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Preface

This book gives a systematic account of the Power Spectral Density and details
the application of this theory to Communications and Electronics. The level of
the book is suited to final year Electrical and Electronic Engineering students,
post-graduate students and researchers.

This book arises from the author’s research experience in low noise amplifier
design and analysis of random processes.

The basis of the book is the definition of the power spectral density using
results directly from Fourier theory rather than the more popular approach of
defining the power spectral density in terms of the Fourier transform of the
autocorrelation function. The difference between use of the two definitions,
which are equivalent with an appropriate definition for the autocorrelation
function, is that the former greatly facilitates analysis, that is, the determination
of the power spectral density of standard signals, as the book demonstrates.
The strength, and uniqueness, of the book is that, based on a thorough account
of signal theory, it presents a comprehensive and straightforward account of
the power spectral density and its application to the important areas of
communications and electronics.

The following people have contributed to the book in various ways. First,
Prof. J. L. Hullett introduced me to the field of low noise electronic design and
has facilitated my career at several important times. Second, Prof. L. Faraone
facilitated and supported my research during much of the 1990s. Third, Prof.
A. Cantoni, Dr. Y. H. Leung and Prof. K. Fynn supported my research from
1995 to 1997. Fourth, Mr. Nathanael Rensen collaborated on a research
project with me over the period 1996 to early 1998. Fifth, Prof. A. Zoubir
has provided collegial support and suggested that I contact Dr. P. Meyler
from John Wiley & Sons with respect to publication. Sixth, Dr. P. Meyler,
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Introduction

Random phenomena have their basis in the nature of the physical order (e.g.,
the nature of electron movement) and limit the performance of many systems
including electronic and communication systems. For example, the minimum
sensitivity of an amplifier and the distance a signal can be transmitted and
recovered, are both limited by random signal variations. On the other hand,
there are applications where introduced randomness will enhance aspects of
system performance. One example is where a low level randomly varying
waveform is added to a repetitive signal to improve the resolution in signal
values obtained by an analogue to digital converter, and, after averaging
(Potzick, 1999; Gray, 1993). Further, in recent years there has been increasing
interest in stochastic resonance which occurs when the system response to a
weak periodic signal is enhanced by an increase in the level of random
variations associated with the system (Luchinsky, 1999; Hanggi, 2000).

The importance of random phenomena has led to an increasing number of
theoretical results as can be found in books such as, Gardner (1990), Papoulis
(2002), and Taylor (1998). In communications and electronics a standard way
of characterizing random phenomenon is through a power spectral density
which, for example, facilitates derivation of the signal to noise ratio of a system
operating under prescribed conditions. There are two standard approaches for
defining the power spectral density. First, there is a direct Fourier approach.
Second, and more commonly, an approach based on the Fourier transform of
an autocorrelation function.

With the direct Fourier approach the power spectral density of a single
signal x, for the interval [0, T'], is defined as

_IX(Tf)

G(T f) T

(1.1)

where X is the Fourier transform of x evaluated over the interval [0, T].
The alternative approach is to determine the autocorrelation of the signal,

1



2 INTRODUCTION

defined as

R(T, t,7) =

{x(ﬂx*a — 1) te[0,T]t—te[0,T] w2

elsewhere

and then take a time average to form an averaged autocorrelation function:

1 T+t
?j R(T t,7)dt <0

R(T7) = 1Z< (1.3)
?j R(T t,7)dt >0

Finally, the Fourier transform of this function is taken to obtain the power
spectral density, that is,

G(T f) = fT R(T e > dt (1.4)

=T

These two approaches lead to identical power spectral density functions where
the definitions can be readily generalized for random processes and the infinite
time interval. Analytically, the Fourier approach is more direct and leads
directly to the interpretation of the power spectral density, at a given frequency,
as being proportional to the power in the constituent sinusoidal signal with
that frequency. Further, the direct nature of the Fourier approach facilitates
the derivation of the power spectral density of signals and random processes.

The following chapters give a systematic account of the theory related to the
direct Fourier approach to defining and evaluating the power spectral density.
This theory is applied to the derivation of the power spectral density of the
random processes commonly encountered in communications and electronics,
noise analysis in linear electronic systems, and memoryless transformations of
random processes.

Chapter 2 gives appropriate background theory for this book, while
Chapter 3 gives a detailed discussion of the two alternative ways the power
spectral density can be defined and the equivalence between them. Chapter 4
gives important results that facilitate the derivation of the power spectral
density. Chapter 5 and 6 detail the derivation of the power spectral density of
standard random processes encountered in communications and electronics.
Chapter 7 details an approach for ascertaining the power spectral density of
random processes after a nonlinear memoryless transformation. Chapter 8
discusses the relationship between the input and output signals, and input and
output power spectral densities of a linear time invariant system. This chapter
gives the necessary background material for Chapter 9, which details the
characterization of standard noise signals that occur in electronic devices, and
how analysis of such noise signals can be carried out to quantify, and hence,
minimize the noise of a linear electronic system.
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Background: Signal
and System Theory

2.1 INTRODUCTION

The power spectral density arises from signal analysis of deterministic signals,
and random processes, and is required to be evaluated over both the finite and
infinite time intervals. While signal analysis for the finite case, for example, the
integral on a finite interval of a finite summation of bounded signals, causes
few problems, signal analysis for the infinite case is more problematic. For
example, it can be the case that the order of the integration and limit operators
cannot be interchanged. With the infinite case, careful attention to detail and
a reasonable knowledge of underlying mathematical theory is required. Clarity
is best achieved for integration, for example, through measure theory and
Lebesgue integration.

This chapter gives the necessary mathematical background for the develop-
ment and application, of theory related to the power spectral density that
follows in subsequent chapters. First, a review of fundamental results from set
theory, real and complex analysis, signal theory and system theory is given.
This is followed by an overview of measure and Lebesgue integration, and
associated results. Finally, consistent with the requirements of subsequent
chapters, results from Fourier theory and a brief introduction to random
process theory are given.

2.2 BACKGROUND THEORY
2.2.1 Set Theory

Set theory is fundamental to mathematical analysis, and the following results
from set theory are consistent with subsequent analysis. Useful references for
set theory include Sprecher (1970), Lipschutz (1998), and Epp (1995).



4 BACKGROUND: SIGNAL AND SYSTEM THEORY

DEFINITION: SET A set is a collection of distinct entities.

The notation {oy,o%,,...,%y} is used for the set of distinct entities
Oy, 0, . ., oy. The notation {x: f(x)} is used for the set of elements x for which
the property f(x) is true. The notation x€S means that the entity denoted x
is an element of the set S. The empty set { } is denoted by . The complement
of a set S, denoted S€, is defined as S¢ = {x: x¢S}, where S is usually a subset
of a large set— often the “universal set.” The union and intersection of two sets
are defined as follows:

AUB={x:xeA or xeB}

2.1
ANnB={x:xeAand xeB}
DEFINITION: CHARACTERISTIC FUNCTION OF A SET The characteristic function
of a set S is defined according to

1 xe§
zS(x)={0 ves @2

DEFINITION: ORDERED PAIR AND CARTESIAN PrRODUCT An ordered pair, de-
noted (x, x,), where x, € 4 and x, € B, is the set {x,, {x,, x,}}. This definition
clearly indicates, for example, that (x,,x,) # (x,,x;) when x,; # x,. The
Cartesian product of two sets A and B, denoted A x B, is defined as the set of
all possible ordered pairs from these sets, that is,

Ax B=/{(x,y: xe A, ye B} 2.3)

DEFINITION: SUPREMUM AND INFIMUM The supremum of a set 4 of real
numbers, denoted sup{A}, is the least upper bound of that set. The infimum of
a set 4 of real numbers, denoted inf(4), is the greatest lower bound of that set.
Formally, sup(A4) is such that (Marsden, 1993 p. 45)

sup(4) = x VxeAd

24
Ve>0 3dxeAd st sup(d) —x<e
Similarly, inf(A) is such that
inf(4) <x Vxed
. @5)
Ve>0 dxed st x—inf(4) <e¢
DEFINITION: PARTITION The set {I,,..., Iy}, where I, nI; = (¥ for i # j and

(JX I, =L, is a partition of the set I.

An equivalent relationship generates a partition of a set (Sprecher, 1970
p. 14; Epp, 1995 p. 558).
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Finally, set theory is not without its problems. For example, associated with
set theory is Russell’s paradox and Cantor’s paradox (Epp, 1995 p. 268;
Lipschutz, 1998 p. 222).

2.2.2 Real and Complex Analysis

The following, gives a review of real and complex analysis consistent with the
development of subsequent theory. Useful references for real analysis include
Sprecher (1970) and Marsden (1993), while useful references for complex
analysis include Marsden (1987) and Brown (1995).

Real analysis has its basis in the natural numbers, denoted N and defined as

N={1,2,3,..} (2.6)

To this set can be added the number zero and the negative of all the numbers
in N to form the set of integers, denoted Z, that is,

Z=1{.,-3-2-101,23,.} Q.7)

The set of positive integers Z* is defined as being equal to N. The set of
rational numbers, denoted @, readily follows:

Q=1{plgp,qeZ, q#0, ged(p,q) = 1} (2.8)

where gcd is the greatest common divisor function. The set of rational
numbers, however, is not “complete”, in the sense that it does not include useful
numbers such as the length of the hypotenuse of a right triangle whose sides
have unity length, or the area of a circle of unit radius, etc. “Completing” the
set of rational numbers to yield the familiar set of real numbers, denoted R,
can be achieved in two ways. First, through the limit of sequences of rational
numbers. Consistent with this approach, a real number can be considered to
be the limit of a sequence of rational numbers that converge. For example, the
real number 2 is the limit of the sequence {2,2,2,...}, while ﬁ is the limit of
the sequence {1, 7/5, 141/100, 707/500, ...} and so on. Strictly speaking, a real
number is an equivalence class associated with a Cauchy sequence of rational
numbers (Sprecher, 1970 Ch. 3). Second, through use of a partition (Dedekind
cut) of the set of rational numbers into two sets (Dedekind sections). The point
of partition is associated with a real number (Ball, 1973 p. 22). For example,
the partition of @ according to

{x:xe@,x<0orx*<2}, {x:xe@,x>0and x> >2}} 2.9)

defines the real number ﬁ
Algebra on the real numbers is defined through axioms that are of two types
(Sprecher, 1970 p. 37; Marsden, 1993 p. 26). First, there are “field” axioms that
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specify the arithmetic operations of addition and multiplication and appropri-
ate additive and multiplicative identity elements. Second, there are “order”
axioms that specify the order qualities of real numbers, such as equality, greater
than, and less than. The set of real numbers is an “ordered field.”

The set of complex numbers, denoted C, is the set of possible ordered pairs
that can be generated from real numbers, that is,

C={(p)0peR} (2.10)

When representing a complex number in the plane the notation (x,y) =
X + jy is used where j = (0, 1). The algebra of complex numbers is governed by
the rules of vector addition and scalar multiplication, that is,

(X, y0) + (X2, 2) = (X1 + X, 31 + 1)
a(xy, yy) = (ax,,ay;) aeR (2.11)
(X1, V)X 35 ¥2) = (X1X5 — V1V, X1 V5 + V1X2)

From these definitions, the familiar result of j2 = —1, or j = ./ — 1, follows.
The conjugate of a complex number (x, y), by definition, is (x, — ).

DEFINITION: COUNTABLE AND UNCOUNTABLE SETS A set is a countable set if
each element of the set can be associated, uniquely, with an element of N
(Sprecher, 1970 p. 29). If such an association is not possible, then the set is an
uncountable set.

The sets N, Z, and Q are countable sets. The sets R and Care uncountable sets.

DEerFINITION. INTERVALS If o and f are distinct real numbers with o < f, then
the following sets of points of R, denoted intervals, can readily be defined:

[0, f]l = {xa < x < B} closed interval

A xo<x< open interval

(% B) = {: ﬁ} p : ©.12)
[, f) ={xa<x<f} closed/open interval

@ fl={xa<x<p} open/closed interval

DEFINITION: NEIGHBORHOOD A neighborhood (NBHD) of a point xe R is the
open interval (x — J, x + J) where 6 > 0 (Sprecher, 1970 p. 79).

DEFINITION: A CONTIGUOUS PARTITION The set of intervals {I,...,Iy} is a
contiguous partition of the interval I if {I,..., Iy} is a partition of I and the

intervals are ordered such that

tel;=t<t, Vi.el ., ie{l,...,N—1} (2.13)
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2.3 FUNCTIONS, SIGNALS, AND SYSTEMS

Signal and system theory form the basis for a significant level of subsequent
analysis. Appropriate definitions and discussion follows. A useful reference for
signal theory is Franks (1969).

DEFINITION: FUNCTION OR MAPPING A function, f, is a mapping from a set D,
the domain, to a set R, the range, such that only one element in the range is
associated with each element in the domain. Such a function is written as
f:D—R. If yeR and xeD with x mapping to y under f, then the notation
y = f(x) is used (Sprecher, 1970 p. 16).

Note, a function is a special type of relationship between elements from two
sets. A “relation,” for example, is a more general relationship (Smith, 1990
ch. 3; Polimeni, 1990 ch. 4).

DEFINITION: SIGNAL A real and continuous signal is a function from R, or a
subset of R, to R, or a subset of R. A real and discrete signal is a function from
Z, or a subset of Z, to R, or a subset of R.

The term “continuous” used here is not related to the concept of continuity.
A continuous signal can be represented, for example diagrammatically, as
shown in Figure 2.1. Commonly, a real function is implicitly defined by its
graph which is a display, for the continuous case, of the set of points
{(t, f(t): teR}. In many instances the variable ¢ denotes time.

A complex signal is a mapping from R, or a subset of R, to C, or a subset
of C.

DerINITION: SYSTEM  In the context of engineering, a system is an entity which
produces an output signal, usually in response to an input signal which is
transformed in some manner. An autonomous system is one which produces
an output signal when there is no input signal. Chaotic systems and oscillators
are examples of autonomous systems.

DEFINITION: OPERATOR A system which produces an output signal in re-
sponse to an input signal can be modeled by an operator, F, as illustrated in

f
o'/t\ ° 1@
t ft,)

Figure 2.1 Mapping involved in a continuous real function.
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F

Figure 2.2 Mapping produced by a system.

Figure 2.2. In this figure, S, is the set of possible input signals, and S, is the
set of possible output signals. Hence, the operator is a mapping from S, to S,
that is, F: S; - S,.

DEFINITION: CONJUGATION OPERATOR A conjugation operator, F, is a map-
ping from the set of complex signals {f: R — C} to the same set of complex
signals, and is defined according to F.[f] = f*, where f*(t) = x(t) —jy(t)
when f(t) = x(t) + jy(t). Here, the signals x and y are real signals, that is,
mappings from R to R.

2.3.1 Disjoint and Orthogonal Signals

DEerFINITION: DISIOINT SIGNALS  Two signals f;: R — C and f,: R —» C are dis-
joint on the interval I, if

Viel  f() o) =0 (2.14)

DEFINITION: SET OF DISIOINT SIGNALS A set of real or complex signals
{fis---s [y} is a set of disjoint signals on the interval I, if they are pairwise
disjoint, that is,

Viel,i#j S fi()y =0 (2.15)

DEFINITION: ORTHOGONALITY Two signals f;: R - C and f,: R — C are or-
thogonal on an interval I, if

J [0 £ (1) dt =0 (2.16)

Clearly, disjointness implies orthogonality. Note, orthogonality is defined, in
general, via an inner product on elements of an “inner product space” or a
Hilbert space (Debnath, 1999 ch. 3; Kresyzig, 1978 ch. 3).
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DEFINITION: ORTHOGONAL SET A set of signals {f;;R—> C, ieZ"} is an
orthogonal set on an interval I, if the signals are pairwise orthogonal, that is,

J O di=0  i#j (2.17)
I
The most widely used orthogonal sets for an interval [, f] are the sets
. . . R 1
1, cos2nif, t), sin2xnif,t). ieZ™, f, = 7 (2.18)
o 1
{eﬂ”‘f“’: ieZ, f, = = ac} (2.19)

THEOREM 2.1. SIGNAL DECOMPOSITION  Any signal f:1— C can be written as
the sum of disjoint waveforms, from a disjoint set {f,,..., fy}, according to

f@) tel;

0 elsewhere

JO) = X fio)  where  £i(0) ={ (2.20)

and {I,,.... 1y} is a partition of I.

Proof. The proof of this result follows directly from the definition of a
partition, the definition of set of disjoint waveforms, and by construction.

Signal decomposition using orthogonal basis sets is widely used. A common
example is signal decomposition to generate the Fourier series of a signal. Such
decomposition is best formulated through use of an inner product on a Hilbert
space (Kreyszig, 1978 ch. 3; Debnath, 1999 ch. 3).

2.3.2 Types of Systems and Operators

The following paragraphs define several types of systems commonly encoun-
tered in engineering. In terms of notation, the ith input signal is denoted f; and
the corresponding output signal is denoted g;.

(a) In general, there may not be an explicit rule defining the mapping
between input and output signals produced by a system. In such a case, the
relationship between input and output signals can be explicitly stated in a
one-to-one manner according to

fi—g4 fa—=g, ... 221

(b) Linear systems. A linear system is one that can be characterized
by an operator L which exhibits the properties of superposition and
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homogeneity, that is,

LLxfi(t) + Bfi(6)] = «LLA(6)] + BLLS;(0)] (222

(c) Memoryless systems. A memoryless system is one where the relationship
between the input and output signals can be explicitly defined by an operator
F, such that

g9 =FLf] (223)

An example of such a system is one defined by F(f) = f? that implies g,(t) =
2.

(d) Argument altering systems. Another class of systems is where the rela-
tion between input and output signals can be explicitly written in the form

g:(t) = fi(G[1]) (2.24)

for some function G. An example of such a system is a delay system, defined
by the operator F according to F[f(t)] = f[G(t)] = f(t —t,), where
G(t) =t — t;. Consistent with such a definition g,(t) = fi(t — t,).

(¢) Combining the memoryless and argument operators, another class of
system can be defined, using an operator F and a function G, according to

g9:(t) = FLf(G[1])] (225)

An example of such a system is one where g,(t) = f(t — t,).

(f) A generalization of the memoryless but argument altering system, is one
where

gi(t) = 3. F;Lfi(G,;[e])] (2.26)

An example of such a system is one described by the convolution operator
according to

mg:fﬂwm—mﬁzjj@—wmmx (2.27)
0 0

As the integral is the limit of a sum, it follows that

Lt/At]
g;(t) = lim At fi(t — jAOh(jAt) (2.28)
=1

At—>0 J
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Hence, the convolution can be written as

Lt/At]

g,(t) = lim At Y F,[£(G,[{])] (2.29)

At—0 j=1
where G,[t] =t — jAt and F,[ f;] = h(jAt)f;.

(2) Implicitly characterized systems. Systems characterized by, for example,
differential equations result in implicit operator definitions. For example,
consider the system defined by the differential equation

dg;(t)

L+ GLo 0] = FLA)] (230

With D denoting the differentiation operator, the system can be defined as

(D + G)g:) = F(f) (231

2.3.3 Defining Output Signal from a Memoryless System

Consider, as shown in Figure 2.3, a memoryless system defined by the operator
F. Such a operator can be written in terms of a set of disjoint operators
according to

=y R whee R {0 LD G
F) g
Fif)
14
i v
;
/1Y

ADelhiph

telt, 1)

Figure 2.3 Input and output signal of a memoryless system.
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The output signal, g, of such a system, in response to an input signal f, can
then be determined, consistent with the illustration in Figure 2.3, according to

g(t) = F(f @) = Y. Fi(f(0) (2.33)

or in terms of specific time intervals:

Fi(f@) tel,
g(t) = {Fo(f()  tel,

‘5[f0af11

{f(0)
{tf(t)elfi, 1)} 234

Such a characterization is well-suited to a piecewise linear memoryless system.

2.3.3.1 Decomposition of Output Using Time Partition The input
signal, f, to a memoryless nonlinear system can be written, over an interval I,
as a summation of disjoint waveforms, that is,

elsewhere

f(r)=__§ 0 i = {f(t) el 235)

where {I,,..., Iy} is a partition of I. It then follows, by using this partition of
I, that the output signal can be written as a summation of disjoint waveforms
according to

w0 = Ya0 a0 1 (2.36)

The relationship between the ith disjoint output waveform and the input
waveform is

gi(t) =

{F(f(f)) tel, @37

t¢l,

This result is easily proved by noting the following:

_fo) tel] _(FU@) tel] _ [FU@) el
gi(t)_{o z¢1i}_{o t¢1l}_{0 o1, &

2.4 SIGNAL PROPERTIES

To establish precise criteria for the validity of various signal relationships
related to the power spectral density, precise definitions for basic signal
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properties such as continuity, differentiability, piecewise smoothness, bounded-
ness, bounded variation, and absolute continuity are required. These properties
are detailed in this section. First, however, definitions for signal energy and
signal power are given.

DEFINITION: SIGNAL ENERGY AND SIGNAL POwer The energy and average
power of a signal f: R — C on an interval [«, ], respectively, are defined as

B 5 _ 1 B 5
E= J If®))>de P _WL Lf(0)* dt (2.39)

2.4.1 Piecewise Continuity and Continuity

DEFINITION: LEFT AND RIGHT HAND CONTINUITY AT A POINT A function is
right continuous at a point ¢, if the right limit, f(¢."), defined as follows, exists:

f@h) =tim f(t, +9) >0 (2.40)

-0

Similarly, a function is left continuous at a point ¢, if the left limit, f(t,),
defined as follows, exists:

f(t,) =1lim f(t, — o) 0>0 (241)

-0
DEFINITION: PIECEWISE CONTINUITY AT A POINT A function f is piecewise
continuous at a point ¢, if the left and right limits, f(t, ) and f(t,"), exist, that is,
Ye>0 35,>0 st 0<d<d,=|f(t,+3) —f(t)) <e (242)
Ve>0 36,>0 st 0<o<d,=|f(t,)— f(t,—0) <e (2.43)

and f(t,) e {f(t,), f(t,)}. Here, s.t. is an abbreviation for “such that.” The last
requirement excludes functions, such as

w t=t, k, t=t,
f = {k t#t, or f)= {k t#t, k#k, (244)

from being piecewise continuous at ¢,.

DEFINITION: PIECEWISE CONTINUITY ON AN INTERVAL A function f is piecewise
continuous over an interval I, if it is piecewise continuous at all points in the
interval I. For a closed interval [a, f] right continuity is required at o while
left continuity is required at f3.
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f)
fit)y+re @=-=--

I
ft)) @ — oo ofe |
! I Constraints
-7 [ ! 1
] ! 1
fit)—€c @- - -1 } —
] | |
A J L 4 o — !
Lo~ 60 L It 80

Figure 2.4 Constraints on a function imposed by continuity.

DEFINITION: CONTINUITY AT A POINT A function f: R — C is continuous at a
point ¢, if it is both left and right continuous at that point, and the left and
right limits are equal to the function at the point (Jain, 1986 p. 12), that is,

Ve>0 35,>0 st Vo <3, |f(t,+0)—ft)<e (2.45)
or

Ve>0 30,>0 st V<o, f(t,)—e<f(t,+J)<f(t,)+e (246)

Consistent with this last equation, continuity implies the function f is con-
strained around ¢,, as shown in Figure 2.4.

DEFINITION: POINTWISE CONTINUITY ON AN INTERVAL A function f is point-
wise continuous over an interval I, if it is continuous at all points in the interval
I. For a closed interval [a, f], right continuity is required at x, while left
continuity is required at f with f(a*) = f(«), and f(B7) = f(B).

DEFINITION: UNIFORM CONTINUITY ON AN INTERVAL A function is uniformly
continuous over an interval I if (Jain, 1986 p. 13)

Ve>030,>0 st Yo|<d, |f(t,+0)—fi)<e (247

where J, is independent of the value of t, €I and, close to the end points of the
interval, J is such that t, + de L.

THEOREM 2.2. UNIFORM AND POINTWISE CONTINUITY Uniform continuity im-
plies pointwise continuity but the converse is not true. For a closed interval [o, f],
pointwise continuity on (a, ), right continuity at o and left continuity at f§ imply
uniform continuity on [a, ff].

Proof. 1t is clear from the definition of uniform continuity that it implies
pointwise continuity. To illustrate why the converse is not true, consider the
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function f(¢) = 1/t which is pointwise continuous, but not uniformly continu-
ous, on the interval (0, 1).

To prove the second result, consider a fixed ¢ > 0. Pointwise continuity on
the interval implies that it is possible to choose N numbers d,,...,dy, and N
points fy,...,ty, where t; =0, t;,;>t; and fty=/f, such that
t;+0,>t;,1—0;4, and it is the case that

V[o| < 0;,t; + o€la, f]

iell,..., N (249)

1f (e +0) = ft)l <e {

Appropriate left- and right-hand limits are assumed for t;, = z and ty = f. The
intervals [z, t; + &,), (t; — J;, t; + 6;) for ie{2,...,N — 1}, and (ty — dy, ty]
“cover” the interval [«, 8], and with the definition ¢,,, = inf{J;,...,dy} it
follows that i

VIO| < O, t + J€a, B] lf(t+9)—f@) <e (2.49)

1

which implies uniform continuity as required.

2.4.2 Differentiability and Piecewise Smoothness

DEFINITION: DIFFERENTIABILITY A function f is differentiable at ¢, iff

. [f(f,, +0) - f(rl,)]

-0 0

exists. This limit is denoted f(t,) and exists if f'(t,) is such that

Ve>0 30,>0 st 0<|d] <9, f(t,)

_ ‘W _ <& (2.50)

The requirement of differentiability constrains a function for the interval
(t, — 0,t, + o) such that, as shown in Figure 2.5, it lies between the lines f; and
f, defined according to

fi) = f(t,) + (. = 1,)[f(,) + €] (2.:51)
L) = f(t,) + (¢ — 1)L, — €] (252)

These constraining lines arise from writing the inequality in Eq. (2.50) in the
form

|f(t, +0) — f(t,) — of (1,)] <éld] (2.53)
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Figure 2.5 Constraints on a function consistent with differentiability at a point t,.

and, equivalently, as
J(e) + oL (t,) Fel < f(t,+0) < [f(t,) +o[f(t,) + €] (2:54)

where the choice of + depends on whether 6 < 0 or > 0. With § =t — ¢, the
required result follows.

Clearly, differentiability when compared with continuity, places a higher
degree of constraint on the variation of a function around a point ¢t,. Further,
provided f'(t,) is nonzero, it is possible to choose &, such that e « |f(t,)|
whereupon it follows for ¢, — o6 <t <, + J, that the function f can be
approximated by the first-order Taylor series expansion:

f(t) X f(to) + (t - to)f/(to) (255)

DEFINITION: PIECEWISE DIFFERENTIABILITY OR PIECEWISE SMOOTHNESS A func-
tion f is piecewise differentiable, or piecewise smooth at ¢, iff the left-
and right-hand derivatives defined according to (Champeney, 1987 p. 42)

£F) = lim [M] §>0
3-0 0
_ X (2.56)
fit,) = lim [—f o) = It (”] 5>0

-0
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exist. The assumption in these definitions is that left- and right-hand limits
f(t}) and f(t,) also exist. As for the case of piecewise continuity, the
additional constraint f(t,) €{f(t,), f(t.)} is included in the definition.

Piecewise smoothness at a point t, constrains a function for the case where
f(t;) and f’(t)) are nonzero, such that it can be approximated by the
first-order Taylor series expansions either side of the point; that is,

fO) ~ [0+ —t)fC)  f,<t<t,+85>0 (257
fO 2 f@) + (= t)f ;) 1, —0<t<t,0>0  (258)

Clearly, if f(t}) = f(t,) and f'(t]) = f'(t,) then f is differentiable at .

DEFINITION: PIECEWISE SMOOTHNESS ON AN INTERVAL A function f, is piece-
wise smooth on an interval I, iff f is piecewise smooth at all points in the
interval. Appropriate left and right limits apply for the end points of a closed
interval.

2.4.3 Boundedness, Bounded Variation, and Absolute Continuity

Absolute continuity is important because it is a sufficient condition to guaran-
tee that a function is the indefinite integral of its derivative. Furthermore,
absolute continuity is a sufficient condition to guarantee that integration by
parts will be valid (Champeney, 1987 p. 22; Jain 1986 p. 197). Associated with
absolute continuity is the concept of bounded variation and a related concept
is that of signal pathlength. These signal properties are defined below, after the
concept of boundedness is defined.

DEFINITION: BOUNDEDNESS A signal f:I — C is bounded on the interval I, if
there exists a constant f,, such that |f(t)] < f, for all tel.

DEFINITION: SIGNAL PATHLENGTH Over the interval [«, f] the signal path-
length of a real piecewise smooth signal, f, with discontinuities at points
{ty,...}, is defined according to

f\m+umww+fim+UMVm+m+vav<mnuw%

This result readily follows from the definition of a derivative as shown in
Figure 2.6.

By considering the interval [A, ], as A — 0, it can be readily shown that the
signal t cos(1/t), while bounded, has infinite signal pathlength over any neigh-
borhood of t = 0.
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Ac) a’engfh\idr 1+ (F ()2

Figure 2.6 lllustration of the signal pathlength of a function between two closely spaced
points.

DEFINITION: BOUNDED VARIATION A signal f: R — C is of bounded variation
on a closed interval [a, ], if there exists a constant k, > 0 such that, for every
set of numbers {to,...,ty}, where x <t, <t, <--- <ty < p, it is the case that
(Champeney, 1987 p. 39)

N-1
Yt ) — f)l <k, (2.60)
i=0

The signal cos(1/f), while bounded, is not of bounded variation on any closed
interval that includes the point t=0. To establish that the signal
f(t) =tcos(1/t) is not of bounded variation over any interval that includes
t =0, note that a sequence of times 1/x, 2/3n, 1/2xn, 2/5n, 1/3=n, 2/7x,... yields
the corresponding function values —1/z, 0, 1/2n, 0, —1/3xn,... and the
summation of the numbers | f(t;,,) — f(t,)| forie Z* does not converge.

THEOREM 2.3. FINITE SIGNAL PATHLENGTH IMPLIES BOUNDED VARIATION A
real and piecewise smooth signal with a finite signal pathlength on a closed
interval [o, 1, has bounded variation on this interval.

Proof. As shown in Figure 2.6, it follows that if a signal is real, piecewise
smooth, and with a finite pathlength over [, ], then dt can be chosen, such
that, over any interval [¢,t, + dt] the signal pathlength is closely approxi-

mated by dt/1 + (f(t,)* + |f(t,)) — f(t,)l. Now, as

di/1+ (f(t,)) > delf' (e = 1 f(t, + dt) — f(t,) (2.61)

and |f(t,]) — f(t,;)| is finite, it follows that the signal has bounded variation
over [t,,t, + dt]. The required result readily follows.

DEFINITION: ABSOLUTE CONTINUITY ON AN INTERVAL A function f:R — C'is
absolutely continuous on an interval I if Ve > 0 there exists a §, > 0, such that
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Figure 2.7 lllustration of the requirement of absolute continuity. The case shown is for three
disjoint intervals of equal length.

(Titchmarsh, 1939 p. 364; Jain, 1986 p. 192)
N
YAfE+8) — fle) <e (2.62)
i=1

for every set of nonoverlapping intervals (t,, t, + ;) < I where X\, 5, < J,.
For a closed interval [a, f], the intervals [o, o + J,) and (8 — dy, f] are to be
considered.

This criterion is illustrated in Figure 2.7. Absolute continuity states that for
any ¢ > 0 there exists a d,, such that the variation in the function f is less than
¢ over any subset of the interval I, whose length, or “measure,” is less than J,.
As the signal variation of ¢ cos(1/t) over any neighborhood of t = 0 is infinite,
then this function is not absolutely continuous over any interval that includes
t=0.

2.4.4 Relationships between Signal Properties

The following theorems state important relationships between the above
defined signal properties.

THEOREM 2.4, CONTINUITY IMPLIES BOUNDEDNESS If f is piecewise continuous
on the closed and finite interval I, then f is bounded on I. The converse is not
true. If I is an open interval, then f may be unbounded at either or both ends of
the interval.

Proof. Piecewise continuity implies that for any point ¢,e1 the left- and
right-hand limits, according to Egs. (2.42) and (2.43), exist, and that

fe)e{f@e,), ft,)}

Hence, the definition excludes the function being unbounded at any point of I.
It does not preclude the function being unbounded as its argument becomes
unbounded. To show the converse does not hold, consider the function f
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defined as being unity if its argument is rational, and zero if its argument is
irrational. Such a function is clearly bounded but is not piecewise continuous
at any point.

To illustrate the potential unboundedness of a continuous function on an
open interval, consider the function 1/ that is continuous on the interval (0, 1),
but is unbounded as t approaches zero.

THEOREM 2.5. CONTINUITY IMPLIES FINITE NUMBER OF MAXIMA AND MINIMA
If f is piecewise continuous at a point t,, then for all ¢ >0 there exists a
neighborhood of t,, such that in this neighborhood f has a finite number of local
maxima and minima, where the difference between adjacent maxima and minima
is greater than e.

Proof. Consider the contrapositive form: If there exists a ¢ > 0, such that f
has an infinite number of local maxima and minima in all neighborhoods of 7,,
where the difference between adjacent maxima and minima is greater than e,
then f is not piecewise continuous at ¢,.

Assume that in all neighborhoods of a point ¢,, the function f has an infinite
number of local maxima and minima, where the difference between a maxima
and minima is greater than a fixed number e. It then follows, for any chosen
f(@t)), that

V5, >0 35<9, st |f(t,+0)— fth)>e2 6>0 (2.63)

which implies that f is not right-hand continuous at t,. The lack of left-hand
continuity can be similarly proved.
For example, the function cos(1/f) is not piecewise continuous at t = 0.

2.4.4.1 Continuity and Infinite Pathlength Continuity at a point can be
consistent with infinite signal pathlength in the neighborhood of the point in
question. The function ¢ cos(1/f), which is uniformly continuous on all neigh-
borhoods of t = 0, demonstrates this point.

2.4.4.2 Continuity and Infinite Number of Discontinuities Continuity
and piecewise continuity at a point, can be consistent with an infinite number
of discontinuities in the neighborhood at that point. Consider a function
defined by

k t<0,t>1

k + ! te ! ! even
(1) — - nev
J@o = (n+ 17 n+1’'n/f

1 1 1
k— t - dd
PRI e<n T 1,n:|, n o

(2.64)
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Figure 2.8 Function which has an infinite number of discontinuities in all neighborhoods of
t= 0 but it continuous at this point.

for the case where p = 1. The graph of this function is shown in Figure 2.8.
Clearly, f is such that |f(5) — k| < o for positive . Hence, for any ¢ > 0 it is
the case, for all |d] less than g, that | f(d) — k| < & which implies continuity at
t=0.

2.4.4.3 Piecewise Smoothness and Infinite Number of Discontinuities
As with piecewise continuity, it is the case that piecewise smoothness can be
consistent with an infinite number of discontinuities in the neighborhood of a
point. To illustrate this, consider the function f defined by Eq. (2.64) and
shown in Figure 2.8 for the case where p = 1. Given that to the right of
the point t, = 0, the function alternates between being above and below k,
the obvious choice for f'(t)), and f'(t,) is zero, whereupon, it follows, for
o0e[1/(n+1), 1/n), that

k+ 41 k
[, +0)—ft)y " T+ 1
B B B =+ (n + 1)#§ (2.69)

Since, on [1/(n + 1), 1/n) the minimum and maximum value of o, respectively,
are 1/(n + 1) and 1/n it follows that

A S Ry (V]
(n+1r | ) (n+ 171

(2.66)

Thus, when p = 1, (f(t, + 0) — f(¢t)))/d does not converge as & decreases, and
n increases, which implies f is not right differentiable at z,. However, when
p=2,(f(t,+ d) — f(t)))/d does converge as & decreases, which implies f is
right differentiable at ¢, = 0.
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THEOREM 2.6. PIECEWISE SMOOTHNESS IMPLIES PIECEWISE CONTINUITY If f is
piecewise smooth on an interval, then f is piecewise continuous over that interval.
The converse is not necessarily true.

Proof. Piecewise differentiability to the right of a point t,, implies there
exists a f(¢)), such that

Ve>0 35,>0 st 0<d<d,=|f(t,+9) — ft]) —of(t)) < de
(2.67)

This implies

Ve>0 356,>0 st. 0<d<d,=|f(t,+ ) — fit) <o[If ) + ¢l
(2.68)

which is consistent with continuity, for example, let J, = /(| f'(t,")| + &) when
f(e)) #0.

Jain (1986 pp. 232f) and Burk (1998 pp. 279f) give examples of functions
that are continuous everywhere, but which are not differentiable at any point.

THEOREM 2.7. PIECEWISE SMOOTHNESS IMPLIES BOUNDED VARIATION If f is
piecewise smooth on a closed interval [a, ], then f has bounded variation on this
interval. The converse is not true.

Proof. First, piecewise smoothness implies |f(t;) — f(t; ) < oo for all
t;€[o, f]. Fix ¢ > 0. As in the proof of Theorem 2.6, piecewise differentiability
at an arbitrary point ¢, implies there exists 6, > 0, f(t;"), and f’(t;) such that

0<8<8=1/(t; +8) — £t <L) +e]

(2.69)
0<0<d;=f(t;) = ft; = ) <O[If"(t: ) + &]

Thus, over the interval (t; — J;, t; + ;) the signal pathlength is finite. For any
fixed ¢ there will be a finite number of intervals [, « + d,), (t; — J;, t; + J;) and
(B — dy, B] which “cover” the interval [«, ], and the theorem is then proved.
To prove that the converse is not true, consider the function f(t) = \/; for
t >0 and f(t) =0 for t <0, which has bounded variation on all neighbor-
hoods of zero but is not piecewise smooth at t = 0.

THEOREM 2.8. ABSOLUTE CONTINUITY IMPLIES CONTINUITY AND BOUNDED
VARIATION If f is absolutely continuous on an interval I, then f is uniformly
continuous, and of bounded variation, on this interval (Jain, 1986 pp. 192-3).
Uniform continuity does not necessarily imply absolute continuity. Bounded
variation does not necessarily imply absolute continuity.
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Proof. Setting N =1 in the definition of absolute continuity [Eq. (2.62)]
shows that f is uniformly continuous. The proof of bounded variation also
follows in a direct manner from the definition of absolute continuity. The
function ¢ cos(1/t), which is uniformly continuous in a neighborhood of t = 0,
is not absolutely continuous over such a neighborhood. Any signal with
bounded variation, but with a discontinuity, is not absolutely continuous.

THEOREM 2.9. CONTINUITY AND PIECEWISE SMOOTHNESS YIELDS ABSOLUTE
CONTINUITY If a function f is continuous at all points in [, ], and is piecewise
smooth on the same interval, then it is absolutely continuous on [, f] (Cham-
peney 1987 p. 22). If fis differentiable at all points in [a, ], then it is absolutely
continuous on [o, f].

Proof. A straightforward application of the definitions for continuity, piece-
wise smoothness, and absolute continuity yields the required result.

Continuity is consistent with infinite pathlength of a function in the
neighborhood of a point, and piecewise continuity is consistent with discon-
tinuities in a function. Both conditions are inconsistent with absolute continu-
ity. The combination of continuity and piecewise smoothness ensures that a
first-order Taylor series approximation to the function can be made either side
of any point in the interval of interest. This implies that the signal pathlength
and signal variation of the function can be made arbitrarily small over all
intervals whose total length or “measure” is appropriately chosen. This, in turn,
implies absolute continuity.

THEOREM 2.10. ABSOLUTE CONTINUITY IMPLIES DIFFERENTIABILITY ALMOST
EVERYWHERE If a function f is absolutely continuous over [a, ], then it is
differentiable everywhere except, at most, on a set of countable points of [a, f],
that is, it is differentiable “almost everywhere” (Champeney, 1987 p. 22; Jain,
1986 p. 193).

Proof. See Jain (1986 p. 193).
The function f(t) = \/r fort > 0and f(r) = 0 fort < 0, shows why absolute
continuity does not guarantee the existence of a derivative, or even the

existence of both left- and right-hand derivatives, at all points. This function is
absolutely continuous in all neighborhoods of t = 0 but f(0*) does not exist.

2.5 MEASURE AND LEBESGUE INTEGRATION

The following subsections give a brief introduction to measure theory and
Lebesgue integration.

2.5.1 Measure and Measurable Sets

The measure of a set of real numbers is a generalization of the notion of length
and, broadly speaking, is the length of the intervals comprising the set. The
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simplest example is an interval I = [, ] whose measure is f — o. The measure
of a set E is denoted M(E) where M is the measure operator (strictly speaking
an outer measure operator). Consistent with our understanding of length, it
follows that the measure of two disjoint sets is the sum of their individual
measures. Thus, if E,,..., Ey are disjoint sets, then

w(0e)- 3 ey 270)

A detailed discussion of measure can be found in books such as Jain (1986
ch. 3), Burk (1998 ch. 3), and Titchmarsh (1939 ch. 10).

The first issue that needs to be clarified is whether all sets of real numbers
are, in fact, measurable. For the purposes of this book the following definition
will suffice (Jain, 1986 p. 80).

DEFINITION: MEASURABLE SET A set E of real numbers is a measurable set, if
it can be approximated arbitrarily closely by an open set and a closed set, that
is, if Ve > 0, there exists an open set O and a closed set C, such that

EcoO CcE (2.71)
and
MO ANES <¢ MENCY <¢ (2.72)
These relationships imply
M(O) — M(E) <e M(E) — M(C) < ¢ (2.73)

It is difficult, but possible, to construct a set which is nonmeasurable (Jain,
1986 pp. 83f).

DEFINITION: ZERO MEASURE A set E is said to have zero measure if M(E) = 0.

Note, the measure of a countable set of points has zero measure. For
example, M(Q) = 0.

DEFINITION: ALMOST EVERYWHERE (a.e.) A property is said to hold “almost
everywhere” if it holds everywhere except on a set of points that have zero
measure.

2.5.2 Measurable Functions

The importance of a function being measurable is that measurability is a
prerequisite for Lebesgue integrability. A detailed discussion of measurable
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functions can be found in Jain (1986 ch. 4) and Burk (1998 ch. 4). For
subsequent discussion, the following definition will suffice (Jain, 1986 p. 93).

DEFINITION: MEASURABLE FUNCTION A function f:R — C is a measurable
function if for any open set, O, of C the inverse image defined by f~1(0) =
{t: f(t) € 0} is a measurable set.

2.5.3 Lebesgue Integration

A detailed discussion of Lebesgue integration can be found in such books as
Burk (1998 ch. 5), Jain (1986 ch. 5), Titchmarsh (1939 pp. 332f), and Debnath
(1999 ch. 2). The following is a brief overview of Lebesgue integration:
Consider a bounded measurable function f: R — R on an interval (z, ), where
the function is bounded according to

</ <fy telp) 274
The range of f is partitioned by the N + 1 numbers f, f;,..., fy such that
fo=h<fi< <<=l (2.75)
and the sets E, E,,..., Ey are then defined according to

=< SO < firid €0, N1}

F (2.76)
Ey={t:f() = fy}

Note that it is the measurability of f that guarantees the existence of the sets
E,,...,Ey. As illustrated in Figure 2.9, the area under the function f over the

Figure 2.9 lllustration of the partition of the range of f, and the sets partitioning the domain of
f, for the case where N= 3.
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interval (o, f) can be approximated by the lower and upper sums defined by
N-1 N—1
Sp= Y fiIME) Sy= ) fiME) (2.77)
i=0 i=0

Clearly, S; < S,. As the number of points, N + 1, demarcating the range of
f increases in a manner, such that f;,; — f; tends towards zero for
ie {O, ..., N—1},then S; and S, converge to the same number and this number
is defined as the Lebesgue integral of the function f over the interval («, ). The
Lebesgue integral of a function f over a set E is written as

J f (2.79)

The Lebesgue integral is defined for a larger class of functions than a
Riemann integral. For example, the function defined as being unity when its
argument is irrational and zero otherwise is Lebesgue integrable on a finite
interval but not Riemann integrable. If a function is bounded on [«, ], and is
Riemann integrable over this interval, then it is also Lebesgue integrable and
the two integrals are equal (Burk, 1998 pp. 181-182; Jain, 1986 p. 136). For
bounded functions that are continuous almost everywhere on a finite interval,
the Riemann integral exists and is equal to the Lebesgue integral (Burk, 1998
p. 182; Jain, 1986 p. 229), that is,

J f= Jﬂ f(x) dx (2.79)
[2.81 x

It is useful to use both the integral notations shown in this equation for
Lebesgue integrals, and both forms are used in subsequent analysis.

2.5.4 Lebesgue Integrable Functions

The following definitions find widespread use in analysis (Jain, 1986 p. 205):
DEFINITION: SET OF LEBESGUE INTEGRABLE FUNcTiONs If f:R—>C is a
measurable function, and the Lebesgue integral of |f|” (p > 0) over a set E is

finite, then f is said to be p integrable over E. The set of p integrable functions
over E is denoted L?(E), that is,

I’(E) = {f:E -C J IfIP < co} (2.80)
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For the case of integration over (— oo, o) the simpler notation

L":{f:ReC,J |f|p<oo} (2.81)
(— a.%0)

is used, and when p = 1, the superscript on L is omitted. For the case of
integration over the interval [, ] notation, as follows, is used:

Lo, f] = {f:[:x, p1—-C, J |17 < oo} (2.82)

[2,5]

Again, when p = 1, the superscript is omitted.

DEerINITION: LocAaLLY INTEGRABLE If a function is an element of L[4, f], for
all finite o, f € R, then it is said to be “locally integrable.”

2.5.5 Properties of Lebesgue Integrable Functions

2.5.5.1 Basic Properties The following are some basic results for a
Lebesgue integrable function (Jain, 1986 p. 151). First, the integral of a function
over a set of zero measure is zero, that is,

M(E) =0 = J f=0 (2.83)
E
Thus, if
. undefined t =1,
R @8
and for all n
J“ 1) dt = k (2.85)

then

lim Jw f(tydt=k  but r lim £,(t) dt = 0 (2.86)

n—oo — o0 n>

THEOREM 2.11. AREA ASSOCIATED WITH THE TAIL AND A NEIGHBORHOOD If
f €L, then the area under the tail of f, the area associated with the neighborhood
of any point, and the area under f in the neighborhood of a point where f is
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unbounded, can be made arbitrarily small, that is, Ve > 0, there exists T, > 0,
0 >0, f, >0, such that

r O] de <, JTO O dt <, fﬁf) fOldi<e 1R

T, — 0 to—0

(2.87)
JRf@Hﬁ<8 E={t|fO) > 1}

Proof. The proof of the last of these results is detailed in Appendix 1. The
proof of the other results follow in a similar manner.

THEOREM 2.12. LiMiTs ON UNBOUNDEDNESS FOR INTEGRABILITY If f €L, then
the measure of the set over which f is unbounded is zero. Formally, if f € L, then
Ve > 0 there exists a constant f, > 0, such that

M{t:|f(0)l > f,} <e (2.88)

Proof. This result is readily proved by considering the contrapositive form
of the Theorem.

THEOREM 2.13. FINITE ENERGY IMPLIES ABSOLUTE INTEGRABILITY Iff € L*[a, 8],
then f e L[, B]. It is not necessarily the case that if f € L* then feL, or if feL
then fe L2

Proof. The proof of the first part of this theorem is detailed in Appendix 2.

Figure 2.10 shows the results stated in the second part of the theorem. For
example, consider f; and f, defined according to

0 r<0,t>1 0 t<1
f1(6, 1) =<1 56,1 ={1 2.89
! P 0< <1 2 F t>1 ( )

lower rate of increase
< improves integrability

higher rate of decrease

/ improves integrability

o=

Figure 2.10 lllustration of how rate of increase, or rate of decrease, affects integrability.
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From elementary integration results it follows, for 0.5 < ¢ < 1, that f,(d,t) e L,
but £,(5, t) ¢ L*. Also, for 0.5 < § < 1, it follows that f,(d, t) € L?, but f,(J, t) ¢ L.

THEOREM 2.14. BOUNDEDNESS AND INTEGRABILITY If f is bounded and feL,
then fe L2

Proof. Assume |f(t)] < f,., for Ve R. It then follows that | f(t)|/ f,..x < 1 for
VteR which implies 0 < |f|?/f.2ex < |f1/foae From this result, it follows that

JIfI? < fuax J1f] < o0, and hence, feL?.

2.5.5.2 Schwarz Inequality Schwarz’s inequality is a general relationship
that applies to any two elements of an inner product space (Debnath, 1999
p. 90; Kreyszig, 1978 p. 137). The specific forms relevant to the development
of theory in later chapters, are detailed in the following theorem.

THEOREM 2.15. SCHWARZ INEQUALITY If f, g€ L*[«, f3], then

< / f ' |f(0)]* dt / Jﬂ lg(1)) dt (2.90)

#
f J(0)g*(1) dt

-4

If f, ge L2, then

< / Jw O de \/f goOPd Q1)

If 2 1fi))? and T2 |g;* are finite, then

< /S e Y er (29)

Proof. First, for the case where f, ge L*[a, 8], equality holds if either, or
both, of £, g are zero almost everywhere. Second, assume g is nonzero on a set
of nonzero measure and consider the following inequality

‘ f " fhg* dr

Y figf
i=1

0< Jﬂ |f(t) — kg(0)* dt

# # s s
= J |f (01 dt + |kI? J lg()I> dt — k* J J(0)g*() dr — kj [H0)g(r) dt

(2.93)
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which is valid for any ke C. For the case where k = [/ fl)g*(t) dt/[% |g(1)|? dt it
follows that

2

B
J J(0)g*(1) dt

o

. (2.94)

lg(t)|* dt

4

I3
0< | |f(t)? dt —

and the required result follows directly. The proof for the other two forms
follow in an analogous manner.

2.5.5.3 Approximation by a Simple Function

DEFINITION: SIMPLE FUNCTION A simple function y: I — C is defined as

ul 1 xeE,
X) = 0 ye(X) = ! 2.95
VW = ¥ azn) 7l {0 iF (2:95)
where {E,,..., Ey} is a partition of I and y, is the characteristic function of E;.

THEOREM 2.16 If felL, then for all ¢ >0 there exists a simple function
V: R — C, such that

<e (2.96)

j /= Z a;M(E))

where the measure of each set E, is finite.

Proof. The proof of this result is implicit in the definition of the Lebesgue
integral [see, for example, Jain (1986 pp. 130f) and Titchmarsh (1939 pp. 332f)].

2.5.5.4 Continuous Approximation to a Lebesgue Integrable Function
It is plausible that a Lebesgue integrable function can be closely approximated
by a continuous function. Figures 2.11 and 2.12 show two cases, where a
continuous function cannot approximate a Lebesgue integrable function at all
points. The following theorem formulates precisely the ability of a continuous
function to approximate a Lebesgue integrable function. Appropriate refer-
ences are Titchmarsh (1939 p. 376) and Jain (1986 p. 116).

THEOREM 2.17. CONTINUOUS APPROXIMATION TO A MEASURABLE FUNCTION
If f: R — C is a measurable function on a finite interval [, ] and fe L[a, ],
then there exists an absolutely continuous function ¢: R — C which approximates
[ arbitrarily closely, except on a set of arbitrarily small measure, that is

Ve, 0 >0 3J¢p st Mitel[o, 11/ () — o(t) >0} <e 2.97)
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9
3‘ 0 t<£0, t>1
f([): ]_ 1 ;
YY) ——<t<=>ne Z
2@-— - — — - o0—e «/71 n+1 n
] o—e
I \ o—-
1g ol g .
\
[ \
I

I’ P,
I 0.2 0.25 0.33 05 1

Figure 2.11 Approximating a function, which has an infinite number of discontinuities that
diverge at the point t = 0, by a continuous function.

That is, | f(t) — ¢(t)] < O for te[a, B] except on a set whose measure is less than e.

Proof. The proof is detailed in Appendix 3.

The following theorem details the implication of the existence of an

absolutely continuous function that closely approximates a measurable func-
tion (Titchmarsh, 1939 pp. 376-7).

THEOREM 2.18. INTEGRATED ERROR IN CONTINUOUS APPROXIMATION If
[ R — Cis Lebesgue integrable on [a, ], that is, f € L[a, ff], then, Ye > 0, there
exists an absolutely continuous function ¢: R — C such that ¢ € L[, ff], and

B
J Lf(t) — dpn)l dt <& (2.98)
f9
1.5: @ °
1 |
/I !
le o——e ',
|
RS a2 0 t<0, t>1 |
0.5¢ f=41,1 1 1 .
I‘\¢(b E"‘; m<[Sﬁ’n€Z \
| |
<—?—0—0—0 ° Py
0.2 0.25 0.33 0.5 1

Figure 2.12 Approximating a function, which has an infinite number of discontinuities that
converge at the point t = 0, by a continuous function.
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Proof. If feL[a, ], then according to Theorem 2.11 it is possible to find a
constant f, and a set E = {t:|f(t)] > f,}, such that [;|f| <¢/3. Define F =
[, B1 N EC.

Clearly, f(t) is bounded within the range [ —f, f,] for te F. According to
Theorem 2.17, there exists an absolutely continuous function, ¢, that approxi-
mates f, within an arbitrary 0, for all te F except on a set whose measure is ;.
It then follows that

B
J [f(t) — () dt < j [f(6) dt + J [f(t) — Pl dt < § + OM(F) + ¢, f,
o E F -
(2.99)

For any given value of ¢ > 0, it is the case that f, and M(F) are fixed. For such
fixed values J and ¢, can be made arbitrarily small, such that 6M(F) < ¢/3 and
&, f, < &/3. The required result then follows.

COROLLARY If f:R— C is a Lebesgue integrable function on the infinite
interval (— oo, o), that is, f € L, then Ve > 0 there exists an absolutely continu-
ous function ¢: R — C such that

r |f(t) — dp(0)ldt <e (2.100)

— 0

Proof. If f €L, then according to Theorem 2.11 there exists a constant T,,
such that

J /()] dt <§ f_ ") di <§ .101)

It is then possible to define a function ¢, that is zero on the intervals
(—o, —T,) and (T,, ), and on the interval [ —T,, T,], according to Theorem
2.18, is such that

J ") — () de <3 2.102)

—T

2.5.5.5 Step Approximation to a Lebesgue Integrable Function Of-
ten, it is useful to employ a step approximation to a function where the step
function approximates the function arbitrarily closely. To illustrate the prob-
lem of step values being chosen, such that the step approximation “poorly”
approximates the function of interest, consider the function

0 reQ

| te0 (2.103)

f(t)={
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A step approximation, f; to f could be defined according to fy(t) = f(lt/AlA)
for a suitably small Ae @*. However, this step approximation is such that

J |f(t) — fs(@)l dt =1 (2.104)

for all Ae Q™. Intuition suggests that, if the signal pathlength of a function is
finite, then a step approximation to the function can be achieved over a finite
interval with arbitrarily small integrated error. This is the case and is formally
stated in the following theorem.

THEOREM 2.19. STEP APPROXIMATION TO A LEBESGUE INTEGRABLE FUNCTION
If f € L[a, B] is real and has bounded variation on [a, ff], then Ye > 0, there exists
a constant A, > 0 such that for 0 < A < A, it is the case that

B
J L) — fs(ldr <e (2.105)

where fg is a step approximation to f, with uniform step width A, defined as

L . [ fle+ [ — /AN te[a ]
fs(t) = i;o S+ iA)y, (1) = {0 elsewhere (2.106)
Here
B . 1 rel
N _{ A J 710 = {0 elsewhere 2.107)

i

([ +iAa+(i+1DA) O<i<N-—1
~|[o + NA, 8] i=N

If feL, is real and has bounded variation on all finite closed intervals, then this
result is valid for the infinite interval.

Proof. Consider the intervals I; defined in the theorem, and the maximum
and minimum values of the function on these intervals defined according to
M; = sup{f(t): tel;} and m; = inf{f(¢): tel;}. On the ith interval, it follows
that [M, — f(o + iA)| < M; —m; and |f(x + iA) — m;| < M; — m,. Since f is
real, and has bounded variation on the interval [«, ], it follows that there
exists a constant k,, such that

0

M, —m <k, (2.108)

=

i=0

where k, is independent of A and N, that is, bounded variation implies that the
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difference between maxima and minima on an interval, on average, will
decrease as the interval measure is decreased. Thus,

B N N
f 10 — fsOlde =Y. f f(0) = o +iAdt <AY M, —m, < Ak,

i=0 i=0

(2.109)

As A can be made arbitrarily small the required result follows.

The result for the infinite interval follows from bounded variation on all
intervals of the form [—T, T,], the definition f5(t) =0 on [—oo, —T,] and
[T,, 0], and the fact that fe L implies, according to Theorem 2.11, that there
exists a constant T, > 0, such that |7 |f(1)] dt < eand [~ |f(1)| dt <e.

Note that fg¢ may not converge to f at a given point as the step size
decreases. For example, consider a function defined according to f(t) = 1 for
t > n and that is zero elsewhere. Clearly, fi(m) = 0 for all rational step sizes

while f(r) = 1.

2.5.5.6 Interchanging Integration Order and Summation Order 1t is
often the case, that the order of integration in multiple integrals needs to be
interchanged. The Fubini and Tonelli theorems, summarized below, specify
when this interchange is valid (Champeney, 1987 p. 18).

THEOREM 2.20. FUBINI-TONELLI THEOREM If f:R?> — C is measurable and
defined almost everywhere, and one of the integrals

Jf |f(t, 7)| dtdt J |f(t, 7)| dr dt (2.110)

can be shown to be finite, then f is integrable over the t,t plane, and

Jf(r,, 1) d(t, 1) = ij(t, 1) dtdr = J f(t, ) drdt .111)

This result can be generalized to higher dimension in a straightforward manner.

An analogous result follows for interchanging the order of summation in
double summations (Hirschman, 1962 pp. 119-121).

THEOREM 2.21. ABSOLUTE CONVERGENCE IMPLIES SUMMATION INTERCHANGE
If X2 X724 |x;;| is finite, then the following summations are equal:

i |:i xij] = i |:L xij:| 2.112)

i
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2.6 SIGNAL CLASSIFICATION

Figure 2.13 shows a partial classification of measurable signals in terms
of integrability, continuity, differentiability, and boundedness. This dia-
gram is based on the following results. (1) Differentiability implies piece-
wise smoothness and pointwise continuity implies piecewise continuity; (2)
piecewise smoothness is consistent with a discontinuity at a point, and thus,
piecewise smoothness does not necessarily imply pointwise continuity. Accord-
ing to Theorem 2.6, piecewise smoothness implies piecewise continuity; (3)
absolute continuity implies continuity as per Theorem 2.8; (4) piecewise
continuity implies boundedness from Theorem 2.4; (5) boundedness implies
local integrability, that is, if f:R— C is measurable and bounded, then
feL[a, f]. It is not necessarily the case that f e L. This result follows because
boundedness on a finite interval implies a finite integral. The function
f(t) = |sin(2nf.t)| shows the potential lack of integrability of a bounded
function on the infinite interval (— oo, c0); (6) integrability implies local
integrability, that is, if feL, then feL[o, f] for a, feR. The converse is not
true; (7) boundedness and an appropriate level of signal decay implies
integrability on the infinite interval.

THEOREM 2.22. BOUNDEDNESS AND DECAY IMPLY INTEGRABILITY If
f:R— C is bounded and f decays at a rate greater than k/|t| as |t| — oo,
that is, 36 > 0, At, > 0, such that V|t| > t, it is the case that |f(t) < k/|t|**°,
then f e L.

Bounded: Decay > 1/|4

/
Locally Integrable — L., ] / \
Bounded on finite intervals / \
Piecewise Continuous
/ /L \
/ Pointwise Continuous \
Absolutely Continuous X

Piecewise Smooth

(Diﬁ’eren tiable

S )

Figure 2.13 Classification of measurable signals.
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Proof. Consider the interval (0, o0). Finiteness of the integral of f over this
interval is demonstrated according to

o0 to e to © I
J |.f|=f |f|+j |.f|<j |.f|+f s dt

to —1]= k
= k—| =
J\O |f| * ()Z() to J\ |f| M ()lu

2.7 CONVERGENCE

(2.113)

The standard forms of convergence for a sequence of functions include
pointwise convergence, uniform convergence, and convergence in the mean.
Two important associated results related to the interchange of limit and
integration operations, are the monotone and dominated convergence the-
orems. In terms of notation a sequence of functions {f,: R —» C},_, is written
as { f,} for convenience. A useful reference is Champeney (1987 ch. 4).

DEFINITION: POINTWISE AND UNIFORM CONVERGENCE OF FUNCTIONS A se-
quence of functions {f,} converges pointwise to a function f: R — C on a set
E, written lim,_, , f,(t) = f(¢), if for all teE it is the case that

Ve>0 3IN,>0 st Ya>N, |fi(t)—f0) <e  (2.114)

where N, in general, depends on ¢ and e. For the case where N, is independent
of the value of t€ E the convergence is said to be uniform over E.

DEFINITION: CONVERGENCE IN MEAN A sequence of functions {f,} converges
to a function f “in the mean” on a set E, if

n— o

lim J If,(®) — f(©) dt =0 (2.115)
that is,

Ve>0 3IN,>0 st Vn>N, f If.(0) — f()ldt <& (2.116)
E

2.7.1 Dominated and Monotone Convergence

Two important results that give sufficient conditions for the interchange of
limit and integral operations, are the monotone and dominated convergence
theorems (Champeney, 1987 p. 26).
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THEOREM 2.23. MONOTONE CONVERGENCE THEOREM If {f,} is a sequence of
nonnegative functions, such that f,e L, f,(t) < f,+1(t) for all n and all t, except
on a set of zero measure, and | f, < A for all n, then there will exist a function
f € L such that

lim f,(t) = f(t) pointwise a.e. .117)
lim Jf;,(t) = J lim f,(t) = Jf (2.118)

THEOREM 2.24. DOMINATED CONVERGENCE THEOREM If {f,} is a sequence of
functions, such that f,e L, lim,_,  f,(t) = f(t) pointwise almost everywhere, and
If,l < lg| for all n almost everywhere where g€ L, then

lim J.f;,(t) - J lim /(1) = f f @.119)
n—oo n—o

THEOREM 2.25. DOMINATED CONVERGENCE IMPLIES CONVERGENCE IN MEAN
Consider a sequence of functions {f,}, where f,eL and lim,_ . f,(t) = ft)
pointwise almost everywhere on a set €. Assume dominated convergence of {f,},
that is, assume there exists a function geL, such that |f,| < g for all neZ*
almost everywhere. Dominated convergence of this sequence implies, for all
subsets E; < E, that

limJ £.(0) :J f (2.120)

n—ow

It then follows, that the sequence of functions {f,} converges to f “in the mean”
on the set E, that is,

lim J I£.(6) — f(0) dt =0 (.121)

n— oo

Proof. Assume dominated convergence, such that, for all ¢ > 0 there exists
a constant N,, and for all n > N, and for all subsets E; of E, it is the case that

<2 (2.122)

UE Lf.(6) — f()] dt

For all n > N, the set E can be partitioned according to

E, ={teE: f,(t) — f(t) 20}  E,={teE: (1) — f(t) <0} (2.123)
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whereupon it follows that

J L0 — f(0)] di <&/2 J —[A0) — fO]dt <e2 (2.124)

E>

The required result then follows, namely

J |0 — f(Oldt < (2.125)

2.8 FOURIER THEORY

This section details relevant Fourier results including Parseval’s theorem,
which is the fundamental result that is used in defining the power spectral
density function. Other important results include the Riemann-—Lebesgue
theorem and the definition of a Dirichlet point. The definition of a Dirichlet
point facilitates the definition of the integral properties of the Dirac delta
function and the definition of the inverse Fourier transform. This section starts
with a brief overview of Fourier series and the Fourier transform.

2.8.1 Fourier Series and Fourier Transform

DEerFNITION: FOURIER SERIES A Fourier series, xp, on the interval [o, §] for a
signal xe L[a, f] is defined according to

xp(t) = a, + Y a;cosQnif,t) + b; sin2mif t)

i=1

(2.126)
— Z C,_ejZﬂ:ifot te [OC, ﬁ]

i=—ow

where f, = 1/(f — «) is the fundamental period and

[ 2 (* .
a,= - L x(t) dt a; = m L x(t) cos(2xif,t) dt 2.127)

2
bj=——
i [))_1

B B
J x(t) sin2rif,tydt ¢, = 5 1 1[ x(t)e 2l et dr - (2.128)

In general, all the coefficients are complex, and from their definitions it follows
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that a_, = a; and b_, = —b,. Further, it is readily shown that
ag i=0
= 2.129
€ {O.S(ai —jb) i#0 (2.129)

and it then follows that

lao|? i=0
2 _
leil” = {0.25(|ai|2 + b2 — 2Im[a;p¥]) i#0 (2.130)

The power in the sinusoidal components of the signal x; with a frequency
if,, 1 # 0, is given by (|la;|*> + |b;|?)/2. From Eq. 2.130, and the results a ; = q;
and b_, = —b;, the important result

le_il* + le;l* = (la;* + 1b;1%)/2 (2.131)

follows. In general |c ,;|* # |c;|? but when the signal is real the simpler result
le_;]*> = |c;]* holds.

THEOREM 2.26. CONVERGENCE OF A FOURIER SERIES If xeL[a,f] and is
piecewise smooth, or has bounded variation, on [, f], then

x(t) X is continuous at t, te(x, f)
xp(t) ={0.5[x(t%) + x(t7)]  xisdiscontinuousatt, te(x f) (2.132)
0.5[x(a™) +x(B7)] t=oat=f

Proof. See Champeney (1987 pp. 156—7) and Tolstov (1962 pp. 75f).

Consistent with this theorem, a standard way of viewing a Fourier series is
as a decomposition of the underlying signal x, into its constituent component
signals which are from one of the following orthogonal sinusoidal sets:

{1, cos(2xif,1), sin(2rif 1), ie Z*, f, = ﬁl_“} (2.133)

o 1
{eJanfof’ iEZ, ﬂ) = m} (2134)

The general theory related to signal decomposition is best formulated on a
Hilbert space which is vector space with an appropriately defined inner
product (Kreyszig, 1978 ch. 3; Debnath, 1999 ch. 3).

DEFINITION: FOURIER TRANSFORM The Fourier transform of a signal x, de-
noted X and evaluated over the intervals [o, f] and (— o0, o0) are, respectively,
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defined according to

B

x(e 2t dr  X(f) = Jx x(t)e 2™t dt (2.135)

— 0

7X([2, £1. 1) =J

o

In the following chapters, the interval [0, T] is primarily considered and the
Fourier transform of a signal x, over this interval, is denoted X(7, f). The
following properties of the Fourier transform are given with respect to this
interval. (1) A requirement for the existence of X defined over [0, T] is that
xeL[0, T]; (2) when x is real it follows that

X(T, —f) = XX(T, f) (2.136)

(3) a link between the ith Fourier coefficient ¢; in the exponential Fourier series
of a signal, and the Fourier transform of the same signal, follows from Eq.
(2.128) according to

¢ = %’f) 2.137)

2.8.2 Riemann-Lebesgue Theorem

If the variation in a function f is small over the period of a sinusoid cos(2nAt),
then the integral of f(f) cos(2mir) over such a period will be close to zero. A
generalization of this result is given by the Riemann—Lebesgue theorem. This
theorem is used, for example, to prove the existence of Dirichlet points for
piecewise smooth signals. Appropriate reference are Champeney (1987 p. 23),
Titchmarsh (1939 p. 403), and Tolstov (1962 p. 70).

THEOREM 2.27. RIEMANN—LEBESGUE THEOREM If f'€ L then

lim Jx Sf(t) cos(2mAt) dt =0 lim Jw f(t) sin(QrAit)dt = 0 (2.138)

Ao o J - Ao J — o

Proof. The proof of this theorem is detailed in Appendix 4.

2.8.3 Dirichlet Points

Consider a function ¢ that is “impulsive” at a point t,, and has unit area in a
neighborhood (t, — d,t, + J) of this point. If a function f is “smooth” over
(t, — 0,t, + J) then it is expected that

J"_mmnmzﬂm (2.139)
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Sin(2nt\u)
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Figure 2.14 lllustration of “impulsive” function. The area under the graph equals unity.

A precise statement of this concept is given through the definition of a Dirichlet
point and a Dirichlet value (Champeney, 1987 ch. 5). The existence of Dirichlet
points for a piecewise smooth function, is fundamental to proving Parseval’s
theorem and the relationship between a function and the inverse Fourier
transform of its Fourier transform.

DEerINITION: DIRICHLET POINT A point ¢, is a Dirichlet point of a locally
integrable function, f: R — C, if 3, > 0, such that for 0 < ¢ < ¢, it is the case
that

lim J‘é ft, +u) -Mdu (2.140)

RN T u

is finite.
Note that the function sin(2niu)/nu, as shown in Figure 2.14, is “impulsive.”

DEFINITION: DIRICHLET VALUE If ¢, is a Dirichlet point of a locally integrable
function, f: R — C, then the value defined by the limit in Eq. (2.140) is called
the Dirichlet value of f at t,.

2.8.3.1 EXxistence of Dirichlet Points There is no known necessary and
sufficient conditions for the existence of a Dirichlet point (Champeney, 1987
p. 43). In fact, on any finite interval («, f§) there exists functions that are locally
integrable, but which have no Dirichlet points on that interval (Champeney,
1987 p. 38). The following two theorems give sufficient conditions for the
existence of a Dirichlet point (Champeney, 1987 p. 41).

THEOREM 2.28. DIFFERENTIABILITY IMPLIES DIRICHLET POINT If f is differenti-
able at a point then that point is a Dirichlet point of f. Further, the Dirichlet value
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of fatt,isf(t,), that is,

f(t,) = lim r f(t, + u)'wmt >0 (2.141)

Proof. The proof of this theorem is detailed in Appendix 5.

THEOREM 2.29. PIECEWISE SMOOTHNESS IMPLIES DIRICHLET POINT  Iff'is piece-
wise smooth at a point, then that point is a Dirichlet point of f. Further, the
Dirichlet value of fat t,is [ f(t,]) + f(t,)]/2 (Champeney, 1987 pp. 39, 42), that
is,

f(t)%f( = lim j fit, + u)- sm(z’”“ >0  (2.142)
= yaadeel
fa)+fa,) . (" .Sm[27w~(u —1,)] X
= ,linj( ﬁoé f(u) ﬂt(u——tn)du 0>0 (2.143)

Proof. The proof of this theorem is similar to the proof of the previous
theorem. A change of variable yields the alternative forms stated in this theorem.

2.8.3.2 Continuity and Existence of a Dirichlet Point 1t is reasonable
to assume that if f is continuous at a point ¢,, then that point is a Dirichlet
point of f. However, this is not the case, and one example is given in
Champeney (1987 p. 37). Thus, as noted above, it is not surprising that, if
f € L[a, f] then it can be the case that f does not possess any Dirichlet points.

2.8.4 Inverse Fourier Transform

The definition of a Dirichlet point facilitates the statement of conditions related
to the existence of the inverse Fourier transform as detailed in the following
theorem.

THEOREM 2.30. EXISTENCE OF INVERSE FOURIER TRANSFORM If xe L[0, T, the
Fourier transform of x on [0, T], denoted X(T, f), is Lebesgue integrable on
(—o0, ), and x is piecewise smooth at a point t,, then the inverse Fourier
transform at t, exists and is given by

0°

0 t,¢[0,T]
. x(0%)/2 t,=0
|" xmperar—tvin e | o @19
- 0 2 Lo s
x(T )2 t,=T

Proof. The proof is detailed in Appendix 6.
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If X¢L, then indirect approaches for establishing the inverse Fourier
transform for specific classes of signals can be used. A useful reference is
Champeney (1987 ch. 8f).

2.8.5 Dirac Delta Function

The Dirac delta function, denoted J, is widely used in analysis. However, its
definition is problematic and best formulated using generalized function theory
[see for example, Champeney (1987 ch. 12)]. For the material that follows, the
following definition will suffice.

DerINITION: DIRAC DELTA FUNcTION Consider a sequence of functions
{0;}/Z such that 6,(t) = d;,(—1),

ma- {7 17
and
lllnz J_x oty dt =1 (2.146)
By definition
o(t) = Llin: 0;(t) (2.147)

2.8.5.1 Integral Properties of Dirac Delta Function First, as ¢ is non-
zero only on a set of zero measure, it follows [see Eq. (2.86)] that

jx S(tydt =0 (2.148)

- 0

Second, if t, is a Dirichlet point of f €L, then

lim Jx o)t —t,) f(t)dt = M

i=o0

(2.149)

but
Jxéa—mﬂnm:o (2.150)

However, for notational convenience, lim,_, . [*, 6,(t — t,) f(¢) dt is written as
|20t —t,)f(0) dr.
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2.8.6 Parseval’s Theorem

Parseval’s theorem is fundamental to defining the power spectral density. A
formal statement of this theorem is as follows (Champeney, 1987 p. 72;
Titchmarsh, 1948 pp. 50, 69—-76).

THEOREM 2.31. PARSEVAL’S THEOREM Denote the Fourier transform of x as X.
If xeL and xeL?, then X e L?, and

J " e dr:r XU df @.151)

If xe L*[o, B] then x e L[, ], and

B o0 T ¢
J Ix(0)> dt = J | X(Lo, B1. )12 df J Ix(0)|> dt = J

0

"X R

(2.152)

Proof. The proof of this relationship is detailed in Appendix 7.

2.9 RANDOM PROCESSES

The theory of random processes is vast, as books by Papoulis (2002), and
Grimmett (1992) attest. The theory related to random processes that is
required in subsequent chapters is not great, but the following concepts are
fundamental.

A strict definition of a random process (RP) is that it is a set of random
variables [see for example, Grimmett (1992 ch. 8)]. In engineering, however, an
alternative, but consistent way of defining a random process is as a set of
signals that are governed by a probability of occurrence. Consider a random
process X(T) that defines a set of signals on the interval [0, T], called an
ensemble, and denoted E(T). This set has the form

Ey(T) = {x: Sy x [0,T] > C} (2.153)

where Sy is an index set to distinguish between waveforms in the ensemble. For
the case of a countable ensemble Sy < Z™*, and for an uncountable ensemble
Sy € R. For the countable case it is usual, for general analysis, to assume that
Sy = Z". For notational convenience, and for the countable case, a subscript
rather than an argument is used for the ith signal according to x(i, t) = x;(¢).
The probability associated with each waveform defines the probability
space, Py, when the ensemble has a countable number of waveforms, that is,

P, = {pi: p; = P[x(i,1)], ieZ™, i p; = 1} (2.154)

i=1

where P: E,(T) — [0, 1] is the probability operator.
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For the uncountable case, a density function fy characterizes the probability
of waveforms in the ensemble according to

PLX(A, Olserzgigvand = fx(R)di fx(4) 20 (2.155)

f T Ry di=1

For notational convenience the argument T is dropped and X rather than
X(T), and Ey rather than E(T), is used.

2.10 MISCELLANEOUS RESULTS

The following theorem details results used in later chapters for the develop-
ment of the theory related to the power spectral density.

THEOREM 2.32. MISCELLANEOUS RESULTS
_ o i2aNf[fo
N-1 o] i
e~ d2mifIfo — g i2nf/fo Z o~ i2mif/fo — 1 — e i2nfifo (2.156)
1 i=0
N f=k, keZ
102

5 sin*(nNf/f,)

=

13

s el Sy e <f <
N? =k keZ
- [ +2 Z ( - ) cos(2mf/f>]
@.157)
tim <S5 s — ) @159)
lim Tsinc?(fT) = 3(f)  sinc(x) = Si";:x) (2.159)

T—x
Proof. The proof of these results is detailed in Appendix 8.

The following theorem details the Fourier transforms of signals that occur
several times in subsequent chapters.
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THEOREM 2.33. FOURIER TRANSFORMS OF COMMON SIGNALS

1 0< T . o
p(t) = < < P(T, f) = Tsinc(fT)e ™/ (2.160)
0 elsewhere

j2mkfit < T . . .
{cke 0<t< o ¢, Te ™I sing(f — kf))T) (2.161)

0 elsewhere

Proof. The proof of these results follows directly from the definition of the
Fourier transform.

APPENDIX 1: PROOF OF THEOREM 2.11

The contrapositive form of the last result in Theorem 2.11 is: If 3¢ > 0, such
that Vf, > 0 it is the case that

J IfI1>e  E={elf0 > [} (2.162)

then f¢ L. To prove this contrapositive form, fix ¢ > 0. Choose f; > 0 such
that

f fl>e  E, ={1f0)] > f} (2.163)

Then choose a sufficiently large number f, > f;, such that

&
LZ If1>e LmEglfl >3 E={nlf0l > 1) (2.164)

Clearly, E, < E, and E, n(E, nES) = . A sequence of numbers {f;}, and
associated sets {E;}, can be constructed such that

i

E = {J (E:nEiy) JF > (2.165)

i=1

i+ 1

and

Ll Ifl= 3 L,nE,‘;l If1 > ; — = (2.166)

which implies f¢ L.
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APPENDIX 2: PROOF OF THEOREM 2.13

Assume f e L*[a, f]. With f(t) = x(t) + jy(t), it follows that
B
J [x2(t) + y*(1)] dt < o0 (2.167)

Clearly, x, ye L?[«, B]. Define the sets E; and E, according to

E, <1} ME)<P-u
=l ! ! (2.168)
E,={&: |(t)|>1} M(E,) <B —uo
It then follows that
X1 < x(@)] <1 teE
' (2.169)

1< |x(t)] < x*(1) teE,

and hence,

f |x(1)| dt<J x3(t) dt < oo J |x(1)| dz<f dt = M(E,) < ®
E> Eax Ey Ei
(2.170)

which proves that xeL[x f]. A similar argument can be used to show
ye€L[a, f] and hence, fe€L[x, f].

APPENDIX 3: PROOF OF THEOREM 2.17

First, consider ¢ > 0 and 6 > 0 to be a set. Second, consistent with Theorem
2.12 a range [ —f,, f,] can be defined such that the function f is outside this
range only on a set of measure less than /2. For subsequent parts of the proof,
it is convenient to choose f, such that f,=N& for NeZ' and
M{t:|f(t)> f,} <g¢/2. Third, demarcate the range [—f,, f,] into subranges
separated by . Fourth, define the 2N + 1 sets that partition the interval [«, ],
apart from the set of points where |f| > f,, according to

E;=f"YL)={r:f(t)eL;}
L=T[is, (i +1)5) for ie{—N,....0,....,N—1}  Ly=1{fy}
Q.171)
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Now, the ith set E; may consist of an infinite number of intervals and/or an
infinite number of points. In some instances, the separation between these
intervals or points is negligibly small. For example, consider the function

f = {(1) i;g (2.172)

However, since f is a measurable function, and L; is a measurable set, it follows

that E; is a measurable set. Hence, according to the definition of a measurable
set, there exists an open set F; such that

E,cF,; M(F) — M(E) <e (2.173)

Now, an open set of R can be written as a union of a countable number of
disjoint open intervals (Sprechter, 1970 pp. 123, 136—137). Thus,

s

F. =

i
J

I Iinl, =& when j#k (2.174)

L3}

1

With the definition of the set of disjoint intervals {J;; = I;; n E;};/Z 4, it follows
that E; = ( J;2, J;;, and hence, there exists a number N, such that

ij

N € 1
M(E,) — MJ,) <<z —— 2.175
()= ¥ MUY <355 2.175)
Then, it is possible to define a function ¢ according to
Ni
N 1 tel)J;;
o(t) = Z i+ y;(t) 7(t) = jgl ! (2~176)
i=-N

0 otherwise

This function is a simple function defined on X}~ _y N, disjoint intervals, and
takes on values from the set {—NJ,...,Nd} for re[a, f]. It is such that
|f(t) — @(t)] > on a set of measure less than g and this occurs when
|f(t)] > f,, or when the finite union of disjoint sets U}E1 J;; does not equal E;.
Hence, the measure of the set of points, such that |f(t) — @(t)] > 0, by
construction, is less than &. By drawing straight line segments of finite slope
between the value of ¢ at the end point of one interval and the start of another,
a continuous and piecewise smooth function ¢, can be created, which apart
from a set whose measure is less than ¢ + ¢, approximates the function f with
an error less than 6. The term ¢ accounts for the measure taken up by the
straight line segments. This can be made arbitrarily small by increasing the
slope of the line segments.
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By construction, the function ¢ is continuous and piecewise smooth over
[, f]. Hence, according to Theorem 2.9, ¢ is absolutely continuous.

APPENDIX 4: PROOF OF THEOREM 2.27

The goal is to show that

2.
sinmin (¥ <8 @17

* i
Ve>0 34, st Vi A ‘ f 1) {Cos(” Z)}dt

The proof will consider the integral of f(f) cos(2rnAit). The proof for the integral
of f(t) sin(2mAt) follows in an analogous manner. First, since feL

o0

< Jx |f(2) cos(2mAt)| dt < J |f(t) dt < o0

-0 — o0

‘ f : f(t) cos(2mAt) dt

— 0

(2.178)

and from Theorem 2.11, it follows Ve > O that there exists a T > 0, such that

J f(t) cos(2mit) dt <J |f(O)] dt <e
fT ! (2.179)
U f(t) cosQRrit)dt| < ¢
It then remains to show for any given value of ¢ > 0, that
T
34, st Vi> 4, U Sf(t) cosQrat)dt| < ¢ (2.180)
-T

To this end, note from Theorem 2.18, that Ve > 0, there exists an absolutely
continuous function ¢: R — C, such that

T
j 1f(t) — p(0)l dt <& (2.181)
=T
It then follows from

jT f(t) cosQQrit) dt = jT [f(t) — ¢(t)] cos(QrAt)dt + jT o(t) cos(2mAt) dt

(2.182)



50 BACKGROUND: SIGNAL AND SYSTEM THEORY

and |4 + B| < |A| + |B|, that

JT f(®) cosmit)dt <

JT [f(t)—p(r)] cosmAit) dt

+UT P(t) cos(2mAt) dt

< JT |f(t) — () dt + UT ¢(t) cos(2mAt) dt (2.183)
T

=T

<e+ UT ¢(t) cos(RmAt) dt

Since ¢ is absolutely continuous, integration by parts can be used (Jain, 1986
p- 199) in this equation to yield

JT f(t) cosQQrit)dt < & + ‘qﬁ(t)sm(th):r i JT @'(t) sin(2rir) dt
_T 214 )

27 -T

(2.184)

Absolute continuity for ¢ ensures that ¢ is bounded and ¢’ is Lebesgue
integrable (Jain, 1986 p. 197), on [ — T, T]. 1t then follows that

lim JT f(t) cosQmit)dt < ¢ (2.185)
-T

iadee

which completes the proof.

APPENDIX 5: PROOF OF THEOREM 2.28

The point ¢, is a Dirichlet point of a differentiable function f, and the Dirichlet
value of f at t, is f(t,), if there exists a constant d, > 0 such that, for all
0 <0<, it is the case that

0>

o
Ve>0 31,>0 st Vi>4, U S, +u

-0

SINCRA) ] <6
u
(2.186)

First, it is required to show that the area under the “impulsive” function
sin(2riu)/mu approaches unity as 4 — oo. To this end define I(4) as

1) = J sin@nid) 2.187)

0o T
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A change of variable { = Au and the definite integral (Spiegel, 1968 p. 96)

A0 o3 2 0 o
1) = J Sin2md) 4 J sl e T 50 (2.188)
0 S 0

{ 2

yields the required result, namely

* sin(2n¢ 1
lim 1(2) = f sin2md) 4 1 (2.189)
o 7l 2

A=

Second, the following result is required: With the definitions for the integrals
1, and I, according to

d d H 2
J Bl sm(27r/1u) I :J [+ fou] sin(2mAu) i (2.190)
o T
it follows that

By <By=1,<1I, (2.191)

To prove these results consider the integral I defined according to

0 2n%

I= J ’ [+ pu] ST gy f S o B cosrioy]
U 0 TU
(2.192)

The stated inequalities follow because 0 < 1 — cos(2n/id) < 2. Hence, I in-
creases with f if f > 0 and decreases as f§ becomes more negative when f§ < 0.

Third, differentiability of f implies bounds on the nature of the signal
around a point ¢,, as indicated in Figure 2.5, according to

fe,) +ulf't) —el <[, +w) < f(t,) +ulf,)+e]  (2193)

for 0 < u < 0 where J is consistent with the chosen value of ¢ > 0. Further,
Sflt, +u) =~ f(t,) +uf'(t,) for 0 <u <. Thus, for fixed values of ¢ and ¢
consistent with this inequality, it follows from Eq. (2.191) that

sm(27w u) sm(27w u)
du

J Lf(t,) +ulf(t,) — &l du <J LA, +uwl-

s1n(2m u)

J [ft)y+ulf'(t,)+el]]-————du (2.194)
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and hence,

() J‘j sin(iz/«u Lr (t,,) —£] sin(iz/{u) i

[1—cos(2rid)] < J S, +u

[1 — cos(2nid)] (2.195)

< ft,) f Sm(zZ’“) du-l-[f “") “]

This result holds for all 2 > 0, and as 4 — o0, it follows from Eq. (2.189) that

< lim J 1, + u)- s‘“@m’) u<t (2“') (2.196)
0

A= oo

/()
2
which is the required result.

APPENDIX 6: PROOF OF THEOREM 2.30

If xe L[0, T] and X € L, then the following integral is finite:

W) = lim J ' X(T, f)es>™ df (2.197)

A= J —A

Using the definition for the Fourier transform, it follows that

W) = lim J UTx(f)e-ﬂﬂff df} eI2%1 f (2.198)

imw J — A 0

Since x(t)e 2"/Te 2™/t i5 absolutely integrable for 1[0, T] and fe[—4, 4], it
follows, according to Theorem 2.20, that the order of integration can be
interchanged to yield

(1) = lim J Tx(f)[r e-ﬂﬂﬂf-”df]df (2.199)

A= J O —A
Since sin is an odd function it follows that

sin[2nA(t — 1)]

Ee— (2.200)

r e i2RIE0 gf — JL cos[2nf(t — t)] df =
-

—A

which is valid for all t,7, including the case where t =1 whereupon
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sin[2nA(t — 7)]/n(t — t) = 24. Thus,

T : 2 o
W) = lim J r(r) S0@RAE = D] (2.201)
imw Jo (Tt — 1)
As x is piecewise smooth, it follows from Theorem 2.29 that
0 1¢[0,T]
x(0%)/2 t=0
(1) = x(e* x(t 2.202
A Xty + x(t) (e(0.T) ( )
2
x(T7)/2 t=T

which is the required result.

APPENDIX 7: PROOF OF THEOREM 2.31

Assume xeL. If xeL, then the Fourier transform of x, denoted X, exists.
Further, X is finite for all values of its argument. Thus, the integral I, defined
according to

10) = J XUP df (2209

is finite for all finite values of 4. Using the definition of the Fourier transform,
I can be written as

I(4) = Jl ' [ja x(t)e s>t dt} [Jx x*(t)e 27/* d‘l.':| df (2204

Since x(t)e 2™'x*(r)e/2™* is absolutely integrable for t,te(—o0, ) and
fe[—4, 4], it follows, according to Theorem 2.20, that the order of integration
can be interchanged to yield

1) = J J *(1) U e‘jz"f(’_’)df}dtdf (2.205)

Since sin is an odd function it follows that

sin[27A(t — 7)]
n(t — 1)

which is valid for all ¢, 7, including the case where t = 7, whereupon

f o PRI gr J cos[2nf(t — D)]df = (2.206)

sin[2nA(t — 1)]/n(t — 1) =24
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Thus,
*r sm[2m(t )] 25
J J ) dtdc (2.207)
Consider the limit of I as 4 — oo, that is,
fim () = lim J Ay dt (2.208)
A0 A= J — o
where
2
1, ) = w)f o Sint gi(_t . N e (2.209)

To complete the proof, it is necessary to interchange the order of limit and
integration in Eq. (2.208). According to the dominated convergence theorem
(Theorem 2.24) a sufficient condition for the validity of this interchange is the
existence of a function g e L such that |f(t, )| < g(t) for t e R and for all values
of 4. The proof of the existence of such a function follows.

First, since x € L, it follows from Theorems 2.17 and 2.18 that for all &, > 0
there exists an absolutely continuous function ¢ € L, such that
M{z: |x*(t) — ¢(z)| >0} <e J Ix*(t) — ¢(x) dt <e (2.210)

- 0

Now, for all finite values of A, sin[2ni(t — 1)]/a(t — 1) is continuous and
bounded with a bound of 24. It then follows that there exists an ¢ > 0, such
that

sm[2n/1(t s1n[2m(t
U a(t — ) d _J 9@ n(tf‘c) dT
<

sin[2zA(t — 1)]
Thus, there exists an absolutely continuous function ¢, such that

n(t — 1)
* sin[2rA(t — 1)]
Rt

@.211)
IX*(t) — (o)l dr <&

approximates

x*(t) dt

o at — 1)

J * sin[2rnA(t — 1)]

arbitrarily closely.
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Second, since ¢ is an absolutely continuous function, it follows from
Theorem 2.10 that ¢ is differentiable at all points except on a set of zero
measure. Thus, all points of R, except for a set of zero measure, are Dirichlet
points of ¢. From Theorem 2.28 it follows that

lim J :O #(0) ““EZ’# dr = ¢(1) ae. .212)
which is independent of 4. Hence,
|f (@, A < kIx(®)| |9@)] a.e. (2.213)

for some fixed value of k. Since xeL and ¢ is bounded, it follows that x¢ € L
and thus, from the dominated convergence theorem, the order of the limit and
integration operation can be interchanged in Eq. (2.208) to yield

lim I(2) = lim JX f(t, A)dt = Jy lim f(t, A) dt

aaded Ao J - —w Ao w

r x(t)[lim J f x*@)% df}dr

Clearly, if t is a Dirichlet point of x* with Dirichlet value x*(t), and this is the
case for all te R except on a set of zero measure, then

(2.214)

lim I(1) = J C 0P de (2.215)

A=

as required.
In general, from Eq. (2.211) it follows that ¢ can be chosen, such that

lim I() = J (1) [lim qx e )%d + 81>:| dr
A0 — 00 A= -

_ f C MO + ] de

el

(2.216)

where ¢, is arbitrarily small. From Eq. (2.210) it follows that ¢ can be chosen
such that ¢(t) = x*(t) + o(t) where d(t) is arbitrarily small except on a set of
arbitrarily small measure. According to Theorem 2.11, the integral of x over
such a set can be made arbitrarily small. Thus, the conclusion again is

lim I(}) = j " xR dt (2.217)

A= —w



56 BACKGROUND: SIGNAL AND SYSTEM THEORY

Hence, XeL? and the required integral relationship between x and X is
proved.

APPENDIX 8: PROOF OF THEOREM 2.32

A.8.1 Proof of First Two Results

The summation is that of a geometric series with ratio, and first term, given by
e J2/1f Using the result for geometric series

\ al — RY)
Yar =) 1-g R#! 2.218)
ot Na R=1

it follows that

e*jlnf/fo(l _ e*jZan/fo)

—j2nf/fo
o d2mifIfe — 1 — ¢ 72701 e # 1

M=

(2.219)

i=1

N e i2nflfo — |

The condition e #2®//o = | implies f/f, e Z. Thus, after basic manipulation,

» (1 —cosQnNf/f)  (sin*(zNf/f,)
={ 1 —cosQ2nf/f,) =< sin*(nf/f) J11.¢Z (2.220)
N? N? flfeZ

N
Z e J2mif|fo
i=1

where the last result follows from the relationship 2 sin?(4) = 1 — cos(24). In
fact, when f/f,€Z, it is the case that sin?(zNf/f,)/sin*(nf /f,) = N2. To prove
this, consider L’Hopital’s rule (Spivak, 1994 p. 201): If both f and g have limits
of zero as their arguments tend towards some number x, and if f'(x,)/g’
(x,) = k, then f(x,)/g(x,) = k. Thus, using this rule twice, it follows that for any
integer v

i SGENILL) L QaNf) sinGeNp ) cosNF /f,)
Fifosy SIS ppne /S sin(nf/f,) cos(nf/f,)
_ lim Nsin@rNf/Y,)
- ulxml sin(2nf/f,) (2.221)
_ lim N@rN/f,) cos2nN//f,)

_ N2
ey ey

where the result 2 sin(A) cos(4) = sin(24) has been used.



APPENDIX 8: PROOF OF THEOREM 2.32 57

The second form in Eq. (2.157) arises from writing

2 N N o
— Z Z e i2nli=kfIf, (2.222)

i=1k=1

N
Z e ~d2niflfo
i=1

and then separating the double summation into single summations where k = i,
k=i+1,....k=i+ (N —1).

A.8.2 Proof of Third Resulit

First, consider the case where f¢if,,ieZ. For any ¢ > 0, there will exist a
sufficiently large value of N, such that

LsinGNp)| (11
‘N sin2(nf /1) ‘N sin2(nf /)| = ¢ (2.223)
Hence, for f ¢if,, ieZ
lim L SENSIL) _ (2.224)

N NS /f)

Second, consider a change of variable A = f — if,, ie Z in the following

0’

integral
if0+Af1 22 N J . Z
I:J N'Mdf ee (2.225)
ifo—AS sin (ﬂ"f/f;)) 0< Af < .fo
which yields,
A1 sin)(eNA/f, + iNT) M1 sinY(mNA/S) . )
=) N syl +m 7 N swmigy @€
—Af “IJo —Af “/Jo
(2.226)

Consider a fixed ¢ > 0. It follows from Eq. (2.224) that there exists a sufficiently
large value of N, such that the integrand in Eq. (2.226) will be less than
¢ = ¢/Af over the intervals [ —Af, —d] and [, Af ], where 0 < 6 < Af and § is
such that over the interval —0 < f < ¢ the expression sin(nf/f)) can be
approximated by the linear term according to

sin(of/f) ~ nf[f, —d<f<0 (2.227)
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With these definitions, there will exist an N, sufficiently large such that

1 (2 sin?(aNA/f) . 1 [Msin®(zNi/f)
— ————2dl<dAf = — ————dA
N f Ly sinGf) PV TR N, vy YF
(2.228)
Thus, within an error of 2¢, the integral I can be approximated by
1 [ sin®(eNA/f) j”‘s sin?(zW/f,)
I~— —— % di= ——dw 2.229
N,[ 5 (ni/fn)z ) (nW/fo)z ( )

where the change of variable W = N/ has been used. From the standard
integral (Spiegel, 1968 p. 96)

j sin’(px) | _ 7@ (2.230)

0 (Px)z 2p

it follows, as N becomes increasingly large, that I = f,, and hence,

1 sin’*(zNf/f,) Selif, — M if, + A]

lim — ————~=>=f(f —i 2.231
rv1—>nl N Sinz(ﬂff/f;,) f;) (f lfz‘)) leZ ( )
which is the required result.
A.8.3 Proof of Final Result
To prove the final result of the theorem, note that
sin(znf T)
. — #0
sine(fT) =¢ T / (2.232)
1 /=0
and it readily follows that
0 0
lim T sinc?(/T) = {w Jff i 5 (2.233)

Further, from the standard integral [see Eq. (2.230)], it directly follows that

lim Jw T sinc*(fT)df = lim le % =1 (2.234)

T—oow J—x T-w

Hence,

lim T sinc*(fT) = (f) (2.235)

T—x



The Power
Spectral Density

3.1 INTRODUCTION

The power spectral density is widely used to characterize random processes in
electronic and communication systems. One common application of the power
spectral density is to characterize the noise in a system. From such a
characterization the noise power, and hence, the system signal to noise ratio,
can be evaluated. This chapter gives a detailed justification of the two distinct,
but equivalent ways of defining the power spectral density. The first is via
decomposition, as given by the Fourier transform, of signals comprising
the random process; the second is through the Fourier transform of the
time averaged autocorrelation function of waveforms comprising the ran-
dom process. The first approach is used in later chapters and facilitates analysis
to a greater degree than the second. Finally, the relationship between the
power spectral density and autocorrelation function, as stated by the Wiener—
Khintchine theorem, is justified. A brief historical account of the development
of the theory underlying the power spectral density can be found in Gardner
(1988 pp. 12f).

3.1.1 Relative Power Measures

In the following sections, the concepts of signal power and signal power
spectral density are introduced and used. Strictly speaking, the concepts are
that of relative signal power and relative signal power spectral density, as
signals typically have units that lead to relative, not absolute, power measures.
To simplify terminology, the word “relative” is dropped. The best justification
for the use of relative power measures, is the signal to noise ratio which is
defined as the signal power divided by the noise power. Provided both the

59
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signal and noise have the same units, for example, watts or volts squared, it
does not matter whether relative or absolute power measures are used. Further,
in many electronic circuit applications a relative power measure is appropriate
as it is current and voltage levels, not power levels, that are of interest.

3.2 DEFINITION

The approach detailed in this section is consistent with that of Priestley (1981
ch. 4.3-4.8), Jenkins (1968 ch. 6), and Peebles (1993 ch. 7).

3.2.1 Characteristics of a Power Spectral Density

A power spectral density function, G, based on the standard sinusoidal or
complex exponential basis set should have the following characteristics. First,
to facilitate analysis it should be a continuous signal. Second, it should have
the interpretation that G(f,) is directly proportional to the power in the
sinusoidal components of the signal with a frequency of f, Hz. Third, this
proportionality should be such that the integral of the power spectral density
over all possible frequencies equals the average signal power denoted P, that is,

P f G G.1)

This last requirement is consistent with the sum of the power in the constituent
waveforms equaling the total average power. In summary, a power spectral
density function G, should be such that

(1) G is a continuous function.

(2) G(f,) is proportional to the power of the constituent sinusoidal signals
with frequency f..

() P==, G(/)dr.

The following subsections give details of a power spectral density function that
satisfies these three conditions or requirements.

3.2.2 Power Spectral Density of a Single Waveform

A natural basis for the power spectral density is the average power of a signal.
For an interval [0, T] the average power of a signal x, by definition, is

B(T) = % J ' Ix(0)? dt (3.2

Assume that x is either piecewise smooth or of bounded variation. It then



DEFINITION 61
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Figure 3.1 Display of power in sinusoidal components of a signal.

follows, from substitution of the Fourier series for the signal x [see Eq. (2.126)]
into this equation, that

_ g X i)
BT =laoP + 0.5 Yl + b= Y laf = Y =23

i=1 i=— i=— o

(3.3)

where the last relationship follows from Eq. (2.137). As per Eq. (2.131), the
power associated with signal components with a frequency of if, Hz, namely,
a; cos(2rif,t) and b, sin(2nif, ), is given by |c_;|* + |¢;|* = (la;)* + |b;]?)/2. Con-
sistent with this result, Figure 3.1 represents one way to display the power in
the sinusoidal components of a single waveform, subject to the interpretation
that the power in the sinusoidal components with a frequency of if, is the sum
of the values defined by the graph at frequencies of —if, and if, Hz.

Note, for a real signal [c ;|*> = |¢;|* and the display is symmetric with respect
to the vertical axis.

A problem with such a display is that the integral of the function defined by
the graph is zero. To overcome this problem an alternative display, based on
the relationship ¢; = X(T, if,)/T, can be constructed as shown in Figure 3.2.

2 2
XT, 0) _ [%]
T Jo G(T.f)
X(T,-26)] ey oo |X(T, 2fo)|2= @2

T fo\o—o o—o/ T A

) ‘_‘F
-~@ ° ° o— f

_3fo _2fo _fo fo 2fo 3fo

Figure 3.2 A power spectral density function. T he shaded areas equal the power associated
with sinusoidal components that have a frequency of 2f, Hz.
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With such a graph the area under the defined function, by construction, equals
the average signal power.

The display in Figure 3.2 is consistent with writing the average power in the
form,

0 : 2
=y FELE

i=—

(3.4)

The interpretation of the graph in Figure 3.2 is as follows: The area under each
pair of levels of the graph associated with the frequencies —if, and if,, equals
the power in the sinusoidal waveforms with a frequency if,. Consistent with this
graph, the power spectral density function, G, can be defined as

_xcin)> L, J

GT ==L i (3)
or, more generally, according to
o =g e (£ ) cwcrcn 0o
With such a definition it follows that
ﬁﬂ=JZGIﬁ# 37

which is the third requirement of a power spectral density function.

Such a power spectral density function G, satisfies requirements (2) and (3)
but is not a continuous function. Obtaining a continuous function for the
power spectral density is discussed in the next subsection.

3.2.3 A Continuous Power Spectral Density Function

The basis for obtaining a continuous waveform for the power spectral density
is Parseval’s relationship (Theorem 2.31):

f|wwm=flmmnﬁ# (3:8)

Scaling both integrals by T yields

ﬂn=%JﬂwWw=JIK%£E#=JIarﬂW (3.9)
0 —

—
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G(T, f) =IX(T, fYIT

G(T.f®----

Figure 3.3 Continuous power spectral density function based on Parseval’s relationship.

and a power spectral density function G, as per the following definition:

DEFINITION: POWER SPECTRAL DENSITY The power spectral density of a signal
x, evaluated on the interval [0, T, is defined according to

(3.10)

This power spectral density function is commonly called the periodogram (see
Gardner, 1988 p. 13) or sample spectral density (Jenkins, 1968 p. 211; Parzen,
1962 p. 109).

The power spectral density function, as defined by Eq. (3.10), has the form
shown in Figure 3.3 and it remains to show that it satisfies the three
requirements of a power spectral density function. To this end note, first, that
the integral of the power spectral density, by construction, equals the total
power. Second, the power spectral density is a continuous function as stated
by the following theorem (Champeney, 1987 p. 60).

THEOREM 3.1. CONTINUITY OF POWER SPECTRAL DENsITY If xe L[0, T] then
the power spectral density function G, defined by Eq. (3.10), is continuous with
respect to f for feR.

Proof. This result can be proved by first proving that X(7, f) is continuous
with respect to feR when xeL[0, T]. The proof is straightforward and is
omitted.

Third, the last requirement of a power spectral density function is that
G(T, f,) should be proportional to the power in the constituent sinusoidal
components that have a frequency of f. Hz. This is not obviously the case,
because a Fourier series decomposition on the interval [0, T] only yields
sinusoids with frequencies f,, 2f,,..., where f, = 1/T. It may well be the case
that f, is not an integer multiple of f,. This issue is discussed in the following
subsection.



64 THE POWER SPECTRAL DENSITY

3.2.3.1 Interpretation of Continuous Power Spectral Density Function
As a Fourier series decomposition of a signal on an interval [0, T] yields
sinusoidal components with frequencies f,, 2f,, .. it is reasonable to conclude
that G(T, f,) should only be interpreted for f, = if,, ie Z*. The problem then
is, how to interpret G(T, if,) for some integer value of i. The interpretation is

given in the following theorem.

THEOREM 3.2. INTERPRETATION OF POWER SPECTRAL DENsITY If xe L*[0, T,
and the power spectral density of x is defined according to

XwHr 1

GT == f=7 G.1)

then the average power in the sinusoidal components of x with a frequency i
and on the interval [0, T], is given by

o’

le_il* + le:il* = LIG(T —if) + GTif,)]  ieZ*

(3.12)
leol? = £,G(T,0)  i=0
Proof. Using the relationship ¢; = X(T, if,)/ T a step approximation to G can
be defined, as shown in Figure 3.4 and consistent with that shown in Figure
3.2. With such a step approximation the area under each pair of levels with
width f, centered at +if, and with respective heights |X(T, —if,)|*/T and
X(T, if,)*/T, equals |c_;|> + |c;]?>, and hence, the power in the sinusoidal
components with a frequency of if, Hz.
This theorem states that the power in the mean of a signal is given by
f,G(T, 0). To confirm this, note that the mean g, of the signal x on [0, T] is
given by

u(T) = % JTx(t) dt = X(? 0 (3.13)

0

2
Gz, )= XL
2

foo g oo e, XCT, i) e
<_>’7 [ / | ) f
e

- - f
. _ifo . fx= o
-+ 1)f, " -G-1), (i-1Yf, i+ 1Y,

Figure 3.4 Step approximation to power spectral density function. The area under the two
levels associated with f= — if, and f = if, equals the power in the sinusoidal components of the
signal with a frequency of if, Hz.
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and this implies the following relationships:

X(T; 0)? )
HT)' = leol> = £,G(T,0)  (3.14)

- 1 (7T
P, (T) = ?J lel* dt = | |* =
0
3.2.3.2 Power as Area Under the Power Spectral Density Graph The
power in the sinusoidal components with a frequency if, can be approximated
by the integral

ifotfol2

—ifotfol2
o2 + le? J T+ J G(T, f)df
—ifo— fol2 ifo—fol2 (3.15)

ifot fol2
=2 J G(T. f)df
ifo fol2

i

where the last equality in this equation only applies for real signals. How
accurate this approximation is depends on the nature of the signal under
consideration, and hence, G. The following example illustrates this point.

3.2.3.3 Example— Power Spectral Density of a Sinusoid Consider a
sinusoidal signal A sin(27f,f) on the interval [0, T]. From Eq. (3.10) it follows,
after standard analysis, that the power spectral density can be written as

G(T, f) = AzT {sincz |:N <J{ - 1>:| + sinc? |:N <}F + 1>:|
— 2sinc [N <§ — lﬂ sinc [N <§ + 1>}} (3.16)

where T = NT, with T, = 1/f,. This power spectral density is shown in Figure
3.5 for the case where A =1, T = 1/f, = 1, and f, = 4. Note that G(T, if,) =0
as expected, except for the case when if, = f.. However, it is clearly evident
from this figure that

ifo+fol2 i=1,23,5,6,...

|2 12 =22 =0+£2
il + Il =21l =0 # f P

ifo—fol2

G(T. f)df {

(3.17)

3.3 PROPERTIES

The following subsections detail basic properties of the defined power spectral
density function.
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G(T.f)
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Figure 3.5 Power speciral density of a sinusoid with a frequency of 4 Hz, an amplitude of
unity, and evaluated on a 1 sec interval (f, = 1).

3.3.1 Symmetry in Power Spectral Density

For the case where x is real it follows that G is an even function with respect
to f, that is, G(T, — f) = G(T, f). This result follows from Eq. (2.136) which
states:

X(T —f) = XXT, f)

3.3.2 Resolution in Power Spectral Density

For a measurement interval of T seconds, the frequency resolution in the
power spectral density is f, = 1/T. Clearly, as T increases the resolution
increases. In fact, for any resolution Af in frequency, there exists an interval
[0, T], where T = 1/Af, such that the rectangular areas of width Af, centered
at the frequencies — f, and f, and with respective heights of G(T, —f,) and
G(T, f,), equal the power in the sinusoidal components of the signal with a
frequency f,. The assumption here is that the frequency f, is some integer
multiple of the resolution Af. This result is illustrated in Figure 3.4 provided f,
is interpreted as Af. Note that, in general, G(T, f) will vary with T.

3.3.3 Integrability of Power Spectral Density

An important property of the power spectral density function G, is that, in
general, it is integrable.
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THEOREM 3.3. INTEGRABILITY OF POWER SPECTRAL DENsITY If xeL?[0, T]
then Ge L.

Proof. Given xe L?[0, T] it follows from Parseval’s relationship that

r X (T, )P df

is finite which implies the integrability of G.

3.3.4 Power Spectral Density on Infinite Interval

Taking the limit as T tends toward infinity of the average power on the interval
[0, T] yields a definition for the average signal power on the interval (0, 00),
denoted P, that is,

= lim . f Ix(t)? dt = lim r Mdf: lim r G(T, f) df

Tﬂoo T—-w J—x T->w J—x

(3.18)

If it is possible to interchange the order of integration and limit operations in
the last equation, then P_ can be rewritten as

P, = lim f G(T, f)df = f " lim G(T; f)df (.19)

Tow J— —oo T oo

and a power spectral density function G, for the interval [0, co] can be
defined according to the following definition.

DEFINITION: POWER SPECTRAL DENSITY ON INFINITE INTERVAL

G.(f) = lim G(T, f) (3.20)

T-x
Note, the standard results that dictate whether it is possible to interchange the
order of integration and limit operations are the Dominated and Monotone
convergence theorems (Theorems 2.23 and 2.24).
3.4 RANDOM PROCESSES

Consider a random process X with ensemble

Ey = {x:S, x [0,T]— C} (3.21)



68 THE POWER SPECTRAL DENSITY

and associated signal probabilities

P[x(i, t)] = P[x;(t)] = p; SycZ* ntable case
[x(, )] [x(t)] = p; X cou (22)

PLx(A, D setino+and = fx(4,) da Sy R  uncountable case

The average power in an individual waveform from the ensemble evaluated
over the interval [0, T'] is

PULT) = J Ix(A, )2 dt (3.23)

For the countable case it is convenient to use a subscript rather than an
argument according to x(i, T) = x,(T) and P(i, T) = P,(T).

The probabilities defined in Eq. (3.22) are the “natural” weighting factor to
use in determining the average signal power according to

0 1 T
pP(T) =Y pi?[ |x;(t)*> dt countable case  (3.24)
i=1 0

[\/]q

P(T) =

i=1

P(T) = J " PO T )
= Jw [; JT [x(4, 1)[? dt} fx(4) dA uncountable case (3.25)
- 0

Provided Parseval’s relationship can be applied, and the order of summa-
tion/integration and integration can be interchanged, then the average signal
power can be written as

P(T) = JL % i AX(T, 1P df = jL G(T, f)df countable case (3.26)

where

T

T
X (T, f) :J x(e 2 dt  X(A, T, f) :J (4, e 2t dt (3.28)
0

0

and G: R?> > R is the power spectral density function for the random process
X, on the interval [0, T], and defined according to:
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DEFINITION: POWER SPECTRAL DENSITY ON FINITE INTERVAL

1z -
T Y pilXAT NP =Y p,GAT, f) countable case
i=1 i=1

(T f)= {

T J X4, T, f)*fyx(2) di —Jﬂ G(4, T, f) fx(4) dA uncountable case

(3.29)

where G,(T, f) and G(4, T, f), respectively, are the power spectral densities for
the ith and Ath signals in the countable and uncountable ensembles.

Clearly, the power spectral density of a random process is the weighted
average of the power spectral density of individual signals in the ensemble.

3.4.1 Power Spectral Density on Infinite Interval

The countable case is considered here. The analysis for the uncountable case
follows in an analogous manner.

The average power of the random process on the interval [0, co], denoted
P_, by definition, is the weighted sum of the individual signal powers
comprising the random process X as T tends towards infinity, that is,

Z lim P(T p; lim J |x;()]? dt (3.30)
i=1 T—w Tﬂx

By using Parseval’s relationship, interchanging the order of the summation and
limit operations, and then interchanging the order of the summation and
integration, the average power can be written according to

P, = lim J i AXA(T NP df = 11m J G(T. fydf  (3.31)

If it is possible to interchange the order of the limit and integral operations in
this last equation, then the average power can be written as

Px=r lim G(T, f)df = J G, (Ndf (3.32)

—w I'»w

where G : R — R is the power spectral density for the random process on the
infinite interval (0, o) and defined as:

DEFINITION: POWER SPECTRAL DENSITY ON INFINITE INTERVAL

G, (f) = lim G(T, f) (3.33)

T-x
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3.4.2 Example—PSD of Binary Digital Random Process

Consider a binary digital random process X, defined by either a pulse p or its
negative —p in each interval of D sec. On the interval [0, ND] the ensemble
for this random process is

N
EX = {x(’yla"'a’yNat) = z ykp(t - (k - ]-)D)’ Vke{_l’ 1}} (334)

k=1

One of the 2" possible waveforms in this ensemble is shown in Figure 3.6 for
the case of a rectangular pulse function of duration D/2 sec. For the case where
the pulses are independent from one interval of D sec to the next, the
probability of a signal from the ensemble is

PIX(y1sevvsyno )] = Plyyso oo ynd = Py dPLy,] - Pyl (335

For the case where the probability of a pulse p is equal to the probability of
—p, that is, P[y, = 1] = P[y, = —1] = 0.5, then the probability of any signal
from the ensemble is 1/2". It follows from the definition of the power spectral
density function, that the power spectral density of X, evaluated on the interval
[0, ND], is given by

1 1
Gx(ND, f) = 5% L ox X0, e NDOP e {1} (336)

To evaluate the power spectral density, the assumption is made that the pulse
function is zero outside the interval [0, D]. With this assumption, first note that

N
Z ,yk|P(f)|2e7j21rf(i7l)D_fejan(k— 1)Df
k=1

Il
M=

|X(71='-~5’VN=ND3 f)|2

"
—-

i

z

[P(f

”MZ

=

Il
=

X P BN (3.37)

k#i

x(l’ _1’ _1’ 1’ _1, 1, 1, _1’ t)

p()
D 2D 4D 8D
o o o © o o o o -!
-1 O 0O o 6D o o

Figure 3.6 One waveform from a binary digital random process on the interval [0, 8D].
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where P is the Fourier transform of p. Next, note that substitution of Eq. (3.37)
into Eq. (3.36) and interchanging the order of summation yields, for the second
term:

Z

k=
k#i

ND2

”MZ

T RIS YD YA (3.39)
71 TN

This summation is zero as y;€ { + 1} and y, is independent of

v, fori # k. Hence,
Gx(ND, f) = rlP(f)I? (3.39)

where, r = 1/D. Note that the power spectral density in independent of the
interval being considered. This is due to the fact that the pulse function is zero

outside the interval [0, D]. The power spectral density is plotted in Figure 3.7
for the case where the pulse function is rectangular, that is

1 0<t<W
p(t)={0

P(f) = W sine( f W)e ™ im/W
elsewhere

0<W<D (3.40)
3.4.3 Miscellaneous Issues

3.4.3.1 Nonstationary Random Processes The definition for the power
spectral density [see Eq. (3.29)] is valid for single waveforms, stationary
random processes, and nonstationary random processes, as it is based on

Gx(ND, f) W=D2 W=D
1 /
0.5 // -
0 / \
AN
\ \\
0.05 ‘ \K\\
[\\
0.02
R\
0.01
[ AR
0.01 005 0.1 05 1

Frequency (Hz)
Figure 3.7 Power spectral density of binary digital random process for the case where D = 1
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average signal power over the interval [0, T]. However, care needs to be taken
when interpreting the power spectral density when the random process is
nonstationary.

3.4.3.2 Single-Sided Power Spectral Density When x is real, it follows
from Eq. (2.136) that G is an even function with respect to f, that is,

G(T, — f) = G(T, f). This leads some authors to define a single-sided power
spectral density function according to

YR A (34)

Such a definition is not used in subsequent analysis.

3.4.3.3 Discrete Approximation for the Uncountable Case In analysis,

it is often convenient to replace the continuous random variable characterizing

the waveforms in the ensemble by N outcomes of a discrete random variable.

To this end, consider the random process X defined by the ensemble
Ey={x:R x[0,T] > C} (3.42)

where

P[x(/l, [)|).e[ﬂ.o,).o+d).]] = fX(;'l)) di (343)

Next, consider a random process X, with a finite number of outcomes
defined by the ensemble

ie{l,...,N}
=X, 44
Ey, {VAI [0, T]->C XAI(I) (1) /L-EL} (3.44)

where {I,}}, is a partition of R and

Plxy]=pi= J Jx(4) d2 (3.45)

The power spectral density of X, can then be defined according to

_ 1L
-7

M=

GAT. f) il X4 (T )P (3.46)

1

The following theorem details when G, approximates G.
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THEOREM 3.4. DISCRETE APPROXIMATION TO UNCOUNTABLE RANDOM PROCESS
Assume T is fixed, sup{|X(4, T, f)|* AR, fe R} is finite, and that all waveforms
in the uncountable ensemble, Ey, are Lebesgue integrable on [0, T]. Further,
assume that the signal defined by y()) = X(4, t)|, ¢ xea Nas bounded variation over
all finite intervals of rhefo; m [ — ] that is, 3k (r) > 0, such that for all finite
N, for all partitions {I1,}1-, of [ — 4, 4,1, and with i€, it is the case that

0’ 0

0’ 0

Z IX(Zi4 15 1) = x(4;, D < K, (1) (3.47)

In addition, assume the bounded variation holds uniformly for t€[0, T, that is,
k(t) is independent of t. It then follows that |G(T, f) — G (T, f)|, for T and f
fixed, can be made arbitrarily small by an appropriate partition {I,\"_, of R.

Proof. The proof is given in Appendix 1.

3.5 EXISTENCE CRITERIA

Sufficient conditions for the validity of the definitions of G and G, respec-
tively, defined by Egs. (3.29) and (3.33), are stated in the following theorem.

THEOREM 3.5. CONDITIONS FOR EXISTENCE OF POWER SPECTRAL DENSITY

(a) Finite Interval: If xeL*[0, T] for each signal in the ensemble and the
average power, defined by Eqs. (3.24) and (3.25) is finite, then the power spectral
density function G, defined by Eq. (3.29), is valid.

The average power is guaranteed to be finite if there exists constants o,k
1,> 0, such that

02

k,
Vi>1I, pP(T)<

i - countable case

(3.48)

k,
VAl >1, P, T)fy(d) <=2 |/1|1+1 uncountable case

If sup{P(T).ieZ"} for the countable case and sup{P(i, T): iR} for the
uncountable case are finite, then the average power is guaranteed to be finite.
Note, it can be the case that lim,_, , P,(T) is infinite while the average power
P(T) is finite.

(b) Infinite Interval. The power spectral density over the infinite interval G,
as defined by Eq. (3.33), is valid if first, xe L*[0, T] for each signal in the
ensemble and for all TeR™. Second, for the countable case, there exists a
sequence {Q,;:ie Z*} such that p,P,(T) < Q, for every icZ*, and TeR™ and
32, Q, is finite. For the uncountable case, there exists a function Q € L, such
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that P(., T) fy(7) < Q(A) for all TeR*. Third, there exists a function HeL,
such that G(T, f) < H(f) for all TeR™ and all f.

A less general, but simpler statement of conditions for the existence of G, is
First, xe L?[0, T] for each signal in the ensemble and for all Te R*. Second, for
the countable case sup{P,(T).ie Z*, TeR"} is finite and for the uncountable
case sup{P(i, T): ieR, TeR"} is finite. Third, there exists a function HeL,
such that G(T, f) < H(f) for all fand all TeR™.

Proof. The proof of these conditions is given in Appendix 2.

Note, these are sufficient not necessary conditions.

3.5.1 Examples where Conditions are Violated

Three examples where it is not possible to find a function He L, such that
G(T, f) < H(f) for all f and all T are, (a) true 1/f noise that has a power
spectral density function on the interval [0, T] of the form

k, T f<1/T
kl)

G(T. 1) ={ 17| YT« f<T (3.49)
% f>T>1

and lim,_  G(T, f) = k,/|f], (b) true white noise described by G(T, f) = k
independent of T. Both types of noise are abstractions and inconsistent with
the nature of the physical universe. For example, a true white noise power
spectral density is consistent with infinite power on all measurement intervals.
The increasing higher level for the power spectral density of a true 1/f
noise process is consistent with infinite power on an infinite time interval. (c)
if G(T, f) has an impulsive component at a frequency f, then it is not possible
to find a function He L, such that G(T, f,) < H(f,) as T — co. Such impulsive
components arise when signals in the underlying random process have a
periodic component. This is common in random processes encountered in
engineering and is discussed in the following section.

3.6 IMPULSIVE CASE

Many random processes encountered in engineering are such that their power
spectral density, evaluated on the interval [0, T], contain a countable number
of components that become impulsive on a set of zero measure as T ap-
proaches infinity. These components arise because of periodic components in
signals comprising the random process. This case requires a distinct formula-
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tion for the power spectral density on the infinite interval as is outlined below.
First, however, conditions for the power spectral density to remain bounded
are given.

3.6.1 Conditions for Bounded Power Spectral Density

For the case of an infinite and countable ensemble, the power spectral density
of the ith signal G;, evaluated on a fixed interval [0, T], may be bounded, but
it might be the case that lim;_,, G,(T, f) becomes unbounded at specific values
of f. The usual case with T fixed, however, is that the power spectral density
of individual signals remains bounded for all signals in the ensemble, that is,
sup{G{(T, f):ieZ*, feR} < co. This result is consistent with the average
power in all signals in the ensemble being finite, as is stated in the following

theorem.

THEOREM 3.6. BOUNDED POWER IMPLIES BOUNDED POWER SPECTRAL DENSITY
If, over a fixed interval [0, T, the random process X is characterized by the
ensemble

Sy € Z* countable case
Sy &R  uncountable case

E, = {x: Sy x [0, T] >C } (3.50)

and the average signal energy and power remain bounded on the ensemble, that is,

T
sup {J |x(4, 1)) dt: AGSX} < (3.51)

0

then, the magnitude of individual signal Fourier transforms and individual signal
power spectral densities remain bounded on the ensemble, that is,
sup{|X(4, T, f)|: €Sy, feR} < w0 (3.52)
sup{G(4, T, f): AeSy, feR} < © (3.53)
With individual power spectral densities being bounded the average power
spectral density is bounded.

Proof. First, according to Theorem 2.13, it is the case that finite energy
implies absolute integrability, that is,

T T
J Ix(4, )2 dt < o0 = J Ix(4, t)] dt < oo (3.54)

0 0

Second, absolute integrability implies the magnitude of the Fourier transform
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is bounded for all frequencies as

IX(4, T/ =

T
f x(4, t)e 2™t dt

0

T

< J |x(4, 1) dt < oo feR (3.55)
0

Third, with the worst case of |x(4, t)] > 1 it is the case that

JT Ix(4, 02 dt > JT Ix(, O dt = |X(4, T, f)| (3.56)
0 0

For the case where |x(4, t)] < 1, it is the case that |X(4, T, f)| is bounded by T.
Hence, boundedness of energy implies boundedness of the Fourier transform,
and hence, the power spectral density. The required result then follows.

3.6.2 Impulsive Power Spectral Density

Denoting the nonimpulsive or bounded component of G(T, f) as Gg(T, f) and the
impulsive component as G,(T, f), the power spectral density can be written as

G(T, f) = Gy(T. f) + G((T, f) (3.57)
where
fim G,(T: ) = ¥ ki — f) .
Gp(f) = lim Gg(T, f) GgeL, Gy(f) < kg
T- o

It then follows that the average power, assumed to be finite, is such that

P, = lim J T GT A= | lim Gy(T f)df + lim J G(T. f) df

T-oow J—w —w T-w T-ow J—x

(3.59)
but

P, # f lim [Gy(T. f) + Gi(T. f)] df
—w T—w

(3.60)

el

_ f lim Gy(T, f)df = f Gy(f)df

—ow T—w

as per Eq. (2.148). Hence, it is not possible to define a power spectral density
for the infinite interval according to

G, (f) = lim G(T. f) = lim [Gy(T. f) + G(T; f)] (3.61)

T— o T-
which satisfies the requirement that the integral of the power spectral density
equal the average power. However, for analytical convenience it is useful to
define the power spectral density for the case where the power spectrum has
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impulsive components, according to Eq. (3.61). Because of the prevalence of
impulsive components in the power spectral density, it is convenient to state
this result through a formal definition.

DEeFINITION:  POWER  SPECTRAL DENSITY — IMPULSIVE CASE AND INFINITE
INTERVAL For the case where G(T, f) is impulsive at a countable number of
frequencies, but where the average power associated with all the impulsive
components is finite, the power spectral density on the infinite interval [0, co]
is defined as:

G, (f) = lim G(T, f) = lim [Gy(T, f) + G((T; f)] (3.62)

T—x T—-

and the average power is given by

P, :J lim Gu(T. f)df + lim J G(T. f)df (3.63)
—w T—>wx T-oo J—x
3.6.3 Integrated Spectrum

To overcome the inconsistencies inherent in the definition for the power
spectral density, when G(T, f) becomes impulsive as T — oo, a spectral dis-
tribution function F is defined according to (Champeney, 1987 ch. 11; Parzen,
1962 p. 110)

F(f) = lim ff G(T./)d;  F(—o) =0 (3.64)

T-wdJ—w

Clearly, the average power over (0, o) is
P, = F(x) (3.65)

The integrated spectrum of a power spectral density function G(7, f) that
contains an “impulsive” component is illustrated in Figure 3.8.

From the definition of the integrated spectrum, it follows that the average
power due to signal components with frequencies between f; and f, is given by

F(f3) — F(f1) (3.66)

It is then possible to define the power spectral density G, according to

4 F(f) differentiable at f
G, (f)={¥ (3.67)

[F(f,") — F(f, Jo(f — f,)  not differentiable at £,
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| G(T, Mdr

—o0

!
fo
F(f) o
° I
e Io—» J
' f

Figure 3.8 lllustration of the integrated spectral function for the case where G(T, f) has an
“impulsive” component.

Again the average power is not equal to the integral of G_(f) but equal to
F(o0).

For the case where there are no impulses in G(T, f) as T — o0, and F is
differentiable, such that

S S
F(f) = J lim G(T, /) d),:J G (2) di (3.68)
it follows that
. d
G.(f)= i F(f) (3.69)

3.7 POWER SPECTRAL DENSITY VIA AUTOCORRELATION

It is a common starting point to define the power spectral density as the
Fourier transform of the autocorrelation function [see, for example, Cham-
peney (1987 p. 102), Papoulis (2002 p. 408), and Thomas (1969 p. 97)]. In this
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section, the equivalence between this approach and the approach outlined so
far, is given. The equivalence is summarized by the Wiener—Khintchine
relations which are discussed. Appropriate references for this section are
Jenkins (1968 pp. 213f), Peebles (1993 pp. 206f), Priestley (1981 pp. 210f), and
Thomas (1969 pp. 96f).

3.7.1 Definition of the Autocorrelation Function

3.7.1.1 Definition of Autocorrelation Function—Single Waveform Case
With x: R — C, the autocorrelation function of x on [0, T] is defined according to

x(t)x*(t — 1) te[0,T],t —7€[0,T]

0 elsewhere (.70

R(T t,7) ={

The autocorrelation function R is nonzero on the region of the t,7 plane as
shown in Figure 3.9.

To interpret the autocorrelation function, consider a waveform x and its
shifted counterpart, as shown in Figure 3.10. For a fixed time ¢, the shift ©
required before there is a significant change between x(¢r) and x*(t — 1), and
hence, x(t)x*(t — 1), is an indication of the interval over which the signal is
correlated at time ¢.

An average measure of the correlation time of the signal can be obtained
through the time averaged autocorrelation function defined, according to

1 T+t
TJ R(T, t,7)dt <0
RTo={ "° (.71)

1 T
T,fr R(T, t,7) dt >0

where the integration limits are illustrated in Figure 3.9.

t=1+T \
N

-T T

Figure 3.9 Region where autocorrelation function is nonzero.
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x()

~Ne

x/(t—\r)\/\/\qr<0 >0

-~ @ L @ L t
T T T+t T T+

Figure 3.10 A waveform and its shifted counterpart (real case).

3.7.1.2 Notation The time averaged autocorrelation function, as defined by
Eq. (3.71), is called the sample autocorrelation function (Parzen, 1962 p. 109)
or the correlogram (Gardner, 1988 p. 13).

3.7.1.3 Definition of Autocorrelation Function—Random Process
Case An autocorrelation function and a time averaged autocorrelation
function can be defined for a random process via a weighted average. Consider
a random process X defined by the countable ensemble E,

Ey={x:R->C icZ"} (3.72)
and a probability space, Py = {p,: p, = P[x;]}. Using the “natural” weighting

of the waveform probabilities, the autocorrelation function and the time
averaged autocorrelation function can be defined, respectively, according to

R(T 1) =Y pR(T1,1) = Z pixiOx¥t — 1) x,€Ey, p;ePy (3.73)

i=1

2 R(T 1) pePy (3.74)
where
1 T+t
TJ R(T; t,7)dt 1< 0,R(T, t,7) = x;(t)xF(t — 1)
_ 0
R(To = " (379
TJ R(T,t,7)dt > 0,R(T, t,7) = x;(t)xF(t — 1)
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The following theorem formally states conditions for the validity of the
definition for R(T, 7).

THEOREM 3.7. EXISTENCE OF AUTOCORRELATION FUNCTION — Assume T is fixed.
If x,eL’[0,T] for all x,eEy and sup{|R,(T,7):ieZ*,te[—T, T]} is finite,
then R(T,7) e L[—T, T].

Proof. Since x;€ L*[0, T], it follows that for t fixed, x;(t)x *(t — 1) is inte-
grable over, for example, [0, T + t] when —T < 7 < 0. This follows from the
Schwarz inequality (Theorem 2.15), according to

T+ T+t T+
J X;(Ox ¥t — 1) dr < /J |x; ()% dt /J |x;(t — 7)|? dt —T<1<0
0 0 0

(3.76)

Hence, R,(T; 7) is finite forieZ*. If sup{|[R(T,7):ieZ*,te[—- T, T]} is finite,
the summation X2, p,R,(T, 1) = R(T, 7) is also finite. Boundedness of R(T; 1)
for te[—T, T] implies R(T, t)e L[ — T, T] as required.

3.7.2 Power Spectral Density — Autocorrelation Relationship

The following theorem states the relationship between the time averaged
autocorrelation function and the power spectral density. This relationship
yields an alternative definition for the power spectral density function.

THEOREM 3.8. POWER SPECTRAL DENSITY—-AUTOCORRELATION RELATIONSHIP
If x,e L*[0, T, then the power spectral density of the ith waveform of a random
process is given by

G(Tf) =——F—

|Xi(7;:f)|2 _ JT RA(T, v)e 2 dz B.77)

-
If x;e*[0,T] for all x,;eEy and sup{|R(T,7):ieZ*,1e[—T,T]} is finite,

then the power spectral density of the random process is given by the Fourier
transform of the averaged autocorrelation function according to

G(T, f) = f ' R(T, t)e 2" dr (3.78)

=T

This definition applies for both a single waveform and a random process, provided
R is interpreted appropriately.

Proof. The proof of this result is given in Appendix 3.
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From Eq. (3.78) it follows, according to Eq. (2.144), when R is continuous
and Ge L, that R and G are a Fourier transform pair, that is,

R(T,7) = f G(T, f)e*™df (3.79)

— 0

Finite average power implies Ge L, and as R is defined in terms of an integral,
it is continuous except when the underlying signals have impulsive compo-
nents.

3.7.3 Autocorrelation Function on Infinite Interval

By definition the autocorrelation function on the infinite interval is

R (1) = lim R(T; 1) (3.80)

T-x

This definition applies to both a single waveform and a random process
provided R is interpreted appropriately.

For the nonimpulsive case, where lim;_ . G(T, f) is bounded for all f, it
follows that

G, (f) = lim G(T, f) = lim JT R(T, 1)e 2"/ dg 3.81)

T—x T—=ow J—-T

To relate G, to R, it is necessary to interchange the limit and integration
operations in this equation. To achieve this, note, first, that the assumptions
given in Theorem 3.7 imply Re L[ — T, T]. Second, if there exists a function
QeL such that R(T, t) < Q(t) for all T, then from the dominated convergence
theorem (Theorem 2.24) it follows that the order of limit and integral can be
interchanged to yield

G, (f) = J lim R(T, e 2™ dv = J R (e P dr  (3.82)

—w T—=w —

That is, the power spectral density function G, is the Fourier transform of the
autocorrelation function R . Provided the average power is finite, consistent
with G €L, the integral of G equals the average power [i.e., there are no
impulsive components in G(7, f)], and R, is a continuous function, it follows
that R, is the inverse Fourier transform of G, according to Eq. (2.144), that is,

o0

Rx(f):fx' G, (1)e 2™ dr Gl(f):j R, (t)e 277 dr  (3.83)

-0 -0

In summary:
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THEOREM 3.9. WIENER—KHINTCHINE RELATIONS— POPULAR DEFINITION Assume
for all TeR™ it is the case that x,e L*[0, T] for all x,e Ey and

sup{|[R(T,7): ieZ*,te[ T, T]}

is finite. Further, assume that G(T, f) is nonimpulsive, such that lim,_, . G(T, f)
is finite for all f, G, € L, there exists a function Q € L such that R(T, t) < Q(t) for
all T, and R is a continuous function. With these assumptions, it follows that the
Fourier transform relationships defined by Eq. (3.83) are valid.

Commonly, these Fourier transform relationships are called the Wiener—
Khintchine relations (Champeney, 1987 p. 104; Parzen, 1962 p. 110; Peebles,
1993 p. 207).

3.7.3.1 Impuisive Case— Formal Definition of Wiener-Khintchine
Relations The general case is where G may contain impulsive components,
so that it is not possible to interchange the order of limit and integration in
the following equation:

R (1) = lim R(T,7) = lim r G(T, f)e>™ ' df (3.84)

T—w T—oo J —©

For this case, a spectral distribution function, as defined in Eq. (3.64), is used,
that is,

F(f) = lim f" G(T, /) d). (3.85)

T—ow J—w

Note, F(— ) = 0, P, = F(o0), and F is a monotonically increasing function.

THEOREM 3.10. WIENER—KHINTCHINE THEOREM — FORMAL DEFINITION The
spectral theorem for the autocorrelation function is (Grimmett, 1992 p. 353;
Parzen, 1962 p. 110; Champeney, 1987 p. 108)

R, (1) = JX 2% dF(f) (3.86)

— 0

where the integral is a Riemann—Stieltjes integral (Apostol, 1974 ch 7; Parzen,
1960 p. 233). This result is a formal statement of the Wiener— K hintchine theorem
(Priestley, 1981 p. 218).

Proof. The proof is given in Appendix 4.



84 THE POWER SPECTRAL DENSITY
3.7.3.2 Example Consider the case where G is impulsive, such that

lim G(T, f) = (f + f,) +o(f — 1) (3.87)

T-x

whereupon, it follows that

0 f<—/
F(f)=41  —f,<f</ (3.88)
2 f,<f

and

R, (1) = J Ei dE(f) = e 2™t 4 @i2mlt = D cos(2nf,r)  (3.89)

— 0

APPENDIX 1: PROOF OF THEOREM 3.4

Assume T is fixed. By definition

1 e N
IG(L ) =GAT /) =+ U S(DX@, T f)? di— '_21 1X . (T N)I? L Jx(4) da

L[~ , , ,
=7 U SHDOXG, T )1 — 1 Xs(4 T P] di‘
where X¢(4, T, f) is a step approximation, with respect to 4, to X(4, T, f)
defined, when iel;, according to X¢(4, T, f) = X 4(T, f) = X(4;, T, f).

When X2, (T) = sup{|X(., T, f)}*: ieR, feR} is finite and fyeL, it fol-

lows, according to Theorem 2.11, that Ve > 0 there exists a 4, > 0, such that

f L OXGL TP d <o f S DIXCG, TP di<e (390)

Hence,

(GUT. )~ Gu(T: f) < 1

J SyWLIX G T = 1Xs(, TNIPTdA + 22
i

< ‘f'}“ J XGNP — X5 T )P d2 + 26

(3.91)
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where f,., is the maximum value of fX If I X(4, T, f)* is of bounded variation
with respect to 4 over the interval [—4,, 4,], then the required result follows
directly from Theorem 2.19. To prove such bounded variation, consider the
summation:

N—-1

S: z ||X(/1i+197:f)|2 |X(/L’ ’f| | /za /IL+1€[ u!;u]
i=1
= i [|X(/L+1’ T;fl _|X(/1n ’f|:||:|X(/11+17 f)' +|X(/n ’f)|:]| (’; 92)
i=1
N-1
<2XlT) Y 1IXGir o THI = 1X(20 T |
i=1

Using the triangle inequality and the definition for the Fourier transform
yields:

N—-1
S < 2Xmax(T) Z |X(;'i+l>7;f) - X(/la af
i=1

fr [x(Ais 15 1) — x(A;,1)]e 727" dt (3.93)

0

X, (T) Y

i=1
TN-1

< 2Xmax(T) Z |x()“i+ 1> [) - x(iia T)' dT
0 i=1

The assumption of bounded variation of x(4, t), with respect to 4, over all finite
intervals implies there exists a constant k,, that is independent of N, such that

Z |‘V(/z+19 [) ( L9[)| () (394)

Uniform bounded variation with respect to t implies that k() is independent
of t. Hence,

S <2Tk, X, (T) (3.95)

which proves bounded variation of |X(4, T, f)|?, with respect to 4, as required.

APPENDIX 2: PROOF OF THEOREM 3.5

The proof is given for the countable case; the proof for the uncountable case
follows in an analogous manner.
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A.2.1 Existence of PSD —Finite Case

The mathematical operations required for the definition of the power spectral
density function, as per Eq. (3.29), are as follows:

1_’(T)=§pit Zpl Jlx(tlzdt Zpl J [ X{(T NI df
=ff S pIX(T N = JfAGIﬂW" (3.96)

There are three requirements that must be met before the mathematical
operations implicit in this sequence of equations are valid.

(a) The average power P(T) must be finite, as is assumed by use of the
equality signs in these equations; one cannot have equality between infinite
numbers because an infinite number is larger than any other number. Finite-
ness of P(T) implies the individual signal powers, P,(T) must be finite. This is
guaranteed from Eq. (3.23), if x,€ L2[0, T]. Finiteness of P(T) also implies that
X, p;P,(T) must converge as N increases without bound. Standard results,
such as the comparison test, [see, for example, Knopp (1956 p. 52f)] give
sufficient conditions for such convergence, that is,

J¢>0,3k,>0,3,>0 st VYi>I, pPy(

(3.97)

If sup{P/(T):ieZ"} is finite, then convergence of the series is guaranteed.
Note, it can be the case that lim,,  P,(T) is infinite, while the average power
P(T) is finite.

(b) Parseval’s relationship must hold. This is guaranteed, as per Theorem
2.31, if x;e L*[0, T].

(c) The order of summation and integration, as per the following equation,
must be interchangeable:

me wmmww=f S pIX(T P df (3.98)
i=1 — —owi=1
that is,
e N 0 N
lim Y. il X{(T, f)?df = lim Y pIX(T NIPdf  (3.99)
N-ow J—-—wi=1 —w N->wi=1

This interchange is guaranteed if x;e L?[0, T, and the average power P(T) is
finite, as the following argument demonstrates. First, with x;eL?[0, T]
for all ieZ* and with P(T) finite, it follows that X2, p, [*, |X (T, /) df
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is finite. Thus:

o0

Z piJv IX(T 12 df > ) Pif IX(T P df = Y. IX(T P df
i=1 — o

i=1 —wi=1

(3.100)

The interchange of summation and integration in this equation is possible
because all the terms within the summation are positive, and a finite sum of
finite integrals equals the integral of the finite sum. Second, define F: R* - R
according to

F(N. T, f) = ¥, pilXi(T, f)? (3.101)

i=1

Now, F is a monotonically increasing function with respect to N. Further, from
Eq. (3.100) [, F(N, T, f)df is bounded above. Hence, according to the
monotone convergence theorem (Theorem 2.23), it follows that

lim J FN, T, f) df = J " lim FN, T f)df (3.102)

N-owdJ—-x —o N=>w

which is the required result.

In summary: If x;e L*[0, T] for all i, and the average power on the interval
[0, T] is finite, then the power spectral density function G, defined by Eq.
(3.29), is valid.

A.2.2 Existence of PSD—Infinite Case

The power spectral density G, depends on G being validly defined on all
intervals of the form [0, T, and that the sequence of mathematical operations,
defined by the following equations, are valid:

P, Z lim p,P(T) = lim Z piP(T) = lim Z Pip J |x;(t)|? dt

i=1T—ow T—-wi=1 T—-owi=1

R I I T

T—-wi=1 - T-x
= lim J G(T, f)df = J lim G(T, f)df (3.103)
T-w J—x —w T—-w

By comparing Eq. (3.103) with Eq. (3.96), it follows, in addition to the
requirements for the finite case, that, first, the limit and summation operations
in the first line of this equation need to be interchangeable. Second, the limit
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and integral operations in the third line of this equation need to be inter-
changeable. These two additional requirements are discussed below.
Interchange of the limit and summation operations is valid if dominated
convergence for the series with terms p,P,(T) can be established. Thus, if there
exists a sequence {Q;:ie Z"}, such that p,P,(T) < Q, for every i and for every
finite value of T and X;2, Q; converges, then the interchange is valid. For
example, if independent of T, there exists constants a, k,, I, > 0 such that

0’ "o

_ k
Vi>1I, p,P(T)<-2 (3.104)

i1+a

then the interchange is valid. If sup{P,(T):ieZ", TeR"} is finite, then again
the interchange is valid.
Second, the limit and integral operations can be interchanged according to

lim r GT. f)df = | lim G(T. f)df (3.105)

T J — —o0 T

if either the dominated or monotone convergence theorems (Theorems 2.23
and 2.24) can be applied. For example, if there exists a function He€ L, such
that G(T, f) < H(f) for all f and all T, then from the dominated convergence
theorem the required interchange is valid.

In summary: If x,e L*[0, T] for ieZ* and TeR™*, there exists a sequence
{Q;:ie Z"} such that p,P(T) < Q, forieZ* and TeR™, X2, Q, is finite, and
there exists a function H e L, such that G(T, f) < H(f) for all TeR™ and all f,
then G, defined by Eq. (3.33) is valid.

APPENDIX 3: PROOF OF THEOREM 3.8
Consider the integral I, defined as

0 [1 (r+s
T J |:Tj xi(l‘)x;k([ —7) dl]ejznftdt <0
_ » i
]

R,(T, t)e /™" dr =

_r 1 (T .
J [j x(O)x ¥t — 1) dr] e J2nST dr >0
o T T

(3.106)

where the second equivalence arises from Eq. (3.75). By assumption,
x;€ L?[0, T, which implies, consistent with Eq. (3.76), that

T+t
J i (6)x (¢ =) dt

0
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is finite for — T < 7 < 0. A similar result holds for the case where 0 <7 < T. It
then follows from Theorem 2.20 that the order of integration can be inter-
changed to yield (see Figure 3.9 for the region of integration)

T (t
I= J J 1 X;(OxFt — t)e 2 dr dt (3.107)
o Ji-r T

A change of variable ¢ =t — 7 for 7 yields:
I= J j —x;(OxF(Ee P qEdt

== UO (e 271" dt] [ J OT XH(EJe e dé} TP _ Gr gy

which is the first required result.
To prove the second result, define I, according to

T T N
I, = J R(T, t)e 2™ dr = j |:1im Y piR{T, ’L'):| e 2™ dr (3.109)

- —TLN-wi=1

As sup{|R(T,7):ie Z*,te[ —T, T]} is assumed to be finite, it follows from the
dominated convergence theorem that the interchange of the limit and integral
operations in this equation is valid. Thus,

T T
I, = lim J |:Z p:R(T, T):|e 2nft dr = Z plf R,(T, t)e 2™ dr
_rl -7

(3.110)

¥ PGITf) = GUT. 1)

where the result that the integral of a finite sum equals the sum of correspond-
ing finite integrals has been used.

APPENDIX 4: PROOF OF THEOREM 3.10

For the case where the random process underlying F has finite average power,
it follows from Eq. (3.85) that F is a piecewise continuous function. It then
follows that

J " el R(f) = lim i 2N FGIAL) — F((i — DAf)]  (3.111)

— o0 Af=0i=—w
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where the continuity of the exponential function has been used (Apostol, 1974
pp. 141, 148-9). Using the definition for F, as per Eq. (3.85), it follows that the
right-hand side of this equation can be written as

0 iAf (i—DAS
lim Y e-f““Afﬁ[lim J G(T, f)df — lim J G(T, f) df:| (3.112)
Af=0i=—o T-ow J—o T-w J—x

The finiteness of the average power guarantees that both limits defined by
T — oo are finite. It then follows that

r e dF(f) = lim Z eﬂ"‘mf)’[lim Jw G(T,f)df]
(

- Af—=0i=— oo Toow J(i—1)AS

) y (3.113)
= lim Y |:1im j ' G(T, f)e2miar) df]
Af=0i=—o LT>w Ji-1)Af
With the definitions
iAf o iAf
5{(T) = f G(T, f)e> A= df — S(T) = J G(T, f)df (3.114)
(i—DAS (i—1DAS
iAf
S;= lim S/(T) = lim J G(T, f)df (3.115)
T T Ji-DAS

it follows that |s,(T)| < S,(T) for ie Z and for all ¢, > 0 there exists a T, such
that for all T > T, it is the case that |S; — S{(T)| < ¢;.
As

i S, = lim r G(T, f)ydf =P, (3.116)
i=—oc T-w J—x

€K

i S(T) = J G(T, f)df = P(T) (3.117)

—

and lim,__ P(T) = P, it follows that there exists a positive sequence {e;},
such that |s;(T)| < S; + e, for ie Z, and for all T greater than a constant T,, and

Y o< (3.118)

i=—o
With P, being finite, it then follows from dominated convergence, that

lim i s(T) = i lim s,(T) (3.119)

T—oowi=—w i=—w T>wx
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Hence,

r 2 F(f) = lim r G(T, f)e” /% df = lim R(T,7) = R, (x)

— 0 T-w J— T—w

(3.120)

which is the required result.



Power Spectral
Density Analysis

4.1 INTRODUCTION

In this chapter, general results for the power spectral density that facilitate
evaluation of the power spectral density of specific random processes are given.
First, the nature of the Fourier transform on the infinite interval is discussed
and a criterion is given for the power spectral density to be bounded on this
interval. Second, the use of an alternative power spectral density function that
can be defined for the case where a signal consists of a sum of orthogonal or
disjoint waveforms is discussed. Third, a theorem is proved that specifies when
signal components outside of the interval [0, 7] can be included when
evaluating the power spectral density. Including such signal components can
greatly simplify analysis. Fourth, the cross power spectral density is defined
and bounds on its level are established. Fifth, the power spectral density of the
sum of an infinite number of random processes is derived. Sixth, the power
spectral density of a periodic signal is derived and is shown to have the
expected form, namely, impulsive component at integer multiples of the
fundamental frequency. Finally, the power spectral density of a random process
containing a periodic and a nonperiodic component is derived and it is shown,
for the infinite interval, that the periodic and nonperiodic components can be
treated separately.

4.2 BOUNDEDNESS OF POWER SPECTRAL DENSITY

To prove subsequent results, it is necessary to demarcate those random
processes that have a bounded power spectral density on the interval [0, co],
from those that do not. Clearly, if for all feR, there exists k, T,eR*, such

92



BOUNDEDNESS OF POWER SPECTRAL DENSITY 93

that VT > T,
IX(T, ) < kT @.1)
then
X(T, f)?
lim Gy(T, f) = lim % <k> feR 42
T T-w

Note, any signal that is periodic or contains a periodic component (including
the degenerate case of a nonzero mean) will not satisfy this criterion. To see
this, con§i.der a periodic signal x, with pe.riod T,= 1/fp that.satisﬁes approp.ri-
ate conditions (Theorem 2.26) such that it can be written, using an exponential
Fourier series, as

x(t) = Z c;ed2mil vt 4.3)

i=—ow

whereupon, for f equal to the gth harmonic, it follows that

T o
X(T, qf,) =¢,T + Y. celrim ol gy 4.9

0 i=—w
i*q

Clearly, when ¢, # 0, it is the case that both |X(T, qf,)| and G(T, qf,) increase
in proportion to T. Thus, for a periodic signal, or the degenerate case of a signal
with nonzero mean, the power spectral density is not bounded at specific
frequencies. The unboundedness is restricted to a set of zero measure for a
finite power random process.

4.2.1 Alternative Formulation for Boundedness

The following theorem gives an alternative criterion for the boundedness of
Gy(T, f) as T — 0.

THEOREM 4.1. BOUNDEDNESS OF POWER SPECTRAL DENSITY Consider the se-
quence of functions X ,..., Xy produced by a disjoint partition of the interval
[0, T] and defined according to

iAT
Xi(/) =j x(t)e 2=tdr  ie{l,...,N} @.5)
(

i— 1)AT



94 POWER SPECTRAL DENSITY ANALYSIS

such that

X(T )= ), Xi(f) (4.6)

||M2

Here, N =| T/AT, j for some fixed AT, and AT is such that NAT = T. If, for all
f€R there exists a AT, > 0 such rhar VT > AT, the mean of X,(f), ..., Xx(f)
decays according to \/N as T and N increase without bound, that is, there exists
an integer N, > 0 and a constant k e R*, such that YN > N,

feR (Cx))
then both
sup{lim |X(T’f)|:feR} and sup{lim G(T, f): feR}
T ﬁ T
are finite.

Proof. This result follows by simply noting that

AT ke/AT ko/T
==—I|X(T )l <= ==IX(T /)l < (4-8)
N T JT VAT

5 Z Xi(f)‘ <

and as N — oo it is the case that AT — AT,

4.2.1.1 Notes This formulation is best understood by considering N out-
comes Xi,...,Xy of N independent and identically distributed random vari-
ables with zero mean and variance ¢2. For N sufficiently large, and with a
probability of 0.95, independence guarantees, as per the central limit theorem
(Grimmett, 1992 p. 175; Larson, 1986 p. 322), that

1.96¢

JN
Hence, if there exists a time AT,, such that for all longer time intervals it is the
case that X,(f),..., Xy(f) are independent samples, consistent with outcomes
from N independent and identically distributed random variables, then the
power spectral density of that process is guaranteed to be bounded. Such a

result is consistent with the “correlation time” of the signal being less than AT,

N
—196/No < Y x,<196/No = 4.9)
i=1

1 N
NI
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4.2.2 Definition— Bounded Power Spectral Density

DEFINITION: BOUNDED POWER SPECTRAL DENSITY A random process X is said
to have a bounded power spectral density if the above criteria hold, that is, if
Jk,eR™*, such that

sup{Gy(T, f). TeR™, feR} < k, (4.10)

In subsequent analysis, it will be assumed that random processes have a
bounded power spectral density, or at most, have a bounded component plus
an unbounded component due to periodic signal(s).

4.3 POWER SPECTRAL DENSITY VIA SIGNAL DECOMPOSITION

Consider an interval [0, T] on which a signal x can be written as the sum of
N disjoint, or orthogonal waveforms according to

N
x(t) = ) x;(1) tel0,T] “.11)
i=1
The average power on the interval [0, T] is
_ 1 T 1 T N
P=_| |x(t))*dt= —J |x,(0)|* dt 4.12)
T JO T 0 igl
From Parseval’s relationship it follows that

df =

- 0 —wi=

p_r WP [* Z LD 13

which suggests, for the signal being considered, two alternative definitions for
the power spectral density, respectively, denoted Gy and Gyp:

IX(T, f)I?

N XT; 2
) (T _;I l(Tf)I

Gyp(T f) =

Gx(T. ) = (4.14)

By definition, Gy is the correct power spectral density. While Gy, is a valid
power spectral density, as far as the average power is concerned, it may be the
case that Gy(T, f) # Gyp(T, f) almost everywhere, including the points if,,
ieZ" where f, = 1/T. If this is the case, then Gy,(T, /) does not have the
interpretation required for a power spectral density, as per Theorem 3.2,
namely, that the area of each pair of rectangles of width f,, centered at —if,
and if,, and with respective heights Gy, (T, —if,) and Gy, (T, if,), is equal to the
power in the sinusoidal components with a frequency if,.
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4.3.1 Example

Consider the waveform x and the pulse function p, as shown in Figure 4.1. The
signal x can be written in terms of the pulse waveform p according to

X)) = p <;> +p(t —3) (4.15)

and it follows that the power spectral density of this signal, evaluated on the
interval [0, 4], is

2 2 —j2n3f 2
G4, f) = |X(4%f)| _12P2f) + PY(.f)e |

_4IPQS)? + IP(f)? + 4Re[PQ2f)P*(f)e "]
T

(4.16)

The first line in this equation follows from the relationships (McGillem, 1991
p. 146):

V(f/a)

lal

Wt —ty) & V(f)e 2mita v(at) <> 4.17)

Now, x can be decomposed, in terms of disjoint signals defined by delayed
versions of p, according to

3
x(t) = _Z x;(t) = p(t) + p(t — 1) + p(t — 3) (4.18)

and the alternative power spectral density function Gy, can be defined as

Gypld, f) = i X4, NI _ 3IPUP

4.
Z T T 4.19)

The power spectral densities Gy and Gy, are plotted in Figure 4.2 using the
result that P(f) = sinc(f)e /*/. Clearly, for this case Gy(T, f) # Gyp(T, f)
almost everywhere. In particular, when T = 1/f, =4 it is the case that

x(@® p@)
1 —O 1
i @ L 4 S L il 4 i @ @ t
1 2 3 4 1 2

Figure 4.1 Graphs for the signal x and the pulse function p.



POWER SPECTRAL DENSITY VIA SIGNAL DECOMPOSITION 97

PSD
2.5
21\
\GX(T,f)
L5

b
Va~—dn

0.25 0.5 0.75 1 1.25
Jo 2f, 3f, Frequency (Hz)

Figure 4.2 Graphs of true and alternative power spectral density functions.

PQ2f) =2y, =0, and

IPCf)? _ sinc?(0.5)

Ox(T. 2,) = T ya— 0.1013
3IPQSf,)IP  3sinc?(0.5) (4.20)
Gxp(T, 2f,) = T” = 7 =) _ 03039

Hence, for f = 2f,, the alternative power spectral density, Gy,, does not
predict the power in sinusoids with a frequency of 2f,.

4.3.2 Explanation

If the signal x can be written as a summation of N signals according to Eq.
(4.11), then the power spectral density can be written as

X(T, > 1
Gyt = TEIE_ 2

S XU NP+ X X X(T XK /)
- s (4.21)

1 N N
= Gyp(Lf) +5 ¥ Y X(TNXHT /)
Clearly, the cross product terms constitute the difference between the two

power spectral densities. Since disjointness or orthogonality is a sufficient
condition for the integral of each term in the double summation in this
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equation to be zero, it follows, in terms of the average power, that there is no
difference between the two power spectral densities. However, when interpreted
as the power in the sinusoidal components at a specific frequency, the
alternative power spectral density Gy, in general, is not correct.

4.4 SIMPLIFYING EVALUATION OF POWER SPECTRAL DENSITY

Consider the countable case and a random process X, defined by an ensemble
Ey = {x;:ieZ"} where P[x;] = p,. The power spectral density requires the
evaluation of the Fourier transform of each waveform in the ensemble over the
interval [0, T], that is,

p T @2

However, truncation of the signal through use of the interval [0, T] often
complicates analysis, while inclusion of some component of the signal outside
of this interval can simplify analysis, as the following example illustrates.

441 Example

Consider the evaluation of the power spectral density on the interval [0, T], of
a signal that consists of a summation of pulse waveforms, that is,

X(t) = i p(t — iD) (4.23)

i=0

where p has the form shown in Figure 4.3. The waveforms comprising the signal
x are also shown in this figure, assuming, for illustrative purposes, that T = 4D.
The Fourier transform of x on the interval [0, T], for T = 4D, is given by

X(T, f) = P(f) + P(f)e "2 + P(f)e” P + Py( f) (4.24)

where P is the Fourier transform of p, and P, is the Fourier transform of

p@® p—D) pt—-2D) p@-3D) p(@—4D)
¥ L @ B —@ t
D 2D 3D T \
Include
component

Figure 4.3 Pulse waveform p and waveforms comprising the signal x.
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p(t — 3D) evaluated on the interval [0, T]. Clearly, analysis can be simplified
if the component of p(t — 3D) outside of [0, T, as shown in Figure 4.3, can be
included, whereupon the approximation

X (T +D. f) = P(f) + P(f)e P + P(f)e P + P(f)e 1P (4.25)

is obtained. Such a Fourier transform is consistent with the approximate signal
x4, being defined as equal to the x on the interval [0, T], but including the
component of p(t — 3D) outside this interval, that is,

3
) = .ZO p(t — iD) te[0, T + D) 4.26)

0 elsewhere

The power spectral density of x, over the interval [0, T + D], but normalized
by T rather than the interval length T + D, can be defined as

|X,(T + D, f)?

GXA(T+Daf): T

4.27)

and ideally, is such that Gy (T + D, f) =~ G4(T, f) for all frequencies.

The inclusion of the contribution of a signal component outside the interval
[0, T], when evaluating the power spectral density, is justified if the contribu-
tion of the energy in this component to the average signal power is negligible.
This result is formally stated by Theorem 4.2 in the following section.

4.42 Approximate Power Spectral Density

Define the interval, or in general the set of numbers, that simplifies analysis of
the power spectral density as F. This set could, in the general case, consist of
part of the interval [0, T], and part of the remainder of the real line. It is
convenient to partition F into two disjoint sets, that is,

F=F,UF, where F,c[0,T] F,<[0,T]° (4.28)
In subsequent analysis, it is convenient to define a new set F according to

Fe=[0,T1nF$ st [0,T]=F,UF, (4.29)
The subscripts I, O, and R, respectively, stand for “inner,” “outer,” and
“residual.” The sets F,, F,, and F, are graphically shown in Figure 4.4. The
measure of the sets F,, F,, and Fy, respectively, are denoted M,;, M,,, and M,
and the respective powers of the ith signal in these sets are denoted P,(F)),
Pi(F o), and Py(F ).
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Figure 4.4 Definition of the sets F,, F,, and Fg.

Consider a random process X with ensemble Ey = {x;:ie Z*}. Define the
random process X , with ensemble Ey ,, consisting of waveforms that individ-
ually are identical on [0, T] to a corresponding waveform from X, but may
differ from the corresponding waveform outside this interval. Thus,

. - x@ te[0,T],x;eExy . .
Ey, = {VA“\\A[(Z) = {STFA (¢0.T] ieZ } (4.30)

Here, STFA means “specified to facilitate analysis,” that is, outside [0, T, x4,
is specified in a manner that best facilitates analysis. The power spectral density
of X ,, evaluated over the set F, is denoted Gy, and is defined according to

el X F 2
Gya(F, f) = 3 PlXalF

X (F. f) =J Xq, (e 20 dr (4.31)
i=1 T

F

Note, the interval length used in the definition for Gy, is T and not the
measure of the set F. This is because Gy, is an approximation to the true
power spectral density G, on the interval [0, T]. The following theorem
quantifies how well the power spectral density of X , approximates the power
spectral density of X.

THEOREM 4.2. APPROXIMATION TO POWER SPECTRAL DENSITY The integrated
relative difference ey, between Gy ,(F, f) and Gy(T, f) has the upper bound given
by the following two equivalent expressions:

‘fﬁ |Gx(T; f) — Gy 4(F, /)l df Mg 1_3(FR) M, I_)A(Fo)

=T ST PRD YT P
Gy(T, f)df

0

M, |P(F)) |[My |P(Fy) M, |P(F)) [M, |P(F,)
+2ﬁ\/ A7) \/T/;“ﬁ\/ BTN T A P(T)

4.32)
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EFY | EFo) , [BF) [EFy , [BF) [EF)
®SET) TR T / £T) 2\/ E(T) \/ gn ¢

where P(T) is the average power of X on [0, T], P(F ) and P(F)), respectively,
are the average power of X and X , on the sets F and Fy, P (F ) is the average
power of X, on the set F,, and the symbol E denotes the average energy
associated with the average power P. These powers and energies are defined
according to

_ o o EF
Pra= | Grnnar= | G na =50 @
e . R
_ % % E_'F
P(Fa:f_ GulF 1. ) df = f " GuFnar =510 @39
= » E F
Piro = | Gutro o =EAL0 (436)
— 0 O
Here, and for the countable case:
& p| X, (F 2 & pX L (F
Gx(FRaf) — Z p1| 1(]WR5 f)' — Z pl| ]&R’ f)' GXA FRsf (437)
i=1 R i=1 R
X,(F,, IX L (Fp, )2
Guthy ) = 3 PRI 5 MBI G r gy sy
0 X, (F , 2
GyuFo,f) =) Miofﬂ 4.39)
i=1 o

Proof. The proof for the countable case is given in Appendix 1. The proof
for the uncountable case follows in an analogous manner.

4.43 Specific Cases

As the measure of the set F, approaches T, it follows that P(F,) approaches
P(T), and for this case, the upper bound on the integrated relative error can
be approximated according to

8R<%13_(FR)+M o PAFo) / / [P (F )
T KT) T PT) \/ P(T)

_ E(FR) EA(FO) E(Fg) AF )
=Em T BT +2/_ +2/ BT) (4.40)
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Clearly, the measure of the sets F, and Fj, relative to T, can be made
sufficiently small so a required relative integrated error bound is achieved.

A common case encountered in analysis is where F, = [T, o], F; = [0, T]
consistent with Fp = { }, and all signals of the random process X, in the
interval F, = [T, o] rapidly decay to zero. The following theorem details the
bounds on the integrated relative difference for this case.

THEOREM 4.3. APPROXIMATION FOR POWER SPECTRAL DENSITY — INFINITE
INTERVAL If F =[0,NT], with N > 1, which implies Fp = { }, F; = [0, T],
and F,= [T, NT] then the integrated relative difference, eg, has the bound

(N — l)P P,F,) E,F o) E4(F )
bp <= A0 o Lo /N AT = BT oy 44D

Proof. The proof of this theorem follows directly from Theorem 4.2.

As is clear from this theorem, when the ratio of the average energy in the
interval F,, to the average energy in the interval [0, T] approaches zero, the
integrated relative error also approaches zero and the approximate power
spectral density, Gy,, approaches the true power spectral density Gy in a
“mean” sense.

444 Example

Consider the case where

X(t) = f pt —(i—1)D)  0<t<10D (4.42)

i=1

with p(t) = e "*u(t) and t = D = 1. The true power spectral density of x evalu-
ated on [0, 10], as well as the approximate power spectral density obtained
by including the tail of the exponential function in the interval [10, co], are
plotted in Figure 4.5. In Figure 4.6 the absolute difference between the true
and approximate power spectral densities, that is, |Gy (10, f) — Gy (0, f)|, is
shown. The integrated relative error between the true and approximate power
spectral densities, obtained by numerical integration, is 0.11, and is within the
bound predicted by Eq. (4.41) of 0.27.

45 THE CROSS POWER SPECTRAL DENSITY

In subsequent analysis the cross power spectral density between two random
processes is widely used. With the aim of defining the cross power spectral
density, consider two random processes X and Y, defined on the interval [0, T]
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Gx(10, 1), Gya(==, f)
10
N\
1 N\ L True
N A
\ 7\
/== 7AW
1 W WA o
0.01 | AL
=i
I
0.001 L0
0.02 0.05 0.1 0.2 0.5 1 2
Frequency (Hz)

Figure 4.5 True (thick) and approximate (thin) power spectral densities.

by the respective ensembles E, and E,:
(4.43)
(4.44)

Ey={x:Sy x[0,T] > C}
E,={y:S, x [0, T] > C}

[Gx(10, f)~Gya(>, ) |

1 —

0.5 ~

d

0.1
0.05

mEe

>
D

~
-

——
-

0.01 =
0.005

0.001
0.02 005 0.1 0.2 0.5 1 2

Frequency (Hz)

Figure 4.6 The absolute difference between the true and approximate power spectral
densities shown in Figure 4.5.
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where Sy, S, € Z* for the countable case and Sy, Sy, < R for the uncountable
case. For the countable case, the ith signal, x(i, t) is written, for notational
convenience as x;(t). The probabilities associated with the waveforms in the
ensembles are as follows:

; = P[x(i, 1)] = P[x;(t ieZ* countable case
Pxi = PLx(i, )] [x;(1)] (4.45)
P[x(Z, t)];e1 ] = J Jx(2) dA I. < R uncountable case
I
o =P[y(j, )] = Pyt jeZ* countable case
py; = PIy(j, 0] = PLy;(1)] J u 4.46)

PLy(4, O)];e1,] = J Sfy(2) dA I, = R uncountable case
Iy

where fy and f, are probability density functions defining signal probabilities
for the uncountable case.

DEFINITION: CROSS POWER SPECTRAL DENSITY The cross power spectral
density between two random processes X and Y is, by definition (Peebles, 1993
p. 210)

Gyy(T f)
S X AT, *T
> Pl,w countable case
_ i=1j=1
1 o0 o0
TJ J XAy, T, f)Y *(4y, T, f) fyy(4y, A,) dA dA, uncountable case

(4.47)

where p;; is the joint probability of x; and y;, that is, p;; = P[x;, y;], fyy is the
joint probability density function for x and y, that is,

P[x(j’xﬂ ) .y( v’t)|ﬂ.xelk /VEIV J\ J\ fXY j’xﬂ v) dj' dj' (448)

and X and Y, respectively, are the Fourier transforms of x and y evaluated on
the interval [0, T].

From the definition it readily follows that

GYX(’I: f) = G;F(Y(T; f) (4-49)
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4.5.1 Cross Power Spectral Density— Dependent Case

Consider the case where X and Y are fully correlated, such that the following
dependencies hold for the countable and uncountable cases:

Plx,0] = Pyi()] =p;  Plxi(0), y,(0] =0 i,jeZ",i#]
Px(4, Ol;e ] = POV D)0 = J f(A)da (4.50)
I
Plx(4,,t), Y(4,, WNivereiyer,] =0 I.nl,=g

For this case, the cross power spectral density, given by Eq. (4.47), simplifies to

S (T NV f)
e

Ge(T ) ={"" (4.51)
TJ XA T YYA T ) f(4) di uncountable case

— 0

countable case

452 Cross Power Spectral Density—Independent Case

For the case where X is independent of Y, the cross power spectral density,
given by Eq. (4.47), simplifies to

X(T, )Y, f)

ny(Ta f) = T

(4.52)

where X is the mean Fourier transform of the random process X defined, for
the countable case, according to

o0 T
= Z P Xi(T f) = Z pﬁJ\ e = J (T te > dt
i=1 0
(4.53)
Here, p, is the mean signal of the random process X defined as
1Tty =3 puxi(t)  te[0,T] (4.54)

i=1

It has been assumed here that the order of summation and integration can be
interchanged in Eq. (4.53). Similar definitions hold for Y* and p and for the
uncountable case.
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Consistent with stationarity, if the random processes have constant means
on the interval [0, T, that is, p (T, t) = p,, the results:

T ) 1 _ p—i2nsT
2sin?(4) = 1 — cos(24) L e 2t dr = o (4.55)
X(T, )YNT, f) 1 —e 2WT 1 20T 3 _2cosrfT)
wii o o Qo) @56
= (n})z sin?(nf T) = T?sinc’(f T)
imply the cross power spectral density can be written as
Gyy(T, f) = popiy T sinc®(f T) (4.57)
As T increases, Theorem 2.32 implies, for the infinite interval, that
Gy, (f) = mrS(/) (4.58)

4.5.3 Conditions for Cross Power Spectral Density to be Zero

A sufficient condition for the cross power spectral density Gyy (T, f) to be zero
for T fixed and for all feR, is for X to be independent of Y, and for either or
both of X and Y to have zero means on [0, T].

4.5.4 Bounds on Cross Power Spectral Density

In analysis it is useful if the cross power spectral density between two random
processes can be neglected. The following theorem states several bounds.

THEOREM 4.4. BOUNDS ON CROsS POWER SPECTRAL DENSITY The cross power
spectral density Gy (T, f) has the following bounds:

IRe[Gyy (T, £)]1 < ~/Gx(T, £)/Gy(T, f) (4.59)

Gy(T, /) + Gy(T. /)
2

IRe[Gyy (T /)]] < (4.60)

For the fully correlated case the bound is

1Gxy(T. )l < /Gx(T, )/Gy(T, f) (4.61)
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For the fully correlated case, and with y(4,t) = kx(4,t) for all signals in the
ensemble, where k is a real constant, it is the case that

1Gxy(T. )l = /Gx(T, £)/Gy(T, f)

If the random processes X and Y are independent then

Guy(T. ) < /Gx(T. )/ Gy(T, f) (4.62)
For the case where Gy(T, f) > Gy(T, f) Egs. (4.59), (4.61), and (4.62) imply that

IRe[Gyy(T, f)]| < Gx(T, f) general case (4.63)

independent case

4.64
fully correlated case (4.64)

Gxy (T, /)] < G(T, f) {

Proof. The proof for the countable case is given in Appendix 2. The proof
for the uncountable case follows in analogous manner.

4.6 POWER SPECTRAL DENSITY OF A SUM OF RANDOM
PROCESSES

Although the sum of two random processes is a subset of the general case of
the sum of N random processes, it is instructive to consider this case separately.

4.6.1 Power Spectral Density— Sum of Two Random Processes

Define the random process Z according to
Z=X+Y (4.65)

where X and Y are defined by Egs. (4.43)—(4.46). This random process is
defined for the countable case by the ensemble

E,={z;:[0,T1>C z;;=x;+y;,i,jeZ"} (4.66)

) Zij
and the probability space P, :
P,= {PU:PU = P[z;]1 = P[x;, y;], Z Z Pij = 1} 4.67)
i=1j=1

Analogous definitions follow for the uncountable case. For the special case of
X being independent of Y, it follows that p;; = p,;p,;. The following theorem
details the power spectral density of Z.
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THEOREM 4.5. POWER SPECTRAL DENSITY OF THE SUM OF Two RANDOM
PROCESSES  The power spectral density of the random process Z =X + Y is
given by

GZ(T. f) = Gy(T, f) + Gy(T. ) £ 2Re[Gyy (T, f)] (4.68)
where Gy and Gy, respectively, are the power spectral densities of X and Y, and

Gyy is the cross power spectral density between X and Y.
For the case where X is independent of Y the power spectral density of Z is

GAT, f) = Gy(T, f) + Gy (T, f) + 2R SHT ]

+ T (4.69)

where X and Y* are mean Fourier transforms defined in a manner consistent with
Eq. (4.53).

For the case where X and Y are independent and stationary, such that their
respective means, denoted u, and p,, are constant on [0, T], the power spectral
density is

GAT, f) = Gy(T, f) + Gy(T, f) £ 2Re[p,i;1T sinc*(fT)  (4.70)
As T — oo the last term becomes impulsive to yield

Gy (f) =Gy, (f) + Gy (f) £ 2Re[u pi;70( ) 4.71)

Proof. The proof of the first of these results is given in Appendix 3. The
subsequent results follow from the first result using definitions of the cross
power spectral density for the independent and stationary cases.

4.6.2 Power Spectral Density — Infinite Sum

Consider the infinite sequence of random processes X, X, ... with respective
ensembles Ey ,Ey,,...defined, on the interval [0, T] and for the countable
case, according to

Ey, ={x:Z"x[0,T]>C, icZ"} @.72)

where P[x;({;,t)] = p;({}). The random processes Z and Z, are defined by
weighted summations according to

Z=1lim Zy= Y wX, 4.73)

i=1 N—->w i=1
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where w; is the weighting factor for the ith random process X;. The ensemble
associated with Z is

E,= {z:ZJr X X [0, T]>C, z({q,...,1) = Z wixi(Ci,t)} “4.74)
i=1

The probability of a specific waveform z({,,...,{y,...,t) in the ensemble
associated with the outcomes (,,...,{y,...is likely to be zero. To avoid the
complexities associated with an infinite number of signals, where each has a
vanishingly small probability, it is convenient to partition this ensemble as
follows:

- U EC,,. 0y (4.75)

where E({4,...,{y) is the set of signals from E, whose first N waveforms in the
summation for z({,,...,{y,--.,t) are fixed and are x,({,, 1), ..., xy({y, 1), that
is,

E(l -l = {2l s lysee s ) ys1 €27, (g€ 2,0} (4.76)

The probability of a waveform from E({,,...,{y) equals the probability of the
N outcomes (,,...,{y, denoted p((,,...,{y), and in general is nonzero.
Further, this probability equals the probability of the corresponding signal
from the ensemble of the random process Zy defined according to

N
E,, = {zN:Z+ XX Z*X [0, T]>Cozy(C e Lo ) = Y W,-x,-(C,-,t)} 4.77)
i=1

Here,

Plzy(y, oo On 01 = PLxy(Cy 1), -y, 01 = pCys -0 4y (BT78)

Thus, associated with each waveform in the ensemble for Z, is a set of
waveforms in the ensemble for Z. The probability of the waveform in Z equals
the probability of the corresponding set of waveforms in Z.

If it is the case that the power spectral density of a specific waveform in Z,
zy(Cy, ..., Ly, 1), closely approximates the power spectral density of all of the
signals in the associated set E({,,...,(y) of Z, that is, it is the case that

N

Z w, X, T f)

i=1

2

1

T (N+1€EZY (yi,€Z7T ...

2 1 0
X Z w, X,((, T, f)
T|

(4.79)
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then the power spectral density of Z closely approximates the power spectral
density of Z. To show that this can be the case, two assumptions are made:
(a) The energy in all waveforms in the ensembles associated with the random
processes, X,..., Xy,...,1s bounded, that is,

T

sup{f |xi(Ci,t)|2dt:ieZ+,CieZ+}< o0 (4.80)
0

This assumption implies, according to Theorem 3.6, that the magnitude of the

Fourier transform of individual waveforms in the ensemble are bounded, that
is,

X(T) =sup{|X,((;, TN ieZ",(,eZ", feR} < (4.81)

(b) With absolute convergence of the weighting factor, that is, X2 | |w;| < o,
it follows that, for all ¢ > 0, there exists a constant N, such that forall N > N,
it is the case that X2y, |w;| < e. These two assumptions allow the approxi-

mation given in Eq. (4.79) to be verified. To this end, consider the difference
between the expressions given in Eq. (4.79):

N

Z w, X, ((, T f)

2

0

z WiXi(Cia 7: f)

2

B

(4.82)

where W, = w,X,((;, T, f). As |X,((;, T, f)| is bounded for ie Z*, {;e Z*, and

13

feR with a bound X(T), it follows that

o0

Z [wl

i=N+1

B <X2(T)[

2 N o0 N
+23 il Y |wj|] < X¥T) |:82+8 Y |wi|] <e,
= ~

i j=N+1 i=1

(4.83)

With the two given assumptions, the approximation between the power
spectral density of Z, and Z becomes closer as N increases, and it follows that

Go(T, f) = lim G(T, /) (4.84)

N—- o
The following theorem gives the power spectral density of Z.

THEOREM 4.6. POWER SPECTRAL DENSITY OF INFINITE SUM  If the energy in all
waveforms in the ensembles associated with the random processes, X {,..., X y,...,



POWER SPECTRAL DENSITY OF A SUM OF RANDOM PROCESSES 111

is bounded, that is,

T (.eZt countable case
X 0P dtieZt ! 4.85
P {L beiGs. ) e {CieR uncountable case <o (485

and the weighting factor is such that X2 |w;| < oo, then the power spectral
density of the random process Z = X2, w; X, is given by

i WEG(T, f)

¢

G,(T f) = Z |Wi|2Gi(
i=1

IIMg

-

(4.86)

Mx
M8

_Z|W|2

2Re[w wiG(T, f)]

I
-
S
Al
-

Here, G, is the power spectral density of X, and G; is the cross power spectral
density between X; and X; defined for the countable case, consistent with Eq.
(4.47), according to

G,(T, f) = 4.87)

¢

< X(C,, LNHX7E.T )
2 2 (s T

An analogous definition holds for the uncountable case. The power spectral
density of the random process Z, for the case where X, is independent of X ; for
i #j, is given by

f) =X Wl*G(T, /) +
i=1

”MS

T } (4.88)

i

i [wiwj‘)?i(T, HXHT f)

where X, and )_(j‘ are mean Fourier transforms defined in a manner consistent
with Eq. (4.53).
For the independent and stationary case it follows that

G,( Z [w,|>’G{(T, f) + T sinc®(fT) Z Z 2Re[w;wiw ] (4.89)
i= 1/ 1

Z Wiluz

i=1

Gz (f ZIWIGL, f)+5(f)[

2 ] w] (@.90)

where p; is the mean of the ith random process defined consistent with Eq. (4.54).
For the independent and zero mean case, the power spectral density of the
weighted sum of random processes is the weighted sum of individual power
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spectral densities, that is,

GAT. f) = Y WPG(T f) G, (f) =Y WG (f)  (491)
i=1 i=1

Proof. The proof of the first result is given, for the countable case, in
Appendix 4. The proof for the uncountable case follows in an analogous
manner. The subsequent results follow from the first result using the definitions
of the cross power spectral for the independent and stationary cases. The
summation associated with the Dirac delta function in Eq. (4.90) is proved in
Appendix 4.

4.6.3 Power Spectral Density— Sum of N Random Processes

In many practical examples, a sum of N random processes is required.
Accordingly, it is convenient to state the power spectral density for this case
despite the fact that it is a subset of the more general case considered above.

THEOREM 4.7. POWER SPECTRAL DENSITY OF SUM OF N RANDOM PROCESSES
If the energy in all waveforms in the ensembles associated with the random
processes X 1, ..., Xy is bounded, that is,

T eZ" tabl
sup” |xi(C,.,t)|2dt:ie{l,...,N},{C'e countabie case

0

}< w0 (4.92)

{;eR  uncountable case

then the power spectral density of the random process Z = X\, X, is given by

N N N
GAT. ) =Y G(L N+ Y Y GyT. f)
el U (4.93)
N N N
=Y G(T /) + Y ¥ 2Re[Gy(T, f)]

I
—-

I
—-
-

v

Results for the independent cases parallel those in Theorem 4.6 in a straightfor-
ward manner.

Proof. The proof follows from the previous theorem using weighting factors
of unity for 1 <i < N, and zero for i > N.

4.7 POWER SPECTRAL DENSITY OF A PERIODIC SIGNAL

Many random processes have periodic components, and accordingly, a precise
statement of the power spectral density of a periodic signal is necessary.
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4.7.1 Power Spectral Density — Arbitrary Interval Case

Consider a periodic signal x, with period T, that is, x(t + kT,) = x(t) for all
keZ. Consider the general case where the power spectral density is to be
evaluated on the interval [0, T], where T is not an integer multiple of the
signal period T,. It is convenient to define an integer N = LT/T;,J whereupon
NT,< T <(N + 1)T,. Denote the power spectral density on the interval
[0,NT,] at a specific frequency f, as Gy ,(NT,, f). Then, with the definitions
F;=[0,NT,],Fy =[NT,T], and F, = { } it follows, from Theorem 4.2, that

% IGY(T, f) — Gy(NT,, Ndf =
j — <115§(FTR) 2 /EF)) \/7 ”
J Gy(T. ) df @t JET) JET)

— w0

Since the measure of Fy is less than T, the periodicity of the signal implies the
ratio E(F z)/E(T) has an upper bound of 1/N. It then follows, as T is increased
such that, NT /T ~ 1 and E(F;)/E(T) ~ 1, that an approximate upper bound
for ey is

2
N
Hence, by choosing T sufficiently large, the integrated error involved in
computing the power spectral density over an interval [0, NT,], rather than
[0, T], can be made arbitrarily small. Accordingly, when ascertaining the
power spectral density of a periodic signal over an interval, whose measure is

large relative to the period T, it is appropriate to use an interval that is an
integer multiple of the signal perlod

(4.95)

Er &

THEOREM 4.8. POWER SPECTRAL DENSITY OF A PERIODIC SIGNAL Consider a
periodic signal xeL[0,NT,], with a period of T,=1/f, sec, that can be
represented by an exponential Fourier series according to

_ v jamifpt _ | v —j2mif ot X(T,.if,)
x(t) = ), ¢l ¢, =— x(t)e vt = (4.96)
1, )0 T

14

i=—o0

On the interval [0, NT,], with a fundamental frequency f, = 1/NT, = f,/N, the
Fourier transform and the power spectral density of the signal x are

1—e —Jj2nfNT,

N-1
X(NT,, ) = X(T,, f) Z e 2Ty — f)w 4.97)
i=0

1 sin®(zNf/f,)

GX(NTp’f)=G( f)NW

(4.98)
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where X(T,, f) and Gx(T,, f), respectively, are the Fourier transform and power
spectral denszty at afrequencyfand evaluated over one period, that is,

X( Tpﬂ GX(Tp,ip)z% iceZ (4.99)

Gy(T,, /) =

The power spectral density level at the ith harmonic frequency if,, is given by

|Ci|2 1
1 fo =T
0 P

Gy(NT,,if) = (4.100)

For f fixed, there exists constants k, k,, T, > 0, and 0 < o < 1, such that the
power spectral density varies with T, for all T > T,, according to

0

Gy(T f) <kT  félos =10, 0o}
ok, T < Gy(T, f) <k, T felc..,—f,,0,f,,...},Gx(T, f) #0
(4.101)

Consistent with these bounds the power spectral density on the infinite interval is

0

Gy, (f) = Y lalPo(f — if) (4.102)

i=—w

Proof. The proof is given in Appendix 5.

4.7.2 Notes

According to Theorem 3.2, the average power in the sinusoidal components of
the signal on the interval [0, NT,], with a frequency kf, where ke Z*, is given
by

f.Gx(NT,, —kf,) + f,Gx(NT,, kf,) f,=1/NT, (4.103)

This result has to be reconciled with two facts related to periodic signals that
can be inferred from Eq. (4.96). First, the only sinusoidal components that have
nonzero power, are those with a frequency which is some multiple of the period
frequency f, = Nf,. This implies that Gy(NT,, —kf,) + Gx(NT,, kf,) must be
zero for k¢ {0, N,2N,...}. That this is the case, follows from Eq. (4.98) because
sin{nNf/f,) = sin(nf/f,) = 0 for f€{0,f,.2f,...}.

The second fact is that the power in the sinusoidal components of the signal
with a frequency if, is given by lc_;|> + |c;]>. This is the case, as a comparison
of Egs. (4.100) and (4.103) indicates.
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4.7.3 Example

Consider the power spectral density of a periodic pulse train shown in Figure
4.7. The Fourier series of such a pulse train is

Z w inelif — jmifyW
x(1) = ) el = ij o s2mir gy — AW S, Wie T
i=— rrp 0 T;)

(4.104)

where the Fourier transform result in Theorem 2.33 has been used in the
evaluation of ¢;. This same result yields the Fourier transform

X(T,, f) = AW sinc(f W)e ™" (4.105)
and it follows from Egs. (4.98) and (4.99) that

AZWZ ., 1 smz(TCf/fu) _
T sinc (fW)ﬁm Jo=

S 1
N~ NT,

Gx(NT,, f) = (4.106)

The power spectral density, evaluated on the interval [0, NT,], has the form
shown in Figures 4.8 and 4.9 for the respective cases of N =4 and N = &.
From Figures 4.8 and 4.9, note first, that the impulsive components in the
spectrum only occur at multiples of the period frequency f,, and second, as the
interval length is increased, the impulsive components increase in height
according to Gy(NT,, if,) = |¢;|*/f,, and decrease in width in proportion to f,.
Finally, the power spectral density is zero at all integer multiples of the
fundamental frequency f, = f,/N that do not coincide with a multiple of the
period frequency f,. It is easy to conclude from these figures the result, stated
in Eq. (4.102), that the power spectral density Gy_ is zero for all frequency
except where it is undefined at integer multiples of the fundamental frequency
f,» that is, it has the form shown in Figure 4.10. Consistent with this figure and
Eq. (4.102), the area under each pair of impulses at frequencies of —if, and if,

is equal to the power in the sinusoids with the frequency if,, namely
lc_;1* + |c;|*. From Eq. (4.104) it follows that |c_;| = |¢;|, and for the parameter
x(®)
A —oO &—oO o O [ O
l @ @ @ L o— ¢
w TP 2Tp 3Tp 4Tp

Figure 4.7 Periodic pulse train.
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GX(4TP, iD)
\ c Z/f'
0.8 ™o
0.6 5
/ |cl| /.fo
0.4 /
0.2
2,
|02|2/f0 e 3" o
\A sz A
0 1 2 3 4
—f Jo 2f, Frequency (Hz)

Figure 4.8 Power spectral density of pulse train on an interval of [0, 4T,] for the case where
A=1,T,=1,f,=1, W=05, and f,= 0.25.

values used in Figures 4.8 and 4.9, it is the case that |cy|> = 0.25, |¢y|* =
0.101, |c,)* = |c,)? = 0, and |c4]* = 0.011.

In conclusion, the power spectral density of a periodic signal over a
semi-infinite interval [0, c0] has the expected form, namely, it consists of
impulses at multiples of the period frequency f, and the area under each pair

GX(STP, i)
1.75 A |CO|2 Ifo
1.5
1.25
1 |C1|2 [fo
/
0.75
0.5
025 | AW
LR /X
0 1 2 3 4
_ J; j;, 2 ];, Frequency (Hz)

Figure 4.9 Power spectral density of pulse train on an interval of [0, 8T,] for the case where
A=1,T,=1,f=1W=05 andf, = 0.125.
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2 2 2 2 2
¢ CATIICY 1] |2
00 00
f

/A T Yy

Figure 4.10 Power spectral density of a periodic signal evaluated on an infinite interval.

of impulses at —if, and if, is equal to the power in the constituent sinusoidal
component with a frequency if,,.

4.7.4 Generalizations

The following theorem describes the power spectral density of a random
process X, that is characterized by an ensemble E, and where each waveform
in the ensemble is periodic, that is,

Ey={x;:x;(t + kT) = x,(t), ke Z,icZ"} 4.107)

Further, P[x;(t)] = p; and

x . 1 (% . 1
xi(0) = Y e ey = TJ x;(te P™itdr  f = T (4.108)

k=—o iJO i

THEOREM 4.9. POWER SPECTRAL DENSITY OF PERIODIC RANDOM PROCESS
Assuming that T > T, ie Z* and the average power in the periodic signals is
bounded, that is, sup{jg |x;())> dt:ie Z*} < oo, then the power spectral density
of the random process X is

6T~ £ pGT ) e N =T @i

sin%(ef /) T

where G,(T,, f) is the power spectral density of the ith periodic signal evaluated
over its period of T, = 1/f; sec, that is,

TP G - lal?

; keZ 4.110
, 7 (4.110)



118 POWER SPECTRAL DENSITY ANALYSIS

On the infinite interval [0, co] the power spectral density is

o0

Gy (f) = _i pi Y leal?o(f —Kf) @.111)

Proof. This theorem is a straightforward generalization of the previous
theorem.

This random process is not ergodic as a single outcome of the random
process is not representative of other waveforms in the ensemble (Papoulis,
2002 pp. 523f).

4.7.4.1 Power Spectral Density of an Infinite Sum of Periodic Signals
The following theorem details the power spectral density of a signal x, defined
as an infinite sum of periodic signals, where each has a distinct period, that is,

X x;(t + kT) = x,(t) keZicZ*, T,=1/f,
x(0) =Y wx,(t) { 7{ T T (T T <T 7t i )
i=1 pT #qT;:pT, < T.qT; < DqeEZL™ i #j

(4.112)

THEOREM 4.10. POWER SPECTRAL DENSITY OF AN INFINITE SUM OF PERIODIC
SIGNALS  If the signal energy of all periodic signals in the ensemble is bounded,
that is,

T o0
sup{f |x;(6)]? dt:ieZ*} < w and Y wil < o
0]

i=1

then on the interval [0, T] the power spectral density of x is given by

G(T.f) = ¥ PGAT 1)+ 3 3wt XL OXF(T ) (113)

i

[

where
X(Tf) =T Y c,e ™ 27 sinc[(f — pf)T] @.114)
p=—o

For the case of T> T, ieZ”

G(T, f) = G(T,, f) L sin*(eN.// ) ;J (4.115)

N sy { .
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On the infinite interval (0, o0), the power spectral density is

e 2

Gulf)= Tl 3 lealdf — k) + (/)

(4.116)

Q0
Z WiCio
i=1

k#0

Proof. The proof of this theorem is given in Appendix 6.

4.8 POWER SPECTRAL DENSITY —PERIODIC COMPONENT CASE

It is often the case that some waveforms in the ensemble of a random process
contain a periodic component. It is useful to be able to treat the periodic
component separately from the random component when evaluating the power
spectral density. To this end, consider the case where each signal in the
ensemble of a random process X can be written as

xi(t) = xip(t) + xp(1) i€ Z” (4.117)

where x,;; is the component of x;, which has a bounded power spectral density,
and x;p is the periodic component (including the mean) of x;. If the period of
X;p is T, = 1/f;, then this component can be written as an exponential Fourier
series according to

3 c; el 0<t<T
x;p(t) = k=z—‘x *
0 elsewhere (4.118)
1 (r )
e =T J xip(t)e ™2™t dy
iJo

Consistent with such definitions, the ensemble for X on [0, T] can be defined
as

Ey = {x; xi(t) = x;(t) + x;p(1), 1€ Z7} 4.119)

where P[x;(t)] = p;. Two new random processes, X and X, can be defined
consistent, respectively, with the periodic and nonperiodic components of X
and with respective ensembles Ey; and Eyp:

Eyp = {xipicZ"} Eyp={x;piicZ"} (4.120)
Here, P[x;5(t)] = P[x;p(t)] = p;. The power spectral densities of these random

processes, respectively, are denoted Gyp and Gy,. The following theorem states
the relationship between the power spectral density of X and Gy, and Gyy.
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THEOREM 4.11. POWER SPECTRAL DENSITY — PERIODIC COMPONENT CASE If,
for T fixed, it is the case that the energy in both the periodic and nonperiodic
components of the ensemble for X is finite, that is,

T T
sup{f |x;5(1)| dt: ieZ+} < sup {J |, p(t)|* dt: ieZ+} < o (4.121)
0 )

then the power spectral density of the random process X, defined by the ensemble
as per Eq. (4.119), is given by

2
Gy(T, f) = Gyu(T. f) + Gxp(T. f) + Z piRe[ X p(T, NX5H(T )]

= GXB(’I: f) + GXP(T; f) (4~122)

0

L2 p Y sin[(f — KOT)IRe[che™ X, (T, f)]
i=1

k=—o

where

Xp(T ) =T i cyosine[(f — kf,)T]e =0 kst
o (4.123)

1 —e J2aNifT;

EXLP( f) |:—[27rfT:| T> ’I:
Assuming T > T,, ie Z*, the power spectral density can be written in the form:

I sin*[aN.f/f;]
N, sin’[xf/f;] (4.124)

2 & N | — i2aNif T
o L PRe| XlTo N\ e ) XanlT )

where G,p is the power spectral density of the ith periodic signal whose period is
T, = 1/f,, and where N, = |T/T;]

For the infinite interval, the periodic and bounded components can be treated
separately, and

Gy(T, f) = Gyp(T, f) + Z piGip(T, f)
i=1

Gy = Gyp Gyp (.
L) )+ G () (4.125)

0

=GN+ X0 Y lealoS — K

k=— o

Proof. The proof of this theorem is given in Appendix 7.
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4.8.1 Power Spectral Density— Nonzero Mean Case

Consider the countable case where each waveform in the ensemble of a random
process X can be written as

X)) =vi(t) + X (4.126)

where X; is the mean on [0, 7], and v; has zero mean and no periodic
component on the same interval, that is,

1 (T (T
=T L x;(t) dt T L v;(t)dt =0 4.127)

Consistent with such definitions, the ensemble for X on [0, T] can be defined
as

Ey={x;:x,(t) =v,(t) + X;,t€[0, T],icZ"} (4.128)

where P[x;(t)] = p;. The zero mean random process V is defined by the
ensemble

Ey = {v;:v,(1) = x,(1) — X;, te[0, T],ieZ*} (4.129)

where P[v;(t)] = p;. The following theorem states the relationship between the
power spectral densities of X and V.

THEOREM 4.12. POWER SPECTRAL DENSITY OF NONZERO MEAN RANDOM
Process For the case where

0

Zp|~c|<w Z pilx.? < o0 sup{f v, (0)|? dt: zeZ*}<oo (4.130)

and G(T, f) is bounded as T becomes unbounded, the power spectral density of
the random process X, defined by the ensemble as per Eq. (4.128), is given by

Gx(T. f) = G(T, f) + T'sinc? < >Zpll\ *

+ Zi p; sinc <}>Re[‘< ™I V(T, f)]
Gy, (f) =Gy () +(f) Z pil%i? (4.132)
i=1

where f, = 1/T. Analogous results hold for the uncountable case.
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Proof. The proof of this theorem for the countable case is given in Appen-
dix 8.

4.8.1.1 Notes First, if there exists a signal in the ensemble that has nonzero
probability of occurring and a nonzero mean, then the power spectral density
has an impulsive component at f = 0. Second, when the power spectral density
close to zero frequency is not of interest and the power spectral density over
the semi-infinite interval [0, oo] is being evaluated, then the mean of each
waveform in the ensemble can be ignored.

49 GRAPHING IMPULSIVE POWER SPECTRAL DENSITIES

A common case is where many waveforms, comprising the random process,
have both a periodic and an aperiodic component. The information usually
required for the periodic component is its power and not its spectral form,
which is impulsive at set frequencies. Accordingly, for the infinite interval or
an interval that is long in comparison with the period of the periodic
component, it is appropriate to plot the power in the impulsive component,
along with the continuous power spectral density associated with the bounded
and aperiodic component of the random process. The following example
illustrates this.

4.9.1 Example

Consider the random process X defined by binary digital signaling, as per
Example 3.4.2, where there is an additive sinusoidal component to each signal,
such that the ensemble is defined according to

N

Ey = {-\'(71,...,%,0 = AsinQnf.t) + Y ppt —(k —1D)  ype{—1, 1}}
k=1

(4.133)

From Egq. (3.39) and Theorem 4.11 the power spectral density on the infinite
interval is given by

Gy, (f) =rP(/)I* + AT Lo(f — f) + o(f + )] (4.134)

This power spectral density is plotted in Figure 4.11 for the case where the
pulse function is rectangular, that is,

o(0) = {1 0<t<W  P(f)= Wsinc(fW)e "W @.139)

0 elsewhere O<W<LKD
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Figure 4.11 |lllustration of graphing the power spectral density of a random process whose
power spectral density contains both a bounded and an impulsive component.

D=1,A=1, f,=1, and the power associated with the impulse, rather than
the impulse, is displayed.

APPENDIX 1: PROOF OF THEOREM 4.2

The proof relies on the following lemma:

Lemma If F=F,UF, and F, and F, are disjoint sets, then the Fourier
transform of a signal z, denoted Z, and evaluated over F, can be written as the
sum of the Fourier transforms of z over F, and over F,, that is, Z(F, f) =
Z(Fy, f) + Z(F,, f). Further,

|Z(F, f)? = |Z(F 1, /)P +|Z(Fy, /)I? + 2Re[Z(F , /)Z*(F 5, /)] (4.136)

Proof. The proof of this result follows directly from writing out the
definition of the Fourier transform for z, and using the fact that F, and F, are
disjoint sets.

Proof (continued). Consider the ith waveform x;, in the ensemble of X with
a Fourier transform X, Since x,(t) = x(t) over [0,T], [0,T] = F;UFy,
F=F,0F,, and F,, F,, and Fy are disjoint sets, it follows from the lemma
that

IXJ(T, 1> = 1X 4 (F, ) = |Xi(Fg, f)I> + 2Re[X,(F;, )X (Fg, f)]
— X 4 (Fo, f)I> = 2Re[X{(F, /)X 5(F o, f)]
(4.137)
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Then
& pilX; T JX 4 (F, )
i= i=1
z p;|X FR’f)|2 i |XA Fo»f
= (4.138)
2 o0
+ 3 X RN (F 1 DX )]
2 o0
?_Z Re[Xi(FIaf)le(FOaf)]
and

Gu(T 1)~ GuulF. ) = "5 G(F s ) — 22 GalF o 1)

PiRe[X(Fp, IXF(Fg, )T (4.139)

1

+
Sl Sl
I

'M“

piRe[X; FI:f)XA (Fo, f)]

Mx

I
_

i

Using the result |4 + B| < |A4| + |B], it follows that

M M
Gx(T f) = GxaF, )l S = Gu(F, f) + =2 GxalF o, f)

Xi(Fp, HXF(F g, (4.140)

M8
=

+

I
—

PilXi(Fp, )X 3(Fo. )

Mx

+

i L 1

I|
-

i

To obtain bounds on the last two terms in this equation, note that

XA, X (F o /)l =/ M/ Mg/ GiF 1, ) /Gi(F g, /) (4.141)

Hence,

M M
xalFs N < Gu(F s f) + =2 Gaa(F o f)
20 M, /M, &
+% Z \/piGi(FIaf)\/piGi(FRaf)
i=1
2JUM, /M, &
+ # _Zl \/PiGi(Flaf) \/piGAf(FO’ h

(4.142)

IGx(T. /) = G
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Using the Schwarz inequality for summations (Theorem 2.15), it follows that

Z, \/piGi(be) \/PiGi(FRaf) = \/i piG(Fr, /) \/i piG(Fg, f) (4.143)

Hence,

M M
(T, /) = GralF. ) < ZEGulF i f) + =2 GraFon f)

2
N M\/GX(F,J) VGx(Fr. f)

* %T\/Mio\/Gx(an) VGxAFo. f) (4.144)

and thus,
’ Gy (T, — Gy (F, d _ _
SRJJ X(xﬁ f) — Gyal f)lf\]\?l;_)@:ﬁ) %Pg(‘;")
J G (T, f) df ™ ™
2 /M, My (* J/Gy(F1, ) /Gx(Fg. f)

+ T J . ) df (4.145)

L MM (% /Ga(F1 )/ CualFor /)
T P(T)

The Schwarz inequality for integrals (Theorem 2.15) implies

RGNS ﬂ Gu(Fy, 1) df ﬂ GolF s /)df

(4.146)
and hence, the required result follows:
. %P(FR)Jr (Fo) 2,/ N/ =~/ P(F ;) /P
R="T PT) T P(T P( ) (414)
NG \/ o /PE)/PAF,)

P(T)
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APPENDIX 2: PROOF OF THEOREM 4.4

The proof of the first result follows the proof given by Papoulis (2002 p. 211)
to a related problem. Consider a real variable « and the result:

i
0< ?Z Zpijb‘Xt(Ts N+ Yi(T, NI?
? 1
= a? L2 PglXAT PP + 2 X2 pyl (T )P (4.148)
& 2aRe| LYY p, (T DVAT ) |

Using results from conditional probability, p;; = p;;;p; and Z; p;,; = 1, as well as
definitions for the power spectral density and the cross power spectral density,
it follows that

0 < 22Gy(T; f) £ 20Re[Gyy (T, /)] + Gy(T, ) (4.149)

The right-hand side of the inequality is a quadratic equation with respect to «
with roots given by

 FRe[Gy(T /)] / Gy(T, f)Gy(T, f)]
= — -1 ] - 4.150
=G (T ) [ T Relog | @10

Thus,
0< (o —r)oa —ry) 4.151)

This inequality must hold for all «eR which implies that the graph of the
quadratic, with respect to o, must not cross below the horizontal axis. This is
consistent with either imaginary roots or equal real roots. Thus, the argument
of the square root operator must be <0, that is,

IRe[Gyy (T, )1 < /Gx(T, f)/Gy(T, f) (4.152)

which is the required result.
To prove the second result, consider the inequality defined by Eq. (4.149)
for the case where o = 1 (Larson, 1986 p. 435):

0 < Gx(T. f) + Gy(T. f) + 2Re[Gyy (T, f)] (4.153)
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It then directly follows that
2[Re[Gxy(T; /)] < Gx(T, f) + Gy(T, f) (4.154)

which is the required result.
For the fully correlated case the cross power spectral density is

ny(rf)=zp,X(TfT)Y*(Tf [\/;Z;\f/gf}[\/zi%rﬂ} 4155

Direct use of the Schwarz inequality (Theorem 2.15) yields the required result,
namely,

1 XA(T, )2 | Y(T, f))?
6T ) < /Zm l(T,f>| /Zm l(T, N ST ST )

(4.156)

To establish when equality exists between |Gyy(7; f)| and a function of
Gy (T, f) and G(T, f), consider the fully correlated case given by Eq. (4.155).
If x,(t) = ky,(t) for ieZ*, then Gy(T, f) = k*Gy(T, f), and

Gy(T, ) =y P SIE_ Gy(T. ) - y" PUEDE _ g, . )
=T 1K
= /Gx(T, /) /Gy(T. f) (@.157)

which establishes the required equality.
To establish the bounds for the independent case, consider the summation
defining Gyy when p;; = p_;p,;, whereupon

‘ZZPUX(TJ’)Y*Tf)‘<zf[\/zzl\XﬁTf ]Z\ﬁ[\/fy,l\)/in)l]

(4.158)

From the Schwarz inequality (Theorem 2.15), it follows that

Z\/p—x[@w (TN _ /Z M/zmx TP _ fGm) @159)
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and hence, the inequality for the independent case follows, namely,

S SR XAT NN < VETNVGT ) (@160)

APPENDIX 3: PROOF OF THEOREM 4.5

From the definition of the power spectral density, it follows that the power
spectral density of Z = X + Y, evaluated on the interval [0, T], is given by

o0 o0 pl pl
GUT )= Y ¥ 12T -y ¥ T IXU(T ) £ V(T )P
i=1j=1 i=1j=1
=X X T[IX T ) £ 2Re[X(T, /)YXT /)] + (T f)P }
i=1j=1
(4.161)
Using the results from conditional probability,
Pri = PrPuyx = PiPxp Y Pi=1 Z pp =1 (4.162)
k=1 1=

and, assuming that the order of the Re operator and summation can be
interchanged, the required result follows, that is,

GAT, f) = Gx(T, f) + Gy(T, f) £ 2Re[Gyy (T, f)] (4.163)

APPENDIX 4: PROOF OF THEOREM 4.6

As G4(T, f) = limy_, , G, (T, f), it suffices to determine the power spectral
density of Z,. The power spectral density of Z,, evaluated on the interval
[0, T], is

GZ\?(Y—; f) = a'“:‘:N)|ZN(C15"'=CN9’Taf)|2 (4164)

\F&

=1

I

e

where

1Zy(C s s T. ) =
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Zy as given by this expression is finite since, according to Theorem 3.6
bounded signal energy [see Eq. (4.85)] guarantees that

. ,N}L{eZ" feR} < (4.166)

Sup{|Xi(£w >f)| ZG{

Thus, G, (T, f) equals
1
T,;
Equation (4.166) results in the summation in Eq. (4.167) being absolutely
convergent and hence, according to Theorem 2.21, the order of summation can

p(c ’~~->QN)WLW X(QwTa’f)X ( pT;f) (4 167)
1

||[\/J><

D8
M=
M=

IN=11i=1j

be interchanged to yield

N o0 o0 2 2
|Wi| |Xi({n 9f)|
Go(TS)=3 Y - X ¢ N
i=1¢4=1 =1
N N o0 o0 WiW*
+ Z Z Z Z p(‘:b"'aCN) T'I Xi(kw af)X*(‘:bT;f)
i=1j=14=1 n=1
Jj#Fi
(4.168)

Using the results from conditional probability,
(4.169)

P ) = pilCpC s G G- OV /G

o0 o0
Z Z Z Zp(ép-~~aCi—1aCi+1a-~-aCN/Ci):1
1=1

Li-1=1 Gi+v1=1

(4.170)

it follows that the first summation in Eq. (4.168) can be written as

N o o0 o0 o
2w Z )
i=1 &= li-1=1 Li+1=1 (n=1
P P z( i» af)'z al , 12
P($1,~~~=Si—1a Cit1s- --»éN/L) ZP( )#—leil Gi(If)
{i=1 i=1

@.171)

Similarly, the summation with respect to {,,...,{y in the second term of Eq.

(4.168), can be written as

R

Li+1 n=1

o0
wiwy Y

,1

>
=1 {i—-1=1 {i+1=1 {j-1=1 1
z z X;(Cp’]—;f)X* b af
[2 Y Pyled) PRI | 2 6T ) @)
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where {={y,.... 0ot Gotser s Gots {15+ -+ {y- Substitution of these two
results into Eq. (4.168) yields the required result, namely,

Gz (T f) = Z wil*G(T, f) + Z Z wwi Gy(T, f) (4.173)

i=1j=1
J#Fi

To prove the final result, as in Eq. (4.90), note that lim,_,, T sinc®(fT) = 8(f)
and

N N N N N
Z LWT,“i.“_;k = Z Z Wiw_;k/‘iﬂ_?: - Z ARME
. e - (4.174)
N 2 N
= '21 Wik Z [wi | |

APPENDIX 5: PROOF OF THEOREM 4.8

By definition, the power spectral density on the interval [0, NT, ] is

|X(NT,, f)?

Tnf)= NT,,

NT,
X(NT,, f):f x(t)e 2 dt (4.175)
0

On the interval [0, NT,] the Fourier transform X can be written as

NTp

Tp 2Ty
NTnvf):J x(t)e 92/t dhL,f x(t)e 42t dt+~-+J x(t)e 2™ dt
0

Tp (N—1)T,

(4.176)

and, since x is periodic with period T, the changes of variables, { =t —iT,,
ie{l,...,N — 1}, results in

Ty
X(NT,, f) = U N0 ak dt:l [1+4e 2T 4o g o i20/(N-1T1]
° @.177)

1 —e —j2nfNTp

N-1
=X(T,, f) X e P = X1, ) T ey

where the last result comes from Theorem 2.32. Thus, with N =LT/TnJ it
follows that

1—e” J2nfNT)p T .
X(T, f) = X(T,, )= f e A (@178)

—Ji2nfTy +
NT)p
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When fef{...,—f,, 0, f,,...}, it follows that 1 —e /**T» =0, and from
Theorem 2.32 that |(1 — e /2%/NTr))(1 — ¢ #2%/1r) = N, Thus,

| X(T, ) = H;JX(TP,J‘) + jT x(t)e 2 dt 4.179)

p. NT,

Hence, when fe{..., —f,,0, f,,...} and G(T, f) # 0, it is the case that G(T, f)
approaches infinity in a manner proportional to T and thus, there exists
constants k,, T, > 0, and 0 < « < 1, such that for all T > T, it is the case that

2
ok, T < G(T, f) = M <k,T (4.180)

When fé¢{...,—,.0, f,,...} it follows that 1 —e /2®/*» £ 0. Consequently,
from Eq. (4.178), it follows that
N+ 1T,
+ J |x(t)| dt

NTp

2|X(T,, S

IX(T, ) < 1= ¢ 220/

(4.181)

which is independent of T. Hence, when f¢{..., —f,,0, f,,...} there exists
constants k,, T, > 0, such that for all T > T,, it is the case that

0>

_IXT APk

G(T, ) T T

(4.182)

which completes the proof of the required bounds on G(T, f) as T increases.
To determine expressions for Gy(NT,, f) note, from Eq. (4.177), that

N-1

Z o J2nfiTy

i=0

2 N-1
Y e 2Ty

i=0

X(T,, f)? 1 2
GuNT,, ) = Tl = 6T )y

(4.183)

Using a result from Theorem 2.32, the required form for the power spectral
density on the interval [0, NT,], that is,

| sin2
Gy(NT,. f) = Gy(T,. /) ﬁ% (4.184)

follows. As sin*(zNf/f,)/sin*(nf/f,) = N> when f = if, (Theorem 2.32), the
result

2
lc; |

Gy(NT,. if,) = NGy(T,. if,) = = NTle* =

14 o

w (4.185)

follows for ie Z. The third equality in this equation uses Eq. (4.96).
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On the infinite interval (0, o), another result from Theorem 2.32 substituted
into Eq. (4.184), yields

Gy, (f) = lim Gy(NT,, f) = Gx(T,, f) '72; Lo —1if,)  (4.186)

N-w

Since
_ X(Tpﬂ #p) . |X( lf )|2 |Ci|2 .
¢ = T GX(T)‘)’ lf‘p) = ’I}) Tp ieZ (4187)
it follows that
Gr.(N) = Y lal?o(f — if,) (4.188)

i=—o

which is the last required result.

APPENDIX 6: PROOF OF THEOREM 4.10

It directly follows from Theorem 4.6 that

0

Gx(T, f) = Y WI’G(T, f) +

il % i wiw X(T, /)XH(T, f) (4.189)
i=1

||M><

/#L

which is the first required result. It follows from Eq. (4.108) and Theorem 2.33
that

X(Tf)=T Y cpe ™07 sinc[(f — )T] (4.190)

k=-—

For the infinite interval, it is required to show that the double summation, DS,
in Eq. (4.189) is insignificant compared with the first summation as T — o,
except when f = 0. To this end, note that

1 & ¢ % ® S - Wk X(T, /) 1X LT, )
DS = WEX(T, XK, f) < )
igl ng e ,’( f) A ™ ig‘ %“1 e | \/7 \/7

,=
J#Fi
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Finite signal energy as per the assumption in the theorem guarantees, from
Theorem 3.6, that

sup{G,(T, f): icZ*, feR}

is finite. Absolute convergence of the weightings then guarantees that the
bound in this equation is finite. From Theorem 4.8 it follows that there exists
constants k; T,> 0,0 < o < 1, such that for all T > T, it is the case that

i p

G(T f) <k/T fél, =10, fi, )
ar, T < G(T, f) <rT  fel..,—f.0,f,..} 4.192)

Thus, when f is not a multiple of one of the fundamental frequencies of the
periodic waveforms, that is, f ¢ {qf;: qe Z,ie Z"}, it is the case that

zz WEX (T, S)XH(T, zz |*|ff @.193)

o
#L ’él

~ |

which clearly converges to zero as T — 0.
The second case is where f is a multiple of one of the fundamental
frequencies of the periodic waveforms, but not equal to zero, that is,

felqfiiqeZ,q #0,ieZ"}

For the case where [ = g,f, and g, # 0, it follows from Eq. (4.192) that

L& wwiX (T X KT Z w,wEX (T )X H(T,
Z z Wj l(’f) J(’f)—}—ZReZW"W' n(bf) _](’f)
i=1 j= T ji=1 T
iFn # j#n
<X Z |wil [w *Iff+2 > wal Wi I/r T f (4.194)
i=1 j=
i#Fn # /#n

which clearly is bounded as T — oo. However, for f = g, f,, it is the case that
G,(T, f), and hence the first summation in Eq. (4.189), becomes unbounded as
T — . Thus, the double summation can be neglected as required, except when
f=0.

For the case where f is in the neighborhood of zero, it follows from Eq.
(4.190) and T sufficiently large, that

X,(T, f) = Teyy sine(fT) (4.195)
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Hence,

_i WEX(T, NXHT )~ Tsin(fT) Y 3 wovkech  (4196)

i=1j=1

~| =
”.M“‘

Thus, as T — oo, it follows from Theorem 2.32 and for f ~ 0, that

W XU NXHT ) = 600 Y Y wiwkeoch = 6(/)|
i=1j=1 i=1

<l =
'MR
M8

i=1 j=1

(4.197)

which is the final result required for the infinite interval.

APPENDIX 7: PROOF OF THEOREM 4.11

By definition, the power spectral density of X is

X(T f) = XL, )+ X p(T, f), icZ®
(4.198)

L X(T
;|(f)|

Direct evaluation yields

2
Gx(T, f) = Gyp(T, f) + Gxp(T f) + Z piRe[X (T, )X5(T, /)] (4.199)

The summations in this equation are finite because of the assumptions stated
in Eq. (4.121), which, according to Theorem 3.6, imply that

sup{|X;z(T, f)l:ieZ*} < © sup{G(T, f)ieZ"} < o
and similarly for X, and G,. This is the first required result.

From Eq. (4.118) and Theorem 2.33, it follows for ie Z* that

XpTf) =T Y cpe ™7 sing[(f— K)T]  (4200)

k=—x

Also, when T > T, that is, N, = |_T/TiJ > 1, it follows from Theorem 4.8 that

e Jj2nNifT;
Xl )~ X (T, 1) [,] @201)

Z 2Gon 1 sin?(eN, f/f)

Gypl(T. f) ~ N, sl /)

(4.202)



APPENDIX 7: PROOF OF THEOREM 4.11 135

and hence,

G(T, ) ~ Gyy(T, f) + Zp. inl ﬂi%

w© 1 — ejZ"NifTi
Z piRe [X?} T., f) <1_ej2,,fT,>XiB(7: f):|

(4.203)

~]\N

i

Direct substitution of Eq. (4.200) into Eq. (4.199) yields the alternative form
for Gy,

Gx(Ta f) = GXB(’I; f) + GXP(T; f)

12 5 S sinel(f — k) TRe[che™ 17X (T, /)]
i=1 o

k=—

(4.204)

To obtain an expression for Gy (f) = limy_ G(T, f), there are two cases to
consider. The first case is where f is not a multiple of one of the fundamental
frequencies of the periodic waveforms, that is, f¢{pfi:peZ,ieZ*}. For this
case, note that the summation in Eq. (4.199), denoted Tj, has the bound,

o | Xip(T NI 1Xip(T, 1)
2 .
S 21 P JT JT

For the case where f is not equal to a multiple of one of the fundamental
frequencies of the periodic signals, it follows from Theorem 4.8 that G,p(T; f)
converges to zero as T — c0. As noted above sup{G,(T, f):ieZ*} < oo and
hence, lim,_,, T; = 0.

The second case is where f is a multiple of one of the fundamental
frequencies of the periodic waveforms, that is, f e {pf;: peZ,ie Z*}. According
to Theorem 4.8, it is the case that lim;_, , G;p(T, f) is infinite, and accordingly,
T, also becomes unbounded as T — oo assuming G(T; f) # 0. Hence, poten-
tially, T; becomes impulsive. However, according to Eq. (4.101), G;p(T, f)
increases in proportion to T for T sufficiently large, and as Gz(T, f) is
bounded it follows that T increases in proportion to ﬁ Thus, there will
always exist a sufficiently large value of T, such that

23 PG T NG TS (4205)

Gyp(T. f) = 2 piGip(T, f) > 2 Z Pi/Gis(T, f)/Gp(T, f) > Ty (4.206)
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Hence,

o0

Gx ()= Gun (N + T p 3 lulolf—k) @207

k=—o0

where the last term follows from Theorem 4.9. This is the required result.

APPENDIX 8: PROOF OF THEOREM 4.12

By definition the power spectral density of X is

(L f

)= 3 I B XL = VAT )+ 5T ) G208

where P is the Fourier transform of the pulse function with unit height on the
interval [0, T], and zero elsewhere. From Theorem 2.33

P(T, f) = Tsinc(f/f)e #*1'e  f =1/T (4.209)

and it then follows that

Gx(T, f) = Gy(T, f) + Tsinc? <{> i pil%il?
Jo/ i=1

(4.210)
+2 Y pisinc (%) Re[X}e/™ /" W(T, )]

i=1
The assumptions made in Eq. (4.130) ensure, according to Theorem 3.6, that
sup{|VAT, f):ieZ"} < o and sup{Gy (L, f):ieZ*} <

These results, along with the absolute convergence of the summation of p;|x;|?
and p;|x;|, ensure that Gy, as given by this equation, is finite. This is the first
required result.

To obtain an expression for Gy (f) = limy_ , Gx(T, f), first, note from
Theorem 2.32 that lim,_, , T sinc’(Tf) = &(f). Second, for f fixed and f # 0
it is the case that |sinc(f T)| decays according to 1/T as T increases. As

sup{Gy (T, f):ieZ",TeR"} < w
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it then follows that the last term in Eq. (4.210) has the bound,

‘2 i p; sinc (?) Re[xfe’ V(T f)]

i=1 o

2% &
<TF X pIsIK(T /) @.211)
i=1

2k
< ?ﬁsup{. /Gy (T, f):ieZ*, TeR"} 4

for some appropriate constant k and when f # 0. Clearly, this summation
approaches zero for T sufficiently large. When f = 0, the second term in Eq.
(4.210) increases in proportion to T, while the last term in this equation
potentially increases in proportion to ﬁ Hence, when f = 0 the last term can
be neglected. Thus,

M8

pilXi|

1

Gy, (/) = Gy (/) +30) ¥, plxif? (421

which is the required result.
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Power Spectral Density
of Standard Random
Processes— Part 1

5.1 INTRODUCTION

In Chapters 5 and 6 the power spectral density of commonly encountered
random processes are given in detail. Specifically, the power spectral density of
random processes associated with signaling, quantization, jitter, and shot noise
are discussed in this chapter, while the power spectral density associated with
sampling, quadrature amplitude modulation, random walks, and 1/f noise, are
discussed in Chapter 6.

In this chapter, the random processes discussed have a general form that is
associated with signaling, and the terminology of a signaling random process
is introduced. The results associated with signaling random processes are used
in Chapter 7, to detail an approach for determining the power spectral density
of a random process after a nonlinear memoryless transformation.

5.2 SIGNALING RANDOM PROCESSES

As defined below, the signal form associated with signaling is such that
signaling random processes are found in models for a diverse range of physical
processes. For example, signaling random processes include baseband and
certain bandpass communication processes. The signal form of interest is that
of an information signal.

DEFINITION: INFORMATION SIGNAL An information signal is one generated by
a sum of signals from a “signaling set,” where one signal is associated with each

138
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signaling interval of D sec. With a signaling set E,, an information signal has
the form

Y B0t — i~ D) 1)

where ¢ € Eg and y; is an index variable which defines the signal from E,, that
is associated with the ith signaling interval [(i — 1)D, iD].

DEFINITION: SIGNALING RANDOM PROCESs A signaling random process X, is
one whose ensemble consists of information signals. The ensemble E, charac-
terizing such a random process for the interval [0, ND] is

N
Ey = {V(Vp ces PN ) = Z ¢yt — (i — 1)D), y,€8r, ¢9Em} .2
i=1

where y,€Sr and the vector (y4,...,7y) is an element of Sy = S x -+ X S,
which is an index set to distinguish between waveforms in the ensemble.
Sp € Z* for the countable case and S < R for the uncountable case. Equiv-
alently, y,,...,7y are the respective outcomes of N identically distributed
random variables I';,...,I'y, and T is used to denote any one of these. The
sample space associated with I" is Sp.

Associated with each element of the set Sy, or equivalently with each
outcome of the random variable T, is a signal, and this association defines the
set or ensemble of signaling waveforms, E:

Ey = {¢(p,0): 7S} (5.3)

The probability of any given signal from the signaling set is given by the
probability of the associated outcome from T, that is,

Pl¢(y,0)] = P[y]1=p, countable case
PLo(y, t)|"/E[vo.Vo+d'i]] =Plyelye,7, + dy]l= fr(yo) dy uncountable case
(5.4)

where fr is the probability density function of the random variable I for the
uncountable case. The probability associated with waveforms in Ey are

PIx( oo vns )] = Pygs oo V] = Doy countable case

P[x(yla"~7VN5[)|*;,GI,]ZJ\ J .fl"l.A.l"N(Alvla'“a’YN) dyld’YN unCOuntablecase
Iy In
(5.5)
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where p, .. and fr, ., respectively, are the joint probability of y,..., vy
for the countable case and the joint probability density function of I'; ... "y, for
the uncountable case. For the independent case

p')',“.y_\v:p;q"'p;w fF|...FN(7‘17"'57‘N):flﬂ(A/'l)"'fl"N(A/‘N) (56)

Finally, the Fourier transform of a signaling waveform ¢ € Eg, evaluated
over the interval (— oo, 00), is

@(y, f)=fc Gy, e 2tdt - yeSy (%))

5.2.0.1 Example— Standard Communication Signals Each outcome
of a signaling random process X is an individual signal, and with an
appropriate signaling set, is suitable for use in a communication system. For
the case of signaling at a constant rate r = 1/D, there are two standard
information signals defined on the interval [0, ND] according to

7.€8r={1,...,M}

Vs s Ynsl) = Z Awqﬁ(t — (i — 1)D) Awe{Al,...,AM} (5.8)
P[A1=P[y]=p
. y,€Sp={1,..., M}
X(V1seesYnnt) = Z Ot — (i — 1)D) pekE, (5.9)
P[$(y.. )] = P[7:1 = p,,

where Eq = {¢(7;,1):7,€ Si-}. The signaling waveforms are of a pulse form for
baseband communication and A,..., 4,, are signaling amplitudes.

The first signal defined above is one where a constant pulse shape is used,
and the information is encoded through use of different amplitudes. The second
is where different signaling waveforms are used to convey information. Clearly,
the second form is more general and includes the first as a subcase. An example
of the second signaling form is shown in Figure 5.1, where E,,= {$(1, 1), ¢(2, 1)},
and

A cos(2nf,t) sin(nt/D) te[0,D]

ol.t {0 elsewhere (5.10)
A sin(2xf.t) sin(nt/D) te[0,D]

o210 = { elsewhere G11)

The plotted signal is x(1,2,2,1,1,¢), for the case where A =1, D=1, and
f.=4Hz.
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x(1,2,2,1,1,9

| \
gl |
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0.5 \
—0.75

1 2 3 4 5
Time (Sec)

Figure 5.1 Baseband signaling waveform, A= 1, D=1, and f, = 4.

Note, if the duration of all signaling waveforms in the signaling set is kD
sec, then at any time t after the first k transient signaling intervals, there are
potentially k nonzero waveforms comprising the signal x.

5.2.0.2 Generality of Information Signal Form A broad class of signals
can be written in an information signal form. To illustrate this, consider first,
the fact that any bandlimited signal x can be written, on the interval (— oo, ©0),
in the information signal form (Gabel, 1987),

M) = Y (D) sinc(t _DiD > (.12)

i=—o

Second, consider that any signal x with bounded variation can be written,
on an interval [0, ND], in the information signal form according to

N
x(”f’la' . ~5A/‘N9t) = Z d)yl([ - (l - 1)D) d)yles(ln A/‘iER (513)
y1=1

where S, is the set of signals with bounded variation on the interval [0, D] and
which are zero outside this interval.

5.2.1 Power Spectral Density of a Signaling Random Process

The following theorem details the power spectral density of a signaling random
process.
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THEOREM 5.1. POWER SPECTRAL DENSITY OF A SIGNALING RANDOM PROCESS
Assuming the effect of including components of the signaling waveform outside of
the interval [0, ND] is negligible, the dependency between signaling waveforms
depends on the difference between the location of the signaling intervals and not
on their absolute location, and the ith signaling waveform is independent of the
Jjth signaling waveform for |i — j| > m, then the power spectral density of the
random process X, defined by the ensemble as per Eq. (5.2), is

1 sinZ(an/r)]

Gy(ND, ) = r®( ) — rlual NI + rltal /) [N sin’(f /)

m . (5.14)
+2r ) |:1 - 1:]] Re[e”?™P/ (R, 0, (/) — el I?)]
i=1
Gu () = IO = rlial N + ol P X 3(f =)
n (5.15)
+2r Y Re[e?™(Ry,q,., (f) — |l N)I*)]
i=1
where r = 1/D and
i p,2(, f) countable case
ol ) =" (5.16)
J Oy, 1) fly) dy uncountable case
i P, 100, f)I? countable case
()P =(""" (5.17)
J Dy, NI fy) dy uncountable case
Ro,0,.(f)
i i P P01 ))O*( 140 ) countable case

71=171+i=1

J J‘ Oy, NO* 146 ) friry (V17140 dV1dy1 4 uncountable case
(5.18)
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For the independent case Re,q, . (f) = |uo( f)I* and

1
Gx(ND, f) = r®(N)I* — rlua( /) + rlue( ) [ pe

N sin’(nf /r) } G

Go (1) = O ol NP + Pl T 0(f —m) (520)

n=—

Proof. The proof is given in Appendix 1.

5.2.1.1 Notes The results stated in the above theorem for the independent,
countable, and infinite interval case are consistent with those of van den Elzen
(1970).

The given expressions for Gy(ND, f) and Gx_( f) can be written in a simpler
form with the variance definition

ao(f) = 10N = lua(S)P (5:21)
however, the given forms best facilitate evaluation of the power spectral
density.

As the discrete and independent case, where there are M possible signaling
waveforms, commonly occurs the following explicit expressions are useful:
21 sin®(nNf/r)

N sin%(zf /r)

M
Gy(ND, f)=r Z I, NI + 1

M
Z P, (7, - 1} (5.22)

Gy (f) =1 Z P00, f)I? —

(5.23)

2

¥ o -

n=—

M
> ;1 POy, f)

The equations specified in Theorem 5.1 can be considerably simplified if the
mean of the Fourier transform of the signaling waveforms ug, is zero. A
sufficient condition for this is for the mean of the signaling waveforms to be
zero, that is, u,(t) = 0 for te(— oo, ), where p, is defined, respectively, for the
countable and uncountable cases according to

(1) = Z P00 1) py0) = j d0, 0 fr(y) dy (5.24)

When u,(t) = 0 for te(— o0, 00), it follows for the countable case that

.uzD f) Z p (D ,, f) = z p?J\ v d)(",', [)e—ﬂn.ft dt
y=1 —

_ J ‘ [2 b6, ,)]e-mf, s =0
—w Ly=1

(5.25)
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The interchange of summation and integration in this equation is valid,
according to the dominated convergence theorem, when there exists a function
g €L, such that Zf,‘; p,d(y. 1) < g(t) for all values of MeZ*. A typical case is
where sup{|¢(y, )]: ye Z*} is bounded and integrable on the infinite interval,
and for this case the interchange is valid. A similar argument can be used for
the uncountable case.

5.2.1.2 Case 1: Mean of Signaling Waveforms is Zero For the case
where the mean of the signaling waveforms is such that ug(f) =0 for feR,
the results given in Theorem 5.1, for the power spectral density of a signaling
random process, simplify to

m

Gy(ND. ) = ri®( /) +2r Y. [1 - ]‘V} Re[e™ Ry, (/)]

i=1

! (5.26)
Gy, () =r®()> +2r Y Re[e”™/ Ry, (/)]

i=1

When ug = 0 and the signaling waveforms in different signaling intervals are
independent, the simple result

x(ND, ) = Gy (f) = ()2 = Go(D f) (527)

holds, where G, is the power spectral density of the random process defined
by the ensemble E,, as per Eq. (5.3), that is,

P Z P10y, NI? countable case

y=1

Go(D, ) = : (5.28)

D J Dy, NI*f() dy uncountable case

Consistent with Eq. (5.7), the contribution of the signaling waveform compo-
nents outside of the interval [0, D] are included in this power spectral density
definition.

5.2.1.3 Case 2: Information Encoded in Pulse Amplitudes Consider
the case where information is encoded in the pulse amplitudes, such that

¢, 1) = A(y)p(1), and

A, yeZ® countablecase
A(y) yeR  uncountablecase

m—{A( )(1): A7) ={ } (529

where

P[Ay] = P[V:l = p;v P[A(“/‘)| ’)fE[",'(),”/0+d"/]:| = fr(%) d? (530)
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It then follows that

O(f) i p,A, = w,D(f) countable case
tol f) = ! (5.31)
O f )J A®) fly) dy = () uncountable case
|D(f))? Z P14, 1> = 10()IP1A]? countable case
(/) = !

o(f))? J |A()Pfe(y) dy = |O(f)PA>  uncountable case
(5.32)

where, u, and W, respectively, are the mean and mean square value of the
signaling amplitudes. Further,

R<D1CD1 H(f) =
|O( f)I? i i Povsr iAo AT L countable case
71=17y141=1
(/) f : Jw AGDA*G 140 frar, (717120 dry dy sy uncountable case
= (/)R a4, -, (5.33)
where, p.,., ., 18 the joint probability of y; in the first signaling interval and y, ,;

in the 1 + ith signaling interval, or equivalently, the joint probability of the
amplitude 4., in the first signaling interval, and the amplitude 4, ,, in the
1+ ith signalmg interval. Similarly, fr r,,, is the joint probability density
function for amplitudes in the first and 1+ ith signaling intervals. The
definition for R, 4, ., is obvious from this equation. With these definitions, it
follows that

1 sin®(aNf/r
GaND. ) = O YR~ + | S|

+2 Z |: - N:l Re[eﬂmbf(RAlAHl |:“A|2)]} (5.34)

Gy, (f) = r®()? {W —lal? + ol Y o(f —nr)

n=—

+2 ) Re[e” ™Ry 4y, — IMAIZ)]} (5.35)

i=1
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The variance definition

oh = 1A — |y (5.36)

can simplify the form of these equations. Carlson (1986 pp. 388—389) gives
equivalent results.
For the independent case, where R, 4, ., = |p4l?, it follows that

— 1 si 2 N
Ga(ND. f) =0 | 1AP — g + o S| (s

o0

Gy, (f) = rle(f)? [W = lual? + > Y o(f — m‘)} (5.38)

n=-—o

For the independent case, where the mean amplitude u, is zero, the simpler
result follows:

Gx(ND, f) = Gy () = HAP |®(f)* = raZ(f)? (539)

5.2.2 Examples and Spectral Issues for Communication Systems

The above theory has direct application to communication of information via
signaling waveforms, as the power spectral density contains the following
information. First, whether there are signal components in the transmitted
signal which do not convey information. Such components are periodic, show
up as impulses in the power spectral density, and indicate inefficient signaling.
Second, how spectrally efficient the signaling scheme is in terms of the level of
information transmitted in the frequency band containing the majority of
signal energy. The usual measure here is the number of bits of information per
Hz of bandwidth. A greater degree of spectral efficiency allows a greater
number of signal or information channels in a specified frequency band. Third,
the degree of spectral rolloff associated with the residual signal energy outside
of the band used to measure spectral efficiency. The degree of spectral rolloff is
a measure of the spectral spread and such spread impairs the ability of a
receiver associated with an adjacent signal channel to recover a signal in that
adjacent channel.

The following examples give some insight into these issues, although they
primarily illustrate the evaluation of the power spectral density of a signaling
random process.

5.2.2.1 Example: Power Spectral Density of a Return to Zero Signal
Consider the case of a signaling random process, defined for the interval
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0@

D/2 D

Figure 5.2 Pulse waveform.

[0, ND] by the ensemble

N
EY:{y(”,'l,...,yN,, Z ¢(t—(@i—1)D), y,€{1,2}, AI:O,AzzA}

(5.40)

and the pulse waveform ¢ has the form shown in Figure 5.2. Signaling with
such a waveform is called “return to zero” (RZ) signaling. The Fourier
transform of ¢ is

f

D(f) = —smc <2’

> e M =1/D (5.41)

Assuming independent and equally probable amplitudes, such that p, =
AJ2, A* = A%)2, 65 = A*/4,and R, ,, ., = |u,l? for i > 1, it then follows from
Egs. (5.37) and (5.38), that the power spectral density is given by

, . NS )
G4(ND, f) = %smc <2f >[1 + ;W] (5.42)

Yd(f)__zsmc <;>+f—;smc <f> Z o f —nr) (5.43)

The power spectral density is plotted in Figure 5.3 for the case of N = 256,
D=1,r=1, and A4 = 1. Clearly evident in this figure is the continuous sinc
squared form and the discrete “impulsive” components. For the case where
A =1, the power in the impulsive components at frequencies 0, r, 2r, 3r,...is
1/16, 0, 1/4n2, 0, 1/36n2,....In Figure 5.4, the power spectral density for the
infinite interval is plotted using logarithmic scaling.

The following can be inferred from these power spectral density graphs.
First, the impulses in the spectrum are wasted power as far as communication
of information is concerned, and thus, RZ signaling is inefficient signaling. The
impulsive components, however, may facilitate synchronization and data
recovery at the receiver. Second, the signaling pulse is relatively narrow, which
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Figure 5.3 Power spectral density of a RZ signal when D=1, r= 1, A= 1, and N = 256.

implies a relatively broad spectrum, which, in turn, implies relatively poor
spectral efficiency. The main lobe of the power spectral density is from —2r to
2r Hz, that is, a bandwidth of 2r Hz. This implies a spectral efficiency of 0.5
bit/Hz, which is low when compared with, for example, signaling with raised
cosine pulses as shown in the next example. Third, the envelope of the power
spectral density rolls off at a 1/f2 rate which is generally inadequate for most
communication systems.

5.2.2.2 Example: Power Spectral Density of a Bipolar Signal Consider
the case of a signaling random process, characterized on the interval [0, ND]
by the ensemble

N
EX = {-\‘(}ylw"’yNat) = Z d)(yntf(l*l)D)’ ¢GE(I)7 A/'ie{ilaoa 1}} (544)
i=1
where

Eo = {¢(:,0): ¢(yit) = (B, t — D/2), y,€{—1,0,1}} (5.45)

o t\ cos(nft/D)
p(ﬁ, [) = Asinc <B> m (546)

Here, p(f, 1) is the inverse Fourier transform of a raised cosine spectrum, which
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Figure 5.4 Power spectral density of a RZ signal evaluated on the infinite interval when D = 1,

r=1, and A= 1. The dots represent the power in impulsive components. The power in the
impulse at 0 Hz is 0.0625.

is defined according to (Carlson, 1986 p. 406; Proakis, 1995 p. 546)

A r
2 M<50-p)
A I——pR]
P = (o DR Ly <ini<taen s
0 1250+

where r = 1/D. P is shown in Figure 5.5 for the cases of f = 0.5 and = 1.0.
The parameter f is the rolloff factor and is such that 0 < < 1. The graph of
p(B, t) is shown in Figure 5.6 for the cases of f = 0.5 and f§ = 1.0.

A bipolar signal is generated when binary data is encoded with no waveform
corresponding to a logic 0, and with logic 1 being encoded alternatively with
p and —p as illustrated in Figure 5.7. This encoding leads to correlation
between adjacent signaling waveforms, but ensures the signaling set has zero
mean for the case of equally probable data.

Consistent with this encoding, it follows from Eq. (5.26) that the power
spectral density of the signaling random process is

Gx(ND, f) =rl®(f)* + 2r [1 - %] Re[e’2™/ Ry, q,( /)] (5.48)
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Figure 5.5 Raised cosine spectrum for the case where r= A = 1.

where

1
1P = Y ploo. NI?
1 (5.49)
Rd),(bz(f) = Z, Z . p;:ly-zq)(}'la NO*( 5, f)

) 1\
. I\

B=1
0
B=[0.5
) -1 0 1 2 3
Time (Sec)

Figure 5.6 Inverse Fourier transform of raised cosine spectrum for the case where D = A = 1.
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Figure 5.7 Bipolar signaling waveform where pulses associated with a raised cosine spectrum
have been used. p=1,D=1,A=1,anddatais {1,0,1,1,1,1,0,0, 1, 0.

In these equations, p_, = p, = 0.25 and p, = 0.5. By considering possible data
and the corresponding signaling waveforms in two consecutive signaling
intervals, it follows that the probabilities of two consecutive signaling wave-
forms, that is P[¢(y,, 1), ¢(y,,t)] = p,,,,, are as tabulated in Table 5.1. Using
the results in this table, it follows that

|O(f)1* = 0.5[P(, /)I> and  Rge,(f) = —0.25|P(B, f)I?
and hence,
G4(ND, f) = 0.5¢|P(B, f)|? {1 - [1 - %} cos(2nf/r)} (5.50)
Gy, (f) = rsin’(zf/r)|P(B, /I (5.51)

where the relationship sin*(4) = 0.5 — 0.5 cos(24) has been used. The power

TABLE 5.1 Possible Outcomes for Two Consecutive Signaling Intervals

Data Signaling Waveforms Probabilities
00 0,0 p,, = 0.25

01 0, ¢(—1,t)or0, ¢(1,1) Py =Py = 0.125
10 ¢(—1,1), 0or ¢p(1,1), 0 P_,o=P,=0.125

11 (=1, 1), d(1, 1) or (1, 1), H(—1, 1) p ., ,=p, ,=0125
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Figure 5.8 Power spectral density of a signaling random process using pulses associated with
a raised cosine spectrum, bipolar coding and withD=r=A= 1.

spectral density is plotted in Figure 5.8 for the case of N - co when f# = 0.5
and f = 1.0.

In comparison with RZ signaling, the following can be noted. First, the
bipolar coding ensures that the signaling random process has a zero mean, and
therefore, there are no impulses and no redundant signal components in the
power spectral density. Second, the signaling is more spectrally efficient. For
example, with f§ = 1, the spectrum is bandlimited to r Hz which implies 1
bit/Hz (twice as efficient as RZ signaling). Third, on the infinite interval with
no truncation of the signaling pulses defined in Eq. (5.46), the spectral rolloff
is infinite (there is no spectral spread). In practice, the signaling pulses are
truncated and this results in spectral spread which can be readily determined.
Finally, the encoding ensures that the power spectral density is zero at zero
frequency, ensuring that a bipolar signal can be passed by a linear system
whose transfer function has zero response at dc.

5.3 DIGITAL TO ANALOGUE CONVERTER QUANTIZATION

Increasingly, information signals are generated via a digital processor that
generates very accurate sample values, and these are put to a M bit digital to
analogue converter (DAC), at a constant rate of r = 1/D samples/sec. To
ascertain the power spectral density of the generated signal, consider a M bit
DAC with 2™ equally spaced levels between and including + A. The difference
between DAC levels is denoted A, where A = 24/(2™ — 1). Associated with the
ith camnle valiie ¥. 1< 9 aniantization error . a< illustrated in Ficure 59 <uch
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‘b Vi

Figure 5.9 lllustration of quantization error with a 2-bit DAC (4 levels).

that in the ith sample interval [(i — 1)D, iD], the constant level y; = x; + ¢; is
generated. The model is one of an additive error to an ideal signal. In general,
the actual levels in a DAC will vary from device to device because of
manufacturing tolerances and will vary with device age, etc. Accordingly, it is
appropriate to consider an infinite ensemble of DACs, where each is driven by
the same sample values, such that in the ith sample interval ¢; is independent
of x; when considered across the ensemble. From the nature of quantization, it
follows that ¢; takes on values with a uniform distribution, from the interval
[—A/2,A/2). A further assumption is that the DAC resolution and rate of
signal change are such that the quantization errors from one sample interval
to the next are uncorrelated. With such assumptions, the ensemble of DAC
output signals for the interval [0, ND], which define a random process Y, is

M=

Wep, o ey, t) = (x; + &)p(t — (i — 1)D)
i=1 —A A
E, = 8i€|:— —> (5.52)

N 272
= x5(0) + Z &Pt — (i —1)D)

where ¢ is a pulse function defined according to

1 0< 1
W0 =1 e 0=

0 elsewhere

sinc (%)‘ (5.53)

and x4(t) is a step approximation to the desired signal x, that is,

xs(t) = i x;p(t — (i — 1)D) (5.54)

The probabilities associated with the quantization error are such that

Ple.cle e 4411 = (e ) de
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with f,(e) = 1/A for —A/2 <e < A/2 and f,(e) =0 elsewhere. Clearly, the
mean of ¢; is zero and the variance of ¢; is given by ofi = A?/12 (Papoulis, 2002
p. 165).

The random process Y can be considered to be the summation of a
degenerate random process, defined by the signal xg and a random process E
associated with the quantization error, and defined by the ensemble

E;= {e(sl,...,s,v,t) = i gt — (i — l)D)} (5.55)

As E has zero mean, it follows from Theorem 4.6 that the power spectral
densities of xg and E add, that is,

Gy(T. f) = Gx (T, f) + Gg(T, f) (5.56)

From Eq. (5.39) it follows that the power spectral density of E is

_rAO(f)?  AZsinc®(f/r)  (2A)* sinc*(f/r)
Ge(ND, f) = 2 12r 1202M — )% (5:57)

A normalized power spectral density, with normalization in respect of the DAC
range of 24 and the output rate r, can be defined as

_ rGx(ND,rf) _ sinc(f)
G,(ND, f) = (2A4)> S 120M — 1)?

(5.58)

This power spectral density is plotted in Figure 5.10 for DACs with 8§, 10, 12,
14, and 16 bits.

5.3.1 Notes

First, for a fixed DAC range, the power spectral density due to quantization is
inversely proportional to the number of levels and inversely proportional to
the output rate. Second, in the frequency range of —r/2 < f < r/2, where the
spectrum of a generated signal is located, it is common to approximate the
power spectral density by the constant level of

(24)*

(5.59)

As a measure of the signal to noise ratio performance that is achievable with
a M bit DAC, consider the case where a sinusoid with amplitude of 4 volts is
being generated, and the DAC output is filtered such that the effective
anantization noi<e nower 1< con<icstent with the level oiven bv Fa (5 59) in an
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G,(ND, f)
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Figure 5.10 Normalized power spectral density of a DAC due to quantization. Upper to lower
curves, respectively, are for 8-, 10-, 12-, 14-, and 16-bit DACs.

ideal bandwidth of /2 Hz. The signal to noise ratio achievable is (Franco, 2002
p. 565)

22M — 1)%r
(24)*

SNR(M) = (A4//2)? [2 (r1/2) ! ] = 1.52M — 1)2 ~ 1.5(2%M) (5.60)

SNR(M) = 101og[SNR(M)] ~ 1.76 + 6.02M  dB (5.61)

For 8-, 10-, 12-, 14-, and 16-bit DAC:s, the respective achievable signal to noise
ratios are 50 dB, 62 dB, 74 dB, 86 dB, and 98 dB.

One example of signal generation of a bandpass communications signal,
with a digital signal processor and DAC, is discussed in Rensen (1999).

5.4 JITTER

The additive noise on a signal will introduce variations in the time instants a
signal crosses a set threshold level. Consequently, a signal generated on the
basis of the time an input signal crosses a set threshold will exhibit variations,
denoted jitter, from the ideal zero noise case. Jitter arises in many practical
applications, including synchronization of signals, hard limiting of signals, and
digital circuitry. The archetypical jitter case is that of a periodic pulse train,
which is corrupted by noise prior to the input of a comparator, as shown in
Figure 5.11. The noise will alter both the start and finish times of a given
ontnut nuilce chane a< chown in Fiouire 512
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Bias

NN

Figure 5.11 Schematic diagram of periodic signal, that is corrupted by noise and input into a
comparator.

x(t)

The signals x and z defined in these figures can be modeled on the interval
[0, NB], according to

x(t) = 3 plt — (i — DB) (5.62)

N
Z(Vp-u,’/zv, Z V t_ l_l) ) (563)

where p is the pulse waveform defining the input pulse train, and z is one
waveform from a random process Z, defined by the ensemble E,,

EZ:{Z(VD“‘ayNat)_ Z(ﬁ/n l_l) ) (aiadhwi)esl"’(bEEG)}

(5.64)

Here, S =S, x Sp x Sy, where S, Sp, and Sy, are sample spaces of random
variables 4, D, and W with respective outcomes a, d, and w, and respective
probability density functions f,, f;, and fy,. The set of signaling waveforms,
E is defined according to (assuming A4, # 0),

Ey = {(b(y, t)=A,(1 + a)r(t_ul’_d>,y =(a,d,w),aeS  ,deSp, weSW}
Hy + W
(5.65)

Here, A4, is the amplitude of the comparator output pulse for the ideal zero
noice cace 7 1< a2 normalized niilce waveform defined in Fiouure 5 13 4 accounts
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no noise with noise
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Figure 5.12 |lllustration of how noise alters the ith comparator output pulse shape.

delay of the commencement of the output pulse, w accounts for the variation
in the width of the output pulse, and u, and uy, respectively are the mean
delay and mean width of the output pulse. By definition, the random variables
A, D, and W have zero mean.

To facilitate analysis, the assumption is made that the noise is uncorrelated
over a time interval consistent with the duration of the comparator output
pulse. The implication of this assumption is that the delay d;, of the ith
comparator output pulse is independent of the width, as specified by w;.
Further, the delay and width of the ith comparator output pulse are assumed
to be independent of the delay and width of any other output pulse, and the
pulse amplitude is assumed to be independent of the pulse delay and width.
With such assumptions, it follows that

Jn(9) d5j Jw(w) dw  (5.66)

Iw

P[d)('}), t)|aEIA,dEI]),WEIW] = J fA(a) daJ‘

Ip

() ) 59
1 ' N v: - d d+w t
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consistent with the probability density function of the random variable T,
whose outcomes are denoted v, being such that

Jr@) = fa(a) fp(d) fy(w) 7 =(a,d,w) (5.67)

Clearly, Z is a signaling random process. As detailed in Appendix 2, previously
derived results for the power spectral density of such a random process can be
used to derive the power spectral density of Z. The result is given in the
following theorem.

THEOREM 5.2. POWER SPECTRAL DENSITY — JITTERED SIGNAL  The power spec-
tral density of the random process Z characterizing jitter and modeled by the
ensemble and associated signaling set, as per Eqs. (5.64) and (5.65), is

0

G,(NB, f) =rA;(1 + A?) J. (w + WP IRL(w + w) 1% (w) dw

— 0

2

+r A Fp(f)?

r (o + RT3+ ) £y () dw

— 00

x [;] W - 1] (5.68)
Gy (f) =rA;(1 + A7) f: (tw + W2IR[(,, + w) [ fr(w) dw
+r A F () Jm@ (uw + WRL 1w + w) f1fw(w) dw 2
x [r .:i: 8(f —ir) — 1} (5.69)

where r = 1/B, Fy, is the Fourier transform of f,, and R is the Fourier transform
of r, that is,

Folf) =r fd)e 205 R(f) =F r(t)e 72" dt = sinc( f)e 7"

(5.70)

and

A% = Jw a*f,(a) da

— o0

Pronf The nroof of thic theorem i< oiven in Annendix 2
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5.4.1 Case 1— Constant Amplitude

The common case is where the amplitude is constant, that is, 4> = 0. For this
case, the expressions for the power spectral density given in Egs. (5.68) and
(5.69), readily simplify.

5.4.2 Case 2—Zero Mean Amplitude

For the special case where the mean of the amplitude is zero, that is, A, = 0,
the signaling set is

Ey — {4)@, 0 = ar<t_'uD_d> 9= (a,d,w),aeS,,deS,, weSW} (5.71)
Hw + W

For this case, the power spectral density takes on the simpler form,

o0

G,(NB, f) = G, (f) =rA? J (w + WPIRL(w + w) £ fi (w) dw (5.72)

— o0

5.4.3 Example— Jitter of a Pulse Train with Gaussian Variations

Consider the case where a comparator is driven by a periodic pulse train with
period B =1/r and a pulse width py,. Further, assume the pulse train is
corrupted by noise such that the delay and width density functions, f;, and f;,,
are Gaussian with variances o}, and gy, that is, fi(y) = e~ 7 Q‘*/ﬁ or for
I'e{D,W}. The comparator output pulses are assumed to be of constant
height A,, and have a mean width y,,. As shown in Appendix 3, the power
spectral density of the comparator output random process is

VAg 922 2
G,(NB, f) = e [1 — cosmpy fe >/ ]
;945674”2["’2’/{Z
4m3f2

1 sin?(zNf/r)
X[N sin?(nf /r) 1}

[1+ e ¥ — 2 cos(2mpyy f)e 27 7]

(5.73)

Gy (f) = Nzlfz [1 — cosQmuy f)e 1" 7ir]

_ 2
VA2€ An’ehf

’7 Z S5(f —ir) —1—‘ (5.74)

+ [14 e 4w _ ) cos(Znqu)e_zﬂzfz"%V]
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Figure 5.14 Effect of jitter on the power spectral density of a pulse train, evaluated on [0, 8],
for the case where B=r= A,= 1. The thicker line is for the zero jitter case.

The power spectral density, G,(8, f), for the case where the mean compara-
tor output pulse width is uy, = B/2, is plotted in Figure 5.14 for the ideal case,
and for the case of oy, = op = (0.05B)%. Clearly, the effect of jitter is to lead to
spectral spread and to reduce the peak height of the harmonic components.

Note that the zero jitter case yields a periodic pulse train, as shown in
Figure 4.7, where W =T,2 and T,= 1. Accordingly, the power spectral
density shown for the zero jitter case is the same as that shown in Figure 4.9
for a periodic pulse train.

5.5 SHOT NOISE

Shot noise occurs in many physical processes, including current flow in active
electronic devices. Accordingly, a derivation of the power spectral density of
such a process is important. To this end, consider an interval [0, T] that is
quantized into M intervals of duration Af sec. Such quantization defines the
set of times: {0, At, 2At, ..., (M — 1)At}. Clearly, MAt = T.

Next, consider the following experiment:

1. A time on the interval [0, T] is chosen at random, with a uniform
probability density function, and quantized to yield a number from the
set {0, At, 2At,...,(M — 1)At}. It then follows that P[iA¢] = 1/M.

7 Sten 1 1< reneated N times
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Z(Yl? .. ~7YN7 t)
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=v,A1 Iy = YAt t3

Figure 5.15 lllustration of a signal from a shot noise process.

A shot noise process is one where a “pulse” waveform is associated with
each of the N times defined by the above experiment, and an example of a shot
noise waveform is shown in Figure 5.15.

Consistent with the above description, a shot noise process Z is defined by
the ensemble

N
EZ = {Z(y1’~--ayNat) = Z p(t _ylAt)’ "/ie{O, laaM_l}’P[’yl:l = I/M}

i=1

(5.75)

where pe L. The power spectral density of a shot noise process is detailed in
the following theorem.

THEOREM 5.3. POWER SPECTRAL DENSITY OF A SHOT NOISE PROCESS  With the
assumption that the interval [0, T is sufficiently long, such that the effect of
including the contribution of pulse waveforms outside of this interval is negligible,
and with the limit of At — 0, the power spectral density of a shot noise process is

Go(T. f) = AP(NI* + 22IP(f)P? <1 - ;T) T'sinc®(fT) (5.76)

Gz, (f) = AP(f)I> + 22|P(0)6( f) (5.77)

where A = N/T is the average number of waveforms/sec.

Proof. The proof of this theorem is given in Appendix 4.

5.5.1 Shot Noise due to Electrons Crossing a Barrier

Consider a classical description where electrons are moving through an entity
due to some mechanism, and at random times, are crossing a boundary x = x,
as illustrated in Figure 5.16.

With a classical description, the electrons behave as particles with finite
dimen<ions and an electron will take 4+ <ec to cross a boiindarv The charoe
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Figure 5.16 Electron movement.

q;> passing a boundary due to the ith electron is as illustrated in Figure 5.17,
where ¢ = 1.6-1071°C. Also shown in this figure is the current flow i; through
the boundary due to the ith electron. The relationship i(t) = dq/dt implies that

rii(t) dt = —q

0

It is convenient to define a normalized pulse function h, according to

ht) = # H(0) = J “ o de=1 (5.78)

0

where H is the Fourier transform of h. Assuming all electrons behave in a
similar manner, the current generated by electrons passing the boundary can
be written as

o0

i(t) = ) —qhlt —t;) (5.79)

i=1

If, on average, there are 4 electrons/sec passing the boundary, it then follows
from Theorem 5.3 that the power spectral density of the random process
associated with such a current flow is

G (f) = q*2H([)* + q*22|H(O)*5( /) (5.80)
T Q.'{ ) t £+ dt T 'r.:{ f) t [+ dt
& { l
- Area=—q

Figure 5.17 lllustration of a charge q crossing a boundary in dt sec and the resulting
~nantribiition 1o crirreant flow thrornioh the borindars
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As I = g/ is the magnitude of the mean current flowing through the boundary,
and H(0) = 1, it follows that the power spectral density can be written as

G (f) = allH(N? + I73(f) (5.81)

If the transition time for electrons is short relative to the measurement response
time, then for frequencies less than the bandwidth of the measuring system
|H(f)|*> ~ H*0) = 1 and the most commonly used result

G.(f) = ql + T?(f) (5.82)

is obtained. Ignoring the impulse at zero frequency, Schottky’s formula
G (f) = gl results (Davenport, 1958 p. 123).

Appropriate references for shot noise are Davenport (1958 ch. 7) and Rice
(1944).

5.5.2 Shot Noise with Dead Time

Consider a shot noise process, where the occurrence of a pulse precludes the
occurrence of a second pulse for a time ¢, as illustrated in Figure 5.18. This
exclusion time t,, represents a “dead time” or “dead zone.” Underlying such a
random process is a point random process where, for the interval [0, T], the
outcomes are sets of times {t,...,ty }. Such a set of times is generated by the
following experiment:

A number y, is chosen at random from the sample space Sy, defined by a
random variable I', with a density function f;, and is added to the dead time
t, to create the first time t,. The density function is such that f(y) = 0 for
y < 0. The second time, ¢, is given by ¢, plus the dead time t,, plus another
number y,, chosen at random from Sy.. This is repeated and the ith time is
given by

=Y ty+y =it + Y N V. E St (5.83)
k=1

k=1

This process is stopped when ty > Tand ty < T

].\p(r f) [\HI—Q) f\p(r f3)

Fiaure 5 18 /lli1etration of a <iaonal from a <hot noice nrocece with 2 dead time 1.
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This experiment generates N,, numbers y,...,yy, that have a probability
of occurrence consistent with

Nim

Ply v lperd = 11 J ».fr()’) dy (5.84)

i=1

Associated in a one-to-one manner with these numbers, is a set of times
ty,...,ty, as defined by Eq. (5.83). Hence,

Nm

PLty sty yer ] = n J fey) dy t,=it; + Z Vi (5.85)
I; k=1

i=1

When a pulse function is associated with these times, a shot noise process Z
with a dead time ¢, is defined. Before formally defining such a random process,
it is useful to consider the variation in N, for a fixed interval [0, T], a fixed
dead time t,, and with the mean of the random variable I denoted uy.

5.5.2.1 Variation in Number of Pulses Consider the random variable I'y,
defined as the sum of N identically distributed and independent random

variables I';,..., 'y, plus the time of N dead zones, that is,
N
I'y=Nt, + Z I, (5.86)
i=1

The mean and variance of I'y, are N(t, + u) and Nop, respectively, where yu
and op are the mean and variance of T;. It follows from the central limit
theorem (Grimmett, 1992 p. 175; Larson, 1986 p. 322), with probability 0.95,
that an outcome of I'y is within 1.96,/N o of the mean N(t, + up) as N
becomes increasingly large. Hence, the relative variation in an outcome from
Iy, as given by

196/Noy _ 1960, (557)

N(tz + pr) \/N(tz + ur)

clearly approaches zero as N increases. Accordingly, a reasonable approxi-
mation is to use a fixed number of outcomes N = T/(t, + pr) in the interval
[0, T, rather than a variable number N,,.

5.5.2.2 Power Spectral Density A shot noise process Z, with a dead time
t,, can be defined for the interval [0, T] by the ensemble

N i
E, = {Z(Vp---,"/zvat) = Z plt —t,), t; =it + Z Vis Vkesr} (5.88)
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where pe L, N = T/(t,+ ur), and P[z(y4,...,yx>t)] = P[y4,- .., 7y]- The power
spectral density of this shot noise process is detailed in the following theorem.

THEOREM 5.4. POWER SPECTRAL DENSITY OF SHOT NOISE PROCESS WITH DEAD
TiME The power spectral density on the intervals [0, T] and [0, o], of a shot
noise process with a dead time t, is

N—-1

G,(T. f) = AP()? {1 + 2Re[ ) <1 - /g) e”"f’“z[F'F(—f)]}} (5.89)

k=1

Gz (f) = AP(f)? {1 + 2Re [ i e”"'f"‘z[F'P(—f)]]} (5.90)

k=1

where Fr is the Fourier transform of the density function fr, N = T/(t, + ),
ur is the mean of the random variable T', and A = N/T = 1/(t, + pyp) is the
average number of pulses/sec.

Proof. The proof of this theorem is given in Appendix 5.

5.5.3 Example

Consider the case where the probability density function fr is uniform on the
interval [0, ], that is, fr(y) = 1/t for 0 <y < 7 and is zero elsewhere. Then,
from Theorem 2.33

F(f) = sinc(tf)e /™/* Ur = 1/2 (5.91)

and

GA(T. ) = AP(/) {1 P2y (1 - ;’}> cos [2nfk (tz + 5)] sinck(rf)}

(1

(5.92)

where N = T/(t, + t/2). This result is plotted in Figure 5.19 along with the
power spectral density of a regular shot noise process, for the case where the
pulse function is rectangular, that is, p(t) =1 for 0 <t <1, and is zero
elsewhere, whereupon |P(f)* = tf, sincz(tpf). The values used are 1, =1,
t,=5,1t=10,2=0.1, and T = 1000.

Not unexpectedly, the power spectral densities are similar. This is because
the mean time between pulses t, + t/2 = 10, is double the dead zone time
t, =5, and the dead zone has only a moderate influence. Clearly, the power
spectral densities of shot noise processes with and without a dead zone, will
become increasingly different when the mean time between pulses, for the shot
noice nrocess hecomes less than the dead 7one time
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Figure 5.19 Power spectral density of a shot noise process with and without a dead time.

For the case where the dead zone time is much longer than the mean yp of
I, the random process approaches that of a periodic signal with period close
to t,, that is, a jittered periodic signal. For example, with T =8, t, =1,
ur =001, ¢, =05, N =8, and 1 = 1, the power spectral density given by Eq.
(5.92) can be shown to approach that of Figure 4.9, which is for a periodic
pulse train.

5.6 GENERALIZED SIGNALING PROCESSES

Combining the characteristics of a signaling random process and a shot noise
process, the generalized signaling random process W, can be defined on [0, T]
by the ensemble

N
Ey = {W(yla cs YN D) = Z Gt — qp), 7,=(4i» @), Q€ Eq, 4,€S,, qiESQ}
i=1
(5.93)

where S, and S, are the respective sample spaces for the independent random
variables A and Q, with outcomes A and g and with probability density
functions f, and f,. For the case where 4, is independent of Z; for i # j and g,
is independent of g; for i # j, the probability associated with outcomes of W
are such that

N

PG Oneraerd = 3 | £ 02 [ fowrda 599



GENERALIZED SIGNALING PROCESSES 167

The signal set E, is defined as
Egp = {¢(),1): LS, } (5.95)
where

P[‘f’(l, t)|le[/lo,/lo+dl]:| = fA(;n;) di (5‘96)

The following theorem details the power spectral density of this generalized
signaling random process.

THEOREM 5.5. POWER SPECTRAL DENSITY OF A GENERALIZED SIGNALING PRO-
CESS Assuming the effect of including components of the signaling waveforms
outside the interval [0, T] is negligible, and the ith signaling waveform is
independent of the jth waveform when i # j, the power spectral density of the
random process W, defined by the ensemble as per Eq. (5.93), is

S 1
Gy(T, f) = rl®(f)]* +r? (1 - r—T> TIFo(f)?|ual )I? (5.97)

where r = N/T is the average waveform rate, F, is the Fourier transform of the
density function f,, and

ol f) = J% O, f) [ di |O(f)? = fw O, NIfa(2) d2. (5.98)

— 0

Here, ® is the Fourier transform of a waveform from the signaling set, and
evaluated over the interval (— oo, o0), that is,

(), f) = r DO, e 7271 4y (5.99)

— o0

Proof. The proof of this theorem is given in Appendix 6.

5.6.1 Uniform Distribution of Times

For the usual case of a uniform distribution of times on the interval [0, T],
consistent with f,(q) = 1/T for 0 < q < T and zero elsewhere, it follows that
Fo(f) = sinc(fT)e ™, and hence,

Gy (T, f) =rl®(f)I* +r? (1 - r1T> T sinc®(fT)lug(/I*  (5.100)

G () = 1D N2 - #2117 (OM25( 1) (5101)
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Not surprisingly, by comparison with the results for the shot noise case, that
is, Egs. (5.76) and (5.77), this result is a straightforward generalization of that
case.

APPENDIX 1: PROOF OF THEOREM 5.1

Theorem 4.7 states that the power spectral density of the sum of N random
processes X, ..., Xy, is given by

n+gio

'MZ

Il
—-

G,(T, f) = f) (5.102)

iTMz

1
i

With T = ND, this result can be used directly with the ith random process X;
being defined by the ensemble

Ex, = {xi,t) = ¢(ysst — (i — D)D), 7,€Sp, P € Eq} (5.103)

where E4 is defined by Eq. (5.3). Using the definitions for the power spectral
density for the countable and uncountable cases, it follows, assuming contri-
butions of the signaling waveforms outside of the interval [0, 7] can be
included, that

1 & 1
GIT ) == ¥ pIo0 NP GUTf) = f 0. NIEf) dy (5.104)

Hence, usmg the definitions for |(I>(f)|2 as per Eq. (5.17), it follows that
G(T, ) = |®(f)|*/T for both cases. Further, when i # k, the respective results
follow for the countable and uncountable cases,

Gu(T f) = [Z Z p/”k (7;5 )(D*(yk’f):|ej2n(i1)Dfej2n(kl)Df

vi=1 =1
1 o
= e IR 0 (f) (5.105)
1 . * —j2n(i— j2m(k—
Gik(’]:f):?[f j (D(Viaf)q)*(yk:f)frir‘k(’yi:Vk)dyid’yl;|e =D gj2mk= DS
1
T e —j2n(i— k)DfR (f) (5106)

Hence, using the definition for Ry, 4, (f), as per Eq. 5.18, it follows for both the
conmntable and uncountable caces that G. (T f) — o J2=i—=kDfp  (£\/T
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Thus, with r = N/T = 1/D, it follows that

1 N N

Gx(ND, f) = rl®(/)* t7 2 X e T Ry (f) (5107)

i=1k=1
k#i

Further simplification relies on simplying the second term in this equation,
denoted T,. This is done for the countable case —the uncountable case follows
in an analogous manner. By definition

Roo,(f Z Z Pyine ik O, = O(y;, [)O*(yy, ) D, = O
vi=1 =1
(5.108)
and
eJZTCDf s} © —JZan s} 0
Z Z pyn/z 12 + Z Z p/zm 21

y1=172=1 y2=171=1

e}Zn:ZDf 0 s}

Z Z pw/s 13

y1=17y3=1

e —j2n2Df o 0

T L X D@t (5109)

y3=1y1=1

To further simplify this equation, first note that there are N — 1 summations
where k =i+ 1, N — 2 summations where k =i+ 2,..., and 1 summation
where k =i+ (N — 1). Second, note the assumption p,, =p, . .. thatis,
correlations only depend on the difference between the location of signaling
intervals and not on their absolute location. Third, note it is the case that
Pyine = Dy Which follows because p,,,, is the probability of ¢(y;, 1) in the ith
interval, and ¢(y,, t) in the kth interval, while p., . is the probability of ¢(y,, 1)
in the kth interval, and ¢(y;, t) in the ith interval. It then follows that

1 . o0 o0
T, =2r [1 — N} Re [e”’ﬂ’f Y2 Py @ P, f)}

y1=17y2=1

cai= 2w § 5 g0t 0]

y1=17y3=1

N-1
+ 2r |:1 ~N ]Re|:e12n(zv DS Z Z Py @0 1, /) ())N’f):|

y1=1y8=1
(5110)



170 POWER SPECTRAL DENSITY OF STANDARD RANDOM PROCESSES—PART 1

which can be rewritten as

L2y [1——}Re[e’2’”w S Y D@ N (Vm,f)]

i=1 y1=1y1+i=1

(5.111)

Adding and subtracting the term p,p, . . @y, /)O*(y,4; f) in the inner
summation yields

T, = rlug(f)I? { Z [ — —} cos(2ziDf) } + 2r Nil [1 — %]
i=1
xRe {e"“"’” Y% KD pylpy1+i1c1>(y1,f)cb*(m,f)}

y1=17y1+i=1

(5.112)
Using the definition for Ry, 4, (f), a result implicit in Theorem 2.32, namely

1 sin®(xNf D)

2 Z [ —}:os[2me] _NW_I (5.113)

and assuming p,,.. ., = P,,P,, ., for i > m, it follows that

1 sin*(zNf D)
T, = rlug( f)I? [N Snl(wD) 1:|

(5.114)

m

+2r Y. [1 - ﬂ Re[e”"(Ry,,..(f) — ol NP)]

i=1

Substituting this result into Eq. (5.107) yields

Go(ND. ) = O — i + i | e |

N sin(zf D)

m

+2r ) [1 - %} Re[e”>™/(Rg,q,,(f) — lHa( NI)]

i=1

(5115)
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Again, using a result from Theorem 3.32, the result for the infinite interval
follows:

Gy, (f) = 1N = rlual I + 12lue( f) 72_ o(f —nr)

. (5.116)
+ 2r Z Re[ejznin(Rmian(f) - |.uq>(f)|2)]

i=1

APPENDIX 2: PROOF OF THEOREM 5.2

As the noise is assumed to be uncorrelated over a time interval consistent with
the comparator output pulse, it follows that Rg,e,,,(f), as defined by Eq.
(5.18), equals |ug( f)|>. Hence, from Theorem 5.1, the power spectral density of
Z is given by

GANB, ) = O + rlua( /)2 [1 sin (zf /r)

N sin®(nf/r) _1] (5.117)

where r = 1/B, and it remains to determine uq(f) and |®(f )|2 As

$(r.0) = A, (1 + a)r(t_“”_d>
Hw + W

with y = (a, d, w), and

1(t) > R(f) 3r<§><—>o¢R(<xf) o (t - ﬁ>HaR(af)€,-znf,; =0
(5.118)
it follows that
O 1) = AL + @ity + WRLy + W) fJe 20050 (5.119)

Then, as fr(y) = f4(a) fp(d) fw(w), and pg(f) = [ (. f) fr(7) dy, it follows that

) = ||| Ak oty 4w

X R[(py + w) fJe™ 270272 (a) £1(0) f (w) dadd dw

= Aje 72 fw R O d5j (1w + WIRL (1w + W) f1fw(w) dw

— 00 — 00

(5 120)
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where the independence and the zero mean property of the random variables
has been used. With the Fourier transform definition

Fp(f) = r e I2mI1(0) do (5.121)

— 00

it follows that

la(f)l = A Fp(f)l U% (w + WIRLw + W) f 1 fw(w) dw| - (5.122)

Similarly, from the definition of |®(f)|> = [|®(y, f)I*fr(y) dy, it follows that

o = || A
X IR+ ) 1F4a) 150) i ) dad do

= A;(1 + A7) Jw (tw + WP IRL(y + w) 1w (w) dw  (5.123)

— 0

Hence,
G,(NB, f) = rd;(1 + A7) J_w (ttw + WPIRL (1w + w) f112 (W) dw

waw+MMwW+MHmme

— o0

1 sin*(zNf/r)
x [NW_ 1] (5.124)

+ rAG I Fp(f)P

and

o0

Gy (f) =rA5(1 + A7) j (w + WPIRL(y + w) 1 (w) dw

— o0

+MWMﬂVJwWW+MMWW+WﬂMwMW

— 00

X ’71* .ij: o(f —ir) — 1—‘ (5.125)
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APPENDIX 3: PROOF OF EQUATION 5.73

With 42 =0, Gaussian probability density functions for W and D and
R(f) = sinc(f)e ™/, it follows from Eq. (5.68) that

o —w?/207,
G/NB, ) = VAfj (e + w)? sine[(uyy + w) 1

— \/ﬂGW

22 2| 1 sin®(zNf/r)
AZ —A4ncopft| = 2 NV 1
Trdse [N sinZ(xf /)

dw

—w?/203, 2

© ) ) e
j (s + w) sine[(y + w) fle ™ ———dw
- 2n oy

X

(5.126)

where the Fourier transform result (McGillem, 1991 p. 168)

. r — /205 .
ot Hﬁe—n,l‘ woof e~ 2o (5.127)
b 2n oy

has been used to evaluate Fj(f). Using the definition for the sinc function, it
follows that

rd? [ o
GZ(NB, }(‘) =— OZJ‘ Sinz[ﬂ(,“W + W)f] dW
¢ TC f — o \/2775 7w
R R VI
fZ N sin*(nf /r)

o ) efwz/Zaf,, 2
X f sin[7(uy, 4+ w) fle Mrw W dw

— T Oy

(5.128)

Using the identity
2sin*(4) = 1 — cos(2A4),
the standard expansion for cos(4 + B), the fact that the integral of a density

function is unity, the integral of an even and odd function is zero, and the
integral result (Spiegel, 1968 p. 98)

* 2 1 2
“ cos(bx)e ™ dx = - ﬁe‘“‘“‘

Y1/
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it follows that
0 e—wl/2o'W s
J cos(2aWf) ———dw = e~ 27w/ (5.129)

— ﬂaw

and the first term in Eq. (5.128) simplifies to
VAZ 202 2
prer [1 — cos(2muy, f)e =27/ ow] (5.130)

Consider the second integral in Eq. (5.128) with the sin function written in its
equivalent exponential form:
1 © e—wz/ZG'f,,
I, =— [e/miw WS _ o =imlitw+w) /o —imlbw+w)f
2j ) J2noy

1 — e oy €W efwz/ZGW
=—|1—e/m J e/ dw:|
2 |: - 2noy

Writing the complex exponential term in its equivalent trigonometric form, and
noting that one of the resulting integrals is of an even and odd function which
integrates to zero, it follows from Eq. (5.129) that

dw

(5.131)

I = - [1 — e P2mwf =20/ 700] (5.132)

Substitution of these integral results yields the required form

ra, _2n2f2g2
G,(NB, f) = preTE [1 — cosQmuuy f)e 2"/ o]
I’AZ —4nlopf* — 4?03 o263
+ # [1 +e v—2 cos(2n,qu)e - W]
1 sin*(zNf /r)
-1 1
% [N sin?(nf /1) (5.133)

Using a limit result from Theorem 2.32 for the last term in this equation yields
the result for the infinite interval.
APPENDIX 4: PROOF OF THEOREM 5.3

Theorem 4.7 states that the power spectral density of the sum of N random
processes X ,..., Xy, is given by

G,(T, f) = Z Gy( i (5.134)

”MZ
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This result can be used directly with the ith random process X; being defined
by the ensemble

Ey, = {x;(y;, 1) = p(t — 7;At), y;€{0,...,M — 1}, P[y;,] = 1/M} (5.135)

whereupon, it follows that

G(T. iMZIfIP(f A2 'P(f" (5.136)

To establish an expression for the cross power spectral density between X; and
X, for i # k, note that these random processes are independent and identical.
From Eq. (4.52) it then follows that

X(TNHXKT ) _IX(T )P 1P L

AT — i — i\®s _ _Pp 7]27I))Atf
GulT. 1) 2 = E T e

_ [P(f))? sin*(tMAtf)
T M?Zsin?*(nAtf)

(5.137)

where the last result is from Theorem 2.32. Using these results, it then follows
that the power spectral density is given by

NIP(f)P? +(N2 — NIP(f)* sin*(xMAtf)

G,(T, f) = T T M? sin*(nAtf)

(5.138)

For the finite interval [0, T] with N and T fixed, it follows for any fixed
frequency range f €[ — f,, f.], that there will exist a At - 0 and a M — oo with
AtM = T, such that sin(nAtf) ~ nAtf, and hence,

G,(T, f) ~ NIP(f)I? N N2|P(f))? <1 _ l)W

T T2 N MAf)?
(MAL]) (5.139)

— AP + 2P (15 ) Tsine(r7)

where 4 = N/T is the average number of waveforms/sec. This is the required
result for the finite interval. For the infinite interval, a result from Theorem
2.32 yields the required result, namely,

Gy, (f) = lim G(T, f) = AP(/)* + 22|PO)*5( f) (5.140)
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APPENDIX 5: PROOF OF THEOREM 5.4

As v, is independent of vy, for i # k the power spectral density of the random
process Z, with an ensemble given by Eq. (5.88), is

2

dy, ---dyy (5.141)

N
> P(f)e” 20
i=1

1 o0 o0
G,(T, f) :J f Se@1) - feyw)

Substitution of the result ¢, = it, + X;_, 7, yields

6,10 =L [ st

(5.142)

2

X dyy - dyy

i exp |:—j277:f <itz + zl: ykﬂ

Further simplification relies on the following result:

N

Y e o i

IN”‘*” y (5.143)
= N + 2Re Z Z ej[hw)—h(q)]}

With
p
h(p) = —2nfpt, —21f ). 7, (5.144)
k=1

and g > p, it follows that

) — o) = 2nf(a = pi + 221 z n (5.145)
Hence,
6,10 =" e [ [ 0 s
X i :1 explj2nf(q — p)t ;] exp <j2nf kéﬂ Vk> dy, "'dVN:|

(5.146)

Interchanoino the order of citmmation and inteoration in the <second term in
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this equation yields, for the argument of the Re operator,

N N o ©
z Z ejZn(q—p)ftzJ J‘ exp |:]27'Ef Z Vk:| Se@1) - fen) dyy - dyy
=1

qg=1 — —w k=p+1
q>p

Mz

ei2ma—PIIZFA=P(_ f) (5.147)

1
p

Al

q
q

where Fr is the Fourier transform of the density function fr. In the double
summation in this equation there are N — 1 terms, where g =p + 1; N — 2
terms, where ¢ =p + 2,...; and 1 term where g = p + (N — 1). Thus, this
double summation can be written as

eI PIZFITR(— f) = Z [N — Kle™ Fr(— f)  (5.148)

M=

1
p

v

14q
q

With this result, it follows that

NIP(f)? Nt k\ .

G,(T, f) = % {1 + 2Re[ Y (1 — N) e’z"f’”ZF’}(—f)}} (5.149)
k=1

With 4 = N/T the required results follow, that is,

G(T, f) = AP(f)? {1 + 2Re [NZI <1 - %) ejz"kf'ZF?(—f)]} (5.150)

k=1

G.(f) = AP(f)I? {1 + 2Re[ i eﬂ""f‘ZF’;-(—f)]} (5.151)

=1

APPENDIX 6: PROOF OF THEOREM 5.5

Theorem 4.7 states that the power spectral density of the sum of N random
processes W,,..., Wy, is given by

@
N
>
Il
™
NC}
T M =

N
Y G (5.152)
s

This result can be used directly with the ith random process W, being defined
by the ensemble

Foo—fwv. == t—a) v.—=(). a) J.eS. .S HhecE. VY (5153)
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Using the definition for the power spectral density for the uncountable case, it
follows, assuming contributions of the signaling waveforms outside of the
interval [0, T] can be included, that

1 . d( )
GAT. f) = ?f J 0, e R0 fola) dadi =TI (5150
where, by definition
(/) = J O NP d (5.155)
SA

Further, when i # k,

1
Gik(Ta f) = ? js L (D(Aia f)q)*()vm f)fA(ii)fA(;“k) d)n' d/lk

X J‘ J eijznfqiejznqufQ(ql')fQ(Qk) dq;dqy (5.156)
So JSo
_Fo(N)I? 2 |Fo(NP )
S L J i D A7) =2 gl )
where
ol f) = J O, f) fy0) (5.157)
SA

and F,, is the Fourier transform of the density function f,. With r = N/T, it
follows that

Gy(ND, f) =rl®(f)* + (N — DIF o(f)Plua( NI (5.158)

which is the required result.



6

Power Spectral Density
of Standard Random
Processes— Part 2

6.1 INTRODUCTION

This chapter continues the discussion of standard random processes com-
menced in Chapter 5. Specifically, the power spectral density associated with
sampling, quadrature amplitude modulation, and a random walk, are dis-
cussed. It is shown that a 1/f power spectral density is consistent with a
summation of bounded random walks.

6.2 SAMPLED SIGNALS

Sampling of signals is widespread with the increasing trend towards processing
signals digitally. One goal is to establish, from samples of the signal, the
Fourier transform of the signal. Consider a signal x, that is piecewise smooth
on [0, ND], as illustrated in Figure 6.1. One approach for establishing the
Fourier transform of such a signal is to use a Riemann sum (Spivak, 1994
p. 279) to approximate the integral defining the Fourier transform, that is,

ND , 0+) N-1 . ND - )e—i2eNDS
J x(t)e "2t dt zD|:x(2 ) + Y x(pD)e/2PI +%:| 6.1)
0 p=1

If x is piecewise smooth on [0, T, then from Theorem 2.7 it has bounded
variation on this interval. It then follows from Theorem 2.19, that this

179
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x(7)

Figure 6.1 Piecewise smooth function on [0, ND].

approximation can be made arbitrarily accurate by increasing the number of
samples taken. The following theorem establishes an exact relationship be-
tween this Riemann sum and the Fourier transform of x. This relationship
facilitates evaluation of the power spectral density of a sampled signal.

THEOREM 6.1. SAMPLING RELATIONSHIP Consider N + 1 samples, taken at
0,D,...,ND sec with a sampling frequency fs = 1/D Hz, of a piecewise smooth
signal x (see Figure 6.1). If X is the Fourier transform of x, and

lim % X(ND, f— kfy)

M->wk=—-M

converges for all f € R, then

0 + N—-1 - +
fs Y. X(ND, f —kfy) = x((; ) + Y we—jzww
k=— p=1
+%f 62)

A sufficient condition for Ty~ _,, X(ND, f — kfy) to converge as M — o, is the
existence of k,, o > 0, such that | X(ND, f)| < k,/|f|'** for f eR.

Proof. The proof of this result is given in Appendix 1.
6.2.0.1 Example Consider the function

(t) = 1 0<t<ND
= 0 elsewhere

whose Fourier transform (see Theorem 2.33) is
X(ND, f) = (N/fy) sinc(Nf/fs)e ™/Ns

and which does not satisfy the requirement that there exists k,, > 0, such that
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IX(ND, f)| <k,/|f|*"* However, for f = ifs, with i€ Z, the summation

lim f X(ND, [ — kfy)

M-owk=—-M

converges and is equal to the ith term N/fg. Equation (6.2) is then easily
proved as both sides are equal to N.
When f # ifg, with i€ Z, it follows, that after standard manipulation that

fs f X(ND, [ — kfy) = Nsinc(?)e‘jnl"f”s 142 % ;kz
< B fz/fsz>
(6.3)

which clearly converges as M — oo, provided f/fs¢ Z. For example, if f = f;/4
and N = 2, it follows from the result (Gradshteyn, 1980 p. 8)

y_ 1,
(=41 +4k) 0 208

that

fi ¥ X <2D, Sy ) = =i (64
k=—
This result agrees with the Riemann sum for the case where N = 2 as

x(0™)
2

N i
2

=05—j—05=—j

1
+ Y x(pD)e 2P 4
p=1 f=Ssl4

(6.5)

6.2.1 Power Spectral Density of Sampled Signal

Consider a signal x, as illustrated in Figure 6.1, which is piecewise smooth on
[0, ND] and is sampled at a rate fg = 1/D by a sampling signal S,, defined
according to

S = Y o\t —kD) (66)

where J, is defined by the graph of S, shown in Figure 6.2. On the interval
[0, ND) the signal y,, as a consequence of sampling the signal x, is defined
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NG SA()

Lo o Area=1
ol A e I /
o o
o o
-—@ @ @ @ t
2D -D D 2D

Figure 6.2 Sampling signal.

according to

pa(t) = X(1)S A(t) = x(1)0 A(t) + 1:211 X(t)0 \(t — kD) 4 x(£)0 A(t — ND) 67)

0 t¢[0,ND)

The Fourier transform and power spectral density of y, as A approaches zero,
are specified in the following theorem.

THEOREM 6.2. FOURIER TRANSFORM AND POWER SPECTRAL DENSITY AFTER
SAMPLING If x is piecewise smooth on [0, ND], is sampled at a rate fy = 1/D,
and is such that lim,,_, , " _\, X(ND, f — kf;) converges for all f € R, then with
Y, as the Fourier transform of y,, it follows that

Y(ND, f) = lim Y(ND, f) = fs i X(ND, [ — kfs) (6.8)

A—0 k=—o

Gy(ND, f) = lim Gy, (ND, f) = f§ i Gx(ND, f — Kf)

(6.9)

n Z{}; k i i X(ND, f — kf)X*(ND, f — nfy)

=—w n=-w
n#k

Proof. The proof of this theorem is given in Appendix 2.

6.2.1.1 Notes If it is the case that

IX(ND, ) > |}, X(ND, f —kfy)| for fe(—fs/2 fs/2)

k#0

then

Gy(ND, f) = f§ Gx(ND, f)  fe(—fs/2 f5/2) (6.10)
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S
//j
( xl,...,.xN,... yA

FTl

lim
A—0

( X oo Xy .. ) Yy — ¥

oo oo

YND,p=f; 3 X,(ND,f-kfy) =fs ¥ Xy(ND,f—kfg)=..
k=—oo k= —oo

Figure 6.3 lllustration of sampling relationships.

and sampling has produced a scaled version of the true power spectral density
in the frequency interval [ — f5/2, f4/2].

Figure 6.3 illustrates the relationship between the set of signals
{x{,...,Xxy,...}, that are identical on arbitrarily small neighborhoods of the
points 0%, D,..., ND~, and the Fourier transform of the sampled signal Y,.

Clearly, sampling results in the Fourier transform and the power spectral
density being repeated at integer multiples of the sampling frequency. To
illustrate this, the power spectral density of a sampled 4 Hz sinusoid
A sin(2xf,t) is shown in Figure 6.4, where the sampling rate is 20 Hz and the

Gy (L N)if}
) V1 W A A
0.05 Bi : ( ===

0.01 ﬂ ﬂ

0.005 W r‘ n m
0.001
0.0005
0.0001 -
5 10 4 15 20 25
PSD of Sinusoid I [ Frequency (Hz)

Figure 6.4 Power spectral density of a sampled 4 Hz sinusoid with unity amplitude. The
sampling rate is 20 Hz and samples are from a 1 sec interval.
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measurement interval is 1 sec. The power spectral density of such a sinusoid
has been detailed in Section 3.2.3.3.

References for sampling theory include, Papoulis (1977 p. 160f), Champeney
(1987 p. 162f), and Higgins (1996).

6.2.2 Power Spectral Density of Sampled Random Process

Consider a random process X that is characterized by an ensemble E, of
piecewise smooth signals on [0, ND],

Ey={x:5, x R—>C} (6.11)

where Sy = Z* for the countable case and Sy = R for the uncountable case.
Consider a specific signal x(y, t) from E,. Associated with this signal is an
infinite set of sampled signals, defined according to

{va(, 1) = SAOx(p, 1):1€ [0, ND], Ae{A;}} (6.12)

where {A;} is a sequence that converges to zero. The power spectral density
associated with the limit of this sequence is given in Eq. (6.9), that is,

Gy(y, ND, f) = lim Gy, (7, ND, f) = f¢ Y. Gx(p, ND, [ — kfy)
A-0 k=—

. (6.13)
fs S Y X(G.ND.f — kfyX*(. ND. f — nfy)

k*—oo n=—oo
n#k

The power spectral density of the random process formed through sampling
each signal in Ey is the weighted summation of the resulting individual power
spectral densities, that is, for the countable case,

Gy(ND. /)= 3 PGy ND) = /§ £ 1, X GuND.S — K

Z Z Z X(y, ND, f — kf)X*(3, ND, f — nfy)

k=—own=-ow
n#k

(6.14)

where P[x(y, t)] = P[y] = p,. An analogous result holds for the uncountable
case.
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6.3 QUADRATURE AMPLITUDE MODULATION

One of the most popular and important communication modulation formats
is quadrature amplitude modulation (QAM). A QAM signal x, is defined
according to

x(t) = i(t) cos(2nf.t) — q(t) sin(2xf, 1)
= u(t) — v(t)

(6.15)

where i and ¢, respectively, are denoted the “inphase” and “quadrature” signals,
f. is the carrier frequency, u(t) = i(t) cos(2xnf.t), and v(t) = q(t) sin(2xf,1).

In the general case, the signals i and ¢ are specific signals from ensembles of
two different random processes I and Q. Consider the case where the random
process I is defined by the ensemble E;, according to

E;={i:R—>C, keZ", P[i,] =py} (6.16)
A corresponding random process U, is defined by the ensemble E;:
Ey = {u: R > C, u,(t) =i (t) cos2nf.t), ke Z*, Plu, ] =p,} (6.17)

Similarly, the random processes Q and V can be defined by the ensembles E,
and E:

Eo={9:R~C, leZ", Plq,]=py} (6.18)
E, = {v;:R - C, v,(t) = q,(t) sin2nf.t), [eZ", P[v,] = p,} (6.19)

The random process X = U — V can then be defined, in a manner consis-
tent with Eq. (6.15), by the ensemble Ey:

x(t) = i(1) cos(2mf.1) — ¢,(t) sin(2mf, 1),

Ey = {xk,: R—-C N .
k,le Z*, P[x,,] = Pli,,q,]1 = pu

} (6.20)

For practical communication systems, the energy associated with all signals
is finite. Thus, according to Theorem 3.6, the power spectral density of
the modulating random processes I and Q, denoted G; and G, are finite
for all frequencies when evaluated over the finite interval [0, T]. The assump-
tion of finite energy is implicit in the following theorem and subsequent
results.
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THEOREM 6.3. POWER SPECTRAL DENSITY OF U, V, AND X The power spectral
density of U, V, and X on the interval [0, T], are

G(T f = 1)+ G(T f+ 1)
4

GU(Y: f) =
(6.21)

1 o0
+ 57 Re [k; plI(T, f = LT, f + fc)]]

_Go(T.f — £) + Go(T.f + f)
4

) (6.22)
——Re[_z OUT, | = fQHT, | + £)]

G(T f—f)+G(T f+f)
4

1

+ﬁRe[Z LT f = Sl *(Tf+f)]}

Go(Lf =J) + Go(L f + 1)
4

+

1 o0
ke [lz [O.T, f — f)OF(T, f + f)]}

n Im[GIQ(;: S=1)]

— 1Im|: i i Pl (T, f—fc)Qz*(I f+fc)]]

1 2] 0
+ 3z Im[ Y Y pulI(T: f+ )OHT f—f»]] (6.23)

where I, and Q,, are respectively, the Fourier transforms of i, and q;.

Proof. The proof of this theorem is given in Appendix 3.

6.3.1 Case 1: Bandlimited Signals

A common practical case in communication systems is where the power
spectral densities of the inphase and quadrature components are only of
significant level in the frequency range —W < f < W, where W« f,, as
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Gl, Q(T,f"'fc) Gl, Q(T,f) Gl, Q(T,f_fc)

° ® f
7, -Ww l w Je

Figure 6.5 Forms for G/(T, f) and G (T, f) consistent with the bandlimited case.

illustrated in Figure 6.5. A general condition for the simplification that follows,
is for the Fourier transforms of the inphase and quadrature signals to have
negligible magnitude for frequencies greater than f,, or less than —f..

For the case where I, Q, and the carrier frequency f, are such that

o]

Re Y p LT, f — fOIET f + £)]

k=

; < GUT, f = f) + G{(T, [ + f) (6.24)

2 & — T, :
T‘Re § LOTES —RONLS - I G 1y + Gyt + 1)
(6.25)
1 o0 o0
T‘Im D) pklUk(T,f—ﬁ)Q?‘(T,fM)]‘
e (6.26)

Fpim £ S Tt S+ 0OHE S~ 1|« Gyt )

k=11=1

then the following approximation is valid:
UL f = J) + GUL S+ J) | Go(T S = f) + Go(T./ + 1)
4 4

L ImEGro(T f = J)T _ ImLGo(T. f + fo)]
2 2

Gx(T, ) =

(6.27)

This approximate expression can be written very simply, if the definition of an
equivalent low pass process, as discussed next, is used.

DEFINITION: EQUIVALENT LOwW PAss RANDOM PROCESS  An equivalent low pass
signal w, defined according to (Proakis, 1995 p. 155),

w(t) = i) +jq() (6.28)
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where i and ¢ are real signals, can be associated with a quadrature carrier
signal

X(t) = i(t) cos(2nf.t) — q(t) sin(2f. 1) (6.29)
as
x(t) = Re[w(t)e2™/<"] (6.30)

With the quadrature carrier random process X, defined by the ensemble Ey,
as per Eq. (6.20), the equivalent low pass random process W can be defined by
the ensemble E,, according to

Ey = {wi;: R > C, wy (1) =i (0)+jq,(0), k,1e Z*, P[wy]=P[i, q,]1=py}
(6.31)

The power spectral density of W is specified in the following theorem.

THEOREM 6.4. POWER SPECTRAL DENSITY OF EQUIVALENT Low PAss RANDOM
Process  If the power spectral densities of I and Q, denoted G; and G, can be
validly defined, then the power spectral density of W, on the interval [0, T1, is

Gw(T, f) = GUT, f) + Go(T, f) + 2Im[Gyo(T; f)]

(6.32)
Gw(T, —f) = G(T, f) + Go(T, f) — 2Im[G(T, )]

Proof. The proof of the first result follows directly from Theorem 4.5, and
by noting that Re[—jGo(T, f)]=Im[G,(T, f)]. The proof of the second
result follows from the first result using the fact that for real signals,
X(T, — f) = XX(T; f), which implies Gy(T, —f)=Gx(T, f) and Go(T, —f)=
Gio(T. f).

6.3.1.1 Notes With such a definition, it follows for the case of real
bandlimited random processes, that the power spectral density of the QAM
random process, as given in Eq. (6.27), can be written as

Gw(L f =) +Gw(L —f— 1)
4

Gx(T. f) ~ (6.33)

This simple form is one reason for the popularity of equivalent low pass
random processes.

6.3.2 Case 2: Independent Inphase and Quadrature Processes

For the case where the random processes I and Q are independent, that is,
Pu = PiP;» the result from Section 4.5.2 for independent random processes,
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namely, G,(T, f) = I(T, /)O*(T, f)/T, where I and Q are the respective aver-
aged Fourier transforms of the signals defined by the random processes I and
Q, yields

_G(Lf = 1)+ GAT [+ 1)

G, f) ;

4 %Re[ S pIL(T £ — fINT f + fc)]}
k=1

L GoTf = 1)+ Go(T f + 1)
4

1 0
— 5 Re [Z PiLQUT. [ — JOQKT | + J;)]]
LTS~ )OS ~f))  Im[I(T: [~ [)OH(T: [ +£)]

2T 2T
_Im[I(T [+ f)OXT S+ )] N Im[I(T, f+f)OX(T. f —f)]
2T 2T

(6.34)

For the independent and bandlimited case, the following approximation is
valid:

UL =J)+ G S+ ) | Go(TS = J) + Go(T S + )

Gx(T f) y y
N Im[I(T, f=f)OXT f—f)]  Im[I(T, £+ f)OXT £+ 1)]
2T 2T
(6.35)

Further, if I and Q are identical random processes, then Q*(T, f) equals the

conjugate of I(T, f), and hence, I(T, f — f)OXT. f — f) = (T, f — f)I*.
Thus, for the identical, independent, and bandlimited case, it follows that

G (T 1) » GBS =S+ G T+ ) Go(T S = 1)+ Go(T / + 1

4 4
_GUTf — ) + GAT.f +£) _ Gol(T.f — f) + Go(T. f + £
2 2
(6.36)

For the case where the random processes I and Q have constant means y;
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and y, on the interval [0, T], it follows from Section 4.5.2 that

Go(T. f) = I(T, IOX(T, f)/T = e T sine®(f T) (6.37)

Hence, if the signals are real with a constant mean, then the imaginary part of
I(T, /)Q*(T, f) is zero, and the following result holds when the signals are not
necessarily bandlimited.

G(Lf=f)+G(Lf+f)

Gx(T, f) = ;
1 0
+ 37 Re [z PLI(T [ — JOIX(T [ + ﬁ)]]
o GolT.f = 1) + Gol(T.f + f)

4
—lReLlez[Q (Tf—1 Q*(T,f+fc)]}

_ Im[I(T, [~ f)OX(T. £+ 1)] Im[I(T [+ 1IOX(T f = f]
2T 2T

(6.38)

As shown in Appendix 4, for the independent case with real constant means,
the last two terms in Eq. (6.38) can be neglected as T — oo to yield

G (f— 1)+ G (f+ 1) N Go (f — 1)+ Go (f + 1)
4 4

Gy, (f) =

+ lim %Re[ 2 plI(T, f)Iif(T,erfc)]} (6.39)

T—- o

~ lim Z—Re[_i [OAT. f — fIOXT. [ + f)]}

T—- o

With the further assumption of bandlimited signals, it follows that

Gy(T f) =1 [GUT f = f) + GUT [ + 1) + Go(T f — 1) + Go(T f + /)]

Bl= A=
M

LGw(T f = 1) + Gu(T f + )] (6.40)
Gy, (f) = % LG (f = SO + G (f + f) + G (f = f) + Go (f + )]

1
=7 LGw (S = 1)+ Gy (S + f)] (6.41)
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6.3.3 Case 3: Independent and Zero Mean Case

When the inphase and quadrature random processes are independent, and one
or both of them have a zero mean, it follows that

_G(Tf=f)+G(T [+ 1)

Gx(T. f) ;

+ %Re |:k§1 Pk[Ik(T; f - ﬁ)lf(T, f + .fc)]:|

Go(T f = f) + Go(T [+ /)
4

(6.42)
+

1 o0
—ﬁRe[ 2 nlQUT f = JIQNT, f +fc)]]

For the case of bandlimited signals,

1
Gx(T f) =4 [GT f = J) + GUT [ + fo) + Go(T f — fo) + Go(T, f + fI]

1
=4 Gw(Tf = f) + Gu(T f + )] (6.43)
Gy, (f) =%[G1x(f —J)+ G (f + 1)+ Go, (f = f) + Go, (f + f)]

1
=1 Gw. (S = J) + Gy (S + f)] (6.44)

6.3.4 Example

For communication systems, I and Q are usually signaling random processes
with power spectral densities given by Theorem 5.1. For example, consider the
quadrature amplitude modulation random process X, where I and Q are
independent and have identical RZ signaling random processes with power
spectral densities as per Egs. (5.42) and (5.43), and as shown in Figure 5.3. With
f. appropriately chosen, the bandlimited approximation, as per Eq. (6.36), is
valid, that is,

GUTL S =f)+GL S+ 1) _Go(L f =)+ Go(L f + 1)

Gx(T, f) = 3 3

(6.45)

This power spectral density is shown in Figure 6.6 for the case where f, = 10.
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Figure 6.6 Power spectral density of a QAM signal where both the inphase and quadrature
random processes are RZ random processes with power spectral densities as shown in
Figure 5.3.

6.4 RANDOM WALKS

The quintessential nonstationary random process is a random walk, and such
a random process has been extensively studied (for example, see Feller, 1957
ch. 3). The limit of a random walk in terms of an increasingly small step size
and step interval, yields the Wiener process or Brownian motion (Grimmett,
1992 p. 342; Gillespie, 1996).

A random walk is clearly nonstationary, however, this does not present a
problem for the power spectral density evaluated on an interval [0, T] because
it has its basis in the average power on this interval. The average power, and
hence, the power spectral density, will change with the interval length and
appropriate care must be taken when interpreting the power spectral density.

The model used for a random walk leads to a model for a bounded random
walk which has a signaling random process form. Such a process has constant
average power after an initial transient period. Bounded random walks provide
a basis for synthesizing a 1/f power spectral density form. A synthesis is given
for this form in the next section, and such a synthesis is consistent with a simple
model for 1/f noise.

6.4.1 Modeling of a Random Walk

DEFINITION: SIGNAL DEFINITION FOR A RANDOM WALK A random walk is a
signal that exhibits a step jump every D sec, with a step size randomly chosen
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with equal probability from the set {4+ A4}. The signal is constant between
jumps and initially is zero for the first interval of D sec.

A random walk random process, or random walk for short, consists of the
ensemble of individual random walks defined by a set step interval, step jump,
and step probabilities.

Consistent with the above definition, an individual random walk can be
modeled on the interval [0, T] as a summation of step waveforms consistent
with those shown in Figure 6.7. With such a model, a random walk random
process X, can be modeled on the interval [0, T] by the ensemble Ey,

N
Ey= {X(Vl,---,“m, t) =AY ypu(t —iD), y;e{—1, 1}} (6.46)
i=1

where P[y; = +1] = 0.5, u is the unit step function, and T = (N + 1)D.

For the more general case, the step size takes on values from a zero mean
continuous random variable I', with a density function fr, and sample space
Sy, that is,

N
Ey = {x(yla YN D) = Z yu(t — iD), Viesr} (6.47)

where P[ye(y,,y, + dy)] = f(7,) dy. For independent step sizes, it is the case
that

N N
PIX( s yns Olyerd = [T PO 1= 11 | A() dy (6.48)
i=1 i=1JI;

Two random walks from the ensemble Ey, for the case of equally probable step
sizes, Sp = {+1} and D = 1, are shown in Figure 6.8 for ¢t [0, 100].
6.4.2 Power Spectral Density of a Random Walk
By defining a random process X;, on the interval [0, T], by the ensemble
Ey, = {x(y;,1) = yu(t —iD), 7;€ Sy} (6.49)

it follows that the random process X, for [0, T7], is the sum of the N random

Al e o A e———— O
® o~ ¢ " o1
D T D 2D T
Al ® 0 -A ———— 0

Figure 6.7 Possible waveforms associated with the first (left graph) and second (right graph)
steps of a random walk.
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Figure 6.8 Two random walks on the interval [0, 100], for the case where S = {+ 1} and
D=1.

processes X ,..., Xy. The power spectral density of X is given by

2 2 —j2nfT —j2nfiD
orlU(T, f) e’ —e’

U(T. f) = 6.50

7 (T f) 2nf (6.50)

Gxi(t f) =

where U,(T, f) is the Fourier transform of u(t — iD) evaluated over the interval
[0, T, of is the variance of ', and T has a zero mean. As the random processes
X4, ..., Xy are independent and have zero mean, it follows from Theorem 4.6
that the power spectral density of X is the sum of the individual power spectral
densities according to

= ¥ Gy(T /) (6.51)

Evaluation of the appropriate Fourier transforms yields

2
or

2f2
_ oir 1 1 ] sin((2N + 1)nf'D)
T 22 [ 2N+ 2][ (2N + 1) sin(nfD):|

where r = 1/D, and the last result follows from writing sin? in terms of complex
exponentials and using standard results for geometric series (Gradshteyn, 1980
p. 30).

Gy(T, f) = Z sin?(inf D) T=(N+1)D

(6.52)
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By integrating the power spectral density, it follows that the average power
in the random process is

= “ ofN  op|[ T
P—Jwa(T,f)df— , = Z[D 1] (6.53)
Clearly, for T > D the average power increases linearly with T, that is, the rms
value of a random walk increases according to ﬁ :

The power spectral density is shown in Figure 6.9 for the case of D =r =1,
P =1, and N =10 which is consistent with ¢f = 0.2. For the case where
f <« 1/T and N > 1, the power spectral density approaches the constant value

oEN2D
3

Gy(T, f) ~ f<1T (6.54)

The term
sin((2N + 1)zf D)
"~ (2N + 1) sin(nf D)

in Eq. (6.52), has the form shown in Figure 6.10, and hence, for f > 1/T and
N > 1 the power spectral density can be approximated as follows:

2
orr :
T )~ {2z 7 RS #hnkeZ (655)
0 f=kr,keZ
PSD
10
1 N -
—
0.1 =
N
0.01 .
0.001
0.0001 I
0.01 0.05 0.1 0.5 1 5 10

Frequency (Hz)

Figure 6.9 Power spectral density of a 10-step random walk with unity power and D = r= 1.
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Figure 6.10 Plot of 1 — sin((2N + 1)xfD)/(2N + 1) sin(xfD) as a function of frequency f for the
case of r=D = 1and N = 10. The ripple around the level of 1 decreases as N increases.

6.4.3 Bounded Random Walk

One model for a random walk X bounded on the interval [0, T, where
T = (N + 1)D, is defined by the ensemble

M=

Ey = {x()’p ca e l) = 7:¢(t — iD), Viesr} (6.56)

i=1
where ¢ has the form shown in Figure 6.11. For the case where T, = bD,
beZ*, the random walk is correlated for T, sec and, if y,e { + 1}, it is bounded
above and below by the levels +b. For the interval [0, T,], the random walk
is that of a standard random walk. An example of a bounded random walk is
shown in Figure 6.12 for the case where S = {+1}, P[y; = +1]1=0.5,D =1,
and b = 10.

The bounded random walk X, as defined by Eq. (6.56), is a signaling
random process with zero mean. According to Theorem 5.1, its power spectral

o)
1 @(f) = T, Sinc (fT,)e ™ s
@ L o— !
' D T,=bD T

Figure 6.11 Pulse function for bounded random walk.
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Figure 6.12 A bounded random walk with bounds of + 10 (b= 10), D=1, and S = {+1}.

density is given by

2

1O f))? = lbfbfﬁv sincX(fT) T>»T, (657)

2
ror

GX(If):1+1/N

where r = 1/D, ® is the Fourier transform of ¢, and the factor 1 + 1/N arises
from the fact that N/T =r/(1 + 1/N) for the case where T = (N + 1)D. The
assumption made in this expression, is that the energy associated with the
windowing effect of the interval [0, T] on pulse functions is negligible. This is
the case for T » T, or equivalently, b <« N.

The average power in such a random process, obtained by integrating the
power spectral density, and noting that the integral of sin(px)/x* over the
interval (— o0, c0) equals np (Spiegel, 1968 p. 96), is

P | GuTf)df = roiT, _  bot (6.58)
I 141N 1+1/N ’
With this result, the power spectral density can be written as
Gy(T. /) = PTsinc®(fT)  T>»T, (6.59)

The power spectral density is shown in Figure 6.13 for the case of D =r =1,
P=1,b=10, and N = 100.
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Figure 6.13 Power spectral density of a 100-step bounded random walk with unity power,
correlation time of 10 steps, and D= r = 1.

6.5 1/f NOISE

Random processes that exhibit a power spectral density of the form 1/f* over
a finite frequency range, where o is close to unity, are ubiquitous and, for
example, such a form has been associated with economic data, traffic flow,
annual rainfall, and noise in resistors, metals, and semiconductor devices [see,
for example, Keshner (1982), Buckingham (1983), and Stephany (1998)]. Such
noise, denoted 1/f or flicker noise, has been the subject of thorough investiga-
tion and modeling.

Research to explain 1/f noise has been along two lines. First, to ascertain
physical attributes and origin of 1/f noise in a given entity (Buckingham, 1983;
Hooge, 1981; Bell, 1980; Stephany, 1998). Second, research has been conducted
to propose models, that is, random processes, that exhibit 1/f noise [see, for
example, Hooge (1997), Kaulakys (1998), and Howard (2000)]. Many
modeling approaches have been used including use of random walks [see, for
example, Jantsch (1987) and Tunaley (1976)]. In the following section, a
specific model for 1/f noise, based on bounded random walks, is demonstrated.

6.5.1 Synthesis of a 1/f Power Spectral Density Using Bounded
Random Walks

A 1/f power spectral density form can be synthesized over a finite frequency
range from a summation of distinct power spectral densities. For independent
random processes with zero means, the goal of synthesis is to find N practical
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random processes, with respective power spectral densities G,..., Gy, such
that the 1/f form is approximated over a set frequency range [ f;, fi], that is,

M=

i;G(Tf f‘df«J ?df

(6.60)

Gi(T,f)z’; fo<f<fy or Jf

i

To demonstrate such a synthesis, consider the power spectral density of the
summation of N + 1 bounded random walks,

P

G(T f) = 2 GAT f) (6.61)

i=0

where G,(T, f) is the power spectral density of a bounded random walk, as
given by Eq. (6.59), with T, = bD, and D, = 2'D. For equal powers in all random
processes, with unity total power, D = 1 and b = 10, the power spectral density
of G is shown in Figure 6.14, along with the ideal 1/f form. The step durations
in the individual random processes are 1,2,4,8, ..., 1024 sec. The summation
of bounded random walks clearly approximates the 1/f form over a restricted
frequency range. A smoother approximation to the 1/f form can be achieved
through a distribution of step durations or step rates, such that the average
power in random processes with step durations between D and 2D, is the same

G(T, )
\\\
1000 —
100 N
N
10 ™
\%\\\
1 MND
hY \\\§
0.1 YT
F%
0.0001 0.001 0.01 0.1
Frequency (Hz)

Figure 6.14 Power spectral density from the summation of 11 independent bounded random
walks with step duration of 1,2,4, 8, ..., 1024 sec.
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as that for random processes with step durations between 2D and 4D, and so
on. The lower limit to the 1/f form decreases as the step duration and interval
duration increases.

This synthesis shows that a first order model consistent with 1/f noise, is a
sum of equal power bounded random walks, with step durations that form a
geometric series with a ratio of 2. Such a description provides a simple model
and explanation for 1/f noise.

APPENDIX 1: PROOF OF THEOREM 6.1

If x is piecewise smooth on [0, ND], then X(ND, f) is finite for all f. Further,
if there exists k,, « > 0, such that |X(ND, f)| < k,/|f|'** for feR, then, from
the integral test (Knopp, 1956 pp. 64—65), it follows that

lim f X(ND, [ — kfy) (6.62)

M->wk=—-M

converges for all f and is bounded above. This condition is a sufficient
condition. In general, if this summation converges, and this is assumed below,
it is valid to define Y according to

YOND.f)=fy S XND.f—ky feRfeR®  (663)

k=—o

Clearly, Y is periodic with respect to f with period fg. Hence, on any interval
of the form [f,, f. + fs], where f.eR, Y can be written as an exponential
Fourier series, according to

Y(ND, f)= ), c,e*™/ (6.64)
where D = 1/f and the nth coefficient ¢, is given by
Sx+fs

L] f””“[fs » X(ND,.f—kfs)}m"Dfdf=f lim (M. f)df

" fS f k=—o fx M- o

(6.65)

Here,

gM, f) = [k Y. XD, f— kfs)}j“"l’f (6.66)
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As it has been assumed that lim,,_, , g(M, f) is finite for fe[f,, f. + fs], the
interchange of limit and integral operations in this equation is valid. Thus,

0 Sfxtfs
=3 X(ND, f — kfyle 2701 df (6.67)
fV

A change of variable, 1 = f — kfj, yields

o . Sx=(k=1)fs
o= Y eIz j X(ND, 2)e~32™P% d;, (6.68)
Sx—kfs

k=—o

Since the exponential term outside of the integral is unity for all values of the
index k, and x is piecewise smooth, it follows from Theorem 2.30 that

0 —nD¢[0,ND]
" x(0%)/2 n=0
C, = X(ND, 2)ei*™ =D q) = —nD"™ —_nD*
J_w ) M=n );x( D) Lpe(.ND)
X(ND7)/2 —nD = ND
(6.69)
Thus,
rvD, ) =27 "5 XOD) D) gy XD
(6.70)
which is the required result.
APPENDIX 2: PROOF OF THEOREM 6.2
The Fourier transform of y,, as defined by Eq. (6.7), is
1 (a2 ) N-1 D+A/2 _
Y\(ND, f) = J x(t)e 20 dr + ) J x(t)e 2™ dt
Ao k=1 A kD—A/2
1 (NP )
+— J' x(t)e 2™t dt (6.71)
A ND-A/2

For any ¢ > 0 and for any frequency range [ —f,, f.], there will exist a
A > 0, such that over an interval of measure A, centered at kD, both x(t) and
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e 2%/ are such that

—e<|x(kD7) — x(t)] <& kD — A2 <t < kD
—e < |x(t) — x(kD")| <& kD <t <kD + AJ2 (6.72)
—g < |e T2t _ o I2nkD| < ¢ kD — Aj2 <t < kD + A2

These bounds are guaranteed by piecewise smoothness. Hence, for a frequency

range [ — f,, f.], there will exist a A, such that Y,(ND, f) can be approximated
by

+ N—-1 D~ D+ . D~ —Jj2nfND
x((; ), 5 x(k )erX(k )ef,z,tkaJr% (6.73)
=1

with an arbitrarily small error. Using the results from Theorem 6.1, it follows
that

Y(ND, f) = lim Y(ND, f) = fs i X(ND, [ — kfy) (6.74)

A—0 k=—o

where fg = 1/D. Further, since lim,_,, Y,(ND, f) is bounded for fe R, it follows
that |Y(ND, f)|* = lim,_, |Y\(ND, f)|* is finite for all frequencies, and hence,

AWND, P _ S5 Y X(ND, f—ky| 679

=-w

Gy(ND, f) = lim =
Y aso ND ND |,

Expanding the summation within the modulus sign, yields the required result,
namely,

Gy(ND, f) =[5 3 Gx(ND, [ —kfy)

T (6.76)
b X3 XD~ XN, f )

APPENDIX 3: PROOF OF THEOREM 6.3

A.3.1 Power Spectral Density of U and V

By definition, the power spectral densities of I and U on the interval [0, T7,
are respectively,

© I.(T. |2 ©
Gt N =3 n I Gy g = 3 OIE
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where

(T, ) = j iy(f)e 2" dt

0

ULT, f) = rik(z) cos(2nf.t)e ~i2m1 gy (6.78)
LTS —f) + LT+ f)
2

Here, the relationship cos(f) = 0.5[e?’ + ¢~#’] has been used to obtain the
result for U,. It then follows that

& T =) AT+ )P GUT f — f) + GUT f + £)
f)—kg,lpk aT = 4
+iRe|:§ I(T, f — f)I*(Tf+f)]:| (6.79)

Similarly, since v,(t) = q,(t) sin(2nf,t), the result sin() = 0.5j[ —e? + e 7]
implies that

—JOUT [ = 1) +JQ(T f + 1)

5 (6.80)

V(T f) =

where Q, and V], are respectively, the Fourier transforms of g, and v, evaluated
on the interval [0, T]. It then follows that

Go(T f = 1) + Go(T [ + 1)

—IRC[Z plOUT. /= LIQK(T f + fc)]] (6.81)

A.3.2 Power Spectral Density of Quadrature Amplitude
Modulation Signal

Since X = U — V, it follows from Theorem 4.5 that

Gx(T, f) = Gy(T, f) + Gy(T, f) = 2Re[Gyy (T, f)] (6.82)
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where G, and G, are given in Egs. (6.79) and (6.81) and

Guy(T, f) =%k2 Z PuU(T VT, )
tet (6.83)
:Li il’ [[Ik(T,f—fc)'i‘Ik(T,f-i‘ﬁ-)] ]
AT = = “ x LJQIT, [ — 1) —JjOF (T, f + f)]

With the result

i i puli(T f — fc)]Ql*(T, =1

- G ~f) (634

k=11=1

it then follows that
1
Gx(T, f) = Gy(T, f) + G(T, f) — 3 ReljGro(T, f — f) —JGro(T f + fJ)]

-1 0
+ﬁRe[—j D) pklzk(T,f—fc)Q;*(T,fmq (6:55)

_1 0 0
+5 Re [j X X pkllk(Tsf+f;)Ql*(’1:f_f;)j|

As Re[jG1o] = —Im[Gy,], the required result follows.

APPENDIX 4: PROOF OF EQUATION 6.39

For the case where the random processes I and Q have constant means on the
interval [0, T, that is, (T, t) = w; and p (T, t) = p,, it follows that

T 1 — p—d2nfTq/;
p sy {ultl B AT

T(’Ef)zﬂij‘ T

0

and similarly for Q(7, f). Hence,

,ui,u;"[l — e 2 LITY[] — 27U + 1T
an¥(f% = fcz)
llill;k[l — /2r2SIT T
—J2n(2f)

f# £/

(T~ OXTf + f)=

f==

(6.87)
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For f# +f., and for any ¢ > 0, there will exist a 7T, such that

[T f - fOXT S+ 1) _ Ayl
2T S 8n?f? — fAT

<e (6.88)

For f = £ f,, and for the case where y; and y, are both real, it follows that

Im[I(T f — fJOH(T f + f)] _ matty[1 — cosn(2/)T)] (6.89)
2T 87f, '

which is clearly finite for all values of T. However, the integral of this
component is zero, that is, it is a component associated with zero energy.
Accordingly, this component can be neglected as T — co.
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Memoryless
Transformations of
Random Processes

7.1 INTRODUCTION

This chapter uses the fact that a memoryless nonlinearity does not affect the
disjointness of a disjoint random process to illustrate a procedure for ascertain-
ing the power spectral density of a signaling random process after a mem-
oryless transformation. Several examples are given, including two illustrating
the application of this approach to frequency modulation (FM) spectral
analysis. Alternative approaches are given in Davenport (1958 ch. 12) and
Thomas (1969 ch. 6).

7.2 POWER SPECTRAL DENSITY AFTER A MEMORYLESS
TRANSFORMATION

The approach given in this chapter relies on a disjoint partition of signals on
a fixed interval. The following section gives the relevant results.

7.2.1 Decomposition of Output Using Input Time Partition

Consider a signal f which, based on a set of disjoint time intervals {I,,..., Iy},
can be written as a summation of disjoint waveforms according to

[y el

7.1
0 elsewhere (7.1)

f) = ‘; Lo i = {

206
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If such a signal is input into a memoryless nonlinearity characterized by an
operator G, then the output signal g = G(f) can be written as a summation of
disjoint waveforms according to

_ al _ g tel;
90 = Y a0 g0 = {0 el (7.2
where, as detailed in Section 2.3.3,
_G(f0) tel;
g,(0) = {0 el (7.3)

7.2.1.1 Implication 1If all signals from a signaling random process can be
written as a summation of disjoint signals, then this result can be used to define
each of the corresponding output signals after a memoryless transformation
and hence, define a signaling random process for the output random process.
As the power spectral density of a signaling random process is well defined (see
Theorem 5.1), such an approach allows the output power spectral density to
be readily evaluated.

Clearly, the applicability of this approach depends on the extent to which
signals from a signaling random processes can be written as a summation of
disjoint waveforms, that is, to the extent a signaling random process can be
written as a disjoint signaling random process, which is defined as follows.

DEFINITION: DISJOINT SIGNALING RANDOM PROCESS A disjoint signaling ran-
dom process X, with a signaling period D, is a signaling random process where
each waveform in the signaling set is zero outside the interval [0, D]. The
ensemble E, characterizing such a random process for the interval [0, ND] is

Ey = {X(Vp ces YN D) = Z ¢t — (i — 1)D), y;€Sr, (f)EE@} (7.4)

where St is the sample space of the index random variable I', and is such that
Sy = Z" for the countable case, and Sp. = R for the uncountable case. The set
of signaling waveforms, Eg, is defined according to

~

Eq={¢(y,1):7€Sr, ¢(y,1) = 0,1 <0, 1> D} (7.5)

7.2.1.2 Equivalent Disjoint Signaling Random Process Consider a
signaling random process X, defined by the ensemble

Ey = {x({l,...,CN,t) = Y Wit = (i = DD), LieSy, lpeE\P} (7.6)
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L V@
'/Nm ;
-q;D ! D (qu+ 1D

Figure 7.1 |lllustration of signaling waveform.

where S, is the sample space of the index random variable Z and the set of
signaling waveforms, Ey, is defined according to

Eqy = {Y((, 1):{eS,} (7.7)

Further, assume, as illustrated in Figure 7.1, that all signaling waveforms are
nonzero only on a finite number of signaling intervals. It then follows that if a
waveform in the random process starts with the signals associated with data in
[0, D], [D,2D],...then a transient waveform exists in the interval [0, g, D].
This transient is avoided for ¢t > 0 if signals associated with data in the interval
[—quyD, —(qy — 1)D] and subsequent intervals are included.

The following theorem states that the random process defined in Eq. (7.6)
can be written as a disjoint signaling random process with an appropriate
disjoint signaling set. A likely, but not necessary consequence of this alternative
characterization of a random process is the correlation between signaling
waveforms in adjacent signaling intervals.

THEOREM 7.1. EQUIVALENT DISJOINT SIGNALING RANDOM PROCESS If all sig-
naling waveforms in the signaling set Ey, associated with a signaling random
process X, are zero outside [ —q.D,(qy + 1)D], where q;,qy€{0} U Z™, then,
for the steady state case, the signaling random process can be written on the
interval [0, ND], as a disjoint signaling random process with an ensemble

Ey= {X(Vp cs e ) = Z (it — (i — 1)D), ¢ €Eq, Viesr} (7.8)

The associated signaling set Ey, is defined as

Ey = {qb(y, 1):yeSr=8,x xS, 7= (C_qU,...,CqL), CqU,...,CqLeSZ} (7.9)

where

Yyt —(=qu)D) + - + Y, t —qD) 0<t<D

1
0 elsewhere (7.10)

@y, 1) = {

Proof. The proof of this result is given in Appendix 1.
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7.2.1.3 Notes All waveforms in Eg4 are zero outside the interval [0, D]. The
probability of each waveform and the correlation between waveforms, can be
readily inferred from the original signaling random process. For the finite case
where there are M independent signaling waveforms in Ey, potentially there
are M.t 9™ ! waveforms in Eg. In most instances the waveforms from different
signaling intervals will be correlated.

7.2.2 Power Spectral Density After a Nonlinear Memoryless
Transformation

Consider a disjoint signaling random process characterized over the interval
[0, ND] by the ensemble E, and associated signaling set as per Egs. (7.4) and
(7.5). If waveforms from such a random process are passed through a
memoryless nonlinearity, characterized by an operator G, then the correspond-
ing output random process Y is characterized by the ensemble E; and
associated signaling set E.,, where

N
EY = {y(yla '»’VN»t) = Z lp(yivt_ (l - I)D)s ViESIUlpEE‘P} (711)
i=1
and

Ey = {y:y(. 1) = G[d(, )], 7€ Sr, p € Eq} (7.12)

Here, P[y(y, t)] = P[¢(y, t)] = P[y]. Clearly, the memoryless nonlinearity does
not alter the signaling random process form, and the following result from
Theorem 5.1 can be directly used to ascertain the power spectral density of the
output random process,

Gy(ND, f) = r[¥(f)I* — rlug(NI? + rlug(NI?

—_ 1 sin®(nNf /r)
[N sin’(nf /r) }

(7.13)
+2r Y, [1 - ﬂ Re[e2"™/ (o, (f) = ity /))]

i=1

Gy, (f) =r[P(N)I> — rlug(N)I* + rlue(f)I? i o(f — nr)
S (7.14)

+2r Y, Re[e”™/ Ry, . (f) — g /)]

i=1

where r = 1/D and uy, |P(f)?, and Ry,y,,, are defined consistent with the
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definitions given in Theorem 5.1. For example, for the countable case P[y] = p,
and

ty (f) = i pYO. f) RN = i p,1¥0. NI? (7.15)

y=1

Ry, . (f) = Z Z Py YO 0 Y0140 ) (7.16)

y1=1 71+i=1

where (), f) = [o W(y, e 2™/ dt.

7.2.3 Extension to Nonmemoryless Systems

It is clearly useful if the above approach can be extended to nonmemoryless
systems. To facilitate this, it is useful to define a signaling invariant system.

7.2.3.1 Definition — Signaling Invariant System A system is a signaling
invariant system, if the output random process, in response to an input
signaling random process is also a signaling random process and there is a
one-to-one correspondence between waveforms in the signaling sets associated
with the input and output random processes, that is, if Eq = {¢;} and
Ey = {y;} are, respectively, the input and output signaling sets, then there
exists an operator G, such that ; = G[¢,].

A simple example of a signaling varying system is one where the output y,
in response to an input x is defined as, y(t) = x(¢) + x(nt/4). For the case where
the input is a waveform from a signaling random process the output is the
summation of two signaling waveforms whose signaling intervals have an
irrational ratio.

7.2.3.2 Implication If a system is a signaling invariant system and is driven
by a signaling random process, then the output is also a signaling random
process whose power spectral density can be readily ascertained through use
of Egs. (7.13) and (7.14).

7.2.3.3 Signaling Invariant Systems A simple example of a nonmemory-
less, but signaling invariant system, is a system characterized by a delay, ¢,,. In
fact, all linear time invariant systems are signaling invariant, as can be readily
seen from the principle of superposition. However, the results of Chapter 8
yield a simple method for ascertaining the power spectral density of the output
of a linear time invariant system, in terms of the input power spectral density,
and the “transfer function” of the system.
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7.3 EXAMPLES

The following sections give several examples of the above theory related to
nonlinear transformations of random processes.

7.3.1 Amplitude Signaling through Memoryless Nonlinearity

Consider the case where the input random process X to a memoryless
nonlinearity is a disjoint signaling random process, characterized on the
interval [0, ND], by the ensemble E:

Ey = {x(al,...,a,v,t) = i P(a;,t — (i — 1)D), g;€S,, qbeEq)} (7.17)

where

Eg— {d)(a, f) = aplt), aeS,, plt) = {1 O<i< D} (7.18)

0 elsewhere

and P[d(a, D)l ,erap.a,+aa] = Pla€la,,a, + da]] = f,(a,) da. Here, f, is the den-
sity function of a random process A with outcomes a and sample space S,.
Assuming the signaling amplitudes are independent from one signaling interval
to the next, it follows that the power spectral density of X is

Gy(ND. f) = IO — gl N + rliol /)P LIV ]
Gu () = IO — iR + Plal N Y o/ —m) (120

n= — o0

where r = 1/D, and

o0

to(f) = P(f) j_w afgla) da = pP(f)  py= j_ af (a) da

: ) (7.21)
(/) = |P(f)I? J_ a*f,(a)da = A|P(f)> A% = J a’f(a) da

— 00

If signals from X are passed through a memoryless nonlinearity G, then,
because of the disjointness of the input components of the signaling waveform,
the output ensemble of the output random process Y, is

Ey = {y(al, ceey Ay, 1) % Yla;,t — (i — 1)D), a;e S, x//eE.,,} (7.22)
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where

Ey = {¥(a, 1) = G(a)p(), aeS,} (7.23)

and

P[zp(a, t)'ae[ao.ao+da]] = P[(l’)(a, t)'ae[ao,aoera]] = fA(ao) da (724)

It then follows that the power spectral density of the output random process is

G, ND. 1) = rFCIT = il 1 + gl 1 | I 125
Gr, () = ¥ = g NP + Pl NP3 0f =) (126)
where
) =) = P | 60 fa
- (7.27)

o0

P(NI? = G*P()I? = [P(f)P J G*(a) f4(a) da

— o0

where the following definitions have been used:

te = r Gla) f(a)da  G* = f " 6¥a) /(@) da (7.28)

— 00

To illustrate these results, consider a square law device, that is, G(a) = a?,

and a Gaussian distribution of amplitudes according to

fula) = e~ P74 fom o,

whereupon it follows that u;=0% and G*>=23s% (Papoulis, 2002 p. 148). Thus,
with |P(f)|=|sinc( f/r)|/r, it follows that

Gx(ND, f) = Gy (f) = —ASIHC (f/r) (7.29)
2% 4 1 sin2
G4(ND, ) = % sinc(f/r) + % sinc?(f/r) [N W] (7.30)

4

Gy, (f) = —SmC 2(ffr) + a0l f) (7.31)
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Clearly, for this case, and in general, for disjoint signaling waveforms with
information encoded in the signaling amplitude as per Eq. (7.18), the nonlinear
transformation has scaled, but not changed the shape of the power spectral
density function with frequency apart from impulsive components. For the case
where the mean of the Fourier transform of the output signaling set is altered,
compared with the corresponding input mean, potentially there is the intro-
duction or removal of impulsive components in the power spectral density.

7.3.2 Nonlinear Filtering to Reduce Spectral Spread

Many nonlinearities yield spectral spread, that is, a broadening of the power
spectral density. However, spectral spread is not inevitable and depends on the
nature of the nonlinearity and the nature of the input signal. The following is
one example of nonlinear filtering where the power spectral density spread is
reduced.

Consider the case where the input signaling random process X is character-
ized on the interval [0, ND], by the ensemble

EX = {x(ylw <5 INs t) = Z d)(yis [ — (l - I)D)a ViESF’ QSEEQ} (732)

i=1

where S = {—1,1}, P[y; = £1]1 = 0.5,

— D)2
E¢={¢(vi,r):¢<vi,t)=viAA<t o >ﬂ/i€{—1»1}} (733)

and the waveforms in different signaling intervals are independent, Here, A is
the triangle function defined according to

141t —1<t<0
Aty ={1—t 0<t<1 (7.34)
0 elsewhere

Consider a nonlinearity, defined according to

—A, x< —A4

G(x) = . (T X
A, sin <§Z> —A<x<A4 (7.35)
A x=A

which is shown in Figure 7.2, along with input and output waveforms.
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G(x)

Input
A
t
D
Output
AO
t
| D

Figure 7.2 Memoryless nonlinearity and input and output waveforms.

It follows that the output signaling random process Y is characterized on
the interval [0, ND], by the ensemble

EY={y(V1,~--,VN, Z Yyt — (i — 1)D), ViESF’lpEE‘}'} (7.36)

where

. T t— D)2 B | T
g, = V00 V0R0 =0 ”ln[z’\( D2 >]_ViAosm[D] (7.37)

0<t<D,peS.={—11}

Clearly, P[y(y;,t)] = P[y,] = 0.5. It follows that the power spectral density of
the input and output waveforms are

Gx(ND, ) = Gy, (f) = rl®(f)I? (7.38)
Gy(ND, f) = Gy (f) = T¥(/)? (7.39)

where

442 cos¥(nfr)
nzrz (1 _ 4f2/7'2)2

|D( 1)) A—smc <£> P()? = (7.40)

There is equal power in the input and output spectral densities when A,

V2413
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Figure 7.3 Input and output power spectral densities associated with the memoryless
nonlinearity and waveforms shown in Figure 7.2.

These power spectral densities are plotted in Figure 7.3 for the case of r =
D=1,A=1,and 4, = ﬁ/\ﬁ For this equal input and output power case,
there is clear spectral narrowing consistent with the “smoothing” of the input
waveform via the nonlinear transformation.

7.3.3 Power Spectral Density of Binary Frequency Shifted Keyed
Modulation

As the following two examples show, signaling random process theory can
readily be applied to ascertaining the power spectral density of FM random
processes.

First, consider an FM signal,

W(t) = A cos[x(t)] x(t) = 2nf.t + (1) t=20 (7.41)

where the carrier frequency f. is an integer multiple of the signaling rate
r = 1/D, and the binary digital modulation is such that ¢ has the form

t oo
o(t) = 27ffdj Y vl —(—DD)ydi ye{-11}
0i=1

. (7.42)
=2nfy ) “/,-J p(4 — (i —1)D)d2

i=1 (]
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Here, P[y;,= —1]=p_, and P[y;=1]=p,, and the pulse function p is
assumed to be such that

p) =0 t<0,t=D f ’ p(t)dt = D (7.43)

0

which is consistent with a phase change of +2n(f,/r) during each signaling
interval of duration D sec. Clearly, p(t) and p(t — iD) are disjoint for i > 1.

With the assumptions that both f,/r and f./r are integer ratios, it follows,
as far as a cosine function is concerned, that the phase signal x in any interval
of the form[(i — 1)D, iD], where ie Z", can be written as

t—(i—1)D

x(t) =2xf.(t —(i—1)D)+ 2=f jy J p(2) dA tel(i—1)D,iD],ye{—1,1}

0

=¢(y, t — (i — 1)D) (7.44)

where
t
2nf.t + 2nfp A) dA 0<t<D,ye{+1
o, nfd/Lp() yel{t1} (7.45)

0 elsewhere

oy, 1) =

It then follows, for the ith signaling interval, that

W) = Acos[x(t)] = Acos[¢p(y,t — (i — DD)] (i — 1)D <t <iD
(7.46)

This formulation can be generalized to the random process case as follows: The
random phase process X is defined by the ensemble E

EX = {X(V1r"'>yNst) = g‘, (f)(yi»t - (l - l)D)r d)EE(I)s yie{il}ate[():ND]}

i=1

(7.47)
where P[y;Je{p_,,p,} and the signaling set E, is defined as
t
27rfct+2nfdyfp()v)d/1 0<t<D,ye{+1}
Eg =36, 1) = 0 (7.48)

0 elsewhere

As any waveform in Ey consists of a summation of disjoint signals, a random
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process Y = cos[X] can be defined with an ensemble E,,

EY:{y(Vla"‘v/N7t) - z W(Vw l_ 1)D IPEET,%E{‘i‘l} tE[O ND]}

(7.49)
where y(y,,...,7y,t) is a summation of disjoint signals from the signaling set
Ey,

A cos[¢(y, 1)] 0<t<D,ye{+1},¢€E
Ey= (.0 = (1 *L (7.50)
0 elsewhere

and P[y(y, )] = P[o(y, D] €{p_1, P}
With independent data, consistent with y; being independent of y; for i # j,
it follows from Eq. (7.14) that the power spectral density of Y is

2

Gy, (f) =12 p,|P0, NI —r X p, Y0, f)
! ! (7.51)

+ r?

Se¥G | T o~k gel-L1)

where W is the Fourier transforms of .
For the case where p(t) = 1 for 0 < t < D and zero elsewhere, that is, binary
frequency shifted keyed (FSK) modulation, it follows that the signaling set is

_ Ju(, 0 = Acos[2n(f. + f)t] 0<t<D
fe {w(_ L) =Acos[2n(f. — f)t] 0<t< D} (7.52)

and

r

+ Zé oIt t fat DIF gine <fc tJat f>
r r

W(—1, f) = = eimfe=Ta=NIr ginc <ffdf>

r

+ f o ine=Lat DIr gine <fc —Jat f>

Y(L, f) = 61"(f‘+f"‘ D" sine <ffdf>
(7.53)

(7.54)

2r r

For this case, and wherer =D = f, =1, A = \/5, fo=10,and p_, = p, = 0.5,
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Figure 7.4 Power spectral density of a binary FSK random process with r=D=f,= 1,
A= \/é and f,= 10. The dots represent the power in impulses.

the power spectral density, as defined by Eq. (7.51), is shown in Figure 7.4. A
check on the power in the impulses can be simply undertaken by writing the
FM signal A4 cos[2n(f, + f,)t] in the quadrature carrier form,

A cos(2nf.t) cos(2nf,t) F A sin(2nf.t) sin(2xf,t) (7.55)

The first term is periodic, and independent of the data, and yields impulses at
+ f. + f, where the area under each impulse is 4?/16, which equals 0.125 when

A= ﬁ
7.3.4 Frequency Modulation with Raised Cosine Pulse Shaping

Consider a FM signal with continuous phase modulation that is achieved
through the use of raised cosine pulse shaping,

t

x(t) = A sin |:27'Efct + ZRrJ m(2) d}v:| t=0 (7.56)

—-D
where » = 1/D and the lower limit of — D in the integral arises from the pulse

waveform in the modulating signal m, which is defined according to

{ip(t — (i — 1)D) {e{+05,t>—D (7.57)

1

m(t) =

s

13
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Here, p is a raised cosine pulse with a duration of three signaling intervals
(Proakis, 1995 p. 218), that is,

0 %|:1 — Ccos <w>] —-D<t<?2D
p =

(7.58)
0 elsewhere

and is shown in Figure 7.5. The integral of this raised cosine pulse shape, ¢, is

. 0 t<-—D
J p(2) dA t+D D . |2n(t+ D)
= ={— — — ——| —-D< .
q(t) -p 3 5 sin 3D D<t<2D (7.59)

and the area under p is D. The value of {;€ {+0.5} in Eq. (7.57), results in each
signaling waveform yielding a phase change of +x. The normalized integral of
p, that is, ¢(t/D)/D, is shown in Figure 7.5.

As

t 0 Le/p]+2 t
j <‘Z cip(z—(i—nD))dz: hoge J == 1D)d2
—D \i=1 i=1 (i—2)D (760)

Lypl+2

= > lqtt—(G—-1)D) t=-D

p(t/D), q(t/D)/D q(t/D)/D

1 ——

5/6 //
2/3 ey /

1/2

1/3 /
1/6 //

"]

-0.5 0 0.5 1 1.5 2
t/D

Figure 7.5 Raised cosine pulse waveform and normalized integral of such a waveform.
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it follows that the FM signal defined by Egs. (7.56) and (7.57), can be written as

Leypl+2

X(t) = Asin |:27rfct+2nr Y gt — (i — 1)D)J [e{+05},1>0

i=1

(7.61)

The random process, of which this signal is one outcome, is denoted X and is
defined, on the interval [0, ND), by the ensemble Ey:

L]+ 2

(Lo Cys1st) = Asin [wct +2mr )y, (gt — (i — 1)D)] (7.62)
i=0 .

w, = 2nf., {;e{+0.5},1€[0, ND)

x =

where the effect of symbols in the interval [ —D,0] and [ND,(N + 1)D], have
been included to establish a steady state ensemble for [0, ND]. As the integral
of the pulse shape is D = 1/r, and {;e{+0.5}, it follows that each pulse con-
tributes a final phase shift of +7 radians to the argument of the sine function.
Hence, each pair of symbols results in a phase shift from the set — 27,0, 27. As
the sine function is periodic with period of 2=, it follows that in the ith
signaling interval, [(i — 1)D, iD], the phase accumulation from the previous

..,i—3,i— 2 symbols can be neglected. Thus, it is possible to rewrite the
ensemble defining the random process X on the interval [0,2ND] in a
signaling random process form, with a signaling rate of r/2, that is,

N
Exz{x(yl,...,yN,t)z Y ¢, (t—(i—1)2D), pe{l,..., 16},¢yieEq,,te[O,2ND]}
i=1

L

(7.63)

where the signaling set Eg consists of waveforms that are zero outside the
interval [0,2D], and is defined according to

Eg= {dh(t) = {A sin(27f.t + ¢;()]  0<t<2D

ie{l,...,1 .64
0 elsewhere P 6}} (7.64

The waveforms in Eg, as well as the component phase waveforms ¢;, are
detailed in Table 7.1. All waveforms in this set have equal probability, and the
phase waveforms ¢, are plotted in Figure 7.6. The correlation between the
signaling waveforms in adjacent signaling intervals of duration 2D, is detailed
in Table 7.2. The signaling waveforms in signaling intervals separated by at
least 2D, are independent as far as the sine operator is concerned.
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Table 7.1 Signaling Waveforms in Signaling set

Data Phase Waveforms ¢, ..., ¢, in [0, 2D] Signaling Waveforms in [0, 2D]
0000 nr[—q(t+ D) — q(t) — q(t — D) — q(t — 2D)] ¢ (t) = Asin@nrft + ¢,(1))
0001 nr[—q(t+ D) — q(t) — g(t— D) + q(t — 2D)] ¢,(t) = Asin(@nf t + ¢,(t))
0010 nr[—q(t+ D) — q(t) + g(t — D) — q(t — 2D)] @5(t) = Asin(@nf t + ¢4(t))
0011 nr[—q(t+ D) — q(t) + g(t— D) + q(t — 2D)] du(t) = Asin@nf t + @,(1))
0100 nr[—q(t+ D) + q(t) — q(t — D) — q(t — 2D)] ¢5(t) = Asinrf .t + ¢s(1))
0101 nr[—q(t+ D) + q(t) — g(t— D) + q(t — 2D)] ¢o(t) = Asin(@nf t + (1))
0110 nr[—q(t+ D) + q(t) + g(t— D) — q(t — 2D)] ¢,(t) = Asin@nrft + ¢,(1))
0111 nrl—q(t+ D) + q(t) + q(t — D) + g(t — 2D)] Pg(t) = Asin(@nft + @g(t))
1000 nr[q(t + D) — q(t) — g(t — D) — q(t — 2D)] do(t) = Asin(@nf t + @4(t))
1001 nr[q(t + D) — q(t) — q(t — D) + q(t — 2D)] $10(t) = Asin@nft + ¢y4(1))
1010 nr[q(t + D) — q(t) + q(t — D) — q(t — 2D)] ¢1(t) = Asin@nf .t + ¢ (1))
1011 nr[q(t + D) — q(t) + g(t— D) + q(t — 2D)] ¢ 1,(t) = Asinrf,t + ¢,(1))
1100 nr[q(t + D) + q(t) — q(t — D) — q(t — 2D)] ¢13(t) = Asin(2nf .t + ¢ 5(1))
1101 nr[q(t + D) + q(t) — g(t— D) + q(t — 2D)] ¢ 14(t) = Asinrf,t + ¢4(1))
1110 nr[q(t+ D) + g(t) + q(t — D) — q(t — 2D)] ¢ 5(t) = Asin2rf,t + ¢,5(t))
1111 nr[q(t + D) + g(t) + q(t — D) + q(t — 2D)] b 16(t) = Asinrf,t + ¢,4(1))
Data of 0 and 1 correspond, respectively, to {; = —0.5 and (; = 0.5. The data in the first column are for the

intervals [— D,0, [0, DI, [D, 20], and [2D, 30).

7.3.4.1 Determining Power Spectral Density The power spectral density
from Theorem 5.1, for a signaling random process with a rate r, = 1/D,, is

Gx(ND,, f) = 1[N = rilual N + r,lttal /)P [zlv W}

(7.65)

m

+ 2r0 Z |:1 - ]i[:| Re[ejZﬂiDOf(Rdnd)l-ﬁ-i(f‘) - |:u':l)(f)|2):|

i=1

where, for the case being considered, r, = ¥/2 = 1/2D, D, = 2D, m = 1, and

16 16
Ho(f) = Z p;®,(f) |(D(f)|2 = Z pilq)i(f)|2 (7.66)
Ro,0,(f Z Z Py @, ()PF(f) (7.67)
y1=172=1

To evaluate the power spectral density, the Fourier transform of the individual
waveforms in the signaling set, as defined by Eq. (7.64) and Table 7.1, are
required to be evaluated. The details are given in Appendix 2. Using the results
from this appendix, the power spectral density, as defined by Egs. (7.65) to Eq.
(7.67), is shown in Figure 7.7, for the case of f, =10, r=D =1, 4 = \/E, and
N — 0. For the parameters used, the average power is 12 assuming a voltage
signal. The power in each of the sinusoidal components with frequencies of
f.+7r/2is 0.11V2, and the remaining power of 0.78V? is in the continuous
spectrum.
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01(1), ..., P14(D)
9.42

6.28

3.14.
0 e
-3.14 —

-6.28

|

\

T——

025 05 0.5 1 125 15 175 2
t/D

Figure 7.6 Phase signaling waveforms for [0, 2D].

The power in the impulsive components is consistent with inefficient
signaling. These components can be eliminated by reducing the phase variation
in each signaling waveform from 7 to 7/2 radians. This also leads to better
spectral efficiency (Proakis, 1995 p. 218). With respect to spectral efficiency, the
power spectral density shown in Figure 7.7 should be compared with that

Table 7.2 Correlation between Signals in Signaling Intervals of

Duration 2D
Signal in ith Signal in (i + 1)th

Data Interval Interval Probability
xx0000 b1, Pss Poy D13 $4(t) 1/64
xx0001 ®1, Gss Bo, P13 $,(1) 1/64
xx0010 b1 D5y Poy D13 $5(t) 1/64
xx0011 ®1, Osi Bo, P13 Pu(t) 1/64
xx0100 $2 Doy D100 Pra ¢s(t) 1/64
xx0101 ®2 b6 P10 P14 do(1) 1/64
xx0110 b2 P60 Pros Pra ¢,(t) 1/64
xx0111 b2 P60 Pror P14 Pg(t) 1/64
xx1000 b3 b D115 P15 $o(t) 1/64
xx1001 ¢35 75 P115 Pis $10() 1/64
xx1010 b3 ¢ D115 D15 $14(8) 1/64
xx1011 ¢35 75 G115 Pis $1(8) 1/64
xx1100 b4 P55 P12 D16 ¢15(1) 1/64
xx1101 bas G5 D120 Dis $14(8) 1/64
xx1110 $ar P50 P12 P16 é15(t) 1/64
xx1111 Gas G5 D120 D16 $16(1) 1/64

The data in the first column are for the (i — 1)th, ith and (i + 1)th signaling intervals
of duration 2D. The symbol x implies the data is arbitrary.
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Figure 7.7 Power spectral density of a raised cosine pulse shaped FM random process with
a carrier frequency of 10Hz, r=D = 1,and A = \/E The dots represent the power in impulses.

shown in Figure 7.4, where pulse shaping has not been used, and the phase
change for each signaling waveform is 2z radians. Finally, a further compari-
son of Figures 7.7 and 7.4, reveals that the pulse shaping has led to a very rapid
spectral rolloff.

APPENDIX 1: PROOF OF THEOREM 7.1
Consider the steady state case and a single signaling waveform ({,, t) from

the ensemble Ey, that could be associated with every signaling interval as
shown in Figure 7.8. Clearly, the signal in the interval [0, D] is given by

(o t = (=qu)D) + - + (Lo, 1) + - + (Lo, T — q1.D) (7.68)

Y(&y. 1= (=qy)D) V(G 1) V(G 1= qD)
] ) \ t
—qyP  —qD D gD (qu+ DD

Figure 7.8 lllustration of signaling waveforms that have nonzero contributions in the interval
[0, DJ.
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In general, the signal ¢(y, t) in the interval [0, D] has the form

Yl s t=(=qu)D)+ -+l o, )+ -+, t—q, D) 0<t<D
0 elsewhere

(7.69)

oy, 1) = {

where y = ({_,,,...,{,) and {_,,...,{, €S,. By definition, ¢(y, t) is zero
outside the interval [0, D]. As this interval is representative of any other
interval of the form [(i — 1)D, iD], it follows that a signal from the random
process can be written in the interval [0, ND], as a sum of disjoint signals,

M=

(it — (i —1)D),  ¢eEy, €Sy (7.70)

1

i
where

E(I) = {d)("/, t) ’yESF = SZ X X SZ’ Y= (C—qU:' '-aéqL)a C—qyy'-'quLESZ}
(7.71)

this is the required result.

APPENDIX 2: FOURIER RESULTS FOR RAISED COSINE FREQUENCY
MODULATION

To establish the Fourier transform of each signaling waveform, explicit
expressions for g(t + D), ¢(t), q(t — D), and ¢g(t — 2D) are first required. Using
the definition for g, as in Eq. (7.59), it follows that

t+2D D 3D
q(t + D) = + + —sin(q,,t) + f cos(q,,1) —-2D<t<D (172
3 47 47
t+D D 3D
a0 =2 4 P ing,n — V3 cos(q.) —D<t<2D (173)
3 47 47

t 2D
alt = D) =5 -

— sin(q,,t) 0<r<3D (7.74)
4n

J3D

47

t—D D .
qt —2D) = ——+ —nsm(qmt) +

3 ) cos(q,,t) D <t <4D (7.75)

where ¢, = 21/3D.
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A.2.1 Phase Waveforms for [0, D]

For 0 <t < D, the phase of the waveforms, as detailed in Table 7.1, can be
written as

@(t) = nrly_1q(t + D) + poq(t) + y,4(t — D)] (7.76)

where, 7 _{, 70, 71€{—1,1} depend, respectively, on data in the intervals
[—D,0], [0, D], and [D,2D]. From Egs. (7.72)—(7.75) it follows that

D t
@i(t) = nr[g(hl + 70) +§(V71 + 70 + V1)

(7.77)
D : J3D
+ =100 = 200 sin(gyt) + == (-1 — 7o) cOS(gu1)
which can be rewritten as
¢;(1) = q, + q;t + g,sin(g,,t + 6,) (7.78)
where
T T
qozg(z“/—l"‘"/o) Q1:E(V—1+Vo+”/1) (7.79)
1
42 =01+ 70— 2007 + 301 — 70’ (7:80)
_ 3(7-1 —70)
tanlg 47 —=2y, >0
|:V\/L+ Yo — 274 forTe i
0, = - 31 — 7o)
1 tan~1| XLt 00 g ity =2y, <0
|:V1+70_2V1 T yl
0 7o1—7%=07_1+7%—2y,=0
(7.81)

A.2.2 Phase Waveforms for [D, 2D]

For D <t < 2D, the phase of the waveforms, as per Table 7.1, can be written
as

@i(t) = mr[y_ D + 70q(t) + y,4(t — D) + y,4(t — 2D)] (7.82)
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where 7-170 V1> Vze{_la 1}: and thus:

D t
1) = 7'”'|:§(371 + 70— 72) +§(“/0 + 71+ 72)

D . 3D
(0 — 204 + 72 sin,,0) + {—n<—vo +72) cos(q,,,r)] (7.83)

+

This can be rewritten as

@i(t) = q, + q;t + g, sin(q,,t + 6,) (7.84)
where
s i
q()zg(?’?—l + 70— 72) q1 250’0"‘?1 +7,) (7.85)
1
q, = Z\/(Vo =2y, + Vz)z +3(=y0 + "/2)2 (7.86)

Yo — 271 +7,>0

tan_l[\/m]
\“//o»_z“h"‘yz
b, = - (=70 +72)
a tanl[02 +1 yo—29,+7,<0
Yo — 271 + 72 0 ! ?
0 0+ 72=0,7%—2y; +7,=0

(7.87)

A.2.3 Fourier Transform of Signaling Waveforms

For the interval [0,2D], the Fourier transform of the ith waveform in the
signaling set is

2D
.(f) = j Asin2nf.t + ¢,(t)e 2" dt
0

(7.88)

A 2D
— [ej[Zﬂ(fc—f)t+<0i(t)] _ e—j[Zﬂ(fc+f)t+¢i(t)]] dt
2j Jo

Substituting for ¢,(¢), and with the definitions u,,(f) = 2n(f, — f) + g, and
uy,(f) = 2n(f. + f) + q,, it follows that ®;( f) can be written as

D

4 [ej[q(,+u1n(f)t+qz s n(gmt +09)] _ ,=Jldo Tu1p(N)t+q2 s nlgmt +0q)] 3

2] 1 1
0

(7.89)

2D
A J [ej[qo+u1n(f)t+qz s n(gmt +0g)] __ 5= jldo tu1p(N)+42 s nlamt +09)1 14

+_' 1 1
2 Jp



APPENDIX 2: FOURIER RESULTS FOR RAISED COSINE FREQUENCY MODULATION 227

where, as is clear from the above derivation of the phase waveforms in [0, D]
and [D, 2D], the coefficients q,, uy,, u; ,, q,, and 8, vary from [0, D] to [D, 2D].
With the change of variable A =t + 6,/q,,, and with the definitions v,,(f) =
Uy, ()0,/qm> v1,(f) = uy,(f)0,/q,, it follows that ®,(f) can be written as

_ Ajej[q" —v1n(f)]

0,(f) ==

D +04/qm
J' ej[uln(f)/l +42 s n(gmA)] di
i
0q/qm

Aje —Jlao=v1p(N] [(D+0q/qm
—Jlu1p(f)A+q2s n(gma)]
- 2 === e 1p 2 . d/{

’ tlte (7.90)
— Ajp o= v1n)] 2D+ 0g/am
Aje T it @z s namd g
e i L
2 D+04/qm

= ildo—v1p(N] (2D +0g/dm
Aje et g2+ @28 nam) ]
7 e : Y

D+0g/am

Evaluation of these integrals relies on the result,

A2
I(kos WC: Wm» WA7 /11’ ;“2) = \[ ejko[W(‘7~+WA Sin(Wml)] d)L

At

sin(we — iw,)4,) — sin((we — iw,)4,)
We — iw,,

s

(=DVi(w) [

i=0
< sin((we + iw,,)4,) —sin((we + iw,,)4,)
i igl 7w [ we +iw, ]
Hk, X (100 [COS«WC —Malla) = Cosve = "W"'Ml)}
i=0 c m

oz Cos(w + iWp)s) — Osl(we + i) y)
+(—jk, i§1 Ji(wy) [ We + iw, :|

(7.91)
where k,e{—1, 1}. This result arises from the standard Bessel function expan-

sions for the terms cos(w 4 sin(w,,4)) and sin(w 4 sin(w,,4)) (Spiegel, 1968 p. 145),
that is,

cos(w sin(w,,4)) = Jo(w,) + 2J,(w,) cos(2w,A) + 2J ,(w ) cos(4w,,A) + ---
(7.92)

sin(w , sin(w,,4)) = 2J(w ) sin(w, 1) + 2J5(w ) sin(3w,,4) + ---  (7.93)
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®,(f) can be evaluated using Eq. (7.91), that is,

_ Ajej[qo =v1n(N)]

(Dl(f) = fI(L uln(f)7 Qs 925 eq/qm, D + Gq/Qm)
Aje*j[qo*mp(f)]
fl(_ls ulp(f)a Qs 925 eq/qma D + Hq/qm)
_Ajej[qo*vln(f)]
fl(ls uln(f): 9> 925 D + eq/Qma 2D + Hq/qm)
Aje—j[qo—vlp(f)]
fl(_la ulp(f)a Qs> 925 D + eq/qmv 2D + Gq/qm)

(7.94)

In the first two component expressions in this equation, q,, vy,, v;,, q,, and 6,
are defined for [0, D], whereas in the last two component expressions, these
variables are defined for [D, 2D].
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Linear System Theory

8.1 INTRODUCTION

In this chapter, the fundamental relationships between the input and output of
a linear time invariant system, as illustrated in Figure 8.1, are detailed.
Specifically, the relationships between the input and output time signals,
Fourier transforms and power spectral densities, are established. Such relation-
ships are fundamental to many aspects of system theory, including analysis of
noise in linear systems, and low noise amplifier design.

The relationships between the parameters defined in Figure 8.1, and proved
in this chapter are,

W) = J X(h(t — 7) d. (8.1)

0

Y(T f) = H(T, /)X(T, f) (8.2)

where X and Y are the respective Fourier transforms, evaluated on the interval
[0, T, of the signals x and y. However, as will be shown in this chapter, the
relationship defined in Eq. (8.2) is an approximation. If both x, he L, then the
relative error in this approximation can be made arbitrarily small by making
T sufficiently large. However, stationary random signals are not Lebesgue
integrable on the interval (0, c0) and hence, this convergence is not guaranteed.
However, it is shown, for a broad class of signals and random processes,
including periodic signals and stationary random processes, that the corre-
sponding relationship between the input and output power spectral densities,
namely,

Gy(T. f) = [H(T, N*Gx(T, f) (8.3)

becomes exact as T increases without bound. Establishing the relationships, as
per Egs. (8.1)—(8.3), for a linear time invariant system requires the system
impulse response to be defined, and this is the subject of the next section.

229
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x€ Ey Y€ Ey

h< H
Gx Gy

Figure 8.1 Schematic diagram of a linear system. E, and E,, respectively, represent the
ensemble of input and output signals. H is the Fourier transform of the impulse response
function h. Gy and G,, respectively, are the power spectral densities of the input and output
random processes.

8.2 IMPULSE RESPONSE

Fundamental to defining the impulse function of a time invariant linear system,
is the function J, defined by the graph shown in Figure 8.2. The response of a
linear time invariant system to the input signal J, is denoted h,.

DEFINITION: IMPULSE RESPONSE By definition, the impulse response of a linear
system is the output signal, in response to the input signal 4,, as A becomes
increasingly small, that is,

h(t) = lim hy(t) (8.4)

A—0

8.2.1 Restrictions on Impulse Response

General requirements on the impulse function are, first, that it is integrable,
thatis, he L[0, co], and second, that as A — 0, the integrated difference between
h and h, is negligible on sets of nonzero measure, that is, convergence in the
mean over (0, o0):

lim J% |h\(t) — h(t)dt =0 (8.5)
A—-0 JO
NG
1
Z oo
| d\(Ddt=1
- L - 1
oA

Figure 8.2 Definition of the function 6.



IMPULSE RESPONSE 231
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i1 +3p72

Figure 8.3 lllustration of a function that is Lebesgue integrable on [0, «o], but is not square
Lebesgue integrable on the same interval.

The following are two examples where, as A — 0, the integrated error between
h and h, is finite. First, the “identity” system where h,(f) = () and second,
the system where

(8.6)

) — {A te[AA + 1/A]

0 elsewhere

For both systems, and for t (0, o0), it follows that

ht) = limhy(t) =0  but  lim J Tl — holde 20 (8.7)

A—0 A—=0JO

To ensure he L[0, co], and as A — O the integrated difference between h and h,
is negligible, the following restriction on the set of functions {h,}, denoted
condition 1, is sufficient:

1. There exists a function ge L[0, oo], such that, for all A > 0 it is the case
that |h,(¢)] < g(t) for te[0, o0].

The validity of this condition, in terms of guaranteeing that Eq. (8.5) holds, is
given by Theorem 2.25.

Practical and stable systems are such that h, is bounded and has finite
energy for all values of A. As per Theorem 2.14 these two criteria are met by
condition 1 and the following condition.
for te[0, o0].

2. For YA > 0, h, is bounded, that is, VA > 0, |h,(t)] < hpax
This second condition excludes a signal such as 1/\/E, which is integrable
on [0,c0], but has infinite energy on all intervals of the form [0,¢,]. It
also excludes signals such as the one shown in Figure 8.3, whose integral
equals X2, (1/i'*#%), which from the comparison test (Knopp, 1956
pp. 56f), is finite for B > 0, but whose energy is given by X2, (1/i' ~#2) and is
infinite when f > 0.
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8.3 INPUT-OUTPUT RELATIONSHIP

Consider the causal linear time invariant system illustrated in Figure 8.1. The
well-known relationship between the input and output signals is specified in
the following theorem.

THEOREM 8.1. INPUT-OUTPUT RELATIONSHIP FOR A LINEAR SYSTEM If the
input signal x to, and the system impulse response h of, a linear time invariant
system are both causal, are locally integrable, and have bounded variation on all
finite intervals, then the output signal, y, is given by

W) = J Xt — ) d). >0 (8.8)

0

Proof. The proof of this result is given in Appendix 1.

Note that this result is applicable to unstable systems where h¢ L[0, oo].

8.4 FOURIER AND LAPLACE TRANSFORM OF OUTPUT

The following theorem states the important result of the relationship between
the Fourier and Laplace transforms of the input and output of a linear time
invariant system.

THEOREM 8.2. TRANSFORMS OF OUTPUT SIGNAL OF A LINEAR SYSTEM If both
x,he L[0, T], have bounded variation on [0, T], and their respective Fourier
transforms are denoted X and H, then the Fourier transform Y of the output
signal y, evaluated on [0, T, is given by

Y(’]: f) J'J x(}v)h(p)eijTEf(p+)_’) dJ dp

0<p,A<T (8.9)

p+AST

Y(T, ) — I(T, f) = X(T, HH(T, f) — (T, f)

where

Y(T, f) = X(T, /)H(T, f)

I(T f) = Jf x(/l)h(p)e*ﬂnf(pu) ). dp (8.10)

0<p,A<T
pt+ti>T



FOURIER AND LAPLACE TRANSFORM OF OUTPUT 233

P p=T-X

Area of
integration for [

Area of
integration for Y

Figure 8.4 lllustration of area of integration for Y and |.

and the integration regions for both Y and I are as shown in Figure 8.4.
With

X(Ts) = rx(t)e-st dt (8.11)

0

and similarly for other Laplace transformed variables, it is the case that

Y(T,s) = ” X(Dh(p)e*"** di.dp

T (8.12)
= X(T 9)H(T, s) — I(T; s)
where
I(T,s) = JJ x(A)h(p)e sP*H djdp (8.13)
0spi<T

Proof. The proof of this theorem is given in Appendix 2.

For the Fourier transform case 17(7: f), because of its simplicity, is the
approximation that is normally used, and I(7, f) is clearly the error between
the approximate and true output Fourier transforms for a given frequency f.
The next theorem gives a sufficient condition for the term I to approach zero
as the interval under consideration becomes increasingly large.

THEOREM 8.3 CONVERGENCE OF APPROXIMATION If both x, he L[0, co], and
have bounded variation on all closed finite intervals, then

lim Y(T f) = lim X(T )H(T, f)  feR (8.14)
lim Y(T,s) = lim X(T, s)H(T, s) Re[s] =0 (8.15)

T— T—x
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Further, if he L[0, oo], x is locally integrable and does not exhibit exponential
increase, then Re[s] > 0 is a sufficient condition for

lim Y(Ts) = lim X(T. s)H(T, s) (8.16)

T— oo T- o

Proof. The proof is given in Appendix 3.

8.4.1 Windowed Input and Nonwindowed Output

For completeness, the response of a linear time invariant system for the case
where the input and impulse response are windowed, but the output is not
windowed, as illustrated in Figure 8.5, is stated in the following theorem.

THEOREM 8.4 TRANSFORMS OF OUTPUT SIGNAL: NONWINDOWED CASE  If both
x, heL[0,T], and ~haue bounded variation on [0, T], then the Fourier and
Laplace transforms Y of the output signal y, which is not windowed, are given by

YQT, f) = X(T, /)H(T, f) (8.17)
YQT, s) = X(T, s)H(T, 5) (8.18)

Proof. The proof of this result is given in Appendix 4.

This result has application, when the output signal y is to be derived for the
interval [0, T]. The procedure is as follows for the Fourier transform case.
First, evaluate X(T, f) and H(T, f), second, evaluate YT, f)=X(T, /)H(T, f),

and third, evaluate y by taking the inverse Fourier transform of Y(27, f). The
evaluated response is valid for the interval [0, T], but not [T, 2T7].

8.4.2 Fourier Transform of Output— Power Input Signals

Theorem 8.3 states that lim,_, Y(T, f) = lim,_,, Y(T, f), provided x, he L.
However, for the common case of signals whose average power evaluated on
[0, T, does not significantly vary with T, for example, stationary or periodic

x(6) h(t) y(®)

t t @ t
T T T 2T

Figure 8.5 lllustration of waveforms in a linear system for the case where the impulse
response and the input are windowed but the output is not.
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signals, it is the case that x¢ L. For this situation, it can be the case that
lim,_ , Y(T, f) # lim;_,, Y(T, f) almost everywhere. The following example
illustrates this point.

8.4.2.1 Example Consider a linear system with an impulse response and
input signal, respectively, defined according to

—t/t
ey = o £>0,7> 0
T (8.19)
X(t) = /20, sin2af 1) >0

For the case where 0, = 1, h, = 1,7 = 0.1, T = 1, and f, = 4, the output signal
y is plotted in Figure 8.6. For these parameters, the magnitude of the true, Y,
and approximate, Y, Fourier transforms, as well as the magnitude of the error,
I, between these transforms, is plotted in Figure 8.7.

To establish bounds on the integral I, and hence, on how well Y approxi-
mates Y, note that

T T
J |:j h(p)e 73m/p dp] x(A)e 272 4}
0 T—2

T T —plt “Th
<20, f U e dp} di=/20.h, [1 e Te_]
T

0 -4 T

(T )l =

(8.20)

When T is sufficiently large, such that Te™ 7"/t « 1, it follows that |I(T, f)| <
ﬁaxhur, which is independent of the interval length T, and only depends on

(@)
0.8

0.6 /\\
|
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0.2

ol |
-0.2 \
B VAR
-0.6
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|\ |\
v VA
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Time (Sec)

Figure 8.6 Output waveform y.
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Figure 8.7 Magnitude of the true and approximate Fourier transform of the output signal as
well as the magnitude of the error between these two transforms, for the case where T = 1.

the input signal amplitude and the system impulse response characteristics h,
and 7. For the given parameters, the bound for [I(T, f)| is 0.141. From Figure
8.7, it follows that the maximum magnitude of I is 0.05, which is within this

bound.
Further, the level of the error defined by |I| does not increase or decrease as

the interval length T increases (see Figures 8.8 and 8.9). In Figure 8.8 the

Magnitude
2

1

0.5

L]

Ry

0.2
0.1
0.05

X
—=>

kt

5

D

R

=
>

-
S

D|
D
>

=
I
—

T
-

WA
N oal A
WVV\//

3 4 5 6 7 8
Frequency (Hz)

0.02
0.01

Figure 8.8 Magnitude of the true Fourier transform of the output signal for the cases where
T = 2 (lower peak) and T = 4 (higher peak).
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Figure 8.9 Magnitude of the approximate Fourier transform Y of the output signal, for the
cases where T = 2 (lower peak) and T = 4 (higher peak). The magnitude of the error between
the true and approximate Fourier transform is identical for T= 2 and T = 4, and is the smooth
curve.

magnitude of the true Fourier transform Y, is plotted for cases T =2 and
T = 4. In Figure 8.9, the magnitude of approximate Fourier transform Y, as
well as the error |I|, are graphed for cases T =2 and T =4. As T increases,
the lobe at the frequency of the input (4 Hz) increases in height, and decreases
in width. Away from the lobe, the envelope of the magnitude of both Y and Y
remains constant as T increases and, consistent with this, I does not change
with T. Clearly, for this example the approximate Fourier transform Y, does
not converge to the true Fourier transform Y, defined in Eq. (8.9).

8.4.2.2 Explanation An explanation of the nonconvergence of Y(T f) to
Y(T, f) as T — oo, for signals with constant average power, can be found by
noting that I can be approximated by an integral over the region defined in
Figure 8.10, where t, is a time such that [;° [h(p)| dp < [¢ |h(p)| dp. The magni-
tude of this integral is relatively insensitive to an increase in the value of T.
That is, as T increases the error defined by |I| remains relatively static. For the
case where xe L, the magnitude of ﬂ_,h |x(2)| d2 decreases, in general, as T
increases, and the error defined by |I| converges to zero.

8.4.2.3 Power Spectral Density Clearly, on a finite interval [0, T], it is
the case that

Gy(T. f) = IY(T,Tf)I L X)) }H(T, Wl e 8.21)
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NN Region where there is
~<_  significant contribution

RN lOI\\\

Figure 8.10 Region of integration where there is a significant contribution to the integral I. The
time t, is the time when the impulse response has negligible magnitude as defined in the text.

as I(T, f) is finite. However, for the infinite interval, it follows, as I(T, f) does
not increase with T, that

(T, f)I?

lim G(T, ) = li
im G,(T, f) im T

T—- T—- o

=0 (8.22)

A consequence of this result is that

| X(T NHIPIH(T, f)P?

li Tf) =1
m GY( > f) m T

T- o T- o

= lim Gy(T, NIH(T, f)I? (8.23)

T- o

In fact, as shown in the next section, this last result holds for a broad class of
signals that are not elements of L[0, oo].

8.5 INPUT-OUTPUT POWER SPECTRAL DENSITY RELATIONSHIP

Consider the case where the input random process X to a linear system, is
defined on the interval [0, T] by the ensemble

Sp = Z* countable case

Ey; = {x: Sex[0,TT-R } (8.24)

Sr < R  uncountable case

where P[x(y, t)] = P[y] = p, for the countable case, and P[x(}, )|, (.10 +a1] =
Plyely,,y, + dy]ll = fr(y,) dy for the uncountable case. Here, f; is the prob-
ability density function associated with the index random variable I', whose
sample space is Sp.
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The output waveforms define a random process Y with an ensemble

t

Ey, = {y: S x [0, T] =R, y(y,t) = J x(y, Ah(t—A) dA, yeSr} (8.25)

0

where P[y(y, t)] = P[x(y, t)]. For subsequent analysis, it is convenient to define
the random process I, whose ensemble E; is

o0

i:Spx [0, TI-C, i(y, 1) =J 10, T, f)e ™" df

E, =
veSe, I, Tf) =Y, T, f) — Y(, T, f)

(8.26)

where P[i(y, t)] = P[x(y, t)]. The power spectral density of the output signal is
stated in the following theorem. The subsequent theorem states the conver-
gence of Gy(T. f) to |H(T, f)I*Gx(T, f) as T — co.

THEOREM 8.5. POWER SPECTRAL DENSITY OF OUTPUT RANDOM PROCESS If

x e Ey and h have bounded variation on all closed finite intervals, and x and h are
locally integrable, then

Gy(T, f) = [H(T, fIPGx(T, f) — 2Re[H(T, f)Gx((T. f)] + G((T, f) (8.27)

where
1 0
T Y. 0, X0, TNHI*0, T, f) countable case
y=1
Gm1ﬂ=1yw (8.28)
T J X, TOI*, T, f) fr(y) dy uncountable case

Proof. Consider the countable case. By definition,

1Y, T f)1?

- (8.29)

(T =3 »,

Local integrability of x € Ex and h guarantee that the Fourier transforms X
and H exist. The relationships Y(y, T, f)=Y(y, T, f)—1I(y, T, f) and Y(y, T, f) =
X(y, T, /)H(T, f) then result in the power spectral density of Y as detailed.

THEOREM 8.6. CONVERGENCE OF OUTPUT POWER SPECTRAL DENSITY Assume
for all signals x € Ey that x is locally integrable, x has bounded variation on all
closed finite intervals, and the average power of x does not increase with the
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interval length. Further, assume that h has bounded variation on all closed finite
intervals and he L[0, co]. It then follows that

lim Gy(T, f) = lim [H(T, /)?Gx(T, f) = lim Gy(T, f) (8.30)

T— o T— o T-

or using a more convenient notation,

Gy, () =H (/I*Gx () (8.31)
Further,
lim G,(T, ) =0 (8.32)

If limy, , G(T; f) < oo or limy, Go(T; f) =0, then

lim |H(T, /)] [Gx((T, )l =0 (8.33)

T— o0

If limg ., Gy(T, f) = oo, then

lim

T— oo

|H(T, )G, (T )l
- =0 (8.34)

AT, /)

Proof. The proof of this theorem is given in Appendix 5.

8.5.1 Notes

As shown in Appendix 5, there is finite energy associated with I(7] f), and the
power associated with I(7, f) decreases to zero as T — co. This fact results in
the average power in H(T, /)G 4,(T, f) and G,(T, f) being negligible compared
with the average power in Gy(T; f) as T'— oo. The required result as given by
Eq. (8.30) then follows from

IGAT f) = Go(T. /) = [=2Re[H(T, /)G x((T. /)] + G(T. /)l (8.35)

To establish the rate of convergence of G4(T; f) to G (T, f) when f is fixed,
consider the single waveform case and a bound on the relative error between
Gy(T, f) and G,(T; /), given by

o < 2HT NG (T ) + G(T. f)
*= Gy(T, f)

G{T /) #0  (836)

As |Gy (T, N = 1X(T NNIT NI/TIGHT, /) = [I(T, /)*/T, and |I(T, )| does
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not increase with 7, whereas |X(T, f)| generally does, it follows that a
reasonable bound on the relative error is

2AH(T NGy (T /) _ 2T /)
RS GH(T, f) O H(T, O 1X(T; f)| G(T f)#0 (8.37)

For the case where lim,_, , |X(T, f )|/\/ T is finite, but nonzero, the relative
error is proportional to 1/ﬁ This case is consistent with a bounded power
spectral density on the infinite interval. For the case where lim,_, , | X(T, f)|/T
is finite, the relative error is proportional to 1/T This case is consistent with
an unbounded power spectral density on the infinite interval. Such a case
occurs for periodic signals at specific frequencies.

The relationship given in Eq. (8.31) underpins a significant level of analysis
of noise in linear systems. One application of this result is in characterizing the
noise level of an electronic circuit. Such a characterization is fundamental to
low noise electronic design and is the subject of Chapter 9. The following
subsection gives an important example, where the relationship given in Eq.
(8.31) cannot be applied.

8.5.2 Example— Oscillator Noise
A quadrature oscillator is an entity that generates signals of the form
x(t) = A cos[2xnf.t + 0(t)] ¥(t) = Asin[2xf.t + 6(t)] (8.38)
where typically, 8" « 2zf.. Such signals arise from the differential equations,
x'= —[2=nf. + 0y x(0) = A cos[6(0)] (8.39)
y = [2nf. + 0]x y(0) = Asin[6(0)] (8.40)
This result can be proved by substitution of x and y into the differential
equations. For the case where the modulation 8 is zero, a quadrature sinusoidal
oscillator results and can be implemented as per the prototypical structure
shown in Figure 8.11. In this figure, n, and n, are independent noise sources
to account for the noise in the integrators and following circuitry.

With the noise sources n; and n,, the differential equations characterizing
the circuit of Figure 8.11 are

X= =iy +n) ¥ =2nfilx +ny) (841)
Differentiation and substitution yields the following differential equation for x:

X"+ dn*fPx = —2nf.(n,) — 4n*f’n, (8.42)
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B = 2 .

2nf,.
/I\ 2nf, | | +1 y

(1)

Figure 8.11 Prototypical quadrature oscillator structure.

As this is a linear differential equation, it follows that the quadrature
oscillator can be modeled, as far as the output x is concerned, as shown in
Figure 8.12. The impulse responses in this figure are the solutions of the
differential equations,

X'+ A fix = =2nf.0(t) X'+ AnPfix = —4nPf2O(1) (8.43)
which equates to the solution of

X' +4n%f2x =0 t>0  x(0) = —2xf,x(0) =0 (8.44)
X' +4n2f2x =0 t>0  x(0) =0,x(0) = —4n?f}? (8.45)

It then follows that the respective impulse responses are
h(t) = —2xf, cos(2nf.t) hy(t) = —2xf, sin(2xf.t) (8.46)

Clearly, hy, h, ¢ L[0, o], and H (T, f) and H,(T, f) do not converge as T — 0.
Consequently, Theorem 8.6 cannot be used when ascertaining the noise

m

n
2 .| nheoH,

Figure 8.12 Equivalent model for the output signal x of the quadrature oscillator shown in
Figure 8.11.
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characteristics of an oscillator. This fact is overlooked in a significant propor-
tion of the literature (Demir, 1998 p. 164), and alternative approaches are
required to characterize the noise of an oscillator [see, for example, Demir
(1998 ch. 6)].

8.6 MULTIPLE INPUT-MULTIPLE OUTPUT SYSTEMS

Two possible multiple input—multiple output (MIMO) systems are illustrated
in Figures 8.13 and 8.14 where the input signals x,..., xy, respectively, are
from the ensembles Ey ,..., Ey,, defining the random processes X,..., Xy.
By definition

Ssez* countable case

Ey, = {xi: Sy x [0,T]—> R } (8.47)

St &R uncountable case

For the system shown in Figure 8.13, one signal from the ensemble for the
output random process Z,, can be written in the form

N N t
7, 1) = Z Wi Vi(yin 1) = Z WuiJ\ X5, Dhy(t — A) dA 7;€Sr (8.48)
i=1

i=1 0

where { = (y4,...,7y). On the interval [0, T7, it follows from Theorem 8.2, that

N
Z,CT))= Z w,iY;(vi, T f)
o (8.49)
= Z w,[H(T NX(y,, T, f) = Li(y:, T, f)]
i=1
x (Y, 1) € EX1 Wi
, 1
GX1 —_— hl HHI yl(,Yl )
5 2@ ek,
[ ]
Xy D) € Ey e NN D) Wiy
GX —_ - I’ZNHHN
N o 5=(1p YW
W s
G e By
Wnn

Figure 8.13 Schematic diagram of a multiple input—multiple output system.
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x(y, 1) € EXI y11(v1>
Gy, hyy < Hy
° 76 ne EZ1
[ ]
(i, 1) € EXN * (Y D /!
Gy, hiy < Hyy
[ ]
[ ) C:(’YD""’YN)
A Yan(Y1> ) °
han HHMl—\
Z/W(C’ t) S EZM

: (-

b t)
by Hypy Y /

Figure 8.14 Schematic diagram of an alternative multiple input—multiple output system.

The following theorem states the relationship between the output and input
power spectral densities of the system illustrated in Figure 8.13.

THEOREM 8.7. POWER SPECTRAL DENSITY RELATIONSHIPS FOR MULTIPLE INPUT—
MuLTtipLE OUTPUT SYSTEMS If x;€ Ex, and h; have bounded variation on all
closed finite intervals, x; is locally integrable, h;e L[0, co] and the input random
processes X ,..., Xy are independent with zero means, then, for the infinite
interval [0, co], it is the case that

N

Gz (f Z wail*Gy, (f Z il H (NG, (f) (8.50)

where, for convenience of notation, the subscript oo has been dropped.
For the general case, where X |,..., Xy are not necessarily independent with
zero means, the following result holds for the infinite interval

GZu(f) = Z |Wm| GY f) + Z Z Wul ujGY Yj(f)
A (8.51)
= Z |Wm| |H; (f| Gy, (f) + Z Z WiV u] f)H;'k(f)le-Xj(f)

J#t

On the infinite interval, the cross power spectral density between the random
processes X; or Y; and Y}, is given by

Gy, (/) = Hi(f)Gxx,(f) (8.52)
Gy, (f) = H(NHF()G xx,(f) (8.53)
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On the infinite interval, the cross power spectral density between Z, and Z,,
is given by

M=

quzv(f) =

i

Wul vt + Z Z Wul LJGYYJ(f)

1 i=1j=1
Jj#Fi

Mz

wa Wi Hi( )Gy, (f) + Zl 21 waWe Hi(NYHF(f)G xx,(f)

JFi

i=1

(8.54)

Proof. The proof is given in Appendix 6.

8.6.1 Alternative Multiple Input—Multiple Output System

Consider one signal from the ensemble for the output random process Z,,
defined by the structure of Figure 8.14,

N N t
z,(( 1) = Z Vi3 ) = Z f X;(7i, Myt — 2) dA 7,€Sr (8.55)
i=1 i=14J0
where { = (y,...,7y)- On an interval [0, T7, it follows from Theorem 8.2, that

Z, TS = Z Y. Tf) = _Z (L OX0u T ) = L, T (8.56)

The following theorem details the appropriate power spectral density
relationships for this system.

THEOREM 8.8. POWER SPECTRAL DENSITY RELATIONSHIPS FOR ALTERNATIVE
MULTIPLE INPUT-MULTIPLE OUTPUT SYSTEMS  If x;€ Ey, and h;; have bounded
variation on all closed finite intervals, x; is locally lntegmble and h;;e L[0, o],
then the following result holds for the inﬁnite interval:

I\Mz

f) = Z GY,M-( Z, GY,“YMJ f)

(8.57)

N

Z IHu( /)Gy, (f) +

'MZ

2 Hi(HH ()G xx,(f)

J.
J

3

=

+
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On the infinite interval, the cross power spectral density between Z, and Z,,
is given by

Gz, (f) = Z Gy (/) + 2 Y Gyuy,,(f)
S (8.58)
= T HADHENGx(N + T Z H()G ()

Proof. The proof of this theorem is given in Appendix 7.

APPENDIX 1: PROOF OF THEOREM 8.1

If the input signal x € L[0, T] and is of bounded variation then, as per Theorem
2.19, for all ¢ > 0 there exists a A > 0, such that x can be approximated on the
interval [0, T] by a step function x,, defined according to

Le/al

x(f) = Ax H&J AJ 5 [z _ H AJ = Y AXAW At —id) 1[0, T] (8.59)

i=0

such that jg |x(t) — x,(t)] dt < e. Since the response of the system to a signal J,
is h,, it follows, from the causality, time invariance and linearity of the system,
that the output y,, at a time t€[0, T, in response to the signal x,, is

Valt) = AX(O)ho(t) + -+ + Ax HLJ A} hy [z = m A]

Le/al
= Y Ax(iA)h \(t — iA)

i=0

(8.60)

It remains to show that lim,_, y,(t) = y(t) and lim, jg [y(t) — yA(0)] dt =
To prove these results, it is convenient to define a function z according to

t

2t 7) = x(Oh(t —2) = (1) =J 2(t, ) ). (8.61)

0

If both x and h are causal and of bounded variation, then for any fixed value
of t and consistent with Figure 8.15, z can be approximated for 1€[0,t] by a
step function z,,

L/A]
Z,(t, A) = é Ax(iA)h(t — iA)d (A — iA) A€[0,1] (8.62)

i=0
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x(\)

i ° ° ° e L ] ® ® A
A 2A LLJ At T
A
h(t=\)
i ® ® ) ® ® A
A 2A Fkt T
A

Figure 8.15 lllustration of the functions comprising z, and step approximations to them.

Theorem 2.19 then implies that for Ve > 0 there exists a A > 0, such that

f |21, ) — zy(t, )l dh <& = lim JIZA(I, J)di = j tz(t, A di. (8.63)
0

A=0JO 0

Further, it follows that

t LAl t
J 2t ) di =Y Ax(iAh(t — iA)J S04 — iA)d2
0 i=0 0
Le/al-1
- Ax(iAh(t — iA)
=0

i

oot L -

= Yalt) + &,

AN [ N

Clearly, ¢, » 0 as A — 0. Thus, from Egs. (8.61), (8.63), and (8.64), it follows

(8.64)

where
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that lim,_,, y,(t) = y(¢). Finally, from Eq. (8.63), it follows that

J IV(t) — yal0)l dt = j

T [t
< f |:j |z(t, A) — zA(t, 2)| d)n:| dt + e T < eT + |g,\|T

0 0

dt

t t
J 2(t, ) dJ. — f za(t, 2) dJ + &,

0 0

(8.66)
which is the final required result.
APPENDIX 2: PROOF OF THEOREM 8.2
With the stated assumptions, it follows that
T ) T t )
Y(T, f) =J y(t)e 2™ dt =J [J x(A)h(t — A) d/l}eﬂ"f’dt
° 0 =0 (8.67)

T T
= f X(A)e 2% U h(t—/l)e‘jz”f“"”dt}di
0 A

The region of integration is illustrated in Figure 8.16. A change of variable
p =t — A in the inner integral of the last equation yields

Y(T, ) = JTX(A)e_jZ"“ [JT_A h(p)e —Jm/» dp} di

) ; . (8.68)
= J x(A)e 2/ |:f h(p)e 7*/? dp — J h(p)e —J"/p dp] di

0 0 T-4

t
t=A+T
2T l
Area?
t=A
T .
Area of Areal [
integration :
[
Py A
T

Figure 8.16 Region of integration for evaluation of Y.
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which can be written in the form

Y(T, f) = X(T, HH(T, f) — (T, f) (8.69)
where
I(T, f) = frx(},)ejz““ [jr h(p)e —J*m/» dp} dA (8.70)
0 T—2

The region of integration for the integral I is area 2 in Figure 8.16 prior to
the change of variable p =t — 4, and the region specified in Figure 8.4 after
this change.

The results for the Laplace transform case follow in an analogous manner,
with use of the substitution s = j2xf.

APPENDIX 3: PROOF OF THEOREM 8.3

If x, he L[0, oo], then for all ¢ > 0 there exists numbers A, and p,, such that

o0

< J Ix(A)e 2% dj. < J X)) <e  (8.71)

Ag Ae

J x(ADe92m* 4,

}'S

0

J h(p)e ™72/ dp‘ < j |h(p)e ™ 217| dj. < J lhplldp <& (8.72)

DP; Pe De

It then follows that the region over which there is a significant contribution to
the integral I is as illustrated in Figure 8.17. The illustration is for the case
where 4, + p, > T. Clearly, as T increases, the region over which there is a
significant contribution to the integral I decreases, and for T > 4, + p,, it is
expected that the value of the integral I can be made arbitrarily small, and this
is shown below.

Regionwhere there is
p p=T-A significant contributionto I

Figure 8.17 lllustration of area of integration to establish a bound on the integral I. The
illustration is for the case where 4, + p, > T.
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Ae T

Figure 8.18 lllustration of area of integration to establish a bound on the integral I. The
illustration is for the case where /., + p, < T.

The case where T > 4, + p, is illustrated in Figure 8.18. Using the regions
1, 2, and 3 defined in this figure, the following bound on the error integral I
can be established:

T
[x(A)e 24 dij h(p)e~727/7| dp

P

Ag

(T f) < f

0

T Dz
+j [x(2)e 7277 dij |h(p)e™2"17| dp (8.73)

Ae 0

T T
+ f [x(2)e 2+ dij Ih(ple 7277 dp

Ae pe
From the definitions for 4, and p,, it follows that

Ae p

|x(2)| d2. + aJ |h(p)| dp + &>

0

T ) < e J

0

< [.g N J “ Oyl i+ f * i) dp}

Thus, for any ¢ > 0, there exists a 7, such that the error bound for the absolute
difference between Y and Y, as given by |I], is less than ke for some fixed k,
which is independent of T.

When xe L[0, oo], the results for the Laplace transform case follow in an
analogous manner, with use of the substitution s =j2xf. When x is locally
integrable, x does not have exponential increase, and Re[s] > 0, then it is the
case that x(t)e ®1e L[0, co]. Use of the above approach, in an analogous
manner, yields the required proof.

(8.74)
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APPENDIX 4: PROOF OF THEOREM 8.4

The graphs of x(4) and h(t — 1) are shown in Figure 8.19 for the case where h
and x are windowed, such that they are zero outside the interval [0, T7]. It then
follows that

t
j x(Ah(t — 2)di 0<t<T
t 0
t) = ADh(t — A dl = T 8.75
70 Lx()( a4 f Ot —ndi T<i<ar &)
t—T
0 elsewhere

Hence, assuming both x, he L[0, T7, it follows that
2T

Yer f) = J V(e 2t dt

0

= JT U X(h(t — 2) d)} e 2t gy (8.76)

0 0

2T T
+ j [ J x()h(t — 2) di}e‘jz"ﬂdt
T t—T

The region of integration comprises areas 1 and 2 shown in Figure 8.16.
Changing the order of integration yields,

T A+T
YOT, f) = J [ j h(t — A)e72m/ =4 dt} x(Ae 2 A5 (8.77)
(0] A
A change of variable p =t — /4 in the inner integral yields,
YQT f) = J X(4)e 21 U h(p)e~727/P dp} di.=X(T, ))H(T, f) (8.78)

0 0

which is the required result.

() h(t =)

® ® A
l t-T T t

Figure 8.19 Graph of windowed input signal and shifted windowed impulse response function.
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The results for the Laplace transform case follow in an analogous manner
with use of the substitution s = j2xf.

APPENDIX 5: PROOF OF THEOREM 8.6

Consider the countable case, where a subscript, rather than an argument, is
used, that is, x;(¢) rather than x(y, t). First, for the case where he L[0, co], the
region of integration for I,(T, f) can be approximated by the region shown in
Figure 8.10, that is,

th [*T
I(T f) = J J X;(A)h(p)e 720 *A d). dp (8.79)

(0] T-p

It then follows that an upper bound on |I,(T, f)| is given by

IL(T )] < J hJ [xi(A)l [h(p)l didp < k; f hj xi(A)l [h(p)l d.dp

0 T-p 0 T—tn

<£kzsupx.f |h(p)| dp (8.80)

0

where k; is of the order of unity and

T
supy = sup {J Ix;(A) d/, ieZ*, T > t, TeR+} (8.81)

T—1tn
As per Theorem 2.13, it follows, if the average power on [T — t,, T] does not

increase with 7, that supy is finite and |I;(T, f)| does not increase with T. It then
follows that

= lim G, (T, f) =0 (8.82)

This result then implies the following for f fixed: First, if | X,(T, f)| is constant
with respect to T, or is such that lim,_, , |X,(T, f)|/\/T = 0, then

|H(T, NXA(T NININT S
T

lim [H(T, /)l |G, (T ) = lim =0 (8.83)

T— o T— oo

For this case, both Gy (T, f) and G4(T, f) converge to zero as T — oo. Second,
if | X,(T, f)| is such, that lim;_,  |X; (7} f)|/\/T is finite and nonzero, then both



APPENDIX 6: PROOF OF THEOREM 8.7 253
Gx,(T; f) and G4(T, f) are bounded as T — oo and

[H(T, )] IXJ(T NIET, S
T

lim |H(T, /)] Gy,1,(T. f) = lim

T— oo T— o

=0 (8.84)

Third, if |X,(T, f)| is such, that lim, , |X(T, f) |/\/T is infinite, then both
Gx,(T; f) and G4(T; f) are unbounded as T —oo. It is then the case that

po HE DG (TN _ o (TS
e Gy(T]) v (T IXAT, )

=0 (8.85)

When these results hold for all signals in the ensemble, and this is guaranteed
by the assumptions made, the following results hold:

lim G,(T, f) =0 (8.86)

T—-

If, limy, , G(T; f) < o0 or limy,, Go(T; f) = 0, then

lim [H(T, /) 1Gx, (T, /)l =0 (8.87)
T—-
If limy,, Gy(T, f) = oo, then
. H(T NG (T f)l
ey ) (559
lim Gy(T, f) = lim Gx(T, f) = lim |[H(T, /)’G(T, f) (8.89)
T—- T- T—-

APPENDIX 6: PROOF OF THEOREM 8.7

The proof of the first result follows directly from Theorems 4.6 and 8.6. The
first form of the second result follows directly from Theorem 4.6. The second
form of the second result follows from the definition of the cross power spectral
density and Theorem 8.6. To show this, consider the countable case and the
notation P[x;(y;, 1), x;(y;,t)] = p;(7, 7;)- By definition

1 o0 o0
GYin(f) = lim — Z Z pij(yi’yj /U’Ef) (VpT»f)

T—- yi=1y;=1

1
hm_ Z Zplj))u))j

T— o */1—1 vi=1

[[X(/I,T,f)H(Tf) Li(y:, T, f)] }
X[ X7, THOHNT f) =17y, T f)]
(8.90)
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Using definitions for the cross power spectral density, it follows that

Gyy,(f) = lim [Gx,.x,.(T, NHA(T, NHHT, f) — Gy (T, NHHAT, f)

T—x

— Gy, (T NHHT, f) + Gy (T, f)} (8.91)

It follows, from a similar argument to that used in the proof of Theorem 8.6,
that the relative magnitude of the cross power spectral density terms |Gy ; | |H;[,
|G%,r,| [H}|, and Gy, with respect to G and G, ., become increasingly small

Yy,
as T — oo. Hence,

Gy, (f) = H(NH())Gxx,(f) (8.92)

which is the required result.

To show the cross power spectral density result, note that for each outcome
{=(.--,7y), the following individual power spectral densities and cross
power spectral density can be defined,

, T 2 1 N N

Go e 1) =BT LS S i TG, T ) (899)
VA T. 2 1 N N

Go 6 Ty = 2D S S i T Y0, T ) 399

o6, ) = B TG
(8.95)
1 N N
= T Z Z WMIWU]K ’yw Zf)Y]*(VJ7 T;f)

As each of these power spectral densities have the same probability and the
same form, it follows, by analogy with G, (T, f), that the cross power spectral
density between Z, and Z,, on the infinite interval, is given by

GZuZ.,(f) = Z Wul LlGY1 ) + Z Z Wul v}GYlYJ(f)

i=1j=1
j#i

Z Wiyl | Gx(f + Z Z Wyi W ij(fH*(f GXXJ f)

i=1 j=
Jj#i

(8.96)
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APPENDIX 7: PROOF OF THEOREM 8.8

The proof of the result for G, (T, f) follows directly from Theorems 4.6 and
8.6, and the cross power spectral density relationships given in Theorem 8.7.

To show the cross power spectral density result, note that for each outcome
{=(yq-.-,7y), the following individual power spectral densities and cross
power density can be defined:

; 2 1 N N
G T 1) =2 S S e e T 97
T 2 1 N N
G, Ty =BT LS S VG TNV, T 699)
o, T ) = B BDEC LD
Ca (8.99)
=72 Z Yo TNOY505 T f)

As each of these power spectral densities have the same probability and the
same form, it follows, by analogy with G, (T, f), that the cross power spectral
density between Z, and Z,, on the infinite interval, is given by

N

quzu(f) = Z GYu,-Ym-(f) +

i=1 i

Mz

1

N
Z GYulYUJ
¢

2 Ha(HH ()G, (f)

M=

= Y H (NH(NGx(f) +

i=1 i

1
Jj

(8.100)



9

Principles of Low Noise
Electronic Design

9.1 INTRODUCTION

This chapter details noise models and signal theory, such that the effect of noise
in linear electronic systems can be ascertained. The results are directly
applicable to nonlinear systems that can be approximated around an operating
point by an affine function.

An introductory section is included at the start of the chapter to provide an
insight into the nature of Gaussian white noise —the most common form of
noise encountered in electronics. This is followed by a description of the
standard types of noise encountered in electronics and noise models for
standard electronic components. The central result of the chapter is a system-
atic explanation of the theory underpinning the standard method of character-
izing noise in electronic systems, namely, through an input equivalent noise
source or sources. Further, the noise equivalent bandwidth of a system is
defined. This method of characterizing a system, simplifies noise analysis—
especially when a signal to noise ratio characterization is required. Finally, the
input equivalent noise of a passive network is discussed which is a generaliz-
ation of Nyquist’s theorem. General references for noise in electronics include
Ambrozy (1982), Buckingham (1983), Engberg (1995), Fish (1993), Leach
(1994), Motchenbacher (1993), and van der Ziel (1986).

9.1.1 Notation and Assumptions

When dealing with noise processes in linear time invariant systems, an infinite
timescale is often assumed so power spectral densities, consistent with previous
notation, should be written in the form G_(f). However, for notational

256
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Figure 9.1 Schematic diagram of signal source and amplifier.

convenience, the subscript is removed and power spectral densities are written
as G(f). Further, the systems are assumed to be such that the fundamental
results, as given by Theorems 8.1 and 8.6, are valid.

9.1.2 The Effect of Noise

In electronic devices, noise is a consequence of charge movement at an atomic
level which is random in character. This random behaviour leads, at a macro
level, to unwanted variations in signals. To illustrate this, consider a signal V%,
from a signal source, assumed to be sinusoidal and with a resistance Rg, which
is amplified by a low noise amplifier as illustrated in Figure 9.1. The equivalent
noise signal at the amplifier input for the case of a 1 kQ source resistance, and
where the noise from this resistance dominates other sources of noise, is shown
in Figure 9.2. A sample rate of 2.048 kSamples/sec has been used, and 200
samples are displayed. The specific details of the amplifier are described in
Howard (1999b). In particular, the amplifier bandwidth is 30 kHz.

Amplitude (Volts)

4-10°°

2.10°° N ) N | || I

0 Il
L e

—4.10°6

0.02 0.04 0.06 0.08 0.1
Time (Sec)

Figure 9.2 Time record of equivalent noise at amplifier input.
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Figure 9.3 Sinusoid of 100 Hz whose amplitude is consistent with a signal-to-noise ratio of 10.

In Figure 9.3 a 100 Hz sine wave is displayed, whose amplitude is consistent
with a signal-to-noise ratio of 10 assuming the noise waveform of Figure 9.2.
The addition of this 100 Hz sinusoid, and the noise signal of Figure 9.2, is
shown in Figure 9.4 to illustrate the effect of noise corrupting the integrity of
a signal.

For completeness, in Figure 9.5, the power spectral density of the noise
referenced to the amplifier input is shown. In this figure, the power spectral

Amplitude (Volts)

0.000015

0.00001

5_10_675/,1!1 Atk
VANV
e IRIRTATRTAYR

MY LNy yvrvn

—-0.00001 Y

—0.000015

0.02 0.04 0.06 0.08 0.1
Time (Sec)

Figure 9.4 100 Hz sinusoidal signal plus noise due to the source resistance and amplifier. The
signal-to-noise ratio is 10.
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Figure 9.5 Power spectral density of amplifier noise referenced to the amplifier input.

density has a 1/f form at low frequencies, and at higher frequencies is constant.
For frequencies greater than 10Hz, the thermal noise from the resistor
dominates the overall noise.

9.2 GAUSSIAN WHITE NOISE

Gaussian white noise, by which is meant noise whose amplitude distribution
at a set time has a Gaussian density function and whose power spectral density
is flat, that is, white, is the most common type of noise encountered in
electronics. The following section gives a description of a model which gives
rise to such noise. Since the model is consistent with many physical noise
processes it provides insight into why Gaussian white noise is ubiquitous.

9.2.1 A Model for Gaussian White Noise

In many instances, a measured noise waveform is a consequence of the
weighted sum of waveforms from a large number of independent random
processes. For example, the observed randomly varying voltage across a
resistor is due to the independent random thermal motion of many electrons.
In such cases, the observed waveform z, can be modelled according to

9.1)

i

M
Z(t) = ). wzi(0) z; € E;
i=1

where w; is the weighting factor for the ith waveform z;, which is from the ith
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z(l,=1,=1,1,=1, 1, 1,=1,8

2p ®&—0O o———O 8D
-— o o o © o o o - -~ |
*——0 e—-0 6D e—0

Figure 9.6 One waveform from a binary digital random process on the interval [0, 8D].

ensemble E; defining the ith random process Z;. Here, z is one waveform from
a random process Z which is defined as the weighted summation of the random
processes Z, ..., Z,,. Consider the case, where all the random processes Z, .. .,
Z,, are identical, but independent, signalling random processes and are defined,
on the interval [0, ND], by the ensemble

- ) \ _ 5 \ eel{—1L 1}
Ei—{zi(/l,...,m, 0= wote—(k—1p) J_r1]=0.5} ©2)

where the pulse function ¢ is defined according to

1 0<t<D . —infD
o) = {O elsewhere ®(f) = Dsinc(fD)e 7/ 9.3)

All waveforms in the ensemble have equal probability, and are binary digital
information signals. One waveform from the ensemble is illustrated in
Figure 9.6.

One outcome of the random process Z, as defined by Eq. (9.1), has the form
illustrated in Figure 9.7 for the case of equal weightings, w; =1, D = 1, and
M = 500. The following subsections show, as the number of waveforms M,
increases, that the amplitude density function approaches that of a Gaussian
function, and that over a restricted frequency range the power spectral density
is flat or “white”.

9.2.2 Gaussian Amplitude Distribution

The following, details the reasons why, as the number of waveforms, M,
comprising the random process increases, the amplitude density function
approaches that of a Gaussian function.

The waveform defined by the sum of M equally weighted independent
binary digital waveforms, as per Eq. (9.1), has the following properties: (1)
the amplitudes of the waveform during the intervals [iD, (i + 1)D), and
[jD,(j + 1)D), are independent for i # j; (2) the amplitude A, in any inter-
val [iD,(i + 1)D] is, for the case where M is even, from the set
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Figure 9.7 Sum of 500 equally weighted, independent, binary digital waveforms where D = 1.
Linear interpolation has been used between the values of the function at integer values of time.

S,={—-M,—-M+2,...,0,....M — 2, M}, and M is assumed to be even in
subsequent analysis; (3) at a specific time, the amplitude A, is a consequence
of k ones, and m negative ones where k + m = M. Thus, 4 € S is such that
A =k —m. Given 4 and M, it then follows that

k=(M + A)/2 m=(M — A)/2 9.4)
Hence, P[A] equals the probability of k = 0.5(4 + M) successes in M out-
comes of a Bernoulli trial. For the case where the probability of success is p,

and the probability of failure is g, it follows that (Papoulis 2002 p. 53)

M!(pk)qM—k M!pO.S(A+M)qO.5(M—A)
KM — k)~ [0.5(M + A)J0.5M — A)]!

P[A] = (9.5)

To show that P[ A] can be approximated by a Gaussian function, consider the
DeMoivre—Laplace theorem (Papoulis 2002 p. 105, Feller 1957 p. 168f):

Consider M trials of a Bernoulli random process, where the probability of
success is p, and the probability of failure is g. With the definitions
¢ =./Mpq and u = Mp, and the assumption o2 > 1, the probability of k
successes in M trials can be approximated according to:

1 e—(k—u)z/Zt72
k, M-k
pq

= e

P[k out of M trials] = o 9.6)

(M — k)
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where a bound on the relative error in this approximation is:

(k —w? (k—=p)
(Yo 20

k # 9.7)

For the case being considered, where k = 0.5(4 + M), and p=¢q = 0.5, it
follows that o = 0.5./M, = 0.5M, and k — y = 0.54. Thus, for 0.25M > 1,
the amplitude distribution in any interval [jD, (j + 1)D], can be approximated
by the Gaussian form:

A+M Qe 42M
P(4A) =P [ + out of M trials} A (9.8)
2 2nM

where a bound on the relative error is

A3 A
—_ 9.9
12M 2. /M

Note, with the assumptions made, the mean of A4 is zero, and the rms value of
A is /M. The factor of 2 in Eq. (9.8) arises from the fact that 4 only takes on
even values. Consistent with this result, many noise sources have a Gaussian
amplitude distribution, and the term Gaussian noise is widely used.

Confirmation, and illustration of this result is shown in Figure 9.8, where
the probability of an amplitude obtained from 1000 repetitions of 100 trials of
a Bernoulli process (possible outcomes are from the set { —100, —98,...,0, ...,
100}) is shown. The smooth curve is the Gaussian probability density function
as per Eq. (9.8) with M = 100.

9.2.3 White Power Spectral Density

The power spectral density of the individual random processes comprising Z
are zero mean signaling random processes, as defined by the ensemble of Eq.
(9.2). It then follows, from Theorem 5.1, that the power spectral density of each
of these random processes, on the interval [0, ND], is

G,(ND, f) =rl®(f)? = % sinc? <{> (9.10)

where, r = 1/D, and © is the Fourier transform of the pulse function ¢. As Z
is the sum of independent random processes with zero means, it follows, from
Theorem 4.6, that the power spectral density of Z is the sum of the weighted
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Figure 9.8 Probability of an amplitude from the set {— 100, —98, ..., 98, 100} arising from
1000 repetitions of 100 trials of a Bernoulli process. The probabilities agree with the Gaussian
form, as defined in the text.

individual power spectral densities, that is,

Gz(ND, [) = 2. WiPGi(ND, f) = rl®(f)* X Iwil?

i=1

= % sinc?(f/r) f‘ lw,| (9.11)

This power spectral density is shown in Figure 9.9 for the normalized case of
M =r=1, and w, = 1. For frequencies lower than r/4, the power spectral
density is approximately constant at a level of M/r, and it is this constant level
that is typically observed from noise sources arising from electron movement.
This is the case because, first, the dominant source of electron movement is,
typically, thermal energy, and electron thermal movement is correlated over an
extremely short time interval. Second, a consequence of this very short
correlation time, is that the rate r, used for modelling purposes, is much higher
than the bandwidth of practical electronic devices. Thus, the common case is
where the noise power spectral density, appears flat for all measurable
frequencies, and the phrase “white Gaussian noise” is appropriate, and is
commonly used.

Note, for processes whose correlation time is very short compared with the
response time of the measurement system (for example, rise time), the power
spectral density will be constant within the bandwidth of the measurement
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Figure 9.9 Normalized power spectral density as defined by the case wherer=M = w, = 1.

system and, consistent with Eq. 9.11, this constancy is independent of the pulse
shape.

9.3 STANDARD NOISE SOURCES

The noise sources commonly encountered in electronics are thermal noise, shot
noise, and 1/f noise. These are discussed briefly below.

9.3.1 Thermal Noise

Thermal noise is associated with the random movement of electrons, due to the
electrons thermal energy. As a consequence of such electron movement, there
is a net movement of charge, during any interval of time, through an elemental
section of a resistive material as illustrated in Figure 9.10. Such a net movement
of charge, is consistent with a current flow, and as the elemental section has a
defined resistance, the current flow generates an elemental voltage dV. The sum
of the elemental voltages, each of which has a random magnitude, is a random
time varying voltage.

Consistent with such a description, equivalent noise models for a resistor
are shown in Figure 9.11. In this figure, v and i, respectively, are randomly
varying voltage and current sources. These sources are related via Thevenin’s
and Norton’s equivalence statements, namely v(t) = Ri(t), and i(t) = v(t)/R.

Statistical arguments (for example, Reif, 1965 pp. 589—-594, Bell, 1960 ch. 3)
can be used to show that the power spectral density of the random processes,
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Figure 9.10 lllustration of electron movement in a resistive material.

which give rise to v and i, respectively, are:

2h|fIR

Gy(f) = ehlfl/T

. VM2 (9.12)

2hI ]

G,(f) =

where T is the absolute temperature, k is Boltzmann’s constant (1.38 x 10~ 23]/
K), h is Planck’s constant (6.62x 10~ 3*J.sec) and R is the resistance of the
material. For frequencies, such that |f|< 0.1kT/h =~ 10'2Hz (assuming
T =300K) a Taylor series expansion for the exponential term in these
equations, namely,

MIKT & 1+ h|f|/kT 9.14)
is valid, and the following approximations hold:

Gy(f) ~2kTR  V?/Hz GI(f)z%TT A%/Hz (9.15)

These equations were derived using the equipartition theorem, and statistical
arguments, by Nyquist in 1928 (Nyquist 1928; Kittel 1958 p. 141; Reif 1965
p. 589; Freeman 1958 p. 117) and are denoted as Nyquist’s theorem. A

V() “I R

Figure 9.11 Equivalent noise models for a resistor.
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derivation of these results, based on electron movement, is given in Bucking-
ham 1983 pp. 39—41. Further, these equations are the ones that are nearly
always used in analysis. Note that the power spectral density is “white”, that
is, it has a constant level independent of the frequency.

One point to note: In analysis, the Norton, rather than the Thevenin
equivalent noise model for a resistor best facilitates analysis.

9.3.2 Shot Noise

As shown in Section 5.5, shot noise is associated with charge carriers crossing
a barrier, such as that inherent in a PN junction, at random times, but with a
constant average rate. As detailed in Section 5.5.1 the power spectral density,
for all but high frequencies, is given by

G(f) ~ ql + T28(f)  A*Hz (9.16)

where ¢ is the electronic charge (1.6 x 10~ '° C), and I is the mean current. Note
that, apart from the impulse at DC, the power spectral density is “white”. In
electronic circuits the mean current is associated with circuit bias. As variations
away from the bias state are of interest in analogue electronics, it is usual to
approximate the power spectral density in such circuits, according to

G(f)~ql A*Hz (9.17)

9.3.3 1/f Noise

As discussed in Section 6.5, the power spectral density of a 1/f random process
has a power spectral density given by

G(f) =+ (9.18)

where k is a constant, and o determines the slope. Typically, « is close to unity.
At low frequencies, 1/f noise often dominates other noise sources, and this is
well illustrated in Figure 9.5.

9.4 NOISE MODELS FOR STANDARD ELECTRONIC DEVICES

9.4.1 Passive Components

In an ideal capacitor with an ideal dielectric, all charge is bound, such that
interatomic movement of charge is not possible. Accordingly, an ideal capaci-
tor is noiseless. An ideal inductor is made from material with zero resistance,
and in such a material the voltage created by the thermal motion of electrons
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is zero. Hence, ideal inductors are noiseless. As discussed above, resistors
exhibit thermal noise, and have either of the noise models shown in Figure 9.11.
Fish (1993 ch. 6) gives a more detailed analysis of noise in passive components.

9.4.2 Active Components

The small signal equivalent noise model for a diode, is shown in Figure 9.12
(Fish, 1993 pp. 126—127). In this figure I, is the mean diode current, and the
power spectral density of the small signal equivalent noise source i, is given by

Gp(f) =qll}]  A*/Hz (9.19)

Note, the model of Figure 9.12(c) is also applicable to standard nonavalanche
photodetectors, when they are operated with reverse bias.

The small signal noise equivalent model for a PNP or NPN BJT transistor,
operating in the forward active region, is shown in Figure 9.13 (Fish, 1993
p. 128). The sources igg, ig, and i in this figure, respectively model the thermal
noise in the base due to the base spreading resistance r,, which is typically in
the range of 10—500 Ohms (Gray, 2001 p. 32; Fish, 1993 pp. 128—139), the shot
noise of the base current and the collector current shot noise (see Edwards,
2000). The respective power spectral densities of these noise sources are

Gy f) =2kT/r, A?/Hz (9.20)
Gp(f) =qlg AZ/HZ Ge(f) = ql¢ AZ/HZ 9.21)

In analysis, it is usual to neglect r, as, typically, it is in parallel with a much
lower value load resistance.

The small signal noise equivalent model for a NMOS or PMOS MOSFET,
with the source connected to the substrate, and a N or P channel JFET, when
they are operating in the saturation region, is shown in Figure 9.14 (for

Ip
1) kT )]

N =40, e

(a) (D) (c)

Figure 9.12 (a) Diode symbol. (b) Noise equivalent model for a diode under forward bias. (c)
Noise equivalent model for a diode under reverse bias. I, is the DC current flow and C, is the
junction capacitance.
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Figure 9.13 Small signal equivalent noise model for a NPN or PNP BJT operating in the
forward active region.

example, Fish, 1993 p. 140; Levinzon, 2000; Howard, 1987). In this figure, the
noise sources i; and iy, respectively, account for the noise at the gate, which is
due to the gate leakage current and the induced noise in the gate due to
thermal noise in the channel, and the thermal noise in the channel. The
respective power spectral densities of these sources are

Go(f) = qllgl + 2kTO2nfCy)*/g,,  A*/Hz 9.22)
G,(f) = 2kTPg,  A?/Hz (9.23)

In these equations, 0 is a constant with a value of around 0.25 for JFETs, and
0.1 for MOSFETS (Fish, 1993 p. 141). P is a constant with a theoretical value
of 0.7, but practical values can be higher (Howard, 1987; Muoi, 1984; Ogawa,
1981). I, is the gate leakage current which, typically, is in the pA range. As
with a BJT, it is usual to neglect r, in analysis.
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Figure 9.14 Small signal equivalent noise model for a PMOS or NMOS MOSFET, or a N or
P channel JFET, operating in the saturation region.
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9.5 NOISE ANALYSIS FOR LINEAR TIME INVARIANT SYSTEMS

The following discussion relates to analysis of noise in linear time invariant
systems— linear electronic systems are an important subset of such systems.

9.5.1 Background and Assumptions

A schematic diagram of a linear system is shown in Figure 9.15. With the
assumption that the results of Theorems 8.1 and 8.6 are valid, the relationship
between the input and output power spectral densities, on the infinite interval
[0, co], or a sufficiently long interval relative to the impulse response time of
the system, is given by

Gy(f) = H(NI*Gx(f) (9.24)

In this diagram, the input random process X is defined by the ensemble E,,
and the output random process Y is defined by the ensemble E,.

9.5.1.1 Transfer Functions and Notation Analysis of electronic circuits
is usually performed through use of Laplace transforms (for example, Chua,
1987 ch. 10). Such analysis yields a relationship, assuming appropriate excita-
tion, between the Laplace transform of the ith and jth node voltage or current,
of the form Vj(s)/Vi(s) = L;;(s). If the time domain input at the ith node, v;(t),
is an “impulse,” then V(s) = 1 and, hence, the output signal v;(t) is the impulse
response, whose Laplace transform is given by L;;(s). In the subsequent text,
the following notation will be used: L;; is denoted the Laplace transfer function,
while H;;, which is the Fourier transform of the impulse response, is simply
denoted the transfer function. From the definitions for the Laplace and Fourier
transform, it follows that the relationship between these transfer functions is

H;(f) = L;;(j2xf) (9.25)
The Fourier transform H.

ij» 1s guaranteed to exist if the impulse response h;;, is
such that h;; € L[0, co]. Similarly, the Laplace transform L;;, will exist, with a
region of convergence including the imaginary axis, when h;; € L[0, oo].

Finally, in circuit analysis, it is usual to omit the argument s from Laplace
transformed functions. To distinguish between a time function, and its asso-
ciated Laplace transform, capital letters are used for the latter, while lowercase
letters are used for the former.

xeky yEEy
h< H
Gx Gy

Figure 9.15 Schematic diagram of a linear system.
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9.5.2 Input Equivalent Noise —Individual Case

The definition of the input equivalent noise of a linear system, is fundamental
to low noise amplifier design. The following is a brief summary: When all
components in a linear circuit have been replaced by their equivalent circuit
models, including appropriate models for noise sources, the circuit, as illus-
trated in Figure 9.16, results.

In this figure w, and w,, respectively, are the input and output signals of
the circuit, and wy, ..., wy are signals from the ensembles defining the N noise
sources in the circuit. The Laplace transform of these signals are, respectively,
denoted by W,, W,, ..., Wy, W,,. The transfer function between the source and
the output, denoted H,,, is defined according to

Wi (j27f)
Wo(j27f)

where, 6 denotes the Dirac delta function, and it is assumed that w,, € L[0, co],
when w, = J, such that, the results of Theorem 8.3 are valid. Similarly, the

Hop(f) = Loy (j27f) = (9.26)

Wo=6, wi=-=wy=0

transfer functions H,,,..., Hy, are defined as the transfer functions that
relate the noise sources wy, ..., wy to the amplifier output, and are defined as
, Wi (j27f)
Hiy(f) = Liy(j27f) = 22— 9.27)
M M Wl(]2nf) Wi=0,Wo=Wi1=""=wi—1=Wwij+1=wnNy=0

It is usual, when quantifying the noise performance of an amplifier, to refer the
noise to the amplifier input in order that it is independent of the amplifier gain.
To achieve this, it is necessary to define an input equivalent noise source for
each of the noise sources in the amplifier. By definition, the input equivalent
noise source, denoted w,;, for the ith noise source w;, is the equivalent noise
source at the amplifier input that produces the same level of output noise as
w;. That is, by definition, w,; guarantees the equivalence of the circuits shown
in Figures 9.17 and 9.18, as far as the output noise is concerned.

Assume, for the circuit shown in Figure 9.17, that either, or both the source
w,, and the ith noise source w;, have zero mean, and the source is independent
of the ith noise source. It then follows, from Theorem 8.7, that the output

Linear Circuit \
w(?)
o o 0 e o o WM(Z‘)
wy (1) w(1) W)

N /_i|7

Figure 9.16 Schematic diagram of a linear system with N noise sources.



NOISE ANALYSIS FOR LINEAR TIME INVARIANT SYSTEMS 271
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Figure 9.17 Noise model for ith noise source.

power spectral density, G,,, due to w, and w; is

Gu(f) =1Hou(NN*Go(f) + Hin (SI*G(f) (9.28)

where G, and G;, respectively, are the power spectral densities of w, and w;,.
For the circuit shown in Figure 9.18, the output power spectral density due to
the noise sources w, and w,;, is

ei’

Gy (f) = [Hop(NI*Go(f) + [Hopn (PG il f) (9.29)

where G,; is the power spectral density of the input equivalent source w,;. A
comparison of Eqgs. (9.28) and (9.29) shows that these two circuits are
equivalent, in terms of the output power spectral density, when

|HOM(f)|2Gei(f) = |HiM(f)|2Gi(f) (9~30)

Thus, the power spectral density of the input equivalent noise source associated
with the ith noise source is

\Hin (/)
[Hov (/)

where Hii (f) = H, (f)/H o5 (f) is the transfer function between the ith noise
source, w;, and the associated input equivalent noise source w,;.

Noiseless Wy (f)
Linear Circuit M

Figure 9.18 Equivalent noise model, as far as the output node is concerned, for the ith noise
source.

Gu(f) = Gi(f) = H M (NIPG(f) (9.31)
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9.5.3 Input Equivalent Noise—General Case

For the general case of determining the input equivalent noise of all the N
noise sources, the approach is to, first, establish the input equivalent signal and,
then, evaluate its power spectral density. The details are as follows: the N noise
signals generate an output signal according to

t

t

wy(t) = J wi(Dh = Adi + - + J Wy (Dh gyt — Ad2 (9.32)
0 0

where, hy,,. .., hy, are the impulse responses of the systems between w; and

w,, forie {1,...,N}. From Theorem 8.3 it follows that

War(s) = Wi(s)L 1pe(s) + - + Wy(s)Lyy(s)  Re[s]>0  (9.33)

where, L;,, is the Laplace transform of h;,,, and the noise signals are assumed
not to have exponential increase, which is the usual case. An equivalent input
signal, w,,, whose Laplace transform is W,,, will result in an output signal with
the same Laplace transform when

Wea()L oa(s) = Wi(s)Ly y(s) + -+ + Wy(s)Lyp(s)  Re[s] >0 (9.34)
Thus, provided L,,(s) # 0, it is the case that

N N Wi(s)L ;4,(5)
Woo(s) = Y Wals) = Y, ————
! i;1 i;1 Lop(s)
where W,, is the Laplace transform of the ith input equivalent signal associated
with w;. Consistent with this result, an equivalent model for the input
equivalent noise is as shown in Figure 9.19. The ith transfer function in this
figure, from Eq. (9.35), is given by

Liy(j2nf) _ Hiy(f)
Hiy(f) = = — Hop(f) #0 (9.36)
M= o)~ Hogtr) TV
where L;,(s) and L, (s) are validly defined when Re[s] = 0, as assumed in
Eqgs. (9.26) and (9.27). The following theorem states the power spectral density
of the input equivalent noise random process.

Re[s] > 0 (9.35)

THEOREM 9.1 POWER SPECTRAL DENSITY OF INPUT EQUIVALENT NOISE For
independent noise sources with zero means, the amplifier input equivalent power
spectral density, denoted G, (f), is the sum of the individual input equivalent
power spectral densities, that is,

Gulf) = T 6ol = T NG = X |70 G 037

where G; and G,;, respectively, are the power spectral density, and the input
equivalent power spectral density, of the ith noise source. For the general case,
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Figure 9.19 Equivalent model for input equivalent noise source.

the input equivalent power spectral density is given by

N

Gyl ) =

i=1

Hiy(f)

: 5L Hi(DH)
Houl$)] 2

A e )0

#i

where G;; is the cross power spectral density between the ith and jth noise
sources.

Proof. These results follow directly from the model shown in Figure 9.19
and Theorem 8.7.

9.5.4 Notation

When analysing a linear circuit arising from several transistor stages, it is
convenient to label the sources according to which node they are between, as
is indicated in Figure 9.20. In this figure 1,5 is a noise current source between
nodes 1 and 3, I, is a current source between node 1 and ground and so on.
For the circuit arising from a single transistor stage amplifier, it is more
convenient to label the noise sources according to their origin, as is illustrated
in the following example.

9.5.5 Example: Input Equivalent Noise of a Common Emitter Amplifier

To illustrate the theory related to input equivalent noise characterization of a
circuit, consider the Common Emitter (CE) amplifier shown in Figure 9.21.
The small signal equivalent noise model for such a structure, is shown in
Figure 9.22. The noise current sources ig, iy, ig, ic defined in this figure are
independent and have zero means. Their respective power spectral densities are:

2k 2k
Golf) =" GmlN) =" AYH 0.39)
G =aly  Ge(f) =ale+ 2L 42/Hy (9.40)

Rc
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Figure 9.20 Notation for labelling noise sources in a circuit.

The amplifier voltage transfer function, L,, is

Vi (s)
VS(S) vs=0d,is=ipp=ip=ic=0
~ —g.R¢ 1 —5C,/g

N R R
1+-51 R,)| C.+C, (1 R.+—C— )]
+ rn +S(r7c// Sb)|: 75+ u< +gm C+Vn//RSb +s 2

LO (S) =

(9.41)

where D, = (r,//Rs,)RcC,C,, and Ry, = Rg + r,. Using the parameter values
tabulated in Table 9.1, the normalized magnitude, |H,(f)| = |L,(j2xf)|, of this
transfer function, is plotted in Figure 9.23. The low frequency gain is 37.5, and
the 3dB bandwidth is 58 MHz.

— Vee
S
VO
1
R I ¢
Vs
Bias

Figure 9.21 Schematic diagram of a common emitter amplifier.
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igp(1)

Figure 9.22 Small signal equivalent noise model for a common emitter amplifier.

The small signal input equivalent noise model for the common emitter
amplifier, is shown in Figure 9.24, where the power spectral density of the input
equivalent noise source v,,, from Theorem 9.1, is given by

|Hs(f)I? \Hpp(f)I? |Hp(f)? [He(S)?
G =G ———— 4G ——=+G ————+G —
T Y TR E R AT
(9.42)
Normalized Magnitude
1
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\\\
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0.1 N
0.05 \
AN
0.02 \\
0.01 \
1.- 107 1.-108 1.-10°
Frequency (Hz)

Figure 9.23 Normalized magnitude of transfer function of common emitter amplifier for
parameter values listed in Table 9.1. The low frequency gain is 37.5 and the 3dB bandwidth is

58 MHz.
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TABLE 9.1 Parameters for BJT common emitter

amplifier

Parameter Value (Rounded)
V= kT/q 0.0259

Is 1 mA
B=I/g 100
Om=1/V; 0.039

r.= p/gn, 2600 Ohms
r, 50 Ohms
Rs 50 Ohms
R. 1000 Ohms
fr 1.5 GHz

C, 0.5 pF
C.=g,/2nf;— C, 4 pF

Here, Hy(f) = Ls(j2nf), Ls(s) = V,()/I (5 is=s,05=ipp=in—ic—0> and similarly
for the other transfer functions. Standard circuit analysis yields the following
results:

HsUDP e HOP 2 O g

HOP P T HDP

()
|HC(f)|2 _ rn 1 + 4n2.f2(rn|‘RSb)2(Cn + Cu)z (9 44)
H, g U+ 4n%f2Cyi/gm '

where R, = Rg + r,. It then follows that the power spectral density G,, of the
input equivalent voltage noise source v,,, is

G,,(f) = 2kTR + 2kTr,

RSb 2
=) e Ry C, + )2
LR |1 n " nt Cu 9.45
Fabfol T R, U+ 42 Clg 04
R 2
1 + = 2,2 2 2
KT r. ) 1+ 4nf2(r | Re)A(C + C,) ,
+ 2 372,27 2 V*/Hz
RC gm 1 + 47-5 f Cu/gm

where the fact that I, = Iz = g,,r. Iz has been used to combine the power
spectral density of the base and collector shot noise.

Clearly, such an analytical expression facilitates low noise design. For
example, low noise performance is consistent with a low source resistance, Rg;
low base spreading resistance, r,; and low base current, I;. However, with
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Figure 9.24 Equivalent noise model for CE amplifier as far as the output node is concerned.

respect to the base current note, as g,, = Io/Vy, with V. = kT/q being the
thermal voltage, that r /g, = V¢/BI; and hence, an optimum base current
exists to minimize the third term in the expression for G,, (Hullett, 1977).

Using the parameter values given in Table 9.1, the power spectral density,
as defined by Eq. (9.45), is shown in Figure 9.25. Also shown is the output
power spectral density given by

G,(f) = [H,(f)PGy(f)

(9.46)

~RE 1+ 4n’f2C;
=[2kTRSb+qIBR§b][ gnRe 1+ 4n/ “/gm}

1+ RSb/Vn)Z D(f)

2T RE[1 + 47%f*(RgIr)*(C . + C,)°]
+|ql +—} Iz “ V?/Hz
[ R D(/)
G () G,(f) (V2/Hz)
1.-1071 .
5.-10716 g
AN
1.-10716 A
5.-10717
1.-10717 b /
5.-10718 N2
,4/ N
1.-10718 ait AR
1. -107 1.-108 1. -10°
Frequency (Hz)

Figure 9.25 Input equivalent (lower trace) and output (upper trace) power spectral density of
common emitter amplifier for parameter values listed in Table 9.1.
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where

D(f) =[1 — 4n%f?Rc(Rg|I)CC,1?
9.47)

R 2
+ 4n2f2(RSbHr7t)2 |:C7t + Cu <1 + ngC + < >:|
Rglr,

One interesting example of the usefulness of input equivalent noise charac-
terization can be found in Howard (1999a) which details a novel structure for
an optoelectronic receiver, that potentially, has half the input equivalent noise
level of a standard optoelectronic receiver.

9.6 INPUT EQUIVALENT CURRENT AND VOLTAGE SOURCES

In many instances it is convenient to be able to characterize the noise of a
structure by an equivalent noise source at its input, which is insensitive to the
way the structure is driven, that is, insensitive to the nature of the source
impedance characteristics. Such a characterization is possible through use of
an input equivalent current source I,,, and an input equivalent voltage source
V,, (Haus, 1960; Lam, 1992; Netzer, 1981; Gray, 2001 p. 768), as per the model
shown in Figure 9.26.

In this model Z,, is the input impedance of the linear circuit and Zy = 1/Yj
is the source impedance. With the Norton equivalent model for the source, I
is the source current and Iy is a current source to account for the noise
associated with the source impedance. With the Thevenin equivalent model, V§
is the source voltage (V5 = IgZ,) and Vg is a voltage source to account for the
noise associated with the source impedance (Vgg = I35 Zy).

An alternative model often used with differential input circuits such as
operational amplifier circuits [see, for example, Trofimenkoff (1989)], is shown
in Figure 9.27. It is important to note that the two current sources I,,, are
100% correlated.

eq>

Y. S ZS — vV Z]I
eq +
A »
U | + Noiseless +
Is*+Iss Ys Linear
z I e L
Ve+Vss N eq Circuit
°® - —@
Thevenin Model Norton Model
for Source Jfor Source

Figure 9.26 Equivalent input noise model for a linear time invariant circuit where an input
equivalent voltage source and an input equivalent current source have been used to character-
ize the circuit noise.
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Figure 9.27 An alternative input equivalent model for differential input circuits including
operational amplifier circuits. Norton models have been used for the two sources.

The following theorem states the input equivalent voltage and current
defined in this model.

THEOREM 9.2. INPUT EQUIVALENT SOURCE CURRENT AND SOURCE VOLTAGE
The model shown in Figure 9.26 is valid, and the input source voltage or input
source current that replace the noise sources in the circuit as far as the output
node is concerned, are such that

Vs=Vss+ V,, + Zsl,, Thevenin

(9.48)
Ig=1Ig+1,,+ YV, Norton

where the input equivalent current 1,, and input equivalent voltage V,, are defined
according to

5 v
Vald) = 0 Tl) = s 9.49)

Here V' and Vy', respectively, are the output noise voltage when the input is short
circuited and open circuited, that is,

Vy(s) = Vx(9) zg=vs=vss=0 Vy(s) = V() ys=15=155=0 (9.50)

and the transfer functions L,y and Ly,., are defined according to

_ Vy(s) I

lec(S) - lNoc(S) = VN(S)

IS(S) Is=1,Iss=Ys=1;=0

(9.51)

V:S(S) Vs=1,Vss=Zs=1;=0
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In these definitions, I, is the Laplace transform of the current sources connected
to the ith node in the linear circuit, to account for the various noise sources
connected to that node.

Proof. The proof of this theorem is given in Appendix 1.

9.6.0.1 Notes Consistent with Egs. (9.49)-(9.51), V,, is the input equivalent
voltage noise when the input is shoft circuited, that is, when Vg = Vg = Zg =0,
assuming a Thevenin equivalent model for the source. Similarly, I, is the input
equivalent current noise when the input is open circuited, that is, when
I = Igs = Yg =0, assuming a Norton equivalent model for the source.

9.6.1 Input Equivalent Noise Power Spectral Density

THEOREM 9.3. INPUT EQUIVALENT NOISE POWER SPECTRAL DENSITY The
power spectral density of the voltage Vg, replacing the noise sources Vgg, 1,,, and
V> assuming Vg is independent of both I,, and V,,, and all noise sources have
zero means, is given by

Gyo(f) = Gy f) + Greg(f) +1Zs*Greg(f) + 2Re[Z5Geqyeo( )] V?/Hz

(9.52)
where Gy, Gy,,, and Gy, are, respectively, the power spectral density of Vg,
V> and 1,,, and where Gy,y,, is the cross power spectral density between I,
and V,,. According to Eq.(9.25), all the impedances are evaluated with arguments
of j2nf.

With the assumptions noted above, the power spectral density of the current
I replacing I, 1,,, and V,_, is given by

eq’ eq’

Gr(f) = Grg(f) 4 Grof ) + Y5 Gy f) + 2Re[ Y5 Grogpeq f)] A*/Hz
(9.53)

where G, is the power spectral density of Ig.

Iss

Proof. The proof of these results for G, and G, follows from Eq. (9.48) and
Theorem 8.8.

The results specified in this theorem can be simplified, under certain
conditions, as outlined in the following two subsections.

9.6.1.1 Case 1: Input Equivalent Voltage Dominates Noise 1f G, (f) >
|Zs|*G ., (f) which is consistent with [Re[ZsG ogyeq( /)] < Gy f), it follows
that

Veq

Gys(f) ® Gygs + Gye(f) (9.54)
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that is, the input equivalent noise is determined by the source noise and the
input equivalent voltage noise of the circuit.

9.6.1.2 Case 2: Input Equivalent Current Dominates Noise 1f G, (f) >
|Y5|>Gyo,(f) which is consistent with [Re[ Ys* G ogpeq( /)1 < Gof(f), it follows
that

Grs(f) = Grg(f) + Greg(S) (9.55)

that is, the input equivalent noise is determined by the source noise and the
input equivalent current noise of the circuit.

9.6.2 Example: Input Equivalent Results for Common Emitter
Amplifier

Consider the common emitter amplifier shown in Figure 9.21, and its small
signal equivalent model shown in Figure 9.22. Analysis for the input equivalent
current and voltage yields,

Veq(s) = — Ipg(s)ry, + L(s)ry,

. ( ) 1+ Vb/rn 1+ S(V,JHV”)(C1t + Cu) (956)
() =" T
Leqls) = Ipls) = Icls) I 1+ sr(Cr+ C) (9.57)

I 1 - Scu/gm

Hence, with independent and zero mean noise sources the input equivalent
power spectral densities are

Gyeg(f) = Gap( 1y + Gy(fIry

U4 r P 1+ 42 ) C, + 2 O
* Gel) [ on } [+ 47 °CTg?
B 1 P14+ 4n2f2ri(C,r + Cu)2
Greg /) = Gy(f) + Gl ) [q} e (9.59)
1
Grogveaf) = Gol(f)ry + Ge(S) [;—:q
nr (9.60)

(0 +j2nfr (Cr + CA —j27f (ry[[r)(C + C))

X 1+ 4n(2C7g?
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Figure 9.28 Power spectral density of input equivalent voltage source for a common emitter
amplifier as well as the constituent components of this power spectral density.

These results follow from Theorem 8.8. Substitution of Egs. (9.58)—(9.60) into
Eq. (9.52) yields,

Gy(f) = 2kTRg + 2kTi, + qIzR3,

R 2
AT <1+er> 1 +4722(r || Rgy)(C . +C,)>
= I T k4 Sbh. T I Vz H
" [ Re 1 } 7 1+ 42 Clg? Hz

(9.61)

which can easily be shown to be equivalent to the form given in Eq. (9.45), for
the case where the input equivalent noise was directly evaluated. In Figure 9.28,
Gy(f) is plotted along with its constituent components as given by Eq. (9.52).
Note, for frequencies within the amplifier bandwidth (58 MHz), the input
equivalent power spectral density is dominated by the power spectral density
of the input equivalent voltage source and the power spectral density of the
source resistance. For frequencies significantly higher than the amplifier
bandwidth the noise due to the cross power spectral density dominates.

9.7 TRANSFERRING NOISE SOURCES

Consider a cascade of N stages, as shown in Figure 9.29, where it is required
to replace the kth noise source by an equivalent one at the (k + 1)th stage, such

that the noise power spectral density at the output node N, is unchanged. The
following theorem states the required result.
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Z; Zo k Zik+1
T e .

| [+ | |+ +
Zo, k-1
XX Vi Vis1 | o0@® Vy
Iy _ Ty -
L
Stage k Stage k + 1 Stage N 47

Figure 9.29 Cascade of N stages.

THEOREM 9.4. TRANSFERRING NOISE SOURCES VIA SHORT CIRCUIT CURRENT
GAIN  The two circuits shown in Figure 9.30 are equivalent, as far as the output
node voltage is concerned, provided

I 1(s) = L ()1 (5) L,(s) = IIsc(S)

(9.62)

k(S) Ik=1,Zix+1=0
where L, is the short circuit current transfer function (commonly called the short
circuit current gain) of the kth stage.

Proof. The proof of this theorem is given in Appendix 2.

The theory pertaining to, and application of, this result has been detailed in
Moustakas (1981).

9.7.1 Example— Output Noise of Common Emitter Amplifier

Consider the small signal equivalent noise model for the common emitter
amplifier shown in Figure 9.22, and the requirement to replace the input noise
sources ig, iy, and igy with an equivalent noise source at the output and in
parallel with the noise source i.. To achieve this, the small signal equivalent

Zo, k-1 Zik+l  Zpp-i Zik+1
Iy + + ! Ty 41 +

. Vi +1
Vi Vie | i
ScC

Stage k Stage k

Figure 9.30 Two equivalent circuits as far as the (k+ 1)th node voltage is concerned.
Equivalence is when I, , = L, I, where L, = I /I,.
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Figure 9.31 Small signal equivalent model for common emitter amplifier where i, , replaces
ix. In this model Ry, = Rs + 1,

model shown in Figure 9.22, can be redrawn as shown in Figure 9.31 where
the noise current i, is such that

RsistS)  nims® 5y Gy = 2T

i,(t) = =
0 Rg+r, Rg+r Rg+ry

+qly  (9.63)

Analysis of this model yields the short circuit current transfer function,

_ Isc(s) _ _gm(RSbHrn)(l B Scu/gm)
B =70 e = T+ 5Bl (C, £ C,) e
and hence,
Lo (5) = IRl = SC/ga) 1, 0.65)

1 + S(RSbHrn)(Cn + Cu)

Thus, the noise power spectral density associated with the current sources i,
and i, ,, at the output node are

2kT 2kT
G G =gql — _— 1
c(f) + G () qC+RC+|:RS+rb+qB:|

(9.66)
] A?/Hz

In(Rspl1:)*(1 + 47> Cp/g)
1 +47°f (R |Ir)*(C + C,)?

This result can be used to, first, infer the input equivalent noise power spectral
density via the transfer function of Eq. (9.44). The result stated in Eq. (9.45)
readily follows. Second, as the output impedance, Z, of the common emitter
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stage is
Re[1+5(Rgllr)(C o+ C)]

R
1+S(RSb|rn)|:cn+cu<1+ngC+ R ﬁr >:|+SZRC(RSb|rn)Cr:Cu
Sbll'n

Z(s) =

(9.67)

it then follows that the output power spectral density is

G,(f) = |Zu(j2nf)|2[Gc(.f) + Gy 1 ()]
[%_T n qls} InRUR g, )*(1 + 47*f2Ci/g,)
Rg, D(f)
2kT| R[1 + 4n?f (R, r)A(C, + C,)?]
’ [qlc ¥ Rc} D(/)

(9.68)

where D(f) is defined in Eq. (9.47). This equation agrees with the result
previously derived and stated in Eq. (9.46). The output power spectral density
G, is plotted in Figure 9.25.

9.8 RESULTS FOR LOW NOISE DESIGN

The principles outlined in preceding sections can be used to show, for example,
the following results: (1) at low frequencies and with a low source impedance
a cascade of common emitter/source stages will yield a lower level of noise than
a common gate/base or common collector/drain cascade (Moustakis, 1981); (2)
at low frequencies and for low source impedances a BJT will yield, in general,
lower noise than a JFET, but the reverse is true for high source impedances
(Leach, 1994); (3) at low frequencies and for low source impedances, paralleling
transistors will reduce the input equivalent noise (Hallgren, 1988); and (4)
transformer coupling is effective in reducing the input equivalent noise when
the source impedance is low (Lepaisant, 1992).

9.9 NOISE EQUIVALENT BANDWIDTH

If a system has been characterized by a noise equivalent bandwidth, the
calculation of the noise power at the output of the system, as required, for
example, when the signal-to-noise ratio of a system is being evaluated, is
greatly simplified.

DEerINITION: NOISE EQUIVALENT BANDWIDTH = The noise equivalent bandwidth
By, of a real system with transfer function H(f) and with a gain given by
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|H(f,), is the bandwidth of an ideal filter with a gain of |H(f,)|, which yields
the same level of output power as the system being considered. By definition,
and for a low pass transfer function, By is defined such that,

Jw Gin(NIH(P df = H(f,)? J N Gin(f) df (9.69)

0

where G,y is the power spectral density of the input noise. The definition is
readily generalized for the bandpass case.

This definition arises from the evenness of |H(f)| and the power spectral
density of real signals, as well as the definition of the output power, namely,

BNn

f_’=ﬁﬂ w(DIHNP df = [H(f)? f Gy (f)df (9.70)

- By

9.9.1 Examples

For the common case of white noise, where G;y(f) = G;5(0), an explicit
expression for By is readily obtained,

1 * 2
By :WL \H(NI” df (9.71)

and the output noise power is
P= 2|H(fu)|2G1N(O)BN (9~72)

If, for example, H has a single pole form H(f) = H,/(1 + jf/fs4s), then it
follows that By = ntf345/2 = 1.57f34p-

For the case where G,y(f) = kf*?, which occurs, for example, in high speed
optoelectronic receiver amplifiers [see, for example, Jain (1985)], it follows that

B 3 2|H zd'l/3 9.73
V= [|H(f)| f SH(S) f} ©.73)

and the output noise power is

2n3
P= —2k'H(§")' By (9.74)
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If, for example, H has a Gaussian form with a 3-dB bandwidth of f5,5 Hz, that
is, H(f) = H,e "™®/*2f3u_then the noise equivalent bandwidth is

BN _ [3ﬁ/\/§]1/3f3dl§ — 1~87f3dB (975)
/i

9.9.2 Signal-to-Noise Ratio of Common Emitter Amplifier

Consider the Common Emitter amplifier whose power spectral density is
shown in Figure 9.25 and whose transfer function is shown in Figure 9.23. This
transfer function can be approximated by a single pole form H(f) = H,/
(1 +jf/fs3ap), where H, = 37.5 and f,45 = 5.8 x 107. As is evident in Figure
9.25, the input power spectral density is approximately flat up until well
beyond the amplifier bandwidth, and consistent with Eq. (9.71), the noise
equivalent bandwidth is approximately 91 MHz. With an input equivalent
power spectral density level close to 10~ 18V2/Hz, it follows from Eq. (9.72),
that the output rms noise level is 0.506 mV consistent with an equivalent rms
input noise level of 13.5 uV. With a 1 mV rms input signal, the signal-to-noise
ratio is 5490 or 37.4 dB.

9.10 POWER SPECTRAL DENSITY OF A PASSIVE NETWORK

The well-known result, which is a generalization of Nyquist’s theorem, is that
the power spectral density of noise measured across the terminals of a passive
network, is given by

Gy(f) = 2kTRe[Z}(f)] = 2kTR,(f) V?/Hz (9.76)

where the input impedance at the same two terminals is Z,,, ZL(f) =
Z..(j2nf) = R,,(j2nf) + X,,(j27f), R;,(j27nf) is real while X,,(j2xf) is imagin-
ary, and Ri(f) = R,,(j2nf). This result is consistent with the models for a
passive network shown in Figure 9.32, where G, is the power spectral density

of the voltage source v and the power spectral densities of the sources i and ip
Zm Xil’l

v ! Zin 'R Ry

Figure 9.32 Equivalent models for a passive network.



288 PRINCIPLES OF LOW NOISE ELECTRONIC DESIGN

are given by

2kTRE(f) 2kT

G ="y Ol =Ry

(9.77)

A proof of Eq. (9.76) usually uses an argument based on conservation of
energy as opposed to direct circuit analysis (Williams, 1937; Helmstrom, 1991
pp. 427-429; Papoulis, 2002 p. 452). A partial proof of Eq. (9.76), based on
direct circuit analysis, is given in the following subsection.

Suitable references for the extension of the generalized Nyquist result, as per
Eq. 9.76, to nonlinear circuits are Coram (2000) and Weiss (1998, 2000).

9.10.1 Implications of Nyquist’s Theorem

Given resistive elements in a passive circuit generate zero mean independent
noise waveforms, it follows from Theorem 8.7, that Eq. (9.76) is consistent with
the following result:

N 2k
Z QIH (I Z 2kTRe[ Y (/YIIH () (9.78)

where H;(f) = L;(j2nf), with L; being the Laplace transfer function V/I,
relating the output voltage V to the ith current source I;, associated with the
noise generated by the ith resistance R,. Further, Y"(f) = Y,(j2xf) is the

admittance of R; and associated lossless circuitry between the two nodes that
R, is between. Equating Eqgs. (9.76) and (9.78) yields,

Re[Z;,(f)] = 2 Re[ Y/ (NIH () (9.79)

A conjecture associated with this result is the generalization,

M =

Zy(s) = ), Yi(s)Ly(s)Li(—s) (9.80)
i=1
In fact the correct generalization is
Z;(s) = i Yi(=s)Li(s)Ly(—5) (9.81)

i=1

A partial proof of this conjecture is given in Appendix 3. It is based on
proving the result for the general ladder structure shown in Figure 9.33, where
the current sources account for the noise of the resistive elements in the
adjacent admittance.



POWER SPECTRAL DENSITY OF A PASSIVE NETWORK 289

)

\_n \ /3
° m— V2 —
it I I

y Yo Y3

Vi :l 1 Yy 1 Y33 oo
_ I lil vy | 122 lﬁl 33
¢ J7 L1 L

O\ D\

Stage 1 Stage 2 Stage 3

Figure 9.33 Structure of a passive ladder network.

For a N stage passive ladder network defined by Figure 9.33, the input
impedance can be written as

Ziy(s) = Y (=)L ()L 1(—5) + Z Yiici(=9)L; ;4 1()L; ;4 1(—5)
i=1
+ Yo i(=9)Liv 1)L 1 (=) (9-82)
+ Y 1(_S)Li+1,i+1(S)Li+1,i+ (=)
where
Lij(s) = Vi) (9.83)

Iij(s) Ii;=1,I,4=0,p#i,q#j

9.10.2 Example

Consider the determination of the noise at the input node of a three stage,
doubly terminated lossless ladder (van Valkenburg, 1982 pp. 399f) shown in
Figure 9.34. Analysis yields the input impedance,

Vi(s) N(s)
= =— 9.84
I(s) I1=1,Ig1=Igs=0 D(s) ( )

Z;y(s)
where

N(s) = R?+3RLs+6R*CLs? +4RCL2s® + SR2C?L2s* + RC2L3s® + R2C3L3s°
(9.85)
D(s) = 2R + 3(L + R2C)s + 9RCLs* + 4CL(L + RC)s® + 6RC2L2s*
+ C2LAL + R*C)s® + RC3L3s° (9.86)
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I A R RN e
L L L
C C C R

R J—

Ir1 IR4

Figure 9.34 Three stage doubly terminated lossless ladder.

Hence, the input equivalent noise at node 1 has the power spectral density,

N(j2nf)D(—j2nf)
D(j2nf)?

G,(f) = 2kTRe[Z,y(j27f)] = 2kTRe[ ] V2/Hz

(9.87)

As a check, the transfer functions for the noise current sources Iz, and I,
are,

Vi(s) _ & Vi(s) _ sz
Iri(S) |rry=1.1=1ra=0 D) TralS) |1pa=1.11=1r1=0 ~ D(s) ©-55)
and direct analysis yields,
2T [ | Vi(j2f) [P | | Va(i2nf) 2}
G,(f) = —[ . .
R | [Ip,(j2n T2
ri(i27) | |Tra(i27f) 0.5
B 1 N(j2nf)N(—j2nf) + R* 5
= b [ R ] ViH

Comparing Eq. (9.87) with Eq. (9.89) yields the requirement

N(j2nf)D(—j 2nf) + N(—j2n/)D(j2nf) _ N(j2nf)N(—j2nf) + R*
2 R

(9.90)

which can be readily verified. G, is plotted in Figure 9.35 for the case where
R=50, C=10"° and L=10"". At low frequencies, the power spectral
density is that of R||R; at high frequencies, when the inductor impedance
becomes high, the power spectral density is that of the resistor R.
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Figure 9.35 Power spectral density at input node of passive network of Figure 9.34 when
R=150,C=10"°andL=10"".

Finally, for the noiseless case where R = oo, it should be the case that
Re[Zy(j2nf)] = 0. To check this, note that when R = oo,

Vi(s) _ 1+ 6CLs* + 5C°L?s* 4+ C°L*s°

9.91
1) |1, = 1.r= o0 sC(3 + 4CLs* + C*L*s%) ©91)

Z(s) =

Clearly, this transfer function is purely imaginary, when s = j2xf, as required.

APPENDIX 1: PROOF OF THEOREM 9.2

The linear circuit, as per Figure 9.26, is assumed to have N nodes, where node
1 is the input node and node N is the output node. When the input node is
open circuited, the circuit is assumed to be characterized by the N node
equations according to

Y11 YIN Vl 11
: S = or  YV=I (9.92)
YNI YNN VN IN

where V; is the Laplace transform of the ith node voltage, Y;; is the admittance
parameter for the i — jth node, and I; is the Laplace transform of the current
sources connected to the ith node to account for the various noise sources
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connected to that node. The following inverse matrix is assumed to exist:

211 ZlN Y11 Y1N o
: Col=l o : (9.93)
Zyi o Zyy Yyi - Y

The elements of the inverse matrix are defined by Z;; = A;;/A, where A is the
determinant of Yand Aj; is the cofactor of Y}; (Anton, 1991 pp. 86-94). Further,
Z,, is the input impedance at node 1.

For the case where the input node is driven by a Norton source, as per
Figure 9.26, the node equations for the overall circuit can be written as

Y11 + Ys Y12 YlN V1
Yz1 Y22 YZN Vz
YNI YNZ YNN VN
YS 0 0 Yll YlZ YlN Vl IS + ISS + Il
0 0 0 Y, Y, Yon v, I,
0 0 _YNl Yy, Yyn Vy Iy
(9.94)
and hence, after appropriate manipulation,
T )
1+ YZ 1+ YZ
I/l + S“11 + S“11 Is+155+11
v 7. _ Y5Z51214 _ YsZ51Z:x I
o7 T+ Yz o+ Xz, : (9.99)
v : : I,
N }/SZNIZII 1/SZlelN
MTT v, T IwnwT T v
U+ YsZy, I+ YZy, |

It then follows that the transfer function between the ith noise source I, and
the output signal Vy is

YoZyiZ4;
M®=m@ = Zy — N1 (9.96)

Ni —
I;(s) Li=1,Is=Iss=1;=0,j#i 1+ YsZy,
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which can be written in the following form:

ZNi YS(ZIIZNi_ ZliZNl)

Li(s) = 9.97
S T P S S e
Thus, the output voltage is
VN(S) _ ZNl(IS + ISS) + i ZNi YS(ZIIZNi _ ZliZNl) Ii (998)
1—i_},SZII i=1 1+YSZII 1+}/Sle

To refer this output noise to the input, and hence, establish the validity of input
equivalent current and voltage noise sources, the transfer function between the
source current I and the output node voltage Vy is required. From this
equation it readily follows that

ZNl

Li(s) = = oM
w Is=1,Iss=1;=0 1+ YSle

(9.99)

Further, as Iy = YiVs the transfer function between the source voltage Vg and
the output voltage V}, can be defined according to

Vi(s) Zy, Y
Liy(s) =2 =_—M75 (9.100)
w Vs(s) lvs=1vss=ri=o 1+ YsZyy
Hence, the input equivalent source current I that generates the same output
noise as the noise sources Igg and I,..., 1y is,
N Zy YZ,,Zyi—Z,.Z
I(s) = Igg + Z LNy s(Z11Zy; 1iZn1) I, (9.101)
i=1 ZNl ZNl

which can be written as
Ig=1Ig+1,+ YV, (9.102)

where

N1 Zy N1ZZyi— 2,2
qu — Z Ni Ii ng — z 11“Ni 1i““N1 Ii (9103)
ZNI i=1 ZNl

i=1

As 1,, and V,, are independent of the source impedance, the model is justified.
The results Vg = ZgIg and Vgg = Z I yields the input source voltage that
generates the same output voltage as the noise sources Igg and I,,..., Iy,

Vs =Vss + Vog + Zsl,, (9.104)
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Finally, from Egs. (9.98) and (9.103), I, and V,, can be written as

> Leg

Zyy Vy(s)
Zyy

Vigls) = I,(s) = (9.105)

where V3" and V5", respectively, are the output voltage when the input is short
circuited and open circuited, that is,

SC 3 Zu’ - d iZ
V) = Ve rymrosomecs = 3 [ 11 NZ 1 N1:|Il.
i=1 11

(9.106)
N
VN(s) = V() vs=rs=15s=0 = Z Zyil;
i=1

rom Egs. (9.99) and (9. it follows that the transfer functions an
F Eqgs. (9.99) and (9.100) it foll hat th fer functions Ly, and
L} xoe can be defined according to

V, zZ
Liygls) = v =M (9.107)
VS(S) Vs=1,Vss=1;=0,Ys= 0 le
Vx(s)
Ll yoe(s) =2 =7 (9.108)
w Is(8) |r5=1.155=vs=1:=0 AN
Thus, I, and V,, can be written as
Va(s) Vy(s)
Vils) = -2 Iy(s) = (9.109)
! Llec(S) ! L{Noc(s)

which is the last required result.

APPENDIX 2: PROOF OF THEOREM 9.4

First, consider the Thevenin equivalent model shown in Figure 9.36, which
arises from looking in at the output of the kth stage of the circuit shown in
Figure 9.29. In this figure V,,, is the open circuit voltage at the output of the
kth node when this node is open circuited, that is, when Z;,  ; = co. Clearly,
from Figure 9.36 it follows that

Vier=————— (9.110)
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Figure 9.36 Thevenin equivalent circuit at output of kth stage.

Second, consider the case where the open circuit voltage, V,,., is a consequence

solely of the current source I,, shown in Figure 9.29. The transfer function
between V,,. and I, is denoted L,, that is,

y
L= ©.111)
k |Ik=1Ix-1=Ik-2=-+=0

It then follows that the voltage V., ,, due to the current source I, is
Zi w1 LI
Ve, = _Tik+17kTk (9.112)
Zo,k + Zi,k+ 1
Third, a current I, , ;, acting alone, generates a voltage V, . ;, where
YARVATINY |
Vivr = [Za,kHZi,k+1:|Ik+1 :ﬁ (9.113)
Thus, the current I, , , generates the same voltage V, ., as the current I,, when

Zo,kZi,k+ 11k+ 1

AT I | LI
_ iL,k+1~k"k - Ik+1 — k' k (9114)
Zo,k + Zi,k+1 Zo,k + Zi,k+1 Zo,k

As V,,. = L, 1,, it follows that

I I/kac
k+1 — -

=L,I
Zo,k sc sct k

(9.115)

where I, is the short circuit current that flows in the circuit, as illustrated in
Figure 9.36, and

Isc
L ==

Ik Ik=1Zix+1=0
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APPENDIX 3: PROOF OF CONJECTURE FOR LADDER STRUCTURE

Kirchoff’s current law applied to the nodes of the first stage in Figure 9.33,
yields the following matrix of equations:

Y.+ 7Y, -Y, 0 Vi Iy — 1,
_Y12 Y12 + YZT _YZT Vz = I12 - 122 - 123 (9~117)
0 —Yr i+ Yr || V3 I, =1, + 15,

where Y,, is equal to the admittance Y,, plus the admittance of the network
to the right of Y,,. Solving this equation yields the following transfer functions:

Vl _ Y12Y21 + Y12Y2T + Y21Y2T

Zin:Lll :Tll Iia=I>1=1220=123=132=0 A (9118)
V. -Y,,Y
L=+ =t (9.119)
IlZ I11=121=122=123=132=0 A
V. -Y,,Y
L, =— = 12727 (9.120)
121 In1=I12=122=123=132=0 A
V. —-Y,,Y
Ly, =— — 1221 9.121)
122 I11=I12=121=123=132=0 A
where A is the determinant of the matrix and is given by
A = Yll(YIZYZI + YIZYZT + YZIYZT) + leZYZIYZT (9122)

It then follows that the input impedance Z,,, defined in Eq. (9.118), can be
written according to

_ Y1*1|YIZY21 + Y12Y2T+ Y21Y2T|2 Y1*2Y2*1 YZ%F(Y12Y21 + YIZYZTJ‘_ YZl YZT)
Zin_ |A|2 + |A|2

(9.123)
where, for convenience, the notation |W(s)|* = W (s)W (—s) and W*(s)=W(—s)
has been used, and is used in subsequent analysis. Using Egs. (9.118)—(9.121)
in this equation, the input impedance can be written in the form

Z, = YHIL,* + Y122|le|2 + YLy |* 4+ Y55IL,,1° (9.124)

This is the required result for a circuit consisting of the four stage 1
admittances Y;,, Y;,, Y, and Y, . This result needs to be extended to account
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R

. v \ /D3
Br—
+ L1
Yor, Vo Stage 2 Y37 |::|
I
_ — 33
Zrr, YR O\

Figure 9.37 Definition of Z,5 and Y,, for second stage of ladder network.

for the admittances in stage 2. To do this, first, note that Y,, = Y,, + Y,
where Y, is the admittance to the right of Y,,, as per Figure 9.37. Hence, the
input impedance can be written as

Zy = YHILy 1 4 Y51 + YILo 012 + V550,57 + Y5RIL,,)* (9.125)
Second, the last term in this equation can be written as
Y2>51|L22|2 = |L22|2|Y2R|222R (9.126)

where Z, = 1/Y,. Using the result of Eq. (9.124), it follows that Z,; can
immediately be written as

sz = Y2*3|Fzs|2 + Ya*2|F32|2 + Y3*T|F33|2 (9-127)

where the transfer functions F,;, F5,, and F5; are defined according to the
following equations where the voltage and current definitions are as per Figure
9.37:

V; V,

F,, =2 Ly, =-—" (9.128)
123 Yor=132=133=0 123 I32=133=0
V. Vi

Fy,=2% Ly, =-—~ (9.129)
132 YorL=123=133=0 132 I23=133=0
V; V,

Fyy = -2 Ly, =-* (9.130)
133 Yor=123=132=0 133 I23=132=0

In these equations, V;,. is the open circuit voltage defined by V,,. = V,ly,, 0.
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Thus, substitution of Egs. (9.127) and (9.126) into Eq. (9.125) yields,

Zin = Y1*1|L11|2 + Y1>k2|L12|2 + Y2*1|Lz1|2 + Y2*2|Lzz|2 (9 131)
+ Ly, P Y, pPLY551F 5517 + Y35 F 50l + Y55 F 55070

The goal is to rewrite the last three terms in this expression, in terms of the
transfer functions from the current sources to the node 1 voltage V;. To do this,
consider the first of these three terms |L,,|*|Y,zl? Y>5/F,;|%. First, the transfer
function F,; is the relationship between the open circuit voltage V,,. and the
current source 1,3, that is, V,,. = F,3I,5. By considering the Thevenin equiv-
alent circuit shown in Figure 9.38, it follows that

Vy = Vi [Y—] (9.132)

and hence, the current I,; will generate a voltage V, given by

Y.
V,=F,,| —28 |1 9.133
2 23|:Y2R + Y2L:| 23 ( )

Now, the voltage V, could also have been generated by a current I,,, according
to the relationship V, = I,,/(Y,x + Y,;). Hence, the relationship between the
equivalent current I,, and I,5, is

122 = Y2RF23123 (9~134)

From the definitions used for stage 1 of the network, a current I,, will
generate a voltage V, at the left end of the network, according to V; = L,,I,,.

A

2
NI Yor
1

—
Yor + L

Yy

Y3
V2 Y37
Y3

V2 V20c

| Thevenin Equivalent

Figure 9.38 Thevenin equivalent model for the circuit to the right of the line A — A.
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Hence, the output voltage generated by I,, is given by
Vi= Ly YorFs3lh3 = Lyslss (9.135)

where by definition, L,; = L,, Y,z F,; is the transfer function relating I, to V.
Similar definitions can be made for L,, and L5, and then, using Eq. (9.1395),
Eq. (9.131) can be written in the required form:

Zi = YL ? + YSIL P+ Y5 ILy | + Y5IL,,

YEIL,5? + Y&|Ly,|? + Yi5|Lys)? ©.136)
+ Y35|L,5]" + Y35|L35|" + Y3p|Lss|

In a similar manner, the admittance Y;; can be expanded, and the above
argument repeated to obtain a further expansion for the impedance Z,,. The
general result for a N stage ladder network is,

N
Ziw=YAIL P+ Y Vil P + Y Ly 1l + Yl Ly il
i=1

(9.137)



Notation

COMMON MATHEMATICAL NOTATION

—
| N—

—= Qn W <C %
57 Q

sinc(x)

sup

xeA

x, X, X(T, f)

u
AcS B
AxB
C

EX

G(T f), G.(f)
1

Im

L

Llo, f]
M

N
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Greatest integer function
Conjugation operator
For all

There exists

Dirac Delta function
The empty set
Characteristic function

Infimum

Probability density function for a random variable X
Imaginary unit number: j> = —1

Sinc function: sin(nx)/mx

Supremum

x is an element of A

The signal x, its Fourier transform and the Fourier transform
evaluated on the interval [0, T']

Unit step function

A is a subset of B

Cartesian product of the sets 4 and B

The set of complex numbers

Ensemble associated with the random process X
Power spectral density evaluated on [0, T] and [0, co]
The interval I

Imaginary part of

Set of Lebesgue integrable functions on (— oo, o0)

Set of Lebesgue integrable functions on [o, ]
Measure operator

The set of positive integers {1, 2,...}



R(T t, 7)
Re
SC
Sx
Z,Z"
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Probability operator

Average power evaluated on [0, T] and [0, o]

Probability space associated with the random process X
The set of rational numbers

The set of real numbers, the set of real numbers greater than
Zero

Time averaged autocorrelation function evaluated on [0, T]
and on [0, oo]

Autocorrelation function evaluated on [0, T7]

Real part of

Complement of the set S

Index set identifying outcome of a random process X

The set of integers, the set of positive integers {1, 2,...}

DEFINITION OF ACRONYMS

a.c.

C.C.

iff
rms

s.t.

u.c.

CE
DAC
FM
FSK
MIMO
NBHD
PSD
QAM
RP
SNR

almost everywhere

countable case

if and only if

root mean square

such that

uncountable case

common emitter

digital to analogue converter
frequency modulation
frequency shift keyed

multiple input—multiple output
neighbourhood

power spectral density
quadrature amplitude modulation
random process

signal to noise ratio

PARAMETER VALUES

g-Electronic Charge 1.6x107° C

T-temperature

300 degree Kelvin (room temp.)

k-Boltzmann’s constant 1.38 x 10~ 23 J/degree Kelvin
V; = kT/q-Thermal Voltage  0.0257 J/C (room temp.)
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1/f noise, 198, 266
1/f noise and bounded random walks, 198

Absolute continuity, 18, 22, 23
Absolute continuity and differentiability, 23
Absolute convergence, 34
Almost everywhere, 24
Approximation
continuous, 30
step, 32
Autocorrelation
definition, 79
existence conditions, 81
infinite interval case, 82
notation, 80
power spectral density relationship, 81
random process case, 80
single waveform case, 79
time averaged, 79

Bounded power spectral density, 75, 92
Bounded random walk, 196

Bounded variation, 18

Boundedness, 17

Boundedness and integrability, 29, 35
Boundedness and local integrability, 35
Brownian motion, 192

Cartesian product, 4
CE amplifier
input noise, 273, 281
noise model, 273
output noise, 277, 283
signal to noise ratio, 287
Characteristic function, 4

Index

Communication signals, 140
Complex numbers, 6
Conjugation operator, 8

Continuity
absolute, 18
left, 13
piecewise, 13
point, 14
pointwise, 14
right, 13
uniform, 14

Continuity and absolute continuity, 23
Continuity and boundedness, 19
Continuity and Dirichlet point, 42
Continuity and discontinuities, 20
Continuity and maxima-minima, 20
Continuity and path length, 20
Continuous approximation, 30
Convergence, 36

dominated, 36

Fourier series, 39

in mean, 36, 37

monotone, 37

pointwise, 36

uniform, 36
Correlogram, 80
Countable set, 6
Cross power spectral density, 102

bound, 106

definition, 104

DAC, 152
Differentiability, 15
piecewise, 16
Differentiability and Dirichlet point, 41
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Dirac Delta function, 43

Dirichlet point, 40

Dirichlet value, 41

Disjoint signaling random process, 207
Disjoint signals, 8

Dominated convergence theorem, 37

Energy, 13

Ensemble, 44

Equivalent disjoint random process, 207
Equivalent low pass signal, 187

Fourier series, 38
Fourier theory, 38
Fourier transform, 39
Frequency modulation

binary FSK, 215

raised cosine pulse shaping, 218
Fubini-Tonelli theorem, 34
Function definition, 7

Gaussian white noise, 259
Generalized signaling process, 166

Impulse response, 230
Impulsive power spectral density, 76
graphing, 122
Infimum, 4
Information signal, 138, 141
Input equivalent noise, 270, 278
CE amplifier, 273, 281
input equivalent current, 278
input equivalent voltage, 278
power spectral density, 280
Integers, 5
Integrability, 35
Integrated spectrum, 77
Integration
Lebesgue, 25
local, 27, 35
Riemann, 26
Interchanging integration order, 34
Interchanging summation order, 34
Interval, 6
Inverse Fourier transform, 42

Jitter, 155

Lebesgue integration, 25
Linear system
impulse response, 230
input-output relationship, 232
power signal case, 234
power spectral density of output, 238

transforms of output signal, 232
widowed case, 234

Linear system theory, 229

Locally integrable, 27

Low noise design, 285

Measurable functions, 25

Measurable set, 24

Measure, 23

Memoryless system, 10, 11

Memoryless transformation of a random
process, 206

Monotone convergence theorem, 37

Multiple input-multiple output system, 243

Natural numbers, 5
Neighbourhood, 6
Noise
1/f, 198, 266
CE amplifier, 273, 281, 283
doubly terminated lossless ladder, 289
effect of, 257
oscillator, 241
passive network, 287
shot, 160, 266
thermal, 264
Noise analysis
input equivalent noise, 270
linear time invariant system, 269
Noise equivalent bandwidth, 285
Noise model
BJT, 267
diode, 267
JFET and MOSFET, 267
resistor, 264
Non-stationary random processes, 71
Nyquist’s theorem, 265
generalized, 287

Operator definition, 7
Ordered pair, 4
Orthogonal set, 9
Orthogonality, 8
Oscillator noise, 241

Parseval’s theorem, 44
Partition, 4, 6
Passive network, 287
Piecewise continuity, 13
Piecewise smoothness, 16
Piecewise smoothness and absolute continuity,
23
bounded variation, 22
Dirichlet point, 42



discontinuities, 21

piecewise continuity, 22
Pointwise continuity, 14
Pointwise convergence, 36

Power
relative, 59
signal, 13

Power and power spectral density, 65
Power spectral density, 60
approximate, 99
autocorrelation relationship, 78, 81
bounded, 75, 92
continuity, 63
continuous form, 62
cross, 102
definition, 63, 67, 69
discrete approximation, 72
existence criteria, 73
graphing, 122
impulsive, 74
infinite interval, 67, 69
input equivalent current, 280
input equivalent noise, 272
input equivalent voltage, 280
integrability, 66
interpretation, 64
multiple input—multiple output system, 244
nonlinear transformation, 209
nonzero mean case, 121
output of linear system, 238
periodic component case, 119
properties, 65
random process, 67
required characteristics, 60
resolution, 66
simplification, 98
single sided, 72
single waveform, 60
symmetry, 66
via signal decomposition, 95
Power spectral density example, 96, 98, 102, 122
amplitude signaling through memoryless
nonlinearity, 211
binary FSK, 215
bipolar signaling, 148
CE amplifier input noise, 273, 281
CE amplifier output noise, 277, 283
digital random process, 70, 122
doubly terminated lossless ladder, 289
FM with pulse shaping, 218
jittered pulse train, 159
oscillator noise, 241
periodic pulse train, 115
quadrature amplitude modulatin, 191

INDEX 309

RZ signaling, 146
shot noise with dead time, 165
sinusoid, 65
spectral narrowing, 213

Power spectral density of
bounded random walk, 196
DAC quantization error, 152
electrons crossing a barrier, 161
equivalent low pass signal, 188
generalized signaling process, 167
infinite sum of periodic signals, 118
infinite sum of random processes, 108
input equivalent noise sources, 280
jittered signal, 158
linear system output, 238
multiple input-multiple output system, 244
passive network, 287
periodic random process, 117
periodic signal, 112
quadrature amplitude modulated signal,

186

random walk, 193
sampled random process, 184
sampled signal, 181
shot noise, 161
shot noise with dead time, 164
signaling random processes, 141
sum of N random processes, 112
sum of two random processes, 107

Probability space, 44

Quadrature amplitude modulation, 185
Quantization, 152

Raised cosine pulse, 218

Raised cosine spectrum, 148

Random processes, 44
signaling, 138

Random walk, 192
bounded, 196

Rational numbers, 5

Real numbers, 5

Relative power measures, 59

Riemann integration, 26

Riemann sum, 179

Riemann-Lebesgue theorem, 40

Sample autocorrelation function, 80
Sampling, 179

Schottky’s formula, 163

Schwarz inequality, 29

Set theory, 3

Shot noise, 160, 266

Shot noise with dead time, 163
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Signal
classification, 35
decomposition, 9
definition, 7
disjointness, 8
energy, 13
orethogonality, 8
power, 13
Signal path length, 17
Signal to noise ratio
CE amplifier, 287
DAC, 155
Signaling invariant system, 210
Signaling random process, 138
definition, 139
disjoint, 207
generalized, 166
Simple function, 30
Single-sided power spectral density, 72
Spectral distribution function, 77
Spectral issues, 146
Spectral spread, 213

Square law device, 212
Step approximation, 32
Supremum, 4
System

definition, 7

linear, 9

memoryless, 10, 11

Thermal noise, 264
Transferring noise sources, 282

Uncountable set, 6

Uniform and pointwise continuity, 14
Uniform continuity, 14

Uniform convergence, 36

White noise, 259
Wiener Khintchine relations, 83

Wiener process, 192

Zero measure, 24, 27
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