Patterns in Java",
Volume 2

Patterns in Java",
Volume 2

MARK GRAND

Publisher: Robert lpsen

Editor: Theresa Hudson

Assistant Editor; Kathryn A, Malm

Managing Editor Angela Murphy

Electronic Products, Associate Editor: Mike Soxa

Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed
as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a
claim, the product names appear in indtial capital or ALL CAPTTAL LETTERS.
Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration

Thix book is printed on acid-free paper. &
Copyright © 1999 by Mark Grand. All rights reserved.

Published by John Wiley & Sons, Inc,
Published simultancously in Canada

Mo pan of this publication may be reproduced, stored in & retrieval system or
transmitted in any form or by any megns, electronic, mechanical, photocopying,
recording, scanning or atherwise, except as permitted under Sections 107 ar 108
ol the 1976 United States Copyright Act, without either the prior writien permis-
sion of the Publisher, or autherization through payment of the appropriate per
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, {978) 750-8400. fax (975) 750-4744. Reguests to the Publisher for permis-
ston should be addressed to the Permissions Department, John Wiley & Sons,
Lnc., 805 Third Avenue, New York, NY 1015380012, (212) 8506011, fax (212)
A50-6008, E-Mail: PERMREQEWILEY COM,

This publication is designed 10 provide accurate and authoritative information
i regand 1o the subject matter covered. It is sold with the understanding thar
the publisher is not engaged In professional services. I professional advice or
other expert assistance is required, the services of a competent prolessional per-
sof should be sought.

Library of Congress Cataloging-in-Publication Deata:
Grand, Mark

Patterns in Java : a catalog of reusable design parterns
listrated with UML ¢ Mark Grand

p. om.

"Wiley computer publishing”

Includes bibliographical references and index

. Java (Computer program language) 2. UML (Companer schence)
1 Software patterns. 1 Title
QATL.TO.PATGTY 1998
005, 13'—dc2] SR- 29T
ISBN 0-471-25839-3 (v L : pbk.)
ISBMN 0-47 1-25841-5 (v i : phk.}

Printed in the United States of America
0987654321

Acknowledgments
About the Author

Chapter | Introduction to Software Patterns
A Brief History of Patterns

Description of Patterns

Organization of This Book

Chapter 2 Overview of UML
Class Diagram

Intertaces
Collaboration Diagram
Statechart Diagram

Chapter 3 The Software Life Cycle
Case Study

Business Case

g W

LA L Pl

11
20
28

il

35

Vi B Contents

Define Requirements Specification
Develop High-Level Essential Use Cases
Object-Oriented Analysis

User Intertace Design

Object-Oriented Design

Chapter 4 GRASP Patterns

Low Coupling/High Cohesion [Larman98]
Expert [Larman%8]

Creator [Larman98)

Polymorphism [Larman93]

Pure Fabrication [Larman98]

Law of Demeter [Larman98]

Controller [Larman98 |

Chapter § GUI Design Patterns
Window per Task [Beck-Cunningham87]
Interaction Style [Coram-Lee98]
Explorable Interface [Coram-Lee98]
Conversational Text [Grand99]
Selection [Grand99]

Form [Tidwell98)

Direct Manipulation [Grand99]
Limited Selection Size [Grand99]
Ephemeral Feedback [Grand99)
Disabled Irrelevant Things [Tidwell98)
Supplementary Window [Grand99]
Step-by-Step Instructions [Tidwell98)

Chaupter 6 Organizational Coding Patlerns
Accessor Method Name [Grand99]
Anonymous Adapter [Grand99)

Symbaolic Constant Name [Grand99]

Define Constants in Interfaces [Trost9§]
Switch [Grand99]

Extend Super [Beck97]

Intention Revealing Method [Beck97]
Composed Method [Beck97]

36
38

42
43

51
53
59
65
69
73
77
85

95

99
103
109
113
121
127
133
137
141
143
149

153
155
159
165
171
175
179
183
185

Conditional Compilation [Grand99)

Contents & Vi

191

Checked versus Unchecked Exceptions | Grand99] 195
Convert Exceptions [Brown98] 201
Server Socket [Grand99] 207
Client Socket [Grand99] 2158
Chapter 7 Coding Optimization Patterns 219
Hashed Adapter Objects [Grand99] 221
Lazy Initialization [Beck97] 233
Double-Checked Locking [Schmidt-Harrison96] 239
Loop Unrolling [Grand99] 243
Lookup Table [Grand99] 249
Chapter 8 Code Robusiness Patterns 255
Assertion Testing [Grand99] 257
Guaranteed Cleanup [Grand99] 265
Maximize Privacy [Grand99] 269
Return New Objects from Accessor Method [Gold97) 275
Copy Mutable Parameters [Pryce98] 279
Chapter 9 Testing Patterns 283
Black Box Testing [Grand99] 285
White Box Testing [Grand99) 289
Unit Testing [Grand99] 293
integration Testing [Grand99] 297
Systemn Testing [Grand99) 301
Regression Testing [Grand99] 309
Acceptance Testing [Grand99] 313
Clean Room Testing [Grand99] 319
Bibliography 323
Appendix A Overview of Patterns in Java a2s
Appendix B About the CD-ROM 341
Index 343

ACKNOWILEU DU GMENTS

This book would not have been possible without the inspiration,
encouragement, and assistance of others. The largest share of
that credil poes to my loving wife, Ginni, who is an amazing and
wonderful person. Without her constant support, this book would
not have been written. She encouraged me to write this and then
put up with the long hours 1 spent writing. 1 also want to thank
my daughters, Rachel and Shana, for their patience.

I want to thank Check Suscheck who provided me with valu-
able feedback on the GUI Design Patterns chapter.

I want to thank Brad Appleton for his diligent reviews and
concern with form.

I want to thank Craig Larman for discovering the GRASP
patterns and his feedback on the way the GRASP patterns are
presented in this book.

I want to thank Larry O'Brien who provided highly insight-
ful, constructive, and the most easy-to-use feedback. The quality
of his feedback reflects his vears of editorial experience,

ix

X ® Acknowledgments

I want to thank the Sydney, Australia, patterns group for
their interesting and outspoken critique of some of my chapters.

Finally, I want to thank David Bussee who provided feedback
on the Testing Patterns chapter.

Introduction to
Software Patterns

Software patterns are reusable solutions to recurring problems
that occur during software development. Because this book is all
about software patterns, they are simply referred to as parterns
for the remainder of this book.

What makes a bright, experienced programmer much more
productive than a bright but inexperienced programmer is exper:-
ENCE. ience gives programmers a variety of wisdom. As pro-
grammers gain experience, they recognize the similarity between
new problems and problems they have solved before. With even
maore experience, they recognize that the solutions for similar prob-
lems follow recurring patterns. With the knowledge of these pat-
terns, experienced programmers recognize the situations to which
patterns apply and can immediately use the solution without hay-
ing to stop, analyze the problem, and pose possible strategies.

When a programmer discovers a pattern, it’s just an insight.
In most cases, it is surprisingly difficult 1o go from a not-yet-
verbalized insight 1o a well-thought-out idea that the programmer

2 8 CHaPTER OXE

can clearly aniculate. It’s also an extremely valuable step. When
programmers uncerstand a pattern well enough to put it into
words, they are able 1o intelligently combine it with other pat-
terns. More important, once a pattern is pul into words, it can be
discussed among programmers who know the pattern. This
allows programmers to collaborate and combine their wisdom
more effectively. It can also help to avoid the situation in which
programmers argue over different solutions to a problem, only to
find out later that they were really thinking of the same solution
but were expressing it in different ways.

Putting a pattern into words has an additional benefit for
less experienced programmers, Once a pattern has been put into
words, more experienced programmers can teach il 1o program-
mers whao aren't vet familiar with it

This book is intended to provide experienced programmers
with a common vocabulary to discuss patterns. It will also allow
programmers who have not vet discovered some patterns to learn
about them.

This book includes a substantial breadth of patterns, but
there are still additional patterns that could not be included due
to time constraints, Readers may discover some of these patterns.
Some of these patterns may be highly specialized and of interest
to only a small number of people. Other patterns may be of very
broad interest and worthy of inclusion in a revised edition of this
book. Readers who wish to communicate such a pattern can drop
the author an e-mail at mgrand@mindspring.com.

The patterns cataloged in this book convey constructive ways
of organizing parts of the software development cyele. There are
other patterns that recur in programs that are not constructive.
These types of patterns are called AntiParrerns. Because
AntiPatterns can cancel out the benefits of patterns, this book
does not attempt to catalog them,

A Brief History of Patterns

The idea of software patterns originally came from the feld of
architecture. Christopher Alexander, an architect, wrote two revo-

Introduction to Software Patterms ® 3

lutionary books that describe patterns in building architecture
and urban planning: A Partern Language: Towns, Buildings,
Construction (Oxford University Press, 1977) and The Timeless
Way of Building (Oxford University Press, 1979). The ideas pre-
sented in these books are applicable 1o a number of fields ouside
of architecture, including software.

In 1987, Ward Cunningham and Kent Beck used some of
Alexander’s ideas to develop five patterns for user-interface (UI)
design. They published a paper on the Ul patterns at OOPSLA-87
entitled Using Pattern Languages for Object-Oriented Programs, by
Addison-Wesley [Beck-Cunningham87).

In the early 1990s, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides began work on one of the most influ-
ential computer books of this decade: Design Patterns. The book,
published in 1994, popularized the idea of patterns. Design
Pattemns is often called the Gang of Four or GoF book.

Patterns int Java, Volume 2 represents an evolution of patterns
and objects since the GoF book was published. The GoF book used
C+-+ and Smalltalk for its examples. This book uses Java and takes
a rather Java-centric view of most things. When the GoF book was
written, Unified Modeling Language (UML) did not exist. It is now
widely accepted as the preferred notation for object-oriented analy-
sis and design. Therefore, UML is the notation used in this book.

Description of Patterns

Patterns are usually described using a format that includes the
following information:

® A description of the problem that includes a concrete exam-
ple and a solution specific 1o the concrete problem

® A summary of the forces that lead to the formulation of a
general solution

® A general solution

» The consequences, good and bad, of using the given solution
1o salve a problem

w A list of related patterns

4 ® CHAPTER ONE

Pattern books differ in how they present this information, The

format used in this book varies with the phase of the software life
cycle that the pattern addresses. The patterns in this volume are
related to a few different phases of the software life cycle. The
descriptions of patterns in this volume are organized into sections
with the following headings. Because the nature of the patterns
vary, not every section heading is used lor every pattern.

Pattern Name. The heading of this section consists of the

name of the pattern and a bibliography reference that
indicates the origin of the pattern. Most patterns don't
have any additional text under this heading. For those
that do, this section contains information about the
derivation or general nature of the pattern.

The bibliography reference indicates where the
ideas in the pattern were first written in pattern form.
Because patterns are based on established practices, in
many cases the ideas in the pattern stem from sources
other than the bibliographyv reference. Usually the
author of a pattern is not the first person 1o discover the
ideas that underlie the pattern. I do not ¢laim 1o be the
first person to discover any of the ideas in this book.
Patterns for which 1 am unaware of any other publica-
tion that documents that particular set of ideas as a pal-
tern, have a bibliography reference to this book. The
bibliography entry next 1o a pattern name is provided 1o
help you trace the development of the pattern itself, not
the underlying ideas.

Synopsis. This section contains a brief description of the

pattern. The synopsis conveys the essence of the solu-
tion provided by the pattern. The synopsis is primarily
directed at experienced programmers who may recog-
nize the patlern as one they already know, but for which
they may not have had a name. After recognizing the
pattern from its name and synopsis, it may be sufficient
to skim the rest of the pattern description.

Don't be discouraged if you don't recognize & pat-
tern from its name and synopsis. Instead. carefully read

Introduction 1o Software Parterns 5

through the rest of the pattern description 1o under-
stand it.

Context. This section describes the problem that the pat-
tern addresses. For most patterns, the "Context” section
introduces the problem in terms of a concrete example
and suggests a design solution.

Forces. This section summarizes the considerations that
lead to the problem’s general solution, which is pre-
sented in the “Solution” section.

Solution. This section is the core of the pattern. It
describes a general-purpose solution to the problem
that the pattern addresses.

Consequences. This section explains the implications,
good and bad, of using the solution.

Implementation. This section describes the important
considerations to be aware of when executing the solu-
tion. It may also describe some common variations or
simplifications of the solution. Some patterns may not
have an “Implementation” section because these con-
cerns are not relevant 1o every pattern.

Java APl Usage. When there is an appropriate example of
the pattern in the core Java AP, it is pointed out in this
section. This section is not included for those patterns
that are not used in the core Java APL

Code Example. This section contains a code example thar
shows a sample implementation for a design that uses
the pattern. For some patterns, such as GUI design pat-
terns, a code example is not relevant. In some cases, a
different sort of example is relevant.

Related Patterns. This section contains a list of patterns
that are related 1o the pattern described.

Organization of This Book

The Patterns in Java series of books covers a wider range of pat-
terns than is found in previously published works. Even with

6 ® Cuarter ONE

the goal of providing coverage of a broad selection of patterns,
time constraints have limited the number of patterns that are
included. Three volumes of this work are currently planned. If
there is sufficient interest, more volumes will follow.

The first volume focuses exclusively on general-purpose
design patterns. This second volume includes a variety of patterns
used for the following purposes:

» Assigning responsibilities to classes
= Designing GUls

s Writing code

» Testing software

The third volume will contain design patterns for use in enter-
prise applications. The planned topics include patterns related to
transaction design, distributed computing. and the use of rela-
tional databases with object-oriented programs.

Each volume begins with a description of the subset of UML
used in that volume. Chapter 3 in each volume contains an
overview of the software life cycle, to provide the context in
which the patterns are used. Chapter 3 also provides a case study
that includes examples for using patterns in that particular vol-
ume. The remaining chapters describe different types of patterns.

The CD-ROM that accompanies this volume contains all of
the code examples that are found in this book. In some cases, the
examples on the CD-ROM are more complete than the examples
that appear in this book. The CD-ROM also contains some soft-
ware related 1o the patterns in this volume.

The Java examples that appear in this book are based on
Java 2. The UML diagrams in this book are based on version 1.1
of the Object Management Groups UML standard.

Overview of UML

The Unified Modeling Language (UML) is a notation that yvou can
use for object-ortented analysis and design. This chapter contains a
brief overview of UML that introduces you to both the subset and
extensions to UML used in this book. For a complete description of
UML, see http/Awww.rational.comumldocumentation.himl.

Books that are specifically about UML call the pieces of
information stored in instances of a class arrribures; they call a
classs encapsulations of behavior operarions. Those terms, like
UML, are not specific to any implementation language. This book
is not language neutral. It assumes that you are using Java as
vour implementation language. This book also uses Java-specific
terms in most places, rather than terms that are language neutral
but less familiar to Java programmers. For example, this book
uses the words artribute and variable interchangeably, with prefer-
ence for the Java-specific term variable. This book also uses the
words operation and method interchangeably, with preference tor
the Java-specific term method.

8 ® Cuarter Two

UML defines a number of different kinds of diagrams. The
kinds of diagrams found in this book are class diagrams, collabo-
ration diagrams, and statechant diagrams, The rest of this chapter
is organized into sections that describe each of these diagrams
and the elements that appear in them.

Class Diagram

A class diagram is a diagram that shows classes, interfaces, and
their relationships. The most basic element of a class diagram is a
class. Figure 2.1 provides an example of a class that shows many
of the features that a class can have within a class diagram.

Classes are drawn as rectangles. The rectangles can be
divided into two or three compartments. The class rectangle
shown in Figure 2.1 has three compartments. The top compart-
ment contains the name of the class. The middle compartmemt
lists the class’s variables, The bottom compartment lists the
class's methods.

The symbols that precede each variable and method are visi-
bility indicators. There are three different types of visibility indi-
cators, as shown in Table 2.1, The variables in the middle
compartment are shown as

visibllityindicator name Eypia

Therefore, the two variables shown in the ¢lass are private vari-
ables. The name of the first variable is instance and its tvpe is

Audeaphinnagm

mm

=CErEtruchors

Aol Ipharaga |

-mmine=
i | Ao i ged
= ey Aol
winopd|Aukollip)

=alog |

FAGURE 1.1 Basic class.

Overview of UML m 9

TABLE 2.1 Visibility Indicators
Visibiliry Indicators Meaning

. Public
Protected
- Private

AudioC] ipManager. The name of the second variable 15 prevclip
and fls type is AudioClip.

Though not shown in Figure 2.1, an imitial value can be indi-
cated for a variable by following the variable’s type with an equal
(=) sign and the value like this:

FhutDown boaledan = [alse

MNotice that the first variable shown in the class is underlined. Il a

variable is underlined that means that it's a static variable. This

applies 10 methods, too. Underlined methods are static methods.
The methods in the bottom compartment are shown as

wimibllltylndicator pama | formalFarsssgtoers | IoLufaType

The get instance method shown in the class found in Figure 2.1
refurns an AudioCl ipManager object.

UML indicates a void method by leaving out the ": return-
Type~ from a method to indicate that it doesn't return anvthing.
Therefore, the stop method shown in Figure 2.1 does not return
any result.

A method's formal parameters consist of a name and a type
like this:

setlongth|lengthiint)

[f a method has multiple parameters, commas separate them
like this:

astPoicionixN: Lag, yointl

Two of the methods in the aforementioned class are pre-
ceded by a word in guillemets, like this:

st rod Lo

10 ® CuarTer Two

In a UML drawing, a word in guillemets is called a stereo-
rvpe. A stereotype is used like an adjective to modify what comes
after it. The constructor stereotype indicates that the methods
that follow it are constructors. The mise stereotype indicates that
the methods that come after it are regular methods. Additional
uses for stereatypes are described later in this chapter.

One last element that appears in Figure 2.1 is an ellipsis
{...). If an ellipsis appears in the bottom compartment of a
class, it means that the class has additional methods that the dia-
gram does not show, If an ellipsis appears in the middle compan-
ment of a class, it means that the class has additional variables
that the diagram does not show.

Often, it's nol necessary or helpful to show as many details of
a class as were shown in Figure 2.1. A class can also be drawn
with only two compartments, as shown in Figure 2.2,

When a class is drawn with only two compartments, its top
compartment contains its name and its bottom compartment
shows its methods. If a class is drawn with only two compart.
ments, that just means that its variables are not shown. It does
not mean that it has no variables.

The visibility indicators may be omitted from methods and
variables, When a method or variable is shown without a visibility
indicator, it means there is no indication of the method’s or the
variable’s visibility. It does not imply that the methods or variables
are public, protected, or private.

AU TpbAR g
Ao TipdAnnagr pramd i Aunberag
= LA FLCHO - e it e e
sy pcioCRpMANRmg e | Aol aphans ger
=T A5[PERC
e il i inriian T S R T getinglance
= phiy{ AudioClp) play
T R T T oop
wiogy | £hog

AGURE 22 Two-compartment FAGURE 23 Simplified
class. class.

Interfaces

Overview of UML = 11

AuidoChphanages
AGURE 24 One-compartment class.

A method'’s parmmeters can be omitted if their return values
are also omitted. For example. the visibility indicators and method
parameters are omitted from the class shown in Figure 2.3,

Figure 2.4 shows the simplest form of a class, with just one
compartment containing the class name. A one-compartment
representation of a class merely identifies the class. It provides no
indication about the variables or methods that the class has.

Interfaces are drawn in 8 manner similar to classes. The only dif-
ference is that the name in the top compartment is preceded by
an «interfaces= stercolype. Figure 2.5 shows an example of an
interface.

Classes and interfaces are important elements of class dia-
grams. The other elements of a class diagram show the relation-
ships between classes and interfaces. Figure 2.6 is a typical class
diagram.

The lines in Figure 2.6 indicate the relationship between the
classes and the interface. A solid line with a closed arrowhead
like the one in Figure 2.7 indicates the relationship with a sub-
class that inherits from a superclass. Figure 2.6 shows the

W

FIGURE 2.5 Interface.

12 ®m Cuarter Two

Prodict , CreatonFegeesio
oA ion | e T CACaC Lt
e e

g | Mequestor
= T [+
el R
FaciorylF
CosstrarisProdiact lmdlﬂmn
sgaration .-f’r'l
|
|l".l. |
Faciory
A Croatos i erblimE o

AGURE 26 Class diagram.

abstract class Product as the superclass of the concreteProduct
class. You can tell that it’s abstract because its name is italicized.
You can tell that its methods are abstract because they are also
italicized.

A similar sort of line is used to indicate that a class imple-
ments an interface. It is represented with a dotted or dashed line
with a closed head, like the one shown in Figure 2.8 In Figure 2.6
the Factary class implements the PacroryIF interface.

The other lines show the other types of relationships
between the classes and the interface. UML calls these other
types of relationships associations. There are a number of
things that can appear with an association that provide infor-
miation aboul the nature of an association. The following items
are optional, but this book consistently uses them wherever it
makes sense.

» Association Name. Somewhere around the middle of an
association there may be an association name. The name of
an association is always capitalized. There may be a triangle

<I—— FGUREZ] Subclaxs inherits from superclass.

hverview of UML ® 13

<} RGURE2B Class implements an interface.

at one end of the association name. The triangle suggests the
direction in which vou read the association. An example of
this is found in Figure 2.6, where you see that the associa-
tion between the Factory and Concreteproduct classes has
the name Creates.

« Navigation Arrows. Arrowheads that appear at the ends of
an association are called navigation arrows. Navigation
arrows indicate the direction in which you can navigate an
association. Looking at the association named Creates in
Figure 2.6, you see that it has a navigation arrow pointing
from the Factory class to the ConereteProduce class. That
means Factory ohjects will have a reference that allows
them 1o access ConcreteProduct objects, but not the other
way around.

Because of the nature of creation, it seems clear that
this means the Factory class is responsible for creating
instances of the ConcreteProduct class. The nature of some
associations is less obvious. To clarify the nature of such
associations, it may be necessary to supply additional infor-
mation about the associalion. One common way 10 do this is
1o name the role that each class plavs in the association.

» Role Name. To clarify the nature of an association, the
name of the role that each class plavs in the association can
appear at each end of an association, next 1o the correspond-
ing class. Role names are always lowercase. That makes them
easier to distinguish from association names, which are always
capitalized. The class diagram shown in Figure 2.6 shows the
Creationfequestor class and the FactoryIF interface partici-
pating in an association named Requests-Creat ion. The
Creat lonRequestor class participates in that association in a
role called requestor. The FactoryIF interface participates in
that association in a role called creator.

» Multiplicity Indicator. Another detail of an association
that is usually supplied is how many instances of each class
participale in an occwrence of an association. A multiplicity

14 ® CharTER Two

indicator may appear at each end of an association to pro-
vide that information, A multiplicity indicator can be a sim-
ple number like 0 or 1. It can be a range of numbers
indicated like this:

0.4

An asterisk used as the high value of a range means an
unlimited number of occurrences. The multiplicity indicator
1..* means at least one instance; 0..* means any number of
instances. A simple * is equivalent to 0..*, Looking at the mul-
tiplicity indicators in Figure 2.6, you see that each one of the
associations in the drawing is a one-to-many relationship.

Figure 2.9 is a class diagram that shows a class with multiple
subclasses.

Figure 2.9 is perfectly valid. However, UML provides a more
aesthetically pleasing way to draw a class with multiple sub-
classes. You can combine the arrowheads, as shown in Figure
2.10, Figure 2.10 is identical in meaning to the diagram shown in
Figure 2.9.

Occasionally there is a need to convey more structure than is
implied by a simple one-to-many relationship. The type of one-to-
many relationship in which one object contains a collection of
other abjects is called an aggregation. A hollow diamond at the
end of an association indicates aggregation. The hollow diamond
appears at the end of the association attached to the c¢lass that
contains instances of the other class. The class diagram in Figure
2.11 shows an aggregation.

VAN

FAGURE 29 Multiple inheritunce arrows.

Overview of UML = 15

DrociChal CompomieDocument

FAGURE 210 Single inheritance arrow

Figure 2.11 shows a class named MessageManager. Each of
its instances contains zero or more instances of a class named
HIMEMsg.

LML has another notation that indicates a stronger relation-
ship than aggregation, This relationship is called composire agere-
gation. For an aggregation to be composite:

» Aggregated instances must belong to only one composite at a
L.

® Some operations must propagate from the composite to its
agpregated instances. For example, when a composite object
Is cloned, its clone method ypically clones the aggregated
instances so that the cloned composite owns clones of the

original aggregated instances,

Figure 2.12 shows a class diagram that contains composite aggre-
gations.

Figure 2.12 shows a Document class. Document objects can
contain Paragraph objects. Paragraph objects can contain
pDocChar objects. Because of the composite aggregation, you know
that Paragraph objects do not share poeChar objects and
Documant objects do not share Paragraph objects.

Some associations are indirect. Instead of classes that are
directly associated with cach other, they are associated indirectly

W-:}—"“"ﬂll—u-ﬂuﬂlaﬂq

AGURE 211 Aggregation.

16 ®m CuarTER TWO

FIGURE 212 Composite aggregation.

through a third class, Consider the class diagram shown in Figure
2.13, The association shows that instances of the cache class
refer to instances of the object class through an instance of the
Object 1D class.

There is another use for the ellipsis in a class diagram. Some
class diagrams need to show that a c¢lass has a large or open-
ended set of subclasses, while showing only a few subclasses as
examples of the sort of subclasses that the class has. Figure 2,14
shows how an ellipsis can be used to show just that.

The class diagram in Figure 2. 14 shows a class named
Dataguery that has subclasses named JDBCQuery, OracleQuery,
SybaseQuery, and an indefinite number of other classes that are
indicated by the ellipsis.

FIGURE 2.13 Association class.

Overview of UML u 17

JOBCOusry OracieCusry WJ

FIGURE 214 Open-ended subclasses.

The classes in a class diagram can be organized into pack-
ages. A package is drawn as a large rectangle with a small rect-
angle above it. The small recltangle contains the name of the
package. The small and large rectangles are arranged with a
shape similar 10 that of a manila folder The class diagram in
Figure 2.15 contains a package named ServicePackage,

A visibility indicator can precede the name of a class or
interface that appears within a package. Public classes are acces-
sible 1o classes outside of the package; private classes are not.

Sometimes there are aspects of a design that cannot be made
sufficiently clear without a comment in a diagram. A comment in
UML is drawn as a rectangle with its upper right comer turned

ServicePackage |
uses * e ——
s B dad Sarnoatsipor
4’ !.E:"._T
1 1
Croates * =
ServiceProwy | 1)! +Sanvics "-'E-l
- Sapratta Hd

AGURE 215 Package.

18 ® Charrer Two

amelloost |(docianng Clasa
craainiamaniaidescrpiion: Strng) MissoneldemanioF
sisthtnmontof MiestonekomantniF) S |
1 1 :
Mol o - Requosis i
Miostones ¥ Mistatore i i
i 1| Wemamic Creaticn | Frhvd
Rbdesir oo Marag ‘{:," e
Claas of
mapshoftlesoneidescription Sinng} 0 F---- - Hinrinens
pothliestorshlamenton| | MesatonsbermentolF Soneiuata
T T L R e e
?
i
Lsxionaiamano 5 8 :
pivabe SiAlC Clasd member i
. i
; RIS
Misstorhlomania | o

AGURE 2.%6 Private-static classes with a comment.

down. The comment is attached by a dashed line to the diagram
clement that it relates to. The class diagram in Figure 2.16 con-
lains a comment.

Figure 2.16 shows the static class i lesroneMemant o, which
is a private member of the GameMode! class. There is no standard
way in UML to represent a static, private-member class. The dia-
gram uses a stercotype as an extension 1o UML to indicate that
the MilestoneMemento class is static. It uses an association to
indicate that the MileatoneMemento is a private member of the
GamaModel class, To make the relationship even more clear, there
is a comment about it in the class diagram.

Class diagrams can include objects. Maost of the objects in
the diagrams found in this book are drawn as in Figure 2.17,

Area

FAGURE 217 Object in a class diagram.

Overview of UML = 19

The object shown in Figure 2.17 is an instance of a class
named Area. The underline in the object tells you that it's an
object. A name may appear to the left of the colon (;). The only
significance of the name is that you can use it to identify the indi-
vidual object.

Some diagrams indicate an object as just an empty rectangle
with nothing inside of the rectangle. Obviously, blank objects can-
not be used o identify any particular kind of object. However,
they can be used in a diagram that shows a structure in which the
objects of unspecified type are connected. Figure 2,18 shows such
a structure.

The lines that connect two objects are not associations, They
are called finks. Links are connections between objects, whercas
associations are relationships between classes. A link is an occur-
rence of an association, just as an object is an instance of a class.
Links can have association names, navigation arrows, and most of
the other embellishments that associations can have. However,
since a link is a connection between two objects. links may not
have multiplicity indicators or aggregation diamonds.

Some diagrams consist of just objects and links, Such dia-
grams are considered a kind of class diagram. However, there is
a special name for diagrams that consist of only objects and
links: ebject diagram. Figure 2.19 is an example of an object
diagram.

AGURE 218 Blank objects.

20 m CuartEr Two

Conitning ™

FAGURE 219 Object diagram.

Collaboration Diagram

Class and object diagrams show relationships between classes and
objects. They also provide information about the interactions that
occur between classes. They don't show the sequence in which the
interactions occur or any concurrency that they may have.

Collaboration diagrams show objects, the links that connect
them, and the interactions that occur over each link. They also
show the sequence and concurrency requirements for each inter-
action. Figure 2.20 is a simple example of a collaboration
diagram.

Any number of interactions can be associated with a link.
Each interaction involves a method call. Next to each interac-
tion or group of interactions is an arrow that points to the object
whose method is called by the interaction. The entire sel of
objects and interactions shown in a collaboration diagram is col-
lectively called a collaboration.

Each of the interactions shown in Figure 2.20 starts with a
sequence number and a colon. Sequence numbers indicate the
order in which method calls occur. An interaction with the number
| must come before an interaction with the number 2, and so on.

Multilevel sequence numbers consist of two or more num-
bers separated by a period. Notice that most of the sequence
numbers in Figure 2.20 are multilevel sequence numbers.

Overview of UML u 21

ili—
1.2 o)
Qltag Chalbourabd gqapmiF
- P iy biEhAE Misg)
' Mensagidanage
10 cadMeg = e irg MEME WG]
e
1.1.2 ol Srng)
1. 1.3 fam{ - Snng)
1.1 & paan Fant -Savng)
tRtnr MAPIS S0 MAAE Prarseet
111 buier = getinstance{ie-Sinng)
[EEEEEE 1

AGURE 220 Collaboration diagram.

Multilevel sequence numbers correspond to multiple levels of
method calls. The area of the multilevel sequence number to the
left of its rightmost period is called its prefix. For example, the
prefixof 1.3.4is 1.3,

Interactions numbered with a multilevel sequence number
occur during another interaction’s method call. The other method
call is determined by the interaction’s prefix, So the method calls of
the interactions numbered 1.1 and 1.2 are made during the method
call of interaction 1. Similarly, interactions numbered 1.1.1, 1,1.2,
1.1.3, and so on, occur during the method call of interaction 1.1.

Among interactions numbered with the same prefix, their
methods are called in the order determined by the number fol-
lowing their sequence number prefix. Therefore, the methods of
interactions numbered 1.1.1, 1.1.2, 1.1.3, and s0 on, are called in
that order.

A< mentioned previously, links represent a connection
between two objects. Because of that, links cannot have multiplic-

22 m Cnaprer Two

g CtearalinfF

1. notbrio) Shacan 10 nosko) T — J

FIGURE 221 Multiobject.

ity indicators. This works well for links that represent an occur-
rence of an association between a definite number of objects.
However, associations that have a star multiplicity indicator on
either end involve an indefinite number of objects. For this type of
association, there is no way to draw an indefinite number of links
to an indefinite number of objects. UML provides a symbaol that
allows us to draw links that connect to an indefinite number of
projects. That symbol is called a mudtiobject. Tt represents an indef-
inite number of objects. It looks like a rectangle behind a rectangle.
The collaboration diagram in Figure 2.21 contains a multiobject. It
shows an ObservableIF object calling a Multicastar objects

not i £y method. The Mult tcast er object’s implementation of the
not i £y method calls the not L £y method of an indefinite number of
observer IF objects linked 10 the Multicaster object.

Objects created as a result of a collaboration are marked
with the property (new}. Temporary objects that exist only during
a collaboration are marked with the property {transtent)." The
collaboration diagram in Figure 2.22 shows a collaboration tha
creates an object.

Some interactions occur concurrently, rather than sequen-
rially. A letter at the end of a sequence number indicates concur-
rent interactions. For example, the methods of interactions
numbered 2.2a and 2.2b are called concurrently and each call
runs in a separate thread. Consider the collaboration diagram
shown in Figure 2.23, Notice that the top-level interaction is num-
bered | During that interaction, first interaction 1.1 is invoked.
Then interactions 1.2a and 1.2b are invoked at the same time,
After that, interactions 1.3 and 1.4 are invoked, in that order. An
asterisk after a sequence number indicates a repeated interaction,
as shown in Figure 2.24.

" LML vine o The waand Pranadered B overs difiecend From (e way that Tava ases il Java e

franibens 10 mean that a vartable bs not part of an object’s penistent state UML uses it 10
meun that an object hos o bounded lifetime

Overview of UML » 23

1;_rescasv misg MIMEMsg) " "

wddig Onibouncbessaaolf (new] |——————— —

1.1] Guthisg = parss]mag MIMEMag)

FGURE 222 New object.

The collaboration diagram in Figure 2.24 begins by calling
the TollBooth object’s start method. That method repeatedly
calls the object's collectNextToll method. Each call to the
collectNextToll method calls the Tol1Basket objects
collectToll method and the Tollgare object’s raisecate
method.

One other thing to notice about this collaboration diagram is
the «sel - stereotype that appears next to the link for interaction
1.1. This stereotype serves to clarify the fact that the link is a self-
reference.

FAGURE 223 E-mail encrypler

24 ®m CHAPTER Two

TJoli8ogth
- - —
1.1.1: colecTol() | 1.1.2 ralzeGatad)
ToliBaskaet TollGatle

FAGURE 2.M4 Tollbooth collaboration diagram.

Unlike the example shown in Figure 2.24, most repetitive
interactions occur conditionally. UML allows a condition 1o be
associated with a repetitive interaction by putting it after the
asterisk inside of square brackets, Figure 2.25 shows an example
of a conditional repetitive interaction where the 1terator object
is passed 10 a DialogMediarar object'’s refresh method. Iix
refresh method, in turn, calls a widget object’s reset method
and then repeatedly calls its addpara method, while the 1rerator
object’s hastext method retums true.

You can indicate that a non-repetitive interaction is condi-
tional, by including a condition without an asterisk in the inter-
action,

|

Overview of UML m 25

It's important to note that the definition of UML does not
define the meaning of conditions associated with repetitive inter-
actions very precisely. In particular, the definition of UML says
that what appears between the square brackets can "be expressed
in pseudocode or an actual programming language.” This book
consistently uses Java for that purpose.

When dealing with multiple threads, something that often
requires specification about methods is what happens when two
threads try to call the same method at the same time. UML speci-
ties this by placing one of the following constructs after a method:

[concyuriency = soguentlall

This means that only one thread at a time calls a method. No
guarantee is made about the correctness of the method's behavior
if the method is called with multiple threads at a time.

[concurEdncy = doncurzeat)

This means that if multiple threads call a method at the same
time, they all execute it concurrently and correctly.

[concurrency = guardsd]

This means that if multiple threads call a method at the same
time, only one thread at a time is allowed 10 execute the methaod.
While one thread executes the method, other threads are {orced
to wait until it's their tum. This is similar to the behavior of syn-
chronized Java methods, Figure 2.26 shows an example of a
synchronized method.

There are refinements to thread synchronization used in thas
book for which there is no standard representation in UML. This
book uses some extensions to the (concurrency = guarded) con-
struct to represent those refinements.

In some cases, the object on which threads must synchro-
nize is not the same object whose method is called by an inter-
action. Consider Figure 2.27. In this collaboration diagram,
(concurrencysguarded:out) refers 1o the object labeled out.
Before the method call can actually take place, the thread that
controls the call must own the lock associated with the cut

26 m CuartEr Two

e

l 1: loghlessageRecept(plam Text Mmekisg) | concumsncy=guarded)

el

Lagger

RGURE 228 Svnchronized method call

object. That is identical to Java's semantics for a synchronized
statement.

Sometimes there are preconditions beyond acquiring owner-
ship of a lock that must be met before a thread may proceed with
a method call. This book represents such preconditions with a
vertical bar followed by the precondition. Figure 2.28 shows such
preconditions following guarded and a vertical bar

The collaboration diagram in Figure 2.28 shows two asyn-
chronous interactions. One interaction calls a PrintQueue object’s
addprintJob method 1o add a primt job to the printgueus object,
In the other interaction, a PrintDriver object calls the Prine-
gueue object’s get PrintJob method to get a print job from the
PrintQueue object. Both interactions have synchronization pre-
conditions. If the print queue is full, then the interaction that
calls the adder intJob method waits until the print queue is not

EMaME noryptes

li.wuwewm

1 1.2
1.7 prw(: Diats)
1.3 print[rudsage: Stringl
‘g
il Tty

RGURE 227 Svochronization using a third object.

Overview of UML u 27

—_—

1A sodPrng oty Prirsob) {conourmency=guardediipg ssFuli()}

Py PrintQueve

l 18 getPrintiobl) lconcusmancy=guardediipg isisEmpty())

AL L s

AGURE228 Print qucue,

full before proceeding to make the call 1o the addPrintdob
method. If the print queue is empity. then the interaction that
calls the gerprintJob method waits until the print queue is not
empity before proceeding to make the call to the gecPrincieb
method.

These mechanisms determine when the methods of a collab-
oration are called. They don't say anything about when method
calls return. The arrows that point at the objects whose methods
are called provide information about when the methods can
returm.

All the arrows in Figure 2.28 have closed heads, which indi-
cate that the calls are synchronous. The method calls do not
return until the method has completed doing whatever it does.

An open arrowhead indicates an asynchronous method call.
An asynchronous method call returns to its caller immediately,
while the method does its work asynchronously in a separate
thread. The collaboration diagram in Figure 2.29 shows an asyn-
chronous method call.

UML defines armowheads only for synchronous and asyn-
chronous calls. As extensions tin UMI, LML allows other tvpes of
arrows to indicate different types of method calls. To indicate a
balking call, this book uses a bent-back armow, as shown in
Figure 2.30,

L

et 1 werite(: String) oM

FAGURE 22¢ Asynchronous method call,

28 m CuarTER TwWO

a:Sonsor
l1-mﬁﬂﬂ T
1I--} 1
1. My} Mmm-r| [M

FGUREZ230 Balking call depicted FIGUREZ3 Active
with a bent-back arrow. object Sengor

When a balking call is made 1o an object’s method and there
is no other thread executing that object’s method, the method
returns when it is finished doing what it does, However, when a
balking call is made and there is another thread currently execut-
ing that object’s method, the method returns immediately without
performing anything.

You may have noticed that the object that makes the wop-level
call that initiates a collaboration is not shown in all of the collabo-
ration diagrams. This means that the object that initiates the col-
laboration is not considered to be a part of the collaboration,

The objects in UML that you have seen up to this point are
passive in nature. They don't do anything until one of their meth-
ods is called.

Some objects are active, They have a thread associated with
them that allows them to initiate operations asynchronously
and independently of whatever else is going on in a program. An
active object is indicated as an object with a thick border Figure
2.31 contains an example of an active object.

In the diagram an active Sensor object calls a Sensorobserver
object’s method without another object first calling one of its
methods,

Statechart Diagram

Statechart diagrams arve used 1o model a class’s behavior as a state
machine Figure 2,32 is an example of a simple state diagram.

Overview of UML » 29

A statechart diagram shows each siate as a rounded rect-
angle. All of the states shown in Figure 2.32 are divided into two
compartments. The upper compartment contains the name ot
the state. The lower compartment contains a list of events to
which the object responds while in thar state, without changing
state. Each event in the list is followed by a slash and the action
it performs in response to the event, UML predefines two such
events;

1. The enter event occurs when an object enters a state.
2. The exit event occurs when an object leaves a state.

If there are no events 1o which a state responds without
changing state, then its rectangle is not divided into two compan-
ments, Such a state is drawn as a simple, rounded rectangle that
contains only the state’s name.

30 m Cuarrer Two

Every state machine has an initial state that it is in before
the [irst transition occurs. The initial state is drawn as a small,
solid circle,

Transitions between states are shown in statechart diagrams
as lines between states with an arrowhead showing the direction
of the transition. Normally, a transition line is required to have a
label that indicates the event that triggers the transition. The
event can be followed with a slash and the action that occurs
when the transition takes place.

If a statechart includes a final state, the final state is drawn

as a small, solid circle inside of a larger circle.

The Software Life Cycle

This chapter first describes the software life cycle, then presents
the object-oriented design portion of a case study.

A variely of activities take place during the lifetime of a piece
of software. Figure 3.1 shows some of the activities that lead up
1o the deployment of a piece of business software.

This figure is not intended to show all of the activities that
take place during a software project, It merely shows some of the
common activities for the purpose of understanding the context in
which the patterns discussed in this book are used. The three vol-
umes of this work describe recurring patterns that occur during
the portion of the software life cycle labeled "Build” in Figure 3.1.

Figure 3.1 shows very clear boundaries between each activ-
ity. In practice, the boundaries are not always so discernible.
Sometimes it is difficult 10 determine if a particular activity
belongs in one box or another. The precise boundaries are not
important. What is important is to understand the relationships
between these activities.

31

32 ® CuapPTER THREE

Buminoss Plarrmsy Busigss Coa Budpe!
Doty Prasguimsraisnitn. Po:paienrmanily. Specifcate
Owtaled Defem High Level Essantisl Use Cassn
ikl [Pty e Chivfiren gl Lorind Soptibiin® Arcfulenfien
Cogpert Cowasninet Aoabyvin: Low Lows Fasoniial Use Cosss, Conempigal Mode
s guuiaian S
Cobppecy Curmperntaped [npebiegens
Crasn Duagrmrm, Jrrse
s Crmmagry Llsany frobwe bpcm Colat B Logrl Cmtahoss Jesigr: o -
Eagts Dragioms el Mgy
Fryba DRl
Lisghai®y Temfing Cnding b
Tueamirey
Congricmeranii

FIGURE 3.1 Activities that lead to software deployment

Earlier activities, such as defining requirements and object-
ortented analysis, determine the course of the activities that fol-
low them, such as defining essential use cases or object-oriented
design. However, in the course of those later activities, deficien-
cies in the products from earlier activities can emerge. For exam-
ple, in the course of defining a use case, it may become apparent
that there is an ambiguous or conflicting requirement. Making
the necessary changes to the requirements generally results in the
need 10 modify existing use cases or write new ones. You should
expect such iterations. As long as the trend s for later iterations
to produce fewer changes than earlier ones, consider such itera-
tions part of the normal development process,

The following paragraphs are brief descriptions of some of
the activities shown in Figure 1.1. The purpose of these descrip-
tions is to provide enough background information about these
activities to understand how the patterns discussed in this book
apply to a relevant activity. The case study that follows the
descriptions provides deeper insights into these activities,

The Software Life Cvcle m 33

Business Planning This typically starts with a proposal to
build or modify a piece of software. The proposal evolves into a
business case. A business case is a document that describes the
pros and cons of the software project and also includes esti-
mates of the resources required 1o complete the project. Il a
decision is made 10 proceed with the project, a preliminary
schedule and budget are prepared.

Define Requirements The purpose of this activity is 1o produce
a requirements specification that indicates what the software
produced by the project will and will not do, This typically
begins with goals and high-level requirements from the busi-
ness case. Additional requirements are obtained from appropri-
ate sources to produce an initial requirements specification. As
the requirements specification is used in subsequent activities,
necessary refinements to the requirements are discovered.
These refinements are incorporated into the requirements spec-
ification. The products of subsequent activities are then modi-
fied 1o reflect the changes to the requirements specification.

Define Essential Use Cases A use case describes the sequence
of events that occurs in & specific circumstance between a svs-
tem and other entities. The other entities are called acrors.
Developing use cases improves programmers’ understanding of
the requirements, analysis, or design that the use case is based
on. As programmers develop better understanding of require-
ments, analysis, and design, they are able to refine them.

Essential tse cases describe events in terms of the problem
domain. Use cases that describe events in terms of the internal
organization of software are called real use cases.

The type of use case most appropriate for refining require-
ments is the high-level essenrial use case. Such use cases are
high level in the sense that they explore the implications of
what they are based on, but do not try to add additional details.

Create Prototype The purpose of this activity is to create a pro-
totype for the proposed software. Programmers can use a pro-

totype to get reactions to a proposed project, Programmers can
use reactions to a prototype to refine requirements and essen-

tial use cases.

24 m Cuarrer THREE

Case Study

Define High-Level System Architecture The purpose of this
activity is lo determine the major components of the system that
are obvious from the original proposal and their relationships,

Object-Orviented Analysis Object-oriented analysis is an analy-
sis of the problem domain. The purpose of this activity is to
understand what the software produced by the project will do
and how it will interact with other entities in its environment.
The goal of analysis is to create a model of what the software
will do, but not of how 1o do it. The products of object-oriented
analysis model the situation in which the software will operate,
from the perspective of an outside observer. The analysis does
not concern itself with what goes on inside the soltware.

Design User Interface The purpose of this activity is to deter-
mine the nature of the interactions between the program and
the user based on use cases. Once the nature of the interactions
is identified, the user interface is designed and the details of
how the user will interact with it are identified.

Object-Oriented Design The purpose of this activity is to deter-
mine the internal organization and logic of the software, The
products of the design effort identify the classes that constitute
the internal logic of the software. They also determine the inter-
nal structure of the classes and their interrelationships.

More decisions are made during object-oriented design
than during any other activity. For this reason, the three vol-
umes of this work include more patterns that apply to object-
oriented design than to any other activity.

Coding The purpose of this activity is to write the code that
makes the software work.

Testing The purposc of this phase is to ensure that the software
performs as expected.

The following case study involves the design and development of
an employee timekeeping system for a fictitious business called
Henry's Food Market. To keep the size of this example reasonable,

The Software Life Cycle m 35

the artifacts of the development process are simplified and abbre-
viated. The details of deriving those artifacts are also abbreviated.
The point of this case study is 10 illustrate the use of the different
tvpes of patterns that are covered in this volume.

Business Case

Here is an abbreviated business case that lays out the motivation
and schedule for building an employee timekeeping system,

Henry's Food Market operates five retail stores. To support
these stores, it also operates a warehouse and a commercial bak-
ery that produces the baked goods that the stores sell. Most of its
employees are paid by the hour. A time clock svstem tracks
employee hours. When emplovees begin work, go on break,
return from a break, or leave work, they are supposed to slide
their emplovee badges through a timekeeping clock that records
their hours.

Henry's Food Market wants 1o expand, increasing the number
of its stores from S to 21 over the next 2 yvears al a rate of 2 stores
every 3 months. One of the challenges the company faces is that if
it continues to use the existing timekeeping system. it will have 1o
hire more people to handle the administrative side of timekeeping.
Currently, each location requires a person working half<time as a
timekeeper to administer its umekeeping system. The activities
the imekeeper is required to perform are as follows:

» The timekeeper prints reports for supervisors that show
the number of hours each employee worked the previous
day. This allows supervisors to verify that their subordi-
nates worked the stated number of hours. Some common
errors that are uncovered by supervisors who review these
reports are:

= Emplovees do not clock out when they go on break or
leave work.

s Coworkers clock in employvees who are late for work.
= Employees clock in before the start of their shift.

36 ® CHaPTER THRER

» The timekeeper enters corrections into the timekeeping
system.

» The timekeeper prepares weekly reports that show the num-
ber of hours every emplovee in a location worked and sends
those reports 1o the payroll deparument.

The timekeeping system only provides emplovee hours in the
torm of a printed report. There is currently one person working
full-time 1o enter employee hours into the pavroll svstem and
review the entered hours. This person costs the company $24,000
a vear. If the company continues to use this system, it will have 1o
hire an additional person to enter employee hours at an addi-
tional cost of $24,000 a year.

The cost of having a person working half-time as a time-
keeper in each location is $9,000 per person per vear. The current
cost of paving people to be timekeepers is $63,000 per vear.

The total current cost of labor for timekeeping is $87.000 per
vear. In two vears, when the company’s expansion is complete,
that labor cost will have increased to $237.000.

The proposed project is 1o build a replacement timekeeping
system that will keep the labor cost of timekeeping at current or
lower levels after the expansion. The timekeeping system will be
expected to pay for itself in 18 months. Deployment of the system
is expected within six months of the stan of the project.

Define Requirements Specification

Minimally, a requirements specification should specify the
required functions and attributes of what is produced by a project.
Reguired funcnions are things that the systermn must do, such as
record the time that an emplovee starts work. Required artrtbutes
are characteristics of the system that are not functions—for exam-
ple, requiring thar the use of the timekeeping terminals not
require more than an eighth-grade education. Some other things
that are normally found in a requirements document, but are not
in the following example, are:

Assumptions This is a list of things that are assumed 10 be
true, such as the minimum educational requirement for

The Software Life Cycle w 37

emplovees or the fact that the company will not become
unionized.

Risks This is a list of things that can go wrong, leading to de-
lay or failure of the project. This list can include technical
uncertainties, such as the availability of devices that are suit-
able for use as timekeeping terminals, It also can include non-
technical concerns, such as anticipated changes 1o labar laws,

Dependencies This is a list of resources that this project can
depend on, such as the existence of a wide-area network.

it’s helpful to number the requirements in a requirements
specification. This allows decisions based on a requirement 1o be
easily noted in use cases, design documents, and even code. If
inconsistencies are found later on, it is easy to trace them back to
the relevant requirements. It is also common to number require-
ments hierarchically by functions. Here are some of the required
functions for the timekeeping system:

R1 The systern must collect the times that employees stan
work, go on break, return from break, and leave work,

R1.1 In order to work with the timekeeping lerminal,
employees are required 1o idemify themselves by
sliding their employee badges through a badge
reader on the timekeeping terminal.

R1.2 After an employee is identified by a timekeeping ter-
minal, the employee can press a button to indicate if
he or she is starting a work shift, going on break,
returning from break, or ending a work shift. The
timekeeping system keeps a permanent record for
cach such event in a form that it can later incorpo-
rate imo a report documenting the emplovee’s hours.

R2 Supervisors must be able to review the hours of subordi-
nates at a timekeeping terminal without any need to get a
hard copy.

R2.1 The timekeeping terminal presents options to
supervisors that allow supervisors 1o review and
modify an employvees recorded hours.

38 m CuarTER THREE

R2.1.1 All revisions to an employee’s timekeeping
record leave an audit trail that retains the
original records and identifies the person
who made each revision.

R2.2 To ensure the simplest possible user interface for
nonsupervisors, nonsupervisors do not see any
options related o supervisory functions when they
use a limekeeping terminal.

R2.3 Supervisors can modify the timekeeping records
only of their own subordinates.

R3 At the end of each pay period, the timekeeping system
must automatically transmit employee hours to the pay-
roll system.

As we develop some use cases, you can expect to discover
additional required functions.

Develop High-Level Essential Use Cases

When developing use cases, it is usually best 1o focus first on the
most common cases and then develop use cases for the less com-
mon cases. Use cases for common situations are called primary
use cases, Use cases for less common situations are called see-
ondary use cases. Here is a use case for the most common use of

the timekeeping system;
Use case: Employee Uses Timekeeping Terminal,
version 1.
Actor: Emplovee.
Purpose: Inform timekeeping svstem of an
emplovee’s comings and goings.
Synopsis: An employee ix about to begin a work

shift, go on break, return from break,
or end a work shift. The employee iden-
tifies him- or herself to the timekeeping
system and lets it know which of those
tour things he or she is about 10 do.

Type:

Cross References:

The Software Life Cycle m 39

Primary and essential.

Requirements R1, R1.1, R1.2, R1.3,
and R2.2.

Course of Events

Employee Sysiem

|. Emplovee slides his or her badge 2. The timekeeping 1erminal reads the
through a timekeeping terminal’s emplovee 1D from the badge and
badge reader veribes that it is a legitimate em-

1. The employee indicates (o the

plovee [D. The timekecping terminal

then prompis the emplovies 10 tell it
if he or she is stwrting a work shift,
going on break. returning from
break, or ending a work shift.

4. The timekeeping terminal makes a

timekeeping terminal whether he permanent record of the emplovee's

or she is starting a work shift,

indication. It then acknowledges the

going on break, retuming from emplovee by displayving the curmrent

break. or ending a work shift.

time. indicating that it is ready for
use by the next employee

Now let's consider a larger use case that contains less detail.

Use case:

Actlor:

Purpose:

Synopsis.

Type:

Cross References:

Employee Uses Multiple Timekeeping
Terminals to Track Hours, version 1.
Employee.

Inform timekeeping system of an
employees comings and goings during
an entire shift.

An emplovee who is not restricted 1o
the use of a single timekeeping termi-
nal notifies the timekeeping system
when he or she starts a shift, goes on

break, returns from break, or ends a
shift.

Primary and essential.
Requirements R] and R1.2.

40 = CHapTER THREE

Course of Evenis

Employee Sysfem

1. An emplovee uses a timekeeping 2. The system makes & record of the
terminal 1o nolify the imekeeping thme that the emplovee begins the
syxtem that he or she ix starting a shifr
shift,

Y An emploves usex a timekeeping 4. The svstem makes a record of the
terminal 1o notify the imekeeping time that the emplovee goes on
syxtem that he or she is going on break.
break.

5 An emphiver itvés a timekerping i The system makes a record of the
terminal 1o notify the timekeeping time that the emplovee returms from
system that he or she has returned break.
from break.

7 An emploves uses o timekeeping 8 The system makes a record of the
terminal 1o notify the imekeeping time that the emplovee ends the
syslem that he or she is endding a shift
shify

When we analyze the less detailed use case, we find a poten-
tial problem. There is no requirement that all the timekeeping
terminals keep the correct time. Employees are likely to notice if
the time on different timekeeping terminals is not the same. They
will want to start their shift on the terminal that shows the earlier
time and end their shift on the terminal that shows the later time.
To prevent employees from cheating the company in this way, we
need to add another requirement:

R1.3 The times displaved and recorded by different timekeep-
ing terminals must be within five seconds of cach other

As we develop additional essential use cases, additional
refinements to the requirements will be found. However, this is
all that we present in the present case study,

Object-Oriented Analysis

Object-oriented analvsis is concerned with building a model of
the problem that must be solved. It answers the question of what
the software will do without concern for how it will do it

The Software Life Cycle m 41

The primary product of object-oriented analvsis is a concep-
tual madel of the problem that shows the proposed system and
the real-world entities with which the system interacts. The con-
ceptual model also includes the relationships and interactions
between the problem domain entities and between the entities
and the system.

Conceptual models are usually constructed in two phases:

1. Identify the entities that are involved in the problem. [t is
very important (o identify all of the entities involved.
When in doubt, it is best to include an entity in the model.
If the entity is unnecessary for subsequent design activi-
ties. that fact will become apparent as the design devel-
ops. On the other hand, if an entity is missing from the
analysis, the missing entity may not be detected later in
the project.

2. ldentify the relationships between the entities.

UML uses the same svmbols to represent the entities and rela-
tionships of a conceptual model that it uses to represent classes
and associations in a class model. Figure 3.2 is a diagram that
shows just the entities that are apparent from the requirements
and the use cases. The entities in this figure are in no particular
order. The diagram adds some of the more obvious relationships.

When vou examine Figure 3.3, notice two entities that are
not involved in any of the indicated relationships: Timekeeping-
System and EmployeeID. This diagram is supposed 1o be a con-
ceptual model of the problem to be solved. Because the Time-
keepingSystem entity does not seem to have a relationship 1o
anything else in the problem, we conclude that it is really part of
the solution rather than the problem. For that reason, we drop it
from the model.

The grployesld entity is very closely related 10 the smployee
entity. In fact, it is so closely related 1o the Bmployee entity that it
seems more appropriate to represent it as an attribute. Figure 3.4
shows the conceptual model with atributes added.

The diagram in Figure 3.4 is as far as we take the analysis of
this problem,

42 m CuarTER THREE

Py Fannad
T N s
Fagwrramee Trvmmmmig v vawi il
Erpaspnafange Tuvaapacerlog T vy st
L En—— Tomamsage P PawsclSyum

AGURE12 Conceptual model with entities only.

User Interface Design

User interface design is concermed with the details of how a user
interacts with a system. The central concerns are how the system
appears 1o users and what procedures users need 1o follow when
interacting with the system.

The requirements for the employee timekeeping system sim-
plify the design process by requiring each employee interaction to
begin with the employee sliding his or her ID card through a card
reader. The use cases provide guidance for organizing the rest of
the user interface.

One use case states that after the emplovee slides his or her
badge through the card reader, the timekeeping terminal asks the
employee to indicate which one of four possible actions the
employee is taking. The Menu Interaction pattern indicates that a
menu style of interaction is appropriate when you want a user o
choose from a limited set of alternatives. The pattern also states
that a set of pushbuttons is an appropriate way to present the
choices when the choice is the main focus of the interaction and
the number of choices is small. This results in the design shown

in Figure 3.5.

Loy b in I Empannil) Trasan{ang Sy snm
V| peessagara
¥ @
o it ok
whiniy
[1 1.2 | ot an a
rwaky Lrmales
| Farydiges . . o ® TrrwmmapsrgE v -
1 1 (W part | 1.3
. whe | 1
] I
|l Comars gV shn
L]
T rraupagee
._.-
Mg ¥ L
n.l
Tierssnmacr st el
L, &
b}
B - R e |
1 PapicdSpulmn
! - e ry
Sl

AGURE 13 Concepiual model with associations,

Object-Oriented Design

Object-oriented design is concerned with designing the internal
logic of a program—in this case, we are concerned with the inter-
nal logic of the timekeeping system. The object-oniented design is
not concerned with how the user interface presents that logic,
nor is it concerned with how data is stored in a database. The
ultimate goal of object-oriented design 1s to provide a detailed
design of the classes that will provide that internal logic.

There are various strategies for using the results of analysis
o produce a design, The strategy that we use here is o create a
¢lass diagram that models the structural relationships in the con-
ceptual model. We then develop collaboration diagrams to model
the behavioral relationships in the conceptual model, After that,
we refine the class diagrams with what we learned from the col-
laboration diagrams, Finally, we refine the collaboration and
class diagrams with requirements that are not covered by the

44 m CHaPTER THREE

E thypdcrpensElackye Emploasal TirrusicessprersySitenm
1 | possession
@
¥ Benak
I&-=paar =0l W
& part [
CheTHE 1 1.3 | part
TirnakipagingEwant
Erguioin Immr criativn PP
mrnricsmnl T ; Crantes ¥ o | wheennme
' 5" part | 1.2
e 1
| et . Srn
.
a ™ Tireapse Cortans
Liodtes ¥ 1 4 PayParod
TimsbmngirgRisgort Tirsphsaganglog I 1| smrtime
- ared thrre
umnw | 0
o
Wt Lieag. =
1 1| s Niiditaa ¥ e | 1
Bupprvinor Pyl Syt

AGURE 34 Conceptual model with attribules.

conceptual model, Throughout that process, we use patterns to
guide us.

Let’s construct our first class diagram by assuming that there
1s a class to represent each entity in the conceptual madel, as
shown in Figure 3.6, Rather than assume the representation of
the entity attributes in the conceptual model, the class diagram in
this figure indicates accessor methods for the attributes.

Next we need Lo consider the "1s-a” relationships in the
conceptual model. Though an obvious way to represent “ls-a”
relationships in a class diagram is through inheritance, the
Delegation pattern (described in Volume 1) 1ells us that that is
not always the best way to represent "1s-a” relationships. In par-

The Software Life Cycle m 45

AGURE 15 Timekeeping screen

ticular, it tells us 1o use delegation instead of inheritance 1o depict
“Is-a” relationships that represent roles that instances of a class
play at different times. Since nonsupervisory employees may be
promoted to supervisors, be transferred from another job 1o the
timekeeper job, or become timekeeping supervisors, we use dele-
gation to represent those roles (see Figure 1.7),

The "Is-part-of” relationships in the conceptual diagram are
another structural relationship that we can consider designing
into the class diagram at this point. Notice that there is some

E s Emgioyeeil)
Empioyes TurssnogreE el
Hrgay
ot E iy} vy Tl | Dt
Buprymer Tirmpepeprrlog]
ParyFannd Py Sylun
autEzan | Cwon
el Dt
Tavaapirig At

FAGURE 16 Class diagram, version 1.

46 m CuaPTER THREE

Ermgaoymaiiacn Tirsasngungfiaport PoyPubed
St | Db
gty kit

Erogiuayws Tirmtsmging vl

P mpyeaal} Shing gl Tirmai |rCimie Braan

plager | 11

- &= Thrspsnagping o Bl

i |nse i | 1
Bupwreas Tirt b Fpradfraes Erpacipmaily

AGURE 37 Class diagram, version 2.

redundancy between two sets of "Is-part-of” relationships: The
“Is-part-of” relationship between shift and TimekeepingEvent
appears to have some redundancy with the set of "Is-part-of” rela-
tionships between shife and Break and between Break and
TimekeepingEvent . For this reason, we postpone including those
relationships in the design until we have clarified the relation-
ships through the construction of collaboration diagrams.

Next we need to assign responsibilities 1o classes. We guide
the construction of collaboration diagrams with use cases, so we
assemble the following real use case to describe a typical employ-
ee'’s use of the timekeeping system for one day,

Use case: Emplovee Uses Timekeeping Terminal
to Track Hours, version 1.

Actor: Emplovee.

Purpase: Inform timekeeping system of an
employee's comings and goings.

Synopsis: An emplovee is about to start a work

shift, go on break, return from break,
or end a work shift, The employee
identifies him- or herself 1o the time-
keeping svstemn and lets it know which
of those four things he or she is about
to do.

The Sofrware Life Cycle w 4]

Tvpe: Primary and real.
Cross Relerences: Requirements R1, R1.1, R1.2, R1.3,
and R2.2.
Essential use case; Emplovee Uses Timekeeping Terminal
Couryse of Events
Employee System
1. Employee slides hix or her badge 2. The timekeeping display replaces its
through a timekeeping terminal’s dizplay of the current fime—indicat-
badge reader. ing that It Is avallable for use—with

i The emplovee indicates 1o the
timekeeping terminal whether he
or she s staring a work shift.
going on break, returming from
break, or ending a work shift.

a display that tells the emplovee that
it is looking up the employee [D
detected by the badge reader

After the timekeeping terminal
has found the employee’s informa-
tion, it verifies that the employee s
allovwed o use this particular time.
keeping terminal. The timekeeping
terminal then prompis the emplovee
1er Lell it if he or she ix starting a
waork shift, going on break, retuming
from break, or ending a work shift

. The timekeeping terminal makes a

permanent record of the employee's
choice, It acknowledges the comple-
tion of the timekeeping transaction

by displaving the current time, indi-
cating that il is ready for use by the

next employee.

This use case involves classes that are not in the previous
class diagram, The use case talks about a timekeeping terminal
that interacts with a user, so we need 10 include a user interface
class in our design. We may refine that into additional classes if

deemed necessary later on.

Next we assign classes responsibility tor the actions
described in the use case. The collaboration diagram in Figure
3.8 shows those assignments. Here is a description of the interac-
tions found in this collaboration diagram:

1. The use case begins when user slides his or her badge
through the badge reader in the timekeeping terminal and

48 w CHAPTER THREE

. EmpicryswiD: atart SIS REvent t. Terupowapirg Vor iraraiiD)
il
& deplayt s Wt losags
&, (Srnivhry T S Sesgs ton
Anripiecy
s e
" i siarsad |
—_—
TienstapengConimber i et
3 omg sooegoF ey et
B 2 slweivierli i)
Ciniatase 1 l"""""""'"""‘“’ o TenasmapengE vone
werg £ mpicrns

AGURE 18 Start shift collaboration.

the terminal responds. From the timekeeping terminal’s
point of view, the use case begins when the terminal reads
the emplovee’s badge. The class diagram in Figure 3.7 has
an EmployeeRadge class to which we can reasonably
assign the responsibility of reading physical badges.
Figure 3.7 does not contain any class that would be an
obvious class to call the EmployeeBadge class’s read
method.

The Controller GRASP pattern tells us that external and
system events should be received by a controller object
rather than the internal objects that will actually handle
the events. Based on that guidance, we add a Time-
xeepingController class to our design and make it
responsible for calling the EmployeeBadge class'’s read
method.

. The user interface is supposed to display a message that

asks the user to wait while the timekeeping terminal vali-
dates the employee ID read from Lhe badge. It seems obvi-
ous that the User Interface object will be responsible for

3.

The Software Life Cvele m 49

displaying messages. We need to assign an object the
responsibility of telling the Userintertace object to dis-
play the message. The Expert GRASP pattern tells us to
assign responsibilities 1o classes that have the informa-
tion required to carry out the responsibility. Since the
TimekeepingController object already knows a badge
has been read, we make it responsible for telling the user
interface to display the message.

Next, the timekeeping terminal is supposed to get the
employee information that corresponds to the employee
ID that it read. Since the database is where the employee
information resides, we have the TimekeepingController
pbject retrieve information about the emplovee associated
with the employee ID by passing the employee ID to the
Database object’s LookupEmpl oyes method, The Lookup-
Employvees method returns an Emplovee object that encap-
sulates information about the employee.

. Because the Employee object contains the emplovee's

information, we give it the responsibility of determining if
the emplovee is supposed to be using this particular time-
keeping terminal. We have the TimekeeplngController

object call the Employvee object’s isAllowedToUse method.

. The TimekeepingController object calls the Userinter-

face nbjec:'s displayTransactionBalection method,
This causes the user interface 1o prompt the employee for
the type of event (starting a shift, starting a break, ending
a break. or ending a shift) to record.

. When the user specifies whether he or she is starting a

shift, the Userinterface object calls the Timekeeping-

Controller object’s stareshifr method We give the

TimekeepingController object this responsibility be-

cause it has the general responsibility of receiving and

dispatching external events.

6.1 The TimekeepingControl ler object creates a
TimekeepingBvent object Lo represent the star-of-
shift event, We give the TimekeepingController
abject this responsibility because the Creator GRASP
pattern tells us that if an object has the data required

50 ® CuarTER THREE

by another object’s constructor, this is a reason to
give the object responsibility for the other object’s
crealion.

6.2 The TimekeepingController object passes the event
object 1o the Database object’s storegvent method so
it can be stored in the database.

This is as far as we take this case study. Hopefully, it has pro-
vided you with some insight into how to use some of the different
types of patterns presented in this book.

GRASP Patterns

Low Coupling/High Cohesion (53)
Expert (59)

Creator (65)

Polymorphism (69)

Pure Fabrication (73)

Law of Demeter (77)

Controller (85)

General Responsibility Assignment Software Patterns (GRASPs)
present fundamental and universal object-oriented design princi-
ples in the form of patterns. GRASP patterns provide direction
for assigning responsibilities to classes and, 1o a limited extent,
determining the classes that will be in a design.

GRASP patterns were first documented by Craig Larman
[Larman98). His motivation for formulating this set of patterns

51

52 ® Cuarrer Four

was to help people learn object-oriented design. They can be
applied in many other situations, as well.

GRASP patterns are not design patterns. They have a funda-
mentally different flavor. Design patterns provide puidance in salv-
ing specific design problems. GRASP patterns provide instruction
for assigning responsibilities to classes in a way that results in
well-structured designs that are easy 1o understand and maintain.
GRASP patterns are generally used 1o lead the designer 1o a situa-
tion where a design pattern is applicable. The case study in
Chapter 3 provides some examples of the use of GRASP patterns.

This chapter discusses GRASP patterns as they are applied
to object-oriented design. However, most GRASP patterns apply
equally well 1o business process reengineering (BPR). GRASP
patterns can also be applied to many other tyvpes of design efforts
in which it is important that the design be easily understood and
able to be maodified with minimal difficulty,

The first pattern described in this chapter, Low Coupling/
High Coheston, is an important pattern because it shows when 1o
use or revisit other GRASP patterns. The remaining GRASP pat-
terns provide specific guidance on how to assign respansibilities
to classes. The two most important of these are the Expert and
Polymarphism GRASP patterns.

GRASP Patterns w 53

Low Coupling/High Cohesion [Larman98]

Low Coupling and High Cohesion were originally published as
separate patterns. Because the two are closely related, they are
presented here as one unified pattern.

SYNOPSIS

IT a class is so highly coupled or lacking in cohesion as 1o make a
design brittle or difficult to modify, then apply other appropriate
GRASP patterns to reassign the class’s responsibilities.

CONTEXT

Suppose you have the task of designing a system that bills cus-
tomers for services based on the amount of time that the cus-
tomer uses them, Figure 4.1 shows the conceptual model on
which you will base your design.

In this model, a customer signs up o use one or more ser-
vices. A UsageRecord records the amoum of time that the cus-

[T L i
[R——— [—— I
] 17
LR e
1 L]
1 | * Owtermrs-cosl-ol-servceuied
4 Caaiarrunt -
P 3 GrmiEt acl-of - Sdedice TSR p— 1
r_‘
Primii-rsins-dor =
i o
Frarmme p—

AGURE 4.1 Service billing conceptunl model.

54 m Cuarrer Four

tomer actually uses the services. A PricingSchedule is associated
with each service that a customer uses. The pricingSchedule
determines what the customer pays for the associated service. A
customer’s Usagefecord and PricingsSchedule are combined Lo
create an Invoice. Once a Customer has an Inveice, the
Customer sends il to a printer.

Creating classes that directly correspond 1o entities in a con-
ceptual model provides a reasonable first pass at a design, The
collaboration diagram in Figure 4.2 shows objects and operations
that correspond directly to the conceptual model.

Figure 4.3 shows the class diagram that is implied by the
collaboration diagram. When vou examine this diagram, notice
that there is a problem with the Customer class. The require-
ments for the billing program require it to handle different kinds
of customers. The billing program s also required to generate
different kinds of invoices, based on the types of services used by
the customer and additional considerations other than the type
of customer. As it stands, the design is not {lexible enough to
meet your needs.

-
1.2 wetn = gotSutacribecBervices] |

. ~\ —

1ok gl e s
—Lgmoemeinvoen) | Cupiomes

T 1 3wl]
1 & aawecs, Coat|
i
I'I.'.lum.-nﬂw
1 & prmifi)
ool
Unagafiacce

ol |

FAGURE 42 Service billing collaboration.

GRASP Patterns u 55

| Trrp—p———— Y Dturerera-chuarges tor aage-of
i q i , T
et] P ProngSctamisg
wlishge Serers| T i
i . mﬂ'—r
il T R L e e
1 i1 i
Lo T Tt
Qi NN |
P Sutaoradiervons | Sore |
=" i [
s iy - A
T I
: LN
Pyt
~FEH T I -
[T | ierond, {imwmal|
e
NS oost Mambery

AGURE 4.3 Service hilling classes.

Looking at it from the viewpoint of coupling and cohesion,
you notice that the customer class is responsible for determining
what services a customer is entitled to use and creating an
invoice for the use of those services. Since these are unrelated
activities, the customer class is not very cohesive. You also notice
that the custemer class is more highly coupled to other classes
than are the other classes in your design.

The Low Coupling/High Cohesion pattern sayvs that when
a design is brittle due to classes having high coupling or low
cohesion, you can fix the problem by applying other GRASP
patterns.

You can reduce the number of classes to which the customer
class is coupled to by using the Pure Fabrication pattern to add
the tnvoiceManager class. This class takes responsibility for gen-
erating invoices, as shown in Figure 4.4. Assigning this responsi-
bility to TnveiceManager also makes the customer class more
cohesive by limiting its responsibility to determining what ser-
vices a customer is entitled 1o use.

56 ® Cuarrer Four

Sos Sarsiw J Fronglaredss
AmJ
1 iy wt et it
3. oot ~prml e} : 1d oot -
Srvahiarage: 1 A1 umagn = et iaaguwec)
Pl L] J & piirk)
4 E¥Nweca, coal)
Usaguriacind
Wy IPvnc e

AGURE 44 Pure Fabrication applied to service billing.

FORCES

= Classes that are highly coupled 1o other classes are difficult
to maintain because they are harder 1o understand in isola-
tion. Classes that lack cohesion are difficult 1o maintain
because they tend to introduce internal dependencies
between unrelated functions that are difficult to understand.

» Highly coupled classes are difficult to reuse because they
must be used with the classes on which they depend.

» Highly coupled classes require additional maintenance
effort because the more classes that a class depends on, the
more likely it is that a change 10 another class will also
require a change to the highly coupled class. Conversely,
changes 1o a class with low coupling affect lewer classes,
and there are fewer classes that can be affected if the classes
are changed.

» [1 requires more effort to understand a class that is not cohe-
sive than a highly cohesive class. To understand a class that
is not cohesive, it is necessary 1o understand different and
possibly unrelated ideas. To understand a cohesive class, it
is necessary to understand similar and related ideas.

GRASP Patterns m 57

The other patterns in this chapter show how to assign
responsibilities to classes in ways that usually result in designs
with low coupling and high cohesion.

SOLUTION

If vou find that you are working with a design that is too inflexible
or difficult to maintain, look for classes that are highly coupled or
that lack cohesion as a possible cause of the problem. A common
design problem is thal too many responsibilities are assigned to a
class, making the class difficult 10 implement and maintain. These
classes are casily recognized because they are highly coupled 10
other classes or have a set of methods that lack cohesion. Classes
that are highly coupled usually lack cohesion and vice versa.

If you find such classes, reorganize them so that the classes
in vour design have low coupling and high cohesion. You can
usually achieve a suitable reorganization by applying other pat-
terns presented in this chapter.

CONSEQUENCES

= Application of this pattern results in classes that have high
cohesion and low coupling and that are easier to maintain
and reuse.

» Coupling and cohesion are both qualitative measurements.
There is no set amount of coupling that is considered 1o high.
Determining what is “1oo high” is an exercise in judgment. If
one class in a design is significantly more coupled 1o other
classes than other classes in the design, then it is probably too
highly coupled. If you intend a class to have a high level of
reuse, it should have a particularly low level of coupling.

s Excessive coupling and lack of cohesion are common but not
the only causes of intlexible and hard-to-maintain designs.
Sometimes, the time spent looking for highly coupled classes
that lack cohesion is wasted, because the problems have
other causes.

58 m CuapTER Four

RELATED PATTERNS

Interface One form of coupling between classes is the coupling
between a subclass and its superclass, It is often possible 1o
avoid subclassing by using the Interface pattern described in
Volume 1.

Mediator It is not necessary or even always desirable for all of
the classes in a design 1o have low coupling and high cohesion.
Sometimes the overall complexity of a class can be reduced by
concentrating complexity in one class. The Mediator pattern
described in Volume 1 provides an example of this.

Composed Method [t is possible for methods to lack cohesion
and be difficult to work with. Some common causes are exces-
sive length or 100 many execution paths within a method, The
Composed Method pattern provides guidance for breaking up
such methods into smaller, simpler, and more cohesive methods.

GRASP Patterns wm 59

Expert is the most frequently used pattern for assigning responsi-
bilities.

SYNOPSIS

Assign a responsibility 1o the class that has the information
required 1o carry out the responsibility.

CONTEXT

Suppose vou are designing software for an employee timekeeping
system. Analysis of the problem has produced a conceptual
model that includes the three entities shown in Figure 4.5. The
entities are responsible for determining the number of hours that
an employee has worked in a pay period. During a pay period, an
employee may work some shifts. The timekeeping events asso-
ciated with a shift determine the number of hours that the em-
ployee worked during that shift. Your initial design includes a
class to represent each of these entities, as shown in the class dia-
gram in Figure 4.6,

The payPericd class has a getMinuresWorked method that
corresponds to the minuteswWorked attribute of the rayPericd
entity in the conceptual model. The getMinutesWorked method is
responsible for finding out how many minutes an employee
worked during each shift and adding up the total number of min-
utes for all the shifts in the pay period.

PargPaiced - e
-1 0. St 1 =

FAGURE 45 Timekeeping conceptual mode).

60 m CuarTER FOUR

-

gethiruibiyorna | i

I
T

e T |cDiate

AGURE 46 Basic pay period classes.

There is more than one way to assign the responsibilities for
computing the result of the getMinutesworked method. The
interaction diagram in Figure 4.7 shows a rather literal approach.
This diagram shows the PayPerlod class’s getMinutesWorked
method obtaining TimekeepingEvent objects from shi e objects
and interpreting them so that it can determine how many min-
utes the emplovee worked in the pay period. This approach
makes both the PayPeriod class and the snift class dependem
on the TimekeeplngBEvent class.

:plln._—:u-::} PayPerid 'L;T.;—I'I
IHMI
| — J IEM‘!‘. J

AGUREA? Literal assignment ol responsibility

GRASP Patterns m B

The conceptual model does not contain any direct connec-
lions between pay periods and timekeeping events. This suggests
that it is possible 1o assign the responsibilities for computing the
result of the get¥inutesworked method without the paypericd
class having a dependency on the TimekeepingEvent class.

Because timekeeping evenis define a shift, it seems clear that
the shife class will have dependencies on the TimekespingEvant
class no matter where the responsibilities for computing the
result of the getMinutesWorked method are assigned. You realize
that you can avoid making additional classes dependent on the
TimekeeplngEvent class by including the portion of the computa-
tion of minutes worked that involved timekeeping events in the
shifr class. Figure 4.8 shows a collaboration diagram with this
approach.

Using this approach, you assign responsibility 1o classes
based on the information that they already have. shife objects
compute the number of minutes worked in the shift based on
the TimekesapingEvant objects that they aggregate. PayPeriod
objects simply request how many minutes were worked from
each of the shitt objects that they aggregate and add up the
shift totals.

i

]th-rr-u

Pre—— J

FIGURE 48 Responsibilities based on
prior dependencies

62 m CuapTER Four

FORCES

® You want to assign a responsibility to a class,

» Unless there are indications to the contrary, you want to
assign the responsibility to a class that is already present in
vour design, since adding classes without a reason adds com-
plexity without any offsetting benefit.

w A class already has access 10 the information required to
carry out a computation.

® You want to avoid or minimize additional dependencies
berween objects as you assign responsibilities 1o them.

SOLUTION

Assign a responsibility 1o the class or classes that have the infor-
mation required to carry out the responsibility.

Often the expert classes correspond to the real-world enti-
ties that carry out those responsibilities, but not alwavs. In the
example included under the "Context” heading, we assigned the
shifr class the responsibility of performing a computation. In
the real world, shifts contain time but are not instruments of
computation.

CONSEQUENCES

s Assigning responsibilities to classes that already have the
information required to fulfill them maintains their encapsu-
lation of that information.

» Avoiding new dependencies between classes promotes low
coupling.

= Adding a method to a class because it already has data o
support that method promotes highly cohesive classes.

& Assigning an excessive number of responsibilities 1o a class
using the Expert pattern can cause the class to become
excessively complex. It can even become highly coupled and
uncohesive.

GRASP Patterns wm B3

RELATED PATTERNS

Low Coupling/High Cohesion The Expert pattern promotes
low coupling by putting methods in the classes that have the
information required by the methods, Classes whose methods
require only the class’s information have less need to rely on
other classes. A set of methods that all operate on the same
information tends to be cohesive.

GRASP Patierns = §5

Creator [Larman98]

SYNOPSIS

Determine which class should create instances of a class based on
the relationship between the potential creator classes and the
class to be instantiated.

CONTEXT

Suppose you are writing an employee timekeeping system. The
purpose of the imekeeping system s to determine how many
hours an emplovee works during a pay period. During a pay
period an employee works for periods of time called shifts. The
timekeeping system learns about the shifts worked by an
emplovee as it receives timekeeping events. Figure 4.9 is a class
diagram that shows the classes you will use to represent these

entities.
PePuisd
L
N
e
(T
Wit
Tttt sy vl
e EinrifassE vani Eriynantveni EraSroREvpnt

AGURE 49 Timckeeping event classes.

Bb ®m CuAaPTER Four

This diagram shows that instances of the paypariod class com-
pose instances of the shife class, Instances of the shife class
compose instances of the abstract class TimexeepingEvent . The
TimekeepingBvent class has a few concrete subclasses, Instances
of the Timekeeping®vent subclasses represent the time thal an
employee started a shift, started a break, ended a break, or ended
a shift.

You will need to decide which classes are responsible for cre-
ating instances of the shifr and TimekeepingBvent classes. The
Creator pattern states that a class that composes or aggregates
instances of another class is a good class to assign responsibility
for creating instances of the composed or aggregated classes.
Based on this, vou decide to make the Payper {od class responsi-
ble for creating instances of the shifc ¢class, You also decide to
make the shifr class responsible for creating instances of the
TimekeepingEvent class, Based on those decisions, you design
the collaborations shown in Figure 4.10,

FORCES

» When selecting a class that is responsible for creating
instances of another class, it simplifies the design to choose

=i

.MM—M

) —

FAGURE 410 Timckeeping event creation.

GRASP Patterns w 67

a class whose instance requires a reference to the created
object, If the class creates the object, it does not need to
obtain a reference 10 it

» Suppose that one object uses a reference to another object.
There is a greater likelihood that a class will be simplified
{have lower coupling and higher cohesion) by creating the
object it references when more of the object’s lifetime is used
for the reference. The nature of the relationship between the
classes is a good basis for predicting how much of their life-
time a classs instances will need to use for a reference to an

ohject,

SOLUTION

Class B should be responsible for creating instances of Class A if
any of the tollowing are true:

w Class B and Class A are the same class and their instances
compose, aggregate, contain, or directly use other instances
of the same class.

= Instances of Class B compose or aggreégate instances of
Class A,

s Instances of Class B contain instances of Class A,

» Instances of Class B record instances of Class A.

s Instances of Class B directly use instances of Class A,

s Instances of Class B have the data thal is passed to construc-
tors of Class A, Thus, the Expert pattern suggests making
Class B responsible for creating instances of Class A,

When more than one of these relationships apply, choosing the one
closer to the 1op of the list will usually produce the better result.

CONSEQUENCES

The creator pattern promotes low coupling by making instances
of a class responsible for creating objects they need 10 reference.

BB ® Cuarrer Four

By creating the object themselves, they avaoid being dependent on
another class 1o create Lthe object for them.

RELATED PATTERNS

Composite The Composite pattern described in Volume |
describes a strong form of aggregation relationship.

GRASP Patterns ® B9

Polymorphism [Larman98]

SYNOPSIS

When alternate behaviors are selected based on the tvpe of an
object, use a polvmorphic method call 1o select the behavior,
rather than using i f statements 1o test the type.

CONTEXT

Suppose vou are designing software for an employee timekeeping
system that keeps track of the number of hours an employee
works in a pay period, 1t does this by organizing the pay period
into intervals of time that the employee works, called shifts.

The classes that you design include classes to represent shifts
and pay periods. The pay period is responsible for breaking down
the time worked into regular minues and overtime minutes, The
reason for this is that overtime minutes are paid at a higher rate
than regular minutes, The class diagram in Figure 4,11 shows
these classes,

The logic for breaking down an employee’s time worked into
regular minutes and overtime minutes will vary with the laws and

FAGURE 411 Pay period rime reporting.

70 m CuapteER FOUR

regulations of the locale where the emplovee works. You could
use a chain of if statements to select the appropriate logic for
breaking down time worked into regular and overtime minutes.
The problem with a chain of i f statements is that the longer the
chain, the more opportunities there are (o introduce bugs. Also,
they make exhaustive unit testing more difficult (see the Unit
Testing pattern) by adding more execution paths 1o test.

You decide, instead, 1o use a polymorphic method call
because it will be easier 1o design and maintain, The class dia-
gram in Figure 4.12 shows the additional classes for breaking
down the time worked.

This clazs diagram shows that there is an instance of the
TimeTotaler class associated with each rPayPeriod object. Since
TimeTotalaer is an abstract class, the TimeTotaler object is actu-
ally an instance of a concrete subclass of TimeToraler. When a
payPer i od object calls one of the TimeTotaler object’s methods,
the actual method that is called depends on the actual concrete
subclass of TimeTotaler of which the object is an instance. The

patFieganiru s Womed| | nf Linee *

' 4
el Tirvp Rt

b A WOl | gt Rlagsdnrilionto. PapPeind] el
e e Rkl e Py Pprynd) 8

al

AT TS MY Torman Tt

petfaguridruin Payieaod) - m i Pttt Py Paiixd) © wd
fgulCh e Tieruiloliors fu i PaypPeend) | il e rverimnbleuinsl PayPesod] i

AGURE 4.12 Regularfovertime time breakdown.

GRASP Pattersns w 71

type of method call that makes the actual method called depen-
dent on the actual class of an object is called a polhymorphic
method call.

FORCES

® It is always possible to select a behavior by using an explicit
chain of 1 £ statements.

s When writing a chain of 1 ¢ statements, programmers have
the opportunity to introduce bugs into a program. Later on,
during maintenance, programmers have more opportunities
to introduce bugs. A particularly common maintenance bug
of this sort is adding a new behavior to some i statement
chains, but neglecting to add it 10 others.

= The selection of a behavior by a polymorphic method call
does not require a programmer to code any explicit logic,
This allows fewer opportunities 1o introduce bugs.

= A chain of i¢ statements makes it harder 10 exhaustively unit
test a class by increasing the number of execution paths 1o
be tested. The number of execution paths is multiplied by
the length of the 1 ¢ statement chain.

= A polymorphic method call can be faster than a chain of 1 ¢
statements. Simply having a reference to an appropriate
object provides access to the appropriate method imple-
mentation, withoul requiring any additional computation.
The entire cost for a polvmorphic method call is just the
method call.

= You want to be able 1o include the mechanism for selecting a
hehavior in an nhject-oriented design. Chains of {1 f statemenis
have no natural representation in an object-oriented design.

® You can select an appropriate behavior from a set of alterna-
tives by the class of an object.

= |f a problem is stated in terms of selecting behavior based on
a closed set of data values, you can enjoy the benelits of
polymorphic method calls by organizing the solution to use
a differem class for each data value.

72 ® CuaprTeER FOURr

SOLUTION

If a problem is formulated in a way that implies the selection of
behavior based on a data value from a closed set of data values,
organize the solution Lo represent each data value with a different
class. This allows the solution to select the behavior based on the
class of an object.

If vou can use the class of an object to select a behavior, then
embed the desired behavior in the class and use polymorphic
method calls to invoke the behavior

CONSEQUENCES

» [t is easier and more reliable 1o implement the selection of
behavior using polymorphism than using explicit selection
logic.

= Using polvmorphism, it is easier 1o add additional behaviors
later on because you don't have to hunt down the appropri-
ate chains of { £ statements to which to add the behavior

= Using the polymorphism pattern adds more classes toa
design. This can make the design more difficult 10 under-
stand in its entirety.

» Using a chain of 1 statements allows a programmer who is
reading the code 1o see the possible choices. The use of poly-
morphic method calls makes that information more difficult
to obtain.

RELATED PATTERNS

Dynamic Linkage You can implement plug-ins or pluggable
software components using a combination of polymorphism

and the Dynamic Linkage pattern described in Volume 1.

Minimize Execution Paths The Polymorphism pattern is a tech-
nique for implementing the Minimize Execution Paths pattern.

GRASP Patterns m 73

Pure Fabrication [Larman98]

SYNOPSIS

You must assign a responsibility to a class, but assigning it to a
class that represents a conceptual model entity would ruin its low
coupling or high cohesion. You resolve this problem by fabricating
a class that does not represent an entity in your conceptual model.

CONTEXT

Suppose vou have the task of designing an integrated system for
managing an independent field service organization, This organi-
zation sends technicians who install and repair equipment on ser-
vice calls 1o organizations that use the equipment. Some service
calls are paid for by the organization that uses the equipment.
The equipment vendors pay for some service calls as well. Others
are paid for jaintly by the equipment vendors and the user orga-
nization. Figure 4.13 shows pant of the conceprual model tor this
service organizalion.

In this model, a service manager is given field service projects
for a user organization, The project consists of tasks to be per-
formed. The service manager schedules service technicians to per-
torm the tasks, and periodically reviews the status of each project.
The service manager sends invoices for the completed tasks 1o the
paying organizations that are responsible for payment.

Creating classes that directly correspond to entities in a con-
ceptual model provides vou with a good first pass at a design. The
class diagram in Figure 4.14 shows classes that correspond to the
entities in the conceptual model with some of the responsibilities
described previously. Looking at this class diagram, you notice
that the serviceManager class is rather highly coupled 10 the
other classes in the diagram, Its methods do not serve a single
cohesive purpose.

T4 m Cuarter Four

Ui g hion
1
ekl T e
1 nl-
Fiupu b it }:‘ L Supernr Thas
i e P
1 1-l-
Sctutdin Purtormg
L] iy
Enrvcmbdaracuic i Scrwaaen ¥ i,." | SarvcsTechessan
1
fewwracas ¥
1

AGURE 413 Field service conceptual model.

The responsibility for scheduling tasks is central 1o the func-
tion of the service manager. There is no class to reasonably give
the responsibility for generating invoices, so vou fabricate an
additional class for this responsibility. The class diagram in
Figure 4.15 shows this responsibility assigned ta a fabricated
class.

In this class diagram, you see the fabricated class Invoice-
Generator added 1o the design and given the responsibility of
invoicing the organizations that are responsible for payment for
completed tasks. The result is that both the serviceManager class
and the InveiceGenerator class are highly cohesive and have a
lower level of coupling to other classes.

FORCES

» A responsibility must be added 10 an object-oriented
design.

GRASP Patterns m 75

L3
TR et R !-l
i
it Flagaer - pupemery =
o.r . o
r:‘ I'il B Tt |‘L
[P R
PP | Pl alion
|..""' Sctuim P ﬂ'il ;
1 L] -l
Schadues _ Compeevcomi? | 1
" 1 | Payiis *
. Paforrma =
LN
[UESP L e S — " e PyrgOrgaraston
el e |]

FAGURE 4.14 Field service classes

= It is not possible 1o add the responsibility o any of the
classes that represent conceptual model entities without
damaging their low coupling or high cohesion.

SOLUTION

When making an initial assignment of responsibilities 10 classes,
the simplest strategy is 1o assign the responsibilities to classes
that correspond to entities created by the conceptual model dur-
ing analysis. Sometimes, there is no such class to which you can
add a responsibility and still maintain the class's low coupling
and high cohesion. When this happens, create a class that is a
pure fabrication, unrelated to any entity in the conceptual model.

CONSEQUENCES

® Using the Pure Fabrication pattern preserves the low coupling
and high cohesion of the classes in an object-oriented design.

16 m Cuarter Four

Schmden & ivoxeGaaraion | Pertorms. &
gt mena |
. [4 . :
1 I ' >|
Servoetlana g ..
b T - FrnkiSaryicairopect) i ¥ Tiis Mml‘—

FAGURE 4.15 Fabricated field service classes.

= The reusability of the classes in a design can be improved
because the Pure Fabrication pattern promotes the existence

of classes that have fine-grained responsibility,

RELATED PATTERNS

Low Coupling/High Cohesion The point of the Pure Fabri-
cation pattern is 1o maintain the low coupling and high cohe-

sion of the ¢lasses in an object-oriented design.

GRASP Patterns & 17

Law of Demeter [Larman98]

This pattern is also known as Don't Talk 1o Strangers.

SYNOPSIS

If two classes have no reason (o be directly aware of each other or
o be otherwise coupled, then the two classes should not directly
interact. Instead of having a class call the methods of another
class with which it has no reason to be coupled, you should have
it call that method indirectly through another class, Insisting on
such indirection keeps a design’s overall level of coupling down.

CONTEXT

Suppose you are designing an employee timekeeping system,
Your design, so far, includes the classes and associations shown

in the class diagram in Figure 4.16. The purpose of the classes in
this figure is 1o determine how many regular and overtime hours
an emplovee worked in a given pay period. Here are descriptions
of the classes shown in Figure 4.16:

Employee Instances ol the Employee class represent an

PayrollRules The rules for paving an employee vary with the
laws that apply to the location where the employee works. They
may also vary if the employee belongs to a union. Instances of
the Payrollrules class encapsulate the pay rules thar apply 10
an employee.

PayPeriod Instances of the payPeriod class represent a range
of days for which an emplovee is paid in the same paycheck.

Shift Instances of the shife class represent ranges of time that
the emplovee worked.

78 m CuarTER Four

i
exfiecns o 17| GeiTumesToantert | | Tiew Fotadar
:]
Py P
ottt WO | e Linms ¥
PR TabMr e ome | ol ¥
1
[14
Eiufl Tirent Tt
et Ao mah || 1l petegukieLintedy Py Penc | e
[BT AR ER PR
AT Todnber WY T ot
aeiFia g Mrwtosl Py Peeodl | ot FeFlgaactbodns) FapPaeed) oa
il s Py Panod] T et trmakindias) PeyPenoed] ol

AGURE 416 Time-totalling classes,

TimeTotaller The TimeToraller class is an abstract class that
the PayPeriod class uses to break the total hours worked dur-
ing a pay period into regular and overtime minutes.

CATimeTotaller and NYTimeTotaller These are concrete sub-
classes of TimeToraller that encapsulate the rules for breaking
total minutes worked into regular and overtime minutes worked.
Each of these classes encapsulates rules for a different locale,

To make these classes carry out their responsibility for com-
puting the number of regular and overtime minutes an emplovee
worked during a pay period. there are some interactions that
must oceur for which the design does not account:

GRASP Parerns u 79

» The pay period must become associated with an instance of
the subclass of TimeToral ier appropriate for the employee
when the paypericd object is created.

» The TimeTotaller object must be able 1o examine each shifi
in the pay period to learn the number of minutes worked in
cach shift.

The Law of Demeter pattern states that classes that have no
reason Lo be aware of each other should not have any direct inter-
actions. Based on this, the class diagram in Figure 4.17 shows
how these interactions should nor be designed.

The PayPeriod class has no reason to know anything about
the PayrellRules class, The TimeToraller class does have a
legitimate reason to be aware of the snift class. However, for a
TimeToraller object to directly access the collection of shifts that
it needs implies violation of the shi fr class’s encapsulation of
how it aggregates collections of shifts. These direct interactions
result in a higher level of coupling for the claxses that are
involved,

These interactions must be indirect in order to occur with-
out creating problems in the design. The collaboration diagram
in Figure 4,18 shows the interactions occurring in a way that
respects the rest of the design.

The interactions in this diagram are less direct, but they
respect the encapsulation of the classes involved and maintain a
low level of coupling. The class diagram in Figure 4,19 shows the
previous design with methods added to support the interactions

of the diagram in Figure 4,18

R TomaTonater Lampn e o J

FIGURE 417 Bad time-totalling collaboration.

80 m Cuarrer Foun

1
|\ begeiTomgTotgior]] |
pPayPecad Emplayse
i lg-'rn..muq]l
l:-mw FREE M?I
Payrliiin
=l
tTmalotaler | >
22"\ Panabbaet]] ae3cnngm T Tatei |
—
2.2 1 i) | .
—
232 getrnsesiWorke | —

AGURE 418 Good time-totalling collaboration,

FORCES

» Designing a class to directly access all the other classes
whose services it needs is the most efficient organization of
classes in terms of time spent accessing those services.

Designing a class to directly access all the other classes
whose services it requires can make the class highly coupled
o other classes. It also makes the classes more likely to
require a change if the structure of the relationships changes.
It also makes the design less robust.

» The amount of time lost in making indirect method calls is
usually very small. The additional programmer time that
is required to make highly coupled classes work correctly
and keep them working when they are maintained can be
very high.

SOLUTION

Avoid having classes make direct calls to other classes with which
they have an indirect relationship. Objects that follow this guide-

GRASP Parterns m §)

i
| " Delermene-nee-tor-paying o
polTome Totmiiesy | - TrnsTotalm [o * 17| peiToma Tt) - Tioa Tortaba
i |
PrgpPrprine]
gRia i AT e |
GoRTnraklrntesWionad] | P4 oes P
R remmn | 1
Ernrmant
i
§_" =
Tirrs Tialnile
furum
i iarhiusdwsy Piiy e - o
e PChrtrrahiing e PayPenn) -l
£)
AT i Uit P v Timtmalians
et Micndogi FayPenot] ot dgebirndes FppPercedy o
panhenrtrvapldrnsbenl FPayPenced) Gt b bt] PayPccad] el

AGURE 4.19 Enhanced time-totalling classes.

line should make method calls only to objects with which they

have one of the following relationships:

® The same object (thiz)

= An object that is passed as a parameter to a method
® An object to which one of its instance variables directly

refers

= An object in a collection to which one of its instance van-

ables directly refers

s An object created by the object

B2 ® CuarreEr Four

Objects that satisfy at least one of these constraints are consid-
ered to be familiars. Objects that don't satisfy one of these con-
straints are considered (o be strangers, hence the pattern's other
name—Don't Talk to Strangers.

CONSEQUENCES

= The Law of Demeter pattern keeps coupling between classes
low and makes a design more robust.

= The Law of Demeter pattern adds a small amount of over-
head in the form of indirect method calls.

IMPLEMENTATION

The guidelines of this pattern apply in varving degrees to differ-
ent kinds of classes.

s The guidelines in this pattern should almost always be fol-
lowed for method calls between problem domain classes that
correspond to entities in a conceptual model.

» When deciding how to handle calls from problem domain
classes to classes added 1o the design using the Pure
Fabrication pattern, there may be other considerations that
justify direct calls between the otherwise unrelated classes.
The Mediator paltern described in Volume | provides an
example of this.

n Calls to utility classes that are not specific to the problem
domain or the application are generally not subject to the
guidelines of this pattern. The same applies to calls made
between different architectural layers of a design.

RELATED PATTERNS

Low Coupling/High Cohesion The fundamental motivation for
the Law of Demeter pattern is to maintain low coupling.

GRASP Parterns m 83

Pure Fabrication There are sometimes good reasons why calls
made to classes added to a design using the Pure Fabrication
pattern should violate the guidelines of the Law of Demeter
pattern.

Mediator The Mediator pattern (described in Volume 1) provides
an example of a class created through pure fabrication that
receives direct method calls from classes unrelated to it with a
benefit that outweighs the disadvantages of the direct calls.

GRASP Parterns u 85

Controller [Larman98]

SYNOPSIS

If a program receives events from external sources other than its

graphical user interface, add an event class to decouple the event
source(s) from the objects that actually handle the events.

CONTEXT

Suppose you are designing a security system. The security system
is attached 10 numerous devices that sense the opening of doors
and windows, motion within a building. and other events.

You don’t want the external devices or the objects responsi-
ble for receiving the raw input from the devices to send any
events directly to the objects within the security svstem that
will handle the events. You want 1o avoid the direct coupling
between them that would be required for direct delivery of such
CVETITS.

To arrange for indirect coupling between external event
sources and internal event handler classes, vou include a con-
troller class in the design. An instance of the controller class
receives the events and dispaiches them to the appropriate object
to handle the event.

FORCES

» In order for an external event to be sent directly to the object
within a program that handles that event, at least one of the
objects must have a reference 1o the other. This can imply a
very inflexible design il the event handler is dependent on
the tvpe of the event source or the event source is dependent
on the type of the event handler.

86 m CuarTeER Four

® In the simplest case, the relationship between the external
event source and the internal event handler consists purely
of passing events. This situation is simple enough that inter-
faces can be used 1o provide the necessary type indepen-
dence between the event source and the event handler. This
is described in more detail in the discussion of the Interface
pattern in Volume 1.

= Interfaces are not sufficient to provide behavioral indepen-
dence between event sources and event handlers when the
relationship between them is more complicated. For example,
if some dispatching logic is required 1o decide which handler
will be used for an event, you don’t want 1o assign that
responsibility to the external event sources. You want to keep
them independent of any particular event-handling classes,

If a response is required when an external event source
enters an exceptional state, you don't want to assign that
responsibility to the internal event-handling classes. Al best,
it would make them less cohesive, It could also add some
level of dependency between them.

» You can avold dependencies between external event sources
and internal event handlers by interposing an object between
them to act as an intermediary for event delivery. The object
should be able 1o manage any other complicating [acets of
the relationship.

SOLUTION

Make an object responsible for receiving external events and for-
warding them to the appropriate internal event handling object.
Such an object that coordinates external events is called a con-
rrofler object. This arrangement is shown in Figure 4.20.

CONSEQUENCES

® Using a controller object keeps external event sources and

internal event handlers independent of each other's type and
behavior,

GRASP Patterns w B]

£ pel i T | E e tHam T D v

£ wrtioiotu | LS s

AGURE 420 Contruller class.

» As a design evolves, it is common for the design of controller
objects to become highly coupled and uncohesive. This hap-
pens as they are assigned responsibilities for forwarding dif-
ferent Kinds of events from different kinds of external evem
sources to different kinds of internal event handlers.

This Is not necessarily evidence of a design problem.
Sometimes a highly coupled and uncohesive controller ob-
ject results in less overall complexity than if the controller
object were split into multiple objects. If the controller object
encapsulates state information used to manage relationships
between multiple event sources and handlers, then you are
usually better off not splitting the controller up into multiple
objects that are less highly coupled.

RELATED PATTERNS

Pure Fabrication The Controller pattern is a specialized form
of the Pure Fabrication pattern.

Mediator The Mediator pattern is used 10 coordinate evenis
from a GUIL Like controller objects, a highly coupled and unco-
hesive mediator object may involve less overall complexity than
an arrangement that distributes the same responsibilities over
more objects.

GUI Design Patterns

Window per Task (95)
Interaction Style (99)
Explorable Interface (103)
Conversational Text (109)
Selection (113)

Form (121)

Direct Manipulation (127)
Limited Selection Size (133)
Ephemeral Feedback (137)
Disabled Irrelevant Things (141)
Supplementary Window (143)
Step-by-Step Instructions (149}

The patterns In this chapter provide direction for the design of
graphical user interfaces (GUIs). The GUI patierns discussed here

89

90 & Cuarrer Five

differ from the patterns found in the other chapters in this book
in that they are based, (o a larger extent, on common design prac-
tices rather than on pragmatic considerations,

The patterns in this chapter solve GUl-related design prob-
lems. When you design a GUI with these patterns you are likely 1o
use some of them logether. and it's not unusual to use some of the
patterns more than once, Some of the GUI requirements that
these patterns help to meet follow.

Use elements that are familiar to the user in the GUL
GUIs that use widgets and conventions that are already
familiar to new users are easier to grasp because the
users will possess knowledge and expectations that are
consistent with their use, For example, users will usu-
ally know what to do if they see a pop-up menu like the
one in Figure 5.1. A pie menu, like the one shown in
Figure 5.2, can reduce the needed mouse motion if it
pops up with its center right under the mouse pointer.
However, pie menus are very unusual, so users may not
know what to do the first time they see one.

Lisers are also less likely to make mistakes if their
existing habits and expectations work with a new GUL

Design GUI components that are consistent with usery’

expectations and knowledge base. Users are sur-
prised when the result of an interaction with a GUI is
not what they expect. A GUI that reduces unexpected
reactions from the user is easier to leamn to use. It also
causes less frustration and fewer errors. When different
parts of a GUI behave inconsistently, the level of per-
ceived surprise is higher and users take longer to learn

FAGURES) Pop-up menu. FGURESZ Pie menu

GUI Design Patterns m 9]

to use the new interface. Conversely, when a GUI
behaves in a way that seems consistent, it reinforces
users’ confidence in those portions of the user imerface
that seem familiar For example, suppose a user begins
to use a drawing program and discovers that double-
clicking on a shape brings up a dialog for editing the
shape’s properties. As the user continues to use that fea-
ture with different shapes and gets consistent results,
the user gains confidence in the feature. If the user then
clicks on a previously unused shape and the program
zooms in instead of popping up a dialog, the user will
be surprised and unsure of what to do. The user will
also be less confident about double-clicking on shapes
in general.

A well-designed GUI forgives user mistakes. When a GUI
does not offer the user a way to recover from a mistake,
the cost of that mistake can be very high. If the cost of
mistakes is high, users become anxious, causing them to
work more slowly or produce more errors. A user inter-
face that gives users the opportunity to recover from
mistakes builds user confidence, and this usually results
in improved productivity and fewer mistakes,

For example, consider a drawing program that
allows multiple shapes to be cut or pasted simultane-
ously. This is a powerful feature that can improve a
user’s productivity. However, it is very important that
the user be able 1o undo those operations. Having to
manually undo the effect of a multishape cut or paste
operation is time consuming. It would discourage users
from using these features. It might also discourage
users from experimenting with other teatures,

The GUI must provide warnings to the users for those
operations that cannot be undone. 1f a GUI allows
users Lo recaver [rom most mistakes, users will expect it
1o allow them to recover from all mistakes. If a GUI that
allows users to recover from most mistakes does not
provide a warning before performing an operation

92 ® Cuarrter Five

that cannot be undone, the users may be unpleasantly
surprised.

Consider a word processor that has commands to
automatically format an entire document. The word
processor has an undo command that is able 1o undo
most other commands. But because there is no upper
bound on the number of changes the automatic format-
ting command can make 10 a document, the word pro-
cessor's undo mechanism will not undo the results of
the automatic formatting command.

The word processor pops up a dialog to wam users
that the command cannot be undone before it executes
the command, This warmning allows the user to avoid a
very undesirable situation that could occur if the user
meant to issue a different command than the one that
reformaits an entire document. Without the waming,
clicking on the wrong menu item could result in refor-
matting an entire document, with the user having no idea
how the document changed so drastically and facing the
task of manually reformatting the entire document.

A GUI must walk users through unfamiliar tasks step by
step. The user should alwavs be able to determine the
next step in performing common tasks. In cases where
the instructions slow down an experienced user, there
should also be a mechanism that places the coaching
out of the user's way.

Provide short cuts to routine tasks for experienced
users. I speed of use is an issue, experienced users
whi regularly use @ GUT should be able 1o perform rou-
tine tasks quickly.

Most of the patterns presented in this chapter work together
to address these requirements. They provide basic guidelines for
designing a user-centered GUIL Figure 5.3 is a map that shows
how the GUI design patterns in this chapter fit together.

Here is a summary of the 12 GUI patterns described in this
chapter:

GUI Design Patterns ® 93

AGURE 5.3 Map of GUI design patterns discussed in Chapter 5

1. Window per Task. This pattern tells you to organize a

2.

31-

user interface into windows dedicated to different tasks.
Interaction Style. This pattern helps you select the
primary way in which users interact with a window.
Explorable Interface. This pattern provides guidance
on minimizing the costs of users’ mistakes.

. Conversational Text. This pattern describes how

users can interact with a window by entering text-based
commands. The Lirtle Language pattern described in
Volume | shows how (o design and implement textual
command input as a little language.

Selection. This pattern describes a style of user inter-
action where the user chooses selections from a list.
Form. This pattern describes how to collect informa-
tion from a user in a structured way.

. Direct Manipulation. This pattern provides guidance

on how to structure user interactions with domain-
specitic metaphors.

94 ® Cuarter Five

8. Limited Selection Size. This pattern provides guid-
ance on how 1o structure sets of selections.

9. Ephemeral Feedback. This pattern shows how to
provide feedback to users about the status of their work,
without interfering with the natural low of their work.

10. Disabled Irrelevant Things. This pattern provides
guidance on how to hide or disable GUI elements that
are not relevant 1o the current context,

11. Supplementary Window. This pattern helps you
decide whether a window should be a dialog.

12. Step-by-Step Instructions. This pattern shows how 1o
lead a user through a task’s ditferent steps when the GUI
tells the user what 1o do next, rather than the user telling
the GUI what to do next.

The Little Language pattern, which is also shown in Figure
5.3. describes how to design textually based user interfaces. The
Little Language pattern is described in Volume 1.

G Design Patterns ® 35

Window Per Task [Beck-Cunningham87]

SYNOPSIS

A GLU1 should have a separate window for each cohesive task a user
musi perform. All information required to perform the task should
be available from the window. The application provides a way 1o
navigate between windows, allowing the user to coordinate tasks.

CONTEXT

Suppose you are designing a GUI for an integrated development
environment, It must support programmers in a number of tasks,
such as editing code, painting screens, and debugging. It will also
need 1o support these tasks concurrently, so that programmers
can seamlessly move from editing code to debugging and back
again. To support these types of multiple tasks concurrently; the
GUI must display the tasks at the same time and allow program-
mers to navigate from one task to another.

You decide to organize the tasks the GUI will allow the user
to perform by associating each task with a window. You base the
organization of the windows on the principles of high cohesion
and low coupling. Putting multiple tasks in a window would cou-
ple the tasks, making the contents of the window uncohesive and
more difficult to understand.

A better solution is to present only one 1ask in each window,
allowing the purpose ol each window 1o be evident. When the
purpose of each window is clear, it is easier 1o navigate between
windows.

FORCES

» If a window conlains elements that perform different or
unrelated 1asks, the window is not cohesive and is difficult

96 ® CuarTeEr Five

for users to understand, It can also make it difficult for users
to find the appropriate location within the GU1 1o perform a
task, and can cause users to be confused as to which element
of a window is related 10 a given task.

For example, consider a window that is used tor both
spell checking and printing documents. Suppose that it has a
field labeled “number of copies.” The intention of the field
is 1o specify the number of copies 10 be printed, The spell
checker can detect duplicate words, such as "the the.”
Because the same window is used for spell checking and
printing, when the spell checker reponts duplicare words, that
report appears in the same window as a field that may say
“Number of copies: 1.” A user might misinterpret the purpose
of this printing-related field as referring 10 duplicate word
detection.

If a window is dedicated to a single task, then the presentation
of that task is not coupled to other tasks. The presentation of a
task in a dedicated window is automatically more cohesive
than a presentation of multiple tasks in the same window:
When there is a one-1o-one relationship between tasks and
windows, it is easier to find the window that is associated
with a specific task.

SOLUTION

Provide each major task with its own window. Each window
should have navigational tools, such as menu items and push but-
tons, to allow users to navigate to other windows. The windows
should work together withoul reguiiring users Lo guit tasks to
reach another window.

CONSEQUENCES

If each window is dedicated to a specific task, the presentation of
the task is simplified and it is easier 1o find the window that pre-
sents a specific 1ask.

GUI Design Patterns » 97

RELATED PATTERNS

Low Coupling/High Cohesion The Task per Window pattern is
based on the principles of low coupling and high cohesion.

GUI Design Patterns m 99

Interacti on Style [.l_'.fnm m-Lee98]

SYNOPSIS

Match the GUI's interaction style to the abilities of its users and the
application’s requirements. The most common styles of interaction
are selection, form, direct manipulation, and conversational text.

CONTEXT

Suppose yvou are designing a GUI that allows people to query a
relational database which contains ingredient and nutritional

information for food items in a supermarket. A supermarket has
requested this application to help its customers select products.

The most flexible style of GUT for querying a relational data-
base is based on conversarional rex:. It allows people 1o tvpe in
queries as Structured Query Language (SOLY and then shows the
results of the query. Though well suited to the requirements of
the application, a GUI based on conversational text is not appro-
priate for the users of this application. This styvle of GUI requires
a good knowledge of SQL and an understanding of the database's
structure. Most supermarket customers are unlikely 1o have or
want 1o acquire either skill, so you rule out conversational text
for this particular GUI design.

A GUI based on selections allows users to make a series of
decisions by selecting from lists of choices. This style of interac-
tion is not well suited to the requirements of the application,
because the application is supposed 1o allow supermarket cus-
tomers 1o ask about foods that contain arbitrary combinations of
ingredients and nutrients. Selections cannot contain arbilrary
combinations of things and still be reasonable in size,

A GUI based on forms allows users to enter information in a
structured way that helps them supply the necessary information.
This style of interaction suits your purpose for the GUI, and you

100 ® Cuarter Five

decide 10 use a form as the primary style of interaction. You envi-
sion a GUI that has a form that corresponds 1o each type of query
that you think will be useful in the application, You also envision
using selection interactions for portions of the GUI 10 allow users
to select the type of query they are interested in and to select spe-
cific nutrients and ingredients 1o enter into the forms. To tie it all
together, you use the Step-by-Step Instructions pattern, which is
described later in this chapter,

FORCES

There are four common styles of interaction with GUIs:

1. Selecrion interactions allow a user to select a data value or
the next action to perform from a list,

2. Form interactions allow a user to provide information or
specify what to do by filling in the fields of a form.

3. A direct manipulation stvle of interaction provides a visual
representation of the task performed and various com-
mands 1o direct the task. Word processors usually follow
this form of interaction. Direct manipulation is usually
combined with selection so that less commonly used com-
mands are available through menus or tool bars.

4. Conversational text interactions allow a user to enter com-
plex commands as text.

Other styles of interaction with GUIs are possible but
uncommon. By sticking to the four styles of interaction described
here. you greatly increase the likelihood that the basic operating
concepts of your GUT will already be familiar to vour users.

Some types of applications commonly use other styles of
interaction, For example, many computer games have a GUI that
reqguires the user 1o respond to events in a simulated environment,
such as a racetrack or a boxing ring. Such styles of interaction are
good design choices for applications where users are already famil-
iar with the style of interaction.

GUI Design Patterns u 101

Using a style of interaction that is unfamiliar 1o new users
may dramatically increase their initial level of anxiety about
learning 10 use a new GUI, as well as the amount of time it takes
them to leam to use it.

Selecting an interaction style for a GUI that is not appropri-
ate for the needs of an application will result in an application
that is difficult to learn and to use.

Note that the style of interaction is distinct from the way a
GUI actually presents it. Although there are common ways of pre-
senting each style of interaction, vou will have choices 1o make
in that area. For example, a simple selection interaction can be
presented as pull-down menus, a set of buttons. or a set of hyper-
links.

SOLUTION

Choose the primary interaction style for a GUI:

= Choose selection interactions to guide users through well-
defined 1asks or choices.

® Choose form interactions when an application must collect
specific types of information from users,

» Choose direct manipulation interactions to provide users
with a visual representation of the task performed.

s Choose conversational text interaction for complex com-

mands entered by highly trained knowledge workers.

If another style of imeraction is common for the type of applica-
tion that you are building, then consider that as an additional
alternative 1o the four listed here,

As vou develop portions of the GUI to perform different
tasks or present different views of what is happening, you may
discover portions of the GUI for which the primary style of inter-
action is inappropriate. Reapply this pattern to select an appro-
priate style of interaction lor those portions of the GUL

102 m Cuarrer Five

CONSEQUENCES

= Maitching the stvle of interaction to the needs of the applica-
tion simplifies the task of designing a GUI that works for its
intended users,

= Matching the stvle of interaction to the needs of users results
in a design that users find easier to learn because it has
familiar elements.

= In applications that users use heavily, the ease of learning
the application may be less important than the speed and
accuracy that users can achieve during extended use. For
such programs, nonstandard forms of interaction that pro-
mote speed and accuracy may be the most appropriate.

RELATED PATTERNS

Conversational Text This pattern describes one of the interac-
tion styles that the Interaction Style pattern promotes,

Form This pattern describes one of the interaction styles that
the Interaction Style pattern promotes.

Direct Manipulation This partern describes one of the interac-
tion styles that the Interaction Style pattern promotes.

Selection This pattern describes one of the interaction styles
that the Interaction Style pattern promotes.

Step-by-Step Instructions The Step-by-Step Instruction pat-
tern may be used to specify a sequence of interaction modes.

GUI Design Patterns w 103

Explorable interface [Coram-Lee98]

SYNOPSIS

Design user interaction to forgive a user’s mistakes by allowing
the user to undo actions and go back to previous decision points,

CONTEXT

A good GUI must forgive users’ mistakes. The cost of a mistake is
low if a GUI allows the user to recover from the mistake. There
are common methods to allow users to recover from mistakes,
such as an undo facility or the ability to revert the state of the
user’s work 1o a previously saved state. 11 is often possible 1o
design a GUI to provide mistake recovery throughout all or most
of itself.

FORCES

o If a GUI does not provide any easy and effective misiake
recovery mechanism, its users will be reluctant 1o explore
features or procedures that they have not used before, This
sort of reluctance impedes one of the most effective methods
for users to improve their skills with a GUI—experimenting
with features.

w If a GUI does not provide a method to recover from mis-
takes. the cost of mistakes is higher and so is the cost of pay-
ing someone to get work done using that GUL

» Designing mistake recovery into a GUI decreases the average
time it takes for users to perform tasks, because the delavs
that result from mistakes are much smaller than they would
otherwise be. It also decreases the time needed to learn how
1o use a program because users are less anxious about mak-

104 m CuapTER FIve

ing mistakes and are more willing to explore the GUI with-
oul knowing what each command or action does.

w Prowiding close to universal mistake recovery in a GUI leads
users 1o expect that the GUI will allow them to recover from
all mistakes. If this is not the case, the GUI should wam the
user before proceeding with an operation from which it will
not allow the user to recover.

SOLUTION

After performing o task, the GUI should allow the user 1o undo
the effects of that task. Implementing the following measures
accomplishes this for most conversational text, selection, form,
and direct manipulation interactions:

s After a command is given to a GUI that changes the state of
a program, ensure that an undo command is available that
will undo the effects of the last command. This is the most
common mechanism for recovering from mistakes that
result from a direct manipulation or conversational text
mteraction.

» Some selection interactions choose a command and then per-
form it. In many cases it is appropriate for an undo operation
to be available after the command has been performed.
However, some selection interactions, such as hyperlink-based
selection interactions, end by initiating another selection
interaction. In such situations, it is customary for the selection
interactions to include an option with a name like Back or Go
Back. The option is intended to convey to users the idea of
returning to the previous selection interaction. Within a pro-
gram, Go Back operations are the same as undo operations.

® Some tasks must be preceded by steps that specify the
parameters of the task, It is common for GUIs 1o use dialogs
for this purpose. A common mechanism for specifying
parameters for a direct manipulation interaction is to select
one or more abjects in the GUI's display that are parameters
for the task.

GUT Design Patterns w 105

GUls should provide a way to abort the specification of
parameters and thereby avoid performing the originally
requested task. If the parameters are gathered using a dialog,
the dialog should have a Cancel button for aborting the dia-
log. In the case of a direct manipulation interaction, no
explicit abort action is usually necessary, Users are usually
able to abort the setup for a task and the 1ask itself by simply
doing something else.

= Both undo and abort actions apply to form interactions.
When the purpose of a form interaction is to collect intorma-
tion, the GUI should include a Cancel button to abort the
interaction. When the purpose of a form interaction is to edit
information, the GUI should include a Reset button. The
purpose of the Reset button is to restore the values displayed
in the GUI to their original values.

Note that there is no reason for GUls that present form
interactions to not have both Cancel and Reset butions.

To minimize surprise to users, GUIs that provide mistake
recovery for most interactions should wam the user before pro-
ceeding with any action from which they cannot provide recovery.

CONSEQUENCES

s Users spend minimal time recovering from mistakes.
» Users feel empowered 1o learn through trial and error

IMPLEMENTATION

Sometimes users make a mistake, but do not immediately realize
the mistake. Between the time that they make the mistake and
the time they discover it, they may have used the GUI to perform
multiple tasks. An undo facility that allows only the very last task
to be undone is not adequate in these situations. To provide users
with a good level of comiort, an undo mechanism must allow
multiple commands to be undone.

106 = Cuaprer Five

Implementations of undo facilities usually place some limit
on how many tasks can be undone, in order to limit the amount
of memory required to remember how to undo 1asks. Such a limit
can be a rude surprise to a user who had previously been able to
rely on the undo facility as a perfect safety net. Though imposing
limits on the number of tasks that can be undone may be a prac-
tical necessity, the limit should be as high as possible.

For some types of programs, it may not be possible to pro-
vide an undo mechanism that is or appears to be reliable. For
such programs, it is best to design the undo mechanism o be
consistent in what it performs, so that the user's expectations for
backing out of a situation are realistic before entering the situa-
tion. For example, most Web browsers have a Back button that
toes not unde or stop downloads,

A user might request an undo in error. For that reason, there
should be a redo command that can negate undo operations.

It is possible 1o make the relationship between undo and
redo sophisticated and complicated. For example. some pro-
grams allow users to undo some commands, enter a differemt
command than they entered originally, and then redo the rest.
Such sophisticated redo mechanisms can confuse users, so it is
best 1o keep redo mechanisms simple unless vou expect users lo
be trained on how to use them.

RELATED PATTERNS

Command The Command pattern described in Volume | shows
a way to undo the effects of a command or the performance of
a task.

Conversational Text The Explorable Interface pattern is often
used with the Conversational Text pattern.

Form The Explorable Interface pattern is often used with the
Form pattermn.

Supplementary Window The Explorable Interface pattern is
often used with the Supplementary Window pattern.

Direct Manipulation The Explorable Interface pattern is often
used with the Direct Manipulation pattern.

GUI Design Patterns w 107

Selection The Selection pattern is often used with the Dialog
pattern.
Snapshot The Snapshot pattern described in Volume 1 can be

used 1o restore the state of a program to what it was at a previ-
ous time.

GUI Design Parterns w 109

Conversational Text [Grand99]

SYNOPSIS
Design a GUI to accept commands in the form of textual input.

CONTEXT

Suppose you are designing a GUI front end to manage a network
router. Because the router itself undersiands textual commands,
the GUI will send textual commands to the router. Correctly enter-
ing the textual commands requires a high degree of familiarity, so
the primary interaction style provided by the GUT will be a selec-
tion. The selection style of interaction guides the useér through the
process of formulating commands. It makes it easier for casual
users to send commands o a router.

However, experienced users who feel comfortable with textu-
ally based commands find that in some cases it is faster and easier
for them to type textual commands than it is to navigate through
a hierarchy of menus. It is also convenient for them to store com-
monly used sequences of commands in a file and paste them into
the GUI when they want 1o use them.

To support command entry, you set aside a separate area of
the GUI for entering textual commands. You design this area of
the GUI to support the customary text-editing commands for data

entry fields, including pasting text.
In addition to allowing command entry, vou design the

command area to display the last command generated from a
selection-based interaction. This shows those users who use
menus to enter their commands what they could have typed
instead of using the menu option.

FORCES

® Using a GUI-based mechanism to specify a command usu-
ally results in an obvious and ¢asy-to-use interface if the

110 m Cuarrer Five

command takes a fixed set of parameters. If the command is
able to take arbitrary combinations of parameters, a GUI-
based mechanism for specifying the command may be 100
complex for many users to use. Allternatively, it may altain a
reasonable level of complexity by not providing enough
expressiveness 1o specity all possible combinations of
parameters.

» If a command structure is very complex, it may be faster and
more expressive to enter a command as text than to specify
the command through a sequence of forms and/or menu
selections.

» For some applications, the GUI is required 1o execute a pre-
viously stored sequence of commands. One mechanism used
for this is called a macro. The GUI tyvpically creates macros
by recording and saving commands as the user enters them.
Later, the sequence of commands stored as a macro can be
replayed.

Macros have some shorcomings. In particular, mecha-
nisms for editing a macro or for inspecting the sequence of
commands that constitute it may be difficult for casual users
to understand. Mechanisms that allow the user to edit a
sequence of commands generally require the user to think of
commands as abstract actions that are not tied to the spe-
cific data they were used with when recorded. That degree of
abstraction is difficult for some users.

A sequence of commands that is stored as text does not
have this problem. You can inspect and edit it using any text-
editing 1ool.

SOLUTION

Allow the user 1o enter complex commands into a GUI as text.

CONSEQUENCES

s Text-based commands are more difficult to learn than most
other GUI interaction styles, When a user enters a text-based

GUI Design Patterns m 111

command, syntax errors are possible that are not possible
with other styles of interaction. GUIs that provide autocom-
pletions and suggestions for what to type next can help, but
they do not eliminate the problem.

s A conversational text style of interaction provides less feed-
back than other styles of interaction. As a user enters a com-
mand there is no feedback about its validity. Other stvles of
interaction are able (o provide immediate feedback as a com-
mand is formed. The feedback may take the form of graved-
out widgets 1o indicate that certain commands or options are
not valid in the current context.

Because textual commands are usually less connected
with what a GUI displays than are other sivles of interaction,
there is often less direct feedback about the results of a tex-
tual command.

o [f a mechanism for specilving commands textually does not
already exist, you have to design the grammar for the com-
mands themselves and create a mechanism to interpret the
commands.

IMPLEMENTATION

Responses 1o textual commands are also textual in many cases.
You mav need to decide if it makes more sense to append
responses (0 the same window in which commands are entered
or 1o display the responses in » separate area. If there is no clear
reason (o prefer one arrangement over the other, as is often the
case, you can resolve the decision by letting the user decide.

If a GUI allows both a conversational text mode of interac-
tion and another way of specifving commands, the GUI may dis-
play the textual equivalent of each command that is entered
through other means. This is a way of teaching users how to
enter commands textually. Such a feature is helpful only for users
whio use a program often enough 1o learn and retain 11s nuances.

[f a GUI is part of a program that has no special 1ext-editing
features, users will not expect the area for entering textual com-
mands to have anv special text-editing commands. However, if

112 m CHarTER FIVE

the GUI is part of a program that does have special text-editing
features, such as a word processor, users are likely to expect the
area for entering textual commands to have some of those fea-
tures. To minimize surprise, the area for entering textual com-
mands should allow as many of the program’s text-manipulating
features as make sense.

RELATED PATTERNS

Explorable Interface The Explorable Interface pattern
describes a technique for making a conversational text interac-
tion more useable.

Interaction Style The Interaction Style pattern is used 1o
decide 10 use the Conversational Text pattern.

Little Language The Little Language pattern described in
Volume 1| shows how to design and implement textual com-
mand input as a little language.

GUI Design Patterns ® 113

Selection [Grand99]

SYNOPSIS

Allow users to interact with a GUI by selecting commands and
data values from lists.

CONTEXT

Suppose you are designing a GUI for a kiosk in an airpon that
can be used to obtain information about hotels, restaurants, and
points of interest around town. Because most user input will con-
sist of choosing from lists of alternatives, the obvious choice for
the GUTS primary interaction stvle is selection.

The GUI presents selection interactions in several different

WS

® You can select the tvpes of establishments, such as hotels,
restaurants, or local transportation, that interest the user.
The GUI can reasonably present that information as an array
of buttons,

s The GUI will allow the user to select a restaurant by the type
of cuisine it serves, The GUI can present this set of choices
as a scrollable list,

® The GUI will allow the user to select a hotel by the part of
town it's in. A graphic way of presenting this set of choices is
as an image map of the city, Clicking on an area of the map
selects a list of hotels in and around the area.

» When presenting a description of a hotel, the GUI will offer
the ability to present more information about the points of
interest mentioned in the description, such as banquet facili-
ties or the health club. The GUI can present these options as

hyperlinks.

114 m Cuaprer Five

FORCES

The user must specify a command or some data.

s The GUI knows, in advance, the set of commands or data
values that the user may select,

» An application requires no data entry or has very simple data
entry requirements that are satisfied by selecting values.

Users often find it easier to select from a set of choices than
to enter one into a blank Held.

SOLUTION

Present a set of choices in a GUI and allow the user to select from
them. Pointing and pressing buttons on a kevboard are the usual
methods for users to indicate their selections.

There are two forms of selection style interaction:

1. Single selection allows a user 10 select no more than one
choice from a set of choices. This is the more common of
the two methods.

2. Multiple selection allows a user to select any number of
choices from a list of choices.

There are two common presentation styles for selections:

1. A flar presemarion displays all of the selections at once,
equally.

2, A hierarchical presentation displays the selections as a
hierarchy, where it may be necessary to select a higher-
level item in the hierarchy before seeing a lowerlevel
item.

CONSEQUENCES

= A GUI can use selections to guide users through tasks. By
first presenting the user with a selection of tasks and then
any additional selections that correspond to the decisions

GUI Design Patterns w 115

made in performing the task, the user is never left wonder-
ing, “What do I do next?” Other forms of interaction usually
impose less structure on tasks, The higher level of a structure
can be helpful to new or casual users of a GUI, but may slow
down experienced users when performing routine tasks,

s [t can 1ake a long time 10 navigate through large numbers of
choices.

® Selections can be used to simulate a kevboard, but this is
very awkward 1o use.

IMPLEMENTATION

There are numerous ways that a GUI can present the choices in a
simple selection interaction, The more common ones are

described here.

w Pull-down or pop-up menus are useful for GUls that use a
selection stvle of interaction to supplement another style of
interaction. Figures 5.4 and 5.5 show examples of a pull-
down menu and a pop-up menu.

Pull-down menus are used tor selection interactions
that modify the course ol a user interaction in progress or
initiate a new user interaction, Pop-up menus are tvpically
used as a shortcut for an interaction that can be accom-
plished from a pull-down menu with additional steps,

AGURE 54 Pull-down menu, FAGURESS Pop-up menu.

116 m CHarrER FIvE

= An array of butlons is a common way 1o present a selection
interaction when selection is the GUI's primary interaction
style and the purpose of the selection is 1o choose the next
task or interaction. By its nature, this type of selection inter-
action is always of the single-selection variety, Figure 5.6
shows an example of a button array,

When an array of buttons is used to present a selection,
it is normally the most prominent feature that the GUI pre-
S¢S,

The GUI can also display secondary features at the same
time it presents a button array, You will often see a graphical
element used to emphasize that the buttons are a cohesive
group that form the main features of the GUI, for example, a
box around the buttons.

® An image map is another way to present a selection interac-
tion. An image map is presented as an image. The appear-
ance of an image map depends entirely on the image that it
uses. The GUI logically, but not visually, divides the image up
into visually distinct areas. When the user clicks on the
image, the GUI interprets the click based on which area was
clicked.

Image maps are used to select a task 1o be performed or
to select data values. An example of an image map could be a
picture that depicts different tyvpes of merchandise ona
shell, Clicking on a particular type of merchandise indicates
that the user wants to know more about that merchandise or
wants to select it for purchase.

FGURE 56 Button array sclection,

GUI Design Patterns & 117

An example of an image map used o select data values
could be a picture of an automobile that appears in a GUI
used by insurance adjusters. The adjuster can click on differ-
ent parts of the automobile to indicate areas of body damage.

= List boxes are used to implement selection interactions that
choose data values. List boxes present all the possible choices
of a selection interaction using a single GUI component. List
boxes are suitable for single-selection and multiple-selection
interactions. An example of a list box appears in Figure 5.7,

The Limited Selection Size pattern found later in this
chapter provides additional guidelines for when to use check
boxes or radio buttons instead of a list box.

» Check boxes and radio buttons are used to implement selec-
tion interactions that select data values or tasks. Both check
boxes and radio buttons present possible choices of a selec-
tion interaction using a distinct GUI component.

Radio buttons are used to present a single-selection
interaction. Check boxes are used to present a multiple-
selection interaction. Figures 5.8 and 5.9 show examples of
radio buttons and check boxes.

There is no significance to the arrangement of the radio
buttons or check boxes. However, it is customary to arrange
them in a row, column, or rectangle. To visually emphasize
that the radio buttons or check boxes in a set are related, it is
commeon for the GUI to draw a rectangle around them.

= Hyperlinks are vet another way of presenting a selection
interaction. The appearance of hyperlinks is entirely depen-
dent on the browser that presents them. Words that are part
of a hyperlink are usually displaved in a different color than
the surrounding text and are underlined.

AGURE 5.7 List box,

118 ® Cuarrer Five

AGURESS Radio buttons. FAGURE 5.9 Check boxes.

There are also a number of ways to present hierarchical
selection interactions. Presemations of hierarchical selection
interactions are more dynamic in nalure, so we do nol attempt to
provide pictures of them. Descriptions of some of the more com-
mon presentations of hierarchical selections tollow;

s Some selections are organized into a hierarchy because there
would be an unreasonable number of items to choose from if
they were all presented at one level. Selections thar are orga-
nized into a hierarchy for organizational convenience are
usually presented as cascading menus.

The use of cascading menus can make it easjer to find a
command if the hierarchy is shallow and its organization is
obvious. However, a hierarchy that is too deep or does not
match the application in an obvious way can make it more
difficult for users to find menu items than with a flat menu
structure.

w [f the hierarchy of the selections is part of the information in
the selection, rather than an organizational convenience,
then the selection is usually presented as a ree. A common
example of this is an interaction for selecting a file in a hier-
archical file system. This type of interaction usually presents
the hierarchy of directories as a tree that expands to show
lower-level directories when the user selects a directory.

= If the levels of a data hierarchy are few and fixed in mean-
ing, & multipane hrowser is a common way to present the
selection. For example. a tool for browsing Java methods
may have a pane for selecting a package. Next to that pane
would be a pane for selecting classes within the selected

GUT Design Patterns m 119

package. Mext to that pane would be a pane for selecting
methods within the selected class.

= [f there is a lot of information 10 be presented that is relaved
10 each selection, hyperlinks embedded in the information
can be the best way 1o present a hierarchical selection.

Many other ways of presenting selection interactions are
possible. Some of them are specialized for selecting a particular

kind of data or working with a particular tvpe of pointing device.
The presentation selected should be the presentation best

adapted to the application. Unfortunately, a more comprehensive
exploration of methods 1o present selections and to choose a pre-
sentation is beyvond the scope of this chapter.

RELATED PATTERNS
Explorable Interface The Explorable Interface pattern

describes a technique for making a selection interaction more
useable,

Limited Selection Size The Limited Selection Size pattern
provides additional guidance in determining the presentation
of a selection interaction.

GUI Design Patterns m 121

Form [Tidwell98]

SYNOPSIS

Allow a user o enter structured data into a GUI as discrete pleces
of information.

CONTEXT

Suppose you are designing a GUI that allows people to fill out
employment applications. The pieces of information obtained

through the GUI must be discrete, meaning that an applicant’s
name, address, telephone number, and so on can be placed in
separate fields of a database. The simplest way to capture dis-
crete pieces of information from a GUI is to design it so that
users provide the information in discrete pieces.

GUIs that capture discrete pieces of information are called
forms. They are usually modeled on paper forms. Figure 5,10
shows a form that you can use for this application.

FORCES

The GUI must allow the user to supply or edit specific and
discrete pieces of information, such as address, city, state,
and postal code. Unstructured data entry, such as with a
word processor, will not do.

» To successfully supply information to the GUI, the user must
know what information the GUI expects. The user should be
able to tell which pieces of information the GUI requires and
which pieces of information it considers optional. This is
most important when the user may not be familiar with the
GUI and certain information is unavailable.

For example, the form in Figure 5,10 requests name,
social security, and address information.

122 & Cuarter Five

FAGURE 519 Employment application form.

» The GUI should provide any additional information that
allows the user 1o enter acceptable data on the first try. Such
information may appear as default data in a data entry field
that provides the user with an example of the format in
which data is expected. A field that contains today’s date is
an example of the expected data format. Explanatory text
may appear directly in the form itself, if it is brief, or be
available as help text that can be accessed by such means as
a button press or a mouse click.

» Many users avoid reading directions. Though clear and
explicit instructions may be included in a form, many users
will not read the instructions or will skim over them without
absorbing their full detail.

= There must be a way for the GUI 1o tell when the user is fin-
ished supplying or entering data. This is commonly accom-
plished with an OK or Submit button for the user to press
when finished.

o [f the information a user provides is not valid, the GUI should
notify the user as soon as is practical, Early notification may

GUI Design Patterns ® 123

allow the user to more quickly fix the problem and move on.
The more time that elapses between the input of the invalid
data and the GUI's notification to the user of the problem, the
mare wasted effort the user may have expended. Also, as
the user moves on ta other pieces of data, it takes longer
for the user 1o return to the source of the invalid piece of data,
» If an inconsistent combination of values is provided on a
form, it can be annoving and distracting for the GUI 1o
notify the user before it is certain that the user is tinished
editing the values. Such premature notifications are usually
false alarms that distract the user who has entered or edited
some of the values and plans to finish the rest.

This sort of situation can happen when the user is edit-
ing the minimum and maximum values for a range of values.
After entering the minimum value, but before entering the
maximum value, the minimum value may be greater than
the maximum value, A complaint from the GUI at this point
would probably not be helpful, since the user is likely 10
enter a larger value for the maximum value.

SOLUTION

Form-based interactions are usually presented with text fields or
other GUI components into which a user can enter information.
The presentation also contains background label text that
describes the information the user should enter into each field.
It may also have additional title background text that is dis-
plaved in a prominent way and describes the interaction as a
whole. One other mandatory element for form interactions is a
way Lo indicale that the user has finished entering data. This
usually takes the form of a push button with a caption such as
"0OK" or "Done.”

If a form contains data entry GUI components that are not a
text field, they usually consist of a radio button, list box, or other
componeni that provides a selection interaction to choose a value
for a piece of data. Such selection interactions usually constrain
the possible values the user can specify 1o only valid values.

124 @ CuarTER FiVvE

Arrange the GUI components in a grid-based pattern that is
neat and visually guides the user’s eyes through the elements in a
logical order. Group closely related elements together.

Text fields in a form should do what they can to prevent
users [rom entering invalid values. For example, if a text field is
supposed to contain a number, the field could ignore any nonnu-
merc characters entered by a user.

Another way of helping users to enter valid values is to pro-
vide default values wherever appropriate. Where there is one value
that is most common for a piece of data, providing the common
value as a default simply improves the odds of obtaining the right
value. In cases where there is no common value, a default value
can be helpful for a different reason. If the type of information to
be provided may not be obvious to a user, a default value can serve
as an example of the requested information,

When it is not possible to prevent users from entering invalid
values into a text field, it is desirable to immediately notify the user
that there is a problem. However, because such notifications can
cause problems, they are not usually given during form interactions.
These problems are addressed by the Ephemeral Feedback pattern.

When the user indicates that he or she has finished entering
data, the GUI should check that each of the entered values is
vilid and consistent with the other values. The GUI should also
check that the user has provided all required data. If there are
any invalid values, inconsistencies, or missing values, the GUI
should notify the user of the problem.

If it is likely that users will be unfamiliar with a form, pro-
vide a visual indication of what data is required and what data is
optional. This gives the user a better chance of getting it right on
the first try.

CONSEQUENCES

® A program is able Lo obtain pieces of data from a GUL
® The rest of the program is able to assume that the GUI has
performed the validity and consistency tests for which it is

responsible.

GUI Design Patterns w 125

» The GUI gives the user guidance regarding the values that
must be supplied and theiwr validity.

IMPLEMENTATION

There are two common extensions to text-field components that
are used to prevent invalid values from being entered into a text
field. The first extension to a text-field class is to allow a formar
mask to be associated with its instances. A format mask is a
string that specifies the format of what can appear in a text field.
For example, the format string 000-00-0000 might indicate that
the text field will always contain 11 characters, all of which are
required to be digits, except the fourth and seventh, which are
always a hyphen.

There is no standard interpretation of format masks. Each
implementation defines its own interpretation. It is possible 10
define format masks for dates and other types of data. Text Felds
may use format masks to reject characters that are inconsistent
with the mask and to determine the default characters that
appear in otherwise uninitialized text fields.

The other type of extension 1o text fields is to associate a
range of values with a text field. The idea is that text fields
extended in this way should contain values in a specified range.
They can refuse to accept characters that cause the contents of
the text field to be out of range,

Whether these extensions should be used to quietly reject
characters or detect invalid values depends on the type of users
who will be using the GUI. Users who are not good typists are
more likely to look at the screen as they type and notice if it does
not show what they expect. Proficient touch tyvpists do not nor-
mally look at the screen as they tvpe, so quietly rejecting invalid
kevstrokes may result in entering incorrect data.

A GUI that implements a form miteraction will usually pass
the data it collects on to some tvpes of data objects that throw an
exception If the data violates their constraints. A GUI should pass
any such complaints on to the user. Error messages generated in
this manner are not always detailed enough for the user to under-

126 m CuarTeEr FIVE

stand, nor is it always clear which fields the data object is refer-
encing. For this reason, the GUI should perform its own checking
on the validity and consistency of its data values. Ideally, the GUI
should be able 1o delegate checking the validity and consistency
of individual fields 1o the data object that is responsible for it.
When this is not possible, vou must make a design adeoff
between a GUI that produces good error messages and the addi-
tional effort that may be required 10 keep the GUT's validity
checking consistent with the data object’s validity checking.

The purpose of most form interactions is either to collect
data or 1o edit previously collected data: When collecting data, it
can be helpiul to include a cancel button in the GUI that abons
the interaction. When editing data, it may be even more helptul
to have a reset button in the GUI that sets all of the values in the
GUI 1o the original values.

RELATED PATTERNS

Supplementary Window Form interactions often occur within
a dialog.

Ephemeral Feedback The Ephemeral Feedback pattern pro-
vides guidance in providing brief, short-lived feedback to a
user.

Explorable Interface The Explorable Interface pattern
describes a technigue for making a form interaction more use-
able.

Selection Form interactions often include selection interac-
lions to select data values.

GUI Design Patterns w 127

Direct Manipulation [Grand38]
SYNOPSIS
Allow users to interact with objects by manipulating the repre-
sentations of objects presented by a GUIL

CONTEXT

Suppose you work for a company that makes toy building blocks.
The company’s marketing department is responsible for creating
large and impressive displays that are built from the blocks

and sent to stores 1o attract customers. Currently, just a few mas-
ter builders create original displays from the building blocks.
Assistant builders then build the copies that are sent out to stores.

To accommodate the growing number of stores that carry
the company’s products, the company wants to be able to create
displays more quickly without having to hire and rain more
assistant builders. The company would also like to produce a
larger variety of displays.

The company has decided on a solution 1o these problems,
The company wants o create a computer system that will allow
all of its builders to build original virtual displays. The computer
will then direct a robot arm 1o quickly and accurately build physi-
cal copies of the virtual displays.

Suppose it is your task to design the portion of this com-
puter system’s GUI that will allow builders to create virtual dis-
plays. You decide that the logical interaction style for this is direct
manipulation.

Direct manipulation is a GUI ineraction style that presents
visual representations of objects to users, allows users to issue
commands to manipulate the displayed objects, and then displays
the results of the manipulation. For example, a file browser that
supports direct manipulation might allow a file to be moved to

128 m Cuarrer Five

another directory by dragging it and dropping it in the desired
directory, After the drag and drop is done, the display is updated
so that the file appears in its new directory and not in its original
directory.

Some of the manipulation commands that vou are likely to
need for the building-block application include:

= Drag a block from a palette and place it in the display.

» Place multiple blocks in a row.
s Change the color of blocks that you have alreadv placed,

Word processors and drawing programs are common appli-
cations that usually use a direct manipulation interaction style.

FORCES

» When using a program to manipulate objects, users need to
know the current state of the objects and the effect of their
manipulations. If the program does not provide this infor-
mation, users have the burden of either maintaining a con-
tinuous mental model of the objects they are manipulating
or frequently examining the objects to determine their cur-
rent state.

s Displaying a representation of the objects a user is manipu-
lating relieves the user of having to maintain a mental model
of the state of those objects and the results of the manipula-
tions.

s Suppose a program’s GUI uses direct manipulation as its pri-
mary interaction style. If the objects it manipulates are con-
crete, and the ways the GUI offers to manipulate them are
similar to the ways users manipulate corresponding real-
world objects, then some users may need no documentation
or training to use the GUL

» When the GUI provides users with immediate visual feed-
back on the effects of commands, users can immediately rec-
ognize when the results of a command are not what they
expected.

GUI Design Parterns » 129

» A consistent way of applying commands 1o objects in the
GUI's presentation, such as point and click or drag and drop.
makes the GUI easier to learn. In particular, it supports an
exploratory or trial-and-error approach to learning,

» You want to provide a way of interacting with a GUI that
minimizes the opportunities for users to make errors in the
way they enter commands.

SOLUTION

Have a GUI interact with users by presenting a visual representa-
tion of objects 1o be manipulated. Allow users to manipulate
objects by pointing at the objects and gesturing with a pointing
device. Ensure that the visual representation of objects reflects
the most current manipulations.

CONSEQUENCES

= A direct manipulation style of interaction gives users the
impression that they are in direct control of the objects pre-
sented 1o them by the GUL

= Consistency berween the presentation of objects and the
actual objects is very important.

= Direct manipulation interactions are visual in nature and
make it easy for users to use commands with which they are
unfamiliar. Since most people are visually oriented and learn
best through trial and error, GUIs based on direct manipula-
tion are easy 1o leam,

» The highly visual nature of direct manipulation interactions
makes it difficult for visually impaired people to work with
them., Working with interactions based on conversational
text 15 usually easier for visually impaired people.

s Direct manipulation interactions are more difficult to imple-
ment than other stvles of interaction.

s Capturing and manipulating a command history from a
direct manipulation is difficult. Reusable mechanisms do not

130 » Cuarrer Five

understand the commands in the context of the problem
domain. Problem-specific mechanisms are generally not
reusable. Saving history for later use as a macro is prone to
problems arising from differences between the original con-
text and the context in effect when the macro is invoked.

= Many users find direct manipulation interactions 1o be more
fun than other types of interactions.

IMPLEMENTATION

There are two commonly implemented mechanisms for directing
the manipulation of objects in a direct manipulation interaction:

1. Point and click. Point and click means that a user can
manipulate an object by pointing at it, clicking on it 1o
select it, and specifying a command. The user typically
specifies the command through a pull-down menu. It can
also be specified through keyboard shorcuts. Another
form of shortcut is to click on the object 1o be manipu-
lated in a way that causes a pop-up menu to appear and
then select a command on that menu. Most GUIs respond
with a pop-up menu if the user clicks with the rightmost
mouse button. Pop-up menus should contain the most
common commands that apply to the clicked object. Such
commands usually include copy and move.

2. Drag and drop. Drag and drop means that a user can
manipulate an object by dragging it to an icon or button
that represents the action to be performed on the object
(i.e., copy, print, etc.). Drag and drop may be faster lor
most users, [t does require greater manual dexterity than
point and click. Drag and drop also requires more display
area to accommodate the icons.

Point and click is the more common of the two mechanisms
Some GUIs implement both.

The GUI can present the user with many kinds of helpful
feedback and clues about the context of a direct manipulation

GUI Design Patterns u 131

interaction. One such type of feedback is 1o vary the way that the
mouse pointer is presented. For example, if the GUI expects that
there will be a noticeable delay while it carries out a command,
the mouse pointer will typically change 10 an hourglass, a watch,
or some other timepiece. It Is also important that the GUI gives
this sort of feedback when the meaning of some mouse gestures
changes depending on what the mouse is pointing at, For exam-
ple, il the mouse pointer is over an object for which the default
action is to move the object, the mouse pointer might assume the
shape of a hand.

When the user is dragging an object on the screen, it is help-
ful 1o provide feedback showing the object being dragged. An
obvious way to do this is to show the object moving as the mouse
pointer moves. However, it turns out that this is not a good way
to provide this feedback. Moving the entire object can be a prob-
lem because the entire object may obscure the place to which the
user is moving the object. Instead, it is customary to show an
abject being moved by showing its outline or a small, partially
transparent icon being moved in place of the whole object.

For similar reasons, GUls normally present feedback on
resize operations on an object by showing the object’s outline,

An important consideration for some direct manipulation
interactions is that the presentation of objects on the screen be as
close as possible o the appearance of the objects when they are
produced in a physical form. For example, it is very important
that a word processor shows words on the screen exactly as they
will appear when printed. This property of GUIs is called whar
vou see is what vou pet (WYSIWYG).

Working entirely through pointing devices may be slower for
experienced users than typing a sequence of keysirakes. 1sers
should be able 10 issue direct manipulation commands from the
kevboard as much as possible.

RELATED PATTERNS

Ephemeral Feedback The Ephemeral Feedback pattern pro-
vides guidance in providing brief, short-lived feedback 10 a user

132 m Cuarrer Five

Explorable Interface The Explorable Interface pattern
describes a technique for making a form interaction more use-
able.

Selection The Selection pattern is used when a direct manipu-
lation interaction that supports menus is used to select a com-
mand to manipulate previously selected objects.

GUI Design Patterns w 133

Limited Selection Size [Grand99]

SYNOPSIS

Design the presemtation of selection interactions 1o avoid display-
ing more than a limited number of choices at a time.

CONTEXT

Experience and usability testing have shown that when a selec-
tion interaction confronts a user with too many related jtems
from which to choose, users slow down or become temporarily
confused. Guidelines for designing user interfaces usually recom-
mend a limit in the range of seven, plus or minus two, items to be

displaved at once.

FORCES

» Displaying a large number of choices to a user during a
selection interaction can slow or confuse the user.

= Limiting the number of choices displayed at one time 1o the
user during a selection interaction can reduce the amount of
confusion or uncertainty caused by a large number of
choices. If the way the choices are displayed not only limits
the number of choices displayed at once but also adds a visi-
ble structure 1o the choices, it will take the user less time 1o
find the right choice.

1t is often possible 1o organize courses of action into

stalic categories. Often the only static category that data can
be made to fit is a static set of ranges. If this is not useful,
the next best organization may be a natural ordering of the
data, such as alphabetization.

= Unrelated choices may be presented in the same selection
interaction. For example, a pop-up menu may contain

134 m CuarTer FIVE

chaoices that relate to the object that was clicked (i.e.. copy,
delete, etc.} and to any other choices that relate to an entire
set of objects (i.e., print, save, etc,). Unrelated choices that
are presented together as if they were related choices can be
more confusing than the same number of related choices.

SOLUTION

Avoid displaying more than a limited number of related choices

al the same time during a selection interaction. A typical limit is
seven. Many successful GUIs are designed with a limit as low as
five or as high as nine.

If the purpose of a selection interaction is to choose a course
of action, the number of choices presented to users at once is
usually limited by using a hierarchical selection interaction, such
as a cascading menu. If the purpose of a selection interaction is
to select a data value, it is more common to present the data as a
scrollable list ordered by a natural ordering of the data, such as
alphabetization.

if & pull-down or pop-up menu has too many choices that
are not all related, consider grouping the related choices together
and adding dividers to separate unrelated choices. If the number
of choices in each group is under the limit and the number of
groups is under the limit. the result is usually satisfactory.

CONSEQUENCES

» Structuring selections so that they do not burden users with
too many choices at a time allows users to find the choice
that they are looking for more quickly.

» Excessive nesting of selections slows the user down.

IMPLEMENTATION

Many guidelines for designing GUIs recommend a maximum
number of choices 1o present to a user at once. Though the spe-

GUI Design Patterns m 135

cific recommendation varies with the guideline, the recommen-
dations are all in the range of five to nine. Pick a limit in that
range and use it consistently in GUls that you design.

RELATED PATTERNS

Selection The Limited Selection Size pattern provides guidance
on designing the presentation of selection interactions.

GU! Design Patterns » 137

Ephemeral Feedback [Grand99}

SYNOPSIS

Provide feedback to users about the status of their work, without
interfering with the natural flow of their work.

CONTEXT

Immediate feedback about the progress, success, and failure of
interactions the user has with the GUI can be very valuable in
reassuring the user that all is well or in alerting the user that
there is a problem. However, if the delivery of feedback interferes
with the natural flow of the work, then the feedback itsell may be
a problem. For example, consider the following extreme case:

A user is entering data brom paper forms into a GUI form
that has 20 fields. The user has gotten into the rhythm of the
work and is entering data from the paper forms without looking
at the screen. Without realizing it, the user makes a mistake when
entering the second field of a form. After the user nishes enter-
ing the contents of the second field, the GUI detects the error and
puts up a modal dialog box that says there is a problem with the
contents of the second field. The modal dialog box is designed to
stay up until the user presses Enter or clicks on its OK button.

The user is looking at the paper form, not the screen, and
does not see the dialog box. Instead, the user keeps on entering
keystrokes, which the dialog box discards. After entering all the
data on the form, the user looks at the screen and notices the dia-
log box. At that point the user presses Enter to get rid of the dia-
log box and reenters the data from the rest of the form.

In the preceding scenario, the GUI failed the user in two ways.
First, it did not get the user’s attention when the problem actually
accurred. It then compounded that failure by discarding the user’s
kevstrokes, which forced the user to enter the same data twice.

138 ® CHarTER FIVE

The feedback mechanism in this scenario would not have
been a problem for an application where the user is expected to
be looking at the screen. Poorly designed feedback mechanisms
can interfere with the natural low of a user’s work even if the
user is looking at the screen. Consider the following scenario:

A user is editing information in a form to reprogram an ele-
vator in a hotel. Currently, the elevator is programmed to stop at
floors 2 to 12, The user wants to change that range to floors 14 to
20. The user begins by changing the minimum floor from 2 1o 14,
When the user attempts to move on to the next field, the GUI
pops up a dialog box saying that the minimum floor cannot be
grealer than the maximum floor. After a few minutes of bewilder-
ment, the user realizes that to get past the message dialog, you
have 10 change the maximum floor 1o 20 first, and then change
the minimum floor 10 14,

The first scenario would have had a better outcome if the
GUI had somehow gotten the user’s attention when it detected a
problem. It could have accomplished this by producing an appro-
priate sound.

In both of these scenarios, the GUI provided immediate feed-
back, which is good. What is bad is that the GUI insisted that the
user respond to the feedback immediately. If the GUI had pro-
duced the feedback without requiring an immediate response,
there would have been no problem.

FORCES

s Users may benefit from immediate feedback about the status
of their work.

s If the GUI provides immediate feedback to users, it should
wait until the last possible moment before requiring users to
respond to the feedback, if it requires any response at all.

s When the GUI provides the user with feedback that is of an
urgent nature, it may be helpful for the GUI to get the user’s
attention by making a sound.

s For some types of GUls, producing positive feedback in the
form of sounds can encourage the user to use the program

GUI Design Patterns w 139

and make the user feel more confident while using the pro-
gram.

SOLUTION

It is good for a GUI to provide immediate feedback to users about
the status of their work, provided that the feedback does not
interfere with the natural workflow. Feedback that does not inter-
fere with the flow of work is usually ephemeral in nature. If it is
visual in nature, it will either be visible until the GUI replaces it
with another feedback message or it may disappear after a set
amount of time has elapsed.

Visual feedback that is ephemeral in nature should always be
presented in the same area of a GUI, usually off 1o the side, to
make it easier for users to find it. Such an area is typically called
a status bar and holds only a single line of text.

When a program is processing a command and the user
will be forced to wait for the completion of the command, it can
be reassuring to users to see a progress indicator. Though the
progress indicator may appear in the status bar, it is common
for GUls to present progress indicators in a more prominent
position.

Audio feedback should last only as long as the natural
length of the sound being produced. Repeating a sound simply
to lengthen the amount of time that a user hears it will usually
annoy users after a while.

Audible feedback that draws attention to problems may be
helpful in a program where the user may nol otherwise be paving
enough attention to the GUI's visual display 1o notice a visual
notification. Audible feedback that provides positive feedback
should be carefully designed not to distract from the user’s work.
If the user’s work is divided up inte small 1asks, then the ends of
the 1asks may be the best time to provide positive feedback.
Audible feedback is best given at times when the user should be
thinking about the GUI itself and not the program’s problem
domain,

140 m CHaPTER FIVE

CONSEQUENCES

» GUIs should postpone the presentation of modal dialogs to
provide feedback until the latest possible time. Modal
dialogs force the user to deal with a problem immediately.
This can distract the user from his or her intended plan of
action, which may include fixing the problem,

» Use of the Ephemeral Feedback pattern can produce GUIs
that are more difficult for visually challenged or hearing-
impaired people 1o use.

= When designing a GUI to provide audible feedback, you
must be sensitive 10 the physical environment in which the
GUT will be used. In a business environment, GUls that pro-
duce sounds may disturb people who are not using the GUI
but are close enough to hear the sounds. The problem is
compounded when people using the same program can hear
each other’s audible feedback. One way 1o solve this problem
is 1o ensure that only the user of the GUI can hear the
sounds it makes.

On the other hand, there are environments where the
production of sounds that everyone can hear is considered
beneficial. For example, arcade games are expected to pro-
duce sounds that are audible to people who are not playing
the game, so the game will attract more players.

IMPLEMENTATION

Because audible feedback can be a problem for some user envi-
ronments, GUls that provide audible feedback should also pro-
vide a way ta disable the audible feedback.

G Design Patterns = 141

Disabled frrelevant Things [Tidwel198]

SYNOPSIS

Hide or disable GUI elements that are not relevant in the current
context.

CONTEXT

It is bad for a GUI 10 present users with surprises. If a command
is not available, a GUI's pull-down and pop-up menus should not
imply that it is available. For example, most word processors have
a pull-down menu item 10 print the current document. When a
word processor is not editing a document, it has nothing to print.
In this circumstance, the program’s GUI will present the print
menu item in a manner that indicates that it is not available, GUls
typically present such menu items in a grayed-out manner.

FORCES

= 1t a command or resource is clearly irrelevant 1o the current
task. the GUI should not make it available 1o the user. This
relieves users who are unfamiliar with a program of the bur-
den of recognizing what is relevant and what is now

s If the presence of a GUI component appears to indicate that a
enmmand or resource is available and the user tries to use the
command, the user will be surprised when it doesn't work.

® Displaving a menu item or other GUI component as disabled
tells the user that the item is not currently available.

» Suppose that a command is not available in a program with-
out obtaining an add-on or an additional license. In this
case, the publisher of the program may not want the com-
mand o appear in any menu so that users do not wonder
how to enable the command.

142 m CHarTER FivE

s Users may expect that there is something they can do 1o
change a disabled GUI component into an enabled GUI com-
ponent. If there is nothing users can do 1o enable an item, it
may be best not o Include the item in a menu. Users do not
usually expect 1o enable what they cannot see.

SOLUTION

If a command or resource is available in a program, but not
within the current context, the GUI component that advertises
the existence of the command or resource should be displaved as
disabled. If a command or resource is unavailable in a program
and no direct action by a user will make it available, it should not
appear in the GUI at all,

CONSEQUENCES

s GUI components do not imply that commands are enabled if
they are nol.

® GUI components do not imply that users can enable a com-
mand if they cannot.

® Users are nol given the impression that they can do some-
thing that they cannot.

IMPLEMENTATION

Publishers sometimes decide, tor business reasons, that they
want commands that are unavailable without the purchase of an
additional license 1o appear in menus so that users will inquire

about the possibility of purchasing the additional license.

RELATED PATTERNS

Selection The Disabled Irrelevant Things pattern is used with
the Selection pattern.

GUI Design Patterns m 143

‘Supplementary Window [Grand99)

This pattern is also known as Dialog,

SYNOPSIS

Display a window for a user interaction that supplements a parent
windows interaction. The purpose of the supplementary window is
to collect information for the parent window's interaction, display
additional information about the parent window’s interaction, or
provide a notification about the status of the parent’s interaction.
The supplementary window is shorter lived than its parent.

CONTEXT

Standalone windows or frames usually have a specific purpaose.
The visual structure of a window usually reflects that purpose,
with each portion of the window dedicated to the presentation of
a specific type of information. If a window becomes involved in a
user interaction that involves the presentation or collection of
information that the window is not equipped for, it pops up a
supplementary window called a dialog.

For example, suppose that a user asks a word processor (o
save a new document. If the new document does not already have
a file name associated with i1, then the word processor will need
the name of the file in order to save the document. The word pro-
cessor window that the user uses o edit the document should not
include a way of directly asking the user for a file name, because
that is not its function. Instead. it pops up a dialog that prompis
the user for a file name.

FORCES

= A window or frame should be organized to perform a cohe-
sive task. Supplementary tasks that cannot be incorporated

144 m Cuaprer FIVE

into the window or frame without making it less cohesive
should be the responsibility of a dialog.

» Some dialogs pop up to deliver an urgent notification that
the user should see before continuing with the business of its
parent window. To ensure that the user sees the notification
before continuing, the user should be forced 1o close the dia-
log before being allowed to work with the parent window
again. An example of such a notification would be that the
file a user wants 1o work with cannot be found.

s Some dialogs pop up to collect information needed 10 com-
plete an operation initiated by the dialog's parent. If the
information is required before the operation can be com-
pleted. the operation must not continue until the user has
supplied the information. An example of this is a dialog
that gets the name of a file with which the user wants 1o
work.

SOLUTION

When information must be presented to or collected from the
user, and that interaction cannot be made a coherent parnt of the
window thart initiates it, then the interaction should occur in its
own dialog.

All dialogs must provide a way for the user to indicate that
he or she is finished with the dialog. Many dialogs accept no
commands other than an indication that the user is finished
interacting with the dialog. Because most dialogs accept only a
few commands, it is customnary for the commands offered to a
user by a dialog to be presented as pushbutions rather than as
pull-down menus. If a dialog accepts more than seven com-
mands, consider putting some of them in a pull-down menu. See
the Limited Selection Size pattern for more guidance on this
issue.

Some dialogs must prevent the user from interacting with
the dialog’s parent window until the user is finished interacting
with the dialog Dialogs that prevent the user from interacting
with their parent are called modal dialogs.

GUI Design Patierns ®m 145

CONSEQUENCES

® The set of interactions a window can initiate does not have
to be coherent in order for the window o provide a coherent
visual presentation of its primary interaction,

s Modal dialogs can ensure that interactions occur in a partic-
ular sequence.

IMPLEMENTATION
The major considerations when designing a dialog are:

» Determine the details of presenting the interaction to the
user.

» Decide if the dialog will be modal.

» Determine which commands the dialog will accept and how
it will present them as pushbuttons.

The rest of this section concerns the presentation of buttons in
dialogs. The suggestions for button presentation are based on
common practice,

Place buttons that affect the entire dialog in a single row on
the bottom of the dialog or in a single column on the right side.
Some white space should separate those buttons from the rest of
the dialog. Figure 5.11 shows an example of a dialog box with
buttons on the bottom. Figure 5.12 shows an example of a dialog
with buttons on the right. Dialogs that have buttons in both
places are unusual.

There are some common labels that appear on dialog buttons,
Tuble 5.1 shows sote comimon abels and their usual meanings.

| x| mamdsf | camest]

AGURE 511 Problem notification dialog.

146 m CuarTeEr FIvE

AGURE 5.12 Password protection dialog

You should determine a standard order in which the buttons
will appear on the dialogs you design, If a dialog has an OK but-
ton. that button is customarily the first. If there is a Help bution,
that button usually appears last.

Place buttons that relate to only one part of a dialog in that
part of the dialog. Figure 5.13 shows an example of a dialog
that has a button that relates to only part of the dialog. In this
dialog, the button labeled "Background . . ." is related to the
Properties part of the dialog. It does not affect the course of
the entire dialog in the way that the OK or Cancel buttons do.
Something else to note about this button is that its caption ends
with an ellipsis (. . .). It is common to put an ellipsis at the end
of a button label to indicate that when the user presses the but-
ton another dialog will pop up 1o collect additional information

from the user.

Syl

I i=ced Widih
T 14|

Serif 12 N
Symbols -4 RE

AGURE 513 Sivle dialog

GU Design Patterns w 141

TABLE 5.1 Commaon Labels and Meanings

Label

Meaning

Ok

Cancel or
Dismiss

Heset

Apply

Close or

Help

MNext

Back

Buttons with this label represent a command that carries out the dialog's
intention. 1f the purpose of the dialog is 1o notify the user of something. a
button press indicates that the user has seen the notification and causes
the dialog 1o disappear. If the purpose of the dialog is to collect informa-
tion needed (o complete an operation, a button press indicates that the
provided information should be validated and the operation

should be completed.

Buttons with this label represent a command 1o abandon the dialog's
intention. When the user presses a button with this label. the dialog dis-
appears and aborts any operation that would normally be completed after
the user presses the dialog's OK button,

Buttons with this label appear on some dialogs that collect information.
They represent a command that resets the fields of the dialog to default
values. If the purpose of the dialog is to edit information that a program
already possesses, then when the user presses a button with this label, the
dialog restores its fields 1o the values they comained when the dialog
began offering values for editing.

Buttons with this label appear on some dialogs that collect informarion.
When the user presses an Apply bution, the operation for which the dia-
log supplies information completes as if the OK button had been pressed.
However, the dialog remains present, ready to reinitiate the operation
when the user presses its OK or Apply buttons,

A button with this label is used in place of Cancel 1o make a dialog go
away when there is no operation 10 be continued or canceled. Such but-
tons are fypically found on windows that provide & read-only view of
data, such as a graph genernted from a spreadsheet. When users are pre-
sented with a sequence of dialogs to guide them through a sequence of

operations, such as installation steps, the last dialog in the sequence typi-
cally has a Close button instead of a Cancel button because there is
nothing lefi to cancel

Buttons with this label represent a command that provides help on how
to use the dialog.

When dialogs occur in a sequence, they generally have a button with this
label that the user can press to move on to the next dialog.

When dialogs occur in a sequence, they generally have a button with this
label that the user can press to retum to the previous dialog.

CCHIiLH e

148 m Cuarrer Five

TABLES.1 (Continued)

Label

Meaning

Finish

Moress

P P

When dialogs appear in a sequence for the purpose of collecting informa-
tion for an operation, such as an installation, the last dialog in the
sequence prior to the operation will typically have a button with the label
Finish. When the user presses this button, the operation begins. Such a
dialog is usually not the last in its sequence, as there is typically a dialog
after the operation that provides informaltion about the operation'’s com-
pletion.

When the user presses a button with this label, it causes the dialog 10
increase in size and display additional information or fields. After the
user presses the button, its caption should change to <<Less.

When the user presses a button with this label, it causes the dialog 10
decrease in size and display less information or fields. After the user
presses the button, its caption should change 1o Mores>.

RELATED PATTERNS

Limited Selection Size Use the Limited Selection Size pattern
to decide if a dialog will have pull-down menus.

Window per Task The Supplementary Window pattern is par-
tially motivated by the Window per Task pattern.

GLI Design Patterns u 149

Stap-hwé'Stﬁp_'IMHnﬁom-'[ﬁ_dﬂﬂl_lﬂll]j

SYNOPSIS

Lead a user through the steps of a task where the GUI tells the
user what to do next, rather than the user telling the GUI what to
do next,

CONTEXT

Suppose you are designing a GUI for an airport kiosk that arriv-
ing travelers will use to retrieve information about hotels, restau-
rants, and points of interest around town. To get the desired
information about a particular point of interest, users will have 1o
provide specific information about what they are interested in
and where they are interested in finding it.

Many of the people who use the kiosk will be first-time users.
Maost will not have used it often enough to become expert in its
operation. Nearly all of the users will be unfamiliar with the area,

If a user is unfamiliar with an application and the problem
domain that it addresses, it's usually difficult or even impossible
for the user to guide the application through the performance of
a task. For this reason, vou decide to structure the user interface
so that it walks the user through the task. For example, upon
stepping up to the kiosk. the user sees the selection: Hotels,
Restaurants, Theaters... . I the user selects Restaurants, the kiosk
shows a map of the area and asks the user to touch a part of the
map that is of interest. The kiosk then shows a selection of cui-
sine types available in and around that area and asks the user 1o
touch those of interest. The kiosk then displays the map again,
showing the corresponding restaurants. The user may then pro-
ceed with additional steps.

The point of this example is that the user never has 1o worry
about figuring out the next step. The user always arrives at the

150 ® CHarTER Five

next step by following instructions or choosing the next step from
a selection the kiosk presents on its screen.

FORCES

® Users who are unfamiliar with a problem domain are
unlikely 1o formulate a set of steps to accomplish a task
within that problem domain.

= Users who are familiar with a problem domain are generally
able 10 tormulate sets of steps 10 accomplish 1asks within
that domain. However, if they are unfamiliar with the GUI,
they may encounter difficulty and frustration when they try
1o use the GUI to direct a program through the task steps
that they want Lo follow.

» Users may not want to expend the effort required to leamn a
problem domain or a GUL, especially when they deal with
the problem domain infrequently and the GUT even less
often.

» Users who lack confidence in their knowledge of a problem
domain or GUI may be uncomfortable leading a computer
program through the steps of a task.

» If the GUI is structured to guide the user through the steps
of a task, it relieves the user of the burden of formulating the

steps and of leading the program through them,

SOLUTION

Organize the GUI so it guides the user through the steps of a task
one step at a time. Each step should include clear instructions.
The amount of input required from the user should be mini-
mal in erder 1o maintain the perception that the computer is
guiding the user For this reason, it is preferable that when input
is required, it be accomplished as a simple and reasonably sized
selection, rather than by asking the user to perform data entry.
The steps of a task may branch. This means that there may
be more than one choice for some steps. When possible, the GUI
should infer the next step from information the user has provided

GUI Design Parterns m 151

in the normal course of performing a previous step. If the user
must be consulted to determine the next step, the GUI should
provide the possible choices for the next step to the user as a
selection,

The most common method of presenting the selection of a
next step is with a few buttons. If the number of possible next
steps is large. consider an alternate presentation, such as a list, or
make the selection hierarchical.

Sometimes the nature of the application domain suggests an
alternate way of presenting the selection of a next step. For exam-
ple, suppose that the application is a tool to guide a technician
through the repair of a mechanical device. The GUI may ask the
technician 1o point at the part thar appears 1o be defective on a
diagram of the device. The GUI can infer the next step based on
the part indicated,

In applications where the users are likely to be tamiliar
with the problem domain, a graphical map of the task’s steps
can be presented off to the side or at the bottom, The purpose
of the graphic is to give the user a sense of where he or she is in
the task.

Following the Explorable Interface pattern, you may decide
to provide a button or other GUI component that allows users to
return to the previous step. If the application is a kiosk where
users are likely to leave and arrive during any step, it may be bet-
ter to provide a button that returns the GUI to the first step or its
initial state.

CONSEQUENCES

s Using the Step-by-Step [nstructions pattern relieves users of
the burden of formulating a sequence of steps to perform a
task or to guide a program through those steps.

® A step that requests the user to enter an excessive amount of
information can intimidate the user. Such steps should be
broken into multiple steps.

® Users may grow impatient if there are too many steps in the
task. One way of handling this is to allow users to stop and

152 m CuHaArTER FIVE

continue later from where they left off. However, this solu-
tion is not appropriate for all environments.

» Highly experienced users mav not want to work through
individual steps, and may grow impatient.

RELATED PATTERNS

Selection Implementations of the Step-by-Step Instructions
pattern usually rely heavily on selection interactions to acquire
information from users,

Supplementary Window Sometimes the Step-by-Step
Instructions pattern is used to supplement a GUI that requires
the user to lead the program through tasks. Wizards that are
available in popular word processing and spreadsheet pro-
grams are an example. When the Step-by-Step Instructions pat-
tern is used to design a supplementary GUI. it is usually in the
context of a dialog.

Organizational
Coding Patterns

Accessor Method Name (155)
Anonymous Adapter (159)
Symbolic Constant Name (165)
Define Constants in Interfaces (171)
Switch (175)

Extend Super (179)

Intention Revealing Method (183)
Composed Method (185)
Conditional Compilation (191}
Checked versus Unchecked Exceptions (195)
Convert Exceptions (20])

Server Socket (207)

Client Socket (215)

153

154 ® CuarTER SIX

The patterns in this chapter demonstrate how to organize your
code in ways that make it easier to read and maintain. An under-
lving principle for many of these patterns is that simple code is
easier 1o understand and is less likely to contain bugs.

Organizational Coding Patterns w 155

Accessor Method Name [Grand99)]

SYNOPSIS

Use names and signatures for accessor methods that are easy to
read and conform to the JavaBeans specification.

CONTEXT

Good object-oriented design demands that classes encapsulate
the representation of their attributes, requiring other classes to
access those attributes through accessor methods. Code thart calls
an object’s accessor methods is easier to read if the accessor
methods follow consistent naming conventions and have consis-
tent signatures. This level of consistency also makes it easier to
write correct code.

The JavaBeans specification specifies a set of rules for the
names and signatures ol accessor methods that allows the
java . beans . Introspector class to mitomatically discover a class’s
accessor methods, Though intended for accessor methods that cor-
respond to the properties of beans, the naming rules set forth by
the JavaBeans specification can be used for all accessor methods.

FORCES

= If the name of a class’s method does not suggest the method's
purpose, you must dig further into the method 1o determine
it purpose. If your goal is to look at the class to determine its
overall structure, digging into methods can pose a distraction.

= It’s easy to read code that calls accessor methods if the meth-
ods are all consistently named so that their purpose is clear
from their names. If the purpose of a method is obvious
from its name and signature, then there is no need for some-

Organizational Coding Patterns w 155

Accessor Method Name [Grand99)]

SYNOPSIS

Use names and signatures for accessor methods that are easy to
read and conform to the JavaBeans specification.

CONTEXT

Good object-oriented design demands that classes encapsulate
the representation of their attributes, requiring other classes to
access those attributes through accessor methods. Code thart calls
an object’s accessor methods is easier to read if the accessor
methods follow consistent naming conventions and have consis-
tent signatures. This level of consistency also makes it easier to
write correct code.

The JavaBeans specification specifies a set of rules for the
names and signatures ol accessor methods that allows the
java . beans . Introspector class to mitomatically discover a class’s
accessor methods, Though intended for accessor methods that cor-
respond to the properties of beans, the naming rules set forth by
the JavaBeans specification can be used for all accessor methods.

FORCES

= If the name of a class’s method does not suggest the method's
purpose, you must dig further into the method 1o determine
it purpose. If your goal is to look at the class to determine its
overall structure, digging into methods can pose a distraction.

= It’s easy to read code that calls accessor methods if the meth-
ods are all consistently named so that their purpose is clear
from their names. If the purpose of a method is obvious
from its name and signature, then there is no need for some-

Organizational Coding Patterns w 157
vold setMimsy(boolsan walue)

If the value of the Foo attribute is an array of type Bar then the
signature of its method 1o feich a reterence to the entire array is:

Bar(] getPoo()

The signature of its method to fetch an individual element of the
array should be:

Bar getFooiint ndx)

The signature of its method 1o set value of the Foo attribute to a
different array should be:

wold setPFoo{Bar(] wvalue)

The signature of its method to set an individual element of the
Foo array should be:

vold setFoo{Bazr(] wvalus. int ndx)

Note that set methods do not return a result, If they need to
complain about a value, they should throw an exception.

CONSEQUENCES

= Programmers can understand the purpose of accessor meth-
ads that conform 1o these rules without consulting the
method’s documentation or source code.

s Programmers can assume that any method that follows the
naming conventions for accessor methods is very inexpen-
sive 1o call, because this is usually the case. Such assump-
tions can be very expensive when they are wrong.

IMPLEMENTATION

Although the naming conventions specified in this pattern
description are Java specific. using a consistent naming conven-
tion for accessor methods is applicable to most object-oriented

languages.

Organizational Coding Patterns w 159

Anonymous Adapter [Grand39)

SYNOPSIS

Use anonymous adapler objects to handle events, This simplifies
the code and allows code that relates to the same event source 1o
exist in the same pan of the source code,

CONTEXT

If an object is coded so that it directly receives events from mulu-
ple other objects, its code may be more complicated and difficult
to read than necessary. Consider the following listing:

clase ActionDialogMgr l=pliessnts Acticnlistaner |
private JBulton OERULEon:
privare Jhutvon cancelBot b
privats JButton applyButLan

hotionhialoglgr il |

OiEgrton . addior ionlistenar (ehin)
cancalBotton, pddiet lonl i stenar (this))
applyBot ton . addiet Lonl st aner [thia) §

I/ constrmctor)

pabilic wold acticaPerforoesd(ActionBvent evt) |
Object evantSourve = ovt.getSource();
if [evenrtfource == OEButtom) (
dolIti)
dialog. sstVigiblafalss)
1 alme if (evantdource == cancelButton) |
dialog.setVislble|falea)
) alsw if (wvantSource == applyButton] (
dalt(}y
b IR 14
Y or actionberformed (Aot LonBvant |

i ofd clags Actjonlialoghgr

160 m CuarTer Six

This listing shows a class whose instances receive action
events fram three different JButton objects. When any of those
JButton objects want 1o send an action event, they call the
ActionDialogMgr objects actionPer formed method. Because its
act ionPerformed method is responsible for handling events from
three different objects, it is cluttered with a chain of { £ state-
ments. Also, its logic is less cohesive and more difficult 1o under-
stand than it would be if the method were responsible for
handling events from only one object. The complexity of methods
such as these increase linearly with the number of event sources
for which they are responsible

Another difficulty in understanding the Act ionDialogMg:
class is that the code that creates the buttons and the code that
handles events from the buttons are located in two different
places. The code that creates the buttons is located in the class’s
constructor. The code that handles events from the buttons is
located in the actionfer formed method. Tt would be easier 1o
understand if all of the code related to creating a button and han-
dling its events were located in the same place.

A simpler and more scalable approach is to use anonymous
adapter classes 1o handle evenis. The following listing shows the
ActionDialogMgr class reworked to use that approach.

class Acticnlialoghgrd o
private JButron UEBuLTan;
prlvate Jhultan cancelButbon:
private JEulticn SpplyButtion;

ActionDlaloghgra {1 |

EByttoo = new JEottao(*0K®)p
OEBut ton . addbet lonlistener {new Aot lonllstenar() ([
public vold soticoPerformed (AetionEvent save] |
doIt |}y
dialog. mtVisiblaifalea)
} 1 aerionfer farmsd (Aot i anEvent |
b}a

cancelButton . sddiot ionll stener (new Aotionlistessr{} {
public vold sotionFerformed (Aot ionEvent svi) |
dalog.setVisible | fales)
} /¢ actilonPer formed {ACoEionEwent |
3]

Orpanizational Coding Patterns w 161

I ¢4 conatructor(|

i /¢ elasa Actlonbialogegrd

FORCES

s Methods that handle events from multiple sources are more
complicated than methods that handle events from a single
SOUTCE.

s When the code for setting up an event source is near the
code that handles events from that source, the code is easier
for people to read and understand.

» You can use an adapter object to receive and handle events
from event sources. The advantage to using adapter objects
is that vou can create a different adapter object 1o receive
from each event source. If an adapter object receives events
from only one object. then the adapter’s event-handling
method is not concerned with identifving the event source.

= To ensure that an adapter object receives events from only one
object. it is not sufficient that the object which creates the
adapter only registers it to receive events from one object. The
adapter object must not be accessible by any other objects.

s Making an adapter class accessible by only the class that
instantiates it helps to ensure that its instances are used only
in the manner that is intended. This is because the fewer
places from which the class is accessible, the fewer situations
there will be for a programmer to use the class incorrectly.

= Private inner classes declared as members of their enclosing
class are accessible to their enclosing class but not 10 outside
classes. However, such classes can be accessed by any code
in their enclosing class.

® Private inner classes declared within a method are accessible
only within the same block of the method in which they are
declared

s Putting the definition of an inner class in the method that sets
up its event source allows the code for setting up the event
source and handling its events to be as close as possible.

162 m CuarTeEr Six

= Adapter classes that handle events are usually very simple
and short. Typically, they handle events by calling a method
in the enclosing class,

= If an adapter class is used in one place only, it does not need
to have a name. If an adapter class is very simple, giving it a
name it does not need supplies someone reading the class
with information that may only distract from the class’s true

purpose.

SOLUTION

Rather than have event-handling objects receive events directly,

have them receive events indirectly through anonymous adapter
classes,

The following listing shows a class whose instances are the
direct recipient of its own events,

class MyClass lopléomsnits Poollstener [
- myEruat Bource . sddPoal.lstenes {chin) ;
public wold handlsFoo(Fookvant svt) {
Y i handlePoo
I elass MyClass
Instead of directly registering themselves with event
sources as event listeners, as shown in the preceding listing,
objects should register instances of anonymous adapter classes

to receive events on their behall, The listing that follows illus-
trates this technigue

clags MyClags |

m.lﬂruﬂiltﬂrtn— FooListenar{) f
public wold hasdle¥Foo|Fookvant evi) (

} ¢ hapd] efoo | fooEeent |
bi:

b ¢/ clasa MyTlass

Organizational Coding Patterns ® 163

In this listing, the class registers an instance of an anony-
mous adapter class as a listener for Foo evenis from myEvent-
source. The definition of the anonymous class and the
registration of its instances as event listeners can appear in the
code right next 1o the rest of the code that creates and sets up
the event source,

CONSEQUENCES

» The event-handling methods of an adapter object that are
dedicated to a single event source can be free of any tests
for the identity of the event source. Also, because the
adapter’s event-handling method only contains logic for
handling events from a single source, it is simpler and
maore cohesive.

» Because the definition of the anonymous adapter class
appears in the code that registers its instance as an event
handler, the code to handle events from an object can be
adjacent to the code that sets up the object.

= The use of anonymous adapter classes increases the number
of classes in a program and may increase the number of
objects that it creates. Both of these reduce performance, but
not usually enough to notice.

* Some adapter classes must use state information to deter-
mine how to handle an event. If events from different
sources require the same type ol state-sensitive handling,
then using a different adapter class for each event source
results in code duplication.

RELATED PATTERNS

Adapter The Anonymous Adapter pattern uses Adapter objects.
The Adapter pattern is described in Volume 1.

Mediator [f handling events from multiple sources involves
managing or using commaon or interrelated state information,

164 m CHAPTER SIX

the Mediator pattern described in Volume | provides a bewer
way 1o handle the events.

Hashed Adapter Objects The Hashed Adapter Objects pattern
provides a more flexible way to manage event handlers than
the Anonymous Adapters patiern.

Organizational Coding Patterns w 165

Symbolic Constant Name [Grand99]

SYNOPSIS

Use symbolic names for constants. A meaningful name makes the
purpose of the constant clear 1o someone reading the code.

Symbolic names can also simplify maintenance.

CONTEXT
Consider the following piece of code:
private OutputStemas ouf |

public woid writshction|lar action] throws j&va.lo.lOExcaption |
Lf (mction <3 || sotiom »11) |
throw new IllagallrgesentExsception|String. valusOf (sction))
I
switch (actiom) {
cana &1
out . writa('T'1;
break)
caps 9
out writel D" i
break
cass 10%
out wricel *F iy
break;
¥ /¢ swltch
}oord writakerioniine)

It is not possible to tell what the purpose of this piece of code is
just by looking at it. All that you can really tell from reading the
code is that if the value passed into the method is 6, 9, or 10, then
it will write a byte that contains a particular value. The code con-
tains no clues about what all of that means. Compare it to the fal-
lowing piece of code:

private DutputStream oyt
1 ACT ione

Organizational Coding Patterns w 165

Symbolic Constant Name [Grand99]

SYNOPSIS

Use symbolic names for constants. A meaningful name makes the
purpose of the constant clear 1o someone reading the code.

Symbolic names can also simplify maintenance.

CONTEXT
Consider the following piece of code:
private OutputStemas ouf |

public woid writshction|lar action] throws j&va.lo.lOExcaption |
Lf (mction <3 || sotiom »11) |
throw new IllagallrgesentExsception|String. valusOf (sction))
I
switch (actiom) {
cana &1
out . writa('T'1;
break)
caps 9
out writel D" i
break
cass 10%
out wricel *F iy
break;
¥ /¢ swltch
}oord writakerioniine)

It is not possible to tell what the purpose of this piece of code is
just by looking at it. All that you can really tell from reading the
code is that if the value passed into the method is 6, 9, or 10, then
it will write a byte that contains a particular value. The code con-
tains no clues about what all of that means. Compare it to the fal-
lowing piece of code:

private DutputStream oyt
1 ACT ione

Orpanizational Coding Patterns m 167

tion that makes names of constants look different from
names of variables.

= A common naming convention for constants is to make the
letters of the name all uppercase, separating the words with
underscores. Java inherited this convention from C/C++; it's
widely known and is older than Java itself.

SOLUTION

Use meaningful, symbolic names to represent constants in code.
Avoid using literal constants to directly represent constants in code.

Make it obvious to people reading the code that a name rep-
resents a constant by making all the letters in the name upper-
case and separating words within the identifier with underscores.
For example, instead of writing

folurn celaius*l. B » 33,
wrile
final statlc double CONVERSION FACTOR = 1.8

ﬁuﬂ.ﬂu * CONVERSTON FACTOR « 11;

CONSEQUENCES

» When meaningful, symbolic names are used to represent
constants in code, people reading the code know the mean-
ing of the constant.

® The use of symbolic names to represent constants can
reduce the effort required for maintenance. If the value of a
constant must be changed and a symbolic name is consis-
teritly used to represent the constant, then only the definition
of the symbolic name has to be changed, If a symbolic name
is not used 1o represent the constant, then a programmer has
1o find every occurrence of the constant and change it. 1f
what are logically two different constants have the same
value, it is easy for a programmer to change some values
that should not be changed,

168 ®m CuarTER SIX

= [t is entirely too easy for programmers to forget to uppercase
names that represent constants. When programmers forget
to use this naming convention, they obscure the name's
meaning. Sometimes such mistakes find their way into a
published APL. When this happens, people are stuck with the
mizleading names for a long time. For example, the core
Java APl includes the class java.awt .Color. It defines a
number of color constants with names like red, brown, and
white that are all lowercase.

IMPLEMENTATION

The usual way to define symbolic names in Java is as final static
variables,

Some constants are commonly represented as literals in Java
programs. For example, the lowest valid index of an array is 0.

It is very common to see a 0 in the heading of a statement to
indicate the lowest index of an array. Because this practice is
widespread, there is usually no confusion about the meaning of
the 0 in that context.

If an object is used as the value of a symbolic name that is
supposed to represent a constant, then the object should be
immutable. Strings are a common example of immutable objects
that often are used this way.

JAVA APl USAGE

The class java.awt . event . XeyEvent defines a number of sym-
bolic names for constants that represent different keystrokes. The
symbolic names allow you to write understandable code that
checks for specific keystrokes. Instead of writing

il [keyEvent.get EsyCodeil)s=0x70)
to determine if the F1 key was pressed, you can write

AF [kayEvent .getEeyCods [| EayEvent . VE_F1)

Organizational Coding Patterns w169

RELATED PATTERNS

Immutable The Immutable pattern found in Volume 1
describes other uses for immutable objects.

Switch Code that uses the Switch pattern should also use the
Symbolic Constant Name pattern.

Organizational Coding Patterns u 171

Define Constants in Interfaces [Trost98]

SYNOPSIS

Avoid having to qualify symbolic constant names with the name
of the class that defines them. Define them in an interface so that
any class that implements the interface can use the symbolic
names withoul any qualification,

CONTEXT

Source code that refers to constants defined in other classes must
gualify the name of the ¢constants with the name of the class that
defines them. For example, consider the following code:

if {sctiomchotion MIN_ACTION || sctiomrAction.MAX ACTION) (
Lhirow few T11legalirgumentExceptloniSuring. valuedf jactiony) ;
R
switch [actiam) |
cass Aot lon . FTART _ACTTON:
out owrite(dction. START COMMAND) |
sk
cass hotion . PATEE RCTTON:
cut .wrice (Actlon. FAUSE CONMAND) j
break|
cass Action.STOF _ACTION:
out owrite (Action. STOF_COMMRED) ¢
break|
bodr ewitch

This listing shows symbolic constants used in comparisons
and case labels. All of the symbaolic constants are prefixed by the
name of the class that defines them,

FORCES

» Having to qualify the constant with the name of the class
that defines it distracts someone who is reading the code
from the meaning of the code.

172 & CHAPTER SIX

» Many programmers find that typing the class name before
each constant s annoying. They feel it is an imposition to
have to type a name that implies the intent of the constant,
without also having to type the additional kevstrokes to tell
people where the name came from.

w If a class implements an interface, it inherits the constants that
the interface defines. Because it inherits them, programmers
can refer to the name of a constant defined in the interface
without qualifying the constant with the name of the interface.

e Some people prefer 1o see uses of constants defined in inter-
faces qualified by their interface name. Unless & program-
mer is using a tool that will automatically insert the interface
name, it is not possible to reconcile this with programmers
who do not want to type the extra keystrokes.

SOLUTION

Define constants in an interface like this:

Interface AotionlF |
v Aorions

public static final int MIN_ACTION = Xy
public static final int ROTATE LEFT ACTION = }j
public statisc fisnal int ROTATE RIGHT ACTION = 4)
public static fimal int MAEN OF ACTTON = Sy
public static fisal int START ACTION =)
public static final int UP_ACTION =7
pablic static final int DONN ACTTON = i
public statio final ink PAUSE _ACTION = By
pablic static final int STOF_ACTION = 10
public static final Lok ALANM _ACTION = 11y
public static final int WAY ACTION = 11y

M Command Byte YValoes

public static final ink ETART COMMAND = *T°;

pablic statlc final int PAOSE OOMMAND = “0°;

public static final ine BTOP COMMAND = “F)
b} f¢ interfsce ActionIF

If a class that uses these constants is declared to implement
the interface, then the class can refer 1o the constants without
qualification like this:

Organizational Coding Patterns & 173

class Interfacelxasple lmplesants AotloalF (
privats OutputStream out,

public void writeAction(int action) throws [0Exveptlioo |

if (action<MIN ACTION H ActiohsHAY ACTION) |
Sering mag « String.valucQf lactlon)
throw naewr 111 egalhsgumentExcept Lon {Reg)
(Y
awitch jactionml o
cass ETART ACTION:
out write FTART COMMAND) §
Draa
cass PAOSE ACTION:
out . wrltes (FAUSE COMMARD) §
Lebg T
cass ETOF ACTTION:
out wrlte{ STOF OOMMAND)
break |
i ¢ wwitch
i Ay writekction {inc)
i ¢ cglass Interfacelcanple

CONSEQUENCES

» If a class is declared to implement an interface, then the
class can refer to variables declared by the interface with-
out qualifying them, unless their name conflicts with a
name Lhat the class inherits from a superclass or another
interface.

If a constant’s name is not qualified by the name of the inter-
face thal defines it, programmers may have to go 1o more
trowble to find the definition of the constant, depending on
the tools they are using.

o When a class implements an interface that defines constants,
the . class file that a compiler produces for it includes the
values of the interface’s constants. Compilers do not include
those values if a class merelv refers 1o an interface and does
not implement it. For this reason, the use of Define
Constanis in the Interface pattern can cause an increase in
the size of the compiled version of a class,

174 ® CuarTER SIX

JAVA API USAGE

The interface java.awt . swing.SwingConstants defines constants
for use by classes that use the Swing package.

RELATED PATTERNS
Symbolic Constant Name This pattern applies only to classes

that use symbaolic names for constants.

Organizational Coding Patterns w 175

Switch [Grands9)

SYNOPSIS

Select a piece of code to execute from multiple alternatives based
on an int data value using a switch statement,

CONTEXT

Suppose you have some code that consists of a chain of 1 state-
ments like this:

if {action == ROTATE LEFT ACTION) |
out . write | LEFT COMMAND] |
} alme Lf (sctiom =« ROTATE RIGHT ACTION) {
out write (RIGHT CONMMAND) ;
b sles if {(action == WARN UF_ACTION) |
ouk . write | START OCOMMAND) |
out . write | FAITEE OOMMENT]
} alse Lf (actlon == START ACTION) |

This code is readable. However, it can be made even more so
by simplifying the code.

FORCES

= A switch statement can replace a chain of L1 statements If
the boolean expression in all of the i f statements tests the
same int value for equality with a different constant,

= Because the equality tests performed by a switch statement
are implicit, someone reading a program that contains a
swireh statement doesn't need to read through full-blown
expressions. They can just look at the constants.

= Some switch statements are very long because they must
account for a large number of cases. Some coding standards

176 m CuarreEr Six

recommend or require that methods remain under a certain
length. If a swirch statement exceeds that length all by itself,
you will want to break it into smaller pieces. The only rea-
sonable way to break a switch statement into smaller pieces
is by using { f statements to check for ranges of values.

= It is a common mistake for programmers new to object-
oriented design to use switch statements when polymorphic
method calls would be more appropriate. Where appropri-
ate. polvmorphic method calls are less bug prone and are
usually faster. The following guidelines can help:

2.

If & switeh statement is used to distinguish different
kinds of objects, a polymorphic method call is gener-
ally a better implementation choice than a switeh
statement.

When there is an action 1o select based on the value
of an integer, the implementation choice should
depend on the nature of the integer. 1f the sole signif-
icance of the integer is to imply an action, it's best to
use & polymorphic method call, This is performed
with a set of classes that either extend a common
superclass or implement a common interface. Each
class encapsulates a different action in a method that
is inherited from the interface or superclass and
overridden. To indicate that you want an action per-
formed. you provide the code that initiates the action
with an object that encapsulates the action, rather
than an integer that implies the action. The code
then simply calls the object’s method that performs
the action.

. When the integer is a product of a computation, it is

usually quite reasonable 1o use a swirtch statement 10
select an action based on the integer.

. When the integer does not come from an object, it is

always appropriate to use a switch statement to
determine the tvpe of object to construct. For exam-
ple, suppose a program has to read flat-file records

that contain an integer record tvpe field. It's appro-

Crganizational Coding Patterns w 177

priate (o use a switch statement in this case 1o
determine what kind of object to construct for encap-
sulating information in that record.

SOLUTION

When the next piece of code to execute is determined by verifying
the equality of a given {nt value to a number of constants, use a
switch statement. Here is what the code segment shown under
the “Context” heading looks like with its chain of 1 £ statements
rewrtitien as a switch stalement,

switch {(action) {

cams ROTATE LEFT ACTION)
out , wrd te { LEFT COMMAMI)
brank

casa EOTATE _RIGET ACTION:
b wy FTe (RIGHT COMMARD] §
break |

caps WARN TP ACTION:
it wTite |START OOMMANG |
iput o [e { PAUSE _COMMAND] |
treak,

caps START ACTION:

CONSEQUENCES

= Because switch statements impart more structure to the
selection of the next statement 1o execute than a chain of Lt
statements, their intent is easier o understand.

w [t is casier for someone reading the code to find the state-
ments associated with a particular value, because the values
are not buried in expressions.

» Most compilers are able 1o generate code for switeh state-
ments that directs the flow of control to the appropriate state-
ments in a small, fixed number of instructions. Though it is
possible for a compiler to do the same for an equivalent chain
of 1 f statements, some compilers may generate code that exe-
cutes the 1 £ statements in sequence, This makes the time

178 ®m CuarTER SI1X

required to direct the low of the control to the appropriate
statements proportional to the mumber of i f statements.

JAVA API USAGE

The class java.awt . EventQueue has a method called postEvent
that can be called to queue an event for later delivery. The
method provides special processing for some types of events, It
uses a switch statement Lo perform special processing based on
event codes,

RELATED PATTERNS

Hashed Adapter Objects switch statements associate Lot val-
ues with pieces of code. The Hashed Adapter Objects pattern
associates objects with pieces of code.

Symbolic Constant Name Code that uses the Switch pattern
should also use the Symbolic Constant Name pattern.

Polymorphism In many situations, polymorphic method calls
are a more appropriate technique than switch statements.

However, people with a background in procedural program-
ming who are new to object-oriented techniques often use

switeh statements when polymorphic method calls would be
more appropriate.

Orpanizational Coding Patterns m 179

‘Extend Super [Beck97]

SYNOPSIS

Implement a method that modifies the behavior of a superclass’s
method by calling the superclass’s method.

CONTEXT

Suppose you want to ensure that a dialog is always on top of all
other windows when it is made visible. You can implement that
behavior by overriding the servisible method that it inherits in
order 10 extend the behavior of the inherited method like this:

public void setvisible(boolean bl {
wuper -antVisible (b))
if Ib)
tofromt();
) i metvisible|boolean)

FORCES

s You want to override a method in a way that extends rather
than replaces the behavior of the inherited method.

» The additional behavior will occur before and/or after the
behavior of the superclasss method. It will not occur during
the behavior of the superclass’s method.

» The superclass does not have any hooks or other provisions
for extending its behavior in the desired way and vou cannot
maodify it in that way.

® You want to extend the superclass’s behavior in the simplest
possible way.

= Making a method rely on a superclass’s method creates a
dependency that may increase the maintenance cost of the
class and its superclass over their lifetimes.

180 = CHarTER SIX

SOLUTION

To override a method named foo in a way that extends rather
than replaces the behavior of the inherited method, use the con-
struct super. foo () 10 have the overniding £oo method call the
overridden foo method.

The call to the overnidden method usually occurs near the
beginning or end of the overriding method.

CONSEQUENCES

s Implementing a class 1o call its superclass’s methods is a
perfectly reasonable thing to do. However, it does create a
dependency between a class and its superclass. If the
behavior of the superclass is stable, this is generally not a
problem.

= [t is important to be aware of the dependency to avoid a
change 10 the behavior of the superclass that breaks its sub-
classes, If you control the superclass and have access to its
source, then vou should put a comment in the overridden
method to alert programmers who maintain the code of the
dependency. If the superclass comes from a third party, be
careful 1o rely only on explicitly documented behavior.

= The Extend Super pattern is usually used to prolong the
behavior of methods that were not designed specifically 10
be extended. This can sometimes result in subtle bugs when
the cade that extends the behavior uses a resource in a way
that conflicts with the use of the resource by the superclass’s
implementation.

JAVA APl USAGE

The java. io.LineNumberfeader class has a method named read.
Its read method extends the behavior of its superclass’s read
method by adding counting logic to keep track of the current line
number.

Organizational Coding Patterns u 18]

RELATED PATTERNS

Composed Method The Composed Method pattern describes
the more general case of composing the behavior of a method
from the behavior of other methods.

Template Method The Template Method pattern described in
Volume | provides a way to design a class that plans for its
behavior to be extended by a subclass’s methods. It provides
more flexibility and control over how a subclass extends the
behavior of its superclass than the Extend Super pattern at
the expense of greater complexity, In particular, the Template
Method pattern allows behavior of a subclass to occur in the
middle of the execution of the superclass’s methods. The
Templare Method pattern can also be used 10 force a subclass
to extend a superclass in predefined ways.

Organizational Coding Patterns ® 183

Intention Revealing Method [Beck97]

SYNOPSIS

If the intention of a call to a general-purpose method is not obvi-
ous, define a method with a meaningful name to call the general-

purpose method.

CONTEXT
Consider the following line of code:

if [(LOCK FILE. creatalewFils{)) |

Looking at this line of code, you decide that its meaning is not
clear enough. You change the line to read:

if iCreatalock¥ila (3} |

You also define the method Createlockrile like this:

fus
* Croate the lock files LI L doms not already exist.
* proturn true if the flle wad created|
falas 11 it already sxisted.

L
privats boolesn CreatalockFile () |

raturn LOCK FILE, createdewrilai);
} F CreatelockFile ()

FORCES

® The intention of a call to a general-purpose method is not
always self-evidem, especially if the method is called for its
side effect. If a general-purpose method is called for the pur-
pose of returning an object, the name of the variable to
which the object is assigned can provide enough of a clue
about its purpose.

184 m CuarTER SiX

s 1f the meaning of a line of code is not obvious, you can make
its meaning clearer by writing comments. However, many
programmers do not like to read or write comments.
Therefore, the meaning of code should be as clear as possi-
ble without comments.

SOLUTION

Define a method with a meaningful name to call a general-
purpose method. Replace the call to the general purpose method
in the class’s other methods with a call ta the new method.

CONSEQUENCES

= The meaning of the call 1o the general-purpose method is
easier to understand.

s The implementation ol the operation encapsulated by the
intention revealing method is less accessible. Instead of it
appearing in line, someone reading the code has to flip o
the definition of the method to see its implementation.

JAVA API USAGE

The class java. awt . EventQueus contains a statement that reads:

if (ersntJusoaidstenar i= mmllj
svantJusgalistaner . svant Fosted (| thaFwant | |

The meaning of this statement is not obvious. The class
wraps the statement in a method with a meamingful name:

protected wold ootifyPvent(usuallstensrs (AWTEvent thafvent) (
LI [evenbiOusgplLisraEnar | o null]
oventDuesel)l s tener avent Postad [thaEvent] |

RELATED PATTERNS

Composed Method The Composed Method pattern provides
other reasons for moving code into a separate method.

Organizational Coding Parterns m 185

L
= e

Composed mwmiaﬁil;, =

»

SYNOPSIS

Reorganize methods that are too large to easily understand into
smaller methods.

CONTEXT
Consider the following lengthy piece of code:

LangDialog (Frame parant] |
aupees [parent, “Banguetl Roos Reserval (on® ||
BanguetMedintor sediator « pew BanguetiMediator ()
Containes conteniPana = geiloniencPane!] s

FlowLayout flowlayout

flowLayouts new Flowlasyout (Flowlsyout . CENTER; 20, %))
Jranal disposicicnPans]l = new JPanal | flowlayoat))
Jhutton ckBetton = new JBubton(=0K"))

msdlator . cegisterOkiutton (okButton))
disposit ionFansl . sdd (okButton) ;

Jhutton cancalBlgtton = new JButton(*Cancel=®))
dispositionfansl . addicancelButioniy

contant Pane . sdd [dlepoalieionPanel, Bardariayout . SBO0THY

JPanal bodyPans]l = new JPansal (new Borderlayoot(3.5})j
badyFanel .. add (new JEeparator(), Borderlayout.NORTH))
Jranel mainPanel
sainfanel= new JPanel(new Bordeslayout(5$,.3))1)
i infenel . add (createlateTimaFanal (mediator) ,
BordarLayout .WEST} |
mainPanel . add (¢Teatafervicefanel (medistor) ,
Bordariayout . CENTER) §
gtring fooda(]l= ("Roast Baef®. *Egg Rolls®, "Fhish Kabob®,
"Burritca™, "Lasagna™, "Hsa”, "Veal Marsalas",
“Ssurbratan®, *Beef Wellington®,
"Mesguite Chicksn");
Jhist FoodList = new JLise{foods);
int mode = ListSalectionModel MULTIFLE INTERVAL SELECTION;
foadLipt . gt Balect { oadlods (moda) §
focdList .. setVislblaRowCount (7))
madiator. raglsterfoodidat (foodlist))

186 m CuarTER Six

mainfans] . add [focdlient, Boardarlayout.EAST))
bodyFanal .sdd (mainfennl, Borderiayout . CEITER)
bodyPanal . add (new JEeparator(). Borderlayout . SOUTH))
conteant Fane . add (bodyFanal, Bordariayout .CENTER))

Jranal topfanal = pow JiFapal{pew Borderlayoot(lO, Sijy
Jrassl countPansl;
countFenal = new JPanall);
cognt Panal .add | new Jlabel | "Besber of Pecple (2%-16008):™))¢
JraxtFilald countField = few JTextFialdidl)
madlator . ceglatarPfespleCoant Flald (countFleld) ;
countPansl . add {countFiald))
topPanal . add |count Panel, BordarLayout .WEST);
contentFane . add (topfanal, Borderlayout . BORTH) §
pack!j;

b 4 conatructor |Frase]

This listing shows a constructor that contains most of the code
that builds the contents of a dialog. The code is 100 long for
someone reading the code 1o understand quickly. The lollowing
listing shows code that performs the same function but is broken
down into smaller, easierto-understand methods.

Banguetfsssrrationbialog | Frass parent) |
stiper (parent, “Bancpuet Hoom Reservation®)|
Hangquetiedlator mllator = new BampuotMediatar ().
Contalner contentPane = getContentPaned))
contsat Fane . add (creatabisposit lonPanel (medistor],
BorderLayout . BOUTH] §
content Fans . sdd (createBodyPans | (medistor),
Borderlajout . CENTEN]
contentPFans . add [createTopfanal (esdiater), Borderlayout . NORTH)
pack i
b) conskructor | Fraees]

{4 ereate pans]l with Of and Cancel Buttons

privats JPansl creataDisposivionPansl (Bacquetdediator mediscor) |
JPanel g
p o oot JPabe] (e Tl owlayout (Flowlayout CENTER, 40, Sjhig
JHgLron okBucton = fiew JBucton 0K
modliator.reginterOkiutLon (okBuLtonl J
poniid [oxBot tan) ¢
JButton caprelButiion = nees JHukfon(*Cancel®])
p.add icancelButeon)
FELUET P

} /S createlispoait ionfansl)

I/ creats top panal
privates JPanal cresateTopPanel (BengquetMedistor medistor) |

Organizational Coding Patterns » 187

JPanal Lap = mew JPanal inew BorderLayout (10, Sif:

SEanel oountPanel;

count Pane] » pew JPane] ()

count Pane] . add inew Jlaks] | *Runber of Feople (3%-1600% 90},
JTextField countFleld = new JTextFieldid).

medtator. regiater FéopleCoumt Flold| cooneFleldi @

count Penel add{countField]

top. add (countPanel . Borderbayour WESTI

return Lo

¥ /) ereateTopPanel (]

if create pans] that will be the body of the diaiog

privats JPanal cresteBodyPansl (BanguetMediator mediator) (
JPame] DodyPanal = oew JPanol inew Borderlayout {5,510
Bk Parie | . Akl | sew JEeparaton (1, Borderlayout NORTH]
bodyPane] add | creatalainfensl (medlstor), Borderlayout CENTER)
bodyPanal . add {new JEepararors (), Borderlayout SOUTH 1
return Bodyianel

P/ crestelodyPanal [}

{f creats saln pann) that allown slectlon of Lhe bBarcquet Astalls
private Container creaatadsinPansl |BangostMedistor mediator)
<Fanal mainfanal ;
mainPanel= Tew JPanel (new Borderlajyouc (5 3k] ¢
malnPanel . add]creatabat T lmeFanel (medlator) ,
Border Layout (HEST)
mainfanel add{croeatelsarvicefane] (mediator)
Borderlayout , CENTER) |
String loodafl= | "Roast Beei". "Epg Rolls®, "Shish Kebol”,
*Burricss®, *Lasagna®, "Ham®, “"Veal Marsala®,
*Saurbraten’,. *Res{ Welllpgtoo*®
*Wewguite Chickesn®|;
JList foodilit » new JLimL{foodm):
int Bfd = u-ml-cumi.ln.ﬂﬁ.:_mu.,mm;
foodll st . setfelect lonMods imcde] »
foodlint .aervisibl eRowtount (T
sdiator . reglatarPocdling [Toodliat)
mainlfand] . add{fosdList, BorderLapout EART):

feLaIn mainPaned.
¥ M ereatoMainPanel [

FORCES

s When methods are very short in length, it is very easy for
someone to understand their purpose because the human
mind is able to keep track of only a small number of things

al one time,

188 m Cuarter Six

A large method can be broken down into multiple smaller
methods.

Classes written as many small methods are less buggy than
classes wriltten as a few large methods. Writing classes this
way organizes the many statements that would have been in
a single method into conceptually related groups of state-
ments with names. The pieces are easier for the programmer
to keep track of because outside of the method that the pro-
grammer is writing, he or she can think of the other pieces at
the method level. This means having to think about fewer
pieces than having to think about many individual state-
ments when writing a single large method.

In addition, larger methods are likely to have more local
variables, which makes more interdependencies between
staternents possible, This makes bugs possible that are not
possible when the siatements are in different methods.

If vou are tryving to understand the implementation logic of a
method at its lowest level, it is more difficult 1o trace the
logic of a method that has been organized into many sub-
methods. It requires flipping between the method and its
many submethods while mentally pushing and popping the
many contexts,

It is possible to carry the splitting of methods into smaller
methods too far. If 3 method consists of just a lew lines of
code that are easily understood as a whole, splitting the
method into smaller methods mav not improve the case of
understanding the class 1o which it belongs, If the resulting
methods are so small that their purpose is not clear, the class
will be more difficult 1o understand.

SOLUTION

As you write the methods thar are specified in an object-oriented
design, break them into multiple methods that are called by the
original method if you see that they are getting too large. Give
each of the submethods a meaningful name to make it easier to
understand the code. The submethods should be private, since
there is not normally any reason to expose them to other classes.

Organizational Coding Patterns w 189

If the implementation of a method includes distinct concepts
or actions, it is usually best 1o organize the submethods so that
they correspond to the concepts or actions of the original
method.

CONSEQUENCES

» People can more easily understand classes that are organized
into small methods.

Methods that are small enough 1o be immediately under-
stood are much less likely to contain bugs than are larger
methods.

» Classes composed of small methods cost less to maintain.,
There are few bugs to fix, and small methods are usually eas-
ier to modify than larger methods.

= The object-oriented design that precedes writing classes can
ensure that & program is well structured at the class level.
Object-oriented design does not help much with designing
the internal organization of a class’s implementation. In the
course of splitting large methods into smaller methods vou
may discover abstractions that vou can use to better orga-
nize your implementation. You may also discover that some
of the smaller private methods are reusable within the class.

» Sometimes, alter applying the Composed Method pattern,
vou [ind yourself with a class thal contains an unwieldy
large number of small methods. This is often an indicator
that the class should be split into multiple classes, with the
original class acting as a fagade for the additional classes
(see the Fagade pattern in Volume 1),

IMPLEMENTATION

There is no specific number of lines of code that is a hard limit
on the length of a method. Reasonable lengths vary with coding
style and the density of comments. A commonly used guideline is
that methods should be small enough to be visible all at once
within your editor's window. You can think of this as the vertical
guideline. There is also a horizontal guideline: If the level of nested

190 ® Cuarren Six

constructs in a method results in enough indentation that lines
wrap or exceed the width of your editor window, consider split-
ting some level of the nesting into a separate method.

Methods that contain large switch statements or long chains
of if statements should be allowed 1o exceed the length specified
by whatever guideline you use for the maximum,

Many people are reluctant to adopt the practice of organiz-
ing classes into many small methods because they are concerned
that it will result in inefficient code. In practice, this is rarely a
problem. Many compilers are able 1o optimize such inefficiencies
away. Most are able to merge the code of a called method back
into its caller if the called method is private.

RELATED PATTERNS

Intention Revealing Method The type of methods described
by the Intention Revealing Method pattern should be the small-
est methods that you create when applying the Composed
Method pattern.

Maximize Privacy The Maximize Privacy pattern provides the
motivation for making submethods that are created by apply-
ing the Composed Method pattern private.

Fagade After applying the Composed Method pattern, you may
decide 1o break a class up into smaller classes with the original
class acting as a fagade. The Fagade pattern is described in
Volume 1.

Orpanizational Coding Parrerns m 191

Conditional Campilation {Grand99}

SYNOPSIS

Control whether a compiler includes statements for debugging in
the byte codes it generates or ignores those statements.

CONTEXT

To facilitate debugging, it is common to insert code into classes
1o trace the progress of a program or to check assertions. One
way lo manage this is to manually insert the debug code when
yvou need it, and remove it when you are done. A better way 10 do
this is to make the inclusion of vour debug code conditional on a
variable that you define. This way, you can turn the debug state-
ments off and on by changing the value of a single variable.

FORCES

» You want to put debug code in your classes and turn the
debug code on and off with a minimal amount of effort,

= If the only way to disable debug code is to physically remove
it [rom the source, there is the possibility that code could be
put into production with some active debug code if a pro-
grammer forgets to remove il

= By making debug statements conditional on the value of a
boolean constant, you control whether compilers will com-
pile or ignore the debug statement.

®» If the boolean expression at the beginning of an i f statement
is A constant, most compilers will trear the 1 ¢ statement spe-
cially. If the constant is true, most compilers that do any
optimization will not generate any byte codes to test the
value of the true constant. If the constant is false, the Java

192 ® CHAPTER SiX

language specification requires compilers to recognize that
the statement will never be executed. The language specifica-
tion also suggests thal compilers not generate any byte codes
for the 1f statement or the statement that it controls.*

s As of the time of this writing. at least one popular Java
development environment includes a compiler that lacks
special treatment for i ¢ statements with constant boolean
expressions as mandated by the language specification. The
use of such compilers with debug code can hurt
performance.

SOLUTION

Control whether debug code is executed by using i £ statements
thar test the value of a boolean constant.

It is more convenient if the constants for controlling differ-
ent kinds of debug statements are all defined in the same class.
The following listing shows a class that defines constants that
control debug statements for tracing the progress of a program
and checking for assertions.

publle claps Deboug |
public static final boolman TRACE=tIus)
public statlc finsl boolesan ASEERTION CHECKINOStue)
I|'I-I-
* This msthod sends & message To standard error if che
* given saserticn is [alas
* Wparas ok This L8 rthe assestton D0 L% Qs frue, nothing
H happens [Lt is falee, a sessages i printed.
“ @param ercrMeg this sessage printe 1f che assefvion s false
'
public static fingl wald sapext(boalean ok, Striog ecvMsgl
1f - 1tek] {
Syutem.&rr . print lnloroheg)
N R
¥ /F ammart (Boolean, SUEiog)

* James Gending, BUll Joy, and Guy Steele Jova Lanpuage Specificanion. Addison-Wesley

Organizational Coding Patterns w 193

You can use the constants to control if statements that
determine whether the debug statements are executed. The fol-
lowing listing shows an example of this.

publlec class Test |
private staric final int BUFFER_LENGTH = 100000

private byte|] buffar « few byt BUFFEE_LERCTH]

III-I
“ head & flle and rerurn lte checksum
* gparam [ileMams thoe name of the file,
“ Pescept lon TOEsowpt lon |f thears L6 & problss while
- readting the {ils
|
pablie long getChechsum(String filetame] throws IDExceptian |
if (Dmbug.TRACE] |
Sywtas. out .. println("Comput ing checkeum®|)
¥ i TRACE
if |Dabug.ASEERTION CHECKING)
Dalug . assart (£1lalens, langth{} = 0.
"file nase i =mpty®|;

Y S ASEENTION CHECKING
FileinpuiStream fin = new FllalnputStroas(fl.)oRae]

Chackedinput Straam olf)
cin = pow Checkelinput 5t reas(fin, pew CRCII(11Y
while| cin.readibulifer, 0, BUOFFER_LENGTH| = -1);
if (Debug.TRACE) {

Eystms.cut.priotlni*hons cosputing checksum®))
¥ fF TRACE
return cim.getChecksamil getValuail;

i/ pgerChacksumString)
1 £ clans Test

CONSEQUENCES

= By controlling the execution of i ¢ statements with the value
of constants, you are able to reuse the L f statements rather
than having ta edit them out when vou don't need them.

s Most compilers evaluate 1 £ statements that are conditional
on a constant at compile time. Therefore, they either gener-
ate or do not generate code for the statement contralled by
the if statement. They don't generate code to test the con-
stant, so there is no runtime overhead.

194 @ CuarrTeER Six

s Inserting debug code into the middle of regular code can
make the regular code more difficult 1o read, because the
debug code interrupts the logic of the regular code.

IMPLEMENTATION

You should determine if vour Java compiler provides special
treatment for i £ statements with constant boolean expressions as
required by the language specification. To do this, vou can use
the javap tool that is included in the JDK or use a decompiler to
examine vour compilers output.

Some Java compilers will not optimize out the condition or
body of an if statement unless you specify a compiler option to
turn on optimization.

RELATED PATTERNS

Assertion Testing The Conditional Compilation pattern is
often used with the Assertion Testing pattern.

White Box Testing The Conditional Compilation pattern is
often used with the White Box Testing pattern,

Organizational Coding Patterns w 195

Checked versus Unchecked Exceptions [Grandg9]

SYNOPSIS

As part of its contract with its callers, a method can be expected
1o throw exceptions under certain circumstances, These excep-
tions should be checked exceptions. Any exceptions thrown by a
method that are outside of its contract, such as exceptions to
indicate internal errors or to help with debugging, should be
unchecked exceptions,

CONTEXT

Muaost of the exceptions available for Java methods to throw are
checked exceprions, If a checked exception can be thrown from
within a method, the method is required to either catch the
exception or declare that it throws the exception,

All exceptions are checked exceptions, unless they are an
instance of Runt imeExceprion, Error, or one of their sub-
classes. Such exceptions are unchecked exceptions. There is no
requirememnt for callers of a method that throws an unchecked
exception to catch the unchecked exception or declare that they
throw it

Instances of subclasses of Error are used 1o indicate a prob-
lem within the Java virtual machine, such as being out of mem-
ory or having a r~lass file that is incorrectly formarted.
Instances of subclasses of Runt imeExcept ion are used 1o report
errors in common low-level operations, such as integer division
by zero or an out-of-range array subscript.

Suppose you're writing a method that can be called only on
certain days of the week. 1f it is called on the wrong day of the
week, you want it to inform its caller by throwing an exception.
Looking at the exceptions included in the core Java APL vou don't

196 ® Cuarrer Six

see an appropriate exception for this purpose, so you decide to
define your own.

You decide 1o call the exception class wrongDayCiweek-
Except Lon. Another decision you will have to make about this
class is what its superclass will be. You decide it is a choice
between making it a subclass of Except ion, to indicate that the
exceplion is a checked exception, or making it a subclass of
RunTimeExcept {on, to indicate that the exception is an unchecked
exceplion.

Because you want programmers who write calls to your
method to think about how their code will handle a wrongpay-
OfwaekExcapt ion, vou decide to make it a checked exception and
have Exception as its immediate superclass.

FORCES

» If a method can throw a checked exception, programmers
who write calls to the method are forced 1o give some small
amount of thought to how the exception will be handled. If
they neither write a cry statement 1o catch the exception nor
declare that the calling method throws the exception, their
Java compiler will issue an error message,

® Checked exceptions declared in a methods throws clause are
part of the method’s contract with its callers. A calling
method Is required to catch or declare that it throws the
checked exceptions of the methods it calls. A method that
overrides another method is not allowed to throw any
checked exceptions that the overridden method does not
throw.

» If a method throws an exception for a reason that is not
based on its contract with its callers, the exception should be
an unchecked exception. Methods are never required Lo
catch or declare that they throw an unchecked exception. A
method does not force its callers to ke any responsibility
for a condition by throwing an unchecked exception.

® [t is commaon for debug code to be concerned with violations
of the contract between a method and its caller

Organizarional Coding Patrerns » 197

SOLUTION

Do not write classes that are a direct or indirect subclass of
Runt imeExcept ion Or Error. You should never write a method
that deliberately throws an unchecked exception. The exception
to this rule is code for debugging or assertion checking.

If debug code works by throwing exceptions, it should throw
unchecked exceptions. The actions of debug code are not part of
any method'’s contract with its callers. Theretore, it is not appro-
priate for debug code 10 throw a checked exception unless the
exceplion is supposed 1o be recognized by the method's callers as
an exception that is part of the method’s expected actions.

Similarly, it is often appropriate for assertion-checking code
that verifies that a method’s callers are living up to their contract
to throw unchecked exceptions, such as
I1llagalArgumentException Or IllegalStateExcept ion

Throwing a checked exception is appropriale under condi-
tions when you want a method’s callers to take responsibility,
but under which they cannot reasonably check themselves. For
example, suppose that an object encapsulates a communica-
tions link. A call to one of its methods that tries to read or write
data through the communication link throws an exception it
the link is not ready for use. Tt is not alwavs possible for the
method’s caller to know in advance that the link is not ready.
Making it throw a checked exception under these conditions
ensures that a calling method deals with the problem after
the call.

CONSEQUENCES

® A correctly functioning bug-free program should never
throw an unchecked exception. This means that you can use
unchecked exceptions to help with debugging.

» Unchecked exceptions thrown by debug code will not inad-
vertently be mistaken for an exception that is thrown during
normal operation. There is no need to modify code to
accommaodate unchecked exceptions thrown by debug code.

198 ® CuarTER SiX

s 1f debug code throws a checked exception that is ouside the
contract its method has with its callers, then its method and
its method’s callers will need to be modified when inserting
or removing the debug code. Besides being extra work, code
maodification can introduce new bugs, For these reasons,
debug code should never throw any checked exceptions that
are not part of its method’s cantract with ts callers,

= By specifving methods so that their contracts with their
callers include only checked exceptions, you can rely on the
semantics of Java to ensure that the callers deal with the
exceptions,

JAVA APl USAGE

Classes that implement the interface java.ucil . Ireraror have
methods named next, hasNext, and remove, If the next method
is called when the Trerator object has no next element, the next
method should throw the unchecked exception NoSuchElement -
Except ion, Calling the next method when the 1teraror object
has no next element is o programiming error because the caller is
supposed to first call the hastex: method to find out if there is a

next element.

CODE EXAMPLE

The class that follows defines an exception class named
AgssertionException.

public class AssertionException axtends RuntiseException |
public AssertisnPsception(fcring mag) |
wupas (meg)
¥oOf class Assartlonkxception
i // class AssertlonException

This exception class is an unchecked exception because it is a
subclass of Runt imeBxception. Because it is unchecked, methods
that throw an Asserr {onExcepr ion do not have to declare so. The
following example shows such a method that throws

AsgertionExceptian.

Organizational Coding Patterns » 199

pablic static final vold sssery(boolsan ok, String errdsgi |
ke [rok) |
Eyatem, &rT, pr int bnfereMeg | ;

thiow nev AssartioaEzception(acziag)i
I
¥ /) assert (boclean, Srrimgl

RELATED PATTERNS

Assertion Testing The Assertion Testing pattern provides addi-
tional guidance about checked or unchecked exceptions to
report unsatisfied assertions,

Conditional Compilation The Conditional Compilation pattern
can be used 1o prevent debug code that throws unchecked excep-
tions from being included in a production version of a class.

Organizational Coding Patterns w 201

Convert Exceptions [Brown38]

SYNOPSIS

Many programs are organized imo layvers related to different
domains, such as a database management domain and an appli-
cation domain. In such programs, some classes are part of one
domain but have methods that call methods of classes that
belong to another domain. Such methods should convert excep-
tions they do not handle from the other domain 10 their own

domain.

CONTEXT

Suppose you are writing an application. The application uses a
number of classes 1o implement its commands. Each of those
classes defines a method to implement a command. Some of
those methods throw an exception if there is a problem in execut-
ing the command for which the method is responsible. To keep
the application simple, you don’t want it to have to handle many
different exceptions being thrown by its commands. For this rea-
son, you decide that all command implementing classes will be
required to implement this interface:

public isterfsce CommandIF {

public void sescuts(String arg) throws ApplicstionException)
b A interface CommymdlF

By insisting that all command-implementing classes imple-
ment the CommandI® interface, you ensure that the only checked
exception their execute methods can throw is
ApplicationBxception, which is a class you have defined for this
application,

Suppose the application you are writing will have a com-
mand to extend itself by loading classes that implement addi-

Crganizational Coding Patterns w 203

supar (meg))
} /Y comptructor (String)

‘|i-
* Canatroctor
* Bparam A description of why Ehis exception was throws
* dparam The sxception thart gave rise o this exception.
public ApplicaticnEzception{Htring mag.
Throwables sxception) {
Ehis{magi)
this. aaception = axception;
¥ /4 conatroetor (String)
e
* foturns the swception that gave rise to this br mall.
bl |
public Throwabls getException() {
return sxoeption
¥ /0 ogetExcaptioni|

:ll
* Print & stack trace of the exceprion.
s
public vold printSteckTracei) |
pEiat Btask¥Trace (Bystas. axrx))
1 4 printStackTracei)

ir!

! Prlinta & stack Lrace of tha exceptlon
" #param outr The PrintStream te writs the wtalk trace Lo,
-J.
public vold printStackTrace (PrintStreas out) |
synchronlned (out) |
if [exceptlon |= mall) {
oot print | *ApplicetionException: *j;
axcept Lon . print BeackTracs (oat))
j ales {
rupar . priotScackTrace (out | §
¥ oA oAirx
I/ wynchronl zed
1 /7 printitockTrace (PrintStrean)

1 & elams AgplicarfonBxwception

FORCES

= Suppose that a method calls a method of another class. If the
called method throws an exception, the calling method has a

204 m CuarTER SiX

dependency on the exception class. If the calling method does
not catch the exception, it forces its callers to have a depen-
dency on the exception class, If the calling method, its callers,
and the exception class are related to the same problem
domain, then the dependencies created because the calling
method does not catch the exception are not necessarily bad.

o If the exception class is related to a different problem
domain, then by not caiching the exception the calling
method makes its callers dependent on a class outside their
problem domain. Therefore, if a method will be called by
other methods that are part of the same problem domain,
the method should catch exceptions thrown to it thar are

related to a different problem domain.

SOLUTION

If a method and its callers are all related to the same problem
domain and an exception related to a different problem domain
is thrown by one of the method’s callees, then the method should
catch the exception, If the method is not the appropriate place to
handle the exception, it should handle the exception by throwing
an exception related 1o the problem domain.

CONSEQUENCES

s A method that catches rather than throws exceptions that do
nol relate to its problem domain avoids requiring its callers
to have a dependency on an exception class that is pant of an
unrelated problem domain,

s Methods that do not have to deal with exception classes
unrelated to their problem domain are easier to understand,
more cohesive, simpler, and easier 1o maintain,

IMPLEMENTATION

When implementing the Convert Exceptions pattern, substituting
an application-domain-related exception [or a domain-unrelated

Organizational Coding Parterns m 205

exception should not result in the loss of the information in the
original exception. In particular, it is important to maintain the
original stack trace. The ApplicarionExcepr ion class shown at
the end of the "Context” section for this pattern shows how the
original stack trace information can be retained by having the
application-domain-related exception delegate princsStackTrack
1o the replaced exception.

It is also important 1o allow the code that ultimately handles
the exception to be able to dig deeper and get access to the origi-
nal exception. The get Except t on method shown in the listing of
the Appl icationExcept ion class provides this access.

JAVA AP| USAGE

As of version 1.2 of Java, the fortame method of the Class class
fully implements the Convert Exceptions pattern. If a call to the
tordame method initiates the loading of a class and an exception
is thrown during the class's initialization, the fortname method
throws a ClassMot FoundExcept ton in place of the original
exceplion.

RELATED PATTERNS

Low Coupling/igh Cohesion The Low Coupling/High

Cohesion pattern tells us to avoid unnecessary dependencies
between classes.

Orpanizational Coding Patterns m 207

;Sma'r-Snﬁkﬁt-[Grﬁndﬂﬂl_

SYNOPSIS

You need to write code to manage the server side of a socket-
based network connection. The code that you write follows a very
consistent pattern that revolves around ServerSocket and Socket

objects,

CONTEXT

Programs that communicate with each other through socket-
based connections play one of two roles in the establishment of a
connection:

1. Client. Programs in the client role initiate socket con-
nections with a server,

2. Server. Programs in the server role wait for clients to
initiate connections with them.

After a connection is established, programs in bath the client
and server roles interact with the connection in pretty much the
SAMe Way.

The basic logic that server programs use 1o manage the
establishment of connections is consistent from one server pro-
gram 1o the next because they all need to solve the same set of
problems.

FORCES

® The constructor for the class java. io. ServerSocket per-
forms the task of binding to a given port number and
requesting that the operating system queue up connections
on the programs behalf.

208 ® CHarTER SIX

» You can use a ServerSocket object’s accepr method to
accept client connections.

® A common requirement for server programs is that they be
able 1o shut down in an orderly manner when they receive a
command to do so. To accomplish this, a server program
thread that is responsible for accepting connections must
recognize the shutdown request, close the serversocket
object, and perform any other appropriate cleanup actions.

» The default mode of operation for a Serversocket object’s
accapt method is to wait indefinitely for a client to initiate a
connection, This can be inappropriate in some cases,
because a thread cannot do other things, such as notice a
shutdown request, while it is waiting for the accept method
1O retum.

® You can set a time limit on how long the serverSocket
object’s accept method will wait for a connection to accept
by calling the Serversocket object’s setSeTimeout method.

= [t is usually important that a server be able 1o process multi-
ple connections concurrently. If a server can process only
one connection at a time, clients may have to wait unreason-
ably long amounts of time to get a connection processed.
The only exceptions to this are applications in which the
server has so little 1o do that the delay for clients waiting to
take their turn is not noticeable.

= To process multiple connections concurrently, a server will
need more threads than the one that accepts connections,

= A common requirement for server programs is that it be pos-
sible 10 run more than one instance of the server program on
the same host machine. This usually implies that each
instance will use a different port number.

s Socker objects represent an established network connection.
To communicate through an established connection, a pro-
gram must get an InputStream or an dutputStream from the
socket object.

= When a server s finished with a connection, it should close
the connection. This allows the local operating system 1o free
up the resources it had committed to supporting the connec-
tion. The server also notifies the program at the other end of

Organizational Coding Patterns » 209

the connection and its remote operating system to free up
whatever resources they had commited to the connection.

SOLUTION

Most servers are implemented with code that follows a very con-
sisient pattern.

| N

5.
6.

71-

Bind to a specific port. This means telling the operating
system that if a client requests a connection to a server at
that port. this program will accept the connection,

. Ask the operating system to sccept connections on behalf

of the program when the program is not waiting to accept
a connection. The operating system will then accept and
queue up connections on behalf of the program, up 1o a
maximum number of connections that is specified by the

program.

. Enter a loop that begins by accepting the next connection.

Check to see if the server has been requested to shut
down.

Start processing the connection in a separate thread.
Get an InputStream and an outputStream (O COMMUNI-
cate with the client over the connection.

Close the client when done.

The following listing of a simple server illustrates this pat-
tern, The server's application-specific logic is that it readx a line
of input from the client that should be the name of a file. If the
server does not have a file with that name, it responds with a line

of cutput that says

Bad [ile-nase

If the server does have a file with that name, it responds with a
line of output thar says

aat

and {ollows it with the contents of the file,

210 m CuartER SIX

Here is a listing of the server:

public class FllsBervar (
ff Default port mumbar to listen on
private final statlcs {imt DEFATLT PONT NOMEEN = 12%4j

§F The saxisus conhect laons the operating syites should
f¢ mccept whon Lhe server ie oot salting LO accept one
private final static imt MAX EARCELIOG = 30)

A Timscait do alllisecomts for accepting connect hona.
¢ It may go this long before noticing a reguest £0 shul down
privats final scatic int TINEOUT = 500

M The poit fembat Lo Lidteds [or Sodfect iond o
private lnt portWemba:;

ff Bet Lo Lrue when serwer shoulid ahub Jown
privats boolsan shutDownFlag = false)

privazs int activelonnectionCount = O)

Two instances of the server cannot successfully listen on the
same port to accept connections, To allow multiple instances of
the server to run at the same time there are two constructors.
One constructor takes no argurments and creates a server that Lis-
tens for connection on pEFAULT_PoRT_NUMEER. The other con-
structor takes one argument that specifies the port number on
which the server will listen for connections.

public FilaSexrver(} {
this (DEFADLT PORT NOMBEER)
» 4 conmtructari)

public FilaBerver(int port)} {
portiosber = pozt;

} 4 coner poetar [ine)d

public Lot gethotiveConnsctionCount{} |
return activelonnect ionCount)
} {7 gethct ivelonnect LonCount | |

This is the top-level method for the file server. 1 does not
return until the server shuts down. It is common for this logic to
be invoked by the server class’s constructor. The advantage in
exposing this as a separate method is that it becomes possible to
restart the server without having to create a new instance of it

Organizational Coding Patterns m 211

poblic wold runBscver() §
Bervarfocket ®)

try |
/f Crhale the BerverSockal
& = paw ParverSocket (portiosber, MAY BARCELOG) §

The following listing sets a timeout for accepting connec-
tions so that the server won't wait for a long period of time 1o
nofice a request 1o shut down.

5. et SoTimsout (TINECUT] §
I catch (IDExcepcion el |
System. ery.printini"imable Lo creale §ockal™||
w.printitackTrace|];
raTurn;

| 4 ey

Fi loop 10 weep accepling now conneck ions

ery |
Sockst socket)
anrar Lo i
while (tyus) { // Edep acoepting coffect Lons

tey |
sockst = g.acceptl]l) // Accopr a connect {on

} catch fjava.lo.InterruptediOException af
mocket = oullp
if (|shutDewnFlag)
contisus sarvearloop)
YA ey

The purpose of this try statement is to catch exceptions
thrown by the call to accepr because of the previously specified
timeout, Timing out periodically gives the server an opportunity
to check il it has been requested 1o shut down. Without the time-
out, the server would not notice a shutdown request until it
received his next connection. There is no limit on how long that
could take. Having a half-second timeout ensures that it will take
no longer than a half second for the server to notice a shutdown
request; the following listing demonstrates this.

LE {sbhotDownFlag) |
if (sockest |= mmll)
socket .closa() §

w.closndl)
Feturny

212 m CHAPTER SIX

) I §
{f Create worker object Lo proceEs connecticn.
new FileServearvorker (s.accept())
¥4 wiille
} catch [(IOEscaption &) {
#f LI theare s &an I/0 ssTor just return
I
Y 47 mtaxti]
J
* This ile called to regquost the aerver Lo shut down.
¥
public wold stopil |
shutDowmFlag = Lros)
b 7Y shutDowni)

The rilesServer class contains a private inner class named
¥ileSarverworker, It creates an instance of this class 1o process
each connection.

privats class FilaBarverWorksr lmplessnts Runnabls {
privata Bocket mj

rilaSarvarWorker { focket o {
thin.o = m}
new Thrasd(chis) .etarti)y
) ¢ constructas (Socket)

A notable feature of the FilesarverWorker class is that it
creates a new thread to process its connection.

public wold runi) (
InputSioeam in;
gtring [ilohass « *%;
PFrincseraam out = mully
FileipputStream [,

sct Lywlonnect L onloant «& i
¢/ gt [llw mame Do Cllent and open the flle
ey |
in = s.getInputitrean();
oot = pew Printftresmie.getOutputitoeasi)))
fileMame « novw DabalopatStresaiind readlinall.
f = now FlloalnputSrrean(fileXamal |
} catch |IOEeception a)
st L velonnect Lonlogmnt == §
1f (out f= mull)
out print ("Bad:*« il eName+*\n"}:
out.closal)
try |

Organizational Coding Patterns a 213

m.close|]
} catoh [IToEsception ia)

)
EHTRIT

oSy

£ owend convents of file wo clienc.
ok cprint | *Good Wnt] ;
bytal] buliomr = new byte[d0%E&];

try |
int len,
whiie [!'shulDownFlag bk 1ien = f readibalfer)i = 0

out writelboffar, 0, len);
bodd whille
} cateh (IoException &) |
) tinally |

ey o
act iveConnect LonCount == §
is.clossi);
ouk .closell)
w.oloseilj

t catzh (IOExcepticn wi (
¥ ETY
| ery
¥ ol munil
} 4/ glass FlleSsrvarvarker
¥ /¢ cless FileServer

CONSEQUENCES

Implementing servers with code similar to the listing under the
“Solution” heading of this pattern provides them with certain

capabilities:

= [1's possible to run multiple instances of the server.

® You can configure each instance of the server Lo use a speci-
fied port number.

s The server is capable of processing multiple connections
concurrently.

» Other classes can asynchronously request the server to shut
down by calling the server’s stop method.

® The server may not immediately notice a request 1o shut
down. There is a maximum amount of time a server will take
before it notices a request to shut down. The value of TImME-

214 ® CHarTER SiX

ouT determines how long that is. In the listing, it is 500 mil-
liseconds or 0.5 second.
s The server closes the connection with its client when it is

done.

IMPLEMENTATION

The code shown under the "Solution” heading for this pattern
creates a new thread tor every connection. This is not always the
best method for implementing concurrency in a server. Some of
the disadvantages of this technique are:

Threads can be particularly time-consuming 1o create.

s Under some implementations of Java, threads can take a
rather large amount of memory. In some cases, a thread can
require more than 200K!

» The pattern places no upper limit on the number of connec-
tions that are active at one time, This means that there is no
limit on the number of threads the server has active, It can
cause a server to become very slow because Java and the
server’s host machine spend an excessive amount of time
managing the threads.

The Thread Pool pattern described in Volume 3 shows a bet-
ter way for servers to manage threads.

RELATED PATTERNS

Client Socket The Client Socket pattern describes the common
logic for implementing clients,

Thread Pool The Thiead Pool pattern discussed in Volume 3
describes a more efficient way to manage server threads.

Two Phase Termination The Two Phase Termination pattern
found in Volume 1 explains how to use a Thread object’s
interrupt method to request that the thread shut down in an
orderly manner.

Organizational Coding Patterns m 219

Client Socket [Grand99]

SYNOPSIS

You need to write code to manage the server side of a socket-
based network connection. The code that you write follows a very
consistent pattern that revolves around Socket objects.

CONTEXT

Programs that communicate with each other through socker-
based connections play one of two roles in the establishment of a
connection:

1. Client. Programs in the client role initiate socket con-
nections with a server.

2. Server. Programs in the server role wait for clients to
initiate connections with them.

After a connection ix extablished, programs in both the client
and server roles interact with the connection in pretty much the
SAIme way.

The basic logic that client programs use to manage the
establishment of connections is consistent from one client pro-
gram 1o the next because they all need to solve the same set of
problems,

FORCES

® Because client programs are responsible for initiating the
creation of connections, client programs must be able 10
identify the server host with which they want to initiate a
connéection.

216 m CuarTER 51X

The simplest way for a client to identify a server host is by ity
address, which is typically a sequence of numbers, such as
192.48.233.6.

Client programs are usually required to identify a hast by its
name rather than its address. This is to give the people who
administer the client’s hosts some flexibility over which host
will host the server program. If clients all idemify a host by
its name, then administrators can control which physical
host the clients connect to by changing the definition of the
name to be a different network address. They can do this
withoul modifying or accessing the clients in any way.
Socket objects represent an established network connection.
To communicate with the program at the other end of a con-
nection, a program must gel an InputStream OF an OQutput -
Stream from the socker object.

You can pass an address or a name to the constructor of a
sacker objecl.

When a client is Aimished with a connection, it should close
the connection. This allows the local operating system 10 free
up the resources it had committed to supporting the connec-
tion. It also notifies the program at the other end of the con-
nection and its remote operating system to free up whatever
resources they had committed to the connection.

SOLUTION

Most clients are implemented with code that follows a very con-
sisten! pattern,

1. Convert the name of the server’s host machine to a net-
work address.
2. Request a connection with the server.
3. Get an InputStream and an QutpurSeream lo communi-
cate with the server over the connection.
. Perform the necessary task through the connection.
. Close the connection when the task is complete.

n &

Organizational Coding Patterns u 217

The following listing of a simple client illustrates the pattern.
The client’s application-specific logic is that it writes a line of text
to the server that is the name of a file. If the server does not have
a file with that name, it responds with a line of output that savs

Bad [ile-pname

If the server has a file with that name, it responds with the line of
output that savs

Goad

and follows it with the contents of the Hle.
Here is a listing of the client:

public class FllelTilent |
private sfatlc fina]l int PORT = [234;

public static vold salniStoing(l srgul
int ExitCode = O;

LE [usagedk (argy))
Systesm . exitil]
EBockar s = mall)
toy |
8 = new Bocket (argv[0], PORT);
} catch (I0Exception &) |
Eyatem,#rr println{*Dnable o comnect fo Server®||
o.prirtBtackTrace(}:
#yetem axitil);
¥ i oREy
InputStreas in = oull;
try |
Outputferass out = §.getOucpatSrrean())
pow Frintetreamiout i print largvfl]==wn*};
tnt ch;
in » new EBuffaradinputStrassis.petInpot BErasm|)) §
DaralnpueStrean din = new DatalnputScreamiind
String FarvearStatus = din. resdbinedi;
if (serverBtatus. starcewithi*Bad®) b (
axitCode =]
] mlee |
whilalich = an. roeadi)) == Q1 |
Synies. oyl wiltie[(char|chis
I while
|
} cateh (I0Ewception a) {

218 m CHAPTER SiX

axltCods = 1y
I fimally f

ey o
if {in 1= pull)
in.clossl}
s.close(])
} catch (IOException &) |
42 oLy
} Ity
System. exit {axitCodn| |
¥ 7 mainiseringll)
} ¢} claas FlleCllent

CONSEQUENCES

® The client can connect to a server identified by a name or a
network address,

= Once it establishes a connection with a server, the client can
have a dialog with the server

® The client closes the connection with the server when the
task is complete.

= 1f the server goes down, the client has no way of directly
detecting the problem. The Heartbeat pattern discussed in
Volume 3 provides a way 10 deal with this problem.

RELATED PATTERNS

Heartbeat The Heartbeat pattern described in Volume 3 pro-
vides a lechnique that allows a client program to detect that a
server has gone down.

Server Socket The Server Socket pattern describes the com-
mon logic that servers use to communicate with clients.

Coding Optimization
Patterns

Hashed Adapter Objects (221)
Lazy Initialization (233)
Double-Checked Locking (239)
Loop Unrolling (243)

Lookup Table (249)

The patterns in this chapter can be used to improve the perfor-
mance of a program in ways that a compiler’s automatic opti-
mizations cannot accomplish. Like any other kind of
optimization, you should use the patterns in this chapter only
after you have established a definite need for them, For example,
the Loop Unrolling pattern reduces the amount of time required
to execute a loop, It does so at the expense of making the code
larger and harder to understand and maintain. If the program
makes enough loop iterations for a small reduction in the dura-
tion of each iteration to produce a noticeable improvement, it is

219

220 @ CHAPTER SEVEN

appropriate to apply the Loop Unrolling pattern. If applying the
Loop Unrolling pattern does not produce a noticeable improve-
ment to your program, then you have made it more difficult 1o
understand and maintain with no corresponding benefit.

The usual way 1o determine what to optimize is to run a pro-
gram using a good execution-profiling tool. Such 1ools can 1ell
you how much time a program spends in different methods or
statements, the percentage of time that the program spent in each
place, and the number of times that each statement or method
was executed.

The places in which the program spends the mosi time are
the appropriate places to optimize, because effort spent in those
places will have the greatest payback.

Some patterns in this chapter arguably could be classified as
design patterns rather than coding patterns. Although they do
aftect the organization of classes in a pattern, it may not be clear
that they are appropriate until after vou begin coding. For this
reason, they are included in this chapter.

Coding Optimization Patterns u 221

Hashed Adapter Objects [Grand99]

SYNOPSIS

Dispatch a method call to an adapter object associated with an
arbitrary object, The arbitrary object is used to locate the adapter
object in a hash table. The Hashed Adapter Objects pattern is
most commonly used when an object must be created from unen-
capsulated data or when unencapsulated data must be dispatched
to an object.

CONTEXT

Suppose a method is required to perform different actions based
on a given object reference. A common technique for implement-
ing this type of decision is to use a chain of i f statements.

If the number of comparisons made using i f statements is
very large, then the amount of time it takes 1o perform the com-
parisons can be a performance issue. When an object reference
must be compared with many other object references, there are
faster technigues than using a chain of i f statements,

This can be viewed as a searching problem. If you put the
object references in a data structure, the problem is reduced o
selecting a data structure that can be searched as quickly as pos-
sible. The data structure must also allow an additional object 1o
be associated with cach object reference, The purpose of the
additional object is to determine what to do when an object refer-
ence within the data structure matches a given object reference.

The additional objects are adapter abjects (see the Adapter
pattern in Volume 1), In other words, they all implement a com-
mon interface. The imerface defines a method that is called when
the adapter object is fetched from the data structure. The adapter
objects implement this method 1o call another object’s method,
which performs the desired action.

222 ® CHAPTER SEVEN

The data structure that best meets vour needs is a hash rable.
On average, only about one comparison is required to locate an
object in a hash table. The drawback to using a hash table is that
when you fetch objects sequentially from it, the order of the
objects is not predictable. Because that is not 2 problem here, a
hash table seems optimal. The time required to locate an object
in maost other data structures varies with the number of objects in
the data structure.

Let's consider a concrete example. Suppose that you are
writing a program that has to both read and process a file. This
file is organized into records. The design of the program requires
the file 1o construct an object that encapsulates the contents of
each record before using its contents, Figure 7.1 is a class dia-
gram that shows part of this design.

A 7ileProcessor object reads groups of bytes from
FileTnpurScream objects called records. Each record begins with
a sequence of 8-bit characters that identify what type of record it
is. The identifving sequence of characters is followed by a ™"
character, What follows that *;" character varies with the type or
record.

FileInputStream objects convert each record o a string.
FileProcessor objects pass those strings 10 a RecordFactory

i Fagueets-osation T Flimarpu/Coarmann
Fgegurei Myl
cramiey WF "
PhocemfF actry
_Crasims || crastmPusonnaieoonsiing Shing) PiscoriChiec

& TP 55 e |

AGURE 7.1 Encapsulate records in objects.

Coding Optimization Patterns » 223

object’s createrecord method. The crearerecard method
returns an instance of a concrete subclass of the Readtbiect
class. The record type determines the subclass of reagobiect.

When the time comes to tune your program, you find that it
spends a disproportionate amount of time in the Recordfactory
class’s createRecord method. You notice that there are over 300
types of records. The test to determine the type of a record is
coded as a chain of i¢ statements like this:

if (typas.sgoals(“ETH"))
return new ETHR&coTd(cecord))
ales if {(type.squals(*EE1"])
return new EFlRscord{record) |

You conclude that a lookup in a hash table will be a lot faster
than those string comparisons, The cost of looking up a string in
a hash table is typically equivalent to just a few string compar-
isons. To implement this idea, you add some classes to your
design. as shown in the class diagram in Figure 7.2.

In the optimized implementation shown in Figure 7.2, a
class has been added to the design that corresponds to each sub-
class of Recordobject, These classes implement an interface
called recordcreator IF, Instances of these classes are responsi-
ble for creating instances of the corresponding Recordobject
class. A RFecordPactary object uses objects that implement the
RecordCreatorIF interface 1o create instances of concrete sub-
classes of Recordobiect.

During its initialization, a FecordFactory object creates one
instance of cach class that implemenis the RecordCreatorir
interface. It associates cach of these objects with a string that
contains the sequence of characters that identify the record type
of the Recordobjact subclass, which the RecordcreatorIF object
can instantiate. It delegates the maintenance of these associations
1o a HashMap object.

A RecordFactory object passes each pair of string and
FecordCreatorIF object 10 a HashMap object’s put method so that
each string is a key with the RecordCreatorir object as its associ-
ated value.

224 m CHAPTER SEVEN

AGURE 7.2 Hashed adapters to create RecordObjects.

As the program processes a file, it passes strings that contain
the records it reads to a RecordFactory object’s ereaterecord
method. The createfecord method passes the substring that
identifics the record type to the Hashdap object’s ger method. The
get method returns the recordCreator IF object associated with
the substring. The createrecord method then makes a polvmor-
phic call to the RecordCreatorIF object’s create method, passing
it the record string. This create method generates and returns an
instance of its Recordobject class,

The collaboration diagram in Figure 7.3 shows an example
of these interactions. It shows what happens when an 851 record
is passed 1o a RecordPactory object’s craatefacord method.

Coding Optinization Patterns w 225

19 | sorapieiecorell S50) 12 mnl wcrwale551
AgoorFaciony 1
l 10 g 2517
s SE
SATh il Hadkhdag
I 12 v Al gealEEY %
w8 155 | P

AGURE 7.3 Creating an 551 Record object.

FORCES

= There is a long chain of 1 f statements that performs equals
tests between one object and many other objects; the chain
of if statements takes a disproportionately large amount of
execution tme.

s An action performed is determined by equals comparisons
between a single object and a variable set of other objects,

» The set of object-action pairs may grow, shrink, or otherwise
vary over time.

» A hash table data structure allows a value associated with a
key object to be found in an amount of time that is relatively
independent of the number of objects in the hash table, pro-
vided that certain conditions are metl. Hash table data struc-
tures are discussed in more detail under the "Implementation”™
heading for this pattern.

e If there are only a few abjects 1o be tested, the hash tahle
lookup may take longer than a chain of L f statements. As
with all optimizations, it's best to determine through actual
timings whether the hash table lookup is faster than a chain
of if statements. Even if the chain of i statements is long.
if a few objects are chosen much more frequently than the
others, it may be possible to achieve better results by placing
those objects at the beginning of the i¢ chain.

226 w CHAPTER SEVEN

s Although the use of a hash table may result in faster execu-
tion, a hash table and adapter classes will consume more
memaory than a chain of 1 ¢ statements,

» The shear number of adapter classes created may take a pro-
hibitively long amount of time 1o write. However, it's often
the case that adapter classes have a strong structural similar-

ity to each other. Sometimes they vary in as few ways as the
name of the class and the name of the method that they call.

If they are structurally similar it is usually possible to automate
most of their creation using such 1ools as editor macros or stand-
alone macro processors.

SOLUTION

The assumptions related 10 the Hashed Adapter Objects pattern are
a set of actions and a corresponding set of objects. When an action
is selected and then performed, a program makes comparisons
between a given object and the objects in the set that uses their
equals method. If one of the objects in the set is equal 1o the given
object, the action that corresponds 1o that object is performed. The
class diagram found in Figure 7.4 shows the organization that the
Hashed Adapter Objects pattern provides for handling this.

Following are descriptions for the roles that objects, classes,
and intertaces play in the Hashed Adapter Objecis pattern:

ActionlF An interface mn this role defines a method, shown in
the diagram in Figure 7.4 as doit, that a ¢! Lent class can call
to get an action performed.

Actionl, Action2 Classes in these roles implement an ActionIF
interface and encapsulate a behavior used by a client object.
Many of these classes do not directly implement the behavior,
but are adapter classes that delegate the behavior to another
class that does not implement the ActionIF interface.

ActionKeyl, ActionKey2 Objects in this role have an instance
of one of the Actionl, Action2, . . . classes associated with them.

Coding Optimization Patterns u 227

Aggregass 4

'1‘

]
]
L T L T T e pepepapgp———

L

L}

*

L]
.ﬁ; ¥ Agoyngates- Ackonif bjnci-tor

ol)

AGURE 74 Hashed adapiers classes.

Hashtable Instances of classes in this role are responsible for

associating an instance of one of the Actionl, Action2, . ..
classes with objects in the ActionKev|, ActionKey2, . . . role.
When a ©11ent object presents an instance of a Hashtable with
an ActionKev !, ActionKev2, . . . object, it finds a corresponding
ActionKey |, ActionKey2, . . . object already stored in the hash
table. To be a corresponding object, the given object’s equais
method must return tnie when the Hashrable object passes it
one of the ActionKev!, ActionKey2, , . objects already stored in
the hash table. After it finds the cormresponding object, it returns
the instance of one of the Action |, Action2, . . . classes associated
with the corresponding object.

Client When an instance of a class in this role needs Lo per-

form an action associated with an object, it presents that
object 10 a Hashtable object. The Hashtable object returns to
it an object that implements an ActionIF interface. The
client object then calls that object’s do1t method to perform
the required action.

228 ® CHAPTER SEVEN

CONSEQUENCES

w [f a Hashrable class is well tuned, most of the cost for
retrieving an action object from a Hashtable object will be
one call to the given object’s hashcode method and an aver-
age of one call to an actionxey object’s equals method.

The set of Actionkey objects in a Hashtable object can be
changed during runtime, as well as the rceion objects asso-
ciated with them. This means the set of abjects associated
with actions can be varied, as well as the actions associated
with those objects.

IMPLEMENTATION

A hash 1able data structure associates kev objects with value
objects. This allows the associated value object for an object that
is in the hash table as a key object to be found quickly,

The way that a hash table data structure works is when it is
given a key object to store or find, it calls that objects hashCode
method. It uses the value returned by the hashCode method 1o
determine where in the data soructure the object will be stored or
looked for. The hashCode method returns an ine value, so there
will generally be more possible hash code values than there will
be places in the data structure. Hash table algorithms resolve this
difficulty by associating each place in the data structure with
multiple hash code values. This means that multiple objects may
want to be stored in the same place in a hash table. When this
actually happens it is called a collision.

When there are no collisions, getting the value object associ-
ated with a key object involves the following steps:

1. Call the key object’s hashtCode method.

2. Look at the place in the data structure where the hash
code says that the key object should be located if it exists
in the data structure.

3, Determine if the key object is in the data structure.

4. If the key object exists in the data structure, return the
associated value object.

Coding Optimization Parterns 8 229

Different hash table algonthms handle collisions differently.
However, all techniques for handling collisions require additional
searching when looking for an object at a place in the data struc-
ture in which there is a collision. Thevetore, the time it takes to
find something in a hash table is independent of the number of
things in the hash table if no collisions exist.

It is not generally possible to prevent collisions in a hash
table. However, you can arrange for collisions 1o be unlikely.
Usually, the most important thing to control is how full you allow
a hash table to become. If a hash table contains more objects
than it has places to store them, it is certain that the hash table
contains collisions. As a hash table goes from being 100 percent
full 1o empty, the likelihood that the hash 1able contains collisions
drops from 100 percent to 0 percent. Classes that implement a
hash table data structure usually provide a way of specifying an
upper limit on how full a hash table may become. If the hash
table exceeds the limit, the hash table is enlarged to keep It
within the limit.

The performance of hash ables is also affected by the qual-
ity of the hashtode methods implemented by the objects stored in
the hash table. If the hashcode method of two different objects
returns the same value, storing them both in a hash table will
always produce a collision. Therefore, it is important that
hashCode methods are implemented in a way that makes it
unlikely that the hashcede method of two unequal objects will
return the same value.

Java's core AP provides two implementations of a hash table
data structure: java.util .Hashtable and java.utll hashMap.
You will usually use one of these two classes when implementing
the Hashed Adapter ﬂhjr-ﬁs pattern From an optimization per-
spective, the main difference between the two classes is that the
methods for accessing data in the Java.ut 11 Hashrable class are
synchronized and the methods in the java, util.hashMap class
are not synchronized.

For applications of the Hashed Adapter Objects pattern in
which the contents of the hash table data structure are initialized
and then never changed, the java. util.HashMap class is a better
choice, because many implementations of Java will take less time

230 m CHAPTER SEVEN

1o call the unsynchronized methods of the java.util HashMap
class than the synchronized methods of the java.ueil
_Hashtable class.

For applications of the Hashed Adapter Objects pattern in
which the contenis of the hash 1able data structure may be
accessed by multiple threads, the java util Hashtable class is
often the better choice. You will need 1o ensure that only one
thread at a time accesses the hash table data structure. Usually
the simplest way to do this is to take advantage of the fact tha
the methods of the java.util.Hashtable class are all synchro-
nized.

JAVA APl USAGE

The java.awt . swing,JComponent ¢lass uses the Hashed Adapter
Objects pattern 10 manage key bindings. You can pass combina-
tions of Key5troke objects and Act lonListener objects 1o a
JCompoment object’s registerkeyboardaction method. The
registerkeyboardiction method puts the combination in a
Hashtable object.

When a JComponent object receives a KeyEvent, it gets the
KeySrroke object associated with the KeyEvent. It then asks its
Hashtable object for the Act lonListener object associated with
the KeyStroke object. I the Hashtable object returns such an
ActlonListener object, the JComponent object calls its action-
performed method <o that the action associated with the
keystroke is performed,

CODE EXAMPLE

Following are listings of selected portions of the code that imple-
ments the design discussed under the Context heading of this
pattern. The first is a skeletal listing of a sample subclass of
RecordObject. This listing shows that the ss1Record class, like
the other subclasses of Recordobiect, has a constructor that
takes a record string as an argument.

Coding Optimization Patterns ® 231

class SSlNscord extends Recorddbiect |
BS1nacard (Btring recorastring) (
¥ i -.—:I-m.l'trui:l:nrlﬁl'-riﬁsll

] rr.:l.'jn.n EETRmonrd

The adapter classes that are used 1o create instances of
ss1Record and other subclasses of Recordobject all implement
the RecordCreator IF interface, which follows:

intarface MecordCreatorI¥ |
public RecordObjsct creabts|ftring recordBtring))
t 4 dntézface RacozdlTealos [P

Following is a listing of an adapter class that implements the
RecordCreatorI¥ inlerface’s create method to invoke the con-
structor of the corresponding subclass of kecordobiect:

class S§iCTeator lmplemsnts RscordCreatorIF |
public NecordObject creats(String recordsering) {
return new SElReccrd (recordftrimg);
} /¥ create
) /¢ clams SElCTeacor

Finally, the lollowing is a listing of the Recordractory class
that is responsible for managing the creation of Recordobject
objects:

clans RecordFactory (
privete HashMap creators)

RecordPectoryi) |
creators = pow HashMap (700, . 5€))
craators.put ("ETH, new ETHCTsator())j
creators.pat ("Bf1l", new ESlCreator|))|p

¥} Y conmtructor|)

i
' Create and return an tastance of the concrete subclass of

! ABecordiib:ject that vorrespoods to the gilven pecord Lype in

* the given record sering

* wexcept lon TllegalArgumentiExcept lon 1f Lhe abijéct cannot be
" created beosuss the contents of the record string

. are nat wvalld,

232 m CHAPTER SEVEN

Reconditject cresatelecord(Ftring cecordString)
throws IllsgelirgusantException(
figer Tecord TYpe
int L = secordEtring.iodes0f(*:')y
b L« 1} (
thoow pow [1lesgalicgusentEzcept ion | record@tzisg])
| T T 1
Ftring recordType = reconiftring.subetrimgit, i)
Ji Create tha recordObiect
RecordCreatorIF creator)
creator = (ReccriCrsatorIF)cosators.get (recordType))
Af (creator == pull) |
throw new [1lsgalkrgumsantExcept ionrecordTypa)l;
bofroig
TeLUIn Creator.crsats{recorddtring) §
¥}/ creaveRecord [Stringld
¥y ¢ clame AecordFactory

RELATED PATTERNS

Adapter The Hashed Adapter Objects pattern uses Adapter
objects. The Adapter pattern is described in Volume 1.

Lookup Table Both the Hashed Adapter Objects pattern and
the Lookup Table pattern involve the use of an aggregation.
However, the aggregation serves a different purpose for each,
The Lookup Table pattern uses an aggregation of precomputed
results to save the time it would take 1o compute those results
in the future. For the Hashed Adapter Objects paltern, it is that
data structure that implements the aggregation that is the
source of the time savings.

Polymorphism When it's possible to select a behavior based on
the tvpe of an object. the Polvmorphism pattern produces a
simpler result than the Hashed Adapter Objects pattern.

Single Threaded Execution The Single Threaded Execution
paltern is used to coordinate access by multiple threads to the
hash 1able used by the Hashed Adapter Objects pattern. The
Single Threaded Execution pattern is described in Volume 1.

Strategy The Hashed Adapter Objects pattern can be used to
design the selection of strategy objects in the Strategy pattern,
which is described in Volume 1.

Coding Oprimization Patterns w 233

Lazy Initialization [Beck97]

SYNOPSIS

Delay the creation of an object or other expensive action needed
to initialize a variable until it is known that the variable will be
used.

CONTEXT

Suppaose that you are responsible for maintaining the portion of a
word processor program that wraps the words of a paragraph
into lines. To avoid repeating the expense of determining where
words begin and end, you have organized paragraph objects so
that they contain characters and words that contain characters.
The class diagram found in Figure 7.5 shows this organization.
The organization includes a common interface that both the
focWord and DocCharacter classes implement. This interface

AGURE 75 Paragraph organization.

234 ® CHAPTER SEVEN

specifies a method called getwiden. The getwidth method returns
the width of the word or character with which it is associated.

This organization makes it very simple for a bocParagraph
ohject to organize the objects that constitute it into lines. As it
adds objects to a line, it calls their gerwideh method. If there is
still enough room on the line for the object, it adds the object to
the line: otherwise, it starts a new line.

Suppose there have been complaints about the speed of
refreshing the display as someone types into the middle of a para-
graph. You have identified the problem area as the amount of
time it takes for a paragraph to rewrap the objects it contains.
Further analysis with a profiler shows this problem to be the
amount of time that it spends getting the width of characters.

You notice that most of the calls to the pocCharacter class's
getwideh method are made from the Decwerd classs method
from code that looks like this:

public int getWidehi) (
ime width =)
for (int i=0j5 i « langth; Le+s} {
width o= chara[i].getaidehi);
¥ /A ter
return widehj
¥ 4F gerwidchij

Realizing that the vast majority of calls to an object’s gerwideh
method return the same result as the previous call. you modify
the implementation of the getwideh method so that it retains the
result of the previous call like this:

privats statlc filoal int ONENOWN WIDTH = -1
privets int previldih = UMCSOWN WIDTH)

public int getWidEhid |
if {prevwWidth |= DEKNCWN_WIDTH]
return preveideh)
int width = 0
foy ilnt E=0; L < lengths: Les=l |
width += charmii] . getWldehii
y /¢ for
praviideh = width)
return sidih,
1 4 gpertdidihi]

Coding Oprimization Patterns w 235

The new implementation strategy is to save the display width
of a Docword object in a variable, called prevwiden, The initial
value of previwideh is the distinguished value unknown_wiors. If
the value of the previideh variable is uNknown_WIDTH, it does not
contain the DocWord object’s display width. If this is the case
when a Docword object’s getwideh method is called, it computes
the object’s display width and saves it in the prevwideh variable.

When anything happens 10 a Docvord object that changes its
display width, il sets the value of its prevwideh variable back 10
UNKNOWN_WIDTH,

FORCES

= A variable is expernsive to initialize and its value is not
always used.

= Instances of a class perform a computation that always pro-
duces the same result.

= You must ensure that a variable is initialized before its value
is fetched.

SOLUTION

The Lazy Initialization pattern consists of the following code ele-
memnts:

® An instance or static variable. For reasons explained by the
Maximize Privacy pattern, the variable is usually private.

® A distinguished value that can be assigned to the variable 1o
indicate that it does not have a meaningful value. If the vari-
able is declared to contain an object reference, then the dis-
tinguished value is usually null.

s An accessor method that is used to fetch the value of the
variable when the accessor method is called. If the value of
the variable is the distinguished value, the method is respon-
sible for computing a valid value for the vanable and senting
the varable to that value. All code, even in the same class,

236 m CHAPTER SEVEN

should use the accessor method 1o retrieve the variable's
value. If all fetches of the variable’s value are through the
accessor method, it is easv to ensure that the variable is ini-
tialized before its value is first fetched.

= Any code that recognizes an event that implies a different
value for the variable must set the value of the variable 10 be
the distinguished value.

The following code contains those elements:

clams Lazylnitialisation {
privata Foo foo = mil;

roo garFooi) (
if (foo == mullh
foo = cosgaitaPosi)i
return foo;
¥ A4 getFool(l

woid doltih |

getFool] baril},

lt '-+|+J

foo = mill;

A o A
b /f clase Lagyiniclalieation

In this code, the Lazy Initialization pattern is applied to the vari-
able fon, The distinguished value that indicates that foc does not
have a valid value is null. The method that other pieces of code
should use to fetch the variable’s value is the getFoo method.

The do1t method is an example of code in the same class as
the variable that accesses the variable through its accessor
method. It is also an example of a method that detects that the
current value of the variable is invalid, and sets the value of the
variable to its distinguished value.

Coding Optimization Patterns m 237
CONSEQUENCES

o The computation needed to set the variable to its proper
value is never done if the value is never used, This saves time
if there are situations in which the value is not needed.

= Applving the Lazy Initialization pattern to multiple variables
in a program that would otherwise be initialized at about the
same lime spreads their initialization out over time. This can
improve the perceived responsiveness of a program.

» Saving the result of a computation in a variable can save
time by not having 1o repeat the computation,

® The Lazy Inilialization paltern adds complexity to a class
that would not be present if a variable is initialized by an ini-
tializer or constructor in the usual way.

JAVA APl USAGE

The java.uril.calendar class allows the time and date repre-
sented by one of its instances to be specified as either a discrete
value, such as year, month, day, and so forth, or as a single long
value. It does not automatically convert between the two differ-
ent representations, Instead, it only performs a conversion when
the date or time is requested in a form different from what was
provided.

RELATED PATTERNS

Maximize Privacy The Maximize Privacy pattern provides a
justification o making a lazilv initialized variable private.
Virtual Proxy Like the Lazy Initialization pattern, the Virtual

Proxy pattern can be used to delay a computation or the cre-
ation of an object until it is actually needed. The difference is
that the Virtual Proxy pattern uses a proxy onbject to hide the
computation; the Lazy Initialization pattern uses a method to

hide the computation.

Coding Optimization Patterns u 239

Double-Checked Locking [Schmidt-Harrison96]

SYNOPSIS

A multithreaded program does not initialize a resource until it
actually requires the resource. One thread recognizes that the
resource is not yet initialized when another thread has already
begun the initialization. Avoid duplicating the initialization effort
by coordinating the actions of multiple threads.

CONTEXT

Suppose you have some code that is responsible for creating an
object if il does not already exist. The code can look something
like this:

private CabinsthssistantIr assistant = mully

CabinetAssistantIF getCabinetAssistant (] |
if jsssimtant == mull)

R Y
return asmlstast;
} /¢ gerCabinecAsaigtant ()

If it is possible for the gerCabinetAssistant method to be called
by more than one thread at a time, then there may be problems
with this code. At the very least, multiple threads can create an
asaiatant object, though only one needs to do so. It can also be
that if the abject is created more than once, then the program may
not behave correctly. For these reasons and to avoid wasted effon,
it will be important to ensure that the object is created only once.

One way 1o avoid multiple threads creating the asaistant
object is o declare the getCabinstassistant method 1o be syn-
chronized. This solves the problem of multiple threads creating
the assistant object, However, it introduces a new performance
COMCerT.

240 m CuaPTER SEVEN

Declaring the gertabinetAssistant method to be synchro-
nized means that threads will be forced to obtain a synchroniza-
tion lock before they even determine if the assiscant object has
already been created. Threads could be foreed to wait for other
threads to simply check if the assistant object has already been
created. Even if a thread does not have to wall for a synchroniza-
tion lock. getting and releasing a synchronization lock takes
longer than just checking 1o see it the assistant object has
already been created.

There is a way of coding this so that the assistant object is
only created once, and after it is created there is no additional
time spent waiting for or obtaining a synchronization lock.

Consider the following revised code:

private CabloathssistantIF assistant = mull)

Cabinsthasintant IF getCabinetissistant i) (
if (asmistant == mull) ¢
syochronized (this) o
Lf (ammimeant == mall} |

A &
¥ 4 mynchronized
p T N
oetern asslstant)
1/ gerCabinetAEsiarant |}

In this version, the getcabinerAssistant method checks to see if
the assistant object has already been created. If it has not been
created, the getcabinetissistant method gets a synchroniza-
tion lock and then checks a second time to see if the assigtant
object has already been created. The synchronized statement and
the i statement that follows it ensure that only one assistant
object can be created. The second 1 £ statement ensures that if
two threads make it past the first if statement, only the first
thread 1o get a synchronization lock does the initialization. After
the assisrant object is created, the first i £ statement prevents the
synchronized statement from being executed, thus avoiding the
unnecessary delays and additional overhead that the synchro-
nized statement would cause.

Coding Optimization Patterms u 241

FORCES

= An initalization should only be performed once.
» There are multiple threads that can perform an initialization.
= The test to determine if the initialization has been completed

is very inexpensive.

SOLUTION

To ensure an initalization will only be performed once when
there are multiple threads that can potentially perform the initial-
ization, check twice to see if the initialization has already been
performed: Check once before getting a synchronization lock and
once after. The code for this has the following general form:

Lf (imImitfalized|}) (

ynchronised (this) {
if (tarnicdalizedii)

Yorr it
} i synchronized
Y

CONSEQUENCES

= The initialization is performed only once, even if multiple
threads attempt 10 perform the initialization at the same time.

= The additional overhead introduced by the Double-Checked
Locking pattern is low, because the initialization is per-
formed only once and the cost of determining if the initial-
ization has been performed is low.

= The reason for having two i f statements may not be obvious
ta someone reading the code without a comment explaining it,

RELATED PATTERNS

Balking The Balking design pattern described in Volume 1 is
usually implemented using the same if-synchronized-if struc-
ture as the Double-Checked Locking pattern.

242 m CHAPTER SEVEN

Lazy Initialization The Double-Checked Locking pattern can
be used to ensure the integrity of the Lazy Initialization pattern
when it is used in multithreaded application.

Singleton The Double-Checked Locking pattern can be used in
a thread-safe and efficient implementation of the Singleton
pattern described in Volume 1.

Virtual Proxy The Double-Checked Locking pattern can be
used in a thread-safe implementation of the Virtual Proxy pat-
tern described in Volume 1.

Coding Optimization Patterns w 243

Loop Unralling [Grand99]

This pattern is based on techniques described in the book,
Compilers, Principles, Technigues and Tools, by Alfred V. Aho, Ravi
Seti, and Jeffery D. Ullman [Aho-et al 85).

SYNOPSIS

Reduce the overhead of a loop’s control logic by increasing the
amount of work it performs in each iteration, so it can accom-
plish the same amount of work in fewer iterations. This pattern
trades memory f[or speed.

CONTEXT
Suppose yvou have to speed up the following loop:

vold solariseilne]] plixelay |
for (int l=0; L«piwels.length; Lse}
plumla(i] *= OwDOFEFFLE)
Y & Inr
} /¢ solazizeiinell)

Profiling indicates that the loop spends more than half of its time
n its control logic—testing the value of i, incrementing i, and
branching back. On a typical call, the loop will iterate over 4000
times. You know vou can speed up the loop by increasing the
amount of work it does in each iteration so that fewer llerations
are required. With this idea in mind, you modify the code 1o the
following:

wald aclardizeilnt]| pixelal |
int L = plesis. length-1)
foxr () Ll»=9%) 1-=100) (
plxsls[i] *= QxOOLLLELf;
plwela(i-1] "= OxOOFLLELE;

244 m CHAPTER SEVEN

pizsls(i-38] -= JuQOfffffd,
pluslafi-99] "= CxQOFLRLEE)
} £ for
for (¢ 4=0; Li--) (
pixalsll] *= DxpOELPELsy
N L
¥ 4/ solaciepefint)]}

Your new code is restructured into two loops. The first han-
dles 100 array elements per iteration. The second loop handles
the remaining array elements, one per iteration. The new code
runs in aboul half the time that it took the original code.

A good optimizing compiler may automatically unroll loops
if it knows that they will iterate enough times to make the opti-
mization worthwhile. In the preceding example, it is not possible
for a compiler to make that determination.

FORCES

» A substantial portion of the time spent in a loop is spent in
its control logic.

® The loop iterates enough times that reducing the amount of
time spent in its control logic will improve a program’s exe-
cution time.

= A compiler may be smart enough 1o automatically unroll
some Joops. It is not reasonable for compilers to automati-
cally unroll many loops, because they do not have enough
information about how many times the loop will be exe-
cuted.

SOLUTION

Reorganize a loop that iterates many times to manipulate a small
amount of information with each iteration into two loops. The
first of the loops iterates fewer times but typically manipulates
one to two orders of magnitude more information per iteration,
The second loop is structured so that each of jts iterations manip-
ulate exactly as much information as the original loop. The pur-

Coding Optimization Patterns m 245

pose of the second loop is to process the relatively small amount
of information that is left over after the first loop finishes.

The following is & somewhat more abstract example of this
than appears under the Context heading for this pattern, Here is
a loop in its basic form:
vaid foofint count) |

far () count:d; counk-=§
doTt {count) ;

} i far
Yy AF [ootingh

If the loop iterates enough times so that its control logic is
waorth tuning, the loop can be unrolled into these two loops:

vold [oofint Sount) |
for () count>100) count-=100) |
dolt {count)i
ol (count-1))
dalt{count -2)

dolt (count=-38) §
dolti(count-95))
Y 4¢ tor

for () count>0j count--) |
dolt{count))
3 ey
Y i feolintd

The first loop handles 100 values of count per iteration; the sec-

ond loop handles any lefiover values.
There is an additional refinement, called Duff's Device, that

can often be applied to loops that only iterate a moderate number
of times. It takes advantage of two characteristics of switch state-
ments.

1. Unless the code for a case contains a control flow-altering
stalement such as break or return, when that case is exe-
cuted control flows into the next case.

2. Compilers usually generate code for a switch statement,
which allows control to flow from the beginning of a
switch staternent 1o the proper case using a small and
fixed number of instructions,

246 m CuaPTER SEVEN

Using these observations, the second of the two loops can be
reorganized to a switch starement so that its control logic uses a
small and fixed number of instructions. The following listing
demonstrates this.

swicch (ooant) (
case 33
AeTE(99))
cass 58
doltisa);

cams I
doIt(d)y
case 1i
doIt{l)y
¥ AP Ewitch

This swicch statement directs the flow of control 1o the case that
corresponds to the values of count that are to be processed. Control
flows from that case to the bottom of the switch statement,

Dulfs Device was originally described by Tom Dulf in a
Usenet pasting, which is reproduced at
wwwt mindspring.com/-mgrand/duffs-device html [Dulf88].

CONSEQUENCES

s After being unrolled, fewer instructions are executed to per-
form the loop. but its code is larger and takes up more
MEmory.

» In some cases, the fewer instruction executions may not take
less time. For example, suppose the Java implementation
executes programs as native machine instructions. Many
computers have fast cache memory associated with their
CPU. If a loop fits entirely within a cache, it executes more
guickly. If the original loop fits in a cache but the unrolled
version does not, the unrolled version may take longer to
execute,

= Some Java implementations may automatically optimize
some loops in ways that are better than explicit loop
unrolling. You should always test the results of this opti-

Coding Optimization Parterns m 247

mization on the intended Java implementation to ensure
that it improves performance.

» You should test the effects of unrolling a loop in the environ-
ment(s) in which vour program will execute, to determine its
actual effect.

» Unrolling loops in source code can add greatly to the effort
required to maintain the loop. Changes to the loop body
require a lot more editing.

Coding Optimization Parterns w 249

Lookup Table [Grand39]

SYNOPSIS

Save the memory consumed by complex code and the time it
takes to execute by precomputing the results and putting them in
a lookup table.

CONTEXT

Suppose you have to design a program that will tind sched-
uled commercial airline flights between any two airports. One
approach is to design the program to find all the combinations
of flights that directly or indirectly go from one given airport o
the other. There will be some constraints on the search, such as
connecting flights may not be more than 23 hours apart and a
combination of flights must not visit the same airport more
than once. Even with those constraints, the program may have
to consider hundreds of thousands of combinations of flights to
find all combinations.

To avoid the program having to spend a great deal of time
searching for flight routes. you store all the combinations of
flights between each pair of airports that satisty the consiraints in
a database.

FORCES

» Classification methods can involve long sequences of bulky
cvonditional logic.

» Searches on some data can take a long ime. For example,
finding the shortest route between two cities on a road map
can take an exponentially long amount of time because the
search for the shortest route may have to consider an enor-
mous number of combinations of roads,

250 m Cuarren SEVEN

= Some mathematical formulas take a long time to compute.

= If a computation always produces the same result for a given
input, it is possible to represent the computation as a table
that allows the result of the computation to be looked up by
its input values.

® Storing precomputed results in a table may take an unac-
ceptably large amount of memory if the results are large,
there are a large number of results, or there is only a small
amount of memory available.

SOLUTION

Suppose you have a computation that always produces the same
results for the same inputs and the number of different combina-
tions of inputs that are possible is reasonable. Consider precom-
puting the result of the computation for cach combination of
input values and storing the results in a table for later retrieval.

CONSEQUENCES

s If the table lookup is faster for doing the computation, your
program will run faster.

= Some forms of lookup tables 1ake up less memory than the
code for the computation.

IMPLEMENTATION

It is common, when using the Lookup Table pattern. to represent
the table as a single array. In many cases there is more than one
piece of information that needs to be kept in lookup tables. If you
represent a lookup table as an array, it is always possible to repre-
sent multiple pieces of information in that lookup table as multi-
ple arrays.

A commaon technique for aveiding the need for multiple
arrays is 1o encode multiple pieces of information into each array
element. There are many ways to do this, So long as decoding the

Coding Optimization Patterns & 251

contents of an array element does not take longer than genting the
pieces of information out of multiple arrays, it is a good design
trade-off,

The example mentioned under both the "Java APl Usage”
heading and the “Code Example” heading for this pattern repre-
sents multiple pieces of information in armay elements.

JAVA API USAGE

The java.lang.Characrer class uses the Lookup Table paltern, It
contains arrays that allow it 1o classify Unicode characters. The
array lookups are faster than executing an equivalent chain of 1¢
statermnents, and the armays also take up less memory than the
equivalent chain of 1f statements,

Part of what makes the arrays compact is that they use dif-
ferent bits of int values to indicate different attributes of charac-
ters. rather than use an array tor each auribute.

CODE EXAMPLE

The calculation of the date on which a holiday falls in a particu-
lar year can be a bit complex for some holidays, The following
code can be used to determine the date of Easter for any yvear in
the range 1533 to 4099 using the Gregorian calendar

privats atatic final int MIM EASTER TEAN = 1583
privates static final imt MAX EAETER TEAR = d05%5;

public static OregorianCalsndar sastariimz yeaz) |
LE (year ¢« MIN EASTEN YEMA || ysar » MAX EASTEN YEAR) (
throw oew IllegalhrgussatExceptlion|Integer.colrring (ysar))
A]

l-t-t ‘lhi'ﬂ'ihili.f

anysarili;

berymar /100

cwysarslin)

B [19%a+b- {brd) -1 (b= (BeB) /25017 /31 +153%30)
lafd3sd o (%) +d® lard)=h-[awl] %Y

o= (aell"he23%1) /451

return new OregorianCslsndsr|year,

252 ® CHAPTER SEVEN

(hel-Toms11d) 31,
(hel-T*mesL1d)%31 = 1)}
¥ 4} easter(intl

Suppose this code is incorporated into a calendar server that
will be called upon to compute all the holidays in a month or year
for multiple users at the same time. The holiday calculation for
concurrent users is a performance problem, so you want to speed
up the calculation Easter. You decide that you can speed it up by
using the Lookup Table pattern.

You want to keep the date on which Easter falls in every year
from 1583 1o 4099 in an array. You would like to keep the repre-
sentation compact, but not take much time 1o decode. What you
decide is that rather than use two arrays to contain the month
and date of each year’s Easter, you use a single array of bytes 1o
represent both the month and date of each years Easter.

Each byte of the array corresponds 1o a vear. The value in
each byte is the day of the month (1-31) times 5 plus the month
(3 or 4). The version of the code that uses a table to find the date

of Easter in a year is as follows:

private static final imt NIN EASTER TEAR = 1583;
privets static final int MAX EASTER TEAR = 4099

privats statlc final imE MONTH WULTIFLIER = 11

Illl

* The month and day of saster s mmooded bn this array.

¥ A given year (o repredssmted (0 the arcay welemsen at

* Imlex of year-1%581

= The valus n fach elwwent 18 manch®lad «day.

7

private static byta] sasterDates = {
(bytajlds, (bytslldd, (byte)ldd, (bytallld, (byta)lls,
(bytal 145, (bytallldd, (bytealldd, (byta)ldd, (brts)l2s,
(bytw}lds, (byteills, (lytellidd, (bytelléld, (lyte)li,

(bytal 153, (bytelldd, (byte)lld0, (byte)ldo, (byta)ldd,
(byta) 135, (bytalldf, (byta)lidl, i(bytallldl, (byte)ldl,
{bytalila, (bytelld?

i

Coding Optimization Patters u 253

Feturn 4 calendar obfect that contains the dats of Easter om bhe

Gregorian calendar for the given year

#paras year the glvan year

farcaept lon MNlsjalicgument Except ion 1! year la leas chan 1581
or groatexr Lhan S0F%

L 3 L -+ L L] » L

public static CregorianCelendar sasteri{lot year) |
Lf iysar ¢ NIN ELSTEN YEAR || year > SMAT EASTEN TEAR) |

throw new IllegalirgumentExcept lon(Integer.toftringiysac))
TR Y

ff Bocauam Dyta ia a signed type, e Susi Bask oot Lhe

{f higher order bits.

int spooding = sasterDates [yeir-WIN EASTEW YEAR] & Cxff;

reaturn new OregorisnCalsndsr {ysar,
ancoding MONTH MOLTIFLIER,
ancod i nge0NTH_ NULTIFLIER) |

) /) easter inmt)

RELATED PATTERNS

Hashed Adapter Both the Hashed Adapter Objects pattern and
the Lookup Table pattern involve the use of an aggregation.
However, the aggregation serves a different purpose for each.
The Lookup Table pattern uses an aggregation of precomputed
results 1o save the time it would take to compute those results
in the future. For the Hashed Adapter Objects pattern, it's that
data structure that implemenis the aggregation, which is the
source of the time savings.

Code Robustness
Patterns

Assertion Testing (257)

Guaranteed Cleanup (265)

Maximize Privacy (269)

Return New Objects from Accessor Method (275)
Copy Mutable Parameters (279)

The patterns in this chapter describe ways 1o make code more
rubust. Most of them also huve the effect of adding overhead of
SOMe SO0t

255

Code Robustmess Parterns & 257

Assertion Testing Iﬁﬁndﬂﬁ]

SYNOPSIS

Verify that a methed conforms to its contract with its callers by
inserting code to test its preconditions, posteonditions, invari-
ants, and data conditions at runtime.

CONTEXT

A good technigue for designing a method is to determine the con-
ditions it must satisfy. There are different types of conditions that
a method may need to satisfv. The most common are:

Preconditions. Preconditions are conditions that must he
true when a method is invoked. Such conditions often
govern the arguments passed to the method, the state of
the object the method is associated with, or a resource
that the method manipulates. Typical preconditions are
that an argument must be greater than zero, that an
instance variable must not be null, or that a file must be
apen.

Postconditions. Postconditions are conditions that must
be true when a method returns. Such conditions often
govern the method'’s return value, the state of the method
associated with an ohject, or a resource that the method
manipulates. Typical postconditions are that a return
vilue has a particular relationship to the method’s argu-
ments, that an instance variable is initialized in a partic-
ular way, or that a file is closed

Invarants. [Invariants are conditions that must be true dur-
ing the entire duration of a method call. Such conditions
often govern the state of the object that the method is
associated with or a resource that the method manipu-

Code Robustness Patterns u 259

when an unsatisfied condition of a method's contract is
detected. For reasons explained in the Checked versus
Unchecked Exceptions pattern, exceptions thrown to report
a contract violation should be unchecked exceptions,

A method's caller is responsible for satisfving a method’s
preconditions.

If a method’s preconditions are to be entorced. the method
must either take responsibility for enforcing its own precon-
ditions or delegate that enforcement to another method that
it calls.

If a method's postconditions or invariant conditions are not
satisfied. this indicates a programming error in the method.
Programming errors are not part of a method's contract with
its callers,

A compiler that is able 1o parse and understand assertions
that appear in specially formatied comments may be able
to evaluate some assertions at compile time. There are
advantages to having a compiler that is able to tell at com-
pile time whether an assertion will be true or false at run-
time. It means early detection of violated conditions. It also
means that the compiler will not need 1o generate code for
assertions that it determines are always true at compile
time.

If the compiler is not able 10 determine whether an
assertion will be true or false at runtime, it will have to gen-
erate code to test the assertion at runtime. A disadvantage of
runtime assertion testing is that condition violations are not
detected until the corresponding assertions are executed in
a circumstance that violates the condition. If testing is not
done very carefully, a condition violation may occur after the
program has been put into production.

At the time of this writing, the author is not aware of any
Java compilers that evaluate assertions at compile time.
However, there are preprocessors that preprocess asser
tions embedded in specially formatted comments into live
assertion-testing code.

You may not want code (o test assertions at runtime to be
included in the version of a program that you put into pro-

260 ®m CuAPTER EIGHT

duction. A good reason Lo omil assertion-testing code trom
production is that the program has been so well tested that
the code provides no benefit 1o offset the addition memory
and execution time it consumes. On the other hand, if a sys-
tem is expected to evolve over time, the added protection of
runtime assertion testing may be sufficiently valuable that it
offsets the performance penalty.

SOLUTION

Include code in a method'’s source code that asserts the condi-
tions that constitute the method's contract,

If vou have access to a preprocessor that can preprocess
assertions in specially formatted comments into assertion-testing
code, then do supply the method’s conditions as assertions in
comments. An advantage that using a preprocessor has over cre-
ating assertion-testing code manually is that it is easier to man-
age postconditions, If a method has multiple exit points and you
put assertion-testing code into the method manually, vou will
have 1o put 1ests for postconditions at each exit point. A prepro-
cessor should be able 1o take a postcondition that you have
stated once in a comment and automatically place it at all exit
points.

If vou do not have access to a suitable preprocessor, insert
assertion-testing code into methods manually. If there is a possi-
bility that you might want to turn off the assertion-testing code or
exclude it from some configurations of your program, use the
Conditional Compilation pattern.

When assertion-testing code detects that an assertion is false,
it typically handles the [ailure by sending a report of the failure to
System.err Or an appropriate error logging mechanism. It then
throws an unchecked exception.®

* Dbjects that are an instance of Runt LmeExcept lon, Error or one of thelr subclasses
arw unchecked excepuons. A& method's callers are not required 1o do srvihing 1o scknowl
cdge the possibility that that method may throw an unchecked exception.

Code Robustness Patterns u 261

It is usual to report an unsatisfied precondition at runtime
by throwing a checked exception.® If a method throws a checked
exception, its callers are required to either catch the exception or
declare that they throw the exception. Designing a method to
throw a checked exception if its preconditions are not satisfied
forces programmers that write calls to the method 10 devote some
amount of thought to ensure that the method’s preconditions are
satisfied. It also forces them to take responsibility for what hap-
pens if the preconditions are not satisfied,

Unsatisfied postconditions and invariant conditions are usu-
ally reported by throwing unchecked exceptions. This is because
satisfving them is the responsibility of the method and not its
callers.

The type of exception to throw when a data condition is
unsatisfied varies with the nature of the condition.

CONSEQUENCES

® If a sequence of events al runtime violates a method's con-
tract, the assertion-testing code reports the violation and the
sequence of events is aborted.

® Because you know which condition was violated and where
it was violated, the time needed to track down and fix the
source of the problem is greatly reduced.

» If assertion-testing code is no longer needed, it can easily be
left out of the compiled version of the code.

IMPLEMENTATION

Manual insertion of code 1o test invariamt conditions is awk-
ward because invariant conditions apply 1o the entire duration
of a method invocation. At minimum, Invariant coanditions

should be tested at the beginning of a method and ar all of its

s Throwahle oblects that are s imaance of Funt issExcept Lan. Eroor, of one of Lheir
subclasaes are checked cxcepliona

262 m Cuapter ElGHT

exit points. Another place to consider testing invariant condi-
tions is after code segments that modify something related to an
invariant. If the method throws any checked exceptions, con-
sider testing the invariants before the exception is thrown out of
the method.

If the conditions of a method's contract are expressed in its
code as assertions in specially formatted comments, a program
such as a compiler or preprocessor can parse and in some way
process the assertions. Such preprocessors are commercially
available.

A mechanism that automatically detects discrepancies
between a method’s contract and its actual behavior can dramati-
cally reduce the amount of time it takes to detect and fix bugs, as
compared to finding discrepancies manually. Software to manage
software testing in this way is also commercially available.

CODE EXAMPLE

Consider the following listing of a class called bateconstraint.
Instances of this class specify constraints you can use 1o decide if
a date is part of a set or not.

class Datelonstraime [
Ll
' gexception InvalldConstralntEecep:zlon
. if the string that epeciliea Lhe axception
is oot valld
S
mateConatraint (Ftring spec) thross InvalldConmtraintException |

1 ¢y conatrectoristring]

} /! clasne DateCorE@mtralnt

The preceding listing includes a constructor that takes a
specification of dates as a string, parses the string, and initializes
the bateConstraint object. The constraint has a precondition
that the string passed to it be a syntactically valid date constraint.
The constructor throws a Inval tdConstraintExcept ion if this
precondition is not satisfied. The InvalidConstraintException

Code Robustrness Patterns w 263

class is defined as a checked exception because callers of the con-
structor rely on the constructor to determine if the string con-
tains a syntactically valid date constraint. This makes it part of
the pareconstraine constructor’s contract with its callers.

The following listing shows a method called
getDatesInMonth that returns a list of the days in a month that
satisfy a given specification. Like the constructor in the preceding
listing, it has a precondition that the string passed to it be a syn-
tactically valid date constraint. It delegates the enforcement of
that condition to the DateConsrraine classs constructor. The
Datelonstraint classs constructor also has a precondition that

the string passed to it be a symactically valid date constraint.

public List getDatesinMonth(int year, int month, String spec)
throws InvalldConstralntException |
{/ Parse Jdate consiraint specilicatiom.
facslonstraint constralnky
constraint « new Dstelonstraint (spec))
i/ get dates Lrom database

If (datelist.wize() > MAX_DAYE_IN MOWNTH) |
String arr = *Got “sdateldst.size()+" datas")
throw new LoglcException{srzrli

| A] -

return dataliet)

¥} o7 geiDatesIndonthiine. int. Scering)

The getpatesInMonth method also has a postcondition.
The postcondition is that the number of dates in the list that the
method returns must be less than the number of days in the
month. The method reports a violation of its postcondition by
throwing a LogicExcept ion exception, which is defined as an
unchecked exception. Like all postconditions, its violation indi-
cates an internal programming error that the method’s callers
should not need to expect or anticipate. The following listing
shows the definition of the LogicExceprion class.

public class LogicException sxtends RuntlssPxception {
privats Throwable prevEzcepticn;

JIII

* Conplructor
* Gparam mag The meppage asmoviated with this sxception.

264 m CuarTeER EIGHT

¥

public LoglcException{Btring mag) |
wupar (meg]l §
}) conatructor (Srelng)

jEE

" constructor
* jparam prevy The Lhrown encepilon this i peplacing.
.y
public LogleException(Throwabls prev) |
previxception = prev)
] 4 comatructor [Throwsbls)
rll
* coneiroctior
* gparas msg The msassge asscciated with this exceprion,
¥ paras prev The thrown sxception this L replacing
pablic LogicEsceptioniString mag, Throwsbls prev) |
Fupar (mEg}
prevException = prev)
} /4 comatructord Throwablal

LA
* Printa m STACKk Craca of tha @Xceplion
* iparam out The PrintStreas 10 write the stack crace to.
pablic wold printsStackTracs (PriotBtrean cut) (
synchronized [cat] |
if (prevEmception I= mull) |
out . print (“ApplicationException:y *j;
provExceptlon.priotftackTracs (out} |
} sles |
saper.printStackTrace{out)y
Yoor it
} /¢ pynchronized
¥ 0 priptSvackTrace (Princsiream)

{1 clase LogicExoeption

RELATED PATTERNS
Checked versus Unchecked Exceptions The Checked versus

Unchecked Exceptions pattern explains reasons for using
unchecked exceptions to indicate assertion failures.

Conditional Compilation You can use the Conditional

Compilation pattern with the Assertion Testing pattern to con-
trol whether assertion-testing code is included in a particular
configuration of a program,

Code Robustmess Patterns u 265

Guaranteed Cleanup [Grand39]

SYNOPSIS

Ensure that internal data are in a consistent state if an operation
is unable to execute 1o its normal completion, Ensure that exter-
nal resources are in a consistent state and, if appropriate, are
released after an operation is unable 1o execule to its normal
completion.

CONTEXT

Suppose that you are writing a program that performs remote
diagnostics on computers. The remote diagnostic program is sup-
posed to connect to the computer to be tested. run some tests,
and generate a diagnostic report. One of the things that can hap-
pen while the program runs the tests is that its connection o the
computer under test can fail. Even if the connection fails, the
program is required to generate a diagnostic report that shows
the diagnostic information obtained up to the failure and records
when it finished.

FORCES

» Some cleanup actions must be performed after an operation,
regardless of whether the operation completes normally.

s The cleanup action must be performed immediately after the
operation.

» Various cleanup mechanisms are triggered by the garbage
collector, such as finalize methods and RefersnceQueue
objects. These mechanisms are called when the garbage col-
lector determines that an object is no longer alive. There is
no limit to how long this can take. There is not even a guar-
antee that it will happen at all,

266 m Cuarrer Elout

s The semantics of Java guarantee that the finally clause of a
try statement will be executed unless the Java virtual machine
that it runs on hals first.

SOLUTION

Use a try statement’s £ inal ly clause 1o ensure that a cleanup
action is performed after an operation terminates. Consider the
fallowing code listing, which satisfies the requirement specified
under the "Context”™ heading:

pablic clase DdegnosticAarneas |
r-i-i
* Bun & mogquenca of disgnogtic tesats,
* Sparam tedls An llerator thal relurns Lhe Begushcs of
- disgnoatic test o be run
" §param connactlon The socket thatl connects the progras 5o
¥ the cosputer to ba teated
! @paras out A PrintStieam to Sent dlagnostle oubput Lo
ol
public void runfilagnostic(Itarator vests,
Sockat connaction,
FPrincftreas out) throws IDEsceptios {
oul . print (pew Datei)])
out . printla{®) Begimning disgnostics.™);
ey o
whila (tests.BasMext{))
{(DisgnosticTest | teste.paxt ()) .30t jcoonaction,
oue)
b i/ whila
} flmally |
out . print (new Datel})s
cut.printin{®; Diagnostice ended®))
b Iy Lry
d F runflagnosticiliterator. Socked
¥} /) clasp DliagnoeticHarnase

This method ensures that after the diagnostic tests have fin-
ished, no matter how they have finished, a message indicating
when the diagnostics ended is appended to the report.

CONSEQUENCES

» Unless the Java virtual machine halts, the code in a finally
clause will always be executed just before the flow of control
would otherwise leave the ©ry statement it is part ol,

Code Robustness Patterns 8 267

= A small amount of overhead is added.

» Putting cleanup code in the finally clause of a try state-
ment can make a method more difficult to understand and
1o test because there will often be multiple execution paths
that lead to the execution of the finally code. Some of the
execution paths thart lead to the execution of the finally
code may not be obvious to someone reading the program or
have been intended by the person who wrote the method.

For example. a method may be required to display a com-
pletion method when it finishes whatever it does. If the method
has multiple return statements, code to display a completion
message could be placed before each return statement. The
person writing such a method mav decide that it is better to
write the message that displays the code once and put it in a
tinally clause, as is shown in the following listing.

publie wold dolel) |
ery |

% S s B
return;

I 441t

| R

return)
(I §
dE Doauld §

I'I}mf
[3 |

j Eloally
showStatos ["opsration complets*))
bosf ey
}oFisdoIn)

In this listing, when any of the retum statements are exe-
cuted, the call to ehewsStatus is executed. What is less obvious
is that if a runtime exception, such as NullPointerBxception,
is thrown from anywhere in the main oy block. the call 1o
showStarus is also executed. This execution path produces the

“operation complete” message when the operation does not
complete.

268 w Cuarrer EiGHT

JAVA APl USAGE

Object Input Stream objects have a method named readobiect
that reconstructs an object from a stream of bytes thal was wril-
ten by an ObjectOut put Stream object, The process of recon-
structing an object from such a byte stream is called deserializing
an object. Such byte streams usually contain objects and the
objects that they refer 1o, The readObisce method finishes deseri-
alizing the objects that an object refers 1o before it finishes with
the object itself. Clearly, the readobject method must keep track
of which object it is desenalizing as it proceeds with an object,
deserializes an object that it refers to, and then continues deseri-
alizing the first object.

The readobject method uses a £inal ly clause 1o ensure
that previously deserialized information about the object is
restored when it is needed.

Code Robustness Parrerns m 269

Maximize Privacy [Grand99]

SYNOPSIS
Make members of classes as private as possible.

CONTEXT

You want to make it as difficult as possible for maintenance pro-
grammers or people in other code-writing roles to create depen-
dencies that are unintended by the program’s design.

FORCES

w Class designs may leave the visibility of a class’s methods or
variables unspecified.

® When implementing a class specified in a design, the imple-
mentation may include methods and variables not specified
in the design.

® If a variable or method is public, programmers can add code
ta any class that uses the vanable or method.

= Programmers who do not understand the design of a set of
classes may create dependencies between classes that are
contrary 1o the intention of the design.

= Programmers cannot mistakenly create dependencies from
classes in other packages that are contrary to the intent of
the design if a class is not public. If a method or field is not
public, then there is a smaller set of classes from which pro-
grimmers can mistakenly create dependencies that are con-
trary to the intent of the design. If a method or field is
private, programmers cannol create dependencies on it from
anywhere putside its class.

= If a method that may be usefully called by other classes is
declared private, an opportunity for reuse may be lost.

Code Robustress Patterns w 271

R L W TR
Ut R
< Ououaitirappent Guou
st (Ryject] e 1
sEnill] ORHeCt o pustig Clbjeecz)
9 ® wplll Ot
m are
Bl = LT
i S o] . T}
ChairanSpaunn] Doyl fi
Elia =
spushi Oitpct)
+pull 1 Oigoct

AGURE 81 Quecuc wrupper classes,

The design does not specify the visibility for the QueusWrapper
class’s constructor. You will want it to be possible to instantiate
subclasses of the Queuewrapper class, so its only constructor can-
not be private, To make the gueuewrapper class as uselul as possi-
ble, you would like it to be possible for subclasses of Quesuswrapper
to be part of any package. This means that the constructor cannot
have package visibility However. protected visibility is sufficient
for the constructor since Lthere is no need for arbitrary classes 1o be
able to access it

The following listing shows the implementation of the
CQueueRrapper class;

public sbstract class Queushrappss |
provocted (uets EyCHeDa) 14 The queus wrapped by this object

|III

¥ FORATIUCLON.

* Uparas afusies The Dusie to b= wrTapped by cthis object.

protected Juesusirapper (Quevs slusus] {
EyJueus = afueus)

} Y eonstructor | Queie

few

272 ® Cuarrer E1Gur

* Futas an object on the end of the gueus

* §param obY zhe obiect Lo put at end &f Queus

synchronlsed public wold pushiObjesct obi) |
mEyQueus . push {abd)

Y fi opushidbject]

pEE

* et an pbiect [rom the fromt of the gueus
¥ gexception EmpryQueueExceprion If the Qusue
* Ln ampLy
synchronized public Object pall() {
return myQuese . pulli))
y fF peadd gy
Y {1 glags QuepeWrappor

[

Notice that the implementation of fueueWrapper includes an
instance variable called myQueve. This variable 1s an implementa-
tion artifact, It has protected visibility to allow subclasses of the
QueuveWrapper class 10 manipulate its value but not allow unre-

lated classes to access iL

Also, consider the following listing of the gueue class:

public class Jueus [
private Veotar vactar = new Veotar();

Ifll
* Pul &n ebjoeft oo the emd of the Ques
* Wparms obl the chiocl to put at aod of Quous
LY
synchronized public wold push{objsct abi) |
rector . addElesant (okf)
b} ¢ pushiObiect|

e
* Get an object from the fronl of the queons
* Bexceprion EmpryimeusBxception If the Quesus
¥ i =pry
mynchroalssd publis Object pulli)
if {(vector.size() == Q)
throw naw Emptyloescalxception(l
Object obj] = wector.elememtit (0]
TOCoLor . removellesant At (0]
return abd)
b vt pallid
¥4 elada Queus

Code Robusiness Patterns m 213

The Queue class has an instance variable named vector. This
instance variable is an implementation artifact. Tt has private visi-
bility because there is no need lor any other class to access it

RELATED PATTERNS

Low Coupling/High Cohesion The Low Coupling/High
Cohesion pattern also tries 1o avoid dependencies between
classes,

Code Robustness Patterns m 275

Return New Objects from Accessor Method

[Golds7]

SYNOPSIS

Accessor methods return values or objects that indicate an ob-
ject’s state. If the objects that an accessor method returns are
mutable, they should be copies rather than the actual state that
determines objects. This prevents changes to the returned object
from also changing the state of the accessor method's associated
object.

CONTEXT

Suppose that you are implementing a class called calendarevent
that describes events scheduled in a personal calendar. The UML
description of CalendarEvent appears in Figure 8.2,

The CalendarBvent classs setTime method sets the start and
end times of an event object by setting its start and end variables.
It is responsible for ensuring that the start time is not after the
end time. The getstartTime method retums a CalendarEvent
object’s start time as a Date object. If you simply implement it by
returning the pate object that is the value of the calendarEvent

ort Dt} FIGURE 82 UML description of
- CalendarEvent.

276 m Cuarrer EiGHT

objects srart variable, vou compromise the integrity of the
CalendarEvent class.

The problem is that after the getStartTime method retums
the Date object that determines a CalendarEvent object’s start
time, the method's caller is free 1o change the content of the pate

object.

FORCES

® A class has an accessor method that returns an object that
determines the state of an instance of the class.

The object that the accessar method returns is mutable. In
other words, it is possible for other objects 1o modify the
object that the accessor method returns.

s There is no reasonable way to redesign the class so that it
does not expose its internal state. Such redesigns usually
involve reassigning the responsibilities of classes.

= A class must prevent the state of its instances from being
directly modified by other classes. To ensure the integrity of
its instances, other classes must be forced to work through
the methods that the class provides for modifving the state
of its instances.

SOLUTION

Some objects have associated objects that determine their state.
An object’s accessor methods should never return one of the asso-
ciated state-determining objects if it is mutable—its contents can
be changed. Instead, accessor methods should return copies of
such state-determining objects.

CONSEQUENCES

s The integrity of an object’s encapsulation is maintained
when its accessor methods return copies of mutable state-
determining objects rather than the state-determining

Code Robusiness Patterns w 277

abjects themselves, so long as changes to the copies do not
affect the original objects.

® This pattern adds the time and memory overhead needed 10
create copies of objects.

IMPLEMENTATION

All Java classes inherit a method from the object class called
clone. An object’s clone method returns a copy of the object.
Unfortunately, the ¢1one method has protected visibility. This
means that unless an object is an array. instances of unrelated
classes cannot call the object’s c1one method to copy the object.
Some classes provide other ways 1o copy an object. For

example, the lollowing method returns a copy of a given Vector
object:
public static Vector copyVector(Vector v (

¥ector oewVector = naw Vectoxiv.slze()):

aswvector. addall (v}

return nawvestor)
1 i eepyector IVestar)

JAVA APl USAGE

Instances of the java _text MessageFormar class use an array of
Format objects. The class has a method called gorFormars that
returns an array of the Format objects thal a MessageFormat
object uses. The array that it returns is not the array that the
MessageFormat object uses, but a copy of the array,

CODE EXAMPLE

The following listing shows part of the implementation of the
CalendarBvent class discussed under the "Context” heading. As
you read it, notice that its accessor methods do not return the
actual Dare objects that determine the event's start and end.
Instead, they return a copy of those pate objects.

2718 m Cuarrer Eiour

public class Calendar®vent |
private Dats start)
privata Dabte and;

jaw
= bl the start and ond time Of LhLS &went.
* Bpara= staft Thils event's start Eles.

* Fpares gnd This sventi's end loe.
*gaxcept lon 11 legalRrgument Excapt | on

* it end ia before stact

publis wold setTiss(Dats start, Dates and) |
1f [(end.befors{etart))
Ftring mag = *snd bafore start®)

Ehrow new Illegalhrgument Except lon(mag))
}ooeoun

P selTime{Data. Date)

foE

* fpeturn this event‘y scart time
=1

pubilic Date petStare() |

raturn copyDeteistart])
} ¢/ getSrarti)

* Beltyurn LAl évenil s etd Ll
L]

pablic Date getEsmdf{} |
return copyDate(end))
¥ ¢ getEnd(])

private Dates copyDeta[Date d) {
coturn aew Date(d.getTies(})
} /) copyDateiDaia)
bV /¢ zlams CalendarEvent

RELATED PATTERNS

Copy Mutable Parameters The Return New Objects from
Accessor Method pattern avoids the situation of an object that
shares its state-determining objects with callers of its accessor
methods. The Copy Mutable Parameters pattern avoids a simi-
lar situation with callers that pass state-determining objects
into its constructors and methods.

Code Robustness Patterns 279

Copy Mutable Parameters [Frinnjﬁ]

SYNOPSIS

Objects may be passed to a method or constructor that is used to
determine the state of itx associated object. If the passed objects
are mutable, copies of them should be used ta determine the
object’s state, rather than the original passed object. This prevents
changes to the passed object from also changing the state of the

object associated with the method or constructor

CONTEXT

Suppose that you are implementing a class called calendargvent
that describes events scheduled in a personal calendar. The UML
description of calendar Event appears in Figure 8.2,

The calendarEvent class’s setTime method sets the start
and end times of a calendar event object by setting its stare and
end variables, 1t is responsible for ensuring that the start time is
not after the end time. If the setTime method simply sets the
calendarBvent object’s srart and end variables to refer to the
Date objects passed to it, the integrity of the calendarBvent
class is compromised,

The problem is that after it passes pate objects 1o the
setTime method, the caller of the setTime method is free 1o
change the content of the Date objects.

FORCES

s A class has a method or constructor that is passed an object
whose content is used to determine the state of an instance
of the class.

= The objects that will be passed to the method or constructor
‘are mutable. In other words, it is possible for the caller of

280 ® Cuarrer EigHT

the methoed or constructor to modify the content of the
object after calling the method or constructor.

= A class must prevent the state of its instances from being
directly modified by other classes. Other classes must work
through the methods that the class provides for modifying

the state of its instances.

SOLUTION

Methods that are passed arguments that determine the state of
their associated object should not directly assign such an argu-
ment to an instance variable if the argument is a mutable object.
Instead, they should assign a copy of the argument 10 the
instance variable,

CONSEQUENCES

= The integrity of an object’s encapsulation is maintained when
its methods assign copies of argument objects to instance
variables, rather than assigning the argument objects them-
selves,

» This pattern adds the time and memory overhead needed 1o
create copies of objects.

IMPLEMENTATION

All Java classes inherit a method from the object class called
clone, An object’s clone method returns a copy of the object
Unfortunately, the ¢ lone method has protected visibility. This
means that unless an object is an array, instances of unrelated
classes cannot call the object’s clone method to copy the object.
Some classes provide other ways 1o copy an object. For exam-
ple, the following method returns a copy of a given Vecror object:

publiz static Vector copyVecotor(Vector wl {
Vactor nswVeotor = new Veotor(v.miwe());
nevVector. adahll (v} ;

282 m Cuarter EIlGHT

RELATED PATTERNS

Return New Objects from Accessor Method The Copy
Mutable Parameters pattern avoids the situation of an object
that shares its state-determining objects with callers of 1ts
methods that specify those objects. The Return New Objects
from Accessor Method pattern avoids a similar situation with
callers of methods that return state-determining objects.

Testing Patterns

Black Box Testing (285)
White Box Testing (289)
Unit Testing (293)
Integration Testing (297)
System Testing (301)

Regression Testing (309)
Acceptance Testing (313)
Clean Room Testing (319)

The patterns in this chapter describe different methods of testing
software. Testing software invalves executing the software under
controlled conditions to see if its behavior is consistent with a set
of expectations.

The software-testing patierns described in this chapter vary
with the granularity of the tested sofltware—individual classes,
proups of classes, or entire programs—the purpose of the test,
and the thoroughness of the test.

283

Testing Patterns w 285

Black Box Testing [Grand99]

Black Box Testing is also known as Functional Testing or Closed
Box Testing.

SYNOPSIS

Ensure that software meets requirements by designing tests
based solely on requirements. Do not base tests on the manner in
which the software is implemented.

CONTEXT

Suppose you have a contract to develop software. The contract
includes very detailed requirements that describe what the soft-
ware should and should not do. You will receive payment for
the software only if it satisfies all of the contractual require-
ments,

You have quality concerns for the product that go bevond
the requirements. You are concerned about how the program
will behave when the size of one of its inputs reaches the size of
one of its internal buffers. You are concerned that large input
values will overflow the data type used to represent those values
internally.

These are valid concerns. However, your overriding concern
is 10 receive payment. For this reason, you decide that your soft-
ware testing will be based on the requirements and not an any of
the software’s implementation details, Later on, if there is time,
vou will expand the scope of your testing.

Testing software in a manner that is not based on any knowl-
edge of the software’s implementation or internal structure is
called black box resting.

Testing Patterns w 287

CONSEQUENCES

» You can ensure that the software satisfies its requirements.

» Your testing program will focus on those tests that provide
the most immediate return on the investment.

» Your testing program will be far from exhaustive and will
not be sufficient for life-critical applications.

CODE EXAMPLE

Suppose vou have the task of designing a suite of black box tests 10
test an applet. The applet has one requirement: When the user
enters three numbers and presses a button., the applet will tell the
user if those numbers are possible lengths of the sides of a triangle.

For such a simple program, the tests will be simple. The soft-
ware has only one stated requirement. There is no explicitly
required initial state. There is one implicit requirement for the ini-
tial state that is shared by all applets—that it be possible for a
browser or other applet-hosting environment to launch the applet.
Since any test of the applet will implicitly test this requirement,
the west specifications do not explicitly include any mention of it

You design the first test case 1o directly test the program’s
requirement. The test will consist of entering the numbers 3, 4,
and 5, and then pressing the button. The expected outcome is
that the applet will indicate that those numbers can be the
lengths of the sides of a triangle.

You can infer additional requirements from knowledge of
the problem domain. In order 1o be the lengths of the sides of a
triangle, each of the three numbers must be less than the sum of
the other two. In other words, if a, b and ¢ are the three num-
bers, they can be the lengths of the sides of a triangle if and only
if all of the following is true:

a+b>e
b+e>a
g+cah

288 m CuArTER NINE

Based on this inferred requirement, you design tests to violate the
requirement with the expectation that the program will recognize
that numbers such as 3, 8, and 22 cannot be the lengths of the
sides of a triangle.

Another requirement that you can infer is that all three num-
bers must be greater than 0, so you design tests to verify that the
program rejects numbers that are less than or equal to 0,

Because you are designing test cases for black box testing,
there are some test cases that you will not consider. For example,
you expect that if the numbers given 1o the program are too large,
they will exceed the range of numbers that the program's internal
number representation can handle. Though vou expect that the
program will produce an error message in that case rather than
give the wrong answer, you don't design tests, because you would
need 1o know whal data type the program uses to represent the
numbers in order to select the numbers to use in the test case.

RELATED PATTERNS

White Box Testing White box testing is the complement of
black box testing. It involves designing test cases based on the
internal structure of the software to be tested.

290 ® Cuapter NINE

» In addition to ensuring that the software will work as speci-
fied, you must ensure that it will perform correctly in all sit-
uations,

» Using knowledge of the internal structure of the software, it
is passible to ensure that the software will work in all situa-
tions without testing it in all situations.

® The minimum amount of testing that is required to ensure
that the software will work in all conditions must exercise all
possible execution paths through the software.

» Careful analysis of the boundary conditions involved in each
execution path can reduce the number of Lests required Lo
adequately exercise an execution path from the number of
possible values that can flow through that execution path to
just a handful,

SOLUTION

Design tests for software based on the requirements for that soft-
ware and on its internal structure, The test designs for a white
box test suite will typically include the following information:

= The test name.

® The requirements that motivaie the test,

» The expected state, prior to the test, of the resources used
by the software. This can include such things as the state of
a database, the values of environment variables, or limits
on available resources (such as memory or disk space), It
can also specify minimum demands that will be placed on a
program, such as the number of simulated concurrent
Users,

s The inputs that will be provided 1o the software durning the
test.

= Any specific execution paths that the test is supposed 1o
exercise,

* Boundary conditions that the test exercises,

® The expected outputs from the software and the expected
final state of the resources that the software uses,

Testing Patterns & 291

A boundary condition is a condition that changes if a value is
above or below a given value. Some examples of common bound-
ary conditions are:

= Values that cause a numeric data tvpe to overflow

= Values that cause a data structure 1o overflow

» Values that cause the boolean expression in an i £ condition
to be true or false

To ensure that you test all execution paths through the soft-
ware, use a coverage analvsis tool that keeps track of which exe-
cution paths have been tested.

CONSEQUENCES

® You can ensure thal the software satisfies its requirements.

= Your testing program will focus on ensuring that the soft-
ware works correctly under all conditions,

» A white box testing program can be very expensive. It tvpi-
cally involves an enormous number of tests that require a
great amount of labor to create and require a great amount
of time to run, unless thev can be run on a large server farm.

CODE EXAMPLE

Returning to the space probe navigational computer discussed
under the "Cantext” heading, you find that you have a test suite
that covers all ot the probe’s formal requirements. You extend this
by embarking on a white box testing program.

A key part of any white box testing program is tracking what
execution paths a test suite exercises through the software. You
can use a tool called a coverage analvzer to keep track of the exe-
cution paths that vour lest suite exercises.

You begin by examining the existing tests’ éxecution paths to
determine what boundary conditions apply to them. You design
twio common types of tests in this manner

292 m Cuarter NINE

1. Tests that involve input values outside the range thal an
internal data representation can handle

2. Tests that supply just enough data o fill up an internal
data buffer and tests that supply one more piece of data
than an internal buffer can hold

In addition to exploring the execution paths of existing tests,
you will create additional 1ests to exercise all of the remaining
possible execution paths and their boundary conditions.

RELATED PATTERNS

Black Box Testing Black box testing is the complement of
white box testing. It involves designing 1ests based only on the
specilications of the software to be tested.

Unit Testing Because there are many fewer execution paths
through an individual class than there are through an entire
program, it is more common to apply white box Lesting to unit
testing than 1o testing larger pieces of software,

Unit testing may be able 1o exercise execution paths in
classes that are currently unavailable in the environment for
which yvou are developing software, Exercising those execution
paths avoids future surprises.

Unit Testing [Erlndﬂ]

SYNOPSIS

Test individual classes in isolation from the other classes of the
program under development.

CONTEXT

You are managing a group of programmers on a project, In
order to ensure that your programmers focus on what they
know best, you make sure that one programmer has the primary
responsibility for each class of the software that you are devel-
oping. You expect to get a few benefits from this strategy. One
benefit is that less overall time will be spent on debugging
because each programmer will be able 1o focus on debugging
his or her own code.

After this policy has been in place for a while, you notice
that it is not working as you had expected. Your programmers are
still spending an inordinate amount of time tracking down bugs
in classes for which other programmers are responsible. To solve
this problem, you set a new policy requiring the programmers to
test each class in isolation before thev check it into the shared
code base.

FORCES

= You don't want programmers to spend their time tracking
the source of a bug down to a specific class.

» When programmers test an individual class in isolation, they
do not have to determine which class is the source of a bug.

» Most classes are not designed to operate in isolation.

= When classes are tested in isolation, it is possible to test
them under conditions or combinations of conditions that

294 m CuapTER NINE

they will not be subjected 1o within the program for which
they are being developed.

SOLUTION

Programmers test each class in isolation before checking it in.
The designs for such tests tvpically include:

= Name of the test

» Test objectives, including the execution paths and boundary
conditions being tested

® Description of the test

s Expected state, prior to the test, of the resources used by the
software; may include the state of a database or the values of
environment vanables

s Test initialization procedures

= Test inputs

» Procedure for running the test

= Expected test results

To implement a unit test, you have to write a driver class to
set up the test environment and call the methods of the tested
class. You may also have to write stub classes 1o simulate the
behavior of classes that are not part of the test.

CONSEQUENCES

» Programmers spend less time tracking down bugs.

s There is more time to fix bugs.

= Unit testing allows a class to be tested in situations that it
may not be possible to create when the class is used as pan
of the program for which it is being developed. This makes it
possible 1o detect bugs in the class that will not be expressed
in the behavior of the program of which it is a part. There
are two benefits of detecting such bugs:

Testing Patterns @ 295

1. Future maintenance programmers may modify the
program in a way that causes such bugs to be ex-
pressed, By detecting such bugs through unit testing,
you ensure that future maintenance programmers
will not have to spend time tracking down bugs in
classes they did not modify. This is also an additional
reason for doing white box testing at the unit-testing
level,

2. Thorough unit testing of a class improves jts
reusability. Thorough white box unit testing of a
class ensures that it can be reused without stopping
to track down previously undetected bugs.

» Constructing tests lor a class in isolation may present some
challenges. Most classes have dependencies on other classes.
To trulv lest a class in isolation. vou must test it without rely-
ing on any of the other classes that vou have under develop-
ment. This means that your test environment can use other
classes that are not under development and of whose behavior
vou are confident. However, it also means that you will need
dummy versions of all the classes under development upon
which the class under testing depends. The dummy versions
should have stubbed implementations of the class methods
that perform adequately enough for successful testing.

The reason for using dummy classes is that it will gen-
erally take much less time to ensure that they are correct,
Once vou know that they are correct, the time spent testing
can be focused entirely on the class thar is the subject of
the test.

In some cases, the amount of functionality that related
classes must have in order to be useful in testing makes the
construction of dummy classes impractical. There are some
alternatives.

Suppose you want to unit test a class named A The &
class is dependent on another class named g. It is not feasi-
bhle 1o create a dummy version of the B class. However, the 8
class has no dependency on the A class. If the & class is unit
tested independently of the & class, it can be acceptable to

296 m CuaPTER NINE

use the actual 8 class for unit testing, rather than a dummy
VEersion.

If a class to be unit tested and another class are mutu-
ally dependent and it is not feasible to create a dummy ver-
sion of the other class, consider unit testing the two classes

together.
» Tools that help you understand the dependencies between

classes are very helpful in planning unit tests.

RELATED PATTERNS

System Testing System testing is a complement to unit testing,
System testing involves testing an entire program rather than
individual classes,

White Box Testing While box testing is more often used at the
unit-testing level than at larger levels of granularity. This is
because there are fewer combinations of execution paths to
consider at the unit-lesting level. Also, white box testing at the
unit level makes it easier to reuse classes and lowers long-term
software maintenance costs.

Testing Patterns m 297

Integration Testmg [Grand99]

SYNOPSIS
Test individually developed classes together for the first time.

CONTEXT

You are developing a nontrivial piece of software. You write and
unit test each class. You then put the classes together so that they
will collectively function as a program. The exercise of putting
classes together for the first time and making them work together
is called integration testing. You find many problems that are dif-
ficult to track down because it is difficult to determine which
class is the cause. You conclude that vou need a better plan.

FORCES

s No matter how precisely you specify a set of classes, or how
thoroughly you unit test them, yvou do not know that they
will work together as intended until you test them together.

s Throwing all of a program’s classes together to be tested at
once is called Ing bang integration testing. Big bang integra-
tion can be very chaotic unless there are relatively few
classes in a program.

® The individual classex 1o be integrated rarely become avail-
able for integration at exactly the same time and they usually
do not become available exactly when scheduled.

® When you use big bang integration Lesting, you do not do
any integration testing until all of your classes are written,
which can result in the inefficient use of your programmers’
time, especially in a team environment. This can leave some
programmers idle until integration testing begins,

298 @ CHaPTER NINE

® You can minimize the chaos of integration testing and make
scheduling easier for programmers by initially testing a few
classes together and gradually increasing the number of
classes in a progressive manner.

= In order to make progressive integration lesting work, you
will need to substitute driver and stub classes for the classes
that are not vet integrated.

= When you devise a plan for progressive integration testing,
vou will need to choose an order in which to add and com-
bine classes into the test. You can choose a reasonable order
more easily by following the structure of a program than by
inventing arbitrary groupings.

e Your strategy for selecting classes 10 test should be flexible,
since classes may not become available for testing in the
expected order.

e The goal of integration testing is 1o ensure that individually
developed classes work together: Trying to run a comprehen-
sive suite of 1ests at this point to verify that the program sat-
isfies its requirements is not appropriate, since most of the
integration testing will be done without the participation of
the full set of classes.

= Matching the tests that you run to the order in which you
include classes in integration tests is the most efficient way
to perform integration testing, Tests that exercise the core
functionality of just the integrated classes waste the least
amount of time on unavailable functionality.

SOLUTION

When you design an integration-testing plan, first decide on a
facet of the program’s structure that you will use to organize the
testing. Some common methods to determine this are:

» Incorporate classes in a top-down or bottom-up pattern, or
some combination of the twa. This technique is easy Lo
understand at a conceptual level, but may be difficult to
apply to most object-oriented designs. The problem is that
most object-oriented designs are not very hierarchical,

Testing Patterns w 299

= Incorporate clusters of classes that are related to a common
program feature or use case.
s [ncorporate classes that are related 10 a common thread.

Once you have decided how you will organize your integra-
tion testing, begin writing driver and stub classes accordingly.
The driver classes are responsible for setting the environment for
a lest and calling the methods of classes under test. Stub classes
masquerade as classes on which the classes under test have
dependencies. However, stub classes provide little or no function-
ality and exist solely to satisfy dependencies during a test.

The actual tests performed during integration testing should
exercise the basic lunctionality of the classes under test. However,
exhaustive testing at this point may not be useful, You should
merely try 1o test the most basic functionality of each class 1o
ensure that the classes will work well enough with each other 1o
move on (o sysiem lesting.

Integration testing for small to medium-sized projects is
often done with less formal planning than other types of testing
because there is less need 1o repeat it. Once a large enough set of
classes is inlegrated, it may never be necessary to test those
classes in that mode again. Future integration testing would then
be performed only on other groups of classes.

Integration testing for larger projects requires more formal
planning. A more formal approach is required when multiple
development groups are involved in integration testing. Each
group is typically responsible for a different set of classes. This
gives rise to a higher level of organization for integration testing.
Each group will generally perform integration testing for the
group of classes for which it is responsible, because it will be
maost familiar with those classes.

When it comes time to perform integration testing on multi-
ple groups of classes from multiple development groups, it will be
necessary to involve people in the integration testing who are not
familiar with all of the classes being tested, In such situations, a
formal plan to instruct evervone involved on how to run the tests
and what 10 expect from them is invaluable,

300 m CuarTeER NINE

CONSEQUENCES

= Integration lesting can detect bugs arising from incompati-
bilities between classes that unit testing cannot casily detect,

» [t generally takes less time 1o track down bugs that you find
during integration testing than if vou catch them later, dur-
ing system testing.

s [t generally takes mare time to track down bugs that you
find during integration testing than if you catch them
sooner, during unit testing.

RELATED PATTERNS

System Testing Integration testing generally involves smaller
groups of classes than are tested during svstem testing.
Consider integration testing as an activity that allows vou to
make a smooth transition from the phase in development when
it is impractical to use a test larger than a unit test to the phase
when it is possible 10 run systems tests on most of a program’s
features.

Unit Testing Unit testing involves individual classes or very
small groups of classes. System testing involves larger groups
of classes.

Testing Patterns w 301

System Testing [Grand99] |

SYNOPSIS

Test a program as a whole entity, in an environment similar to the
one in which it is intended to run, to ensure that it conforms to
its specifications.

CONTEXT

After all the pieces of a program have been written, unit tested,
and put through integration testing, you still need to ensure that
the program as a whole satisfies all of its requiremenis and
matches its other specificadons. This requires a comprehensive

testing program.

FORCES

» Some software defects become apparent only when an entire
program is tested. Some defects manifest themselves only in
some but not all of the environments and circumstances in
which a program is required to work.

= You must verify that a program conforms to its specifica-
tions and satisfies its formal requirements.

= You want to ensure that a program’s performance matches
the documentation,

o Program requirements are not usually precise enough 1o
require that a program be implemented in a specific way.
Such requirements can allow different interpretations of
what a program should do. Such ambiguity increases the dif-
ficulty of system testing, since it implies that more than one
behavior for the program is acceptable in some situations. If
a program exhibits different but acceptable behaviors in the

302 ® CuaPTER NINE

same situation, all of those behaviors should be treated as
corTecl

A program's complete set of requirements will usually be too
complicated to understand all at once. Also, it is generally
not practical 1o test all of a program's requirements with a
single test case.

Organizing a program’s requirements into sufficiently small
logical groups allows you to understand entire groups of
requirements at once and allows you 1o design focused test
cases that exercise all or most of a group of requirements.
System testing can involve a tremendous number of tests. It
is difficult to know how to manage a large number of test
cases without an explicitly stated master plan that guides the
overall system-testing process. Such a plan can provide
guidelines for such things as:

» The point in the development process when system test-
ing should begin

» Priorities to use in deciding which test cases to design
and run first

s Conditions under which system testing should be
aborted withoul completing all tests

The large number of Lests that need to be run during system
testing can make manual analysis of the test results very
time consuming.

Creating automated tests for progmms that receive com-
mands or data through a GUI is more complicated than just
putting data in a file. It usually involves assumptions about
the layout of a GUI on a screen, the internal organization ot
a GUI, or both.

SOLUTION

When you design and implement a complete set of tests for sys-
tem testing, begin by formulating a master svstem-1esting plan.
The elements of a master system-testing plan should include the
following:

Testing Parrerns w 303

The point in the development process when system test-
ing should begin. This will typically be at a point in
development when enough of a program’s core features
are working to make system testing useful. Early in the
development of a program, none of its features will
work. A substantial amount of time may pass before
enough of a program’s infrastructure is built to make it
possible to test any of its features in the way that they
will be used when the program is complete. Only when
this is possible does it make sense to begin system test-
ing. This is the part of the plan where you work out the
details of shifting from integration testing to system
testing.

A master plan for system testing should define the
infrastructure and features of a program that must be
implemented before system testing can stari.

Priorities to use in deciding which test cases to design
and run first. There will usually be feature-based pri-
orities. There may be some features that must work
betore you can begin testing other features. Arrange
your development schedule to address these features
first. Features on which no other feature depends can be
tested last.

For example, suppose vou are developing a word
processor. A very fundamental feature of a word proces-
sor is that the user must be able 10 add characiers 1o a
document by typing on a keyboard. Since many other
features depend on this feature working properly, this
feature should be available and 1ested very early during
system Lesting, If spell checking ix a fealure on which no
other features depend, then it can be tested toward the
end of system testing.

Other prioritics may come into play due to non-
feature-based requirements, such as deadlines.

Conditions under which system testing should be
aborted without completing all tests. When you
develop vour priorities for designing tests, you will
determine dependency relationships between the tests.

304 ® CHAPTER NINE

You can then base system-testing priorities on these
dependencies. You can also use these dependencies to
determine when tests should not be run.

Tests that will not run successfully if another 1est
fails should not be run if that test fails, since running
them is a waste of effort. Also, to avoid spending an
excessive amount of time running tests that fail, yvou
may decide to abort a system test altogether if too many
tests fail,

When vou organize the dependencies and priorities for a
master system-testing plan, it is helpful (o first organize the pro-
gram’s requirements and specifications into logical groupings.

The suite of tests you design for sysiem testing must include
tests for all of the situations and environments in which a pro-
gram s required to operate. The variations you must account for
may include:

» Different operating platforms,

= Different program configurations,

s Different startup environments and launching mechanisms.

» Recovery from various failure modes. It may be particularly
important to focus on failure modes that result when a
resource is exhausted. Failure modes such as insufficient
memory or disk space are often not accounted for in designs
or their implementations.

= Different levels of load on the program and different
amounts of contention by other programs for the same
FesOUrces.

The design of individual tests should focus on specific soft-
ware requirements and specifications. The designs for such tests

typically include:

s Name of the test.

» Test objectives, including the requirements and specifica-
tions being tested.

® Description of the Lest.

Testing Parterns m 305

» Expected state, prior to the test, of the resources used by the
program; may include such things as the state of a dalabase
or the amount of available memory.

» Any additional procedures required 10 initialize the tes1. For
example, it may be necessary to issue some commands o a
program just to put it in the state that is to be tested. For
example, if you are designing a test for the spellcheck fea-
ture of a word processor, vou might specify that the word
processor must be told 1o open a panticular document before
the actual test of the spell checker may begin.

= Data required 1o run the test.

= Procedure tor running the test.

s Expected test results.

Because of the large number of tests that you must typically
run during system testing, It is common practice to build soft-
ware 1o automate running the tests and analyzing the test results.
This test automation software is called a test harmess. Such soft-
ware typically will:

= Ensure that all resources needed for a test are in their
expected state. For example, the test harness may mun a
script that creates an empty database and fills it with speci-
fied test data.

s Start the program and feed it commands from a script. If the
program takes its commands from a GUI, the test harmess
should include a facility for sending recorded or scripted
kevstrokes and mouse events to a GUL

» Capture the program’s output in a file 1If applicable, the test
harness should also capture screen snapshots at appropriate
points.

s Compare the captured output and screen snapshots from the
test with expected output and screen snapshots. If there are
no unexpected discrepancies, the test harness should report
that the test has succeeded. If there are unexpected discrep-
ancies, it should report that the test has failed and identify
the unexpected discrepancies.

Testing Parterns m 305

» Expected state, prior to the test, of the resources used by the
program; may include such things as the state of a dalabase
or the amount of available memory.

» Any additional procedures required 10 initialize the tes1. For
example, it may be necessary to issue some commands o a
program just to put it in the state that is to be tested. For
example, if you are designing a test for the spellcheck fea-
ture of a word processor, vou might specify that the word
processor must be told 1o open a panticular document before
the actual test of the spell checker may begin.

= Data required 1o run the test.

= Procedure tor running the test.

s Expected test results.

Because of the large number of tests that you must typically
run during system testing, It is common practice to build soft-
ware 1o automate running the tests and analyzing the test results.
This test automation software is called a test harmess. Such soft-
ware typically will:

= Ensure that all resources needed for a test are in their
expected state. For example, the test harness may mun a
script that creates an empty database and fills it with speci-
fied test data.

s Start the program and feed it commands from a script. If the
program takes its commands from a GUI, the test harmess
should include a facility for sending recorded or scripted
kevstrokes and mouse events to a GUL

» Capture the program’s output in a file 1If applicable, the test
harness should also capture screen snapshots at appropriate
points.

s Compare the captured output and screen snapshots from the
test with expected output and screen snapshots. If there are
no unexpected discrepancies, the test harness should report
that the test has succeeded. If there are unexpected discrep-
ancies, it should report that the test has failed and identify
the unexpected discrepancies.

Testing Patterns w 307

select different time display modes, then each mode must be
tested, along with the mechanism for selecting the mode.

= Using a test harness ensures that tests will be run in a consis-
tent manner, which makes the results more reproducible.

RELATED PATTERNS

Integration Testing Integration testing ensures that the soft-
ware being tested is in a sufficiently functional state that it is
possible to run groups of system tests and get meaningful
results.

Regression Testing Regression testing allows vou 10 use sys-
tem tests to monitor the progress of programmers and measure
the overall conformance of the software 1o its requirements
and specilications.

Testing Patterns m 309

Regression Testing [Grand99]

SYNOPSIS

Keep track of the outcome of software testing with a suite of tests
over time. This allows you to monitor the completion of coding as
programmers make incremental changes. It allows you to deter-
mine if a change to a program has introduced new bugs.

CONTEXT

When programmers are writing code to implement a design, a
poad way to track their progress is to keep track of when features

first begin working.

Later in the project, programmers may spend more time fix-
ing bugs than implementing features. At this stage, yvou can better
measure progress by tracking two things at the end of each day:

1. Increase in number of features that work compared to
number that previously did not

2, Decrease in number of features that don't work compared
to number that previously did

FORCES

» Running a suite of tests after changing code in a program
may be sufficient 1o tell vou if a change in the code has had
the desired effect.

® Running a suite of tests is not sufficient to tell you if a
change in the code has had any undesired effects, because it
does not give vou a way Lo tell if anvthing about the program
has changed. Tt simply allows you 1o determine if the current
behavior meets your expectations based on the change.

310 ® CuarrER NINE

» When you are managing a group of programmers who are
writing a new program or new features for an existing pro-
gram, you need a way to track their progress.

® Requiring programmers 1o write very detailed progress
reports is not a good use of their time. Piecing together the
details of all the programmers’ progress reponts to form an
overall picture of their progress can be time consuming and
can produce inconsistent results.

® An automated tracking system that reports programmers’
progress in a consistent way can save time for workers and
manager alike, in addition to providing more consistent
results,

SOLUTION

Alter vou make a change to the software, run all the appropriate
tests that you have and record the results, keeping track of which
tests the software passes and which it fails. If the suite of tests
you run includes tests that exercise the changes made to the soft-
ware, the test results will 1ell you if the changes have had their
desired effect.

Comparing the results of the most recent test with the results
of a previous test will tell vou if any tests that passed the previous
test run have failed in the most recent, which will point out any
undesired effects of the software changes.

If vou are making changes to a program on an occasional
basis, it is reasonable 10 do regression testing on an equally
occasional basis, after each change is applied. Occasional
changes are typical during the maintenance portion of the soft-
ware life cvcle.

During the coding portion of the software life cycle, changes
are typically made on a continuing and ongoing basis. 1t is not
practical to perform regression testing after every change is
applied to the program. A common solution is to run regression
on a nightly basis,

Testing Patterns ® 311

CONSEQUENCES

» Regression testing provides a way Lo track progress in the
development and maintenance of a program.

= Regression testing can be applied to system testing, unit test-
ing, or any other sort of testing that is based on a reasonably
stable set of 1est suites.

= The amount of record keeping that regression testing requires
necessitates using an automatic mechanism to capture test
results, record them in a database, and generate repons.

= Regression testing cannot produce any useful information
until there is enough functional code to 1est.

= Nightly regression testing has an impact on the social
dynamics of a group of programmers. Looking at the previ-
ous night's regression reports each morning becomes part
of their routine. In many cases. the most efficient way to
distribute regression reports is by e-mail. However. you can
use regression reports to foster communication between
programmers. Instead of distributing regression reports by
e-mail, post a hard copy on a wall near a spot that you
would like to become a gathering place for discussion,

IMPLEMENTATION

The most important type of analysis that you will do with
regression-lesting data is comparing the results between one
test run and the next. A tabular report or matrix is usually the

maost efficient way to present this information. A graph of the
number of failed tests can also be usetul.

RELATED PATTERNS

System Testing Regression lesting is commonly used with sys-
temn testing,

Unit Testing Regression testing is sometimes used with unit
testing.

314 ® CHAaPTER NINE

software you deliver passes agreed-upon tests. Testing 1o verify
that software meets a customer’s specifications is called accep-
tance testing because the customer generally is not required 1o
accept the software until it passes these tests.

FORCES

= Customers want to be sure that they are receiving what they
want. They don't want to be stuck with software thar is not
what they want or that does nol meet their needs.

s Software developers want to avoid a situation where the cus-
tomer is dissatisfied because newly developed custom solt-
ware does not meet the customer'’s needs, but those needs
were never expressed 10 the developer.

w If the customer and the developer agree in advance on the
procedure that the customer will use 1o evaluate the deliv-
ered software, they can satisfy both concerns. The customer
knows that the developer has agreed to be held 10 a standard
with which the customer feels comfortable. The developer
knows that the customer has agreed to use only the agreed-
upon procedures to evaluate the software and has agreed to
not introduce any new issues.

» Procedures for evaluating the software must be objective in
nature; otherwise, vou will not achieve the goal of deciding
in advance how the customer will evaluate the software.
Tests such as “the screen must look good” are so subjective
that they can be a source of much disagreement. Tests such
as verifying that the screens of a program conform to a writ-
ten guideline are preferable,

SOLUTION

Neither software developers nor their customers want 1o disagree
about whether the software that the developer delivers is what
the customer had requested. In order 1o avoid this, they can agree
on an acceptance-testing plan before the developer begins work
on the project.

Testing Patterns ® 315

An acceptance-testing plan should include the following ele-
ments:

» A statement specifving the scope of the acceptance-testing
plan should be included. It should specify the deliverables to
be tested, such as software components, operating environ-
ment, or hardware. It should also specifv high-level goals for
acceplance testing Some typical goals are:

= The new system must produce results identical 1o an
existing system.

» The new software must be able to process a certain
number of transactions per minute.

s The new software must perform computations with a
minimum level of accuracy.

® A description of the tests 1o be performed and the environ-
ment in which they are to be performed, 10 the extent that
they are known in advance, should be included.

» Test data to be used in acceptance testing should be speci-
fied. If possible, the data used for testing should be actual
production data to insure a realistic test.

= An acceptance-testing plan is usually written before or at the
beginning of a development project. For this reason, many of
the details needed to specify the tests to be performed are
not known or are not available when the plan is written. This
problem is handled in acceptance plans by specifying who
will be responsible for developing the necessary detailed test
plans, tests, 1es1 environments, and rechnical support. The
plan must also specify how the parties involved will agree to
these details.

o A statement of who must certify the software as having
passed the acceptance test should be included.

The actual tests included in an acceptance-testing plan are
determined by what is important to the customer. Any type of test
is appropriate, so long as it is objective in nature. Testing aspects

Testing Patterns ® 315

An acceptance-testing plan should include the following ele-
ments:

» A statement specifving the scope of the acceptance-testing
plan should be included. It should specify the deliverables to
be tested, such as software components, operating environ-
ment, or hardware. It should also specifv high-level goals for
acceplance testing Some typical goals are:

= The new system must produce results identical 1o an
existing system.

» The new software must be able to process a certain
number of transactions per minute.

s The new software must perform computations with a
minimum level of accuracy.

® A description of the tests 1o be performed and the environ-
ment in which they are to be performed, 10 the extent that
they are known in advance, should be included.

» Test data to be used in acceptance testing should be speci-
fied. If possible, the data used for testing should be actual
production data to insure a realistic test.

= An acceptance-testing plan is usually written before or at the
beginning of a development project. For this reason, many of
the details needed to specify the tests to be performed are
not known or are not available when the plan is written. This
problem is handled in acceptance plans by specifying who
will be responsible for developing the necessary detailed test
plans, tests, 1es1 environments, and rechnical support. The
plan must also specify how the parties involved will agree to
these details.

o A statement of who must certify the software as having
passed the acceptance test should be included.

The actual tests included in an acceptance-testing plan are
determined by what is important to the customer. Any type of test
is appropriate, so long as it is objective in nature. Testing aspects

Testing Patterns ® 315

An acceptance-testing plan should include the following ele-
ments:

» A statement specifving the scope of the acceptance-testing
plan should be included. It should specify the deliverables to
be tested, such as software components, operating environ-
ment, or hardware. It should also specifv high-level goals for
acceplance testing Some typical goals are:

= The new system must produce results identical 1o an
existing system.

» The new software must be able to process a certain
number of transactions per minute.

s The new software must perform computations with a
minimum level of accuracy.

® A description of the tests 1o be performed and the environ-
ment in which they are to be performed, 10 the extent that
they are known in advance, should be included.

» Test data to be used in acceptance testing should be speci-
fied. If possible, the data used for testing should be actual
production data to insure a realistic test.

= An acceptance-testing plan is usually written before or at the
beginning of a development project. For this reason, many of
the details needed to specify the tests to be performed are
not known or are not available when the plan is written. This
problem is handled in acceptance plans by specifying who
will be responsible for developing the necessary detailed test
plans, tests, 1es1 environments, and rechnical support. The
plan must also specify how the parties involved will agree to
these details.

o A statement of who must certify the software as having
passed the acceptance test should be included.

The actual tests included in an acceptance-testing plan are
determined by what is important to the customer. Any type of test
is appropriate, so long as it is objective in nature. Testing aspects

Testing Patterns ® 319

Clean Room Testing [Grand99]

SYNOPSIS

People who design software should not discuss specifications or
their implementation with the people who design tests for that
software.

CONTEXT

Jeff and Chuck work for a company that produces electronic
postage scales. Whenever any country changes its postage rates,
the company must produce memory modules with the new rates
for that country’s postage scales. Jelf is in charge of the group
that maintains the software that is used to program memory
modules for the scales. Chuck is in charge of the group that tests
the memory modules to ensure that the scales will compute the
correct postage in all cases.

Jeff and Chuck prefer 10 receive information about a
change in postage rates in the form of rate tables that specify
the amount of postage to be paid for every possible weight in
every possible circumstance. Because they need to know about
rate changes as early as possible, it Is common for them to
receive a rate change in whatever form it is written by legisla-
tors. Sometimes. legislators authorize rate changes in ways that
are subject to interpretation.

One day, Jeff and Chuck have lunch ogether. They discuss a
rate change that they are working on for a South American coun-
try. Chuck remarks that the rate seems straightforward, since it
simply specifies that all rates are increased by 20 pesos. Jeft
reminds Chuck that the country in question has a special round-
ing rule for amounts over 1000 pesos. Chuck thanks Jeff, and
both teams implement the software and test to account for the

special rounding rule.

320 m Cuarrer Nine

When they ship a prototype scale to that country’s postal
authorities, they [ind out that the programming lor the new rates
and the programs that test the rates are both wrong. After a con-
versation with that country's postal authorities, Jeff and Chuck
determine that the rate change is not subject to the rounding rule
after all.

If they had not had that conversation about the rate change,
the tests woiild have been implemented with a different interpre-
tation of the specification and the ambiguity would have been
found earlier, saving time and money.

FORCES

= Both the development of software and development of tests
for the software are driven by detailed specifications.

» Specifications often contain ambiguities. Sometimes the
ambiguities are apparent to people who implement software
or tests for the software based on the specifications. In such
cases, people may try to resolve the ambiguities betore they
implement anything based on them.

» Much of software test design is about ensuring that software
conforms to the specifications on which it is based.

®» When ambiguities in specifications are not apparent to
implementers, the ambiguities will be discovered during test-
ing if the peaple who design tests for sofiware interpret the
specifications in a different way than the people who design
the software.

= Testing will not detect the ambiguities if test designers and
software designers interpret the specifications in the same way.

» When test designers and software designers discuss specifi-
cations or the way in which they implement the specifica-
tions, the likelihood that they will interpret the specifications
in the same way is increased.

SOLUTION

To ensure independent interpretation of specifications by soft-
ware designers and test designers, the two groups should avoid

Testing Patterns m 321

discussing the specifications, as well as any lopics related 1o the
interpretation or implementation of the specifications.

CONSEQUENCES

= Software-development and software-testing groups do not
steer each other toward a common interpretation of an
ambiguity in a specification.

= Ambiguities in a specification that are not detected before
testing are more likely to be found during testing.

= Development and testing groups may duplicate each other's
efforts in analyzing a specification.

[Aho-et al.86] Alfred V. Aho, Ravi Seti, and Jeffery D. Ullman.
Compilers, Principles, Technigues and Tools. Reading, Mass..:
Addison-Wesley, 1986,

| Beck-Cunningham87] Kent Beck and Ward Cunningham.
“Window per Task.”
http:#c2. comicgifwiki?WindowPerTask, 1987,

[Beck97] Kent Beck. Smualftalk Best Practice Patterns. Upper
Saddle River, N.1.: Prentice Hall PTR, 1998

[Brown98] Kyle Brown. “Convert Exceptions.”
hutp:/fe 2. comicgifwiki?ConvertExceptions. 1998,

[Coram-Lee98] Todd Coram and Jim Lee. "Experiences—

A Pattern Language for User Interface Design.”
http:/fwww.pobox com/~tcoram/papers/experiences/
Experiences. html. 1998.

[Duff38] Tom Duff. A Usenet posting reproduced at
htip:/fwww/mindspring.com/~mgrand/duffs-device.html,
1988.

324 m Bibliography

[Gold97] Russell Gold. "Return New Objects trom Accessor
Methods.”
httpi/ic2 com/fegitwiki?ReturnNewObjectsFromAccessor
Methods. 1997,

[Grand99] The present volume.

[Larman98] Craig Larman, Applying UML and Patterns. Upper
Saddle River, N.J.: Prentice Hall PTR, 1994,

[Meyer92] Bertrand Meyer. "Applying ‘Design by Contract.””
Computer (IEEE), 25(10): 40-51. October 1992,

[Pryce98] Nat Pryce. “Copy Mutable Parameters.”
hup:ic2 comicgiwiki?CopyMutableParameters. 1998,

[Schmidt-Harrison96] Douglas C. Schmidt and Tim Harrison.
“Double-Checked Locking.” Paper presented at the 3d
Pattern Languages of Programming conference, Allerton
Park. 1ll., September 4-6, 1996,
httpiwww.cs. wustl eduw/~schmidt/PLoP-96/DC-Locking. ps. g
1996,

[Tidwell98] Jenifer Tidwell, “Interaction Patterns.”
http/fwww.mit.edu/-jridwell/interaction_patterns.html. 1998,

[Trost98] Bill Trost. “Define Constants in Interfaces.”
hitp:/ic2 comfcgi/wiki? DefineConstantsinlnterfaces. 1998,

326 ® Appendix A

Interface [Grand938) page 61
Keep a class that uses data and services provided by instances of
other classes independent of those classes by having it access
those instances through an interface.

Marker Interface [Grand98] page 73
The Marker Interface pattern uses interfaces that declare no
methods or variables to indicate semantic attributes of a class. It
works particularly well with utility classes that must determine
something about objects without assuming they are an instance
of any particular class,

Proxy page 79
The Proxy pattern forces method calls to an object to occur indi-

rectly through a proxy object that acts as a surrogate for the other
object, delegating method calls to that object. Classes for proxy
objects are declared in a way that usually eliminates client object’s
awareness that they are dealing with a proxy. Proxy is a very gen-
eral pattern that occurs in many other patterns, but never by
itselt in its pure torm.

Creational Patterns

Abstract Factory [GoF95] page 99
Given a set of related abstract classes, the Abstract Factory pat-
tern provides a way to create instances of those abstract classes
from a matched set of concrete subclasses. The Abstract Factory
pattern is useful for allowing a program 10 work with a variety of
complex external entities such as different windowing systems
with similar functionality,

Builder [GaF25] page 107
The Builder pattern allows a client object 1o construct a complex
object by specifying only its tvpe and content. The client is
shielded from the details of the object's construction.

Factory Method [GoF95] page 89
You write a class for reuse with arbitrary data types, You organize
this class so that il can instantiate other classes without being

Overview of Patterns in Java m 327

dependent on any of the classes it instantiates. The reusable class
is able to remain independent of the classes it instantiates by del-
egating the choice of which class to instantiate to another object
and referring to the newly created object through a common
interface.

Object Pool [Grand98] page 135
Manage the reuse of objects tor a type of object that is expensive
1o create or only a limited number of a kind of object can be
created.

Prototype [GoF95] page 117
The Prototvpe pattern allows an object 1o create customized
objects without knowing their class or any detalls of how to cre-
ate them, It works by giving prototypical objects to an object that
initiates object creation. The creation initiating object then cre-
ates objects by asking the prototypical objects to make copies of
themselves.

Singleton [GoF95] page 127
The Singleton pattern ensures that only one instance of a class is

created. All objects that use an instance of that class use the same
instance.

Partitioning Patterns

Composite | GoF95] page 165
The Composite pattern allows vou 1o build complex objects by
recursively composing similar objects in a treelike manner. The
Compaosite pattern also allows the objects in the tree 1o be manip-
ulated in a consistent manner, by requiring all of the nbjects in
the tree to have a common superclass or interface.

Filter [BMRSS96] page 155
The Filter pattern allows objects that perform different transfor-
mations and computations on streams of data and that have com-
patible interfaces to dynamically connect in order to perform
arbitrary operations on streams of data.

328 ® Appendix A

Layered Initialization [Grand98] page 145
When you need multiple implementations of an abstraction, you
usually define a class to encapsulate common logic and sub-
classes to encapsulate different specialized logic. That does not
work when commeon logic must be used 10 decide which special-
ized subclass to create. The Lavered Initialization pattern salves
this problem by encapsulating the common and specialized logic
to create an object in unrelated classes.

Structural Patterns

Adapter [GoF95] page 177
An Adapter class implements an interface known to its clients

and provides access 1o an instance of a class not known 1o its
clients. An adapter object provides the functionality promised by
an interface without having 10 assume what class is being used 1o
implement that interface.

Bridge [GoF95] page 189
The Bridge pattern is usetul when there is a hierarchy of abstrac-
tions and a corresponding hierarchy of implementations. Rather
than combining the abstractions and implementations into many
distinct classes, the Bridge pattern implements the abstractions
and implementations as independent classes that can be com-
bined dynamically.

Cache Management [Grand98] page 251
The Cache Management pattern allows fast access to objects that
would otherwise take a long time 1o access. It involves retaining a
copy of objects that are expensive to construct after the immedi-
ate need for the object is over. The object may be expensive to
construct for any number of reasons, such as requiring a lengthy
computation or being fetched from a database.

Decorator [GoF95] page 243
The Decorator pattern extends the functionality of an object in a
way that is transparent 1o its clients by using an instance of a
subclass of the original class that delegates operations to the orig-
inal object.

Overview of Patterns in Java m 329

Dynamic Linkage [Grand98] page 225
Allow a program, upon request, 1o load and use arbitrary classes

that implement a known interface,

Facade [GoF95]) page 205
The Facade pattern simplifies access to a related set of objects by

providing one object that all objects outside the set use 1o com-
municate with the set.

Flyweight [GoF95] page 213
If instances of a class that contain the same information can be
used interchangeably, the Flyweight pattern allows a program to
avoid the expense of multiple instances that contain the same
information by sharing one instance.

Iterator [GoF95] page 185
The lerator pattern defines an interface that declares methods
for sequentially accessing the objects in a collection. A class that
accesses a collection only through such an interface remains
independent of the class that implements the interface.

Virtual Proxy [Larman98) page 235
If an object is expensive to instantiate and may not be needed, it
may be advantageous to postpone its instantiation until the
object is needed. The Virntual Proxy pattern hides the fact that an
object may not yet exist from its clients, by having them access
the object indirectly through a proxy object that implements the
same interface as the object that may not exist. The technique of
delaying the instantiation of an object until it is actually needed
is sometimes called lazy instantiation,

Behavioral Patterns

Chain of Responsibility [GoF95] page 267
The Chain of Responsibility pattern allows an object 1o send a
command without knowing what object or objects will receive it
It accomplishes that by passing the command to a chain of
objects that is typically part of a larger structure. Each object in

330 m Appendix A

the chain may handle the command, pass the command on to the
next object in the chain, or do both.

Command [GoF95) page 277
Encapsulate commands in objects so that vou can control their
selection, sequencing, queue them, undo them, and otherwise

manipulate them.

Little Language/Interpreter [Grand98) page 289
Suppose that vou need to solve many similar problems and you
notice that the solutions to these problems can be expressed as
different combinations of a small number of elements or opera-
tions. The simplest way to express solutions to these problems
may be to define a little language. Common types of problems
you can solve with little languages are searches of common data
structures, creation of complex data structures, and formatting
of data.

Mediator [GoF95) page 315
The Mediator pattern uses an object 1o coordinate state changes
between other objects. Putting the logic in one abject 1o manage
state changes of other objects, instead of distributing the logic
over Lthe other objects, results in a more cohesive implementa-

tion of the logic and decreased coupling between the other
objects.

Null Object [Wool[97] page 365
The Null Object pattern provides an alternative to using null to
indicate the absence of an object to which 1o delegate an opera-
tion. Using null to indicate the absence of such an object requures
a test for null before each call to the other object’s methods.
Instead of using nuil, the Null Object pattern uses a reference 1o
an object that doesn’t do anything.

Observer [GoF95] page 347
Allow objects to dynamically register dependencies between
objects, so thal an object will notify those objects that are depen-
dent on it when its state changes.

330 m Appendix A

the chain may handle the command, pass the command on to the
next object in the chain, or do both.

Command [GoF95) page 277
Encapsulate commands in objects so that vou can control their
selection, sequencing, queue them, undo them, and otherwise

manipulate them.

Little Language/Interpreter [Grand98) page 289
Suppose that vou need to solve many similar problems and you
notice that the solutions to these problems can be expressed as
different combinations of a small number of elements or opera-
tions. The simplest way to express solutions to these problems
may be to define a little language. Common types of problems
you can solve with little languages are searches of common data
structures, creation of complex data structures, and formatting
of data.

Mediator [GoF95) page 315
The Mediator pattern uses an object 1o coordinate state changes
between other objects. Putting the logic in one abject 1o manage
state changes of other objects, instead of distributing the logic
over Lthe other objects, results in a more cohesive implementa-

tion of the logic and decreased coupling between the other
objects.

Null Object [Wool[97] page 365
The Null Object pattern provides an alternative to using null to
indicate the absence of an object to which 1o delegate an opera-
tion. Using null to indicate the absence of such an object requures
a test for null before each call to the other object’s methods.
Instead of using nuil, the Null Object pattern uses a reference 1o
an object that doesn’t do anything.

Observer [GoF95] page 347
Allow objects to dynamically register dependencies between
objects, so thal an object will notify those objects that are depen-
dent on it when its state changes.

332 m Appendix A

Volume 2

Guarded Suspension [Lea97] page 409
Suspends execution of a method call until a precondition is
satisfied.

Producer-Consumer page 441

Coordinates the asynchronous preduction and consumption of
information or objects,

Read/Write Lock [Lea97] page 431
Allows concurrent read access to an object but requires exclusive
access for write operations,

Scheduler [Lea97] page 421
Control the order in which threads are scheduled 10 execue sin-
gle threaded code using an object that explicitly sequences wait-
ing threads. The Scheduler pattern providex a mechamism for
implementing a scheduling policy, It is independent of any spe-
cific scheduling policy.

Single Threaded Execution [Grand98] page 399
Some methods access data or other shared resources in a way
that produces incorrect results if there are concurrent calls to a

method and both calls access the data or other resource at the
same time. The Single Threaded Execution pattern solves this
problem by preventing concurrent calls to the method from
resulling in concurrent executions of the method.

Two-Phase Termination [Grand98] page 449
Provides for the orderly shutdown of a thread or process through
the setting of a latch. The thread or process checks the value of
the latch at strategic points in its execution.

GRASP Patterns

Controller [Larman98) page 85
If a program will receive events from external sources other
than its graphical user interface, add an event class to decouple

Overview of Patterns in Java » 333

the event source(s) from the objects that actually handle the
events.

Creator [Larman98] page 65
Determine which class should create instances of a class based on
the relationship between the potential creator classes and the

class to be instantiated.

Expert [Larman9§] page 59
Assign a responsibility to the class that has the information
needed to carry out the responsibility,

Law of Demeter [Larman93] page 77
If two classes have no other reason 1o be directly aware ot ¢ach
other or o be otherwise coupled, then the two classes should not
directly interact. Instead of having a class call the methods of
another class that it has no other reason to be coupled with, you
should have it call that method indirectly through another class.
Insisting on such indirection keeps a design’s overall level of cou-
pling down.

Low Coupling/High Cohesion [Larman98] page 53
If vou find that a class is so highly coupled or lacking in cohesion
as to make a design brittle or difficult to modify, then apply other
appropriate GRASP patterns to reassign the class’ responsibilities.

Polymorphism [Larman98] page 69
When alternate behaviors are selected based on the type of an

object, use a polymorphic method call 1o select the behavior,
rather than uxing i f statements to test the type.

Pure Fabrication [Larman98] page 73
Fabricate a class that does not represent a problem domain entity
when you assign a responsibility to a class, but assigning it to a
class that represents a conceptual model problem domain entity
would ruin its low coupling or high cohesion. You resolve this
problem by fabricating a class that does not represent an entity in
vour conceptual model.

334 m Appendix A

GUI Design Patterns
Conversational Text [Grand99] page 109
Design a GUI 1o accept commands in the form of texwal input.

Direct Manipulation [Grand99) page 127
Allow users to interact with objects by manipulating the repre-
sentations of objects presented by a GUL

Disabled Irrelevant Things [Tidwell98] page 141
Hide or disable GUI elements that are not relevant in the current
conlext.

Ephemeral Feedback [Grand99] page 137

Provide feedback to users about the status of their work, without
interfering with the natural flow of their wark,

Explorable Interface [Coram-Lee98) page 103
Design user interaction to forgive a user’s mistakes by allowing
the user to undo actions and go back to previous decision points

Form [Tidwell98] page 121
Allow a user Lo enter structured data into a GUI as discrete pieces
of information.

Interaction Style [Coram-Lee98| page 99
Match the GUTS interaction stvle to the abilities of its users and
the application’s requirements. The most commeon styles of inter-
action are s¢lection, torm, direct manipulation, and conversa-
tional text,

Limited Selection Size [Grand99] page 133
Design the presentation of selection interactions to avold display-
ing more than a limited number of choices at a time.

Selection [Grand99] page 113
Allow users to interact with a GUI by selecting commands and
data values from lists.

Overview of Patterns in Java u 335

Step-by-Step Instructions [Tidwell98] page 149
Lead a user through the steps of a task where the GUI tells the
user whalt 1o do next, rather than the user telling the GUI what 10
do next.

Supplementary Window [Grand99] page 143
Display a window for a user interaction that supplements a par-
ent window’s interaction. The purpose of the supplementary win-
dow is to collect information for the parent window's interaction,
display additional information about the parent window’s interac-
tion. or provide a notification abourt the status of the parent’s
interaction. The supplementary window is shorter lived than its
parent.

Window Per Task [Beck-Cunninghamg?] page 95
A GUI should have a separate window for each cohesive task a user
must perform. All information required 1o perform the task should
be available from the window. The application provides a way to
navigate between windows, allowing the user to coordinate 1asks.

Organizational Coding Patterns

Accessor Method Name [Grand99] page 155
Use names and signatures for accessor methods that are casy to
read and conform to the JavaBeans specification,

Anonymous Adapter [Grand99] page 159
Use anonymous adapter objects to handle events. This simplifies
the code and allows code that relates to the same event source to
exist in the same part of the source code.,

Checked versus Unchecked Exceptions [Grand99] page 195
As part of its contract with its callers, a method can be expected
to throw exceptions under certain circumstances. These excep-
tions should be checked exceptions. Any exceptions thrown by
methods that are outside of {ts contract, such as exceptions to
indicate internal errors or 1o help with debugging, should be
unchecked exceptions.

336 m Appendic A

Client Socket [Grand%9] page 215
You need ta write code 1o manage the server side of a socket-
based network connection. The code that you write follows a very
consistent pattern that revolves around socker objects. Most uses
of the Socket class to implement a client follow a very consistent
codling pattern,

Composed Method [Beck97] page 185
Reorganize methods that are too large to easily understand into

smaller methods.

Conditional Compilation [Grand99] page 191
Control whether a compiler includes statements for debugging in
the byte codes it generates or ignores those statements.

Convert Exceptions [Brown93] page 201
Many programs are organized into layers related to dilferent
domains, such as database management and an application
domain. In such programs, some classes are pan of one domain
but have methods that call methods of classes that belong 10
another domain. Such methods should conven exceptions they
do not handle from the other domain ta their own domain,

Define Constants in Interfaces [Trost98 | page 171
Avoid having to qualify symbolic constant names with the name

of the class that defines them. Define them in an interface so that
way, any class that implements the interface can use the symbaolic

names without any qualification.

Extend Super [Beck97) page 179
Implement a method that modifies the behavior of a superclass’s
method by calling the superclass’s method.

Intention Revealing Method [Beck97] page 183
If the intention of a call to a general-purpose method is not obvi-
ous, then define a method with a meaningful name to call the

general-purpose method.

Overview of Patterns in Java u 33]

Server Socket [Grand99) page 207
You need to write code to manage the server side of a socket-
based network connection. The code that you write follows a very
consistent pattern that revolves around serverSocker and socket
ohjects.

Switch [Grand%9] page 175
Select a piece of code to execute from multiple alternatives based
on an int data value by using a switeh statement.

Symbolic Constant Name [Grand99] page 165
Use symbolic names for constants. A meaningful name makes the
purpose of the constant clear to someone reading the code.
Svmbolic names can also simplify maintenance,

Code Optimization Patterns

Double Checked Locking [Schmidt-Harrison96] page 239
A multi-threaded program does not initialize a resource until it
actually requires the resource. One thread recognizes that that
resource is not yet initialized when another thread has already
begun the initialization. Avoid duplicating the initialization effort
by coordinating the actions of multiple threads.

Hashed Adapter Objects [Grand99] page 221
Dispatch a method call to an adapter object associated with an
arbitrary object. The arbitrary object is used 1o find the adaprer
object in a hash table. The Hashed Adapter Objects pattern is
most commonly used when an object must be created from unen-
capsulated data or when unencapsulated data must be dispaiched
1o an object.

Lazy Initialization [Beck97) page 233
Delay the creation of an object or other expensive action needed
to initialize a variable until it is known that the variable will be
used.

338 m Appendix A

Lookup Table [Grand99) page 249
Save the memory consumed by complex code and the time it
takes 1o execute by precomputing the results and putting them in
a lookup Lable.

Loop Unrolling [Grand99] page 243
Reduce the overhead of a loop’s control logic by increasing the
amount of work it does in each iteration, so that it can accom-
plish the same amount of work in fewer iterations. This pattern
trades memory for speed.

Robustness Coding Patterns

Assertion Testing [Grand99) page 257
Verify that a method conforms 1o its contract with its callers by
inserting code 10 test its preconditions, postconditions, invari-
ants, and data conditions at run time.

Copy Mutable Parameters [Pryce98] page 279
Objects may be passed to a method or constructor that is used to
determine the state of its associated object. If the passed objects
are mutable, then copies of them should be used 1o determine the
object’s state, rather than the original passed object. That pre-
vents changes to the passed object from also changing the state of
the object associated with the method or constructor

Guaranteed Cleanup [Grand$?] page 265
Ensure that internal data are in a consistent state if an operation
is unable to execute to its normal completion. Ensure that exter-
nal resources are consistent state and, if appropriate, are released
after an operation is unable to execute to its normal completion.

Maximize Privacy [Grand99] page 269
Make members of classes as private as possible.

Return New Objects from Accessor Method [GoldY7] page 275
Accessor methods return values or objects that indicate an object’s
state. If the objects that an accessor method returns are mutable,

Overview of Patterns in Java m 339

then they should be copies rather than the actual state that deter-
mines objects. This prevents changes to the returned object from
also changing the state of the accessor method's associated object.

Testing Patterns

Acceptance Testing [Grand99] page 313
Acceplance testing is testing done 1o ensure that delivered soft-
ware meets the needs of the customer—the person or organiza-
tion that contracted for its development. Such testing is usually
performed by the customer that the software was developed for.
Acceptance testing 1s done according to a plan. The purpose of an
acceptance-testing plan is 1o ensure that the software developers
and the customer that they develop a software system for agree
on when the software is complete and ready for its intended use.

Black Box Testing [Grand99) page 285
Ensure that software meets requirements by designing tests
based salely on requirements, Do not base tests on the manner in
which the software is implemented.

Integration Testing [Grand99] page 297
Test individually developed classes rogether for the first time,

Regression Testing [Grand99] page 309
Keep track of the outcomes of testing software testing with a
suite of tests over time. This allows you to monitor the comple-
tion of coding. It allows you to determine if a change to a pro-
gram introduced new bugs.

System Testing [Grand99) page 301
Test a program as a whole entity, in an environment similar to the
one in which it is intended to be run in, to ensure that it con-
forms 10 its specifications.

Unit Testing [Grand99] page 293
Test individual classes in isolation from the other classes of the
program under development.

340 m Appendis A

White Box Testing (Grand99) page 289
Design a suite of test cases lo exhaustively test software by testing
it in all meaningful situations. The set of meaningful situations is
determined from knowledge of the software's internal structure. A
complete set of tests will exervise all the execution paths through

the software,

About the CD-ROM

The CD-ROM contains the complete source code for all the exam-
ples that appear in this book, as well as evaluation copies of some
software that you might find useful:

s CodeWizard for Java from ParaSolt Corporation is a tool for
enforcing rules for coding standards. It comes with a set ot
coding rules that you can customize. You will need to con-
tact Parasoft for an evaluation password to use CodeWizard.

s jrest! from ParaSoft Corporation is a tool for white box test-
ing. It aids in the design of white box tests by analyzing the
internal structure of your program. It also manages the
running of the white box tests. You will need to contact
Parasoft for an evaluation password to use jtest! Call (888)
305-0041, then press 4, or send in the license request o
license@parasofi.com, wizard@parasoft.com, or
jlest@parasoft.com.

341

342 m Appendix B

» AssertMate from RST Technologies is a preprocessor for
MAnaging assertions,

w Together/] Whiteboard Fdition from Object International is a
platform-independent UML modeler that delivers simultane-
ous Round-trip engineering for Java.

s Oprimizelt from Intuitive Svstems is a proliling tool that you
can use to determine what parts of a program are taking the
most time (o execule.

The files for some of the figures in this book are located on
the author’s Web site at www.mindspring. com/~mgrand in .vsd
forms. Check the site for updates to the book as well.

The simplest way to navigate the CD-ROM is to open
index. html file with a Web browser, This interface contains links
te all the examples and software on the CD-ROM. You may also
use File Manager 1o copy files from the directories on the
CD-ROM to yvour hard drive.

User Assistance and Information

The software accompanying this book is being provided as is
without warranty or support of any kind, Should you require
basic installation assistance, or if vour media is defective, please
call our product support number at (212) 850-6194 weckdays
between 9 A.M. and 4 p.M. Eastern Standard Time, Or, we can be
reached via e-mail at: wprtusw@wiley.com.

To place additional orders or to request information about
other Wiley products, please call (800) 879-4539,

You may contact the author through his Web site at
www.mindspring. com/-mgrand.

342 m Appendix B

» AssertMate from RST Technologies is a preprocessor for
MAnaging assertions,

w Together/] Whiteboard Fdition from Object International is a
platform-independent UML modeler that delivers simultane-
ous Round-trip engineering for Java.

s Oprimizelt from Intuitive Svstems is a proliling tool that you
can use to determine what parts of a program are taking the
most time (o execule.

The files for some of the figures in this book are located on
the author’s Web site at www.mindspring. com/~mgrand in .vsd
forms. Check the site for updates to the book as well.

The simplest way to navigate the CD-ROM is to open
index. html file with a Web browser, This interface contains links
te all the examples and software on the CD-ROM. You may also
use File Manager 1o copy files from the directories on the
CD-ROM to yvour hard drive.

User Assistance and Information

The software accompanying this book is being provided as is
without warranty or support of any kind, Should you require
basic installation assistance, or if vour media is defective, please
call our product support number at (212) 850-6194 weckdays
between 9 A.M. and 4 p.M. Eastern Standard Time, Or, we can be
reached via e-mail at: wprtusw@wiley.com.

To place additional orders or to request information about
other Wiley products, please call (800) 879-4539,

You may contact the author through his Web site at
www.mindspring. com/-mgrand.

Caxde
debugging ol, 191-194, 195-199
patierns for optimizing, 219-253,
See abo Double-Checked Lock-
ing pattern; Hashed Adapter
Objects panern; Lary Initializa-
tion pattern; Lookup Table pat-
tern; Loop Unrolling pattern
patierns for crganizing, 153-218.
See also Accessor Method Name
pattern; Anomymous Adapler
pattern, Checked versus
Unchecked Exceptions pattern;
Client Socket pattern; Com-
posed Method pattern; Condi-
tional Compilation patiern:
Convert Exceptions pattern;
Define Constants in Interfaces
patiern, Extend Super pattern;
Intention Revealing Method
patiern; Server Socket pattern;
Switch paitern; Symbolic
Constant Name pattern
patterns to Increase robusiness of,
255-282. See also Assertion
Testing pattern; Copy Mutable
Parameters pattern; Guaranteed
Cleanup pattern; Maximine
Privacy pattern; Returm New
Objects from Accessor Method
pattern
testing, 283-121
Coding, in software creation, 34
Cohesion, of classes, 56-58
Caollaboration diagrams, 8, 20-28
lor Umekeeping system case study,
43-50
Collaborations, 20
in service billing model, 34-55
in timekeeping system case study,
T9-80
Collisions, in hash tables, 228-229
Command pattern, Explorable Inter-
lace pattern and, 106
Commands, in Conversational Text
pattern, 109-112

Index m 345

Command sequences, in Conversa-
tional Text pattern. 110
Comments, in cluss diagrams, 17-18
Composed Method pattemn, 185-190
Extend Super pattern and. 181
Intention Revealing Method pat-
tern and, 184
with service billing model, 58
Composite aggregations. in class
diagrams, 15-16
Composite pallerns, 68
Computer gamesx, GUIT dexign lor, 100
Conceprual models
for ficld service managerment svs-
tem, 74-76
for service billing, 53-54
for timekeeping system case study,
43-50, 59-61
Concurrent interactions, in collabo-
ration diagrams, 22
Conditional Compilation pattern,
191-194
Assertion Testing pattern and, 264
Checked versus Unchecked Excep-
tions pattern and, 199
Conditional repetitive interactions,
in collaboration diagrams,
24-25
Conditions
in collaboration diagrams, 24-25
data, 258
Consistency
of data in forms,_ 122-123, 124
in GUIL design, 90-91
of literal constants, 167

Constants
controlling debug code with
boolean, 191194

in interfaces, 171-174
naming of, 165-169
Contracts, for methods, 257-264
Controller class, for security system,
B5-87
Controller GRASP, 85-87
In timekecping system case study,
45

346 m [ndex

Controller objects, for security sys-
tem, 86-87
Conventions. See also Naming con-
ventions
in GUI design, 90
Conversational text. in GUI design.
9%, 100, 101
Conversational Text pattern, 93,
109-112
Explorable Interface pamern and,
106
Interaction Stvle pattern and, 102
Convert Exceptions pattern. 201-205
Copy Mutable Parameters pattemn.
279-282
Returm New Objects from Acces-
sor Method partern and, 278
Coverage analyzers, in software test-
ing, 291-292
createRecord method, 222-225
Creator GRASF, 65-68
In timekeeping system case study,
49-50
Cunningham, Ward, 3

D
Data conditions. to be satisfied by
methods, 258
Data entry, via forms, 121-126
Date and time, 237, 251-253,
262-264, 275-276, 277-278,
279, 281
Debugging. Ser also Testing patterns
of code, 191-194, 195199
dexign by contract and, 258-264
integratinn lesting and, 297100
regression testing and, 309-311
system testing and, 301-307
unit testing and, 293-296
Debug statements
exceptions and, 195-199
tuming on and off, 191-194
Default values, in data-entry forms,
122,124
Define Constants in Interfaces pat-
tern, 171=174

Delegalion pattern, in limekeeping
sysiem case study, 44
Dependencies, for timekeeping sys-
tem case study, 37-33
Deserialization, 268
Design by contract, 258
Design patterns, GRASPs versus, 52
Design Parterns {(Gamma, Helm,
Johnson & Vlissides), 3
Designs, discovering inflexible,
53-58
Diagnostics, 265-166
Dialog pattern. See Supplementary
Window patiern
Dialogs, 143147, See also Modal
dialogs
butions in, 145-147
Direct manipulation interactions,
127-128
in GUI design, 100, 101
Direct Manipulation pattern, 93-94,
127-132
Explorable Interface pattern and,
106
Imeraction Style pattern and, 102
Disabled Irrelevant Things pattern,
9354, 14]1-142
Don’t Talk 1o Strangers GRASP, 77.
See also Law of Demeter GRASP
Double-Checked Locking pattern,
239-242
Drag and drop manipulation,
127-128, 130-131
Driver classes
in integration testing, 299
in unit wexting, 294
Duff, Tom, 248
Duff’s Device, 245-246
Dummy classes, in unit testing,
295296
Dyvnamic Linkage pattern, Polymior-
phism GRASP and, 72

E

Easter, determining date of,
251-253

Ellipsis, 10
in class diagrams, 16
in dialogs, 146
E-mail. author’s address, 2
E-mail encrypler, collaboration dia-
gram lor, 23
Encapsulation, 155, 222-221. See
alto Copy Mutable Parameters
pattern; Maximire Privacy pat-
term: Retum New Objects from
Accessor Method pattern
Ephemeral Feedback pattern, 91-94,
124, 137-140
Direct Manipulation pamern amd,
131
Form pattern and, 126
Error class, 195, 197
Ermors. See Exceptions; Programmer
errors, User etrors
Essential use cases
for software, 33
for timekeeping system case study,
AE40
Events
Anonymous Adapter pattern for
handling, 159-164
in statechart disgrams, 29
Exceprions, 258-259, 262-264
checked and unchecked. 195-199
converting between domains,
201-205
Expenience, of programmers, -2
Expert GRASP, 52, 5%-63
in timekeeping system case study,
49
Explorable Interface patiern, 93,
103107
Conversational Text pallern and,
F12
Direct Manipulation pattern and,
132
Form pattern and, 126
Selection pattern and, 119
Step-by-Step Instructions pattern
and, 151
Extend Super pattern, 179-181

Index m 347

F

Fagade pattern, Composed Method
pattern and, 190

Feedback, preventing user errors
and, 137-140

Field service management system,
Pure Fabrication GRASP for,
7376

finally clause, Guaranteed Cleanup
pattern and, 266-267, 268

Final state. in statechart diagrams,
A0

Flat presentation, 114

Format masks, for dams-entry forms,
125

Form imteractions, in GUI design,
99-100, 101

Form pattern, 93, 121-126

Explorable Interface pattern and.
106
Ineraction Style pattern and,

102

Forms, 121, 122

forName method. 205

Functional Testing pattern. See
Black Box Testing pattern

G

Gamma, Erich, 3

Crang of Fowr (GoF) book, 3

Garbage collection, 265-264

getWideh method, optimizing,
233-235

Go Back operations, in GUI design,
10310k

Grammars, Conversational Text pat-
term and, 111

GRASPs {General Responsibility
Assignment Software Paiterns),
51-87. Ser also Controller
GRASP; Creator GRASP;
GRASP; High Cohesion GRASP;
Law of Demeter GRASP; Low
Coupling GRASP; Polymaor-
phism GRASP. Pure Fabrication
GRASP

348 wm Index

Guaranteed Cleanup pattern,
265-268

GUI (graphical user interface)} pat-
terns, 89-152. See also Conver-
sational Text pattern, Direct
Manipulation pattern; Disabled
Irrelevant Things pattemn;
Ephemeral Feedback pattern;
Explorable Interface pattern,
Form pattern; Interaction Style
pattern; Limited Selection Size
pattern: Selection pattern; Step-
by-Step Instructions pattern:
Supplementary Window pat-
tern; Window per Task pattern

H
haahCode method, 228-229
Hashed Adapter Objects pattern,
221-232
Anonymous Adapter pattern and,
| B4
Lookup Table pattern and, 253
Switch panern and. 178
Hashmaps, 223-224, 120-230
Hashiable role, 227-228
Hash tables
collisions in, 228-229
objects in, 221-232
Heartbeat pattern, Client Socket
pattern and, 218
Helm, Richard. 3
Hierarchical presentation, 114
graphical methods lor, 118-119
High Cohesion GRASP, 52, 53-58
Convert Exceplions pattern and,
205
Expert GRASP and. 63
Law of Demeter GRASP and, 82
Maximize Privacy pattern and,
273
Pure Fabrication GRASP and, 76
Window per Task pattern and, 95,
97
High-level essential use cases
for software, 33

for timekeeping system case study,
3840
High-level system architecture. in
software design, 34
Hortrontal guideline, for methosd
code, 189-1%0
Hyperlinks, 117

1
if slatementis
chains of, 70-72, 175, 190
hash tables versus, 221-222,
223226
switeh statemenis and, 175-178
aynchrond 2ad statcment and,
240-241
turning on debug statements with,
191-194
Image maps, 116-117
Immutable pattern, Symbaolic Con-
stant Name pattern and, 169
Indirect associations. in class dia-
grams, 15-16
Initial state, in statechart diagrams,
30
Inner classes, private, 161-162
Integration testing, 297
Integration Testing paliern,
297-300
System Testing pattern and, 307
Intention Revealing Method pattemn,
183-184
Accessor Method Name pattern
and. 158
Composed Method pattern and,
190
Interaction Style pattern, 93, 99-102
Conversational Text pattern and,
112
Interfaces. See also User interfaces
in class diagrams, 11-20, 58
defining constants in, 171-174
Invariant conditions, 1o be satisfied
by methods, 257-258, 261-262
“Is-a" relationships, in imekeeping
systemn case study, 44-45

“Is-part-of” relationships, in time-
keeping system case study,
4548

[rerator object, 198

J
Java
cleanup code in, 266-267
=1lone method in, 277, 280-281
defining constanix in, 171-174
exceptions in, 195199, 258-2159
hash tables in, 229-232
loop unrolling in, 246-247
patterns and, 3, 5-6
symbaolic names in, 168
mrning on debug statements in,
191194
Java API rules, 158, 168, 174, 178,
180, 184, 198, 205, 230, 237,
251, 268, 270, 281
{ava . awt . eveant . KeyBvent class,
168
{ v . awt . EventQueue cluss, 178,
154
Java . it Swlig . SwingTonatants
interface, 174
JavaBeans, naming specificalions
for, 155-158
java . baans . [nt rospecior l:lﬂ-u-.
155
java. 1o, LineNumberReader class,
180
java_le. Serversocker closs
207-208
imva . lang.Character class, 251
lava.text . HessageFormat l:llﬂ.
2717, 181
java,.util . Catendar class, 237
java.util. hashMap cluss, 229-230
java_util Hashrable class,
229-230
jave.util.lterator interince, |98
Johnson, Ralph, 3

K
Kevstiokes, 163

Index m 349

L
Labels, for dialog functions, 145,
147
Larman, Craig, 51-52
Law of Demeter GRASP, 77-83
Lazy Initinlization pattern, 233-237
Double-Checked Locking pattemn
and, 242
Limited Selection size patiern,
91-94
Limited Selection Size pattern, 117,
133-135
Selection pattern and. 119
Supplementary Window pattern
and, 148
Links
in class diagrams, 19-20
in collaboration diagrams, 20-22
List boxes, 117
Literal constants, naming of,
165-169
Linde Language pattern, 91
Conversational Text pattern and,
112
Lookup Table pattern, 249-253
Hashed Adapier Objects pattern
and, 232
Loop iterations, optimizing,
219-220, 241-247
Loop Unrolling patern, 219-220,
243-247
Low Coupling GRASF, 52, 53-58
Convent Exceptions patiern and,
205
Expert GRASP and, 631
Law of Demeter GRASP and, 82
Maximize Privacy pattern and,
273
Pure Fabrication GRASF and, 76
Window per Task pattern and, 95,
97

M

Macros, in Conversational Texi pat-
wrmn, 110

Maximire Privacy pattern, 269-273

350 m Jndex

Maximize Privacy pattern
(Contin
Composed Method pattern and,
190}
Lazy Inittalization pattern and,
237
Mediator pattern
Anonymous Adapter pattern and,
163-164
Controller GRASF and, 87
Law of Demeter GRASP and, 83
with service billing model. 58
Memory, patterns that save,
249-252
HessageFormat abject, 277
Methods, 7
in class diagrams, 8-11
in collaboration diagrams, 20-28
contracts for, 257-264
extending and overriding, 179-18]
handling exceptions thrown by,
195-199, 201-205
intentions of calls 1o, 183-184
JavaBeans specifications for nam-
ing, 155-158
muiltiple threads and, 25-28
parameters lor, 9-10
rearganizing lengrhy, 185-190
static, 9
void, 9
Mever. Bertrand, 258
Minimize Execution Paths patiern,
Polymorphism GRASP and, 72
Modal dialogs, 140, 144147

Multilevel sequence numbers, in col-

laboration diagrams, 20-22
Multiobjects, in collaboration dia-
grams, 22
Multiple selection, 114
graphical methods for, 118-119
Multiple threads
in client-server applications,
207=214
in collaboration dingrams, 25-28
coordinating initializations
among, 23%-242

Multiplicity indicators

in class diagrams, 13

in collaboration diagrams, 21-22
Mutable objects, 279-282

N
Maming conventions
for constants, 165-169
creating meaningful, 183-184
for program code, 155-158
Navigalion armows
for asynchronous and syn-
chronous Interactions, 27-28

in class dingrams, 13

O

Object diagrams, 19-20
Object Input St reas objects, deseri-
alizing of objects by, 268
Object-oriented analyvsis
in saftware design, 34
for timekeeping system case study,
a0-42
Object-oriented design
in software creation, 34
for timekeeping svsitem case study,
43-50
Objectutputstream objocts, 268
Objects
blank, 19
in class diagrams, 18-20
in collaboration diagrams, 20-28
in hash tables, 221-232
manipulation of screen, 127-132
mutable, 279-282
transicnt, 22n
OK buttons, 146, 147
One-compartment classes, 11
Open-ended subclasses, in class dia-
grams, I6-17
Operations, 7. Sée also Methods
Optimixing code, 219-253

5

Packages, in class diagrams, 17
Password protection dialog, 145-146

Pattern Language, A: Towns, Build-
trgs, Construction (Alexander), 3
Panern names, 4
Patterns, 1-2. Se¢¢ alto GRASPs (Gen-
cral Responsibility Assigmment
Software Patterns). GUI (graphi-
cal user interface) pattems
{ormat for describing, 3-5
history of, 2-3
Java and, 3, 5-&
for organiring program code,
152218
Patterny tn Java series, 5-6
Pie menus, 90
Point and click manipulation, 130
Polymorphic method calls, T0-72
Polymorphism GRASP, 52, 68-72
Polvmorphism pattern
Hashed Adapter Objects pattern
and. 132
Switch patiern and, 178
Pop-up dialogs, 143-144

Pop-up menus, 90, 115
graying-oau of elemenis mn,

141-142
limiting selections in, 133135

Postconditions, to be satisfied by
methods, 257, 259, 200-261

Preconditions, 1o be satisfied by
methods, 257, 259, 260-261

Prefixes, for multilevel sequence
numbers, 21

Prcprn:?ﬁwrﬁz 27 . assertion testing by,

Primary use cases, 18

Print queves, collaboration dia-
grurns for, 26-27

Private inner classes, 161-162

Private members. of classes, 18,
2609273

Private variahles, 8-9

Problem notification dialog, 145

Prohlem-colving, patterns in, 1-2, 3-5

Program code. See Code

Programmer errors, method con-
tracts and, 259

Index m 351

Programming. experience in, 1-2
Protected variables, 8-9
Prototype software, 13

Public classes, 269-273

Public vartables, B9

Pull-down menus. 115

dialogs and, 144
graving-oul of elements in,
141-142

limiting selections in, 133-135
Pure Fabrication GRASP. 73-76

Controller GRASP and, 87

Law of Demeter GRASP and, 83

in service billing model, 55-56

Q
Cueus class, 270-273
QusueWrapper class, 270-272

R

Radio buttons, 117, 118

readtbject method, deserializing of
objects by, 268

Real use cases, for software, 33

Records, in files, 222-2213

Redo facility, in GUI design, 106

Regression Testing pattern.
I09-111

Svyxtem Testing pattern and, 307
Required anrributes, 36
Reguired functions, 36
Requirements specifications
for software, 33
for timekeeping system case study,
Jo-38
Retumn MNew Objects from Accessor
Method pattern, 275-278
Copy Mutable Parameters patern
and, 282
Risks. for timekeeping system case
study, 17
Role names
in class diagrams, 11
for objects, classes, and interfaces
with Hashed Objects Pattern,
226227

352 m Index

Runt imeExcept ion closs, 195196,
197

S
Screen elements
direct manipulation of, 127-132
graying-out of, 14]-142
in GUI design, 90
Secondary use cases, 18
Security system model, 85-87
Selection interactions
in GUI design, 99, 100, 101
limiting choices of, 133-133
Selection pattern, 23, 113-119
Direct Manipulation pattern and,
132
Disabled Trrelevant Things pattern
and. 142
Explorable Interface partem and,
107
Form pattern and, 126
Interaction Style pattern and, 102
Limited Selection Size pattermn
and, 135
Step-by-Step Instructions pattern
and, 152
Self-references, in collaboration dia-
grams, 23-24
Sequence numbers, in collaboration
diagrams, 20-22
Sequential interactions, in collabo-
ration diagrams, 20--22
Server programs, 207-214, 215-218
Server Socket pattern, 207-214
Client Socket patiern and, 218
Service billing model, 53-54
Shifts, in rimekecping svstem case
study, 6566, 69-70
Shont cuts for routine tasks, in GUI
design, 92
Shutdown requests, for server pro-
grams, 208-209
Signatures of methods, naming con-
ventions for, 155-158
Single selection, 114
graphical methods for, 113-118

Single Threaded Execution pattern,
Hashed Adapter Objects paticm
and. 232

Singleton pattern, Double-Checked
Lacking patlern and, 242

Snapshot pantern, Explorable Inter-
fnce pattern and, 107

Socket-based network connections.
207214, 215218

socket objects, 207-214. 215-218

Software, deployment of, 31-34

Saoftware evaluation

acceptance testing and, 311-317
clean room 1esting and, 119-321

Safrware life cycle. 31-50

Software testing See Testing patierns

Sound, as feedback mechanism,
138140

SOL (Srructured Query Language),
99

Stntechart diagrams, 8B, 28-30

States, 28-30

Static classes, 13

Static methods, 9

Status bars, 139

Step-by-Step Instructions pattern,
9394, 149-152

Interaction Style pattern and, 102

Slervolypes, 9-10

Strategy pattern, Hashed Adapier
Objects pattern and, 232

Stub classes

in integration testing, 299
in unit testing, 294
Style dinlog, 146
Subclasses, 11-12
extending methods 1o, 179-181
multiple, 14-16
apen-ended, 16-17
Superclasses, 11-12
extending behavior of, 179-181

Supplementary Window pattern,

03-94, |43-148

Explorable Interface partern and,
106

Form pattern and, 126

Also available from Wiley...

Ny N
Patterns Patterns’
slaya | | -Java

A Catabog ol

Hennaddde [estign
Pstieen [Mhiserated |
with LML,

e 5

Timely. Practical. Reliable.

Available at bookstores everywhere.
Visit our Web site at www.wiley.com/compbooks/

}IWILEY

Prdait e W

