

Powering Office
2003 with XML

Peter G. Aitken

Powering Office 2003 with XML

Powering Office
2003 with XML

Peter G. Aitken

Powering Office 2003 with XML

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

LOC: 2003105847

ISBN: 0-7645-4122-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RV/RQ/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447.

is a trademark of Wiley Publishing, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE
FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED
TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Trademarks: Wiley, the Wiley logo, and related trade dress are registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

About the Author
Peter G. Aitken has been writing about computer applications and programming
for almost 20 years, with more than 35 books and hundreds of technical articles to
his credit. His specialties include Office applications, graphics, XML, and Visual
Basic programming. Peter is proprietor of PGA Consulting, providing application
development and technical writing services to clients in business and academia. He
lives in Chapel Hill, North Carolina, with his wife, Maxine.

Credits

ACQUISITIONS EDITOR
Jim Minatel

TECHNICAL EDITOR
Sundar Rajan

DEVELOPMENT EDITOR
Maryann Steinhart

PROJECT EDITOR
Pamela M. Hanley

COPY EDITOR
Foxxe Editorial Services

EDITORIAL MANAGER
Mary Beth Wakefield

VICE PRESIDENT & EXECUTIVE GROUP
PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE
PUBLISHER

Bob Ipsen

VICE PRESIDENT AND PUBLISHER
Joseph B. Wikert

EXECUTIVE EDITORIAL DIRECTOR
Mary Bednarek

PROJECT COORDINATOR
Courtney MacIntyre

GRAPHICS AND PRODUCTION
SPECIALISTS

Beth Brooks, Carrie Foster,
Joyce Haughey, LeAndra Hosier,
Michael Kruzil, Ron Terry,
Scott Tullis

QUALITY CONTROL TECHNICIANS
Brian H. Walls, Angel Perez,
Carl Pierce, Dwight Ramsey

PROOFREADING AND INDEXING
Sharon Hilgenberg,
TECHBOOKS Production Services

Preface
Microsoft Office has for years been the preferred suite of office productivity appli-
cations. This popularity was well deserved — the Office applications provided pow-
erful and flexible tools for performing word processing, spreadsheet analysis, and
other tasks. In particular, Office stood out in the ways that the different applications
could share information with each other. An Excel chart could easily be embedded
in a Word document, or an Excel worksheet could be automatically updated with
information from an Access database, to give only two examples.

Over the past few years, however, the world of computing has undergone a sea
change. We have moved away from application programs that exist in isolation on
a single computer or, at most, a local area network (LAN). The trend is toward meet-
ing the needs of businesses and other organizations with integrated solutions com-
prising multiple components existing on different computers and linked by the
Internet or an intranet. In order to provide maximum flexibility, an individual
application program must provide interoperability — the ability to exchange data
with other programs regardless of the platform on which they are running. For rea-
sons that are detailed in Chapter 2, Extensible Markup Language, or XML, has
emerged as the de facto standard for data exchange.

Microsoft was well aware of the need for interoperability, and it has addressed it
in a big way in the new version of Office. First, it’s created a new Office application
called InfoPath designed for creating forms for entering and editing XML data.
Second, it’s added powerful XML support to several of the existing Office applica-
tions. Yes, I know that the previous version also had some XML support, but that
pales in comparison with what’s available now.

Structure of the Book
This book contains four parts plus appendices. The material is organized as follows:

◆ Part 1 provides an introduction to the XML capabilities of the Office
applications and gives an overview of XML technology.

◆ Part 2 deals with the new InfoPath application. You’ll learn how to use
InfoPath forms, how to design your own forms, and how to use scripting
to enhance the functionality of forms.

◆ Part 3 explores the XML functionality of the other Office applications:
Word, Excel, Access, and FrontPage. Each application gets its own chapter
that explains its XML tools in detail.

vii

◆ Part 4 presents a series of case studies showing how to use XML to inte-
grate Office applications with each other to tackle real-world tasks.

◆ Appendix A details what’s on the book’s CD-ROM. The remaining appen-
dices provide a concise overview of XML and the important related tech-
nologies XSD schemas and XSLT stylesheets.

I recommend that everyone start by reading Chapters 1 and 2. After that you can
skip around as your needs and interests dictate.

Web Updates
I am maintaining a Web page for this book at http://www.pgacon.com/Powering
OfficeWithXML.htm. Any corrections or clarifications to the book will be posted
here. You can also contact me with comments, suggestions, and suspected errors —
I always enjoy hearing from readers. Please note that I can respond only to book-
related messages; I simply do not have the time to deal with general XML or Office
queries.

— Peter Aitken

viii Preface

Acknowledgments
This book has only one author listed but is in many ways a team effort. There’s no
way this book could have come into being without the help of many talented peo-
ple at Wiley, including: Maryann Steinhart, Development Editor; Jim Minatel,
Acquisitions Editor; Sundar Rajan, Technical Editor; Pamela Hanley for her overall
coordination and editorial input; and Foxxe Editorial Services/Jeri Friedman, Copy
Editor. Thanks, everyone!

ix

x

Contents at a Glance

Preface . vii

Part I Enhancing Office with XML

Chapter 1 Office and XML Technology 3
Chapter 2 What Is XML? . 13

Part II Getting Going with XML and InfoPath

Chapter 3 Introduction to InfoPath . 23
Chapter 4 Designing InfoPath Forms, Part 1 49
Chapter 5 Designing InfoPath Forms, Part 2 79
Chapter 6 Scripting with InfoPath . 107

Part III XML and Other Office Applications

Chapter 7 Word and XML . 135
Chapter 8 Excel and XML . 159
Chapter 9 Access and XML . 185
Chapter 10 FrontPage and XML . 207

Part IV Case Studies

Chapter 11 Connecting Word and InfoPath 227
Chapter 12 Connecting Excel and InfoPath 245
Chapter 13 Connecting Access and InfoPath 267
Chapter 14 Connecting FrontPage and InfoPath 289
Chapter 15 Connecting Word and FrontPage 299
Chapter 16 Connecting Web Publishing and InfoPath 311

Appendix A What’s on the Companion CD-ROM 329
Appendix B XML Fundamentals and Syntax 335
Appendix C Data Modeling with XSD Schemas 351
Appendix D XSLT and XPath . 375

Index . 401

xi

Contents

Preface . vii

Part I Enhancing Office with XML

Chapter 1 Office and XML Technology . 3
Why XML? . 3
XML in Office 2003 . 5

XML and Word . 6
XML and Excel . 8
XML and Access . 9
XML and InfoPath . 10

Chapter 2 What Is XML? . 13
XML Overview . 13

XML Is a Markup Language . 13
XML Is Plain Text . 14
XML Is Extensible . 15
XML Supports Data Modeling . 15
XML Separates Storage from Display 15
XML Is a Public Standard . 16

Background and Development of XML 16
XML and Related Technologies . 17

XML Schema Definition Language . 18
Cascading Style Sheets . 18
Extensible Stylesheet Language for Transformations 19

Part II Getting Going with XML and InfoPath

Chapter 3 Introduction to InfoPath . 23
What InfoPath Does . 23

InfoPath’s Two Modes . 23
Forms and Form Templates . 24
The InfoPath Screen . 24
Sample Forms . 26

Opening Forms . 26
Filling Out Forms . 27

Navigating a Form . 27
The Date Picker Control . 28
Inserting Hyperlinks . 29
The Picture Control . 29
Working with Views . 30 xiii

Working with Repeating Tables . 30
Inserting Sections . 31

Formatting with Rich Text Controls 33
Font Formatting . 34
Inserting Images . 35
Highlighting . 36
Lists . 36
Text Alignment and Indentation . 37
Heading Styles . 38
Tables . 38

AutoComplete . 41
Correcting Forms . 42

Check Spelling . 42
Data Validation . 44

Merging Forms . 44
Saving and Sharing Forms . 45

Save the Form . 45
Save the Form as a Web Page . 45
Submit a Form . 46
E-Mail a Form . 46

InfoPath Form Security . 47
Basic Security . 47
Digital Signatures . 48

Chapter 4 Designing InfoPath Forms, Part 1 49
Form Design Overview . 49

The Data Source . 49
The Visual Interface . 51

Starting a New Form . 51
With an Existing Data Structure . 52
Creating a Data Source from Scratch . 56

Saving and Opening Forms . 56
Working with the Data Source . 57

Adding to a Data Source . 58
Data Types . 60
Viewing Data Source Details . 60
Modifying a Data Source . 61

Form Layout . 62
Layout Tables . 62
Add a Layout Table . 63
Modifying a Layout Table . 64
Formatting a Layout Table . 65
Adding Content to a Layout Table . 67
Sections . 69

Color Schemes . 74
Form Views . 75

xiv Contents

Creating a New View . 75
View Properties . 76

Chapter 5 Designing InfoPath Forms, Part 2 79
Controls . 79

Control Overview . 79
Placing Controls on a Form . 81
Using the Repeating Table Control . 83
Using the List Controls . 84
Changing Control Type . 84
Changing Data Binding . 85
Data Binding Status . 85
Control Properties . 86
The Button Control . 91

Conditional Formatting . 92
Data Validation . 94

Required Data Validation . 95
Data Type Validation . 96
Data Value Validation . 96

Using Formulas on Forms . 99
Setting User Options . 101

Form Submission . 101
Form Merging . 103
Form Protection and Security . 103

Testing Your Form . 104
Publishing Your Form . 105

Chapter 6 Scripting with InfoPath . 107
Scripting Overview . 107
Background Information . 108
Setting the Scripting Language . 108
The Script Editor . 109
InfoPath Events . 111

Form-Level Events . 111
Data Validation Events . 112
The OnClick event . 114
Event Procedure Arguments . 114

The InfoPath Object Model . 115
Using the Object Browser . 117
Scripts and Security . 118
Debugging Scripts . 119
Script Examples . 120

Inserting the Date . 121
Performing Calculations . 122
Validating Data . 126
Selecting a View Based on Data . 129

Contents xv

Part III XML and Other Office Applications

Chapter 7 Word and XML . 135
Using the WordML Schema . 135
Opening Other XML Files . 136
Creating a New XML Document . 137
Converting a Word Document to XML 138
Editing Other XML Documents . 139

Adding Elements . 143
Deleting Elements . 143
Working with Attributes . 144
Formatting and Layout . 145
Saving Documents . 147

Document Validation . 147
Using Transforms . 149

Transforms for Displaying Documents 149
Transforms for Saving Documents . 152

The Schema Library . 152
XML Options . 154
Protecting XML Tags and Data . 156

Chapter 8 Excel and XML . 159
XML and Lists . 159
The Sample Data and Schema . 160
The XML Source Task Pane . 163

Adding Maps . 163
Using Maps . 165

The List and XML Toolbar . 166
Opening XML Files . 167

Open as an XML List . 168
Open as a Read-Only Workbook . 169
Open Using the XML Source Task Pane 170

Importing XML Data . 172
Importing into a New List . 172
Importing into an Existing List . 173

Working with XML Lists . 174
XML List Properties . 174
Formulas in Lists . 176
Exporting an XML List . 178
Other List Commands . 181

XML Data Validation . 182
Saving Workbooks as XML . 183

Chapter 9 Access and XML . 185
Importing XML Data and Schemas 185

XML Data and Tables . 185
Importing Data . 187

xvi Contents

Importing Structure . 188
Access and XML Data Types . 189

Exporting Access Objects to XML 189
Sample Data . 190
The ReportML Vocabulary . 191
Export Basics . 194
XML Export Options . 200
Client versus Server . 203
XML Exporting versus HTML Exporting 204
Exporting Live Data . 204
Deploying Your Application . 206

Chapter 10 FrontPage and XML . 207
XML-Based Data for the Web . 207
The Sample Data . 207
Viewing and Editing XML . 209
Using XML Web Parts . 210

Creating an XML Web Part . 210
A Web Part Example . 211

Using Data Views . 213
Creating a Data View . 214
The Data View Details Task Pane . 215

Part IV Case Studies

Chapter 11 Connecting Word and InfoPath 227
Overview . 227
The Scenario . 227
Create the Schema . 228
Design the InfoPath Form . 229
Create the Stylesheet . 230
Apply the Stylesheet . 233
Creating a Stylesheet with Formatting 237

Define and Apply the Style . 237
The Style Definition . 238
Apply the Style . 239
Checking Namespaces . 240
Other Details . 240
Load and Apply the New Stylesheet 243

Chapter 12 Connecting Excel and InfoPath 245
Scenario . 245
Planning . 246
Create the Schema . 246
Design the InfoPath Form . 249

Create a New Form Template . 249
Selecting a Layout . 249

Contents xvii

Adding Controls . 251
Fine-Tuning the Form . 251

Create the Workbook . 256
Import the Map . 256
Creating the XML List . 257
Importing the Sample Data . 258
The Workbook Analysis Functions . 258

Additional Considerations . 263
Data Validation . 264
Data Flow . 265

Chapter 13 Connecting Access and InfoPath 267
The Scenario . 267
Creating the Database . 267

Database Design . 268
Creating a New Database and the Donors Table 268
Define the Donations Table . 271
Defining the Relationship . 272

Designing the InfoPath Form . 273
Connect to the Data Source . 274
The New Form . 276
About the Data Source . 278
Modifying the Query View . 278
Starting the Data Entry View . 279
Fine-Tuning the Data Entry Form . 280
Adding a Submit Button . 282
Setting Form Submission Options . 283

Using the Form . 284
Chapter 14 Connecting FrontPage and InfoPath 289

The Scenario . 289
Design the InfoPath Form . 289
Fill Out and Save the Form . 292
Design the Web Page . 293

Adding the In-Stock Data View . 293
Adding the Out-of-Stock Data View 296

Using the Web Page . 297
Chapter 15 Connecting Word and FrontPage 299

The Scenario . 299
Create the Schema . 300
Creating the Template . 300

Template Design: Schema and Visual Appearance 301
Template Design: XML Mapping . 303
Create a Sample Data File . 304

Create the Web Page . 306
Create the Transform . 306
Create the XML Web Part . 308

xviii Contents

Chapter 16 Connecting Web Publishing and InfoPath 311
Overview . 311
The Scenario . 311
Designing the Form . 312

Creating the Data Source . 312
Designing the Form . 314

Save the Form as a Web Page . 316
Use a Transform to Create

a Web Page . 317
Designing the Transform . 317
Initial Stylesheet Elements . 318
Other Stylesheet Elements . 320
Trying It Out . 321

Using an InfoPath Script to Apply the Transform 324

Appendix A What’s on the Companion CD-ROM 329
System Requirements . 329
Using the CD . 329
What’s on the CD . 330

Author-created materials . 330
Applications . 330
eBook Version of Powering Office 2003 with XML 333
eBook Version of the Office 2003 Super Bible 333

Troubleshooting . 333
Appendix B XML Fundamentals and Syntax 335

Markup and Tags . 335
Document Structure . 336
XML Names . 336
Elements . 337

Nesting Elements . 337
The Document Element . 338
Empty Elements . 339

Attributes . 339
Special Attributes . 340

Entities . 341
The Document Element as Entity . 342
Internal Text Entities . 342
External Text Entities . 343
External Binary Entities . 344
Character Entities . 344

Character Data . 345
Notations . 345
Comments . 346
Processing Instructions . 346
White Space Issues . 347
A Complete XML Document . 349

Contents xix

Appendix C Data Modeling with XSD Schemas 351
XSD Overview . 351
Namespaces . 352

Default Namespace Declarations . 353
Explicit Namespace Declarations . 354

XSD Data Types . 355
Simple Data Types . 355
Complex Data Types . 363

The schema Element . 370
A Schema Demonstration . 371

Appendix D XSLT and XPath . 375
XSLT . 375

XSLT Structure . 376
An XSLT Demonstration . 376
XSLT Templates . 380
Literal Text . 380
The xsl:text Element . 380
The xsl:value-of Element . 381
The xsl:if Element . 381
The xsl:choose Element . 382
The xsl:for-each Element . 382
The xsl:apply-templates Element . 383
The xsl:sort Element . 384

XPath . 385
XPath Patterns . 386
XPath Expressions . 388
Functions . 392

Index . 401

xx Contents

Enhancing Office with XML
CHAPTER 1

Office and XML Technology

CHAPTER 2
What Is XML?

Part I

IN THIS PART:

Part I describes the XML technology that is

part of Microsoft Office 2003, with an

emphasis on features that are new in this

version of Office, and explores how this

XML capability puts Office in the forefront

of compatibility solutions. This part also

explains the fundamentals of XML, how it

developed, and why it is so well suited for

certain tasks.

3

Chapter 1

Office and XML
Technology
IN THIS CHAPTER

◆ Exploring what’s new in Office

◆ Previewing XML’s role in Word

◆ Previewing XML’s role in Excel

◆ Previewing XML’s role in Access

◆ Previewing XML’s role in InfoPath

THE LATEST VERSION of Microsoft Office, called Office 2003, brings many changes
and improvements to the desktop. The most important of these changes have to do
with the way Office can interact and exchange data with other programs. These
new capabilities are implemented by means of a technology called Extensible
Markup Language, or XML. This chapter explains why interoperability is so impor-
tant for today’s computing needs, and provides an overview of the related features
in Office. Chapter 2 provides you with a basic look at XML and how it works.

Why XML?
Office applications have always had the ability to exchange data with other Office
applications. These capabilities were very useful, and at the time quite impressive.
Aside from the obvious and trivial use of the Windows clipboard for “cut-and-
paste” operations, you could always do things such as inserting a slide from a
PowerPoint presentation into a Word document or embedding a Word document in
an Excel worksheet. There was even some data exchange possible with programs
outside of the Office suite, although these capabilities were rather limited.

As computing has evolved from a single program operating in isolation on a sin-
gle computer, to various software components running on a corporate LAN, to
applications that use components in different cities or different countries via the
Internet, the need for smooth interoperability has increased. Components need
to communicate with each other. This was much easier, of course, when the entire
program ran on one computer, or even ran on different components on a single

network under the control of one Information Systems (IS) department that could
enforce the required compatibility. But now, a worker using an application in the
San Francisco office might be interacting with components located on systems in
New York and Paris, where different applications and even different operating sys-
tems might be in use. At the same time that it became more important to maintain
compatibility, it became far more difficult to do so.

Simultaneously, the very concept of an “application” was becoming less mean-
ingful. Developers and systems integrators tend to think more in terms of business
processes — capabilities or actions that a business or other organization needs. For
example, think of a hospital, the information it needs to keep track of, and the var-
ious uses that information is put to. On the “input” side of things, the following is
needed (this is surely a simplification, but still serves well as an example):

◆ Personal information about a patient

◆ Insurance and/or Medicare information

◆ Details of procedures that were performed: X-rays, lab tests, surgery,
physical therapy, and so forth

◆ Accounting of supplies used: prescription drugs, dressings, intravenous
solutions, and so on

◆ Records of visits from consulting physicians and other specialists

Then think of the multiple uses to which this information may be put:

◆ The Billing department uses the information to submit insurance claims
and prepare patient bills.

◆ The Ordering department uses the information to keep track of inventory
of supplies and to place orders as needed.

◆ The Records department keeps track of all information as part of each
patient’s medical record.

◆ The physicians and nurses need access to the information to keep track of
each patient’s progress.

When designing a computerized solution to fill needs such as this, the focus is
on the tasks that need to be done rather than on individual application programs.
The fact is, however, that in order to be potentially useful in a business solution, an
individual program should have as much flexibility as possible when it comes to
exchanging data with other parts of the solution.

The answer to this problem clearly lay in the widespread adoption of a common
standard for data transfer. Any proprietary technology, under the control of a

4 Part I: Enhancing Office with XML

single organization was unacceptable. As a public and freely available technology,
XML was, as they say, “just the ticket.”

XML in Office 2003
Previous versions of Office, such as Office 2000 and Office XP, integrated XML to
some degree into the various applications. For example, Excel XP could open and
save XML files, and Access XP could import and export XML data. But those fea-
tures are kitten’s play in comparison to the extent to which XML is integrated with
Office 2003.

The deeper integration of XML technology into Office 2003 brings a host of
important enhancements to the suite. These enhancements are not the type that are
obvious to the user right away. XML does not provide a snazzy new user interface,
new formatting commands in Word, better charts in Excel, or automated data entry
in Access. For the most part the XML-related improvements in Office 2003 have to
do with how the Office applications can exchange data with other programs. This
includes data exchange between Office programs, but much of the emphasis is on
exchange with non-Office programs. What other programs? It doesn’t matter —
that’s the beauty of XML. By supporting the XML standard, Office can interact with
any other program that also supports XML.

XML support is not spread throughout all of the Office applications. When

speaking about XML and Office, the only traditional Office applications that

are included are Word, Excel, and Access, plus the new application InfoPath.

FrontPage, the Web site development application, has some new XML fea-

tures, as well.

XML support permits Office applications to communicate with any other soft-
ware that also supports XML, regardless of the system it is running on. Some of the
consequences of this are:

◆ Office apps can exchange data with complex back-end data
stores.

◆ Data can be retrieved from and sent to disparate and otherwise
incompatible systems.

◆ Information can be reused and repurposed without the need to re-key or
recode.

Chapter 1: Office and XML Technology 5

◆ Information of various kinds can be structured in a way that makes it eas-
ier to search and organize.

◆ Because the structure of XML data is independent of its display, the same
information can be presented in different formats and on different devices
as needs dictate.

A central aspect of XML in Office is support for schemas, which are also called
data models. A schema is like a database template in that it describes the types and
relationships of data. You can work with your own business-specific XML schema,
using Office applications to access and reuse important information that may have
been hidden away in documents sitting on file servers or on hard-to-access back-
end systems.

Some schemas will be specially designed for use within an organization. In other
cases, it makes more sense to use one of the many published schemas that are
designed for various tasks. One example is the Extensible Business Reporting
Language (XBRL), an open specification that uses an XML schema to describe
financial information. Another example is H7, which was designed for the health-
care industry. By utilizing such standard schemas, different organizations can eas-
ily share information even if they are using technologies from different vendors on
different platforms.

Office provides several of its own schemas. The XML Spreadsheet Schema is
designed for saving spreadsheet data in XML format. Word has its own XML
schema, called WordML, that lets you save a document along with its formatting
and other information as an XML document. The choice of your own custom
schema, an industry standard schema, or Office’s schemas provides great flexibility.

XML and Word
Word 2003 has its own XML schema called WordML. When you save a document as
an XML file using this schema, all of the formatting and layout information is pre-
served along with the document text. WordML does not provide semantic markup,
so it gives no information about the meaning of the document contents. Such mean-
ing can be provided by another schema. This gives you a great deal of flexibility
because the WordML schema preserves layout and formatting information, while a
custom schema can simultaneously provide semantic structure to the document.

The support for XML in Word 2003 creates a new way of looking at documents.
In previous versions of Word, a Word document was really nothing more than a
combination of raw text data with formatting. Searching the document or attempt-
ing to retrieve information from it was limited to a regular text search. There were
at best very limited ways for the document to denote what its contents meant. With
XML, a Word document can take on a dual identity, as both document (text with
formatting and layout) and a data store (structured information). For example,
Figure 1-1 shows an XML file open in Word with the XML tags visible. You could
hide the tags and apply formatting to the data, but the tags would still be present
and providing structure to the data.

6 Part I: Enhancing Office with XML

Figure 1-1: Word can display XML data and retain the structure
provided by the tags.

Here’s an illustration: Suppose that your company requires prospective employ-
ees to submit a resume as a Word document. This is fine for printing and viewing
on-screen, but suppose you are asked to see if any of the several hundred applicants
have a degree in economics and speaks French? In the past, the only way to do this
would be for someone to examine each resume looking for the relevant information.
With XML, however, the resume documents could be structured in such a way that
locating the relevant information would be a simple automated process.

Word also supports XSLT (XML Stylesheet Language for Transformations), a lan-
guage for defining transformations to XML data. When a Word document uses a
custom schema, you can create an XSLT transform, which takes the original docu-
ment as input and creates a new document based on applying the transform rules
to the original document contents. There are few limitations to what you can
accomplish using XSLT. Here are some examples of what you could do:

◆ Extract parts of the document and output them as an HTML (Hypertext
Markup Language) document for publishing on the Web

◆ Perform calculations and create summaries based on data contained in
tables within the document

◆ Embed commands for outputting the document to a typesetter,
text-to-speech converter, or other specialized presentation device

◆ Create a table of contents or an index

Chapter 1: Office and XML Technology 7

You can learn more about Word and XML in Chapter 7, “Word and XML,” and
Chapter 11, “Connecting Word and InfoPath.”

XML and Excel
Excel has its own XML schema, XML Spreadsheet Schema (XMLSS), and can read
and save data using this schema. In addition, Excel can read XML data based on
any other schema without any need for reformatting. This means that the powerful
presentation and analysis features of Excel can be brought to bear on essentially
any data as long as the original source of that data has the ability to save in XML
format. Manipulation of external XML data is simplified by Excel’s Field Chooser,
which lets the user select data elements from an external schema and simply drag
them to the worksheet for inclusion. The link between an Excel worksheet and
external XML data is dynamic. Tables and charts in Excel will be updated in real
time when the underlying XML data changes.

The Field Chooser acts like a visual mapping tool. When you open an XML file,
it presents a visual representation of the data elements. This can be based on the
file’s schema or, if there is no schema, Excel can generate one based on the file’s
internal structure. Figure 1-2 shows an example; the hierarchical tree under
“sampleData” shows the structure of the XML data. Any of these elements can be
dragged to the desired location in the worksheet.

Figure 1-2: The Field Chooser lets you map
elements of an XML file to your worksheet.

8 Part I: Enhancing Office with XML

◆ The Field Chooser greatly simplifies many tasks that in the past have
required programming. For example: Map XML data to existing worksheet
structure for data import.

◆ Design dynamic workbooks load XML data, display it, and write it out in
any format.

◆ Create information repositories are based on existing Excel workbooks.

You can learn more about Excel and XML in Chapter 8, “Excel and XML,” and
Chapter 12, “Connecting Excel and InfoPath.”

XML and Access
Access is a database management program designed for organizing, structuring,
and manipulating data. As such it has a natural relationship with XML. In fact, in
earlier versions of Office it was Access that first received the capability to work
with XML data.

Access can work with XML data, importing data into any one of the various
types of databases that Access supports. When you import XML data, you can select
which parts of the XML file to import, as is shown in Figure 1-3.

Figure 1-3: Access can import data from XML data files.

Access can also export data from an existing database into an XML document.
You have the option of applying an XSLT transform during the import process to
convert the XML data into a format that the database can accept.

Access can also work with XML schemas. During the importing of data, a
schema can be used to ensure that the data being imported adheres to a certain
structure. You can also choose to export the structure of an Access database as an

Chapter 1: Office and XML Technology 9

XSD (XML Schema Definition) schema. The same is true when exporting Access
data to XML. XSLT transforms can be applied during the data exporting process.

ReportML is a custom XML schema that is supported by Access. It permits
exporting to go beyond just the data so that you can export the details of an Access
datasheet, report, form, query, or table. The resulting XML file contains the associ-
ated presentation and connection information.

You can learn more about Access and XML in Chapter 9, “Access and XML,” and
Chapter 13, “Connecting Access and InfoPath.”

XML and InfoPath
InfoPath is a new application in the Office suite. On the surface, InfoPath is a
forms designer that lets you create forms for data entry and editing. Beneath the
surface, InfoPath provides much more. Its forms are dynamic and can be associ-
ated with a schema to ensure that the form and the data that is entered meet the
schema’s data model. InfoPath forms are based on XML technology and can be
integrated with back-end databases and other applications that also support XML.
For example, a form can be designed so its data is saved as an XML file, submit-
ted to a Web service, or submitted to a database. The ability to integrate script into
forms provides additional power and flexibility. Figure 1-4 shows an example of
an InfoPath form.

Figure 1-4: An InfoPath form.

10 Part I: Enhancing Office with XML

InfoPath provides for both the design of forms and the use of forms. Forms can
be used offline as needed.

You start exploring this exciting new application in Chapter 3, “Introduction to
InfoPath,” and learn to design InfoPath forms in Chapter 4, “Designing InfoPath
Forms, Part 1” and Chapter 5, “Designing InfoPath Forms, Part 2.” Chapter 6,
“Scripting with InfoPath,” shows you how to add scripts to your forms for addi-
tional functionality. Then, you see how InfoPath works with other Office applica-
tions and with Web publishing in Part IV.

Chapter 1: Office and XML Technology 11

Chapter 2

What Is XML?
IN THIS CHAPTER

◆ Understanding XML

◆ Exploring XML technology

◆ Looking at related technologies

THE NEW INTEROPERABILITY features in Office are all based on XML technology. For
most of these features, XML works behind the scenes and you will not have to work
with it directly. Even so, you should have a good understanding of what XML is
and how it works. In this chapter, you will learn the fundamentals of XML, how it
developed, and why it is so well suited for certain tasks. The rest of the chapters
provide you with the details of using XML and some important related technologies
in Office applications.

XML Overview
XML stands for eXtensible Markup Language. XML is designed to provide structure
to data. This means that with XML data can be organized in a way that each indi-
vidual piece of information is clearly identified as to what it is and how it is related
to other data. This may sound like pretty basic stuff — after all, isn’t the data in an
Excel spreadsheet or an Access database well organized? Yes, that’s true, but there
are several factors that have resulted in wide acceptance of XML as a standard for
structured data.

XML Is a Markup Language
What does markup mean? Let me use an example to explain. Look at the following
information:

1999 BMW 540i, dark blue, 49000 miles, $34500

You and I know perfectly well what this information represents — it’s a for sale
listing for a car with details about the make, model, color, and so on. A computer,

13

on the other hand, is not nearly as smart. There’s no way that a computer can reli-
ably and accurately interpret this information. What the computer needs is some
additional information about what the individual pieces of data mean. That’s
exactly what markup does. Here is the same data in XML format:

<car>
<year>1999</year>
<make>BMW</make>
<model>540i</model>
<color>dark blue</color>
<miles>49000</miles>
<price>34500</price>

</car>

The data is the same, but it is now marked up — given structure — by identifying
labels. From this example, you can already see some of the fundamentals of XML
syntax:

◆ Markup information, called tags, is enclosed in brackets.

◆ Data is located between tags.

◆ The beginning of each unit of data, or element, is marked by a tag. The
name of the tag identifies the data.

◆ The end of each element is also marked by a tag. This end tag is identical
to the start tag with the addition of a leading slash (/).

You can see, for example, that the <year> tag identifies the start of the “year”
data. The text “1999” is the data itself, and the </year> tag marks the end of the
“year” data. You can also see that some elements such as <year> and <make> con-
tain data, while some elements — <car> in this example — contain other elements.

This may seem very simple to you, and in fact XML is quite straightforward —
you’ll learn more details throughout this book. Even so, how can such an uncom-
plicated idea provide all the power and flexibility that XML is supposed to have?
Read on to find out.

XML Is Plain Text
XML data is always stored as plain text files. You can open, read, and edit any XML
file using the simplest of tools, such as Microsoft’s Notepad text editor. In truth,
you will rarely, if ever, work with XML in this manner, but use of the text format
has important implications. By using an open and universally accepted format,
XML breaks down the barriers that are created when data is stored in a format that

14 Part I: Enhancing Office with XML

is proprietary to a particular application, operating system, or hardware platform.
XML data can be transferred between Windows PCs, Macintoshes, Unix machines,
and even mainframes without problems. No one is going to object to XML because
they cannot easily use it on their platform.

XML being plain text does not mean it cannot be used with binary data, such as
images, that cannot be represented as text. Binary data is stored separately, and
then referenced from within an XML file.

XML Is Extensible
As its name implies, XML is extensible, meaning that it can be extended as needed
to meet any data structuring needs that may arise. When you decide to use XML for
your data needs, you can be confident that this decision places essentially no limi-
tations on future expansion and change.

XML’s extensibility derives from the fact that it is, technically speaking, a meta-
language, or a language that is used to define other languages. The languages that
can be defined with XML, called schemas, are each tailored for a specific purpose.
One developer might use XML to define a language for storing medical records
data, for example, while another person might define an XML language for keeping
track of an auto-parts inventory. From its inception, XML was designed to provide
this flexibility.

XML Supports Data Modeling
A data model, or schema, describes the permitted data structure of an XML file. It
will specify the elements and attributes the XML file can contain, which ones are
required and which are optional, what the relationship between them is, and what
kind of data each can contain. The data model for an XML file that contains inven-
tory data for a clothing retailer will be totally different from the data model of an
XML file that holds data for an oil-drilling exploration company. Schemas are an
essential element of using XML in Office.

XML Separates Storage from Display
Data is not much use unless it can be displayed in some way. Display can mean
many things. It might be a standard desktop computer monitor or the small screen
of a Palm or other personal digital assistant. There are many other types of “dis-
play” that most people do not think about, such as data

◆ Converted to speech for audio output

◆ Presented as a Web page

◆ Sent to a typesetter for publication as a magazine or book

Chapter 2: What Is XML? 15

The XML language places absolutely no constraints on how data is displayed. In
fact it was designed this way intentionally. The display of the data (when it is
required) is totally separate from the storage and structure of the data.

XML Is a Public Standard
The “rules” of XML, technically called the XML Recommendation, were developed
by the World Wide Web Consortium (commonly knows as the W3C). The W3C is a
public organization that receives input and assistance from industry, government,
academia, and individuals. In addition to XML, the W3C is responsible for a lot of
other well-known standards, such as Hypertext Markup Language (HTML), Portable
Network Graphics (PNG), and Hypertext Transfer Protocol (HTTP). Because W3C is
a public organization, standards that it develops are available to all. There are no
commercial interests with control over the standards, and thus no way anyone can
be charged royalties or licensing fees to use a standard. Because the standards-
making process is open and public, the standards that emerge tend to be well
thought out and complete. This also means that the standards-making process is
unavoidably slow. For example, the W3C worked on the XML Recommendation for
two years before finally releasing it in 1998.

It’s important to note that the W3C has no authority to impose its standards on
anyone. This is why they are properly called Recommendations rather than stan-
dards. You are perfectly free to create a variation of XML, but what’s the point? It’s
the wide use and acceptance of “official” XML that makes it so useful.

You can learn more about the W3C and its activities at www.w3.org.

Background and Development
of XML
The origins of XML stretch back some 40 years, to the era of mainframe computers,
when IBM was looking for a method for structuring documents. IBM’s goal was to
facilitate the exchange and manipulation of data. The result of these efforts was
Generalized Markup Language (GML). While GML was used internally by IBM, it
never achieved acceptance elsewhere. Other organizations developed similar
document-structuring languages, but at that stage everything was proprietary and
each markup language was incompatible with the others.

The first successful effort at creating a standardized markup language was
Standard Generalized Markup Language (SGML), which also originated at IBM.
SGML started as a markup language for structuring and organizing legal documents,

16 Part I: Enhancing Office with XML

but was soon expanded to function in other settings as well. The International
Organization for Standardization (ISO) released SGML as an official standard in
1986. SGML is extremely powerful and flexible, with all the corresponding com-
plexity and processing overhead. For many if not most uses, SGML is overkill.

The development of the Internet prompted the next major step in the evolution
of markup languages. Huge numbers of documents were becoming available on the
Internet, and early methods for accessing these documents were proving unsatis-
factory. People in the industry knew that accessibility would be facilitated if the
documents could be linked to one another in a meaningful way so that users could
easily find and move between related documents. The solution, HTML, was devel-
oped by Tim Berners-Lee, who was a software engineer at the European Laboratory
for Particle Physics in Switzerland. HTML not only allows documents to be linked
to one another but also provides markup tags for controlling document display.
With HTML was born the World Wide Web, consisting of the entire web of linked
HTML documents.

Despite its enormous success, HTML has some significant limitations. During the
early days of the Web it was more than adequate, but as the Web expanded devel-
opers started to “push the envelope,” trying to be more and more creative with
their Web pages. Tasks for which HTML was never intended, such as animation,
database access, and user interactivity pushed Web designers to the limit. With the
assistance of nonstandard enhancements to HTML as well as ancillary technologies,
Web developers have created the exciting Web pages that we see today.

Eventually, however, it became painfully clear that HTML was being pushed
beyond its limits. One major limitation is that HTML has a fixed set of markup tags,
and you cannot create new tags to meet new needs. In other words, HTML is not
extensible. The other limitation is that HTML combines tags for structure with tags
for display. Thus, structure and display are inextricably linked. The new markup
language had to overcome these limitations. Specific goals that the W3C set for the
new markup language included the following:

◆ Extensibility. The language provides for defining new elements as
needed.

◆ Validation. A document should be able to be validated against a
data model.

◆ Structure. The language syntax must follow a well-defined set
of rules.

XML is the result of this effort by the W3C.

XML and Related Technologies
The XML Recommendation as issued by the W3C consists of two parts:

Chapter 2: What Is XML? 17

◆ A set of rules for structuring data with tags and attributes.

◆ A set of rules for creating a data model for XML data called Document
Type Definitions (DTD).

The rules for creating tags and attributes are in a sense the real core of XML. The
ability to define a data model is equally important. A data model specifies how an
XML file is structured and what data it can contain. An XML document that stores
an auto-parts inventory will have a very different data model from one that stores
medical records. DTDs were the original technology for defining a data model and
are still widely used. They are not supported by Office, however, so are not covered
in this book. Office uses a more recent and powerful method for defining a data
model, called XML Schema Definition Language (see the next section).

As mentioned earlier, the base XML Recommendation includes only XML itself
and DTDs. Several related technologies have been developed. These are not, techni-
cally speaking, part of XML itself, but they are important for maximizing the ben-
efits of Office’s XML features. The following sections do not by any means
constitute a complete list of XML-related technologies, but are limited to those that
are relevant for Office 2003.

XML Schema Definition Language
The original method for defining an XML data model, also called a schema, was
Document Type Definitions, or DTDs. While still widely used, DTDs have some lim-
itations that make them less than ideal for certain uses. The W3C developed a new
and more flexible data-modeling tool called XML Schema Definition Language, or
XSD. Office uses XSD schemas for data modeling.

Cascading Style Sheets
I’ve already mentioned that one of XML’s advantages is that it keeps data structure
totally separated from data display. This does not mean, however, that XML data
never needs to be displayed! Cascading Style Sheets (CSS) is a language that lets
you associate display attributes (such as font, color, and line spacing) with the ele-
ments of an XML file. A display program such as a browser uses the information in
the style sheet to control the display of XML data. A style sheet is separate from the
XML file. This provides the following two advantages:

◆ You can display the same XML data in different ways by simply using a
different style sheet.

◆ If the same style sheet is used for multiple XML documents, you can
change the display of all of them by changing only the one style sheet.

18 Part I: Enhancing Office with XML

Extensible Stylesheet Language for Transformations
Extensible Stylesheet Language for Transformations (XSLT) is a language for defin-
ing transformations that can be applied to XML data. A transform can change the
structure of an XML document as required by the current situation. The order and
organization of the data can be modified, and new elements such as an index or
table of contacts can be created. One common use of XSLT is to transform XML
data into HTML for display in a Web browser.

Chapter 2: What Is XML? 19

Getting Going with XML
and InfoPath

CHAPTER 3
Introduction to InfoPath

CHAPTER 4
Designing InfoPath Forms, Part 1

CHAPTER 5
Designing InfoPath Forms, Part 2

CHAPTER 6
Scripting with InfoPath

Part II

IN THIS PART:

Part II introduces InfoPath, a new

application in the Office suite that lets you

design and distribute sophisticated forms

for entry, editing, and sharing of data. An

InfoPath form’s data is maintained as XML,

permitting forms to interact dynamically

with back-end databases, Web services, and

other applications that support XML. You

learn to design InfoPath forms, with their

many options, and then look at the

capability to integrate script into forms to

provide additional power and flexibility.

Chapter 3

Introduction to InfoPath
IN THIS CHAPTER

◆ Exploring InfoPath

◆ Using InfoPath forms

◆ Formatting and correcting InfoPath forms

◆ Merging InfoPath forms

◆ Saving and sharing InfoPath forms

◆ Examining InfoPath form security

INFOPATH IS THE NEW member of the Office family. It provides a forms-based inter-
face that lets users enter and share data. This chapter covers the basics of InfoPath
and shows you how to fill out InfoPath forms.

What InfoPath Does
To quote from the Microsoft documentation, InfoPath “streamlines the process of
gathering, sharing, and using information.” The way that InfoPath does this is
through the use of forms. I’m sure that you have worked with on-screen forms
before, when placing an order with a Web merchant, for example, or when register-
ing at an online job site. The notion of forms is clearly not new. What’s new is the
way InfoPath lets you work with forms, and the way that the data entered into a
form is stored. Specifically, data from InfoPath forms is maintained as XML, which
means that InfoPath can exchange data with any other program or system that sup-
ports XML. This in fact is what sets InfoPath apart — the ease with which it can
integrate with other applications. For the most part the XML is hidden away behind
the scenes — you, as an InfoPath user, will not need to work directly with XML.

InfoPath’s Two Modes
When you use InfoPath you are always working in one of two modes. In one mode
you are filling out forms — adding, viewing, and editing data on InfoPath forms.
Many users will only use this mode. I refer to this as Data mode, even though that
is not a term used by Microsoft. The other mode is called Design mode and is used 23

to create and modify the underlying design of forms. In Design mode you can view
and set a form’s schema, define data validation rules, and specify other aspects of a
form that determine its appearance and behavior. Generally speaking, InfoPath’s
Design mode is used by systems administrators, programmers, and advanced users.
Chapter 4, “Designing InfoPath Forms, Part 1,” and Chapter 5, “Designing InfoPath
Forms, Part 2,” cover Design mode extensively. This chapter deals primarily with
InfoPath’s Data mode.

Forms and Form Templates
InfoPath works with forms and with form templates. It’s important to understand
the distinction between them. A form template defines the structure and function-
ality of a form, including:

◆ The XML schema that defines the structure of the form data

◆ The controls on the form

◆ The data validation rules for the form

◆ The form’s default data (if any)

◆ Rules about what the user can and cannot modify on the form

◆ The views associated with the form (data layout)

A form template consists of a single file with the XSN extension that is stored
locally on your computer or at a remote network server or Microsoft SharePoint
Server. When you design a form in InfoPath, you are creating a form template. The
InfoPath installation also includes a selection of form templates.

A form is based on a form template. When you are working with data in InfoPath
you are using a form. A good analogy with paper forms is a blank master form that
is used for photocopying — this is the form template. The photocopies that the users
actually fill out are the forms.

The InfoPath Screen
The InfoPath screen, sometimes referred to as the workspace, has two main sections,
the form area on the left and the task pane on the right, as Figure 3-1 shows. The
form area is where you work with forms, either in Design mode or Data mode (as
shown in the figure). The task pane can contain a variety of elements. Most often it
displays commands for InfoPath actions, such as opening a form, performing a spell
check, or adding a control to a form in Design mode. The task pane can also display
online help, clip art galleries, and other such information. Depending on what you
are doing, InfoPath may display special task panes that contain commands and
other elements related to the task at hand. To work with the task pane:

24 Part II: Getting Going with XML and InfoPath

◆ Click the left and right arrows at the top of the task pane to move back-
ward and forward through the task panes that have been displayed.

◆ Click the Home button at the top of the task pane to return to the initial
task pane.

◆ Click the down arrow at the top of the task pane to view a menu of com-
monly needed commands.

◆ Point at the vertical dotted line at the top-left corner of the task pane to
drag the pane to another screen location. Drag to the left or right edge of
the screen to dock the task pane.

◆ Click the Close button at the top of the task pane, or press Ctrl-F1, to hide
the task pane.

◆ Press Ctrl-F1 or select View → Task Pane from the InfoPath menu to display
the task pane.

When you design a form you can also design one or more custom task panes
that will be available to users when filling out the form.

Figure 3-1: The InfoPath screen.

Chapter 3: Introduction to InfoPath 25

Sample Forms
The InfoPath installation includes a selection of sample forms that are designed for
commonly used data entry tasks, such as expense report, resumes, and performance
reviews. You can use the forms as they are provided, and you can also use them as
the starting point for designing your own custom forms. You will learn how to
access these sample forms in the next section.

Opening Forms
Naturally, before you can fill out a form, you must open it. You can either open an
existing form that you or someone else has already started to fill out, or you can
open a new form based on a form template. To open an existing form:

1. Select File → Open to display the Open dialog box.

2. If necessary, navigate to the folder or shared network location where the
form is located.

3. Select the form.

4. Click Open.

To start a new form from a form template:

1. Select File → Fill Out a Form. This step is not required if the task pane is
already displaying the Fill Out a Form page.

2. The Fill Out a Form section of the task pane lists form templates you have
used recently. To create a new form based on one of these templates,
select the template name.

3. To use another template, click the More Forms command on the task pane
to open the Forms dialog box (see Figure 3-2). This dialog box has three
tabs:

Recent Forms. Lists form templates you have used recently.

Custom Installed Forms. Lists custom form templates that are available
to you.

Sample Forms. Lists the form templates that are part of the InfoPath
installation.

4. Select the desired form template, then click OK.

26 Part II: Getting Going with XML and InfoPath

Figure 3-2: The Forms dialog box lets you select a form template.

Once you have opened a form you can proceed to fill it out as described in the
next section.

Filling Out Forms
An InfoPath form is composed of controls. Each control is designed for a certain
kind of information, although there is some overlap. For example, both the Text
Box and the Rich Text Box controls are designed for display and/or entry of text,
but the latter control offers significantly more formatting options.

Navigating a Form
Only one item, or control, on the form is active at a time and will respond to input
from the user. You can activate a control by clicking it. As you move the mouse
pointer over a form (without clicking), InfoPath indicates the controls with a special
outline so that you can easily identify the control you want. You can also press Tab
or Shift-Tab to move forward or backward from control to control (in the order
determined when the form template was designed). The arrow keys also move
between controls in most situations. The exception is when you are editing text, in
which case the arrow keys move the insertion point in the text. If the insertion
point has reached the end of the text, however, an arrow key moves to the next
control.

An InfoPath form also can display buttons and other elements for carrying out
actions such as sending the form or inserting an optional section. Several of these
elements are shown in Figure 3-3. You need only to click one of these buttons or
other elements to initiate the action.

Chapter 3: Introduction to InfoPath 27

Figure 3-3: An InfoPath may contain elements that you click
to carry out an action.

The Date Picker Control
The Date Picker control is usually used for fields on a form that require entry of a
date. This control displays as a Text Box with an adjacent calendar icon. You can
type a date directly into the field, or you can click the calendar icon to select a date
from a graphical calendar (shown in Figure 3-4).

Figure 3-4: Selecting a date with
the Date Picker control.

When the Date Picker calendar is displayed, select a date by clicking it. Use the
left and right arrows at the top of the calendar to display different months. Today’s
date is marked with a red outline. If the control already has a date entered, that cal-
endar day is shaded in gray.

28 Part II: Getting Going with XML and InfoPath

Inserting Hyperlinks
In some form locations you can insert a hyperlink to a document or graphic on the
Internet. Hyperlinks are displayed as blue underlined text; anyone viewing the
form in InfoPath can right-click a hyperlink and select Open Hyperlink to view to
link target in his browser. If you type a URL such as www.microsoft.com in a form
location that supports hyperlinks, it automatically becomes a hyperlink. To create a
hyperlink from other text:

1. Select the text that you want to turn into a link, or place the insertion
point at the link location.

2. Press Ctrl-K or select Insert → Hyperlink. The Insert Hyperlink dialog box
is displayed (see Figure 3-5).

3. Enter the hyperlink target’s URL in the Link To field.

4. If you selected text in Step 1, it is displayed in the Display This Text field.
Otherwise, enter the text that you want displayed as a link in the form.

5. Click OK.

Figure 3-5: Defining a hyperlink on a form.

To modify an existing hyperlink, right-click the hyperlink and select Edit
Hyperlink from the pop-up menu. In the Edit Hyperlink dialog box, make the nec-
essary changes to the link target and/or the link text.

To delete a hyperlink, right-click the hyperlink and select Remove Hyperlink
from the pop-up menu. The text remains in the form but is no longer a hyperlink.

The Picture Control
The Picture control is used to insert image data in a form. This can be useful in
many situations, such as a resumé form that includes a picture of the individual.
When you open a form, a Picture control may already contain an image or it may
be empty, depending on how the form was designed. In the latter case, it is dis-
played as shown in Figure 3-6. In filling out a form, you can click the control
(whether it is empty or already contains an image) and then follow the prompts to

Chapter 3: Introduction to InfoPath 29

specify the image for the control. When a form template is designed, a Picture con-
trol can be marked as read-only, which means that the user won’t be able to change
the image in the control. In this case, clicking the control has no effect.

Figure 3-6: An empty Picture control.

A Picture control can hold an image in two ways: as actual binary image data,
or as a link to an image file that exists elsewhere, on a network server or Web site.
The form designer decides how the control holds its data.

A Rich Text control also can be used to insert images on a form. This control is
discussed later in the chapter.

It’s important to distinguish between two types of images that can be on a form.
An image that is in a Picture control or a Rich Text control is part of the form’s
data, and is saved or submitted along with the form’s other data. An image can also
be part of the form’s visual interface, purely part of the form’s design and not part
of its data. The latter kind of image is static and cannot be manipulated by the user.
Designing a form’s visual interfact is covered in Chapters 4 and 5.

Working with Views
When a form template is created, the designer has the option of defining multiple
views for a form. A resumé form, for example, could have a detail view that displays
all of the information in the resumé and a summary view that displays only the most
important sections. Some views allow for the entry and editing of information, while
others are for display and printing only. The designer can also create a special print
view that can be used when the form is printed. Every form has a default view that
is used when the form is first opened and is also used for printing if no print view is
defined.

To switch between views use the View menu, which lists all the views that are
defined for the form in use. The default view for a form has the same name as the
form template.

Working with Repeating Tables
Repeating tables are designed for data that repeats, when you don’t know ahead of
time how many individual entries there will be, and are often used in InfoPath
forms. A meeting agenda form, for example, may include a section for attendees,
with fields for name, phone number, and e-mail address for each. Because the num-
ber of attendees can’t be known ahead of time, this part of the form would be cre-
ated as a repeating table. This kind of table is initially displayed as a single row
containing one or more controls for data entry. The user fills out the original table

30 Part II: Getting Going with XML and InfoPath

row for the first attendee, and then adds additional rows for other attendees as
needed. Each new row contains the same controls as the original.

When the focus is in a repeating table, InfoPath displays a blue down-arrow icon
at the left end of the table row that has the focus. Figure 3-7 shows the icon in a
single-row table.

Figure 3-7: You can insert new rows into a repeating table.

Click a repeating table’s icon to view a menu with the following commands:

◆ Insert Above. Inserts a new table row above the current row.

◆ Insert Below. Inserts a new table row below the current row.

◆ Remove. Deletes the current row (and its data, if any).

◆ Cut, Copy. Cuts or copies the current row, with its data, to the clipboard.
These commands are available only if you have selected the entire row
by dragging over it with the mouse.

◆ Paste. Pastes a previously cut or copied row into the table.

Inserting Sections
A form template can be designed with optional sections. As you work on a form, you
can insert these sections as needed. For example, a loan application form could have
an optional section titled “Spouse’s Income.” If the loan applicant is married, this
section can be inserted and filled out. If the applicant is not married, the section is
not needed. Some optional sections can be inserted multiple times. In a resumé form,
for instance, the “Personal Reference” section can be inserted zero, one, or more
times, depending on how many personal references are being included.

Some forms include links that you can click to insert an optional section; Figure
3-8 shows an example. Near the bottom of the screen you can see an arrow icon
next to the text “Click here to insert the Comments section.” This technique lets the
form designer specify where in the form a section can be inserted.

Figure 3-8: Some forms display links to click to insert an optional form section.

Chapter 3: Introduction to InfoPath 31

Other optional sections provide more flexibility as to where they can be inserted.
For these sections there is no link in the document. Rather, you move the insertion
point to the form location where you want the section inserted, then choose
Insert → Section followed by the section name. InfoPath simplifies things for you by
enabling only those section names that can be inserted at the current form location.
If a section name is grayed out in the Insert → Section menu, you know it cannot be
inserted at that location.

To remove a section, you must first select it. To do so, point at the section until
a dashed border appears around the section, and then click. A selected section is
displayed with a gray background and a dashed border. For example, the
Comments section is selected in the form shown in Figure 3-9. Press Del to delete a
selected section. Some sections of a form are not optional and cannot be selected.

Figure 3-9: A selected section displays with a gray background
and a dashed border.

Sections can also be cut or copied and pasted at a new location using the

Windows clipboard. If, after cutting or copying a section to the clipboard, the

Edit → Paste command is not available, it means that the section cannot be

pasted into the form at the current location.

32 Part II: Getting Going with XML and InfoPath

Formatting with Rich Text Controls
InfoPath provides two controls for entering text data: the Text Box control and the
Rich Text control. A Text Box control provides no formatting options; its font is
specified when the form is designed, and the user (the person filling out the form)
can make no changes to the format of the text.

The Rich Text control, however, provides the user with extensive control over
formatting so that he or she can do such things as change the font, insert lists and
tables, and display graphics. The Rich Text control is used on forms for entry and
display of longer sections of text.

Text formatting works pretty much the same as text formatting in other Office
applications such as Word. If you are familiar with applying text formatting in
those applications, you probably already know the material in this section.

When you design forms, you can place some limitations on which formatting
options are available for a specific Rich Text control. For example, you can have a
Rich Text control that permits the user to change the font but not to insert tables
and images. One way users can tell when text formatting is permitted is by looking
at the Formatting toolbar. In a given situation, if the buttons on the toolbar are
grayed out (unavailable), the corresponding formatting cannot be changed.

In some cases, text must be selected before applying formatting. Selected

text is displayed in reverse video, white text on a black background. You

select text by dragging over it with the mouse or by double- or triple-clicking

to select a word or paragraph, respectively. You can also use the keyboard,

holding down the Shift key while using the cursor movement keys to expand

or contract the selection.

When working with formatting you should have InfoPath’s Formatting toolbar
displayed, as shown in Figure 3-10. To display this toolbar (or to hide it when you
are done using it), choose View → Toolbars → Formatting.

Figure 3-10: The Formatting toolbar provides access to
InfoPath’s text formatting commands.

Chapter 3: Introduction to InfoPath 33

Font Formatting
The term font formatting refers to the appearance of text characters. This includes
the font itself (the style of the text) as well as its color, size, and additional attrib-
utes such as underlining. You can apply font formatting in two ways:

◆ To format existing text, select the text then apply the formatting.

◆ To format text you are about to type, move the insertion point to the
desired location, apply the formatting commands, and then start typing.

Most aspects of font formatting, such as bold and underlining, are well known and
need no further explanation. Some users may not be familiar with the following:

◆ Size. Font size (height) is expressed in points; one point is 1/72 inch. The
default for most InfoPath controls is 10 points.

◆ Strikethrough. Text is displayed with a line through it, like this.

◆ Superscript. Text is displayed at a smaller size, higher than surrounding text.

◆ Subscript. Text is displayed at a smaller size, lower than surrounding text.

You can change any aspect of font formatting using the Font task pane, shown
in Figure 3-11. To display this task pane, select Format → Font or press Ctrl-D. You
can also change most aspects of font formatting — all except strikethrough, super-
script, and subscript — using the Formatting toolbar.

Figure 3-11: The Font task pane displays
commands for font formatting.

34 Part II: Getting Going with XML and InfoPath

To remove formatting from text, you can remove the individual formatting

attributes, such as italics or bold, one at a time. It’s usually quicker, however,

to select the text and, in the Pick Formatting to Apply list in the Font task

pane, select Clear Formatting.

Inserting Images
If the InfoPath form designer chooses, users may be permitted to insert images into
Rich Text controls. The image becomes part of the form’s data.

To insert an image, place the insertion point at the location in the Rich Text con-
trol where you want the image. Choose Insert → Picture, and then choose either
From File or Clip Art. If you select From File, InfoPath displays the Insert Picture
dialog box. Use this dialog box to browse for the desired image file, then click
Insert. If you select ClipArt, InfoPath displays the Clip Art task pane, shown in
Figure 3-12. Use the commands on this task pane to locate and select the desired
clip art image.

Figure 3-12: The Clip Art task pane.

When you or another user insert an image in a document, either from clip art or
a file, the binary image data is embedded in the form and is included when the form
is saved or submitted.

You can select an image in a Rich Text Control by clicking it. A selected image
displays small white squares called handles at its corners and the midpoints of its
edges. When an image is selected you can perform the following actions:

Chapter 3: Introduction to InfoPath 35

◆ Press Del to delete the image.

◆ Point at a handle and drag to change the image’s shape and/or size.

◆ Right-click the image and select Format Picture to display the Format
Picture dialog box in which you can specify how text should wrap around
the image.

◆ Right-click the image and select Borders and Shading to display the
Borders and Shading dialog box, from which you can add a border to
the image.

What’s the difference between an image in a Rich Text control and an image in a
Picture control (discussed earlier in this chapter)? An image in a Picture control is
independent and can be treated separately from any other form data, while an image
in a Rich Text control is just part of the control’s data, which may also include text
and formatting.

Highlighting
Highlighting changes the background color of text. It can be used to call attention
to sections of text, for example. To apply highlighting to text (either text you have
selected or text you are about to type), click the Highlight button on the Formatting
toolbar. The current highlight color is displayed on the Highlight button. To apply a
different highlight color, and also change the current color, click the arrow that is
adjacent to the Highlight button and select the desired color. To remove highlight-
ing from text, apply a white highlight.

Lists
InfoPath has the ability to automatically create numbered and bulleted lists in Rich
Text controls. In a numbered list, items are numbered automatically, with the num-
bering being adjusted as needed if items are added to or removed from the list. Each
list is available in different styles. For example, a numbered list can be 1, 2, 3 or i,
ii, iii, and so forth. A bulleted list can use different symbols for bullets.

To create a list, select the paragraphs that will be in the list, or place the inser-
tion point at the location where you will type the list. Each individual paragraph
will be a list item. Then, click either the Bullets or Numbering button on the
Formatting toolbar. To select a list style other than the default, click the arrow next
to the Bullets or Numbering button and select the desired style.

Another way to create a list is to right-click in the document and select Bullets
and Numbering from the pop-up menu. This displays the Bullets and Numbering
task pane, shown in Figure 3-13 Click the desired list style, or click None to change
text from a list back to a regular paragraph.

36 Part II: Getting Going with XML and InfoPath

Figure 3-13. The Bullets and Numbering task pane.

By default, a numbered list starts with “1” and continues in sequence. If you

want to start a list at another number, right-click the list element and select

Bullets and Numbering to display the Bullets and Numbering task pane (see

Figure 3-9). Change the value in the Start Numbering At box to specify the

new list number.

Text Alignment and Indentation
Text alignment, sometimes called justification, determines how text aligns with the
left and right margins. Alignment applies to entire paragraphs of text. There are
four types of alignment:

◆ Align Left. Text is aligned at the left margin and ragged on the right. This
is the default.

◆ Center. Text is centered between the margins.

◆ Align Right. Text is aligned at the right margin and ragged on the left.

◆ Justify. Text is aligned at both margins, being stretched to fit.

To change the alignment of text place the insertion point anywhere in the para-
graph, then click the Formatting toolbar button for the desired alignment.

Chapter 3: Introduction to InfoPath 37

Indentation controls how far the left edge of a paragraph is offset from the mar-
gin. To change indentation, place the insertion point anywhere in the paragraph
and click the Increase Indent or Decrease Indent button on the Formatting toolbar.

To indent only the first line of a paragraph, place your cursor at the beginning

of the paragraph and press Tab.

Heading Styles
InfoPath provides six levels of predefined headings styles that you can use in text
on a form (in places that permit formatting). A style applies to an entire paragraph.
To apply a heading style to text:

1. Put the insertion point in the paragraph.

2. If necessary, press Ctrl-F1 to display the Font task pane.

3. In the Pick Formatting to Apply list (see Figure 3-14), scroll to bring the
desired style name into view.

4. Click the style name.

To remove a style from a paragraph, follow the preceding steps, selecting Normal
from the Pick Formatting to Apply list.

Tables
You can insert a table in a Rich Text control to present data in a row and column
format. Here are the steps required:

1. Place the insertion point at the location for the table.

2. Choose Insert→Table to display the Insert Table dialog box (see Figure 3-15).

3. Enter the desired number of rows and columns.

4. Click OK.

A newly inserted table displays as a grid of lines as shown near the bottom of
Figure 3-16. To enter data, click the desired cell and type the data. You can also move
between table cells by pressing Tab to move to the next cell and Shift-Tab to move to
the previous cell. If you are in the last cell of the table, pressing Tab inserts a new row
at the bottom of the table. The arrow keys either move the insertion point within a
cell’s text or move to the next cell, depending on the position of the insertion point.

38 Part II: Getting Going with XML and InfoPath

Figure 3-14: Selecting a heading
style for text.

Figure 3-15: Inserting a table
in a Rich Text control.

Figure 3-16: A new, blank table.

Text within a table can be formatted just like any other text using the procedures
outlined in this chapter. Thus, you could display a table’s headings in a larger font
or a different color, or use highlighting to set certain rows or columns off from
other ones. You can also format the table itself using the following techniques.

Chapter 3: Introduction to InfoPath 39

To change the cell borders and background:

1. Select the cells you want to change by dragging over them. Selected cells
are displayed with a gray background.

2. Choose Format → Borders and Shading to display the Borders and Shading
dialog box.

3. In the dialog box, use the Borders tab to specify the style, color, thickness,
and placement of cell borders.

4. Use the Shading tab to select the cell background color.

5. Click OK.

To insert or delete rows and columns, place the insertion point at the desired
location in the table, and then:

◆ Choose Table → Insert followed by the appropriate command to insert a
row or column.

◆ Choose Table → Delete → Rows or Table → Delete → Columns to delete the
row or column containing the insertion point.

◆ Choose Table → Delete → Table to delete the entire table.

To set properties of the entire table, right-click anywhere in the table and select
Table Properties from the pop-up menu. In the Table Properties dialog box (see
Figure 3-17), you can:

◆ Use the Table tab to specify how the table aligns with surrounding text.

◆ Use the Row tab to control row height. The default is for rows to automat-
ically adjust their height to fit the text they contain.

◆ Use the Column tab to set column width.

◆ Use the Cell tab to control the vertical alignment of text in a cell and also
to set the amount of padding (space between a cell’s text and its borders).

You can adjust a table’s row and column size manually by pointing at a cell

border and dragging to the desired size.

40 Part II: Getting Going with XML and InfoPath

Figure 3-17: The Table Properties dialog box.

AutoComplete
InfoPath has an AutoComplete feature that keeps track of data that’s been entered
into fields on a form. It’s much like the Word AutoComplete feature — when the user
starts typing in a field, AutoComplete compares the first few characters with previ-
ous entries the user has made and displays a list of possible matching data. The user
can select from this list or continue typing. AutoComplete is available only for Text
Box controls and may be disabled for specific controls by the form designer.

When filling out a form in InfoPath, the user can control AutoComplete as follows.

1. Choose Tools → Options to display the Options dialog box, and click the
General Tab.

2. Under System Options, click the Internet Options button, and then click
the Content tab. (Note: InfoPath uses the same AutoComplete feature as
the Internet Explorer browser. That’s why the options are under Internet
Options.)

3. Click AutoComplete in the Personal Information section. InfoPath displays
the AutoComplete Settings dialog box (see Figure 3-18).

4. In the Use AutoComplete For section, select the items for which to use
AutoComplete. The Forms option refers to general data entry in Text Box
controls on forms. Deselect all items to turn AutoComplete off.

5. In the Clear AutoComplete History section, click the Clear Forms button to
erase all stored AutoComplete data.

6. Click OK until all dialog boxes are closed.

Initially, it is the form designer who decides whether AutoComplete is enabled or
disabled for a Text Box. If it’s enabled, the user can turn it off, as explained in Step 4.

Chapter 3: Introduction to InfoPath 41

Figure 3-18: Setting AutoComplete options.

Correcting Forms
InfoPath can check for and detect two types of error on forms: spelling errors and
data errors.

Check Spelling
InfoPath’s default setting is to check spelling as you type. Words that are not found
in the dictionary are marked with a wavy red underline. If you right-click such a
word, a pop-up menu offers you one or more suggested corrections as well as com-
mand to ignore the word throughout the form or to add the word to the dictionary.
You can also left-click a misspelled word to display the Spelling task pane, shown
in Figure 3-19. This task pane offers the same commands as the pop-up menu, plus
the Find Next command, which ignores the current misspelled word and looks for
the next one.

If you do not want InfoPath to check spelling as you work, choose Tools →
Options to open the Options dialog box, and click the Spelling tab (see Figure 3-20).
(You can also display the spelling options dialog box by clicking the Spelling
Options link at the bottom of the Spelling task pane.) Turn off the Check Spelling as
you Type option, and then close the Options dialog box. You can set several other
spelling options here, too. If InfoPath is not checking spelling as you work, you can
check the entire form’s spelling at one time by clicking the Spelling button on the
toolbar.

42 Part II: Getting Going with XML and InfoPath

Figure 3-19: The Spelling task pane.

Figure 3-20: Setting spelling options.

Spell checking does not cover words that are part of the form itself. When a

form is designed, certain fields can be designated as excluded from spell

checking.A user who is filling out a form has no way to override these settings.

Chapter 3: Introduction to InfoPath 43

Data Validation
Most InfoPath forms are designed with some sort of data validation. If the form is
based on an XML schema, then the schema rules are used for validation. The form
designer can add other data validation rules, such as:

◆ A field may not be left blank.

◆ A numeric value must be within a certain range.

◆ A date must be a weekday.

InfoPath checks data against the form’s validation rules as you are working on
the form. When a validation error is found, one of two things happens (depending
on the control where the error occurred and the nature of the error):

◆ A dialog box is displayed describing the error. After reading the message,
close the dialog box and edit the data to fix the violation.

◆ An inline alert is displayed as a dashed red border around the control.
Right-click the control to view a short description of the error; select
Full Error Description from the pop-up menu to view a more detailed
description.

When working with data validation errors, use the Tools → Go to Next Error
command (or press Ctrl-Shift-E) to move to the next error on the form.

You can save a form that contains data validation errors, but you cannot submit
it to a Web service or database.

Merging Forms
Some InfoPath forms are designed to be merged, meaning that two or more forms,
and their data, can be combined into one form. For example, you might design a
Meeting Overview form to be filled out by the meeting coordinator, and a Session
Report form to be completed by each of the meeting attendees. After the forms are
filled out, they can be merged so that all the individual session reports are part of
the meeting summary. The ability of a form to be merged is part of its design and
cannot be changed by the user when filling out a form. The form template also
determines the appearance of the final merged form.

To merge the form you are currently working on with another form, choose File→
Merge Forms. (If this command is not available, it means the open form does not per-
mit merging.) In the Merge Forms dialog box, select the form to merge, and then click
Merge. When forms are merged, the resulting XML data contains the data from all of
the individual forms, and the screen display shows the visual elements of all forms.

44 Part II: Getting Going with XML and InfoPath

Saving and Sharing Forms
Once you have filled out a form, what then? There are several possibilities, which is
part of InfoPath’s flexibility. Some of these choices are always available, while oth-
ers may or may not be available, depending on the design of the form template.

Save the Form
When you save a form, InfoPath saves the data as an XML file. This file contains
the form data as well as information that identifies the file as an InfoPath form and
that identifies the InfoPath form template that the form is based on. The elements in
an InfoPath XML file are all associated with a namespace that identifies the form
template. Because the form’s schema is part of the template definition, the name-
space serves to “connect” the XML file with its Data model.

To save a form, choose File → Save or click the Save button on the toolbar. When
you save a form for the first time after starting it, you’re asked to specify a location
(path) and name for the form. The name is up to you; InfoPath automatically adds
the XML extension. The save location depends on the situation. You can save the
file locally and work on it even if you do not have a network connection. You may
want to save it to a shared folder, for example on a Windows SharePoint Services
site, to make it available to others.

If you have opened an existing InfoPath form, whether created by you or some-
one else, or if you have already saved a new form at least once, then the File → Save
command saves the form with its current name and location. To change the name
and/or location use File → Save As.

Save the Form as a Web Page
InfoPath can save a form as a Web page, permitting the form data to be viewed in
a browser. When saved in this manner, the data and form are read-only and cannot
be modified in any way. To save a form as a Web page:

1. Choose File → Export To → Web.

2. In the Export To dialog box specify a name and location for the file.
InfoPath automatically adds the HTM extension to the filename.

3. Click Export.

Note that the Web page created by exporting a form is not dynamic. In other
words, subsequent changes to the form are not reflected in the Web page.

Chapter 3: Introduction to InfoPath 45

Submit a Form
When a form template is created, it can be designed to permit the form data to be
submitted directly to a database or a Web service. If that’s the case, the Submit
command on the File menu is available. Simply select this command to submit the
form data. The details of the submission are part of the form template so there’s no
need for further input on your part.

E-Mail a Form
A form can be e-mailed to someone either in the body of the e-mail message or as
an attachment to the message. To send a form in the body of a message you must
be using Microsoft Outlook 2003. Then:

1. Choose File → Send To Mail Recipient. InfoPath opens the mail form,
as shown in Figure 3-21.

2. Enter the recipient’s address in the To box, or click the adjacent book icon
to select a recipient from your address list.

3. Enter a subject and, if desired, an introduction in the corresponding
boxes. The introduction will be included in the message along with
the form.

4. Click Send.

If you do not have Outlook 2003, you are limited to sending a form as an attach-
ment to an e-mail message (you can do this with Outlook 2003 as well, of course).
This is done outside of InfoPath. You must save the form as an XML file, as
described earlier in this chapter, then use your e-mail program to locate the file and
attach it to a message.

46 Part II: Getting Going with XML and InfoPath

Working Offline
Forms that you will work with are often saved to a network location to make them
available to others. What if you want to work on the form when a network connection
isn’t available — when using your laptop on an airplane, for example? First, when you
have a connection to the network, open the form from its original location. Then, use
the Save As command to save it locally on your laptop’s hard disk. You can then work on
the form as needed regardless of whether you have network access. The next time you
are connected to the network, use Save As to save the form back to the network server.

Figure 3-21: Sending a form to an e-mail recipient.

InfoPath Form Security
An InfoPath form can gain access to files, settings, and resources on your com-
puter. You may want to restrict the extent to which forms have this access.

Basic Security
Part of the security for InfoPath forms is related to what the form is and is not
allowed to do on the user’s system. This is particularly relevant when a form con-
tains script code (covered in Chapter 6, “Scripting with InfoPath”) that can access a
system’s files and settings and therefore has the potential to cause mischief. In this
regard, a form falls into one of two categories — trusted or sandboxed — depending
on the origin of the form. Basic security for InfoPath forms, then, is organized
around the source of the form, as follows:

◆ Sample forms, those that are installed as part of the InfoPath installation,
are trusted.

◆ Custom installed forms, those that are installed with a custom setup pro-
gram, are trusted.

◆ Other forms, those that are opened from a location on the network, are
sandboxed.

Trusted forms are by default given access to files and settings on your computer.
You can restrict the access of trusted forms if you think it wise, as follows:

Chapter 3: Introduction to InfoPath 47

1. Choose Tools → Options to display the Options dialog box.

2. On the General tab, remove the check mark from the option “Allow forms
that I install”

3. Click OK.

Security for sandboxed forms is based on the same security model used by the
Internet Explorer Web browser. This works by assigning network locations to zones.
Each zone has security settings defined for it. When you open a form based on a
network template, its security settings are determined by the zone that the template
source is in. You can refer to your Internet Explorer documentation for more details.

Chapter 6 presents more information about creating trusted forms.

Digital Signatures
A digital signature is a technique by which the author of a form can “sign” the form
with digitally encoded identification. Digital signatures are encrypted and are essen-
tially impossible to forge, permitting the recipient of a signed InfoPath form to be
confident that the form did, in fact, come from the owner of the digital signature. A
Web service, for example, could be set up to accept submissions of forms only if they
are signed with a known signature, preventing the acceptance of spurious or mali-
cious data. Once a form has been digitally signed, it cannot be modified, ensuring
the integrity of the data.

To sign a form, you must have a digital certificate installed on your system. You
obtain such a certificate from a commercial certification authority such as VeriSign
Inc. In most organizations, you should ask your network administrator or IT con-
tact for a certificate. InfoPath can use only those certificates created for client
authentication and that have a digital signature value for the key usage attribute.

To add a digital signature to a form, be sure that the form data is complete. Then:

1. Choose Tools → Digital Signatures to display the Digital Signatures dialog
box.

2. Click the Add button to display the Add Signature dialog box.

3. Click the Select Certificate button and select the certificate to use.

4. Optionally, enter a comment to be associated with your signature.

5. Click OK to return to the Digital Signatures dialog box. You signature is
listed.

6. Click Close.

You can use the Digital Signatures dialog box to view the digital signatures that
have been applied to the form, and also to remove signatures.

48 Part II: Getting Going with XML and InfoPath

Chapter 4

Designing InfoPath Forms,
Part 1
IN THIS CHAPTER

◆ Exploring form design

◆ Beginning a new form

◆ Working with a data source

◆ Examining form layout

◆ Understanding views

INFOPATH PROVIDES a sophisticated design capability for creating forms for display
and entry of data. You can create custom interactive forms to meet essentially any
data requirements. This chapter and the next teach you the fundamentals of InfoPath
form design.

Form Design Overview
Every InfoPath form has two components: the data source that provides the structure
and storage for the form’s data, and the visual interface that provides for display and
entry of the form’s data. It’s important to understand these two components and how
they relate to each other before getting to the details of form design.

The Data Source
Every InfoPath form has a data source. It is the data source that stores the data that is
displayed and entered on the form. A data source is composed of fields and groups:

◆ Fields contain data, such as text, a number, or a date.

◆ Groups organize fields. A group can contain fields as well as other groups.

For example, take a look at Figure 4-1, which shows the structure of a data source
for an InfoPath form. 49

Figure 4-1: An InfoPath data source.

When displaying a data source, InfoPath uses a folder icon to represent groups
and a page icon to represent fields. You can see from this figure that the data source
is organized as follows:

◆ Contact is the top-level group. It contains two other groups, Name and
Address.

◆ Name is a group; it contains two fields, FirstName and LastName.

◆ Address is a group; it contains four fields, Street, City, State, and ZIP.

This a very simple data source, but it serves perfectly well as an illustration. It is
clear that the way data sources are structured has direct parallels to the way XML
is structured. The data source structure shown in Figure 4-1 would be represented
in XML as follows (with data added):

<contact>
<name>
<firstname>John</firstname>
<lastname>Doe</lastname>

</name>
<address>
<street>12 Oak Street></street>
<city>Anytown</city>

50 Part II: Getting Going with XML and InfoPath

<state>CA</state>
<zip>98765</zip>

</address>
</contact>

In fact, this is exactly how InfoPath works — data from an InfoPath form is
stored as XML, with the groups and fields in the data structure corresponding to
elements, and in some cases attributes, in the XML.

When you are filling out a form, you need not be concerned with its data source—
that’s handled behind the scenes. The data source is, however, an integral aspect of
form design. As you’ll see later in this chapter, you can base a form’s data source on
an existing defined data structure. You can also start from scratch and define the data
source yourself.

The Visual Interface
The second main component of an InfoPath form (the first being the data source) is
its visual interface. This, after all, is what the user sees when using the form, and
the design of a form’s interface can make the difference between a form that is clear
and easy to use and one that is confusing and error-prone. A form’s interface com-
prises controls and a layout.

The controls are individual screen elements that are used for the display, entry,
and editing of data. InfoPath supports a variety of controls specialized for different
types of data — Text Box for text data, Date Picker for dates, Check Box for yes/no
options, and so on. The controls you can use on a form are very much like the con-
trols that you are accustomed to seeing in various Windows applications. On an
InfoPath form, each control is linked, or bound, to a field in the data source.

The form layout determines how controls are arranged on the form. You can
think of the layout as a table of rows and columns, much like a table you would
create in a word-processing document. Each cell in the table can hold a control,
and because you have complete freedom to split and merge cells, you have a great
deal of flexibility in arranging controls on the form. The use of layout tables
instead of freehand form design makes it easy to create neat, orderly forms.

Starting a New Form
You can start a new form based on an existing data structure, such as an XML
schema or a database. The data source of the form will have the same structure. You
can also start a new form from scratch and define its data source as part of the
form-design process.

Chapter 4: Designing InfoPath Forms, Part 1 51

With an Existing Data Structure
You can define a new form’s data source based on an XML schema, and XML data
file, a database table, or a Web service. In each case, the data source has the same
structure as the item on which it’s based.

FROM AN XML DATA FILE OR XML SCHEMA
To base a new form on an XML schema or data file, choose File → Design a Form to
display the Design a Form task pane. Then:

1. Click the New From Data Source link to open the Data Source Setup
Wizard.

2. Select the XML Schema or XML Data File option, and then click Next.

3. Enter the path and name of the XML schema or data file you want to use,
or click the Browse button to locate the file.

4. Click Finish.

5. If you selected an XML data file (rather than a schema), InfoPath asks you if
you want to use the data in the file as default values for the fields in your
form. Select Yes or No. You can always specify default data values later.

InfoPath creates the data source based on the information in the schema or data
file and displays it in the Data Source task pane. You are now ready to start working
with the data source and designing the form’s visual interface, which is discussed
later in this chapter.

FROM A WEB SERVICE
A Web service is a program that resides on a Web server and interacts with clients
by exchanging XML data. A Web service can make public information about the
structure of the data it works with. InfoPath can retrieve this information and cre-
ate a form’s data source based on it. An InfoPath form can be set up to receive data
from a Web service, send data to a Web service, or both.

When a form uses a Web service for its data source, it is essential that the final
form accurately match the data structure that the service uses. This means that
when you create a form’s data source from a Web service, the following limitations
apply:

◆ You cannot modify existing groups or fields in the data source.

◆ You cannot automatically create the data source when adding controls.

◆ You can add new fields and groups only to the data source’s root group.

In order to base a form’s data source on a Web service, you must first have some
information about the service. You must be able to locate the service, which requires

52 Part II: Getting Going with XML and InfoPath

that you know the location of the service’s WSDL (Web Services Description
Language) file. Alternately, if you are going to search for the service on a UDDI
(Universal Description, Discovery, and Integration) server, you must know the
address of the UDDI server. You must also know the Web service operation that is
used to send data to or receive data from your form. In addition, some Web services
require that you provide some sample data values during the process of setting up
the data source, and you need to know the details of the samples you should pro-
vide. Once you have all of this information, you can proceed as follows:

1. Choose File → Design a Form to display the Design a Form task pane.

2. Click the New From Data Source Link to open the Data Source Setup
Wizard.

3. Select the Web Service option, and then click Next.

4. On the next screen, choose whether the InfoPath form will receive data,
submit data, or both.

The details of the remaining steps depend on the specific service you are con-
necting to, and also on whether your form will be submitting data, receiving data,
or both. Note that forms that both receive and submit data may use different ser-
vices for receiving and submitting.

If your form will receive data from the Web service, InfoPath creates two views
for the form. One is a query view that users will use to submit queries to the Web
service. The other is the data entry view, which is used to display the results of
queries and also to enter data. You are asked which one you want to design first.
The design process is covered later in this chapter.

FROM A DATABASE
InfoPath can create a form’s data source from an existing database. At present, only
SQL Server and Microsoft Access databases are supported. When you use this tech-
nique, the data source is created based on the tables and fields in the database.
These are the steps to follow:

1. Choose File → Design a Form to display the Design a Form task pane.

2. Click the New From Data Source Link to open the Data Source Setup
Wizard.

3. Select the Database option, and then click Next.

4. Click the Select Database button and select the database you want to use.

5. If the database contains more than one table, InfoPath displays a list of
tables from which you must select one to be the primary parent table in
your form’s data source.

6. InfoPath displays the selected table in the Data Source Setup Wizard
dialog box, as shown in Figure 4-2. If the Show Table Columns option

Chapter 4: Designing InfoPath Forms, Part 1 53

is selected (as in the figure), InfoPath displays the names of the columns,
or fields, in the table. Otherwise, only the table name is displayed.

Figure 4-2: The Data Source Setup Wizard dialog box.

7. To add another table, click the Add Table button and select the table. You
are asked to edit the relationship between the parent table and the table
being added, as shown in Figure 4-3. This relationship identifies the fields
that link the two tables. InfoPath tries to identify the proper relationship by
the use of field names. Otherwise, you must click the Add Relationship but-
ton and select the two linked fields. When the relationship is defined, click
Finish to close the Edit Relationship dialog box and return to the Data
Source Setup Wizard, which now lists the new table along with other tables.

Figure 4-3: Editing a relationship between tables.

8. Use the Add Table button to add more tables, if needed. You can also use
the Modify Table button to change the sort order for a table. When you
are finished, click Next.

54 Part II: Getting Going with XML and InfoPath

9. Check the Data Source Setup Wizard summary information to make sure
that it is correct. Use the Back button to make any corrections, if needed.

As the last step in creating a data source from a database, InfoPath creates two
views for you: a query view for querying the database, and a data entry view for
viewing and entering data. The query view has some controls placed on it — you
can always modify it later. The data entry view is blank. You’ll learn more about
views and form design later in the chapter.

When a form uses a database for its data source, it is essential that the final form
accurately match the data structure of the database tables. When you create a
form’s data source from a database, you face the same limitations you have when
you create a form from a Web service:

◆ You cannot modify existing groups or fields in the data source.

◆ You cannot automatically create the data source when adding controls.

◆ You can add new fields and groups only to the data source’s root group.

FROM A SAMPLE FORM
You can design a form that is based on one of the sample forms that are installed
with InfoPath. You are, in effect, customizing that form to meet your specific needs.
Your new form inherits the data source of the sample form, and there are limita-
tions as to what you can do:

◆ You cannot modify existing groups and fields in the data source.

◆ You cannot automatically create the data source by inserting controls.

◆ Depending on the sample form, you may not be able to add fields or
groups to certain parts of the data source.

Using this technique is suitable when a sample form and its data source come
pretty close to what you want in your own form. You can add groups and fields to
the data source (with some limitations), and you can change the form’s layout and
appearance. If your desired finished form is significantly different from a sample
form, then you are better off using another technique.

To design a form based on a sample form:

1. Choose File → Design a Form to display the Design a Form task pane.

2. On the task pane, click Customize a Sample.

3. In the next dialog box, locate the same form and double-click it.

You can now proceed to modify the sample form as described later in this chapter.

Chapter 4: Designing InfoPath Forms, Part 1 55

Creating a Data Source from Scratch
If your form does not need to conform to an existing data structure, you will create
it from scratch. There are two ways to do this:

◆ You can define the groups and fields of the data structure first and then
proceed to designing the form’s interface, which is discussed later in this
chapter.

◆ You can define the data source as you add controls to the form. This tech-
nique is covered in the “Controls” section of Chapter 5, “Designing InfoPath
Forms, Part 2.”

To create a new form with a blank data source, choose File → Design a Form to
display the Design a Form task pane. Then, click the New Blank Form link. InfoPath
displays the Design Tasks task pane, as shown in Figure 4-4. Click the Data Source
link to open the Data Source task pane. You can now proceed with designing your
data source, as described in the “Working with the Data Source” section later in the
chapter.

Figure 4-4: The Design Tasks task pane.

Saving and Opening Forms
When you are designing a form, you can save a local copy as you work to guard
against data loss from power outages and also to let you work at your own pace. To

56 Part II: Getting Going with XML and InfoPath

save a form you are designing, choose File → Save. If you are asked to choose
between saving and publishing the form, select Save. Then, select a location and
enter a name for the form. Saving a form in this way is different from publishing a
form. Publishing makes the form available for others to use and is covered in
Chapter 5.

To open a form template that you saved previously so you can continue design-
ing it, choose File → Design a Form to display the Design a Form task pane. In the
Open a Form in Design Node section of the task pane, select the form you want
from the list of forms that were open in design mode recently, or click the On My
Computer command to locate other forms.

Working with the Data Source
You use the Data Source task pane (see Figure 4-5) to work with a data source. Its
elements include the following:

◆ The links at the top enable you to open other task panes for working with
layout, controls, or views.

◆ The list in the center displays the current structure of the data source.

◆ The Show Details option controls whether the list displays just the names
of the data source groups and fields, or also displays details about fields
such as the data type.

Figure 4-5: The Data Source task pane.

Chapter 4: Designing InfoPath Forms, Part 1 57

If you are starting to design a data source from scratch, the Data Source task
pane shows a data source that contains only one group, named myFields (as shown
in the figure). If you are working with an existing data source or one that was cre-
ated from a database, an XML schema, or a Web service (as described earlier in this
chapter), the structure of the data source is displayed as a hierarchical tree, with
groups represented by folder icons and fields by page icons. Click the plus and
minus signs in the tree to expand or collapse nodes of the tree to see the details as
required.

In the data source view, groups and fields that cannot be modified are indi-

cated by a small padlock on the folder or page icon. You can view but not

change the properties of locked items. An item is locked if it originated in an

XML file, schema,Web service, or database on which the data view was based.

An item in a data source can be one of three things:

◆ A group

◆ A field that is an XML element

◆ A field that is an XML attribute

Adding to a Data Source
When adding an item to a data source, the new item is always the child of an exist-
ing item. Table 4-1 shows which parent-child relationships are and are not permitted
in a data source. Also, you cannot add new children to locked items.

TABLE 4-1 PARENT-CHILD RELATIONSHIPS IN A DATA SOURCE

Item Can Be Child of Can Be Child of Can Be Child of
Group Element Field Attribute Field

Group Yes No No

Element field Yes Yes No

Attribute field No Yes No

58 Part II: Getting Going with XML and InfoPath

To add an item to a data source:

1. Select the item in the data source that will be the parent.

2. Click the Add button on the Data Source task pane to display the Add
Field or Group dialog box (see Figure 4-6).

Figure 4-6: The Add Field or Group dialog box.

3. Make entries in this dialog box as follows:

Name. The name of the field or group being added. Remember that
XML is case-sensitive.

Type. The type of item being added. This list offers only those types
that are permitted for the parent you selected.

Data type. Select the data type of the item (see the following section
on data types). Not relevant for groups.

Default value. Optional. This is the data that displays in the field when
the form is first opened, before the user has made any entries. If omit-
ted, the field will initially be blank. Not relevant for groups.

Repeating. Select this option to create a repeating field or group. A repeat-
ing field is a field in the data source that can occur more than once. You
use repeating fields with controls such as List and Repeating Section.

Cannot be blank. Select this option to create a data validation rule that
requires entry of some data into the field. Not relevant for groups.

4. Click OK.

Field names must begin with a letter or the underscore character. They can

contain letters, numbers, and the characters period (.), underscore (_), and

hyphen (-). Other characters, including spaces, are not permitted.

Chapter 4: Designing InfoPath Forms, Part 1 59

Data Types
The data types that are available for InfoPath fields are a subset of the data types
that are supported by XML. It is important that you select a data type that is appro-
priate for the data that the field will hold. Table 4-2 lists InfoPath’s data types and
describes the data they are designed for. You can change a field’s data type later if
you need to.

TABLE 4-2 INFOPATH’S DATA TYPES

Data Type Use for

Text Plain, unformatted text

Rich Text Formatted text

Whole number Numbers without a decimal part

Decimal Numbers that may have a decimal part

True/False Yes/No, on/off values

Hyperlink URLs

Date Dates with no time information

Time Times with no date information

Date and time Combined date and time information

Picture Images

Viewing Data Source Details
Each item in the data source has a set of properties that specify its name, data type
(for fields), and so on. You can view these properties on the Data tab of the Field or
Group Properties dialog box, as shown in Figure 4-7. This tab shows the item’s
properties from InfoPath’s perspective.

If you need to see the item’s properties from an XML schema perspective, click
the Details tab in this dialog box (see Figure 4-8). This tab shows the item’s name-
space, data type, and other information.

60 Part II: Getting Going with XML and InfoPath

Figure 4-7: The Data tab of the Field or Group
Properties dialog box.

Figure 4-8: The Details tab in the Field of Group
Properties dialog box shows a data source item’s
schema description.

Modifying a Data Source
The extent to which you can modify a data source depends on where it came from.
If the data source originated with an XML file or schema, a Web service, or a data-
base, you are permitted to modify only those parts of the data source that you
added. Other elements are locked and cannot be changed.

If a form template has already been put into use, and users have already

filled out forms based on that template, be very careful about making

changes to the data source. Depending on how the form data is used,

changes to the data source can lead to loss of data.

Chapter 4: Designing InfoPath Forms, Part 1 61

To modify a field or group in the data source, display the Data Source task pane
then right-click on the field or group you want to change. From the pop-up menu
select Properties to display the Field or Group Properties dialog box. The Data tab,
which was shown earlier in Figure 4-7, provides the current details of the field or
group. You can change only the name of a group. You can change any aspect of a
field, including its data type and name, but you cannot change its type. That is, you
cannot change an element field to an attribute field, or vice versa. Click OK when
you have made the desired changes.

To move an item to a new location within the data source, right-click the item and
select Move from the pop-up menu. InfoPath displays a dialog box with the structure
of the data source. Click the item that will be the new parent of the item being moved,
then click OK. When you move an item, any children that it has move along with it.

To delete an item from the data source, right-click the item and select Delete
from the pop-up menu.

Form Layout
A form’s layout determines the general structure of a form — how the controls are
arranged, how many columns are on the form, and other similar aspects of the
form’s visual appearance. This section shows you how to create and modify a
form’s layout.

Layout Tables
A layout table determines the basic structure of a form’s visual interface. A layout
table is similar in many ways to the tables you may use to organize data in a word-
processing document. It contains rows and columns, and each cell (where a row
and column intersect) can contain controls and other elements that make up an
InfoPath form. The flexibility of designing forms based on layout tables derives
from several factors:

◆ A form can contain more than one table, permitting you to create sophis-
ticated designs.

◆ A table can be inserted in a cell of another table, further enhancing design
flexibility.

◆ A table cell can be split into two cells either vertically or horizontally.

◆ Multiple adjacent cells can be merged into a single cell.

Figure 4-9, for example, shows a new form that has two layout tables on it (with
controls or other content added yet). The upper table has three columns and two
rows, and two of the cells have been split. The lower table has two rows and five
columns.

62 Part II: Getting Going with XML and InfoPath

Figure 4-9: Examples of layout tables.

Add a Layout Table
To add a layout table to a form, click at the form location where you want the table
placed. This can be at the top left of a new, blank form, inside a cell of an existing
table, or on the form outside of an existing table. The insertion point, a blinking
vertical line, shows the location where the new table will be added.

In addition to using the mouse, you can move the insertion point on a form

with the standard movement keys (the arrow keys, Home, End, PgUp, PgDn).

You can also move the insertion point to a new line by pressing Enter.

When the insertion point is at the desired location, use the Layout task pane (see
Figure 4-10) to insert a table.

The Insert Layout Tables list contains several predefined tables that you can insert
simply by clicking the one you want. If you select the Custom Table item, InfoPath
prompts you for the number of rows and columns in the table before inserting it.

Chapter 4: Designing InfoPath Forms, Part 1 63

It is possible to design a form without using a layout table, or to use a table but
place some form elements outside the table. Because of the way InfoPath forms work,
however, this makes it difficult to design attractive forms and makes the design process
more time-consuming. I strongly recommend that you use layout tables for all form
design. You can experiment with tableless design on your own, but it isn’t covered in
this book.

Figure 4-10: The Layout task pane.

Modifying a Layout Table
There are several ways in which you can modify a layout table into your form.
Most importantly, you can split and merge cells, and you can add and delete rows
and columns.

When you split a cell, a single cell is divided to create two cells in the same
space. A cell can be split either vertically or horizontally. Merging cells creates a
single table cell from two or more existing cells. By merging and splitting cells, you
can get away from a strict row-and-column arrangement to create essentially any
layout that your form requires. To work with cells, the Layout task pane must be
displayed. Then:

◆ To split a cell, place the insertion point in the cell, and select Split Table
Cells Vertically or Split Table Cells Horizontally from the Merge and Split
Cells list on the task pane.

◆ To merge cells, first select two or more adjacent cells by dragging over them
with the mouse (selected cells display a gray background). Then, select
Merge Table Cells from the Merge and Split Cells list on the task pane.

You can also add and delete rows and columns in a layout table:

◆ To add a row at the bottom or a column at the right edge of the table, be
sure that the insertion point is in the table, and select Add Table Row or
Add Table Column from the Merge and Split Cells list on the task pane.

64 Part II: Getting Going with XML and InfoPath

◆ To add a row or column at a specified location in the table, right-click at
the desired location. From the pop-up menu select Insert followed by the
appropriate command. You can insert a column to the left or right of, or
a row above or below, the clicked location.

◆ To delete a row or column, right-click the row or column to be deleted,
then choose Delete → Columns or Delete → Rows from the pop-up menu.

Formatting a Layout Table
You may be content with the default appearance of a layout table. If not, there are
several ways in which you can change its appearance. You can select the portion of
the table to be affected with either of the following methods (selected cells display
with a gray background):

◆ Drag over one or more cells to select them.

◆ Put the insertion point at the desired location in the table, then choose
Table → Select followed by Table, Column, Row, or Cell, depending on
what you want to select.

You can click anywhere in the table to cancel the selection.
Some formatting commands don’t require that you make a selection first,

although you can. For example, a column formatting command affects the entire
column that the insertion point is in even if the column is not selected. As you
work with layout tables, you’ll soon become familiar with which formatting com-
mands require you to make a selection first, and which don’t.

TABLE PROPERTIES
Some properties of a layout table affect the entire table, while others affect individ-
ual rows, columns, or cells. To work with these properties, select the cell(s) to be
affected (if necessary), then choose Table → Table Properties. InfoPath displays the
Table Properties dialog box, which has four tabs:

◆ Table. Specify table alignment, which controls how the entire table aligns
with respect to other content on the form: left, center, or right. This prop-
erty is relevant only when the layout table is narrower than the form.

◆ Row. Set row height. You can specify that the row height change automati-
cally to fit its contents (the default), or that the row have a certain minimum
height. Use the Previous Row and Next Row buttons to set the height for
other table rows without having to close and reopen the dialog box.

◆ Column. Set column width. Use the Previous Column and Next Column
buttons to set the height for other table columns.

◆ Cell. Set the vertical alignment of cell contents and also set the cell
padding (the space between the cell’s contents and its edges).

Chapter 4: Designing InfoPath Forms, Part 1 65

You can also set column width and row height visually by dragging the

table’s grid lines with your mouse.

Horizontal alignment of cell contents is not a table property, but is controlled

by the alignment buttons on the Formatting toolbar.

BORDERS AND SHADING
Borders control the appearance of the lines around table cells, and shading deter-
mines the background color in tables. Do not confuse table shading with a form’s
background color (which is set with the Format → Background Color command and
controls the background of the entire form or, to be more precise, the current view).
If you do not specify shading for a table, the form’s background color is visible
under the table.

To work with a table’s borders and shading, start by selecting the part of the
table you want to format. This can be anything from a single cell to the entire table.
Then, choose Format → Borders and Shading to display the dialog box, which has
two tabs: Borders and Shading.

The Borders tab (see Figure 4-11) lets you specify the borders for the selected
region of the table, with the following options:

◆ Style. Select the style of the border — solid line, dotted, dashed, and so on.

◆ Color. Select the border color.

◆ Width. Select the border width.

◆ Presets. Select commonly used border arrangements: none, outside edges
of the selection, or inside boundaries of the selection.

◆ Border. Click the buttons or on the diagram to place and remove borders
at the specified locations.

You use the Borders tab to specify all the details of the selection’s borders at
once. For example, suppose that you want the entire table to have a thick black
border around its outside edges and a thin red border between all of the cells. After
selecting the entire table and displaying the Borders and Shading dialog box, here’s
what you would do:

1. Select black from the Color list.

2. Select a thick line from the Width list.

66 Part II: Getting Going with XML and InfoPath

3. Click the Outline preset to define the table’s outer border.

4. Select red from the Color list.

5. Select a thin line from the Width list.

6. Click the Inside preset to define the table’s inner borders.

7. Click OK.

Figure 4-11: Setting borders for a layout table.

You use the Shading tab in the Borders and Shading dialog box to specify the
table’s background color. Just select a color from the Color list. If you select the No
Color option, the form’s background color shows through.

Adding Content to a Layout Table
Placing controls in a table is an essential part of form design, and is covered in
Chapter 5. There are other design elements that you can place in a table. Anything
that you insert in a table is placed at the location of the insertion point.

◆ To insert text, just type the text.

◆ To insert a horizontal line, choose Insert → Horizontal Line.

◆ To insert clip art, choose Insert → Picture → Clip Art, and use the Clip Art
task pane to locate the desired image.

◆ To insert an image from a file, choose Insert → Picture → From File, and
use the Insert Picture dialog box to locate the file.

Chapter 4: Designing InfoPath Forms, Part 1 67

FORMATTING TEXT
Text that is part of the form’s design can be formatted with different fonts, sizes,
colors, and attributes such as underlining and bold. The techniques are the same as
for formatting text that is entered when a form is being filled out, which was dis-
cussed in Chapter 3.

WORKING WITH PICTURES
You have a variety of options for formatting a picture, either clip art or from a file,
that has been inserted as part of a form’s design. To work with a picture, you must
first select it by clicking. A selected picture has small handles displayed around the
edges. Then, you can take the following actions:

◆ Press Del to delete the picture.

◆ Drag a handle to change the picture’s size.

◆ Right-click the picture and select Borders and Shading from the pop-up
menu to define borders for the picture.

◆ Right-click the picture and select Format Picture from the pop-up menu to
display the Format Picture dialog box to change formatting.

The Format Picture dialog box, shown in Figure 4-12, has three tabs that let you
control certain aspects of the picture’s appearance, as follows:

◆ Text Wrapping. Controls how the picture is displayed with respect to
surrounding text (if there is any)

◆ Size. Enables you to specify a precise pixel size for the picture

◆ Text. Allows you to specify alternate text to be displayed by a browser if
the image is not available

68 Part II: Getting Going with XML and InfoPath

Form Elements versus Form Data
It’s important to understand the distinction between form elements, which are items
such as text and pictures that are part of the form’s design, and form data, which is
linked to the form’s data source. Data is always displayed in controls, while elements,
such as text placed directly on the form, are not. A picture that is placed on the form,
and is part of the design, may look exactly like a picture that is displayed in a control
and is part of the form’s data.

Figure 4-12: The Format Picture dialog box.

Sections
When designing an InfoPath form, you can use sections to organize the form and to
group controls. A section can contain layout tables and controls that are related in
some way. The controls in a section are bound to a group in the data source. There
are three types of sections:

◆ Optional. The user can insert or delete this type of section in the docu-
ment as needed. You use optional sections for information that may or
may not be needed. For example, a resume form might have an optional
“Professional Certifications” section for data about the user’s credentials.
If a given user has such credentials, she would insert the Professional
Certifications section and fill out its controls with her information.
A user who does not need to list professional certifications would leave
the section out.

◆ Repeating. This section can be inserted in a form as many times as
needed. As its name implies, it’s used for information that may be
repeated. On a resume form, for instance, you could design a repeating
section called “Previous Position” that holds information about one job
the applicant held in the past. When an applicant is filling out the form,
he inserts as many Previous Position sections as are needed to list the
jobs he has held.

◆ Regular. A regular section, called simply a section in InfoPath, has no
special capabilities. It is used as an aid in form design and organization.

A section is always bound to a group in your data source. Although it is possi-
ble to insert a section in a form before there is any data source to bind it to, you
eventually have to bind it to a section. InfoPath provides techniques for adding a
section and defining its binding in one step, provided that the data source has been
defined.

Chapter 4: Designing InfoPath Forms, Part 1 69

Although it is possible to bind a section to a single field in the data source,

this is rarely done. One of the main benefits of sections is the capability to

quickly and easily bind them to groups. This not only simplifies the form

designer’s task, but helps to organize the form in a way that parallels the

data source. Binding a section to a single field has none of these advantages.

INSERTING AND BINDING SECTIONS
There are two ways to insert and bind a section. These techniques require that the
data source be defined and that the insertion point be at the location where you
want the section.

The first method requires that the Controls task pane be displayed. Then:

1. Scroll the Insert Controls list until the desired item is visible: Section,
Optional Section, or Repeating Section.

2. Click the type of section you want to insert. InfoPath displays the Section
Binding dialog box, shown in Figure 4-13, which displays the form’s data
source. The title of this dialog box reflects whether you are inserting a
section, an optional section, or a repeating section, but its function is the
same in all three cases.

3. Select the group that you want the section bound to. If necessary, expand
the data source to display the desired group. Click the group, and then
click OK.

If you selected a group that is not appropriate for the type of section—that is, a
nonrepeating group for a repeating section or a nonoptional group for an optional
section— InfoPath displays a message and requires you to select another group. When
the process is complete, InfoPath inserts the section into the form. The section is blank
at this point (contains no controls); adding controls is discussed in Chapter 5.

70 Part II: Getting Going with XML and InfoPath

Sections and Schemas
When working with optional and repeating sections, InfoPath requires that the
characteristics of the group in the data source, as defined in the schema, be suitable
for the type of section. Specifically, an optional section can be bound only to a group
that is also optional — in other words, not marked as “required” in the schema.
Likewise, a repeating section can be bound only to groups that are allowed to occur
more than once (a repeating group).

Figure 4-13: Binding a form section to a group.

The second method of inserting a section requires that the Data Source task pane
be displayed. It inserts a regular or repeating section into the form, depending on
whether the bound group is repeating. In the case of a regular section, you can
change it to an optional section later (if permitted by the data source). For this
method:

1. On the Data Source task pane, right-click the group that the section will
be bound to.

2. From the pop-up menu, select either Section or Section with Controls (the
commands are Repeating Section or Repeating Section with Controls if the
group is a repeating group).

[Repeating] Section. InfoPath inserts a blank section that is bound to
the group. You will need to add controls to the section later.

[Repeating] Section with Controls. InfoPath inserts a section that is
populated with controls that are bound to the fields in the group. For
each field, InfoPath selects the type of control that is best suited to the
field’s data type.

SECTION PROPERTIES
To work with the properties of a section, right-click the section and select Section
Properties (or Repeating Section Properties) from the pop-up menu. InfoPath dis-
plays the Section Properties dialog box, shown in Figure 4-14.

The tabs in the dialog box control various aspects of the section’s properties:

◆ Data. Properties related to the type of section (regular, repeating, or
optional). These properties are explained further in the text.

◆ Display. Properties related to conditional formatted (covered later in this
chapter).

Chapter 4: Designing InfoPath Forms, Part 1 71

◆ Size. Properties that control the size of the section and its margins.

◆ Advanced. Properties that control the section’s screen tip (text that is dis-
played when the mouse hovers over the section) and its position in the tab
order.

The Data tab contains the properties that are most important in terms of the sec-
tion’s type and behavior. At the top in the Binding section, it displays the name of
the group that the section is bound to. You cannot change this; it is for informa-
tional purposes only.

Figure 4-14: The Section Properties dialog box.

You cannot change the binding of a section.You must delete the original

section and then insert a new section with the new binding.

The remainder of the Data tab is different depending on the type of the section.
For a regular section, there are no options available on the Data tab. The options for
repeating and optional sections are described in the following sections.

OPTIONAL SECTION PROPERTIES
The main choice on the Data tab for a nonrepeating section (which was shown in
Figure 4-14) is whether the section is to be included in the form by default, that is,
be present when the form is first opened by the user. If you select that option, the
only other choice you have is whether the user is permitted to delete the section.

If you decide not to include the section in the form by default, then you must
also choose whether users can insert the section. If you select the Allow Users to
Insert the Section option, you also have these settings to make:

72 Part II: Getting Going with XML and InfoPath

◆ Edit Default Values. Click this button to edit the default data values that
will be placed in the section when it is inserted.

◆ Customize Commands. Click this button to specify where the command to
insert the section will be available in InfoPath.

◆ Show Instructional Text. Select this option and enter the desired text if
you want users to be able to insert the section by clicking text that is dis-
played on the form.

By default, the command that lets the user insert or delete an optional section
will be available on the Insert Section menu and also on the section’s shortcut
menu. You may want to customize the form so that the command is available in
other locations when the user is filling out the form. To do so, click the Customize
Commands button in the Optional Section Properties dialog box. InfoPath displays
the Section Commands dialog box, shown in Figure 4-15.

Figure 4-15: Customizing the commands
for an optional section.

Make settings in this dialog box as follows:

◆ Action. Select the action. For an optional section, the available actions are
Insert and Delete.

◆ Location for the Command. Lists the locations where the command can
be displayed. Checked items indicate where the command are actually
displayed.

Chapter 4: Designing InfoPath Forms, Part 1 73

◆ Command name. Specifies the name that will be displayed for the com-
mand. By default, this is the name of the data source item to which the
section is bound.

◆ Screen Tip. For some command locations, you can specify a screen tip
that displays when the mouse hovers over the command.

I recommend that you be consistent when customizing commands. If a form has
more than one optional section, the commands should be located in the same loca-
tions for all of them.

REPEATING SECTION PROPERTIES
The Data tab of the Repeating Section Properties dialog box is shown in Figure 4-16.
If you want users to be able to add and delete the section, make sure the Allow Users
to Insert and Delete the Sections option is checked. Otherwise, the section can be
added and deleted only by script code (which is beyond the scope of this book).

Figure 4-16: The Data tab for a repeating section.

The Sections That Can Be Inserted box initially lists only the original, default
repeating section. You can define additional sections that users can insert on the
form. It is important to understand that these are not really new sections, but are
variations on the original repeating section that have been customized with a dif-
ferent name and/or default values.

Color Schemes
Rather than specifying a form’s visual appearance yourself, you may want to use
one of the predefined color schemes offered by InfoPath. A color scheme assigns
complementary colors to various elements of a form, including body and heading
styles, tables cells, and borders. You can always modify a form’s appearance after

74 Part II: Getting Going with XML and InfoPath

applying a color scheme, but color schemes are professionally designed and provide
you with an easy way to create attractive forms.

To apply a color scheme to a form, choose Format → Color Schemes to display
the Color Schemes task pane, shown in Figure 4-17. Then, select the desired
scheme. Select None to remove a previously assigned scheme.

Figure 4-17: The Color Scheme task pane.

Form Views
Every form has a default view that is displayed when a user first opens the form.
When you design a form, you can give it additional views that make it easier to
work with. No matter how many views a form has, the underlying form data is
always the same. Views differ only in the way they organize and display the data.
A detail view, for example, might display all of the form’s data, while a summary
view would hide most of the data and display only the summary fields. In either
case, the same data is present in the form. When a user is filling out a form, the
available views are listed on the View menu, enabling the user to switch between
views as needed.

Creating a New View
To work with views, display the Views task pane (see Figure 4-18), which shows the
form’s current views (two in the figure) and some view-related commands. Click a
view’s name to display it for design and modification. To add a new view, click the

Chapter 4: Designing InfoPath Forms, Part 1 75

Add a New View command. InfoPath prompts you for the new view’s name, and
then displays the new view, initially blank, for you to design.

Figure 4-18: The Views task pane.

There’s nothing special about designing or modifying a view. You use the same
form design techniques that you have learned in other parts of this chapter, such as
creating sections and using layout tables.

View Properties
Each view has a set of properties associated with it that control certain aspects of
the view’s appearance and how it is printed. To access these properties, select the
view on the Views task pane, and click the View Properties button to display the
View Properties dialog box, which has three tabs: General, Text Settings, and Print
Settings.

On the General tab you can view and set the following properties:

◆ View name. The name of the view.

◆ Set as Default View. Select this option to make this view the default view
(the one that is displayed when a user opens the form). A form can have
only one default view.

◆ Show on the View Menu. If this option is selected, the user will be able
to select the view from InfoPath’s View menu when filling out the form.

76 Part II: Getting Going with XML and InfoPath

◆ Background Color. The view’s background color.

◆ Layout Width. The width of the form in this view.

On the Text Settings tab you can specify the font to be used for certain controls.
Select a control type and then enter the details of the font; that font becomes the
default for all controls of the specified type on the form. You could, for example,
specify that all Text Box controls use Verdana 18-point italic. You can still change
the font of individual controls, if desired.

On the Print Settings tab you set these properties:

◆ Designate Print View. Select the view to be used when the current view is
printed. By default each view is its own print view.

◆ Orientation. Choose whether the view will print with portrait or landscape
orientation.

◆ Headers and footers. Text that will be printed at the top and/or bottom of
each page.

There’s much more for you to learn about designing InfoPath forms, including
how to work with controls, validate data, and use formulas on forms, all of which
is covered in the next chapter.

Chapter 4: Designing InfoPath Forms, Part 1 77

Print Views
By default, each view is its own print view. This means that when the user selects the
Print command in InfoPath while filling out a form, the same form that is on-screen is
printed. The form designer has the option to associate a print view with any view. For
example, suppose that the designer has specified that View A is the print view for View
B. Then, when the user is working with View B and selects the Print command, InfoPath
will print View A. There’s nothing special about a view that is designated as a print view
except it is designed specifically for printing — using less color, for example, or including
headers and footers. Views that have been designed as print views are typically not
included in the View menu because they are not intended for on-screen use.

Chapter 5

Designing InfoPath Forms,
Part 2
IN THIS CHAPTER

◆ Exploring controls and how to use them

◆ Understanding data validation on forms

◆ Using formulas on forms

◆ Setting user options

◆ Testing and publishing forms

CONTROLS ARE KEY components of InfoPath forms and are an important part of the
form design process. This chapter explains all about controls, and then discusses
other fundamental design issues, including data validation, the use of formulas in
forms, and setting user options.

Controls
On any InfoPath form, controls provide the link between the user and the data
source. Placing controls on a form and binding them to the data source is a central
part of form design. This section describes the controls that are available and shows
you how to use them on a form.

Control Overview
InfoPath provides almost 20 different controls. Some of them are directly related to
data, such as the Text Box control, which is used for short sections of text data.
Others are used to organize a form, such as the Section, Repeating Section, and
Optional Section controls (which I discussed sections in Chapter 4, “Designing
InfoPath Forms, Part 1”). While I can’t cover all of InfoPath’s controls in this book,
I describe the most often used ones, which are described in Table 5-1.

79

TABLE 5-1 FREQUENTLY USED INFOPATH CONTROLS

Control Description

Button Displays a button that the user can click to carry out an action.

Check Box Presents an on/off, yes/no option. The control has two data values
associated with it: one for the “checked” state and one for the
“unchecked” state. A single Check Box is bound to a single field in the
data source. The value of the field is the same as the checked or
unchecked data associated with the control.

Date Picker Designed for date data. The control displays a date next to a small
calendar button. When the user clicks the button, a graphical calendar
is displayed, permitting the user to select a date. The user also can
simply type a date into the control. The control is bound to a single field
in the data source; the value of the field is equal to the date that is
currently displayed in the control.

Expression Box Performs calculations based on form data.

List Provides for entry and display of lists of items. There are three List
controls: Bulleted List, Numbered List, and Plain List. The List controls
are explained in more detail later.

List Box Displays a list of values from which the user can select. It can obtain its
list of values from various sources, including XML files and databases.
The control is bound to a single field in the data source; the value of the
field is equal to the item that is currently selected in the list.

Option Button Used to select mutually exclusive options. That is, in a group of option
buttons, one and only one can be selected at a time. A group of option
buttons is bound to a single field in the data source. The field’s value is
equal to the value of the option button that is selected.

Picture Used to display images. It can be bound only to a field of type
base64Binary. The picture data is stored as a binary representation in
the data source. A Picture control also can be bound to a field of type
string, which permits it to hold a link to the picture but not the picture
data itself.

Repeating Table Displays data in a tabular structure. This control is not directly bound to
the data source, but rather contains other controls that are bound. Each
row in a Repeating Table is identical, containing the same controls as all
the other rows. When filling out the form, the user can add and delete
rows as needed. The Repeating Table control is more involved than most
other controls, and is discussed further later in this chapter.

80 Part II: Getting Going with XML and InfoPath

Control Description

Rich Text Box Stores formatted text. The text in this control can be formatted with
different fonts, bulleted lists, paragraphs, images, and more. The control
is bound to a single field in the data source; the value of the field is
equal to the text and formatting codes in the control.

Text Box Stores unformatted text. While the form designer can specify different
fonts for the display of data in a Text Box, the stored data consists of
plain text with no formatting.

Placing Controls on a Form
InfoPath provides the form designer with several techniques for placing controls on
a form. You can, for example, place controls on a form before the data source
exists, then create the data source later and bind the controls to it. You can also
have InfoPath automatically create the data source during the process of placing
controls on a form. To cover all control placement techniques is beyond the scope
of this chapter, so coverage is limited to what I believe are the easiest and fastest
methods for placing controls on a form.

Chapter 5: Designing InfoPath Forms, Part 2 81

Choices for Repeating Data
InfoPath offers the form designer three choices for data that repeats: repeating
sections, repeating tables, and List controls. It’s important to understand the
differences among these controls and when you would select each for use in a form
you are designing.

◆ A repeating section is used when the repeating data contains multiple indi-
vidual data items, such as an address book entry that contains name,
address, city, state, and so on. A repeating section gives you maximum flexi-
bility in laying out the controls that are bound to the individual data fields.

◆ A repeating table is also used when the repeating data contains multiple
individual data items. In this sense it provides the same functionality as a
repeating section. You have less flexibility in laying out the individual con-
trols in a repeating table because they all must fit in a single table row.

◆ A List control is used when the repeating elements are individual data items.

Both repeating sections and repeating tables are bound to repeating groups or fields
in the data source. A List control must be bound to a repeating field with a text
(string) or rich text (XHTML) data type.

When you are using sections on your form, it is often easiest to have InfoPath

automatically insert the controls in the section as was described in Chapter 4.

PLACING CONTROLS WHEN THE DATA SOURCE EXISTS
To use this method, the data source must already be defined (as described earlier in
this chapter). If you are inserting controls in a section, you must place the section
on the form first. Remember that sections are bound to groups in the data source,
and you should not place a control in a section that is bound to a field outside this
group. Then, to insert a control:

1. Place the insertion point at the location where you want the control.

2. Display the Data Source task pane.

3. Right-click the field that you want the control bound to.

4. On the pop-up menu, click the name of the type of control you want to
insert. If the name is not visible, click the More command. If the name is
still not visible, it means that the control is not suitable for the data type
of the selected field.

If you are inserting an Option Button control, in the last step you are asked how
many to insert in the form. This corresponds to the number of options the user will
have for the field data. After the control has been inserted, you usually set its prop-
erties, as described later in the “Control Properties” section.

PLACING CONTROLS WHEN THE DATA SOURCE DOES NOT EXIST
If you are not basing your form on a Web service or database, and are defining
your own data source, you have the option of creating the data source automati-
cally while you place controls on the form. The way this works is that when you
place a control on the form, InfoPath creates an element in the data source to which
the control is bound. The nature of the element (field or group) and its data type
depend on the type of control that is inserted.

I do not find this technique to be particularly useful for two reasons:

◆ The fields and groups created by InfoPath are assigned default names in
the form field1, group1. It is necessary to edit the data source later to
assign meaningful names to the data source elements.

◆ The organization of the data source is not always easy to predict as you
place controls on the form.

Even so, some form designers find this technique useful, particularly for rela-
tively simple forms. Here are the steps to follow:

82 Part II: Getting Going with XML and InfoPath

1. Choose File → Design a Form to display the Design a Form task pane.

2. Click the New Blank Form command. InfoPath displays a blank form in
the design area, and also displays the Design Tasks task pane.

3. On the task pane, click the Controls command to display the Controls task
pane.

4. Make sure that the Automatically Create Data Source option at the bottom
of the task pane is checked.

5. Begin inserting controls on the form.

As you insert controls, InfoPath creates elements in the data source bound to the
controls. For example, if you add a Section to the form, a group is added to the data
source. If you then place a Text Box control in the section, InfoPath adds a field as
a child of the group. As you work, you can switch between the Controls task pane
and the Data Source task pane to see the structure of the data source that is being
created. When you are finished designing the form’s interface, you almost always
need to edit the data source to change field names and modify the structure. The
“Modifying a Data Source” section in Chapter 4 explains how to do this.

Using the Repeating Table Control
There are several ways you can place a Repeating Table control on a form. You can
right-click a repeating group in the Data Source task pane and select Repeating
Table from the pop-up menu. (If Repeating Table is not available on the pop-up
menu, then the group is not appropriate for a Repeating Table controls, that is, it is
not a repeating group.)

InfoPath inserts a table in the form with the number of columns equal to the
number of fields in the group. The top row of the table contains the field names as
column headers; you can edit these as needed. The second row contains controls
bound to the fields in the group; it is this row that users will be able to insert and
delete when filling out a form. InfoPath chooses controls for the table based on the
data type of the fields — Text Box for type string, Check Box for type Boolean, and
so on. You can always change the control types later, within the limitations
imposed by the field’s data type.

Another way to insert a repeating table is to click Repeating Table in the Insert
Controls list on the Controls task pane. What happens next depends on whether the
Automatically Create Data Source option on the Controls task pane is selected. If it
is, InfoPath prompts you to specify how many columns you want in the table, then
creates the table with controls and a group in the data source bound to these con-
trols. All controls are text boxes and all fields default to type string, but you can
change these later as needed.

If the Automatically Create Data Source option is not selected, InfoPath opens
the Repeating Table Binding dialog box in which you select the group to which the
table will be bound.

Chapter 5: Designing InfoPath Forms, Part 2 83

After inserting a Repeating Table, right-click it and select Repeating Table
Properties to view the properties for the table. The Properties dialog box, shown in
Figure 5-1, lets you change the data binding and enter default values for the table’s
controls. The Customize Commands button is used to specify the commands that
will be available to the user to add and delete table rows when filling out the form.
This is essentially identical to the way you customize commands for working with
optional sections. Please refer to the Optional Section Properties section earlier in
this chapter for details.

Figure 5-1: The Repeating Table Properties
dialog box.

Using the List Controls
The three types of List controls (bulleted, numbered, and plain) are identical except
for the way they display on the form. Each of these controls can be bound only to
a repeating field that is of the text or rich text data type. The methods for inserting
List controls on a form you are designing are the same as for a Repeating Table, as
described in the previous section.

When the user is filling out the form, the List and the data source remain synchro-
nized. If the user adds items to or removes items from the list, InfoPath automatically
increases or decreases the number of fields in the data source so there is only one for
each list item.

Changing Control Type
Once a control has been placed on a form, you can change it to a different control.
This capability is useful if you change your mind about form design, or when deal-
ing with the default controls that InfoPath chooses when you insert a repeating sec-
tion or a repeating table. When changing a control to another type, InfoPath
permits only types that are appropriate for the data type of the field to which the
control is bound. Suppose that your form includes a Text Box control that is bound

84 Part II: Getting Going with XML and InfoPath

to a nonrepeating string field. You could change it to a Check Box control because
a Check Box is compatible with that data type. You could not, however, change it
to a Numbered List control because a Numbered List cannot be bound to a nonre-
peating field.

To change a control, right-click it and select Change To from the pop-up menu.
The next menu lists the control types that are allowed for the bound field.

Changing Data Binding
To change the binding of a control, right-click it and select Change Binding from
the pop-up menu. InfoPath displays the Binding dialog box for the control, as
shown in Figure 5-2.

Figure 5-2: Changing the data binding of a control.

This dialog box displays the form’s data source, with the current control binding
highlighted. Then:

◆ To bind to an existing group or field in the data source, select the item,
then click OK.

◆ To create a new item to bind to, right-click the existing group that will
be the parent of the new item and select Add. Then, follow the prompts
to define the new item.

Data Binding Status
When a control is selected (by clicking), or when you point at it with the mouse,
InfoPath displays a small pop-up window with the name of the field that the con-
trol is bound to along with an icon indicating the status of the data binding. The
icons are

Chapter 5: Designing InfoPath Forms, Part 2 85

The binding is correct.

Warning — the binding may not function correctly.

Error — the binding will not function correctly.

When a control is displaying a warning or error icon, you can right-click the
control and select More Details from the pop-up menu to view additional informa-
tion on the nature of the problem.

Control Properties
Each control has a set of properties that reflect its binding and other aspects of its
behavior and appearance. To view and change a control’s properties, right-click the
control and select XXXX Properties (where XXXX is the control type) from the pop-
up menu. InfoPath displays the Properties dialog box for the control. The following
sections describe the properties on the Data tab. The properties on the other tabs are
largely self-explanatory.

CHECK BOX PROPERTIES
The properties of a Check Box control are

◆ Default State. Whether the control is checked or unchecked when the
form is first displayed.

◆ Value When Cleared. The data value of the bound field when the control
is not checked.

◆ Value When Checked. The data value of the bound field when the control
is checked.

The permitted settings for the last two properties are constrained by the data
type of the field the control is bound to. If, for example, the control is bound to a
type Boolean field, the permitted values are 0, 1, True, and False. In contrast, if the
control is bound to a type String field, you can specify any text you like for the
data values.

DATE PICKER PROPERTIES
The Date Picker control has two properties. The Default Value is the value displayed
in the control when the form is first opened. Format determines how the date is dis-
played. You select the desired date format from the Date Format dialog box, shown
in Figure 5-3.

86 Part II: Getting Going with XML and InfoPath

Figure 5-3: Selecting a date format.

LIST BOX PROPERTIES
One property of the List Box control is essential — specifying the items that will be
displayed in the list. You specify this information on the Data tab in the Properties
dialog box. There are two options: You can enter the list items manually or you can
specify that they be retrieved from a file, database, or Web service.

If you select the manual entry option, the Data tab displays a list with buttons
you use to add, modify, and delete list items. Note that each list item has two parts:
a display name that is displayed in the List Box, and a value that is stored in the
linked field when the list item is selected. Often these two items are the same — for
example, if the user selects New York in the list, the text New York is stored in the
linked field. You could, however, set the property so that selecting New York in the
list would cause NY to be stored in the linked field.

One item in the list is designated as the default, which is selected when the

form first displays.

Chapter 5: Designing InfoPath Forms, Part 2 87

Data Validation
Most controls include a Validation section in their Properties dialog box. You use these
settings to define validation rules for the control, to prevent users from entering
invalid data. You could, for example, specify that a Text Box control cannot be left
empty, or that a Date value be within a certain range. The fundamentals of data
validation are covered later in this chapter.

If you select the file, database, or Web service option for populating the control,
the Data tab in the properties dialog box displays the settings shown in Figure 5-4.
Click the Secondary Data Source button and follow the prompts to select the source
for the list entries. The process is similar in many respects to creating a data source
from an external source, as was described earlier in this chapter.

Figure 5-4: Getting List Box entries from a
Web service, database, or file.

OPTION BUTTON PROPERTIES
You never insert just one Option Button control on a form, but insert two or more,
depending on the number of options the user will have for the bound field’s data.
Although these Option Button controls work as a unit in that they are all bound to
the same field in the data source, you must still set each individual button’s prop-
erties separately (unless, of course, the default properties are suitable).

PICTURE PROPERTIES
The Picture control has the following properties on the Data tab in the Properties
dialog box:

◆ Show Picture Placeholder. The control displays a placeholder.

◆ Specify Default Picture. The control displays a default image, which you
select by clicking the Browse button.

◆ Allow the User to Browse for New Pictures. If this option is selected, the
user will be able to click the control and browse for a picture when filling
out the form.

88 Part II: Getting Going with XML and InfoPath

RICH TEXT BOX PROPERTIES
In the Properties dialog box, the Rich Text control has only one property on the
Data tab, namely its default value. Other properties of this control are found on the
Display tab, shown in Figure 5-5.

Figure 5-5: Display properties of the Rich Text control.

These properties control the formatting that the user is allowed to apply to text
in the control, as well as other aspects of the control’s appearance and behavior.
They’re described in Table 5-2.

Chapter 5: Designing InfoPath Forms, Part 2 89

Picture Controls versus Pictures
It’s important to distinguish between Picture controls and other images that are part
of the form’s design. A Picture control holds the binary pixel data that makes up the
picture, and this data is included when the form is saved or submitted by the user.
An image on the form, in contrast, is simply part of the form’s design and has no
connection to the form’s data. You learned how to insert images in the “Form Layout”
section of Chapter 4.

TABLE 5-2 PROPERTIES OF THE RICH TEXT CONTROL

Property Description

Paragraph breaks If selected, the user is allowed to insert paragraph breaks in
the control.

Character formatting If selected, the user is allowed to change character formatting
(font, underlining, and so on) in the control.

Full Rich Text If selected, additional rich text formatting, such as images and
tables, is available to users.

Placeholder Text that is initially displayed in the control and is erased as
soon as the user starts entering data.

Read-only If selected, the user cannot modify the text in the control.

Enable Spelling Checker If selected, the text in the control is included when a spell
check is run.

Wrap text If selected, lines of text that extend past the right edge of the
control are automatically wrapped to a new line.

Scrolling Select the desired text scrolling option from the list.

Alignment Specifies how text is aligned in the control.

TEXT BOX PROPERTIES
In the Properties dialog box, the Text Box control has only one property, its default
value. Other properties are located on the Display tab, as shown in Figure 5-6.
They are a subset of the properties for the Rich Text control, and were described in
Table 5-2.

Figure 5-6: Display properties for the Text Box control.

90 Part II: Getting Going with XML and InfoPath

If the Text Box control is bound to a field with a numeric data type, the Format
button on the Data tab is enabled. Click this button to display the Decimal Format
dialog box, shown in Figure 5-7. You use the settings in this dialog box to control
the way numbers are displayed in the control.

Figure 5-7: Setting number display
format for a Text Box control.

The Button Control
The Button control can be placed on a form to make it easier for the user to take
some action. Most of the things you can do with this control could also be accom-
plished with the menus, but having the Button visible on the form makes how to
carry out the action more obvious to the user. Unlike many other controls, a Button
is not bound to the data source. The actions that can be associated with a button are:

◆ Submit. Submits the form to a database or Web service or using HTTP.

◆ Run Query. Queries the database or Web service that the form is con-
nected to.

◆ New Record. Switches to data entry view and clears the values for entry
of a new record.

◆ Delete & Submit. If the form is connected to a database or Web service,
deletes records that have been returned by a query from the database.

◆ Script. Runs a custom script (see Chapter 6, “Scripting with InfoPath”).

When you add a Button control to a form, the actions available to you will depend
on the design of the form. Submit and Script are always available; the other actions
are available only when the form is connected to the Web service or database.

Chapter 5: Designing InfoPath Forms, Part 2 91

To add a Button control, place the cursor at the desired location on the form, and
click Button on the Controls task pane. The next step is to set the control properties
by right-clicking the button and selecting Properties from the pop-up menu. The
Button Properties dialog box (see Figure 5-8) is displayed.

Figure 5-8: Setting Button control properties.

The properties on the General tab are as follows:

◆ Action. Select the action to be carried out when the button is clicked.

◆ Label. The text displayed on the button.

◆ Script ID. The name used to refer to the control in script. You rarely need
to change this.

◆ Microsoft Script Editor. If you select Script for Action, click this button to
open the Microsoft Script Editor and edit the script. This is explained in
detail in Chapter 6.

The Size tab in the Button Properties dialog box lets you specify the size,
padding, and margins for the button. The Advanced tab lets you specify a screen tip
and shortcut key.

Conditional Formatting
InfoPath’s conditional formatting capability lets you define rules so that a control’s
appearance changes depending on the data in the control. Among the aspects of
appearance that you can change are the font and the color, and whether the control
is visible at all. The appearance of a control can be based on its own data or on data
in other controls on the form. Some examples of things you can do are:

◆ Display negative monetary values in red

◆ Display a Text Box control only if a specific Check Box control is selected

92 Part II: Getting Going with XML and InfoPath

◆ Change the color of rows in a Repeating Table control based on data in
the row

◆ Display fields that require data to be entered in red if they are blank

Conditional formatting can be applied to the following controls: Text Box, Rich
Text Box, Section, Optional Section, Repeating Section, Repeating Table, and
Expression Box. To define conditional formatting for a control, or to modify exist-
ing conditional formatting:

1. Click the control to select it.

2. Choose Conditional Formatting from the Format menu. InfoPath displays
the Conditional Formatting dialog box, which lists existing conditional
formatting for the control, if there is any.

3. To add a new condition, click Add. To modify an existing condition, select
it in the list and click Modify. InfoPath displays the Conditional Format
dialog box, as shown in Figure 5-9.

Figure 5-9: The Conditional Format dialog box.

4. The three fields across the top of the dialog box define the condition that
must be true for the formatting to be applied. The left field displays the
name of the data source field bound to the control you are formatting. If
you want the condition based on the value of another field, pull down this
list and select it.

5. The middle field defines the type of condition, such as is equal to, con-
tains, and is not blank. Select the desired type of comparison from the list.

6. The third field is not required for some types of conditions, such as is not
blank. For other types of conditions you must enter the comparison value
here. Pull down the list and select the type of item you are entering, such
as type text or enter a date, and then type in the comparison value. You
can also select another field to have the comparison be performed against
its value.

Chapter 5: Designing InfoPath Forms, Part 2 93

7. To add additional conditions to the rule, click the Add button. InfoPath
inserts another row into the dialog box. Repeat Steps 4–6 to define the new
rule condition. When there are two or more conditions defined, you must
use the list at the right end of each row (except the last one) to select (both
conditions must be true) or (only one condition, or both, must be true).

8. Use the remainder of the dialog box options to define the formatting to be
applied if the condition is true. The formatting choices that are available
will depend on the type of control being formatted.

9. Click OK to return to the Conditional Formatting dialog box. The condition
you defined is now listed here.

10. Click OK to close the dialog box and return to form design.

Figure 5-10 shows an example of a conditional formatting rule that is based on
the value of two fields. If the field Total is less than 0 and the field MarkNegatives
is true, the control text is displayed in boldface and red color.

Figure 5-10: A rule that formats a Text Box depending on the
data in two fields.

It is possible to define multiple rules for a control and have more than one rule
be true at the same time. In this case, rules are evaluated in the order they are listed
in the Conditional Formatting dialog box, and only the first one that is true is
applied. You can use the Move Up and Move Down buttons in this dialog box to
change the rule order.

Data Validation
InfoPath’s data validation capability lets you define rules for the data in any field of
the data source. A rule might be as simple as requiring that a text field not be left
blank, or as complex as requiring that the value in one field be less than the value in

94 Part II: Getting Going with XML and InfoPath

another field. When the user is filling out a form, InfoPath applies data validation
rules as she works and displays alerts when a rule is violated. There are two types of
data validation alerts:

◆ An inline alert marks the offending control with a dashed red border. The
user can right-click the control to view information on why the alert is
displayed.

◆ A dialog box alert displays a small dialog box with an explanatory
message.

For some types of data validation you can choose the type of alert to be dis-
played. For others, an inline alert is always used. The types of data validation that
InfoPath supports are described in the following sections.

Data validation rules are associated with the data source and not with the

form’s controls. This is relevant when you change the binding of a control. It

will lose its existing validation (if any) and gain the validation rules of the

newly bound field.

Required Data Validation
This kind of validation requires that a field not be left blank — the user must enter
some data into the bound control. You specify required data validation in the
Properties dialog box for a field, as shown in Figure 5-11 (reminder: right-click the
field name in the Data Source task pane and select Properties). Check the Cannot be
Blank option to enable this kind of validation for the field. In the Data Source task
pane, fields that cannot be blank are displayed with a red asterisk next to their name.

Figure 5-11: Specifying that a field cannot be blank.

Chapter 5: Designing InfoPath Forms, Part 2 95

Data Type Validation
Data type validation checks to see if the proper type of data was entered into a con-
trol. What is proper for a control is defined by the data type of the bound field. For
example, entering text into a control that is bound to a type Integer field results in
a violation. So does entering a nondate into a type Date field. Data type validation
is automatic — you do not have to take any special actions when designing your
form to enable it.

Data Value Validation
Data value validation defines rules for the value of a data item. You could require,
for example, that a numeric value be within a certain range, or that a text entry
contain a specific word. Data validation is an important part of form design
because it prevents the entry of incorrect data before it can cause any problems,
such as when it is submitted to a database.

When you base a form’s data source on an XML schema (as described in Chap-
ter 4), the data constraints that are defined in the schema are automatically
imported into the form as validation rules. You can’t change these validation rules,
but you can add to them if needed.

To define a value verification rule, display the Properties dialog box for the field
and then click the Validation and Script tab. Depending on whether the field
already has a validation rule defined, this tab displays two of the following three
buttons:

◆ Add. Create a validation rule for the field.

◆ Change. Change the existing validation rule.

◆ Delete. Delete the existing validation rule.

It’s important to remember that a validation rule does not define what data

is acceptable, but defines data that is not acceptable. Acceptable data is, by

definition, anything that is not excluded by the validation rule.

If you click Add or Change, the Data Validation dialog box (see Figure 5-12) dis-
plays. If you’re adding a rule, the dialog box is blank (contains no rule) as in the
figure. If you are changing an existing rule, the dialog box displays the details of
the rule.

96 Part II: Getting Going with XML and InfoPath

Figure 5-12: Defining a data validation rule.

Then, define a rule as follows:

1. The first field displays the name of the data source field that the rule will
be applied to (Count in the figure). You can pull down this list and select
another field (see the following section on multifield rules).

2. The second field is a list of the supported comparisons, such as “is equal
to” and “contains.” Select the desired comparison from this list.

3. The third field is a list of comparison values you might enter, such as type a
number, type text, and type a date. Select an item from this list, then type in
the comparison value. For some types of comparison (as specified in the
previous step), such as is blank, you don’t need to enter a value in this field.

4. To add another rule, click the And button. InfoPath inserts another row
into the dialog box, which you complete as described in Steps 1–3.

5. In the Error Alert Type list, select either Inline Alert or Dialog Box alert,
depending on the type of alert you want displayed when the validation
rule is violated.

6. In the Screen Tip and Message fields, enter the details to be displayed to
the user in the alert.

7. Click OK to return to the Field or Group properties dialog box, and click
OK again to close this dialog box.

If you click the And button (Step 4 above) to add another rule, the button is
replaced by a list that offers you the choice of And and Or. You must choose which
of these logical operators to use when evaluating the two rules:

◆ And requires that the conditions specified by both of the rules be met for
a violation to occur.

◆ Or requires that the condition specified by either one of the rules, or both
rules, be met for a violation to occur.

Chapter 5: Designing InfoPath Forms, Part 2 97

For example, look at Figure 5-13. This shows a validation rule for the field Count
that requires the value to be between 10 and 20, inclusive. The rule is expressed by
saying that if Count is less than 10 or if Count is greater then 20 a violation occurs.
It’s important to use the correct operator, And or Or, when defining multiple-part
validation rules.

Figure 5-13: A validation rule with two parts.

MULTIFIELD RULES
Although most validation rules involve only a single field, you also have the abil-
ity to define rules that involve two or more fields. For instance, suppose that your
company’s policy is to provide free shipping on orders over $500. You could define
a validation rule requiring that if the Total field is 500 or greater, the ShippingCost
field must be 0.

To define a rule that involves multiple fields, follow the same steps described in
the previous section. The difference is that in Step 1 you also select the other field
to be used by the rule. Figure 5-14 shows a validation rule defined for the condi-
tions described in the previous paragraph. Note that the And operator is used to
connect the two parts of the rule because they both must be met for a violation to
occur.

Figure 5-14: A validation rule that uses two fields.

98 Part II: Getting Going with XML and InfoPath

DYNAMIC COMPARISON VALIDATION
This type of validation compares a field value against another field value rather
than against a fixed value. They work the same as the value validations described
earlier in this section. The one difference is that in Step 3, in the third field of the
Data Validation dialog box, you choose the Select a Field or Group option, and then
select the field whose value is to be used for the comparison.

Using Formulas on Forms
InfoPath lets you put formulas on a form using the Expression Box control. A for-
mula performs calculations using data on the form and displays the result. An
Expression Box is not bound to the data source, and the result of its calculation is
not considered to be part of the form’s data. Formulas are for the convenience of
the form user.

To create a formula, the fields that are to be used in the calculation should
already be defined in the data source. Calculations are based on fields, not controls.
For the regular arithmetic calculations, you use the operators + for addition, - for
subtraction, * for multiplication, and div for division. When creating a formula for
an Expression Box control, InfoPath helps you by providing identifiers for the ele-
ments in the form’s data source. You must provide the other parts of the formula
yourself, as follows:

1. Place the insertion point at the location on the form where you want the
formula.

2. On the Controls taskbar, click Expression Box in the Insert Controls list.
InfoPath displays the Insert Expression Box dialog box, as shown in
Figure 5-15.

Figure 5-15: Entering a formula in an Expression Box control.

3. Click the XPath button at the right side of the dialog box. InfoPath displays
the Select a Field or Group dialog box with the form’s data source from
which you select the first field for the formula. When you return to the
Insert Expression Box dialog, the identifier for the selected field is displayed
in the XPath field.

Chapter 5: Designing InfoPath Forms, Part 2 99

4. Repeat Step 3 as needed to add other data source element identifiers to the
XPath field.

5. Add additional parts of the formula as needed, such as operators and
functions.

6. Click OK to close the dialog box and insert the Expression Box into the
form.

To test the formula, preview the form by clicking the Preview Form button on
the toolbar. Enter values into the input fields and verify that the Expression Box
displays the correct result. If any of the fields used in a calculation are empty, the
result displays a NaN, meaning Not a Number, instead of an erroneous result.

Here’s an example: Suppose you wanted to display the sum of a repeating field.
The field, of course, must contain numeric data. Then:

1. Place an Expression Box control on the form. The Insert Expression Box
dialog is displayed.

2. Click the XPath button to display the form’s data source.

3. Select the desired field and close the Select a Field or Group dialog box.
The field identifier will not be displayed in the XPath box.

4. Move the cursor to the start of the field identifier and enter sum(.

5. Move the cursor to the end of the field identifier and enter).

6. Click OK to close the Insert Expression Box dialog box and add the formula
to the form.

After an Expression Box is inserted on the form, right-click it and select
Expression Box Properties to display its properties dialog box. On the General tab,
shown in Figure 5-16, you can modify the formula in the control and also specify
the format used to display the result.

Figure 5-16: Setting properties of an Expression Box control.

100 Part II: Getting Going with XML and InfoPath

You can enter field identifiers directly into the XPath expression box, but

using the XPath button to select the field always ensures that the field iden-

tifier is correct, including any namespace prefixes and group identifiers.

InfoPath provides some functions that assist with certain types of calculations in
Expression Box controls. They are described, with examples, in Table 5-3.

TABLE 5-3 FUNCTIONS FOR USE IN EXPRESSION BOX FORMULAS

Function Description Example and Notes

concat(field1, Combines data from two concat(my:firstname, “ “, my:lastname)
field2,...) or more fields into a single displays the data in the firstname and

string lastname fields separated by a space.

count(field) Counts the number of count(my:item) displays the number of
occurrences of a repeating times the my:item element occurs in
field the data source.

position() Displays the row number in The Expression Box must be a part of
a repeating table the repeating table whose rows are

being numbered.

sum(field) Sums the values in all (sum(my:price) div count(my:price))
occurrences of a repeating displays the average of all values in
field the my:price field.

Setting User Options
InfoPath provides a number of user options that you can set while designing the
form. These options are discussed here.

Form Submission
When a user has completed filling out a form, one of the things that can be done
with the form is to submit it. Submitting and saving forms were covered in Chap-
ter 3, “Introduction to InfoPath.” There are three types of form submission available:
submit to a Web service, submit to a database, and submit via Hypertext Transfer
Protocol (HTTP). In the first two cases, the InfoPath form is designed based on the

Chapter 5: Designing InfoPath Forms, Part 2 101

Web service or database from the very start (this was explained in Chapter 4). This
means that the form is automatically set up to submit to the Web service or data-
base that it was designed for, and there are no further actions required on the part
of the form designer.

HTTP submission is different. There’s no method by which InfoPath can learn
about the requirements of the server application that will receive the submission, so
the form must be designed specifically to meet these requirements (or, the server
application can be created to suit the structure of a form). In either case, you must
enable HTTP submission on the form and specify the URL to which it will be sub-
mitted. You can also set other submit options at this time:

1. When designing a form, choose Tools → Submitting Forms to display the
Submitting Forms dialog box.

2. Select the Enable Submit option, and select Submit through HTTP from
the Submit list (see Figure 5-17).

Figure 5-17: Enabling HTTP submission
for a form.

3. Enter the submission URL in the URL field.

4. If you want the Submit command available on the File menu when the
form is being filled out, check the Enable the Submit Menu Item option.

5. To set additional submission options, click the Submit Options button to
display the Submit Options dialog box.

102 Part II: Getting Going with XML and InfoPath

6. In the Submit Options dialog box, specify what happens to the form when
it is submitted (close, create new blank form, or leave open), and also the
messages displayed when submission succeeds or fails.

7. Click OK twice to close both dialog boxes and return to the form.

Form Merging
Sometimes it is useful to allow users to merge forms so that the data from two or
more forms can be combined and saved or submitted as a unit. Almost always,
merged form data is bound to repeating fields. The methods of merging forms were
explained in Chapter 3. For a user to be able to merge forms, merging must be
enabled when the form is designed. To set merging permission for a form you are
designing:

1. Choose Tools → Form Options to display the Form Options dialog box.

2. Click the General tab.

3. Select or clear the Enable Form Merging option.

4. Click OK.

Form Protection and Security
Form protection prevents users from opening or modifying the form template.
Unless you have a specific reason not to, I recommend that you enable protection
on all InfoPath forms that you design. Form security is provided by digital signa-
tures and applied to a form by the user when he fills out the form. The details of
digital signatures were covered in Chapter 3. Digital signatures must be enabled
when the form is designed.

To set protection and security options for a form you are designing:

1. Choose Tools → Form Options to display the Form Options dialog box.

2. Click the General tab.

3. Set the Enable protection option to enable or disable protection.

4. Click the Security tab (see Figure 5-18).

Chapter 5: Designing InfoPath Forms, Part 2 103

Figure 5-18: Setting form security options.

5. Set the Allow Users to Digitally Sign this Form option to enable or disable
digital signing.

6. If digital signing is enabled, the second line of the dialog box displays the
name of the data source group where digital signatures will be stored. If a
group has not been selected yet, this line displays New Signatures Group.

7. Select the If Users Submit option if you want InfoPath to prompt users if
they try to submit the form without applying a digital signature.

8. Click OK.

Form submission must be enabled first in order to enable digital signatures.
You cannot enable digital signatures on a form whose data source is derived from a
Web service, a database, or an XML schema unless a digital signature namespace is
present.

Testing Your Form
It is very important that you test your InfoPath form before distributing it to users.
Form errors can cause serious problems if they are not caught before people start
using the form with real data.

To test a form, click the Preview Form button on the toolbar. InfoPath will open
the form in a new window as it would appear to a user who is filling out the form.
You can test the form from the user’s perspective, entering data, checking format-
ting, and verifying other aspects of the form’s appearance and behavior. While a
form is in Preview mode, the text Preview appears in the InfoPath title bar to indi-
cate you are in Preview mode and not Design mode. You cannot make any changes

104 Part II: Getting Going with XML and InfoPath

to the form design in this mode. To exit Preview mode and return to Design mode,
click the Close Preview button on the toolbar.

Another way to test a form is to display sample data in all the controls. This fea-
ture is available in Design mode by selecting View → Sample Data. By displaying
sample data, you can check how real data will display in your form, and make any
necessary changes to formatting and control properties. To remove the sample data
from the form, select View → Sample Data again.

Publishing Your Form
You must publish a form template in order to make it available for others to use.
You publish a form to a shared location so that others can access it. This might be
a shared location on the company network, a SharePoint 2003 site, or a Web site.

Before publishing your form, gather any necessary information, such as the
details of the location to which it will be published. Then, select File → Publish and
follow the Publishing Wizard prompts to complete the process.

You may want to make your form available as a trusted form, so it can have
access to the user’s system settings and files. I cover this in Chapter 6.

Chapter 5: Designing InfoPath Forms, Part 2 105

Chapter 6

Scripting with InfoPath
IN THIS CHAPTER

Understanding scripting

Exploring the Script Editor

Examining InfoPath events

Checking out security and debugging

Using script examples

SCRIPTING IS a technology that enables you to include program code in an InfoPath
form. Not all forms require scripting, but for certain more complex and sophisti-
cated InfoPath applications, you can use script to obtain functionality that is not
otherwise available. This chapter provides an overview and some examples of
scripting in InfoPath.

Scripting Overview
Script is computer code that is associated with a form. The code is executed when
certain events occur, such as a button on the form being clicked, data in a field
being changed, or the user switching to a different view. Script code has access to
many of the inner workings of an InfoPath form, including its data. Some of the
simpler things you can do with script include:

◆ Inserting today’s date in a form field when the form is opened

◆ Performing complex calculations using form data

◆ Preventing the user from closing a view if a certain field is blank

◆ Performing certain kinds of data validation that are difficult or not possi-
ble using other validation methods

◆ Displaying one view or another based on data in the form when the form
is loaded

◆ Adding an element to the data source if it is not already present
107

Scripts can perform much more sophisticated actions as well. Script code can use
COM (Component Object Model) components such as ActiveX objects, and because
the Windows operating system itself and most applications are also based on COM,
this provides the potential for a lot of power.

Scripting opens a lot of possibilities for the InfoPath form developer. It is not
a simple topic, however. To write scripts you need some background knowledge
in several technologies, which are detailed in the next section. It is well beyond the
scope of this book to cover these related technologies or, in fact, to cover scripting
in its entirety. Instead, this chapter provides an overview of scripting and some
examples of how you could use it in your forms.

Background Information
Because InfoPath scripting is based on several technologies, the InfoPath script pro-
grammer needs to have a good grounding in several areas, including:

◆ The scripting language. InfoPath supports two scripting languages,
VBScript and JScript. You need to know the syntax and elements of
at least one of these languages.

◆ The Document Object Model (DOM). The DOM provides an interface
between the script and the data source (XML document). In a script you
use DOM objects, methods, and properties to access the form’s data.

◆ XPath. This is a vocabulary designed for identifying specific elements in
an XML document. When you use the DOM to manipulate the data source,
you will often use an XPath expression to identify the part of the data
source to be acted upon.

◆ The InfoPath object model. InfoPath exposes its own object model that
script code uses to access InfoPath components, such as task panes, con-
trols, and views.

The Microsoft Script Editor online help provides a great deal of useful infor-
mation, including both VBScript and JScript language references, an InfoPath
Developer’s Reference, and debugging information. This should be the first place
that you turn for assistance when working with scripts in InfoPath.

Setting the Scripting Language
InfoPath supports two script languages, VBScript and JScript. A specific InfoPath
form can use only one of these languages, and you must set this option before edit-
ing or viewing the form’s script. To do so:

108 Part II: Getting Going with XML and InfoPath

1. With the form open in design mode, choose Tools → Form Options to dis-
play the Form Options dialog box.

2. Click the Advanced tab.

3. In the Script Language section of the dialog box, select the desired lan-
guage from the drop-down list.

4. Click OK to close the dialog box.

If you forget to set the script language, it defaults to JScript. Be aware that many
of the sample forms that are provided with InfoPath already contain script, and if
you are designing a new form based on one of these samples, you’re stuck with the
sample form’s script language (usually JScript). Some of the examples in this chap-
ter use VBScript and others use JScript. If you know one language, it shouldn’t be
too difficult to translate code from the other.

Please note that the Script Editor is not automatically included in all InfoPath
installations. If it isn’t installed on your system, then the first time you try to use it
you’ll be prompted to install it. Simply follow the prompts to complete the installa-
tion and then continue.

The Script Editor
You use the Microsoft Script Editor (see Figure 6-1) to create and edit scripts for
InfoPath forms. While you’re designing a form, you can open the Script Editor by
choosing Tools → Script → Script Editor or by pressing Alt-Shift-F11. The Script
Editor also opens automatically at other times when it is needed, as you’ll see later.

There are three areas of the screen with which you will be most concerned:

◆ The Document Outline on the left side of the screen, which lists all of the
procedures and functions in the current form (only a single one in this
case). Double-click a procedure or function name in this window to dis-
play it for editing.

◆ The editing window in the middle of the screen, which displays the form’s
script code. If more than one form is open for design (as in the figure),
each one’s code is on its own tabbed page in this part of the screen.

◆ The Project Explorer at the top right of the screen, which lists the open
forms. In the figure there are two, Template1 and Template2.

Each form in the Project Explorer has a script file associated with it, named
Script.js or Script.vbs, depending on whether JScript or VBScript is the selected
script language for the form. You won’t find this file on your disk, however,
because all of the files that comprise the definition of a form are combined into a
single XSN file.

Chapter 6: Scripting with InfoPath 109

Figure 6-1: The Microsoft Script Editor.

The Script Editor is used for a variety of purposes by Microsoft and is not
designed specifically for use with InfoPath. As a result it has many features and

110 Part II: Getting Going with XML and InfoPath

InfoPath XSN Files
An InfoPath template is stored as a single file with the XSN extension. In reality, this
file is a CAB (cabinet) file that contains, in compressed format, the various individual
files that comprise a form template, including but not limited to the following:

◆ A schema file (XSD) for the form’s data model

◆ A stylesheet (XSL) that defines the form’s views and transformations

◆ A script file (JS or VBS) that holds the form’s script (if any)

◆ Bitmap and other image files for images that are part of the form’s user
interface

You can extract the individual files for a form template by choosing File →

Extract Form Files while designing a form.

commands that aren’t relevant for InfoPath form scripts, and those items won’t be
available to you (for example, a menu command might be grayed out).

When you are editing a script, you can save it by choosing File → Save in the
Script Editor. Saving the form template from InfoPath has the same effect of saving
changes to the script.

InfoPath Events
An event is something that the user triggers while filling out an InfoPath form, such
as clicking a button on the form, changing the data in a field, or merging a form. If
you want script to be executed when an event occurs, you must create an event
handler (also called an event procedure) for the event and put the script there. If
there is no event handler for an event, it is ignored (as far as script processing is
concerned).

InfoPath events are divided into three categories: form-level, data validation,
and OnClick. These are discussed in the following sections, which also explain the
techniques you use to create a handler for each type of event. Examples for selected
events are presented later in the chapter.

Form-Level Events
Form-level events are so named because they occur when something happens to the
form as a whole rather than to a component of the form. These events are:

◆ OnLoad. Occurs when the form is opened, either when creating a new
form from a template or when opening an existing form that has been
saved

◆ OnSwitchViews. Occurs when the user switches views

◆ OnVersionUpgrade. Occurs when the version number of the form being
opened does not match the version number of the template in use

◆ OnSubmitRequest. Occurs when a form is submitted

You must create an event handler to respond to any of these events. Although in
theory you can type the outline of an event handler into the Script Editor, it’s bet-
ter to let InfoPath do it for you, eliminating the possibility of typos and other
errors. It’s easier and faster, too! Table 6-1 shows how. While you are designing a
form in InfoPath, you can perform any action listed in the table and InfoPath will
open the Script Editor and insert the outline of the designated event handler. You
can then proceed to add the script to be executed when the event occurs.

Chapter 6: Scripting with InfoPath 111

TABLE 6-1 CREATING HANDLERS FOR FORM-LEVEL EVENTS

Event To Create the Handler

OnLoad Choose Tools → Script → On Load Event.

OnSwitchViews Choose Tools → Script → On Switch Views Event.

OnVersionUpgrade Choose Tools → Form Options to display the Form Options dialog
box. On the Advanced tab select Use Script Event in the On
Version Upgrade list, and then click the Edit button.

OnSubmitRequest Choose Tools → Submitting forms. In the dialog box, select Submit
Using a Custom Script in the Submit list, and then click OK.

Data Validation Events
Data validation events are, as their name implies, typically used to validate data.
They are associated with elements in the data source. There are three of these
events — OnBeforeChange, OnValidate, and OnAfterChange— and they occur, in
the order given, when the data in the underlying XML document (the data source)
changes. From the user’s perspective, this means when the data in a form control is
changed. It’s important to remember, however, that the events are associated with
the data source and not with the controls on the form.

Here’s how the data validation events are used:

◆ OnBeforeChange occurs when the change has been made but not yet
accepted or finalized. Code in this event procedure can examine the new
data value and, if it doesn’t meet the form’s requirements, reject it and
keep the old data value.

◆ OnValidate occurs after OnBeforeChange, when the change has still not
been finalized. It is like OnBeforeChange in that code examines the data
value to see if it is acceptable. It differs from OnBeforeChange in that it
does not offer the ability to automatically roll back the data to the previ-
ous value. Rather, it lets you display a validation error message to users
to prompt them to fix the data.

◆ OnAfterChange occurs when the change has been accepted and finalized.
It is typically used to perform calculations or other updates to the form
based on the new data. Strictly speaking, this event really isn’t used for
data validation but rather to initiate some action after the data has been
accepted.

112 Part II: Getting Going with XML and InfoPath

The way that the InfoPath event model works results in these events being called
twice in some situations. For example, suppose the user tabs to a field, deletes
the data that is already there, and then enters new data. The OnBeforeChange,
OnValidate, and OnAfterChange events are triggered twice, once in response to
the delete and once in response to the new data being entered. Code in the event
procedures must take this possibility into account. The code must also take into
account the possibility that the change is the result of an undo or redo operation.
I’ll show you how this is done in the examples later in the chapter.

When an OnBeforeChange or OnValidate event procedure is execut-

ing, the data source is locked so that no changes can be made to it.This pre-

vents the endless sequence of events that could occur if code in one

OnBeforeChange or OnValidate event procedure makes changes to

the data, which in turn triggers another OnBeforeChange/OnValidate
event sequence. The data source is not locked, however, during the

OnAfterChange event procedure.

To create a data validation event handler, follow these steps:

1. Display the Data Source task pane.

2. Right-click the element that you want the event associated with and select
Properties from the pop-up menu to display the Field or Group Properties
dialog box.

3. Click the Validation and Script tab (see Figure 6-2).

4. In the Script section, pull down the Events list and select the desired
event: OnBeforeChange, OnValidate, or OnAfterChange.

5. Click the Edit button.

Figure 6-2: Creating a data validation event procedure.

Chapter 6: Scripting with InfoPath 113

An element in the data source can have handlers for one, two, or all three of the
data validation events.

The OnClick event
The OnClick event is in a category by itself. It is relevant for the Button control,
and is triggered when the user clicks a button. To create the OnClick event proce-
dure for a button, the button must already be on the form. Then:

1. Right-click the button and select Button properties from the pop-up menu
to display the Button properties dialog box.

2. Click the General tab (see Figure 6-3).

3. Select Script in the Action list.

4. Enter the button’s caption (the text displayed on the button) in the Label
field.

5. Click the Microsoft Script Editor button.

Figure 6-3: Creating an OnClick event handler for a
button.

Notice the Script ID field just below the Label field in the figure. This is the name
that will be used to refer to the button in script. You can accept the default name
that InfoPath suggests, or you can enter a more descriptive name. When you assign
descriptive names, the resulting script code is easier to read because it is clear
which button each procedure is attached to.

Event Procedure Arguments
Every event procedure is passed a single argument named eventObj, which makes
relevant information available to the code in the event procedure. The type of
object passed in the argument depends on the specific event procedure. Table 6-2
lists these objects and provides a brief description of each.

114 Part II: Getting Going with XML and InfoPath

TABLE 6-2 OBJECTS PASSED TO EVENT PROCEDURES

Object Passed to Description

DocEvent OnSwitchView Provides a reference to the
underlying XML document.

DocReturnEvent OnLoad, Provides a reference to the
OnSubmitRequest underlying XML document and

to the load or submit status.

VersionUpgradeEvent OnVersionUpgrade Provides a reference to the
underlying XML document, the
return status, and the template
version numbers.

DataDOMEvent OnBeforeChange, Provides a reference to the
OnValidate, underlying XML document, the
OnAfterValidate return status, and other properties

that contain information about
the XML node. Also includes a
method for raising an error.

DocActionEvent OnClick Provides a reference to the
underlying XML document, the
return status, and the source
XML node.

You’ll see some of these objects used the example scripts presented later in this
chapter. You can find more information about them in the Object Browser (dis-
cussed in the chapter) and in the Script Editor online help.

The InfoPath Object Model
Like all other Office applications, InfoPath has an object model that describes the
objects the program exposes. These objects are the components that make up the
InfoPath application itself. When an object is exposed, its methods and properties
are made available to other programs — in this case, the script code that can be part
of an InfoPath form. Two of the more important elements in the InfoPath object
model are the Window object, which provides access to the InfoPath user interface,
and the XDocument object, which provides access to the underlying XML document
(the data source). Table 6-3 summarizes the InfoPath object model.

Chapter 6: Scripting with InfoPath 115

TABLE 6-3 OVERVIEW OF INFOPATH’S OBJECT MODEL

Object Description

Application The top-level object in the InfoPath object model. Provides
properties and methods for accessing lower-level objects in
the object model to perform various general-purpose tasks.

Window Provides properties and methods for programmatically
interacting with InfoPath windows, such as activating or
closing a window, and also for interacting with task panes.
Also has a property for accessing the underlying XML
document that is associated with the window.

XDocument Provides properties, methods, and events for programmati-
cally interacting with the form’s underlying XML.

MailEnvelope Provides properties for programmatically creating an e-mail
message in Outlook 2003 and for attaching an InfoPath form
to the message.

TaskPane Provides properties for working with built-in and custom task
panes.

DataObject Provides properties and methods for programmatically
interacting with data adapter objects and accessing the
data to which they are connected.

Error Provides properties for working with InfoPath-generated
errors.

Solution Provides properties for getting information about a form
template, such as its version number, the URL of its form
files, and the URL from which it was loaded.

UI Provides methods for displaying custom and built-in dialog
boxes. (UI stands for user interface.)

View Provides properties and methods for programmatically
interacting with an InfoPath view, including selecting data
contained in the view, switching between views, and
synchronizing the view with the underlying XML document.

ViewInfo Provides properties that can be used to get a view’s name
and to determine whether a view is the form’s default view.

ExternalApplication Implements a small set of methods that can be used to
automate InfoPath by a COM-based programming language.

116 Part II: Getting Going with XML and InfoPath

Detailed coverage of the entire InfoPath object model is well beyond the scope of
this book. You’ll see some of the objects used in the examples presented later in this
chapter. You can find information about the InfoPath objects and their properties
and methods in the InfoPath online help, and you can also use the Object Browser,
described in the next section, for assistance.

Using the Object Browser
You can use the Object Browser to obtain information about the contents of the
InfoPath object model. To display the Object Browser from the Script Editor, choose
View → Other Windows → Object Browser. The object model displays in the browser
as shown in Figure 6-4.

Figure 6-4: The InfoPath object model displayed in the Object Browser.

If the object model doesn’t display, follow these steps to load it:

1. Be sure that Selected Components is selected in the Browse list.

2. Click the Customize button to display the Selected Components dialog box.

3. Open the Other Packages and Libraries node. If Microsoft Office InfoPath 1.0
Type Library is displayed in the list, select its check box, and click OK. If it
isn’t, continue to the next step.

4. Click the Add button to display the Component Selector dialog box.
Depending on your system, this dialog box may take a moment or two
to load.

5. On the COM tab, scroll down and click the Microsoft Office InfoPath 1.0
Type Library entry.

6. Click the Select button to move the library to the Selected Components list.

Chapter 6: Scripting with InfoPath 117

7. Click OK to return to the Selected Components dialog box. Microsoft
Office InfoPath 1.0 Type Library is now listed.

8. Click OK to close the dialog box and return to the Object Browser.

The left pane in the Object Browser lists the library’s objects. The three categories
of objects — classes, interfaces, and enumerations — are identified by the icon next
to the object name. When you click an item in the object list, the pane on the right
lists the object’s members. The object’s properties, methods, and events are distin-
guished by icons in the Members list.

When you select an item in the Members list, the panel at the bottom of the
Object Browser window displays details about the selected member. For example,
Figure 6-5 shows the details about the GetDataVariable method of the XDocument
object. This information includes the method’s argument and return value.

Figure 6-5: Displaying information about a specific member.

Scripts and Security
A script has the potential to cause a lot of mischief on a user’s system. For exam-
ple, a script can use the FileSystemObject to read, write, and delete files. Clearly
you do not want to allow just any script to run — you need some way to differenti-
ate forms whose scripts should be allowed access to the system’s files and settings
from other forms. The InfoPath security model is similar to that used by Internet
Explorer browser; it uses the concept of trusted versus standard forms.

To use an InfoPath form, InfoPath must have access to the template on which the
form is based. By default, the form definition file contains the URL of the template.
A form that’s URL-based this way is said to be sandboxed. When it is filled out, the
form is placed in the local cache and its permissions are based on the domain in
which it is opened. Thus, script in a sandboxed or standard form typically cannot
access system files or resources. Any attempt to do so will result in a permission
denied error.

A form can be created so that is it based on a URN (Uniform Resource Name)
rather than a URL. This, combined with a custom installation program for the form

118 Part II: Getting Going with XML and InfoPath

template, makes a form fully trusted. As such, the script in the form has access to
the system’s settings and files. Trusted forms are listed on the Custom Installed
Forms tab in the Forms dialog box (displayed when the user selects More Forms on
the Fill Out a Form task pane).

InfoPath provides a command-line utility called RegForm that you use to con-
vert a standard form into a trusted form. This utility makes the necessary changes
to the form and creates the installation program. Please refer to InfoPath help for
more information on trusted forms and using this utility.

Debugging Scripts
Scripts, particularly more complex ones, almost never work right the first time. You
can use the Script Editor to debug your script. The debugging tools that are avail-
able greatly simplify the task of locating and fixing problems in your script code.

To use script debugging, you must make sure that it is not disabled in Internet
Explorer. To do so:

1. Start Internet Explorer.

2. Choose Tools → Internet Options to display the Internet Options dialog box.

3. Click the Advanced tab.

4. If present, clear the check next to the Disable Script Debugging option.

5. Click OK.

Debugging is based on the concept of suspending the execution of the script.
While execution is paused you can examine the value of variables and execute sub-
sequent code a line at a time (called single stepping) to find the source of the prob-
lem. A script pauses on two conditions: when an actual error occurs, and when a
break statement is encountered. The break statement is debugger in JScript and
Stop in VBScript. For example, here are Load event procedures in both languages
with a break statement:

function XDocument::OnLoad(eventObj)
{

debugger;
}

Sub XDocument_OnLoad(eventObj)
Stop

End Sub

Chapter 6: Scripting with InfoPath 119

You would not, of course, use a break statement by itself in a Load event proce-
dure (or elsewhere). You would place it with other code that you suspect might be
the location of the problem you are trying to fix. You can have multiple break
statements in a form’s script.

When an executing script encounters an error or a break statement, the Just-In-
Time Debugging dialog box (see Figure 6-6) is displayed.

Figure 6-6: The Just-in-Time Debugging dialog box.

Select New Instance of Microsoft Script Editor and click Yes. The next dialog box
asks you the program type that you want to debug. Put a check mark next to Script,
and click OK.

At this point the Script Editor opens and displays the script code where the error
occurred or where the break statement is located. A yellow arrow in the left margin
indicates the line of code at which execution is paused. You can now use the Script
Editor’s debugging commands to examine program variables and control execution
to try to locate the problem. When you are finished debugging, choose Debug →
Stop Debugging.

Script Examples
Now that you understand the basics, I want to provide some scripting examples
using many of the events available in InfoPath. The scripts perform a variety of
functions that could be useful in a real-world InfoPath form. Most of the examples
are in JScript, and the rest in VBScript. These examples are as simple as possible
while still adequately demonstrating each technique.

120 Part II: Getting Going with XML and InfoPath

An example of using script in the OnClick event can be found in Chap-

ter 16,“Connecting Web Publishing and InfoPath.”

Inserting the Date
It could be useful to have today’s date automatically inserted into a form field when
the form is opened. This example shows you how to write a script that does this,
and also shows you how to write a function, which is a separate section of code
that performs a specific action. To work this example, start a new, blank form in
design mode. Then:

1. In the data source, add an element named date as a child of myFields.
Leave the element’s data type as text, the default setting.

2. Place a Text Box control on the form that is bound to the date element
you just created.

3. Choose Tools → Script → On Load Event to open the Script Editor and
insert the handler for the OnLoad event procedure.

4. Add the code shown in Listing 6-1.

Listing 6-1: The Form’s Load Event Procedure

function XDocument::OnLoad(eventObj)
{
var dateField = XDocument.DOM.selectSingleNode(“//my:date”);
dateField.text = todaysDate();

}

This function’s code has only two lines. The first creates a variable named
dateField that refers to the date element in the data source. (Note the use of an
XPath expression to identify the element.) The second line sets the value of this ele-
ment to today’s date, obtained from the todaysDate function (which we’ll write
next).

A function is a separate named section of script code. It is not connected to any
event but is executed only when called by other code. In this example, the second
line in the OnLoad event procedure calls the todaysDate function. To write this
function, move the cursor to a line in the Script Editor that is outside of any other
function or event procedure. Then, simply type in the code shown in Listing 6-2.

Chapter 6: Scripting with InfoPath 121

Remember that JScript is case-sensitive so you must use extra care when

entering and editing code.

Listing 6-2: The todaysDate Function

function todaysDate()
{
var d = new Date();
var s = (d.getMonth() + 1) + “/”;
s += d.getDate() + “/”;
s += d.getFullYear;
return(s);

}

The code in the function starts by creating a Date object (this is one of JScript’s
built-in objects), which refers to the current date. Then, it uses the members of the
object to retrieve the month, the day, and the year to create a date in the form
9/22/2003. The resulting string is returned by the function. Note that the getMonth
method returns the month as a number 0–11 for January-December. By adding 1 to
this value you get a month number in the commonly used range 1–12.

Two additional considerations bear mentioning. First, in a case such as this
where a data value is automatically entered into an element, you may not want the
user to be able to change it. This is most easily accomplished by not including a
control that is bound to the field on the form. The data still exists in the data source
and will be included when the form is saved or submitted, but it won’t be available
for the user to change.

The second consideration relates to the form being saved and opened again. You
may want the date to reflect the date on which the form was first created. As writ-
ten, the script executes each time the form is opened, so if the form is saved and
opened again on a later date, then that date is entered into the date field. You can
retain the original date by modifying the code to check if the date element already
contains data. If not, then it means the form is being opened for the first time and
today’s date should be entered. If it does, then the form was previously created and
today’s date should not be entered. This is accomplished by changing the second
line of code in the OnLoad procedure to the following:

if (dateField.text == “”) dateField.text = todaysDate();

Performing Calculations
Forms often need to perform calculations of one sort or another. A common exam-
ple is an order form where the total needs to be calculated as the sum of the prices

122 Part II: Getting Going with XML and InfoPath

of the individual items. This example shows you how to do this, and also demon-
strates some of the useful script code that is provided with the sample forms that
come with InfoPath.

The invoice form that this example uses is a lot simpler than any real-world
form would be, but it serves to illustrate the technique under discussion. The data
source consists of a repeating item group that contains name and amount child ele-
ments, plus a nonrepeating total element. The name element is type string while the
two other elements are type double. The total element is required and has a default
value of 0. Figure 6-7 shows the form’s data source.

Figure 6-7: The data source for the invoice form.

Follow these steps to create the form’s visual interface:

1. Place a single column layout table on the form.

2. Drag the item field from the data source and drop it on the table. From
the options offered in the pop-up menu that appears, select Repeating
Table. InfoPath inserts a table with two columns and controls for the
name and amount elements.

3. Drag the total field from the data source and drop it on the form, inside
the layout table but not in the repeating table. InfoPath adds a control
and label for this element.

4. Format the Amount and Total fields as currency.

That completes the form’s visual interface. Next, I’ll show you how to write the
event handler that will respond to changes and calculate the total. The field to con-
nect the code to is amount because that’s the field being totaled. The event to use is

Chapter 6: Scripting with InfoPath 123

OnAfterChange because it is after the value in an amount field has been changed
that the total needs to be recalculated. Here’s what to do:

1. Right-click the amount element in the data source and select Properties
from the pop-up menu. InfoPath displays the Field or Group Properties
dialog box.

2. On the Validation and Script tab, select OnAfterChange from the Events
list.

3. Click the Edit button to open the Script Editor.

4. Add the code shown in Listing 6-3 to the event procedure that you just
created.

Listing 6-3: The OnAfterChange Event Procedure for the Amount Field

function msoxd_my_amount::OnAfterChange(eventObj)
{
if (eventObj.IsUndoRedo)
{
// An undo or redo operation has occurred and the
// DOM is read-only.
return;
}

var items =
XDocument.DOM.selectNodes(“/my:myFields/my:item/my:amount”);

var subtotal =
XDocument.DOM.selectSingleNode(“/my:myFields/my:total”);

var total = 0;
for (var i=0;i<items.length;i++)
{
var value = parseInt(items(i).text);
if (!isNaN(value))
total += value;

}
subtotal.text = total;

}

The Script Editor automatically places the first section of code in this event pro-
cedure. It uses the eventObj object passed to the procedure to check if an undo or
redo operation has occurred. If the amount field has changed because of such an
operation, there’s no need to recalculate, so execution exits the procedure.

The remaining code is what you will add. Here’s what it does:

124 Part II: Getting Going with XML and InfoPath

The Sample Form Code
The sample forms that are installed with InfoPath include some interesting and useful
script code. Several of them include code to calculate a sum using a different technique
than was used in this example. You can and should examine the sample form code in
the Script Editor. It provides quite a few functions that you may find useful in your
own forms. In addition, the code in the sample forms can be very instructive in terms
of accomplishing various tasks with InfoPath script.

1. Creates a variable named items and uses the selectNodes method of the
DOM to make this variable refer to all instances of the amount element in
the XML document.

2. Creates a variable named subtotal and uses the selectSingleNode
method of the DOM to make this variable reference the total node in the
document.

3. Creates a variable named total that will be used to accumulate the total.

4. Loops through items (this loop executes once for each amount field),
checking each amount field to see if the value is a number and, if so, adds
it to the total.

5. Displays the total in the element referenced by the subtotal variable.

The form template is ready to try out. Save the form template, and then start fill-
ing out a form based on this template. Add a few rows to the table, as shown in
Figure 6-8. As you add new items to the table, change prices, or delete items, the
total field is automatically updated to reflect the sum of all the amounts.

Figure 6-8: A form that displays a running total.

Chapter 6: Scripting with InfoPath 125

Validating Data
Now, let’s look at two methods of validating data using script. The first one uses the
OnBeforeChange event. If the user enters invalid data, the control reverts to its pre-
vious data and a message is displayed. The second one uses the OnValidate event.
If the data is invalid, the field is marked with a red line and an error message is dis-
played when the mouse cursor hovers over the control (just like a schema valida-
tion error). These examples are in VBScript. Here are the steps to follow:

1. In InfoPath, choose File → Design a form to display the Design a Form task
pane.

2. Click the New Blank Form command.

3. Choose Tools → Form Options to display the Form Options dialog box.

4. On the Advanced tab, select VBScript in the Form Script Language list.

5. Click OK to close the dialog box.

6. Display the Data Source task pane.

7. Right-click the myFields element to display the Add Field or Group
dialog box.

8. Enter “theFirstPresident” in the name field.

9. Click OK to close the dialog box.

10. Drag the new theFirstPresident element and drop it on the form. InfoPath
adds a Text Box control with a label The First President.

11. Right-click the theFirstPresident element in the data source and select
Properties from the pop-up menu. InfoPath displays the Field or Group
Properties dialog box.

12. Select the Validation and Script tab.

13. In the Events list, select OnBeforeChange.

14. Click the Edit button to open the Script Editor.

15. Enter the code from Listing 6-4 into the event procedure.

16. Switch back from the Script Editor to InfoPath and click OK to close the
dialog box.

17. Save the form template under a descriptive name such as ValidateData.

126 Part II: Getting Going with XML and InfoPath

Listing 6-4: The OnBeforeChange Event Procedure

Sub msoxd_my_theFirstPresident_OnBeforeChange(eventObj)

Dim answerField
Set answerField = eventObj.Site

‘ Assume data is OK.
eventObj.ReturnStatus = true

‘ Do not invalidate field if blank.
if answerField.Text = “” then exit sub

‘ Check the entered value.
‘ If not correct reject it and display an alert.
if UCase(answerField.Text) <> “GEORGE WASHINGTON” then
eventObj.ReturnMessage = “That’s not right!”
eventObj.ReturnStatus = false

end if

End Sub

The first two lines of code within the procedure create a variable and set it to
refer to the XML element to which the event procedure is attached. This is one
example of using the object that is passed as an argument to the event procedure —
it lets you easily identify the element that received the event.

Then, eventObj.ReturnStatus is set to true. If the event procedure ends with
this property set to true, InfoPath assumes that the data value is acceptable and
takes no action. If this property is set to false, InfoPath deletes the new value and
reverts the element and its bound control to the previous value.

The code then checks to see if the element is blank, which is acceptable. If so, the
procedure terminates.

The remaining code checks the data in the element against the correct answer.
Note the use of the UCase function to convert the data to all uppercase, which is
then compared to GEORGE WASHINGTON. This ensures that the answer will be
counted as correct even if capitalized oddly. If the data does not match the correct
answer, the eventObj.ReturnMessage is set to the message that will be displayed
to the user, and the eventObj.ReturnStatus property is set to false.

Try out the form by entering your answer and pressing Tab. If you enter the cor-
rect answer, nothing happens. If you enter an incorrect answer, a dialog box
appears with the programmed message, as shown in Figure 6-9. When you close the
dialog box, the data in the text box is deleted.

Chapter 6: Scripting with InfoPath 127

Figure 6-9: Validating data with the OnBeforeChange event.

To try the example that uses the OnValidate event, follow the preceding steps
with the following exceptions:

◆ Step 13: Select the OnValidate event (instead of OnBeforeChange).

◆ Step 15: Enter the code from Listing 6-5 into the event procedure.

Listing 6-5: The OnValidate Event Procedure

Sub msoxd_my_theFirstPresident_OnValidate(eventObj)

Dim answerField
Set answerField = eventObj.Site

‘ Remove a previous error.
XDocument.Errors.Delete answerField, “ValidationError”

‘ If the answer in not correct, add an error condition.
If UCase(answerField.Text) <> “GEORGE WASHINGTON” then
XDocument.Errors.Add answerField, “ValidationError”, _
“This answer is wrong”, _
“The correct answer is ‘George Washington’”

end if

End Sub

The first two lines of code in the procedure are the same as in the previous event
procedure and serve to get a reference to the element that has changed.

The next line makes sure that there is no earlier validation error still associated
with the element.

128 Part II: Getting Going with XML and InfoPath

The final code checks the data and, if it is not correct, generates a validation error
by calling the XDocument.Errors.Add method. This method takes four arguments:

◆ The first argument identifies the element to which the error applies.

◆ The second argument describes the type of error.

◆ The third argument specifies the short error message that is displayed
when the mouse pointer hovers over the bound control.

◆ The fourth argument specifies the detailed error message that is displayed
when the user requests more information.

Figure 6-10 shows the form with incorrect data in the field and the mouse
pointer hovering over the control. Perhaps not visible in the figure is the red border
around the control. If the user right-clicks the control and selects Full Error
Description from the pop-up menu, the more detailed error message is displayed.

Figure 6-10: Validating data with the OnValidate event.

Selecting a View Based on Data
An InfoPath form can have multiple views. One of these views is designated the
default view when the form template is designed, and it is the first view displayed
when the form is opened. This example shows how you can display a different view
when a form is opened, based on the value of an element in the data source. This
applies primarily to forms that have already had some data entered, been saved,
and then are opened again. The OnLoad event is used to read the element value and
set the view accordingly. Here’s what to do:

1. Create a new form template based on a new, blank form.

2. Type the text “This is the default view” on the form.

Chapter 6: Scripting with InfoPath 129

3. Add an element named “select” to the data source. Its type should be
true/false.

4. Drag the select element from the data source and drop it on the form
beneath the text that you added. InfoPath adds a check box to the form.

5. Display the Views task pane.

6. Click the Add a New View command on the task pane. InfoPath displays
the Add View dialog box.

7. Enter “Edit” as the view name then click OK. The new view is displayed
for design.

8. Enter the text “This is the edit view” on the form.

9. Choose Tools → Script → On Load Event to open the Script Editor and dis-
play the OnLoad event procedure.

10. Enter the code shown in Listing 6-6 into the procedure.

11. Switch back from the Script Editor to InfoPath. The form template, with
the default view and the Data Source task pane displayed, will look like
Figure 6-11.

Figure 6-11: The completed form with default view displayed.

130 Part II: Getting Going with XML and InfoPath

Listing 6-6: Code in the OnLoad Event Procedure

function XDocument::OnLoad(eventObj)
{
var oSelectNode =
XDocument.DOM.selectSingleNode(“/my:myFields/my:select”);

if (oSelectNode.text == “true”)
XDocument.ViewInfos(“Edit”).IsDefault = true;

}

The code for this example is quite simple. It creates a reference to the select ele-
ment in the data source. It then checks the value of the element and, if it is true,
makes the Edit view the default, which is then displayed. If the value is false, no
action is taken and the regular default view displays.

You can test this form in two ways. One is to change the default value of the
select element from false to true. When you start filling out a new form based on
the template, the Edit view is displayed first. You can also create a form based on
the template and then save it. When you again open the form, the view displayed
will depend on the value of the selected element when the form was saved.

Scripting is an extremely powerful tool that can bring a lot of flexibility and
ease of use to your InfoPath forms. This chapter has provided an introduction to
InfoPath scripting and given you a taste of the kinds of things that you can do with
scripts.

Chapter 6: Scripting with InfoPath 131

XML and Other Office Applications
CHAPTER 7

Word and XML

CHAPTER 8
Excel and XML

CHAPTER 9
Access and XML

CHAPTER 10
FrontPage and XML

Part III

IN THIS PART:

Part III explores how XML is integrated in

four of Microsoft Office 2003’s applications:

Word, Excel, Access, and FrontPage.

Chapter 7

Word and XML
IN THIS CHAPTER

Understanding the WordML schema

Converting Word documents to XML

Editing XML documents

Validating documents

Exploring transforms

Examining XML options

WORD PROVIDES a wide range of tools for editing and formatting text. The data in a
Word document, however, is difficult to access in an efficient manner. Word’s abil-
ity to work with XML data helps to overcome this limitation by permitting the data
structuring capability of XML tags to be combined with the text formatting capa-
bilities of Word. This chapter shows you how to use Word’s XML capabilities.

Using the WordML Schema
Microsoft Word has its own XML schema called WordML. This schema is designed
specifically to represent Word documents as XML data, with all aspects of docu-
ment content, formatting, and layout encoded as XML elements. Given the sophis-
tication of Word’s formatting tools, you might expect that WordML is extremely
complex, and you would be right. To see how WordML is structured, save a simple
document as XML (you’ll see how in just a minute) and then open the resulting
XML document in Notepad.

WordML is not intended to be manipulated directly, but is a means for data to be
exchanged between Word and other applications. For example:

◆ When saved as WordML, Word documents become available for searching
and data mining by other applications. This is possible because WordML sep-
arates the content, or data, of the document from its formatting and layout.

◆ WordML documents can be generated by back-end processes that gather
information from various sources. These documents are then available for
editing and printing as needed. 135

To save a Word document as XML, choose File → Save As and then select XML
Document in the Save As Type list. Enter the filename — Word adds the XML exten-
sion automatically. When saving a document as XML, you are offered the options
to apply a transform and to save the data only. These options are covered later in
this chapter. At this point you should leave them both unchecked.

Opening a WordML file is no different from opening a standard Word document.
Word’s Open dialog box lists files with the XML extension along with standard
Word documents (DOC extension) and other file types that Word can open, such as
rich text documents (RTF extension). When you open a WordML document, Word
recognizes it as a WordML document and treats it accordingly. From the user’s per-
spective, editing and formatting a WordML document is no different from editing
and formatting a regular Word document. When you save such a document, it is
automatically saved as WordML. If you open a WordML document and want to save
it as a Word Document (*.doc), you must use the File → Save As command and
select Word Document from the Save as Type list.

If you open an XML document that isn’t a WordML document in Word, it is
treated very differently, as you’ll see next.

Opening Other XML Files
Word can open any XML file, not just those that follow the WordML schema. When
you open an XML file that has another namespace (that is, non-WordML), the
process depends on the contents of the file:

◆ If the XML file’s namespace matches a schema that is in the Schema
Library, Word attaches the schema to the XML file.

◆ If the XML file’s namespace does not match a schema in the Schema Library,
but the file contains a pointer to a schema file (in an xsi:schemaLocation
element), Word gives you the option of opening that schema as an XML
expansion pack.

136 Part III: XML and Other Office Applications

Word, WordML, and Other Schemas
It’s important to understand how Word can work with WordML and other schemas.
XML is designed to be able to use multiple schemas for a single XML file, using
namespaces to identify XML elements that are to be validated against each schema.
Thus, a Word document can use WordML and/or one or more additional schemas.
When WordML is used along with another schema, it is WordML that marks up the
document in terms of formatting and layout, and the other schema marks up the
document in terms of structuring the data.

◆ If the XML file’s namespace doesn’t match a schema that is in the Schema
Library, and the file doesn’t contain a pointer to a schema file, Word
opens the XML file without an attached schema.

In any of these scenarios, the end result is that you have an XML document
opened in Word either with or without a schema attached. The practical differences,
from the perspective of editing XML data, are that without an attached schema you
cannot validate the document, and that the information available in the XML
Structure task pane is not as complete. Once the document is open, you can begin
editing it, as described in the next section.

Creating a New XML Document
When starting a new XML document in Word, you may want to attach one or more
schemas to it so that the schema elements are available to you on the XML Structure
task pane while you are creating and editing the document.

1. Choose File → New, then click the XML Document command on the New
Document task pane.

2. Word creates the new document and displays the XML Structure task pane.
Click the Templates and Add-Ins command on the task pane to display the
XML Schema tab of the Templates and Add-Ins dialog box (see Figure 7-1).

3. The Available XML Schemas list displays the names of the available
schemas. Place a check next to each schema that you want attached to
the document.

4. Click OK.

Figure 7-1: Selecting schemas to attach to a document.

Chapter 7: Word and XML 137

Once you have created the new document, you are ready to start editing it, as
described later in this chapter.

If the schema that you need is not listed in the Available XML Schemas list,

you must add the schema to the Schema Library. I discuss how to do this in

“The Schema Library” section later in this chapter.

Converting a Word
Document to XML
You can also attach a schema to an existing Word document, apply the schema ele-
ments to the document content, and save the document as an XML document. The
parts of the document that you mark up with XML are then available to other XML
applications. First, you should ensure that the schema you want to use is part of
Word’s Schema Library (“The Schema Library” section later in this chapter discusses
this). Attaching the schema then is pretty much the same as attaching a schema to
a new XML document in Word:

1. Open the Word document in the usual manner.

2. Choose Tools → Templates and Add-Ins to open the Templates and Add-Ins
dialog box, and click the XML Schema tab (shown earlier in Figure 7-1).

3. In the Available XML Schemas list, put a check mark next to the
schema(s) that you want attached to the document.

4. Click OK.

At this point you can start editing the document, applying tags to document
contents as required. The procedures for editing an XML document are presented
later in this chapter.

When it’s time to save the document, do not simply click the Save button or
choose File → Save because this saves the document in its original DOC format and
not as an XML document. Here’s how you save it as an XML document:

1. Choose File → Save As to display the Save As dialog box.

2. Select XML Document in the Save as Type list.

3. Make sure that neither the Apply Transform nor the Save Data Only
options are selected.

138 Part III: XML and Other Office Applications

4. Enter a new name for the file if desired, or accept the name that Word sug-
gests (the original document name). Word automatically adds the XML
extension.

5. Click Save.

When you have attached a schema to a Word document, you may want to select
the Ignore Mixed Content option under XML Options, which are discussed later in
this chapter. With this option selected, validation ignores mixed content text.

Editing Other XML Documents
As mentioned earlier in this chapter, Word treats a WordML document like any
other Word document — there are no elements or attributes for the user to be con-
cerned with. So, let’s take a look at editing XML documents that use a schema other
than WordML.

The sample XML data file in Listing 7-1 contains data about a book collection,
containing only two books at present. Note that this file is associated with a schema
named Booklist.xsd, which is shown in Listing 7-2. This XML data file and
schema are used for the following examples. It is assumed that the schema has been
attached to the XML file as described earlier in the section “Opening Other XML
Files.”

Later in this chapter you’ll learn how to use a transform, or solution, to modify
the way an XML document is displayed in Word. For now, assume that there is no
transform in use, so the document is displayed on-screen using the Data-Only view.

Listing 7-1: The Sample XML Data File MyBooks.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<books xmlns=”http://www.pgacon.com/booklist”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.pgacon.com/booklist
c:\xmlfiles\Booklist.xsd”>
<book binding=”hardcover”>
<title>The King’s English</title>
<pubyear>1997</pubyear>
<author>
<firstname>Kingsley</firstname>
<lastname>Amis</lastname>

</author>
</book>
<book binding=”softcover”>
<title>Death in Venice</title>
<pubyear>1994</pubyear>

Continued

Chapter 7: Word and XML 139

Listing 7-1 (Continued)

<author>
<firstname>Thomas</firstname>
<lastname>Mann</lastname>

</author>
<comments>There is a small tear in the cover.</comments>

</book>
</books>

Listing 7-2: Booklist.xsd Schema for MyBooks.xml.

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema targetNamespace=”http://www.pgacon.com/booklist”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.pgacon.com/booklist”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>
<xs:element name=”books”>
<xs:complexType>
<xs:sequence>
<xs:element name=”book” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=”title” type=”xs:string”/>
<xs:element name=”pubyear”>
<xs:simpleType>
<xs:restriction base=”xs:int”>
<xs:minInclusive value=”1800”/>
<xs:maxInclusive value=”2020”/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name=”author” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=”firstname” type=”xs:string”/>
<xs:element name=”lastname” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”comments” type=”xs:string”

minOccurs=”0”/>
</xs:sequence>
<xs:attribute name=”binding” use=”required”>
<xs:simpleType>
<xs:restriction base=”xs:string”>

140 Part III: XML and Other Office Applications

<xs:enumeration value=”hardcover”/>
<xs:enumeration value=”softcover”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

When you open an XML document in Word, both its data and its tags are dis-
played on-screen, and the XML Structure task pane is displayed as well. Figure 7-2
shows MyBooks.xml open in Word.

Figure 7-2: In Word, an XML document displays its data and tags by default.

The XML Structure task pane is very useful when editing XML. Its elements
include the following:

◆ Elements in the document. This list displays the document structure using
the names of the XML elements in the document. The current element (the
one containing the insertion point) is indicated by an outline. In Figure 7-2
this is the first <book> element. Click an element in this list to select it in
the document.

Chapter 7: Word and XML 141

◆ Show XML tags in the document. Controls whether the document dis-
plays tags and data, or just data.

◆ Choose an Element to apply to your current selection. Lists the XML ele-
ments that can be applied at the current location in the document.

◆ List Only Child Elements of current element. Controls what is displayed
in the Choose an Element... list.

◆ XML Options. Displays the XML Options dialog box, which is explained
later in this chapter.

To include XML tags when the document is printed, choose Tools → Options

and click the Print tab. Under Include With Document, select the XML Tags

option.

If you want to work with the XML data without the tags getting in the way, turn
off the Show XML Tags in the Document option in the XML Structure task pane.
Figure 7-3 shows how the same XML file looks with the tags hidden. You can see
that the data is organized on screen according to the structure of the document. It
is not particularly convenient to work with data that is displayed like this. As you’ll
see later in the chapter, you can use Word’s formatting tools to give the document
a more pleasant and functional appearance.

Figure 7-3: An XML document displayed without its tags.

142 Part III: XML and Other Office Applications

It’s important to understand how the List Only Child Elements option works. If it
is selected, the Choose an Element list displays only those elements that are chil-
dren of the current element (the one containing the insertion point). Put another
way, the list shows only those elements that would be valid (according to the
schema) at the current location. If the List Only Child Elements option isn’t selected,
the list displays all of the document’s XML elements regardless of whether they
would be valid at the current location. You can still distinguish valid from invalid
elements because the latter are displayed with a red “no” symbol (a circle with a
line through it).

If the XML Structure task pane is not displayed, open the task pane menu by

clicking the down arrow in the task pane’s title bar, then select XML

Structure.

Adding Elements
There are two ways to insert an element in an XML document. One is to insert the
tags first and then the data:

1. Place the insertion point at the location where you want the element.

2. Click the element name in the Choose an Element to Apply... list on the
XML Structure task pane. Word inserts the start and end tags for the
element.

3. Type the data between the tags.

The second method is used when the element data is already present in the
document:

1. Select the data to be in the element.

2. Click the element name in the Choose an Element to Apply... list on the
XML Structure task pane. Word inserts start and end tags around the
selected data.

Deleting Elements
To delete an element, select it by double-clicking its start tag. Then, press Del. This
method deletes the entire element — tags and content.

If you want to delete an element’s content while leaving the tags in the docu-
ment, click the element in the Elements in this Document list in the XML Structure
task pane. This selects all of the element’s content but not its tags. Then, press Del.

Chapter 7: Word and XML 143

If the element contained child elements, these are completely deleted (tags and con-
tent), but the parent element’s tags are left in place.

You can also remove an element’s start and end tags while leaving the content
intact. Right-click the tag (either the start or end tag) and select Remove XXXX Tag
(where XXXX is the tag name) from the pop-up menu.

Working with Attributes
XML attributes are not displayed in the Word document but can be accessed sepa-
rately for each element by right-clicking the element’s start tag and selecting
Attributes from the pop-up menu. Word displays the Attributes dialog box, as
shown in Figure 7-4.

Figure 7-4: The Attributes dialog box.

The items in this dialog box include the following:

◆ URI. The namespace of the element.

◆ Available Attributes. Attributes that are available for this element (as
defined in the schema). Required attributes are marked with (required)
after their name, like the binding attribute in the figure. Optional attrib-
utes are listed with no special marking.

◆ Type. The data type of the attribute selected in the Available Attributes
list.

◆ Value. The value of the attribute selected in the Available Attributes list,
or blank if no value is assigned for this element.

◆ Assigned Attributes. Lists the names and values of attributes that have
been assigned values for this element.

144 Part III: XML and Other Office Applications

To add an attribute to the element:

1. Click the attribute name in the Available Attributes list.

2. Enter the value for the attribute in the Value field.

3. Click the Add button.

To modify the value of an existing attribute, select the attribute in the Assigned
Attributes list, and then edit the value in the Value field.

To delete an attribute from the element, select it in the Assigned Attributes list,
and then click Delete. You are allowed to delete required attributes even though it
results in a violation when and if the file is validated.

Formatting and Layout
When editing an XML document, you can apply any of Word’s formatting to get
the visual appearance that you desire. You can organize document content in
tables, change fonts, use borders and shading, and so on. Note that some of Word’s
formatting commands, such as inserting a table, are available only when the Show
XML Tags in Document option on the XML Structure task pane is turned off.

When formatting an XML document, particularly when working with tables, you
must pay close attention to the element tags. As you cut and paste document con-
tent, it is essential that the tags be moved, too, so that the structure of the docu-
ment is maintained. Mistakes here can lead to document validation errors. For this
reason, it is better to work with tags displayed in the document.

For example, Figure 7-5 shows the MyBooks.xml file formatted with the data in
a table and the book titles in boldface.

Figure 7-5: An XML document formatted as a table.

Chapter 7: Word and XML 145

The document is still valid because the tags were carefully moved with the con-
tent into the table so that the logical structure of the document was maintained. You
can see this in Figure 7-6, which shows the same document with the tags displayed.

Figure 7-6: Within the table format, the XML tags are positioned so as
to preserve a valid document structure.

Word simplifies the task of working with XML data in tables. If you add a row

to a table that contains XML data, empty tags are automatically inserted in

the new row to duplicate the structure of other rows. You can then simply

type the data for the new row within these tags.

What about adding additional text to a document? For example, in the docu-
ment shown in Figure 7-6, you might want to add headings to the table to identify
the data in the columns. You can add text to the document, but always under the
restrictions of XML validation. In other words, the content that you add must be
legal within the constraints of the document’s schema. You have several options:

◆ You can modify the document’s schema to define one or more elements
for extra text that is not part of the document’s core data.

◆ You can use Word’s Text Box control to display text. Because the text in
a Text Box control is not regular document text, it is subsumed under the
WordML schema and is not validated against other schemas used in the
document.

146 Part III: XML and Other Office Applications

◆ You can select the Ignore Mixed Content option under XML Options.
Mixed content refers to an XML element that contains both text and other
elements. With this option selected, the text part of mixed content in the
document is ignored by validation. (See the section “XML Options” later
in this chapter for details.)

◆ You can define another schema that provides for these additional text ele-
ments, and then associate that schema with the document along with its
other schema(s).

You can turn validation off for an XML document in Word, but I strongly rec-

ommend against this. If a document has a schema attached, there is a rea-

son. Allowing a document to be saved without validation can result in all

kinds of problems down the road when other applications try to use the

document.

Saving Documents
When you are working with a document that has one or more schemas attached to
it, the process of saving the document is pretty much the same as it is for any other
Word document, with one major difference: the Save Data Only option. This option
appears in the Save As dialog box only when the document type is XML Document.
If this option is off (the default), the document is saved using its attached schemas
as well as the WordML schema. The end result is that all formatting and extra ele-
ments are saved along with the document data. If you select this option, the docu-
ment data is saved without any formatting. The setting you select depends on what
the saved document will be used for. Be careful using the Save Data Only option,
particularly if you have applied a lot of formatting to the document, because the
formatting will be lost permanently. It may be wise to keep a backup copy of the
document with the formatting, just in case.

When saving a document using the Save As dialog box, you also have the option
of applying a transform to the document when it is saved. See the “Transforms for
Saving Documents” section later in this chapter for more information.

Document Validation
Validation means to check an XML document’s structure and data against its
attached schema. If the document meets all of the requirements and restrictions in
the schema, it is said to be valid. Word can validate any XML document as you
work on it and flag violations in the document. Document validation is affected by
several option settings, which we’ll discuss later in the “XML Options” section.

Chapter 7: Word and XML 147

When Word finds a validation violation, it marks the violation two ways: with a
wavy purple line in the left margin of the document, and with a red violation icon
next to the offending element’s name in the XML Structure task pane. This is
shown in Figure 7-7, where there is a violation for the first pubyear element. The
problem in this case is that the element value is 197 while the schema (Listing 7-2)
specifies that the value must be in the range 1800–2020.

Figure 7-7: Word marks schema violations in the XML document and the
XML Structure task pane.

You can find out the details of any schema violation by right-clicking the ele-
ment’s name in the XML Structure task pane. The first item on the pop-up menu is
a description of the violation, as shown in Figure 7-8. You can use this information
to edit the document’s content or structure to resolve the violation.

You can have Word display more detailed messages about schema viola-

tions by selecting the Show Advanced XML Error Messages option in the

XML Options dialog box. (See the “XML Options” section later in this chapter

for details.)

148 Part III: XML and Other Office Applications

Figure 7-8: Word displays an explanation of why a
document element is in violation of the schema.

Using Transforms
A transform, or more specifically an Extensible Stylesheet Language Transformation
(XSLT), is a file that contains rules for modifying an XML file. Word supports the
use of transforms when working with XML.

Word can use transforms two ways: for display and for output. You can, for
example, assign a transform to be applied when an XML document is opened so
that Word displays the output of the transform rather than the raw XML data. You
can also use a transform when saving an XML document to convert an XML file
into an HTML document for Web display, or to convert an XML file into another
XML file with a different organization and structure.

Transforms for Displaying Documents
A transform that is used for displaying documents is called a solution in Word.
When a solution is applied to an XML document, the output of the transform is dis-
played on-screen. A document can have multiple transforms associated with it,
providing you with multiple ways of viewing the document by switching from one
solution to another. You can also view the document without a transform applied
(data only). You can write your own solutions using the XSL Transformation lan-
guage, and software vendors or your IT department also can provide solutions.

To use a solution, it must be loaded into the Schema Library. Each solution is
associated with a schema in the library. When you load an XML document, Word
uses its namespace to associate it with a schema and with any solutions that are
linked to that schema. Then these solutions are available for use with the document.
Here’s how to add a transform to the library:

Chapter 7: Word and XML 149

1. Choose Tools → Templates and Add-Ins to display the Templates and Add-
Ins dialog box.

2. Click the XML Schemas tab.

3. Click the Schema Library button to display the Schema Library dialog
box, shown in Figure 7-9.

Figure 7-9: Adding a solution to the schema library.

4. In the Select a Schema list, select the schema that you want the transform
associated with. If the schema is not listed here, you must add it using the
techniques described in the section “The Schema Library.”

5. The Select a Solution list displays the names of the transforms, if any, that
are currently associated with the selected schema. To add a transform,
click the Add Solution button and browse to locate the XSL file.

6. After selecting the file, enter an alias, or name, for the transform.

7. The alias of the new transform is listed in the Select a Solution box of the
Schema Library. Make sure that Word is selected in the Use Solution With
field.

8. If there is more than one transform for the selected schema, select one to
be the default for the document in the Default Solution list. The default
solution is applied automatically when a document is opened.

9. Click OK twice to return to the document.

When you open an XML document in Word, here’s what happens:

150 Part III: XML and Other Office Applications

1. Word checks the document’s namespace against the schemas that are in
the schema library. If it finds a match that schema is associated with the
document.

2. If the matching schema has one or more solutions associated with it, those
solutions are also associated with the document.

3. The document is displayed with the default solution applied. The XML
Document task pane (see Figure 7-10) lists the following in the Data
Views list:

■ The name(s) of the solutions associated with the document. Click a
solution to apply it.

■ A Data Only command. Click this command to view the raw XML data
with no solution applied.

■ A Browse command. Click this command to browse for another trans-
form to apply to the document.

Figure 7-10: When an XML document is opened, its
associated solutions, if any, are listed in the XML
Document task pane.

When a document uses the WordML schema, a solution is never applied

even if one is associated with the document.

Chapter 7: Word and XML 151

When you save a document that has a solution applied, the output of the solu-
tion and not the original XML document is saved. The same goes for printing.
Chapter 11, “Connecting Word and InfoPath,” presents an example of using solu-
tions in Word.

Transforms for Saving Documents
You can also apply a transform to an XML document in Word when you save the
document. There are two ways to do this, both of which have the same result:

◆ In the XML Options dialog box you can specify a transform to be applied
automatically every time the document is saved. See the section “XML
Options” later in this chapter for details.

◆ Specify a transform at the time you save the document.

These steps show you how to use the second method:

1. Choose File → Save As.

2. In the Save As dialog box, select XML Document in the Save as Type list.

3. Select the Apply Transform option.

4. Click the Transform button and browse to locate the XSL file containing
the desired transform.

5. Back in the Save As dialog box, enter a name for the saved file, and then
click Save.

When you apply a transform when saving an XML document, any data that is
not used by the transform is discarded. The original document that is open in Word
is not affected.

The Schema Library
The Schema Library provides tools that assist you in using XML with your Word
documents. Specifically, the Schema Library lets you organize XML schemas and
XSLT transforms (also called solutions) in a way that makes them easier to use. The
Schema Library also assists in working with namespaces. The use of solutions in the
Schema library was covered earlier in the section “Transforms for Displaying
Documents.” Working with schemas in the library is covered here. To attach a
schema to a Word document, the schema must be present in the Schema Library. To
work with schemas in the Schema Library:

1. Choose Tools → Templates and Add-Ins to display the Templates and Add-
ins dialog box, and click the XML Schema tab.

152 Part III: XML and Other Office Applications

2. The list displays the names (aliases) of the schemas that are already in the
library. To add a schema to the library, click the Add Schema button and
browse to locate the schema (XSD) file.

3. After you have selected a schema file, Word displays the Edit Schema
Properties dialog box, shown in Figure 7-11. Enter a descriptive name for
the schema in the Alias field. This is used to identify the schema in Word.

Figure 7-11: Assigning an alias to a schema.

4. Click OK to return to the Templates and Add-In dialog box. The alias of
the schema you just added is listed and is also checked, indicating that it
is attached to the document. You can leave this checked or unchecked,
depending on your needs. (See the section “Creating a New XML
Document” earlier in this chapter for more information.)

5. If you are finished, click OK to close the dialog box. Or, if you need to
take more actions with the Schema Library, click the Schema Library but-
ton to display the Schema Library dialog box, shown in Figure 7-12.

Figure 7-12: You use the Schema Library dialog box to
organize schemas and transforms (solutions).

Chapter 7: Word and XML 153

6. The top part of this dialog box lists the aliases of the schemas that are
currently in the library. You can take the following actions:

Click Add Schema to add a schema to the library using the same
method that was described earlier in Steps 2 and 3.

Select a schema and click Schema Settings to view the settings, includ-
ing the namespace URI and schema file location. You can also edit the
schema’s alias if desired.

Select a schema and click Delete to remove the schema from the
library.

7. Click OK twice to return to your document.

When you add a schema to the Schema Library,Word automatically uses the

namespace URI defined in the schema file. If, however, there is no name-

space defined in the schema file, Word prompts you to enter a namespace

URI at the same time you are prompted to enter an alias for the schema.This

namespace is used within Word.

XML Options
You can access the XML options in several ways, including clicking the XML
Options command on the XML Structure task pane or clicking the XML Options
button on the XML Schema tab of the Templates and Add-Ins dialog box. The XML
Options dialog box is shown in Figure 7-13.

Figure 7-13: Setting XML options.

154 Part III: XML and Other Office Applications

Table 7-1 explains the options available for XML.

TABLE 7-1 XML OPTIONS

Option Effect If Option Is Selected

Save data only When the document is saved, only data (content in XML
tags) is saved. All formatting and other document
elements are lost.

Apply custom transform This applies an XSLT transform to the file each time it is
saved. The saved file is the output of the transform. Use
the Browse button to select the transform to apply. (See
the section “Transforms for Saving Documents” earlier
in the chapter for details.)

Validate document against Word checks the document data against the attached
attached schemas schemas and flags violations on-screen. See the earlier

section “Document Validation” for more details.

Hide schema violations in The document is validated against the attached schemas
this document but violations are not flagged in the document on-screen.

Ignore mixed content The validation process ignores mixed content.

Allow saving as XML even This permits saving an XML document that has validation
if not valid violations.

Hide namespace alias in Element names are displayed alone in the task pane,
XML Structure task pane without the namespace alias.

Show advanced XML error Error messages, including validation violation descriptions,
messages provide greater detail than the default messages.

Show placeholder text for When XML tags are not displayed in the document,
all empty elements empty elements are indicated by placeholder text

consisting of the element name in brackets.

Now, let’s take a look at some details of these options.
The Apply Custom Transform option is used when you want to apply a trans-

form to the document each time it is saved. To apply a transform on a one-time
basis, use the Apply Transform option in the Save As dialog box.

The Allow Saving as XML Even If Not Valid option should be used with care.
When this option is not selected, Word does not let you save an XML document

Chapter 7: Word and XML 155

that has validation violations (you can save it as a Word DOC document but not as
an XML document). There’s a good reason for this: an invalid XML document can
cause all sorts of problems if another application tries to process it. Use this option
only if you are sure it won’t cause problems.

The Ignore Mixed Content option is useful under several circumstances. Here’s
an example:

<name>
This is some text.
<firstname>John</firstname>
<lastname>Doe</lastname>
</name>

The <name> element has mixed content because it contains the text This is some
text. as well as the <firstname> and <lastname> elements. Although mixed content
is legal in XML, most schemas avoid it because it is easier to work with document
structures in which an element can contain data or other elements but not both.
When working with XML in Word, however, there are times when permitting mixed
content can be helpful, such as:

◆ When adding text to an XML document for formatting purposes — adding
column headings to a table that contains XML data, for example

◆ When marking up a document in which only part of the document con-
tent is to be in XML tags

By selecting the Ignore Mixed Content option, you permit the document to con-
tain mixed content while remaining valid.

Protecting XML Tags and Data
There may be times when you want to let other users edit the data in an XML doc-
ument but prevent them from editing or deleting the XML tags. You may also want
to lock some of the data, while letting other data be edited. Word lets you do this by
protecting parts of the document. Here are the steps to follow:

1. Make sure that XML tags are displayed in the document by selecting the
Show XML Tags in the Document option on the XML Structure task pane.

2. Choose Tools → Protect Document. Word displays the Protect Document
task pane (see Figure 7-14).

156 Part III: XML and Other Office Applications

Figure 7-14: Assigning protection to a document.

3. In the Editing Restrictions section of the task pane, check the Allow Only
This Type of Editing option, and select No Changes (Read-only) from the
drop-down list.

4. In the document, select the contents of an element that you want users to
be able to edit.

5. In the task pane, put a check mark next to Everyone in the Groups list.

6. Repeat Steps 4 and 5 for each XML element that you want users to be
able to edit.

7. Click the Yes, Start Enforcing Protection button at the bottom of the task
pane. Word displays the Start Enforcing Protection dialog box.

8. Select the Prevent Accidental Changes option and enter a protection
password.

9. Click OK.

When a user is editing a protected document, the Protect Document task pane is
displayed, as shown in Figure 7-15.

The user can use the commands on the task pane to locate regions of the docu-
ment that can be edited. To remove protection, click the Stop Protection button and
enter the password.

Chapter 7: Word and XML 157

Figure 7-15: Working with a protected document.

158 Part III: XML and Other Office Applications

Chapter 8

Excel and XML
IN THIS CHAPTER

◆ Understanding lists (tables)

◆ Using the XML Source task pane

◆ Opening XML files

◆ Importing XML data

◆ Examining XML data validation

EXCEL IS A SPREADSHEET program designed for the manipulation and analysis of data.
It provides numerous tools, such as functions and charts, that give you great flexi-
bility in working with your data and extracting the required information.
Regardless of what you are doing with the data, there is always the need to get the
data into the workbook in the first place. Other than typing the data in manually,
Excel offers several ways to link a worksheet to an external source of data. One of
these techniques lets you use data from XML files in a workbook, and that’s the
topic of this chapter.

XML and Lists
Excel has powerful capabilities for working with data in lists (sometimes called
tables). A list organizes data with descriptive headings at the top of the columns
and the data in the cells below. With an address list, for example, the data headings
might be Name, Street, City, State, and so on. Then, below the headings, each per-
son’s data would be contained in a single row. Excel’s tools for working with a list
include the capability to sort the list and to filter it so that only data that meets cer-
tain criteria is displayed.

When you import XML data into a workbook, it’s placed in a list. Excel offers
other ways to import data to a list, such as linking to a database. The important
thing to remember is that once the data is in the list, its source ceases to matter for
the most part. A list is a list, whether the data is typed in, comes from a database,
or is imported from an XML file. In any case, Excel’s data analysis and manipula-
tion tools are the same. Because these tools are not directly related to XML, we
won’t cover them in this book. 159

A list that contains data imported from an XML is file is sometimes referred

to as an XML mapping.

The Sample Data and Schema
Most of the examples in this chapter are based on an XML data file that is used to
hold information about an organization’s employees. This file, with sample data, is
shown in Listing 8-1, and the associated schema is shown in Listing 8-2. The struc-
ture of the file is quite simple, consisting of an <employee> element for each
employee. This element contains:

◆ A <name> element, type string.

◆ An <ID> element, type positiveInteger, that must be between 50000 and
99999.

◆ A <dateOfHire> element, type date.

◆ A <department> element, type string.

◆ A <salary> element, type positiveInteger.

◆ A gender attribute, type string, with permitted values “male” and
“female.”

All of the elements and attributes are required by the schema — that is, none is
optional in the data file.

If you decide to use these files to explore Excel’s XML capabilities, you may
want to change the namespace from one that uses my URL to your own. You must
change the location in the xsi:schemaLocation attribute to accurately reflect the
path where you have placed the schema file. I saved these files as Employees.xml
(Listing 8-1) and EmployeeList.xsd (Listing 8-2). If you use a different name for
the XSD file you must change the filename in the xsi:schemaLocation attribute in
the XML data file to reflect this name.

Listing 8-1: The Employees XML Data File

<?xml version=”1.0” encoding=”UTF-8”?>
<employeeList xmlns=”http://www.pgacon.com/employeelist”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.pgacon.com/employeelist
C:\XMLFiles\EmployeeList.xsd”>
<employee gender=”female”>

160 Part III: XML and Other Office Applications

<Name>Wendy Smith</Name>
<ID>78234</ID>
<dateOfHire>1998-05-01</dateOfHire>
<department>Sales</department>
<salary>34500</salary>

</employee>
<employee gender=”male”>

<Name>Arthur Jackson</Name>
<ID>61439</ID>
<dateOfHire>1995-06-01</dateOfHire>
<department>Marketing</department>
<salary>54900</salary>

</employee>
<employee gender=”female”>

<Name>Carlotta Gomez</Name>
<ID>73219</ID>
<dateOfHire>1996-09-15</dateOfHire>
<department>Sales</department>
<salary>48000</salary>

</employee>
<employee gender=”male”>

<Name>Wilson Anderson</Name>
<ID>51432</ID>
<dateOfHire>2000-10-01</dateOfHire>
<department>IT</department>
<salary>31200</salary>

</employee>
<employee gender=”female”>

<Name>Elizabeth Poe </Name>
<ID>77812</ID>
<dateOfHire>1997-12-01</dateOfHire>
<department>Marketing</department>
<salary>43600</salary>

</employee>
</employeeList>

Listing 8-2: The EmployeeList .xsd Schema File

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema targetNamespace=”http://www.pgacon.com/employeelist”

xmlns=”http://www.pgacon.com/employeelist”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

Continued

Chapter 8: Excel and XML 161

Listing 8-2 (Continued)

<xs:element name=”employeeList”>
<xs:complexType>
<xs:sequence>
<xs:element name=”employee” minOccurs=”0”

maxOccurs=”unbounded”>
<xs:complexType>
<xs:complexContent>
<xs:extension base=”employeeType”>
<xs:attribute name=”gender” use=”required”>
<xs:simpleType>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”male”/>
<xs:enumeration value=”female”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:complexType name=”employeeType”>
<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”ID”>
<xs:simpleType>
<xs:restriction base=”xs:positiveInteger”>
<xs:minInclusive value=”50000”/>
<xs:maxInclusive value=”99999”/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name=”dateOfHire” type=”xs:date”/>
<xs:element name=”department” type=”xs:string”/>
<xs:element name=”salary” type=”xs:positiveInteger”/>

</xs:sequence>
</xs:complexType>

</xs:schema>

162 Part III: XML and Other Office Applications

Excel and XML Limitations
Excel supports a wide range of XML schema constructs and can be used with most
XML data. There are a few constructs that Excel does not support:

◆ Abstract elements that are declared in the schema but never actually used,
being replaced by other elements.

◆ <anyAttribute> elements, which permit an XML file to contain attributes
that are not defined in the schema.

◆ <any> elements, which permit an XML file to contain elements that are not
defined in the schema.

◆ Recursive structures that are more than one level deep.

The XML Source Task Pane
Much of what you will do with XML in Excel involves the XML Source task pane.
This task pane displays one or more maps that you use to link data in the worksheet
with elements in an XML file. A map is simply Excel’s term for a schema — it con-
tains the elements and attributes in the schema and the permitted relationships
between them.

To display the XML Source task pane, choose Data → XML → XML Source. When
first displayed, the task pane is blank unless the current workbook already has one
or more maps associated with it.

Adding Maps
In order to use the XML Source task pane, you must add one or more maps to it.
You can add a map as part of the process of opening an XML file, as described later
in the chapter in the section “Opening XML Files.” A map can be based on an XML
data file or an XSD schema file. Here’s how you add a map:

1. Click the Workbook Maps button on the XML Source task pane. Excel dis-
plays the XML Maps dialog box, shown in Figure 8-1.

2. Click the Add button.

3. Browse to locate the XML file or XSD schema file on which the map will
be based, and then click Open. You return to the XML Maps dialog box
with the newly added map listed as follows:

Chapter 8: Excel and XML 163

Name. The name of the map that will be displayed on the XML Source
task pane. The default name consists of the schema’s root element name
followed by an underscore and “Map.” To change the name, click the
Rename button and enter the new name.

Root. The name of the root element in the schema.

Namespace. The schema’s namespace.

4. Repeat Steps 2–4 if necessary to add more maps.

5. Click OK to close the XML Maps dialog box and return to Excel. The
map(s) that you added are listed in the XML Source task pane.

Figure 8-1: You use the XML Maps dialog box to add XML
maps to a workbook.

When one or more maps are available in a workbook, the XML Source task pane
displays the structure of the map that is selected in the list at the top of the task
pane. The display is in the form of a hierarchical tree, and can be expanded or col-
lapsed by clicking the plus and minus symbols that are adjacent to elements in the
tree. Figure 8-2 shows the map corresponding to the employee list schema (see
Listing 8-2).

Some specific items are used in the map display:

◆ The root element is displayed as a large folder (employeeList in the figure).

◆ An element that contains child elements is displayed as a pair of folders
(employee).

◆ An attribute is displayed as a tilted piece of paper (gender).

◆ An element that contains data is displayed as a piece of paper with a cor-
ner folded down (name, ID, and so forth).

◆ An element or attribute that is required is displayed with a red asterisk
(gender, name, and so on).

When you import a map based on an XML data file, Excel gets the map infor-
mation from the schema that the XML file references. If the XML file does not

164 Part III: XML and Other Office Applications

reference a schema, or if the referenced schema is not available, Excel infers the
schema structure from the content of the XML data file.

Figure 8-2: The XML Source task pane displays the
structure of an XML map.

Using Maps
An XML map is used to map XML elements to your worksheet. In other words, you
use the map to specify where in the worksheet the XML data is to be placed. For
example, you could specify that the <name> element is to be mapped to column B
in Sheet1. When you open or import the XML data, the data from the <name>
element is placed in column B.

The term map is used in two ways in Excel. It is used to refer to an XML

schema as displayed in the XML Source task pane, as was shown in Figure

8-2. It is also used to refer to the way that XML elements are assigned, or

mapped, to worksheet ranges, as described in this section.

A workbook can have multiple maps in it. Multiple maps can come from the
same or from different schemas. Once created, each map is used to import XML
data into the worksheet. As you might expect, a map can only be used to import
data from an XML file that uses the same schema that the map is based on.

Chapter 8: Excel and XML 165

Once you have a map in the XML Source task pane, you are ready to start map-
ping the XML elements to worksheet ranges. Here’s how:

◆ To map a single element, drag it from the XML Source task pane and drop
it at the desired location in the worksheet.

◆ To map multiple elements, select the first element in the XML Source task
pane, and then hold down Ctrl while selecting the others. When all desired
elements are selected, drag them to the desired worksheet location.

If you map a repeating element, such as <employee> in the map shown in
Figure 8-2, all of its child elements are automatically mapped in the worksheet. For
example, Figure 8-3 shows the result of mapping the <employee> element to cell
B4. You can see that the children of <employee> are mapped in the order they are
present in the XML Source task pane so that the element names are in cells B4:G4
and the data, when imported, will be placed in the rows below.

Figure 8-3: After mapping the <employee> element to cell B4.

The List and XML Toolbar
The List and XML toolbar, shown in Figure 8-4, provides access to several com-
mands that are frequently used when working with XML. Excel automatically dis-
plays this toolbar when you perform certain XML-related actions such as opening
an XML data file. You can display or hide it as needed, as with other toolbars, by
using the View → Toolbars command.

Figure 8-4: The List and XML toolbar.

Some of the commands on this toolbar aren’t relevant to XML lists, so we won’t
discuss those here. Others are available or not, depending on the context. For
example, the Print List command is available only when the cell pointer is in a
table. The use of these commands is covered throughout the chapter, but knowing
that they are available on the toolbar can make your work easier and faster:

166 Part III: XML and Other Office Applications

◆ List. Displays a menu of commands for the list, including inserting and
deleting rows and columns, sorting, and resizing the list

◆ Toggle Total Row. Toggles the display of formulas that sum the data in
each column containing numbers

◆ Refresh From XML. Refreshes the table from the linked XML data file

◆ Import. Imports XML data into the workbook

◆ Export. Exports the table data as an XML file

◆ XML Map Properties. Displays a dialog box for setting properties of the
XML map

◆ Chart Wizard. Opens the Excel Chart Wizard

◆ Print List. Displays the list in the Microsoft Document Imaging applica-
tion for annotation and printing

If you can’t tell from the icons which button is which, use the ScreenTip that
appears when the mouse pointer hovers over a button.

Opening XML Files
Excel can open XML data files so that you can view and analyze the data. This is
perhaps the most common and important way that Excel is used with XML data. By
opening an XML file you get the XML data in a workbook. You can then add other
elements, such as Excel formulas and charts, to analyze the data, create summaries,
and so on. Once the workbook is complete, you can use the Refresh command (cov-
ered below) to update the workbook with the latest XML data. For example, your
company’s back-end server might be programmed to output all of the recent sales
data at the end of each month, in XML format. You could create a workbook con-
taining all the summary formulas and charts and then generate each month’s report
simply by refreshing the XML data.

When you select File → Open in Excel, the Open dialog box by default lists XML
files along with other types of Excel files (when All Microsoft Excel Files is selected
in the Files of Type list). You can also select XML files from this list if you want the
Open dialog box to list only XML files. Once you have selected an XML file to open,
Excel displays the dialog box shown in Figure 8-5.

You must select one of the three ways to open an XML data file:

◆ As an XML list

◆ As a read-only workbook

◆ Use the XML Source task pane

Chapter 8: Excel and XML 167

Figure 8-5: Selecting how an XML file is to be opened.

These options are discussed in the following sections. Excel also has a command
to import XML data that is covered later in the chapter. Opening and importing
XML data are very similar; the major difference is that opening an XML file creates
a new workbook that contains the XML structure and data, while importing XML
data inserts the data into an existing workbook.

Open as an XML List
When you open an XML data file as an XML list, Excel creates a table in the work-
sheet with one column for each element or attribute in the XML file’s schema. If the
schema is not specified or not available, Excel infers the schema from the structure
of the XML data. Data from the file is displayed in the table in the appropriate
columns. The file’s map is displayed in the XML Source task pane, as shown in
Figure 8-6 for the Employees data file that was presented earlier in the chapter in
Listing 8-1.

Figure 8-6: After opening the Employees XML file as an XML list.

Please note the following in the figure:

◆ Each column has the field or attribute name in the first row as a column
label.

◆ Each column label has a down arrow next to it. Click this arrow to access
Excel’s regular data commands for sorting and filtering the list.

◆ The asterisk in row 7 marks the location where you will enter any new
data that you want to add to the table.

Once you have opened an XML data file this way, you can treat the data like any
other data in Excel. You can edit the data, add or delete records, use the database

168 Part III: XML and Other Office Applications

functions and charts to perform analysis — the fact that the data came from an XML
file does not place any restrictions on you. Note that Excel doesn’t perform data
validation against the schema when you open an XML file in this manner.

At this point the data is divorced from the original XML file, and changes you
make in Excel do not affect the original XML data file. You can, however, refresh
the data by selecting Data → XML → Refresh XML Data, or by clicking the Refresh
button on the List and XML toolbar. This command reads the XML data file again
and refreshes the worksheet with any changes. The XML file must be available, of
course. Other actions you can take with an XML list are covered in the “Working
with XML Lists” section later in the chapter.

When you save the data, it’s saved as a regular Excel workbook (or any of the
other save options that Excel offers). You can also export the XML data, which also
is explained later in the chapter.

Open as a Read-Only Workbook
When you open an XML data file using the Open as Read-Only Workbook option,
you have access not only to the file’s data but to other details as well. Figure 8-7
shows the Employees data file from Listing 8-1 after being opened using this
option.

Figure 8-7: An XML file opened using the Open as Read-Only Workbook option.

The following information is available:

◆ Cell A1 displays the name of the root XML element.

Chapter 8: Excel and XML 169

◆ Row 2 displays element and attribute names with information about
the file structure. Attribute names are preceded by the ampersand
character (@). For example, cell B2 contains /employee/@gender
which means “the gender attribute of the employee element which is a
child of the root element.” Cell B3 contains /employee/dateOfHire,
which means “the dateOfHire element which is a child of the employee
element which is a child of the root element.”

◆ Column A contains information about each repeating element —
<employee> in this case. It shows the namespace the element belongs
to, http://www.pgacon/com/employeelist in this example. If there is an
associated XSD schema, the name of the schema file is shown as well
(c:\XMLFiles\EmployeeList.xsd in this example).

◆ The remaining cells contain the data from the XML file.

When you open an XML file in this manner you cannot use the File → Save
command to save it because it is opened as a read-only file. You must use File →
Save As to assign a new name to the file in order to save it. This restriction is a
safety feature that prevents you from inadvertently overwriting the original XML file.

Open Using the XML Source Task Pane
Opening an XML data file using the XML Source task pane provides you with max-
imum flexibility for placing the XML data in your workbook. Rather than creating
a single table for all of the XML data, as the Open as an XML List option does,
using the XML Source task pane lets you select which XML elements to insert in the
worksheet and where to place them.

When you open an XML file using this option, Excel does not read any data into
the worksheet. Instead, it creates a map of the XML file’s structure in the XML
Source task pane. The map is based on the XML file’s schema or, if a schema is not
specified or available, is inferred from the structure of the XML data. Once you
have this map, you place elements in your worksheet by dragging them from the
XML Source task pane and dropping them at the desired location. This process was
described in detail earlier in the “Using Maps” section of this chapter. You can map
only those elements whose data you need in the worksheet, omitting those you do
not need. Once you have completed the mapping, use the Refresh command to
read the data from the file into the mapped worksheet locations.

This process may be clearer with an example. These steps assume that you have
the XML data file and schema from Listings 8-1 and 8-2 available on your system.

1. Create a new, blank workbook.

2. Choose File → Open, and select the Employees.xml file to open.

3. When prompted, select the Open Using the XML Source Task Pane option.
Excel displays the structure of this XML file in the XML Source task pane,
as shown in Figure 8-8.

170 Part III: XML and Other Office Applications

Figure 8-8: The structure of the Employee.xml file is
displayed in the XML Source task pane.

4. Drag the <name> element from the XML Source task pane and drop it in
cell A2.

5. Drag the <department> element to cell B2.

6. Complete the mapping by dragging the <salary> element to cell D2.

7. Click the Refresh button on the List and XML toolbar. Excel reads the data
from the XML file and places it in the worksheet, which now should look
like Figure 8-9.

Figure 8-9: The worksheet after refreshing the XML data.

When looking at Figure 8-9, note that Excel has created a single XML table.
Even though the table is in two parts — cells A2:B7 and cells D2:D7 — it is consid-
ered a single table because both parts were mapped from the same XML file. The
different parts of the table do not even have to be on the same rows. For example,
the <salary> element could have been mapped to cell C12 and it still would be part
of the table, with corresponding rows.

Chapter 8: Excel and XML 171

Copying and Moving Lists
If you move an entire list (using the Edit → Cut command followed by Edit → Paste, the
list definition moves with it so that subsequent refresh operations will refresh the
data in the new location. If you copy a list, however, you copy the data only — the list
remains in its original location. A refresh will affect the original list and not the copy.
You can, of course, use a formula to copy list data to other worksheet locations so it
too can be refreshed. If you move part of a list, you move the data only — the cells
from which you cut the data will be empty until the next refresh.

Actions you can take with an XML list are covered later in the chapter in the sec-
tion “Working with XML Lists.”

Importing XML Data
Importing XML data is similar in many respects to opening an XML file, as was dis-
cussed earlier in this chapter. The main differences are:

◆ You can import XML data into an existing workbook, whereas opening an
XML file creates a new workbook.

◆ You can validate XML data against its schema when you import the data
but not when you open an XML file.

When you import data, the result is a list in the worksheet that is linked to the
XML data file (and its schema, if any).

Importing into a New List
To import XML data and create a new list, the procedure is as follows:

1. (Optional.) Place the cell pointer at the location where you want the top-
left corner of the list located.

2. Choose Data → XML → Import or click the Import button on the List and
XML toolbar. Excel displays the Import XML dialog box. Select the XML
file to import, and click Import.

3. Excel displays the Import Data dialog box, shown in Figure 8-10. Select
the location for the list:

172 Part III: XML and Other Office Applications

■ As a list in the current worksheet with the top-left corner of the list
located at the indicated cell. The default cell is the location of the cell
pointer. You can edit the cell address directly or click the adjacent but-
ton to indicate the list position by pointing in the workbook.

■ As a list in a new worksheet. The list will be placed with the top-left
corner in cell A1.

Figure 8-10: The Import Data dialog box.

4. Click the Properties button if you want to change the list’s properties.
(These are explained in detail later in the chapter. Most importantly, you
must change a property if you want the XML data validated against its
schema when it is imported.)

5. Click OK to close the Import Data dialog box and perform the import
operation.

If you have chosen to validate the data during importing, Excel displays a mes-
sage describing any validation violations that are found. Violations do not prevent
the data from being imported.

Importing into an Existing List
You can import XML data into an existing list. Before doing so, you must decide
whether the newly imported data will replace existing data in the list or will be
appended at the end of the list. The structure of the data to be imported must match
the structure of the XML mapping. With the List and XML toolbar displayed, here’s
what to do:

1. Put the cell pointer in the XML list that you want to import into.

2. Click the XML Map Properties button on the List and XML toolbar to dis-
play the XML Map Properties dialog box.

3. In the When Refreshing/Importing Data section of the dialog box, choose
whether you want new data to overwrite existing data or to be appended
at the end of the list.

4. Click OK to close the dialog box.

Chapter 8: Excel and XML 173

Refreshing versus Importing
It might seem that importing data to an existing XML list and refreshing the list do
the same thing. Almost, but not quite. Refreshing a list always reads data from the
same XML file, whereas importing data lets you read data from a different XML file
(as long as it follows the same mapping). You would use refreshing to ensure that
your list always contains the latest data from a specific XML file, while you would
use importing to obtain data from different XML files.

5. Click the Import button on the List and XML toolbar to display the Import
XML dialog box.

6. Select the XML file to import, and click Import.

Once you have imported the XML data, you can work with the list as described
in the following section.

Working with XML Lists
Once you have an XML list in a workbook, what can you do with it? As mentioned
earlier, XML data can be used just like any other worksheet data for formulas and
charts. In addition, there are some special techniques for working with XML lists.
They are explained in this section.

XML List Properties
Each XML list in a workbook has a set of properties that control certain aspects of
how the list works. You can access these properties in several ways:

◆ By clicking the Properties button in the Import XML dialog box when
importing XML.

◆ By clicking the XML Map Properties button on the List and XML toolbar
when the cell pointer is in the list.

◆ By choosing Data → XML → XML Map Properties when the cell pointer is
in the list.

The XML Map properties dialog box is shown in Figure 8-11. Each list, or map,
has its own set of independent properties. The name of the map is displayed in the
Name field at the top of the dialog box. Other property settings are described in
Table 8-1.

174 Part III: XML and Other Office Applications

Figure 8-11. The XML Map Properties dialog box.

TABLE 8-1 PROPERTY SETTINGS FOR AN XML MAP

Property Description Default
Setting

Validate data If selected, the XML data is validated against the Off
against... associated schema during importing and exporting.

See the section “XML Data Validation” for more details.

Save data source If selected, the XML list remains linked to the XML data On
definition... file and can be refreshed with new/changed data. If not

selected, the link between the XML list and the XML data
file is removed, meaning that the data becomes static
and cannot be refreshed.

Adjust column When selected, column width is automatically adjusted On
width to suit the table data.

Preserve column When selected, the layout, filtering, and sort order of On
sort/filter/layout columns in the list are preserved.

Preserve number When selected, the formatting of numbers in the list is On
formatting preserved.

Insert cells for When selected, new cells are inserted into the worksheet On
new data... to accommodate new data during a refresh or import

operation; existing worksheet data is not overwritten.

Continued

Chapter 8: Excel and XML 175

TABLE 8-1 PROPERTY SETTINGS FOR AN XML MAP (Continued)

Property Description Default
Setting

Overwrite existing When selected, existing worksheet data is overwritten if Off
cells... there is not enough space for new data during a refresh/

import operation.

Overwrite existing If selected, then during a refresh new data returned from On
data with new data the XML data file overwrites existing data in the list.

Append new data If selected, then during a refresh new data returned from Off
to existing data the XML data file is appended at the end of existing data

in the list.

Excel is inconsistent with terminology, and you’ll find XML List and XML

Map used to refer to the same thing.

Formulas in Lists
Placing formulas in lists is a powerful technique supported by Excel. By putting a
formula in a list, as opposed to somewhere else in the workbook, the result of the
calculation can be exported with the other list data. This enables you to import
XML data, use Excel formulas to perform calculations on the data, and then export
the results of the calculations as XML for use by other programs.

In order to include a formula in an XML list, the list must contain an XML ele-
ment with a data type that Excel interprets as a number, a date, or a time. You place
the formula in that column of the list in the worksheet. As with any list, formulas
are automatically filled in when new data rows are added. When you export the list,
the result of the formula is included as the element’s content.

To illustrate, I’ll use a modification of the EmployeeList schema that was pre-
sented earlier in the chapter. The modification consists of adding an optional ele-
ment named <monthlySalary>, which is data type float. The resulting map is
shown in the XML Source task pane in Figure 8-12.

The schema was mapped to the worksheet by dragging the <employee> element
from the XML Source task pane to cell A2. Then, the Employees.xml data file was
imported into the map. At this point, the list looks like Figure 8-13. The
<monthlySalary> column is empty because it is an optional element in the map
and the Employees.xml file does not contain data for this element.

176 Part III: XML and Other Office Applications

Figure 8-12: The modified EmployeeList map
with the optional <monthlySalary> element.

Figure 8-13: After importing Employees.xml into the modified EmployeeList map.

The next step is to enter the formula =F3/12 into cell G3 and then copy the for-
mula to cells G4:G7. After formatting columns F and G as Currency, the worksheet
looks like Figure 8-14.

Figure 8-14: The <monthlySalary> column contains a formula.

To verify that the formula results can be exported, you can export this list to an
XML file (the details on how to export an XML list are covered in the next section).
If you open the resulting XML file in a text editor, you can see that the data in the
<monthlySalary> column has been included. Here’s a snippet of XML data that
shows one <employee> element from the exported XML file:

Chapter 8: Excel and XML 177

<ns1:employee gender=”male”>
<ns1:name>Wilson Anderson</ns1:name>
<ns1:ID>51432</ns1:ID>
<ns1:dateOfHire>2000-10-01</ns1:dateOfHire>
<ns1:department>IT</ns1:department>
<ns1:salary>31200</ns1:salary>
<ns1:monthySalary>2600</ns1:monthySalary>

</ns1:employee>

You are not limited to including formulas in the same list that contains the data
that the formula will use. A formula in one list can make use of data in one or more
other lists, as well as data from nonlist parts of the worksheet.

Exporting an XML List
Excel lets you export a list to an XML file with some restrictions. The most impor-
tant restriction has to do with how many levels are present in the XML map. The
map shown in Figure 8-15, for example, is from the Booklist schema that you saw
in Chapter 7. You can think of this map as having two levels because the <first
name> and <lastname> elements are children of the <book> element, which is in
turn a child of the root element <books>. Put another way, if you start at the root
element you have to go down two levels to get to the <firstname> and <last
name> elements. Excel refers to this kind of map — with two or more levels — as con-
taining lists of lists, and they cannot be exported.

Figure 8-15: An XML map
that contains two levels.

178 Part III: XML and Other Office Applications

Compare this with the map shown in Figure 8-16. This second map contains the
same elements as the first map but they are all on one level. This kind of map can
be exported.

Figure 8-16: An XML map that
contains the same elements as
the map in Figure 8-15 but on
only one level.

Why does Excel distinguish between single-level maps and multilevel maps
when it comes to exporting the data? After all, Excel can import data from both
kinds of maps. Here’s what happens. When you import data using a multilevel map
such as the one in Figure 8-15, Excel flattens the data. Each element in the map
gets a column in the worksheet, but the information about the relative position of
each element in the map is lost. For example, the fact that <firstname> is a child
of <author> which is itself a child of <book> is lost. If the data were exported, its
structure would not agree with the original map (schema), and this is why Excel
does not permit it.

In contrast, when you open a single-level map such as the one shown in
Figure 8-16 the data is already flat and no information about structure is lost when
it is exported.

If you try to export an invalid map, Excel displays a dialog box with an expla-
nation. You can also check a map in the XML Structure task pane. With the map
displayed, click the Verify Map for Export command at the bottom of the task pane,
and Excel tells you if it is valid for export or not and, if not, the reasons why the
map is invalid.

Chapter 8: Excel and XML 179

There are two ways to export an XML map. The first requires that the cell pointer
be in the map that you want to export. Then, select Data → XML → Export. If the
map is valid for export, Excel displays the Export XML dialog box in which you
select a destination and specify a name for the XML file.

The second method lets you export any XML map in the workbook without
regard to the location of the cell pointer:

1. Choose File → Save As. Excel displays the Save As dialog box.

2. Select XML Data in the Save As Type list.

3. Enter a filename for the exported file and click Save.

4. XML displays a warning that saving the file as XML data will result in
the loss of certain worksheet features. Click Continue to proceed to export
the file.

These two methods are equivalent as to the XML file that is created. They differ
as follows:

◆ After using the Export command, you continue working in the active
workbook. Subsequent File → Save commands save the workbook with
formatting and all changes.

◆ After using the Save As XML Data command, you are working in the
XML data file and not the workbook. Subsequent File → Save commands
save the data but not any formatting or other such elements you have
added.

When you export XML data, Excel follows these rules:

◆ UTF-8 encoding is always used for the output file.

◆ Any use of the “http://www.w3.org/2001/XMLSchema-instance” name-
space is deleted, including references to a schema file.

◆ All namespaces are defined in the root element.

◆ Existing namespace prefixes are overwritten with prefixes of ns0 for the
default namespace and ns1, ns2, and so on for additional namespaces.

◆ Empty elements are created for blank cells that correspond to required
elements but not for cells that correspond to optional elements.

◆ Comments are not preserved.

For example, Listing 8-3 shows an original XML data file before being imported
into Excel, and Listing 8-4 shows the result of exporting this data from Excel.

180 Part III: XML and Other Office Applications

Listing 8-3: The Original XML Data File

<?xml version=”1.0” encoding=”UTF-8”?>
<books xmlns=”http://www.pgacon.com/flatbooklist”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.pgacon.com/flatbooklist

C:\XMLFiles\FlatBookList.xsd”>
<book>
<title>Hamlet</title>
<authorFirstName>William</authorFirstName>
<authorLastName>Shakespeare</authorLastName>
<binding>hardcover</binding>
<pubYear>1995</pubYear>
<comments>With commentary</comments>

</book>
</books>

Listing 8-4: The Exported XML Data File

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<ns1:books xmlns:ns1=”http://www.pgacon.com/flatbooklist”>
<ns1:book>
<ns1:title>Hamlet</ns1:title>
<ns1:authorFirstName>William</ns1:authorFirstName>
<ns1:authorLastName>Shakespeare</ns1:authorLastName>
<ns1:binding>hardcover</ns1:binding>
<ns1:pubYear>1995</ns1:pubYear>
<ns1:comments>With commentary</ns1:comments>

</ns1:book>
</ns1:books>

Other List Commands
Excel has some additional commands for working with lists. They are accessed on
the Data → List menu, and those commands that are relevant to XML lists are
described in Table 8-2.

TABLE 8-2 XML LIST COMMANDS

Command Action

Resize List Lets you specify a new size for the list. Excel automatically resizes
a list as needed so you rarely need this command.

Continued

Chapter 8: Excel and XML 181

TABLE 8-2 XML LIST COMMANDS (Continued)

Command Action

Convert to Range Unlinks the list from its data source (XML file).

Total Row Inserts a row at the bottom of the list with formulas that sum
each column that contains numerical data.

Hide Border of Hides the border of inactive lists (lists that do not contain the cell
Inactive Lists pointer). Affects all lists in the workbook.

XML Data Validation
Excel can validate XML data against its schema when the data is imported and
when the data is exported. Excel does not validate data as you work in the work-
sheet. For example, if you enter an invalid value in a cell of an XML list, it will not
be caught and marked as invalid until you export the XML data.

Validation is controlled by the Validate Data Against Schema option in the XML
Map Properties dialog box, as was covered earlier in this chapter. Each individual
map in the workbook has its own set of properties, so you can enable validation for
some maps and not for others. To validate data during import, you must set this
option during the import process as was described earlier in the “Importing XML
Data” section.

When Excel validates data during export, a validation error does not prevent the
exporting from occurring. Rather, the invalid data is exported and Excel displays a
message notifying you of the violation and explaining the nature of the problem.
Figure 8-17 shows an example.

Figure 8-17: Excel displays a message when data
fails validation during export.

You can use Excel’s own data validation tools with XML data. These are com-
pletely separate from XML schema validation. Use the Data → Validation command
to access these tools.

182 Part III: XML and Other Office Applications

Saving Workbooks as XML
Saving an Excel workbook as XML is entirely different from exporting data from
an XML list or saving a mapping as XML data, procedures that were covered earlier
in the chapter. When you save a workbook as XML, Excel uses a special XML
vocabulary called XML Spreadsheet (XMLSS). XMLSS is designed to encompass
essentially all the contents of a workbook, not just selected data. Its purpose is to
enable you to save an entire workbook in XML format, permitting other programs
to access the information in the workbook without having to be able to read
Microsoft’s proprietary WKS file format.

The XMLSS format saves most but not all aspects of a workbook contents.
Content that is not retained includes

◆ Auditing trace arrows

◆ Charts and other graphics objects

◆ Macro sheets

◆ Dialog sheets

◆ Custom views

◆ Drawing object layers

◆ Outlining

◆ Scenarios

◆ Shared workbook information

◆ User-defined functions

◆ VBA projects

To save a workbook in XML Spreadsheet format:

1. Select File → Save As.

2. Select XML Spreadsheet in the Save as Type list.

3. Enter a name for the file.

4. Click Save.

After saving a workbook in XMLSS format, you can continue working in the
program as usual. Subsequent File → Save commands continue to save the work-
book in XMLSS format. To save again in standard Excel WKS format, you must
issue the File → Save As command and select Microsoft Excel Workbook in the Save
as Type list.

Chapter 8: Excel and XML 183

Chapter 9

Access and XML
IN THIS CHAPTER

◆ Importing XML data

◆ Understanding Access and XML data types

◆ Exporting Access objects

◆ Understanding the ReportML vocabulary

◆ Examining export options

THERE ARE MANY PARALLELS between Access (or any database management program)
and XML. After all, both are technologies for structuring and storing data. Fields in
a database table have an obvious connection to elements and attributes in XML
because both are used for storing data. Records in a database table are equivalent to
repeating elements in an XML file. As this chapter explains, Access provides tools
for both importing and exporting XML.

Importing XML Data and Schemas
Access enables you to import both XML data and XML schemas to a database. You
can import data into a new table or an existing table. When you import a schema,
Access creates a new, empty table with the structure of the imported schema.

Access’s XML import is limited to XML elements. Data in attributes is simply

ignored. Attributes are also ignored when importing the structure of an

XML file.

XML Data and Tables
Access keeps all of its data in tables, and when importing XML data, Access looks
for “tables” in the XML file. An XML file does not of course contain actual tables —
what Access is looking for is data that is structured like a table and can be imported
into one. In essence, this is a repeating element that is only one level deep. By “one 185

level deep,” I mean a repeating element and its child elements that contain data
only. The following examples illustrate this.

The first example uses the Employees.xml data file that you were introduced to
in Chapter 8. The structure of this file is shown in Figure 9-1; the file’s one attribute
is not shown because Access doesn’t support attributes.

Figure 9-1: The structure of
the Employees.xml data file.

You can see that this file has a root element named <employeeList>, which
contains one repeating element named <employee>, which in turn has five child
elements (<name>, <ID>, and so on). Each of the child elements holds data and none
of them contains its own child elements. This structure is one level deep and Access
would import it as a single table with five fields.

In contrast, Figure 9-2 shows the structure of the MyBooks.xml data file that you
first saw in Chapter 7, “Word and XML.”

Figure 9-2: The structure of the
MyBooks.xml data file.

186 Part III: XML and Other Office Applications

This structure is not one level deep because the <book> element contains the
child element <author>, which has its own child elements. There are two levels in
this structure and therefore Access cannot import it as a single table. Rather, Access
sees this file as containing two tables:

◆ A “book” table with the fields title, pubyear, and comments.

◆ An “author” table with the fields firstname and lastname.

When you import data from a file that contains multiple tables such as
MyBooks.xml, Access always imports all the tables in the file. You can later delete
unneeded tables from Access if desired.

Importing Data
To import data from an XML file, follow these steps:

1. Choose File → Get External Data → Import. Access displays the Import dia-
log box.

2. Select XML in the Files of Type list.

3. Select the desired XML file and click Import. Access displays the Import
XML dialog box with the file’s tables listed, as shown in Figure 9-3. You
can examine the structure of the file by expanding nodes in the Tables
tree, but you cannot choose what to import because Access always
imports the entire file.

4. Click the Options button to display the import options (shown in Figure 9-3).
Make a selection as follows:

■ Select the Structure Only option to create a new, empty table based on
the structure of the XML file.

■ Select the Structure and Data option to import the XML data into a
new table (or tables, depending on the file structure).

■ Select the Append Data to Existing Table(s) option to append imported
data to existing tables.

5. If you want to apply a transform to the data when it is imported, click the
Transform button and select the transform in the dialog box that appears.

6. Click OK. Access imports the data and displays a message when the
process is completed.

Chapter 9: Access and XML 187

Figure 9-3: Importing XML data into Access.

When you select the Append Data to Existing Table(s) option, Access compares
the structure of the table(s) being imported with tables that already exist in the
database. If a match is found, the data is appended to that table. If no match is
found, the data is placed in a new table. Tables are named according to the name of
the XML element being imported. If the name is already in use, a number is
appended to the name.

Importing Structure
When you import an XML structure into Access you are not importing any data.
Access reads the structure of the XML file and creates one or more new, empty
tables in the database based on the XML structure. You can import structure from
an XML data file or from an XML schema. To import XML structure:

1. Choose File → Get External Data → Import. Access displays the Import dia-
log box.

2. Select XML in the Files of Type list.

3. Select the desired XML file or XSD schema file and click Import. Access
displays the Import XML dialog box with the file’s tables listed.

188 Part III: XML and Other Office Applications

Imported but Not Linked
It’s important to realize that when you import XML data into Access it is not linked
to the original XML file. This is different from Excel in which an imported XML list
remains linked to the XML file and can be refreshed with new data with a single
command. The only way to “refresh” a table that contains imported XML data is to
repeat the import process. Access can link a table to various external data sources,
but links to XML files are not supported.

4. If you selected an XML file in Step 3, click the Options button and select the
Structure Only option. If you selected an XSD schema this is not necessary.

5. Click OK. Access imports the structure and displays a message when the
process is completed.

Access and XML Data Types
Access has different data types that can be assigned to fields in a table. Access’s
data types are similar to but not identical to the data types available in XML. When
importing data or structure from XML, data types are handled as follows:

◆ When you import data from an XML file into a new table, all fields in the
table are assigned the Text data type.

◆ When you import structure from an XML data file, all fields in the new
table are assigned the Text data type.

◆ When you import structure from an XSD schema file, each field in the
new table is assigned the Access data type that most closely matches the
data type specified in the schema.

After importing data or a table structure, you can always use Access’s table
design mode to change the data type of fields. Of course, if the table contains data,
the data type changes you make must be consistent with that data.

Exporting Access Objects to XML
When discussing Access’s capabilities for exporting XML data, it’s important to
have an understanding of Microsoft’s primary motivation for including these in the
program. Otherwise, you may find it strange that Access’s XML export capabilities
are designed the way they are.

Exporting XML from Access is a lot more than simply making data from an
Access database available to other programs that can read XML. You can do this, of
course, but that’s only a small part of the story. More important is the fact that the
data in a database is not of much use unless it can be viewed and perhaps edited.
Much of Access itself is devoted to these tasks. Access forms, reports, queries,
PivotTables, and PivotCharts (all considered Access objects) are designed specifically
to present a database’s raw data into a usable form. These Access front-end compo-
nents are powerful and flexible but have the significant shortcoming that the users
must have Access installed on their system. Although Microsoft Office is widespread,
most Office installations are the Standard edition, which doesn’t include Access. As
of this writing, it isn’t known whether Microsoft will follow this same pattern for
distributing Office 2003, but in any case it, remains true that many users whom you
might want to be able to view the data won’t have Access installed.

Chapter 9: Access and XML 189

The solution that Microsoft decided on was to use a Web browser for the front
end. Essentially every computer has a Web browser installed, and it is Internet
Explorer on an increasingly large number of systems. Since IE is a free download,
software availability ceases to be an issue. By making it possible to view and edit
Jet or SQL Server data in Internet Explorer, Microsoft has greatly simplified the task
of the Access developer.

An added advantage of this approach is that a browser-based application is, if
properly designed, stateless. This means that each operation does not depend on the
outcome of the previous operation, and the server does not have to “remember” the
status, or state, of each user. As a result, the front-end application does not have to
maintain a connection to the server throughout a session, reducing the load on the
server hardware and software.

In broad outline, here’s how browser-based database front-end applications
work: the user opens the application in his or her browser, the Web server estab-
lishes a connection to the back-end database and retrieves the requested data, and
the server encodes the data as HTML and returns it to the user for viewing in the
browser. If the application permits editing of the data, the new or modified data is
returned from the browser to the Web server, which in turn posts the changes to the
database. XML is an essential part of Access’s support for browser-based front ends,
including Data Access Pages.

Sample Data
When exploring a new technology it is always useful to have sample data to work
with. For Access, Microsoft provides the Northwind database that includes a selec-
tion of tables, queries, forms, and reports that you can use. This database comes in
two versions: Northwind.mdb is an Access application that uses the Jet database
engine. NorthwindCS.adp is an Access data project that uses Microsoft SQL Server
(which must be installed or available on a remote server). The examples in this sec-
tion use Northwind data and objects.

190 Part III: XML and Other Office Applications

Statelessness and the Web
The Web is by its very nature stateless, with each request for an HTML page being
totally independent of anything that happened before or will happen after. Certain
Web-based applications, such as online catalog purchases, require that some state
information be maintained throughout the duration of a user’s interaction with the
Web site. At the server side of things, programmers have devised methods, such as a
Session.State object maintained by Web server software, to keep track of individuals
as they move from page to page on the Web site. On the client side, cookies are used
by many Web sites to store user information. When a Web site “remembers” who you
are a month after your last visit, for example, the state information is being stored in
a cookie.

To avoid changing the original sample database, I recommend that you copy the
MDB or ADP file from its original folder (Samples under the Office installation
folder) to another location and use the copy.

The ReportML Vocabulary
ReportML is an XML vocabulary designed for representing Access objects (tables,
reports, queries, and so forth) as XML data. ReportML represents these objects in
complete detail, storing every property and value in the object regardless of whether
that property or value is needed by whatever task the ReportML is being generated
for. When you export XML objects from Access, the first thing that Access does is
generate a ReportML file for the Access object being exported. The ReportML file is
then used in the next step, which is generating the final output files that are used to
provide the browser-based front-end to the Access data (as will be covered in detail
soon). When this step is complete, the ReportML file is no longer needed and is
deleted by default. If you’re interested, it can be instructive to examine a ReportML
file to see the way in which an Access object is represented in XML. For example,
Listing 9-1 shows the first couple of dozen lines of the ReportML file that is created
when exporting the Catalog report from the Northwind database. The entire file is
almost 2,000 lines long, which is not too surprising when you consider the amount
of information that needs to be represented for an Access report.

Listing 9-1: Portion of an Access-Generated ReportXM File

<?xml version=”1.0” encoding=”UTF-8”?>
<RPTML version=”1.0”>
<SYSTEM-SETTINGS>
<LOCALE>1033</LOCALE>
</SYSTEM-SETTINGS>
<REPORT reportid=”Catalog”>
<TITLE>Catalog</TITLE>
<DESCRIPTION></DESCRIPTION>
<LAYOUT>absolute</LAYOUT>
<OBJECT-TYPE>report</OBJECT-TYPE>

Chapter 9: Access and XML 191

Data Access Pages and XML
A Data Access Page (DAP) is a browser-based front end that lets users view and work with data
in an Access or SQL Server database. Access provides tools for designing Data Access Pages and
also permits reports, queries, and tables to be saved directly as Data Access Pages (with some
limitations). XML is involved in the creation of Data Access Pages, but in a behind-the-scenes
manner that is invisible to the user. For this reason, Data Access Pages are not covered in this book.
Exporting objects as XML provides more flexibility than a Data Access Page, as you’ll see in the
following sections.

<VLINK>#800080</VLINK>
<LINK>#0000ff</LINK>
<PRINTER-ROW-SPACING>0</PRINTER-ROW-SPACING>
<PRINTER-PRINT-QUALITY>300</PRINTER-PRINT-QUALITY>
<PRINTER-ORIENTATION>portrait</PRINTER-ORIENTATION>
<PRINTER-PORT>Microsoft Document Imaging Writer Port:</PRINTER-PORT>
<PRINTER-PAPER-SIZE>letter</PRINTER-PAPER-SIZE>
<PRINTER-PAPER-BIN>form source</PRINTER-PAPER-BIN>

<PRINTER-ITEM-SIZE-WIDTH>9363</PRINTER-ITEM-SIZE-WIDTH>

<PRINTER-DEFAULT-SIZE>true</PRINTER-DEFAULT-SIZE>
<PRINTER-ITEM-SIZE-HEIGHT>0</PRINTER-ITEM-SIZE-HEIGHT>
<PRINTER-ITEMS-ACROSS>1</PRINTER-ITEMS-ACROSS>
<PRINTER-ITEM-LAYOUT>horizontal column layout</PRINTER-ITEM-LAYOUT>
<PRINTER-DUPLEX>simplex</PRINTER-DUPLEX>
<PRINTER-DRIVER-NAME>Microsoft Office Document Image Writer Driver
</PRINTER-DRIVER-NAME>

<PRINTER-DEVICE-NAME>Microsoft Office Document Image Writer
</PRINTER-DEVICE-NAME>

<PRINTER-DATA-ONLY>false</PRINTER-DATA-ONLY>
<PRINTER-COPIES>1</PRINTER-COPIES>
<PRINTER-COLUMN-SPACING>360</PRINTER-COLUMN-SPACING>
<PRINTER-COLOR-MODE>monochrome</PRINTER-COLOR-MODE>
<USE-DEFAULT-PRINTER>true</USE-DEFAULT-PRINTER>
<FETCH-DEFAULTS>true</FETCH-DEFAULTS>
<MOVEABLE>true</MOVEABLE>
<ALLOW-DESIGN-CHANGES>false</ALLOW-DESIGN-CHANGES>
<DIR>left-to-right</DIR>
<HAS-MODULE>false</HAS-MODULE>
<TIMER-INTERVAL>0</TIMER-INTERVAL>
<KEY-PREVIEW>false</KEY-PREVIEW>
<PALETTE-SOURCE>(Default)</PALETTE-SOURCE>

If you want to examine the ReportML files, you must tell Access not to delete
them. This is accomplished by adding the following entry to the Windows registry:

HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Access\ReportML

If you aren’t familiar with using RegEdit to edit the registry, you can insert this
key into the registry as follows:

1. Use a text editor to create a file with the contents shown in Listing 9-2.

2. Save the file under any name you like and with the .reg extension.

192 Part III: XML and Other Office Applications

3. Close the text editor.

4. Locate the file in Windows Explorer and double-click it.

5. When prompted as to whether you want to add the information to the
registry, click Yes.

With this registry entry in place, the ReportML files that Access creates will not
be deleted. After you perform an export operation (as will be described soon), you
can find and open the ReportML file to examine its contents. These files are given
the name object_report.xml where object is the name of the Access object you
exported.

Listing 9-2: The Registration Entry File

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Access\ReportML]

You can view an XML file in any text editor, but if you have Internet Explorer

version 5 or later, you may prefer to use it. IE has a default style sheet for dis-

playing XML that uses color-coding and indentation to make the XML easier

to read. Of course, you can’t edit the XML in IE.

How does Access use the ReportML file to create the final exported XML objects?
The answer lies in two XSL transforms:

◆ RPT2DAP.XSL generates the final HTML page from the ReportML page
when you are creating a Data Access Page.

◆ RPT2HTM4.XSL generates the requested output files from the ReportML file
when you are exporting XML objects.

Both of these XSL files are located in the Office11\AccessWeb folder. As you
might expect, they are quite complex. You can open them and examine their work-
ings if you desire, but I do not recommend changing them unless you know XSLT
well and are sure of what you are doing (and always keep a backup copy!). It is pos-
sible to tweak these transforms to modify the output that is created when creating
Data Access Pages or exporting XML objects, but only advanced XSLT users should
attempt that.

Chapter 9: Access and XML 193

As of this writing, Microsoft warns Access users that the RPT2HTM4.XSL
transform is “a sample” and that applications created with it — that is,

browser-based front ends created by exporting XML objects — should be

thoroughly tested. In my opinion, any application should be thoroughly

tested, but this warning may be a good reason to take extra care.

Export Basics
This section explains the basics of exporting XML objects from Access. The follow-
ing sections deal with the various export options that are available and explain
how to make use of the exported files. You can export tables, queries, forms, and
reports as follows:

1. In the Access project window, right-click the object you want to export
and select Export from the pop-up menu. Access displays the Export
dialog box.

2. Select XML in the Save as Type list.

3. Select a destination folder for the exported files; the default is the folder
where the database file (MDB or ADP) is located.

4. Enter a name for the exported files, or accept the default suggested by
Access, which is the name of the Access object being exported. Do not
include an extension because Access adds it automatically.

5. Click Export. Access displays the Export XML dialog box, shown in
Figure 9-4. Select the information to be exported from the following:

■ Data (XML). Exports an XML file containing the object’s data.

■ Schema of the data (XSD). Exports the data schema as a separate
XSD file.

■ Presentation of your data (XSL). Exports HTML and XSL files for data
presentation.

Figure 9-4: You select what to export in
the Export XML dialog box.

194 Part III: XML and Other Office Applications

6. Click the More Options button to set advanced export options (explained
in the next section).

7. Click OK. Access performs the export operation.

You can also display the Export dialog box by opening the object you want

to export and then selecting Export from the File menu. You must use this

technique if you want to apply a sort or filter to the object that will be

reflected in the exported data.

To see how this process works and what the results look like, you can use a
report in the Northwind database. Open the database and display the Reports sec-
tion of the project dialog box, as shown in Figure 9-5.

Figure 9-5: Selecting a report in the Project dialog box.

Double-click Invoice to see what the Invoice report looks like in Access.
Figure 9-6 shows part of the report.

When you have finished viewing the report, close it. Then, follow the steps out-
lined above to export this report as XML. In Step 5, select all three options. When
the process is complete, the following files will be in the folder where the
Northwind database file is located:

◆ Invoice.htm

◆ Invoice.xml

◆ Invoice.xsd

◆ Invoice.xsl

Chapter 9: Access and XML 195

Figure 9-6: Viewing the Invoice report in Access.

Double-click the file Invoice.htm to open it in Internet Explorer. (This may take
a moment or two, for reasons that will be explained later.) The file appears as
shown in Figure 9-7. Compare this to the same report displayed in Access as shown
in Figure 9-6. They are essentially identical.

Figure 9-7: Viewing the exported Invoice report in Internet Explorer.

The next section explains how this works.

196 Part III: XML and Other Office Applications

AN ANALYSIS
To make the most effective use of Access’s XML export capabilities, you should
understand how the exported files enable the user to view the report in the browser.
It will help if you have some understanding of HTML, VBScript, and the inner
workings of Internet Explorer, but that’s not really necessary.

Start with the Invoice.html file displayed in Internet Explorer, then select
Source from IE’s View menu. IE will start the Notepad application and display the
raw HTML that is behind the report presented in the browser. Figure 9-8 shows the
first few lines of this HTML (it is a very long file). If you browse through this file
and have some knowledge of HTML, you can see that it is a standard if rather com-
plicated HTML file.

Figure 9-8: Viewing the HTML behind the browser display of the Invoices report.

Next, use Windows Explorer to locate the Invoice.htm file that was created during
the export process. Right-click the filename, select Open With from the pop-up
menu, and then select Notepad from the next menu. The text of this file is shown in
Listing 9-3.

Listing 9-3: Contents of the Invoice.htm File

<HTML xmlns:signature=”urn:schemas-microsoft-com:office:access”>
<HEAD>
<META HTTP-EQUIV=”Content-Type” CONTENT=”text/html;charset=UTF-8”/>
</HEAD>
<BODY ONLOAD=”ApplyTransform()”>
</BODY>
<SCRIPT LANGUAGE=”VBScript”>
Option Explicit

Chapter 9: Access and XML 197

Function ApplyTransform()
Dim objData, objStyle

Set objData = CreateDOM
LoadDOM objData, “Invoice.xml”

Set objStyle = CreateDOM
LoadDOM objStyle, “Invoice.xsl”

Document.Open “text/html”,”replace”
Document.Write objData.TransformNode(objStyle)

End Function

Function CreateDOM()
On Error Resume Next
Dim tmpDOM

Set tmpDOM = Nothing
Set tmpDOM = CreateObject(“MSXML2.DOMDocument.5.0”)
If tmpDOM Is Nothing Then
Set tmpDOM = CreateObject(“MSXML2.DOMDocument.4.0”)

End If
If tmpDOM Is Nothing Then
Set tmpDOM = CreateObject(“MSXML.DOMDocument”)

End If

Set CreateDOM = tmpDOM
End Function

Function LoadDOM(objDOM, strXMLFile)
objDOM.Async = False
objDOM.Load strXMLFile
If (objDOM.ParseError.ErrorCode <> 0) Then
MsgBox objDOM.ParseError.Reason

End If
End Function

</SCRIPT>
</HTML>

You’ll notice immediately that this text is completely different from the HTML
source that you viewed in IE (see Figure 9-8). Shouldn’t they be the same? Not
necessarily — here’s how it works.

When a user opens Invoice.htm in Internet Explorer, the text shown in Listing
9-3 is loaded. This file consists mostly of VBScript, which IE executes when it loads

198 Part III: XML and Other Office Applications

the file. The script makes use of a software component called the Document Object
Model, or DOM, that is part of the Internet Explorer installation. The DOM provides
tools for working with XML — in this case, specifically the ability to apply a trans-
form to XML data and output the data. Here’s what happens when Internet Explorer
loads Invoice.htm. You can follow this in the script code if you are familiar with
VBScript.

1. IE loads the XML data from Invoice.XML into the DOM software
component.

2. IE loads the transform instructions from Invoice.xsl into the same DOM
software component.

3. The transform is applied to the XML data and the result of the transform,
which is the HTML code that was shown in Figure 9-8, is displayed in the
browser.

It’s the third step that is mostly responsible for the apparently slow loading of
Invoice.htm into the browser. A lot more is going on than just loading HTML into
the browser — the entire process of performing the transform must be done as well,
and for large data sets with complex transforms, this can take a while.

What about the XSD file that is generated, Invoice.xsd in this example?
It is referenced in the Invoice.xml file as the schema for the data and is used dur-
ing the transform process to provide information about how the data should be
interpreted.

This method of exporting XML objects for browser-based data presentation
offers significant flexibility. Once the files are in place and accessible to the users
(via the Internet, an intranet, or a shared server), you need only regenerate the XML
data file to update the data. Also, if you are conversant with XSL, you can modify
the transformation to create a different output, perhaps altering some aspects of the
report’s appearance or layout.

SPEEDING THINGS UP
One advantage of this method of providing browser-based data viewing is that it is
easy to update the data by regenerating the XML data file. The data that the user
actually sees is generated on the fly from this XML data by the transform. This can
be a liability as well, however. As you have seen, the transform process can take
some time, and if the XML data has not changed, the output of the transform, and
therefore what the user sees, will be the same each time. Why make each user wait
for the slow transform process to complete each time the data is viewed? If the data
changes infrequently, as would be the case for a weekly or monthly report, you can
run the transform only when the data changes and make the transform output
directly available to the users. There are various non-Office tools available for run-
ning transforms, but even without these tools you can do this. Here are the steps
required. I’m using the filenames from the Invoice example, but the steps would be
the same in any case.

Chapter 9: Access and XML 199

1. Generate the XML, XSD, XSL, and HTM export files as described earlier.

2. Change the name of Invoice.htm to something else such as
InvoiceOriginal.htm (do not change the extension).

3. Open the renamed file from Step 2 in Internet Explorer. The transform will
be executed.

4. In IE, use the View → Source command to view the transform output in
Notepad.

5. In Notepad, use the File → Save As command to save the HTML code
under the original name Invoice.htm.

After you perform these steps, users opening Invoice.htm in their browser will
get the already transformed text — there’s no need to run the time-consuming
transform and the page loads a lot faster. Whenever the data behind the report
changes, repeat these steps to generate the changed Invoice.htm file.

With some databases Access lets you publish live data to the Web in which

data updates are performed automatically and do not require manual updat-

ing (re-exporting) of the XML data file.This is covered later in this chapter.

XML Export Options
When you are exporting XML data, the Export XML dialog box (shown earlier in
Figure 9-4) has a More Options button that you click to set advanced export
options. The options are related to the three types of XML objects you can export:
data, schema, and presentation. Each group of options is on its own tab in the dia-
log box that is displayed when you click the More Options button. When you have
finished setting options, click the OK button to perform the exporting.

DATA EXPORT OPTIONS
Data export options control the data that is exported, that is, the data that’s
exported to the object.xml file. These options are set on the Data tab, which is
shown in Figure 9-9. They’re explained in Table 9-1.

TABLE 9-1 XML DATA EXPORT OPTIONS

Option Description

Export data Select this option to export the object’s data as an XML file. This is
the same as the Data (XML) option in the previous dialog box.

200 Part III: XML and Other Office Applications

Option Description

Data to export If the object being exported has subsections, you can choose to
export the entire object or just part of its data.

All records Select this option to export all the object’s records to XML.

Apply existing filter If the object is open and a filter is applied, select this option to
export only those records selected by the filter.

Current record If the object is open and a record is current, select this option to
export only that record.

Apply existing sort If the object is open and a sort is applied, select this option to
export the data in the specified order.

Transforms Click this button to select an XSL transform to apply to the data
during export.

Encoding Select UTF-8 or UTF-16 encoding for the exported XML. You should
use the default UTF-8 unless you have a specific reason to use
UTF-16.

Live data Select this option to export live data. This option is not available
for all types of Access databases. See the “Exporting Live Data”
section later in this chapter for more information.

Export location Specify the name and location for the exported XML file.

Figure 9-9: Setting data export options.

Chapter 9: Access and XML 201

SCHEMA EXPORT OPTIONS
The schema export options control the way that the Access object’s schema is
exported. They are set on the Schema tab of the dialog box, as shown in Figure 9-10.

Figure 9-10: Setting schema export options.

The options in the Export XML dialog box are as follows:

◆ Export schema. Select this option to export the object’s schema as an
XSD file. This is the same as the Schema of the Data (XSD) option in the
previous dialog box.

◆ Include primary key and index information. Select this option to include
the object’s key and index information in the schema.

◆ Embed schema in exported XML document. Select this option to embed
the schema in the XML data file. Use this option only when you have a
specific reason to do so because it may cause the transform to fail.

◆ Create separate schema document. Select this option to save the schema
in a separate XSD file. Enter the filename and use the Browse button to
specify the name and location for this file.

PRESENTATION EXPORT OPTIONS
The presentation export options determine details of the exported presentation files
(the XSL transform and HTM or ASP page). They’re on the Presentation tab of the
Export XML dialog box, as shown in Figure 9-11.

202 Part III: XML and Other Office Applications

Figure 9-11: Setting presentation export options.

Here’s an explanation of the available options:

◆ Export Presentation. Select this option to export the object’s presentation
as XSL and HTM/ASP files file. This is the same as the Presentation of
Your Data (XSL) option in the previous dialog box.

◆ Run From. Choose whether you want the presentation to run on the client
or the server. There’s more information about this in the next section,
“Client versus Server.”

◆ Include Report Images. These options are available only if the object being
exported contains images. If you choose to include images, they are exported
as separate image files, which are then linked to from the HTML file. By
default, these files are placed in the Images folder off the main export folder.
If you want them placed elsewhere you can specify the location.

◆ Export Location. Specify the name and location of the export files.

Client versus Server
When you are creating a browser-based front end using XML export, you have the
option of creating an application that runs on the client or one that runs on the
server. You select the type of application to create on the Presentation tab when
setting XML Export options (see Figure 9-11). The example presented earlier in the
chapter was client-based. Here are the primary differences:

Chapter 9: Access and XML 203

◆ Client. Access produces an HTML file that contains script to perform the
transform; this file is downloaded to and the script is executed on the
client machine.

◆ Server. Access produces an ASP (Active Server Page) page that resides on
the server. This file contains script to perform the transform.

There are trade-offs between these two methods, and neither is better than the
other in all situations. The major advantage of a client-based application is that it
offloads the process of performing the transform to the client. This reduces the load
on the server, and that can make a significant difference when you have many users
accessing the application. The disadvantage of a client application is that it often
increases the downloading requirements — not only the original HTML page but also
the XML data file, the XSL transform file, and, in some cases, the XSD schema file
must be downloaded to the client. In contrast, a server-based application requires
only that the final generated HTML be downloaded to the client. You make the
choice based on the details of your situation and your server configuration.

XML Exporting versus HTML Exporting
Access offers an HTML export feature that directly creates a Web page containing
an Access object such as a report. This is simpler and less resource-intensive than
exporting a static XML application as has been described, mainly because the XML
does not have to be transformed into HTML each time a user accesses the applica-
tion. In the real world, for instance, the export example that I presented earlier in
this chapter would probably be better done using HTML exporting instead of XML
exporting.

When would you prefer XML exporting over HTML exporting for static objects?
Perhaps the most common situation is when you have an automated process that
updates the XML data file. There’s no reason why this file has to originate in the
Access export process. Once the original export file set has been created, you can
create the XML data file any way you want as long as it has the correct structure.
For example, you could create a script that gets data from the database and writes
out an updated XML data file, and then schedule the script to run once per week.

To export an object as HTML, follow the same procedure as is used for exporting
an object as XML but, in the Export dialog box, select HTML Documents in the
Save as Type list.

Exporting Live Data
The export techniques that you have seen so far are for exporting static data. In
other words, the exported object is not automatically updated when the data in the
database changes — you must re-export the XML data file to make new or changed
data available to the application. Access also has the ability to export browser-
based front-end applications that are live and automatically reflect changes to the
underlying data in the database.

204 Part III: XML and Other Office Applications

Exporting live data is supported only by Access data projects that connect

to an SQL Server database.

Exporting live data works by establishing a connection to the database each
time a user logs on to the application. In other words, rather then getting its data
from a static XML file that was exported from the database at some time in the
past, a live application establishes a connection to the back-end database — that is,
SQL Server — and gets the most recent data. You’ll see this if you compare the HTML
file generated for a static application with one generated for a live application. Here
are the two lines of VBScript code from the static application that load the
Invoices.xml file into the DOM for subsequent processing by the transform:

Set objData = CreateDOM
LoadDOM objData, “Invoice.xml”

Now, look at the equivalent code from a live application (the last three lines are
actually a single line split to fit on the page):

Set objData = CreateDOM
LoadDOM objData, “http://localhost/NorthwindCS?
sql=SELECT+*+FROM+%22dbo%22%2E%22Invoices
%22+for+xml+auto,elements&root=dataroot”

The code does the same thing, loading the XML data so that it can be trans-
formed, but the second example gets the latest data directly from the database
server. You needn’t worry about the details of this statement because Access creates
it for you. It contains details about the computer that the database server is on, the
name of the database, and the details of what data to retrieve.

To create a live front end, check the Live Data option on the Data tab when set-
ting XML Export options. The Live Data option is displayed in this dialog box only
if the Access database that you are exporting from supports live data XML export.
In the adjacent Virtual Directory field, you must enter the URL of the folder on the
server that the export process is to use.

If you select the Live Data option, you must export the entire Access object

and cannot select part of it for export in the Data to Export box. Also, Live

Data does not permit you to apply a transform during export.

Chapter 9: Access and XML 205

Deploying Your Application
When you export a static Access object, the application is self-contained because it
does not depend on anything outside of the exported files. To deploy the project on
the Internet or an intranet, all you need to do is copy these files to a folder on your
Web server. This could be the root Web folder, but more often it’s a virtual folder
created specially for the application. Please see the documentation for your Web
server software for details on folder locations and the steps required to create a vir-
tual folder.

A live-export object is self-contained except that it must be able to contact the
database server. You publish a live application in the same way as a static applica-
tion, placing it in a folder on your Web server. The server, of course, must support
ASP pages.

A static application does not need to be published to a Web server. It can be
made available over a LAN by placing the file set in a publicly available folder and
directing users to open the HTML file from that folder.

Remember that users need Internet Explorer version 5 or later to view these
applications.

206 Part III: XML and Other Office Applications

Chapter 10

FrontPage and XML
IN THIS CHAPTER

◆ Editing XML in FrontPage

◆ Using Web Parts

◆ Using Data Views

◆ Filtering, sorting, and formatting in Data Views

THE NEW FRONTPAGE provides a variety of powerful tools for connecting your Web
pages to data. XML is one of the kinds of data that FrontPage can use. This chapter
shows you how to use XL data on your FrontPage Web pages.

XML-Based Data for the Web
XML is a means for structuring data and, in today’s ever-more-connected world,
data often needs to be presented on the Web. FrontPage is the Web site authoring
component of Office, so it is not surprising that Microsoft has built tools into it that
let you present XML-based data on a Web page. For FrontPage, XML is just one of
several different data sources that a Web page can be connected to. Many of the
things you can do with data in FrontPage are the same regardless of whether the
source is an XML file, a database, or a Web service. This chapter focuses on using
XML in FrontPage Web sites.

Many of FrontPage’s data-related features, including those new ones that are
related to XML, are available only when a Web site is being hosted on a server that
supports SharePoint services. If you do not have an account on a SharePoint server,
you will not be able to use most of the tools described in this chapter. Please note
that I assume that you already know how to use FrontPage to author Web sites. This
chapter deals only with the XML-related features of FrontPage.

The Sample Data
The examples in this chapter make use of the StockItems.xml data file. This file,
shown in Listing 10-1, maintains information about items in a hardware store’s

207

inventory, containing data for the item name, the supplier, and the wholesale and
retail prices.

Listing 10-1: The StockItems.xml Data File

<?xml version=”1.0” encoding=”UTF-8”?>
<stockitems xmlns=”http://www.pgacon.com/stockitems”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.pgacon.com/stockitems
C:\XMLFiles\StockItems.xsd”>
<item>
<name>Claw hammer</name>
<supplier>Ajax Manufacturing</supplier>
<wholesaleCost>12.50</wholesaleCost>
<retailPrice>19.95</retailPrice>

</item>
<item>
<name>Needle-nosed pliers</name>
<supplier>Miller Manufacturing</supplier>
<wholesaleCost>8.45</wholesaleCost>
<retailPrice>15.89</retailPrice>

</item>
<item>
<name>Wire stripper</name>
<supplier>Ajax Manufacturing</supplier>
<wholesaleCost>11.25</wholesaleCost>
<retailPrice>21.00</retailPrice>

</item>
<item>
<name>Paint scraper</name>
<supplier>Clyde Co.</supplier>
<wholesaleCost>4.10</wholesaleCost>
<retailPrice>8.00</retailPrice>

</item>
<item>
<name>Crescent wrench</name>
<supplier>Baxter Foundry Inc.</supplier>
<wholesaleCost>12.60</wholesaleCost>
<retailPrice>23.95</retailPrice>

</item>
</stockitems>

208 Part III: XML and Other Office Applications

Viewing and Editing XML
FrontPage lets you open and view or edit any XML file that is part of the Web site.
To do so, right-click the name of the file in the Folder pane and choose Open from
the pop-up menu. Figure 10-1 shows the StockItems.xml file opened in FrontPage.
You can see that the lines are numbered. Not visible in the figure is the color-coding
that FrontPage uses to distinguish attribute names and values from other text.

Figure 10-1: Displaying an XML file in FrontPage.

This figure also shows the XML View toolbar, which is automatically displayed
when you open an XML file (you can display or hide this and other toolbars in
the usual manner, with the View → Toolbars command). This toolbar has two com-
mands on it:

◆ Reformat XML. Formats the XML so there is one element per line and
child elements are indented with respect to their parent. The XML in the
figure is formatted this way.

◆ Validate XML. Checks the XML for well-formedness.

The Validate command is somewhat misleading. You might think that this would
validate the XML against its schema (assuming the schema is available and linked
from the XML file), but this is not the case. All it does is check the XML for proper
XML syntax, such as each opening tag having a closing tag and elements being
nested legally. In XML parlance, this is called being well formed.

Chapter 10: FrontPage and XML 209

Using XML Web Parts
An XML Web Part is one of the tools that FrontPage provides for displaying XML
data on a Web page, specifically a Web Part Web Page in FrontPage lingo.
Specifically, an XML Web Part lets you apply an XSLT transform to XML data and
display the result. You cannot use an XML Web Part to display raw (that is,
untransformed) XML data.

Creating an XML Web Part
To add an XML Web Part to the page you are designing:

1. Place the cursor at the desired location on the page.

2. Choose Data → Insert Web Part. FrontPage displays the Web Part Gallery
task pane.

3. On the task pane, select XML Web Part in the Web Part List.

4. Click the Insert Selected Web Part button. FrontPage inserts the XML
Web Part.

When an XML Web Part is first inserted onto a page, it is not yet connected to
any XML data. You must set its properties by double-clicking the Web Part to open
the Web Part Properties dialog box, as shown in Figure 10-2.

Figure 10-2: Setting properties of an XML Web Part.

210 Part III: XML and Other Office Applications

You set properties as follows:

◆ XML Editor. Click this button to open the editor if you want to enter the
XML directly (or copy and paste it from another application).

◆ XML Link. To link the Web Part to an existing XML file, enter the file’s URL
in this field. You can also click the adjacent... button to browse for the file.

◆ XSL Editor. Click this button to open the editor if you want to enter the
XSL transform directly (or copy and paste it from another application).

◆ XSL Link. To link to an existing XSL file, enter the URL or click the but-
ton to browse for the file.

◆ Appearance. Click the + symbol to display the Web Part’s appearance
properties, with which you can affect the Web Part’s appearance, includ-
ing its title and size.

◆ Layout. Click the + symbol to display the Web Part’s layout properties,
including whether the Web Part is visible on the page and the text direc-
tion (left to right or right to left).

◆ Advanced. Click the + symbol to display the Web Part’s advanced proper-
ties, including whether it can be minimized and its description.

What’s the point of creating an XML Web Part that is not visible on the page?

The answer lies in FrontPage’s capability to create dynamic pages whose

appearance changes in response to user input.Thus, an XML Web Part could

be displayed or hidden when the user clicks a button on the page.

A Web Part Example
I think it would be helpful for you to see an example of using an XML Web Part to
display XML. The source data is the StockItems.xml data file from Listing 10-1.
The goal of the Web page designer is to display a list of all the items in the data file,
with the list containing only the item name and the retail price for each item.
Additionally, the item name should be in boldface, and the price should be dis-
played with a leading dollar sign. The XSL transform to accomplish this is shown in
Listing 10-2. I used the name StockItemsDisplay.xslt for this file.

Listing 10-2: Stylesheet for Displaying StockItems.xml Data

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:sl=”http://www.pgacon.com/stockitems”

Continued

Chapter 10: FrontPage and XML 211

Listing 10-2 (Continued)

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” version=”1.0” encoding=”UTF-8”
indent=”yes”/>

<xsl:template match=”/”>
<xsl:apply-templates select=”//sl:item”/>

</xsl:template>

<xsl:template match=”sl:item”>
<p><xsl:value-of select=”sl:name”/> $<xsl:value-of
select=”sl:retailPrice”/></p>

</xsl:template>
</xsl:stylesheet>

This is a fairly simple stylesheet, containing only two templates. It’s the second
template that does the work. For each <item> element it outputs in this order:

1. The HTML tag to start a paragraph.

2. The HTML tag to turn boldface on.

3. The value of the current <name> element.

4. The HTML tag to turn boldface off.

5. A space followed by a dollar sign.

6. The value of the <retailPrice> element.

7. The HTML tag to end a paragraph.

To create this XML Web Part, you must have FrontPage open and be editing a
Web page that is on a SharePoint server. The page on which you are going to place
the Web Part should be in design mode (click the Design tab at the bottom of the
FrontPage window). The XML data file and the XSLT transform file should have
been imported to your Web site using FrontPage’s File → Import command. Then:

1. Place the cursor at location on the page where you want the Web Part
placed.

2. Choose Data → Insert Web Part to display the Web Part Gallery task pane.

3. Select the XML Web Part entry in the Web Part list.

4. Click the Insert Selected Web Part button.

5. On the page, double-click the new Web Part to open its properties
dialog box.

212 Part III: XML and Other Office Applications

6. Click the button next to the XML Link field and locate the
StockItems.xml file.

7. Click the button next to the XSL Link and locate the
StockItemsDisplay.xslt file.

8. Click OK to close the properties dialog box.

At this point the XML Web Part is finished. The data will appear on the design
screen, and you can verify that the stylesheet is doing what it is designed for. Click
the Preview tab at the bottom of the screen to see what the Web Part will look like
in actual use. This is shown in Figure 10-3. The other page elements shown in this
figure are default items that FrontPage puts on the page, and you need not be con-
cerned with them.

Figure 10-3: The XML Web Part displaying the stock
items data as filtered by the stylesheet.

If you examine the stylesheet in Listing 10-2, you’ll notice that it is different
from other stylesheets that are designed to convert XML to HTML. The reason is
that this stylesheet is outputting only the HTML to display the XML data as part of
an HTML page — it is not outputting the entire page. Thus, there is no need to cre-
ate certain HTML tags, such as <HTML></HTML> and <BODY></BODY>, that would be
required for an entire Web page.

Using Data Views
FrontPage also can use and display XML data with a Data View. Compared to an
XML Web Part, a Data View is a more traditional way of displaying data. A Data

Chapter 10: FrontPage and XML 213

View uses a tabular row-and-column format and does not provide for applying a
stylesheet to the data. It does, however, provide various options for filtering and
sorting the data and modifying the formatting. A Data View can be bound to vari-
ous data sources including SharePoint lists, databases, and Web services. This sec-
tion explains how to create a Data View that is bound to an XML data file.

Creating a Data View
To create a Data View bound to XML data, the XML data file must be available
either on the Web site you are editing or in another location. Then:

1. Place the cursor at the location on the page where you want the Data
View located.

2. Choose Data → Insert Data View to display the Data Source Catalog task
pane (see Figure 10-4).

Figure 10-4: Selecting an XML
file to bind to a Data View.

3. Click the + symbol to open the XML Files node. This node lists the XML
files that are part of the Web site that you are authoring. There are three
such files listed in Figure 10-4.

4. If the desired XML file is listed, proceed to Step 6.

214 Part III: XML and Other Office Applications

5. If the desired XML file is not listed, click the Add to Catalog command on
the task pane and follow the prompts to locate the desired XML file (on a
local disk, for example) and add it to the project. The selected file is then
listed on the task pane.

6. Click the name of the desired XML file on the task pane and select Insert
Data View from the pop-up menu. FrontPage retrieves the XML data and
inserts the Data View in the page.

When you insert a Data View bound to an XML file, FrontPage creates the Data
View using the default settings. For example, Figure 10-5 shows the default Data
View based on the StockItems.xml data file from earlier in the chapter. You can see
that this is a straightforward table with the XML filename as the title, the repeating
field names as column headings, and the data in rows. These same elements will be
displayed when the page is published. Unless this default appearance is what you
want, your next steps will be to customize the Data View.

Figure 10-5: The StockItems.xml file as a Data View.

You can see that a Data View uses the XML element names for the column head-
ings. You can edit these and apply formatting, if desired, directly on the page using
FrontPage’s usual text editing techniques. These names are for display only, and the
original element names are still used to refer to the elements when defining filter
criteria and other tasks (covered later in the chapter).

The Data View Details Task Pane
When you create a Data View, FrontPage displays the Data View Details task pane,
shown in Figure 10-6, which gives you access to the Data View’s properties. If this
task pane is not displayed, you can display it by right-clicking the Data View and
selecting Data View Properties from the pop-up menu.

Chapter 10: FrontPage and XML 215

Figure 10-6: The Data View
Details task pane.

The list in the middle of the task pane displays the structure of the data. If an
element is repeating, a single instance of the element and its children is shown (the
<item> element in Figure 10-6, for example). To the right of the element name is an
indication of which of the repeating elements is shown. In Figure 10-6, it shows
that the fifth of five <item> elements is displayed. Click the adjacent arrows to
move forward and backward in the list. You can display the element names and
their data or just the element names based on the setting of the Show Data Values
option at the bottom of the task pane.

The Refresh Data Source command refreshes the Data View from the XML file
and should be used if you think the file may have changed. The other commands at
the top of the task pane, under Manage View Settings, are described in the follow-
ing sections.

DATA VIEW STYLES
When you construct a Data View as described earlier in this chapter, it is created
using the basic table style. There are several other styles available. To change the
style of a Data View:

1. Select the Data View.

2. Click the Style command on the Data View Details task pane.
FrontPage displays the General tab in the View Styles dialog box,
shown in Figure 10-7.

216 Part III: XML and Other Office Applications

3. Scroll the HTML View Style list to see the available views, and click the
desired one. FrontPage displays a description of the selected view in the
Description section of the dialog box.

4. Click OK to apply the selected view to the Data View.

Figure 10-7: Selecting a view style for a Data View.

Not all of the available views are appropriate for a specific situation. You can
easily switch a Data View to different styles to see which is best for your applica-
tion. For example, Figure 10-8 shows the same data as Figure 10-6 displayed using
the repeating form style — the items are listed sequentially rather than in a table.

Figure 10-8: A Data View using the repeating form style.

Chapter 10: FrontPage and XML 217

The View Styles dialog box also has an Options tab, shown in Figure 10-9. These
options control certain aspects of the Data View display on the finished Web page,
as follows:

◆ The Toolbar section enables you to display a toolbar at the top of the Data
View to let the user filter, sort, and/or group the data. The individual
options determine which capabilities are available on the toolbar.

◆ The Header and Footer section controls whether a header and/or footer is
displayed in a Data View. If the Enable Sorting on Column Headers option
is selected, a user can sort the data on a column by clicking the column
heading.

◆ The Record Sets section has options that determine how many items (that
is, rows) are displayed at one time. If you choose to display fewer items
than the data contains, FrontPage includes, at the bottom of the Data
View, an indication of which items are displayed, such as Items 7 to 12.
FrontPage also displays Next and Previous links that let the user move
forward and backward in the data.

Figure 10-9: The Options tab in the View Styles
dialog box.

DATA VIEW FILTERS
A filter lets you define criteria to determine which records of the XML data are dis-
played. By default all data is displayed. To define a filter, click the Filter command
on the Data View Details task pane. FrontPage displays the Filter Criteria dialog box
as shown in Figure 10-10.

218 Part III: XML and Other Office Applications

Figure 10-10: The Filter Criteria dialog box.

To define a filter, click where it says Click here to add a new clause@@@Initial
cap this, “Click Here to Add a New Clause”?@@@. FrontPage inserts a blank
clause in the dialog box. Select or enter values in the first three columns as follows:

◆ Field Name. Select the name of the field (XML element) that the filter will
be based on.

◆ Comparison. Select the type of comparison to be performed, such as
Equals or Greater Than.

◆ Value. Enter the value that the comparison is to be performed against.

To enter additional criteria, select And or Or in the fourth column to determine
how the current criterion and the new one are to be combined:

◆ And. Both criteria must be met for the item to be displayed.

◆ Or. Either criterion, or both, must be met for the item to be displayed.

Define the new criteria the same way you defined the first filter criterion. When
you close the Filter Criteria dialog box, the Data View will display the result of the
filter. If the filter excludes all data, a message to that effect is displayed.

If you click the Advanced button in the Filter Criteria dialog box, FrontPage

displays the XPath expression that will be used to implement the filter. If you

are familiar with XPath syntax, you can enter the filter criteria here as an

XPath predicate rather than using the Filter Criteria dialog box. You can also

edit the XPath expression created by FrontPage.

To remove a criterion, select it by clicking the arrow in the left margin and
pressing Del.

Chapter 10: FrontPage and XML 219

Figure 10-11 shows an example of filter criteria for the StockItems.xml data.
These criteria will display data only for items whose retailPrceis less than 10 and
whose supplier is Ajax Manufacturing.

Figure 10-11: A two-part criteria defined for
the StockItems data.

DATA VIEW SORTING AND GROUPING
Sorting refers to the order in which the data is presented in the Data View.
Grouping lets you display that data so that items are grouped together when they
have the same data in a specified field. For example, Figure 10-12 shows the
StockItems Data View grouped by the supplier field. The two items from Ajax
Manufacturing are grouped together under a heading identifying the supplier; this
is the only group with more than one entry because no other supplier has more
than one item.

Figure 10-12: A Data View with grouping applied.

220 Part III: XML and Other Office Applications

To specify sort order and define groups:

1. Select the Data View.

2. Click the Sort & Group command on the Data View Details task pane.
FrontPage displays the Sort and Group dialog box (see Figure 10-13).

Figure 10-13: Defining sort order and group display options
for a Data View.

3. Select a field in the Available Fields list and click Add to move it to the
Sort Order list.

4. Select either Ascending or Descending in the Sort Properties section. A
small yellow arrow next to the field name indicates the sort direction for
that field.

5. Select group display options as follows:

■ Show Group Header. A header is displayed at the top of each group
(as in Figure 10-12). The group can be expanded or collapsed by
default; the user can expand or collapse groups as needed when the
page is displayed.

■ Show Group Footer. A footer is displayed at the bottom of each group.

■ Hide Group Details. Available only when a header is displayed. This
displays only the header, with no other details.

When you are sorting on more than one field, the sort is applied to the fields in
the order they are listed in the Sort Order list. To change the priority of a field,
select it in this list and use the Move Up and Move Down buttons to change its
position.

Chapter 10: FrontPage and XML 221

CONDITIONAL FORMATTING
Conditional formatting means that the format of specified text on the page depends
on one or more data values in the XML file. For example, you could use conditional
formatting to display negative numbers in red. Conditional formatting also lets you
hide or show text depending on data conditions. You can apply conditional format-
ting to any text in a Data View, not just to the data values. In the StockItems exam-
ple, for instance, you could specify that the name of an item be displayed in blue
text when the item’s retail price is less than 10. To apply conditional formatting:

1. Select the text to which the formatting will be applied. If you select a
repeating data item, the formatting automatically is applied to all repeats
of that item.

2. Click the Conditional Formatting command on the Data View Details task
pane. FrontPage displays the Conditional Formatting task pane. Any con-
ditional formats for this Data View are listed on this task pane.

3. Click the Create button and select one of the commands from the pop-up
menu:

■ Show Content. Displays the selected text only when certain conditions
are met.

■ Hide Content. Hides the selected text only when certain conditions
are met.

■ Apply Formatting. Applies text formatting when certain conditions
are met.

4. FrontPage displays the Condition Criteria dialog box, shown in Figure
10-14. Use this dialog box to specify the conditions for the formatting to
be applied. It works the same way as the Filter Criteria dialog box that
was covered earlier in this chapter. When the criteria are complete, click
OK to close the dialog box.

5. If you selected Show Content or Hide Content in Step 3, you’re finished.
If you selected Apply Formatting, FrontPage displays the Modify Style
dialog box.

6. Click the Format button and follow the prompts to specify the formatting
that you want applied when the conditions are met.

7. When you’ve finished, click OK to close the dialog box.

222 Part III: XML and Other Office Applications

Figure 10-14: Specifying criteria for conditional formatting.

When a Data View has conditional formatting defined, the individual conditions
are listed on the Conditional Formatting task pane. To work with an existing con-
ditional format, select the item on this task pane, click the adjacent arrow, and
select options from the pop-up menu as follows:

◆ Edit Condition. Modify the conditions under which the formatting is
applied.

◆ Modify Style. Change the formatting that is applied (not available for
Show Content or Hide Content conditions).

◆ Delete. Delete the entire conditional formatting rule.

You’ll see a real-world example of conditional formatting in Chapter 14,
“Connecting FrontPage and InfoPath.”

Chapter 10: FrontPage and XML 223

Case Studies
CHAPTER 11

Connecting Word and InfoPath

CHAPTER 12
Connecting Excel and InfoPath

CHAPTER 13
Connecting Access and InfoPath

CHAPTER 14
Connecting FrontPage and InfoPath

CHAPTER 15
Connecting Word and FrontPage

CHAPTER 16
Connecting Web Publishing and InfoPath

Part IV

IN THIS PART:

Part IV takes the material that you learned

in the first three parts and applies it to real-

world problems. Each case study shows

how to use XML to integrate two Office

applications to create a solution for

a specific need. Each of the case studies

provides a foundation on which you can

build in using Office and XML for your own

specific needs.

Chapter 11

Connecting Word
and InfoPath
IN THIS CHAPTER

◆ Creating a schema

◆ Designing the form

◆ Creating and applying a stylesheet

◆ Creating a stylesheet with formatting

YOU’VE ALREADY LEARNED about the powerful XML-related capabilities of the Office
applications. Now, it’s time to see some of these tools in action. This is the first of
six chapters that takes you though the design and creation of an application that
uses Office and XML to implement a complete solution. This chapter presents an
example in which Word is used to format and print data that is entered using an
InfoPath form.

Overview
Word has the ability to open and display any XML data. In and of itself, this is not
particularly exciting. However, things get a lot more interesting when you consider
Word’s ability to apply stylesheets to the data. A stylesheet, called a solution in Word,
can transform the XML data in just about any way you can imagine. Because Word
can support multiple stylesheets for a single XML document, you can have two or
more views of the same XML data instantly available. Coupled with Word’s power-
ful formatting tools and the WordML markup language, a lot of possibilities are
available to the developer.

The Scenario
Your company needs a system to handle interoffice memos. The goal is to have
memos created on-screen by using a standard form, and also to have the memo

227

information available online in XML format to provide access to the data. For var-
ious reasons, memos are still delivered as hard copies, so a method is also needed to
format and print the memos. You decide to create an InfoPath form for memo cre-
ation, and to use Word and a stylesheet to provide the formatting.

The solution presented here is, from a real-world perspective, only partial. You
would not expect the user to manually open memos in Word for printing — this is
more likely to be handled automatically by means of scripts or back-office automa-
tion. These tasks, as well as printing, are not related to XML, however, so they are
omitted. The goal of this example is to show you how InfoPath and Word can be
used to input and format XML data.

Create the Schema
The first step in this project is to create the schema for the InfoPath form. The data
layout is quite simple, consisting of the root element <memo> with five nonrepeating
child elements: <date>, <to>, <from>, <subject>, and <body>. All of these child ele-
ments are type text except for <date>, which is type date. The schema is associated
with the target namespace http://www.pgacon.com/memo, which you can replace
with your own namespace. If you decide to use your own namespace, be sure to make
that change in the other listings as well. Listing 11-1 shows the schema file.

Listing 11-1: Sample Schema File

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema targetNamespace=”http://www.pgacon.com/memo”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.pgacon.com/memo” elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>
<xs:element name=”memo”>
<xs:complexType>
<xs:sequence>
<xs:element name=”date” type=”xs:date”/>
<xs:element name=”to” type=”xs:string”/>
<xs:element name=”subject” type=”xs:string”/>
<xs:element name=”body” type=”xs:string”/>
<xs:element name=”from” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

228 Part IV: Case Studies

Design the InfoPath Form
With the schema ready, you can start designing the form. First create a new form
based on the schema. Here are the steps to follow:

1. Choose File → Design a Form to display the Design a Form task pane.

2. Click the New From Data Source command on the task pane to display the
Data Source Setup Wizard.

3. Select the XML Schema or XML Data File option, and then click Next.

4. Click the Browse button and locate the schema file that you created in the
previous section.

5. Click Finish. InfoPath creates a new form with the schema displayed in the
Data Source task pane.

Now you can start designing the form’s visual interface. You can create your
own interface if you like, or follow these steps to duplicate what I did:

1. On the Data Source task pane, click the Layout command to display the
Layout task pane.

2. In the Insert Layout Tables list, click the Table with Title entry. InfoPath
inserts a layout table onto the form.

3. Click the table where it says “Click to Add Title” and enter Create a Memo.

4. Display the Data Source task pane.

5. Drag the <memo> group from the Data Source task pane and drop it on
the form where it says “Click to Add Form Content.” InfoPath displays a
pop-up menu.

6. Select Controls from the pop-up menu. InfoPath inserts labels and controls
for the five child elements of <memo>.

7. Modify the sizes and positions of the labels and controls as needed, being
sure to make the body text box extra large.

The finished form looks more or less like the one in Figure 11-1. Don’t forget to
save the form with a descriptive name. Once the template is complete, fill out a
form based on this template, entering a practice memo and saving the form. You’ll
need this XML data file later for testing the stylesheet.

Chapter 11: Connecting Word and InfoPath 229

Figure 11-1: The completed memo form.

Create the Stylesheet
The next phase in this project is to create the stylesheet, or transform, that will
determine how the memo is displayed when it’s opened in Word. To start with, we
will create a relatively simple stylesheet that displays text and data in the Word
document but does not apply any formatting. The document that results when the
stylesheet is applied to the XML data from the form should have the following:

◆ A heading that says Interoffice Memo

◆ The label Date:, followed by the <date> value from the InfoPath form

◆ The label To:, followed by the <to> value from the InfoPath form

◆ The label From:, followed by the <from> value from the InfoPath form

◆ The label Subject:, followed by the <subject> value from the InfoPath
form

◆ The data from the <body> value from the InfoPath form

An XSL stylesheet that does this is shown in Listing 11-2. Note that the ns0
namespace must match the namespace that was used in the schema. Some portions
of the stylesheet code are explained in more detail following the listing. You can
see that the stylesheet uses several WordML tags, those with the w namespace pre-
fix. Later in the chapter I’ll show you how to determine the tags that WordML uses
for various things.

230 Part IV: Case Studies

Listing 11-2: The Memo Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:w=”http://schemas.microsoft.com/office/word/2003/2/wordml”
xmlns:ns0=”http://www.pgacon.com/memo”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<w:wordDocument>
<w:body>
<xsl:apply-templates select=”/ns0:memo”/>

</w:body>
</w:wordDocument>
</xsl:template>

<!-- the memo heading -->
<xsl:template match=”ns0:memo”>

<w:p><w:r><w:t>Interoffice Memo</w:t></w:r></w:p>
<ns0:memo>

<!-- the Date line -->
<w:p>
<w:r><w:t>Date:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:date>
<w:r><w:t><xsl:value-of select=”ns0:date”/></w:t></w:r>
</ns0:date>
</w:p>

<!-- the To line -->
<w:p><w:r><w:t>To:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:to>
<w:r><w:t><xsl:value-of select=”ns0:to”/></w:t></w:r>
</ns0:to>
</w:p>

<!-- the From line -->
<w:p><w:r><w:t>From:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:from>
<w:r><w:t><xsl:value-of select=”ns0:from”/></w:t></w:r>
</ns0:from>
</w:p>

Continued

Chapter 11: Connecting Word and InfoPath 231

Listing 11-2 (Continued)

<!-- the Subject line -->
<w:p><w:r><w:t>Subject:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:subject>
<w:r><w:t><xsl:value-of select=”ns0:subject”/></w:t></w:r>
</ns0:subject>
</w:p>

<!-- the memo body -->
<w:p>
<ns0:body>
<w:r><w:t><xsl:value-of select=”ns0:body”/></w:t></w:r>
</ns0:body>
</w:p>

</ns0:memo>
</xsl:template>
</xsl:stylesheet>

The second line of this file is the opening <xsl:stylesheet> tag that identifies
the content as a stylesheet. Note that there are three namespace prefixes defined,
one (w) for the WordML vocabulary, one (xsl) for the stylesheet vocabulary, and
one (ns0) for the schema in use.

The next section, repeated here, defines a template that will be applied to the
XML file’s root element:

<xsl:template match=”/”>
<w:wordDocument>
<w:body>
<xsl:apply-templates select=”/ns0:memo”/>

</w:body>
</w:wordDocument>
</xsl:template>

This template does the following:

1. Writes a <w:wordDocument> tag to the output.

2. Writes a <w:wbody> tag to the output.

3. Applies other templates, or in this case, a single template (described next),
to elements that match /ns0:memo.

4. Writes a </w:wbody> tag to the output.

5. Writes a </w:wordDocument> tag to the output.

232 Part IV: Case Studies

The remainder of the stylesheet consists of the other template that is applied by
the <xsl:apply-templates> element described earlier. Here’s the first part of the
template, from Listing 11-2:

<xsl:template match=”ns0:memo”>
<w:p><w:r><w:t>Interoffice Memo</w:t></w:r></w:p>
<ns0:memo>

The first line of this section opens the template and specifies that it applies to
<ns0:memo> elements (there will be exactly one of these elements in the XML file).

The second line writes the text “Interoffice memo” to the output. The XML tags
in this line, such as <w:p>, are WordML tags that identify a paragraph and text.

The third line writes the <ns0:memo> tag to the output.
The next section, repeated here, has the job of writing the Date part of the

document:

<w:p><w:r><w:t>Date:</w:t></w:r>
<w:r><w:t xml:space=”preserve”>→</w:t></w:r>
<ns0:date>
<w:r><w:t><xsl:value-of select=”ns0:date”/></w:t></w:r>
</ns0:date>
</w:p>

The first line writes the text Date: to the document along with the required
WordML tags. The second line writes a tab character. Note the use of the
xml:space=”preserve” attribute to instruct Word to preserve the tab. (The tab is
designated by an arrow symbol in the listing here; you use an actual Tab instead
when you create the code.)

The third line writes the opening tag <ns0:date> to the output. The fourth line
writes the data that is in the <date> element of the XML data file (the date that the
user entered on the form). The fifth line writes the closing tag </ns0:date> to the
output, and the final line writes a WordML tag marking the end of a paragraph.

The remaining parts of the stylesheet follow the same pattern as what’s already
been described, writing labels and data for the other elements of the memo. When
the file is complete, save it using either the XSL or the XML extension.

Apply the Stylesheet
In order to try out the stylesheet, you will need all three files that you created ear-
lier in this chapter: the XSD schema (see Listing 11-1), the saved InfoPath form, and
the stylesheet (see Listing 11-2). Then:

Chapter 11: Connecting Word and InfoPath 233

1. Start Word.

2. Choose Tools → Templates and Add-ins to display the Templates and Add-
ins Dialog box.

3. Click the Schema Library button to display the Schema Library
dialog box.

4. Click the Add Schema button to open the Add Schema dialog box.

5. Locate and select the schema file that you created, and then click Open.

6. Enter an alias such as Memo for the schema and click OK. You return to
the Schema Library dialog box. The alias of the schema you just added is
included in the Select a Schema list.

7. Click the name of the schema you just added.

8. Click the Add Solution button to display the Add Solution dialog box.

9. Locate and select the stylesheet file that you created, and click Open.

10. Enter an alias for this stylesheet such as MemoPlain.

11. At this point the Schema Library dialog box looks like Figure 11-2. Click OK
to close this dialog box and return to the Templates and Add-ins dialog box.

12. Click OK to close the dialog box.

Figure 11-2: Adding the schema to Word’s Schema Library.

Now both the schema and the stylesheet (which Word calls a solution) are loaded
into the Schema Library. Open the XML data file by choosing File → Open and
locating the XML file that you saved when you filled out the InfoPath Form. When

234 Part IV: Case Studies

you open this file, Word associates it with the schema and solution that you loaded
because they all use the same namespace. The stylesheet is applied to the document
and the output is displayed as shown in Figure 11-3.

Figure 11-3: The InfoPath document with the stylesheet applied and XML tags displayed.

Please note that the document’s XML tags are displayed. To hide them, turn off
the Show XML Tags in the Document option on the XML Structure task pane (see
Figure 11-4). Note also that the XML Document task pane displays a list of three
options:

◆ MemoPlain. Display the document using the MemoPlain solution.

◆ Data only. Display the document without applying a stylesheet; only the
XML data and tags will be displayed.

◆ Browse. Locate another stylesheet to apply to the document.

You need to address the question of how (or whether) the WordML document will
be validated. The document won’t pass validation against the memo schema because
of all the WordML tags that are added. You have two choices. One is to simply turn
off validation. InfoPath already will have validated the data, so you may feel that it
is unnecessary for Word to validate it also. However, the user can change the data in
Word, so you may want to leave validation in place. It is a call that you must make
based on the details of your specific application. To turn validation off:

1. Choose Tools → Templates and Add-Ins to display the Templates and Add-
ins dialog box.

Chapter 11: Connecting Word and InfoPath 235

2. On the XML Schema tab, deselect the Validate Document Against
Attached Schema option and select the Allow Saving as XML Even
If Not Valid option.

3. Click OK to close the dialog box.

Figure 11-4: The memo document with the XML tags hidden.

Your second option is to instruct Word to ignore mixed content in the document
when performing validation. This means that the validation process will check to
see that the memo elements contain the data as specified in the schema, but will
ignore other elements (namely, the WordML elements). To use this technique:

1. Choose Tools → Templates and Add-Ins to display the Templates and Add-
ins dialog box.

2. On the XML Schema tab, click the XML Options button to display the
XML Options dialog box.

3. Select the Ignore Mixed Content option.

4. Click OK twice to close all dialog boxes.

With the validation options set, you can save the document as WordML using
the File → Save As command (if you use File → Save, it will overwrite the InfoPath
form file). You can open the WordML file in Notepad or another text editor to see
what it looks like. You’ll see that there are a lot of elements at the start of the file
that perform tasks such as defining styles and listing document properties. The
actual content is located toward the end of the file. It should be clear to you that

236 Part IV: Case Studies

WordML is a very complicated vocabulary. The idea of writing WordML from
scratch may appear daunting, yet it would be very useful to do so. For the current
example, writing some WordML — or more specifically, creating a stylesheet that
outputs WordML — would permit you to automatically apply formatting to the
memo in Word. To my knowledge, Microsoft has not released the full WordML
specification, but there are techniques you can use to get the WordML you need.
These are explained in the following sections.

Creating a Stylesheet
with Formatting
If you knew that WordML is required to create the desired formatting, the rest of the
process would be straightforward. All you’d need to do is modify the stylesheet so
that it generates the WordML required to define the style(s) you are using and apply
them to the memo elements. Fortunately, you can get Word to do most of the work
for you. Here are the basic steps:

1. Define the desired style in the document.

2. Apply the style to part of the text.

3. Save the document as WordML.

4. Open the document in a text editor and locate the WordML elements.

5. Copy these elements to the stylesheet, making sure to copy any needed
namespace definitions as well.

The following sections walk you though the process of doing this for the memo
example. The object is to define a style and apply it to the memo heading.

Define and Apply the Style
These steps require that you have the memo document open in Word and have used
Save As to save it as an XML file under another name.

1. Choose Format → Styles and Formatting to display the Styles and
Formatting task pane.

2. Click the New Style button to display the New Style dialog box.

3. Enter MemoHead as the name for the new style.

4. Use the dialog box commands to define the style as you like. I used a
larger font in boldface, gray shading, and a black border at the bottom.

5. When the style definition is complete, click OK to close the dialog box.

Chapter 11: Connecting Word and InfoPath 237

6. Select the first line of the memo and apply the MemoHead style to it. The
document now looks like Figure 11-5.

7. Save the file.

Figure 11-5: A memo in Word with formatting applied.

The next step is to extract the WordML elements from the file you just saved and
insert them into the stylesheet.

The Style Definition
To find the WordML elements, open the file that you saved in the previous section
in a text editor such as Notepad. It is preferable, however, to use a specialized XML
editing program such as XML Spy, because Word does not format WordML files
nicely and you are likely to find lots of elements run together on each line, making
them difficult to read.

First, locate the style definition. A WordML file contains a <styles> element that
contains individual <style> elements for each style. You’ll find more than one style
defined in the WordML file— the one you want is the one named MemoHead, as indi-
cated by its w:styleId attribute and <w:name> tag. Here’s the relevant <style> tag:

<w:style w:type=”paragraph” w:styleId=”MemoHead”>
<w:name w:val=”MemoHead”/>
<w:basedOn w:val=”Normal”/>
<w:rsid w:val=”2D5055”/>
<w:pPr>
<w:pStyle w:val=”MemoHead”/>
<w:pBdr>
<w:bottom w:val=”single” w:sz=”12” wx:bdrwidth=”30”

w:space=”1” w:color=”auto”/>

238 Part IV: Case Studies

</w:pBdr>
<w:shd w:val=”clear” w:color=”auto” w:fill=”E6E6E6”/>
<w:spacing w:after=”120”/>

</w:pPr>
<w:rPr>
<wx:font wx:val=”Times New Roman”/>
<w:b/>
<w:sz w:val=”40”/>
<w:sz-cs w:val=”40”/>

</w:rPr>
</w:style>

Now that you have located the required element, you need to copy it to the
stylesheet:

1. In your text editor, open the stylesheet file that you created earlier in the
chapter.

2. Save the file under a new name, retaining the XSL or XSLT extension.

3. Place the cursor immediately after the first <w:wordDocument> element,
which is right after the <xsl:template match=”/”> element.

4. Type in a <w:styles> element and a </w:styles> element.

5. Copy the <style> element from the WordML document and paste it
between the <w:styles> element and the </w:styles> element.

With the MemoHead style definition in place, you’re ready to apply the style to
the document.

Apply the Style
This step locates the WordML that applies the MemoHead style to the memo head-
ing. By including this WordML in the stylesheet output, you are, in effect, applying
the style to text in the memo.

Switch to the editor in which the WordML file is open. Then, search for the text
Interoffice Memo (this is the text to which you applied the style). The relevant Word
ML is as follows:

<w:p>
<w:pPr>
<w:pStyle w:val=”MemoHead”/>

</w:pPr>
<w:r>
<w:t>Interoffice Memo</w:t>

</w:r>
</w:p>

Chapter 11: Connecting Word and InfoPath 239

Compare this to the corresponding WordML in the original stylesheet; the only
difference is lines 2↵n4. All you need to do is copy these three lines from the
WordML file and paste them at the corresponding location in the stylesheet file.

Checking Namespaces
WordML uses a variety of namespaces, and your new stylesheet must define any
that are used in the new elements that you just added. If you miss a namespace,
you’ll get an error later when you try to use the stylesheet, so it’s better to catch
them now. An examination of the new code shows only one new prefix, wx, that is
used in the style definition. Locate the definition of this namespace prefix near the
start of the WordML file and copy it to the stylesheet where the other namespace
prefixes are defined. After you have done so, the <xsl:stylesheet> element will
look like this:

<xsl:stylesheet version=”1.0”
xmlns:w=”http://schemas.microsoft.com/office/word/2003/2/wordml”
xmlns:ns0=”http://www.pgacon.com/memo”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:wx=”http://schemas.microsoft.com/office/word/2003/2/auxHint”>

Other Details
Because WordML stores complete information about a Word document, you can
expect that document properties are included. This is, in fact, the case, which means
that you can include WordML tags in the stylesheet to set certain properties in the
document that the stylesheet is creating. Specifically, you can set the validation-
related properties that were discussed earlier in the chapter. You can also specify
that displaying of XML tags is off by default. Properties are specified within a
<w:docPr> element. The specific WordML code for the present example is as
follows:

<w:docPr>
<!-- Do not allow saving of invalid document -->
<w:saveInvalidXML w:val=”off”/>

<!-- Do not display XML tags. -->
<w:showXMLTags w:val=”off”/>

<!-- Ignore mixed content in validation -->
<w:ignoreMixedContent/>

</w:docPr>

240 Part IV: Case Studies

These elements should be placed in the stylesheet immediately after the closing
</w:styles> element that you inserted earlier, and just before the <w:body> ele-
ment. The completed stylesheet is shown in Listing 11-3. The new elements that
have been added since the original stylesheet are in bold.

Listing 11-3: Completed Stylesheet with Formatting Elements

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:w=”http://schemas.microsoft.com/office/word/2003/2/wordml”
xmlns:ns0=”http://www.pgacon.com/memo”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:wx=”http://schemas.microsoft.com/office/word/2003/2/auxHint”>

<xsl:template match=”/”>
<w:wordDocument>
<w:styles>
<w:style w:type=”paragraph” w:styleId=”MemoHead”>
<w:name w:val=”MemoHead”/>
<w:basedOn w:val=”Normal”/>
<w:rsid w:val=”2D5055”/>
<w:pPr>
<w:pStyle w:val=”MemoHead”/>
<w:pBdr>
<w:bottom w:val=”single” w:sz=”12” wx:bdrwidth=”30”

w:space=”1” w:color=”auto”/>
</w:pBdr>
<w:shd w:val=”clear” w:color=”auto” w:fill=”E6E6E6”/>
<w:spacing w:after=”120”/>

</w:pPr>
<w:rPr>
<wx:font wx:val=”Times New Roman”/>
<w:b/>
<w:sz w:val=”40”/>
<w:sz-cs w:val=”40”/>

</w:rPr>
</w:style>
</w:styles>

<w:docPr>
<!-- Do not allow saving of invalid document -->
<w:saveInvalidXML w:val=”off”/>

Continued

Chapter 11: Connecting Word and InfoPath 241

Listing 11-3 (Continued)

<!-- Do not display XML tags -->
<w:showXMLTags w:val=”off”/>

<!-- Ignore mixed content in validation -->
<w:ignoreMixedContent/>

</w:docPr>

<w:body>
<xsl:apply-templates select=”/ns0:memo”/>

</w:body>
</w:wordDocument>
</xsl:template>

<!-- the memo heading -->
<xsl:template match=”ns0:memo”>

<w:p>
<w:pPr>
<w:pStyle w:val=”MemoHead”/>

</w:pPr>
<w:r>
<w:t>Interoffice Memo</w:t>

</w:r>
</w:p>

<ns0:memo>

<!-- the Date line -->
<w:p>
<w:r><w:t>Date:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:date>
<w:r><w:t><xsl:value-of select=”ns0:date”/></w:t></w:r>
</ns0:date>
</w:p>

<!-- the To line -->
<w:p><w:r><w:t>To:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:to>
<w:r><w:t><xsl:value-of select=”ns0:to”/></w:t></w:r>
</ns0:to>
</w:p>

<!-- the From line -->

242 Part IV: Case Studies

<w:p><w:r><w:t>From:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:from>
<w:r><w:t><xsl:value-of select=”ns0:from”/></w:t></w:r>
</ns0:from>
</w:p>

<!-- the Subject line -->
<w:p><w:r><w:t>Subject:</w:t></w:r>
<w:r><w:t xml:space=”preserve”> </w:t></w:r>
<ns0:subject>
<w:r><w:t><xsl:value-of select=”ns0:subject”/></w:t></w:r>
</ns0:subject>
</w:p>

<!-- the memo body -->
<w:p>
<ns0:body>
<w:r><w:t><xsl:value-of select=”ns0:body”/></w:t></w:r>
</ns0:body>
</w:p>

</ns0:memo>
</xsl:template>
</xsl:stylesheet>
</xsl:stylesheet>

Load and Apply the New Stylesheet
To see the new stylesheet in action, you must first load it into Word’s schema
library. Here’s what to do:

1. Choose Tools → Templates and Add-ins to display the Templates and Add-
ins dialog box.

2. On the XML Schema tab, click the Schema Library button to display the
Schema Library dialog box.

3. In the Select a Schema List, click the Memo schema.

4. Click the Add Solution button and locate the new stylesheet that you just
created.

5. When prompted, enter an alias such as MemoFormatted for the solution.

6. Click OK twice to close all dialog boxes.

Chapter 11: Connecting Word and InfoPath 243

At this point you have to solutions— the two stylesheets you created—associated
with the Memo schema and its namespace, http://www.pgacon.com/memo (or what-
ever namespace you used). When you open the InfoPath form file, Word uses its
namespace to associate it with the schema and the two solutions. This is shown in
Figure 11-6, just after opening an InfoPath file created from the Memo form template.
You can see that the XML Document task pane offers both solutions (stylesheets), and
the document is displayed using the new MemoFormatted solution. You can switch to
the old, unformatted view by clicking MemoPlain in the task pane.

Figure 11-6: A memo document displayed using the new stylesheet.

The memo shown in Figure 11-6 appears identical to the one shown earlier in
Figure 11-5, and that’s the point. In the first memo, the formatting was applied
manually by using Word’s formatting commands. In the second, the formatting was
created automatically by the stylesheet and applied to the data from the InfoPath
XML file.

You may want to use additional formatting for the memo. You can use the tech-
niques outlined in this chapter to apply formatting to the other memo elements
such as the To and From lines, and then incorporate the WordML elements in a new
stylesheet.

244 Part IV: Case Studies

Chapter 12

Connecting Excel
and InfoPath
IN THIS CHAPTER

◆ Creating a schema

◆ Designing the InfoPath form

◆ Creating the workbook

◆ Importing data

◆ Analyzing results

THIS IS THE SECOND of six chapters that works through the creation of a complete
solution using Office and XML. The example presented here pairs InfoPath and
Excel to create a data entry and analysis application.

Scenario
The scenario for this case study is as follows: Your company is involved in running
telephone surveys, and the old methods of gathering, tabulating, and analyzing the
data have become a problem, reducing efficiency and productivity. You want a new
solution that will provide the following:

◆ An on-screen form that the telephone operator can use to record informa-
tion while talking to a respondent

◆ A method of getting the data from the data collection program to the data
analysis program without the need for re-keying or the chance for errors

◆ A way to quickly generate both statistical and graphical summaries of
the data

InfoPath is the obvious choice for an easy-to-use on-screen form. For analysis,
Excel is the best option because it offers both charts and statistical calculations. The
survey data will be saved from InfoPath as an XML file, which will be imported
into Excel for analysis. 245

Planning
Once you have decided which Office applications will be involved in this project,
there’s still a lot of planning to be done, including deciding the order in which the
parts of the application will be designed. Will you create the InfoPath form first and
then the analysis workbook, or the other way around? It is actually a good idea in
most cases to decide on the structure of the data first and then create the schema
that defines it, because both InfoPath and Excel can make use of the schema to sim-
plify the task of creating the form and workbook.

Once the schema is complete, the next logical step is to design the InfoPath
form. Having the form enables you to create sample XML data files to use when
designing and testing the Excel workbook. Of course, the process of creating an
application, even a relatively simple one such as this, is rarely a linear start-to-
finish process. You almost always have to go back and change things that you
hoped were finished. That’s okay, and it does not mean that your planning was a
failure. In most situations, good planning minimizes but doesn’t eliminate these
changes, and that’s all you can expect.

Create the Schema
The first step in creating the schema is to decide on the data that the survey will
collect. Table 12-1 shows the data for our sample program.

TABLE 12-1 DATA TO BE COLLECTED BY THE SURVEY

Field Data Validation

date The date of the survey Any valid date; today’s date will be entered
by the user

age The age of the respondent In the range 18–65 because the survey is
as a positive integer limited to people in that age range

education The level of education achieved Not needed because it is an enumeration
by the respondent with four
possible choices: did not finish
high school, high school diploma,
college degree, graduate degree

voted A true/false value indicating Not needed because it is a Boolean value
whether the respondent voted
in the last election

246 Part IV: Case Studies

Field Data Validation

income The respondent’s annual income Zero or greater
as a positive integer

flavor The respondent’s favorite flavor Not needed because it is an enumeration
of ice cream with six choices:
vanilla, chocolate, strawberry,
coffee, cherry, and other

Now that you know the data that the schema has to specify, you can create the
schema. If you know the XSD schema language, you could use any text editor to
write the schema manually, but that’s a lot of work even for simple schemas — and
is prone to errors. It’s much better to use one of the many specialized XML and
schema editors that are available, some as freeware, others as shareware or com-
mercial programs. (My favorite is XML Spy.) Unfortunately, Office provides no
direct way to create a schema. While InfoPath lets you define what is essentially a
schema when you create a data source, this information is saved as part of the form
template and is not available as a separate XSD file.

Regardless of how you create the schema, it ends up looking something like the
one shown in Listing 12-1 (because the XSD language is so flexible, the same
schema definition can be written in different ways so your schema file may be dif-
ferent). When you create your schema, be sure to use an appropriate namespace in
place of the one in the listing. When the schema is complete, save it with an appro-
priate name and the .xsd extension (I named mine survey.xsd).

Listing 12-1: Schema for the Survey Data

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema targetNamespace=”http://www.pgacon.com/survey”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.pgacon.com/survey”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>
<xs:element name=”surveyResults”>
<xs:complexType>
<xs:sequence>
<xs:element name=”respondent” minOccurs=”0”

maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=”date” type=”xs:date”/>

Continued

Chapter 12: Connecting Excel and InfoPath 247

Listing 12-1 (Continued)

<xs:element name=”age”>
<xs:simpleType>
<xs:restriction base=”xs:positiveInteger”>
<xs:minExclusive value=”18”/>
<xs:maxExclusive value=”65”/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name=”education”>
<xs:simpleType>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”No high school”/>
<xs:enumeration value=”High school”/>
<xs:enumeration value=”College degree”/>
<xs:enumeration value=”Graduate degree”/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name=”voted” type=”xs:boolean”/>
<xs:element name=”income” type=”xs:positiveInteger”/>
<xs:element name=”flavor”>
<xs:simpleType>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”Vanilla”/>
<xs:enumeration value=”Chocolate”/>
<xs:enumeration value=”Strawberry”/>
<xs:enumeration value=”Coffee”/>
<xs:enumeration value=”Cherry”/>
<xs:enumeration value=”Other”/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

With the schema complete, you can proceed to the InfoPath form.

248 Part IV: Case Studies

Design the InfoPath Form
When you start designing the InfoPath form, you’ll see why creating the schema
first was a good idea — it really simplifies your task.

Create a New Form Template
To begin, you need to construct a template for the survey. Start by generating a
new form template based on the schema. Here are the steps to follow:

1. Start InfoPath.

2. Choose File → Design a Form.

3. On the Design a Form task pane, click New from Data Source. InfoPath
opens the Data Source Setup Wizard.

4. On the first screen, select the XML Schema or XML Data File option, and
then click Next.

5. Click the Browse button, and then locate and open the schema file for the
survey data (the schema you just created).

6. Click Finish.

At this point, InfoPath displays a blank form ready for design and, in the Data Source
task pane, the structure of the schema that you selected, as shown in Figure 12-1.

Go ahead and save the template now. I used the name SurveyFormTemplate, but
you can use any name you like. Remember to save the template regularly as you
work on it, to prevent the chance of data loss.

Selecting a Layout
Recall from Chapter 4, “Designing InfoPath Forms, Part 1” that in designing a
form’s visual interface, you first select a layout. This form is based on a simple
schema and doesn’t require a complex layout, nor does it require multiple views or
optional sections. A good choice for the layout is a one-column table with a title as
described in the following steps.

1. Click the Layout command on the task pane to display the Layout task pane.

2. In the Insert Layout Tables list, click the Table with Title item. InfoPath
inserts the table, with placeholder text, into your form.

3. On the form, click where it says “Click to add a Title” and type the title for
the form.

At this point, you can add any desired formatting for the title text, such as
changing the font or alignment. Figure 12-2 shows the form with the title centered.

Chapter 12: Connecting Excel and InfoPath 249

Figure 12-1: A new form template based on the schema.

Figure 12-2: The form after adding a layout table and title.

250 Part IV: Case Studies

Adding Controls
The survey data is structured as a repeating element, <respondent>, that holds the
responses from one survey participant. The repeating element contains six child ele-
ments that hold the individual pieces of data. This data structure is a perfect match
with InfoPath’s repeating design elements — either a repeating table or a repeating
section. Either would be suitable for this project; I decided to use a repeating section
and let InfoPath decide on the controls to use. Here are the required steps:

1. Click on the form where it says “Click to add form content.”

2. On the task bar, click the Data Source command to display the Data
Source taskbar.

3. Right-click the respondent element in the data source, then select
Repeating Section with Controls from the pop-up menu.

The result of these actions is that InfoPath inserts a repeating section into the
form. This section contains controls with the type of control determined by the type
of data of the corresponding element. Thus:

◆ The Date field is a Date Picker control because it is type Date.

◆ The Education and Flavor fields are Drop-Down List Box controls because
they are enumerations.

◆ The Voted field is a Check Box control because it contains Boolean data.

◆ The Age and Income fields are Text Box controls for entry of data from
the keyboard.

Note that each control in the repeating section has been given a label based on
the name of the bound element in the data source. At this stage in design the form
template looks like the one shown in Figure 12-3.

The form could be used as it is now, but with a little effort you can make it eas-
ier to use and more attractive.

Fine-Tuning the Form
The fundamentals of the data entry form are now complete, but there are some
additional design steps that will improve the appearance and usability of the form.

FORMATTING THE SECTION
For a more attractive screen display, and to make each copy of the section clearly
distinct from others, you can change the background color and add a border.

Chapter 12: Connecting Excel and InfoPath 251

Figure 12-3: The form template after adding the repeating section with controls.

1. Right-click the section (between controls) and select Borders and Shading
from the pop-up menu. InfoPath displays the Borders and Shading dia-
log box.

2. On the Borders tab, select the solid style and a width of 3 points. You can
select a color other than black if you like — I used a dark blue.

3. In the Border diagram on the right side of the dialog box, click at the bot-
tom of the sample to place a border there.

4. Click the Shading tab in the dialog box.

5. Select the Color option and select a light gray from the list.

6. Click OK to close the dialog box.

Your form now displays with a gray background and a blue border at the bottom.
Remember, you can preview the appearance of the form at any time by clicking the
Preview Form button on the toolbar. The preview shows how the form will appear
when it is being filled out. Figure 12-4 shows the form preview at this stage of its
design.

252 Part IV: Case Studies

Figure 12-4: Previewing the form design.

MODIFYING LABELS AND CONTROL POSITION
Next, we want to change some of the labels on the form and also make some
changes to the arrangement of controls on the form. The labels were created auto-
matically when the repeating section was inserted, and they are based on the bound
data source field names. You can change a label to be more informative by simply
clicking it and editing the text.

When modifying control position, remember that an InfoPath form uses a flow
layout. Unlike some other visual form design tools, you cannot simply drag items to
the desired location. The items on an InfoPath form—specifically text and controls—
are treated like text in a document that flows from the top left of the form, across,
and then down to a new line. A new line starts either when the designer presses Enter
or when content reaches the right margin and is wrapped to a new line.

For example, look at the form in Figure 12-4. Starting at the top left, this form
contains:

◆ The text “Date:”

◆ A Date Picker control

◆ A carriage return (Enter) to start a new line

◆ The text “Age:”

◆ A Text Box control, and so on

Taking this method of form layout into account, editing tasks must be carried
out accordingly. For example, suppose that you want to move the Age control and
its label up to be on the same line as the Date control. Here’s how you would do it:

Chapter 12: Connecting Excel and InfoPath 253

1. Click to the right of the Date Picker control to place the editing cursor
there. If the cursor is already on that line you can press the End key for
the same result.

2. Press Del to delete the carriage return at the end of the line. The Age Text
Box and label move up to the top line.

3. To change the space between the Date Picker control and the Age label,
add or delete spaces in between them.

Go ahead and make the desired changes to the form’s labels and layout. Figure 12-5
shows the changes that I made; you can use this as a guide or devise your own design.

Figure 12-5: Changing the form’s labels and control positions.

FORMATTING THE INCOME FIELD
InfoPath fields, or controls, provide the form designer with some degree of flexibil-
ity over the format of data display. For our example form, the only place that such
formatting is appropriate is the Income field, which can be formatted to display data
as currency (with a comma separating thousands and a dollar sign). Here’s how:

1. Right-click the Income Text Box control and select Text Box Properties
from the pop-up menu.

2. On the Data tab, click the Format button to display the Integer Format
dialog box (see Figure 12-6).

254 Part IV: Case Studies

3. Select the Currency option.

4. Click OK twice to return to the form.

Figure 12-6: Specifying currency
format for the Income control.

TESTING THE FORM
The form is now complete and ready for testing. There are two ways to test a form.
One, which you should do first, is to select Preview Form from the InfoPath toolbar.
This lets you work with the form as if you were filling it out, adding data, inserting
new sections, and so on. You cannot, however, save the data. The second and final
testing should be done by actually filling out a form based on the template and
saving the data. Here’s how:

1. Make sure that you have saved the final version of the template.

2. On the InfoPath menu, select Fill Out a Form. InfoPath displays the Fill
Out a Form task pane.

3. In the Fill Out a Form section of the task pane, click the name of the
template that you just created. InfoPath opens a new, blank form.

4. Fill out the form, adding at least one additional section. Remember, to add
a new section you can either right-click an existing section and select
from the pop-up menu, or you can choose Insert → Section → Respondent
from the menu.

5. Once you have added data for two or three respondents, save the form
(File → Save).

Figure 12-7 shows the form with data for three respondents. Assuming that the
form worked properly and you do not need to go back to make design changes, let’s
turn our attention to the Excel workbook that will analyze the survey data.

Chapter 12: Connecting Excel and InfoPath 255

Figure 12-7: Filling out the survey form.

Create the Workbook
With the InfoPath form design completed, it’s time to design the workbook that will
analyze and summarize data from the survey.

Import the Map
First, you have to import the map for the survey data XML file. Here are the steps
to follow:

1. Start Excel.

2. If necessary, choose View → Task Pane to display the task pane.

3. Open the task pane menu (Hint: click the down arrow in the task pane
title bar) and select XML Source to display the XML Source task pane.

4. Click the Workbook Maps button to display the XML Maps dialog box.

5. In the XML Maps dialog box, click the Add button to display the Select
XML Source dialog box.

6. Locate the XSD schema file for the survey data. You could also base the
map on the sample XML data file that you created in the previous section,
but it is preferable to use the schema when it is available.

256 Part IV: Case Studies

7. Click Open. The selected map will not be listed in the XML Maps dialog box.

8. Click OK to close the XML Maps dialog box.

The XML Source task pane, shown in Figure 12-8, displays the structure of the
map that you just opened.

Figure 12-8: The survey data
XML map displays in the XML
Source task pane.

Creating the XML List
Now that you have access to the map of the XML survey data, you need to map it to
a worksheet range in order to create the XML list where the data will be imported.
As you learned in Chapter 8, “Excel and XML,” you can map individual fields to dif-
ferent worksheet locations, but that won’t be necessary for this project. It is suffi-
cient to map the entire collection of fields — in other words, the <respondent>
element — to a cell and let the individual fields fall where they may. To do so:

1. Select Sheet3, which will be the worksheet for the XML data.

2. Double-click the sheet’s tab and change its name to Raw Data.

3. From the XML Source task pane, drag the <respondent> element and
drop it on cell A1. Excel maps the six fields to columns A through F, as
shown in Figure 12-9.

Figure 12-9: The XML list is created in the worksheet.

Chapter 12: Connecting Excel and InfoPath 257

Importing the Sample Data
Next, you can import the sample XML data file that you created when you were
testing the InfoPath form. You’ll need this data in the workbook when designing
and testing the analysis functions. These are the steps to follow:

1. Place the cell pointer on a cell in the XML list that you created in the pre-
vious step.

2. If necessary, choose View → Toolbars → List and XML to display the List
and XML toolbar.

3. Click the Import button on the toolbar. Excel displays the Import XML
dialog box.

4. Locate and select the XML data file that you saved from InfoPath, and
then click Import.

Figure 12-10 shows the XML list with my sample data in it. With this data in
place, you can begin work on the analysis functions of the workbook.

Figure 12-10: The XML list after importing the sample
data from InfoPath.

The Workbook Analysis Functions
Once you have the XML data in your workbook, you can use any of Excel’s powerful
analysis tools to provide the summary information that you need. Let’s run through a
sample summary analysis that determines what percentage of respondents prefers
each of the six flavor choices. The example is relatively simple because, after all, this
is a book about XML and Office and not about Excel’s other capabilities. The point is
to show you how to use Excel to provide “instant” analysis of data with little effort
on the part of the user.

258 Part IV: Case Studies

SUMMARIZING FLAVOR PREFERENCE
To begin with, the Excel tool for ascertaining the flavor preference percentages is
the DCount data function, which takes a list and counts the number of records in it
that meet a specified criteria. You need to use this function six times, once for each
of the six flavor choices. The function requires a criterion range, located some-
where in the workbook, on which to filter. A criterion consists of the field name in
one cell and the value in the cell below. For example, to count the records where
the Flavor field is “vanilla” you would put the text “Flavor” in one cell and the text
“vanilla” in the cell below.

It’s usually a good idea to place criteria in an out-of-the-way part of the work-
book. For this project I placed them in their own worksheet. Here are the steps to
follow:

1. Make Sheet2 active.

2. Double-click its tab and change the worksheet name to “Criteria.”

3. Put the label “flavor” in cell A1, and then copy it to cells B1:F1.

4. Create the first criterion by entering the text “vanilla” in cell A2.

5. Create the other five criteria (chocolate, strawberry, coffee, cherry, and
other) in the cells to the right, so that your worksheet looks like the one
in Figure 12-11.

Figure 12-11: After creating the flavor criteria.

With the criteria in place you can now insert the DCount functions. The first
worksheet is used to display the analysis results. Follow these steps:

1. Make Sheet1 active.

2. Change the worksheet name to Analysis.

3. Put the label “Flavor Preferences” in cell A2.

Chapter 12: Connecting Excel and InfoPath 259

4. Put the names of the six flavor choices in cells C2:C7.

5. Put the corresponding DCount function next to each label, in cells D2:D7.
Creating these functions is explained next.

The DCount function requires the following three arguments:

◆ Database. The workbook range that contains the database, or list, of data.
This can be expressed as a named range or a specific range address such as
A1:F200. In this application, however, you do not know ahead of time how
many rows the list will contain because the data imported from InfoPath
expands as the survey progresses. In this case you simply specify columns
and Excel automatically locates the last record in the list. The Database
argument, therefore, is ‘Raw Data’!A:F. Note the single quotes around the
worksheet name — these are essential because the name contains a space.

◆ Field. The list field, or column, on which the function is to perform its
calculation. This can be specified as a column name or a relative position
(1 is the first column; 2, the second; and so on). The DCount function
counts nonempty cells, and because there will be no empty cells in this
list (all fields are required according to the schema), it does not matter
which field is used. I used the value 1 for this argument.

◆ Criteria: The workbook range containing the criteria for the function. This
is Criteria!A1:A2 to count instances of “vanilla,” Criterial!B1:B2 to
count instances of “chocolate,” and so on.

When you enter these functions in cells D2:D7, make sure that each function ref-
erences the correct criterion range to match the adjacent label. For example, in the
cell adjacent to the “Strawberry” label, the function is

=DCOUNT(‘Raw Data’!A:F,1,Criteria!C1:C2)

In the cell adjacent to the “Cherry” label, the function is

=DCOUNT(‘Raw Data’!A:F,1,Criteria!E1:E2)

When you have finished entering the functions, the Analysis worksheet looks
like Figure 12-12. Note that the functions are correctly totaling the flavor prefer-
ences for the sample data (refer to Figure 12-10).

260 Part IV: Case Studies

Figure 12-12: After entering the DCount functions to
total flavor preferences.

DISPLAYING PERCENTAGES RATHER THAN TOTALS
As useful as the totals for each flavor may be, displaying them as percentages is
usually preferred. Remember, the total changes each time new data is added to the
list. In order to calculate percentages, you need to know the total number of
respondents, which is a useful piece of information in itself. To find this, you can
make use of a feature of the DCount function: when it is given a blank criterion, it
counts all records in the list. Thus, the following function returns the total number
of records in the list:

DCOUNT(‘Raw Data’A:F, 1, Criteria!G1:G2)

Note that this is dependent on cells G1 and G2 in the Criteria worksheet remain-
ing blank. To include the total respondent count on the Analysis worksheet, follow
these steps:

1. Insert two new rows at the top of the worksheet so that the existing con-
tent now starts in row 4.

2. Enter the text “Respondents” in cell A2.

3. Enter the function DCOUNT(‘Raw Data’A:F, 1, Criteria!G1:G2) in
cell C2.

Now that you have the total number of respondents, you can modify the formu-
las in cells D4:D9 to display percentages rather than totals. For the vanilla category,
for example, the calculation is simply the number preferring vanilla divided by the
total number of respondents. For example, the new formula in cell D4 will be

=DCOUNT(‘Raw Data’!A:F,1,Criteria!A1:A2)/C2

Chapter 12: Connecting Excel and InfoPath 261

You can go ahead and change all six formulas, dividing each by the value in
cell C2. After formatting cells D4:D9 as Percentage the worksheet will look like
Figure 12-13.

Figure 12-13: Displaying percentages for flavor preferences.

CREATE A CHART OF FLAVOR PREFERENCES
The final step in this analysis is to create a chart displaying the flavor preference data.
This task is greatly simplified by Excel’s Chart Wizard. Here are the required steps.

1. Select cells C4:D9 in the Analysis worksheet.

2. Click the Chart Wizard button on the toolbar, or choose Insert → Chart.
Excel displays the Chart Wizard dialog box.

3. Select Column under Chart Type, and Clustered Column under Chart Sub-
type, then click Next.

4. In the next dialog box (Step 2 of 4) there are no changes needed, so click
Next to proceed.

5. In the next dialog box (Step 3 of 4), display the Legend tab and deselect
the Show Legend option. Because this chart has only one data series, a
legend is not needed. Then, click Next.

6. In the final wizard dialog box, select the As Object In option and make
sure that Analysis is selected in the drop-down list. This creates the chart
as an object embedded in the Analysis worksheet.

7. Click Finish to create the chart.

8. In the worksheet, drag the chart to the desired position and size.

When you have completed creating the chart your analysis worksheet will look
like Figure 12-14.

262 Part IV: Case Studies

Figure 12-14. Displaying a chart of flavor preferences.

TESTING WITH MORE DATA
It’s always good idea to test an analysis worksheet with additional data. You can
see that your functions and chart work when there are three records in the list —
will they still work properly when the list expands? To check this:

1. Go back to the InfoPath form and add a number of additional data records
to the three you entered earlier.

2. Save the file.

3. Switch to Excel and display the Raw Data worksheet.

4. Click the Refresh button on the List and XML toolbar. Excel imports the
new records from the InfoPath form.

5. Display the Analysis worksheet. It should have automatically updated to
reflect the added data, as shown in Figure 12-15.

Additional Considerations
When designing a data entry and analysis solution that uses InfoPath and Excel,
there are a few other concerns that you need to keep in mind.

Chapter 12: Connecting Excel and InfoPath 263

Figure 12-15: The analysis worksheet automatically updates with new data.

Data Validation
One concern is data validation. InfoPath always validates a form when it is being
filled out, but it does allow the user to save a form that contains validation viola-
tions. Likewise, Excel can validate XML data against its schema when it is
imported, but this is an option that must be specifically enabled for an XML list (in
the Properties dialog box). It is somewhat pointless to have validation required in
both InfoPath and Excel. When designing the solution, you need to make a choice:

◆ The person filling out the InfoPath form is not permitted to save invalid
data. You can then be sure that the data imported into Excel is valid. You
do not need to use Excel’s validation option or to design the workbook’s
analysis functions to take into account the possibility of invalid data.

◆ The person filling out the InfoPath form is permitted to save invalid data.
Your Excel workbook must then take into account the possibility of
invalid data being imported. You may want to use Excel’s validation
option, but you should design the workbook’s analysis functions to take
into account the possibility of invalid data.

In my experience the first option is always to be preferred. After all, one of the
main benefits of using XML and InfoPath is the ability to validate data so that pro-
grams that use the data— in this case, the Excel workbook—can do their jobs without
all the added complexity of having to deal with the possibility of invalid data.

264 Part IV: Case Studies

Data Flow
A second concern is the way your data flow is designed. Using this chapter’s appli-
cation as an example, one important question is whether there will be only a single
person or multiple people collecting survey data and entering it into InfoPath.

The data flow design task is somewhat simplified in the case of a single person, but
there are still decisions to be made. Will the operator start a new InfoPath form every
day or every week, or how often? In our example, each time the data is imported into
the Excel workbook, the import contains only new data, with data from previous
imports already present in the worksheet. This requires that a property of the XML list
be set so that new data is appended to existing data. The other approach is to have
the operator always use the same InfoPath file so that new data is added to old. In
other words, the InfoPath data file always contains all the data, old and new. When it
is imported into Excel, the old data in the worksheet does not need to be kept. The
XML list property must be set so that new data overwrites existing data.

To set XML list properties, click the XML Map Properties button on the List

and XML toolbar.These properties were covered in detail in Chapter 8.

If survey data is to be collected by more than one person, things get a bit more
complicated and there is more than one way to design the data flow. One approach is
to use InfoPath’s form merge capability (as was described in Chapter 3, “Introduction
to InfoPath,” and Chapter 5, “Designing InfoPath Forms, Part 2”). When a form is
designed so that merging is supported, your data flow could have each operator fill
out his or her own InfoPath form, and merging those forms into a “master” form that
is then saved and imported into Excel. Another approach is to import each operator’s
form data separately into Excel.

Chapter 12: Connecting Excel and InfoPath 265

Chapter 13

Connecting Access
and InfoPath
IN THIS CHAPTER

◆ Creating the database

◆ Designing the InfoPath form

◆ Adjusting the views

◆ Using the form

INFOPATH FORMS make it easy to enter, view, and edit information in an Access data-
base. This chapter walks you though the process of creating an application that
uses InfoPath forms to do just that.

The Scenario
You work for the Save the Chipmunk charitable organization, and your boss has
told you to design an efficient, computer-based method of keeping track of donors
and donations. A database is the ideal solution for storing the data, and InfoPath
forms are a good choice for entering and viewing data. Because InfoPath form
design is simplified when you start with an existing data source, your first task is to
design the Access database.

Creating the Database
For this case study, you first need to create the Access database that will be connected
to InfoPath. You may be wondering why I’m not using the Northwind sample data-
base that is provided as part of the Access installation. The most important reason is
that by creating the database yourself, you will gain an intimate understanding of its
internal structure and will be better able to relate it to the InfoPath forms you’ll cre-
ate later. In addition, the database you will create is very simple. In contrast, the
Northwind database is rather complex and would be more difficult to work with.

267

Database Design
The database that we are designing here is simple but sufficient to illustrate the use
of InfoPath with an Access database. There are two tables:

◆ A Donors table that contains information about the individual donors
such as their name and phone number

◆ A Donations table that contains information about each individual dona-
tion: the date, the amount, and the identity of the donor

The two tables will be linked so that each entry in the Donations table is associated
with a single entry in the Donors table, identifying the person who made the dona-
tion. Because each person is likely to make multiple donations as time goes by, this
arrangement, called a relational database, simplifies many aspects of database design.
This sort of relationship is called one to many because each item in the Donors table
can be linked to multiple items in the Donations table (when one person makes two
or more donations), but each item in the Donations table is linked to only one item in
the Donors table (because each donation comes from a single person).

Creating a New Database and the Donors Table
Here’s how to create the new database and define the Donors table:

1. Start Access.

2. Choose File → New to display the New File task pane.

3. Click the Blank Database command on the task pane.

4. In the next dialog box, select a location and enter a name for the database
(I used DonorList).

5. Click Create.

At this point, Access displays the Tables list for the new database. There are no
tables yet, of course. The list contains three ways to create a new table: in Design
View, by using a wizard, and by entering data. If you are familiar with these tools,
you can use any method you like as long as the resulting table has the correct
structure (described later). These steps use Design View:

1. Double-click the Create Table in Design View entry in the DonorList tables
dialog box. Access opens Design View, as shown in Figure 13-1.

2. In the first row of the Field Name column enter DonorID.

3. Press Tab to move to the Data Type column. Access automatically specifies
the Text data type. Use the drop-down list to change this to AutoNumber.

268 Part IV: Case Studies

Figure 13-1: The table designer at the start of designing a new table.

4. Move to the second row and enter FirstName as the field name and accept
Text as the data type.

5. With the cursor still on the row for the FirstName field, use the General
tab at the bottom of the design dialog box to change the Field Size to 16
and Allow Zero Length to No. This specifies that the last name can hold
up to 16 characters and that it cannot be left blank.

6. Repeat Steps 2–5 to enter the following fields specified below with the
indicated field size values. For all of these fields the data type should be
Text and Allow Zero Length should be No.

Field Size

LastName 20

Address 25

City 15

State 2

PostalCode 5

HomePhone 12

Chapter 13: Connecting Access and InfoPath 269

7. When all the fields have been defined, right-click the DonorID field and
select Primary Key from the pop-up menu. A small key symbol is displayed
to the left of the DonorID row to indicate that this field is a primary key.

The final step is to specify how the table records should be sorted. We want them
to be sorted by last name and then by first name. Here’s how:

1. Right-click anywhere in the table design window and select Properties
from the pop-up menu. Access displays the Table Properties dialog box,
shown in Figure 13-2.

Figure 13-2: The Table Properties dialog box.

2. Enter LastName, FirstName in the Order By property.

3. Close the dialog box by clicking the X in the title bar.

Figure 13-3 shows what the completed table design looks like now.

Figure 13-3: After completing the design of the Donors table.

270 Part IV: Case Studies

Close the designer by clicking the X in the title bar. When prompted to save the
table select Yes, and then enter Donors as the table name.

For readers who are not familiar with databases, some explanation is in order.
Most of the fields are self-explanatory— they will be used to hold name, address, and
other information about an individual donor. But what about the DonorID field? Why
is it type AutoNumber and also designated as the primary key? Here’s why:

◆ The AutoNumber designation means that Access will automatically enter
sequential numbers in this field as donors are added to the table. The user
need not enter this information.

◆ The primary key is the field that can be used to uniquely identify each
record. This field cannot be left blank and must contain a unique value
for each record (donor).

Define the Donations Table
Now it’s time to define the Donations table. This table is simpler that the Donors
table, containing fewer fields. Follow the procedures just described for the Donors
table to create this table. The four fields are as follows:

Field Data Type

ID AutoNumber

DonorID Number

Date Date/Time

Amount Currency

Set the ID field as the primary key.
After these fields are defined, use the Table Properties dialog box to specify Date

as the sort field. Save this table as Donations. Figure 13-4 shows the Design View
when you’ve finished.

Chapter 13: Connecting Access and InfoPath 271

Figure 13-4: The completed design of the Donations table.

Defining the Relationship
You’ve probably figured out that the Donors and Donations tables are going to be
linked, or related, by the DonorID field. Even though the field name is the same in
both tables, Access cannot guess that this is the relationship to create — you must
do it yourself. Here’s how:

1. Make sure that both tables are closed because Access cannot create a
relationship with an open table.

2. Click the Relationship button on the toolbar or select Tools → Relationships.
Access opens the Relationships window and the Show Table dialog box.

3. In the Show Table dialog box, the Tables tab lists both of the tables you
created. Select each table in turn and click the Add button. This adds the
tables to the Relationship window.

4. Click Close to close the Show Table dialog box. Figure 13-5 shows the
Relationship window displaying the two tables but no relationship.

Figure 13-5: Before defining the relationship
between Donors and Donations.

272 Part IV: Case Studies

5. Point your cursor at the DonorID field in the Donors table (it’s displayed
in boldface because it is the table’s primary key). Drag it to the Donations
table and drop it on the DonorID field of that table. Access displays the
Edit Relationships dialog box, shown in Figure 13-6.

Figure 13-6: The Edit Relationships dialog box.

6. Because the default settings for this relationship are correct, you do not
need to make any changes in this dialog box. Click Create to create the
relationship and close the Edit Relationships dialog box.

7. The relationship is now indicated by a connecting line in the
Relationships window, as shown in Figure 13-7.

Figure 13-7: The relationship is indicated
graphically in the Relationships window.

8. Close this window by clicking the X in the title bar.

The database is now complete and you can turn to the next task, designing the
InfoPath form.

Designing the InfoPath Form
The InfoPath form will be designed to let the user enter new donors, enter new
donations, and search for donors by specified criteria. This may sound complicated,
but I think you’ll be surprised at how easy InfoPath makes it.

Chapter 13: Connecting Access and InfoPath 273

Connect to the Data Source
Your new InfoPath form will be based on a data source — namely the Access data-
base that you created earlier in this chapter. Here are the steps required to create a
new form based on the data source:

1. Start InfoPath.

2. Choose File → Design a Form to display the Design a Form task pane.

3. On the task pane, click the New From Data Source command. Access dis-
plays the Data Source Setup Wizard.

4. Select the Database (Microsoft SQL Server or Microsoft Access Only)
option, and click Next.

5. In the next dialog box, click the Select Database button. Access displays
the Select Data Source dialog box.

6. Locate the DonorList database file that you created earlier in the chapter.
Select it and click Open.

7. Access displays the Select Table dialog box, as shown in Figure 13-8.

Figure 13-8: Selecting data source tables for the InfoPath form.

8. The database’s two tables, Donations and Donors, are listed. Select the
Donors table and click OK.

9. The next Data Source Setup Wizard dialog box, shown in Figure 13-9,
lists the fields in the table that you selected. Fields with a check mark will
be included in the form’s data source. Since this form requires all fields,
there are no changes needed here. Click the Add Table button to add the
Donations table.

In Figure 13-9 you’ll see that the DonorID field is grayed out and cannot be

deselected.That’s because this is the table’s primary key field.

274 Part IV: Case Studies

Figure 13-9: Selecting fields from the Donors table.

10. Access again displays the list of the tables in the data source. Select the
Donations table and click Next.

11. The Edit Relationships dialog box is displayed, as shown in Figure 13-10.
Access suggests a relationship between the DonorID fields in the two
tables based on the field names being the same. You could use this dialog
box to specify other relationships if necessary, but for this example the
suggested relationship is correct and you can simply click Finish.

Figure 13-10: Specifying the relationship between the tables.

12. Access displays the Data Source Setup Wizard dialog box again, as shown
in Figure 13-11. You can see that the Donations table and its fields are
listed as a child of the Donors table. You could deselect individual fields at
this time if they were not needed in the InfoPath form, but the form will
use all the fields so this is not necessary. Note that the ID and DonorID
fields in the Donations table are grayed out and cannot be deselected. The
ID field is required because it is the table’s primary key, and the DonorID
field is required because it is the link to the Donors table.

Chapter 13: Connecting Access and InfoPath 275

If the names of the table fields are not displayed, select the Show Table

Columns option at the bottom left of the dialog box.

Figure 13-11: After adding the Donations table to
the data source.

13. Click Next to display the wizard’s final dialog box. It presents a summary
of the data source that you defined, and gives you the option of designing
the Query View or the Data View first (more on these views soon). Select
the Query View option, and then click Finish to complete the design of the
data source.

When you’re done, Access creates the new form template. You need to under-
stand how this form is created before you start working on its design. Be sure to
save the form template now and regularly as you design it.

The New Form
The form that Access creates has quite a few components already present on it.
Perhaps most importantly, the new form has two views defined: a Query View and
a Data Entry View.

InfoPath automatically creates the Query View, shown in Figure 13-12.
This view has the following components:

◆ A layout table at the top with a “Query Form” title and some explanatory
text. If you click the explanatory text, it is deleted and you can enter your
own text in this area if desired.

276 Part IV: Case Studies

◆ Another layout table that contains the remainder of the view’s components.

◆ A New Record button that the user will click to add a new record (that is,
a new donor) to the database.

◆ A set of text boxes for the fields in the Donors table. The user enters query
information here.

◆ A Run Query button that the user clicks to perform the query based on the
information entered in the text boxes.

The form’s second view, the Data Entry View, is initially blank — you must design
it from scratch. This is the view that is used to view and enter data. For example, if
the user runs a query using the Query View, the records that are retrieved by the
query are displayed in the Data Entry View for the user to examine or edit.
Likewise, if the user clicks the New Record button, a new, blank record is displayed
in the Data Entry View for the user to fill in.

Your task now is to take the preliminary InfoPath-created form and make modi-
fications and additions to meet the needs of your application. The one thing that is
required is to design the Data Entry View. Other changes and additions — such as
data validation, conditional formatting, and changes to the Query View — are
optional.

Figure 13-12: The Query View created by InfoPath.

Chapter 13: Connecting Access and InfoPath 277

About the Data Source
Figure 13-13 shows the data source that InfoPath created based on the DonorList
database. The structure of this data source may require some explanation.

Figure 13-13: The data source created
from the DonorList database.

There are two main groups in the data source: queryFields and dataFields. Each of
these groups contains the two tables Donors and Donations with all of their fields, so
why are there two separate groups? The answer lies in the fact that form information
is treated differently when it is part of a query than when it is simply data. As a
result, form controls on the form’s Query View are bound to fields in the queryFields
part of the data source, while controls on the form’s Data Entry View are bound to
fields in the dataFields part. You must keep this distinction in mind when designing
the form, making sure to use the correct binding when adding controls.

Modifying the Query View
The Query View that InfoPath created is perfectly functional as it is, but you may
want to make some changes. For example, the layout table at the top of the form —
the one with the Query View title in it — is superfluous, and can be deleted by right-
clicking it and choosing Delete → Table from the pop-up menu.

278 Part IV: Case Studies

If there are fields on which you won’t be running queries, you can delete the
associated controls and labels. For example, it isn’t likely you will need to find
donors based on DonorID, because that is just an arbitrary numerical value, so you
should delete it. You can also enhance the formatting of the view with fonts, colors,
and so on. I leave this to your discretion. For the example application I deleted the
DonorID field but otherwise left this view unchanged.

Formatting InfoPath forms is covered in Chapter 4 “Designing InfoPath

Forms, Part 1.”

Starting the Data Entry View
The main remaining task is designing the form’s Data Entry View. InfoPath’s tools
make this a lot easier than you might expect. Here’s how to get started:

1. Display the Views task pane.

2. Click Data Entry (default) to display the Data Entry View, which is cur-
rently blank.

3. Display the Layout task pane.

4. In the Insert Layout Table list, click Table with Title. InfoPath inserts a
table with placeholder text.

5. Click where it says Click to add a title, and type your form title — for
example, Save the Chipmunks Donors.

6. Click where it says Click to add form content.

7. Display the Data Source task pane.

8. If necessary, open the dataFields node of the tree.

9. Right-click the d:Donors group under dataFields and select Repeating
Section with Controls from the pop-up menu. InfoPath inserts the section
and bound controls on the form.

Figure 13-14 shows what the form looks like now. Examine the form to see
exactly how much work InfoPath has done for you.

Except for the title, the form consists of just one repeating section. You can see
this by the Repeating Section tab at the bottom of the form. The section contains
controls for the eight fields in the Donors table — DonorID through HomePhone. The
section repeats because the Donors table will contain multiple donors. When the
form is in use, there will be one copy of the section displayed on the form for each
donor that was returned by a query or is being entered by the user.

Chapter 13: Connecting Access and InfoPath 279

The repeating section also contains a repeating table as identified by the repeat-
ing Table tab. This table has controls for the four fields in the Donations table. It is
a repeating table because each donor can have one or more associated donations.

Figure 13-14: The data entry form after adding the repeating section.

How was InfoPath able to automatically create this form so easily? It has to do
with the way the data source is defined. Back when you created the data source,
you specified that there was a one-to-many relationship between the Donors and
Donations tables. With this information, InfoPath was able to create the repeating
section containing a repeating table to match the structure and relationship of the
two tables.

The form’s functionality is essentially complete, but you could still make a few
modifications, which are discussed in the following section.

Fine-Tuning the Data Entry Form
The first phase in fine-tuning the form is to remove controls that are not needed
because they are bound to fields whose data the user will not need to see or mod-
ify. These are the DonorID fields for the Donors and the Donations tables, and the
ID field for the Donations table. Remember that removing these controls from the
form does not affect the data source — the corresponding fields are still present even
if they are not visible.

To remove the DonorID field from the Donors table:

280 Part IV: Case Studies

1. Select the text box next to the Donor ID label at the top of the form by
clicking it.

2. Press Del to delete the control.

3. Press Backspace as many times as needed to delete the Donor ID label.

4. Press Del to delete the empty line and bring the First Name field to the top
of the section.

Deleting the ID and Donor ID fields from the repeating table is a bit more com-
plicated. You cannot just delete the controls because that would leave blank
columns in the table. Instead, you must delete the entire table columns:

1. Drag over the first two columns in the table to select them. The column
labels will be displayed with a gray background.

2. Select Table → Delete → Columns to delete the ID and Donor ID columns
from the table.

Figure 13-15 shows how the form looks at this point.

Figure 13-15: The Data Entry View after removing unneeded controls.

The Data Entry View contains only those controls that are required. Even so, the
form still can be improved, primarily in terms of its appearance. Here are some sug-
gestions; I won’t describe the required steps in detail, because you already know
them:

Chapter 13: Connecting Access and InfoPath 281

◆ Rearrange the controls and labels so they are not spread out one to a line.

◆ Change the size of some controls to better match the data they will contain.

◆ Insert a line (choose Insert → Horizontal Line) to visually separate the
repeating table from the other controls.

◆ Format the Amount field as currency.

◆ Add a border at the bottom edge of the repeating section so that each one
will be clearly delineated from the next.

You’ll see how the form looks after adding a Submit button, the next step in
form design.

Adding a Submit Button
As it stands, the form can be submitted to the database by choosing File → Submit.
It’s a nice touch to add a Submit button to the form so the user can submit the form
without using the menus. This phase of form design is completely optional but does
add user-friendliness to the form. Here’s how to add the button:

1. Click on the form below the Repeating Section tab but within the section
border.

2. Choose Insert → More Controls to display the Controls task pane.

3. In the Insert Control list, click Button. InfoPath inserts a Button control.

4. Right-click the button control and select Button Properties from the pop-
up menu. InfoPath displays the Button Properties dialog box, as shown in
Figure 13-16.

Figure 13-16: The Button Properties dialog box.

5. Select Submit in the Action drop-down list. InfoPath displays the Submit
Forms dialog box.

282 Part IV: Case Studies

6. Accept the default options and click OK to return to the Button Properties
dialog box.

7. Enter Submit in the Label field.

8. Click OK to close the dialog box.

Figure 13-17 shows the form in Form Preview mode of the Data Entry View after
formatting changes were applied and the Submit button added.

Figure 13-17: The Data Entry View in form in Preview mode showing a Submit button.

Setting Form Submission Options
InfoPath provides several options for form submission. It is important to set these
to suit the requirements of your application. Here’s how:

1. Right-click the button that you just added to the form and select Button
Properties from the pop-up menu. InfoPath displays the Button Properties
dialog box.

2. On the General tab, click the Define Action Parameters button. InfoPath
displays the Submitting Forms dialog box.

3. Click the Submit Options button. InfoPath displays the Submit Options
dialog box (see Figure 13-18).

Chapter 13: Connecting Access and InfoPath 283

Figure 13-18: Setting form submission options.

The form submission options determine what happens to the form when it is
submitted. The choices are:

◆ Close the form. Appropriate when the users submit the form when they
are finished editing or viewing data.

◆ Create a new, blank form. Appropriate when the user will be submitting
data in batches.

◆ Leave the form open. Appropriate when the user needs to continue viewing/
editing the same data after submission.

For this application the second option, Create a New, Blank Form, is best. It lets
the user enter or edit data in the database, submit the new and/or changed records
to the database, and start again with a blank form.

4. Select the Create a New, Blank form option, and click OK.

5. Click OK twice more to close all dialog boxes and return to the form.

The form is complete. It’s time to try it out.

Using the Form
Using the form that you just designed to interact with the DonorList database is an
excellent example of the power of InfoPath when teamed up with Access. Follow
these steps to get started:

1. Start InfoPath.

2. Choose File → Fill Out a Form to display the Fill Out a Form task pane.

284 Part IV: Case Studies

3. On the task pane, click the name of the form template that you designed
earlier in this chapter. Because the database is currently empty, InfoPath
displays the form’s Query View.

4. Click the New Record button to enter data for a new donor and donation.
InfoPath switches to the Data Entry View and displays a blank record, as
shown in Figure 13-19.

Figure 13-19: Adding a new donor to the database.

5. Enter information for a donor and a donation.

6. Choose Insert → Section → Donors to add a new, blank donor section to the
form.

7. Add information for the second donor and his donation to the form. The
form now looks something like Figure 13-20.

You are now ready to submit this data to the Access database. Click the Submit
button and, when prompted, select Yes. InfoPath submits the form and, assuming
that there are no errors, displays a message that the submission has been success-
ful. Finally a new, blank form is displayed with the Query View active.

Chapter 13: Connecting Access and InfoPath 285

Figure 13-20: After adding two donors and donations to the form.

The data you entered is in the Access database but the form is blank. You can
verify this by choosing View → Data Entry — you’ll see a blank form that does not
contain the previously entered records. You can enter and submit more data if you
like, but it will be instructive to see how the Query View works. Here’s how to enter
a donation for someone who has made donations previously.

1. If necessary, display the Query View again by choosing View → Query.

2. In the Last Name field, enter the last name of one of the donors that you
entered previously.

3. Click the Run Query button. InfoPath switches to the Data Entry View and
displays the data for the donor whose last name you specified.

4. Right-click the Donations table and select Insert Donations from the
pop-up menu. InfoPath adds a new, empty row to the donations table.

5. Enter the information for the new donation as shown in Figure 13-21.

6. Click the Submit button and follow the prompts to submit the new infor-
mation to the database. InfoPath displays a new, blank form.

To retrieve all records in the Donors table, leave the query form blank and

click Run Query.

286 Part IV: Case Studies

Figure 13-21: After adding a second donation for an existing donor.

An InfoPath form designed in this way provides you with all the tools you need
for most database tasks. You’ve already seen how to add a new donor and donation
and how to add a donation for an existing donor. Here are some other things you
might want to do:

◆ To delete a donor from the database along with all of his or her donations,
right-click the donor in Data Entry View and select Remove Donors from
the pop-up menu.

◆ To change a donor’s data, display it in the Data Entry View and make the
necessary changes.

◆ To delete a single donation for a donor, click the row in the donations
table that you want to remove. Then, click the adjacent down arrow and
select Remove Donations from the pop-up menu.

These changes are recorded in the database when the form is submitted.
This chapter has shown you how InfoPath and Access can be used together for

data entry and editing needs. When you create an InfoPath form template based on
a data source such as an Access database, some aspects of the form-design process
are automated, making your job even easier.

Chapter 13: Connecting Access and InfoPath 287

Chapter 14

Connecting FrontPage
and InfoPath
IN THIS CHAPTER

◆ Designing the InfoPath form

◆ Using the form

◆ Designing the Web page

◆ Using the Web page

FRONTPAGE ENABLES you to design Web pages that are connected to XML data, and
InfoPath is designed for entering and editing data that will be saved as XML. If this
sounds like a perfect match, you are right! This chapter walks you through the
process of using InfoPath and FrontPage for publishing data on the Web.

The Scenario
Your company sells specialty food items and wants you to design a Web page that
lists the items that are available. The objective is to have two lists on the page: one
of items that are in stock, and the other for items that are temporarily out of stock.
A third category is for items that are in the master list but won’t be listed on the
Web page at all — for example, items that are on long-term back order. You have
decided to approach this project by designing an InfoPath form for entering and
editing the food items and creating a FrontPage SharePoint page for the display.

Design the InfoPath Form
The first part of this project is to create the InfoPath form that will be used to enter
and edit information on the gourmet items that are offered by your company. There
are five required pieces of information:

◆ The name of the item

◆ The unit the item comes in, such as 8-ounce can, pound, or 1-liter bottle 289

◆ The price of the item

◆ A true/false value indicating whether the item is in stock

◆ A true/false value indicating whether the item should be listed on the Web
page

For this form, you can design the data source in InfoPath rather than relying on
an external schema (although you could use the latter technique if you wanted to).
Here are the steps required:

1. In InfoPath, choose File → Design a Form.

2. On the Design a Form task pane, click the New Blank Form command.
InfoPath opens a new, blank form and displays the Design Tasks task pane.

3. Click the Data Source command on the task pane. InfoPath displays the
Data Source task pane.

4. Right-click the myFields element and choose Properties from the pop-up
menu to display the Field or Group Properties dialog box.

5. Change the Name field from myFields to foodItems, and then click OK to
close the dialog box.

6. Right-click the foodItems element in the data source and select Add from
the pop-up menu to display the Add Field or Group dialog box.

7. Specify item as the name and Group as the type, and select the Repeating
option.

8. Click OK to close the dialog box.

9. Right-click the item element in the data source and select Add from the pop-
up menu to add each of the five child elements as described in Table 14-1.

TABLE 14-1 CHILD ELEMENTS OF THE ITEM GROUP

Name Type Data Type Other

name Field (element) text Cannot be blank

unit Field (element) text Cannot be blank

price Field (element) double Cannot be blank

inStock Field (element) True/false Default value true

list Field (element) True/False Default Value True

290 Part IV: Case Studies

10. When the data source is complete, save the form under a descriptive name
such as FoodItemsData.

At this point the Data Source task pane looks like the one in Figure 14-1.

Figure 14-1: The completed data source.

With the data source complete, you can turn your attention to designing the
form’s visual interface. The interface will be straightforward, consisting of a title
and a repeating table. Here are the steps to follow:

1. Click the Layout command on the task pane to display the Layout task
pane.

2. Click the Table with Title item to add a layout table to the form.

3. Click on the form where it says Click to Add Title, and enter a title for
the form.

4. Click where it says Click to Add Content.

5. On the task pane, click the Data Source command to display the Data
Source task pane.

6. Right-click the item element and select Repeating Table from the pop-up
menu. InfoPath inserts a repeating table in the form.

7. Right-click the Price field to display the Text Box Properties dialog box.

8. On the Data tab, click the Format tab to display the Decimal Format
dialog box.

Chapter 14: Connecting FrontPage and InfoPath 291

9. Select the Currency option.

10. Click OK twice to close both dialog boxes and return to the form.

11. Edit the table, changing the column widths to fit the data they contain.

When you are finished, the new form will look more or less like Figure 14-2.
Don’t forget to save the completed form template.

Figure 14-2: The completed form template.

Fill Out and Save the Form
Before you start designing the Web page in FrontPage, you need some sample data
to work with. In InfoPath, choose File → Fill Out a Form to create an instance of the
form that you designed. Enter some data on it. When creating this data be sure that
some items have In Stock set to true and others have this field set to false. The
same goes for the List field. When you are finished, your form will look something
like Figure 14-3.

When the data entry is complete, you must save the form. If your system is set
up so that your Web site is listed under My Network Places, you may be able to
save it directly to your Web site. Otherwise, save it locally and import it to the Web
site later.

292 Part IV: Case Studies

Figure 14-3: The form after entering some sample data.

Design the Web Page
The Web page will contain two Data Views, both based on the same XML file. One
of the Data Views will list items that are in stock as indicated by the inStock ele-
ment in the XML file, and the other will list out-of-stock items. Items in which the
list element is false won’t be included in either Data View.

To begin, open your SharePoint Web site in FrontPage and select File → New to
create a new, blank page. Next, add the page’s descriptive text, including a title and
labels to identify the two Data Views that will be added. You can design this part of
the page any way you like; my design is shown in Figure 14-4. Don’t forget to save
the page now and then as you work on it.

Adding the In-Stock Data View
Follow these steps to add the Data View that will list in-stock items:

1. Place the cursor at the location for the Data View that will display in
stock items.

2. Select Data → Insert Data View. FrontPage displays the Data Source
Catalog task pane.

3. If you saved the InfoPath XML file to the Web site, it should already be
listed in the XML Files section of the task pane. If not, use the Add to
Catalog command on the task pane to locate the file and import it into
the Web site.

Chapter 14: Connecting FrontPage and InfoPath 293

Figure 14-4: The page before adding the Data Views.

4. Click the XML filename and select Insert Data View from the pop-up menu.
FrontPage inserts a Data View into the page, as shown in Figure 14-5.

When you insert the Data View in Step 4, FrontPage may display a dialog box

informing you that the page’s extension must be change to .aspx. This is so

because plain HTML pages, which is what FrontPage creates by default

when you start a new blank page, do not support Data Views.To change the

extension, choose File → Save As and change the filename extension from

.htm to .aspx.

The Data View’s default appearance is clearly not acceptable. The following is
the minimum you need to do. First, edit the names at the top of the first three
columns. Then, delete the right two columns, since the user does not need to see
this information. Here’s how:

1. Put the cursor in the column to be deleted.

2. Choose Table → Select → Column.

3. Choose Table → Delete Columns.

294 Part IV: Case Studies

Figure 14-5: After inserting the first Data View.

Add a dollar sign to the Price column:

1. Click any individual cell in the Price column.

2. Use the arrow keys to move the cursor to the left edge of the cell.

3. Type in a dollar sign. The symbol is displayed in all cells in the column.

Delete the title of the Data View (FoodItemsData.xml in the figure).

1. Double-click the title in the Data View. FrontPage opens a dialog box
whose title is the name of the XML file.

2. In the dialog box, click the + symbol next to Appearance.

3. Delete the text in the Title field.

4. Click OK to close the dialog box.

In the prerelease version of FrontPage being used in the writing of this book,

you cannot delete the title of the Data View in design mode. If you erase the

title as described in the preceding steps, FrontPage displays “Untitled.”

However, when the page is published and viewed in Internet Explorer, the

title is not shown.

Chapter 14: Connecting FrontPage and InfoPath 295

Finally, you need to filter the data in this Data View so that the list displays only
those items for which both the inStock and the List elements are true:

1. Right-click the table and select Data View Properties from the pop-up
menu. FrontPage displays the Data View Details task pane.

2. Click the Filter command o the task pane. FrontPage displays the Filter
Criteria dialog box.

3. For this Data View, inStock must be true and list must be true. Enter
these required criteria in the dialog box, as shown in Figure 14-6.

4. Click OK to close the dialog box.

Figure 14-6: The criteria for the Data View.

When entering the criteria, be sure to match the case used. Enter true as

shown in the figure and not True. This sort of comparison is case-sensitive.

At this point the in-stock Data View is complete. Your page will look more or
less like Figure 14-7 (this is shown in FrontPage’s Preview mode).

Adding the Out-of-Stock Data View
The out-of-stock Data View is essentially identical to the in-stock Data View, and
you can follow the procedures described in the preceding section to add it to the
page. The only difference is in the filter criteria that you must define. For this Data
View, inStock must be false and list must be true, as shown in Figure 14-8.

296 Part IV: Case Studies

Figure 14-7: Previewing the in-stock Data View.

Figure 14-8: The filter criteria for the out-of-
stock Data View.

Using the Web Page
After your page is complete and saved to your Web site, you can give it a try by
navigating to the page using Internet Explorer. Figure 14-9 shows the final Web
page in a browser.

When the data changes, all that is required is to open the InfoPath form from the
Web site in InfoPath, make the necessary changes, and save it back to the Web site.
Users will see the new XML data when they open or refresh the Web page.

This case study has shown you how InfoPath and FrontPage can be used to
enable easy entry and editing of data that is automatically reflected in a Web page.

Chapter 14: Connecting FrontPage and InfoPath 297

Figure 14-9: The final Web page displayed in a browser as a user would see it.

298 Part IV: Case Studies

Chapter 15

Connecting Word
and FrontPage
IN THIS CHAPTER

◆ Creating the schema

◆ Creating the template

◆ Creating the Web page

ALTHOUGH MOST of the case studies presented in the book involve InfoPath and
another Office application, there’s no reason that InfoPath has to be involved in a
business solution that uses XML to enable two Office applications to work together.
This chapter presents a case study that uses Word and FrontPage.

The Scenario
Your firm keeps track of monthly sales figures by category. The sales manager, who
is responsible for these figures, has two related tasks. First, the figures must be
included in a report for upper management. This report will also include narrative
text that provides details on the period being reported and forecasts for the future.
Second, the raw sales figures must be posted to an internal company Web site so
they are available to the sales force.

Word, with its sophisticated editing and formatting tools, is an obvious choice
for creating an attractive report to submit to the higher-ups. By creating a Word
template, you can make it possible for the sales manager to enter the sales figures
and narrative and then print or e-mail the report to the recipients. By associating
the template with a schema (one that you will create in the next section), the rele-
vant data in the report — specifically the date and the sales figures — can be marked
up and will be accessible to other programs.

For the Web page, FrontPage is really the only choice. Specifically, the XML Web
Part that FrontPage provides is an ideal tool for the present needs. It enables you to
apply an XSLT transform to the WordML file, extracting the relevant data from the
WordML document and formatting it for display on a Web page.

299

Create the Schema
This case study requires a Word document that is marked up with both WordML for
the formatting and a custom set of XML tags to structure the data. In order to do
this, a schema must be associated with the Word document, or more specifically,
with the template that the document will be based on.

The data requirements are fairly simple. The schema should define a root ele-
ment named salesFigures. This element will have five child elements, one named
date that is type string, and four others, all type double, named software, comput-
ers, consulting, and repairs. The date element will contain the month and year that
the figures are for (hence the use of type string rather than type date), while the
four other elements will contain the sales figures for each category. The resulting
schema is shown in Listing 15-1. Note that a target namespace has been defined for
the schema. You can use this one or provide your own, but if you change it be sure
to change it throughout the chapter as well.

Listing 15-1: The Sales Figures Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema targetNamespace=”http://www.pgacon.com/salesfigures”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.pgacon.com/salesfigures”
elementFormDefault=”qualified” attributeFormDefault=”unqualified”>
<xs:element name=”salesFigures”>
<xs:complexType>
<xs:sequence>
<xs:element name=”date” type=”xs:string”/>
<xs:element name=”software” type=”xs:double”/>
<xs:element name=”computers” type=”xs:double”/>
<xs:element name=”consulting” type=”xs:double”/>
<xs:element name=”repairs” type=”xs:double”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

With the schema is finished, you can turn to designing the Word template.

Creating the Template
The process of creating the template has two stages. First, you must create a tem-
plate that has the required schema attached to it and design the visual appearance
of the template. Second, you must mark up the template with the tags from your
schema so that the data entered by the user can be identified properly.

300 Part IV: Case Studies

Template Design: Schema and Visual Appearance
The following steps create a new Word template, associate the Sales Figures schema
with it, and design the template’s visual elements.

1. Start a new, blank Word document.

2. Choose Tools → Templates and Add-ins to display the Templates and
Add-ins dialog box.

3. Click the XML Schema tab.

4. Click the Add Schema button and locate the schema that you created
earlier in this chapter. Follow the prompts to add the schema to the
Schema Library.

5. When you return to the Templates and Add-ins dialog box (see Figure 15-1)
make sure that:

■ The schema you just added is checked (in Figure 15-1, Sales Figures is
the alias that I assigned to the schema).

■ No other schemas are checked.

■ The Validate Document Against Attached Schemas option is checked.

■ The Allow Saving as XML Even if Not Valid option is not checked.

Figure 15-1: Attaching the Sales Figures
template to the template.

6. Click the XML Options button to display the XML Options dialog box.

7. Select the Ignore Mixed Content option (the reason for this is explained
later in the chapter).

Chapter 15: Connecting Word and FrontPage 301

8. Click OK twice to close both dialog boxes and return to the document.

9. Choose File → Save to display the Save As dialog box.

10. Select Document Template in the Save as Type list.

11. Enter a name for the template (I used SalesFigures).

12. Click OK to save the template and close the dialog box.

You have created the Word template (which is still blank, of course) and associ-
ated it with your schema, so now you can design the template’s contents. My
approach is to create a template with a table for the sales figures and placeholders
for the information that the user will enter (date and each sales figure), as shown in
Figure 15-2.

Figure 15-2: The template includes placeholders for the data that
will be entered.

When creating a document based on the template, the user will select the text
“enter month, year here” and type in the month and year. Likewise, he or she will
select the text “software” in the second column of the table and enter the sales figure
for that category. Note the leading dollar sign in each cell of the second column, so
the sales figures that the user enters will be displayed as currency amounts.

As you may be aware, Word provides an array of tools for template design, and
there are certainly other approaches that you could take in creating this template. For
this project, however, I decided to keep the template as simple as possible in order to
clearly demonstrate the XML techniques that are the purpose of this case study.

302 Part IV: Case Studies

Template Design: XML Mapping
The next phase is to map the XML elements to the template. Specifically, you map
XML elements to the placeholders in the template. Then, when the user replaces the
placeholder with the actual data, it is associated with the corresponding XML ele-
ment. Here are the steps to follow:

1. If necessary, display the XML Structure task pane.

2. Position the cursor anywhere in the template.

3. In the list of elements on the task pane, click salesFigures. Word displays
a dialog box asking where the element should be applied. Click the Apply
to Entire Document button.

Word puts an opening <salesFigures> tag at the start of the document and a
closing <salesFigures> tag at the end of the document. These are visible in the
document (see Figure 15-3) if the Show XML Tags in the Document option is
selected on the XML Structure task pane.

Figure 15-3: After applying the root salesFigures element to the entire document.

Please note the following in this figure as well:

◆ The entire document is marked with a wavy red line in the left margin.
This is due to the fact that the salesFigures element fails validation
because it does not contain the child elements that are defined in the
schema. This is to be expected at this point.

Chapter 15: Connecting Word and FrontPage 303

◆ The XML Structure task pane lists the salesFigures element with an X
icon next to it. This icon is also the result of the validation violations.

◆ The list of elements includes the child elements — date, software, and so
on. This is because, now that the root salesFigures element is in place
for the whole document, it is legal (according to the schema) to apply
these child elements to the document.

When you associated the schema with the document, you selected the Ignore
Mixed Content option. Now, you can see the reason for this. The way that you
mapped the salesFigures element resulted in its containing not only the child ele-
ments (to be added soon) but also the boilerplate text and placeholders in the tem-
plate. Because the schema does not define the salesFigures element as containing
such mixed content, it will cause a validation violation unless the Ignore Mixed
Content option is selected. With this option in force, the validation will check only
the content of the child elements.

Your next task is to map the child XML elements to the placeholders in the
template:

1. Select (highlight) the text “enter month, year here” in the document.

2. Click the date element name on the XML structure task pane.

3. Select the text “software” in the second column of the table (do not
include the $ in the selection).

4. Click the software name on the XML structure task pane.

5. Repeat Steps 3 and 4 to map the other three placeholders in the table to
the corresponding XML elements.

Figure 15-4 shows how the document looks when you’ve completed the map-
ping. At this point the template is complete, and you can save and then close it.

You may note that the document still fails validation, this time because the four
elements that you mapped to the table placeholders do not contain valid data (type
double) as required by the schema. Why, then, are you permitted to save the tem-
plate? The template restrictions are applied only when saving the document as
XML. In this case, you are saving the document as a Word template, and the tem-
plate restrictions don’t come into play (although they are still displayed on-screen).

Create a Sample Data File
Before starting work on the Web page part of this project, you should create a sample
data file. You’ll need it for testing the FrontPage elements that you will be creating.

1. In Word, choose File → New to display the New Document task pane.

2. In the Templates section, click the On My Computer command.

304 Part IV: Case Studies

Figure 15-4: After mapping all the XML elements
to placeholders in the template.

3. Locate the template that you created earlier, and click OK. Word opens a
new document based on the template.

4. Edit the document, replacing the placeholder text with sample data in the
following table (also see Figure 15-5).

Placeholder Text Data

date May 2003

software 12550.45

computers 24199.00

consulting 18711.65

repairs 5600.00

5. Choose File → Save As to display the Save As dialog box.

6. Select XML Document in the Save as Type list.

7. Enter a name for the file, such as SalesFiguresSampleData.

8. Click Save.

Chapter 15: Connecting Word and FrontPage 305

Figure 15-5: After entering sample data in the document.

Please note two things about the sample data. First, there is no need to enter
data in the Comments or Forecasts sections because they are not marked up with
XML and therefore are irrelevant to designing the Web page. Second, be sure to
enter the sales data as plain numbers, as shown in the figure. If you use commas or
any other formatting elements, validation will fail because the data type for these
elements is a numeric type.

Create the Web Page
The most demanding part of creating the Web page is the design of the XSLT trans-
form that will extract the sales data from the WordML file and output it for display
on a Web page. Once the transform has been created, the only remaining phase is
to put an XML Web Part on the page and connect it to the XML data file and the
transform.

Create the Transform
The transform has two related tasks: to locate the relevant XML data in the WordML
file, and to output that data along with the required HTML tags for displaying on the
Web page. For this example, the display is kept very simple but you can make it
more elaborate if you desire.

In order to write the transform, you need to take a look at the sample XML data
that you created earlier in this chapter. The reason is that when the Word document
is saved as WordML, the relevant data is marked up by both the tags defined in your

306 Part IV: Case Studies

schema and by WordML tags. To write the transform, or more specifically the XPath
expressions that the transform will use to locate and select the relevant data, you
need to know these tags. The best way to do this is to open the WordML file in a spe-
cialized XML editor such as XML Spy. Lacking this, you can use any text editor.

The first relevant bit of data is the date element. Using the search function you
can locate this in the WordML file. You’ll see that it is marked up as follows:

<ns0:date>
<w:r>
<w:t>May 2003</w:t>

</w:r>
</ns0:date>

The w: prefix is associated with the WordML namespace http://schemas.microsoft.
com/office/word/2003/wordml, and the ns0: prefix is assigned by Word to the name-
space in the schema (http://www.pgacon.com/salesfigures, in this example). This
information tells you two things that you need to know for the transform:

◆ The transform has to use both of the preceding namespaces.

◆ The date information will be marked up within <ns0:date>, <w:r>, and
<w:t> tags.

Next, search the WordML file for the data for the software category. You’ll find
it marked up in a manner almost identical to the date data:

<ns0:software>
<w:r>
<w:t>12550.45</w:t>

</w:r>
</ns0:software>

Armed with this information, you can proceed to write the transform that
FrontPage will use to display the data in an XML Web Part. As usual, there is more
than one way to write a transform for a desired goal; the one I wrote is shown in
Listing 15-2.

Listing 15-2: Stylesheet to Display the Sales Figures Data in an XML Web Part

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:sf=”http://www.pgacon.com/salesfigures”
xmlns:w=”http://schemas.microsoft.com/office/word/2003/wordml”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” version=”1.0” encoding=”UTF-8”

Continued

Chapter 15: Connecting Word and FrontPage 307

Listing 15-2 (Continued)

indent=”yes”/>
<xsl:template match=”/”>
<h1>Acme Corp Latest Sales Data</h1>
<xsl:apply-templates select=”//sf:date/w:r/w:t”/>
<xsl:apply-templates select=”//sf:software/w:r/w:t”/>
<xsl:apply-templates select=”//sf:computers/w:r/w:t”/>
<xsl:apply-templates select=”//sf:consulting/w:r/w:t”/>
<xsl:apply-templates select=”//sf:repairs/w:r/w:t”/>

</xsl:template>

<xsl:template match=”sf:date/w:r/w:t”>
<p>Sales report for <xsl:value-of select=”.”/></p>

</xsl:template>

<xsl:template match=”sf:software/w:r/w:t”>
<p>Software: $ <xsl:value-of select=”.”/></p>

</xsl:template>

<xsl:template match=”sf:computers/w:r/w:t”>
<p>Computers: $ <xsl:value-of select=”.”/></p>

</xsl:template>

<xsl:template match=”sf:consulting/w:r/w:t”>
<p>Consulting: $ <xsl:value-of select=”.”/></p>

</xsl:template>

<xsl:template match=”sf:repairs/w:r/w:t”>
<p>Repairs: $ <xsl:value-of select=”.”/></p>

</xsl:template>

</xsl:stylesheet>

Create the XML Web Part
Now you’re ready to create the XML Web Part. A real Web page would include more
than just a Web Part, at least in most situations, but other page elements are omit-
ted here because they aren’t relevant to using the XML data, which is the purpose
of this case study.

To begin, you need to have the sample data file that you saved from Word as well
as the XSLT transform file available on the Web site. If you haven’t already moved
them to the Web site, use FrontPage’s File → Import command to do so. Then, follow
these steps to create the XML Web Part:

308 Part IV: Case Studies

1. Start FrontPage and open the Web site that the new page will be part of.

2. Create a new page or open an existing page.

3. Place the cursor at the location where you want the XML Web Part located.

4. Choose Data → Insert Web Part to display the Web Parts task pane.

5. Select XML Web Part in the Web Part list, then click the Insert Selected
Web Part button. FrontPage inserts a blank Web Part on the page.

6. Double-click the new Web Part to open its properties dialog box (see
Figure 15-6).

Figure 15-6: Setting the properties
of the new XML Web Part.

7. Click the button next to the XML Link field and locate the XML data file.

8. Click the button next to the XSL Link field and locate the XSLT transform
file.

9. Click the + symbol next to Appearance and delete the text in the Title field.

10. Click OK to close the dialog box.

Figure 15-7 shows what the XML Web Part definition looks like when viewed in
FrontPage’s preview mode. The XSLT transform has extracted just the relevant data
from the WordML file and formatted it for displaying on the Web page.

Chapter 15: Connecting Word and FrontPage 309

Figure 15-7: The completed XML Web Part displayed in
FrontPage’s Preview mode.

This case study ties Word and FrontPage together to make the same data available
in two ways. Each month, the sales manager will create a new document based on
the Word template and enter the sales figures and other information. The document
can be printed or e-mailed to people who need the complete, formatted report. Then,
by saving the document as WordML to the Web site, the raw sales data figures are
automatically made available to others.

310 Part IV: Case Studies

Chapter 16

Connecting Web Publishing
and InfoPath
IN THIS CHAPTER

◆ Designing the InfoPath form

◆ Saving the form as a Web page

◆ Using a transform to create a Web page

◆ Using an InfoPath script to apply a transform

XSL TRANSFORMS, or stylesheets, can be used to convert InfoPath form data into a
Web page. Although Chapter 14 showed how InfoPath can be used in conjunction
with FrontPage to facilitate Web publishing of data, the fact is that not everyone
uses FrontPage for these tasks. Even so, the power of InfoPath can still be part of
your Web publishing strategy.

Overview
While FrontPage is considered to be part of the Office suite, some Office users may
prefer not to use it for some or all of their Web publishing needs. Perhaps you pre-
fer another Web design and publishing tool. More likely, it’s just that the capabili-
ties of FrontPage simply aren’t necessary in some situations. Many Web publishing
tasks require only that an HTML page be created and copied to the Web server, and
the sophisticated design and publishing tools provided by FrontPage are not
needed. This case study shows you two approaches to using InfoPath for entry and
editing of data to be published as a Web page.

The Scenario
It’s the policy of your firm to assign the duties of being available for telephone and
e-mail inquiries on a rotating basis. Each week, several members of the sales staff
are selected for this task. The number of people assigned varies but is typically 2–4.
At the beginning of each week, it is necessary to post a page to the company’s 311

Web site listing these people and their contact information. Your job is to design a
system whereby the supervisor can enter this information on an InfoPath form and
save it as a Web page to be placed on the site. This case study presents two related
approaches to this task, but the first job for both approaches is to design the
InfoPath form.

Designing the Form
The data requirements for the InfoPath form are rather simple. It has to list infor-
mation for several people, including their name, phone number, e-mail address, and
the name of the company branch office where they are based.

Creating the Data Source
There is no need to provide for validation against a schema because the data is sim-
ple and won’t be used by another program. This means that designing the data
source in InfoPath is the best approach. Here are the steps to follow:

1. Start InfoPath.

2. Choose File → Design a Form to display the Design a Form task pane.

3. Click New, Blank Form on the task pane. InfoPath opens a new, blank form.

4. Click the Data Source command on the task pane to display the Data
Source task pane.

5. Right-click the myFields group on the Data Source task pane, and then
select Properties from the pop-up menu to display the Field or Group
Properties dialog box.

6. Change the Name field to “dutylist.” Click OK.

7. Click the Add button. InfoPath displays the Add Field or Group dialog box
(see Figure 16-1).

Figure 16-1: Adding a new field or group to the data source.

312 Part IV: Case Studies

8. Enter “salesrep” in the Name field.

9. Select Group in the Type list.

10. Select the Repeating option.

11. Click OK.

12. Make sure that the salesrep group is selected in the list, and then click the
Add button to display the Add Field or Group dialog box again. This time,
you are adding a child element to salesrep.

13. Enter “name” in the Name field.

14. Select Field in the Type list.

15. Leave the Data Type field at the default selection of “Text (string).”

16. Click OK.

17. Repeat Steps 12–16 to add three more fields as children of the salesrep
field. The names should be telephone, e-mail, and district. All should be
type Text (String).

Figure 16-2 shows the completed data source. Don’t forget to save the form tem-
plate occasionally as you work on it.

Figure 16-2: The completed data source.

Chapter 16: Connecting Web Publishing and InfoPath 313

Designing the Form
To design the visual interface of the InfoPath form, follow these steps:

1. Click Layout on the task pane to display the Layout task pane.

2. In the Insert Table Layouts list, click One-Column Table to insert a table
in the form.

3. Click in the newly added table and enter “Acme Widgets Information
Center.”

4. Format the text as desired.

I leave the details of the formatting up to you. For the example, I did the following:

◆ Increased the font side to 18 points

◆ Made the text boldface

◆ Centered the text both vertically and horizontally in the cell

◆ Decreased the table row height

◆ Changed the table background shading to blue

◆ Changed the font color to white

Formatting techniques for InfoPath forms are covered in Chapters 4 and 5.

The layout table you just added is for the title of the Web page. The data and
additional items go in another table that you add as follows:

1. Make sure the cursor is on the form just below the title.

2. On the Layout task pane, click One Column Table. InfoPath inserts a
second table onto the form.

3. Click in the new table where it says Click to add form content.

4. Choose Table → Insert → Rows below to add a second row to the table.

5. Click in the second row of the table and add the following explanatory
text (as shown in Figure 16-3) or compose your own text.

314 Part IV: Case Studies

The sales representatives listed above are available to answer your ques-
tions about our products. You can contact them either by telephone or
by e-mail. In the case of e-mail it is our goal to respond by the next
business day.

6. On the task pane, click Data Source to display the Data Source task pane.

7. Drag the salesrep group from the task pane and drop it in the top row of
the table. A pop-up menu appears.

8. Select Repeating Table from the pop-up menu. InfoPath inserts a repeating
table with four columns, one for each field in the data source.

The functional aspects of the form are complete at this point. You can apply
additional formatting if desired; again I leave this to your discretion. Figure 16-3
shows the final form using InfoPath’s preview mode.

Figure 16-3: The completed form displayed in preview mode.

After saving the form template, it is available to be filled out with the informa-
tion about each week’s duty roster. Filling out InfoPath forms was covered in
Chapter 3 and won’t be covered further here. The next question is, of course, once
the form has been filled out, how can it be saved as a Web page? There are two
ways to do this: saving the InfoPath form as a Web page and using a transform to
create a Web page. I discuss both of these in the following sections.

Chapter 16: Connecting Web Publishing and InfoPath 315

Save the Form as a Web Page
The easiest way to convert an InfoPath form to a Web page is to use the Export
command. InfoPath has the capability to export a form to an HTML document. The
resulting Web page looks very similar if not identical to the form. Once the form
has been filled out, choose File → Export To → Web and then enter the name for the
HTML document. Figure 16-4 shows what the result looks like when the form is
filled out and exported in this way.

Figure 16-4: After exporting the form to the Web.

After you have exported the form as a Web page, you can post it directly to the
Web page where it is available for viewing.

316 Part IV: Case Studies

About an Exported Web Page’s Format
You should be aware that InfoPath’s Export to Web command creates a special kind of
HTML document called a single file Web page. This is also referred to as MHTML format.
The file is given the MHT extension rather than HTM or HTML. The single file Web page
format is designed so that the page’s complete content is contained in the one file,
including images and other elements that are normally external and included in the
page by means of links. In other words, a Web page in MHTML format is completely self-
contained and does not depend on any external items for completeness. Microsoft’s
Internet Explorer browser supports this format.

Use a Transform to
Create a Web Page
The second technique for publishing an InfoPath form as a Web page is a bit more
complex than simply using the Export to Web command, but it provides far more
flexibility. It involves saving the InfoPath form as an XML file, and then using an
XSL transform to generate a Web page from the XML data file. By creating your
own transform you can make the Web page come out pretty much any way you like
it — you don’t have to imitate the formatting on the InfoPath form.

The difficulties with this approach are probably obvious. For one thing, you need
to know how to write XSL transforms (sometimes called stylesheets), and the under-
lying language is rather complex. You also need to know HTML syntax so you can
determine what the output of the transform should be.

An additional problem is how to apply the transform. You might think that
InfoPath would offer the option of applying a transform when a form is saved, but
it doesn’t. For the present, at least, you have two options:

◆ Go outside of Office to apply a transform to an InfoPath XML data file.
There are many third-party tools available for this task, such as XML Spy.
You need to refer to the documentation for whatever tool you use for
instructions on how to apply a transform.

◆ Use a script in InfoPath to apply the transform. This is covered later in
this chapter.

Despite these hurdles, this technique is so flexible that it may be worth the extra
effort. The remainder of this chapter shows you how to use a transform to create a
custom Web page from the InfoPath form you developed earlier in the chapter.

Designing the Transform
To start with, look at the XML file (see Listing 16-1) that results when the SalesReps
form is saved. The part of the file that contains data starts with the <my:dutylist>
element. This root element contains one or more <my:salesrep> elements. Each of
these elements in turn contains child elements that hold the actual data. The goal of
the transform is to read this XML and output an HTML file that displays the data
and other elements. The data itself will be displayed in an HTML table.

Listing 16-1: The InfoPath SalesReps XML File

<?xml version=”1.0” encoding=”UTF-8”?>
<?mso-infoPathSolution solutionVersion=”1.0.0.5”
productVersion=”11.0.4920” PIVersion=”0.9.0.0”
href=”file:///C:\XMLFiles\Chapter16\SalesReps.xsn” ?>

Continued

Chapter 16: Connecting Web Publishing and InfoPath 317

Listing 16-1 (Continued)

<?mso-application progid=”InfoPath.Document”?>
<my:dutylist

xmlns:my=”http://schemas.microsoft.com/office/infopath/2003/
myXSD/2003-06-06T16:47:19” xml:lang=”en-us”>

<my:salesrep>
<my:name>Tony Maseri</my:name>
<my:telephone>555-666-7777</my:telephone>
<my:email>tony@acmewidgets.com</my:email>
<my:district>Eastern</my:district>

</my:salesrep>
<my:salesrep>
<my:name>Angela Wiggins</my:name>
<my:telephone>716-111-2222</my:telephone>
<my:email>angela@acmewidgets.com</my:email>
<my:district>Southern</my:district>

</my:salesrep>
<my:salesrep>
<my:name>Fred Adams</my:name>
<my:telephone>902-999-1111</my:telephone>
<my:email>freda@acmewidgets.com</my:email>
<my:district>Western</my:district>

</my:salesrep>
</my:dutylist>

The task of the XSL transform is to process this XML and output an HTML file
that will display the information in the browser. A detailed explanation of HTML
syntax or of XSL transform rules is beyond the scope of this book. If you are con-
sidering using this technique, it’s likely that you already have some familiarity with
these topics. The following section describes the parts of the stylesheet so that you
can understand what they are doing in terms of creating the output.

Initial Stylesheet Elements
An XSL stylesheet is itself an XML document, so the first element in it is the stan-
dard <xml> tag. The second element identifies the document as a stylesheet and
defines the needed namespaces. Here are those two elements for this stylesheet:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:my=”http://schemas.microsoft.com/office/infopath/2003/
myXSD/2003-06-06T16:47:19”>

318 Part IV: Case Studies

Note that there are two namespace prefixes defined: the xsl prefix is associated
with the standard transform namespace, and the my prefix is associated with the
same namespace that is used in the InfoPath XML data file.

The next element in the stylesheet is an <xsl:template> element. Most of the
stylesheet is, in fact, contained in this element. It’s shown here with the lines num-
bered so you can refer to them in the explanations that follow the listing. Note that
the indentation in this file is purely for visual clarity and does not affect its opera-
tion at all.

1. <xsl:template match=”/”>
2. <html>
3. <head>
4. <title>Sales Rep Roster</title>
5. </head>
6. <body>
7. <h1>Acme Widgets Information Center</h1>
8. <hr/>
9. <table border=”2” cellpadding=”4”>
10. <thead>
11. <tr>
12. <td>Name</td>
13. <td>Telephone</td>
14. <td>E-mail</td>
15. <td>District</td>
16. </tr>
17. </thead>
18. <xsl:apply-templates select=”//my:salesrep”/>
19. </table>
20. <hr/>
21. The sales representatives listed above are available to answer
22. your questions about our products. You can contact them either
23. by telephone or by e-mail. In the case of e-mail it is our goal
24. to respond by the next business day.
25. </body>
26. </html>
27. </xsl:template>

Here are the details of this code:

◆ Line 1: This is the opening tag for the <xsl:template> element. The
match parameter specifies the part of the XML document to which the
template applies. In this case / means the root element, so this template
will be applied once for the XML document’s <my:dutylist> element.

Chapter 16: Connecting Web Publishing and InfoPath 319

◆ Lines 2–17 are written directly to the output without changes. You can see
that they are HTML tags that define the HTML document’s <head> section
and title (lines 3–5), the start of the <body> section (line 6), a heading
(line 7), a horizontal line (line 8), and the start of a table with a row of
labels at the top (lines 9–17).

◆ Line 18 is an <xsl:apply-templates> tag that instructs the processor to
apply other templates that are defined in the stylesheet. Specifically it
applies templates that are defined for the <my:salesrep> elements in the
XML data file. We’ll get to those soon, but the important point is that the
output of these other templates will go at this location in the HTML file.

◆ Lines 19–26 are also written to the output file without changes. They
complete the HTML table (line 19), insert another horizontal line (line 20),
add the additional explanatory text (lines 21–24), and close the body sec-
tion and end the HTML document (lines 26–27).

Other Stylesheet Elements
The next part of the stylesheet is the template that processes the <my:salesrep>
elements. It looks like this:

1. <xsl:template match=”my:salesrep”>
2. <tr>
3. <xsl:apply-templates/>
4. </tr>
5. </xsl:template>

Here’s the description:

◆ Line 1 opens the xsl:template element and specifies that it applies to
<my:salesrep> elements in the XML data file.

◆ Line 2 writes an HTML tag to the output. This tag marks the start of a row
in a table.

◆ Line 3 tells the processor to apply other templates in the stylesheet. There
is no specification about which templates to process, which results in all
remaining templates (there’s only one more in this project) being
processed, which is exactly what we want. The output of the remaining
template will be inserted at this location in the HTML file.

◆ Line 4 writes another HTML tag, this one marking the end of a table row.

◆ Line 5 ends the xsl:template element.

320 Part IV: Case Studies

The final template writes the actual XML data to the HTML file:

1. <xsl:template match=”my:name | my:telephone |
2. my:email | my:district”>
3. <td>
4. <xsl:value-of select=”.”/>
5. </td>
6. </xsl:template>

Here are the details:

◆ Lines 1 and 2 are a single tag that is split over two lines. This tag opens
the xsl:template element. The match parameter specifies that this template
will be applied to all four of the listed elements.

◆ Line 3 writes an HTML tag to the document. This tag marks a table cell.

◆ Line 4 writes the data in the current XML element to the output.

◆ Line 5 closes the HTML table.

◆ Line 6 ends the xsl:template element.

Trying It Out
Listing 16-2 shows the entire stylesheet, including the code given in the preceding
sections plus the required closing tab.

Listing 16-2: Completed Stylesheet for Transforming XML File into HTML

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:my=”http://schemas.microsoft.com/office/
infopath/2003/myXSD/2003-06-06T16:47:19”>

<xsl:template match=”/”>
<html>
<head>
<title>Sales Rep Roster</title>
</head>
<body>
<h1>Acme Widgets Information Center</h1>
<hr/>
<table border=”2” cellpadding=”4”>

Continued

Chapter 16: Connecting Web Publishing and InfoPath 321

Listing 16-2 (Continued)

<thead>
<tr>

<td>Name</td><td>Telephone</td><td>E-mail</td><td>District</td>
</tr>
</thead>
<xsl:apply-templates select=”//my:salesrep”/>
</table>
<hr/>

The sales representatives listed above are available to answer
your questions about our products. You can contact them either by
telephone or by e-mail. In the case of e-mail it is our goal to
respond by the next business day.
</body>
</html>

</xsl:template>

<xsl:template match=”my:salesrep”>
<tr>
<xsl:apply-templates/>

</tr>
</xsl:template>

<xsl:template match=”my:name | my:telephone |
my:email | my:district”>

<td>
<xsl:value-of select=”.”/>

</td>
</xsl:template>

</xsl:stylesheet>

Figure 16-5 shows the resulting Web page in a browser (I’ll show you how to
apply the transform to the data in a moment). You can examine the relationship
between the XML data, the stylesheet commands, and the output by looking at the
HTML output Listing 16-3.

322 Part IV: Case Studies

Figure 16-5: The Web page created by the transform in Listing 16-2.

Listing 16-3: HTML Created by the Stylesheet

<html>
<head>
<META http-equiv=”Content-Type” content=”text/html; charset=UTF-16”>
<title>Sales Rep Roster</title></head><body><h1>Acme Widgets
Information Center</h1>
<hr>
<table border=”2” cellpadding=”4”>
<thead>
<tr>
<td>Name</td><td>Telephone</td><td>E-mail</td><td>District</td>
</tr>
</thead>
<tr>
<td>Tony Maseri</td>
<td>555-666-7777</td>
<td>tony@acmewidgets.com</td>
<td>Eastern</td>
</tr>
<tr>
<td>Angela Wiggins</td>
<td>716-111-2222</td>
<td>angela@acmewidgets.com</td>

Continued

Chapter 16: Connecting Web Publishing and InfoPath 323

Listing 16-3 (Continued)

<td>Southern</td>
</tr>
<tr>
<td>Fred Adams</td>
<td>902-999-1111</td>
<td>freda@acmewidgets.com</td>
<td>Western</td>
</tr>
</table>
<hr>
The sales representatives listed above are available to answer
your questions about our products. You can contact them either
by telephone or by e-mail. In the case of e-mail it is our goal
to respond by the next business day.
</body>
</html>

Using an InfoPath Script
to Apply the Transform
To finish this chapter, I want to show you how you can write a script to apply the
transform and create the HTML file. You learned the basics of InfoPath scripting in
Chapter 6. This script uses the DOMDocument object to perform a transform on the
current InfoPath document. The result of the transform — the HTML file — is then
written to disk. As a change from earlier script examples, this is written in JScript
rather than in VBScript.

First, the XSL file must be added to the form as a resource. This ensures that the
transform will be available to users of the form. All steps described here are carried
out with the SalesReps form in design mode.

1. Choose Tools → Resource Manager from the InfoPath menu. InfoPath dis-
plays the Resource Manager dialog box as shown in Figure 16-6.

2. Click the Add button and navigate to the XSL file containing the
stylesheet. Select the file, and then click OK.

3. The selected file is listed in the Resource Manager dialog box. Click OK to
close the dialog box.

324 Part IV: Case Studies

Figure 16-6: The Resource Manager dialog box.

Next, add a button to the form and write the script. These are the steps to follow:

1. Place the cursor at the end of the text at the bottom of the form.

2. Press Enter to create a new line.

3. Choose Insert → More Controls to display the Controls task pane.

4. From the Insert Controls list, select Button. InfoPath inserts a Button con-
trol on the form.

5. Right-click the control and select Button properties from the pop-up menu
to display the Button Properties dialog box (see Figure 16-7).

Figure 16-7: The Button Properties dialog box.

Chapter 16: Connecting Web Publishing and InfoPath 325

6. Select Script in the Action list.

7. Enter “Save as HTML” in the Label field.

8. Click the Microsoft Script Editor button to open the Script Editor. A blank
Click event procedure for the button is displayed, as shown in Figure 16-8.

Figure 16-8: Entering code for the button’s Click event.

9. Enter the code shown in Listing 16-4 into the procedure, being sure not to
duplicate the first line or the closing brace. Change the path and name of
the output file to suit your needs.

Listing 16-4: Code for Form Button OnClick Event

function CTRL11_5::OnClick(eventObj)
{
//Create the DOMDocument object and set its properties.
var objCustomTransform = new

ActiveXObject(“MSXML2.DomDocument.5.0”);
objCustomTransform.async = false;
objCustomTransform.validateOnParse = false;
//Load the transform.
objCustomTransform.load(“TransformToHTML.xsl”);

try{
// The file system object is used to write the result to a file.
var fso = new ActiveXObject(“Scripting.FileSystemObject”);
//Create the output file (blank at present).

326 Part IV: Case Studies

var result = fso.CreateTextFile(“c:\\xmlfiles\\output.htm”, true);
//Perform the transform and write the result to the file.
result.Write(XDocument.DOM.transformNode(objCustomTransform));
//Close the output file.
result.Close();
//Display a success message.
XDocument.UI.Alert(“HTML file created”);}

catch(e){
//If there was an error, display an error message.
XDocument.UI.Alert(e.description);}
}

10. Choose File → Save to save the script.

11. Switch back to InfoPath. The form now looks like Figure 16-9.

Figure 16-9: The SaleReps form after adding a button.

With the script in place, try the form again: fill out the form with the required
data, and click the button. You may be asked whether an ActiveX control should be
allowed to interact with the page; if so, select Yes. InfoPath will create the HTML
file and display a message to that effect.

An InfoPath form is often your best choice when your users need to enter and
edit information of various kinds. When that information needs to be published on
the Web, you have two choices for creating the required HTML: exporting the form
or using a script to apply a transform. Either way, the process is simple for both the
developer and the user.

Chapter 16: Connecting Web Publishing and InfoPath 327

Appendix A

What’s on the Companion
CD-ROM
THIS APPENDIX PROVIDES YOU with information on the contents of the CD that accom-
panies this book. For the latest and greatest information, please refer to the ReadMe
file located at the root of the CD. Here is what you will find:

◆ System Requirements

◆ Using the CD

◆ What’s on the CD

◆ Troubleshooting

System Requirements
To use this book’s CD, you need a computer equipped with a CD-ROM drive and
running one of the following operating systems: Windows 95, Windows 98,
Windows ME, Windows NT 4.0, Windows 2000, or Windows XP. Some of the indi-
vidual applications that are provided on the CD have their own requirements, which
are listed in the READ.ME file or other documentation for each application.

Using the CD
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. A window appears with the following options:

Install: Gives you the option to install the author-created samples that
are on the CD-ROM.

Explore: Enables you to view the contents of the CD-ROM in its direc-
tory structure and install the shareware and trial software applications
that are provided.

329

eBook: Enables you to view an electronic version of the book.

Exit: Closes the autorun window.

If you do not have autorun enabled, or if the autorun window does not appear, fol-
low these steps to access the CD:

1. Click Start → Run.

2. In the dialog box that appears, type d:\setup.exe, where d is the letter of
your CD-ROM drive. This brings up the autorun window described in the
preceding set of steps.

3. Choose the desired option from the menu. (See Step 2 in the preceding list
for a description of these options.)

What’s on the CD
The following sections provide a summary of the software and other materials
you’ll find on the CD.

Author-created Materials
All author-created material from the book is on the CD in the folder named Author.
This comprises all of the numbered listings in the book. Each file is named accord-
ing to the listing number, for example Listing0601 for Listing 6-1. Each file’s exten-
sion reflects the type of file — XML for an XML data file, XSD for a schema file, and
so on.

A self-extractor that copies the files to your hard drive is also provided.

Applications
The following applications are on the CD:

◆ ACDSee 5.0.1: Digital camera software for viewing, organizing, printing,
enhancing, and sharing digital photos.

◆ Acrobat(r) Reader(r) 6.0: For viewing and printing Adobe Portable
Document Format (PDF) files on major hardware and operating system
platforms.

◆ CSE HTML Validator Professional v4.50: HTML syntax checker for validat-
ing your Web pages.

◆ CSE HTML Validator Lite v2.01: The “lite” version of the HTML syntax
validator.

330 Appendixes

◆ XMLSPY Version 2004 Enterprise Edition: Powerful tool for editing and
working with XML files, schemas, and XSLT transforms.

◆ HTML Tidy: Catches errors and other problems in HTML code and applies
structured formatting.

◆ IBM(r) XML Schema Quality Checker v2.1.1: Checks syntax in XSD
schema files.

◆ XML4J version 3.2.1 (XML Parser for Java): An XML parser for use in
Java programs.

◆ expat - XML Parser Toolkit: An XML parser written in the C language.

◆ SP SGML parser: An SGML parser.

◆ XT: An XSLT implementation written in Java.

◆ Four Religious Works: The individual works making up the set are — The
Old Testament, The New Testament, The Quran, and The Book of Mormon
all in XML format.

◆ The Plays of Shakespeare: The complete plays of Shakespeare marked up
in XML, courtesy of Jon Bosak.

◆ XSV 1.4 (XML Schema Validator): An open source XML schema validator.

◆ Instant SAXON: An XSLT processor.

◆ XML Specifications: Full details of the XML Recommendation from the
Worldwide Web Consortium.

◆ XED: XED is a text editor for XML document instances.

◆ 4TOPS Excel Link: Links Excel worksheets to Access data.

◆ 4TOPS Word Link: Links Word documents to Access data.

◆ 4TOPS Summary Wizard: Creates statistical summaries from Access data.

◆ 4TOPS Filter Builder: Simplifies the process of defining data filters in
Access.

◆ 4TOPS Document Management: Uses Access for document management
tasks.

◆ 4TOPS Data Analysis: Statistical analysis and presentation of Access data.

◆ 4TOPS Excel Import Assistant: Assists in importing data into Excel.

◆ 4TOPS Screen Capture: Creates Access screen shots.

◆ Epic Editor – New product name is ArborText 5: XML-based software for
multichannel publishing.

◆ HP EzMath v1.1: Add math formulas to Web pages.

Appendix A: What’s on the Companion CD-ROM 331

◆ Hi-VisibilityT for FrontPage: Automates the search engine submission
process.

◆ Hi-Verify for FrontPage: Provides a keyword generator, metadata policy
management, and keyword density analysis.

◆ Hi-PositionT for FrontPage: A search engine position tracking tool.

◆ TagGenR for FrontPage: Wizard-driven forms for adding metatags to web
pages.

◆ The <WebSite> Promotion SuiteT 2003:

◆ PATools Advanced Find and Replace v2.04: Advanced find and replace
tools for Excel.

◆ ClipFile: Captures file names to the clipboard.

◆ Distributed Spreadsheet: Tools for consolidating, tracking, and controlling
access to Excel worksheets.

◆ WebWorks Publisher 2003 for Word: Publish Word documents in various
formats including HTML, HTML Help, WinHelp, and Sun JavaHelp.

◆ El Scripto 2: Web site components for popups, rollovers, and other effects.

◆ XLSTAT Pro v6.1.8: Statistical analysis tool for Excel.

◆ SVG Viewer 2.0: Viewer for Scalable Vector Graphics (SVG) files.

◆ QueryWeb v1.5: Build HTML Pages, Internet Channels, and scripts inte-
grated with Access data.

◆ CD Case & Label Creator: Design and print labels and case liners for
CD-ROM disks.

◆ Analyse-it for Microsoft Excel v1.68: Data analysis add-in for Excel.

◆ Gantt Chart Builder (Excel): Gantt chart builder for Excel.

◆ Change Management System v2.1.1: Integrates with Office to provide
project management capabilities.

◆ BBEdit v6.1: HTML and text editor for the Macintosh.

◆ StyleMaker v1.4: Tool for creating stylesheets for Web sites.

◆ WinAce 2.2: File and data conpression in ZIP and many other formats.

◆ TextPad v4.5: Full-featured text editor.

◆ Power Utility Pak v5: Set of general purpose utilities for Excel.

◆ ActiveDocs v4.0: Document templates providing document automation
in Office.

◆ HotDog Professional v7.0: Web site authoring tool.

332 Appendixes

◆ WinRAR: File and data conpression in ZIP and many other formats.

◆ XML Pro v2.01: Sophisticated XML editor.

Shareware programs are fully functional, trial versions of copyrighted programs.
If you like particular programs, register with their authors for a nominal fee and
receive licenses, enhanced versions, and technical support. Freeware programs are
copyrighted games, applications, and utilities that are free for personal use. Unlike
shareware, these programs do not require a fee or provide technical support. GNU
software is governed by its own license, which is included inside the folder of the
GNU product. See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited either by time or function-
ality (such as being unable to save projects). Some trial versions are very sensitive to
system date changes. If you alter your computer’s date, the programs will “time out”
and will no longer be functional.

eBook version of Powering Office 2003 with XML
The complete text of this book is on the CD in Adobe’s Portable Document Format
(PDF). You can read and search through the file with the Adobe Acrobat Reader
(also included on the CD).

eBook version of the Office 2003 Super Bible
The Super Bible is an eBook PDF file made up of select chapters pulled from the
individual Office 2003 Bible titles. This eBook also includes some original and
exclusive content found only in this Super Bible. The products that make up the
Microsoft Office 2003 suite have been created to work hand-in-hand. Consequently,
Wiley has created this Super Bible to help you master some of the most common
features of each of the component products and to learn about some of their inter-
operability features as well. This Super Bible consists of over 500 pages of content
to showcase how Microsoft Office 2003 components work together.

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD,
try the following solutions:

◆ Turn off any anti-virus software that you may have running. Installers
sometimes mimic virus activity and can make your computer incorrectly
believe that it is being infected by a virus. (Be sure to turn the anti-virus
software back on later.)

Appendix A: What’s on the Companion CD-ROM 333

◆ Close all running programs. The more programs you’re running, the less
memory is available to other programs. Installers also typically update
files and programs; if you keep other programs running, installation may
not work properly.

◆ Reference the ReadMe: Please refer to the ReadMe file located at the root of
the CD-ROM for the latest product information at the time of publication.

If you still have trouble with the CD-ROM, please call the Wiley Product Technical
Support phone number: (800) 762-2974. Outside the United States, call 1(317) 572-
3994. You can also contact Wiley Product Technical Support at www.wiley.com/
techsupport. Wiley Publishing will provide technical support only for installation and
other general quality control items; for technical support on the applications them-
selves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products,
please call (800) 225-5945.

334 Appendixes

Appendix B

XML Fundamentals
and Syntax
XML IS A LANGUAGE, and as such it has a syntax— rules about what is and is not per-
mitted. Conceptually, XML syntax is relatively simple, but there are a lot of details.
Anyone who is working with XML needs to know the most important aspects of XML
syntax and how XML documents are structured. These are the topics of this appendix.

Markup and Tags
XML is a markup language that is used to give structure to data. An XML document
therefore contains both the data and the XML markup that provides the structure
for the data. Markup consists of tags that are always enclosed in angle brackets
(< ... >). Here’s an example that contains two tags and one piece of data:

<tag>Data</tag>

Because the < and > characters are used to delimit XML tags, you can’t use

them in your data. If you need to represent these symbols in your data you

must use the character entities < (for <, the less than symbol) and >
(for >, the greater than symbol.When working in Office, you don’t need to do

this because Office makes the substitution for you.

Based on this example, you might be tempted to say that anything inside brackets
is a tag and anything not inside brackets is data. This is only partly true, however.
Anything outside brackets is indeed data, but data can be within brackets too, as
you’ll learn later in the section on XML attributes.

The XML specification provides several different types of tags, and most of this
appendix is devoted to explaining the details of how they work. Each type of tag has
a specific purpose. The most important ones are

◆ Providing structure to the data

◆ Giving instructions for processing the XML document

◆ Referencing information that is stored elsewhere
335

Document Structure
An XML document has both a physical structure and a logical structure. The physical
structure of a document permits the components of the documents, called entities, to
be stored separately. In other words, an XML document is not necessarily stored in a
single disk file (or other storage medium). Many XML documents are, in fact, stored
as a single file, but you should remember that this is not always the case. Fortunately,
the end user rarely has to deal with an XML document’s physical structure, which is
more a concern of the person authoring the document. The processing software usu-
ally takes care of this, pulling the various physical parts of a document together as
needed without your intervention.

The logical structure of a document permits the data to be organized as needed.
Data is organized into named units called elements. As you may have guessed, XML
uses tags to provide the logical structure of a document. The logical and physical
structures of an XML document are completely independent of each other.

XML Names
XML relies on names to identify tags and other elements of the document. The fol-
lowing rules apply to XML names:

◆ A name must begin with a letter, an underscore (_), or a colon (:).

◆ Subsequent characters in a name can be letters, digits, or the symbols
period (.), underscore (_), hyphen (-), or colon (:).

◆ There is no length limitation.

◆ Names are case-sensitive. Thus, Count and count are two different names.

◆ Names may not start with XML in any combination of uppercase and lower-
case. Such names are reserved for special uses.

Various non-English characters are legal in XML names.You can refer to the

XML Recommendation document at www.w3.org for more information.

Some standard practices have developed in the XML community for creating
XML names. Element and attribute names are typically created in all lowercase
without a separator, for example, lastname rather than LastName or last_name.
The colon is avoided because it is also used with namespaces (covered later in this
appendix) and might cause confusion.

336 Appendixes

Elements
An XML document’s data is contained in elements. A single element is defined by
its start tag, its end tag, and whatever is between these two tags. The start tag con-
tains the element’s name, and the end tag contains the element’s name preceded by
a slash. For example:

<country>
...
</country>

An element can contain data, other elements, or a combination of data and ele-
ments. Here’s an element that contains data:

<firstname>Peter</firstname>

The following is an element person that contains other elements (which them-
selves contain data):

<person>
<firstname>Peter</firstname>
<lastname>Pan</lastname>
</person>

Finally, here’s an element that contains both data and another element:

<person>
Peter
<lastname>Pan</lastname>
</person>

While legal, this kind of mixed element is best avoided.

Nesting Elements
XML elements can be nested to any arbitrary depth. The only restriction is that
each inner, or child, element must be entirely contained within the outer, or parent,
element. For example, this is perfectly legal:

<person>
<name>Peter Pan</name>
<address>Never-Never Land</address>
</person>

Appendix B: XML Fundamentals and Syntax 337

This, however, is not because of the illegal nesting:

<person>
<name>Peter Pan</name>
<address>Never-Never Land
</person>
</address>

The Document Element
Every XML document must contain a Document element, which is the parent of all
other elements in the document. Its name identifies the document. You can name
this element whatever you want (within the XML naming rules). What is important
is the relationship of the Document element as the parent of all other elements.
Sometimes the Document element is called the root element. Typically, the
Document element is given a name that is descriptive of the data in the document.
For example, for an XML file that contains an address list, you might call the root,
or Document, element <addressList> as shown here:

<addresslist>
<person>
<firstname>Andrea</firstname>
<lastname>Morelli</lastname>
<address>123 Main Street</address>
<city>Cleveland</city>
<state>OH</state>
<zipcode>44444</zipcode>
</person>
<person>
<firstname>William</firstname>
<lastname>Jackson</lastname>
<address>32 Elm Terrace</address>
<city>Oakville</city>
<state>IL</state>
<zipcode>54321</zipcode>
</person>
...
</addresslist>

Note that the Document element does not contain all of the tags in an XML docu-
ment, just all of the elements. Some tags, such as the DOCTYPE definition and pro-
cessing instructions, are placed before the Document element.

338 Appendixes

Empty Elements
An XML element can be empty, containing no data or other elements. An element
can potentially contain data and just be empty in this instance, such as a <middle
name> element for a person who does not have a middle name. An empty element
may also be designed to be empty and can never contain data. You might think that
such an empty element is useless, but because empty elements can contain attrib-
utes (which will be covered soon), they do have their uses.

An empty element can be indicated by start and stop tags with nothing between
them:

<middlename></middlename>

Or an empty element can be indicated by the following shorthand notation:

<middlename/>

This shorthand notation is preferred, particularly for elements that are defined as
empty and cannot contain data.

Attributes
Attributes are another method of associating information with an element. An
attribute consists of a name followed by an equal sign and the attribute value
enclosed in quotes (either single quotes or double quotes). Attributes are placed
within an element’s start tag. Here’s the syntax:

<elementname attributename=”value”>
...
</elementname>

Attribute names follow the XML name rules presented earlier in this appendix,
including case-sensitivity. An element can have multiple attributes. They are listed
one after the other with a space separating them:

Appendix B: XML Fundamentals and Syntax 339

Document Confusion
The term document is used in at least two different contexts, and it is easy to get
confused. An XML document consists of all the entities, internal or external, that are
declared. The only required entity in an XML document is the Document entity (or
element). Thus, the Document entity is part of every XML document.

<para keyword=”French history” author=”P. Aitken” date=’6/15/03’>
...
</para>

The presence of attributes has no effect on an element’s contents or on its end
tag. To include attributes in an empty element that uses shorthand notation, place
them after the element name and before the closing /:

<emptyelement attribute1=”value1” attribute2=”value2” />

When there are multiple attributes in an element, each attribute name must be
unique for that element.

If an attribute value is enclosed is double quotes, the value itself may contain

single quotes (and vice versa).

Special Attributes
The XML recommendation identifies two special attributes. One is the xml:space
attribute that deals with the way white space is handled. I’ll cover it in the “White
Space Issues” section later in this appendix.

The other special attribute is the xml:lang attribute, which serves to identify the
language in use. It is optional, and if omitted, the processing software will use its
own default assumptions about language. When included, this attribute can be set
to various values, as follows:

◆ A two-letter language code, such as en for English or fr for French. Please
refer to http://sunsite.berkeley.edu/amher/iso_639.html for a com-
plete listing.

◆ A two-letter language code (as the preceding) followed by a hyphen and
a two-letter subcode for country. For example, en-US specifies American
English and en-GB identifies British English. Please refer to http://sun
site.berkeley.edu/amher/iso_3166.html for the country subcodes.

◆ A code that follows the Internet Assigned Numbers Authority (IANA) for-
mat. IANA codes begin with I- or i- (a few other prefixes are in use as
well) followed by a language identifier. For example, i-navajo identifies
the Native American Navajo language.

◆ A user-defined code that begins with the prefix x- or X-.

340 Appendixes

Here’s an example of XML that uses the xml:lang attribute. The processing soft-
ware can use the proper spelling of Theater based on the language in use.

<venue xml:lang=”en-US”>Regency Theater</venue>
<venue xml:lang=”en-GB”>Regency Theatre</venue>

Be aware that XML processing programs are under no obligation to pay atten-
tion to xml:lang attributes, so their use is usually limited to situations in which
you know that the processing software will utilize them.

The xml:lang and xml:space attributes apply not only to the element

they are part of but also to all children of that element (unless a child has its

own xml:lang or xml:space or attribute).

Entities
In XML, the term entity is used in several situations when a name is defined to repre-
sent something else. All entities are declared inside the document type declaration, as
follows:

<!DOCTYPE MyXMLDocument [
<!ENTITY ...>
<!ENTITY ...>
]>

XML supports several types of entities, each with its own syntax. They are cov-
ered in the following sections.

Why use entities? There are several situations in which they are important, such as

◆ When the data is too large to be contained efficiently in a single entity.

◆ When the same content is used in multiple locations. The use of an entity
saves time and reduces the chance of errors.

◆ When content is represented differently on different platforms.

◆ When the content is not in an XML-compatible format, such as a binary
image.

You’ll see how these situations are addressed when you look at the different
types of entities.

Appendix B: XML Fundamentals and Syntax 341

The Document Element as Entity
Technically, the Document element is an entity, and in fact is the only entity that is
required in an XML document. You learned about the Document element earlier in
this appendix in the section “The Document Element.” The Document element
entity is an exception to the definition of entities in which a name stands for some-
thing else. The Document entity is the “base” of any XML document, and is where
processing starts.

Internal Text Entities
An internal text entity is defined within the XML document. It associates an entity
name with some text. The syntax is:

<!ENTITY EntityName “Text”>

The text can be enclosed in double quotes, in which case it can include single
quotes, or it can be enclosed in single quotes and can then contain double quotes.
EntityName must be unique within the document. Here are some examples:

<!DOCTYPE MyXMLDocument [
<!ENTITY myname “Peter G. Aitken”>
<!ENTITY myphone “919-555-1212”>
]>

342 Appendixes

The DOCTYPE Tag
The DOCTYPE tag is an optional item in an XML file. It is required when you are
defining entities, such as this:

<!DOCTYPE MyXMLDocument [
<!ENTITY ...>
<!ENTITY ...>

]>

It’s also required if you are connecting the XML document to a Document Type Definition,
or DTD. DTDs are a method for defining a data model for an XML document, a function
that is also performed by the newer XML Schema definitions (covered in Appendix C).
Because DTDs are not supported in Office, they are not covered in this book.

Note that when an XML document contains a DOCTYPE tag, the document name in
the tag must match the name of the Document element.

To reference an internal text entity within the document, use the entity name
preceded by an ampersand and followed by a semicolon:

&entityname;

Whenever the parser encounters an entity name like this, the name is replaced
with the entity text. The effect is exactly like using a word processor’s search and
replace command.

External Text Entities
An external text entity is similar to an internal text entity except that the entity text
is located external to the XML document. The syntax for an entity declaration is:

<!ENTITY entityname SYSTEM “FileIdentifier”>

entityname is the name of the entity. FileIdentifier identifies a file on the
local system or network. It must specify the file and its location either relative to
the location of the XML file that contains the entity declaration, or as a complete
URI. Here are some examples:

<!ENTITY MyEntity SYSTEM “data.ent”>

The entity text is contained in the file data.ent located in the same folder as the
XML file that contains the definition.

<!ENTITY MyEntity SYSTEM “\entities\data.ent”>

The entity text is contained in the file data.ent located in the entities folder,
which is off the system’s root folder.

<!ENTITY MyEntity SYSTEM “http://www.mywebsite.com/data.ent”>

The entity text is located in the file data.ent on the specified Web site.
External text entities are referenced just like internal entities: the entity name

preceded by an ampersand and followed by a semicolon:

&entityname;

Whenever the XML parser encounters an external entity name, it replaces the
name with the entire contents of the referenced entity file.

Appendix B: XML Fundamentals and Syntax 343

There is no requirement to assign ENT or any other specific extension to

external entity filenames.The ENT extension is often used, however, because

it indicates that the file in intended as an entity and not as a standalone

XML file.

External Binary Entities
An external binary entity is much like an external text entity except that it refer-
ences binary data rather than text data. The syntax is:

<!ENTITY entityname SYSTEM “FileIdentifier” NDATA datatype)

FileIdentifier specifies the source of the binary data in the same was as for
external text entities. The NDATA keyword tells the parser that the entity data is binary
and should not be parsed. datatype identifies the type of data that the entity con-
tains. For example, the following entity references a file that contains a JPEG image:

<!ENTITY photo1 SYSTEM “\pictures\portrait.jpg” NDATA JPEG)

The XML parser uses the datatype value to determine how to handle the binary
data. However, the parser does not “know” about any binary data types — after all,
the XML standard is limited to text data — so you must tell the parser how to han-
dle each binary format. This is done in an XML notation where you associate each
datatype value with the application that will be used to handle it. Notations are
covered later in the appendix.

External binary entities are referenced as usual: the entity name preceded by an
ampersand and followed by a semicolon.

Character Entities
A character entity refers to a character by its numerical code. Unlike text and
binary entities, a character entity does not have to be defined — you can just use it
anywhere it is needed. The format is as follows:

&#n;

where n is the decimal code for the character. You can also use hexadecimal values
as follows:

&#xn;

The numeric codes can be any code from the Unicode character set. Note that
the values 0–255 represent the standard ASCII character codes. For example, the

344 Appendixes

registered symbol ® has the code 174 in decimal and AD in hexadecimal. To include
this symbol in XML data, you could use either of the following entities:

®
­

XML defines five character entities for characters that have special meaning

to the XML parser. They are < for <,> for >,& for &," for

“, and ' for ‘.Thus, the text data Sam’s employer would be encoded in

XML as Sam's employer.

Character Data
By default, the entire contents of an XML document are processed by the XML
parser. There are situations in which you want to include text data that will not be
processed, but simply be passed along to the application as is. This is called char-
acter data and it is placed in a CDATA tag:

<![CDATA[This is the data]]>

The data can be as long as needed. Because it’s not processed by the parser, it
doesn’t have the usual restrictions on special characters, so you don’t have to use
the character entity < to represent <, for example. All characters can be entered
as themselves. The most common use for CDATA sections is when an XML docu-
ment needs to quote sections of XML or programming code that contains <, >, and
other characters that have special meaning in XML.

There’s one exception to the rule that you do not need to use character enti-

ties in a CDATA section. If the data contains the characters]]> then you

must use > to represent the >, as shown here:]]>. If you do not, the

characters]]>will be interpreted as marking the end of the CDATA section

rather than as part of the character data.

Notations
An XML notation is used to define how the parser is to handle external binary data
in a specific format. Here’s an example of an external binary entity as described
earlier in this appendix:

Appendix B: XML Fundamentals and Syntax 345

<!ENTITY photo1 SYSTEM “\pictures\portrait.jpg” NDATA JPEG)

The JPEG part of this declaration identifies the binary data type. Because an
XML parser does not know about binary data, you must tell it what to do with this
data in a Notation. The syntax is:

<!NOTATION FormatName SYSTEM “AppIdentifier”>

FormatName is the identifier that will be used for this format (JPEG in the previ-
ous example). It can be any arbitrary name but it’s a good idea to use something
that describes the format, such as JPEG for JPEG image files and TIFF for TIFF
image files. AppIdentifier is the name and path of the application that the parser
will call to process the binary data, or it can be a name that the operating system
associates with the format. The following notation specifies that the application
ShowBmp.exe will be used to process binary entity data that are associated with the
BMP data type identifier:

<!NOTATION BMP SYSTEM “\Program Files\Graphics\showbmp.exe”>

The following example tells the parser to use whatever application the operating
system associates with TIFF (which on Windows is typically a graphics program):

<!NOTATION TIFF SYSTEM “TIFF”>

Comments
Comments are used to provide notes, reminders, and other information in an XML
document. They are ignored by the XML parser and are useful only when the doc-
ument is read by a person, which for the majority of XML documents does not hap-
pen. A comment is created by enclosing the text in <!-- --!> tags. For example:

<!-- This is the comment -->

A comment can span multiple lines, and contain any text with the sole restric-
tion of a double hyphen (--). Note also that the comment text can contain single
hyphens as needed as long as the last character in the comment is not a hyphen.

Processing Instructions
A processing instruction tells the software how to process the XML. It has the fol-
lowing format:

<? target instructions ?>

346 Appendixes

target is a name identifying the application for which the instruction is
intended. The target name XML in all upper- and lowercase variants is reserved for
directing instructions to the XML parser. instructions consists of one or more
parameter/value pairs in this format:

parameter=”value”

The permitted parameters and values depend entirely on the target application.
The only processing instruction that is used regularly is the following, and it’s
directed at the XML parser:

<? XML version=”1.0” encoding=”UTF-8” ?>

This instruction tells the parser that the document contains XML that conforms
to version 1.0 (the only existing version, although there will certainly be others in
the future) and that the characters in the document adhere to the UTF-8 encoding
(an encoding that represents standard ASCII characters). If this processing instruc-
tion is present, as it is in essentially all XML documents, it must be the first line in
the document.

White Space Issues
The term white space refers to characters that are invisible themselves but have an
effect on the document formatting. There are four white space characters: space,
tab, line feed, and carriage return. These characters are handled differently depend-
ing on where they are located in an XML document.

Appendix B: XML Fundamentals and Syntax 347

Character Encoding in XML
Computers use numbers to represent characters, which means that the characters in
an XML document are represented internally by numeric values. A character encoding
specifies which numbers represent which characters. The XML Recommendation states
that legal characters in XML documents are those that follow the Unicode standard.
Unicode characters can be mapped to numbers in two ways, called Unicode
Transformation Formats or UTFs. One is UTF-8, which represents standard ASCII
characters. English letters, digits, and punctuation marks are represented by 1-byte
values in the range 0–255, and other characters (Chinese ideographs, accented
letters, special symbols, and so forth) are represented by 2- or 3-byte values. UTF-16
represents each character as a 2- or 4-byte value. XML parsers are required to support
UTF-8 and UTF-16, but may support other encoding as well. Please visit http://
unicode.org/unicode/reports/tr20/ for more information on character
encoding, Unicode, and XML.

The carriage return (CR, ASCII value 13) and line feed (LF, ASCII value 10) char-

acters date from the days of teletype machines.The CR signals the print head

to move to the left margin, and the LF character signals the machine to

advance the paper to the next line.To start a new line of text, both characters

had to be sent to the teletype. Today, Windows still uses the combination of

both (CR/LF) to start a new line.Macintosh systems Unix systems use CR alone.

Within markup (inside of tags), each white-space characters is treated as a single
space. This means that you can use tabs, spaces, and new lines freely to format your
XML for readability. When XML is processed, all white space within markup is con-
verted to single spaces; this conversion is called white-space normalization.

Outside of markup (that is, within content), white-space issues are more com-
plex. When it comes time to publish the data, such as by printing it, did the author
insert a CR/LF because he or she wanted the output split on two lines? Or, was the
CR/LF inserted as an authoring convenience that should not be reflected in the out-
put? While you cannot read the author’s mind, you can control how white space in
content is handled. By including the xml:space attribute with the value preserve
you instruct the parser to preserve all white space in content and pass it to the
application. Setting xml:space to default results in white space being normalized.
This is the default settings for parsers, you rarely see xml:space explicitly set to
default.

Like the xml:lang attribute, the xml:space attribute applies to the ele-

ment where the attribute is located and all of its child nodes unless the

attribute is explicitly set to default at a child level.

348 Appendixes

Parsers and XML Processing
The first step in processing XML is called parsing. A software component called a parser
reads the raw XML and processes it, making the data available to an application in a
form that the application can readily use. In almost all cases, the parser is an integrated
part of the application rather than being separate. It’s important to know that certain
rules of XML apply only to the parser and not to the application itself. For example,
setting the xml:space attribute to “preserve” tells the parser to preserve white
space in content, meaning that the white space is included in the data passed from the
parser to the application. There is no requirement, however, for the application to obey
the xml:space directive. Different applications treat white space differently, depending
on their specific needs.

A Complete XML Document
Listing B-1 presents a complete, if simple, XML document. The lines are numbered
for use in the descriptions that follow the listing.

Listing B-1: A Complete XML Document

1. <?xml version=”1.0” encoding=”UTF-8” >
2. <!DOCTYPE people [
3. <!ENTITY otherlist SYSTEM “otherlist.ent”>
4.]>
5. <people>
6. &otherlist;
7. <person category=”personal”>
8. <firstname>Mandy</firstname>
9. <lastname>Miller</lastname>
10. <phone>919-555-1212</phone>
11. </person>
12. <person categgory=”business”>
13. <firstname>Alexander</firstname>
14. <lastname>Walczak</lastname>
15. <phone>212-333-4444</phone>
16. </person>
17. </people>

Line 1 is the standard processing instruction that is the first line in almost every
XML document. Lines 2–4 contain the DOCTYPE element. It declares the Document
element’s name to be people and defines an external text entity named otherlist
that is located in the file “otherlist.ent”.

Line 5 is the start tag for the <people> element, which in this document is the
Document element. Note that its name matches the name in the DOCTYPE tag, as
required. Line 6 has a reference to the otherlist entity. When the file is processed,
the parser will insert the contents of the otherlist.ent file at this location.

Line 7 is the start tag for a <person> element. The tag includes an attribute that
identifies this person as belonging to the category “personal”.

Line 8 contains an entire <firstname> element — start tag, data, and end tag.
This is a child of the <person> element. Line 9 contains an entire <lastname> ele-
ment, which is a child of the <person> element, and line 10 contains an entire
<phone> element, also a child of the <person> element.

Line 11 is the end tag for the first <person> element.
Lines 12–16 contain another entire <person> element with its child elements.
Line 17 is the end tag for the <people> element. Becaused <people> is the root,

or Document, element, this also marks the end of the document.

Appendix B: XML Fundamentals and Syntax 349

It is important for you to know the basics of XML syntax in order to work effec-
tively with XML and XML applications. This appendix provides you with the most
important aspects of XML syntax, and should be sufficient for the purposes of this
book. You can find the complete XML Recommendation at http://w3.org/TR/
REC-xml. The W3 Web site is a great source of information for other XML-related
technologies as well.

350 Appendixes

Appendix C

Data Modeling with
XSD Schemas
DATA MODELING is an essential part of working with XML and Office. A data model,
or schema, defines the elements, attributes, and data that an XML file can contain.
To define a data model you use XSD, the XML Schema Definition language. XSD is
itself written using XML, so the material you have learned about XML mostly
applied to writing schemas as well. This appendix shows you the syntax and struc-
ture of XSD schemas.

XSD Overview
A schema, sometimes called a data model, is a way to define a set of rules for an XML
file. This is a very important aspect of using XML, particularly in Office. A schema
can specify

◆ The names of the elements (tags) that are allowed in the document

◆ The parent-child relationships between the elements

◆ Which elements are required and which are optional

◆ The attributes that each element can have, and whether an attribute is
required or optional

◆ The type of data each element or attribute can contain — for example, text,
a date, or a number

Why is this so important? Software applications that work with XML often
expect and require that the XML data be structured in a certain way. An auto-parts
database, for example, expects each item to have a <partnumber> element, but
would likely be lost if it encounters a <flavor> element. Likewise, in an address
list, the <firstname> and <lastname> elements might be required while the
<faxnumber> element could be optional.

When a schema is associated with an XML file, the processing software validates
the XML against it. If there are no violations, processing continues normally. If one
or more violations are found, the software takes appropriate action. An XML file
that follows all the rules of its schema is said to be valid.

351

A schema is defined using XML, which means that a schema file is itself an XML
file. Schemas follow the rules of the XML Schema Definition Language, which is why
they are called XSD schemas. By convention, schema files are saved with the XSD
extension. The connection between an XML file and a schema is made in software—
in other words, the schema file’s name is not contained in the XML file. This provides
the flexibility of associating different schemas with the same XML file at different
times. It is also possible to use two or more schemas to validate different parts of the
XML file through the use of namespaces, which are covered in the next section.

You’ll find that you rarely have to work directly with the code in a schema file.
Some software lets you define the schema using more intuitive point-and-click
methods, and then generates the code for you. Other programs, such as Access, can
automatically generate a schema from existing data. Finally, many published
schemas are available for specific purposes. Even so, you should know the basics of
defining schemas.

Namespaces
A namespace provides an extra level of identification to XML elements. As an anal-
ogy, suppose that your five best friends are named Fred, Mary, Julio, Alice, and
Leslie. There’s no problem telling who sent you a personal message signed “Fred,”
unless two of your friends are named Fred. In that case, you might need the last
name to identify the message sender. The last name serves a similar purpose to
namespaces in XML.

In a single XML document, element names (in the absence of namespaces) must
be unique. But XML offers the capability of combining the data from two or more
XML documents, and the possibility of name collisions exists. By assigning differ-
ent parts of a document to different namespaces, identical element names can
peacefully coexist.

Namespaces also can be used to create groupings of related XML elements and
attributes that can be recognized by software and processed accordingly. For exam-
ple, you can use namespaces to apply different schemas to different logical parts of
the document.

352 Appendixes

What about DTDs?
You may have heard about DTDs, or Document Type Definitions, as a method for
defining an XML data model. In fact, DTDs were the original data model definition
language and are part of the core XML specification. They are not, however, supported
by Office. Why? Although DTDs are suitable for many data-modeling tasks, over the
years programmers began running into limitations. The development of XSD was
motivated in part by these limitations, resulting in XSD being a lot more powerful
and flexible than DTDs.

Some very simple XML files, including many of those used as examples in

this book, do not use namespaces. In the real world, however, you’ll find that

namespaces are very widely used in XML files and applications.

Default Namespace Declarations
A default namespace declaration has the following form:

xmlns=”NameSpace”

xmlns is a reserved XML keyword used specifically for this purpose. NameSpace
is the namespace identifier, specifically a unique URI (Uniform Resource Identifier)
for the namespace. The namespace declaration is placed as an attribute of an ele-
ment in the document, most often the Document or root element. Here’s an example:

<rootelement xmlns=”http://www.pgacon.com/xmlbook”>
...
</rootelement>

This puts all elements and attributes in the document in the “http://www.pga
con.com/xmlbook” namespace (unless other namespaces are declared). Note that
the namespace identifier looks very much like a Web URL. In fact, it is in fact a URL
(my own), which is a type of URI.

Why are namespaces, most of them at least, given this form? It has nothing to
do with the URI itself — the XML application does not have to retrieve information
from the URI or be connected to the Web at all. It is because URIs provide unique
identifiers. With this approach to assigning namespaces, the chance of duplicate
namespaces is essentially eliminated because each person (or organization) will use
his or her unique URI in the namespace.

Appendix C: Data Modeling with XSD Schemas 353

URIs, URNs, and URLs
URL stands for Uniform Resource Locator, which most people are familiar with as the
addresses used to identify Web sites, such as www.microsoft.com. A URI, or
Uniform Resource Identifier, is a broader concept that includes any string, or text, that
identifies a resource. All URLs are URIs, but the reverse is not true. A URN, or Uniform
Resource Name, is a URI that has an institutional commitment to remain available. All
URNs are also URIs, but URNs and URLs only partially overlap. For more information
please see http://w3.org/Addressing/.

Although not required, it’s common practice to have a namespace URI point

to a document that describes the namespace specification. This can be a

help to developers who are using the namespace. They can plug the name-

space URI into a browser and view the documentation. Remember, however,

that a namespace URI is simply a formal identifier and does not have to

point to a document on the Web.

Explicit Namespace Declarations
In addition to or instead of using a default namespace, you can create one or more
explicit namespace declarations. An explicit namespace declaration takes the form:

xmlns:prefix=”NameSpace”

prefix is a name that can subsequently be used to apply the namespace to ele-
ments in the document. For example:

<rootelement xmlns:pga=”http://www.pgacon.com/xmlbook”>

With this declaration, any element or attribute in the document can be made
part of the “http://www.pgacon.com/xmlbook” namespace by prefixing the element
name with the namespace prefix in both the start and end tags:

<pga:person>
...
</pga:person>

A namespace prefix applies only to the specific element in which the prefix is
used, and does not automatically apply to children of that element. All elements
that do not use a namespace prefix belong to the current default namespace. A
default namespace applies to the element in whose start tag it is declared as well as
to all children that do not use a prefix, as the following example shows.

<rootelement xmlns=”one” xmlns:zz=”two”>
<element1>

<element 2>
<element 2>

</element1>
<zz:element1>

<zz:element2>
<zz:element2>

354 Appendixes

</zz:element1>
<element1 xmlns=”three”>

<element2>
<element2>

</element1>
</rootelement>

Notice the following:

◆ The first <element1> and all of its children belong to the namespace
“one”.

◆ The second <element1> and all of its children belong to the namespace
“two”.

◆ The last <element1> and all of its children belong to the namespace
“three”.

The XSD namespace defined as “http://www.w3.org/2001/XMLSchema” is used
for schemas This namespace is typically associated with the xsd prefix.

XSD Data Types
Data types are central to XSD schemas. You use data types to specify the type of
data that can be contained in XML elements and attributes. The XSD specification
has two data types: simple and complex:

◆ A simple data type cannot contain elements or attributes — it is a unitary
piece of information such as a single number or a string. Some simple
data types are built into XSD; others can be defined by the programmer.

◆ A complex data type can contain elements and/or attributes. Complex
types are made up of simple types in a specific arrangement and are
always defined by the programmer.

The following sections show you how to use and define both simple and com-
plex data types. Later, I show you how to combine these definitions to describe the
data structure of an XML document.

Simple Data Types
The simple data types apply to attributes and also to elements that contain only
data (no child elements). Most of the simple types are atomic, which means that
they cannot be broken down into parts. One simple type, the list type, is not
atomic.

Appendix C: Data Modeling with XSD Schemas 355

BUILT-IN SIMPLE DATA TYPES
The XSD specification includes a wide array of defined simple data types. These
types cover almost any imaginable need. The ones that are used most often are
described in Table C-1. You can find a full list of data types at http://w3.org/TR/
xmlschema-2/.

TABLE C-1 BUILT-IN SIMPLE DATA TYPES

Data type Description

anyType Puts no restrictions on data.

string A string of characters.

byte An integer from –128 to 127.

unsignedByte An integer from 0 to 255.

anyURI A URI in relative or absolute form.

integer An integer value. There is no practical limit.

positiveInteger An integer with a value of 1 or greater.

negativeInteger An integer with a value of –1 or less.

nonNegativeInteger An integer with a value of 0 or greater.

nonPositiveInteger An integer with a value of 0 or less.

int An integer in the range –2,147,483,648 to 2,147,483,648.

unsignedInt An integer in the range 0 to 4,294,967,295.

long An integer in the range +/–9.2x1018 (approximate).

unsignedLong An integer in the range 0 to 1.8x1019 (approximate).

short An integer in the range –32,768 to 32,767.

unsignedShort An integer in the range 0 to 65,535.

float A floating point value in the range (approximate) +/–1.4x10-45

to +/–2x1031. Can take the special values INF (infinity), –INF
(negative infinity), and NAN (not a number).

boolean The literal values 1, 0, true, and false.

time A 24-hour time in the format HH:MM:SS.sss with the fractional
seconds (sss) optional.

date A date in the format YYYY-MM-DD.

dateTime A time and date represented as a date followed by “T” and the time.

356 Appendixes

USER-DEFINED SIMPLE DATA TYPES
A user-defined simple data type is a built-in type that has been customized.
Specifically, you place restrictions on the data type to meet the needs of your XML
document structure. For example, an XML element to hold a five-digit ZIP code could
be based on the built-in type string, customized to permit only values that contain
exactly five digits. The restrictions that are part of user-defined simple data types are
called constraining facets or more commonly just facets. Here’s an example:

<xsd:simpleType name=”employeeNumber”>
<xsd:restriction base=”xsd:int”>
<xsd:minInclusive value=”100000”/>
<xsd:maxInclusive value=”199999”/>

</xsd:restriction>
</xsd:simpleType>

This schema element defines a simple type named “employeeNumber”. It’s based
on the built-in type int with the added restriction that the value of the data must
be in the range 100000-199999 inclusive. Note the following about this code:

◆ Elements in a schema all have the xsd prefix. This prefix will be associated
with the XML Schema Definition namespace “http://www.w3.org/2001/
XMLSchema”.

◆ A user-defined simple type is defined within <xsd:simpleType> tags. The
name attribute specifies the name of the type.

◆ The restrictions, or facets, are enclosed within <xsd:restriction> tags.
The base attribute identifies the built-in data type on which the user-
defined type is based.

◆ Each facet is entered as its own tag that includes information about the
restriction and the associated parameter(s).

The available facets are listed in Table C-2 along with the base types they can be
used with. When defining simple types, please be aware of the following:

◆ Do not assign a facet that conflicts with the base type’s limitations. For
example, the base type short has an inherent range of –32,768 to 32,767.
Assigning a “maximum value” facet of 100,000 to such a type would not
be permitted.

◆ The value assigned to a facet must agree with the base type. For example,
when defining facets for a user-defined type that is based on the date
type, you must assign date values to the facets. It would not make sense
to assign numeric or string values to the facets in this case.

Appendix C: Data Modeling with XSD Schemas 357

TABLE C-2 FACETS FOR DEFINING SIMPLE DATA TYPES

Facet Description Applies to base types

enumeration Restricts the data type to a predefined list All except Boolean
of values. Explained later in the appendix.

length Data must contain exactly this number of string, anyURI
characters

minLength Data must contain at least this number of string, anyURI
characters

maxLength Data must contain this number of characters string, anyURI
or fewer

minExclusive The data must be greater than the value Numeric, time,
and date

maxExclusive The data must be less than the value Numeric, time,
and date

minInclusive The data must be greater than or equal to Numeric, time,
the value and date

maxInclusive The data must be less than or equal to the Numeric, time,
value and date

pattern The data must match the specified pattern. All types
Explained later in the appendix.

totalDigits The maximum number of digits in a All integer types
numeric value

The following are some examples of user-defined simple data types. This code
defines a data type called nonEmptyString for string data that contains at least one
character:

<xsd:simpleType name=”nonEmptyString”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”1”/>

</xsd:restriction>
</xsd:simpleType>

358 Appendixes

This example defines a data type that is restricted to holding dates in the year
2002:

<xsd:simpleType name=”dateIn2002”>
<xsd:restriction base=”date”>
<xsd:minInclusive=”2002-01-01”/>
<xsd:maxInclusive=”2002-12-31”/>

</xsd:restriction>
</xsd:simpleType>

The indentation used in these examples is for appearance only.The XML

parser does not care about indentation.

A user-defined simple data type can be based on another user-defined simple
data type. This example builds on the nonEmptyString type previously defined to
identify a new type that can hold string data from 1 to 20 characters in length. The
minimum length of 1 is inherited from its base type nonEmptyString, and the max-
imum length is specified as a facet here.

<xsd:simpleType name=”stringLength1To20”>
<xsd:restriction base=”nonEmptyString”>
<xsd:maxLength value=”20”/>

</xsd:restriction>
</xsd:simpleType>

PATTERN FACET
The pattern facet lets you define a template for a data type. For example, you could
define a data type for phone numbers that must be in the form xxx-xxx-xxxx,
where each x represents a digit. Here’s the syntax:

<xsd:pattern value=”template”/>

The template is defined as a regular expression, widely used syntax for defining
templates that is used in other languages such as Perl. The complete regular expres-
sion language is quite complex, but fortunately you do not need to know the entire
language for most purposes. The language elements that you are most likely to use
are described in Table C-3.

Appendix C: Data Modeling with XSD Schemas 359

TABLE C-3 COMMONLY USED REGULAR EXPRESSION ELEMENTS

Character(s) Description Example

(anytext) Matches itself. Use “\(“ and “\)” XML matches XML.
to match parentheses

\ Indicates that the next character as \n matches the newline
a special character or a literal character. \\ matches \.

^ Matches the start of text ^Hello matches Hello only
at the beginning of a string.

$ Matches the end of text Goodbye$ matches Goodbye
only at the end of a string.

* Matches the preceding character go* matches g or go or goo,
zero or more times and so on.

+ Matches the preceding character go+ matches go or goo, and
one or more times so on.

? Matches the preceding character go?t matches gt and got
zero or one times but not goot.

. (period) Matches any single character except t.t matches tat, tbt, tct,
a newline and so on, but not toot.

x|y Matches either x or y (b|h)ead matches bead or
head.

{n} Matches exactly n times, where n is .e{2}t matches feet,
an integer greater than 0 beet, and so on.

{n,} Matches at least n times, where n is fe(2,}d matches feed,
an integer greater than 0 feeed, and so on, but does

not match fed.

{n,m} Matches at least n-m times (inclusive), bo{1,3}k matches bok,
n and m are an integers greater than 0 book, and boook.
with m>n

[chars] Matches any one of the enclosed t[ae]d matches ted or
characters tad.

[^chars] Matches any single character except t[^ae]d matches tbd, tcd,
those enclosed and so on, but not tad or

ted.

[a-z] Matches any character in the [a-e] matches a, b, c, d,
specified range and e.

360 Appendixes

Character(s) Description Example

[^a-z] Matches any character not in the [^a-m] matches n thru z.
specified range

\b Matches a word boundary ed\b matches the ed in
fried food but not the ed
in “tedious job.”

\B Matches a nonword boundary ed\B matches the ed in
tedious job but not the
ed in fried food.

\d Matches any digit character 0–9 Equivalent to [0-9].

\D Matches any character that is not Equivalent to [^0-9].
a digit 0–9

Here are some examples. This pattern facet defines a data type named
“phoneNumber” that must contain digits and dashes in the pattern ddd-ddd-dddd:

<xsd:simpleType name=phoneNumber”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\d{3}-\d{3}-\d{4}”/>

</xsd:restriction>
</xsd:simpleType>

This next example defines a “stockNumber” data type that has these restrictions:

◆ First character is always P.

◆ Second character is always another uppercase letter.

◆ Third character is a hyphen.

◆ Four remaining characters are digits.

<xsd:simpleType name=”stockNumber”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”P[A-Z]-\d\d\d\d”/>

</xsd:restriction>
</xsd:simpleType>

ENUMERATIONS
An enumeration is a data type that is restricted to a defined set of values. A state date
type, for example, might be restricted to the names of the 50 states. Each permitted

Appendix C: Data Modeling with XSD Schemas 361

value in an enumeration is specified in an <xsd:enumeration> element. The follow-
ing code defines the “primaryColor” data type that can take three values: red, green,
and blue:

<xsd:simpleType name=”primaryColor”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”red”/>
<xsd:enumeration value=”green”/>
<xsd:enumeration value=”blue”/>

</xsd:restriction>
</xsd:simpleType>

The following enumeration creates a data type that is restricted to holding dates
that correspond to the first day of a month in the year 2003:

<xsd:simpleType name=”FirstOfMonthIn2003”>
<xsd:restriction base=”xsd:date”>
<xsd:enumeration value=”2003-01-01”/>
<xsd:enumeration value=”2003-02-01”/>
<!-- more dates... -->

</xsd:restriction>
</xsd:simpleType>

LIST TYPES
A list type defines a data element that contains two or more individual data items in
a single element. For example, here’s an XML element that contains a list of numbers:

<numbers>12 14 16 18</numbers>

You would define a schema data type for such an element as follows:

<xsd:simpleType name=”listOfNumbers”>
<xsd:list itemType=”xsd:int”/>

</xsd:simpleType>

As written, this defines a type that must contain a list of numbers, but there is no
specification of how many numbers. To restrict the number of items in the list, you
need another schema element that uses the listOfNumbers as the base type and then
puts a length restriction on it, such as this:

<xsd:simpleType name=”listOfFourNumbers”>
<xsd:restriction base=”listOfNumbers”>
<xsd:length value=”4”/>

</xsd:restriction>
</xsd:simpleType>

362 Appendixes

The type listOfFourNumbers is restricted to containing a list of four numbers
that meet the requirements for the built-in type int.

Complex Data Types
A complex data type can contain attributes and/or child elements. For example,
here’s an XML element that would be defined as a complex type:

<person type=”sports”>
<firstname>Michael</firstname>
<lastname>Jordan</lastname>
</person>

You use the following syntax to define a complex type:

<xsd:complexType name=”name”>
...
</xsd:complexType>

Between these two tags, you place other tags that define the elements and attrib-
utes that the complex type can contain. The complex type tags are summarized in
Table C-4 and described in detail in the following sections.

Note that the “name” attribute is optional. You include it if you are defining a
named data type that can be used in the schema. If it is omitted, the resulting data
type is anonymous. Anonymous data types are covered later in this appendix.

TABLE C-4 SCHEMA ELEMENTS USED TO DEFINE COMPLEX DATA TYPES

Element Purpose

element Defines an element within the containing element

sequence Defines a sequence of elements that must be in a specified order in
the containing element

choice Defines two or more elements of which only one can occur in the
containing element

group Defines a group of elements that occurs in the containing element

attribute Defines or references an attribute

attributeGroup Defines or references a group of attributes

Appendix C: Data Modeling with XSD Schemas 363

THE ELEMENT ELEMENT
The element element defines an element that the complex data type can contain.
Each element element specifies the name of the element and its data type. This
and other information about the element is specified in attributes, as detailed in
Table C-5.

TABLE C-5 ATTRIBUTES OF THE ELEMENT ELEMENT

Attribute Description

name The name of the element.

type The data type of the element.

default The element’s default value. Applicable only for elements that are simple
types.

maxOccurs The maximum number of times the element can occur within its parent
element. Use the value “unbounded” to place no limit on the number
of occurrences. The default is 1.

minOccurs The minimum number of times the element can occur within its parent
element. Must be a value between 0 and the value of maxOccurs. The
default is 1.

The following code defines an element “person” that must contain exactly one
of each of the three child elements “firstname”, “lastname”, and “age”:

<xsd:complexType name=”person”>
<xsd:element name=”firstname” type=”xsd:string”/>
<xsd:element name=”lastname” type=”xsd:string”/>
<xsd:element name=”age” type=”xsd:unsignedByte”/>

</xsd:complexType>

An alternate syntax has the elements defined elsewhere in the schema, and then
uses the ref attribute to refer to them:

<xsd:element name=”firstname” type=”xsd:string”/>
<xsd:element name=”lastname” type=”xsd:string”/>
<xsd:element name=”age” type=”xsd:unsignedByte”/>

<xsd:complexType name=”person”>
<xsd:element ref=”firstname”/>
<xsd:element ref=”lastname”/>

364 Appendixes

<xsd:element ref=”age”/>
</xsd:complexType>

The advantage of this syntax is that you can define a simple element once and
then use it in two or more complex types. If you need to modify the simple element—
change its data type, for example — you need only make changes one location.

THE SEQUENCE ELEMENT
The sequence element is used to define a group of two or more elements that must
appear in a specific order. The syntax is as follows:

<xsd:sequence>
<xsd:element name=”firstelementname” type=”type”/>
<xsd:element name=”secondelementname” type=”type”/>
...
<xsd:element name=”lastelementname” type=”type”/>

(/xsd:sequence>

By default, a sequence must occur within its parent element exactly one time. To
define a sequence that can occur within its parent element different numbers of
times, use the minOccurs and maxOccurs attributes:

<xsd:sequence minOccurs=”min” maxOccurs=”max”>

To make a sequence optional, set minOccurs to 0. To place no upper limit on the
number of times the sequence can occur, set maxOccurs to “unbounded”.

The following schema code defines an element named “salesbyquarter” that
must contain the specified four child elements in the correct order, exactly once:

<xsd:complexType name=”salesbyquarter”>
<xsd:sequence>
<xsd:element name=”qtr1sales” type=”float”/>
<xsd:element name=”qtr2sales” type=”float”/>
<xsd:element name=”qtr3sales” type=”float”/>
<xsd:element name=”qtr4sales” type=”float”/>

</xsd:sequence>
</xsd:complexType>

The sequence element can occur within choice, sequence, group, complexType,
and restriction elements. It can contain choice, sequence, group, element,
any, and annotation elements.

THE GROUP ELEMENT
To define a group of elements, use the group element. The group can then be refer-
enced as needed for inclusion in complex types. Here’s the syntax:

Appendix C: Data Modeling with XSD Schemas 365

<xsd:group name=”name”>
<xsd:element name=”firstelementname” type=”type”/>
<xsd:element name=”secondelementname” type=”type”/>
...
<xsd:element name=”lastelementname” type=”type”/>

(/xsd:group>

The group element places no restriction on the order of elements; it requires
only that the defined elements occur. To define a group with a specific order, use a
sequence element within the group element:

<xsd:group name=”name”>
<xsd:sequence>
<xsd:element name=”firstelementname” type=”type”/>
<xsd:element name=”secondelementname” type=”type”/>
...
<xsd:element name=”lastelementname” type=”type”/>

</xsd:sequence>
(/xsd:group>

The following code defines a ordered group named “quarterlysales” then uses
this group to define a complex type:

<xsd:group name=”quarterlysales”>
<xsd:sequence>
<xsd:element name=”qtr1sales” type=”float”/>
<xsd:element name=”qtr2sales” type=”float”/>
<xsd:element name=”qtr3sales” type=”float”/>
<xsd:element name=”qtr4sales” type=”float”/>
</xsd:sequence>

</xsd:group>

<xsd:complexType name=”salesbyquarter”>
<xsd:group ref=”quarterlysales”/>

</xsd:complexType>

The group element can occur within sequence, choice, restriction, and
complexType elements. It can contain sequence, choice, element, and annotation
elements.

THE CHOICE ELEMENT
The choice element defines a set of two or more elements. One and only one of
these elements can occur in the containing element. You can also specify how
many times the chosen element can occur. The syntax is:

366 Appendixes

<xsd:choice minOccurs=”min” maxOccurs=”max”>
<xsd:elemement name=”firstchoice” type=”type”/>
<xsd:elemement name=”secondchoice” type=”type”/>
...
<xsd:elemement name=”lastchoice” type=”type”/>

</xsd:choice>

The default for both min and max is 1. Set min to 0 to make the element optional;
set max to “unbounded” to place no restriction on the maximum number of times
the element can occur.

The following code defines a complex type that can contain, exactly once, either
the defined sequence, the group “SomeGroup” (assumed to be defined elsewhere in
the schema), or the element “myelement”.

<xsd:complexType name=”SuperDataType”>
<xsd:choice>
<xsd:sequence>
<xsd:element name=”element1” type=”string”/>
<xsd:element name=”element2” type=”string”/>

</xsd:sequence>
<xsd:group ref=”groupdefinedelsewhere”/>
<xsd:element name=”myelement” type=”string”/>

</xsd:choice>
</xsd:complexType>

The choice element can occur within choice, sequence, group, complexType,
and restriction elements. It can contain group, choice, sequence, any, and
annotation elements.

THE ATTRIBUTE ELEMENT
You use the attribute element to define or reference an attribute. The syntax is

<xsd:attribute name=”name” type=”type” use=”use” value=”value”>
...
</xsd:attribute>

where name is the name of the attribute, and type is the data type of the attribute
(either as a built-in or user-defined simple type). If type is omitted, the data type of
the attribute must be defined within the body of the attribute element. use
defines how the attribute is used. It is optional; possible values for use are
described in Table C-6. Value is the default or fixed value of the attribute (applica-
ble only when use is “default”, “fixed”, or “required”.

Appendix C: Data Modeling with XSD Schemas 367

TABLE C-6 SETTINGS FOR THE ATTRIBUTE ELEMENT’S USE ATTRIBUTE

Setting Description

default The attribute has a default value as specified by the value attribute.
If the attribute is omitted this is its value.

fixed The attribute has a fixed default value as specified by the value
attribute. The attribute cannot be assigned any other value.

optional The attribute is optional. This is the default if use is omitted from the
attribute element.

prohibited The attribute cannot be used.

required The attribute must appear once. If value is specified the attribute must
have that value. If value is not specified the attribute can have any
value that is legal for its data type.

There are two ways to define an attribute. The simpler, which is less flexible, uses
the attribute element’s attributes. This example defines an optional attribute:

<xsd:attribute name=”flavor” type=”xsd:string”/>

The next example defines an attribute with a default value of zero.

<xsd:attribute name=”balance” type=”xsd:float” use=”default”
value=”0”/>

For additional flexibility use a simpleType element inside the attribute ele-
ment. This enables you to define facets (restrictions) on the attribute’s data. This
works the same way as defining facets for elements as described earlier in the
appendix. The following defines an attribute named “dateIn2002” that is restricted
to dates in the year 2002. Note that this is almost identical to the code defining an
element with the same restrictions as presented earlier in this appendix.

<xsd:attribute name=”dateIn2002”>
<xsd:simpleType>
<xsd:restriction base=”date”>
<xsd:minInclusive=”2002-01-01”/>
<xsd:maxInclusive=”2002-12-31”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>

368 Appendixes

The second way in which you can define an attribute directly is from within a
complex type as shown in the following example. The resulting complex type,
named MyType, contains one element named “amount” of type float, and one
required attribute named “category” of type string.

<xsd:complexType name=”MyType”>
<xsd:attribute name=”category” use=”required” type=”xsd:string”/>
<xsd:element name=”amount” type-”xsd:float”/>

</xsd:complexType>

An attribute can also be defined elsewhere and then included in a complex type
by reference:

<xsd:attribute name=”category” use=”required” type=”xsd:string”/>

<xsd:complexType name=”MyType”>
<xsd:attribute ref=”category”/>
<xsd:element name=”amount” type-”xsd:float”/>

</xsd:complexType>

THE ATTRIBUTEGROUP ELEMENT
An attributeGroup element lets you define a group of two or more attributes that
can then be referred to by name. This is useful when you have a group of attributes
that will be used in more than one location in the schema. The syntax is

<xsd:attributeGroup name=”name”>
...
</xsd:attributeGroup>

The individual xsd:attribute elements that define the attributes in the group
go inside the attributeGroup element. For example:

<xsd:attributeGroup name=”carinfo”>
<xsd:attribute name=”make” type=”xsd:string”/>
<xsd:attribute name=”model” type=”xsd:string”/>
<xsd:attribute name=”color” type=”xsd:string”/>

</xsd:attributeGroup>

Then, apply the group to a complex type as follows:

<xsd:complexType name=”automobile”>
<xsd:attributeGroup ref=”carinfo”/>
...

</xsd:complexType

Appendix C: Data Modeling with XSD Schemas 369

ANONYMOUS DATA TYPES
As you have seen in most of the examples presented to far, data types are usually
defined with a name (the name attribute), permitting the data type to be used in an
element by referencing that name. Schemas also support anonymous definitions in
which no name is assigned to a type. Instead, the type is defined directly inside the
corresponding element. To illustrate, look at the following nonanonymous definition:

<xsd:complexType name=”contactinformation”>
<xsd:element name=”phonenumber” type=”xsd:string”/>
<xsd:element name=”email” type=”xsd:string”/>

</xsd:complexElement>

<xsd:element name=”contactinfo” type=”contactinformation/>

In this code, the structure of the “contactinfo” element is defined by referring
to the name of the “contactinformation” data type that is defined elsewhere. The
same result could be obtained by the following:

<xsd:element name=”contactinfo”>
<xsd:complexType>
<xsd:element name=”phonenumber” type=”xsd:string”/>
<xsd:element name=”email” type=”xsd:string”/>

</xsd:complexElement>
</xsd:element>

Because the data type is defined within the <element> tag, it does not require a
name and is therefore called anonymous. Anonymous definitions are typically used
when a complex type will be used only once in the schema. Because there is no sep-
arate definition of the data type, the complexity of the schema is reduced.

The schema Element
The schema element must be the root element in a schema file. It must be prefixed
with whatever prefix is associated with the XSD schema namespace, typically xsd.
The schema element has two attributes as follows:

◆ xmlns:xsd. Associates the xsd prefix with the defined XSD namespace
“http://www.w3.org/2001/XMLSchema”.

◆ targetNamespace. Defines the namespace that will be used to associate
the schema with elements in the XML files.

370 Appendixes

For example:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://YourURI/YourSchema/”>

The XSD namespace does not have to be associated with the xsd prefix,
although it customarily is. If you want, you can use a different prefix, in which case
all of the schema element names will have to use that prefix. You can also use this
as the default namespace by using no prefix, as described earlier in this appendix in
the section on namespaces.

All of the individual elements that make up the definition of the schema’s data
structure go within the schema element. The immediate children of the schema ele-
ment can include element, attribute, attributeGroup, group, simpleType, and
complexType elements.

A Schema Demonstration
To give you an idea of how schemas work, let’s look at a real schema and an asso-
ciated data file. The goal is to create a data file to hold information about books.
The desired data structure is as follows:

◆ The root element is <books>. It is in the “http://www.pgacon.com/books”
namespace.

◆ The root element can contain any number of <book> child elements.

◆ Each <book> element has a required type attribute that can be either
“hardbound” or “softcover”.

◆ Each <book> element must contain exactly one <author> element.

◆ Each <author> element must contain exactly one <firstname> element
and one <lastname> element, both of type string.

◆ Each <book> element must contain exactly one <title> element, which
must be nonblank. It is type string.

◆ Each <book> element must contain exactly one <pubdate> element of
type date.

◆ Each <book> element can but does not have to contain one <comments>
element or type string.

◆ Elements must be in the order presented here.

Listing C-1 shows a short XML data file that follows this structure.

Appendix C: Data Modeling with XSD Schemas 371

Listing C-1: books XML Data File

<?xml version=”1.0” encoding=”UTF-8”>
<books xmlns=”http://www.pgacon.com/books”>
<book type=”hardbound”>
<author>
<firstname>Kingsley</firstname>
<lastname>Amis</lastname>

</author>
<title>The King’s English</title>
<pubdate>1997-06-01</pubdate>

</book>
<book type=”softcover”>
<author>
<firstname>Thomas</firstname>
<lastname>Mann</lastname>

</author>
<title>Death in Venice</title>
<pubdate>1994-09-10</pubdate>
<comments>The cover is torn</comments>

</book>
</books>

Listing C-2 shows the associated schema file. Comments explain what each part
of the schema does.

Listing C-2: Schema for books XML Data File

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<!-- The root element is called books and is based
on the booklist data type. -->
<xsd:element name=”books” type=”booklist”/>

<!-- Defines the “booktype” data type, which will be used for the
“type” attribute. This is an enumeration containing “hardbound”
and “softcover” -->
<xsd:simpleType name=”booktype”>
<xsd:restriction base=”xsd”string”>
<xsd:enumeration value=”hardbound”/>
<xsd:enumeration value=”softcover”/>

</xsd:restriction>
</xsd:simpleType>

<!-- Defines the “authordata” type, which is used for the “author”
element. -->

372 Appendixes

<xsd:complexType name=”authordata”>
<xsd:element name=”firstname” type=”xsd:string”/>
<xsd:element name=”lastname” type=”xsd:string”/>

</xsd:complexType>

<!-- Defines the “titledata” type, which is used for the
“title” element. -->
<xsd:simpleType name=”titledata”
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”1”/>

</xsd:restriction>
</xsd:simpleType>

<!-- Defines the “singlebook” data type used for “book”
elements. -->
<xsd:complexType name=”singlebook>
<xsd:attribute name=”type” type=”booktype” use=”required”/>
<xsd:sequence>
<xsd:element name=”author” type=”authordata”/>
<xsd:element name=”title” type=”titledata”/>
<xsd:element name=”pubdate” type=”xsd:date”/>
<xsd:element name=”comments” type=”xsd:string” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

<!-- Defines the “booklist” type, which is the type of the XML
document’s root element. It can contain 0 to any number of
<book> elements. Each <book> element is of type “singlebook”. -->
<xsd:complexType name=”booklist”>
<xsd:element name=”book” type=”singlebook” minOccurs=”0”

maxOccurs=”unbounded”/>
</xsd:complexType>

</xsd:schema>

This example illustrates how schemas are an essential part of XML. When an
XML data file is valid, you know that its structure follows the requirements set out
in the associated schema. The software that will use the XML data file can then pro-
ceed without the errors that can be caused by invalid data.

Appendix C: Data Modeling with XSD Schemas 373

Appendix D

XSLT and XPath
EXTENSIBLE STYLESHEET LANGUAGE, for Transformations (XSLT) is part of the Extensible
Stylesheet Language (XSL), which is designed for transforming and formatting XML
data. XSLT is supported by many Office applications. This appendix explains the
basics of using XSLT. The appendix also provides an introduction to XPath, a tech-
nology that is used to identify parts of the document on which a transform is to
operate.

XSLT
As the transformation part of its name implies, XSLT is used for transforming, or
changing, XML files. When you apply a transform to XML data, the output of the
process is the result of applying the transform’s rules and instructions to the XML
data. The original XML data is not changed in any way. Depending on the specific
situation, the output of the transform might be displayed on-screen, saved in a file,
or submitted to a Web site.

Transforms are sometimes referred to as stylesheets.

What exactly can a transform do? Just about anything you can imagine. Here
are some examples:

◆ Change the order of elements

◆ Select certain elements and omit others

◆ Output text as well as XML data

◆ Filter the output based on data values

◆ Perform simple calculations based on data in the XML

One of the tasks for which XSLT is commonly used is converting XML data to
HTML for display in a browser. Other XSLT applications include creating a table of
contents or index for an XML document, arranging XML data into tables, or con-
verting XML data from one schema to another.

375

XSLT is actually one of two parts of the XSL specification. The other is Formatting
Objects (FO), a vocabulary for applying specific formatting to data. Office does not
support FO, so it isn’t considered further here. XSL itself is a W3C Recommendation,
and you can find complete details at http://w3.org/Style/XSL/.

XSLT Structure
An XSLT transform is actually an XML vocabulary. In other words, an XSLT file is
itself an XML file, and therefore the first element in the file is the standard <xml>
tag. The content of the file is identified as a stylesheet by the xsl:stylesheet tag
as shown here:

<?xml version=”1.0”?>
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”>

<!-- stylesheet contents go here-->
</xsl:stylesheet>

The xsl:stylesheet tag includes the XSLT namespace definition, which is usu-
ally associated with the xsl prefix, as in this example, although sometimes the xs
prefix is used. This tag often includes other application-specific namespace decla-
rations as well.

The xsl:transform element is sometimes used as a synonym for

xsl:stylesheet.

The contents of the stylesheet — the instructions that define what the stylesheet
actually does — are placed between the tags as shown in the preceding code snippet.
Stylesheet organization will become more clear when you look at the example in
the next section.

An XSLT Demonstration
Before getting to the details of XSLT syntax it will be useful to look at a simple
example. The XML data to be transformed is shown in Listing D-1. This is a data
file containing information for an inventory.

Listing D-1: The XML Data File

<?xml version=”1.0” encoding=”UTF-8”?>
<stockitems xmlns=”http://www.pgacon.com/stockitems”>

376 Appendixes

<item>
<name>Claw hammer</name>
<supplier>Ajax Manufacturing</supplier>
<wholesaleCost>12.50</wholesaleCost>
<retailPrice>19.95</retailPrice>

</item>
<item>
<name>Needle-nosed pliers</name>
<supplier>Miller Manufacturing</supplier>
<wholesaleCost>8.45</wholesaleCost>
<retailPrice>15.89</retailPrice>

</item>
<item>
<name>Wire stripper</name>
<supplier>Ajax Manufacturing</supplier>
<wholesaleCost>11.25</wholesaleCost>
<retailPrice>21.00</retailPrice>

</item>
<item>
<name>Paint scraper</name>
<supplier>Clyde Co.</supplier>
<wholesaleCost>4.10</wholesaleCost>
<retailPrice>8.00</retailPrice>

</item>
<item>
<name>Crescent wrench</name>
<supplier>Baxter Foundry Inc.</supplier>
<wholesaleCost>12.60</wholesaleCost>
<retailPrice>23.95</retailPrice>

</item>
</stockitems>

The stylesheet to perform the required transformation is shown in Listing D-2.
The goal of the stylesheet is to transform the data to HTML for display in a browser,
as follows:

◆ Only the name and price data will be displayed.

◆ Each item and its price will be on its own line.

◆ The name of the item will be in boldface.

◆ The price will be prefixed with a dollar sign.

The line numbers in the listing are not part of the stylesheet, but are used in the
explanation following the listing.

Appendix D: XSLT and XPath 377

Listing D-2: The XSLT Transform File

<?xml version=”1.0” encoding=”UTF-8”?>
1. <xsl:stylesheet version=”1.0”

xmlns:sl=”http://www.pgacon.com/stockitems”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

2. <xsl:output method=”html” version=”1.0” encoding=”UTF-8”
indent=”yes”/>

3. <xsl:template match=”/”>
4. <html><head>
5. <title>Stock Parts List</title>
6. </head><body>
7. <xsl:apply-templates select=”//sl:item”/>
8. </body></html>
9. </xsl:template>

10. <xsl:template match=”sl:item”>
11. <p><xsl:value-of select=”sl:name”/>
12. $<xsl:value-of select=”sl:retailPrice”/></p>
13. </xsl:template>

14. </xsl:stylesheet>

Let’s examine the stylesheet line by line to get a feel for how it works.
Line 1 is the opening xsl:stylesheet tag. It provides the required XSLT name-

space declaration as well as an application-specific namespace associated with the
sl prefix.

Line 2 is the XSLT tag specifying that the output of the transform is HTML.
Another option for this tag would be to specify XML output.

The tag in line 3 marks the start of an XSLT template element. As you’ll see later
in the appendix, template elements are in many ways the heart of a stylesheet. The
match attribute uses an XPath expression to specify what part of the XML file the
template applies to. In this case the / identifies the root element of the XML file. In
other words, this template is applied exactly once during processing.

Lines 4–6 text that is output as is. If you are familiar with HTML, you will rec-
ognize them as HTML elements and a title. Line 7 tells the processor to apply addi-
tional templates. The select attribute uses an XPath expression to specify that the
templates for sl:item elements are to be applied (see line 10).

Line 8 contains additional text that is output after the templates are applied
(Line 7). In other words, this text, which is the closing HTML tags, will be the last
thing output by the stylesheet. Line 9 is the closing tag for this template.

Line 10 is the opening tag for another template. The match attribute uses an
XPath expression to specify that this template applies to sl:item elements. Thus,
this template will be applied once for each sl:item element in the XML data.

378 Appendixes

Line 11 starts by outputting the text <p>, which are the HTML tags to start a
paragraph and start boldface text. Then, it uses the value-of tag to output data.
The select attribute identifies the data — in this case, the content of the sl:name
element in the XML data.

Line 12 outputs the text , which is the HTML tag to turn off boldface. The it
outputs a space, a dollar sign, and the value of the sl:retailPrice element. Finally,
it outputs the text </p> to mark the end of a paragraph and the start of a new line.

Line 13 marks the end of the template, and Line 14 marks the end of the
stylesheet.

Applying this stylesheet to the XML data in Listing D-1 results in the output
shown in Listing D-3. Some details of the output will depend on the specific XSLT
processor that is used — for example, some will include the source namespace in the
output while others won’t. The important thing is that the XSLT instructions are
carried out to create the HTML required to display the data as desired.

Listing D-3: Output from Applying the Stylesheet to the XML Data File

<html>
<head>
<title>Stock Parts List</title>
</head>
<body>
<p>Claw hammer $19.95</p>
<p>Needle-nosed pliers $15.89</p>
<p>Wire stripper $21.00</p>
<p>Paint scraper $8.00</p>
<p>Crescent wrench $23.95</p>
</body>
</html>

Figure D-1 shows the output displayed in a browser.

Figure D-1: The stylesheet output displayed in a browser.

Appendix D: XSLT and XPath 379

XSLT Templates
A template is an XSLT instruction that creates output based upon certain criteria.
The criteria for a template identify a part or parts of the XML document to which the
template is to be applied. The contents of the template, or template body, define the
output that is to be created when the template is executed. A template is defined in
an xsl:template element with the following syntax:

<xsl:template match=”pattern”>
...
</xsl:template>

“pattern” is an XPath expression that identifies elements in the XML docu-
ment. A simple pattern is an element name or the / symbol to match the root node.
You’ll learn more about XPath expressions later in the appendix.

Inside the template body you place other XSLT processing instructions that are
carried out when the template is processed. The processing instructions you will use
most often are explained in the following sections.

Literal Text
If you place literal text in a template body, it is output as is. Literal text is any text
that is not part of an XSL tag. Here’s an example:

<xsl:template match=”item”>
<center><xsl:value-of select=”.”/></center>

</xsl:template>

This template outputs the text <center> followed by the value of the “item”
element and finally the text </center>. You can also output literal text using the
xsl:text instruction, described next.

The xsl:text Element
The xsl:text element outputs literal text. Here’s the syntax:

<xsl:text disable-output-escaping=”value”>
text to be output
</xsl:text>

The disable-output-escaping attribute can be set to “yes” or “no”. If set to
“yes”, characters that have special meaning in XML, such as < and >, are output
as themselves. If set to “no”, such characters are output as the corresponding entity
references (< and > for < and >, for example). The attribute is optional and
if it’s omitted, the default is “no”.

380 Appendixes

An xsl:text element outputs white space unchanged. This differs from white
space by itself that is not in an xsl:text element — that is, literal text. Such white
space is normalized unless an enclosing element has the xml:space attribute set to
“preserve”. If, for example, you wanted the output to consist of a part name fol-
lowed by a tab and then the price, you would write the following (there’s a tab
between the <xsl:text> and </xsl:text> elements):

<xsl:value-of select=”partname”/>
<xsl:text> </xsl:text>
<xsl:value-of select=”price”/>

The xsl:value-of Element
The xsl:value-of element writes the value of an expression to the output. This is
the syntax:

<xsl:value-of select=”expression”/>

“expression” is the XPath expression to be evaluated and output. A common
use of xsl:value-of is to output the text data from an XML element, which is
accomplished by using “.” as the select expression:

<xsl:value-of select=”.”/>

For example, the following XSLT fragment writes the value of the “name” ele-
ment to the output:

<xsl:template match=”name”>
<xsl:value-of select=”.”/>

</xsl:template>

You can also use xsl:value-of with a select expression that identifies a specific
element. For an example, please look at lines 11 and 12 in the stylesheet example
that was presented earlier in Listing D-2.

The xsl:if Element
You use the xsl:if instruction to enclose a set of instructions that will be
processed only if a specified condition is met. Here’s the syntax:

<xsl:if test=”criterion”>
...
</xsl:if>

Appendix D: XSLT and XPath 381

“criterion” is an expression that can be evaluated as true or false. The instruc-
tions contained in the xsl:if instruction are executed only if the criterion is true.
For example, the following instructions output the literal text Fiction only if the
“type” attribute of the element being processed is equal to “fiction”. The @ sym-
bol is used to specify an attribute:

<xsl:if test=”@type=’fiction’”>
Fiction
</xsl:if>

The xsl:choose Element
Use the xsl:choose element to define a choice between two or more alternatives.
The syntax is:

<xsl:choose>
<xsl:when test=”expression1”>template-body1</xsl:when>
<xsl:when test=”expression2”>template-body2</xsl:when>
...
<xsl:otherwise>template-body</xsl:otherwise>

</xsl:choose>

You can use as many <xsl:when> elements as desired, but there can be only one
<xsl:otherwise> element, which is optional. <xsl:choose> works by evaluating
the test expressions associated with the <xsl:when> elements in order. When an
expression evaluates as true, the associated template body is instantiated.
Subsequent <xsl:when> elements are ignored even if their test expression is also
true. If no test expression evaluates as true, the template body in the optional
<xsl:otherwise> element is instantiated. If no test expression evaluates as true,
and there is no <xsl:otherwise> element, then no template body is instantiated.

The following code fragment outputs the text Large, Medium, or Small, based on
the value of the “size” attribute:

<xsl:choose>
<xsl:when test=”@size < 100”>Small</xsl:when>
<xsl:when test=”@size > 200”>Large</xsl:when>
<xsl:otherwise>Medium</xsl:otherwise>

</xsl:choose>

The xsl:for-each Element
Use the xsl:for-each element to set up a loop that is executed repeatedly for each
element in a set of repeating elements. The syntax is:

382 Appendixes

<xsl:for-each select=”expression”>
...
</xsl:for-each>

“expression” is an XPath expression referencing a set of repeating elements.
The instructions within the xsl:for-each element are executed once for each ele-
ment in the set. The xsl:for-each instruction processes the nodes in the same
order they exist in the document, unless an xsl:sort instruction is used to change
the sort order.

The following XSLT example iterates over every “book” element that is a child
of a “holdings” element. The values of the “title” and “author” elements and
of the “category” attribute are output. The output is sorted alphabetically by title.
The output is HTML that will display the data in a table.

<xsl:for-each select=”holdings/book”>
<xsl:sort select=”title”/>
<tr>
<td><xsl:value-of select=”title”/></td>
<td><xsl:value-of select=”author”/></td>
<td><xsl:value-of select=”@category”/></td>

</tr>
</xsl:for-each>

Note that the results of an xsl:for-each element can also be obtained by using
the xsl:apply-templates instruction, as described in the next section.

The xsl:apply-templates Element
The xsl:apply-templates instruction processes a set of elements. This is the syntax:

<xsl:apply-templates select=”expression”/>

“expression” is an XPath expression returning a set of elements. You can omit the
select attribute in which case the instruction processes all the child elements of the
current element. When the XSLT processor encounters an apply-templates instruc-
tion, it locates and processes all templates that are defined (in xsl:template instruc-
tions) for the elements identified in expression. Elements are processed in the same
order they exist in the document unless an xsl:sort instruction is used to modify the
order. When you use one or more xsl:sort instructions, the format is as follows:

<xsl:apply-templates select=”expression”>
<!--xsl:sort instructions go here-->

</xsl:apply-templates>

Appendix D: XSLT and XPath 383

The following example shows how to use the apply-templates and sort
instructions. Its operation is explained following the code.

1. <xsl:template match=”/”>
2. <xsl:apply-templates select=”/holdings/book”>
3. <xsl:sort select=”title”/>
4. </xsl:apply-templates>
5. </xsl:template>

6 <xsl:template match=”book”>
7. <xsl:apply-templates/>
8. </xsl:template>

9. <xsl:template match=”title | author”>
10. <xsl:value-of select=’.’/>
11. </xsl:template>

Lines 2–4 are an xsl:apply-templates instruction that will be applied to
“book” elements that are children of the “holdings” element. The xsl:sort
instruction on line 3 specifies that the “book” elements will be sorted by the
“title” element.

Lines 6–8 define a template for “book” elements that will be executed once for
each “book” element as a result of the xsl:apply-templates instruction on lines
2–4. This template contains another xsl:apply-templates instruction that has no
select attribute and therefore will iterate through all the child elements of the
“book” element.

Lines 9–11 define a template for the “title” and “author” elements, which are
children of the “book” element. The xsl:apply-templates instruction on line 7
causes the template to be executed in the following order:

1. For the “title” element in the first “book” element

2. For the “author” element in the first “book” element

3. For the “title” element in the second “book” element

4. For the “author” element in the second “book” element

Continuing through the “title” element in the last “book” element and the
“author” element in the last “book” element.

The xsl:sort Element
The xsl:sort element is used to specify the order in which nodes are processed by
an xsl:apply-templates or xsl:for-each element. The xsl:sort element can
appear only within these two elements. Here’s the syntax:

<xsl:sort select=”expression”/>

384 Appendixes

“expression” defines the sort key. The select attribute is optional. If it is omit-
ted, the sort is done based on the string value of the element data. There are three
other optional attributes for the xsl:sort element, described in Table D-1.

TABLE D-1 OPTIONAL ATTRIBUTES FOR THE XSL:SORT ELEMENT

Attribute Description

order Specifies the sort order as either ascending or descending.
The default is ascending.

case-order Set to upper-first or lower-first to specify whether uppercase or
lowercase letters are collated first. The default is language dependent.

data-type Set to text or number to specify whether the data is to be collated
alphabetically or numerically. The default is text.

You can include more than one xsl:sort element in an xsl:apply-templates
or xsl:for-each element. In this situation, the data is sorted according to the first
xsl:sort expression, then by the second, and so on. The following examples
demonstrate the use of the xsl:sort element.

This code process the “contact” children of the current element, sorting them
alphabetically by the “type” attribute:

<xsl:apply-templates select=”contact”>
<xsl:sort select=”@type”/>
...

</xsl:apply-templates>

The following code would do the same function as that in the preceding exam-
ple, except that when two or more contacts have the same type, they will be sorted
numerically by the “age” attribute:

<xsl:apply-templates select=”contact”>
<xsl:sort select=”@type”/>
<xsl:sort select=”@age” data-type=”number”/>

</xsl:apply-templates>

XPath
When creating a transform, you need some way to specify which part(s) of the XML
document are to be used. XML Path Language, or XPath, was developed specifically

Appendix D: XSLT and XPath 385

for this task (although its use is not limited to XSLT transforms). XPath can do more
than simply identify elements for processing. XPath expressions can also perform
numerical calculations and string manipulation. These are covered toward the end
of this appendix. XPath version 1 is a W3C Recommendation. The XPath specifica-
tion is available at http://w3.org/TR/xpath.

The terms node and node set are commonly used in discussions of XPath. This is
nothing more than another way of referring to the contents of an XML file. A node
is an XML element or attribute, and a node set is a group of multiple XML elements.

XPath Patterns
An XPath pattern identifies a node set. You use patterns in the match attribute of
xsl:template elements to specify which nodes the template applies to (as was cov-
ered earlier in this appendix). One way to look at it is that a pattern specifies rules,
or criteria, that a node must meet in order to be included in the node set. The crite-
ria can include the name of a node (an element or attribute name), the position of
the node relative to other nodes, or the data stored in an element or an attribute.
Here are some basic rules of patterns:

◆ To match an element by name, use the name.

◆ To match any name, use *.

◆ To specify an element by its name and also by its position relative to
other elements, use the / or // characters.

A predicate modifies the part of the pattern that comes before it, and is enclosed
in square brackets. The use of predicates usually follows this syntax:

x[y]

This is interpreted as “select nodes that meet criterion x but only when y is true.”

Table D-2 presents some examples of XPath expressions.

TABLE D-2 EXAMPLES OF XPATH PATTERN MATCHING

Example Matches

item or //item Any element named item

/item Elements named item that are children of the root node

holdings/item Elements named item that are children of the element named
holdings

386 Appendixes

Example Matches

/holdings/item Elements named item that are children of the element named
holdings, which is in turn a child of the root element

holdings//item Elements named item that have the holdings element as an
ancestor (a parent or higher in the node tree)

holdings/*/item Elements named item that have a holdings grandparent (that is,
the parent of its parent)

holdings[item] Elements named holdings that have a child named item

You can also create patterns that match based on attribute names using either
the attribute:: syntax or the @ character. Be aware that there is a difference
between matching an element node that has a certain attribute, and matching the
attribute node itself. Table D-3 shows some examples.

TABLE D-3 XPATH PATTERNS THAT MATCH BY ATTRIBUTE NAME

Example Matches

attribute::type Attributes named type

@type Attributes named type (same effect as attribute::title)

*[@type] Any element node with an attribute named type

holdings/*[@type] Any child element of the holdings element that has an
attribute named type

Patterns can also define node sets based on the data n the XML file rather than
the element and attribute names. The syntax is similar to that described above with
the addition of the data to be matched in quotes. Table D-4 shows some examples
of matching by data as well as node name.

Appendix D: XSLT and XPath 387

TABLE D-4 XPATH PATTERNS THAT MATCH BY ATTRIBUTE AND ELEMENT VALUES

Example Matches

item[@type=”seafood”] item elements that have the type attribute with the
value “seafood”.

item[name=”dried cod”] item elements that have the name child element with
the value “dried cod”.

id[“12321”] A node with a type ID attribute equal to “12321”. An
attribute is type ID if it is defined as this type in the
document schema. The name of the attribute is irrelevant.

XPath Expressions
An XPath expression is a construct that can be evaluated as a string, a number, a
node set, or a true/false value. There are two general uses for expressions in a
stylesheet: to select data from the source document for processing (which was cov-
ered in the preceding section on XPath patterns) and to manipulate data and per-
form calculations for outputting to the result document. This section shows you
how to use XPath expressions for data manipulations and calculations.

VARIABLES
You use a variable when you need to store some data while an XSL stylesheet is exe-
cuting. XPath variables are unlike other programming language variables in that they
cannot be changed: once you assign an initial value to a variable, it always has that
value. (The name variable is not really accurate but that’s the term used in XPath.)

You define a variable with the xsl:variable element. There are two equivalent
forms of syntax. One defines the variable value as an attribute:

<xsl:variable name=”name” select=”value”/>

The second syntactical form defines the variable value between start and end
tags as shown here:

<xsl:variable name=”name”>
value
</xsl:variable>

In these examples, name is the name of the variable and value is the value
assigned to it. The value can be text, a number, a true/false value, or a node set.
Here are two examples that create variables for text and numeric data:

388 Appendixes

<xsl:variable name=”country” value=”’Norway’”/>
<xsl:variable name=”interest” value=”0.05”/>

In the first example, note the use of double and single quotes around the value.
This is necessary to indicate that it is data and not a node set. If you wrote
value=”Norway” the XPath processsor would think that “Norway” was a node
name. (You can reverse the order of the double and single quotes if desired:
‘“Norway”’.)This isn’t required for numerical values, as shown in the second
example. Quotes are not required when you use the start/end tag syntax:

<xsl:variable name=”country”>
Norway
</xsl:variable>

The next example creates a variable that refers to the specified node set. You can
then use the variable name whenever you want to reference that node set.

<xsl:variable name=”nodeset1” value=”/holdings/book”/>

The final example assigns the Boolean value true to the variable. XSL does not
have constants to represent the values true and false so you must use the functions
true() and false() for this purpose. Functions are covered later in this appendix.

<xsl:variable name=”ToPrinter” value=”true()”/>

To reference a variable within the stylesheet, use the variable name preceded by
the $ symbol. For example, assuming that the variable “nodeset1” has been
assigned a node set value, the following code creates a template that will be applied
to that node set.

<xsl:template match=”$nodeset1”>
...
</xsl:template>

The next example is an if element that executes only if the value of the variable
“count” is less than 500:

<xsl:if test=”$count < 500”>
...
</xsl:if>

Referencing a variable that has not been assigned a value causes an error.

Appendix D: XSLT and XPath 389

Each variable that you define in a stylesheet has a scope, which refers to the
parts of the stylesheet where the variable may be used. A variable’s scope is deter-
mined by the location where it is declared. Variables declared at the top level of the
stylesheet, outside of any template body, have global scope and can be referenced
anywhere in the stylesheet. Variables declared within a template body are local and
can be referenced only within that template body.

The most common use for variables is when there is an expression that is used in
multiple locations throughout the stylesheet. By using a variable for the expression,
you can make the stylesheet more readable. Using a variable also makes it simple to
change the value of the expression when needed because you must make the change
in only one location (the variable definition). For instance, imagine a stylesheet that
will need to select node trees consisting of people in your address book who are
business acquaintances as indicated by the “type” attribute. You could create a
variable to hold the required XPath expression, as this example shows:

<xsl:variable name=”businessAquaintances”
select=”/addresses/person[@type=’business’]”/>

With this variable defined you could use it wherever you need to refer to this
node tree:

<xsl:template select=”$ businessAquaintances “>
...
<xsl:template>

You can also use variables to expand the value of an attribute. Suppose the XML
data includes an optional attribute named “count”. When the value of count is
greater than zero, you want the attribute included, but when it is zero, the attribute
is omitted. from the output. To accomplish this, you need the value of “count” for
calculations but because it is an optional attribute it may be omitted and its value
won’t be available. Here’s how you can deal with this situation using a variable:

390 Appendixes

Variables and Namespaces
Like almost everything else in the XML world, XSL variables can be qualified by a
namespace. Simple variable names — that is, names without a namespace prefix —
are not part of the default namespace but rather are considered to have a null
namespace. A variable name can be qualified by a namespace prefix, such as
si:total or qz:sales (the prefix must be linked to a namespace, of course).
The same variable name with different prefixes, such as x:total and y:total,
are considered to be different variables if the prefixes refer to different namespaces,
and the same if the prefixes refer to the same namespace.

<xsl:variable name=”count”>
<xsl:choose>
<xsl:when test=”@count”>
<xsl:value-of select=”@count”/>

</xsl:when>
<xsl:otherwise>
0

</xsl:otherwise>
</xsl:choose>

</xsl:variable>

The result of this code is that the variable “$count” has the value of the
“count” attribute when it is present and zero when it isn’t present. You can then
use the variable in your calculations as needed.

OPERATORS
An operator performs an action on data in the stylesheet. There are three categories
of XSL operators:

◆ Mathematical operators, which perform the operations of addition,
subtraction, division, multiplication, and modulus.

◆ Comparison operators, which compare two expressions, returning true if
the comparison is true and false if it isn’t.

◆ Logical operators, which manipulate logical (true/false) expressions.

Table D-5 provides details on the XSL operators. In this table, the characters
< and > are displayed as themselves for the sake of clarity. Remember that these
characters have special meaning in XML and are normally represented by < and
> respectively.

TABLE D-5 THE XSL OPERATORS

Operator Operation Example

+ Addition “$count + 5” adds 5 to the value of
the variable $count.

- Subtraction “$A - $B” subtracts the value of $B
from the value of $A.

* Multiplication “$A * $B” multiplies $A by $B.

div Division “44 div 11” returns 4.

Continued

Appendix D: XSLT and XPath 391

TABLE D-5 THE XSL OPERATORS (Continued)

Operator Operation Example

mod Modulus Remainder after division. “17 mod 4”
returns 1.

= Equal to “8 = 2” returns false.

!= Not equal to “8 != 2” returns true.

> Greater than “8 > 2” returns true.

>= Greater than or equal to “2 >= 8” returns false.

< Less than “2 < 8” returns true.

<= Less than or equal to “8 <= 2” returns false.

and And “Exp1 and Exp2” returns true if Exp1
and Exp2 are both true, and false
otherwise.

or Or “Exp1 or Exp2” returns true if either
Exp1 or Exp2 is true or if both are true,
and returns false otherwise.

! Not “!Exp” returns true if Exp is false, false
if Exp is true.

Here are some examples of using the XSL operators. This expression returns true
only if $A is less than $B and $B is greater than 20:

($A < $B) and ($B > 20)

This expression returns true if the variable $count is an even number:

($count mod 2) = 0

This code returns true if $A or $B, but not both of them, is greater than 20:

(($A > 20) or ($B > 20)) and !(($A + $B) > 40)

Functions
XSL includes a variety of built-in components that perform different data manipu-
lation tasks. These components are called functions. Every function returns a value

392 Appendixes

to the stylesheet, and some functions are passed data to operate on, called argu-
ments. Functions can be used by themselves or as a part a more complex expression.
For example, the function contains() determines if one string is contained within
another. Thus, you could determine if the attribute named “caption” contains the
string “Albany” as follows:

contains(@caption, “Albany”)

The function returns true or false, depending on whether the text “Albany” is
found in the attribute value.

There are quite a few XSL functions, and they fall into several categories. It is
impossible to provide information on all the available functions in this appendix,
but you can find complete information at http://w3.org/TR/xpath. The remain-
der of this section covers those functions that are used most often. Table D-6 lists
these functions by category, with additional explanation or examples for some
functions following the table.

TABLE D-6 COMMONLY USED XPATH FUNCTIONS

Function category Function Description

Aggregation count(ns) Returns the number of nodes in the node set ns.

sum(ns) Sums numerical values over the node set ns.

Arithmetic ceiling(n) Returns the smallest integer that is greater than
or equal to the value n.

floor(n) Returns the largest integer that is less than or
equal to the value n.

round(n) Returns the integer that is closest to the value n,
Fractional values of .5 and below are rounded
down, values above .5 are rounded up.

Boolean false() Returns the Boolean value false.

true() Returns the Boolean value true.

not(b) Returns the logical not of the Boolean
expression b. Returns true if b is false, and vice
versa.

Current context last() Returns the current context size (the number of
nodes it contains).

Continued

Appendix D: XSLT and XPath 393

TABLE D-6 COMMONLY USED XPATH FUNCTIONS (Continued)

Function category Function Description

position() Returns the value of the current context
position.

Data conversion boolean(a) Converts its argument a to a true or false value.

format- Converts the value v to a string using the
number(v, f) formatting instructions specified by f.

number(a) Converts its argument a to a number.

string(a) Converts its argument a to a string.

String manipulation concat(s1, Takes two or more arguments. The return value is
s2, ...) the arguments converted to strings and joined

end to end.

contains Returns true if string s1 contains string s2.
(s1, s2) Returns false otherwise.

starts-with Returns true if string s1 starts with string s2.
(s1, s2) Returns false otherwise.

string- Returns the length, in characters, of string s1. If
length(s1) the argument is omitted, returns the length of

the string value of the context node.

substring Returns a substring from s1 starting at position
(s1, start, start and length characters long.
length)

THE BOOLEAN() FUNCTION
The boolean() function takes a single argument and returns true or false. The rules
by which it operates depend on the type of argument passed, and are described in
Table D-7.

TABLE D-7 RULES OF THE BOOLEAN() FUNCTION

Argument type Returns true if... Returns false if...

Number The argument evaluates to a The argument evaluates to
nonzero value. zero.

394 Appendixes

Argument type Returns true if... Returns false if...

String The argument evaluates to a string The argument evaluates to a
with length greater than zero. zero length string.

Boolean The argument is true. The argument is false.

Node set The node set is not empty. The node set is empty.

Result tree The fragment contains nonempty The fragment only contains
fragment text nodes. empty text nodes.

The boolean() function can be used for tasks such as determining whether a
string is zero length or a node set is empty.

THE NUMBER() FUNCTION
You use the number() function to convert data to a number. Table D-8 explains the
conversion rules.

TABLE D-8 CONVERSION RULES FOR THE NUMBER() FUNCTION

Argument type Result

Numeric The value is not changed.

Boolean Returns 1 for true and 0 for false.

String Leading and trailing white space is removed. If the remaining
string is recognized as a number, the corresponding value is
returned. If the string cannot be recognized as a number, the
special value NaN is returned.

Node set The node set is converted to a string using the rules for the
string() function. The result is converted to a number
following the rule for string arguments.

Result tree fragment The result tree is converted to a string using the rules for the
string() function. The result is converted to a number
following the rule for string arguments.

Appendix D: XSLT and XPath 395

Here are some examples of using the number() function:

number(12.3) returns 12.3
number(“12.3”) returns 12.3
number(“xyz”) returns NaN
number(true()) returns 1

THE STRING() FUNCTION
You use the string() function to convert data to text. The conversion rules are
explained in Table D-9.

TABLE D-9 CONVERSION RULES FOR THE STRING() FUNCTION

Argument Result

Boolean Returns either “false” or “true”.

Numeric Integers are returned with no decimal point. Floating point values are
returned with at least one digit on each side of the decimal point. Zero
is returned as “0”. Special return values are “NaN”, “Infinity”, and
“-Infinity”.

String The string is unchanged.

Node set The string value of the node that is first in document order. If the node
set is empty, an empty string is returned.

Result tree The values of all descendant text nodes, concatenated in order.
fragment

Omitted The default argument is a node set containing the context node.

Conversion of data to string form is usually performed automatically, so there
are few occasions where the string() function is needed. One exception is when
you want to perform a string comparison instead of a node set comparison. For
example, the following code tests if any “item” child of the current node has the
value “Claw hammer”:

<xsl:if test=”item=’Claw hammer’”>

If you want to test if the first “item” child has the value “Claw hammer”, you
would write the following:

<xsl:if test=”string(item)=’Claw hammer’”>

396 Appendixes

THE FORMAT-NUMBER FUNCTION
Use the format-number() to format numerical values for output. The syntax is

format-number(value, format)

value is an expression that evaluates to a numerical value. format is a string
that defines the format. The rules for creating format strings are quite complex,
having been designed to handle every possible eventuality. I cannot describe them
all here, but cover only the most frequently used ones. You can find the complete
information on the W3C Web site at http://w3.org/TR/xslt.

A format string is comprised of characters that represent digits and symbols in
the result. For example, the format string “$#.00” will display a number with a
leading dollar sign and two decimal places. Table D-10 explains the formatting
characters used in format strings.

TABLE D-10 CHARACTERS USED IN FORMAT STRINGS

Character Meaning

0 (zero) A digit will always be displayed at this position.

A digit will be displayed unless it is a redundant leading or trailing
zero.

$ Displays a leading dollar sign.

. (decimal point) Specifies the position of the decimal point.

, (comma) Specifies the location of digit separators.

- Specifies the minus sign.

% The number is multiplied by 100 and displayed as a percentage.

‘ (apostrophe) Displays special characters as themselves. For example ‘#’ displays #.

Table D-11 shows some examples.

Appendix D: XSLT and XPath 397

TABLE D-11 EXAMPLES OF USING THE FORMAT-NUMBER FUNCTION

Function Result

format-number(12.34, “#.#”) 12.3

format-number(12.34, “#.00”) 12.34

format-number(-12.34, “#.00”) -12.34

format-number(12.34, “000.000”) 012.340

format-number(0.25, “##%”) 25%

format-number(456000000, “$,###”) $456,000,000

THE COUNT() AND SUM() FUNCTIONS
You use the count() and sum() functions when processing a node set. The
count() function returns the number of nodes in the set. This is the syntax:

count(ns)

The argument is an expression or variable that evaluates to a node set. The func-
tion’s return value is the number of nodes in the set. This value does not include
nodes that are descendants of member nodes but which are not members in their
own right.

The sum() function calculates the sum of a set of numeric values in a node set.
The node set can refer to a text element or an attribute. The syntax is:

sum(ns)

The argument is an expression or variable that evaluates to a node set. The fol-
lowing example returns the sum of all “price” elements that are children of the
“item” element:

sum(item/price)

The next example returns the sum of all “size” attributes of the “item” element
which is a child of the “inventory” element:

sum(inventory/item/@size)

If any value in the node set is not a number or is absent, the sum() function
returns the special value NaN, representing Not a Number.

398 Appendixes

THE LAST() AND POSITION() FUNCTIONS
The functions last() and position() enable you to obtain information abut the
current context. They take no arguments and return information as follows:

◆ last() returns the number of nodes are in the current context.

◆ position() returns a number giving the position within the current
context.

You would use these functions when processing a node set — using the xsl:
for-each element, for example. There are many things that you can do with one or
both of these functions. One possibility is to label the output with item numbers.
For example, you could output a list like this:

1: Claw hammer
2: Needle-nose pliers
3. Paint scraper
4: Crescent wrench

This is the code required, assuming the item name is stored in the “name” ele-
ment (this is based on the XML data from Listing D-1)

<xsl:template match=”item”>
<xsl:value-of select=”position()”/>: <xsl:value-of elect=”name”/>

</xsl:template>

You could also use these functions to create output like this:

Item 1 of 4: Claw hammer
Item 2 of 4: Needle-nose pliers
Item 3 of 4: Paint scraper
Item 4 of 4: Crescent wrench

Here’s the code for this output:

<xsl:template match=”item”>
Item <xsl:value-of select=”position()”/> of <xsl:value-of
select=”last()”/>: <xsl:value-of select=”name”/>

</xsl:template>

Another way to use these functions is to determine when processing has reached
the last node in the context (where position() equals last()). In this example, a
horizontal line is inserted (using the <hr/> HTML tag) after the item in the list one.

Appendix D: XSLT and XPath 399

<xsl:template match=”book”>
<xsl:value-of select=”name”/>
<xsl:if test=”position() = last()”>
<hr/>

</xsl:if>
</xsl:template>

XSLT is an important tool for almost anyone who is working with XML data. By
using an XSLT stylesheet, you can transform all or part of your XML data to meet
your current needs. Many of the Office applications support this technology.

400 Appendixes

Numbers
4TOPS Data Analysis, 331

4TOPS Document Management, 331

4TOPS Excel Import Assistant, 331

4TOPS Excel Link, 331

4TOPS Filter Builder, 331

4TOPS Screen Capture, 331

4TOPS Summary Wizard, 331

4TOPS Word Link, 331

A
abstract elements (Excel), 163

Access, 185

ASP (Active Server Page) page, 204

connecting to InfoPath, 267–287

database creation, 267–273

databases, 53

deploying application, 206

Design View, 268–270

exporting

basics, 194–200

data from database to XML document, 9

live data, 204–205

objects to XML, 189–206

forms, 276–277

HTML export feature, 204

HTML file containing script to perform

transform, 204

importing

structure, 188–189

XML data and schemas, 185–189

Invoice report, 195

naming exported files, 194

Northwind database, 190–191

ReportML file, 191–193

representing objects, 191–193

schemas, 9–10

tables, 185–187

XML, 9–10

XML data, 9

XML data types, 189

XSD (XML Schema Definition) schema, 10

Access project window, 194

ACDSee 5.0.1, 330

Acrobat Reader, 330

Action property, 92

actions and buttons, 91

ActiveDocs v4.0, 332

Add a New View command, 76

Add command, 290

Add Field or Group dialog box, 59, 126, 290,

312–313

Add Schema dialog box, 234

Add Signature dialog box, 48

Add Solution dialog box, 234

Add to Catalog command, 293

Add View dialog box, 130

addition (+) operator, 99

<addressList> element, 338

Adjust column width property, 175

age element, 364

Age field, 251

aligning tables, 40

Alignment property, 90

alignment text, 37–38

ampersand character (&), 170

Analyse-it for Microsoft Excel v1.68, 332

analysis functions, 258

chart of flavor preferences, 262

criteria, 259

displaying percentages instead of totals,

261–262

summarizing flavor preference, 259–260

testing with more data, 263

And operator, 97, 98

annotation element, 365–365

anonymous data types, 363, 370

<any> element, 163

any element, 365, 367

<anyAttribute> element, 163

401

Index

anyType data type, 356

anyURI data type, 356

Append new data to existing data property, 176

Application object, 116

applications

browser-based, 190

ease of integration with InfoPath, 23

exchanging data, 3, 5

interoperability, 3–4

live, 206

static, 206

XML support, 5

Apply Formatting command, 222

arrow keys, 27

ASCII character codes, 344

ASP (Active Server Page) page, 204

.aspx extension, 294

atomic, 355

attachments and forms, 46

attribute element, 363, 367–369, 371

attributeGroup element, 363, 369, 371

attributes, 339–341

adding, 145

assigned to elements, 144

data types, 144

empty elements, 340

listing, 144

maps (Excel), 164

modifying value, 145

names, 170, 339–340

required, 164

rules for structuring data with, 18

special, 340–341

value, 144

Word documents, 144–145

Attributes command, 144

Attributes dialog box, 144

<author> element, 187

author element, 371

Author folder, 330

author table, 187

AutoComplete and Text Box controls, 41

AutoComplete Settings dialog box, 41

AutoNumber type, 271

B
back-end data stores, 5

BBEdit v6.1, 332

Berners-Lee, Tim, 17

binary data, 15

binary data types, 344

Binding dialog box, 85

bitmap files, 110

<body> element, 228

<body> section, 320

<book> element, 178, 187

book element, 371

book table, 187

Booklist schema, 178

Booklist.xsd schema for MyBooks.xml, 140–141

books element, 371

<books> root element, 178

books XML data file, 372–373

boolean data type, 356

borders

layout tables, 66–67

pictures, 68

Borders and Shading command, 68, 252

Borders and Shading dialog box

Border diagram, 252

Border option, 66

Borders tab, 40, 252

Color list, 66–67

Color option, 66, 252

Inside preset, 67

Outline preset, 67

Presets option, 66

Shading tab, 40, 67, 252

Style option, 66

Width list, 66–67

Width option, 66

break statement, 119–120

browser-based

applications, 190

data viewing, 199

built-in simple data types, 356

bulleted lists, 36–37

Bullets and Numbering command, 36, 37

Bullets and Numbering task pane, 36–37

402 Index

business processes, 4

business-specific schemas, 6

Button controls, 80, 91, 282

OnClick event, 114

properties, 92

Button Properties command, 114, 282, 283, 325

Button Properties dialog box, 325

Action drop-down list, 114, 282, 326

Advanced tab, 92

Define Action Parameters button, 282

General tab, 92, 114

Microsoft Script Editor button, 114, 326

Script option, 114, 326

Size tab, 92

Submit option, 282, 283

buttons, 92

actions, 91

adding, 325

forms, 27

OnClick event code, 326–327

byte data type, 356

C
CAB (cabinet) file, 110

calculations

performing with scripts, 122–125

regular arithmetic, 99

carriage return, 348

CD Case & Label Creator, 332

CDATA tag, 345

cells

changing borders and background, 40

layout tables, 62

merging, 62, 64

padding, 40, 65

splitting, 62, 64

vertical alignment

of contents, 65

of text, 40

Change Binding command, 85

Change Management System v2.1.1, 332

Change To command, 85

character data, 345

character encoding, 347

character entities, 344–345

Character formatting property, 90

chart of flavor preferences, 262

Chart Wizard, 262

Check Box control, 80, 86, 251

child elements, 143

choice element, 363, 365, 366

classes, 118

clients, exporting XML data, 203–204

clip art, 67

Clip Art task pane, 35, 67

ClipFile, 332

color schemes, 74–75

Color Schemes task pane, 75

columns

adding, 64

deleting, 40, 65, 281

inserting, 40

layout tables, 62

width, 40, 65–66

COM (Component Object Model)

components, 107

commands, customizing, 73–74

comment <!— —!> tags, 346

comments, 180

comments element, 371

Comments section, 32

complete XML document, 349–350

complex data types, 363–370

complexType element, 365–367, 371

Component Selector dialog box, 117–118

computers element, 300

concat() function, 101

Condition Criteria dialog box, 222

conditional formatting, 92–94

adding, 93

Data Views, 222–223

modifying, 93

Conditional Formatting dialog box, 93–94

Conditional Formatting task pane, 222–223

constraining facets, 357

consulting element, 300

contactinfo element, 370

contactinformation data type, 370

Index 403Index 403

contains condition, 93

controls, 79, 251

activating, 27

changes in appearance, 92–94

changing

data binding, 85

type, 84–85

conditional formatting, 92–94

data binding status, 85–86

data validation, 87

existing data source, 82

fonts, 77

forms, 51

identifying, 27

List controls, 84

nonexistent data source, 82–83

overview, 79–81

placing on forms, 81–83

proper type of data entered into, 96

properties, 86–91

removing unnecessary, 280–281

repeating sections, 71

Repeating Table control, 83–84

repositioning, 253–254

sections, 69

Controls task pane

Automatically Create Data Source option, 83

Button option, 92, 282, 325

Insert Controls list, 70, 83, 282, 325

Optional Section option, 70

Repeating Section option, 70

Repeating Table option, 83

Section option, 70

Controls taskbar, 99

cookies, 190

Copy command, 31

copying and moving lists, 172

count() function, 101

criteria and analysis functions, 259

Criteria argument, 260

CSE HTML Validator Lite v2.01, 330

CSE HTML Validator Professional v4.50, 330

CSS (Cascading Style Sheets), 18

custom

form templates, 26

task panes, 25

trusted forms, 47

customizing commands, 73–74

Cut command, 31

D
DAPs (Data Access Pages) and XML, 191

data

applications exchanging, 3

back-end data stores, 5

browser-based viewing, 199

collected by survey, 246–247

converting to uppercase, 127

different formats for, 6

displaying, 15–16

forms, 68

incompatible systems, 5

input, 4

maintained as XML, 23

maps to linking to elements (Excel),

163–166

markup, 13–14

multiple uses for, 4

platforms, 15

protecting (Word), 156–157

reusing and repurposing, 5

searching and organizing, 6

separating storage from display, 15–16

validating, 126–129

views based on, 129–131

XML documents, 141

Data Entry View, 53, 276–277, 285–287

dataFields group, 278

Form Preview mode, 283

starting, 279–280

data flow, 265

data items, rules for value of, 96–98

Data mode, 23–24

data models, 351–352. See also schemas

defining, 18

support for, 15

404 Index

data source, 57, 278

adding to, 58–59

automatically locking, 113

connecting to, 274–276

current structure, 57

data validation, 94–99

databases, 53–55

dataFields group, 278

deleting items, 62

designing, 290

existing controls and, 82

fields, 49–51, 57–58

folder icons, 50

forms from existing, 52–55

groups, 49–51, 57–58

locked fields or groups, 58

loss of data, 61

modifying, 61–62

moving item to new location within, 62

name element, 123

nonexistent and controls, 82

nonrepeating total element, 123

organization of, 82

page icons, 50

parent-child relationships, 58

queryFields group, 278

repeating item group, 123

from scratch, 56

structure of, 58

total element, 123

viewing details, 60–61

Web services, 52–53

XML data file, 52

XML schema, 52

Data Source Catalog task pane

Add to Catalog command, 215, 293

Insert Data View command, 215, 294

XML filename0, 294

XML Files node, 214

XML Files section, 293

Data Source command, 251, 290, 291, 312

Data Source Setup Wizard, 275

Add Relationship button, 54

Add Table button, 54, 274

Browse button, 249

Database option, 53

Database (Microsoft SQL Server or Microsoft

Access Only) option, 274

Modify Table button, 54

primary parent table, 53

Select Database button, 53, 274

Show Table Columns option, 53

Web Service option, 53

XML Schema or XML Data File option, 52,

229, 249

Data Source task pane, 82, 113, 126, 290, 315

Add button, 59

dataFields node, 279

Layout command, 229, 291

<memo> group, 229

myFields group, 58, 312

Properties command, 62

Repeating Section with Controls option, 279

Repeating Table command, 291

Section option, 71

Section with Controls option, 71

Show Details option, 57

Data Source taskbar, 251

data transfer, common standard for, 4–5

data types

Access, 189

anonymous, 363, 370

attributes, 144

complex, 363–370

defining templates for, 359–361

enumerations, 361–362

fields, 59–60

groups, 59

list types, 362–363

validation, 96

XSD, 355–370

data validation, 44, 94–95

comparison values, 97

controls, 87

data source field, 97

data type validation, 96

data value validation, 96–98

continued

Index 405

data validation continued

defining rules, 97

dialog box alert, 95

dynamic comparison validation, 99

events, 112–114

Excel, 182, 264

InfoPath, 264

inline alert, 95

multifield rules, 98

required, 95

rules, 95

scripts, 126–129

supported comparisons, 97

Data Validation dialog box, 96–97, 99

data value validation, 96–98

Data View

binding to XML data, 214–215

creation of, 214–215

deleting title, 295

filtering data, 296

modifying, 294–295

sorting, 220–221

tabular row-and-column format, 214

Data View Details task pane, 215

Conditional Formatting command, 222

Filter command, 218, 296

Refresh Data Source command, 216

repeating elements, 216

Show Data Values option, 216

Sort & Group command, 221

structure of data, 216

Style command, 216

Data View Properties command, 215, 296

Data Views, 293

conditional formatting, 222–223

description of, 217

element names, 216

filters, 218–220

grouping, 220–221

Header and Footer section, 218

Next and Previous links, 218

number of items displayed, 218

properties, 215–223

refreshing, 216

repeating elements, 216

repeating form style, 217

structure of data, 216

styles, 216–218

toolbar, 218

using default settings, 215

XML element names for column headings,

215–223

Database argument, 260

databases

adding tables to forms, 54

changing data, 287

creation of, 267–273

defining relationships, 272–273

deleting

donor, 287

single donation, 287

designing, 268

Donations table, 268–271

Donors table, 268–271

establishing connection to, 205

fields, 271

Microsoft Access, 53

modifying Query View, 278–279

naming, 268

parent table, 53–54

querying, 55

sorting table records, 270

SQL Server, 53

submitting forms to, 101–102

supporting live data XML export, 205

Tables list, 268

DataDOMEvent object, 115

data.ent file, 343

dataFields group, 278

Data → Insert Web Part command, 212

DataObject object, 116

Data-Only view, 139

Data → Insert Data View command, 214, 293

Data → Insert Web Part command, 210, 309

Data → List → Convert to Range command, 182

Data → List → Hide Border of Inactive Lists

command, 182

Data → List → Resize List command, 181

406 Index

Data → List → Total Row command, 182

Data → Validation command, 182

Data → XML → Export command, 180

Data → XML → Import command, 172

Data → XML → Refresh XML Data

command, 169

Data → XML → XML Map Properties

command, 173

Data → XML → XML Source command, 163

Date and time data type, 60

Date data type, 60

date data type, 356

date element, 121

<date> element, 228, 233

date element, 300, 304, 307

Date field, 251

Date Format dialog box, 86

Date object, 122

Date Picker calendar, 28

Date Picker control, 28, 80, 86, 251, 254

dateField variable, 121

dateIn2002 attribute, 368

<dateOfHire> element, 160

dates and forms, 28

dateTime data type, 356

DCount data function, 259–260

debugger statement, 119

debugging scripts, 119–120

Debug → Stop Debugging command, 120

Decimal data type, 60

Decimal Format dialog box, 91, 291–292

default attribute, 364

default namespace declaration, 353

Default State property, 86

Default Value property, 86

default view, 30, 129

Delete & Submit action, 91

Delete command, 62, 223

Delete → Columns command, 65

Delete → Rows command, 65

Delete → Table command, 278

deleting hyperlinks, 29

<department> element, 171

deploying Access applications, 206

Design a Form task pane, 126

Customize a Sample, 55

Data Source command, 312

New, Blank Form option, 312

New Blank Form command, 83, 290

New Blank Form link, 56

New From Data Source command, 229, 274

New From Data Source link, 52–53

New option, 249

Open a Form in Design Node section, 57

design dialog box, 269

Design mode, 23–24, 104–105

Design Tasks task pane, 56

Controls command, 83

Data Source command, 290

Design View, 268–270

designing databases, 268

designing forms, 10–11, 229, 273, 289–292

connecting to data source, 274–276

controls, 251

data source creation, 312–313

fine-tuning, 251–255

form layout, 249

form templates, 249

formatting Income field, 254–255

modifying labels, 253–254

repositioning controls, 253–254

detail view, 30, 75

Dialog Box alert, 95, 97

digital certificates, 48

digital signatures, 48

digital signatures and forms, 104

Digital Signatures dialog box, 48

Distributed Spreadsheet, 332

division (div) operator, 99

Doc extension, 136

DocActionEvent object, 115

DocEvent object, 115

DocReturnEvent object, 115

DOCTYPE element, 349

DOCTYPE tag, 342, 349

Document element, 338–339, 342

Document Template option, 302

document validation (Word), 147–148

Index 407

documents

inserting hyperlinks, 29

saving as WordML, 235

without stylesheet, 235

XML tags, 235

DOM (Document Object Model), 108

DOMDocument object, 324

Donations table, 268–270, 274, 286

DonorID field, 273

primary key, 271

relationships, 272–273

Donor ID label, 281

donor section, 285

DonorID field, 270

DonorList database, 268, 278

DonorList database file, 274

DonorList tables dialog box, 268

Donors table, 268–271, 274, 279

DonorID field, 273

primary key, 271

relationships, 272–273

removing DonorID field, 280–281

retrieving all records, 286

Drop-Down List Box controls, 251

DTDs (Document Type Definitions), 18, 352

dutylist field, 312

dynamic comparison validation, 99

E
eBook version of Powering Office 2003 with

XML, 333

Edit Condition command, 223

Edit Hyperlink command, 29

Edit Hyperlink dialog box, 29

Edit Relationship dialog box, 54

Edit Relationships dialog box, 273, 275

Edit Schema Properties dialog box, 152

Edit view, 130–131

editing

Windows registry, 192–193

XML (FrontPage), 209

XML documents in Word, 139–147

Edit → Cut command, 172

Edit → Paste command, 172

Education field, 251

El Scripto 2, 332

element element, 363–366, 371

<element> tag, 370

elements, 336

adding

attributes, 145

Word, 143

attributes, 164, 339–341

child elements, 143, 164

containing data, 164

defining complex data types, 363

deleting (Word), 143–144

empty, 339

end tag, 337

fields, 58

forms, 27, 68

listing attributes, 144

mapping to worksheet ranges, 166

mixed content, 147

names and values of attributes, 144

names of, 170

namespaces, 144, 352–355

nesting, 337–338

removing start and end tags, 144

required, 164

selecting for worksheets, 170–172

start tag, 337

e-mailing forms, 46

<employee> element, 160, 166, 176–177, 186

<employeeList> element, 186

EmployeeList schema, 176

EmployeeList.xsd file, 160, 161–162

employeeNumber type, 357

Employees data file, 168

Employees XML data file, 160–161

Employees.xml data file, 176, 186

Employees.xml file, 160–161

Employees.xml file, 170

empty elements, 180, 339–340

Enable Spelling Checker property, 90

end tag, 337

entities, 336

character, 344–345

Document element, 342

external binary, 344

408 Index

external text, 343

internal text, 342–343

enumeration facet, 358

enumerations, 118, 361–362

Epic Editor, 331

Error object, 116

European Laboratory for Particle Physics, 17

event handlers, 111–112

eventObj object, 124

eventObj.ReturnMessage property, 127

eventObj.ReturnStatus property, 127

events

arguments, 114

data validation, 112–114

event handlers, 111

event procedures, 111

form-level, 111–112

InfoPath, 111–115

OnClick event, 114

Excel

abstract elements, 163

additional commands for lists, 181

analysis, 245

analysis functions, 258–263

<any> elements, 163

<anyAttribute> elements, 163

Chart Wizard, 262

connecting with InfoPath, 245–265

data validation, 182, 264

Field Chooser, 8–9

flattening data, 179

formulas in XML lists, 176–178

generating schema, 8

importing

sample data, 258

XML data, 168, 172–174

List and XML toolbar, 166–167

lists, 159

manipulating XML data, 168–169

manipulation of external XML data, 8

maps, 163–166

opening XML files, 167–172

recursive structures, 163

refreshing XML data, 169

single-level and multilevel maps, 178–179

tables, 159

WKS format, 183

workbook creation, 256–263

XML, 8–9

limitations, 163

list creation, 257

lists, 174–182

XML Source task pane, 163–166

XMLSS (XML Spreadsheet Schema), 8, 183

expat - XML Parser Toolkit, 331

explicit namespace declarations, 354–355

Export command, 194

Export dialog box, 194, 204

Export To dialog box, 45

Export to Web command, 316

Export XML dialog box, 180

All records option, 201

Apply existing filter option, 201

Apply existing sort option, 201

Create separate schema document

option, 202

Current record option, 201

Data (XML) option, 194

Data tab, 200–201, 205

Data to export option, 201

Embed schema in exported XML document

option, 202

Encoding option, 201

Export data option, 200

Export Location option, 201, 203

Export Presentation option, 203

Export schema option, 202

Include primary key and index information

option, 202

Include Report Images option, 203

Live Data option, 201, 205

More Options button, 195, 200

Presentation of your data (XSL) option, 194

Presentation tab, 202–203

Run From option, 203

Schema of the data (XSD) option, 194

Schema tab, 202

Transforms option, 201

Index 409

exported XML data file, 181

exporting

Access objects to XML, 189–206

basics (Access), 194–200

live data (Access), 204–205

presentation files, 202–203

XML data, 203–204

XML lists, 178–181

Expression Box control, 80, 93, 99–101

Expression Box formulas, 101

Expression Box Properties dialog box, 100

extensibility, 15, 17

external binary data, 345–346

external binary entities, 344

external text entities, 343

ExternalApplication object, 116

F
facets, 357–359

<faxnumber> element, 351

Field argument, 260

Field Chooser, 8–9

Field or Group Properties dialog box, 312

Data tab, 60, 62

Details tab, 60

Edit button, 113, 124, 126

Events list, 124, 126

Name field, 290

Validation and Script tab, 113, 124, 126

fields, 271

cannot be blank, 95

created by InfoPath, 82

data source, 49–51, 57–58

data types, 59–60

data validation rule, 59

default value, 59

inserting date with scripts, 121–122

locked, 58

modifying, 62

name of, 59

NaN (Not a Number), 100

properties, 60–61

repeating, 59

required data validation, 95

type, 59

XML attributes, 58

XML elements, 58

File → Design a Form command, 52–53, 55–57,

83, 126, 229, 249, 274, 290, 312

File → Export To → Web command, 316

File → Export To → Web command, 45

File → Extract Form Files command, 110

File → Fill Out a Form command, 26, 284, 292

File → Get External Data → Import command,

187, 188–189

File → Import command, 212, 308

File → Merge Forms command, 44

File → New command, 137, 268, 304

File → Open command, 26, 167, 170, 234

File → Publish command, 105

File → Save As command, 136, 138, 152, 170,

180, 183, 200, 235, 294, 305

File → Save command, 45, 57, 111, 180,

302, 327

File → Send To Mail Recipient command, 46

File → Submit command, 46, 282

FileSystemObject object, 118

Fill Out a Form command, 255

Fill Out a Form task pane, 26, 284

Fill Out a Form section, 255

More Forms option, 119

New Record button, 285

filling out forms, 27–33

Filter command, 296

Filter Criteria dialog box, 218–219, 296

filters

Data Views, 218–220

defining, 219

removing criteria, 219

XPath expression implementing, 219

<firstname> element, 178, 349, 351

firstname element, 364, 371

<flavor> element, 351

Flavor field, 251

float data type, 356

focus in repeating tables, 31

folder icons, 50

font formatting, 34

410 Index

Font (Ctrl+D) keyboard shortcut, 34

Font task pane, 34–35, 38

fonts

controls, 77

size, 34

foodItems element, 290

FoodItemsData form, 291

footers and groups, 221

form area, 24–25

form level events and event handlers, 112

Form Options dialog box

Advanced tab, 109, 112, 126

Allow Users to Digitally Sign this Form

option, 104

Enable Form Merging option, 103

Enable protection option, 103

Form Script Language list, 126

General tab, 103

If Users Submit option, 104

Script Language section, 109

Security tab, 103

Use Script Event, 112

VBScript option, 126

On Version Upgrade list, 112

form templates, 24, 249, 276

custom, 26

listing recently used, 26

optional sections, 31–32

predesigned, 24, 26

publishing, 105

read-only Picutre controls, 30

saving, 125

starting new form from, 26

Format Picture command, 36, 68

Format Picture dialog box, 36, 68

Format property, 86

Format → Background Color command, 66

Format → Borders and Shading command, 40, 66

Format → Color Schemes command, 75

Format → Conditional Formatting command, 93

Format → Font command, 34

Format → Styles and Formatting

command, 237

formatting

Income field, 254–255

layout table text, 68

pictures, 68

removing, 35

sections, 251–252

stylesheets, 237–244

table text, 39

tables, 39–40

WordML files, 238

XML documents (Word), 145–147

Formatting toolbar, 33–34, 34, 36–38

form-level events, 111–112

forms, 23

Access, 276–277

activating controls, 27

adding

button, 325

records, 285

Submit button, 282–283

as attachment to e-mail, 46

AutoComplete, 41

background color, 66

based on

sample forms, 55

URN (Uniform Resource Name), 118–119

buttons, 27, 91–92

closing, 284

connecting to data source, 274–276

controls, 51, 79, 251

correcting, 42–44

creation of, 51–57

data, 68

Data Entry View, 53, 55, 276–277,

285–286

data source, 49–51

data validation, 44, 94–99

from database, 53–55

Date Picker control, 28

dates, 28

default view, 30

Design mode, 104–105

continued

Index 411

forms continued

design overview, 49–51

designing, 10–11, 229, 249–255, 273–284,

289–292, 312–315

detail view, 30, 75

digital signatures, 48, 104

donor section, 285

dynamic, 10

elements, 27, 68

e-mailing, 46

entering text, 33

from existing data structure, 52–55

extracting files, 110

filling out, 27–33, 292

fine-tuning, 251–255, 280–282

Form Preview mode, 283

formatting

sections, 251–252

text, 33–41

formulas, 99–101

from-scratch data source, 56

functions, 109

heading styles, 38

images, 29

inserting hyperlinks, 29

insertion point, 27, 63

interface, 51

layout, 51, 62–74, 249

layout tables, 62–68, 229, 291, 314–315

leaving open, 284

links to insert optional section, 31

List controls, 84

Load event procedure, 121

matching data structure of database

tables, 55

memos, 228

merging, 44, 103

modifying labels, 253–254

multiple

tables, 62

views, 129

navigating, 27

new, blank, 284

opening, 26, 56–57

Out-of-Stock Data View, 296

Picture control, 29–30

placing controls on, 81–83

predefined color schemes, 74–75

Preview mode, 104–105

previewing, 252

print view, 30

procedures, 109

protection, 103–104

publishing, 105

Query View, 53, 55, 276–277, 285–286

removing unnecessary, 280–281

Repeating Section tab, 279

repeating sections, 251, 279–280

Repeating Table control, 83–84

repeating Table tab, 279

repeating tables, 30–31, 280

repositioning controls, 253–254

Rich Text control, 30

Run Query button, 286

sample, 26, 125

sandboxed, 47, 118

saving, 45, 56–57, 292

as Web page, 45, 316

schemas, 10, 228

script code, 47

scripts, 109

sections, 31–32, 69–74

security, 47–48, 103–104

starting from form templates, 26

submission options, 283–284

Submit button, 285

submitting, 46, 101–103

summary view, 30, 75

tables, 38–40

testing, 104–105, 255

text, 33–34

trusted, 47, 119

URLs, 29

usage, 284–287

user options, 101–104

views, 30, 75–77

visual interfaces, 51, 123, 229, 314

from Web service, 52–53

412 Index

working offline, 46

from XML data file or XML schema, 52

Forms dialog box, 26, 119

formulas

forms, 99–101

testing, 100

XML lists, 176–178

Four Religious Works, 331

freeware programs, 333

<from> element, 228

FrontPage, 311

connecting

with InfoPath, 289–297

to Word, 299–310

Data views, 213–223

Design tab, 212

designing Web pages, 293–296

SharePoint page, 289

viewing and editing XML, 209

Web pages, 299

XML Web Part, 210–213

XML-based data, 207

Full Error Description command, 44

Full Rich Text property, 90

functions, 109, 121

G
Gantt Chart Builder (Excel), 332

gender attribute, 160

GetDataVariable method, 118

getMonth method, 122

GML (Generalized Markup Language), 16

GNU software, 333

graphics, inserting hyperlinks, 29. See also

images

Greater than (>) symbol, 335

group element, 363, 365–367, 371

grouping and Data View, 220–221

groups

binding to sections, 70–71

created by InfoPath, 82

data source, 49–51, 57–58

data types, 59

default value, 59

footers, 221

headers, 221

locked, 58

modifying, 62

name of, 59

properties, 60–61

repeating, 59

type, 59

H
H7, 6

<head> section, 320

headers and groups, 221

heading styles, 38

Hide Content command, 222

Hide or Display Task Pane (Ctrl-F1) keyboard

shortcut, 25

highlighting text, 36

Hi-PositionT for FrontPage, 332

Hi-Verify for FrontPage, 332

Hi-VisibilityT for FrontPage, 331

horizontal line, 67

HotDog Professional v7.0, 332

HP EzMath v1.1, 331

HTML (Hypertext Markup Language), 16

created by stylesheet, 323–324

exporting versus exporting XML data, 204

limitations, 17

viewing, 197

HTML documents, outputting Word document

as, 7

HTML Tidy, 331

HTTP (Hypertext Transfer Protocol), 16,

101–102

http://schemas.microsoft.com/office/word/2003/

wordml namespace, 307

http://www.pgacon.com/salesfigures

schema, 307

Hyperlink data type, 60

hyperlinks, 29

I
IANA (Internet Assigned Numbers

Authority), 340

IBM XML Schema Quality Checker v2.1.1, 331

Index 413

<ID> element, 160, 186

image files, 110

images

deleting, 36

forms, 29

inserting in Rich Text controls, 35–36

layout tables, 67

Picture Controls, 36

resizing, 36

selecting images in, 35

text wrapping around, 36

Import Data dialog box, 172–173

Import dialog box, 187–188

Import XML dialog box, 172–173

Append Data to Existing Table(s) option,

187, 188

Import button, 258

Options button, 187, 189

Properties button, 174

Structure and Data option, 187

Structure Only option, 187, 189

importing

maps (Excel), 256–257

versus refreshing, 174

sample data, 258

XML data, 9

XML data (Excel), 172–174

importing XML data, 168

Access, 185–189

into existing list, 173–174

new list creation, 172–173

unlinked data (Access), 188

Income field, 251, 254–255

incompatible systems and data, 5

indenting text, 37–38

InfoPath

applying transform with script, 324–327

AutoComplete, 41

capabilities of, 23

checking spelling, 42–43

color schemes, 74–75

conditional formatting, 92–94

connecting

with Access, 267–287

with Excel, 245–265

with FrontPage, 289–297

with Web publishing, 311–327

with Word, 227–244

correcting forms, 42–44

Data Entry View, 286

data flow, 265

data maintained as XML, 23

Data mode, 23–24

data source, 278

data validation, 44, 264

Design mode, 23–24

designing

data source, 290

forms, 273–284, 289–292, 312–315

events, 111–115

Export to Web command, 316

filling out forms, 27–33

flow layout, 253

form templates, 24

formatting Income field, 254–255

Formatting toolbar, 33

forms, 23–24

merging forms, 44

modes, 23–24

modifying Query View, 278–279

moving through task panes, 25

object model, 115–117

on-screen form, 245

opening forms, 26

options for form submission, 283–284

preview mode, 315

Query View, 286

repositioning controls, 253–254

Rich Text control, 33–41

sample forms, 26, 125

saving forms, 45

Script Editor, 109–111

sections, 69–74

security, 47–48

special task panes, 24

starting Data Entry View, 279–280

testing forms, 255

Text Box control, 33

workspace, 24–26

XML, 10–11

414 Index

InfoPath menu, 255

InfoPath object model, 108

InfoPath screen, 24–25

Inline Alert, 95, 97

Insert Above command, 31

Insert Below command, 31

Insert cells for new data property, 175

Insert command, 65

Insert Data View command, 294

Insert Donations command, 286

Insert Expression Box dialog box, 99–100

Insert Hyperlink dialog box, 29

Insert Hyperlink (Ctrl-K) keyboard shortcut, 29

Insert Picture dialog box, 35, 67

Insert Section menu, 73

Insert Table dialog box, 38

Insert → Chart command, 262

Insert → Horizontal Line command, 67, 282

Insert → Hyperlink command, 29

Insert → More Controls command, 282, 325

Insert → Picture → Clip Art command, 35, 67

Insert → Picture → From File command, 35, 67

Insert → Section command, 32

Insert → Section → Donors command, 285

Insert → Section → Respondent command, 255

Insert → Table command, 38

Instant SAXON, 331

In-Stock Data View, 293–296

inStock element, 290

inStock element, 293, 296

int data type, 356

int type, 357

integer data type, 356

Integer Format dialog box, 254

interfaces, 118. See also visual interfaces

access to, 115

creation of, 123

forms, 51

internal text entities, 342–343

Internet Explorer

DOM (Document Object Model), 199

enabling script debugging, 119

Invoice.htm file, 196

Invoice.html file, 197

MHTML format, 316

View → Source command, 200

Internet Options dialog box, 119

interoperability, 3–4

Invoice report and Access, 195

Invoice.htm file, 195–198, 200

InvoiceOriginal.htm file, 200

Invoices.xml file, 205

Invoice.xml file, 195

Invoice.xsd file, 195, 199

Invoice.xsl file, 195

is equal to condition, 93

is not blank condition, 93

ISO (International Organization for

Standardization), 17

<item> element, 212

item element, 290, 291

items variable, 125

J
Jet database engine, 190

JScript, 108–109, 119

justification, 37

Just-In-Time Debugging dialog box, 120

L
Label property, 92

languages, identifying, 340

<lastname> element, 178, 349, 351

lastname element, 364

Layout command, 291

layout of XML documents (Word), 145–147

layout tables, 62–68, 276–277, 291

adding, 63

content, 67–68

rows, 314

rows or columns, 64–65

borders, 66–67

cell padding, 65

cells, 62

clip art, 67

column width, 65

columns, 62

continued

Index 415

layout tables continued

deleting, 278

deleting rows or columns, 65

formatting pictures or text, 68

horizontal line, 67

images, 67

within layout tables, 62

merging cells, 62, 64

modifying, 64–65

multiple, 62

properties, 65–66

row height, 65

rows, 62

shading, 66–67

splitting cells, 62, 64

text, 67

vertical alignment of cell contents, 65

Layout task pane

Add Table Column option, 64

Add Table Row option, 64

Custom Table item, 63

Data Source command, 291, 315

Insert Layout Tables list, 63, 229, 249, 279

Insert Table Layouts list, 314

Merge and Split Cells list, 64

Merge Table Cells option, 64

One-Column Table, 314

Split Table Cells Horizontally option, 64

Split Table Cells Vertically option, 64

Table with Title option, 229, 249, 279, 291

length enumeration facet, 358

Less than (<,) symbol, 335

List and XML toolbar

Chart Wizard command, 167

Export command, 167

Import button, 172, 173, 258

Import command, 167

List command, 167

Open as Read-Only Workbook option, 169

Print List command, 166, 167

Refresh button, 169, 171, 263

Refresh From XML command, 167

Toggle Total Row command, 167

XML Map Properties button, 173, 265

XML Map Properties command, 167

List Box control, 80, 87–88

List controls, 80–81, 84

List element, 296

list element, 290

list type, 355

list types, 362–363

listOfFourNumbers type, 363

listOfNumbers type, 362

lists

copying and moving, 172

Excel, 159

importing XML data into (Excel), 172–174

XML data, 159

live applications, 206

live data, exporting (Access), 204–205

live-export object, 206

Load event, 120

long data type, 356

M
MailEnvelope object, 116

mapping XML elements to Word template,

303–304

maps

adding, 163–165

attributes, 164

elements containing data or child

elements, 164

importing (Excel), 256–257

multilevel, 178–179

multiple, 165

names, 164

properties, 174–176

renaming, 164

required element or attribute, 164

root element, 164

single-level, 178–179

structure of, 164

usage, 165–166

markup, 13–14

markup languages, 13–14, 16–17

416 Index

maxExclusive facet, 358

maxInclusive facet, 358

maxLength facet, 358

maxOccurs attribute, 364, 365

meeting agenda form, 30

<memo> root element, 228

Memo schema, 244

Memo stylesheet, 231–233

MemoFormatted solution, 244

MemoHead style, 237

applying, 239–240

definition, 238–239

MemoPlain solution, 235

memos, 227

defining and applying style, 237–238

InfoPath form, 228

Merge Forms dialog box, 44

merging

cells, 62, 64

forms, 44, 103

meta-language, 15

MHT extension, 316

MHTML format, 316

Microsoft Access. See Access

Microsoft Excel. See Excel

Microsoft Office 2003. See Office 2003

Microsoft Script Editor property, 92

Microsoft SQL Server, 190

Microsoft Word. See Word

<middlename> element, 339

minExclusive facet, 358

minInclusive facet, 358

minLength facet, 358

minOccurs attribute, 364, 365

mixed content, 147, 156

Modify Style command, 223

Modify Style dialog box, 222

<monthlySalary> element, 176, 177

More Forms command, 26

multilevel maps, 178–179

multiplication (*) operator, 99

my prefix, 319

MyBooks.xml data file, 186

MyBooks.xml file

importance of tags, 145–146

sample XML data, 139–140

<my:dutylist> element, 317, 319

myelement element, 367

myFields element, 121, 126

myFields group, 58, 312

<my:salesrep> elements, 317, 320

N
name attribute, 364

<name> element, 123, 156, 160, 165, 171, 186,

212, 290

name field, 313

namespaces, 352

checking, 240

default declarations, 353

defining in root element, 180

elements, 144

explicit declarations, 354–355

grouping elements and attributes, 352

Memo schema, 244

my prefix, 319

prefixes, 180

schemas, 164

xsl prefix, 319

NaN (Not a Number) fields, 100

navigating forms, 27

NDATA keyword, 344

negativeInteger data type, 356

nesting elements, 337–338

New Blank Form command, 126, 290

New Document task pane

On My Computer command, 304

XML Document command, 137

New File task pane, 268

New Record action, 91

New Style dialog box, 237

Next Cell (Tab) keyboard shortcut, 38

Next Control (Tab) keyboard shortcut, 27

Next Error (Ctrl-Shift-E) keyboard shortcut, 44

nonEmptyString type, 359

nonNegativeInteger data type, 356

Index 417

nonPositiveInteger data type, 356

nonrepeating total element, 123

Northwind sample database, 195, 267

NorthwindCS.adp file, 190

Northwind.mdb file, 190

notations, 345–346

ns0: prefix, 307

</ns0:date> tag, 233

<ns0:date> tag, 233, 307

<ns0:memo> element, 233

<ns0:memo> tag, 233

numbered lists, 36–37

O
Object Browser, 117–118

object model, 115–118

objects, 115, 118, 191–193

object.xml file, 200

Office 2000 and XML, 5

Office 2003, 3

data modeling, 351

interoperability, 13

schemas, 6

XML, 5–11

Office XP and XML, 5

Office11 folder, 193

On My Computer command, 304

OnAfterChange event, 112–113, 124

OnAfterChange Event Procedure for Amount

field, 124

OnAfterValidate event, 115

OnBeforeChange event, 112–113, 115, 126

OnBeforeChange event procedure, 127

OnClick event, 114, 115, 121

OnClick event code, 326–327

one-to-many relationships, 268

OnLoad event, 111, 112, 115, 129–130

OnLoad event procedure, 121, 122, 131

on-screen form, 245

OnSubmitRequest event, 111, 112, 115

OnSwitchViews event, 111, 112

OnSwitchViews events, 115

OnValidate event, 112–113, 115, 126, 128

OnValidate event procedure, 128

OnVersionUpgrade event, 111, 112, 115

Open dialog box, 26, 136, 167

Open Hyperlink command, 29

Open Using the XML Source Task Pane

option, 170

opening

forms, 26, 56–57

WordML files, 136

opening XML documents

as read-only workbook, 169–170

as XML list (Excel), 168–169

XML Source task pane, 170–172

opening XML files, 136–137

Excel, 167–172

Option Button control, 80, 82, 88

Optional Section control, 93

Optional Section Properties dialog box, 73

optional sections, 69

inserting or deleting, 73

properties, 72–74

schemas, 70

Options dialog box, 41, 48, 142

Or operator, 97

Order By property, 270

original XML data file, 181

Other Packages and Libraries node, 117

otherlist entity, 349

otherlist.ent file, 349

Out-of-Stock Data View, 296

Overwrite existing cells property, 176

Overwrite existing data with new data

property, 176

P
page icons, 50

Paragraph breaks property, 90

paragraphs, 38

parsers, 348

parsing, 348

<partnumber> element, 351

Paste command, 31

PATools Advanced Find and Replace v2.04, 332

pattern facets, 358, 359–361

<people> element, 349

418 Index

percentages instead of totals, 261–262

permission denied error, 118

person element, 337

<person> element, 349

person element, 364

<phone> element, 349

phoneNumber data type, 361

Picture controls, 29–30, 36, 80, 88–89

Picture data type, 60

pictures, 68, 89

Placeholder property, 90

plain text, 14

platforms and data, 15

(The) Plays of Shakespeare, 331

PNG (Portable Network Graphics), 16

position() function, 101

positiveInteger data type, 356

Power Utility Pak v5, 332

Powering Office 2003 with XML CD-ROM

applications, 330–332

author-created materials, 330

installing tiems from, 329–330

ReadMe file, 329

system requirements, 329

troubleshooting, 333

presentation files export options, 202–203

Preserve column sort/filter/layout property, 175

Preserve number formatting property, 175

Preview mode, 104–105, 315

previewing forms, 252

Previous Cell (Shift-Tab) keyboard shortcut, 38

Previous Control (Shift-Tab) keyboard

shortcut, 27

price element, 290

primary key, 271

primaryColor data type, 362

print views, 77

printing views, 77

procedures, 109

processing instructions, 346–347

Project Explorer, 109

properties

Button controls, 92

Check Box control, 86

controls, 86–91

Data tab, 254

Date Picker control, 86

fields, 60–61

Format button, 254

groups, 60–61

layout tables, 65–66

List Box control, 87–88

Option Button control, 88

optional sections, 72–74

Picture control, 88

repeating sections, 74

Rich Text control, 89–90

sections, 71–72

tables, 40

Text Box control, 90–91

views, 76–77

<w:docPr> element, 240–243

Word documents, 240–243

XML lists, 174–176

XML Web Part, 211, 213

Properties command, 92, 113, 124, 126, 270,

290, 312

Properties dialog box, 84, 309

Add button, 96

Allow the User to Browse for New Pictures

option, 88

Cannot be Blank option, 95

Change button, 96

Data tab, 87, 88, 89, 91

Delete button, 96

Display tab, 89, 90

Format button, 91

Secondary Data Source button, 88

Show Picture Placeholder option, 88

Specify Default Picture option, 88

Validation and Script tab, 96

Protect Document task pane, 156–157

pubdate element, 371

publishing forms, 105

Publishing Wizard, 105

pubyear element, 148

Index 419

Q
quarterlysales group, 366

Query View, 53, 55, 285–286

layout table, 276–277

modifying, 278–279

New Record button, 277

queryFields group, 278

Run Query button, 277

queryFields group, 278

QueryWeb v1.5, 332

R
ReadMe file, 333

read-only

Picture controls, 30

workbooks, opening XML documents as,

169–170

Read-only property, 90

records

adding, 285

sorting, 270

recursive structures, 163

ref attribute, 364–365

Reformat XML command, 209

Refresh command, 170

refreshing versus importing, 174

.reg extension, 192

RegEdit, 192

regular arithmetic calculations, 99

regular expressions, 359–361

regular sections, 69

relational databases, 268

relationships

one-to-many, 268

tables, 275

Relationships window, 272

Remove command, 31

Remove Donations command, 287

Remove Donors command, 287

Remove Hyperlink command, 29

repairs element, 300

repeating data, 81

repeating elements, 185–186

Data View Details task pane, 216

Data Views, 216

information about, 170

mapping, 166

repeating fields, 59

repeating form style, 217

repeating groups, 59

repeating item group, 123

Repeating Section control, 93

Repeating Section Properties command, 71

Repeating Section Properties dialog box, 74

repeating sections, 69, 81, 251

controls, 71

forms, 279

properties, 74

schemas, 70

Repeating Table Binding dialog box, 83

Repeating Table command, 83, 123, 291, 315

Repeating Table control, 80, 83–84, 93

Repeating Table Properties command, 84

repeating tables, 30–31, 81, 83–84, 123, 279,

281, 315

ReportML files, 191–193

ReportML schema, 10

reports and Word, 299

required data validation, 95

Resource Manager dialog box, 324

<respondent> repeating element, 251, 257

restriction element, 365, 366, 367

resumé forms, 30

<retailPrice> element, 212

reusing and repurposing data, 5

Rich Text Box controls, 30, 81, 89–90, 93

inserting images, 35–36

limitations on formatting options, 33

numbered and bulleted lists, 36–37

selecting images in, 35

tables, 38–40

Rich Text data type, 60

root element, 164, 338

defining namespaces, 180

name of, 169

420 Index

rows

adding, 64

deleting, 65

height, 40, 65–66

inserting or deleting, 40

layout tables, 62

RPT2DAP.XSL XSL file, 193

RPT2HTM4.XSL XSL file, 193

RTF extension, 136

Run Query action, 91

Run Query button, 286

S
<salary> element, 160, 171

Sales Figures schema, 300–302

Sales Figures template, 302

salesFigures element, 303, 304

salesFigures root element, 300

<salesFigures> tag, 303

SalesFiguresSampleData file, 305

salesrep field, 313

salesrep group, 313

SalesReps form, 317

SalesReps XML file, 317–318

sample data files, 304–306

sample forms, 26

forms based on, 55

trusted, 47

sample schema file, 228

sandboxed forms, 47, 118

Save As command, 46

Save As dialog box

Apply Transform option, 138, 152, 155

Microsoft Excel Workbook option, 183

Save as Type list, 136, 138, 180, 183,

302, 305

Save Data Only option, 138, 147

Transform button, 152

XML Data option, 180

XML Document option, 136, 138, 152, 305

XML Spreadsheet option, 183

Save As XML Data command, 180

Save data source definition property, 175

saving

documents

with transforms, 152

as WordML, 235

forms, 45, 56–57

as Web page, 45

workbooks as XML (Excel), 183

XML documents (Word), 147

schema element, 357, 370–371

schema files, 110

schema element, 370–371

Schema Library

adding schemas, 153

adding transforms, 149–150

listing aliases of schemas, 154

loading stylesheet, 243

matching schema in, 136

schema loaded into, 234

schemas, 138

solutions, 149

stylesheet loaded into, 234

Word documents, 152–154

Schema Library dialog box, 150, 153–154,

234, 243

schemas, 15, 351–352

Access, 9–10

adding to Schema Library, 153

for additional text elements, 147

aliases, 234

anonymous definitions, 370

associating with solutions, 149

attaching to XML file, 136

basing form on, 52

books XML data file, 372–373

business-specific, 6

creation of, 246–248, 300

data constraints, 96

data structure, 371

definition of, 6

example, 371–373

Excel generating, 8

export options, 202

continued

Index 421

schemas continued

forms, 10

importing (Access), 185–189

InfoPath forms, 228

mixed content, 156

name of root element, 164

namespaces, 164

Office, 6

optional sections, 70

organizing, 152–154

predefined, 6

repeating sections, 70

rules of XML Schema Definition

Language, 352

Schema Library, 138

specially designed, 6

survey data, 247–248

violation details, 148

Word documents, 136, 300

as XML expansion pack, 136

XML file without attached, 137

Script action, 91

Script Editor, 124, 126, 326

Alt-Shift-F11 keyboard shortcut, 109

debugging scripts, 119–120

displaying Object Browser from, 117

Document Outline, 109

editing window, 109

event handlers, 111–112

OnLoad event procedure, 130

Project Explorer, 109

Script ID property, 92

scripting languages, 108–109

scripting overview, 107–108

Script.js file, 109–110

scripts, 107

applying transform, 324–327

break statement, 119–120

COM (Component Object Model)

components, 107

debugging, 119–120

DOM (Document Object Model), 108

error occurences, 119

event procedure arguments, 114

events, 111

examples, 120–131

forms, 109

functions, 121

InfoPath object model, 108

inserting date, 121–122

naming, 114

OnClick event, 121

performing calculations, 122–125

saving, 111, 327

Script Editor, 109–111

scripting languages, 108–109

security, 118–119

selecting view based on data, 129–131

single stepping, 119

validating data, 126–129

XPath, 108

Script.vbs file, 109–110

Scrolling property, 90

searching, 6

Section Binding dialog box, 70

Section Commands dialog box, 73–74

Section control, 93

Section Properties command, 71

Section Properties dialog box, 71–73

sections, 31–32, 69–74

appropriate groups, 70

binding, 70–71

binding to groups, 70–71

controls, 69

cutting or copying and pasting, 32

deleting, 32

formatting, 251–252

inserting, 32, 70–71

links to include, 31

optional, 69

properties, 71–72

regular, 69

repeating, 69

security

digital signatures, 48

forms, 47–48, 103–104

InfoPath, 47–48

sandboxed forms, 47–48

422 Index

scripts, 118–119

trusted forms, 47–48

Select a Field or Group dialog box, 99, 100

Select Data Source dialog box, 274

select element, 130, 131

Select Table dialog box, 274

Select XML Source dialog box, 256

Selected Components dialog box, 117, 118

selectNodes method, 125

selectSingleNode method, 125

sequence element, 363

sequence element, 365–367

servers, exporting XML data, 203–204

Session.State object, 190

SGML (Standard Generalized Markup

Language), 16–17

shading and layout tables, 66–67

SharePoint page, 289

SharePoint server, 212

SharePoint services, 207

shareware programs, 333

short data type, 356

Show Content command, 222

Show Table dialog box, 272

simple data types, 355

built-in, 356

user-defined, 357–359

simpleType element, 368, 371

single file Web page, 316

single stepping, 119

single-level maps, 178–179

software element, 300

software element, 304

Solution object, 116

solutions, 149–152, 227

applying, 151

associating with schemas, 149

default, 151

organizing, 152–154

Word, 227

WordML schema, 151

XSL Transform language, 149

SomeGroup group, 367

Sort and Group dialog box, 221

sorting

Data View, 220–221

records, 270

SP SGML parser, 331

special attributes, 340–341

spell checking text, 42–43

Spelling task pane, 41

splitting cells, 62, 64

SQL Server and databases, 53

standard for data transfer, 4

standard form, converting to trusted form, 119

Start Enforcing Protection dialog box, 157

start tag, 337

statelessness, 190

static applications, 206

StockItems Data View, 220

StockItemsDisplay.xslt file, 211–212, 213

StockItems.xml file, 207–208, 213

stockNumber data type, 361

Stop statement, 119

strikethrough text, 34

string data type, 356

string type, 357

structure, 17

<style> element, 238

<style> tag, 238

StyleMaker v1.4, 332

styles

applying, 237–240

Data Views, 216–218

defining, 237–239

Styles and Formatting task pane, 237

<styles> element, 238, 239

stylesheet (XSL) file, 110

stylesheets, 18, 311, 317

aliases, 234

applying, 244

applying (Word), 233–237

checking namespaces, 240

creation of, 230–233

displaying Sales Figures data in XML Web

Part, 307–308

extracting and inserting elements, 238–239

continued

Index 423

stylesheets continued

with formatting, 237–244

with formatting elements, 241–243

initial elements, 318–320

loading, 243

for transforming XML file into HTML,

321–322

Word, 227

WordML tags, 230

XML data, 230–233

<subject> element, 228

Submit action, 91

Submit button, 282–283, 285

Submit Forms dialog box, 282–283

Submit Options dialog box, 102–103, 283–284

submitting forms, 46, 101–103

Submitting Forms dialog box, 102, 282

subscript text, 34

subtotal variable, 125

subtraction (-) operator, 99

sum() function, 101

summarizing flavor preference, 259–260

summary view, 30, 75

superscript text, 34

survey data, 246–248, 256

SurveyFormTemplate template, 249

survey.xsd file, 247–248

SVG Viewer 2.0, 332

switching between views, 30

T
Table Properties dialog box, 40, 65, 270–271

Table → Delete → Columns command,

40, 281, 294

Table → Delete → Rows command, 40

Table → Delete → Table command, 40

Table → Insert command, 40

Table → Insert → Rows command, 314

Table → Select command, 65

Table → Select → Column command, 294

Table → Table Properties command, 65

tables, 38–40

Access, 185–187

aligning, 40

appending data, 188

borders, 66–67

changing cell borders and background, 40

column width, 40

deleting, 40

deleting columns, 281

Excel, 159

formatting, 39–40

inserting or deleting rows and columns, 40

moving between cells, 38

primary key, 271

properties, 40

relationships, 272–273, 275

row height, 40

shading, 66–67

sorting records, 270

within tables, 62

XML data, 146

XML data (Access), 185–187

TagGenR for FrontPage, 332

tags, 14, 335

importance of, 145–146

protecting (Word), 156–157

rules for structuring data with, 18

XML documents, 141, 142

targetNamespace attribute, 370

task bar, 251

Task Pane (Ctrl-F1) keyboard shortcut, 38

task panes, 24–26, 57

TaskPane object, 116

tasks, focus on, 4

templates, defining for data type, 359–361

Templates and Add-Ins dialog box, 235

Add Schema button, 152, 301

Allow Saving as XML Even If Not Valid

option, 235

Allow Saving as XML Even if Not Valid

option, 301

Available XML Schemas list, 137, 138

Schema Library button, 150, 152, 234, 243

Validate Document Against Attached

Schema option, 235, 301

XML Options button, 154, 235, 301

XML Schema tab, 137, 138, 150, 152, 154,

235, 243, 301

424 Index

testing

analysis functions, 263

forms, 104–105, 255

formulas, 100

text

adding to XML documents, 146

alignment, 37–38

appearance of, 34

default size, 34

entering in forms, 33

formatting

in forms, 33

layout table, 68

in tables, 39

heading styles, 38

highlighting, 36

indentation, 37–38

layout tables, 67

removing formatting, 35

selecting before applying formatting, 33

spell checking, 42–43

strikethrough, 34

subscript, 34

superscript, 34

tables, 38–40

wrapping around images, 36

Text Box control, 33, 81, 121, 126, 251, 254

AutoComplete, 41

conditional formatting, 93

properties, 90–91

Word, 146

Text Box Properties command, 254

Text Box Properties dialog box, 291

Text data type, 60, 189

TextPad v4.5, 332

theFirstPresident element, 126

Time data type, 60

time data type, 356

title element, 371

<to> element, 228

todaysDate function, 121–122

toolbar

Chart Wizard button, 262

Preview Form button, 100, 104, 252

Relationship button, 272

Save button, 45

Spelling button, 41

Tools → Digital Signatures command, 48

Tools → Form Options command, 103, 109,

112, 126

Tools → Go to Next Error command, 44

Tools → Internet Options command, 119

Tools → Options command, 41, 42, 48, 142

Tools → Protect Document command, 156

Tools → Relationships command, 272

Tools → Resource Manager command, 324

Tools → Script → On Load Event command,

112, 121, 130

Tools → Script → On Switch Views Event

command, 112

Tools → Script → Script Editor command, 109

Tools → Submitting Forms command, 102, 112

Tools → Templates and Add-Ins command, 138,

150, 152, 234, 235, 236, 243, 301

total element, 123

total variable, 125

totalDigits facet, 358

transformations

browsing for, 151

defining for XML data, 7

XML data, 19

transforms

adding to Schema Library, 149–150

applying with script, 324–327

creation of, 306–308

designing, 317–318

directly outputting to users, 199–200

for displaying documents, 149–152

one-time basis, 155

organizing, 152–154

saving documents, 152

slow process, 199

Web page creation, 317–327

Word, 149–152

XPath expressions, 307

trial, demo, or evaluation versions, 333

True/False data type, 60

Index 425

trusted forms

converting standard form to, 119

restricting access, 47–48

type attribute, 364, 371

U
UCase function, 127

UDDI (Universal Description, Discovery, and

Integration) server, 53

UI object, 116

Unicode character set, 344

Unicode standard, 347

unit element, 290

unsignedByte data type, 356

unsignedInt data type, 356

unsignedLong data type, 356

unsignedShort data type, 356

updating XML data, 167

URI (Uniform Resource Identifier), 353

URLs (Uniform Resource Locators), 29, 353

URN (Uniform Resource Name), 118–119, 353

user interface. access to, 115

user options

merging forms, 103

protecting forms, 103–104

security in forms, 103–104

submitting forms, 101–103

user-defined simple data types, 357–359

UTF-8 encoding, 180, 347

UTF-16 encoding, 347

UTFs (Unicode Transformation Formats), 347

V
Validate data against property, 175

Validate XML command, 209

ValidateData form template, 126

validation, 17

validation error, 129

validation error message, 112

value and attributes, 144

value verification rule, 96–97

Value When Checked property, 86

Value When Cleared property, 86

VBScript, 108–109, 119

VeriSign Inc., 48

VersionUpgradeEvent object, 115

View menu, 30, 76

View object, 116

View Properties dialog box, 76–77

View Styles dialog box, 216–218

ViewInfo object, 116

View → Data Entry command, 286

View → Other Windows → Object Browser

command, 117

View → Query command, 286

View → Sample Data command, 105

View → Source command, 197

View → Task Pane command, 25

View → Toolbars command, 166–167

View → Toolbars → Formatting command, 33

View → Toolbars → List command, 258

views

background color, 77

based on data, 129–131

creation of, 75–76

default, 129

as default view, 76

forms, 30, 75–77

headers and footers, 77

multiple, 129

name of, 76

portrait or landscape orientation, 77

print views, 77

printing, 77

properties, 76–77

switching between, 30

width of form, 77

Views task pane, 75

Add a New View command, 130

Data Entry (default) option, 279

View Properties button, 76

visual interfaces

creation of, 123

forms, 51, 229

Voted field, 251

W
W3C (World Wide Web Consortium), 16

W3C Web site, 16, 350

<w:docPr> element, 240–243

426 Index

Web

statelessness, 190

XML-based data, 207

Web browsers, 190

Web pages, 289, 299

creation of, 306–310

Data Views, 293

designing, 293–296

displaying XML (FrontPage), 210–213

In-Stock Data View, 293–296

saving form as, 316

saving forms as, 45

SharePoint server, 212

single file, 316

transform creation, 306–308

transform creation of, 317–327

usage, 297

XML Web Part, 210–213, 308–310

XML-based data, 207

Web Part Gallery task pane, 210, 212

Web Part Properties dialog box, 210–211

Web Parts task pane, 309

Web publishing, connecting with InfoPath,

311–327

Web services, 52–53, 101–102

Web sites

identifying, 353

SharePoint services, 207

viewing and editing XML, 209

(The) <WebSite> Promotion SuiteT 2003, 332

WebWorks Publisher 2003 for Word, 332

well formed XML, 209

white space, 340

white space issues, 347–348

white-space normalization, 348

Whole number data type, 60

WinAce 2.2, 332

Window object, 115, 116

Windows clipboard, 3

Windows Explorer and Invoice.htm file, 197

Windows registry, editing, 192–193

WinRAR, 332

WKS format, 183

<w:name> tag, 238

Word

adding elements, 143

applying stylesheet, 233–237

attaching schema to XML file, 136

connecting

to FrontPage, 299–310

with InfoPath, 227–244

Data-Only view, 139

defining and applying style, 237–238

deleting elements, 143–144

detailed messages about schema

violations, 148

document validation, 147–148

editing XML documents, 139–147

ignore mixed content in document for

validation, 235

opening XML files, 136–137

protecting XML tags and data, 156–157

reports, 299

Schema Library, 243

solutions, 149–152

stylesheets, 227

creation, 230–233

with formatting, 237–244

Text Box control, 146

transforms, 149–152

turning validation off, 235–236

turning validation off for XML

document, 147

validation violation, 148

WordML schema, 6, 135–136

XML, 6–7

XML data, 227

tables, 146

XML documents

creation, 137–138

with validation violations, 155–156

XSLT (XML Stylesheet Language for

Transformations), 7

Word documents

attributes, 144–145

available for searching and data

mining, 135

continued

Index 427

Word documents continued

converting to XML, 138–139

properties, 240–243

replacing placeholder text, 305

saving WordML as, 136

Schema Library, 152–154

schemas, 136, 300

searching, 6

storing complete information about, 240

WordML, 300

as XML data, 135–136

XML tags, 300

Word templates, 299

creation of, 300–306

designing contents, 302

mapping child XML elements to

placeholders, 304

schema and visual appearance, 301–302

XML mapping, 303–304

WordML documents

generated by back-end processes, 135

saving as Word document, 136

validation, 235

WordML files

date element, 307

formatting, 238

opening, 136

software category, 307

<styles> element, 238

WordML markup language, 227

WordML schema, 135–136, 300

extracting elements and inserting elements

in stylesheet, 238–239

namespaces, 240

no semantic markup, 6

preserving layout and formatting

information, 6

saving document as, 235

solutions, 151

storing complete information about Word

document, 240

WordML tags, 233

workbooks

analysis functions, 258–263

creation of, 256–263

importing

map, 256–257

sample data, 258

XML data, 172

maps, 163–166

multiple maps, 165

opening XML documents as read-only,

169–170

saving as XML, 183

XML data, 167–172

XML lists, 174–182, 257

worksheets

importing XML data, 165–166

mapping elements to ranges, 166

maps for linking data to elements, 163–166

placing XML data, 165–166

selecting elements for, 170–172

workspace, 24–26. See also InfoPath screen

<w:r> tag, 307

Wrap text property, 90

WSDL (Web Services Description Language)

file, 53

w:styleId attribute, 238

</w:styles> element, 239

<w:styles> element, 239

<w:t> tag, 307

<w:wbody> tag, 232

<w:/wbody> tag, 232

<w:wordDocument> element, 239

</w:wordDocument> tag, 232

<w:wordDocument> tag, 232

X
XBRL (Extensible Business Reporting

Language), 6

XDocument object, 115, 116, 118

XDocument.Errors.Add method, 129

XED, 331

XLSTAT Pro v6.1.8, 332

XM entities, 341–345

XML

mapping Word templates, 303–304

XML (eXtensible Markup Language), 3, 13

Access, 9–10

attributes, 339–341

428 Index

character encoding, 347

comments, 346

converting Word documents to, 138–139

DAPs (Data Access Pags), 191

data export options, 200–201

data modeling, 15, 351

development of, 16–17

displaying (FrontPage), 210–213

editing (FrontPage), 209

elements, 14

entities, 341–345

Excel, 8–9

export options, 200–203

exporting Access objects to, 189–206

extensibility, 15, 17

history of, 16–17

importing structure into Access, 188–189

InfoPath, 10–11

limitations in Excel, 163

markup language, 13–14

names, 336

notations, 345–346

Office 2003, 5–11

processing instructions, 346–347

as public standard, 16

reasons for using, 3–4

reformatting (FrontPage), 209

related technologies, 17–19

ReportML vocabulary, 191–193

rules for creating tags and attributes, 18

saving workbooks as, 183

schema export options, 202–203

schemas, 15

separating storage from display, 15–16

structure, 17

syntax, 14, 335

tags, 14, 335

validating, 17, 351

validating (FrontPage), 209

viewing (FrontPage), 209

well formed, 209

white space issues, 347–348

Word, 6–7

XML attributes and fields, 58

XML data

Access, 9

binding to Data View, 214–215

criteria for records, 218–220

defining transformations, 7

displaying with Data View (FrontPage),

213–223

Excel manipulation of external, 8

importing, 9, 168

Access, 185–189

Excel, 172–174

lists, 159

manipulating in Excel, 168–169

plain text, 14

refreshing (Excel), 169

stylesheets, 230–233

tables, 146

tables (Access), 185–189

transformations, 19

updating, 167

UTF-8 encoding, 180

validating against schema, 172

viewing raw, 151

Word, 227

Word documents as, 135–136

workbooks, 167–172

XSLT transform, 9

XML data file, 212

applying transform, 317

basing form on, 52

XML Document task pane, 244

Browse command, 151

Browse option, 235

Data Only command, 151, 235

Data Views list, 151

MemoPlain option, 235

name(s) of solutions associated with

document, 151

XML documents, 335

access to, 115

adding

elements (Word), 143

text, 146

continued

Index 429

XML documents continued

character data, 345

data, 141

default solution, 151

deleting elements (Word), 143–144

Document element, 338, 339

document structure, 141

document validation (Word), 147–148

editing in Word, 139–147

elements, 337–339

formatting (Word), 145–147

importance of tags, 145–146

layout (Word), 145–147

logical structure, 336

modifying schema, 146

physical structure, 336

rules for modifying, 149

saving

with transforms, 152

Word, 147

solutions, 149–152

tags, 141, 142

transforms (Word), 149–152

turning off validation, 147

with validation violations (Word), 155–156

Word creation of, 137–138

XML Editor, 211

XML extension, 45

XML files

attaching schema to, 136

data from, 170

data model, 15

DOCTYPE tag, 342

importing map, 256–257

opening, 136–137

pointer to schema file, 136

rules for, 351–352

style sheets, 18

valid, 351

without attached schema, 137

XML Link, 211

XML list property, 265

XML lists, 166–167

creation, 257

exporting, 178–181

formulas, 176–178

opening XML documents as, 168–169

properties, 174–176

XML Map Properties dialog box, 173, 182

XML Maps dialog box, 163–164, 256, 257

XML options, 154–156

XML Options dialog box, 142, 152,

154–156, 235

Ignore Mixed Content option, 301

Show Advanced XML Error Messages

option, 148

XML parser, 345

XML Pro v2.01, 332

XML processing, 348

XML Recommendation, 16, 17–18

XML Schema Definition Language, 18, 351

XML Schema Definition namespace, 357

XML Source task pane, 163–166, 257

adding maps, 163–165

mapping to worksheet ranges, 166

maps, 168

name of map, 164

opening XML documents, 170–172

<respondent> element, 257

structure of map, 164

Workbook Maps button, 163, 256

XML Specifications, 331

XML Spreadsheet Schema, 6

XML Spy, 238, 247, 307, 317

XML Structure task pane, 141, 303

Choose an Element to Apply, 143

Choose an Element to apply to your current

selection list, 142

details of schema violation, 148

Document list, 143

Document option, 235

Elements in the document list, 141

Elements option, 143

Ignore Mixed Content option, 304

List Only Child Elements of current element

list, 142, 143

red violation icon, 148

salesFigures element, 304

Show XML Tags in Document option, 145

430 Index

Show XML Tags in the Document option,

156, 303

Show XML tags in the Document

option, 142

Show XML Tags option, 235

Templates and Add-Ins command, 137

Verify Map for Export command, 179

XML Options command, 154

XML Options option, 142

<xml> tag, 318

XML tags, 233, 235, 300

XML View toolbar, 209

XML Web Part, 210–213, 308–310

XML4J version 3.2.1, 331

xml:lang attribute, 340–341

xmlns keyword, 353

xmlns:xsd attribute, 370

xml:space attribute, 340, 341, 348

XMLSPY Version 2004 Enterprise Edition, 331

XMLSS (XML Spreadsheet Schema), 8, 183

XPath, 108

XPath expressions, 307

XSD, 351

data types, 355–370

overview, 351–352

simple data types, 355–363

XSD extension, 352

.xsd extension, 247

XSD file, 247

XSD namespace, 370–371

xsd prefix, 357, 370, 371370

XSD (XML Schema Definition) schema, 10

XSD schema file, 256

XSD schema language, 247

xsd:attribute elements, 369

<xsd:enumeration> element, 362

<xsd:restriction> tags, 357

<xsd:simpleType> tags, 357

xsi:schemaLocation attribute, 160

xsi:schemaLocation element, 136

XSL Editor, 211

XSL extension, 239

xsl prefix, 319

XSL stylesheets

creation of, 230–233

initial elements, 318–320

XSL Transform language, 149

XSL transforms, 311, 317

<xsl:apply-templates> element, 233

<xsl:apply-templates> tag, 320

<xsl:stylesheet> element, 240

<xsl:stylesheet> tag, 232

XSLT (XML Stylesheet Language for

Transformations), 7, 19

XSLT extension, 239

XSLT transform and XML data, 9

XSLT transform file, 212

<xsl:template> element, 319

xsl:template element, 320, 321

XSN extension, 24

XSN files, 109–110

XSV 1.4 (XML Schema Validator), 331

XT, 331

Y
<year> tag, 14

</year> tag, 14

Index 431

Wiley Publishing, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening the soft-
ware packet(s) included with this book “Book”. This is a license agreement “Agreement”
between you and Wiley Publishing, Inc. “WPI”. By opening the accompanying soft-
ware packet(s), you acknowledge that you have read and accept the following terms and con-
ditions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained them
for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive
license to use one copy of the enclosed software program(s) (collectively, the
“Software” solely for your own personal or business purposes on a single computer
(whether a standard computer or a workstation component of a multi-user net-
work). The Software is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other
storage device). WPI reserves all rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright,
in and to the compilation of the Software recorded on the disk(s) or CD-ROM
“Software Media”. Copyright to the individual programs recorded on the Software
Media is owned by the author or other authorized copyright owner of each pro-
gram. Ownership of the Software and all proprietary rights relating thereto remain
with WPI and its licensers.

3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for backup or archival pur-

poses, or (ii) transfer the Software to a single hard disk, provided that you keep
the original for backup or archival purposes. You may not (i) rent or lease the
Software, (ii) copy or reproduce the Software through a LAN or other network
system or through any computer subscriber system or bulletin- board system, or
(iii) modify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You
may transfer the Software and user documentation on a permanent basis, pro-
vided that the transferee agrees to accept the terms and conditions of this
Agreement and you retain no copies. If the Software is an update or has been
updated, any transfer must include the most recent update and all prior ver-
sions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in the About the
CD-ROM appendix of this Book. These limitations are also contained in the individ-
ual license agreements recorded on the Software Media. These limitations may
include a requirement that after using the program for a specified period of time,
the user must pay a registration fee or discontinue use. By opening the Software
packet(s), you will be agreeing to abide by the licenses and restrictions for these
individual programs that are detailed in the About the CD-ROM appendix and
on the Software Media. None of the material on this Software Media or listed in
this Book may ever be redistributed, in original or modified form, for commercial
purposes.

5. Limited Warranty.
(a) WPI warrants that the Software and Software Media are free from defects in

materials and workmanship under normal use for a period of sixty (60) days
from the date of purchase of this Book. If WPI receives notification within the
warranty period of defects in materials or workmanship, WPI will replace the
defective Software Media.

(b) WPI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE
CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS
BOOK. WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE
SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.
(a) WPI’s entire liability and your exclusive remedy for defects in materials and

workmanship shall be limited to replacement of the Software Media, which
may be returned to WPI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: Powering Office 2003 with XML,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call
1-800-762-2974. Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has resulted from accident,
abuse, or misapplication. Any replacement Software Media will be warranted
for the remainder of the original warranty period or thirty (30) days, whichever
is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss) arising
from the use of or inability to use the Book or the Software, even if WPI has
been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation or exclusion may
not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software
for or on behalf of the United States of America, its agencies and/or instrumentali-
ties “U.S. Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause of DFARS
252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, and in similar clauses in the
NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and
may not be modified or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall take precedence
over any other documents that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

	Powering Office

2003 with XML
	Powering Office 2003 with XML
	Copyright
	Credits
	About the Author
	Preface
	Structure of the Book
	Web Updates
	Acknowledgments
	Contents at a Glance
	Contents

	Part I Enhancing Office with XML
	Chapter 1 Office and XML Technology
	Why XML?
	XML in Office 2003
	XML and Word
	XML and Excel
	XML and Access
	XML and InfoPath

	Chapter 2 What Is XML?
	XML Overview
	XML Is a Markup Language
	XML Is Plain Text
	XML Is Extensible
	XML Supports Data Modeling
	XML Separates Storage from Display
	XML Is a Public Standard

	Background and Development of XML
	XML and Related Technologies
	XML Schema Definition Language
	Cascading Style Sheets
	Extensible Stylesheet Language for Transformations

	Part II Getting Going with XML and InfoPath
	Chapter 3 Introduction to InfoPath
	What InfoPath Does
	InfoPath¡¯s Two Modes
	Forms and Form Templates
	The InfoPath Screen
	Sample Forms

	Opening Forms
	Filling Out Forms
	Navigating a Form
	The Date Picker Control
	Inserting Hyperlinks
	The Picture Control
	Working with Views
	Working with Repeating Tables
	Inserting Sections

	Formatting with Rich Text Controls
	Font Formatting
	Inserting Images
	Highlighting
	Lists
	Text Alignment and Indentation
	Heading Styles
	Tables

	AutoComplete
	Correcting Forms
	Check Spelling
	Data Validation

	Merging Forms
	Saving and Sharing Forms
	Save the Form
	Save the Form as a Web Page
	Submit a Form
	E- Mail a Form

	InfoPath Form Security
	Basic Security
	Digital Signatures

	Chapter 4 Designing InfoPath Forms, Part 1
	Form Design Overview
	The Data Source
	The Visual Interface

	Starting a New Form
	With an Existing Data Structure
	Creating a Data Source from Scratch

	Saving and Opening Forms
	Working with the Data Source
	Adding to a Data Source
	Data Types
	Viewing Data Source Details
	Modifying a Data Source

	Form Layout
	Layout Tables
	Add a Layout Table
	Modifying a Layout Table
	Formatting a Layout Table
	Adding Content to a Layout Table
	Sections

	Color Schemes
	Form Views
	Creating a New View
	View Properties

	Chapter 5 Designing InfoPath Forms, Part 2
	Controls
	Control Overview
	Placing Controls on a Form
	Using the Repeating Table Control
	Using the List Controls
	Changing Control Type
	Changing Data Binding
	Data Binding Status
	Control Properties
	The Button Control

	Conditional Formatting
	Data Validation
	Required Data Validation
	Data Type Validation
	Data Value Validation

	Using Formulas on Forms
	Setting User Options
	Form Submission
	Form Merging
	Form Protection and Security

	Testing Your Form
	Publishing Your Form

	Chapter 6 Scripting with InfoPath
	Scripting Overview
	Background Information
	Setting the Scripting Language
	The Script Editor
	InfoPath Events
	Form- Level Events
	Data Validation Events
	The OnClick event
	Event Procedure Arguments

	The InfoPath Object Model
	Using the Object Browser
	Scripts and Security
	Debugging Scripts
	Script Examples
	Inserting the Date
	Performing Calculations
	Validating Data
	Selecting a View Based on Data

	Part III XML and Other Office Applications
	Chapter 7 Word and XML
	Using the WordML Schema
	Opening Other XML Files
	Creating a New XML Document
	Converting a Word Document to XML
	Editing Other XML Documents
	Adding Elements
	Deleting Elements
	Working with Attributes
	Formatting and Layout
	Saving Documents

	Document Validation
	Using Transforms
	Transforms for Displaying Documents
	Transforms for Saving Documents

	The Schema Library
	XML Options
	Protecting XML Tags and Data

	Chapter 8 Excel and XML
	XML and Lists
	The Sample Data and Schema
	The XML Source Task Pane
	Adding Maps
	Using Maps

	The List and XML Toolbar
	Opening XML Files
	Open as an XML List
	Open as a Read- Only Workbook
	Open Using the XML Source Task Pane

	Importing XML Data
	Importing into a New List
	Importing into an Existing List

	Working with XML Lists
	XML List Properties
	Formulas in Lists
	Exporting an XML List
	Other List Commands

	XML Data Validation
	Saving Workbooks as XML

	Chapter 9 Access and XML
	Importing XML Data and Schemas
	XML Data and Tables
	Importing Data
	Importing Structure
	Access and XML Data Types

	Exporting Access Objects to XML
	Sample Data
	The ReportML Vocabulary
	Export Basics
	XML Export Options
	Client versus Server
	XML Exporting versus HTML Exporting
	Exporting Live Data
	Deploying Your Application

	Chapter 10 FrontPage and XML
	XML- Based Data for the Web
	The Sample Data
	Viewing and Editing XML
	Using XML Web Parts
	Creating an XML Web Part
	A Web Part Example

	Using Data Views
	Creating a Data View
	The Data View Details Task Pane

	Part IV Case Studies
	Chapter 11 Connecting Word and InfoPath
	Overview
	The Scenario
	Create the Schema
	Design the InfoPath Form
	Create the Stylesheet
	Apply the Stylesheet
	Creating a Stylesheet with Formatting
	Define and Apply the Style
	The Style Definition
	Apply the Style
	Checking Namespaces
	Other Details
	Load and Apply the New Stylesheet

	Chapter 12 Connecting Excel and InfoPath
	Scenario
	Planning
	Create the Schema
	Design the InfoPath Form
	Create a New Form Template
	Selecting a Layout
	Adding Controls
	Fine- Tuning the Form

	Create the Workbook
	Import the Map
	Creating the XML List
	Importing the Sample Data
	The Workbook Analysis Functions

	Additional Considerations
	Data Validation
	Data Flow

	Chapter 13 Connecting Access and InfoPath
	The Scenario
	Creating the Database
	Database Design
	Creating a New Database and the Donors Table
	Define the Donations Table
	Defining the Relationship

	Designing the InfoPath Form
	Connect to the Data Source
	The New Form
	About the Data Source
	Modifying the Query View
	Starting the Data Entry View
	Fine- Tuning the Data Entry Form
	Adding a Submit Button
	Setting Form Submission Options

	Using the Form

	Chapter 14 Connecting FrontPage and InfoPath
	The Scenario
	Design the InfoPath Form
	Fill Out and Save the Form
	Design the Web Page
	Adding the In- Stock Data View
	Adding the Out- of- Stock Data View

	Using the Web Page

	Chapter 15 Connecting Word and FrontPage
	The Scenario
	Create the Schema
	Creating the Template
	Template Design: Schema and Visual Appearance
	Template Design: XML Mapping
	Create a Sample Data File

	Create the Web Page
	Create the Transform
	Create the XML Web Part

	Chapter 16 Connecting Web Publishing and InfoPath
	Overview
	The Scenario
	Designing the Form
	Creating the Data Source
	Designing the Form

	Save the Form as a Web Page
	Use a Transform to Create a Web Page
	Designing the Transform
	Initial Stylesheet Elements
	Other Stylesheet Elements
	Trying It Out

	Using an InfoPath Script to Apply the Transform

	Appendix A What's on the Companion CD-ROM
	System Requirements
	Using the CD
	What¡¯s on the CD
	Author- created Materials
	Applications
	eBook version of Powering Office 2003 with XML
	eBook version of the Office 2003 Super Bible

	Troubleshooting

	Appendix B XML Fundamentals and Syntax
	Markup and Tags
	Document Structure
	XML Names
	Elements
	Nesting Elements
	The Document Element
	Empty Elements

	Attributes
	Special Attributes

	Entities
	The Document Element as Entity
	Internal Text Entities
	External Text Entities
	External Binary Entities
	Character Entities

	Character Data
	Notations
	Comments
	Processing Instructions
	White Space Issues
	A Complete XML Document

	Appendix C Data Modeling with XSD Schemas
	XSD Overview
	Namespaces
	Default Namespace Declarations
	Explicit Namespace Declarations

	XSD Data Types
	Simple Data Types
	Complex Data Types

	The schema Element
	A Schema Demonstration

	Appendix D XSLT and XPath
	XSLT
	XSLT Structure
	An XSLT Demonstration
	XSLT Templates
	Literal Text
	The xsl: text Element
	The xsl: value- of Element
	The xsl: if Element
	The xsl: choose Element
	The xsl: for- each Element
	The xsl: apply- templates Element
	The xsl: sort Element

	XPath
	XPath Patterns
	XPath Expressions
	Functions

	Index
	Wiley Publishing, Inc.End- User License Agreement

