated traffic still appears bursty 
even in the bottom plot despite the fact that each point in it is the average of one 
thousand successive values of the series shown in the top plot of Figure 1.4. Similar 
behavior in data traffic has been observed in numerous experimental setups, including 
CappC et al. (2002) [42], Beran et al. (1995) [31], Leland et al. (1994) [127], and 
Paxson and Floyd (1995) [ 1591. 

Another example is found in high-speed data links over telephone wires, such as 
Asymmetric Digital Subscriber Lines (ADSL), where noise in the communications 
channel exhibits impulsive characteristics. In these systems, telephone twisted pairs 
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Figure 1.4 Byte counts measured over 14,000 seconds in a web server of the ECE Depart- 
ment at the University of Delaware viewed through different aggregation intervals: from top 
to bottom, 10ms, l00ms Is, 10s. 

are unshielded, and are thus susceptible to large electromagnetic interference. Poten- 
tial sources of impulsive interference include light switching and home appliances, 
as well as natural weather phenomena. Severe interference is also generated by cross 
talk among multiple twisted pairs making up a telephone cable. The interference 
is inherently impulsive and nonstationary leading to poor service reliability. The 
impact of impulsive noise on ADSL systems depends on the impulse energy, du- 
ration, interarrival time, and spectral characteristics. Isolated impulses can reach 
magnitudes significantly larger than either additive white noise or crosstalk interfer- 
ence. A number of models to characterize ADSL interference have been proposed 
[139]. Current ADSL systems are designed conservatively under the assumption of 
a worst-case scenario due to severe nonstationary and nonGaussian channel interfer- 
ence [204]. Figure 1.5 shows three ADSL noise signals measured at a customer's 
premise. These signals exhibit a wide range of spectral characteristics, burstiness, 
and levels of impulsiveness. In addition to channel coding, linear filtering is used 
to combat ADSL channel interference [204]. Figure 1.5u-c depicts the use of linear 
and nonlinear filtering. These figures depict the improvement attained by nonlinear 
filtering in removing the noise and interference. 



6 INTRODUCTION 

--I I 
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Figure 1.5 (a-c) Different noise and interference characteristics in ADSL lines. A linear 
and a nonlinear filter (recursive median filter) are used to overcome the channel limitations, 
both with the same window size (adapted from [204]). 
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The last example (Fig. 1.6), visually illustrates the advantages of nonlinear signal 
processing. This figure depicts an enlarged section of an image which has been JPEG 
compressed for storage in a Web site. Since compression reduces and often eliminates 
the high frequency components, compressed images contain edge artifacts and tend 
to look blurred. As a result, images found on the Internet are often sharpened. Figure 
1.6b shows the output of a traditional sharpening algorithm equipped with linear FIR 
filters. The amplification of the compression artifacts are clearly seen. Figure 1 . 6 ~  
depicts the sharpening output when nonlinear filters are used. Nonlinear sharpeners 
avoid noise and artifact amplification and are as effective as linear sharpeners in 
highlighting the signal edges. 

The examples above suggest that significant improvements in performance can be 
achieved by nonlinear methods of signal processing. Unlike linear signal processing, 
however, nonlinear signal processing lacks a unified and universal set of tools for 
analysis and design. Hundreds of nonlinear signal processing algorithms have been 
proposed [21,160]. While nonlinear signal processing is a dynamic, rapidly growing 
field, a large class of nonlinear signal algorithms can be studied in a unified frame- 
work. Since signal processing focuses on the analysis and transformation of signals, 
nonlinear filtering emerges as the fundamental building block of nonlinear signal pro- 
cessing. This book develops the fundamental signal-processing tools that arise when 
considering the filtering of nonGaussian, rather than Gaussian, random processes. 
By concentrating on just two nonGaussian models, a large set of tools is developed 
that notably encompass a significant portion of the nonlinear signal-processing tools 
proposed in the literature over the past several decades. 

1.1 NONGAUSSIAN RANDOM PROCESSES 

In statistical signal processing, signals are modeled as random processes and many 
signal-processing tasks reduce to the proper statistical analysis of the observed sig- 
nals. Selecting the appropriate model for the application at hand is of fundamental 
importance. The model, in turn, determines the signal processing approach. Classi- 
cal linear signal-processing methods rely on the popular Gaussian assumption. The 
Gaussian model appears naturally in many applications as a result of the Central 
Limit Theorem first proved by De Moivre (1733) [69]. 

THEOREM 1.1 (CENTRAL LIMIT THEOREM) Let X I ,  Xa,  . . . , be a sequence 
of i.i.d. random variables with Zero mean and variance 02. Then as N + 00, the 
normalized sum 

converges almost surely to a zero-mean Gaussian variable with the same variance as 
Xa . 

Conceptually, the central limit theorem explains the Gaussian nature of processes 
generated from the superposition of many small and independent effects. For ex- 
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Figure 1.6 (a)  Enlarged section of a JPEG compressed image, (b) output of unsharp masking 
using FIR filters, (c )  and (d) outputs of median sharpeners. 
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ample, thermal noise generated as the superposition of a large number of random 
independent interactions at the molecular level. The Central Limit Theorem theoret- 
ically justifies the appearance of Gaussian statistics in real life. 

However, in a wide range of applications, the Gaussian model does not produce 
a good fit which, at first, may seem to contradict the principles behind the Central 
Limit Theorem. A careful revision of the conditions of the Central Limit Theorem 
indicates that, in order for this theorem to be valid, the variance of the superimposed 
random variables must be finite. If the random variables possess infinite variance, 
it can be shown that the series in the Central Limit Theorem converges to a non- 
Gaussian impulsive variable [65, 2071. This important generalization of the Central 
Limit Theorem explains the apparent contradictions of its “traditional” version, as 
well as the presence of non-Gaussian, infinite variance processes, in practical prob- 
lems. In the same way as the Gaussian model owes most of its strength to the Central 
Limit Theorem, the Generalized Central Limit Theorem constitutes a strong theo- 
retical argument to the development of models that capture the impulsive nature of 
these signals, and of signal processing tools that are adequate in these nonGaussian 
environments. 

Perhaps the simplest approach to address the effects of nonGaussian signals is 
to detect outliers that may be present in the data, reject these heuristically, and 
subsequently use classical signal-processing algorithms. This approach, however, has 
many disadvantages. First, the detection of outliers is not simple, particularly when 
these are bundled together. Second, the efficiency of these methods is not optimal 
and is generally difficult to measure since the methods are based on heuristics. 

The approach followed in this book is that of exploiting the rich theories of 
robust statistics and non-Gaussian stochastic processes, such that a link is established 
between them leading to signal processing with solid theoretical foundations. This 
book considers two model families that encompass a large class of random processes. 
These models described by their distributions allow the rate of tail decay to be varied: 
the generalized Gaussian distribution and the class of stable distributions. The tail of 
a distribution can be measured by the mass of the tail, or order, defined as P,  ( X  > x) 
as 5 4 a. Both distribution families are general in that they encompass a wide array 
of distributions with different tail characteristics. Additionally, both the generalized 
Gaussian and stable distributions contain important special cases that lead directly to 
classes of nonlinear filters that are tractable and optimal for signals with heavy tail 
distributions. 

1.1.1 Generalized Gaussian Distributions and Weighted Medians 

One approach to modeling the presence of outliers is to start with the Gaussian 
distribution and allow the exponential rate of tail decay to be a free parameter. This 
results directly in the generalized Gaussian density function. Of special interest is 
the case of first order exponential decay, which yields the double exponential, or 
Laplacian, distribution. Optimal estimators for the generalized Gaussian distribution 
take on a particularly simple realization in the Laplacian case. It turns out that 
weighted median filters are optimal for samples obeying Laplacian statistics, much 
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like linear filters are optimal for Gaussian processes. In general, weighted median 
filters are more efficient than linear filters in impulsive environments, which can be 
directly attributed to the heavy tailed characteristic of the Laplacian distribution. Part 
I1 of the book uncovers signal processing methods using median-like operations, or 
order statistics. 

1.1.2 Stable Distributions and Weighted Myriads 

Although the class of generalized Gaussian distributions includes a spectrum of 
impulsive processes, these are all of exponential tails. It turns out that a wide variety of 
processes exhibit more impulsive statistics that are characterized with algebraic tailed 
distributions. These impulsive processes found in signal processing applications arise 
as the superposition of many small independent effects. For example, radar clutter 
is the sum of many signal reflections from an irregular surface; the transmitters in a 
multiuser communication system generate relatively small independent signals, the 
sum of which represents the ensemble at a user’s receiver; rotating electric machinery 
generates many impulses caused by contact between distinct parts of the machine; 
and standard atmospheric noise is known to be the superposition of many electrical 
discharges caused by lightning activity around the Earth. The theoretical justification 
for using stable distribution models lies in the Generalized Central Limit Theorem 
which includes the well known “traditional” Central Limit Theorem as a special case. 
Informally: 

A random variable X is stable if it can be the limit of a normalized sum of i.i.d. 
random variables. 

The generalized theorem states that if the sum of i.i.d. random variables with or 
without finite variance converges to a distribution, the limit distribution must belong 
to the family of stable laws [149, 2071. Thus, nonGaussian processes can emerge 
in practical applications as sums of random variables in the same way as Gaussian 
processes. 

Stable distributions include two special cases of note: the standard Gaussian 
distribution and the Cauchy distribution. The Cauchy distribution is particularly 
important as its tails decay algebraically. Thus, the Cauchy distribution can be used 
to model very impulsive processes. It turns out that for a wide range of stable- 
distributed signals, the so-called weighted myriad filters are optimal. Thus, weighted 
myriad filters emerging from the stable model are the counterparts to linear and 
median filters related to the Gaussian and Laplacian environments, respectively. Part 
I11 of the book develops signal-processing methods derived from stable models. 

1.2 STATISTICAL FOUNDATIONS 

Estimation theory is a branch of statistics concerned with the problem of deriving 
information about the properties of random processes from a set of observed samples. 
As such, estimation theory lies at the heart of statistical signal processing. Given an 
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observation waveform { X ( n ) } ,  one goal is to extract information that is embedded 
within the observed signal. It turns out that the embedded information can often 
be modeled parametrically. That is, some parameter p of the signal represents the 
information of interest. This parameter may be the local mean, the variance, the local 
range, or some other parameter associated with the received waveform. Of course, 
finding a good parametric model is critical. 

Location Estimation Because observed signals are inherently random, these are 
described by a probability density function (pdf), f ( ~  1 , 2 2 ,  . . . , ZN). The pdf may 
be parameterized by an unknown parameter p. The parameter p thus defines a class 
of pdfs where each member is defined by a particular value of p. As an example, if 
our signal consists of a single point ( N  = 1) and ,B is the mean, the pdf of the data 
under the Gaussian model is 

which is shown in Figure 1.7 for various values of p. Since the value of /3 affects 
the probability of X I ,  intuitively we should be able to infer the value of p from the 
observed value of X I .  For example, if the observed value of X I  is a large positive 
number, the parameter p is more likely to be equal to PI than to p2 in Figure 1.7. 
Notice that p determines the location of the pdf. As such, P is referred to as the 
location parameter. Rules that infer the value of P from sample realizations of the 
data are known as location estimators. Although a number of parameters can be 
associated with a set of data, location is a parameter that plays a key role in the 
design of filtering algorithms. The filtering structures to be defined in later chapters 
have their roots in location estimation. 

figure 7.7 Estimation of parameter ,# based on the observation X I .  

Running Smoothers Location estimation and filtering are intimately related. 
The running mean is the simplest form of filtering and is most useful in illustrating 
this relationship. Given the data sequence {. . . , X ( n  - l), X ( n ) , X ( n  + l), . . .}, 
the running mean is defined as 
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Y ( n )  = MEAN(X(n - N ) ,  X ( n  - N + 1). . . . , X ( n  + N ) ) .  (1.3) 

At a given point n, the output is the average of the samples within a window 
centered at n. The output at n + 1 is the average of the samples within the window 
centered at n + 1, and so on. Thus, at each point n, the running mean computes 
a location estimate, namely the sample mean. If the underlying signals are not 
Gaussian, it would be reasonable to replace the mean by a more appropriate location 
estimator. Tukey (1974) [189], for instance, introduced the running median as a 
robust alternative to the running mean. 

Although running smoothers are effective in removing noise, more powerful signal 
processing is needed in general to adequately address the tasks at hand. To this end, 
the statistical foundation provided by running smoothers can be extended to define 
optimal filtering structures. 

1.3 THE FILTERING PROBLEM 

Filtering constitutes a system with arbitrary input and output signals, and conse- 
quently the filtering problem is found in a wide range of disciplines. Although 
filtering theory encompasses continuous-time as well as discrete-time signals, the 
availability of digital computer processors is causing discrete-time signal represen- 
tation to become the preferred method of analysis and implementation. In this book, 
we thus consider signals as being defined at discrete moments in time where we 
assume that the sampling interval is fixed and small enough to satisfy the Nyquist 
sampling criterion. 

Denote a random sequence as { X }  and let X(n) be a N-long element, real valued 
observation vector 

X ( n )  = [ X ( n ) ,  X ( n  - l), . . . , X ( n  - N + 1)]T 

= [ X , ( n ) ,  X2(72), . . . , X,(n)lT (1.4) 

where X i ( n )  = X ( n  - i + 1) and where T denotes the transposition operator. R 
denotes the real line. Further, assume that the observation vector X(n) is statistically 
related to some desired signal denoted as D(n) .  The filtering problem is then 
formulated in terms of joint process estimation as shown in Figure 1.8. The observed 
vector, X(n,), is formed by the elements of a shifting window, the output of the filter 
is the estimate 5 ( n )  of a desired signal D(n) .  The optimal filtering problem thus 
reduces to minimizing the cost function associated with the error e ( n )  under a given 
criterion, such as the mean square error (MSE). 

Under Gaussian statistics, the estimation framework becomes linear and the filter 
structure reduces to that of FIR linear filters. The linear filter output is defined as 
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Filter 

T +  
Figure 7.8 Filtering as a joint process estimation 

where the Wi are real-valued weights assigned to each input sample. 
Under the Laplacian model, it will be shown that the median becomes the estimate 

of choice and weighted medians become the filtering structure. The output of a 
weighted median is defined as 

Y(n)  =MEDIAN(Wl o X l ( n ) , W z o X z ( n ) ,  . . . ,  W N o X N ( n ) ) ,  (1.6) 

where the operation Wi o X i  (n) replicates the sample X i  (n),  Wi times. Weighting 
in median filters thus takes on a very different meaning than traditional weighting in 
linear filters. 

For stable processes, it will be derived shortly that the weighted myriad filter 
emerges as the ideal structure. In this case the filter output is defined as 

Y(n)  = MYRIAD ( K :  Wl o X I ,  W, o X z , .  . . , WN o X N )  , (1.7) 

where Wi o X z ( n )  represents a nonlinear weighting operation to be described later, 
and K in (1.7) is a free tunable parameter that will play an important role in weighted 
myriad filtering. It is the flexibility provided by K that makes the myriad filter a 
more powerful filtering framework than either the linear FIR or the weighted median 
filter frameworks. 

1.3.1 Moment Theory 

Historically, signal processing has relied on second-order moments, as these are 
intimately related to Gaussian models. The first-order moment 

P X  = E { X ( n ) )  (1.8) 

and the second-order moment characterization provided by the autocorrelation of 
stationary processes 

Rx(k )  = E { X ( n ) X ( n  + k ) }  (1.9) 



14 INTRODUCTION 

are deeply etched into traditional signal processing practice. As it will be shown 
later, second-order descriptions do not provide adequate information to process non- 
Gaussian signals. One popular approach is to rely on higher-order statistics that 
exploit moments of order greater than two. If they exist, higher-order statistics pro- 
vide information that is unaccessible to second-order moments [ 1481. Unfortunately, 
higher-order statistics become less reliable in impulsive environments to the extent 
that often they cease to exist. 

The inadequacy of second- or higher-order moments leads to the introduction of 
alternate moment characterizations of impulsive processes. One approach is to use 
fractional lower-order statistics (FLOS) consisting of moments for orders less than 
two [136, 1491. Fractional lower-order statistics are not the only choice. Much 
like the Gaussian model naturally leads to second-order based methods, selecting a 
Laplacian model will lead to a different natural moment characterization. Likewise, 
adopting the stable laws will lead to a different, yet natural, moment characterization. 
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2 
NonGaussian Models 

The Gaussian distribution model is widely accepted in signal processing practice. 
Theoretically justified by the Central Limit Theorem, the Gaussian model has attained 
a privileged place in statistics and engineering. There are, however, applications 
where the underlying random processes do not follow Gaussian statistics. Often, the 
processes encountered in practice are impulsive in nature and are not well described 
with conventional Gaussian distributions. Traditionally, the design emphasis has 
often relied on a continuity principle: optimal processing at the ideal Gaussian 
model should be almost optimal nearby. Unfortunately, this reliance on continuity is 
unfounded and in many cases one finds that optimum signal-processing methods can 
suffer drastic performance degradations, even for small deviations from the nominal 
assumptions. As an example, synchronization, detection, and equalization, basic in 
all communication systems, fail in impulsive noise environments whenever linear 
processing is used. 

In order to model nonGaussian processes, a wide variety of distributions with 
heavier-than-Gaussian tails have been proposed as viable alternatives. This chapter 
reviews several of these approaches and focuses on two distribution families, namely 
the class of generalized Gaussian distributions and the class of stable distributions. 
These two distribution families are parsimonious in their characterization leading to 
a balanced trade-off between fidelity and complexity. On the one hand, fidelity leads 
to more efficient signal-processing algorithms, while the complexity issue stands 
for simpler models from which more tractable algorithms can be derived. The 
Laplacian distribution, a special case of the generalized Gaussian distribution, lays 
the statistical foundation for a large class of signal-processing algorithms based on the 

17 
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sample median. Likewise, signal processing based on the so-called sample myriad 
emerges from the statistical foundation laid by stable distributions. 

2.1 GENERALIZED GAUSSIAN DISTRIBUTIONS 

The Central Limit Theorem provides a theoretical justification for the appearance of 
Gaussian processes in nature. Intimately related to the Gaussian model are linear 
estimation methods and, to a large extent, a large section of signal-processing algo- 
rithms based on operations satisfying the linearity property. While the Central Limit 
Theorem has provided the key to understanding the interaction of a large number 
of random independent events, it has also provided the theoretical burden favoring 
the use of linear methods, even in circumstances where the nature of the underlying 
signals are decidedly non-Gaussian. 

One approach used in the modeling of non-Gaussian processes is to start from 
the Gaussian model and slightly modify it to account for the appearance of clearly 
inappropriate samples or outliers. The Gaussian mixture or contaminated Gaussian 
model follows this approach, where the t-contaminated density function takes on the 
form 

where f n ( x )  is the nominal Gaussian density with variance 02, t is a small positive 
constant determining the percentage of contamination, and fc(x)  is the contaminating 
Gaussian density with a large relative variance, such that 0," >> c:. Intuitively, one 
out of 1/t samples is allowed to be contaminated by the higher variance source. 
The advantage of the contaminated Gaussian distribution lies in its mathematical 
simplicity and ease of computer simulation. Gaussian mixtures, however, present 
drawbacks. First, dispersion and impulsiveness are characterized by three parameters, 
t ,  cn, crc, which may be considered overparameterized. The second drawback, and 
perhaps the most serious, is that its sum density function formulation makes it difficult 
to manipulate in general estimation problems. 

A more accurate model for impulsive phenomena was proposed by Middleton 
(1977) [143]. His class A, B, and C models are perhaps the most credited statistical- 
physical characterization of radio noise. These models have a direct physical interpre- 
tation and have been found to provide good fits to a variety of noise and interference 
measurements. Contaminated Gaussian mixtures can in fact be derived as approx- 
imations to Middleton's Class A model. Much like Gaussian mixtures, however, 
Middleton's models are complicated and somewhat difficult to use in laying the 
foundation of estimation algorithms. 

Among the various extensions of the Gaussian distributions, the most popular 
models are those characterized by the generalized Gaussian distribution. These have 
been long known, with references dating back to 1923 by Subbotin [183] and 1924 
by Frkchet [74]. A special case of the generalized Gaussian distribution class is the 
well known Laplacian distribution, which has even older roots; Laplace introduced it 
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more than two hundred years ago [ 1221. In the generalized Gaussian distribution, the 
presence of outlier samples can be modeled by modifying the Gaussian distribution, 
allowing the exponential rate of tail decay to be a free parameter. In this manner, the 
tail of the generalized Gaussian density function is governed by the parameter k .  

DEFINITION 2.1 (GENERALIZED GAUSSIAN DISTRIBUTION) The probability 
density function for the generalized Gaussian distribution is given by 

where I?(.) is the Gamma function r ( x )  = 

(y = 0 - 1  7 r ( 3 / k )  (I'(l /k))-  and g is the standard deviation'. 

In this representation, the scale of the distribution is determined by the parameter 
CT > 0 whereas the impulsiveness is related to the parameter k > 0. As expected, the 
representation in (2.2) includes the standard Gaussian distribution as a special case 
for k = 2. Conceptually, the lower the value of k ,  the more impulsive the distribution 
is. For k < 2, the tails decay slower than in the Gaussian case, resulting in a heavier 
tailed distribution. A second special case of the generalized Gaussian distribution 
that is of particular interest is the case k = 1, which yields the double exponential, 
or Laplacian distribution, 

tX'-'eptdt, a is a constantdejinedas 

(2.3) 

where the second representation is the most commonly used and is obtained making 

The effect of decreasing k on the tails of the distribution can be seen in Figures 2.1 
and 2.2. As these figures show, the Laplacian distribution has heavier tails than the 
Gaussian distribution. One of the weaknesses of the generalized Gaussian distribution 
is the shape of these distributions around the origin for k < 2. The "peaky" shape of 
these distributions contradicts the widely accepted Winsor's principle, according to 
which, all density functions of practical appeal are bell-shaped [87, 1881. 

ff = &/A. 

2.2 STABLE DISTRIBUTIONS 

Stable distributions describe a rich class of processes that allow heavy tails and 
skewness. The class was characterized by LCvy in 1925 [ 1281. Stable distributions are 
described by four parameters: an index of stability (I: E (0,2], a scale parameter y > 
0, a skewness parameter 6 E [ - 1,1], and a location parameter ,O E R. The stability 

'The gamma function satisfies: r(x) = (z - l)r(x - 1) for x > 1. For positive integers it follows 
that r (z)  = (x - l)! and for a non integer x > 0 such that z = i + ti where 0 5 u < 1, 
r(%) = (Z - I)(. - 2 ) .  . . qU). For x = a, r( i) = J;;. 
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Figure 2.1 
k .  

Generalized Gaussian density functions for different values of the tail constant 

parameter (u measures the thickness of the tails of the distribution and provides 
this model with the flexibility needed to characterize a wide range of impulsive 
processes. The scale parameter y, also called the dispersion, is similar to the variance 
of the Gaussian distribution. The variance equals twice the square of gamma in the 
Gaussian case when (u = 2. When the skewness parameter is set to S = 0, the stable 
distribution is symmetric about the location parameter p. Symmetric stable processes 
are also referred to as symmetric a-stable or simply as S a S .  A stable distribution 
with parameter a is said to be standard if /3 = 0 and y = 1. For any stable variable 
X with parameters a,  p, y, S, the corresponding standardized stable variable is found 
as ( X  - P)/y, for a # 1. 

Stable distributions are rapidly becoming popular for the characterization of im- 
pulsive processes for the following reasons. Firstly, good empirical fits are often 
found using stable distributions on data exhibiting skewness and heavy tails. Sec- 
ondly, there is solid theoretical justification that nonGaussian stable processes emerge 
in practice, such as multiple access interference in a Poisson-distributed communi- 
cation network [179], reflection off a rotating mirror [69], and Internet traffic [127]; 
see Uchaikin and Zolotarev (1999) [ 19 11 and Feller (197 1) [69] for additional exam- 
ples. The third argument for modeling with stable distributions is perhaps the most 
significant and compelling. Stable distributions satisfy an important generalization 
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Figure 2.2 Tails of the Generalized Gaussian density functions for different values of the 
tail constant k .  

of the Central Limit Theorem which states that the only possible limit of normalized 
sums of independent and identically distributed terms is stable. 

A wide variety of impulsive processes found in signal processing applications 
arise as the superposition of many small independent effects. While Gaussian models 
are clearly inappropriate, stable distributions have the theoretical underpinnings to 
accurately model these type of impulsive processes [149, 2071. Stable models are 
thus appealing, since the generalization of the Central Limit Theorem explains the 
apparent contradictions of its “ordinary” version, which could not naturally explain 
the presence of heavy tailed signals. 

The Generalized Central Limit Theorem and the strong empirical evidence is used 
by many to justify the use of stable models. Examples in finance and economics 
are given in Mandelbrot (1963) [138] and McCulloch (1966) [142]; in communi- 
cation systems by Stuck and Kleiner (1974)[182], Nikias and Shao (1995) [149], 
and Ilow and Hatzinakos (1997) [106]. A number of monographs providing in- 
depth discussion of stable processes have recently appeared: Zolotarev (1986) [207], 
Samorodnitsky and Taqqu (1994) 1751, Nikias and Shao (1995) 11491, Uchaikin and 
Zolotarev (1999) 11911, Adler et al. (2002) 1671, and Nolan (2002) [151]. 
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2.2.1 Definitions 

Gaussian random variables obey the important property that the sum of any two 
Gaussian variables is itself a Gaussian random variable. Formally, for any two 
independent Gaussian random variables X 1 and X2 and any positive constants a ,  b, c, 

aX1 + bX2 5 cX + d ,  

where d is a real-valued constant'. As their name implies, stable random variables 
obey this property as well. 

DEFINITION 2.2 (STABLE RANDOM VARIABLES) A random variable x is sta- 
ble iffor X I  and X z  independent copies of X and for arbitrary positive constants a 
and b, there are constants c and d such that 

aX1 + bX2 5 cX + d.  (2.4) 
d A symmetric stable random variable distributed around 0 satisfies X = - X .  

Informally, the stability property states that the shape of X is preserved under 
addition up to scale and shift. The stability property (2.4) for Gaussian random 
variables can be readily verified yielding c2 = a2 + b2 and d = ( a  + b - c)p, where 
p is the mean of the parent Gaussian distribution. Other well known distributions 
that satisfy the stable property are the Cauchy and LCvy distributions, and as such, 
both distributions are members of the stable class. The density function, for X - 
Cauchy(y, p)  has the form 

The LCvy density function, sometimes referred to as the Pearson distribution, is 
totally skewed concentrating on (0, m). The density function for X - L6vy(y, p) 
has the form 

Y , p < x < m. (2.6) 
1 

f(z) = g(x - p ) 3 / 2  exp (- 2(" - p,) 
Figure 2.3 shows the plots of the standardized Gaussian, Cauchy, and LCvy 

distributions. Both Gaussian and Cauchy distributions are symmetric and bell- 
shaped. The main difference between these two densities is the area under their 
tails - the Cauchy having much larger area or heavier tails. In contrast to the 
Gaussian and Cauchy, the LCvy distribution is highly skewed, with even heavier tails 
than the Cauchy. 

General stable distributions allow for varying degrees of skewness, the influence 
of the parameter 6 in the distribution of an a-stable random variable is shown in 
Figure 2.4. 

d 
'The symbol = defines equality in distribution 
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Figure 2.3 Density functions of standardized Gaussian (a  = 2), Cauchy (a = l), and U v y  
(a = 0.5, 6 = 1). 

Although some practical processes might be better modeled by skewed distri- 
butions, we will focus on symmetric stable processes for several reasons. First, the 
processes found in a number of signal-processing applications are symmetric; second, 
asymmetric models can lead to a significant increase in the computational complexity 
of signal-processing algorithms; and, more important, estimating the location of an 
asymmetric distribution is not a well-defined problem. All of the above constitute 
impediments to the derivation of a general theory of nonlinear filtering. 

2.2.2 Symmetric Stable Distributions 

Symmetric a-stable or SaS distributions are defined when the skewness parameter 
S is set to zero. In this case, a random variable obeying the symmetric stable 
distribution with scale y is denoted as X N SaS(y) .  Although the stability condition 
in Definition 2.2 is sufficient to characterize all stable distributions, a second and more 
practical characterization of stable random variables is through their characteristic 
function. 

00 

4(w) = Eexp(jwX) = exp(jwz)f(z)dz (2.7) L 
where f(z) is the density function of the underlying random variable. 
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0.7 I 

Figure 2.4 Density functions of skewed stable variables (a = 0.5, y = 1, p = 0). 

DEFINITION 2.3  (CHARACTERISTIC FUNCTION OF S a S  DISTRIBUTIONS) A 
random variable X is symmetrically stable if and only i f X  = AZ + B where 
0 < a 5 2, A 2 0, B E R and Z = Z ( a )  is a random variable with characteristic 
function 

d 

4 (w)  = e-Tulwla. (2.8) 

The dispersion parameter y is a positive constant related to the scale of the 
distribution. Again, the parameter a is referred to as the index of stability. In 
order for (2.8) to define a characteristic function, the values of a must be restricted 
to the interval (0; 21. Conceptually speaking, a determines the impulsiveness or 
tail heaviness of the distribution (smaller values of Q indicate increased levels of 
impulsiveness). The limit case, Q: = 2, corresponds to the zero-mean Gaussian 
distribution with variance 2y2.3 All other values of a correspond to heavy-tailed 
distributions. 

Figure 2.5 shows plots of normalized unitary-dispersion stable densities. Note that 
lower values of a correspond to densities with heavier tails, as shown in Figure 2.6. 

3The characteristic function of a Gaussian random variable with zero mean and variance d is given by: 

$(w)  = exp (-*), from this equation and (2.8) with a = 2, the relationship shown between y and 

u2 can be obtained. 
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Symmetric stable densities maintain many of the features of the Gaussian density. 
They are smooth, unimodal, symmetric with respect to the mode, and bell-shaped. 
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Figure 2.5 Density functions of Symmetric stable distributions for different values of the 
tail constant a. 

A major drawback to stable distribution modeling is that with a few exceptions 
stable density or their corresponding cumulative distribution functions lack closed 
form expressions. There are three cases for which closed form expressions of stable 
density functions exist: the Gaussian distribution (a = 2), the Cauchy distribution 
(a = l), and the LCvy (a = 2 )  distribution. For other values of a, no closed form 
expressions are known for the density functions, making it necessary to resort to 
series expansions or integral transforms to describe them. 

DEFINITION 2.4 ( SYMMETRIC STABLE DENSITY FUNCTIONS ) A general, 
“zero-centered,’’ symmetric stable random variable with unitary dispersion can be 
characterized by the power series density function representation [207]: 
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Tails of the Sc6 density function for different values of u 
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Figure 2.6 Tails of symmetric stable distributions for different values of the tail constant a. 

DEFINITION 2.5 (CHARACTERISTIC FUNCTION O F  A STABLE Rv.) [I511 A 
random variable X is stable with characteristic exponent a, dispersion y, location p 
and skewness 6 i f X  has a characteristic function: 
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EXAMPLE 2 .1  (STANDARD STABLE RANDOM VARIABLES) 

As stated previously, if X is a stable random variable with location /3 and dispersion 
(a # 1) is standard stable. This can be demonstrated y, the variable X’ = 

with the help of the general characteristic function. Define 

+(w’) = E[exp(jw’X’)] = E 

= exp ( - j+p)  E [exp ( j + ~ ) ]  using (2.10) 

but y 2 0, then IyI = y and sgn - = sgn(w’), then (3 
(2.1 1) 

is the characteristic function of a stable random variable with y = 1 and p = 0. 

EXAMPLE 2.2 

Let X - S(a ,  y, p),  a symmetric stable random variable, then for a # 0 it is 
shown that 

aX + b - S(a ,  laly, up + b) .  

Following the procedure used in the previous example, define X ‘ = aX + b: 

+(w’) = 

= 

= 

= exp(-((aly)QIw’l” + j ~ ’ ( a p + b ) ) ,  (2.12) 

E [exp (jw‘X’)] = E [exp (jw’ (ax + b))]  

exp (jw’b) E [exp ( j  (w’a) X)] 
exp (jw’b) exp (-yQ lw’ala + j p  (w’a)) 

using (2.10) with 6 = 0 
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which is the characteristic function of a symmetric stable random variable with dis- 
persion la17 and location up + b. 

EXAMPLE 2 . 3  

Let XI N S(a ,  71, PI) and XZ - S ( a ,  7 2 ,  P 2 )  be independent symmetric stable 
random variables, it is shown here that XI + X2 N S(a ,  y, P), where y‘ = -f + y; 
and P = PI + Pz. 

Define X’ = XI + XZ and find the characteristic function of X’ as: 

4(w’) = E [exp (jw’X’)] = E [exp (jw’ (XI + Xz))] 
= E [exp (jw’X1)] E [exp ( j w ’ x z ) ]  since the variables are independent 
= exp (-7: /a’(* + jplw’) exp (-7; lw’lQ + j ~ 2 w ’ )  

= exp (- (rl” + 7;) IW + j(Pl + P 2 ) 4  > (2.13) 

which is the characteristic function of a symmetric stable random variable with 
y“ = $ + y? and P = PI + Pz. 

2.2.3 Generalized Central Limit Theorem 

Much like Gaussian signals, a wide variety of non-Gaussian processes found in 
practice arise as the superposition of many small independent effects. At first, this 
may point to a contradiction of the Central Limit Theorem, which states that, in the 
limit, the sum of such effects tends to a Gaussian process. A careful revision of 
the conditions of the Central Limit Theorem indicates that, in order for the Central 
Limit Theorem to be valid, the variance of the superimposed random variables must 
be finite. If the variance of the underlying random variables is infinite, an important 
generalization of the Central Limit Theorem emerges. This generalization explains 
the apparent contradictions of its “ordinary” version, as well as the presence of 
non-Gaussian processes in practice. 

THEOREM 2.1 (GENERALIZED CENTRAL LIMIT THEOREM [75]) Let XI, 
X2 , . . . be an independent, identically distributed sequence of (possibly shift cor- 
rected) random variables. There exist constants a ,  such that as n --+ 00 the sum 

a,(X1 + x2 + . . .) 3 z (2.14) 

if and only if Z is a stable random variable with some 0 < (Y 5 2. 

In the same way as the Gaussian model owes most of its strength to the Cen- 
tral Limit Theorem, the Generalized Central Limit Theorem constitutes a strong 
theoretical argument compelling the use of stable models in practical problems. 
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At first, the use of infinite variance in the definition of the Generalized Central 
Limit Theorem may lead to some skepticism as infinite variance for real data having 
boundedrange may seem inappropriate. It should be noted, however, that the variance 
is but one measure of spread of a distribution, and is not appropriate for all problems. 
It is argued that in stable environments, y may be more appropriate as a measure of 
spread. From an applied point of view, what is important is capturing the shape of 
a distribution. The Gaussian distribution is, for instance, routinely used to model 
bounded data, even though it has unbounded support. Although in some cases 
there are solid theoretical reasons for believing that a stable model is appropriate, in 
other more pragmatic cases the stable model can be used if it provides a good and 
parsimonious fit to the data at hand. 

2.2.4 Simulation of Stable Sequences 

Computer simulation of random processes is important in the design and analysis of 
signal processing algorithms. To this end, Chambers, Mallows, and Stuck (1976) [43] 
developed an algorithm for the generation of stable random variables. The algorithm 
is described in the following theorem. 

THEOREM 2.2 (SIMULATION OF STABLE VARIABLES [151]) Let 0 and W be 
independent with 0 uniformly distributed on (- $, $) and W exponentially dis- 
tributed with mean 1. 2 - S(a ,  6) is generated as 

where c (a ,  6) = (1 + (6 tan y)2)1/(2a) and 00 = a-' arctan(6 tan y). In par- 
ticulal; for a = 1 , 6  = 0 (Cauchy), 2 - Cauchy(y) is generated as 

2 = ytan(0)  = y t a n  7r U - - ( ( 3 (2.16) 

where U is a uniform random variable in (0 , l ) .  

Figure 2.7 illustrates the impulsive behavior of symmetric stable processes as the 
characteristic exponent a is varied. Each one of the plots shows an independent and 
identically distributed (i.i.d.) "zero-centered'' symmetric stable signal with unitary 
geometric power4. In order to give a better feeling of the impulsive structure of the 
data, the signals are plotted twice under two different scales. As it can be appreciated, 
the Gaussian signal (a = 2) does not show impulsive behavior. For values of a close 
to 2 (a = 1.7 in the figure), the structure of the signal is still similar to the Gaussian, 

4The geometric power is introduced in the next section as a strength indicator of processes with infinite 
variance. 
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although some impulsiveness can now be observed. As the value of a is decreased, 
the impulsive behavior increases progressively. 

2.3 LOWER-ORDER MOMENTS 

Statistical signal processing relies, to a large extent, on the statistical characterization 
provided by second-order moments such as the variance V a r ( X )  = E ( X  ’) - ( E X ) 2  
with E X  being the first moment. Second-order based estimation methods are suffi- 
cient whenever the underlying signals obey Gaussian statistics. The characterization 
of nonGaussian processes by second-order moments is no longer optimal and other 
moment characterizations may be required. To this end, higher-order statistics (HOS) 
exploiting third- and fourth-order moments (cummulants) have led to improved es- 
timation algorithms in nonGaussian environments, provided that higher-order mo- 
ments exist and are finite [148]. In applications where the processes are inherently 
impulsive, second-order and HOS may either be unreliable or may not even exist. 

2.3.1 Fractional Lower-Order Moments 

The different behavior of the Gaussian and nonGaussian distributions is to a large 
extent caused by the characteristics of their tails. The existence of second-order 
moments depends on the behavior of the tail of the distribution. The tail “thickness” 
of a distribution can be measured by its asymptotic mass P(1Xl > x) as z + m. 
Given two functions h(z)  and g(z), they have asymptotic similarity (h(x) - g(z)) 
if for z + 00: limz+m h(z)/g(z) = 1, the Gaussian distribution can be shown to 
have exponential order tails with asymptotic similarity 

(2.17) 

Second order moments for the Gaussian distribution are thus well behaved due to 
the exponential order of the tails. The tails of the Laplacian distribution are heavier 
than that of the Gaussian distribution but remain of exponential order with 

~ ( 1 x 1  > x) - e-x/u.  (2.18) 

The tails of more impulsive nonGaussian distributions, however, behave very 
differently. Infinite variance processes that can appear in practice as a consequence 
of the Generalized Central Limit Theorem are modeled by probability distributions 
with algebraic tails for which 

P ( X  > z) - C F a  (2.19) 

for some fixed c and a > 0. The tail-heaviness of these distributions is determined 
by the tail constant a, with increased impulsiveness corresponding to small values of 
a. Stable random variables, for a < 2, are examples of processes having algebraic 
tails as described by the following theorem. 
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(U = 0.6 

Figure 2.7 Impulsive behavior of i.i.d. a-stable signals as the tail constant a is varied. 
Signals are plotted twice under two different scales. 
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THEOREM 2.3 (STABLE DISTRIBUTION TAILS [151]) LetX N S(a)  beasym- 
metric, standard stable random variable with 0 < a < 2, then as x -+ 00, 

(2.20) 

For stable and other distributions having algebraic tails, the following theorem is 
important having a significant impact on the statistical moments that can be used to 
process and analyze these signals. 

THEOREM 2.4 Algebraic-tailed random variables exhibitfnite absolute moments 
for orders less than a 

E ( l X l p )  < 00, if p < a. (2.21) 

Conversely, i f p  2 a, the absolute moments become infinite. 

Prooj The variable Y is replaced by lXlP in the first moment relationship 

yielding 

03 

E( lXIP)  = 1 P ( I X ( p  > t )d t  
0 

= .I, pu*-lP(lxI > u)du, 

(2.22) 

(2.23) 

(2.24) 

which, from (2.19), diverges for any distribution having algebraic tails. rn 

Given that second-order, or higher-order moments, do not exist for algebraic tailed 
processes, the result in (2.21) points to the fact that in this case, it is better to rely on 
fractional lower-order moments (FLOMs): ElXlP = s-", IzlPf(x)dz, which exist 
for 0 < p < a. FLOMs for arbitrary processes can be computed from the definitions. 
Zolotarev (1957) [207], for instance, derived the FLOMs of SaS random variables 
as 

PROPERTY 2.1  The FLOMs for a SaS random variable with zero locution pa- 
rameter and dispersion y is given by 

(2.25) 

(2.26) 

Figure 2.8 depict the fractional lower-order moments for standardized SaS (y = 
1, S = 0) as functions of p for various values of a. 
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figure 2.8 Fractional lower-order moments of the standardized S a S  random variable. 

2.3.2 Zero-Order Statistics 

Fractional lower-order statistics do not provide a universal framework for the char- 
acterization of algebraic-tailed processes: for a given p > 0, there will always be a 
“remaining” class of processes (those with a 5 p )  for which the associated FLOMs 
do not exist. On the other hand, restricting the values of p to the valid interval (0; a)  
requires either the previous knowledge of a or a numerical procedure to estimate it. 
The former may not be possible in most practical applications, and the later may be 
inexact and/or computationally expensive. Unlike lower- or higher-order statistics, 
the advantage of zero-order statistics (ZOS) is that they provide a common ground for 
the analysis of basically any distribution of practical use [85,48,47, 50, 491. In the 
same way as pth-order moments constitute the basis of FLOS and HOS techniques, 
zero-order statistics are based on logarithmic “moments” of the form E log 1x1. 

THEOREM 2.5 Let X be a random variable with algebraic or lighter tails. Then, 
Elog 1x1 < 00. 

Proof: If X has algebraic or lighter tails, there exists a p > 0 such that ElXl P < m. 
Jensen’s inequality [65] guarantees that for a concave function 4, and a random 
variable 2, E 4 ( Z )  5 q5(EZ). Letting $(x) = log Ix\/p and 2 = ( X I P  leads to 

(2.27) 
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which is the desired result. 

Random processes for which Theorem 2.5 applies, are referred to as being of 
“logarithmic order,” in analogy with the term “second order” used to denote processes 
with finite variance. The logarithmic moment, which is finite for all logarithmic-order 
processes, can be used as a tool to characterize these signals. The strength of a signal 
is one attribute that can be characterized by logarithmic moments. For second-order 
processes, the power E X 2  is a widely accepted measure of signal strength. This 
measure, however, is always infinite when the processes exhibit algebraic tails, failing 
to provide useful information. To this end, zero-order statistics can be used to define 
an alternative strength measure referred to as the geometric power. 

DEFINITION 2.6 (GEOMETRIC POWER [85]) Let X be a logarithmic-order ran- 
dom variable. The geometric power of X is dejined as 

so = So(X) = eE  log 1x1. (2.28) 

The geometric power gives a useful strength characterization along the class 
of logarithmic-order processes having the advantage that it is mathematically and 
conceptually simple. In addition, it has a rich set of properties that can be effectively 
used. The geometric power is a scale parameter satisfying SO (X) 2 0 and SO (cX) = 
IcISo(X), and as such, it can be effectively used as an indicator of process strength 
or “power” in situations where second-order methods are inadequate. The geometric 
power takes on the value So(X) = 0 if and only if P ( X  = 0) > 0, which implies 
that zero power is only attained when there is a discrete probability mass located in 
zero [85]. 

The geometric power of any logarithmic-order process can be computed by the 
evaluation of (2.28). The geometric power of symmetric stable random variables, for 
instance, can be obtained in the closed-form expression. 

PROPOSITION 2.1 (GEOMETRIC POWER OF STABLE PROCESSES) The geo- 
metric power of a symmetric stable variable is given by 

(2.29) 
&la 

So = -, 
CLl 

where C, = eCe x 1.78, is the exponential of the Euler constant. 

Proof: From [207], p. 215, the logarithmic moment of a zero-centered symmetric 
a-stable random variable with unitary dispersion is given by 

E log lXJ  = (; - 1) c e ,  

where C, = 0.5772 . . . is the Euler constant. This gives 

&/a -+ - - ,Elog 1x1 = ( e C e )  6-l = 

(2.30) 

(2.31) 
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where C, = ece M 1.78. If X has a non-unitary dispersion y, it is easy to see that 

(2.32) 

The geometric power is well defined in the class of stable distributions for any value 
of a > 0. Being a scale parameter, it is always multiple of y and, more interestingly, 
it is a decreasing function of a. This is an intuitively pleasant property, since we 
should expect to observe more process strength when the levels of impulsiveness are 
increased. 

Figure 2.9 illustrates the usefulness of the geometric power as an indicator of 
process strength in the a-stable framework. The scatter plot on the left side was 
generated from a stable distribution with a = 1.99 and geometric power SO = 1. 
On the right-hand side, the scatter plot comes from a Gaussian distribution (a = 2) 
also with unitary geometric power. After an intuitive inspection of Figure 2.9, it 
is reasonable to conclude that both of the generating processes possess the same 
strength, in accordance with the values of the geometric power. Contrarily, the 
values of the second-order power lead to the misleading conclusion that the process 
on the left is much stronger than the one on the right. 

A similar example to the above can be constructed to depict the disadvantages 
of FLOS-based indicators of strength in the class of logarithmic-order processes. 
Fractional moments of order p present the same type of discontinuities as the one 
illustrated in Figure 2.9 for processes with tail constants close to a = p .  The 
geometric power, on the other side, is consistently continuous along all the range of 
values of a. This “universality” of the geometric power provides a general framework 
for comparing the strengths of any pair of logarithmic-order signals, in the same way 
as the (second-order) power is used in the classical framework. 

The term zero-order statistics used to describe statistical measures using logarith- 
mic moments is coined after the following relationship of the geometric power with 
fractional order statistics. 

THEOREM 2.6 Let S, = (E IX IP)’/P denote the scale parameter derived from the 
pth-order moment of X .  If S, exists for suflciently small values of p ,  then 

SO = lim S,. 
p-0  

(2.33) 

Furthermore, SO 5 S,, forany p > 0. 

Proofi It is enough to prove that lim,,o 
pital rule, 

log ElXlp = E log 1x1. Applying L‘Hos- 

(2.34) 
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CL = 1.99 a=2  

Second-orderpower = 3.56 
Geometricpower = 1 I Second-orderpower = 03 

Geometricpower = 1 

Figure 2.9 Comparison of second-order power vs. geometric power for i.i.d. a-stable pro- 
cesses. Left: a = 1.99. Right: a = 2. While the values of the geometric power give an 
intuitive idea of the relative strengths of the signals, second-order power can be misleading. 

(2.35) 

(2.36) 

= ElogJXI. (2.37) 

To prove that So 5 Sp, Jensen’s inequality [65] guarantees that for a convex 
function q!J and a random variable Z ,  q!J(EZ) 5 E#(Z). Making 4 ( x )  = ex  and 
Z = log jXlP we get, 

so P - - e(EloglX/P) < - Ee1oglXlP = ElXlP = S P  P ’  (2.38) 

rn which leads to the desired result. 

Theorem 2.6 indicates that techniques derived from the geometric power are the 
limiting zero-order relatives of FLOMs. 

2.3.3 Parameter Estimation of Stable Distributions 

The generalized central limit method and the theoretical formulation of several sto- 
chastic processes justify the use of stable distribution models. In some other cases, 
the approach can be more empirical where large data sets exhibit skewness and 
heavy tails in such fashion that stable models provide parsimonious and effective 
characterization. Modeling a sample set by a stable probability density function thus 
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requires estimating the parameters of the stable distribution, namely the characteristic 
exponent a E ( 0 , 2 ] ;  the symmetry parameter 6 E [-1,1], which sets the skewness; 
the scale parameter y > 0; and the location parameter p. 

The often-preferred maximum likelihood parameter estimation approach, which 
offers asymptotic efficiency, is not readily available as stable distributions lack closed 
form analytical expressions. This problem can be overcome by numerical solutions. 
Nonetheless, simpler methods may be adequate in many cases [40, 68, 135, 1511. 
The approach introduced by Kuruo glu, in particular, is simple and provides adequate 
estimates in general [121]. In Kuruo@u's approach, the data of a general a-stable 
distributions is first transformed to data satisfying certain symmetric and skewness 
conditions. The parameters of the transformed data can then be estimated by the use 
of simple methods that use fractional lower-order statistics. Finally, the parameter 
estimates of the original data are obtained by using well-known relationships between 
these two sets of parameters. Kuruoglu's approach is summarized next. 

Let X I ,  be independent a-stable variates that are identically distributed with pa- 
rameters a, 6, y, and p. This stable law is denoted as 

Xk S d 6 ,  Y, PI.  (2.39) 

The distribution of a weighted sum of these variables with weights a k  can be 
derived as [121] 

where x<P> denotes the signed pth power of a number x 

x<P> = sign(x)lxlP. (2.41) 

This provides a convenient way to generate sequences of independent variables 
with zero /3, zero 6, or with zero values for both p and 6 (except when a = 1). These 
are referred to as the centered, deskewed, and symmetrized sequences, respectively: 

"-""I 2 + 2" 6, [ 2  + 2,] $y,O) (2.42) 

S"(0, 467,  [2 - 2 ' /* ]P)  (2.43) 

x,s = X2k - X2k-1 N Sa(0, 2+,0).  (2.44) 

Using such simpler sequences, moment methods for parameter estimation can be 
easily applied for variates with p = 0 or 6 = 0, or both, to the general variates at the 
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cost of loss of some sample size. In turn, these estimates are used to calculate the 
estimates of the original a-stable distributions. 

Moments of a distribution provide important statistical information about the 
distribution. Kuruoglu's methods, in particular, exploit fractional lower-order or 
negative-order moments, which, for the skewed a-stable distributions, are finite for 
certain parameter values. First, the absolute and signed fractional-order moments of 
stable variates are calculated analytically as a generalization of Property 2.1 [121]. 

PROPERTY 2.2 LetX N S,(d,y,O). Then,fira # 1 

(2.45) 

for p E (-1, a) and where 

o = arctan (6 tan 7)  . (2.46) 

As for the signed fractional moment of skewed a-stable distributions, the following 
holds [121]. 

PROPERTY 2.3 Let X - S,(b, y, 0). Then 

(2.47) 

Given n independent observations of a random variate X ,  the absolute and signed 
fractional moments can be estimated by the sample statistics: 

(2.48) 

The presence of the gamma function in the formulae presented by the propositions 
hampers the direct solution of these expressions. However, by taking products and 
ratios of FLOMs and applying the following property of the gamma function: 

(2.49) 

a number of simple closed-form estimators for a ,  6, and y can be obtained. 

FLOM estimate for a: Noting that (2.48) is only the approximation of the ab- 
solute and signed fractional order moments, the analytic formulas (2.45), (2.47) are 
used. From (2.45), the product APA-, is given by 

(2.50) 

Using (2.49), the above reduces to 
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sin2(pr)r(p)r(-p) cos2 $ 
A,A-,= sin . 2 ( z)r'($)r(-E) cos 2 F' 

The function r(.) has the property, 

r(P+ 1) = PF(P) 

thus, using equations (2.49) and (2.52), the following is obtained 

and 

P P a7r 
a a psin(px)' 

r(-)r(--) = - 

Taking (2.53) and (2.54) into equation (2.51) results in 

2 P.rr A,A-, - 2 ~ 0 s  a - 
t an?  a s i n ?  ' 

In a similar fashion, the product S,S-, can be shown to be equal to 

px 2sin2 5 
S,S-,tan - = 

2 a s i n ? '  

Equations (2.55) and (2.56) combined lead to the following equality. 

(2.5 1) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

whereq = y .  
Using the properties of r functions, and the first two propositions, other closed- 

form expressions for a, p, and y can be derived assuming in all cases that 6 = 0. 
These FLOM estimation relations are summarized as follows. 

Sinc Estimation for a; Estimate a as the solution to 

(2.58) 

It is suggested in [ 1211 that given a lower bound Q L B  on a, a sensible range for p is 
(0, Q L B / 2 ) .  
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Ratio Estimate for 6:  Given an estimate of a, estimate 8 by solving 

s,/A, = tan ($) /tan 

Given this estimate of 8, obtain the following estimate of 6: 

tan(8) a=--. 
tan ( y )  

FLOM Estimate for y: Given an estimate of a, 8, solve 

(2.59) 

(2.60) 

(2.61) 

Note that the estimators above are all for zero-location cases, that is, p = 0. For 
the more general case where ,O # 0, the data must be transformed into a centered 
sequence by use of (2.42), then the FLOM estimation method should be applied on 
the parameters of the centered sequence, and finally the resulting 6 and y must be 
transformed by dividing by (2 - 2a)/(2 + 

However, there are two possible problems with the FLOM method. First, since 
the value of a sinc function is in a finite range, when the value of the right size of 
(2.58) is out of this range, there is no solution for (2.58). Secondly, estimating a 
needs a proper value of p ,  which in turn depends on the value of a; in practice this 
can lead to errors in choosing p.  

and (2 + 2") 6 respectively. 

EXAMPLE 2.4 

Consider the first-order modeling of the RTT time series in Figure 1.3 using the 
estimators of the a-stable parameters. The modeling results are shown in Table 2.1. 
Figure 2.10 shows histograms of the data and the pdfs associated with the parameters 
estimated. 

Table 2.1 Estimated parameters of the distribution of the RTT time series measured between 
a host at the University of Delaware and hosts in Australia, Sydney, Japan, and the United 
Kingdom. 

Parameter Australia Sydney Japan UK 

a 1.0748 1.5026 1.0993 1.2180 
s - 0.343 1 1 0.6733 1 
Y 0.0010 7.6170 x 0.0025 0.0014 
P 0.2533 0.2359 0.2462 0.1091 
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Figure 2-70 Histogram and estimated PDF of the R7T time series measured between a host 
at the University of Delaware and hosts in (a)  Australia, (b)  Sydney, (c )  Japan, and (d) the 
United Kingdom. 

Problems 

2.1 Let $, denote the L,  estimator defined by 
N 

,hp = a r g m i n x  \xi - P I P .  

(a) Show that when 0 < p 5 1, the estimator is selection-type (i.e., bp is always 

(b) Define bo = lim,,o b,. Prove that bo is selection-type, and that it is always 

i=l 

equal to one of the input samples xi). 

equal to one of the most repeated values in the sample set. 

2.2 
with an outlier sample of value 200. 

The set of well-behaved samples { - 5 , 5 ,  -3,3,  -1,l) has been contaminated 
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(a) Plot the value of the L,  estimator ,hp as a function of p ,  for 0 5 p 5 3. 

(b) Assuming that the ideal location of this distribution is p = 0, interpret the 
qualitative robustness of the L ,  estimator as a function of p.  

2.3 For X - Cauchy(y), find the mean and variance of X 

2.4 Let X I ,  . . . , X N  denote a set of independent and identically distributed random 
variables with X i  - Cauchy(1). Show that the sample mean 

N X = = - C X i  1 

i=l 
N 

posses the same distribution as any of the samples X i .  What does this tell about the 
efficiency of X in Cauchy noise? Can we say X is robust? 

2.5 Show that Gaussian distributions are stable (i.e., show that u 2  + b2 = c2 ,  so 
Q = 2). 

2.6 

2.7 

(a) A Gaussian distribution. 

(b) A Laplacian distribution. 

Show that Cauchy distributions are stable (i.e., show that u + b = c, so Q = 1). 

Find the asymptotic order of the tails of 

2.9 

2.10 
with U N Uniform(0,l). 

2.11 
centered, deskewed, and symmetrized sequences with the parameters indicated. 

Find the geometric power of X - Uniform( -./a, ./a). 
Let W be exponentially distributed with mean 1. Show that W = - In U 

Show that the expressions in equations (2.42), (2.43), and (2.44) generate 



3 
Order Statistics 

The subject of order statistics deals with the statistical properties and characteristics 
of a set of variables that have been ordered according to magnitude. Represent the 
elements of an observation vector X = [ X ( n ) ,  X ( n  - l), . . . , X ( n  - N + 1)IT, as 
X = [ X I ,  X2 , .  . . X N ] ~ .  If the random variables X I ,  X Z ,  . . . , X N  are arranged in 
ascending order of magnitude such that 

X(1)  I X(2) I . . . I X ( N ) >  

we denote X ( i )  as the ith-order statistic for i = 1, . . . , N .  The extremes X ( N )  and 
X ( l ) ,  for instance, are useful tools in the detection of outliers. Similarly, the range 
X ( N )  - X(1)  is well known to be a quick estimator of the dispersion of a sample set. 

An example to illustrate the applications of order statistics can be found in the 
ranking of athletes in Olympic sports. In this case, a set of N judges, generally 
from different nationalities, judge a particular athlete with a score bounded by a 
minimum assigned to a poor performance, and a maximum for a perfect score. In 
order to compute the overall score for a given athlete, the scores of the judges are 
not simply averaged. Instead, the maximum and the minimum scores given by the 
set of judges are discarded and the remaining scores are then averaged to provide 
the final score. This trimming of the data set is consistently done because of the 
possible bias of judges for a particular athlete. Since this is likely to occur in an 
international competition, the trimmed-average has evolved into the standard method 
of computing Olympic scores. This simple example shows the benefit of discarding, 
or discriminating against, a subset of samples from a larger data set based on the 
information provided by the sorted data. 

43 
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Sorting the elements in the observation vector X constitutes a nonlinear permu- 
tation of the input vector. Consequently, even if the statistical characteristics of 
the input vector are exactly known, the statistical description of the sorted elements 
is often difficult to obtain. Simple mathematical expressions are only possible for 
samples which are mutually independent. Note that even in this simple case where 
the input samples X I ,  . . . , X N  are statistically independent, the order statistics are 
necessarily dependent because of the ordering on the set. 

The study of order statistics originated as a result of mathematical curiosity. The 
appearance of Sarhan and Greenberg's edited volume (1 962) [ 17 11, and H. A. David's 
treatise on the subject (1970) [58] have changed this. Order statistics have since 
received considerable attention from numerous researchers. A classic and masterful 
survey is found in H. A. David (1981) [58]. Other important references include 
the work on extreme order statistics by Galambos (1978) [77], Harter's treatment 
in testing and estimation (1970) [96], Barnett and Lewis' (1984) [28] use of order 
statistics on data with outliers, and the introductory text of Arnold, Balakrishnan, and 
Nagaraja (1992) [16]. Parallel to the theoretical advances in the area, order statistics 
have also found important applications in diverse areas including life-testing and 
reliability, quality control, robustness studies, and signal processing. The Handbook 
of Statistics VoZ. 17, edited by Balakrishnan and Rao (1998) [24], provides an 
encyclopedic survey of the field of order statistics and their applications. 

3.1 DISTRIBUTIONS OF ORDER STATISTICS 

When the variables are independent and identically distributed (i.i.d.), and when the 
parent distribution is continuous, the density of the rth order statistic is formed as 
follows. First, decompose the event that z < X ( v )  5 z + dx into three exclusive 
parts: that T - 1 of the samples X i  are less than or equal to z, that one is between 
z and x + dx, and that N - T are greater than z + dz. Figure 3 . 1 ~  depicts the 
configuration of such event. The probability that N - T are greater than or equal 
to x + dx is simply [l - F(x + dz)IN-', the probability that one is between z 
and z + dx is f Z ( x )  dz, and the probability that T - 1 are less than or equal to 
x is F(z)'-'. The probability corresponding to the event of having more than one 
sample in the interval (2 ,  x + dz] is on the order of (dz) and is negligible as dx 
approaches zero. The objective is to enumerate all possible outcomes of the X ~ S  
such that the ordering partition is satisfied. Counting all possible enumerations of N 
samples in the three respective groups and using the fact that F ( z  + dz)  + F ( z )  as 
dx + 0, we can write 

N !  - - F(z)'-' [l - F ( x ) ] ~ - '  fz(x) dx. (3.1) 
(r - l)! ( N  - T ) !  
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Xi-& 

The density function of the rth order statistic, f ( T )  (x), follows directly from the 
above. The coefficient in the right side of (3.1) is the trinomial coefficient whose 
structure follows from the general multinomial coefficient as described next. Given 
a set of N objects, kl  labels of type 1, k2 labels of type 2, . . ., and k ,  labels of type 
m and suppose that k l  + k2 + . . . + k ,  = N ,  the number of ways in which we may 
assign the labels to the N objects is given by the multinomial coefficient 

N !  
k l !  ka ! .  . . k,! . (3.2) 

The trinomial coefficient in (3.1) is a special case of (3.2) with k l  = r - 1, kz = 1, 
and k~ = N - r .  

r- 1 1 N-r 

FigUfe 3.1 (a) The event z < X(r l  5 3: + dz  can be seen as T - 1 of the samples X i  are 
less than or equal to z, that one is between 3: and z + dz, and that N - T are greater than or 
equal to z. (b)  The event z < X(Tl 5 x + dx and y < X(s l  5 y + dy can be seen as 
T - 1 of the samples Xi are less than z, that one of the samples is between z and 3: + dx, 
that s - T - 1 of the samples X ,  are less than y but greater than z, that one of the samples is 
between y and y + dy, and finally that N - s of the samples are greater than y. 

The joint density function of the order statistics X ( T )  and X ( s ) ,  for 1 5 r < s 5 N ,  
can be found in a similar way. In this case, for x 5 y, the joint density is denoted as 
f ( T , s )  (z, y) and is obtained by decomposing the event 

z < X(T)  5 z + dx < y < X ( s )  I y + d l ~  (3.3) 
into five mutually exclusive parts: that r - 1 of the samples Xi are less than x, that 
one of the samples is between x and x + dx, that s - r - 1 of the samples Xi are less 
than y but greater than x + dx, that one of the samples is between y and y + dy, and 
finally that N - s of the samples are greater than y + dy. The decomposition of the 
event in (3.3) is depicted in Figure 3.lb. The probability of occurrence for each of 
thefivelistedpartsisF(x)'-l,f,(x) dx, [F(y)  - F(x+dz)]'-'-', fz(y) dy, and 
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[l - F ( y  + d ~ ) ] ~ - ~ .  The probability corresponding to the events of having more 
than one sample in either of the intervals (2, x + dx] and (y, y + dy] is negligible 
as dx and dy approach zero. Using the multinomial counting principle to enumerate 
all possible occurrences in each part, and the fact that F ( x  + dz)  - F ( x )  and 
F ( y  + d y )  N F ( y )  as dx, d y  + 0 we obtain the joint density function 

m y )  - F(z)lS-'-l f&) [1 - F(Y)lN-" 

These density functions, however, are only valid for continuous random variables, 
and a different approach must be taken to find the distribution of order statistics 
with discontinuous parent distributions. The following approach is valid for both, 
continuous and discontinuous distributions: let the i.i.d. variables X 1 ,  X z ,  . . . , X N  
have a parent distribution function F ( x ) ,  the distribution function of the largest order 
statistic X ( N )  is 

due to the independence property of the input samples. Similarly, the distribution 
function of the minimum sample X ( l )  is 

F(,)(Z) = PT(X(1) 5 x} = 1 - PT(X(1) > x} 
1 - Pr(a11 xi > x} = I - [I - ~ ( x ) ] ~ ,  = 

since X ( l )  is less than, or equal to, all the samples in the set. The distribution function 
for the general case is 

F(T)(4 = PT{X(,) 5 
= Pr(at least T of the X i  are less than or equal to x} 

N 

= Pr(exact1y i of the X i  are less than or equal to x} 
i=r 

(3.5) 

Letting the joint distribution function of X( ' )  and X ( s ) ,  for 1 5 T < s 5 N ,  be 
denoted as F(,,.) (2 ,  y) then for x < y we have for discrete and continuous random 
variables 
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F(r,s) (z, y) = Pr{at least T of the X i  5 z, at least s of the X i  5 y } 

Pr(exact1y i of X I ,  X2 . . . , X ,  are at most x and 
N j  

= 
j=s i=r 

exactly j of X I ,  X2 . . . , X ,  are at most y} (3.6) 

N !  N j  
- [F(x)]i[F(y) - F(.)p-z[l - F ( y ) ] V  
- c c i ! ( j  - i ) ! ( N  - j ) !  

j = s  i=r 

Notice that for IC 2 y, the ordering X ( r )  < x with X ( s )  5 y, implies that 

An alternate representation of the distribution function F(r )  (x) is possible, which 
will prove helpful later on in the derivations of order statistics. Define the set of N 
samples from a uniform distribution in the closed interval [0,1] as U I ,  U2, . . . , U N .  
The order statistics of these variates are then denoted as U(l), U p ) ,  . . . , U ( N ) .  For any 
distribution function F(x) ,  we define its corresponding inverse distribution function 
or quantile function F-' as 

F(r,s)(z,~) = J'(~)(Y). 

~ - ' ( y )  = supremum [z : ~ ( z )  5 y], (3.7) 
for 0 < y < 1. It is simple to show that if X I , .  . . , X N  are i.i.d. with a parent 
distribution F ( z ) ,  then the transformation F-'(Ui)  will lead to variables with the 
same distribution as X i  [157]. This is written as 

d where the symbol = represents equality in distribution. Since cumulative distribution 
functions are monotonic, the smallest Ui will result in the smallest X i ,  the largest Ui 
will result in the largest X i ,  and so on. It follows that 

F-'(U(r))  2 x(r). 
The density function of U ( T )  follows from (3.1) as 

(3.9) 

(3.10) 

Integrating the above we can obtain the distribution function 

d Using the relationship F-' ( U ( r ) )  = X ( r ) ,  we obtain from the above the general 
expression 
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which is an incomplete Beta function valid for any parent distribution F ( z )  of the 
i.i.d. samples X i  [ 161. 

The statistical analysis of order statistics in this section has assumed that the input 
samples are i.i.d. As one can expect, if the i.i.d. condition is relaxed to the case of 
dependent variates, the distribution function of the ordered statistics are no longer 
straightforward to compute. Procedures to obtain these are found in [%I. 

Recursive Relations for Order Statistics Distributions Distributions of 
order statistics can also be computed recursively, as in Boncelet (1987) [36]. No 
assumptions are made about the random variables. They can be discrete, continuous, 
mixed, i.i.d. or not. 

Let X(,):N denote the rth order statistic out of N random variables. For first order 
distributions let -a = t o  < tl < t z  = +m and, for second order distributions, 
let -co = t o  < tl < t 2  < t 3  = +co and let r1 5 r ~ .  Then, for events of order 
statistics: 

In the first order case, (3.11) states that there are two ways the rth order statistic 
out of N + 1 random variables can be less or equal than t 1: one, that the N + 1st is 
larger than t 1 and the rth order statistic out of N is less or equal than t 1 and two, the 
N + 1st is less or equal than tl and the T - 1st order statistic out of N is less or equal 
than t l .  In the second order case, the event in question is similarly decomposed into 
three events. 

Notice that the events on the right hand side are disjoint since the events on X N + ~  
partition the real line into nonoverlapping segments. A direct consequence of this is 
a recursive formula for calculating distributions for independent X %: 
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3.2 MOMENTS OF ORDER STATISTICS 

The Nth order density function provides a complete characterization of a set of N 
ordered samples. These distributions, however, can be difficult to obtain. Moments 
of order statistics, on the other hand, can be easily estimated and are often sufficient 
to characterize the data. The moments of order statistics are defined in the same 
fashion as moments of arbitrary random variables. Here we always assume that the 
sample size is N .  The mean or expected value of the rth order statistic is denoted as 
p(') and is found as 

(3.15) 

m 1 z F ( z ) ' - ~ [ ~  - F(x)IN-' fz(x) dx. 
N !  

( r  - I)! ( N  - r ) !  
- - 

-m 

The pth raw moment of the rth-order statistic can also be defined similarly from 
(3.9) and (3.10) as 

for 1 5 T 5 N .  

defined, for 1 5 r 5 s I N ,  as 
Expectation of order statistic products, or order statistic correlation, can also be 

P(v ,s ) :N = E ( X ( r ) X ( s ) )  (3.17) 

= [ B ( T ,  s - T ,  N - s + 1)I-l 1' 1' [F;l(u)F-l(v)uT-l 
( T J  - u)s-T-l(l - T J ) ]  dv du 

where B(a,  b, .) = (a-l)!(b-l)!(c-l (a+b+c-l)! ! . Note that (3.17) does not allude to a time 

shift correlation, but to the correlation of two different order-statistic variates taken 
from the same sample set. The statistical characteristics of the order-statistics 
X(l), X ( z ) ,  . . . , X(N) are not homogeneous, since 

for T # s, as expected since the expected value of X(') should be less than the 
expected value of X(T+l). In general, the expectation of products of order statistics 
are not symmetric 
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q x ( r ) x ( r + s )  1 # E ( X ( r ) X ( r - s ) ) .  (3.19) 

This symmetry only holds in very special cases. One such case is when the parent 

The covariance of X ( r )  and X ( s )  is written as 
distribution is symmetric and where T = ( N  + 1) /2  such that X ( r )  is the median. 

cov [X(r)X(s)I  = E { ( X ( r )  - & T ) )  (X(S)  - 4 3 ) )  1 . (3.20) 

Tukey (1958) [187], derived the nonnegative property for the covariance of order 
statistics: cov[X( , )X~, )]  2 0. 

3.2.1 Order Statistics From Uniform Distributions 

In order to illustrate the concepts presented above, consider N samples of a stan- 
dard uniform distribution with density function f u  (u) = 1 and distribution function 
Fu(u) = u for 0 5 u 5 1. Letting U(r)  be the rth smallest sample, or order statistic, 
the density function of U ( r )  is obtained by substituting the corresponding values in 
(3.1) resulting in 

(3.21) 

also in the interval 0 5 u 5 1. The distribution function follows immediately as 

N !  
F u  P ( l  - t y - 7  d t ,  (3.22) 

= iu (T - l)! ( N  - T ) !  

or alternatively using (3.5) as 

N 

F(,)(u) = ( 7 ) ui[l  - uIN-'. 
i=r 

(3.23) 

The mode of the density function can be found at (T - 1)/(N - 1). The kth 
moment of U(r )  is found from the above as 

= B(r + k ,  N - T + ~ ) / B ( T ,  N - T + I), (3.25) 

where we make use of the complete beta function 

1 

B ( p ,  4 )  = 1 tP-l(l - t)q-l d t  (3.26) 
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for p ,  q > 0. Simplifying (3.25) leads to the kth moment 

(k) = N !  ( T +  k -  l ) !  
( N  + k ) !  (r - l)! .  

In particular, the first moment of the rth-order statistic can be found as 

(l) = r/(N + 1). P ( r )  

(3.27) 

To gain an intuitive understanding of the distribution of order statistics, it is helpful 
to plot f (T) (u)  in (3.21) for various values of T .  For N = 11, Figure 3.2 depicts 
the density functions of the 2nd-, 3rd-, 6th- (median), 9th-, and 10th-order statistics 
of the samples. With the exception of the median, all other order statistics exhibit 
asymmetric density functions. Other characteristics of these density functions, such 
as their mode and shape, can be readily observed and interpreted in an intuitive 
fashion. 

Figure 3.2 Density functions of X ( z ) ,  X ( 3 ) ,  X(6)  (median), X p ) ,  and ~ ( I o )  for a set of 
eleven uniformly distributed samples. 

Next consider the joint density function of U ( T )  and U(s )  (1 5 7- < s 5 N ) .  From 
(3.4) we find 

N !  
U ~ - ~ ( ~ J  - Z L ) ~ - ~ - ~ ( ~  - Z I ) ~ - '  (3.28) 

(7- - l)!(s - 7- - l ) !  ( N  - s)! f ( T , S )  (u, tJ) = 

Again there are two equivalent expressions for the joint cumulative distribution 
function, the first is obtained integrating (3.28) and the second from Eq. (3.6) 
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N !  
F(,s)(u74 = I" 1; (r  - l ) ! ( s  - r - l)! ( N  - s)!  

for 0 5 u < u 5 1. The joint density function allows the computation of the 
(kr ,  k,)th product moment of (U,,), U,,)), which, after some simplifications, is 
found as 

In particular, for k, = k, = 1, the joint moment becomes 

r ( s  + 1) 
( N  + 1 ) ( N  + 2) '  P(r , s )  = (3.30) 

As with their marginal densities, an intuitive understanding of bivariate density 
functions of order statistics can be gained by plotting f ( r , s ) ( ~ ,  u).  Figure 3.3 depicts 
the bivariate density function, described in (3.28) for the 2nd- and 6th- (median) order 
statistics of a set of eleven uniformly distributed samples. Note how the marginal 
densities are satisfied as the bivariate density is integrated over each variable. Several 
characteristics of the bivariate density, such as the constraint that only regions where 
u < will have mass, can be appreciated in the plot. 

3.2.2 Recurrence Relations 

The computation of order-statistic moments can be difficult to obtain for observations 
of general random variables. In such cases, these moments must be evaluated by 
numerical procedures. Moments of order statistics have been given considerable 
importance in the statistical literature and have been numerically tabulated exten- 
sively for several distributions [58,96]. Order-statistic moments satisfy a number of 
recurrence relations and identities, which can reduce the number of direct computa- 
tions. Many of these relations express higher-order moments in terms of lower-order 
moments, thus simplifying the evaluation of higher-order moments. Since the re- 
currence relations between moments often involve sample sets of lower orders, it is 
convenient to introduce the notation X ( i ) : ~  to represent the ith-order statistic taken 
from a set of N samples. Similarly, ~ L ( ~ ) : N  represents the expected value of X ( O : N .  

Many recursive relations for moments of order-statistics are derived from the 
identities 

N N 

(3.3 1) 
i=l i=l 
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Figure 3.3 Bivariate density function of X ( 6 )  (median) and X ( z )  for a set of eleven uniformly 
distributed samples. 

fork 2 1, and 

N N  N N  

for k i ,  kj 2 1, which follows from the principle that the sum of a set of samples 
raised to the kth power is unchanged by the order in which they are summed. Taking 
expectations of (3.31) leads to: 

N CP(k) (2):N - - N E ( X 3  = NP;;;:, 
i=l 

for N 2 2 and Ic 2 1. Similarly, from (3.32) the following is obtained: 

for k i ,  kj  2 1. 
These identities are simple and can be used to check the accuracy of computation 

of moments of order statistics. Some other useful recurrence relations are presented 
in the following properties. 

PROPERTY 3.1 For 1 5 i 5 N - 1 and k 2 1. 
' ( k )  ( k )  
W(i+1):N + ( N  - 4P::;:N = NP(B) :N- l .  
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This property can be obtained from equation (3.16) as follows: 

[ F - y u ) ] k u i - l ( l  - q - i - 1  
( i  - 1)!(N N !  - i - l)! s' 0 

- - 

(U  + 1 - u)du 

du - - 
(i - 1)!(N - i - l)! 

Property 3.1 describes a relation known as the triangle rule [ 161, which allows one 
to compute the kth moment of a single order statistic in a sample of size N ,  if these 
moments in samples of size less than N are already available. By repeated use of 
the same recurrence relation, the kth moment of the remaining N - 1 order statistics 
can be subsequently obtained. Hence, one could start with 1-1 or , u ( ~ ) : ~  and 
recursively find the moments of the smaller-or larger-order statistics. 

A different recursion, published by Srikantan [ 1801, can also be used to recursively 
compute single moments of order statistics by expressing the lcth moment of the ith- 
order statistic in a sample of size N in terms of the lcth moments of the largest order 
statistics in samples of size N and less. 

PROPERTY 3.2 For 1 5 i 5 N - 1 andk 2 1. 

(k) (k)  

The proof of this property is left as an exercise. 

3.3 ORDER STATISTICS CONTAINING OUTLIERS 

Order statistics have the characteristic that they allow us to discriminate against outlier 
contamination. Hence, when properly designed, statistical estimates using ordered 
statistics can ignore clearly inappropriate samples. In the context of robustness, it 
is useful to obtain the distribution functions and moments of order-statistics arising 
from a sample containing outliers. Here, the case where the contamination consists 
of a single outlier is considered. These results can be easily generalized to higher 



ORDER STATISTICS CONTAINING OUTLIERS 55 

Figure 3.4 (a) Triangle recursion for single moments; (b) recurrence relation from moments 
of maxima of lower orders. 

orders of contamination. The importance of a systematic study of order statistics 
from an outlier model has been demonstrated in several extensive studies [3,59]. 

First, the distributions of order statistics obtained from a sample of size N when 
an unidentified single outlier contaminates the sample are derived. Let the N long 
sample set consist of N - 1 i.i.d. variates X i ,  i = 1, . . . , N - 1, and the contaminant 
variable Y ,  which is also independent from the other samples in the sample set. Let 
F ( z )  and G(z) be the continuous parent distributions of X i  and Y ,  respectively. 
Furthermore, let 

Z(1):N I Z ( 2 ) : N  I . ' . I Z ( N ) : N  (3.33) 

be the order statistics obtained by arranging the N independent observations in 
increasing order of magnitude. The distribution functions of these ordered statistics 
are now obtained. The distribution of the maxima denoted as H ( N ) : N ( ~ )  is 

H ( ~ ) : ~ ( z )  = Pr {all of X I , .  . . , XN-1, and Y 5 z} 

= F ( X ) ~ - ~  G(x) .  

The distribution of the ith-order statistic, for 1 < i I N - 1, can be obtained as 
follows: 

H ( ~ ) : ~ ( z )  = 

= 

= ( - ) (F(x))Z-l(l - F ( x ) ) ~ - ~ G ( z )  + F ( + N - I ( ~ )  

Pr { at least i of X I ,  X 2 , ,  . . , XN-1,  Y I x} 
Pr {exactly i - 1 of X I ,  X z ,  . . . , X N - ~  5 z and Y 5 x} 
+Pr {at least i of X I ,  Xa, . . . , X N - ~  I z} 

N - 1  

where P( i ) :~- l (x)  is the distribution of the ith-order statistic in a sample of size 
N - 1 drawn from a parent distribution F ( x ) .  The density function of Z ( ~ ) : N  can 
be obtained by differentiating the above or by direct derivation, which is left as an 
exercise: 



56 ORDER STATISTICS 

( N  - l)! 
h( i ) :N(z )  - - ( i  - 2)! (N - i ) !  ( F ( Z ) ) ~ - ~ ( ~  - F ( ~ ) ) ~ - ~ G ( z ) f ( z )  

( N  - l)! 
(F(z))i-l(l - F(z))N-”(z) 

+ 

( i  - l ) ! ( N  - i ) !  
( N  - l)! 

( i  - 1)! (N - i - l)! 
(F(z))Z-’(l - F ( x ) ) ~ - ~ - ’  (1 - G(z))f(x) + 

where the first term drops out if i = 1, and the last term if N = i .  
The effect of contamination on order statistics is illustrated in Figure 3.5 depicting 

the densities of 2(2), Z(6) (median), and Z(lo) for a sample set of size 11, zero-mean, 
double-exponential random variables. The dotted curves are the densities where 
no contamination exists. In the contaminated case, one of the random variables is 
modified such that its mean is shifted to 20. The effect of the contamination on the 
second-order statistic is negligible, the density of the median is only slightly affected 
as expected, but the effect on the 10th-order statistic, on the other hand, is severe. 

Figure 3.5 Density functions of Z ( z ) ,  Z(6) (median), and Z(lo) with (solid) and without 
contamination (dotted). 

3.4 JOINT STATISTICS OF ORDERED AND NONORDERED SAMPLES 

The discussion of order statistics would not be complete if the statistical relationships 
between the order statistics and the nonordered samples are not described. To begin, 
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it is useful to describe the statistics of ranks. Sorting the elements X I , .  . . , X N  
defines a set of N keys ri, for i = 1,. . . , N ,  where the rank key ri identifies the 
location of X i  among the sorted set of samples X ( l )  , . . . , X"). If the input elements 
to the sorter are i.i.d., each sample X i  is equally likely to be ranked first, second, or 
any arbitrary rank. Hence 

+ f o r r = I ,  2 , . . . ,  N 

0 else. 
(3.34) 

The expected value of each rank key is then E { r i }  = ( N  + 1)/2. Similarly, the 

P, { T i  = r }  = 

bivariate distribution of the two keys ri and rj ,  is given by 

1 
N ( N - - l )  for T # s = 1, 2 , .  . . , N 

0 else. 
P, {ri = r,  rj = s}  

The joint distribution function of the rth order statistic X ( r )  and the ith input 
sample is derived next. Again, let the sample set X I ,  Xa,  . . . , X N  be i.i.d. with a 
parent distribution F ( x ) .  Since the observation samples are i.i.d., the joint distribution 
for X(,) and X i  is valid for any arbitrary value of i. The joint distribution function 
of X i  and X(,) is found for X i  I X(,) as 

Since x I z ,  then given that X i  < x we have that the second term in the right 
side of the above equation is simply the probability of at least r - 1 of the remaining 
N - 1 samples X i  < z ;  thus, 

For the case X i  > X(,) ,  the following holds: 

These probabilities can be shown to be 
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for z < x. 
The cross moments of X i  and X ( v )  can be found through the above equations, but 

an easier alternative method has been described in [ 1541 as stated in the next property. 

PROPERTY 3.3 The cross moment of the rth order statistic and the nonordered 
sample X i  for an N i.i.d. sample set satis$es the relation 

This property follows from the relation 

N N 

(3.36) 

(3.37) 
s=l s=1 

Substituting the above into the right hand side of (3.36) leads to 

N 

s=l  

Since all the input samples are i.i.d. then the property follows directly. 

Problems 

3.1 Let X I ,  . . . , X N ,  be i.i.d. variates, Xi having a geometric density function 

f(z) = q5p with q = 1 - p ,  

for 0 < p < 1, and for z 2 0. Show that X ( l )  is distributed geometrically. 

3.2 
function is symmetrical about x = p. 

For a random sample of size N from a continuous distribution whose density 
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(a) Show that f(,) (z) and f ( ~ - ~ + ~ )  ( 2 )  are mirror images of each other in z = p as 
mirror. That is 

(b) Generalize (a) to joint distributions of order statistics. 

3.3 
from the density function f(z) = 2 2  for 0 < z < 1, and 0 elsewhere. 

(a) Show that the median of the distribution is 4. 
(b) What is the probability that the smallest sample in the set exceeds the median of 

Let XI, X2, X, be independent and identically distributed observations taken 

the distribution. 

3.4 Given the N marginal density functions f(,)(z), 1 5 i 5 N, of a set of i.i.d. 
variables, show that the average probability density function f(z) is identical to the 
parent density function f(z). That is show 

N 

f(.> = (1/N) c f&4 = f(.). (3.38) 
i=l  

3.5 
function such that P,{X, = 1) = p and P,{X, = 0) = 1 - p with 0 < p < 1. 

(a) Find P,{X(,) = 1) and Pr{X(,) = 0). 

(b) Derive the bivariate distribution function of X (,) and X ( j ) .  

(c)  Find the moments ,u(~) and P( , ,~ ) .  

Let X l , X z , .  . . ,XN be N i.i.d. samples with a Bernoulli parent density 

3.6 
expected value of the sample median equals the median of the parent distribution. 

3.7 
N i.i.d. continuous variates is 

Show that in odd-sized random samples from i.i.d continuous distributions, the 

Show that the distribution function of the midrange m = $(X(l) + X ( N ) )  of 

m 
F ( m )  = N L m  [Fx(2m - 2)  - Fx(z) lN- l  fx(z)dz. 

3.8 For the geometric distribution with 

Pr(Xi = z) = p q2 

where q = 1 - p ,  show that for 1 5 i 5 N 

for z 2 o (3.39) 
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and 

3.9 Consider a set of 3 samples { X I ,  X2,  X3) .  While the sample X3 is inde- 
pendent and uniformly distributed in the interval [0,1], the other two samples are 
mutually dependent with a joint density function f ( X 1 ,  X2)  = ;6(X1 - 1, X2 - 
1)  + i d ( X 1  - 1, X2) ,  where 6(., .) is a 2-Dimensional Dirac delta function. 

(a) Find the distribution function of X i 3 )  

(b) Find the distribution function of the median. 

(c)  Is the distribution of X ( l )  symmetric to that of X ( 3 ) ,  explain. 

3.10 Prove the relation in Property 3.2. 

(3.42) 

Hint: From the definition of p we get 

which can be simplified to 

where (n)m denotes the terms n(n - 1 ) .  . . (n  - m + 1). 
3.11 Consider a sequence X I ,  X2,  . . . of independent and identically distributed 
random variables with a continuous parent distribution F ( z ) .  A sample X I ,  is called 
outstanding if X I ,  > maz(X1,  X2 , .  . . , Xk-1) (by definition X1 is outstanding). 

Prove ;hat PT{XI,  > m a z ( ~ 1 ,  ~ 2 ,  . . . , XI,-1)) = %. 1 



Statistical Foundations of 
Fil te rink 

Filtering and parameter estimation are intimately related due to the fact that informa- 
tion is carried, or can be inserted, into one or more parameters of a signal at hand. In 
AM and FM signals, for example, the information resides in the envelope and instan- 
taneous frequency of the modulated signals respectively. In general, information can 
be carried in a number of signal parameters including but not limited to the mean, 
variance, phase, and of course frequency. The problem then is to determine the value 
of the information parameter from a set of observations in some optimal fashion. If 
one could directly observe the value of the parameter, there would be no difficulty. 
In practice, however, the observation contains noise, and in this case, a statistical 
procedure to estimate the value of the parameter is needed. 

Consider a simple example to illustrate the formulation and concepts behind 
parameter estimation. Suppose that a constant signal is transmitted through a 
channel that adds Gaussian noise Zi. For the sake of accuracy, several independent 
observations X i  are measured, from which the value of p can be inferred. A suitable 
model for this problem is of the form 

xi=p+zz i = l , 2  ,.", N .  

Thus, given the sample set X I ,  Xa, . . . , X N ,  the goal is to derive a rule for 
processing the observations samples that will yield a good estimate of p. It should be 
emphasized that the parameter ,f3, in this formulation, is unknown but fixed - there is 
no randomness associated with the parameter itself. Moreover, since the samples in 
this example deviate about the parameter p, the estimate seeks to determine the value 
of the location parameter. Estimates of this kind are known as location estimates. As 

61 
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it will become clear later on, the location estimation problem is key in the formulation 
of the optimal filtering problem. 

Several methods of estimating p are possible for the example at hand. The sample 
mean X, given by 

is a natural choice. An alternative would be the sample median PN = X in which we 
order the observation samples and then select the one in the middle. We might also 
use a trimmed mean where the largest and smallest samples are first discarded and 
the remaining N - 2 samples are averaged. All of these choices are valid estimates 
of location. Which of these estimators, if any, is best will depend on the criterion 
which is selected. In this Chapter, several types of location estimates are discussed. 
After a short introduction to the properties of estimators, the method of maximum- 
likelihood estimation is presented with criteria for the “goodness” of an estimate. The 
class of M-estimators is discussed next, generalizing the concepts behind maximum- 
likelihood estimation by introducing the concept of robust estimation. The application 
of location estimators to the smoothing of signals is introduced at the end of the 
Chapter. 

4.1 PROPERTIES OF ESTIMATORS 

For any application at hand, as in our example, there can be a number of possible 
estimators from which one can choose. Of course, one estimator may be adequate 
for some applications but not for others. Describing how good an estimator is, and 
under which circumstances, is important. Since estimators are in essence procedures 
that use observations that are random variables, then the estimators themselves are 
random variables. The estimates, as for any random variable, can be described by 
a probability density function. The probability density function of the estimate 
is denoted as fp(yIp), where y is a possible value for the estimate. Since this 
density function can change for different estimation rules, the densities alone provide 
a cumbersome description. Instead, we can recourse to the statistical properties of the 
estimates as a mean to quantify their characteristics. The statistical properties can, 
in turn, be used for purposes of comparison among various estimation alternatives. 

Unbiased Estimators A typical probability density fp(yI,D) associated with an 
estimate is given in Figure 4.1, where the actual value of the parameter P is shown. 
It would be desirable for the estimate a to be relatively close to the actual value of p. 
It follows that a good estimator will have its density function as clustered together as 
possible about p. If the density is not clustered or if it is clustered about some other 
point, it is a less good estimator. Since the mean and variance of the density are good 
measures of where and how clustered the density function is, a good estimator is one 
for which the mean of is close to p and for which the variance of a is small. 
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B Y 

Figure 4.1 Probability density function associated with an unbiased location estimator. 

In some cases, it is possible to design estimators for which the mean of b is always 
equal to the true value of p. When this desirable property is true for all values of p, 
the estimator is referred to as unbiased. Thus, the N-sample estimate of p, denoted 
as , 8 ~ ,  is said to be unbiased if 

In addition, the variance of the estimate determines the precision of the estimate. If 
an unbiased estimate has low variance, then it will provide a more reliable estimate 
than other unbiased estimates with inherently larger variances. The sample mean in 
the previous example, is an unbiased estimate since E{ b ~ }  = p, with a variance 
that follows 

where oz is the channel noise variance. Clearly, the precision of the estimate improves 
as the number of observations increases. 

Efficient Estimators The mean and variance of an estimate are indicators of 
quality. If we restrict our attention to only those estimators that are unbiased, we are 
in effect reducing the measure of quality to one dimension where we can define the 
best estimator in this class as the one that attains the minimum variance. Although at 
first, this may seem partially useful since we would have to search among all unbiased 
estimators to determine which has the lowest variance, it turns out that a lower bound 
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on the variance of any unbiased estimator exists. Thus, if a given estimator is found 
to have a variance equal to that of the bound, the best estimator has been identified. 

The bound is credited to Cramtr and Rao [56]. Let f (X; p) be the density function 
of the observations X given the value of p. For a scalar real parameter, if f i  is an 
unbiased estimate of p, its variance is bounded by 

(4.2) 

provided that the partial derivative of the log likelihood function exists and is abso- 
lutely integrable. A second form of the Cramtr-Rao bound can be written as 

(4.3) 

being valid if the second partial derivative of the log likelihood exists and is absolutely 
integrable. Proofs of these bounds can be found in [32, 1261. Although there is no 
guarantee that an unbiased estimate exists whose variance satisfies the Cram tr-Rao 
bound with equality, if one is found, we are certain that it is the best estimator in the 
sense of minimum variance and it is referred to as an eficient estimator. 

Efficiency can also be used as a relative measure between two estimators. An 
estimate is said to be efficient with respect to another estimate if it has a lower 
variance. If this relative eficiency is coupled with the order of an estimate the 
following concept emerges: If f i ~  is unbiased and efficient with respect to P N - ~  for 
all N ,  then f i ~  is said to be consistent. 

4.2 MAXIMUM LIKELIHOOD ESTIMATION 

Having a set of observation samples, a number of approaches can be taken to derive 
an estimate. Among these, the method of maximum likelihood (ML) is the most 
popular approach since it allows the construction of estimators even for uncommonly 
challenging problems. ML estimation is based on a relatively simple concept: differ- 
ent distributions generate different data samples and any given data sample is more 
likely to have come from some population than from others [99]. Conceptually, a set 
of observations, X I ,  X2, . . . , X N ,  are postulated to be values taken on by random 
variables assumed to follow the joint distribution function f ( X 1 ,  X2, . . . , X N ;  p),  
where p is a parameter of the distributions. The parameter p is assumed unknown but 
fixed, and in parameter estimation one tries to specify the best procedure to estimate 
the value of the parameter p from a given set of measured data. 

In the method of maximum likelihood the best estimate of p is the value P M L  for 
which the function f ( X 1 ,  Xa, . . . , X N ;  p) is at its maximum 
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where the parameter is variable while the observation samples X I ,  X2,  . . . , X N  
are fixed. The density function when viewed as a function of p, for fixed values of 
the observations, is known as the likelihoodfunction. 

The philosophy of maximum likelihood estimation is elegant and simple. Max- 
imum likelihood estimates are also very powerful due to the notable property they 
enjoy that relates them to the Cram&-Rao bound. It can be shown that if an efficient 
estimate exists, the maximum likelihood estimate is efficient [32]. Thanks to this 
property, maximum likelihood estimation has evolved into one of the most popular 
methods of estimation. 

In maximum likelihood location estimates, the parameter of interest is the location. 
Assuming independence in this model, each of the samples in the set follows some 
distribution 

P(X2 I .) = F(. - P ) ,  (4.5) 

where F( . )  corresponds to a distribution that is symmetric about 0. 

Location Estimation in Gaussian Noise Assume that the observation sam- 
ples XI, X2, .  . . , X N ,  are i.i.d. Gaussian with a constant but unknown mean P. 
The maximum-likelihood estimate of location is the value f i  which maximizes the 
likelihood function 

The likelihood function in (4.6) can be maximized by minimizing the argument 
in the exponential. Thus, the maximum-likelihood estimate of location is the value 
6 that minimizes the least squares sum 

(4.7) 

The value that minimizes the sum, found through differentiation, results in the 
sample mean 

. N  

(4.8) 
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Note that the sample mean is unbiased in the assumed model since E{ ~ M L }  = 
I N  E { X i }  = p. Furthermore, as a maximum-likelihood estimate, it is efficient 

having its variance, in (4.1), reach the CramCr-Rao bound. 

Location Estimation in Generalized Gaussian Noise Now suppose that 
the observed data includes samples that clearly deviate from the central data cluster. 
The large deviations contradict a Gaussian model. The alternative is to model the 
deviations with a more appropriate distribution that is more flexible in capturing 
the characteristics of the data. One approach is to adopt the generalized Gaussian 
distribution. The function used to construct the maximum-likelihood estimate of 
location in this case is 

where C and a are normalizing constants and k is the fixed parameter that models 
the dispersion of the data. Maximizing the likelihood function is equivalent to 
minimizing the argument of the exponential, leading to the following estimate of 
location 

N 

P M L  = a r g r n i n x  /xi - P I ' .  (4.12) 

Some intuition can be gained by plotting the cost function in (4.12) for various 
values of k .  Figure 4.2 depicts the different cost function characteristics obtained for 
k = 2, 1, and 0.5. 

When the dispersion parameter is given the value 2, the model reduces to the 
Gaussian assumption, the cost function is quadratic, and the estimator is, as expected, 
equal to the sample mean. For k < 1, it can be shown that the cost function exhibits 
several local minima. Furthermore, the estimate is of selection type as its value will 
be that of one of the samples X I ,  X z ,  . . . , X N .  These characteristics of the cost 
function are shown in Figure 4.2. 

When the dispersion parameter is given the value 1, the model is Laplacian, the 
cost function is piecewise linear and continuous, and the optimal estimator minimizes 
the sum of absolute deviations 

i=l 

N 

(4.13) 
i=l 

Although not immediately seen, the solution to the above is the sample median as 
it is shown next. 
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Figure 4.2 Cost functions for the observation samples X I  = -3, X Z  = 10, X s  = 1, X ,  - 
1, x5 = 6 for k = 0.5, 1, and 2. 

Define the cost function being minimized in (4.13) as L l ( P ) .  For values of P in 
the interval -co < ,!3 5 X ( l ) ,  L1(/3) is simplified to 

= C X ( 2 )  - NP. (4.14) 
i= 1 

This, as a direct consequence that in this interval, X ( l )  2 P. For values of P in 
the range X ( j )  < /3 5 X ( j + l ) ,  L1(P) can be written as 

for j = 1,2 , .  . . , N - 1. Similarly, for X ( N )  < ,B < co, 

(4.16) 
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Letting X ( o )  = -m and X(N+l) = m, and defining CT="=, X ( i )  = 0 if m > n, 
we can combine (4.14)-(4.16) into the following compactly written cost function 

for p E ( X ( j ) ,  X(j+l)]. When expressed as in (4.17), L1(p)  is clearly piecewise 
linear and continuous. It starts with slope -N for -m < p 5 X ( 1 ) ,  and as each 
X ( j )  is crossed, the slope is increased by 2. At the extreme right the slope ends at N 
for X ( N )  < /3 < m. 

For N odd, this implies that there is an integer m, such that the slopes over the in- 
tervals (X(m-I), X(m)I and ( X ( m ) ,  X(m+1)1, are negative and positive, respectively. 
From (4.17), these two conditions are satisfied if both 

hold. Both constraints are met when m = 

interval (X,,), X(,+l)] is zero. This condition is satisfied in (4.17) if 
For N even, (4.17) implies that there is an integer m, such that the slope over the 

- (N  - 2m) = 0, 

which is possible for m = N/2. Thus, the maximum-likelihood estimate of location 
under the Laplacian model is the sample median 

= MEDIAN(Xl,Xz,.  . . , X N ) .  (4.18) 

In the case of N being even the output of the median can be any point in the 
interval shown above, the convention is to take the mean of the extremes ~ M L  = 
"(9) + "(9.1) 

2 

Location Estimation in Stable Noise The formulation of maximum likeli- 
hood estimation requires the knowledge of the model's closed-form density function. 
Among the class of symmetric stable densities, only the Gaussian (a = 2 )  and 
Cauchy (a = 1) distributions enjoy closed-form expressions. Thus, to formulate 
the non-Gaussian maximum likelihood estimation problem in a stable distribution 
framework, it is logical to start with the only non-Gaussian distribution for which we 
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have a closed form expression, namely the Cauchy distribution. Although at first, 
this approach may seem too narrow to be effective over the broad class of stable pro- 
cesses, maximum-likelihood estimates under the Cauchy model can be made tunable, 
acquiring remarkably efficiency over the entire spectrum of stable distributions. 

Given a set of i.i.d. samples X I ,  X2,  . . . , X N  obeying the Cauchy distribution 
with scaling factor K ,  

(4.19) 

the location parameter ,b is to be estimated from the data samples as the value B K ,  
which maximizes the likelihood function 

This is equivalent to minimizing 

N 

G K ( P )  = n [ K 2  + (Xi - PI2 ] .  (4.21) 

Thus given K > 0, the ML location estimate is known as the sample myriad and 
i=l 

is given by [82] 

N 

jK = a r g m i n n  ( K ~  + (xi - p12) 
i=l 

= MYRIAD{K; X i ,  X z ,  . . . , X N } .  

(4.22) 

Note that, unlike the sample mean or median, the definition of the sample myriad 
involves the free parameter K .  For reasons that will become apparent shortly, we 
will refer to K as the linearity parameter of the myriad. The behavior of the myriad 
estimator is markedly dependent on the value of its linearity parameter K .  Some 
intuition can be gained by plotting the cost function in (4.23) for various values 
of K .  Figure 4.3 depicts the different cost function characteristics obtained for 
K = 20,2,0.2 for a sample set of size 5 .  

Although the definition of the sample myriad in (4.23) is straightforward, it is not 
intuitive at first. The following interpretations provide additional insight. 

LEAST LOGARITHMIC DEVIATION 

The sample myriad minimizes GK(@) in (4.21), which consists of a set of products. 
Since the logarithm is a strictly monotonic function, the sample myriad will also 
minimize the expression logGK(P). The sample myriad can thus be equivalently 
written as 
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x, x, x. X ,  X* 

Figure 4.3 Myriad cost functions for the observation samples X I  = -3, X z  = 10, X3 = 
1, x4 - 1, xs = 6 for K = 20,2,0.2. 

N 
MYRIAD{K; X I ,  X z ,  . . . , X,} = a r g r n i n z  log [K2  + ( X i  - p)’] . (4.23) 

i=l 

Upon observation of the above, if an observation in the set of input samples has 
a large magnitude such that / X i  - PI >> K ,  the cost associated with this sample 
is approximately log(Xi - p)z -the log of the square deviation. Thus, much 
as the sample mean and sample median respectively minimize the sum of square 
and absolute deviations, the sample myriad (approximately) minimizes the sum of 
logarithmic square deviations, referred to as the LLS criterion, in analogy to the Least 
Squares (LS) and Least Absolute Deviation (LAD) criteria. 

Figure 4.4 illustrates the cost incurred by each sample as it deviates from the 
location parameter p. The cost of the sample mean (LS) is quadratic, severely 
penalizing large deviations. The sample median (LAD) assigns a cost that is linearly 
proportional to the deviation. The family of cost functions for the sample myriad 
assigns a penalty proportional to the logarithm of the deviation, which leads to a 
much milder penalization of large deviations than that imposed by the LAD and LS 
cost functions. The myriad cost function structure, thus, rests importance on clearly 
inappropriate samples. 

GEOMETRICAL INTERPRETATION 

A second interpretation of the sample myriad that adds additional insight lies in its 
geometrical properties. First, the observations samples X I ,  X z ,  . . . , X N  are placed 
along the real line. Next, a vertical bar that runs horizontally through the real line is 
added as depicted in Figure 4.5. The length of the vertical bar is equal to the linearity 
parameter K .  In this arrangement, each of the terms 
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Figure 4.4 Cost functions of the mean (LS), the median (LAD), and the myriad (LLS) 

A 

Figure 4.5 (a)  The sample myriad, b, minimizes the product of distances from point A to 
all samples. Any other value, such as 2 = p’, produces a higher product of distances; (b)  the 
myriad as K is reduced. 

( K 2  + (Xi - P Y )  (4.24) 

in (4.23), represents the distance from point A, at the end of the vertical bar, to the 
sample point X i .  The sample myriad, , 8 ~ ,  indicates the position of the bar for which 
the product of distances from point A to the samples X 1 ,  X2,  . . . , X N  is minimum. 
Any other value, such as x = ,Of, produces a higher product of distances. 

If the value of K is reduced as shown in Figure 437, the sample myriad will favor 
samples that are clustered together. The sample myriad has a mode-like behavior for 
small values of K .  The term “myriad” was coined as a result of this characteristic of 
the estimator. 
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4.3 ROBUST ESTIMATION 

The maximum-likelihood estimates derived so far have assumed that the form of the 
distribution is known. In practice, we can seldom be certain of such distributional 
assumptions and two types of questions arise: 

(1) How sensitive are optimal estimators to the precise nature of the assumed 
probability model? 

(2) Is it possible to construct robust estimators that perform well under deviations 
from the assumed model? 

Sensitivity of Estimators To answer the first question, consider an observed data 
set Zl,Z,, . . . , Z N ,  and let us consider the various location estimators previously 
derived, namely, the mean, median, and myriad. In addition, we also consider two 
simple M-estimators, namely the trimmed-mean defined as 

for a = 0,1, . . . , LN/2], and the Windsorized mean defined as: 

(4.25) 

The median, is a special case of trimmed mean where a = LN/21. 
The effects of data contamination on these estimators is then tested. In the first set 

of experiments, a sample set of size 10 including one outlier is considered. The nine 
i.i.d. samples are distributed as N ( p ,  1) and the outlier is distributed as N ( p  + A, 1). 
Table 4.1, adapted from David [58],  depicts the bias of the estimation where eight 
different values of X were selected. 

This table clearly indicates that the mean is highly affected by the outlier. The 
trimming improves the robustness of the estimate. Clearly the median performs best, 
although it is still biased. 

The expected value of the biases shown in Table 4.1 are not sufficient to compare 
the various estimates. The variances of the different estimators of p are needed. 
These have also been tabulated in [58] and are shown on Table 4.2. 

This table shows that the Windsorized mean performs better than the trimmed 
mean when X is small. It also shows that, although the bias of the median is smaller, 
the variance is larger than the trimmed and Windsorized means. The mean is also 
shown to perform poorly in the MSE, except when there is no contamination. 

Another useful test is to consider the contamination sample having the same mean 
as the other N - 1 samples, but in this case the variance of the outlier is much larger. 
Hence, Table 4.3 tabulates the variance of the various estimates of p for N = 10. 
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Table 4.7 Bias of estimators of p for N = 10 when a single observation is from N ( p +  A, 1) 
and the others from N ( p ,  1). 

x 

Estimator 0.0 0.5 1 .o 1.5 2.0 3.0 4.0 00 

X i 0  0.0 0.05000 0.1ooOO 0.15000 0.20000 0.3oooO 0.40000 
Tlo(1) 0.0 0.04912 0.09325 0.12870 0.15400 0.17871 0.18470 0.18563 
Tlo(2) 0.0 0.04869 0.09023 0.12041 0.13904 0.15311 0.15521 0.15538 

Wlo(1) 0.0 0.04938 0.09506 0.13368 0.16298 0.19407 0.20239 0.20377 
Wio(2) 0.0 0.04889 0.09156 0.12389 0.14497 0.16217 0.16504 0.16530 

Medl0 0.0 0.04932 0.08768 0.11381 0.12795 0.13642 0.13723 0.13726 

Table 4.2 Mean squared error of various estimators of p for N = 10, when a single 
observation is from N ( p  + A, 1) and the others from N ( p ,  1). 

Estimator 0.0 0.5 1 .o 1.5 2.0 3.0 4.0 00 

X i 0  0.10000 0.10250 0.11000 0.12250 0.14OOO 0.19000 0.26000 00 

Tio(1) 0.10534 0.10791 0.11471 0.12387 0.13285 0.14475 0.14865 0.14942 
Tlo(2) 0.11331 0.11603 0.12297 0.13132 0.13848 0.14580 0.14730 0.14745 

Wio(1) 0.10437 0.10693 0.11403 0.12405 0.13469 0.15039 0.15627 0.15755 
Wlo(2) 0.11133 0.11402 0.12106 0.12995 0.13805 0.14713 0.14926 0.14950 

Medl0 0.13833 0.14161 0.14964 0.15852 0.16524 0.17072 0.17146 0.17150 

Table 4.3 shows that the mean is a better estimator than the median as long as the 
variance of the outlier is not large. The trimmed mean, however, outperforms the 
median regardless of the variance of the outlier. The Windsorized mean performs 
comparably to the trimmed mean. 

These tables illustrate that by trimming the observation sample set, we can effec- 
tively increase the robustness of estimation. 

M-Estimation M-estimation aims at answering the second question raised at the 
beginning of this section: Is it possible to construct estimates of location which 
perform adequately under deviations from distributional assumptions? According to 
the theory of M-estimation this is not only possible, but a well defined set of design 
guidelines can be followed. A brief summary of M-estimation is provided below. 
The interested reader can further explore the theory and applications of M-estimation 
in [91, 1051. 
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Table 4.3 Variance of various estimators of p for N = 10, where a single observation is 
from N ( p ,  a2) and the others from N ( p ,  1). 

U 

Estimator 0.5 1 .o 2.0 3.0 4.0 00 

XlO 0.09250 0.10000 0.13000 0.18000 0.25000 cc 
Tio(1) 0.09491 0.10534 0.121 33 0.12955 0.13417 0.14942 
Ti0 (2) 0.09953 0.1 133 1 0.12773 0.13389 0.13717 0.14745 
Medlo 0.1 1728 0.13833 0.15373 0.15953 0.16249 0.17150 
WlO(1) 0.09571 0.10437 0.12215 0.13221 0.13801 0.15754 
WlO(2) 0.09972 0.1 1133 0.12664 0.13365 0.13745 0.14950 

Given a set of samples X I ,  X Z ,  . . . , X N ,  an M-estimator of location is defined as 
the parameter 6 that minimizes a sum of the form 

N 

i=l 

where pis referred to as a cost function. The behavior of the M-estimate is determined 
by the shape of p .  When p(x) = x 2 ,  for example, the associated M-estimator 
minimizes the sum of square deviations, which corresponds to the sample mean. For 
p(x) = 1x1, on the other hand, the M-estimator is equivalent to the sample median. 
In general, if p(x) = - log f ( x ) ,  where f is a density function, the M-estimate 6 
corresponds to the maximum likelihood estimator associated with f . Accordingly, 
the cost function associated with the sample myriad is proportional to 

p ( X )  = log[lc2 + x ” .  (4.28) 

The flexibility associated with shaping p(x)  has been the key for the success of 
M-estimates. 

Some insight into the operation of M-estimates is gained through the definition 
of the inJluencefunction. The influence function roughly measures the effect of 
contaminated samples on the estimates and is defined as 

(4.29) 

provided the derivative exists. Denoting the sample deviation X i  - ,8 as Ui, the influ- 
ence functions for the sample mean and median are proportional to $ M E A N  (Ui) = 
(Ui) and $ M E D I A N ( U ~ )  = sign(&), respectively. Since the influence function of 
the mean is unbounded, a gross error in the observations can lead to severe distortion 
in the estimate. On the other hand, a similar gross error has a limited effect on the 
median estimate. The influence function of the sample myriad is 
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Figure 4.6 Influence functions of the mean, median and myriad 

Ui 
K 2  i- U:’ ‘$MY R I A D ( U i )  = (4.30) 

As shown in Figure 4.6, the myriad’s influence function is re-descending reaching 
its maxima (minima) at lUi( = K .  Thus, the further away an observation sample is 
from the value K ,  the less it is considered in the estimate. Intuitively, the myriad 
must be more resistant to outliers than the median, and the mean is linearly sensitive 
to these. 

Problems 

4.1 
distribution: 

Given N independent and identically distributed samples obeying the Poisson 

(4.31) 

where LC can take on positive integer values, and where X is a positive parameter to 
be estimated: 

(a) Find the mean and variance of the random variables X i .  

(b) Derive the maximum-likelihood estimate (MLE) of X based on a set of N obser- 
vations. 

(c)  Is the ML estimate unbiased? 

(d) Find the CramCr-Rao bound for the variance of an unbiased estimate. 

(e) Find the variance of the ML estimate. Is the ML estimate efficient? 
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4.2 Consider N independent and identically distributed samples from a Gaussian 
distribution with zero mean and variance c2.  Find the maximum likelihood estimate 
of o2 (unknown deterministic parameter). Is the estimate unbiased? Is the estimate 
consistent? What can you say about the ML estimate in relation to the Cramer-Rao 
bound. 

4.3 Let X be a uniform random variable on [8, 8 + 11, where the real-valued 
parameter 8 is constant but unknown, and let T ( X )  = [XI=  greatest integer less 
than or equal to X .  Is T ( X )  an unbiased estimate of 8. Hint: consider two cases: 8 
is an integer and 8 is not an integer. 

4.4 A random variable X has the uniform density 

f(x) = 1/u for O 5 x 5 u (4.32) 

and zero elsewhere. 

(a) For independent samples of the above random variable, determine the likelihood 
function f ( X 1 ,  X2 , .  . . , X N  : u )  for N = 1 and N = 2 and sketch it. Find 
the maximum-likelihood estimate of the parameter u for these two cases. Find 
the ML estimate of the parameter u for an arbitrary number of observations N .  

(b) Are the ML estimates in (a) unbiased. 

(c) Is the estimate unbiased as N --f oo? 

4.5 Let the zero-mean random variables X and Y obey the Gaussian distribution, 

where p = EIXY] u ~ u 2  is the correlation coefficient and where E [ X Y ]  is the correlation 
parameter. Given a set of observation pairs ( X I ,  Y I ) ,  (X2,  Yz) ,  . . . , ( X n ,  Yn), drawn 
from the joint random variables X and Y .  Find the maximum likelihood estimate of 
the correlation parameter E [ X Y ]  or of the correlation coefficient p.  

4.6 
obeying the Rayleigh density function 

Consider a set of N independent and identically distributed observations X i  

(a) Find the mean and variance of the X i  variables. Note 

(4.34) 
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(b) If we assume that the parameter a2 is unknown but constant, derive the maximum- 
likelihood estimate of c2 obtained from the N observation samples. Is the 
estimate unbiased? 

4.7 
from a single observation of the variable X where 

Find the maximum-likelihood estimate of I9 (unknown constant parameter) 

X = lnI9 + N (4.36) 

where N is a noise term whose density function is unimodal with f ~ ( 0 )  > f ~ ( a )  
for all a # 0. 

4.8 Consider the data set 

X ( n )  = AS(n) + W(n) ,  for n = 0 ,1 , .  . . , N - 1, (4.37) 

where S(n)  is known, W(n)  is white Gaussian noise with known variance c2, and 
A is an unknown constant parameter. 

(a) Find the maximum-likelihood estimate of A. 

(b) Is the MLE unbiased? 

(c) Find the variance of the MLE. 

4.9 
distribution F ( x )  = PT(X 5 x). Let k(X) be the estimate of F ( X ) ,  where 

Consider N i.i.d. observations X = { X I ] .  . . , X N }  drawn from a parent 

number of X i s  5 J: 
N 

F ( X )  = 

c:, U ( x  - X i )  F ( X )  = 
N 

where U ( x )  = 1 if x > 0, and zero otherwise. 

(a) Is this estimate unbiased. 

(4.38) 

(4.39) 

(b) Prove that this estimate is the maximum-likelihood estimate. That is, let 
U ( x  - X i ) ,  I9 = F ( x )  and find P(zlI9). N 

2 = Ci=l 
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Median and Weighted 
Median Smoothers 

5.1 RUNNING MEDIAN SMOOTHERS 

The running median was first suggested as a nonlinear smoother for time-series 
data by Tukey in 1974 [189], and it was largely popularized in signal processing by 
Gallagher and Wise’s article in 1981 [78]. To define the running median smoother, let 
{ X ( . ) }  be a discrete time sequence. The running median passes a window over the 
sequence { X (.)} that selects, at each instant n, an odd number of consecutive samples 
to comprise the observation vector X ( n ) .  The observation window is centered at n, 
resulting in 

x(n) = [ X ( n  - NL), . . . , x(n), . . . , x(n + NR)IT, (5.1) 

where N L  and N R  may range in value over the nonnegative integers and N = 
NL + NR + 1 is the window size. In most cases, the window is symmetric about 
X (n) and N L  = NR = Nl . The median smoother operating on the input sequence 
{ X (. ) } produces the output sequence { Y 1 ,  defined at time index n as: 

Y(n)  = MEDIAN [ X ( n  - N l ) ,  . . . , X ( n ) ,  . . . , X ( n  + N l ) ]  
= MEDIAN [ X i ( n ) ,  . . . , X N ( ~ ) ]  (5.2) 

where X i ( n )  = X ( n  - N I  - 1 + i) for i = 1, 2 , .  . . , N .  That is, the samples in 
the observation window are sorted and the middle, or median, value is taken as the 
output. If X(1) ,  X p ) ,  . . . , X ( N )  are the sorted samples in the observation window, 
the median smoother outputs 

81 
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Figure 5.1 The operation of the window width 5 median smoother. 0 :  appended points. 

X( E p )  
if N is odd 

Y ( n ) =  x +x (5.3) L (T) ($+l) otherwise. 

The input sequence {X( .)} may be either finite or infinite in extent. For the finite 
case, the samples of {X (.)} can be indexed as X (1) , X (2),  . . . , X ( L ) ,  where L 
is the length of the sequence. Because of the symmetric nature of the observation 
window, the window extends beyond the finite extent of the input sequence at both 
the beginning and end. When the window is centered at the first and last point in the 
signal, half of the window is empty. These end effects are generally accounted for 
by appending N L  samples at the beginning and N R  samples at the end of {X(.)}. 
Although the appended samples can be arbitrarily chosen, typically these are selected 
so that the points appended at the beginning of the sequence have the same value as 
the first signal point, and the points appended at the end of the sequence all have the 
value of the last signal point. 

To illustrate the appending of input sequences and the median smoother operation, 
consider the input signal {X(.)} of Figure 5.1. In this example, {X(.)} consists 
of 20 observations from a &level process, { X  : X(n) E (0, 1, . . . , 5 } ,  n = 
1, 2, . . . , 20}. The figure shows the input sequence and the resulting output sequence 
for a median smoother of window size 5. Note that to account for edge effects, two 
samples have been appended to both the beginning and end of the sequence. The 
median smoother output at the window location shown in the figure is 

Y(9) = MEDIAN[X(7), X(8), X(9), X(lO), X(l l ) ]  
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= MEDIAN[ 1, 1, 4, 3, 31 = 3. 

Running medians can be extended to a recursive mode by replacing the “causal” input 
samples in the median smoother by previously derived output samples. The output 
of the recursive median smoother is given by 

Y(n) = MEDIAN[Y(n - N L ) ,  Y ( n  - NL + I), . . . , 
Y ( n  - l), X ( n ) ,  . . . , X ( n  + NR)].  (5.4) 

In recursive median smoothing, the center sample in the observation window is 
modified before the window is moved to the next position. In this manner, the output 
at each window location replaces the old input value at the center of the window. 
With the same amount of operations, recursive median smoothers have better noise 
attenuation capabilities than their nonrecursive counterparts [5,  81. Alternatively, 
recursive median smoothers require smaller window lengths in order to attain a desired 
level of noise attenuation. Consequently, for the same level of noise attenuation, 
recursive median smoothers often yield less signal distortion. 

The median operation is nonlinear. As such, the running median does not possess 
the superposition property and traditional impulse response analysis is not strictly 
applicable. The impulse response of a median smoother is, in fact, zero for all time. 
Consequently, alternative methods for analyzing and characterizing running medians 
must be employed. Broadly speaking, two types of analysis have been applied to 
the characterization of median smoothers: statistical and deterministic. Statistical 
properties examine the performance of the median smoother, through such mea- 
sures as optimality and output variance, for the case of white noise time sequences. 
Conversely, deterministic properties examine the smoother output characteristics for 
specific types of commonly occurring deterministic time sequences. 

5.1.1 Statistical Properties 

The statistical properties of the running median can be examined through the deriva- 
tion of output distributions and statistical conditions on the optimality of median 
estimates. This analysis generally assumes that the input to the running median is a 
constant signal with additive white noise. The assumption that the noise is additive 
and white is quite natural, and made similarly in the analysis of linear filters. The 
assumption that the underlying signal is a constant is certainly convenient, but more 
importantly, often valid. This is especially true for the types of signals median filters 
are most frequently applied to, such as images. Signals such as images are charac- 
terized by regions of constant value separated by sharp transitions, or edges. Thus, 
the statistical analysis of a constant region is valid for large portions of these com- 
monly used signals. By calculating the output distribution of the median filter over 
a constant region, the noise smoothing capabilities of the median can be measured 
through statistics such as the filter output variance. 

The calculation of statistics such as the output mean and variance from the ex- 
pressions in (3.15) and (3.16) is often quite difficult. Insight into the smoothing 
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Density Function 

f o r - & G L t < & G  

1 -+7 ( t -w)Z  

Uniform 

0 otherwise 
Gaussian 

f z ( t ) =  m e  2u 

Table 5.1 
for white input samples with uniform, Gaussian, and Laplacian distributions. 

Asymptotic output variances for the window size N mean and running median 

Mean Median 

* z  & - 
N N + 2  

7 r 2  0.2 - - 
N 2N 

Input Sample Probability I Filter Type 

characteristics of the median filter can, however, be gained by examining the asymp- 
totic behavior ( N  + m) of these statistics, where, under some general assumptions, 
results can be derived. For the case of white noise input samples, the asymptotic 
mean, pmed, and variance, eked, of the running median output are [126] 

and 

where t 0 .5  is the median parameter of the input samples. 
Thus, the median smoother produces a consistent (limN-m uked = 0) and unbi- 

ased estimate of the median of the input distribution. Note that the output variance is 
not proportional to the input variance, but rather l/f:(t0.5). For heavy tailed noises, 
l/f;(to.5) is not related to the input variance. Therefore, the variance is proportional 
to the impulse magnitude, not l l f i ( t 0 . 5 ) .  Thus, the output variance of the median 
in this case is not proportional to the input variance. This is not true for the sample 
mean, and further explains the more robust behavior of the median. 

The variances for the sample mean and running median output are given in Table 
5.1 for the uniform, Gaussian, and Laplacian input distribution cases [%I. The results 
hold for all N in the uniform case and are asymptotic for the Gaussian and Laplacian 
cases. Note that the median performs about 3 dB better than the sample mean for the 
Laplacian case and 2 dB worse in the Gaussian case. 

Recursive median smoothers, as expected, are more efficient than their nonre- 
cursive counterparts in attenuating noise due to the fact that half of the data points 
in the window of the recursive median have already been “cleaned.” Consider the 
simplest scenario where the recursive median smoother is applied to an i.i.d. time 
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Table 5.2 Relative efficiency of recursive and non-recursive medians 

3 1.09 
5 1.39 
7 1.83 
9 2.40 
11 3.04 
13 3.73 
15 4.43 

series { X ( n ) }  described by the cumulative distribution function F ( s ) .  It has been 
shown that the cumulative distribution function of the output of the recursive median 
filter Y(n)  with window size N ,  is [5, 81 

where N1 = ( N  + 1)/2. The output distribution in (5.7) can be used to measure 
the relative efficiency between the recursive and non-recursive (standard) medians. 
For a window of size N and for uniformly distributed noise, the ratio c :/cp of the 
nonrecursive variance estimate to the recursive variance estimate is given in Table 
5.2, where the higher efficiency of the recursive median smoother is readily seen. 

To further illustrate the improved noise attenuation capability of recursive medi- 
ans, consider an i.i.d. input sequence, { X ( n ) }  consisting of a constant signal, C ,  
embedded in additive white noise Z(n) .  Without loss of generality, assume C = 0, 
and that the noise is symmetrically distributed. Figure 5 . 2 ~  shows 1000 samples 
of the sequence { X ( n ) } ,  where the underlying distribution is double exponential 
(heavy tailed). Figures 5.2b,c show the noisy sequence after the application of a 
nonrecursive and a recursive median smoothers, respectively, both of window size 7. 
The improved noise attenuation provided by recursion is apparent in Figures 5.2b,c. 

A phenomenon that occurs with median smoothers in impulsive noise environment 
is that if several impulsive noise samples are clustered together within the window, the 
impulses may not be removed from the signal. This phenomenon can be observed 
in Figures 5.2b,c. To quantify such events, Mallows (1980) [137] introduced the 
concept of breakdown probability as the probability of an impulse occurring at the 
output of the estimator, when the probability of impulses at the input is given. In 
essence, the breakdown probability is a measure that indicates the robustness of a 
particular estimator. To derive the breakdown probability of median smoothers, let us 
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first arbitrarily select a threshold t ,  such that if a noise sample exceeds such level, the 
sample is regarded as an impulse. Let the symmetric distribution function of the noise 
be F (  .), then the probability of a noise sample being an impulse (positive or negative) 
is 2F( -t). For the recursive median filter, half of the breakdown probability is given 
in (5.7) with y = -t. The breakdown probability of nonrecursive median smoothers 
is found through order statistics as 

2 5 ( T ) F ( - t ) ' [ l  - F ( - t ) ] N 4 ,  

l=Ni 
(5.8) 

where N I  = ( N  + 1)/2. In Figure 5.2, the threshold It] is set to 1; thus, the 
probability of an impulse occurring at the input is 0.24. The breakdown probability, 
for the non-recursive median filter, in Figure 5.2b is 0.011. For the recursive median 
filter, this probability is 0.002. Thus, on the average, for every impulse occurring 
at the output of the recursive median smoother in this example, there will be 5.5 
impulses at the output of the nonrecursive median smoother output. 

Tables 5.3 and 5.4 show the breakdown probabilities for recursive and nonrecursive 
median smoothers for different values of input impulse probability, 2F(- t ) ,  and for 
different window sizes. The better noise suppression characteristics of the recursive 
median smoothers can be seen in Figure 5.2, and in a more quantitative way in Tables 
5.3 and 5.4. 

Table 5.3 Breakdown probabilities for the Non-Recursive Median Smoother 

Probabilityp N = 3 N = 5 N = 7 N = 9 N = l l  N = 1 3  

0.1 0.0145 0.0023 0.0003 0.00006 0.00001 0.000003 
0.2 0.0560 0.0171 0.0054 0.0017 0.00059 0.0001 
0.3 0.1215 0.0532 0.0242 0.0112 0.0053 0.0025 
0.4 0.2080 0.1158 0.0667 0.0391 0.0233 0.0140 
0.5 0.3125 0.2070 0.1411 0.0978 0.0686 0.0048 
0.6 0.4320 0.3261 0.2520 0.1976 0.1564 0.1247 
0.7 0.5635 0.4703 0.3997 0.3434 0.2974 0.2589 

Median smoothers are primarily used to remove undesired disturbances in data, 
thus their statistical characterization, in terms of output distributions, would provide 
the required information about the median smoothers' noise attenuation power. Un- 
fortunately, the general output distribution can seldom be put in manageable form. 
Unlike linear smoothers, median smoothers have well defined deterministic proper- 
ties that effectively complement their set of statistical properties. In particular, root 
signals (also referred to invariant and fixed points) play an important role revealing 
the deterministic behavior of median smoothers, and in this respect the set of root 
signals resemble the pass band characteristics of linear frequency-selective filters. 
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! 

Figure 5.2 Impulse threshold It1 = 1: (a) Laplacian noisy sequence, (b) median smoothed 
sequence, and (c )  recursive median smoothed sequence. 
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Table 5.4 Breakdown probabilities for the Recursive Median Smoothers 

Probabilityp N = 3  N = 5  N = 7  N = 9  N = 11 N = 13 

0.1 0.0102 0.0007 0.00005 0.000003 0.00000002 0.00000001 
0.2 0.0417 0.0066 0.0009 0.0001 0.00001 0.0oO001 
0.3 0.0954 0.0239 0.0052 0.0010 0.0002 0.00004 
0.4 0.1714 0.0604 0.0184 0.0052 0.0014 0.0003 
0.5 0.2692 0.1253 0.0501 0.0187 0.0067 0.0022 
0.6 0.3873 0.2285 0.1162 0.0552 0.0253 0.01 13 
0.7 0.5233 0.3782 0.2387 0.1417 0.0812 0.0455 

5.1.2 Root Signals (Fixed Points) 

Statistical properties give considerable insight into the performance of running me- 
dians. Running medians cannot, however, be sufficiently characterized through 
statistical properties alone. For instance, an important question not answered by the 
statistical properties is what type of signal, if any, is passed through a running median 
unaltered. Linear smoothers, when applied repeatedly to a signal, for instance, will 
increasingly smooth a signal. With the exception of some contrived examples, fixed 
points of linear smoothers are only those belonging to constant-valued sequences. 
On the other hand, Gallagher and Wise (1981) [78] showed that running medians 
have nontrivial fixed-point sequences referred to as rooc signals for reasons that will 
become clear shortly. The concept of root signals is important to the understanding of 
running medians and their effect on general signal structures. In noise smoothing, for 
instance, the goal is to attain maximum noise attenuation while preserving the desired 
signal features. An ideal situation would arise if the smoother could be tailored so 
that the desired signal features were invariant to the smoothing operation and only the 
noise would be affected. Since the median operation is nonlinear and lacks the su- 
perposition property, this idealized case is of course not possible. Nonetheless, when 
a signal consists of constant areas and step changes between these areas, a similar 
effect is achieved. Noise will be attenuated, but the signal features will remain intact. 
This concept is used extensively in image smoothing, where the median smoother is 
designed such that certain image patterns, such as lines and edges, are root signals 
and thus not affected by the smoothing operation [7, 1471. 

The definition of a root signal is quite simple: a signal is a running median root if 
the signal is invariant under the median smoothing operation. For simplicity assume 
that the window is symmetric about X ( n ) ,  with N L  = NR taking on the value N1. 
Thus, a signal { X ( . ) }  is a root of the window size N = 2N1+ 1 median smoother if 
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for all n. As an example, consider the signal shown in Figure 5.3. This signal is 
smoothed by three different window size running medians (N1 = 1,2,  and 3). Note 
that for the window size three case (N1 = l) ,  the output is a root. That is, further 
smoothing of this signal with the window size three running median does not alter the 
signal. Notice, however, that if this same signal is smoothed with a larger window 
running median, the signal will be modified. Thus, the second signal (from the top) 
in Figure 5.3 is in the pass band, or a root, of a N1 = 1 running median but outside 
the pass band, or not a root, of the N1 = 2 and N1 = 3 smoothers. 

The goal of root analysis is to relate the smoothing of desired signals corrupted 
by noise to root and nonroot signals. If it can be shown that certain types of desired 
signals are in the running median root set, while noise is outside the root set, then 
median smoothing of a time series will preserve desired structures while altering the 
noise. Such a result does in fact hold and will be made clear through the following 
definitions and properties. First note that, as the example above illustrates, whether 
or not a signal is a running median root depends on the window size of the smoother 
in question. Clearly, all signals are roots of the window size one running median 
(identity). To investigate this dependence on window size, running median root 
signals can be characterized in terms of local signal structures, where the local signal 
structures are related to the window size. Such a local structure based analysis serves 
two purposes. First, it defines signal structures that, when properly combined, form 
the running median root set. Second, by relating the local structures to the window 
size, the effect of window size on roots is made clear. The local structure analysis of 
running median roots relies on the following definitions [78]. 

Constant Neighborhood: A region of at least N1+ 1 consecutive identically valued 
points. 

An Edge: A monotonic region between two constant neighborhoods of different 
value. The connecting monotonic region cannot contain any constant neigh- 
borhoods. 

An Impulse: A constant neighborhood followed by at least one, but no more than 
Nl points, that are then followed by another constant neighborhood having 
the same value as the first constant neighborhood. The two boundary points 
of these at most N1 points do not have the same value as the two constant 
neighborhoods. 

An Oscillation: A sequence of points that is not part of a constant neighborhood, an 
edge, or an impulse. 

These definitions may now be used to develop a description of those signals that 
do and those that do not pass through a running median without being perturbed. 
In particular, Gallagher and Wise [78] developed a number of properties which 
characterize these signal sets for the case of finite length sequences. First, any 
impulse will be eliminated upon median smoothing. Secondly, a finite length signal 
is a running median root if it consists of constant neighborhoods and edges only. Thus, 
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Figure 5.3 Effects of window size on a median smoothed signal. 0: appended points. 
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if a desired signal is constructed solely of constant neighborhoods and edges, then 
it will not be altered by the median smoothing operation. Conversely, if observation 
noise consists of impulses (as defined above), it will be removed by the median 
smoothing operation. These running median root properties are made exact by the 
following. 

LOMO Sequence: A sequence { X ( . ) }  is said to be locally monotonic of length m, 
denoted LOMO(m), if the subsequence X ( n ) ,  X ( n  + l), . . . , X ( n  + m - 1) 
is monotonic for all n 2 1. 

Root Signals: Given a length L sequence to be median smoothed with a length 
N = 2N1 + 1 window, a necessary and sufficient condition for the signal to 
be invariant (a root) under median smoothing is that the extended (beginning 
and end appended) signal be LOMO(N1 + 2). 

Thus, the set of root signals (invariant to smoothing) of a size N running median 
consists solely of those signals that are formed of constant neighborhoods and edges. 
Note that by the definition of LOMO(m), a change of trend implies that the sequence 
must stay constant for at least m - 1 points. It follows that for a running median 
root signal to contain both increasing and decreasing regions, these regions must be 
separated by a constant neighborhood of least N1 + 1 identically valued samples. 
It is also clear from the definition of LOMO(.) that a LOMO(m 1)  sequence is also 
LOMO(m2) for any two positive integers m 1 2 m2. This implies that the roots for 
decreasing window size running medians are nested, that is, every root of a window 
size M smoother is also a root of a window sized N median smoother for all N < M .  
This is formalized by: 

Root Signal Set: Let S denote a set of finite length sequences and R N~ be the root set 
of the window size N = 2N1+ 1 running median operating on 5’. Then the root 
sets are nested such that.. . R N ~ + ~  C R N ~  2 R N ~ - ~  C . . . 5 R1 RO = S. 

In addition to the above description of the root signal set for running medians, it 
can be shown that any signal of finite length is mapped to a root signal by repeated 
median smoothing. This property of median filters is very significant and is called 
the root convergenceproperty. It can be shown that the first and last points to change 
value on a median smoothing operation remain invariant upon additional running 
median passes, where repeated smoother passes consist of using the output of the 
prior smoothing pass for the input of an identical smoother on the current pass. This 
fact, in turn, indicates that any L long nonroot signal (oscillations and impulses) will 
become a root structure after a maximum of ( L  - 2)/2 successive smoothings. This 
simple bound was improved in [194] where it was shown that at most 

(5.10) 

passes of the median smoother are required to reach a root. This bound is conservative 
in practice since in most cases root signals are obtained with much fewer smoothing 
passes. 
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Figure 5.4 Root signals obtained by running medians of size 3, 5, and 7. 0: appended 
points. 

The running median root properties are illustrated through an example in Figure 
5.4. This figure shows an original signal and the resultant root signals after multiple 
passes of window size 3 , 5 ,  and 7 running medians. Note that while it takes only a 
single pass of the window size 3 running median to obtain a root, it takes two passes 
for the window sizes 5 and 7 median smoothers. Clearly, the locally monotonic 
structure requirements of the root signals are satisfied in Figure 5.4. For the window 
size 3 case, the input sequence becomes LOMO(3) after a single pass of the smoother. 
Thus, this sequence is in the root set of the window size 3 running median, but not a 
root of the window size N > 3 running median, since it is not LOMO(N1 + 2) for 

Recursive median smoothers also possess the root convergence property [5, 1501. 
In fact, they produce root signals after a single filter pass. For a given window 
size, recursive and nonrecursive median filters have the same set of root signals. A 
given input signal, however, may be mapped to distinct root signals by the two filters 
[5,150]. Figure 5.5 illustrates this concept where a signal is mapped to different root 
signals by the recursive and nonrecursive median smoothers. In this case, both roots 
are attained in a single smoother pass. 

The deterministic and statistical properties form a powerful set of tools for de- 
scribing the median smoothing operation and performance. Together, they show that 

Nl > 1 ( N  > 3). 



RUNNING MEDIAN SMOOTHERS 93 

Input signal x(n) 

4 - 3 - H---- 
Root signal for a window - 2 - -  - - of size 3 (nonrecursive smoother) 

1-s w -  - I  

0 - 1  
- w  

Root signal for a window 
of size 3 (recursive smoother) 

Figure 5.5 A signal and its recursive and non-recursive running median roots. 0: appended 
points. 

the median is an optimal estimator of location for Laplacian noise and that common 
signal structures, for example, constant neighborhoods and edges in images, are in 
its pass-band (root set). Moreover, impulses are removed by the smoothing operation 
and repeated passes of the running median always result in the signal converging 
to a root, where a root consists of a well defined set of structures related to the 
smoother's window size. Further properties of root signals can be found in Arce and 
Gallagher (1982) [9], Bovik (1987) [37], Wendt et al. (1986) [194], Wendt (1990) 
[193]. Multiscale root signal analysis was developed by Bangham (1993) [25]. 

MAX-MIN Representation of Medians MAX-MIN representation of medians 
The median has an interesting and useful representation where only minima and 

maxima operations are used. See Fitch (1987) [71]. This representation is useful in 
the software of hardware implementation of medians, but more important, it is also 
useful in the analysis of median operations. In addition, the max-min representation 
of medians provides a link between rank-order and morphological operators as shown 
in Maragos and Schafer (1987) [ 1401. Given the N samples X 1, Xa, . . . , XN, and 
defining m = y, the median of the sample set is given by 

X ( ~ L )  = min [max(X1,. . . , Xm), . . . , max(Xj,, Xj,, . . . , Xjm), 

. . . , m a x ( X ~ - ~ + l , .  . . , X,)] (5.11) 
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where j1, j 2 ,  . . . , j ,  index all C g  = (N--m)!m! N !  combinations of N samples taken 
m at a time. The median of 3 samples, for instance, has the following min-max 
representation 

MEDIAN(X1, X Z ,  X,) = min [max(X1, Xz), max(X1, Xs), max(X2, X,)] . 
(5.12) 

The max-min representation follows by reordering the input samples into the cor- 
responding order-statistics X(l) ,  X(2), . . . , X(N) and indexing the resultant samples 
in all the possible group combinations of size m. The maximum of the first sub- 
group X(l), X(z), . . . , X(,) is clearly X(m). The maximum of the other subgroups 
will be greater than X(,) since these subgroups will include one of the elements in 
X(,+l), X(,+2!, . . . , X(N). Hence, the minimum of all these maxima will be the 
mth-order statistic X(,), that is, the median. 

EXAMPLE 5.1 

Consider the vector X = [l, 3, 2 ,  5, 51, to calculate the median using the 
max-min representation we have: 

MEDIAN(1, 3, 2 ,  5, 5) = min [max(l, 3, 2 ) ,  max(1, 3, 5): max(1, 3, 5), 
max(1, 2 ,  5 ) ,  max(1, 2, 5 ) ,  max(1, 5, 5 ) ,  
max(3, 2 ,  5 ) ,  max(3, 2 ,  5), max(2, 5, 5)] 

= min(3, 5, 5, 5 ,  5 ,  5, 5 ,  5, 5) 
= 3. 

5.2 WEIGHTED MEDIAN SMOOTHERS 

Although the median is a robust estimator that possesses many optimality properties, 
the performance of running medians is limited by the fact that it is temporally blind. 
That is, all observation samples are treated equally regardless of their location within 
the observation window. This limitation is a direct result of the i.i.d. assumption 
made in the development of the median. A much richer class of smoothers is obtained 
if this assumption is relaxed to the case of independent, but not identically distributed, 
samples. 

Statistical Foundations Although time-series samples, in general, exhibit tem- 
poral correlation, the independent but not identically distributed model can be used 
to synthesize the mutual correlation. This is possible by observing that the estimate 
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Figure 5.6 The weighted median smoothing operation. 

Y ( n )  can rely more on the sample X ( n )  than on the other samples of the series 
that are further away in time. In this case, X ( n )  is more reliable than X ( n  - 1) or 
X ( n  + l), which in turn are more reliable than X ( n  - 2) or X ( n  + a), and so on. 
By assigning different variances (reliabilities) to the independent but not identically 
distributed location estimation model, the temporal correlation used in time-series 
smoothing is captured. Thus, weighted median smoothers incorporate the reliability 
of the samples and temporal order information by weighting samples prior to rank 
smoothing. The WM smoothing operation can be schematically described as in 
Figure 5.6. 

Consider again the generalized Gaussian distribution where the observation sam- 
ples have a common location parameter ,f?, but where each X i  has a (possibly) unique 
scale parameter cri. Incorporating the unique scale parameters into the ML criteria for 
the generalized distribution, equation (4.9), shows that, in this case, the ML estimate 
of location is given by the value of ,f3 minimizing 

(5.13) 

In the special case of the standard Gaussian distribution (p = a), the ML estimate 
reduces to the normalized weighted average 

where Wi = 1/u: > 0. In the case of a heavier-tailedLaplacian distribution (p = l), 
the ML estimate is realized by minimizing the sum of weighted absolute deviations 

N .  

(5.15) 
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where again l/ai > 0. Note that Gl(P)  is piecewise linear and convex for Wi 2 
0. The value ,O minimizing (5.15) is thus guaranteed to be one of the samples 
XI, Xz, . . . , XN. This is the weighted median (WM), originally introduced over 
a hundred years ago by Edgeworth [66]. The running weighted median output is 
defined as 

Y(n)  = MEDIAN[WiOXI(n), WzOXz(n), . . . , W N O X N ( ~ ) ] ,  (5.16) 

w, times - 
where W, > 0 and 0 is the replication operator defined as WiOX, = X,, . . . , Xi. 
Weighted median smoothers were introduced in the signal processing literature by 
Brownigg (1984) [41] and have since received considerable attention. Note that the 
formulation in (5.16) requires that the weights take on nonnegative values which 
is consistent with the statistical interpretation of the weighted median where the 
weights have an inverse relationship to the variances of the respective observation 
samples. A simplified representation of a weighted median smoother, specified by 
the set of N weights, is the list of the weights separated by commas within angle 
brackets [202]; thus the median smoother defined in (5.16) has the representation 
(Wl, Wz, . . . , WN). 

Weighted Median Computation As an example, consider the window size 5 
WM smoother defined by the symmetric weight vector W = (1, 2, 3, 2, 1). For 
the observation X ( n )  = [la, 6,  4, 1, 91, the weighted median smoother output is 
found as 

Y(n)  = MEDIAN [ 1 0 1 2 ,  206 ,  304 ,  201 ,  1091 

= MEDIAN [ 12, 6, 6, 4, 4, 4, 1, 1, 91 

MEDIAN [ 1, 1, 4, 4, 4, 6, 6, 9, 121 
(5.17) 

= 

= 4  

where the median value is underlined in equation (5.17). The large weighting on the 
center input sample results in this sample being taken as the output. As a comparison, 
the standard median output for the given input is Y(n)  = 6. 

In general, the WM can be computed without replicating the sample data according 
to the corresponding weights, as this increases the computational complexity. A more 
efficient method to find the WM is shown next, which not only is attractive from a 
computational perspective but it also admits positive real-valued weights: 

Wi ; N (1) Calculate the threshold WO = 

(2) Sort the samples in the observation vector X ( n ) ;  
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(3) Sum the concomitant weights of the sorted samples beginning with the maximum 
sample and continuing down in order; 

(4) The output is the sample whose weight causes the sum to become 2 WO. 

The validity of this method can be supported as follows. By definition, the output 
of the WM smoother is the value of /3 minimizing (5.15). Suppose initially that 
,B 2 X ( N ) .  (5.15) can be rewritten as: 

= [ ~ Y i ] ) P - ~ W [ i ] X ( i ) ,  (5.18) 
\i=1 1 i=l 

N which is the equation of a straight line with slope m N  = CiEl W[, 2 0. Now 
suppose that X ( N - ~ )  5 /3 < X"). (5.15) is now equal to: 

W[i] - W [ N ]  P - C W[i]x(%) + W [ N ] X ( N ) .  (5.19) ) N-l  i=l 

N - 1  
- 

- (5 
This time the slope of the line is m N - 1  = CE;' W[, - w[N] 5 m N ,  since all 
the weights are positive. If this procedure is repeated for values of ,B in intervals 
lying between the order statistics, the slope of the lines in each interval decreases 
and so will the value of the cost function (5.15), until the slope reaches a negative 
value. The value of the cost function at this point will increase. The minimum is 
then reached when this change of sign in the slope occurs. Suppose the minimum 
(i.e.. the weighted median) is the Mth-order statistic. The slopes of the cost function 
in the intervals before and after X ( M )  are given by: 

M N 

M - l  N 

i=l i=M 

(5.20) 

(5.21) 

'Represent the input samples and their corresponding weights as pairs of the form ( x ,  Wi). If the pairs 
are ordered by their X variates, then the value of W associated with Tm),  denoted by I+"+, is referred 
to as the concomitant of the mfh order stutisfic [58] .  




