

10:39 AM 8 March 2006 ffirs.fm 1.0

ffirs.fm Page ii Wednesday, March 8, 2006 10:40 AM

2:9 PM 10 March 2006 front_inter_cover.fm 1.0

Main Patterns and Design Strategies organized by functional layer

front_inter_cover.fm Page i Friday, March 10, 2006 2:12 PM

12:20 PM 8 March 2006 front_inner_paper.fm 1.0

Main principles
• GUI design and overall development

– User-centered design (44)
A design approach for building highly usable user interfaces, putting the emphasis
on the user.

– Cost-driven design (81)
GUI design comes first, with an eye on development complexity. For example,
avoid using ad-hoc components (81) in your GUI as far as possible.

– Iterative GUI development (169)
Iterate: GUI design and implementation, profiling, software and usability testing.

• Implementation

– The principle of Single Functional Responsibility (227)
Provide only one functional responsibility per class/method.

– Object lifecycle management – a general mindset (281)
Instantiate lazily and dispose eagerly, avoid garbage collector bottlenecks.

– Don’t go against the flow (284)
GUI toolkits are complex beasts, so don’t ignore them and implement fancy
designs counter to the architecture or style of the underlying GUI toolkits and
infrastructure (RCP).

Visual refactorings
Other refactorings are discussed in Chapter 5.

• Extract explicit panel (195), Extract stand-alone panel (196), and Composable units (292)

Extract the code of an existing GUI panel into a separate implementation to enhance
modularity and reusability.

• Merge panel (197)

Merge different implementations representing the same panel into a common one.

• Add parameter to panel (197) and Remove parameter from panel (198)

Add parameters to customize a panel and its opposite refactoring, Remove parameter
from panel (198).

• Parameterize panel (199)

Implement two slightly different panels with a unique code base.

• Replace parameter with panel (200)

Instead of adding a parameter, separate the implementation of the two panels.

• Rename panel (201)

Change the name of a panel.

front_inner_paper.fm Page i Wednesday, March 8, 2006 12:29 PM

12:30 PM 8 March 2006 back_inner_paper.fm 1.0

Cheat Sheet
An extremely simplified and by no means exhaustive basic reference to some of the topics
discussed in the book.

GUI Design
• How do I signal to the user my GUI is busy?

Change mouse pointer to hour glass for any operation that lasts more than two
seconds, always use progress indicators, and update progress every five seconds.

• How do I validate my GUI?

Involve users in design, use prototyping, software testing, memory profiling
(Chapter 5), questionnaire evaluation (Appendices A and B), and usability testing.

• How do I organize the GUI window area?

Use the Area Organization design strategy (120).

• How do I allow the user to select or create information in a GUI?

Use the Chooser design strategy, 126.

• How do I deploy my GUI?

Use Java Web Start when the user population is confident with approving certificates,
as for internal software. Use installers in other cases, and for large installation
bundles. Consider also using applets!

Software Design
• How do I keep my GUI responsive to user interaction during long-running

operations?

Use the Active Object pattern, 280 (for Swing, the SwingWorker class) for any opera-
tion that might last more than one second.

• How do I implement control (reaction to user interaction) in my GUI?

Depending on the number of items to be controlled by control rules, use:
– Scattered control (260) – few items, reactive-only control rules.
– Centralized control, the Mediator pattern (263) – many items, any kind of control

rule.
– Explicit Control State (260) – complex control rules, need for flexibility.

• How do I implement undo/redo in a GUI?

Build a queue or stack of edits (587), use the Command pattern (258) for user actions.

• How do I implement role-based authorization/security in my GUI?

Build a dedicated authorization manager class using Adaptation (272).

back_inner_paper.fm Page 758 Wednesday, March 8, 2006 12:30 PM

12:30 PM 8 March 2006 back_inner_cover.fm 1.0

• How do I implement user customization and user profiles in my GUI?

Build a dedicated profile manager class using Adaptation (272).

• How do I reuse existing panels in my GUI?

Use visual refactorings (194).

• How do I organize implementation for modularity and extensibility in a large or
complex GUI?

Define and implement a Composable Unit strategy, 292.

• How do I implement content assembly – adding components to a screen or panel – in
a GUI?

Depending on the features you want use:

– Static assembly (229), for simple layouts, no reusability.

– Simple Builders (229), for ease of use, separation of concerns, limited flexibility.

– Create and use Domain-specific or Little languages, 466 – good separation, maximum
flexibility.

• How do I organize complex event-based interactions among objects in my GUI?

Use an Event Arbitrator (245) to:

– Avoid event loops and rationalize chains of observers-observables.

– Shield client classes from low-level events.

– Forward events to complex data structures based on the Composite pattern.

• How do I handle large data collections?

Depending on the context of the problem, use:

– Eager disposal (281) of objects that are no longer needed – simple references,
extremely large trees.

– Weak or soft references, for cached objects and data that can be created or fetched
on the fly.

– Paging (281) for loading a few pages at time, discarding old ones, such as large
table models or large collections of expensive objects.

• How do I communicate data remotely in a modular way?

Separate screen data state from domain objects using Data Transfer Objects (234).

• How do I handle data represented in widgets?

Define Screen Data State (SDS, 330) and the widgets that will interface SDS to the
user. For synchronization with domain objects data (if any) use:

– Manual synchronization of SDS and data, for simple, small GUIs.

– Data binding support, for medium to large, complex GUIs.

back_inner_cover.fm Page 758 Wednesday, March 8, 2006 12:30 PM

10:39 AM 8 March 2006 ffirs.fm 1.0

Professional Java User
Interfaces

ffirs.fm Page i Wednesday, March 8, 2006 10:40 AM

10:39 AM 8 March 2006 ffirs.fm 1.0

ffirs.fm Page ii Wednesday, March 8, 2006 10:40 AM

10:39 AM 8 March 2006 ffirs.fm 1.0

Professional Java User
Interfaces

Mauro Marinilli

ffirs.fm Page iii Wednesday, March 8, 2006 10:40 AM

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed
to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Marinilli, Mauro.
Professional Java user interfaces / Mauro Marinilli.

p. cm.
Includes bibliographical references and index.
ISBN 0-471-48696-5 (pbk. : alk. paper)
1. Java (Computer program language) 2. User interfaces (Computer
systems) I. Title.

QA76.73.J38M34954 2006
005.13'3--dc22

2006004498

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 13: 978-0-471-48696-5

ISBN 10: 0-471-48696-5

Typeset in 10/13.5pt Palatino by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Bell & Bain, Glasgow

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two
trees are planted for each one used for paper production.

ffirs.fm Page iv Wednesday, March 8, 2006 10:40 AM

www.wiley.com

To the person who keeps alive in his daily work
the Spirit of Wonder of the early days.

fdedic.fm Page v Wednesday, March 8, 2006 10:39 AM

10:38 AM 8 March 2006 fdedic.fm 1.0

fdedic.fm Page vi Wednesday, March 8, 2006 10:39 AM

Brief Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

Acknowledgements xxi

Introduction xxiii

1 Putting GUI Development into Context 1

Part I User Interface Design

2 Introduction to User Interface Design 31

3 Java GUI Design 77

4 Recurring User Interface Designs 119

Part II Software Design

5 Iterative GUI Development with Java 169

6 Implementation Issues 223

7 Code Organization 287

8 Form-Based Rich Clients 323

9 Web-Based User Interfaces 359

10 J2ME User Interfaces 375

11 Java Tools and Technologies 393

12 Advanced Issues 447

Part III Examples

13 Rich Client Platforms 471

14 The Personal Portfolio Application 497

15 An Example OO User Interface 535

Brief Contents

ftoc.fm Page vii Thursday, March 16, 2006 6:09 PM

viii Brief Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

16 An Example Ad-Hoc Component 567

A A Questionnaire for Evaluating Java User Interfaces 607

B A Questionnaire for Evaluating J2ME Applications 613

References 621

Index 629

ftoc.fm Page viii Thursday, March 16, 2006 6:09 PM

Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

Acknowledgements xxi

Introduction xxiii

The interactivity thrill xxiii

Usable GUIs and usable books xxiv

The organization of the book xxv

Three levels of advice xxvii

Conventions used in the book xxviii

Source code xxviii

Reader feedback xxix

Book readers and personas xxix

Lars, a Java intermediate programmer xxx

Keiichi, a tech lead xxx

Shridhar, a professor in computer science xxxi

Melinda (Mellie), a manager xxxi

William, a first year student in a Master in CS course xxxii

Karole, a business analyst xxxiii

Juan, an experienced programmer xxxiii

1 Putting GUI Development into Context 1

1.1 Introduction 2

1.2 Focusing on users 2

1.3 A functional decomposition for user interfaces 3

1.4 Tool selection: the Java singularity 6

Of running little green men and wrong choices 7

1.5 Organizational aspects 7

People and GUIs 8

Team composition 10

1.6 Early design 12

Use case diagrams and GUIs 12

Contents

ftoc.fm Page ix Thursday, March 16, 2006 6:09 PM

x Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

1.7 Lifecycle models, processes and approaches 14
Rational Unified Process 15
Extreme Programming and other Agile approaches 20
LUCID methodology 22
Evolutionary Prototyping process 24

1.8 UML notation 26
Class diagrams 26
Sequence diagrams 28
State diagrams 29

1.9 Summary 30

Part IV User Interface Design

2 Introduction to User Interface Design 31

2.1 The human factor 32
A model of interactive systems – seven stages

and two gulfs 32
Developers are part of the design process 34
Short term memory and cognitive modeling 36
Interacting with human beings 39
User-centered design 44
Simplified thinking aloud 46

2.2 Display organization 47
Esthetic considerations 49
Abstract-Augmented Area for GUIs 51

2.3 Interaction styles 57
Menu selection 57
Form filling 59
Language-based styles 62
Direct manipulation 63

2.4 Conceptual frameworks for UI design 64
Entity-based approaches to UI design 65
Metaphor-based approaches to UI design 66
Function-based approaches to UI design 67
‘Null’ approach to UI design 67
Object-oriented user interfaces 69

2.5 Assessing the quality of a GUI 72
Usability heuristics 73

2.6 Summary 75

ftoc.fm Page x Thursday, March 16, 2006 6:09 PM

Contents xi

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

3 Java GUI Design 77

3.1 Java technology for GUIs 77
Assembling the components 77
Three levels of component cost 79

3.2 Cost-driven design 81
Ad-hoc versus custom – the difference between ‘run’ and ‘ride’ 81
When ad-hoc is the only way to go 83

3.3 Exploring the design space for a point chooser 86
Standard designs 88
Ad-hoc designs 91
Mixed designs 97
Conclusions 99

3.4 Design guidelines for the Java platform 100
Introduction to the guidelines 100
J2SE user interface design guidelines 103

3.5 The Java look and feel design guidelines 108
Some definitions 109
The Java ‘look’ 109
The Java ‘feel’ 110
Some terminology 112
An example – applying the guidelines for designing dialogs 114

3.6 Summary 117

4 Recurring User Interface Designs 119

4.1 GUI area organization 120
Terminology 120
Main frames 121
Multiple document interfaces 123
Wizards 124

4.2 Choosers 126
Chooser activation mechanisms 127
Chooser interaction styles 128
Broadening the choice 131
Conclusions 133

4.3 Memory components 133
Input history 134
Saving user preferences 134

4.4 Lazy initialization 135

ftoc.fm Page xi Thursday, March 16, 2006 6:09 PM

xii Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

4.5 Preference dialogs 137
Preference dialogs styles 138

4.6 Waiting strategies 141
4.7 Flexible layout 144
4.8 Common dialogs 146

The ‘About’ dialog 146
Log-in dialog 149
First-time message dialogs 150
Splash window 151

4.9 Command components 152
Graphic conventions 156
Toolbar composition 157
Command composition 158

4.10 Accessibility 160
Testing the final product for accessibility 161
Conclusions 161

4.11 Navigation and keyboard support 161
Keyboard shortcuts 161
Tab traversal 162

4.12 Internationalization 163
4.13 Help support 164
4.14 Icons and images 165
4.15 Leveraging object-oriented programming 166
4.16 Summary 167

Part V Software Design

5 Iterative GUI Development with Java 169

5.1 Iterating wisely 171
5.2 Introduction to prototyping 173

Uses for prototyping 174
The two dimensions of prototyping 176
Competitors’ product as ready-made prototypes 177
Prototyping as a philosophy for development 177
Prototypes and customers 178

5.3 Prototyping alternatives 179
Different types of prototypes 179
Storyboards 182

ftoc.fm Page xii Thursday, March 16, 2006 6:09 PM

Contents xiii

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

5.4 GUI builders 184
5.5 Reusable prototyping widgets 187

A tree prototype utility class 187
A visual container prototype utility class 190

5.6 GUI refactoring 191
Some classic refactorings 191
Some GUI-specific refactorings 194
Failing with style 201

5.7 Introduction to user interface testing 203
Test-driven development 204
What’s first – GUI design or implementation? 204

5.8 Software testing of Java GUIs 206
How to test – GUI software test approaches 206
What to test – test coverage criteria 210

5.9 Usability testing of Java GUIs 211
5.10 JRE runtime management 214

Introduction to profiling 214
Common problems 216
Continuous profiling 219
A posteriori profiling 220

5.11 Summary 221

6 Implementation Issues 223

6.1 Revisiting the abstract model 224
Testing the various layers 226
The principle of Single Functional Responsibility 227
Isolating presentation details 228

6.2 Content 229
Content assembly 229
Explicit navigation 231

6.3 Business domain 231
6.4 Data input-output 233

A comprehensive data IO design strategy 233
Some design patterns 234
Remote communication design 235
Security issues 236

6.5 Making objects communicate 239
The Observer pattern 240
Swing events 242

ftoc.fm Page xiii Thursday, March 16, 2006 6:09 PM

xiv Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

SWT events 243
Design-time class decoupling with events 243
Event Arbitrator 245
Misuses of event-based messaging 248
Alternatives to event-based communication mechanisms 250

6.6 Separating data from views 251
Model-View-Controller 252

6.7 Interaction and control 257
Representing user actions with the Command pattern 257
Control issues 260
A state-oriented approach to GUI control 265

6.8 Some design patterns for GUIs 271
Adaptation 271
Composite Context 277
Active Object 279
Object lifecycle management – a general mindset 280
Value Model 282

6.9 GUI complexity boosters 283
6.10 Summary 285

7 Code Organization 287

7.1 Introducing software architectures 287
Taming references 289
Composable units 292
Evolving order and appropriate architectures 294

7.2 Some common GUI architectures 295
The smart GUI antipattern 296
A semi-smart GUI architecture 297
A three-layer architecture 298
A four-layer architecture 299

7.3 A three-layer organization for GUI code 300
Overview 301
The presentation layer 303
The application layer 304
The service layer 305

7.4 Two examples of a three-layer implementation 306
An MP3 player 306
An electronic circuit simulator and editor 309

ftoc.fm Page xiv Thursday, March 16, 2006 6:09 PM

Contents xv

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

7.5 The service layer 314

Overview 314

Persistence services 319
Factory services 319

Other services 320

7.6 Summary 321
Key ideas 322

8 Form-Based Rich Clients 323

8.1 Introduction 323

Defining rich clients 324

Java rich clients 325

GUI design for rich clients: the Third Way 326
8.2 Reference functional model 326

Distributing behavior between client and server 327

Common problems 329

8.3 Runtime data model 329
Validation 332

When to validate and notify 339

8.4 The cake-ordering application, the XP way 343
Setting up the first Iteration 344

Content first 346

Data second 350

Commands third 353
Closing the loop with the server 357

8.5 Summary 358

9 Web-Based User Interfaces 359

9.1 An overview of Web user interfaces 359

9.2 GUI design for the Web 361
Fine graphics details 361

Area organization 362

Levels of client-side control 362

Navigation issues 365
9.3 Implementing Web applications with Java 368

The typical architecture of a Web application 368

Basic Java Web GUI technologies 369

Java applets 370

ftoc.fm Page xv Thursday, March 16, 2006 6:09 PM

xvi Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

9.4 From Web applications to rich clients 371
Different development habits 372

9.5 Summary 373

10 J2ME User Interfaces 375

10.1 Introduction to the MID profile 375
Main UI concepts 376
Main UI limitations 379
Cost-driven design for J2ME GUIs 379

10.2 The MIDP UI API 379
UI widgets 379

10.3 Designing MIDP GUIs 382
Abstract GUI designs 384

10.4 Designing navigation 385
10.5 An example custom item 387
10.6 An example ad-hoc item 388
10.7 An example application 389

The code 391
10.8 Summary 392

11 Java Tools and Technologies 393

11.1 Introduction to tool selection 394
11.2 Evaluating open source software 394

Open Source Maturity Model 396
11.3 SWT or Swing? 397

The toolkits 397
Choosing a toolkit 403
Mix and match 409

11.4 Other GUI technologies 410
11.5 Utility libraries 411

Security tools 412
Deployment tools 413
Glazed Lists 413
JGoodies Swing Suite 414
L2FProd Common Components 415
Other OSS component libraries 415
Some commercially-available Swing components 418

11.6 Test tools 420
11.7 Profiling tools 421

ftoc.fm Page xvi Thursday, March 16, 2006 6:09 PM

Contents xvii

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

11.8 GUI builders 422
11.9 Presentation layer technologies 424

Assessing a look and feel 425
Swing look and feels 426
SWT Presentation 442

11.10 Declarative GUIs with Java 443
XML-based formats 443

11.11 Summary 445

12 Advanced Issues 447

12.1 Building on top of existing libraries 447
Attributes 448
Roll your own framework 451

12.2 Memory management for complex GUIs 454
A practical case 455

12.3 Restructuring existing GUI code 457
Porting an old applet – a case study 459
Long-life GUIs 463
Providing new deployment support 464

12.4 Exploiting technology 465
12.5 Domain-specific and Little languages 466
12.6 The future of Java GUIs 468
12.7 Summary 469

Part VI Examples

13 Rich Client Platforms 471

13.1 Introduction to Java rich client platforms 471
The case for RCP applications 472
What’s in an RCP 473
GUI design guidelines and RCPs 474

13.2 The NetBeans RCP 474
NRCP architecture 475

13.3 The Spring RCP 476
13.4 The Eclipse RCP 477

Eclipse plug-in architecture 477
Eclipse RCP plug-ins 478
The workbench – the building blocks of ERCP GUIs 479
GUI design guidelines for ERCP applications 482

ftoc.fm Page xvii Thursday, March 16, 2006 6:09 PM

xviii Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

13.5 Choosing the best RCP for your needs 483

When to employ an RCP 484

13.6 Legal issues 485

Eclipse 485

Netbeans 486

13.7 An example Eclipse RCP application 486

The application 487

Introducing client-side modular architectures 489

The Snooper application architecture 492

13.8 Summary 496

14 The Personal Portfolio Application 497

14.1 The scenario 497

A note on lifecycle models 498

14.2 Analysis 499

Early analysis 499

Some scenarios 503

A refined use case diagram 504

Individuating boundary classes 505

14.3 Choosing a technology 505

14.4 An initial GUI design 506

An initial GUI paper mock-up 506

A second GUI paper mock-up 508

A throw-away GUI prototype 511

Validating the throw-away prototype 512

14.5 The final GUI 513

14.6 Implementation 515

Software requirements 516

The software architecture 516

14.7 Resources 524

Localization bundles 525

Images 525

14.8 The code 525

The remote explorer director 526

The prototype 529

14.9 Deployment issues 529

Server support 529

ftoc.fm Page xviii Thursday, March 16, 2006 6:09 PM

Contents xix

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

14.10 An alternative, cost-driven implementation 530

Choosing a higher-level starting point 530

A cost-driven prototype using JDNC 531

A brief introduction to JDNC 531

14.11 Summary 533

15 An Example OO User Interface 535

15.1 Introduction 536

A matter of style 536

15.2 Implementing object-oriented user interfaces 537

The Viewable interface 538

15.3 Some utility classes 542

Brief views 542

Making collections viewable 543

15.4 Configuration views 544

A utility class 544

15.5 Interacting with the user 546

The Commandable interface 546

15.6 Managing user commands 549

15.7 An example application 550

OOUI objects 551

The code 555

Libraries 558

Some GUI design considerations 559

Control issues 560

15.8 An alternative implementation using Naked Objects 563

15.9 Summary 565

16 An Example Ad-Hoc Component 567

16.1 Introduction 568

16.2 The Drawing Sandbox application 569

The application 570

16.3 The Sandbox architecture 573

16.4 The Sandbox component 575

Top-down refinement of functional organization 575

Organizing object communication 575

Graphical objects 579

ftoc.fm Page xix Thursday, March 16, 2006 6:09 PM

xx Contents

modified 6:9 PM 16 March 2006 ftoc.fm 1.0

16.5 User interaction 582
Command composition 582
The Action framework 583
The Actions class 584
Undo-redo support 587
The Edit class 588
Recording edits 589
Memory issues 590

16.6 Control 592
The Director class 594
Managing actions 595
Enforcing logical constraints on actions 596

16.7 The whole picture 597
16.8 Stressing the software design 598

Adding objects and commands 599
The design’s weak points 600

16.9 Introducing JHotdraw 601
16.10 Summary 605

Key ideas 605

A A Questionnaire for Evaluating Java User Interfaces 607

B A Questionnaire for Evaluating J2ME Applications 613

References 621

General advice on usability and GUI design 626
Java-specific links 627

Index 629

ftoc.fm Page xx Thursday, March 16, 2006 6:09 PM

Acknowledgements

10:37 AM 8 March 2006 fack.fm 0.1

I have been working on this book for more than five years, in one way or another.
It is by no means the result of a single person (the author). A very large number
of people shaped it, so many that it will be impossible to name them all.

I should first thank Sally Tickner and the management at John Wiley and Sons, for
allowing me to deliver the manuscript after such a huge delay, which was mostly
caused – only a partial excuse – by my never-ceasing joy of working on and
taming new and complex adventures, rather than lack of interest in the subject.

It’s easy to remember Steve Rickaby of WordMongers, whose expert hand made
this book readable and sometimes even enjoyable. If it wasn’t for his help this
gigantic work would have been very different.

A special thanks too to my students, who kept the fire of honest enthusiasm and
the Spirit of Wonder high, and who were extremely patient with my shameful
schedule. I hope I gave them back at least a small portion of what they gave to me.

I wish also to thank the reviewers for their careful work, the many clients and
colleagues for the countless lessons that I tried to put together in the book, and all
the people who spent precious time out of their lives putting into written form
their hard-won experience, often without any economic return.

Last but not least, my biggest thanks go to my family, my Bella, and my closest
friends. Without their presence, patience, and constant support, this book
wouldn’t have been possible.

Acknowledgements

fack.fm Page xxi Wednesday, March 8, 2006 10:37 AM

fack.fm Page xxii Wednesday, March 8, 2006 10:37 AM

Introduction

5:8 PM 9 March 2006 fintro.fm 0.1

This introduction is structured as follows:

The interactivity thrill talks about the magic of the first time and other things.

The organization of the book discusses the book’s contents and organization.

Book readers and personas provides a more user-centered approach to the contents
of the book.

The interactivity thrill
Current software technology allows developers to build graphical user interfaces
(GUIs) for only the cost of the labor, and with greater simplicity than ever before.
Despite that, GUIs, and Java GUIs among them, are often totally frustrating and
disappointing. In the words of Alan C. Kay1:

“A twentieth century problem is that technology has become too ‘easy.’
When it was hard to do anything, whether good or bad, enough time was
taken so that the result was usually good. Now we can make things
almost trivially, especially in software, but most of the designs are trivial
as well. This is inverse vandalism: the making of things because you can.
Couple this to even less sophisticated buyers and you have generated an
exploitation marketplace similar to that set up for teenagers. A counter to
this is to generate enormous dissatisfaction with one’s designs using the
entire history of human art as a standard and goal. Then the trick is to
decouple the dissatisfaction from self worth – otherwise it is either too
depressing or one stops too soon with trivial results.”

Basically, inverse vandals don’t care about their work and its impact on the lives of
users and the many others affected by their work, which is a pity. Software has a
sort of magic in itself, and interactive software provides a concrete, vivid example
of such a magic. Whether you are a teenager playing a video game or an old guy
fiddling with an early computer in your garage, there was probably a moment in
your life when you were totally amazed by a piece of software – otherwise you
would probably have chosen another career.

1. The Early History of Smalltalk,
http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html

Introduction

fintro.fm Page xxiii Thursday, March 9, 2006 5:08 PM

xxiv Introduction

5:8 PM 9 March 2006 fintro.fm 0.1

Such a feeling alone, and perhaps a rather selfish and self-gratifying one, is not
enough to provide reliable, professional results. There is a need to study and
apply a wide array of subjects in depth, filtering user’s needs through experience
and the relentless application of ambitious but sensible designs and solutions,
both on the GUI side and in its implementation. Despite all this hard work – or
possibly because of it – the fun still remains, and I hope you can see it between the
lines of this book. Finally, some words about my professional background, that
could help in providing a better understanding and a more critical view of the
book’s contents.

My long experience is mostly on internal projects, that is, building software for
customers, and also spans a few products building shrink-wrapped software. As
far as Java is concerned, I started working with Java GUIs in 1998, trying to focus
on client-side aspects whenever possible. I worked on a couple of large and
complex GUIs, and on other projects that ranged from the weather forecasting
system for the Italian air force to large multinational corporate ERPs, various Web
sites, a large GUI framework for advanced enterprise clients – on various aspects
still unmatched on the market – and more recently have been hopping on and off
planes throughout Europe and US as a consultant while trying to find the time for
a number of EU and academic research projects.

Usable GUIs and usable books

Writing a book like this is in many ways similar to GUI development1. The
author has a target audience, at least in his mind (end users), and many little
daily hindrances. He needs to work to earn his keep, trying to maintain a
private life and struggle with mundane things like mastery of the English
language (GUI design guidelines), the wrong dpi settings in scanned pictures
(API inconsistencies), ever-newer technologies, and all the rest. Luckily he is
not alone. He is the less-experienced part of a great team of professionals (the
development team), good-willed reviewers (user representatives), and wonderful
private-life supporters. Nevertheless, new ideas and existing content that
should be better addressed seem never-ending (feature creep), and the manu-
script keeps growing (deadlines shifting). The author is constrained by
deadlines and wants to deliver something useful (at least within his definition
of usefulness). There are different kinds of GUI development. There are shrink-
wrapped products, where there is competition and users can easily opt for your
product or a competing one, as in the case of a shareware music player, and
various forms of internal projects where users have no choice but to read the

1. The term development is meant to indicate the general process of building a GUI, including
GUI design and implementation.

fintro.fm Page xxiv Thursday, March 9, 2006 5:08 PM

Introduction xxv

5:8 PM 9 March 2006 fintro.fm 0.1

book/use the application. A documentation manual fits the latter category1:
unfortunately for me, this book falls into the first category.

All the above has a common denominator: the end user. The ultimate objective is
to write a book that you would like to read, in which the message comes across as
smoothly and as richly as possible and as you expect, saving you time and effort,
while possibly providing you with a pleasant experience. This book – and the next
application you are going to create – will be effective and useful as long as its very
inception, its design and writing, focuses on end users.

The organization of the book
The book is organized in three parts. The first part introduces HCI and GUI
design, starting from general concepts and concluding with recurring GUI
designs. The second part, from Chapter 5 to Chapter 12, discusses general imple-
mentation advice. The third part, from Chapter 13 to Chapter 16, discusses some
examples applications, from analysis and GUI design to the software architecture
and the implementation – something rather rare to find in literature. Finally, two
appendices provide evaluation questionnaires specifically targeted at Java GUIs.

The following gives a brief description of the book’s contents.

1. In real-world situations users have another popular choice: skip reading the manual
altogether.

Part Chapter Title Description

1 Putting GUI Development
into Context

Framing GUI development in the wider context
of software development, introducing a general
reference functional model for GUIs, and UML
diagrams.

G
U

I D
es

ig
n

2 Introduction to User Interface
Design

A basic introduction to some key themes of
HCI and user-centered, general user interface
design.

3 Java GUI Design Practical GUI design for the Java platform with
some practical examples, introducing the Java
Look and Feel design guidelines.

4 Recurring User Interface
Designs

Recurring design solutions in desktop applica-
tions, with reusable code.

fintro.fm Page xxv Thursday, March 9, 2006 5:08 PM

xxvi Introduction

5:8 PM 9 March 2006 fintro.fm 0.1

Im
pl

em
en

ta
tio

n

5 Iterative GUI Development
with Java

Building GUIs iteratively using OOP. Intro-
ducing software testing, usability testing for
Java GUIs, and GUI-specific refactorings.

6 Iterative GUI Development
with Java

Introduction to software design strategies and
OOP design patterns for GUIs.

7 Code Organization Main software architectures for GUI applica-
tions and some reusable utility classes.

8 Form-Based Rich Clients An example iterative, test-driven GUI
development.

9 Web-Based User Interfaces Web GUI design basics and related Java
technologies.

10 J2ME User Interfaces An introduction to J2ME GUI technologies and
GUI design for wireless devices, with some
example code for MIDP.

11 Java Tools and Technologies A review of the main tools and technologies
available for Java application development,
with particular focus on open source software.

12 Advanced Issues Some topics of interest for complex GUIs:
building custom frameworks, usability applied
to API design, memory management, legacy
GUI code, and domain-specific languages for
GUIs.

Part Chapter Title Description

fintro.fm Page xxvi Thursday, March 9, 2006 5:08 PM

Introduction xxvii

5:8 PM 9 March 2006 fintro.fm 0.1

Three levels of advice

Building a usable, cost-effective, professional-quality GUI is a complex and multi-
disciplinary process that involves mastery of many different skills. In this book we
will cover three different perspectives: the design of the user interface, the soft-
ware architecture behind it, and the tactics related to the source code, as shown in
the figure below.

The three level of advice in the book

Professional GUIs are carefully designed and implemented pieces of software. For
this reason special attention is given in this book to implementation details, espe-
cially at the design and architectural level – in my experience the only way to
absorb reliably the sort of complexity-by-accretion that real world GUIs exhibit.
Source code listings and code-level tactics are mentioned only briefly, to save
space and reduce the danger of sending my copy-editor to sleep.

E
xa

m
pl

es

13 Rich Client Platforms Introduction to Rich Client Platforms (RCP)
and Eclipse RCP GUI design guidelines, with
an example service-oriented GUI for the
Eclipse RCP.

14 The Personal Portfolio
Application

Design and development of an example appli-
cation using use cases. An alternative design
using JDNC is also discussed.

15 An Example OO User
Interface

Using the OOUI approach to design and imple-
ment an example application, compared with
the use of the Naked Objects framework.

16 An Example Ad-Hoc
Component

An example ad-hoc component and its
comparison with the JHotDraw framework.

A
pp

en
di

xe
s A A Questionnaire for Evalu-

ating Java User Interfaces

B A Questionnaire for Evalu-
ating J2ME Applications

Part Chapter Title Description

fintro.fm Page xxvii Thursday, March 9, 2006 5:08 PM

xxviii Introduction

5:8 PM 9 March 2006 fintro.fm 0.1

Conventions used in the book

Throughout the book notes are represented using the graphical convention below.

All references are gathered in a reference section and represented following the
Chicago Manual of Style, fourteenth edition, University of Chicago Press, 1993.

Source code

Source code is provided on my Web site at:

http://www.marinilli.com/books/b1/b1.html

or you can start from the home page at http://www.marinilli.com and follow
the links from there. It is organized into separated bundles for each chapter, and
a single file containing the code for all the chapters is also available. Sources are
provided with Ant build files and with Eclipse projects.

Some of the example applications can also be launched on line using JNLP links,
available at:

http://www.marinilli.com/books/b1/b1.html

This is a note.

fintro.fm Page xxviii Thursday, March 9, 2006 5:08 PM

Introduction xxix

5:8 PM 9 March 2006 fintro.fm 0.1

The JNLP client will ask for authorization prior to installing the application.

Reader feedback

A book is an inherently limited means of communication, at least when compared
with computer-based interactive tools. In order to balance this unfair equilibrium,
a public forum will be available on my Web site for readers to give feedback, pose
questions, download the source code, or start a discussion.

Book readers and personas
You might have bought this book, and I do thank you for that. Unfortunately, it is
more than 707 pages long and you could not have the time or will to read it all from
end to end, neither would it be a time-efficient thing to do. The objective of this
section is to help you save your valuable time getting quickly to your point, gaining
also a first glimpse of techniques for focusing the design around end users.

The book can be used in a number of ways: it is useful for experienced developers
that want to explore ideas on GUI development, and can be used in courses on
practical GUI design and implementation. Intermediate developers can take
advantage of the many examples provided to explore sample implementations.

The book has been designed with three types of reader in mind:

i. Those that have better things to do in life than fiddling with theoretical
issues, and just need to put together something that works, now.

ii. Novice readers who want to explore the complexity of professional GUI
development.

iii. Those that are experienced and critical about ready-made solutions, and
would like a critical and wider discussion of the major issues for GUI devel-
opment in Java.

The following sections describe a set of fictitious readers, built with the persona
technique1. If you are lucky enough to recognize yourself as one of them, or some-
where in between, their approach to the book might suit you. Alternatively, if you
are one of those brave, tough, developers who think all this Lars and Melinda stuff
is a bit silly, skip the following section and jump directly to the first chapter.

1. These user representations are called Personae and were introduced by A. Cooper in
(Cooper 1999). They are useful for defining the user population clearly to designers, even
for a book.

fintro.fm Page xxix Thursday, March 9, 2006 5:08 PM

xxx Introduction

5:8 PM 9 March 2006 fintro.fm 0.1

Lars, a Java intermediate programmer

Lars, 24, doesn’t have time to waste. In his first glance at the book he sees
many interesting things, but he needs to deliver a small (twenty-some screens)
form-based corporate rich client application within five weeks. He needs to
interface with an existing J2EE application and with a third-party Web service.
After a quick look on the Web, he remains a bit confused by the many technol-
ogies and options available: he wants to look at some working code and get a
clear understanding of how it works, together with some advice to help him
to build a bigger picture of the best choices available, without wasting time on
other fancy details.

Lars will then…

• Take a bird’s eye view of Chapter 6 and an even quicker glimpse at Chapter 7
to see about client tier architectures.

• Perhaps take a look at Chapter 5, to see if there is some useful technique he
can take advantage of in his project.

• Read the discussion about SWT vs. Swing in Chapter 11, opting for SWT and
the Eclipse RCP for his project.

• Consequently focus his attention on Chapter 13 (RCP), and Chapter 8 (Form-
based GUIs).

• Use the quick references on the book’s reverse covers as required.

• After his project is completed, get back to the rest of the book…

Keiichi, a tech lead

Keiichi is a technical leader in a medium-sized software company in Japan who
wants to explore new ideas about GUI development. He is starting a new project
and has some spare time that wants to spend on refreshing his knowledge about
GUI design and development. He is particularly interested in the architecture of
complex desktop GUIs that provide undo/redo support, complex validation,
role-based fine-grained authorization, and more.

Keiichi will then…

• Read Chapter 1.

• Read parts of Chapter 2 and Chapter 3 to get an idea of GUI design.

• Browse Chapter 4 for a quick look at recurring GUI designs in desktop
applications.

• Read Chapter 5 about iterative GUI development – a subject in which he is
quite interested.

fintro.fm Page xxx Thursday, March 9, 2006 5:08 PM

Introduction xxxi

5:8 PM 9 March 2006 fintro.fm 0.1

• Have a look at Chapter 6 for some implementation strategies and common
issues related to complex GUI development.

• Take a quick look at Chapter 7 and Chapter 8 for completing his introduction
to the implementation of complex rich client GUIs with Java.

• Read Chapter 12 about advanced issues and ideas for implementing non-
trivial GUIs.

• Browse the example applications in the third part of the book.

• After adding notes and bookmarks, put back the book on his shelf, prom-
ising himself to get back to it when the new project has started…

Shridhar, a professor in computer science

Shridhar is an assistant professor in a university in Kanpur, India. He is 35,
married with two children. He is preparing a course on the practical development
of complex GUIs. He wants to include the essentials of user interface design,
advanced software design patterns, and many case studies that will form the
backbone of the course. He bought the book on line to evaluate its adoption as a
reference textbook for the course, integrating the parts in which he is more inter-
ested with other material. Shridhar finds some companion material for the book
on line and plans to use it for his course. In particular, he is interested in using
SWT for an interesting research project.

Shridhar will then…

• Organize his course content around the functional model introduced in
Chapter 1.

• Plan to devote the first part of the course to GUI design issues, based on
Chapters 2 and 3.

• Use Chapter 6 as the theoretical base for the second part of his course, about
implementation of complex GUIs in Java.

• Use the examples in Chapters 13–16 for the case studies. He plans to extract
software design patterns and architecture contents from these chapters to use
in the hands-on part of his course.

• Think about creating assignments based on the ideas provided in the various
chapters he has read. Because he is interested in the Eclipse RCP and SWT, he
will focus on the ideas discussed in Chapter 8.

Melinda (Mellie), a manager

Mellie has a technical background and a basic overview of object-oriented tech-
nology. She wants to have an overview of current technology for GUI
development with OOP, and feels that she needs to refresh her knowledge of

fintro.fm Page xxxi Thursday, March 9, 2006 5:08 PM

xxxii Introduction

5:8 PM 9 March 2006 fintro.fm 0.1

current state-of-the-art development of client-side software. She worked in soft-
ware testing back in the 1980s, and is now a senior group manager in the IT
department of a medium-sized insurance company that does some in-house devel-
opment. She wants to get a basic, high-level understanding of the latest trends in
GUI design and development.

Mellie will then…

• Read Chapter 1 about the development context of GUI design and
implementation.

• Interested by the topic of GUI design, move to study Chapter 2 for an intro-
duction to basic user interface design.

• Read Chapter 3 for an example of an OOP GUI technology stack, showing
guidelines, practical GUI design examples, and other technology-oriented
topics that can also be used outside the Java world.

• Take a look at the pictures in Chapter 4, to see the most commonly-used GUI
designs in real world applications, and try to match them with her daily
practice of software applications (a mix of Microsoft Project, the Microsoft
Office suite, and some corporate intranet applications).

• Have a look at Chapter 5 to get an idea of iterative GUI development.

• Note a few useful terms to be inserted in her next presentation, such as
usability inspections, continuous profiling, and more.

• Eventually, put the book in her ‘favorites’ pile, hoping to have more time for
it another day.

William, a first year student in a Master in CS course

William has just moved to Vancouver and is excited about starting his masters
program in Computer Science and eager to become a proficient software devel-
oper. He already has some exposure to Java and the Swing toolkit, and he knows
that he is going to have some courses about these topics. He wants to know more
about software architectures and how complex desktop GUIs are built, possibly
starting his own open source project.

William will then…

• Start reading the example applications, looking for interesting situations and
trying to understand the proposed solutions.

• As he is interested in the Sandbox application discussed in Chapter 16,
download and compile the source code, tweaking it to add new features.

fintro.fm Page xxxii Thursday, March 9, 2006 5:08 PM

Introduction xxxiii

5:8 PM 9 March 2006 fintro.fm 0.1

• Jump to Chapter 6 for the theoretical background behind the implementa-
tions proposed in the example applications.

• Turn his interest to the qText application in Chapter 6, studying its simple
architecture, downloading the code, and adding new commands to the
editor.

• Browse the rest of the book as he needs to.

Karole, a business analyst

Karole has a degree in programming and works for a software company. While
working as a full-time analyst on her current project, she discovers that she enjoys
dealing with customers. She feels she would like to work more on the GUI side of
software development and move into GUI design. She would like to get a wider
picture of GUI development, using Java as a practical example, but also be exposed
to more general concepts.

Karole will then…

• Read Chapter 1 about the development context for GUI design and
implementation.

• Study Chapter 2 for an introduction to basic GUI design advice.

• Read Chapter 3 for a discussion of GUI guidelines, practical GUI design
examples, and other technology-oriented topics that can also be used outside
the Java world.

• Study Chapter 4, to understand the most commonly-used GUI designs and
the rationale behind them.

• Perhaps read Chapters 5 and 8 to gain a better grasp of the latest iterative
development techniques for client applications.

• Snoop around the rest of the book as required.

Juan, an experienced programmer

Juan is an experienced programmer in his late twenties living in Schaumburg, IL.
He has just bought the book in a bookshop and is excited about it. He has some
spare time, an hour or two, on a Saturday morning. He wants to browse the book
for something fun, taking it easy, while sipping his favorite blend of Cappuccino in
a café while waiting for his fiancé Francene, who is having her nails done. Juan is
looking for cool new technologies, interesting application architectures, exciting
techniques, or just a cartoon or fancy pictures before a long shopping session with
Francene1.

fintro.fm Page xxxiii Thursday, March 9, 2006 5:08 PM

xxxiv Introduction

5:8 PM 9 March 2006 fintro.fm 0.1

Juan will then…

• Browse Chapter 4 for a quick glimpse of common GUI design issues, such as
choosers, area organization, and so on.

• Have a look at some of the pictures of the various look and feels in Chapter 11.

• Look at Chapter 10 for information about J2ME GUIs, and have a quick look
at Chapter 9 for Web Java GUIs.

• Have a glimpse at some of the techniques discussed in Chapter 12.

• Take a look at the various pictures of the example applications in the third
part of the book.

• Then, when he has more time, get back to this section to find another ficti-
tious user who matches his needs, so that he can start seriously reading the
book.

1. This is not a spurious use of a technical book, as it might seem at first. Establishing a posi-
tive emotional relationship with something we need in our work life is always a win-win
situation. Working with something pleasant will make us feel better, being more produc-
tive, and perhaps sparing precious energy for something other than dull work.

fintro.fm Page xxxiv Thursday, March 9, 2006 5:08 PM

1 Putting GUI Development
into Context

12:30 PM 9 March 2006 c01.fm 1.0

This chapter provides a comprehensive introduction to the design and develop-
ment of Java applications with non-trivial user interfaces. After introducing a
general-purpose reference model that will guide our discussion in the remainder
of the book, we introduce the organizational aspects related to UI development,
discussing the role of people in the entire software lifecycle process for GUI soft-
ware. We then consider the issue of early design, where we briefly introduce the
delicate and often overlooked transition from analysis to UI design. A section is
devoted to some interesting lifecycle models and the way they support the
process of building professional user interfaces. The chapter concludes with a
minimal introduction to some useful UML notation that will be used throughout
the book.

The chapter is structured as follows:

1.1, Introduction briefly discusses the current state of GUI technologies and the use
made of them by developers.

1.2, Focusing on users discusses user-centered design and development throughout
the software lifecycle.

1.3, A functional decomposition for user interfaces introduces an abstract model for
GUIs that is used throughout the book.

1.4, Tool selection: the Java singularity discusses the selection of a set of ingredient
libraries technologies, many of them open source, to speed up GUI development.

1.5, Organizational aspects introduces some of the issues related to the management
of the multidisciplinary teams that are common in GUI development.

1.6, Early design introduces requirements and use cases for professional GUIs.

1.7, Lifecycle models, processes and approaches briefly introduces some software life-
cycle models: Rational Unified Process, Extreme Programming and other Agile
approaches, the LUCID methodology, and evolutionary prototyping, focusing on
GUI design and development.

1.8, UML notation introduces some UML diagrams of interest that are used
throughout the book.

Putting GUI Development into Context

c01.fm Page 1 Thursday, March 9, 2006 12:30 PM

2 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

1.1 Introduction
The wealth of GUI design options provided by rich client GUI technologies is still
poorly mastered by developers struggling to provide remarkable designs in a
cost-effective way. This is what happens when powerful media and technologies
lack widespread, deep expertise and practical support.

The same thing used to happen two thousand years ago. Pliny the Elder, an
ancient Roman scholar and encyclopedist, despised his compatriots’ paintings
and preferred Greek classic art. His complaint was about the use of newer tech-
niques that exploited a much wider number of colors, while Greek classic
paintings used only four colors. Today we have a chance to see these much
despised ‘excessive’ paintings, thanks to the catastrophe that buried Pompeii in
79 AD, freezing a moment of history in one of the most rich and developed areas
of the age – similar to what California represents to Western civilization today –
and, unfortunately, accidentally killing Pliny. Surprisingly, these miraculous
survivals show a realistic and powerful use of the newer – and much harder –
techniques, together with some unskillful art works.

Moving from Roman paintings to user interfaces, in the 1980s the computer
industry experienced a similar mass-market technology shift in visual technolo-
gies with the introduction of powerful raster graphics with millions of colors,
large dedicated memory spaces and new, ad-hoc input devices. Today, after
another twenty years or more, we are in a situation no different from the Roman
paintings of the 60’s AD. These new technologies provided a steep increase in
complexity, and developers (like the Roman painters of Pliny’s age) are still strug-
gling to tame such power for building cost-effective, usable and enjoyable GUIs.

1.2 Focusing on users
The most striking difference between designing and building a desktop application
GUI and other software is the presence of the user. Users are those that will ulti-
mately use the product, but in current development-centric engineering settings,
they are usually completely neglected. ‘Focusing on users’ means focusing on
human details – cognitive factors such as perception, memory, learning, problem-
solving and so on – rather than implementation factors such as system and business
requirements, software architecture, hardware, and so on. User-centered design is a
well-established set of practices that place users at the heart of GUI design and
development. This is currently the only way known to obtain software that behaves
as users expect, ideally becoming transparent to them – they don’t realize they are
using it – and not getting in the way of getting work done. Adopting, or even
merely being aware of, the user-centered approach is critical, not only in the design
phase, but throughout the whole development process.

c01.fm Page 2 Thursday, March 9, 2006 12:30 PM

A functional decomposition for user interfaces 3

12:30 PM 9 March 2006 c01.fm 1.0

A number of practices have been established for centering the design and overall
iterative development on end users:

• Understanding users, their objectives, their current working practices, and
the general context in which the software will be used, all of this before
starting the design of the user interface.

• As part of this, an important role is played by two deeply intertwined central
issues: users and their tasks. User analysis–providing groups of users with
their goals – and task analysis – breaking down tasks in smaller subtasks –
are two disciplines that aim at defining these issues in useful terms.

• Involving end users or user representatives in the design from the early
phases. This practice is referred to as participatory design.

• A useful means for understanding users is to interview and observe them
while at work in their normal work environment. Techniques such as contex-
tual enquiries1 and adopting an ethnographic2 approach to user studies are
widely used in this respect.

• Usability tests help to ground an application on user’s needs after various
iterations of design and development.

We will see user-centered techniques applied throughout this book, but apart
from these techniques, it is essential to always bear in mind that being aware of
the end user – playing the role of the advocate of the user – is essential in producing
a professional user interface, especially on fast-paced projects in which it is hard
to fully apply these techniques when other, more urgent deadlines are pressing.

1.3 A functional decomposition for user interfaces
Graphical user interface applications are a vast class of software systems with
recurring properties. In a GUI there is always a portion of the screen that is
designed for interacting with users, there are various forms of reactions to user
interactions, perhaps through some form of an internal representation of the busi-
ness domain at hand, and so on. Decomposing these functionalities into a set of

1. During a contextual enquiry, several potential users of an application or a process that we
want to capture in software are observed in their day-to-day work. The interviewers focus
on a specific objective and adopt a partner-like approach with users, rather than being
judgemental or inquisitive.

2. Ethnography is a method of studying and learning about groups of people. Typically, it
involves the study of a small group of subjects in their own environment in order to
develop a deep understanding of them.

c01.fm Page 3 Thursday, March 9, 2006 12:30 PM

4 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

layers is useful as a key to aid discussion of the various aspects of GUI develop-
ment, as a reference for discussions, and as a conceptual tool to tame the complexity
of GUI design and development. This is illustrated in Figure 1.1.

The layers in our reference model are:

• Business Domain. A representation of the domain of interest, separated from
GUI and other non-business details.

• Content. The ‘structure’ of the GUI: widgets, windows, and navigation flow
among different windows, screens, and so on.

• Data IO. The interface with the rest of the world other than the end user. Data
formats, communication protocols and the like are represented by this layer.

• Infrastructure. Low-level support, runtime environment, utilities, and so on.
The graphical toolkit of choice, libraries, frameworks and hardware support
belong in this layer.

• Interaction and Control. Low-level events and control logic are gathered in this
layer. Note that this layer can be thought of as the ‘glue’ that holds the rest of
the GUI implementation together.

• Presentation. This layer represents graphical details that are dependent on the
given presentation technology, such as pixels, colors, and fonts. This layer
can be thought of as (theoretically) orthogonal to the other layers.

Figure 1.1 An abstract model for user interfaces

c01.fm Page 4 Thursday, March 9, 2006 12:30 PM

A functional decomposition for user interfaces 5

12:30 PM 9 March 2006 c01.fm 1.0

An example of the application of this functional model to a simple form-based
GUI is shown in Figure 1.2.

The figure shows a very simple form-based GUI that has been decomposed using
our model. Graphical aspects, no matter how implemented, belong to the presen-
tation layer. Widgets and their layout are part of the content layer. Widget’s
behavior in reaction to user input – for example, the ‘Age’ field accepts only
digits – is enforced at a low level by the interaction and control layer, but the ulti-
mate logic lies in the business domain layer, where it is defined that an age is a
numeric, integer entity with values between 0 and 100. It is the responsibility of
the interaction and control layer to understand when the user has completed data
input and how to handle invalid values.

This model is general – for example, it could be applied to Web GUIs, wireless
device applications, touch-screen kiosks and so on – and somewhat arbitrary. It is
just one of the various possible decompositions of GUI functionalities: it focuses
on simplicity and practicality, and is independent of the particular implementa-
tion technology. You can use this model to represent any existing desktop
application GUI, or to organize the development of new ones.

Figure 1.2 Applying the abstract model to a simple form GUI

c01.fm Page 5 Thursday, March 9, 2006 12:30 PM

6 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

We are going to apply it to Java GUIs, which are high-level component-based user
interfaces based on a strongly-typed object-oriented language and on an operating
system-independent execution platform. This simple model will form the basis
of our discussion about user interfaces in Java. We will analyze complex GUI
implementations using this model, discussing disparate GUI technologies, and
we will use it as a software architecture for one of the many examples proposed
in the book.

1.4 Tool selection: the Java singularity
In this book we will discuss GUIs of any size and complexity, all built with Java
technology. One of the most striking aspects of Java is its openness and the wide
range of companies, tools, and technologies that flourish under its umbrella. This
applies over a wide array of hardware, ranging from wireless devices and card
readers to powerful back-end enterprise servers.

Of course, similar to Pliny’s paintings, and the line of Alan Kay’s ‘inverse vandals’
in the introduction, there are wild differences in quality. Along with open source
tools with a rock-solid reputation, such as Hybernate and some good pieces of
server-side facility, and in many other application domains, we have hundreds of
ill-documented, partially working, hard-to-use libraries and would-be tools.
Nevertheless, the whole Open Source Software (OSS) movement is a remarkable
feature of Java technology, typical of the cooperative spirit that dominates this
community.

A characteristic that assumes special significance for Java projects is the tool
selection phase. With the sheer abundance of tools and technologies – thousands
of OSS tools for Java development – the selection of the ‘best’ set of tools for a
Java project can prove hard. Some choices can be changed later with acceptable
cost, such as for example switching to another issue tracking system, as long as
the old one provides some data export facility, but others cannot be changed
without throwing away most of the work done. Choosing the right presentation
technology – specifically, choosing between Swing or SWT – is a strategic choice
that cannot be reversed easily. Peer opinions, Web forums and the like often
provide biased opinions, or might not take your particular context and needs in
account.

Commercial tools are usually better than OSS ones, but the same care in selection
and evaluation should be applied. My personal experience has guided me to start
with an OSS tool, and then, only if really necessary, move to a commercial one:
buying a tool of which you have no previous experience can prove a costly
mistake. It is wiser to start with an Open Source alternative and use it as long as
possible, and this will also help to clarify your real requirements.

c01.fm Page 6 Thursday, March 9, 2006 12:30 PM

Organizational aspects 7

12:30 PM 9 March 2006 c01.fm 1.0

One thing that always strikes me when I get involved in a new project is the care-
lessness shown in choosing portions of the base tool set. Sentences like ‘Oh, well
we started off with ‘X’ and ‘Y’ together with ‘Z’ because they were available on
the market and…’ – and then usually there is a pause. Sometimes in large teams
developers don’t even know who started using a particular XML library or GUI
testing tool, ‘We just tried it, and it worked.’ Then, after months of quiet work,
they find themselves dealing with, perhaps, unmanageably huge XML files for
acceptance tests3.

Of running little green men and wrong choices

A little green man dashing to a door is the universal icon for emergency exits in
public buildings. Similarly, alternatives and emergency plans should always be
considered when choosing a project’s ingredient technologies. When preparing a
list of technologies for a project, let’s not forget to make an alternative list with the
emergency sign icon on it, because some of choices we must make are irreversible
without losing much of the work already completed.

This process is like going to the forest to pick mushrooms. They are free, and they
could be so tasty – but they could be poisonous. As every developer knows, tools
usually work well at first, on simple tests and in recurring situations. But after
some month of use, or, even worse, after more than few months, you may find that
a tool can no longer support what we want to do, and you are then faced with the
need to switch to another solution. Sometimes it is impossible to step back, so that
there are no emergency exits for the situation. Rarely is technology the real
problem, although it is always a great excuse: most of the time it is having access
to the right people that will make the difference.

I have made several mistakes in tool selection. Some were inevitable at the time,
others were just my fault. The most classic mistake I made was to see problems
like nails to be driven in with my favorite hammers4, the tools I was most familiar
and confident with. At other times, more often than the wrong technology, the
problem was a wrong adoption of a given technology.

1.5 Organizational aspects
Developing a non-trivial professional GUI is perhaps the most interdisciplinary
kind of task to be found in software development. Many different roles need to
interact closely: the alchemy of such interaction is so delicate that the resulting

3. Chapter 11 is entirely devoted to the practice of tool selection.
4. To paraphrase the American psychologist Abraham Maslow, ‘If you only have a hammer, you

tend to see every problem as a nail.’

c01.fm Page 7 Thursday, March 9, 2006 12:30 PM

8 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

final outcome may be disappointingly poor, despite the dedicated people involved
and the substantial resources employed.

The user interface of an application is the most visible part of a software product
and the part where people external to the development team clash most. In some
projects non-developers in the organization feel entitled to advise on the user
interface, especially higher management. Repercussions on the UI may be not
explicit or even foreseen – for example, decisions taken in database design can
affect the UI, or the absence of a capable graphical artist can influence usability,
thus the overall performance of users, and so also of the system, right down to the
back-end servers.

People and GUIs

In this section we explore some of the issues related to the development of user
interfaces and the involvement of the people who build them.

Dermaphobic and graphic hedonists

GUIs are software artifacts with a strong human component. This is apparent for
end users, but it is true also for developers. In particular, there are usually two
main types of developers, of which the first is the more common: the GUI-phobic
developer.

There is a widespread tradition of distaste for GUI-related development. GUI
toolkits are perceived as cumbersome, complex and ultimately useless – ‘It’s just
cosmetics,’ ‘I’ve more to do than struggle with pixels.’ There are a large number
of implicit assumptions behind this attitude. All the ‘real action’ goes on the
server side, and putting GUI technical skills in a resume is seen as something to
avoid, like a sound engineer who has worked on lipstick design.

This implicit phobia for the ‘skin’ of client applications, a sort of software derma-
phobia, surfaces in many ways and in various aspects of development. Sentences
like ‘We need to make our application totally decoupled from the GUI layer,’
‘Completely hide the presentation technology,’ ‘I don’t have the vocation for GUI
stuff,’ or ‘Let’s hand this to GUI specialists’ are indicators of such ancestral fears.
Of course, hiding and decoupling are good qualities for any software, and GUI
toolkits tend to be complex and frustrating to master at first, but this phobic atti-
tude can only harm a project. The GUI-phobic developer often puts together
something that works, maybe by cutting and pasting some tutorial code found on
the Web, and then rushes back to a nobler task.

Sometimes GUI specialists are just developers who find it harder than others to say
‘No,’ or that just don’t want to be on the front line. You can hear them rationalize
their phobias: ‘We decoupled things so that we are GUI toolkit-independent’ is the

c01.fm Page 8 Thursday, March 9, 2006 12:30 PM

Organizational aspects 9

12:30 PM 9 March 2006 c01.fm 1.0

official line, but a closer inspection of the code shows that this decoupling doesn’t
work in practice and that is not even required at all.

The other dangerous class of developers, although much rarer, is the GUI enthu-
siast, such as those who can happily spend an entire working day finding the
perfect gradient texture for the company’s new look and feel.

Both these kinds of people tend to perceive GUI development as a developer-
centric activity: the end user experience is just a by-product of a simple-to-build
and possibly fun implementation.

Developers’ attitude towards GUI development, and the resulting architectural
choices, shape the way the final product will look. GUI-phobic developers tend to
build bulky, low-bandwidth GUIs with fewer interactions, while GUI enthusiasts
tend to present useless fanciness to the user while overlooking more substantial
features. In both these extremes, the overall development cost is higher and the
quality of the final product is compromised.

Who owns the GUI?

Apart from simple cases in which only a small number of people are involved in
building simple applications, the implementation structure has social ramifica-
tions. Abstract, formal decisions about an architecture or, worse, no substantial
decisions at all, affect the real nature of the implementation structure only shal-
lowly, as mentioned in countless books5.

If no strong force is at work in a project, developers will ‘own’ the development
process. This can be fine for server-side applications, but needs special care for
client-side applications. The most common owners of a project are its customers
or other such stakeholders – although they rarely correspond to the application’s
final users. When a project is owned by its customers, a number of issues may
arise that are specifically confined to GUI design – we detail these in Chapter 2
and 3. In these cases, though, the implementation can be designed to reflect this
climate by providing effective mechanisms to absorb change at the GUI design
and interaction level.

Particular care is needed in those cases in which the project will build a product or
a service in a market where existing alternatives are available. Shareware software,
or competing Web sites, are examples of software that is ultimately chosen by the
end user, in contrast to, say, an intranet corporate portal or an ERP application,
whose end users have no power of choice. In cases in which users have a low barrier
to switching to a competing product or service, extra care is needed to safely ground
ownership with the end users, or there is a risk of producing software that nobody

5. We would just mention here two classics: (Brooks 1995) and (De Marco and Lister 1999).

c01.fm Page 9 Thursday, March 9, 2006 12:30 PM

10 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

will buy. This is achieved by adopting a fully-fledged user-centered design
approach with extensive usability testing and feedback from users, and in which
developers and the other stakeholders are constantly focused on the end user
ownership.

‘Ownership’ dictates the overall attitude toward the implementation. If you ask a
developer what a good architecture should be, they can hold forth for hours,
mentioning powerful virtues like usefulness, robustness, maintainability, scal-
ability, agility, responsiveness, extensibility, fitness to purpose, and so on.
Customers, in contrast, are often dangerously vague. For a user, anything is fine
‘as long as it helps with the business.’

Cost can be a major factor as well. Projects driven by cost tend to have their imple-
mentation and architecture deeply shaped by their financial climate.

An often overlooked aspect of any technical decision (languages, architectures) is
the emotional connotation people attach to it. One developer may not like Swing
(or SWT), while another might find it a wonderfully comfortable choice. Architec-
tures, tools and approaches have their own advantages and drawbacks, but they
are merely instruments to aid in to solving the problem at hand. It is dangerous to
let our feelings drive critical choices biased by personal feelings, as choosing the
wrong tool can prove disastrous in the long term.

Team composition

GUI development is a multidisciplinary activity that involves a number of diverse
skills. Here are some of the roles involved in a GUI development project:

• UI designer. This role is responsible for driving the UI design and ensuring a
UI’s usability, enhanced after usability testing.

• Analyst. Part of the analysis phase is often performed by means of discus-
sions about user interface prototypes.

• Developers. Programmers are the main resource in building a professional
desktop application GUI. The wide range of scenarios and requirements
make the use of GUI application frameworks and rich client platforms
impractical in some situations. Developers and labor-intensive development
is the only practical way to achieve professional GUI applications.

• Application architect. This role is perhaps the most important of all. A GUI
architect must be knowledgeable about GUI design, GUI implementation
technologies, programming, business and application domains, and server-
side issues, as well as being capable of dealing effectively with customers and
other stakeholders. Architectural decisions impact directly on the GUI. For
example, the decision to adopt a Web service architecture for client–server

c01.fm Page 10 Thursday, March 9, 2006 12:30 PM

Organizational aspects 11

12:30 PM 9 March 2006 c01.fm 1.0

communication dictates the kind of interaction available on the client GUI.
The application architect is needed effectively to bridge the gap between
customers and end users’ unclear needs and the detailed information
required to translate such needs into working code.

• Usability expert. This role oversees usability issues throughout the whole
application lifecycle.

• Graphic artist. An artist design icons, colors and other graphics for the appli-
cation. Rich client applications have a wide range of graphical possibilities,
much wider than Web applications. This power can be misused, producing
confusing and unusable GUIs, if not properly mastered.

• Business domain expert. People expert in the client’s business domain should
work closely with GUI developers to ensure that the GUI reflects the actual
business domain terminology, skill, procedures, and so on. If a domain-
driven approach has been adopted for developing a rich domain model,
effort should be expended to verify with expert users that such a model
doesn’t remain buried behind the scenes, away from the user interface and
the end users, wasting the effort required for its creation.

• Client management. The management of the client organization can play an
important role in the development of the GUI.

• Stakeholder. This generic term includes any person or organization that may
be affected by the success or failure of the software project. End users, devel-
opers, and managers are examples of stakeholders.

• UI tester. Personnel skilled in GUI testing and GUI testing tools.

Quality assurance6 experts. The feedback from the QA team involves the user
interface.

Of course, depending on the project, many of these roles might be performed by
the same person or team.

The composition of the team that will design and build the GUI is also important.
A multidisciplinary development team is essential to achieve a high-quality
design. The contribution of people with different backgrounds and points of view
is extremely important in building a professional GUI.

For example, a graphic artist is indispensable, even if only working part time as a
consultant. You can see the difference a good artist can make by looking at the
(very unprofessional) icons used in this book – excluding the standard ones from
the graphics repositories from Sun and Eclipse.

6. We use the more general term ‘quality assurance’ without distinguishing it here from
‘quality control,’ although they are in fact distinct disciplines.

c01.fm Page 11 Thursday, March 9, 2006 12:30 PM

12 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

1.6 Early design
Requirements are the backbone of any analysis. Requirements should be:

• Clear and unambiguous, and usually expressed in natural language.

• Complete – that is, covering the whole system.

• Consistent – they should form a consistent set of constraints for the system.

• Testable – for requirements than cannot be made testable, one cannot prove
their fulfilment.

• Traceable – it’s usually a good idea to establish a hierarchy among require-
ments, so that is possible to trace lower-level or newer system requirements
to older or more general ones.

Use case diagrams and GUIs

In this book we will use UML notation extensively. This section introduces UML
use cases and class diagrams, a popular analysis and documentation device. Use
case diagrams are especially useful for defining functional requirements in the
early stages of GUI design7.

There are many books on UML: in particular we will refer to (Fowler 2003).
Although not strictly related to user interface design, use cases are commonly
used in real-world development for describing the requirements for a given appli-
cation. UML use case diagrams are used as the preliminary stage to elicit the
expected features of a software artifact.

In very small development teams a common problem is the ‘usability death
spiral’: if they don’t try it out with external people, either other colleagues or
end-users, developers get accustomed to their own design. The longer a devel-
oper – either a designer or a programmer – deals with building a GUI, the
more reasonable and usable it appears to be to them!

Traceability can be also done graphically. We could trace requirements or their
equivalent counterpart, such as acceptance tests in XP practice, directly to
screen areas in our GUI. Chapter 2 introduces a general technique, A3GUI, that
can be used to tag screen areas with requirements or other useful information.

7. We assume that the reader is already familiar with UML notation for use cases.

c01.fm Page 12 Thursday, March 9, 2006 12:30 PM

Early design 13

12:30 PM 9 March 2006 c01.fm 1.0

Use case diagrams describe a system in terms of the functionalities provided to its
users. They consist of actors and use cases. Actors are entities external to the
system that interact with the use cases, such as human users, other systems, and
so on. These in turn are generic functions the system provides to the rest of world.

A single function can be thought as a flow of actions. The example in Figure 1.3
shows a simple use case diagram that describes an arcade video game. We have
modeled the system with one external actor only, Player, and three main use cases:
join the game, play the game, and insert a high score. Possible actions could be:
push the ‘start’ button, insert coins, push the ‘fire’ button, and so on.

Use case diagrams are often used as inputs to the GUI design process, because
they identify actors and functionalities within the system. Scenarios are used to
represent a set of paths of possible events through single use cases. Scenarios are
often described by means of natural language.

A possible scenario for the application in Figure 1.3 could the following:

• Player inserts two coins into the game console

• Player pushes the ‘one player’ button

• Player plays the game

• The game is over

• Player breaks the record and inserts their name into the high score list

Scenarios are also used, often in a more complex way, as a technique for identi-
fying the typical interaction paths of a user interface. The next step could be to
refine the previous scenario, including a first description of the system behavior.
This is shown in Table 1.1.

Figure 1.3 An example of use case diagram for an arcade video game

c01.fm Page 13 Thursday, March 9, 2006 12:30 PM

14 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

Use cases can be refined into more general and more detailed ones. Use case
diagrams say nothing about the implementation of the system. Use cases are not
the functional modules of the system: rather, they are functionalities offered to
external actors. UML does not prescribe how use cases should be represented –
they can be described in any way, although usually as a list of numbered items.

Apart from narrating the user’s experience of the system, use case diagrams can
be helpful in understanding how use cases relate to each other, such as frequent
functionalities instead of critical ones, or the possible event sequence’s interac-
tions, or as a way to expose the system analysis to customers.

1.7 Lifecycle models, processes and approaches
This section sets user interface development in the wider perspective of the whole
software lifecycle. If we are to have usable software, it is essential to focus the
whole design and development process around usability and GUI design issues.

Table 1.1 An example of a scenario from an arcade video game system

Player System

The player inserts a coin into the
console.

The system shows the message: ‘Insert another
coin and try this game.’

The player inserts one more coin
into the console.

The system displays its availability to join the
game by pressing the 1P button.

The player pushes the 1P button. The player joins the video game, starting a new
game.

The player plays the game. The system engages the player in the video game.

The game is over. The system shows the message: ‘Game Over,’
signaling the possibility of joining the game again
by inserting more coins.

The player breaks the record and
inserts their name into the high
score list.

The system displays the high score list and lets the
user insert their name.

For connections between use case diagrams and user interface prototyping,
see for example (Elkotoubi, Khriss and Keller 1999), (Shirogane and Fukazawa
2002). Later in this chapter we will see an example of an extension to use case
models to account for GUI design and usability.

c01.fm Page 14 Thursday, March 9, 2006 12:30 PM

Lifecycle models, processes and approaches 15

12:30 PM 9 March 2006 c01.fm 1.0

We will introduce some different approaches to modeling the software lifecycle
that take GUI design into particular consideration.

Rational Unified Process

The Rational Unified Process, or RUP, is a software engineering process made up
of a number of best practices, workflows and various products (here called
artifacts).

The key aspect of RUP lies in its iterative model for software development. RUP
organizes projects in terms of disciplines and phases, each consisting of one or
more iterations. There are four different phases: inception, elaboration, construction,
and transition. The importance of each workflow depends on the given iteration.
Using an iterative approach makes the development process more robust, with
demonstrable progress and frequent executable releases.

RUP supports the following best practices:

• Develop iteratively – that is, adopt an iterative lifecycle model

• Manage requirements explicitly

• Use component architectures – a wise use of OOP plays an important role

• Model visually – that is, adopt UML

• Manage change in the form of a number of best practices

• Continuously verify quality, an essential aspect for minimizing risk

RUP defines a set of roles for modeling people involved in activities. One actual
person can have the responsibility for many roles. For example, a ‘stakeholder’
role can represent customers, end users, buyers, and so on, or anyone who repre-
sents them in the developer’s organization.

A discipline in RUP terminology is a group of homogeneous activities that shows
all the different procedures needed to produce a particular set of artifacts.

RUP considers the following disciplines:

• Business Modeling is a discipline that aims at comprehending the structure
and the dynamics of the target organization – that is, where the system will
be deployed – to understand problems and identify possible solutions within
such an organization.

Don’t confuse RUP with UML. UML is a modeling language for software
systems, while RUP is a software engineering process that provides a controlled
approach to assigning and managing tasks and responsibilities within a devel-
opment organization. RUP uses UML notation extensively in its guidelines
and best practices, however.

c01.fm Page 15 Thursday, March 9, 2006 12:30 PM

16 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

Business modeling aims to ensure that customers, end users, and developers
have a common understanding of the target organization, produce a vision
of the new target organization, and based on that vision, define the processes,
roles, and responsibilities of the organization in a business use-case model
and a business object model.

• Requirements. This discipline aims to establish and maintain an agreement
with customers and other stakeholders about what the system should do, the
definition of the system’s boundaries, an estimate of the technical contents of
iterations, and the cost and time to develop the system. Part of this discipline
is to define the user interface, focusing on the needs and goals of the users.
As a part of this activity stakeholders are identified, together with their
requirements.

• Analysis and Design. The objective of this discipline is to transform the
requirements into a design for the future system.

• Implementation. The purpose of implementation is to define the organization
of the code, in terms of implementation modules, to implement classes and
objects in terms of components (source files, binaries, executables, and
others), to test the developed components as units, and to integrate the
results produced by implementers or development teams into an executable
system. Unit testing is included in implementation, while system test and
integration test are part of the Test discipline.

• Test. This discipline oversees the proper integration of all software compo-
nents. It verifies that all requirements have been correctly implemented, and
tries to isolate all defects prior to software deployment.

• Deployment. Prior to deployment the software is tested at the development
site, followed by beta-testing before it is released.

• Environment. This discipline focuses on the activities necessary to configure
the process for a project. It describes the activities required to develop guide-
lines to support a project. The purpose of the environment activity is to
provide the software development organization with the software develop-
ment environment – both processes and tools – that will support the
development team.

• Project management. The objective of this discipline is to provide a framework
for managing software-intensive projects, providing practical guidelines for
planning, staffing, executing, and monitoring projects, as well as to provide a
framework for managing risk. This discipline focuses mainly on the impor-
tant aspects of an iterative development process: risk management, planning
an iterative project, both through the lifecycle and for a particular iteration,
monitoring progress of an iterative project, metrics.

c01.fm Page 16 Thursday, March 9, 2006 12:30 PM

Lifecycle models, processes and approaches 17

12:30 PM 9 March 2006 c01.fm 1.0

• Configuration and change management (CM and CRM). These disciplines
involve identifying configuration items, auditing changes, restricting access
to those items, and defining and managing configurations of those items.
A CM system is an essential and integral part of the overall development
processes. It is useful for managing multiple variants of evolving software
systems, tracking which versions are used in given software builds,
performing builds of individual programs or entire releases according to
user-defined version specifications, and enforcing site-specific development
policies.

To describe what the system will do, RUP requires that a number of documents be
written: a vision document, a use-case model, a number of use cases, and eventu-
ally a supplementary specification document.

• The vision document provides a complete vision for the software system
under development, and supports the contract between the customer’s orga-
nization and the developer’s organization. It is written from the customers’
perspective, focusing on the essential features of the system and acceptable
levels of quality. The vision should include a description of the features that
will be included, as well as those considered but not included.

• Use cases focus on describe functional requirements. A use case describes a
significant amount of functionality using narrative text. The use-case model
serves as a contract between the customer, the users, and the system devel-
opers for the functionality of the system, which allows customers and users
to validate that the system will become what they expected, and system
developers to build what is expected.

The use-case model consists of use cases and actors. Each use case in the
model is described in detail, showing step-by-step how the system interacts
with the actors, and what the system does in the use case. Use cases function
as a unifying thread throughout the software lifecycle: the same use-case
model is used in system analysis, design, implementation, and testing. A use
case should always describe the intended functionality – what a system
should do – and not how it will be done.

• The supplementary specifications are an important complement to the use-
case model, because together they capture all software requirements, both
functional and nonfunctional, that need to be described, to serve as a
complete software requirements specification.

Complementing these documents, the following are also developed:

• A requirements management plan. This specifies the information and control
mechanisms that will be collected and used for measuring, reporting, and
controlling changes to the product requirements.

c01.fm Page 17 Thursday, March 9, 2006 12:30 PM

18 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

• A glossary, defining a common terminology that is used consistently across
the project or organization. Note that the glossary can overlap with the Ubiq-
uitous Language8 document if Domain-Driven Design has been used in the
project.

• Use-case storyboard and user-interface prototype, both results of user-interface
modeling and prototyping, which are done in parallel with other requirements
activities. These documents provide important feedback mechanisms in later
iterations for discovering unknown or unclear requirements.

The RUP project structure is usually represented in two dimensions:

• The horizontal axis represents time and shows the lifecycle aspects of the
process.

• The vertical axis represents the disciplines (Business Management, Require-
ments, Analysis & Design, Implementation, Deployment, Configuration and
Change Management, Project Management, and Environment).

This is illustrated diagrammatically in Figure 1.4. The first dimension repre-
sents the dynamic aspect of the process as it is performed. This is expressed
in terms of phases, iterations (initial, elaboration, construction and transi-
tion), and milestones. The second dimension represents the static aspect of
the process: how it is described in terms of process components, disciplines,
activities, workflows, roles, and artifacts. The graph shows how the
emphasis varies over time.

The key difference between small and larger projects is the level of formality used
when producing the different artifacts: project plan, requirements, classes, and so
on. Furthermore, only a limited number of artifacts can be produced by small
projects.

Use cases alone do not specify user interface details. Perhaps the most common
objection against RUP from GUI designers is the strong bias for requirements over
design aspects.

This has been addressed in a number of ways, providing custom approaches and
various extensions to the standard process. As an example of these customiza-
tions, there is an optional extension to RUP called the User Experience Model, or
UX, for handling GUI design issues (Kruchten and Ahlqvist 2001), (Conallen
2002). Building a UX model is a non-trivial task, needed only when the GUI
design needs a special focus within the whole project.

8. Rather than a methodology, Domain-Driven design is an approach and a set of techniques
aimed at dealing with the construction of software for complicated business domains: see
(Evans 2004). ‘Ubiquitous Language’ is one such technique, focusing on building a
language that defines the domain model and is used by all team members to connect their
activities, including the construction of the software.

c01.fm Page 18 Thursday, March 9, 2006 12:30 PM

Lifecycle models, processes and approaches 19

12:30 PM 9 March 2006 c01.fm 1.0

User experience storyboards

The User Experience Model bridges the gap between analysis and GUI design,
enriching the use case model with GUI design information. The UX model is a
conceptual model that specifies visual elements (the content layer) in an abstract
representation. It helps architects and GUI designers determine what will go into
the UI before committing to technology details such as widget toolkits and GUI
technology.

A UX model and its storyboards describe actors (user characteristics) and
screens, as well as input forms, screen flows, navigation between screens, and
usability requirements. The actor characteristics and usability requirements are
added to the use-case descriptions. The other elements are described in UML and
remain part of the UX model.

The two most important RUP disciplines relative to UX storyboards are Require-
ments and Analysis & Design:

• Use cases are developed in Requirements, while in Analysis & Design they
are used to design the system, including the UI. RUP uses models to repre-
sent the various parts of a software system. The use-case model is the most
important one to build in Requirements.

Figure 1.4 RUP Overview

c01.fm Page 19 Thursday, March 9, 2006 12:30 PM

20 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

• The design models are developed in Analysis & Design. For systems with a
significant amount of user interaction, the development team should also
create a UX model and storyboards within that discipline. This integrates
usability issues into the RUP development approach.

There are five steps to creating UX storyboards:

1. Add actor characteristics to the use case. Being non-functional, this informa-
tion should be added in the special requirements section. This may include
the users’ average level of domain knowledge, general level of computer
experience, working physical environment, frequency of use of the system,
and the approximate number of users represented by an actor.

2. Add usability guidance and usability requirements to the use case. Usability
guidance provides hints on how users should use the system, including
average attribute values and volumes of objects, and average action use.
Usability requirements might specify how fast a user must be able to do
something, maximum error rates, maximum number of mouse clicks, learn-
ing times, and so on.

3. Identify UX elements. UX models use the same appearance as UML but with
a different meaning: screens are rendered with UML classes, using the spe-
cial stereotype «screen», navigation maps are expressed with class dia-
grams, screen instances with objects, and screen flow diagrams with UML
sequence diagram.

4. Model the use-case flows with the UX elements.

5. Model screen navigation for the use case using UML navigation diagrams.
These are essentially class diagrams with oriented links for navigation.

UX is just one possible approach to capturing GUI design and usability within
the RUP.

Extreme Programming and other Agile approaches

Agile software methodologies are a radical departure from the traditional,
document-heavy (usually) waterfall processes still in widespread use. These meth-
odologies share a set of common values. They all try to find a useful compromise
between informal development processes and formalized, traditional ones
(Larman 2003).

Extreme Programming (Beck and Andres 2004) is perhaps the most ‘extreme’ of
these Agile methodologies. XP is composed of the following practices:

• Customer as a team member and on-site customer. Development teams have one
person (or a group of people) that represents the interests of the client,
referred to as ‘Customer.’ Customer decides which features to add to the
system.

c01.fm Page 20 Thursday, March 9, 2006 12:30 PM

Lifecycle models, processes and approaches 21

12:30 PM 9 March 2006 c01.fm 1.0

• The planning game. Customer and developers cooperate to determine the
scope of the next release. Customer defines a list of desired features for the
system. Each feature is written out as a user story (see below). Developers
estimate how much effort each story will take, and how much effort the team
can produce in a given iteration, typically of two weeks. Customer decides
which stories to implement and in what order, as well as when and how
often to make available production releases of the system.

• User stories. These represent small features of the system that can be
completed by a single developer in one iteration. Customer gives the user
story a name, and broadly describes what is needed. User stories are typi-
cally written on paper cards.

• Small releases. Development starts with the smallest set of features that are
useful. Releases are kept small by releasing early and often.

• Simple and incremental design. The simplest possible design that works is
favored. Providing more design than is needed can be a waste of time, given
that requirements can change, and is a needless cost for the project.

• System metaphor. Each project may have an organizing metaphor, which
provides an easy to remember and guiding naming convention. This practice
can be slightly confusing when adopted for GUI design: other design
approaches, such as domain-driven design, suggest a focus on the core
domain model to shape naming conventions and development abstractions.

• Test-driven development (TDD). Before writing any code, developers devise a
test that defines the expected behavior of the new code, and write the test
first. These are typically unit tests. Each unit test usually tests only a single
class or a few classes.

• Acceptance tests. These are specified by Customer to test that the overall
system is functioning as specified. Acceptance tests typically test the entire
system, ideally automatically. When all the acceptance tests pass for a given
user story, that story is considered complete.

• Refactoring. This is the practice of making small changes to a portion of code
to improve its internal structure without changing its external behavior. This
is a practice born in Smalltalk development and popularized by Martin
Fowler (Fowler 1999). Refactoring fits nicely with continuous testing,
because after every change, tests are run to ensure code integrity.

• Pair programming. All production code is written by a pair of programmers
working at the same machine.

• Collective code ownership. No single person ‘owns’ a package or any portion of
code. Any developer is expected to be able to work on any part of the code
base at any time.

c01.fm Page 21 Thursday, March 9, 2006 12:30 PM

22 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

• Continuous integration and ten-minute builds. All changes are integrated into
the code base at least daily. A build should not last more than ten minutes.
A build encompasses building the whole system and running all the tests,
which should be able to be run both before and after integration, and
deploying the system.

• A sustainable pace of work (‘energized work’). Some XP practices advocate a
forty-hour working week, to avoid the prolonged strain of work overload,
usually a warning signal for a project.

• Coding standards. Homogeneous coding standards are applied by every
member of the development team.

Official XP doctrine doesn’t go into the details of user interface design, which are
left to designers. A first version of the GUI design can be built up front (that is, the
customer, together with developers) then used to feed the project’s user stories.
Alternatively, GUI design can be focused on iterations built on top of a reference
framework consisting of GUI design guidelines and other constraints. Other
approaches are also possible. No matter what GUI design details are chosen
within the XP approach, a stable and continuous feedback loop from story
creation through usability and user acceptance testing, and involving end users,
is always instrumental to effective GUI design and development.

Early critics of the effectiveness of GUI designs performed with XP noted that user
interface designers and usability engineers don’t have a defined role within XP,
and that the whole approach risks being developer-centric. However, a closer look
at XP shows a number of strong points in this approach that favor sound GUI
design practices. By building on the XP practices of communication, simplicity
and continuous testing, usability can be achieved, not only in terms of end user
acceptance and satisfaction, but also for other tenets of XP, such as implementation
efficiency, developers comfort, and shared responsibility for the final product.

LUCID methodology

Classic LUCID methodology, as described for example in (Shneiderman 1998) and
more recently updated, is an example of a user interface–driven approach to the
whole software lifecycle, in contrast to the iterative approaches discussed previ-
ously. It is essentially a variant of the classic waterfall process, focused on usability
and GUI design9. This is illustrated in Figure 1.5.

9. See http://www.cognetics.com/lucid/

c01.fm Page 22 Thursday, March 9, 2006 12:30 PM

Lifecycle models, processes and approaches 23

12:30 PM 9 March 2006 c01.fm 1.0

This lifecycle model can be broken down into the following elementary activities:

1. Develop the product concept:
– Define the product concept. Begin writing down early use case diagrams.
– Establish business objectives.
– Set up the usability design team.
– Identify the user population.
– Identify technical and environmental issues.
– Produce a staffing plan, schedule and budget.

2. Perform research and requirements analysis:
– Partition the user population into homogeneous groups.
– Break job activities into task units.
– Conduct requirements analysis through construction of scenarios and

participatory design.
– Sketch the process flow for sequence of tasks.

Define
Product
Concept

Research and
Requirements

Analysis

Design
Concepts
Prototype

Iterate
Design

Rollout
and

Release

Implement

Software

Figure 1.5 The LUCID lifecycle model

c01.fm Page 23 Thursday, March 9, 2006 12:30 PM

24 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

– Identify major objects and structures that will be used in the software
interface.

– Research and resolve technical issues and other constraints.

3. Design concepts and an initial prototype:
– Create specific usability objectives based on user needs.
– Initiate the guidelines and style guide.
– Select a navigational model and one or more design metaphors.
– Identify the set of key screens: log-in, major processes, and so on.
– Develop a prototype of the key screens using a rapid prototyping tool,

paper mock-ups, or other prototyping techniques.
– Conduct initial reviews and usability tests.

4. Perform iterative design and refinement:
– Expand key-screen prototype into a full system.
– Conduct heuristic and expert reviews.
– Conduct usability tests.
– Deliver the prototype and the application specifications.

5. Implement the software:
– Develop standard practices.
– Manage late state change.
– Develop on-line help, documentation and tutorials.

6. Provide rollout support:
– Provide training and assistance.
– Perform deployment, logging, evaluation and maintenance.

Modern software projects tend to require more flexible and rich models than
this: we introduced it essentially for didactical reasons, because all main activi-
ties related to GUI development are listed in a sequentially ordered, simple
arrangement.

Evolutionary Prototyping process

Many user interface design approaches use intermediate prototypes in order to
produce the final GUI design more easily, reducing the risks (and costs) of the
design phase10.

The natural evolution of the prototype idea is to base the whole development
around prototypes of increasing functionality. With this approach the prototype is
never abandoned, but is constantly refined and expanded until it is good enough

10. We discuss prototyping in Chapter 3.

c01.fm Page 24 Thursday, March 9, 2006 12:30 PM

Lifecycle models, processes and approaches 25

12:30 PM 9 March 2006 c01.fm 1.0

to be the final product. The discussion of this lifecycle approach is inspired from
(McConnell 1996). The methodology is represented graphically in Figure 1.6.

This approach can be useful when requirements are changing – for example, when
the customer is reluctant to commit to a defined set of requirements. It may prove
useful in situations in which nobody fully understands the application domain at
first, for example in advanced research projects. This model tends to produce
visible progresses thanks to the steady prototype evolution.

There are however several drawbacks and potential risks when adopting this
approach. First, as the application concept evolves as you develop the prototype,
there are no predefined time and qualitative deadlines for ending refinement iter-
ations. The risk is that as an important deadline approaches, the current prototype
stage is declared ‘good enough’ to be released. Customer judgment may also not
be a reliable criterion for concluding refinement iterations.

Another common risk is production of a poor-quality implementation in which
code maintainability is low – if not addressed properly, continuous changes may
produce code full of patches. Feature creep is another potential risk. When no clear
and definitive requirements are set at the beginning of the development process,
there is the concrete risk of adding too many new features to the prototype during
its refinement.

Some guidelines help to tackle the commonest risks with this approach:

• It is essential to focus on a limited set of important aspects of the product
before starting the development. These aspects will be the focus of the proto-
typing activity. An obvious choice is the GUI. Beginning the prototyping
process with the GUI is a good way to give usability and GUI design top
priority.

Figure 1.6 The Evolutionary Prototyping lifecycle model

c01.fm Page 25 Thursday, March 9, 2006 12:30 PM

26 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

• The code used in evolving the prototype should be of the best possible
quality, continuously refactored (Fowler et al. 2000) and enhanced, because
frequent changes risk deteriorating it.

• For this reason, it is essential to avoid employing entry-level programmers
when adopting this development model.

• Be sure of getting high-quality feedback from customers and end users,
otherwise the prototype will prove poor and ineffective no matter what effort
has been spent in refining it11.

• Avoid evolving a throw-it-away prototype with this model. It should be clear
from the initial inception of the concept whether to create a throw-it-away
prototype, or to keep working on the prototype until it is refined into a final
product. All members of the development team should be committed to this
choice.

1.8 UML notation
This section introduces some UML notation that will be used in the rest of the
book. Readers that are knowledgeable about UML’s state, interaction and class
diagrams may choose to omit this section.

Class diagrams

We introduce UML class diagram notation without discussing it thoroughly: if
you are not familiar with UML class diagrams, many books are available on the
topic.

In this book we will use simplified class diagrams. We won‘t use visibility indica-
tors (‘+, #, -’ symbols for showing public, protected and private fields) nor other
details such as initial values.

Figure 1.7 shows a sample class diagram that illustrates the level of detail of the
class diagrams used in the book.

11. See the discussion on prototyping in Chapter 5.

Evolutionary prototyping shares many characteristics with other iterative
processes, such as RUP and the family of Agile models.

c01.fm Page 26 Thursday, March 9, 2006 12:30 PM

UML notation 27

12:30 PM 9 March 2006 c01.fm 1.0

We use stereotypes – for example «swing» in the JPanel class – to represent the
Java package to which the class belongs, or whether the Java type is an interface,
an abstract class, or (when absent) a normal class. Figure 1.8 represents the class
details we will use for documenting code.

For brevity we will avoid the stereotype «abstract» for abstract classes, using
only the italicized name, as in the AbstractSymbol abstract class in Figure 1.7.

AbstractSymbol
«abstract»

SandboxPanel

BitmapSymbol PoliLine...

0, n

Observable
«util»

Observer
«interface»

«util»

Commandable

ordered

JPanel
«swing»

realization

dependency

extends
class

labeled
association

dependency

multiplicity

Figure 1.7 A sample class diagram

Person
<<persona>>

class name

additional
class details

class
compartment

 age : int
 sex : Sex

getAge() : int
setAge(int)
actionPerformed()

attributes
compartment

operations
compartment

class
stereotype

Figure 1.8 Class details

c01.fm Page 27 Thursday, March 9, 2006 12:30 PM

28 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

We will also highlight the slight difference between realization and dependency
relations:

• Realization means that a class implements behavior specified by another
class. This is the common case when a class implements an interface or an
abstract class.

• Dependency indicates that the implementing class depends on the other.

Whenever the interface Observer in Figure 1.7 changes, the SandboxPanel class
may also have to change. The dependency relation is also used to express depen-
dencies among different class packages.

Sequence diagrams

Throughout the book we will use both UML sequence and collaboration diagrams.
Such diagrams, which are interchangeable, describe a behavior by means of a
number of objects and the messages they exchange in a given temporal sequence.

Figure 1.9 shows an example of a sequence diagram that describes the typical
behavior of a CustomListener instance that is registered for a JButton’s
ActionEvents.

In the figure, an unspecified instance of the class MainClass creates a new
instance of the class JButton and a new instance of the class CustomListener.

MainClass

CustomListener

init()

new

new

AddActionListener()

actionPerformed()

JButton

Figure 1.9 A sample sequence diagram

c01.fm Page 28 Thursday, March 9, 2006 12:30 PM

UML notation 29

12:30 PM 9 March 2006 c01.fm 1.0

This in turn invokes the method init() on itself asynchronously, then invokes
the method addActionListener() to the unspecified instance of JButton. After
some time – not related to the previous sequence of method calls – the unspeci-
fied JButton instance method init() is invoked onto the unspecified instance of
CustomListener.

For brevity we usually avoid indicating instance names: Figure 1.9 only specifies
class names.

This section does not detail all the UML conventions used in the book for reasons
of space – we have not mentioned collaboration diagrams, even though we will
use them. Given the ubiquity of UML, we leave the interested reader to conssult
one of the many sources available in literature or on the Web.

State diagrams

UML state diagrams are useful for describing the internal state transitions within
a GUI.

Figure 1.10 shows an example of an UML state transition diagram.

As shown in the legends in the diagram, the initial state is indicated with a jagged
arrow, while state transitions are indicated by arrows tagged with the event that
triggers the transition from one state to the other. States are drawn as circles.
Hence the state of the class described by the diagram in Figure 1.10 gets to State B
after Event x happens when the class is in its initial state. Other events might
change the internal state of the class, either restoring the initial state again or
bringing it to a final state.

State A

Event x

indicates
the initial

state

State
transition
after event
“x” occurred

state

State B

the final
state

State C

Figure 1.10 State changes within a class

c01.fm Page 29 Thursday, March 9, 2006 12:30 PM

30 Putting GUI Development into Context

12:30 PM 9 March 2006 c01.fm 1.0

1.9 Summary
This chapter has presented some introductory discussions about effective soft-
ware and GUI design. In particular:

• We discussessd the important concept of focusing on end users throughout
the whole development process.

• We illustrated a general decomposition of GUI implementations based on
functional criteria.

• Tool selection (the topic of Chapter 11) was presented briefly.

• We briefly introduced organizational aspects related to UI development.

• We discussed lifecycle issues, showing some design methodologies focused
on usability and GUI-centered development.

• We introduced UML use case diagrams as a means of documenting systems
from an end user's perspective.

• We also introduced sequence and state UML diagrams.

c01.fm Page 30 Thursday, March 9, 2006 12:30 PM

2 Introduction to User
Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

The field of user interface design and human-computer interaction is complex
and vast. It has many different contributors and perspectives, and still lacks a
uniform descriptive language. It is fragmented into different approaches and
practices, a fact that stems directly from the very nature of human-computer inter-
action (HCI): the presence of the human component makes it impossible to
develop an exact foundational theory. HCI, its derived design guidelines and
criteria are thus based mainly on empirical evidence and practical principles.

The term ‘HCI’ was adopted in the mid-1980s. HCI is an interdisciplinary practice
that aims at improving the utility, usability, effectiveness and efficiency of interac-
tive computer systems. SIGCHI, the special interest group in HCI, defined it as ‘a
discipline concerned with the design, evaluation and implementation of interac-
tive computing systems for human use and with the study of major phenomena
surrounding them1.’

In this chapter we introduce some HCI concepts that are fundamental to the
professional design of user interfaces. The chapter is structured as follows:

2.1, The human factor discusses the role of people in the design process.

2.2, Display organization introduces the esthetics of GUI design, and discusses
ways in which an application can interact with its users.

2.3, Interaction styles goes into more details about human-computer interaction,
and presents the five major categories of human-computer interaction.

2.4, Conceptual frameworks for UI design describes a set of coherent concepts that
structure the different phases of development of UIs, and which provide a reliable
and proven mindset for organizing the design, thus reducing risks and improving
quality.

2.5, Assessing the quality of a GUI describes ways in which testing of user interfaces
can be conducted and its results collected.

1. Many disciplines contribute to HCI: computer science, cognitive psychology, ergonomics,
social and organizational psychology, design, engineering, anthropology, sociology,
philosophy and linguistics.

Introduction to User Interface Design

c02.fm Page 31 Thursday, March 9, 2006 11:27 AM

32 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

2.1 The human factor
We begin our quick tour of HCI with end users and how they perform actions.

A model of interactive systems – seven stages and two gulfs

One of the simplest approaches to modeling interactive systems is to describe the
various actions users go through when faced with the task of using an interactive
system (Norman 1998). Users:

1. Form a goal
2. Form an intention
3. Specify an action
4. Execute the action
5. Perceive the system state
6. Interpret the system state
7. Evaluate the outcome

The user first forms a conceptual intention from their goal – for example, deleting
an item in the application shown in Figure 2.1 – then tries to adapt this intention
to the functionality provided by the user interface. From these commands, as
perceived by the user, they execute the action – for example by dragging an
element in the tree to delete it, as Figure 2.1 shows. The user then tries to under-
stand the outcomes of the action. This is particularly important in computer
systems, where the inner workings are hidden and users have to guess the
internal state from few artificial hints (Norman 1998). The last three stages listed
above help the user to evolve their idea of the system. The entire interaction
process is performed in such cycles of action and evaluation: by interpreting the
outcome of their actions, the user refines their mental model of the system.

Action and evaluation are often illustrated by means of the gulf metaphor, after
(Hutchins et al. 1986):

• The gulf of execution. This phrase describes the mismatch between a user’s
intentions and the allowable actions: for example, a user might be used to
removing items by dragging them into a wastebasket, but in some applications

For simplicity we use the term ‘GUI’ as a general term to refer to any graphical
user interface. In this chapter we distinguish between different classes of
graphical user interfaces that are gathered under the common name of GUIs
when applicable.

c02.fm Page 32 Thursday, March 9, 2006 11:27 AM

The human factor 33

11:26 AM 9 March 2006 c02.fm 1.0

items may be not draggable. Gulf of execution describes the practical difficulty
of performing tasks with a GUI.

• The gulf of evaluation. This phrase refers to the difference between a user’s
expectations and the system’s representation. Referring to Figure 2.1, the
user observes that even if an item can be dragged onto the wastebasket icon,
the intended delete operation did not work, because the application
displayed the message shown in Figure 2.2. Gulf of evaluation describes the
difficulty users experience in evaluating the outcome of an action they
perform with a GUI.

The cognitive distance between two such worlds – the user’s and the software’s –
corresponds to the potential mismatch between the way a person thinks about a
task and the way it is represented in the GUI (Preece 1994). This mismatch, and
the distance between the two gulfs, can be reduced by designing the user interface
in a way that reduces the differences between the users’ goals and the GUI’s state
and form.

As an aside, messages such as that shown in Figure 2.2 are rather intrusive. A
better choice would be to signal the error with a less intrusive form of feedback,
such as changing the mouse pointer shape or producing a beep.

Figure 2.1 The gulf of execution: execution mismatch

c02.fm Page 33 Thursday, March 9, 2006 11:27 AM

34 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

Developers are part of the design process

So far we have only described the user’s perspective of the GUI. We have not yet
talked about the designers and the programmers who design the application,
including the user interface. Just like end users, designers and programmers also
have their own vision of an application. What for the end user might be an incom-
prehensible command description, such as clear action stack, may be an ‘obvious’
choice for the programmer that implemented it. A graphical design inspired by
some new award-winning product might represent an accolade for the designer,
but a nightmare for the developer to implement and an awkward thing for an end
user to work with.

Many of the problems involved in creating effective user interfaces stem from the
differences between the designer’s and the end user’s viewpoints. Designers can
sometimes become so absorbed in their work that they lose focus and overlook the
importance of the user's needs.

Ideally, the designer is the mediator between users and developers. Unfortunately
professional GUI designers are thin on the ground and often expensive to hire.
Hence developers often fill the role of designers, especially in small and medium
sized organizations. This creates a potential problem: such developers-turned-
designers often adopt their habitual programmer’s mental model unconsciously,
producing less usable GUIs as a result. On the other hand, fortunately, the effect

Figure 2.2 The evaluation gulf: evaluation mismatch

c02.fm Page 34 Thursday, March 9, 2006 11:27 AM

The human factor 35

11:26 AM 9 March 2006 c02.fm 1.0

of good design is contagious. Design guidelines, which are often promoted by
organizations that can afford a team of full-time professional designers, are slowly
making their way in everyday software, not just that produced by large
corporations.

The refinement of a user’s model of an application is often distorted by accidental
interaction, bad design or software bugs. Even developers themselves, as users of
other software, sometimes struggle to understand the internal model of a buggy
application. Suppose that a developer uses an application that shuts down unpre-
dictably, corrupts data, or causes other serious trouble. They will of course try to
bypass the internal states that cause such harmful behavior. To do that in the
absence of implementation documentation, they must develop a mental model of
the application’s inner workings. Computer programs, contrary to other types of
technology, are both complex and inherently abstract. A mechanic can guess from
the weird noise a car makes that it probably has a problem with its suspension,
but even a seasoned developer cannot determine the actual implementation
behind a GUI merely by using it.

End users only have the direct experience of the GUI with which they are inter-
acting, coupled with their previous knowledge, to work out what is going on
inside an application. Humans need semantic models to enable them interact with
the world sanely, and always build such models, even unconsciously. Users act
like the early philosophers, trying to make sense of an incomprehensible world
using only their current and past experience – it is common to hear them
explaining how an application works in their own terms. As personal computers
have been around for decades, many people are accustomed to concepts such as
files, databases and mouse gestures2.

In some ways this is a problem – ideally we should be able to use a complex device
such as a car or a software application without having to be aware of its inner
working, although a minimum coupling with the underlying technology is
unavoidable. A professional GUI design should therefore start with an abstract
model in the designer’s head. In addition, what might seem a natural choice for
the designer can later reveal awkward details that are difficult to understand and
to employ by users. It is important therefore for designers to adhere to a concep-
tual model that is as close as possible to the prior knowledge of the intended end
user population.

2. The term gesture in HCI denotes a single basic interaction performed by the user. Usually it
refers to mouse-based systems in which sequences of gestures will make the software
perform certain operations. Sequences of gestures can be organized in a specific syntax,
such as ‘press right button-drag mouse-release right button.’

c02.fm Page 35 Thursday, March 9, 2006 11:27 AM

36 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

To recap, we have highlighted some important issues:

• Software is abstract. Good user interfaces are those that communicate their
internal state to users effectively, encouraging the seven-stage cognitive
sequence described on page 32. In computer applications, the inner workings
are hidden, and human beings have to figure out the internal state from few
artificial hints. Such hints should be coherent, otherwise the GUI won’t be
successful: it will be difficult to use, producing convoluted mental models
that are hard to remember, inducing a negative response from users. Hence it
is important to develop a sound conceptual model to stand behind the GUI.
The basic concepts, visible items, their interaction, names and everything else
should be carefully thought through at the design stage.

• People use conceptual representations of reality based on their current and
past experience. Consequently, different mental models of the same applica-
tion exist in the minds of its designers, its developers and its end users. It is
important for designers to be aware of the different mental models involved
in the development and subsequent use of a user interface as a social artifact –
something that will be used by more than one person.

We mentioned that cognitive psychology was a contributing discipline to HCI.
The next section discusses some simple cognitive models that underlie well-
designed user interfaces.

Short term memory and cognitive modeling

We will now discuss some basic principles of cognitive modeling, and include
some practical advice on their application to HCI design. In particular, we discuss
briefly a useful – although rather crude – model of human memory, and some of
its implications for interface design.

In human beings, short-term memory (STM) is a limited form of memory that acts
as a ‘buffer’ for new information, used to process perceptual input. Empirical
studies have shown that humans usually have an STM capacity of between five
and nine items. Such items can be single objects or coherent chunks of informa-
tion. The size of non-atomic pieces of information that can be stored in STM
depends on the individual’s familiarity with the subject, but usually the informa-
tion survives no longer than 15–30 seconds.

You can try this for yourself: it is relatively easy to remember seven random colors,
but it is not easy to remember seven Spanish words unless you speak Spanish – not
to mention seven Urdu words. STM is very volatile. Distractions, external ‘infor-
mation noise’ or other interrupting tasks quickly disrupt its contents.

The other type of memory is long-term memory (LTM), more stable and with far
greater capacity, but with slower access than STM. A major problem with LTM is

c02.fm Page 36 Thursday, March 9, 2006 11:27 AM

The human factor 37

11:26 AM 9 March 2006 c02.fm 1.0

the difficulty of the retrieval phase. Many of us use mnemonic aids to access LTM,
such as mental associations for remembering a personal code or password.

STM influences the efficiency of an HCI interaction. Interactions that can be
processed using only STM are easier and faster to accomplish than those that
require LTM or some external cognitive help. Complex interactions are made
more difficult by the need to maintain a data context throughout the whole
process, using working memory and STM.

GUIs should be designed as much as possible to let users work with STM, but this
kind of memory has its own limits as well. To illustrate these ideas, here is an
example of the pitfalls of placing excessive trust in STM.

An example of STM misuse

Our example GUI here is designed to allow users to reserve a train seat. It is orga-
nized as a sequence of dialog in which only partial information is shown at any
one time. Such an interaction style is often referred to as a wizard, a term popular-
ized by Microsoft’s extensive use of it.

Our GUI has been designed only for this example, and is not intended to be an
example of good user interface design – see for example our weird use of tabbed
panes!

In the first dialog we are asked for the basic details for our trip, as shown in
Figure 2.3.

After some input, such as reserving a window seat, food options and so on, we are
presented a reservation code, as shown in Figure 2.4. This is meant to help the user
to choose between different reservations. Users can remember this sort of code for
varying times.

A recap screen is then presented, and the user is asked to choose one reservation,
prompting for the data of choice (as shown in Figure 2.5).

Figure 2.3 An example of excessive STM burden: entering some data

c02.fm Page 37 Thursday, March 9, 2006 11:27 AM

38 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

Naturally, few users can remember this information, and the wizard will probably
produce the message in Figure 2.6. At this point the user’s STM memory has been
overloaded. Clearly, more cognitive aids, such as displaying a list of reservations
made, or providing some way to point to them, would make the GUI much more
robust and usable.

Figure 2.4 An example of excessive STM burden: memorizing the reservation code

Figure 2.5 An example of excessive STM burden: retrieving data from STM

Figure 2.6 An example of excessive STM burden: negative feedback

c02.fm Page 38 Thursday, March 9, 2006 11:27 AM

The human factor 39

11:26 AM 9 March 2006 c02.fm 1.0

Nobody design GUIs like this one any longer, but such design inconveniences
were frequent before the widespread use of mature user interface solutions and
the advent of direct manipulation techniques. In this situation the GUI shouldn’t
rely exclusively on the user’s short term memory. But consider the case in which
the client device cannot support a rich user interface, such as a mobile phone.
Even in such a case, an alert message, such as ‘Please print confirmation for your
records…’ is needed.

These problems have lead to the widely-used practice of exploiting the context for
selecting and manipulating information. For example, users are now familiar with
contextual menus, usually activated by right-clicking on an object, or some other
platform-dependent gesture, that make all the possible commands for the selected
item in the given context available. There is then no need for extra memory load
on the part of the user. A designer should always try to design the user interface
to make users work as much as possible with STM, as this lightens their memory
load and makes the interaction speedier and less error-prone.

In contrast, something like a Unix command-line interface needs continuous
access to LTM or some external cognitive aid. It is not uncommon for Unix novices
users to use post-it or paper notes to remember commands and their syntax, or the
sequences of commands required to carry out a certain task. With the advent of
GUIs, this situation has changed. Now designers have a powerful set of tools for
designing expressive, easier-to-use interfaces.

Another means of avoiding placing an excessive memory burden on users is to
adopt a standard and consistent design. In this way, users can reuse the knowl-
edge acquired from use of other parts of the GUI, or of other GUIs the adopt the
same standards. Later we will show how expensive providing an arbitrary menu
organization, with an incoherent command organization can be in user memory.

In conclusion, STM is a valuable aid to well-designed interfaces. STM requires
concentration, so in general users should be in a proper environment for maxi-
mizing their performance. Users should feel at ease with the application, and have
a predictable idea of how it works, without the fear of making catastrophic errors
or of excessive time pressures. We cannot, of course, control the environment in
which the application will be used, but we can consider it in our design.

UI design can be organized around basic criteria that are derived from cognitive
modeling-based human psychology considerations: try to eliminate distractions,
minimize user anxiety, provide feedback about task progress, and either avoid
errors or handle them gracefully.

Interacting with human beings

In this section we discuss some practical issues related to interacting with users.

c02.fm Page 39 Thursday, March 9, 2006 11:27 AM

40 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

Response time

Even a brief introduction to cognitive modeling would be incomplete without
mention of an important dimension of a user’s experience when interacting with
a computer system. Response time is a significant factor, in that slow response time
is a cause of errors and user frustration. This is particularly true for Java-based
applications, where performance can be a serious bottleneck3.

Response time affects users in different ways. Their expectations and past experi-
ence play an important role in their reaction. If a user is accustomed to a task
completing in a given amount of time, both excessive or too rapid a completion
can confuse them. Short response times also aid more easy exploration of the GUI
where such behavior is encouraged, for example by undo-able actions and low
error costs.

Balancing human control and automation

It is often useful to provide automation of some features in an application, but this
takes away some control from users. People become frustrated and nervous if
they feel they don’t have full control over the work they are doing. It is therefore
important to provide the sense of control to end users.

In contrast, by definition a GUI should provide a high-level, easy-to-use view of
an application’s services and data, hiding irrelevant details from the user. A crit-
ical factor in a successful GUI design is determining the balance between
automation and user control, between showing meaningful details and hiding the
rest, and in doing so adaptively depending on the particular user. For example, a
user may want to skip some automatic feature by taking full control of it as they
become confident with the application.

It is useful to assess the levels of control that can be exerted in a GUI. This helps
to make explicit in the design the layers of automation that can be provided, such
as defining macros, providing wizards for most common operations, and so on.
Nevertheless, a computer program is an inherently limited artifact, in that it
cannot take into account all possible situations, only a restricted set of combina-
tions thought out in advance.

Consequently, balancing human control over automation is a typical trade-off of
GUI design. Providing fully-automated GUIs could be too risky, especially when
the task is a critical one, such as managing a chemical plant, and there are many

3. In general, interpreted bytecode and the overhead of a Java virtual machine only impacts
the overall performances of Java applications to a minor degree, thanks to sophisticated
technologies like ‘just-in-time’ compilers, garbage collectors and various other optimiza-
tions. However, GUI technologies like Swing implement low-level graphical details and
infrastructure interactions as fine-grained Java objects, requiring a high number of runtime
objects just to implement simple user interfaces.

c02.fm Page 40 Thursday, March 9, 2006 11:27 AM

The human factor 41

11:26 AM 9 March 2006 c02.fm 1.0

independent variables that may cause unforeseen behavior. On the other hand,
allowing users to have a too much control could create GUIs that are too difficult
or even dangerous to use. When exposing too much detail that can be manipu-
lated in a GUI, the risk arises that users could modify some valid data or use the
interface in unanticipated ways.

To recap, in designing a correct level of automation, much depends on the user
population and the nature of the application domain. For a business-oriented
application, some simple rules can be applied:

• For the same application, always provide two routes through the UI: one for
experienced users, with more control and less automation, and a simplified
(that is, more automated) set of functions for inexperienced users.

• Provide warning messages when critical data is being manipulated directly,
even by experienced users.

• Whenever possible avoid automated features and the pro-active behavior
exemplified by some ‘agent-like’ applications (“Hi, I’m Tom, I’ll check the
mail for you”). This latter kind of approach hasn’t proved successful and also
can quite expensive to implement. Proactivity is still an untamed beast4.

Showing the application’s internal state

Users build their own system model unconsciously while interacting with the GUI.
It is essential to provide the right hints and to correctly signal the system state to
the user. This can be achieved using various techniques. Those most commonly
used are modifying the mouse pointer or using some form of animation:

• Changing the pointer shape. Changes of pointer shape are widely employed for
signaling an application’s internal state, for example a ‘busy’ pointer, and
currently-available operations, for example resizing a window by dragging
its corner. The Java Look and Feel guidelines, which we introduce in the next
chapter, prescribe the use of the ‘busy’ pointer for any operation that takes
more than two seconds.

• Animation. can be used to show both the progress of an operation, often by
means of a progress bar component, or generic activity, using for example an
ad-hoc animation. The Java Look and Feel guidelines suggest that a progress
indicator should be updated at least every 4 seconds. The example GUI in
Figure 2.7 below shows a progress bar that can be set to update at various

4. At a recent international conference on autonomous agents the speaker (an authority in
the field, praising the many benefits of proactivity) was interrupted abruptly by his lap-
top crashing. It took many embarrassing minutes to recover his presentation. It turned out
to be an unforeseen interaction between the screen saver (the proactive, yet unintelligent
agent) and an operating system patch he had loaded the night before the presentation.

c02.fm Page 41 Thursday, March 9, 2006 11:27 AM

42 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

intervals in the range of 1 to 4 seconds. The task is completed in one minute.
Readers are encouraged to download and try this sample GUI to directly
familiarize themselves with update times.

One controversial notion that should be considered is the use of modes in an appli-
cation GUI. Modes are specific states or an application that affect some of the user
interface behavior. A designer or developer can think of them as contexts in which
some previous user interaction changed the meaning of current actions. For
example, on a cellphone the ‘hang up’ red button has different functionalities,
depending on whether a call is in progress or not. An application can behave in a
completely different way in different modes in response to the same user input.
Design guidelines normally discourage the use of modal interfaces, or even ban
them altogether. Modes are difficult to manage by users and easily confuse them.

It is vital to show explicitly the current mode within the GUI. This is usually done
by modifying the pointer shape, for example in drawing software when a specific
graphic tool is selected from the palette, or by means of toggled buttons, status bar
icons or messages.

Techniques for getting the user’s attention

Techniques for getting the user’s attention are employed widely in user interfaces.
These techniques are derived from empirical studies and can be summarized as
follows:

• Animation. Animation is often used to express the internal state
of the GUI, showing work in progress or generically signaling activity. Often
this latter use is the only one suggested by official design guidelines.
However, flashing items on the screen easily capture a user’s attention –
often too easily: this technique can be disturbing and invasive.

• Color. Like animation, this technique should be used carefully. As with
animation, the Java Look and Feel uses few system colors. Too many colors
tend to produce confusing GUIs.

Figure 2.7 Testing the update time for a progress indicator

c02.fm Page 42 Thursday, March 9, 2006 11:27 AM

The human factor 43

11:26 AM 9 March 2006 c02.fm 1.0

• Audio cues. This technique, used carefully, can be very effective5.

• Bold fonts and other graphic adornments. When used carefully and coherently,
such graphic conventions can be effective without being disrupting. As we
will see later, the Java Look and Feel design guidelines adopt some simple
graphic conventions to signal importance.

Relying on professional design guidelines avoids many obvious errors. This is
especially true for attention-catching devices such as flashy labels, colors and the
like. All major UI design guidelines provide reliable but noninvasive mechanisms
for catching user attention.

Some general principles for user interface design

Before going further it is useful to recap what we have said so far. Here we distil
the previous discussions into a few high–level general principles that should
always be kept in mind when designing a user interface:

• Minimize the load on users. Reduce the memory and cognitive load on users by
providing informative feedback, memory aids and other cognitive support.
Ensure that a work session can be interrupted for a few minutes without
losing the work in progress, as users are only able to focus attention for a
limited time.

• Ensure overall flexibility and error recovery. Flexibility is essential when dealing
with users. Human beings make errors: providing mechanisms for reversing
actions allow users to explore the GUI free from the anxiety of being trapped
in an unrecoverable mistake.

• Provide user customization. The interface should be customizable by the user.
Flexibility also includes the provision of different use mechanisms for
different classes of users: novices can use wizards or other simplified means
for easy interaction, while expert users can take advantage of keyboard accel-
erators and other shortcuts, all within the same GUI. For specific users, such
as those with disabilities, such flexibility could provide the only way in
which they could use the application.

• Follow standards to preserve consistency. Many standards and guidelines exist
for interactions, abbreviations, terminology and so on, such as the Java Look
and Feel Design Guidelines (Java L&F Design Guidelines 2001), (Advanced
Java L&F Design Guidelines 2001). Such user interface design standards are
essential for the support of consistency between applications. They ensure
professional quality while reducing the design effort.

Consistency within a single GUI is even more important than correctly
adopting a set of GUI design guidelines: for example, in labeling, terminology,

5. Audio clues are supported in J2SE’s Swing from Version 1.4.

c02.fm Page 43 Thursday, March 9, 2006 11:27 AM

44 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

graphical conventions, component layout and so on. In this book we will
discuss many such guidelines and principles, as well as systematic
approaches to software design that are oriented towards consistency.

User-centered design

Perhaps the single most cited rule in user interface guidelines is ‘know thy user.’
Without a reliable model of the end-user population, a design may be too general,
relying only on the designer’s, possibly restricted, cognitive model of an applica-
tion’s use6.

A good designer not only knows the target users, but thinks like them. Learning
to think as a user is essential for building a high-quality GUI.

Taking the user into account in the design process leads to an approach known as
user-centered design, in which users are central to both the early design process and
to later testing and evaluation. A user-centered technique known as participatory
design stresses the active involvement of users throughout the design process,
especially in the evaluation phase.

User-centered design focuses on three concepts:

• Users. Usually the following general user categories apply:

– Novice users
– Intermediate users
– Expert users

• Users’ tasks. The most common categories are:

– Frequent tasks – designers should optimize these tasks
– Infrequent tasks – such tasks can be assigned a lower priority than

frequent ones as regards design/development resources and time
– Critical tasks – those that should be engineered most carefully in the GUI

• Context. In what context will users be performing their tasks?

The involvement of end users in GUI design should be carefully managed. Users
are not GUI designers, and their interaction should be managed so that their role
in the design process is mostly reactive, providing feedback over proposed
designs rather than producing new designs from scratch. The use of a prototypes
is central to early design iterations (design-evaluate-refine): such prototypes can
that function both as the current GUI representation as well as its requirements
documentation. Prototyping is an important activity in the design of high-quality
user interfaces, and we discuss it in Chapter 5.

6. The concept of ‘users’ should also include those whose activity is affected by the software,
such as system administrators, support staff, customers, etc. We refer to these as
stakeholders.

c02.fm Page 44 Thursday, March 9, 2006 11:27 AM

The human factor 45

11:26 AM 9 March 2006 c02.fm 1.0

In the following sections we discuss the two major issues in user-centered design:
users and tasks.

User analysis

User analysis is a vital part of the design process. The output of user analysis is a
model of the end-user population. Such a model is usually a decomposition of the
intended user population into homogeneous classes identified by some character-
istic such as domain knowledge, skill level, role, system knowledge and so on.
Such a model, and its underlying knowledge of the user population, is often docu-
mented by means of user profiles. This kind of information is always needed in any
GUI design process, even at an informal level.

An example of a user profile – for a cellphone Java music player – could be the
following:

• Buys a new wireless game or ring-tone at least every month.

• Buys at least one CD every two months.

• Is proficient with high-functionality cellphones.

• Is aged 16-30.

• Uses an MP3 player, possibly combined with a cellphone.

• Listens to/watches the following radio station/music shows: …

(etc.)

As far as possible designers must study representative users directly, possibly in
their workplace, to take into account their typical working environment.

Task design and analysis

The concept of tasks is an important one in GUI design. Tasks implicitly define
users, not just the details of the actions needed to accomplish a certain result
within the GUI. For example, the task of creating a sophisticated glossary in a
word processor automatically underlies an expert user, while checking e-mail is a
task that can be performed by any kind of user and should be thought of as char-
acteristic of novice ones.

Tasks are used also for usability testing. To test specific parts of the GUI, designers
create particular tasks the users have to accomplish in the testing environment.
Task analysis studies the way in which users accomplish such tasks while using
the system. This analysis produces a list of the tasks users want to achieve using
the GUI, together with the information needed and the intermediate steps needed
for completing them. Task analysis is be performed by interviewing users and by
observing the way they complete preset tasks.

For example, suppose we are designing a music manager applet for J2ME-enabled
devices, such as that shown in Figure 2.8.

c02.fm Page 45 Thursday, March 9, 2006 11:27 AM

46 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

Examples of the tasks and subsequent task realizations for this kind of GUI may be:

• Convert an MP3 into a ring-tone:

– from the main menu, select Format Conversions
– in the ‘Format Conversions’ screen, select the input MP3 file
– in the ‘Format Conversions’ screen, select the Export option
– in the ‘Export’ screen, select the ring-tone format and rename the resulting

file
• Send a piece of music to another cell phone:

– from the main menu, select Clipboard
– from the ‘Clipboard’ screen, select the desired file
– from the ‘Clipboard’ screen, select the Send option
– in the ‘Send’ dialog, select the Another cell phone option
– in the ‘Send to another cell phone’ screen, select the recipient’s number or

type it using the numeric pad
• Configure the application preferences:

– from the main menu, select Preferences

Tasks depends on the GUI – the same task performed on two different GUIs may
result in completely different task realizations.

Simplified thinking aloud

This technique prescribes testing the GUI with users who are asked to express
their thoughts verbally while interacting with the system. An observer can use
such additional insight into user’s interaction process to identify unforeseen
misunderstandings in the interface design. Users are usually videotaped while
interacting with a GUI, as this allows better analysis.

A simplified, more practical version of this technique involves observers who take
notes while the user is interacting with the GUI. Precision and exhaustiveness are

Figure 2.8 A music manager applet for J2ME wireless phones

c02.fm Page 46 Thursday, March 9, 2006 11:27 AM

Display organization 47

11:26 AM 9 March 2006 c02.fm 1.0

traded for economic feasibility and practicality. Even in this simplified version,
this type of test can reveal extremely useful information. Testers need to be aware
of the added strain on users that this type of testing usually entails, and manage
it accordingly, for example by limiting the duration of individual tests to a few
minutes.

Graphical user interfaces are all about the visual arrangement of information. The
next section moves the focus of our discussion from the human user to the
computer, discussing the visual organization of graphical user interfaces.

2.2 Display organization
The organization of the display is clearly one of the most important aspects of the
design of a graphical user interface.

It can help a developer to think of display organization as a language made up of
the following basic constructs, which can be combined together to produce very
complex display organizations:

• Composition. Display organizations can be nested into others, recursively.
Readers familiar with software design patterns know this mechanism as the
Composite Pattern (Gamma et al. 1994).

• Separation. Specific portions of the display can be separated from others for
semantic reasons. Static or dynamic separators, using rules or other graphic
cues such as different windows, resizable areas in the same window and so
on can be used. For example, a set of check boxes can be grouped and sepa-
rated from other items with additional space.

• Layout strategy. This is the final element of our hierarchy of visually nested
area organizations. We will discuss strategies for laying out the items in our
GUI below.

• Temporal sequence. The display content depends upon external input such as
user interaction or task completion. Such temporal ‘screenplay’ should be
carefully thought through by the designer.

Layout strategies for a display area can be of two types:

• High-density, for conveying an high volume of information.

• Its opposite, which we call the limited information strategy, in which the aim is
to reduce the amount of displayed data.

Such strategies are complementary and should always be used together in the
design of every window or portion of it. Depending on the individual case, one or
other will be dominant, but it is essential to take care with the balance of both.
Interfaces that are either too cluttered, or too uncommunicative, are both hard to

c02.fm Page 47 Thursday, March 9, 2006 11:27 AM

48 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

use. Figure 2.9 shows an example of a design in which the high density strategy is
predominant. This interface has been designed mainly for expert users.

The limited information strategy is also used in the GUI in Figure 2.9 – see the use
of drop-down menus, configurable areas, collapsing items and so on.

A high-density layout strategy can be usually achieved using three general
mechanisms:

• Tabular organization. Data is organized in a list of (possibly) structured values.
Typical examples are spreadsheets and database grids.

• Hierarchical organization. Information is structured into a tree-like hierarchy,
such as in the file system’s graphical representation shown on the left of
Figure 2.9.

Figure 2.9 A predominantly high-density display organization

c02.fm Page 48 Thursday, March 9, 2006 11:27 AM

Display organization 49

11:26 AM 9 March 2006 c02.fm 1.0

• Graphical organization. Data is represented graphically in the form of a chart
or diagram.

A limited information layout strategy instead aims at minimizing the displayed
data. There are several approaches to controlling the volume of displayed data:

• Step-by-step interaction. Data is serialized and shown in stages separated in
time. A classic example of this approach is the wizard.

• Details on demand. Optional data is only shown on user request. A common
example of this strategy is dialogs that have a More details button that
enlarge the dialog to provide further information. This type of mechanism
should be used with care, however, because users prefer predictable
windows and may feel uncomfortable with a GUI that changes its appear-
ance too much.

• Minimize irrelevant information. There are many ways to minimize data; for
example by shading it. Figure 2.10 shows a contextual menu in which some
commands are grayed out to signal that they are currently unavailable. We
often take such features of user interfaces for granted, but think how frus-
trating it is for the user to select a command only to be slapped in the face
with an error message because the command is currently unavailable.

These general techniques can be applied to many parts of the GUI – not just to
menus, but also dialogs, radio buttons and so on.

Stated in this way, however, such principles are of limited help. We will see more
concrete examples of the use of these ideas in the following chapters.

Esthetic considerations

Undoubtedly, professional-designed GUIs are pleasant to look at, but wrong
assumptions are often made about the meaning of the term ‘pleasant.’ One of the

Figure 2.10 Disabling unavailable information at its simplest

c02.fm Page 49 Thursday, March 9, 2006 11:27 AM

50 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

common pitfalls in GUI design is to get stuck into creating an excessively elabo-
rate visual experience on the (wrong) assumption that more is better. GUIs should
be as least astonishing as possible. A successful GUI is one that is barely noticed,
that works smoothly, swiftly and predictably.

I like to call such counterproductive and ‘fancy’ GUIs ‘Louis XIV-style user inter-
faces’ – this is often the case with novice or amateur designers who indulge in too
much baroque design. This is also a common error even for seasoned designers.
In fact, given the current pace of software releases, the most obvious and visible
place to add new features, and so justify the new release, is always the user inter-
face. Hence, feature creep is often concentrated in the GUI7.

On the other hand, esthetics are important. Too often developers take little interest
in the visual appearance of their user interfaces, producing unusable designs as a
result. Some find details of appearance such as buttons size, overall visual balance
and the rest boring. Such developers are mostly implementation-driven, tending
to automate the user interface as much as possible, implicitly seeing it as a dull,
unnecessary activity. Unfortunately there is no substitute for human design:
devices such as dialogs that automate the layout of the data they contain without
semantic input can seem attractive, but produce poor user interfaces.

On the other hand, such appearance details can be hidden using wise use of
object-oriented software architecture8, in which you get all the benefits of a
professional visual appearance with only a little extra work. We will show many
techniques for promoting such advantages, from general approaches to practical,
reusable classes.

This book promotes an industrial approach to user interface design, especially as
regards visual appearance. Our idea of a good-looking user interface is one that
adheres to official guidelines, is sober and usable as much as is economically
feasible and provides extras only in a limited, ‘withdrawn’ fashion. This is the
reason why, for example, Java libraries for advanced graphics handling, such as
the 2D package, are covered only marginally. Some examples of visual details in
a professional design are shown in Figure 2.11.

Feature creep is a well-known phenomenon, referred to as featuritis in the
classic The Mythical Man-Month (Brooks 1995): ‘The besetting temptation of
the architect… is to overload the product with features of marginal utility, at
the expense of performance and even of ease of use.’

7. You can find many examples of wrongly-designed GUIs – not only limited to the purely
visual aspects – by searching the Web for ‘User Interface Hall of Shame.’

8. Alternatively, GUI layout may be done in a semi-automatic way, in which the semantic
data that describes the layout of the visual components is stored externally, for example in
property files or some special field derived from the class documentation or metadata.

c02.fm Page 50 Thursday, March 9, 2006 11:27 AM

Display organization 51

11:26 AM 9 March 2006 c02.fm 1.0

The interested reader can see (Mullet and Sano 1995) for an introduction to the art
of visual design of software user interfaces, or the classic trilogy from Edward
Tufte (Tufte 1990), (Tufte 1997), (Tufte 2001).

Abstract-Augmented Area for GUIs

Abstract-Augmented Area for GUIs (A3GUI or A3GUI) is a term that describes a
simple approach to the definition and general management of graphical user
interfaces. The key idea is to organize a GUI and all its underling dynamics
conceptually – user interactions, intended behavior, design requisites, constraints,
implementation and so on – by areas, that is, the ‘real estate’ of our GUIs.

A3GUI represents a GUI as a set of augmented areas. These areas are abstractions
over the real GUI that help the design, implementation, testing or any other aspect
of the GUI in which we are interested. A3GUI can be thought of as describing a
general mindset that is independent of the chosen UI design approach.

By the term real GUI, we mean one concrete execution of our application at a given
time. This will in turn depend on the surrounding context that may affect our GUI,
such as the current user, the OS on which the application is running, and so on.
All such context data can change the GUI’s behavior and appearance for a given
execution in a given situation. For example, a GUI may change depending on the
given locale, or show only specific features to specific users, depending on their
roles. We all deal with GUIs by managing abstractions of real executions.

Augmented areas, which for brevity we refer to merely as areas, are pictorial repre-
sentations of specific facets of the GUI (whole windows, panels or single widgets)
augmented with other information. Areas can be represented as paper sketches,
in electronic form as drawings, diagrams, bundles of files, UML 2.0 diagrams and
so on, or in any other convenient way. Areas can be visually nested inside other

Figure 2.11 A simple dialog design

c02.fm Page 51 Thursday, March 9, 2006 11:27 AM

52 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

areas, can be related to other areas, and documentation attached to them, such as
requirements, documents, the implementation’s Java classes, and so on. The need
is to provide a pictorial representation, a unique ID and an explicit or implicit set
of abstractions we are representing throughout the area in the real GUI. The
A3GUI concept also happens to dovetail nicely with modern OO GUI toolkits
such as those used to build Java GUIs.

The type and level of abstractions really depend on our purpose. For example,
Figure 2.12 shows a number of possible abstractions for a real GUI in a specific
execution context.

M

A3GUI provides a formalized yet flexible framework for designing and managing
GUIs that helps to solve the conceptual twists that we commonly face when
defining GUIs at various levels of detail.

An example

Suppose we want to design a very simple GUI to display the bank accounts of
specific customers. We want to provide a list of all transactions recorded for a
given customer (which for simplicity are chosen outside our GUI). Only certain

Figure 2.12 Some possible abstractions over a given GUI execution

c02.fm Page 52 Thursday, March 9, 2006 11:27 AM

Display organization 53

11:26 AM 9 March 2006 c02.fm 1.0

users may have access to transaction details: for example, if a clerk is inspecting a
customer’s account, we don’t want to allow access to customer-sensitive data.

For simplicity we can think our GUI as having only two requirements:

• (R1) Our GUI has to show a list of all available transaction for a given
customer.

• (R2) Depending on the role of the current user, only a small subset of a trans-
action’s details can be seen.

We start by devising the following areas9 – see Figure 2.13.

The following abstractions relate to each pictorial representation shown in Figure
2.13:

• A0 represents the login functionality each user has to accomplish to access
the rest of the application.

• A1 represents the access to all the functionalities provided by the main menu,
and also provides the list of available transactions to the user (fulfilling R2).

• A2 represents access to the transaction details, available only for the given
role.

The diagram also shows some relationships between the various areas. These rela-
tionships express informally the intended navigation between the various areas.
We will use the same notation to express navigational relationships between areas
in the following figures also.

9. In this example we use ‘A’ as a prefix for areas ids to specify that these areas came from
analysis, and are meant to capture requisites and decompose functional behavior only.

Figure 2.13 A possible GUI representation in three areas (adopting functional
abstractions)

c02.fm Page 53 Thursday, March 9, 2006 11:27 AM

54 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

The areas shown in Figure 2.13 were the result of a functional refinement activity –
we can think these areas as roughly equivalent to the use cases for the GUI.

A further step is to refine the previous areas for the UI design, deciding whether
areas will become fully-fledged windows, or parts of other areas. A possible UI
design refinement step is shown in the following figure10.

The following abstractions related to the pictorial representation depicted in
Figure 2.14:

• D0 represents the log-in dialog.

• D1 represents the main windows with the available commands and the list of
all the transactions for the chosen customer. Whenever the current user
(already logged in from D0) is not entitled to see transaction details, the View
button is disabled.

• D2 represents the pop-up modal dialog that appears whenever the user has
selected one transaction and presses the View button.

10. In keeping with the previous step of this example, we use ‘D’ to prefix areas ids, to specify
that these areas arise from UI design refinements.

Figure 2.14 A UI design refinement step

c02.fm Page 54 Thursday, March 9, 2006 11:27 AM

Display organization 55

11:26 AM 9 March 2006 c02.fm 1.0

We could have provided an alternative UI design for the same area as Figure 2.13.
Imagine that we provide two different windows, depending on the user’s role.
This design is shown in Figure 2.15, in which D0 is the same area as that shown
with the same id in Figure 2.14, while the other two areas are new.

However, we decide to use the design in Figure 2.14, because it avoids having
different navigation paths based on user role.

We then focus on refining area D1 in Figure 2.14 further. Now that the require-
ments are clearly addressed and the overall UI design is almost complete, we
want to further refine the GUI for implementation reasons. This is usually
performed by an experienced developer when setting out the implementation

We have omitted some implicit relationships between the areas in Figure 2.14
and those in Figure 2.13 for simplicity. For example, D0 is the GUI design
refinement of A0. These implicit relationships are useful in a number ways, as
we will see in the many examples provided later in the book.

Figure 2.15 An alternative UI design

c02.fm Page 55 Thursday, March 9, 2006 11:27 AM

56 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

architecture for the GUI. We focus on refining area D1 into two reusable areas for
technical reasons11. The resulting areas are shown in Figure 2.16.

Note how we iteratively refined our GUI as a set of augmented areas. The areas
have a number of semantic relationships between them. Figure 2.17 shows the
iterative refinements we made to get to the final UI.

We have obtained the following benefits by using this conceptual approach:

• Centralizing several notions such as functional decomposition, requisites,
technical aspects and so on in one representation, organized by GUI areas at
various levels of abstraction.

• Iteratively refining our application at several levels of granularity and at
several stages of the development lifecycle.

• Clearly assigning responsibilities – for example, requirement R1 is now
handled by area C1.

The A3GUI approach will be used as a common expression language throughout
the book for the discussion of the various aspects of GUIs.

We go into more detail of available user interface interaction styles in the next
section.

11. These areas are mapped directly to one or more Java classes to define the implementation
criteria of our GUI.

Figure 2.16 Representing an area as composed of two other areas (adopting the visual
containment abstraction)

c02.fm Page 56 Thursday, March 9, 2006 11:27 AM

Interaction styles 57

11:26 AM 9 March 2006 c02.fm 1.0

2.3 Interaction styles
It is possible to identify several basic interaction styles for user interfaces (Shnei-
derman 1998), (Tidwell 1999).

• Menu selection. Here the user interacts with the system by selecting items in
the UI from menu.

• Form filling, used for simple data input such as when inserting data in a Web
form.

• Direct manipulation, used for example when performing operations by drag-
ging or dropping items in a working area.

• Language–based interaction styles, such as interpreting users’ natural
language directly, or interacting by means of simple form of artificial
language such as command line or scripting languages.

Such interaction styles are often combined together. Below we summarize design
aspects that derive from the general principles outlined above for each style. Such
styles can be thought of as abstract recurring patterns for GUIs.

Menu selection

The menu selection interaction style is an academic term in which a user selects
items from a list of available choices. With this term we mean here a generic,
abstract situation that doesn’t only refer to GUIs – for example, graphical menus

Figure 2.17 Refinement relationships among areas

c02.fm Page 57 Thursday, March 9, 2006 11:27 AM

58 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

are only a particular case of such an interaction style – but the any type of user
interface.

Menus are used for selecting items such as commands in a systematic way. The
generic term ‘menu’ covers any selectable item, such as links in a hypertext page,
commands in a drop-down menu, buttons, voice commands in voice interfaces
and so on.

Figure 2.18 shows an example of a two-dimensional graphical menu implemented
as a list. In the following we focus on graphical menus only, because they are the
most common form of menu selection in Java user interfaces. The selection process
is quick and users have a clear view of all possible choices. However, as the number
of items grows, or if items lack a clear indexing organization such as a geographical
or alphabetical ordering in this example, this approach reaches its limits.

Organizing menus is an important issue, especially when many items are avail-
able for selection.

The criteria mostly used are:

• Task-related organization. This is the single most successful strategy for orga-
nizing menu items. If items are organized at design time following some
relevant semantic criteria, it greatly helps users in accessing them at runtime –
as long as the semantic criteria used is clear to the end users.

Figure 2.18 An example of a (rather unusable) two-dimensional graphical menu

c02.fm Page 58 Thursday, March 9, 2006 11:27 AM

Interaction styles 59

11:26 AM 9 March 2006 c02.fm 1.0

• Hierarchical grouping in tree structures. Hierarchical menus are characterized
by the number of levels (depth) and the number of items per level (breadth).
Empirical studies have shown the advantage of breadth over depth in menu
hierarchies. As a rule of thumb, menu hierarchies shouldn’t be deeper than
three levels. There are some practical rules for choosing the right hierarchical
structure. A greater depth at the root is recommended, taking care to make
sure that items are distinct and not overlapping. A broader range can be
adopted on the leaves – the lowest-level items in a menu hierarchy.

• Standardized organizations. Adopting a standard menu organization helps
users to acclimatize to new applications quickly, minimizing their required
memory load when working. Later will see the Java Look and Feel guide-
lines prescriptions for organizing menus.

These strategies, used in combination, relieve users from the time-consuming task
of finding an item in a potentially large menu space.

Figure 2.19 shows a simple File menu that follows the Java Look and Feel guide-
lines. Even in such a simple case, adhering to well-established conventions is
essential. Providing non-standard, arbitrary menu structures confuses users and
can wreck an application’s productivity potential.

Form filling

Form filling is also used widely in user interface design. The general principles of
a form-filling interaction style are those for general data entry (Shneiderman 1998)
or (Nielsen 1993), among others. These are:

• Ensure that data-entry transactions are consistent

• Focus on minimizing end-user input actions

Figure 2.19 An example of commands menu using the Java Look and Feel

c02.fm Page 59 Thursday, March 9, 2006 11:27 AM

60 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

• Keep memory load on users as low as possible

• Ensure compatibility of data entry with data display

• Allow user flexibility and control of data entry

These criteria closely resemble the general ones discussed previously (see Some
general principles for user interface design on page 43). There are a number of general
guidelines for designing data entry forms:

• Group and sequence fields logically, for example by grouping together
related items using the separation display strategy introduced on page 47.

• Supply clear instructions. Specifically, provide meaningful labels and titles
for forms, and add explanatory messages for fields. This can be achieved
both via contextual help and through tooltips – pop-up labels that appear if
the mouse pointer is held over a particular item.

• Adopt consistent terminology and abbreviations. Avoid cumbersome termi-
nology and provide names as close as possible to the business domain to
which users are accustomed.

• Design the form’s appearance using a visually-appealing layout – we detail
one in Chapter 3 for J2SE – and by means of signaling visually which fields
are mandatory and which are optional.

• Provide effective navigation focus12. Apart from the mouse, other navigation
options such as the keyboard should be considered.

• Handle errors using two strategies: prevention, whenever possible, or
displaying meaningful error messages if error states cannot be avoided.

• Provide an effective completion signal, making it clear how to complete the
data entry task associated with the form.

The representation of text, wherever it appears in the GUI (buttons, menu items
and so on), is another important aspect in GUI design that is not limited to form
design. Some general rules apply:

• Keep labeling text brief, and preferably locate it beside the related compo-
nent, as shown in Figure 2.19 on page 59.

• Use ellipses in menu items and buttons to show that another dialog will
appear to accomplish the command. For commands that show a dialog as
their entire result, the ellipses are redundant and should not be used. For
example, an Open command doesn’t need ellipses, because its sole purpose
is to show a File Chooser dialog, while a Print... command does, because it

12. The term focus refers to the active area in a window or a panel where the user's next
keystroke will be received. Focus represents which GUI area or widget is going to receive
keystrokes.

c02.fm Page 60 Thursday, March 9, 2006 11:27 AM

Interaction styles 61

11:26 AM 9 March 2006 c02.fm 1.0

will prompt the user with a supplementary print properties dialog, instead of
directly starting printing.

To avoid visually overloading them, do not use ellipses in toolbar buttons.
• Adopt a coherent rule for titles in windows. An example of such a rule could

be object name - application name, while titles in secondary windows could
follow the format descriptive name - application name. This rule is adopted in
several standards, including the Java Look and Feel guidelines. If you prefer
to create your own rules, be sure to apply them consistently.

• All messages in English, such as command names, labels windows title, tab
names and so on, should follow the headline capitalization rule:

– Every word is capitalized except articles (‘the,’ ‘an,’ and ‘a’), coordinating
conjunctions (‘but,’ ‘or,’ and ‘and’) and short prepositions (such as ‘to,’ ‘in’).

– The first and last words in a sentence are always capitalized, no matter to
what category they belong.

These rules are not used for full sentences, where normal sentence capitaliza-
tion is used instead – only the first word is capitalized. Examples of such text
include alert message boxes, error or help messages, status bar messages, or
general labels that indicate a status change, for example ‘Download is 30%
complete,’ in contrast to a text label, which would follow the headline capi-
talization rule: ‘Download Progress.’
These rules only apply to English text. For other languages, you should refer
to language-specific official guidelines, where these are available.

Creating effective forms

Creating an effective form requires some care. Figure 2.20 shows an example of a
simple yet well-designed form dialog. Navigation has been enhanced and the
whole interaction process smoothed with few simple details:

• Every field in the form is easily reachable using a related mnemonic – for
example typing alt+x moves the focus to the combo box that indicates the
gender of the person to be input. (A combo box is a GUI widget that users
click to show an associated list of possible values. Some combo box options
can be selected directly using the keyboard, while others allow new values to
be input only through the drop-down list, thereby constraining input to the
available values).

• Tab traversal – using the tab key to move the focus from field to field – is
logical. For example, tab traversal skips the disabled File name field, so that
if tab is pressed when the focus is on the combo box, it transfers to the
Browse… button.

• When the dialog first appears the focus is automatically set on the Name
field to facilitate input.

c02.fm Page 61 Thursday, March 9, 2006 11:27 AM

62 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

• Standard globally-applicable buttons are added at the bottom of the dialog.
In this way the user knows from past experience how to dismiss the dialog.

• Effort has been spent on the visual appearance of the dialog to avoid extra-
neous graphics and provide a pleasant overall effect.

• Information about accessibility – providing ease of access for users with
disabilities – has been added to the GUI, even if this is only partly visible. In
fact, some accessibility information is stored in the GUI to allow it to be
accessed by special tools such as text magnifiers or interaction facilitators.
Such invisible features could be very important in some situations and
should always be used.

• The field’s alignment and layout of widgets provides a pleasant overall
visual appearance.

Such little details greatly enhance a dialog’s usability. Try it for yourself by down-
loading and running the relevant code.

Well-designed forms should always provide a clear completion signal. As shown
in Figure 2.20, the prescribed mechanism in the Java design guidelines is to
provide buttons – usually at the bottom or right-hand side of the window – with
explicatory text such as OK and the associated behavior of closing the dialog and
accepting its contents. Figure 4.15 on page 138 shows a prototype GUI that does
not respect this rule, and in which the completion buttons are included within the
information area, potentially confusing the user.

We will return to form design in Chapter 4.

Language-based styles

There are two other interaction styles that we will mention here for completeness,
although we won’t cover them extensively in this book.

Figure 2.20 An example of form dialog

c02.fm Page 62 Thursday, March 9, 2006 11:27 AM

Interaction styles 63

11:26 AM 9 March 2006 c02.fm 1.0

• Command language. Using a language that must be input by users via a
command line is sometimes the only solution in certain situations. For
example, using a command-line user interface sometimes is the only solution
in certain domains, such as a rich programming environment in which rules
represented as scripts needs to be manipulated and executed. Providing a
graphical UI for representing such scripts can be expensive and might ulti-
mately result in lower usability.

• Natural language. Though quite complex to implement, natural language
(both via text or speech recognition) can be useful in some cases.

In the next section we discuss an important interaction style for building high-
quality user interfaces.

Direct manipulation

Figure 2.21 shows an example of a direct-manipulation interaction mechanism for
dealing with visual objects. The items in the user interface can be dragged, edited
or deleted by performing operations on them in a consistent way.

We will come across many examples of direct manipulation GUIs throughout the
book. Direct manipulation is attractive from an implementation viewpoint,
because it can be implemented easily using Java 2 Standard Edition (J2SE) tech-
nology, rather than another client technology such as Web pages. Direct
manipulation is more difficult to implement on Java 2 Micro Edition (J2ME)
devices, due to its limited pointing facilities and graphics display13.

13. J2SE is the Java environment designed for desktop computers and laptops (those that
provide a mouse pointer, a large graphic display, keyboard and so on), while J2ME is the
Java environment for handheld and portable devices (ranging from palm top devices to
wireless phones).

Figure 2.21 A direct manipulation interaction example

c02.fm Page 63 Thursday, March 9, 2006 11:27 AM

64 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

2.4 Conceptual frameworks for UI design
In designing complex artifacts, the gap between the intended results and the
chosen technology can be so wide that some conceptual structure is needed. By
conceptual framework we mean a set of coherent concepts that structure the different
phases of development – design, implementation, and so on – of UIs.14Developers
and designers therefore follow an abstract, principled approach to organizing
the UI15.

Conceptual frameworks provide a reliable and proven mindset for organizing the
design, reducing risks and improving quality. Furthermore, by leveraging reuse,
designs can be standardized and various economies derived.

Figure 2.22 shows some of the major conceptual frameworks used in today’s UI
design.

Various approaches to UI design are shown in the figure:

• Entity-based. This is a family of conceptual frameworks that structure UI
development around the concept of abstract entities, their properties and
interactions. The members of this family of conceptual frameworks vary only
in the way in which the abstract concept of entity is defined. Object orienta-
tion applied to UI design is a member of this family of conceptual
approaches.

• Metaphor-based. This approach focuses the whole design around metaphors.
By leveraging those metaphors, users can use the software without having to
learn the underlying system model.

The appearance of the mouse cursor is often used to give some hints about the
affordances14 of the given items. For example, when a dragged object can be
dropped onto another, the cursor appearance changes accordingly. We will see
some examples of this feedback technique in the book.

14. The term affordance was introduced by Gibson and subsequently used by Donald Norman
(Norman 1990) to describe the possible functions of an object. In Norman’s words “a chair
affords support, a pencil affords lifting, grasping, turning, poking, supporting, tapping
and, of course, writing”.

15. We focus this discussion on conceptual framework for UI design, and not its implementa-
tion, or other development phases. This discussion is completely separated from the actual
implementation of the UI itself. Some of the approaches described here can in fact be
applied to the entire software development lifecycle, not just UIs.

c02.fm Page 64 Thursday, March 9, 2006 11:27 AM

Conceptual frameworks for UI design 65

11:26 AM 9 March 2006 c02.fm 1.0

• Function-based. UIs developed using the function-based approach can be
thought of as set of functions derived directly from the analysis of use cases
and requirements. This UI design approach is also known as application-
oriented. For example, we can think of a word processor as of a set of func-
tions like ‘save current document,’ ‘reformat selected text’ and so on. The
resulting UI is simply the most usable way to provide these functions given
the chosen implementation technology.

• ‘Null’ conceptual framework. This represents the default conceptual approach
of novice designers that have never came across a sound UI design
introduction.

Entity-based approaches to UI design

Entity-based approaches to UI design are characterized by the notion of the abstract
concept of an entity and its relationships.

Such entities provide different views of their internal state to users, and interact
with other entities within the UI environment. When designers adopt such an
approach, any item in the UI is thought of as being part of an abstract entity, and
users directly manipulate these entities to perform their tasks. This is usually
accomplished through contextual interactions – that is, users select an entity and
perform some operation on it, such as invoking a pop-up contextual menu.

A particular class of entity-based conceptual frameworks leverage object-
orientation theory for defining the abstract model. We introduce this in Object-
oriented user interfaces on page 69. Other members of this family of approaches are
component-based UI design, in which the term component refers to a higher level
of granularity than ‘classic’ OO objects, and various others such as the Naked
Object approach to UI design – see www.nakedobjects.org.

Figure 2.22 Major conceptual framework for GUI design

c02.fm Page 65 Thursday, March 9, 2006 11:27 AM

66 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

Metaphor-based approaches to UI design

UI designs can also be shaped around the concept of metaphors. Designing a UI
that resembles some real-world situation – a metaphor – helps users better under-
stand the system, leveraging their knowledge of the metaphor instead of the
system’s actual implementation. Thus for example dragging icons could be equiv-
alent to moving items in the physical world, and dropping an icon onto the
wastebasket in the GUI is equivalent to invoking the ‘delete’ operation on that
item. Such idioms are coherent with a desktop metaphor and do not require the
user to learn implementation-dependant commands.

Historically the metaphor approach to UI design represented the first major
improvement over the functional approach. Its most famous example is the
desktop metaphor for operating systems originally adopted in the Xerox Star soft-
ware around 1982. Metaphors can also be used at various levels in UI design even
without using a fully-fledged metaphor-based conceptual framework. Examples
of limited metaphors could be the wastebasket for deleting items, or using the
metaphor of a restaurant menu to display the available features in a product.

This approach suffers from two problems:

• Good metaphors are hard to find.

• Even when a good metaphor is found, it may turn out to constrict our design.

As a trivial example of this, consider the way in which file systems are rendered
in current operating system GUIs. At first it may seems that a file system is
adequately modeled by means of the folder and file metaphor. However, if we had
to follow the real-world metaphor of files and folders, as we know them in the
physical world, we would end up of a deficient UI. First of all, real world folders
cannot be nested indefinitely – this is only a mathematical abstraction that soft-
ware provides us, constrained by memory resources. Second, the folder and file
metaphor works fine for certain interactions such as renaming and moving, but
seems a bit odd for other, such as cutting and pasting folders. It also has no
parallel at all in the real-world metaphor for some operations, such as compressing
the content of a folder.

Metaphor-based approaches are different than entity-based ones in that the
latter devise a generic abstract world that is applicable and repeatable in
different domains. For example, one can model both a bank account and a file
system directory with the same abstract concept of an ‘entity.’ Metaphors, in
contrast, are domain-dependent, and are defined in an ad-hoc way. For example,
we can model bank accounts in our UI as following a ‘personal logbook’ meta-
phor, which would not be useful for representing the file system UI.

c02.fm Page 66 Thursday, March 9, 2006 11:27 AM

Conceptual frameworks for UI design 67

11:26 AM 9 March 2006 c02.fm 1.0

Many software development approaches advocate metaphors in software design
and implementation. Software documentation also benefits from the use of clear,
higher-level, lifecycle-wide metaphors. Chapter 11 shows a practical example of
employing an articulate metaphor in a GUI design.

There are many resources available on the Web for the use of metaphors in UI
design: for a critical view of such a UI design approach, see for example (Cooper
1995).

Function-based approaches to UI design

Function-based UI designs are built around the functions the system is required
to perform and the interactions between them. The academic meaning of the term
‘GUI’ historically refers to the first generation of UIs using rich graphical tech-
nology that leveraged the underling procedural implementation approach. Menu
bars, toolbars and menu items are extensively used in this approach because they
help to bundle together a set of disparate functions the UI performs on behalf of
the user. This UI design approach, as well as the ‘null’ approach, are the most
common in current software.

‘Null’ approach to UI design

The so-called ‘Null’ approach is the approach implicitly used by developers when
they do not appear using any explicit approach at all. As we said on page 35,
human beings always interact with the world through semantic models, even
when they are unaware of them. The Null approach, given a UI software tech-
nology, consists of putting all user requirements on the screen in one way or
another, often trying to mimic other existing UIs. This is not really a bad approach
in itself, but clearly lacking the backing of a sound theory, this approach has a
tendency to produce confusing UI designs that do not scale well.

To better grasp the differences in the approaches described above, let’s take a
common example: the GUI of an OS. In order to make our point we will simplify
our discussion and overlook details:

• The GUI of Windows 3.1 (Figure 2.23) can be seen an example of a functional
design approach mixed with a limited use of metaphors (mainly for files and
folders): the GUI was designed around a set of operations to be performed on
the file system.

Examples of metaphors used as tools can be found in different fields of computer
science, such as software development (Beck and Andres 2004), with a hands-on
perspective (McConnell 1993) or in the analysis process (Fowler 1997).

c02.fm Page 67 Thursday, March 9, 2006 11:27 AM

68 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

• In contrast, the original Macintosh UI (Figure 2.24) was designed following
the desktop metaphor approach, with very few exceptions, thus providing a
homogeneous and reliable concept model for end users.

Figure 2.23 Windows 3.1

Figure 2.24 The original Apple Macintosh UI

c02.fm Page 68 Thursday, March 9, 2006 11:27 AM

Conceptual frameworks for UI design 69

11:26 AM 9 March 2006 c02.fm 1.0

• OS/2 (Figure 2.25) was designed completely as an entity-based GUI – every
item accessible through the GUI was a conceptually well-defined entity, with
its own set of available operations, properties and configuration attributes.

Despite these GUIs basically representing the same domain – the file system and
basic OS functionalities – the UI design approach behind them was very different,
shaping the UI in its various detail aspects.

The next section describes a particular case of entity-based approaches to UI
design in detail, the Object-Oriented User Interface approach.

Object-oriented user interfaces

The idea behind the Object-Oriented UI (OOUI) design approach is simple: apply
OO abstract principles to UI design. An OOUI consists of a set of abstract objects
designed following OO principles such as abstraction, implementation hiding,
and so on.

Figure 2.25 The OS/2 UI

Unfortunately the term OOUI, despite widely accepted in the literature (see
for example (Mandel 1997)) is rather confusing when applied in OO program-
ming contexts such as the Java language. In fact, despite being two approaches
founded on the same conceptual footing (object orientation) they are separate
in practice. OOUI relates to UI design, while OOP focuses on software
programming. Avoid confusing the two approaches, by ignoring for now the
underlying technology on which the UI will be implemented.

c02.fm Page 69 Thursday, March 9, 2006 11:27 AM

70 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

OOUI focuses on defining abstract objects with which the user will interact via the
user interface. Unlike the metaphor-based design approach, such ‘objects’ are not
required to follow any metaphor from the physical world. OOUIs are a coherent
collection of such objects – usually referred to as an ecosystem – that are available
for user interaction.

The direct manipulation interaction style couples naturally with the object-oriented
paradigm. Think for example of the windowing metaphor used in the Apple
Macintosh, IBM OS/2, Microsoft Windows, and others, on which you can manip-
ulate objects such as files and directories directly. A file object behaves
consistently throughout many different applications, providing the same set of
functionalities – move, copy, rename, and so on – like an abstract object.

Once you have designed your application GUI as a coherent object ecosystem, it
is natural to interact with it by means of direct manipulation, because the UI
appears as a virtual world made up of objects that can be operated on by the user.
We will explore such a GUI design approach extensively, because it happens to
dovetail nicely with the object-oriented nature of Java.

Java developers should be careful over some subtleties. Object-oriented program-
ming and object-oriented user interfaces are different. One could implement an
object-oriented user interface using non-OOP languages and platforms, while an
OOP language like Java can be used to build any kind of user interface, command-
line ones included. Furthermore, OOUI is limited to the software as it appears to
the user – that is, the concepts, tasks and overall semantics exposed by the appli-
cation to its users – while OOP is used to implement all of the application. A
specific OOUI object, as perceived by the end-user, can be implemented with
many Java classes, and, conversely (although more rarely) one Java class can
implement several different OOUI objects.

Despite these differences, with thoughtful software design it is possible to bridge
the two worlds systematically, providing a natural mapping between the OOUI
GUI design and its underlying Java implementation.

OOUI objects are used to represent the internal state of the application and to
enable user interaction. Accordingly, there is little point in providing OOUI
classes. These are an OOP mechanism for conveniently creating objects. While
interacting with an OOUI, users create new objects by manipulating existing ones.

To better grasp the OOUI concept, consider the main differences between tradi-
tional graphical user interfaces (function-based or application-oriented) and
OOUIs16:

16. These differences hold also between generic entity-based UI approaches and function-
based ones.

c02.fm Page 70 Thursday, March 9, 2006 11:27 AM

Conceptual frameworks for UI design 71

11:26 AM 9 March 2006 c02.fm 1.0

• In an OOUI users interact with objects, while in application-oriented inter-
faces the interaction is organized by function. In functional-based GUIs the
software is rigidly organized by function. In OOUIs, in contrast, the user
interacts with objects in a less structured, freer environment.

• In OOUI there are few, common objects. Combining and manipulating them
produces many different results. The aspect of a coherent metaphor for object
interaction is key. In traditional GUIs there are many applications, one per
task, while in OOUIs the environment is common and functionalities lie
within objects and their possible interactions.

• Each approach fosters different cognitive theories: traditional GUIs enforce
the traditional cognitive model (a set of predefined operations that need to be
learned by end users as conceived at design time by the developers), while
OOUIs allow for a learning style closer to the constructivist cognitive
approach in which users are free to interact with the system at their own
pace, constructing their user experience without strongly predetermined
constraints.

• Functional-based GUIs are composed of global menus. Groups of items are
represented with lists. In OOUIs the objects themselves essentially convey all
possible interactions.

Function-based user interfaces can be best suited for stand-alone programs, in
which the user wants to accomplish one or more well-defined, circumscribed
tasks. GUI designed following the OOUI approach can be useful for large appli-
cations such as operating systems, in which many functions are available and a
large number of possible combinations are legal.

In this book we will combine these design approaches, with the ultimate aim of
providing the most usable user interface depending on the current situation.

Object views and commands

In OOUIs, each object can be manipulated in several ways. Following Donald
Norman’s terminology (Norman 1990), each object has its own affordances. For
example, some objects can be dragged, dropped onto other objects, or can provide
a list of their available commands via contextual menus. Other objects cannot be
dragged at all. Generally, every object provides a set of commands with which it
can be manipulated. Contextual menus are the proper place to provide object
command access. By convention, clicking an object on the screen with the right
mouse button (or in other ways, depending on the given platform) triggers the
contextual menu that contains all the valid commands for the object.

Objects can be viewed in different ways. Suppose you have a file directory. You can
see it as a 2-dimensional container of icons, or as a tree in which each node can be a
file or a folder. Thus the same items are viewed in different ways. You can also open

c02.fm Page 71 Thursday, March 9, 2006 11:27 AM

72 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

a file to see its contents, providing yet another view of your file object. (Mandel
1997) mentions four basic types of object views: composed, contents, properties,
and help:

• Composed views are views of an object obtained by combining other objects.

• Contents views show the contents of an object, used especially for containers
objects.

• Properties views are used to show specific details of an object, and can also
allow editing by inspecting a value and modifying it as required if this is
meaningful within the application. Properties views for discrete data usually
use the form-filling interaction style.

• Help views shows help data.

We will see the OOUI approach implemented in Java in Chapters 14 and 15.

2.5 Assessing the quality of a GUI
The quality of a user interface is dependent on its usability. Software usability is
the characteristic of a given application of being easy to use within a set of
constraints such as the target user population, development budget, and so on.

Ease of use can be measured by the number of mistakes made in the use of the
application by a sample user group, how quickly they can perform given tasks,
users satisfaction, and how quickly the system is learned by novice users.

We won’t discuss robustness and other implementation-related parameters here.
An example of testing for robustness is systematically trying all combinations of
buttons and other controls to see whether the GUI responds coherently, or
produces unforeseen behavior.

Assessing the quality of a user interface is not a trivial task. There are many aspects
to consider, and much depends upon the particular situation – the design approach
followed, the end user population and other constraints. Over time several
approaches have consolidated, although the fact that there are so many different
criteria for GUI quality assessment underlines the complexity of such an activity.

Some of the main approaches are:

• Expert review and survey. Usability experts review the GUI and produce a
document in which GUI weak points are identified and suggestions

We don’t adopt a fully-fledged OOUI approach in this book: all the OOUI
examples we provide use a simplified version of the OOUI approach. For a
‘full’ OOUI-driven design methodology, see for example IBM’s OVID (Objects,
Views, and Interaction Design).

c02.fm Page 72 Thursday, March 9, 2006 11:27 AM

Assessing the quality of a GUI 73

11:26 AM 9 March 2006 c02.fm 1.0

proposed. The review may involve a formal inspection in which the user
interface is discussed with designers.

• Usability testing. This term encompasses all types of trial that test the GUI for
usability. These involve considerations such as choosing the usability param-
eters to measure, the way in which such parameters will be evaluated and so
on. In general usability testing is a complex discipline that need specialized
personnel.

• Acceptance testing. Here the developer’s quality assurance department define
objectively measurable tests for the final GUI. A key point is the establish-
ment of precise acceptance criteria. Acceptance tests usually cover:

– Novice user’s performance, in which the first part of the learning curve for
users new to the application is measured.

– Regular user’s performance, the most commonly used acceptance tests.
– Testing for retention, in which user expertise with the system is measured

after a period of non-use of the application under test, usually of some 2–3
weeks.

• Robustness and other software-related tests. Usability depends on the reli-
ability of the implementation. Buggy GUIs, no matter how well-designed,
result in a poor-quality end user experience.

Other approaches to GUI assessment exist, for example Cognitive Walkthrough.
The interested reader can find more details in (Nielsen 1993) or (Preece 1994).

Cognitive Walkthrough is an approach for evaluating user interfaces. A group of
evaluators first determine the major tasks the system must perform. They then
analyze each task, decomposing it in a sequence of steps. For each step they adopt
a cognitive approach – they evaluate how difficult is for the user to identify and
operate the interface element most relevant to their current subgoal, and how
clearly the system provides feedback to that action. This approach is especially
useful for assessing the usability of a system for users in exploratory learning
mode – that is, first-time or infrequent users. Cognitive walkthrough can be
performed on early prototypes as well as the final GUI.

The next section discusses a common approach to evaluate a GUI by adopting a
set of rules (heuristics) that have been devised for assessing its overall quality.

Usability heuristics

When evaluating a GUI, whether in review or in usability testing, experts use this
simple set of criteria in order to assess its effectiveness. The ‘classic’ set of such
heuristics is:

• Visibility of application status. This involves checking whether the GUI
expresses its current internal state by appropriate feedback. This is usually

c02.fm Page 73 Thursday, March 9, 2006 11:27 AM

74 Introduction to User Interface Design

11:26 AM 9 March 2006 c02.fm 1.0

done by means of a status bar, mouse pointer shape, progress dialogs and so
on. This criterion checks whether these means are properly used in the GUI,
and whether they effective, or merely disturbing?

• Match between application and the real world. Terminology and the overall GUI
should be as ‘current’ as possible. This criterion checks whether the GUI uses
weird metaphors or other unnatural kinds of interaction.

• Consistency and standards. When checking for this evaluators should ask
themselves whether the given GUI is compliant with required design guide-
lines, and whether any specific part of the GUI is coherent with the
remainder. Evaluators look for consistency by asking themselves questions
like ‘Do the completion buttons always appear at the same place in a dialog?’

• User control and freedom. This criterion checks whether the GUI encourages
exploration and error recovery. Typical hints are the effective support for
undo/redo functionalities.

• Error prevention. This criterion checks whether the GUI is designed in such a
way as to minimize user errors. A common means to achieve this is an apt
use of constraints and metaphors. Another common expedient for avoiding
user errors is to disable commands when they are not meaningful.

• Helping users recognize, diagnose and recover from errors. Not all possible errors
may be prevented by clever design. This criterion checks whether the appli-
cation provides helpful messages and constructive communication in the
case of errors, as well as assessing the quality of error messages.

• Recognition rather than recall. Users need to remember specific commands or a
particular interaction, and the GUI need to offer a clear visual route through
all the available options. This criterion checks how effectively the users STM
is exploited.

• Flexibility and efficiency of use. This criterion checks the extent to which it is
possible to customize the GUI, and whether the GUI is suitable for expert
users. It checks for the availability of accelerator keystrokes and other short-
cuts that can make the GUI suitable for expert users as well as for novices.

• Aesthetic and minimalist design. This criterion focus on the rational and func-
tional graphic appearance of the GUI. It checks whether the GUI is appealing
visually, without being distracting or annoying.

• Help and documentation. This criterion checks the quality of the help system. It
verifies that the supplied documentation is practical and concise, easy to
search and effective in solving user needs.

Appendix A shows a simple questionnaire for evaluating Java user interfaces.
This is am empirical adaptation of general questionnaires – see for example (Shnei-
derman 1998).

c02.fm Page 74 Thursday, March 9, 2006 11:27 AM

Summary 75

11:26 AM 9 March 2006 c02.fm 1.0

2.6 Summary
In this chapter we presented some introductory discussions about effective GUI
design. In particular:

• We introduced some basic principles for human-computer interaction,
showing how a basic understanding of human cognition can help in the
design of high-quality user interfaces.

• We presented five main interaction styles. We will deal with three of these in
the remainder of the book: menu selection, form filling and direct manipulation.

• We introduced object-oriented user interfaces (OO UIs) as a special case of
direct manipulation. This approach will be adopted in some of the examples
provided in the book.

In the next chapter we introduce practical GUI design for Java platforms, and
introduce the Java Look and Feel guidelines.

c02.fm Page 75 Thursday, March 9, 2006 11:27 AM

c02.fm Page 76 Thursday, March 9, 2006 11:27 AM

3 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

In this chapter we introduce user interface design for the Java platform, focusing
our attention on J2SE GUIs. The chapter is structured as follows:

3.1, Java technology for GUIs introduces the components that Java provides for
building user interfaces.

3.2, Cost-driven design describes how cost constraints can be taken into account in
user interface development.

3.3, Exploring the design space for a point chooser gives some examples of practical
GUI design, using as an example the design of a component for selecting points
on the earth surface.

3.4, Design guidelines for the Java platform introduces the idea of user interface
design guidelines, specifically those for Java.

3.5, The Java look and feel design guidelines describes the Java look and feel guide-
lines in detail.

3.1 Java technology for GUIs
This book deals principally with graphical user interfaces composed of visual
components. This kind of interface is made up of widgets and windows, following
the well-established syntax of point-and-click GUIs.

Assembling the components

This section discusses the basic organization of a Java-based GUI. Java GUIs are
organized in reusable units that are directly mapped onto groups of Java classes.
For example, in the Swing library a visual tree component (also called an expand-
able list) is implemented as a set of more than a dozen standard classes and
interfaces that can be configured or specialized as necessary. Such classes include
specialized event listeners, cell renderer, and data models – see for example
(Geary 1999).

In contrast, the analogous component in the SWT library is implemented using
only three Java classes.

Focusing on the Swing library, even the simple dialog in Figure 3.1 below is imple-
mented using instances of several different Java classes. Figure 3.2 shows the

Java GUI Design

c03.fm Page 77 Thursday, March 9, 2006 3:44 PM

78 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

conceptual layering of the main user interface components that implement the
dialog in Figure 3.1.

The number of Java classes involved in the previous example is in fact much
larger – Figure 3.2 shows only some of them. For example, the main container
JDialog and the bottom panel use a layout manager instance that supervises to
the contained widgets layout. Note that we have employed two separate panels

Figure 3.1 A simple dialog

Figure 3.2 The conceptual layering behind a simple dialog using the Swing toolkit

c03.fm Page 78 Thursday, March 9, 2006 3:44 PM

Java technology for GUIs 79

3:17 PM 9 March 2006 c03.fm 1.0

in our design, one for the buttons at the bottom and the other one for the content
area at the center. This is essentially for engineering reasons – it allows us to reuse
the standard buttons panel. We discuss component reuse in Leveraging object-
oriented programming on page 166 in Chapter 4. For a complete list of widgets
available in the Swing, SWT, and AWT toolkits, refer to Chapter 11.

Three levels of component cost

In my experience I have found it helpful to distinguish between three kinds of
visual component, depending on their relationship to the existing base libraries
(such as Swing, AWT, or third-party ones like SWT). Categorizing GUI compo-
nents in this way is useful for driving top-down development, from GUI design
to software development, testing and so on:

• Standard components. These are standard GUI objects that are typically used
with only shallow customization. These are therefore the cheapest compo-
nents to use.

• Custom components. These are non-trivial subclasses of the standard library
objects. They are also relatively inexpensive to develop, but limit designers in
the degree to which they can customize existing components.

• Ad-hoc components. These visual components are developed to solve some
special problem that cannot be solved by extending an existing component.
These are of course expensive to build, as they often require additional GUI
design effort, but can provide the highest quality resolution of requirements.

Figure 3.3 shows some examples of these components.

In Figure 3.3, from the left-hand side we have an example of the JTree standard
component for the Swing library. Developers only need to change a few properties
from the default values, and populate it with the required data. The center of the
figure contains a custom JTree component, in which the same widget has been
deeply customized and some of the standard classes have been extended to
provide custom behavior. Finally, the right-hand side shows an example of an ad-
hoc component that needed to be built from scratch because the standard library
does not provide it.

This categorization is based on standard libraries such as Swing and SWT, is
cost-driven and somehow arbitrary. Depending on the target Java environment,
designers can rely on various GUI libraries (AWT for basic Java 1.x applets,
Swing for Java 2 GUIs, and some specific toolkits for J2ME profiles).

This classification approach can be used by designers based not on standard
libraries, but rather on third-party ones such as specialized set of components, or
proprietary, in-house developed GUI toolkits, for example).

c03.fm Page 79 Thursday, March 9, 2006 3:44 PM

80 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

The components in Figure 3.3 are organized by increasing development cost, from
the cheapest on the left to the most expensive on the right.

This classification is however blurred, because it depends on many factors, not
least the experience of the developers involved. For example, a design team that
has a background in video game development may find easier to use a particular
ad-hoc component than to employ a custom tree component from a complex GUI
toolkit, potentially reducing development costs.

At this point some readers may wonder why, when we are discussing GUI design,
we are making such an implementation-driven distinction among different visual
components? The reason is because, in my opinion and experience, quality-driven
industrial design cannot be separated from its implementation.

We have used three words in the latter sentence that need explanation:

• Quality-driven design. Quality should always drive a GUI design. Quality
here means usability. For example, when it would enhance usability, a good
GUI design should employ direct manipulation instead of other cheaper but
more convoluted metaphors.

• Industrial design. As long as you are not developing your GUI for fun or for
some artistic purpose, you should remain grounded in basic principles like
the development cost and usefulness of the final product. No-one works in
an environment of limitless resources. In real-world projects, both time and
human resources are often limited, and your design cannot ignore this. The
search for perfection is limited by practical industrial constraints.

Figure 3.3 Example of the three kinds of visual component

c03.fm Page 80 Thursday, March 9, 2006 3:44 PM

Cost-driven design 81

3:17 PM 9 March 2006 c03.fm 1.0

• Implementation. Designers should always consider the final implementation,
especially when developing for Java. The richness and sophistication of the
platform shouldn’t waylay professional designers into over-using objects
and classes, degrading performance.

Generally speaking, in practice a final design is determined by the trade-offs
between quality and practical constraints – this is one of the main assumptions of
this book. Distinguishing visual components by their cost impacts directly on the
overall GUI design, and can make the difference between an inexpensive or a
costly GUI. The cost is comprised of design (plus usability testing) and the
required software development, debugging and testing. A standard component is
almost ready-to use: designers don’t have to design its GUI from scratch or test it
for usability, having only to adapt it to the current situation.

When the customization cost passes a specific threshold – for example, non-trivial
subclasses need to be written – we call them custom components.

3.2 Cost-driven design
The term cost-driven design describes an approach to GUI design that explicitly
takes into account development costs.

Ad-hoc versus custom – the difference between ‘run’ and ‘ride’

What is the actual difference between an ad-hoc component and a customized
one? When should one employ one instead of the other?

A number of parameters influence this design choice:

• The application domain. Sometimes the application domain dictates the kind of
components used in a GUI. We will see some examples in the following
sections.

• Required GUI quality. The quality of a GUI is a further input parameter to the
design.

• Types of users. Depending on the user population – for example, novice users
accustomed to drag-and-drop GUIs – one type of components could be
preferred.

• Practical constraints. These include time-to-market, development costs,
context-dependent constraints and so on.

In this section we discuss the difference between ad-hoc and customized compo-
nents by means of practical examples.

Figure 3.4 shows the prototype GUI of a hypothetical control panel for the under-
ground railway network in Rome, Italy.

c03.fm Page 81 Thursday, March 9, 2006 3:44 PM

82 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

Such a design is quite intuitive, pleasant to interact with, as it is essentially based
on the direct manipulation interaction style, and relatively simple to use. Acciden-
tally, because of its audience – it is intended for railway technicians – it is full of
acronyms and technical jargon. It looks like a simple 2D-video game. Trains move
on the tracks, data is queried both via tool tips for a brief summary or by double-
clicking on the particular item, when a dialog pops up with the details.

This design has one major shortcoming. Such an attractive GUI is quite hard to
develop. Because of the domain – complex but well-formalized – and the special-
ized technical audience – some of the complexity can be transferred out of the GUI
to the users themselves. This can be done by a greater dependence on manuals,
help support and internal training. Sadly, however, this is also often the case
with badly designed GUIs.

We can imagine that such an approach might produce a much cheaper prototype
like the one shown in Figure 3.5.

Figure 3.4 Ad-hoc prototype of the Rome underground system control console

c03.fm Page 82 Thursday, March 9, 2006 3:44 PM

Cost-driven design 83

3:17 PM 9 March 2006 c03.fm 1.0

This second design is at first much less appealing. An additional memory
burden is placed on the user, more training is needed – technicians understand
technical acronyms, but would need to be specifically trained in how to use table
views such as those in Figure 3.5 – and novice users can initially be lost and
therefore unproductive. Even if the Rome underground system is relatively
simple (consider Figure 3.4), a design such as that in Figure 3.5 gives the impres-
sion of a more complex application than does its ad-hoc counterpart: its design
favors a high density layout approach over the ‘lean’ strategy preferred in the
design shown in Figure 3.4.

When ad-hoc is the only way to go

It is not always possible to resort to a GUI composed of customized components,
no matter how cleverly they are used. Consider the next two examples, illustrated
in Figure 3.6 and Figure 3.7.

The first prototype is an editor for UML class diagrams. Users drop symbols on
the diagram and manipulate them as needed. We will see the actual code for
something similar to this in Chapter 9, but here we are interested in discussing the
design issues involved in making the choice between ad-hoc versus specialized
component development options.

Figure 3.5 Prototype of the Rome underground system control console using
specialized components

c03.fm Page 83 Thursday, March 9, 2006 3:44 PM

84 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

In this case we could imagine ways to present the same information that are
simpler to develop, for example using a tree that gathers the relations of each
class. Though a much poorer interaction method to the direct manipulation
proposed in Figure 3.6, it is a viable and relatively usable interaction mechanism.
The only problem is that one of the benefits this editor is supposed to provide lies
in the visual representation itself. This GUI oversees the manipulation of UML class
diagrams, which are themselves pictorial representations. In this case, the ad-hoc
design approach, and its associated cost, is justified because it is part of the very
purpose of the application. This is the case in many application domains, such as
video games.

Consider another example. Even if not strictly related to graphical issues, there
are domains that are intrinsically hard to manipulate via discrete widgets such
as those provided by general-purpose GUI libraries. Such libraries were devel-
oped to serve well-formalized discrete domains like business management, data
base manipulation and so on. The scientific domain, for example, is one such
‘difficult’ domain. In Figure 3.7 we show a fictitious viewer for physical data

Figure 3.6 A UML class diagram editor

c03.fm Page 84 Thursday, March 9, 2006 3:44 PM

Cost-driven design 85

3:17 PM 9 March 2006 c03.fm 1.0

related to Oceanography. The data, rendered with an equidistant, cylindrical
equatorial projection, is not a mere image, but something that can be manipu-
lated, queried and processed (although in this prototype is a mere bitmap).
There is a database behind such GUIs, but the best way to structure the interface
is often radically different from those such as the underground railway network
shown in Figure 3.5.

Here it would be unthinkable to present the user with a set of grid views extracted
from our database. It would be literally like an ocean of numbers, impossible to
read, not to mention manipulate properly.

In these cases an ad-hoc development route is unavoidable. The only alternative
would be to reduce the quality of the GUI by lowering interaction. In the applica-
tion in Figure 3.7, for example, instead of providing complex commands to
manipulate the scientific data, one can imagine an almost batch-like interaction
style in which the user is prompted with a form that defines all the details of the
required data manipulation, together with a Submit button that dismiss the
dialog, launches the command and then displays an image that is the user cannot

Figure 3.7 An example of a scientific data viewer and editor

c03.fm Page 85 Thursday, March 9, 2006 3:44 PM

86 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

manipulate. While this interaction style might be acceptable in some cases, it can
be intolerable in other contexts.

3.3 Exploring the design space for a point chooser
In this section we examine some diverse examples of practical GUI design. We
introduce practical design using the case of a simple visual component that illus-
trates the many possibilities the designer would consider as they relate to the
chosen technology (which in the example is J2SE Swing).

Let’s suppose we have to design the user interface of a component for selecting
points on the earth surface, which itself forms part of a wider GUI. We will refer
to this as a Geopoint chooser. We won’t go into the details of the GUI design process
here, but we will explore the design space in order to discuss few of the many
design choices available, even for such a limited problem.

Of course we know that there is no absolute ‘good’ design. GUI design depends
on many factors that include tasks1, users, and cost. We deliberately do not
commit to a fixed scenario, so that we have the freedom to discuss some more of
the practical subtleties GUI designers often face in their work.

The functional requirements for our example GUI component are really simple.
The related use case diagram is shown in Figure 3.8.

Having seen the functional requirements for our component, it’s time to focus on
the GUI design itself. For simplicity we focus on the selection use case only. There
are established guidelines for implementing a selection completion use case, for

Cost-driven design is a form of system-centered design, and as such appears
to conflict with user-centered design, as described in Chapter 2. This conflict is
only apparent, though. Whenever in doubt, user requirements (for usability)
should prevail over system-centric considerations. If development costs are
not taken into consideration, even a good GUI design can be implemented
poorly, producing applications that are de-facto less usable.

1. By task we mean one of the tasks performed by the user, coinciding with the same term
used during task analysis (see Chapter 2, page 45)

Use case diagrams can also be employed for describing the details of specific
parts of GUIs, such as this example. See for example the ‘Complete Selection’
use case above, which can be further detailed using ‘Commit’ or’ Cancel’ selec-
tion use cases independently of the given component used to implement a GUI
component.

c03.fm Page 86 Thursday, March 9, 2006 3:44 PM

Exploring the design space for a point chooser 87

3:17 PM 9 March 2006 c03.fm 1.0

example by placing OK and Cancel buttons at the bottom of a model dialog, as we
will see later in this

chapter. Here we will focus on the design of the selection area only, the use of
which is illustrated in the simple paper sketch2 in Figure 3.9.

In the following subsections we show a number of possible designs for these
requirements, and introduce them in relation to their underlying implementation.
Our purpose is to illustrate a number of design details that appear only in practice.

We begin with designs that are implemented by means of standard components.

2. Chapter 5 discusses paper prototypes in more detail.

Figure 3.8 The use case diagram for a geographic point chooser component

Figure 3.9 The intended use of the Geopoint chooser

c03.fm Page 87 Thursday, March 9, 2006 3:44 PM

88 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

Standard designs

The first and most obvious idea is to rely on existing cultural conventions, such as
latitude and longitude, for selecting a point on the Earth’s surface. We could adopt
the form-filling interaction style, as shown in Figure 3.10. Fortunately measure-
ments expressed in latitude and longitude are widely accepted around the world,
so we don’t have to worry about localization subtleties.

We can refine our simple design by leveraging the usual form-filling techniques,
for example by providing a history facility – a drop-down window showing past
input values – or by separating latitude and longitude values into degrees and
minutes, as in Figure 3.11.

Depending on whether latitude or longitude can be accessed separately in the
remainder of the GUI, it could be useful to address this concept explicitly, for
example by providing an icon for value. This makes sense only if such icons are
used elsewhere in the GUI and with the same meaning, otherwise it is just useless
visual ‘noise.’ Apart from additional visual clue, which might be difficult to
enforce, for example in third-party components to whose GUI design we do not

Figure 3.10 Using a form-filling interaction style

Figure 3.11 Using a form-filling interaction style – refined

c03.fm Page 88 Thursday, March 9, 2006 3:44 PM

Exploring the design space for a point chooser 89

3:17 PM 9 March 2006 c03.fm 1.0

have access, another useful enhancement might be to use spinners for selecting
input values, as shown in Figure 3.12.

Of course we could choose to employ this sort of standard component because of
the nature of our application domain, for example the required precision for lati-
tude and longitude.

Without a proper task analysis, a design remains incomplete, because there are so
many possible twists that an effective general design is often not viable.

Adopting the form-filling interaction style in our design is very cheap, as it requires
only standard GUI components. It can work well if (in this case) our GUI tasks use
latitude and longitude and our end-users are accustomed to such measurements. If,
alternatively, we were designing a component for choosing a time zone in a non-
technical GUI, or for setting locale data such as choosing a home country, clearly
this design wouldn’t work well.

We can use these designs to help make a point about a common situation that
arises when using sophisticated GUI toolkits like Swing. Consider the following
situation, which gives rise to an unexpected additional implementation cost, even
for the cheap design in Figure 3.10–3.12. Suppose we are developing a GUI for a
client that employs our Geopoint chooser as shown in Figure 3.10 and, some-
where else in the GUI, a date input field. Such a date input field is implemented
using Swing widgets that provide extra behavior and formatting for dates. One of
the features provided automatically by Swing is the ability to use arrow keys to
increase days, months, and years directly in the date field (mainly through the
JFormattedTextField class). This feature is appreciated by users, so they find it
odd that the same handy mechanism is not available in our Geopoint chooser.

Thus we have an unforeseen problem of consistency with the rest of the GUI,
because of the automatic facilities provided by the standard library we are using.
If we decide to fill this gap, our design shifts from a standard to a custom one, as
we have now to implement the behavior in our Geopoint’s Lat/Lon text field that

Figure 3.12 Using a form filling interaction style – even more refined

c03.fm Page 89 Thursday, March 9, 2006 3:44 PM

90 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

is available in date fields. This underlines an important point: in practice, effective
GUI design is always an iterative process, no matter how simple the design may
appear at first.

A geopolitical design

Even in its simplest form, the previous design is not suited to some tasks. The
design shown in Figure 3.13 illustrates a different approach that uses the menu
selection interaction style – which is by no means limited to commands menus –
for selecting an area. This can be thought of as a point with a degree of tolerance.
The advantage here is that such an area is identified by geopolitical coordinates,
such as continent name, region and so forth. Depending on the user population or
the nature of the task, this could be the most usable solution.

The design in Figure 3.13 highlights an interesting point about the low cost of
building a GUI using standard components. Such cost savings relate only to the
GUI’s appearance, not to the remainder of the implementation. Even if we use
standard components, the data needed to make this design work (countries,
regions, counties, etc.) could be expensive to gather, offsetting or cancelling the
cost savings.

Figure 3.13 A geopolitical chooser

c03.fm Page 90 Thursday, March 9, 2006 3:44 PM

Exploring the design space for a point chooser 91

3:17 PM 9 March 2006 c03.fm 1.0

Nevertheless, this solution is very robust: as long as the combo boxes automati-
cally populate themselves with valid data, users cannot choose an impossible
value. This is often referred to as the power of constraints. Well-designed GUIs
should be like that – by careful design of their interaction rules, they should
reduce to a minimum the possible sources of errors at the outset.

A cryptic design

An important aspect that we have not yet had the chance to discuss in detail is the
importance of operational feedback. To illustrate this, we consider an absurd
design choice: form filling-based selection without operational feedback.

We are usually unaware of its importance, but while we are typing into a field on
a form, we actually watch what we are doing. This is a basic form of operational
feedback, like seeing the mouse pointer move while we move the mouse to select
a point in a GUI that employs direct manipulation. To illustrate the importance of
such feedback, try out the interface in Figure 3.14, in which password fields are
used for latitude and longitude input!

Ad-hoc designs

The simplest way to indicate a point on a map is by pointing at it with the mouse.
Such as design is shown in Figure 3.15. From a technical viewpoint, this design
choice needs the use of ad-hoc components, and is therefore usually more expen-
sive to develop than those that use toolbox components.

Figure 3.14 Using a cryptic form-filling interaction style

c03.fm Page 91 Thursday, March 9, 2006 3:44 PM

92 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

As natural and user-friendly as it may seems, there are cases in which this type of
design is not the best. In highly repetitive scenarios, for example, in which users
need to input many points routinely, extra consideration should be given to the
use of the keyboard as the main input device to speed up selection. The design in
Figure 3.15 does not provide such a facility, and this can be a serious shortcoming
in such cases.

Let us now consider the details of the design of a direct manipulation Geopoint
chooser.

The direct manipulation design in detail

Given the nature of the application, we assume that our users are non-occasional
and skilled experts in the domain of interest.

Configuration settings such as the precision of mouse hovering and other prefer-
ences are kept separate in another dialog. We won’t discuss such configuration
issues here.

The direct manipulation interaction employed in the design in Figure 3.15 seems
a perfect choice. However, it may not be obvious to a novice user – there is nothing
into the GUI that suggests the point-and-click behavior.

Instead of adding a label or a tooltip to signal the intended interaction, and so
risking annoying regular users, we chose to change the cursor shape and add a
label that indicates the geographical point indicates by the mouse focus, shown on
the left bottom of the map, together with a label that shown any point already

Figure 3.15 A direct manipulation Geopoint chooser

c03.fm Page 92 Thursday, March 9, 2006 3:44 PM

Exploring the design space for a point chooser 93

3:17 PM 9 March 2006 c03.fm 1.0

selected, as seen in Figure 3.16. These are all discreet hints that ‘invite’ the user to
click on the map to see what happens. There is no need to overload the design
with explicit signals – in this way both first-time and regular users are well served.

When the user selects a point, it is signaled by an ‘X’ on the map and represented
numerically at the bottom-right of the map. On the left- hand side of the screen the
point corresponding to the current mouse position is shown.

When the user has chosen a point on the map, they can dismiss the chooser, so
committing the operation by clicking the OK button, or just cancel the selection
operation by using the Cancel button.

Allowing editing of the currently selected point helps fine-tune inputs. Figure 3.17
shows a typical interaction with an enhanced version of the chooser.

This version allows users to edit latitude and longitude values directly, and so
refine a chosen point more easily, to any level of precision.

We place the selected and the current point in the status bar, following the
Java look and feel design guidelines (introduced later in this chapter),
although further usability testing should be done to check that our choice is
not confusing to users.

Figure 3.16 An implementation of a Geopoint chooser visual component

c03.fm Page 93 Thursday, March 9, 2006 3:44 PM

94 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

The design in Figure 3.17 illustrates a subtlety regarding the commit behavior of
the editable field for the selected point. The designers have to decide how the
editing in the field is going to be committed and so change the location of the ‘X’
mark on the screen. One possibility is to accept the editing as soon as the user
types valid numbers into the field (this is called immediate mode). This has the
unpleasant side-effect of making the ‘X’ mark scatter all over the map while users
are typing the digits of a coordinate. The other option is to commit the value after
a special ‘completion event’ is performed by the user, such as pressing Enter or
pressing a button (this is called deferred commit mode). A third possibility is to
delay the commit for a specific time after the last user keystroke (perhaps a few
seconds), giving users the time to fully input the value. This option (delayed imme-
diate mode) and deferred mode are important when the commit cost could be
high, for example to send data to a remote server.

Quality assurance testers love to fiddle with such subtleties. What if the
chosen commit mode is delayed immediate – say after 2 seconds after last user
keystroke in the field – and as soon as the user types a digit, they quickly close
the dialog by pressing the OK button? The new value does not have time to be
committed, and they developers can find themselves dealing with a new and
unpleasant bug.

Figure 3.17 An enhanced version of the Geopoint chooser

c03.fm Page 94 Thursday, March 9, 2006 3:44 PM

Exploring the design space for a point chooser 95

3:17 PM 9 March 2006 c03.fm 1.0

A further evolution of this design could involve spinners – using the JSpinner
Swing component – instead of free text. Figure 3.18 shows such a solution.

The design shown in Figure 3.18, although visually loading the chooser window a
little, allows for a finer user data input. The use of spinners is also self-explanatory –
users understand their actual purpose easily, so that they can use this additional
control whenever a fine, but constrained, input is needed.

Figure 3.19 shows another version of our design, in which users can specify the
current geographical projection adopted at the top right. Whenever the projection
is changed, the underlying map and the selected point change accordingly.3

Changing the map projection is an example of a configuration item that can
become a part of the operational GUI, depending on the situation. If this feature
is used by unskilled users, it might be distracting or even confusing. This is a
common dilemma, where the user population is not easily predictable at design
time3.

3. As one can imagine, designing ‘catch-all’ visual components isn’t an easy job.

Figure 3.18 A Geopoint chooser that employs spinners

c03.fm Page 95 Thursday, March 9, 2006 3:44 PM

96 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

Finally, the class diagram related to the version shown in Figure 3.16 is shown in
Figure 3.20. The implementation code for this Geopoint chooser is available on the
book’s Web site – see the GeoPoint and related classes.

Next we look at alternative designs that employ combinations of design
approaches.

Figure 3.19 Interacting with the chooser

Figure 3.20 The Geopoint chooser class organization

c03.fm Page 96 Thursday, March 9, 2006 3:44 PM

Exploring the design space for a point chooser 97

3:17 PM 9 March 2006 c03.fm 1.0

Mixed designs

As seen in the previous section, it is possible to combine direct manipulation
and the use of standard components in a GUI design. These are the most expen-
sive designs, due to the cost of building the different representations, plus the
extra cost of establishing the coordination between the two. The use of such an
approach should be thought through carefully, because it can actually produce
more cluttered – and so less usable – designs. This is a classic phenomenon
known as feature creep: designers feel somehow more reassured by adding extra
functionalities to the GUI in a vague attempt to make it more usable.

An obvious solution for increasing the ease of use of our Geopoint chooser design
is to employ two different representations of the same data simultaneously.
Choosing the two representations carefully can lead to larger usable selection
areas, for example one quicker to use, but less precise, together with a slower but
more accurate one.

A set of different designs are possible. For example we could employ sliders for
selecting the point indirectly on the map, as shown in the design in Figure 3.21.

This solution has a flaw. Depending on the projection used for the map, the sliders
could indicate meaningless measurements (the geographic projection used in
Figure 3.21 is only a mock-up).

One possible solution is to decouple the sliders from the visual representation of the
map, as shown in Figure 3.22. This new solution has the advantage of combining
the two required parameters (which may not necessarily be latitude and longitude)
with the powerful visual feedback given by the chosen point indication on the map.
More importantly, it does not depend on a specific map projection.

Figure 3.21 Indirect manipulation

c03.fm Page 97 Thursday, March 9, 2006 3:44 PM

98 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

Like the design illustrated in Figure 3.21, this design imposes a degree of coor-
dination between the two representation of the same data: the two sliders
above being the indirect representation, and the map in the center being the
direct representation of a point on the Earth’s surface. When the user changes
one of the sliders, the point in the map changes accordingly. This is an example
of the concept of different views – that is, different representations – of the same
data. We will see in the second part of the book how Java GUIs, by leveraging
OO design pattern technology, can implement such constraints in complex
applications.

Combining two designs in one

In some case is not possible to accommodate both expert and novice users with the
same design without hampering one or both of the groups. In these cases one solu-
tion is to provide two slightly different versions of the same UI in combination,
providing the simpler path for novice users and a more elaborate but powerful one
for expert users.

Returning to our Geopoint chooser, suppose expert users want to define the infor-
mation about a point on the earth surface in a more articulate way. To avoiding
cluttering the UI for novice users, who are happy with point-and-click interaction,
we can devise a design that conceals more complex data input in a separate area.
The design in Figure 3.23 shows this solution.

We can draw a number of lessons from the design in Figure 3.23. When providing
such a two-way UI differentiated by user skill, it is always a good idea to favor
novices over experts, for example by starting up the GUI with the default view for
novice users, or by providing simpler interactions for them. This is not always

Figure 3.22 Another attempt

c03.fm Page 98 Thursday, March 9, 2006 3:44 PM

Exploring the design space for a point chooser 99

3:17 PM 9 March 2006 c03.fm 1.0

possible, though. Sometime the GUI needs to be engineered for expert users over
novices, for example to optimize user’s interaction speed.

From a visual viewpoint, the ‘expert’ form-based view could be switched on and
off in a number of ways, for example by means of a button, or by adding a tab
pane with two tabs, one for the map and the other for the numerical representa-
tion. Two tabs would avoid confusing novice users, who can use the less precise,
direct manipulation map and ignore the more elaborate form-based input area.
But with two tabs, the UI loses the very useful operational feedback of seeing the
point selected with spinners directly on the map.

Conclusions

Even in these simple examples we find many design choices that complicate our
GUI design process. We can see how categorizing components based on their
development cost can sometime be misleading, because it doesn’t take account of
non-GUI costs, such as data collection, such as that needed to make the design in
Figure 3.13 work.

One aspect that recurs in each design we have examined is the phenomenon of
feature creep. The more designers work on a design, the more they are tempted to
add extra functionality, overloading the design beyond what is needed and poten-
tially making it less usable.

In the next section we enter the world of user interface guidelines, introducing the
official design guidelines for GUIs built with the J2SE Swing toolkit.

Figure 3.23 A two-way UI differentiated by user skill

c03.fm Page 99 Thursday, March 9, 2006 3:44 PM

100 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

3.4 Design guidelines for the Java platform
Fortunately it is not necessary to start from general principles when designing a
new GUI for a given computing platform4. The platform provides many concep-
tual and coding constraints that help us to build a professional GUI economically.
However, many developers aren’t aware of such guiding principles. This can be
seen in many GUIs, in which the designer didn’t understood the principles
behind the visual components employed, or even misused them altogether.

Using a sophisticated and powerful GUI toolkit doesn’t make one immune from
gross UI design errors, as shown in Figure 3.24.

What is missing from the figure is a coherent, systematic organization of the
layout and intended user interaction. Such an organization is required to ensure
UI consistency – users expect dialogs, panels and other GUI parts to have the
same mechanisms and conventions, possibly sharing those of similar products –
and ensuring the required levels of usability.

Introduction to the guidelines

Professional UI designs are the result of many contributions, ranging from the UI
toolkit in use to the general UI design guidelines available for that platform, and

4. Java is not only a mere development environment in the traditional sense, in that a Java
runtime is also deployed with the execution code, thus providing a sort of ‘Java platform’
in which a minimum set of services (constantly growing with each release) are available
for all Java applications. At the same time, the Java platform is not always totally indepen-
dent of the underling native OS.

Figure 3.24 A badly-design form

c03.fm Page 100 Thursday, March 9, 2006 3:44 PM

Design guidelines for the Java platform 101

3:17 PM 9 March 2006 c03.fm 1.0

also comprising the general international standards and guidelines for usability,
design best practices and so on. In Figure 3.25 shows some of the contributions to
the final design of a simple J2ME MIDP form for a handheld device.

Note that in general UI design guidelines are built on top of other more general
ones, to provide a complex and coherent set of UI design directions – that is,
guidelines that don’t contradict other more general guidelines. This can be seen in
Figure 3.25 above, in which the corporate UI design guidelines restrict the stan-
dard general design guidelines for MIDP GUIs. The presentation technology,
including widget toolkits, is also built following standard guidelines.

Guidelines provided by the platform vendor are not exhaustive, and organiza-
tions can expand them to meet their needs, to add extra features, or to provide a
‘branded’ look and feel. One could provide further design guidance for a family
of applications that in turn specializes corporate design guidelines. Figure 3.26
shows the general layering of user interface design constraints for any graphical
interactive platform.

The layering metaphor in Figure 3.26 is used to convey the idea of a set of
harmonized guidelines, which, when put together, form a coherent language
for building graphical user interfaces.

Figure 3.25 Every good design is the final result of many guidelines

c03.fm Page 101 Thursday, March 9, 2006 3:44 PM

102 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

Starting from the bottom layer:

• Basic concepts, pointing devices and the remaining items that make up the
‘plumbing’ of modern GUIs are based on broader and more general guide-
lines such as:

– ISO 9241 (ergonomic requirements for office work with visual display
terminals)

– ISO 20282 (usability of everyday products)
– IEC TR 61997 (guidelines for the user interfaces in multimedia equipment

for general purpose use)
– ISO/IEC 10741-1 (dialog interaction – cursor control for text editing)
– ISO/IEC 11581 (icon symbols and functions)
while, for J2ME other standards apply:
– ISO/IEC 14754 (pen-based interfaces – common gestures for text editing

with pen-based systems)
– ISO/IEC 18021 (information technology – user interface for mobile tools)5

• Above this is the basic infrastructure for interactive GUI features provided
by the platform. Such an infrastructure in modern multipurpose software
environments is usually organized around the concept of component-based
GUIs. These are graphical items (also called components or widgets) that can
be assembled to create a large number of different GUIs. Some specialized

5. There are many hardware standards too: for computer displays, keyboards, etc. For a
comprehensive list of the various usability and HCI standards, see: http://
www.hostserver150.com/usabilit/tools/r_international.htm.

Figure 3.26 Stacking up design guidelines in general

c03.fm Page 102 Thursday, March 9, 2006 3:44 PM

Design guidelines for the Java platform 103

3:17 PM 9 March 2006 c03.fm 1.0

platforms (or those with limited hardware, such as hand-held devices) may
use other approaches to model the basic infrastructure of their user interface.

• The display presentation technology is built using a conceptual UI architec-
ture and a set of basic guidelines and standards. This software allows
developers to build UIs by means of specialized APIs.

• At a higher abstraction level, presentation technology alone is not enough
to guarantee effective and usable UIs. A set of UI design guidelines and
best practices needs to be taken into account during the UI design process.
Such a set of guidelines is strictly dependent on the underling presentation
technology: for example, a set of voice interfaces design guidelines is mean-
ingless for graphical-only presentation technologies. An example of a UI
design guideline for a GUI could be ‘command buttons should all be the
same size.’ These guidelines are usually provided by the same companies
that develop the related display presentation technology, or by indepen-
dent standard bodies.

• Corporate design guidelines are built on top of the standard UI design guide-
lines by private organizations to provide a higher level of consistency for the
software developed in or for the organization, and to enable other benefits
such as support for a proprietary toolkit, product documentation purposes,
quality assurance, UI cost estimation, and so on.

• Above corporate UI design guidelines could be further specification for
single products, perhaps for providing special UI features, branding, better
user targeting, and so on. Imagine for example the GUI of a software music
player, as opposed to the GUI of an e-mail client built by the same company.
This and the corporate level of guidelines are usually owned by organiza-
tions and not available for public use.

J2SE user interface design guidelines

The same layering of design guidelines shown in Figure 3.39 also exists for Java 2
standard edition (J2SE) too. Figure 3.27 shows how the final design of a simple
J2SE Swing GUI is influenced by the different UI design guidelines layers intro-
duced in the previous section.

The various design guidelines are compounded, enforced by the GUI technology,
here Swing, to create the final result.

This layering is illustrated in Figure 3.28. The pyramid of constraints and guide-
lines for the design of GUIs stands on top of the same international standards
mentioned above – the hierarchies in Figure 3.26 and Figure 3.28 share the same
lowest level. The architects of Java adopted a common approach based on compo-
nents for modeling GUIs, indicated by the Basic Infrastructure layer in Figure 3.26.

c03.fm Page 103 Thursday, March 9, 2006 3:44 PM

104 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

The idea that a J2SE GUI is inherently composed of elementary, reusable compo-
nents impacts both the design and implementation of GUIs. Such components can
be visual objects, such as a combo box, more abstract ones, such as a layout
manager, or non-GUI objects, such as the data model behind a list6. Building on
top of this conceptual model, we are offered a number of visual components that
can be combined to build GUIs.

Sun provides two, in part overlapping, toolkits created around this component
approach: Swing and AWT, plus a number of auxiliary libraries such as Java2D

6. Values displayed in widgets are usually stored in runtime memory structures known as
data models. When users modify the value in the widget through the UI the changes are
transferred to the related data model.

Figure 3.27 The final design of a J2SE GUI

c03.fm Page 104 Thursday, March 9, 2006 3:44 PM

Design guidelines for the Java platform 105

3:17 PM 9 March 2006 c03.fm 1.0

and JavaHelp. These are the more popular GUI toolkits for J2SE, but there are
others. At a higher level of abstraction, Sun also supplies a set of design criteria
and guidelines for harmoniously composing the building blocks provided in
these libraries. Finally, developers are free to add their own design constraints and
guidelines by building on top of other guidelines. Figure 3.28 shows the layering
of user interface design constraints for J2SE platform.

Any GUI toolkit include abstractions and mechanisms related to the use of the
widgets it offers. Such interaction mechanisms may be closely linked to higher-
level design guidelines. This is the case with the Java look and feel design guide-
lines and the underlying Swing library – in fact, the Java look and feel design
guidelines have been designed specifically for the Swing toolkit. For example, the
Java look and feel provides detailed guidelines for changing the visual appear-
ance of the whole GUI at runtime, and such a feature is technically available only
for Swing-based GUIs.

By taking advantage of corporate design guidelines, it is possible to create new
GUI styles that highlight the product’s identity, or that are specialized for some
particular case. Figure 3.29 shows an example of such a custom style, built on top
of the Java look and feel, used for the JetBrains IDEA7 integrated development
environment.

7. IntelliJ IDEA is a trademark of IntelliJ Corp.

Figure 3.28 Stacking up design guidelines for J2SE

c03.fm Page 105 Thursday, March 9, 2006 3:44 PM

106 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

As the figure shows, the designers had to solve various GUI-related problems,
and resorted to adopting a specialized version of the Java look and feel style.
Many of the conventions used in the standard Java look and feel were maintained,
but new visual components were provided.

It is important to point out that Swing, although the most popular, is not the only
toolkit available to GUI designers using Java. Developers can create their own
toolkits that build on top of standard libraries, or even substitute them altogether,
as IBM did for Eclipse8. On platforms such as Eclipse, its SWT library still offers a
component-based approach to GUI building, but also provides an alternative set
of widgets to developers. The design guidelines also differ from those proposed
by Sun. The Eclipse design constraints are shown in Figure 3.30.

SWT design guidelines are different than Swing guidelines, as can be seen from
the example GUI developed for Eclipse shown in Figure 3.31. Notice, for example,
the status/message bar at the top of the dialog just below Java Settings. The SWT
library is described in Chapter 11.

8. See Chapter 11.

Figure 3.29 The IntelliJ IDEA GUI

c03.fm Page 106 Thursday, March 9, 2006 3:44 PM

Design guidelines for the Java platform 107

3:17 PM 9 March 2006 c03.fm 1.0

Figure 3.30 Stacking up design guidelines for the Eclipse platform

Figure 3.31 An Eclipse standard GUI

c03.fm Page 107 Thursday, March 9, 2006 3:44 PM

108 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

The standard Java Look And Feel design guidelines provided by Sun is not the
only such set of guidelines available. The layering shown in Figure 3.26 on
page 102 can be highly customized, and each guideline layer can be replaced
with others. This is a powerful feature in the hands of seasoned designers, as it is
expensive and time-consuming to create an original yet professional set of design
guidelines. An easier and safer way is to build on top of existing guidelines.
Fortunately, the Java look and feel provided by Sun is an effective set of design
guidelines that fits J2SE’s technical constraints and allows easily for some
customization.

3.5 The Java look and feel design guidelines
Adhering to a particular set of design guidelines is key to the creation a profes-
sional GUI on any platform, and on Java in particular. But Java software can be
run on many platforms. This raises the issue of which design guideline to adopt.
While the visual appearance of the GUI can be changed easily – as long as the
Swing library is used – the underlying window layouts, interaction mechanisms
and other important aspects of the GUI cannot. It would be quite expensive to
provide a single GUI that can look and behave like a Windows application on
Windows and like an Aqua application running on an Apple Macintosh. And
even this wouldn’t really solve the problem, because Java applications are
different than native ones, no matter how cleverly you code them.

To address this problem, Sun proposed a standard set of design guidelines specific
to the J2SE platform. If your application is compliant with these guidelines, it will
look and behave (almost) the same on all the platforms Java on which can run.
Even if you are not planning to exploit the multi-platform capabilities of Java, you
will be able to create professional-looking GUIs with little effort by adopting the
Java look and feel design guidelines.

Our aim here is to provide a general introduction to the Java look and feel design
guidelines, and for J2SE in particular, rather than provide a thorough exposition
of topic such as how to space items in a window, how to handle raster graphics on
different platforms, and so on. Readers interested in the detail can refer the official

In contrast to the look and feel of single components, the style (the systematic
layout of widgets in windows and the set of interaction patterns recurring in
the GUI) cannot be strictly enforced by a class framework no matter how
clever it is devised, and it should be put into practice explicitly by designers
and developers in their applications.

c03.fm Page 108 Thursday, March 9, 2006 3:44 PM

The Java look and feel design guidelines 109

3:17 PM 9 March 2006 c03.fm 1.0

guides provided by Sun9, Java L&F Design Guidelines 2001, Advanced Java L&F
Design Guidelines 2001.

Some definitions
First, there is a small terminological twist related to two different meanings of
term ‘look and feel.’ In Java code, ‘look and feel’ refers strictly to the visual
appearance of GUI components, and is also known as ‘Metal’ in the code. In a
design context, however, the same term may indicate both the visual appearance
and a set of abstract behaviors that identify the design’s style at large . We there-
fore use the term ‘look and feel design guidelines’ to describe collectively the set
of abstract behaviors and design guidelines plus the resulting visual appearance
of the GUI components.

A set of look and feel design guidelines is therefore more than a mere collection of
appearances for visual components. It implies also a set of behaviors and conven-
tions that are used throughout the applications. To take an analogy, you might
build a house from bricks. and wood, but look and feel design guidelines would
define the architectural style and how your constructional materials should be
used to produce an effective and comfortable design. A look and feel implemen-
tation is a set of coherent components that comply with these guidelines.

The designers of the Java look and feel tried to cope with the diverse habits or
users by creating a rather ‘neutral’ set of design guidelines that could be
employed to create GUIs that could be used easily by Mac, Linux or Windows
users. The Java look and feel was designed therefore as far as possible to be cross-
platform. To have an idea of what such a design guideline is all about, we will
examine some of its details in the following sections. As long as you employ stan-
dard or custom components in your GUI, you are not required to master all the
details of the Java look and feel visual appearance, because Swing’s designers
have already worked them out for you. You need to be aware only of some general
style guidelines – we will discuss these later in this chapter, and in the many
examples in the rest of the book.

The Java ‘look’

This is the most visible part of any GUI, the part that creates a user’s first impres-
sions. Three visual elements characterize the ‘classic’ Java look and feel:

• The flush 3D style. This describes the way in which component surfaces
appear, making use of beveled edges. From a graphical viewpoint, compo-
nent surfaces with beveled edges appear to be at the same level as the
surrounding screen area.

9. Available on the Web at http://www.java.sun.com/products/jlf.

c03.fm Page 109 Thursday, March 9, 2006 3:44 PM

110 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

• The drag texture. A particular graphic pattern indicates items that users can
drag with the mouse.

• The color model. A simple set of theme colors ensures a consistent look across
different platforms. The Java look and feel uses eight system colors – three
primary and three secondary colors, plus two general colors for the display
of text and highlights.

Figure 3.32 shows an example of an application that uses the Java look and feel,
highlighting the three basic elements of the Java look and feel. To grasp the differ-
ence, Figure 3.33 shows the same application, but using the Windows look and feel.

The visual appearance of widgets is a shallow part of a GUI. Another important part
of a user’s experience is the way in which the GUI reacts to user manipulation – the
‘feel.’

The Java ‘feel’

A set of look and feel design guidelines doesn’t only define the visual appearance
of an application’s components. An important part of the design guidelines
defines the way they respond to user interaction.

Figure 3.32 An application using the Java look and feel

c03.fm Page 110 Thursday, March 9, 2006 3:44 PM

The Java look and feel design guidelines 111

3:17 PM 9 March 2006 c03.fm 1.0

Any visual component has its own interaction rules. These rules describe how
components react to user manipulation. As an example, here are the rules for user
selection for some of the Java widgets.

For text – multiple line or single line text-based components, such as text fields or
text areas:

• A single click deselects any existing selection and sets the insertion point.

• A double click on a word deselects any existing selection and selects the
word.

• A triple click on a text line deselects any existing selection and selects the
whole line.

• A shift-click extends a selection by the same unit as the previous selection
(single character, word, line, etc.).

Figure 3.33 A Java Application using the Windows look and feel

c03.fm Page 111 Thursday, March 9, 2006 3:44 PM

112 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

• Mouse dragging deselects any existing selection and selects the currently
selected range.

• Direct manipulation for cutting or copying a text selection is not provided.

While for lists and tables:

• A single click on an item deselects any existing selection and selects the
object.

• A shift-click on an item extends the selection from the last selected item to
the new one.

• A control-click on an item toggles its selection without affecting the previous
selection.

Even from simple rules such as those above, it is clear that if you allow users to
change the look and feel at runtime, you should also change the underlying
behavior, terminology and standard layouts (what we called the style) to match
the chosen look and feel. This is much trickier than simply changing the widgets’
visual appearance. For this reason, if you plan to deploy your application on
different target platforms, the wisest choice is to adopt the standard Java look
and feel guidelines. Although technically possible, the official design guidelines
strongly discourages the provision of features that allow end users to switch to
a different look and feel at runtime.

Some terminology

We introduce here some terminology related to user GUI interaction that we will
use throughout the book to describe the support of keyboards and other input
devices.

• Mnemonics are look and feel and locale-dependent combinations of a letter
and a modifier key such as Alt. Mnemonics are used for menu item selec-
tion and for setting the focus. They are shown by an underline under the
given character. For example, the Windows or the Java look and feels allow
menu items to be selected by combining the underlined letter with the Alt
modifier.

Figure 3.34 and Figure 3.37 on page 115 show examples of use of mnemonics
for focus control in dialogs. Note that mnemonics are used also for command
buttons.

• Accelerators or keyboard shortcuts are key combinations completely defined by
the designer. For example Ctrl-x is the keyboard shortcut for activating the
‘cut’ command on the selected items. Figure 2.21 on page 63 shows a pop-up
menu in which every command is provided with accelerators. The Java look

c03.fm Page 112 Thursday, March 9, 2006 3:44 PM

The Java look and feel design guidelines 113

3:17 PM 9 March 2006 c03.fm 1.0

and feel requires that accelerators are indicated to the right of the command
label for menu items, and in the tooltip as well where relevant.

• Focus navigation. Using the keyboard, it is possible to switch the focus from
one component to another. This provides a quick way to manipulate the GUI,
and is very convenient for data entry forms.

The scope of accelerators and mnemonics is limited to the current window. When
deciding which characters to use, some guidelines apply:

• Use standard accelerators whenever possible. The official guidelines10

provide a list of the most common ones.

• If this is impossible, use the first letter, as long as it doesn’t conflict with other
mnemonics. In the example in Figure 3.37, ‘L’ is used for ‘Log in.’

• If the first letter of the label is not available, resort to the next suitable conso-
nant. For example, if ‘l’ is reserved, ‘n’ could be used. If this also fails, choose
a suitable vowel. Locales with non-Latin alphabets should use the English
mnemonic. (For languages other than English, internationalization guide-
lines are provided.)

• Finally, do not provide mnemonics or accelerators for potentially dangerous
commands such as ‘delete,’ ‘cancel,’ or for the default button in a dialog, as
this can be triggered merely with the Return key.

10. See http://www.sun.com

Figure 3.34 An example of mnemonics

c03.fm Page 113 Thursday, March 9, 2006 3:44 PM

114 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

An example – applying the guidelines for designing dialogs

Dialogs provide a useful means delivering an application’s functionalities in
logical ‘chunks,’ which can enhance user’s understanding. Dialogs also provide
an indication of task completion, providing feedback to users.

We introduce some general guidelines for the design of dialogs here: in Chapter 5
we will illustrate these with coded examples.

Figure 3.35 shows a dialog designed following the Java look and feel guidelines.
Some of the minor details, such as standard dimensions in pixels are also
shown.

It is important to emphasize the prescribed structure – the style – for dialogs.
Figure 3.36 shows the two standard arrangements for area organization within a
Java look and feel compliant-dialog. Note that the second arrangement, using
vertically placed buttons, is less common in practice.

Figure 3.35 A Java look and feel guideline–compliant dialog

c03.fm Page 114 Thursday, March 9, 2006 3:44 PM

The Java look and feel design guidelines 115

3:17 PM 9 March 2006 c03.fm 1.0

Note in Figure 3.36 that buttons and other component can also be employed in the
payload area. The general command buttons refer to the dialog as a whole, while
Content-specific components will be organized within the payload area.

This simple structure guarantees a systematic and predictable layout for dialogs.
Users easily discover how to dismiss a dialog or to perform the intended opera-
tion, which is always associated with the left-most button. This is illustrated in
Figure 3.37, which shows an example of a log-in dialog: instead of the OK label,
the dialog’s acceptance button has a more expressive label, Log In.

We will see the graphic details of such a scheme when we discuss some real cases
in Chapter 5.

Figure 3.36 General structure for Java look and feel dialogs

Figure 3.37 An example of standard Java look and feel login dialog

c03.fm Page 115 Thursday, March 9, 2006 3:44 PM

116 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

Regrettably, not all the dialogs provided by the standard Java libraries are
compliant with this simple organization. This is partly because the arrangements
described in Figure 3.36 can sometimes result in inefficient use of space. Figure 3.38,
for example, shows an example of a well-known JFC standard dialog that doesn’t
follow the suggested area organization. In the 1.4 release of J2SE, Sun’s designers
amended the design to that shown in Figure 3.39.

The design in Figure 3.39 illustrates internationalization support for standard
components – it shows an open file dialog for the Italian locale.

We will use a dialog classification scheme extensively in rest of this book. We
group dialogs by the way they allow interaction:

• Modal dialogs. Users are forced to interact with the currently-open dialog. If
the user wants to interact with the remainder of the application, they must
first dismiss a modal dialog. Typical general commands for this kind of
windows are ‘OK and Cancel, or some other context-dependent command
such as Log In.

• Modeless dialogs. Modeless dialogs don’t prevent users from interacting with
other windows in the same application. Such dialogs can be used for toolbox

Figure 3.38 The not-so-standard file chooser of J2SE 1.3

c03.fm Page 116 Thursday, March 9, 2006 3:44 PM

Summary 117

3:17 PM 9 March 2006 c03.fm 1.0

or other auxiliary windows that assist users with details of the operations
being performed on the main window.

3.6 Summary
In this chapter we have discussed the general principles of user interface design,
mentioning common aspects of user interface design, and have provided a brief
introduction to the Java look and feel guidelines. We also discussed the GUI
design space for a simple chooser.

Here are some of the ideas we discussed in this chapter.

• We saw that Java user interfaces for J2SE are organized into components that
can be assembled to create complex user interfaces.

• We distinguished three types of visual components based on their construc-
tion complexity:

– Standard components are obtained from standard library components with
few adaptation to their code.

– Custom components are major customizations of standard components,
involving the creation of new, non-trivial specialized classes.

Figure 3.39 The file chooser dialog of J2SE 1.4

c03.fm Page 117 Thursday, March 9, 2006 3:44 PM

118 Java GUI Design

3:17 PM 9 March 2006 c03.fm 1.0

– Ad-hoc components are components created from scratch for solving specific
problems that aren’t addressed by existing libraries, either those provided
by Sun, or by other third-party component vendors.

• We suggested that user interface design guidelines can be visualized as a
hierarchy for building a coherent framework for professional GUI design.

• We briefly introduced some of the aspects of the Java look and feel, that we
will assume as the reference look and feel throughout this book.

In the next chapter we discuss some frequent GUI designs for Java GUIs.

c03.fm Page 118 Thursday, March 9, 2006 3:44 PM

4 Recurring User Interface
Designs

2:21 PM 9 March 2006 c04.fm 1.0

This chapter illustrates some common GUI designs. We will present them in a
practical way, sometimes sacrificing exactness and completeness for practical
utility and intuitiveness. The idea is to make you aware of some common issues,
together with their possible solutions, that have been developed and refined over
recent years. Unfortunately, user interface design is a human-dependent task, and
it doesn’t make sense to constraint it in precise, formal rules.

Following the multidisciplinary approach of this book, we will see both GUI
design and development issues together, often switching between the designer’s
and the implementer’s viewpoints. We discuss both Sun’s Java Look & Feel
design guidelines, as available for Swing applications, and IBM-backed Eclipse
GUI design guidelines, as available for SWT applications, although focusing more
on the former: we discuss SWT extensively in Chapter 13.

This chapter is organized as follows:

4.1, GUI area organization discusses the issues related to the GUI design of screen
areas in the main GUI window.

4.2, Choosers deals with a GUI design strategy that focuses on allowing users to
select items and objects.

4.3, Memory components discusses the use of widgets that remember previous user
choices and input, to enhance GUI usability.

4.4, Lazy initialization discusses the important approach of instantiating objects
only when needed from a GUI design viewpoint.

4.5, Preference dialogs illustrates some typical GUI designs for application prefer-
ences and configuration information.

4.6, Waiting strategies introduces the most common choices for interacting with
users during long-running tasks.

4.7, Flexible layout discusses the use of dynamic layout managers.

4.8, Common dialogs introduces some standard dialogs – About, Log in, and first-
time dialogs, splash windows, providing reusable code.

4.9, Command components illustrates the GUI design issues related to providing
toolbars, menus and buttons in GUIs.

Recurring User Interface Designs

c04.fm Page 119 Thursday, March 9, 2006 2:22 PM

120 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

4.10, Accessibility discusses how to provide accessibility support in Java GUIs.

4.11, Navigation and keyboard support introduces keyboard input and tab navigation
to allow a GUI to be used from the keyboard.

4.12, Internationalization discusses the problems and solutions involved in interna-
tionalizing and localizing Java GUIs.

4.13, Help support describes the adoption of a help system in applications.

4.15, Leveraging object-oriented programming discusses how to employ OOP to build
better Java GUIs more effectively.

4.14, Icons and images illustrates some GUI design issues related to icons and
images with Java GUIs.

4.1 GUI area organization
User interfaces often need to show different information at the same time. In
this case it is essential to determine a suitable organization for the screen area.
Over the years several arrangements have been established for this purpose. A
common layout for ‘average’ applications implements an area devoted to the
work itself, such as the text editor pane in a RAD (rapid application develop-
ment) environment, a command area, usually at the top of the frame,
containing the menu bar and some toolbars, and a selection or exploration area
on the left.

When there is more data to show, additional areas can be combined with these
basic ones. We will see some examples of area organizations in the sections that
follow.

Terminology

For container visual components, we will use the following terms in this chapter,
which are taken from Swing terminology:

• A window is a visual container used for organizing the information that users
see in an application. We will use this term to indicate both dialogs and frames
(generic screens) or to indicate ‘plain’ windows – that is, those without the
top header – used for example in splash screens.

• A frame is a window in which the user’s main interaction takes place.

• A dialog is a secondary window that is dependent on a frame or on another
dialog, and is used to support the main interaction that takes place in
frame(s).

c04.fm Page 120 Thursday, March 9, 2006 2:22 PM

GUI area organization 121

2:21 PM 9 March 2006 c04.fm 1.0

• Finally, a panel is a generic visual container that represents an area assembled
with visual components. Panels can be composed within other panels or
within any window.

Main frames

Essentially, except for the command area – the upper area, which gathers the
menu bar and the toolbars – and a status bar on the bottom, the rest of the window
is left to the designer’s creativity.

A top-down design approach begins with the identification of the following stan-
dard areas in a GUI, or those of them that are required:

• Selection area, situated on the left of the main area. This usually contains a tree
view or other selection components.

• Work area. the main area of the dialog, and where the user’s attention is
focused most of the time.

• Secondary area, which can be devoted to the details of the current operation,
or to messages, or to some notification message not captured by the work
area.

• Other areas. Depending on the GUI’s complexity, additional display areas
can be needed.

This type of organization has some common properties. Apart from the main
area or application-specific areas, the other areas should be made visible and
customizable as required by the user, and a means provided to make such
settings persistent. This may be done with toggle buttons in the toolbar for the
most commonly-used areas, while others may be located in a related drop-down
menu. Areas other than the selection and work areas should be designed as
simply as possible, in order not to distract the user’s attention. For complex
interactions that are not supported by the work area, a modal dialog is often the
best choice.

Figure 4.1 shows a sample area organization for an application’s main frame. This
(fictitious) application manages a set of geographic databases containing images
of the earth using different projections.

As we know from previous chapters, many design choices ultimately depend on
the end user population. Their working habits, the tasks they regularly perform,
and other variables all contribute to the final design. In the application above, for
example, the need for comparison of different images prompts the use of a
multiple document interface (MDI) display organization, implemented by using
the internal frames in the main area (top right). The selection sub-area in the

c04.fm Page 121 Thursday, March 9, 2006 2:22 PM

122 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

bottom left of Figure 4.1 has been added to accommodate the frequent task of
selecting the various available projections for a given image.

GUIs built using Eclipse can take advantage of the ‘flat look’ GUI library, an
example of which is shown in Figure 4.2. Essentially, it exploits HTML-like
widgets to save space in high-density form-based panels. It is available only
within specialized panel subclasses, and it cannot be used in toolbars and other
general-purpose containers.

The Eclipse ‘flat look’ is a valuable tool in the GUI designer’s toolbox for SWT
applications. As of Eclipse 3.1, though, it is still needlessly hard to use for

Figure 4.1 A typical main frame area organization (Compiere)

c04.fm Page 122 Thursday, March 9, 2006 2:22 PM

GUI area organization 123

2:21 PM 9 March 2006 c04.fm 1.0

developers. Ironically, an ‘old-fashioned’ desktop application GUI should take
advantage of a newer and possibly more limiting technology: advanced Web
forms.

Multiple document interfaces

Multiple document interfaces (MDIs) are GUIs in which several different fully-
fledged internal windows are responsive to user interaction at the same time, like
the application shown in Figure 4.1. MDIs can be implemented in different ways,
for example as a collection of frames or non-modal dialogs in Swing.

The Swing library contains a special set of components, called internal windows,
for providing a way to manage multiple windows that are confined inside a main
window. From a usability perspective, internal frames and MDIs in general are
difficult to manage for average users, and their use is usually not needed for most
applications. Eclipse itself is an example of a complex GUI in which designers
succeeded in minimizing the use of MDI, as shown in Figure 4.3.

Another common approach to the efficient exploitation of precious GUI real estate
is to serialize it – that is, to split a long task into a sequence of simpler steps, each
rendered with the same subset of the screen area. This approach has different
names, but is most commonly known as a wizard.

Figure 4.2 Eclipse’s flat look to the rescue of crammed forms

c04.fm Page 123 Thursday, March 9, 2006 2:22 PM

124 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

Wizards

Wizards are a well-known and widespread way to organize GUI functionalities in
order to support inexperienced users. A wizard guides the user through the
features provided by the application in a simplified way, proposing only a few
choices and limited information at a time. By narrowing the available choices,
novice users are better guided through an interaction with the application. Histor-
ically, wizards made their debut in the mass market with Windows 95.

The (Advanced Java L&F Design Guidelines 2001) provides some useful advice
on designing wizards for the Java Look and Feel, and the Eclipse guidelines also
provide such advice. An example of a wizard designed to Eclipse design guide-
lines is shown in Figure 4.4.

The buttons at the bottom of the wizard are used for navigating through the various
panels, and are disabled according to the semantic state of the current pane.

In an attempt to lower the cognitive burden needed to understand GUI interac-
tions, all interactions should be kept localized and their context narrowed as
much as possible. If user data prompts a GUI notification, this should be kept
linked with the triggering cause as far as possible, so that the user will interpret it
more easily. In the case of a wizard, an awkward situation arises when a data item
inserted in a previous panel affects the behavior of another panel. In this case the
user might not be able to notice the connection, and so fail to understand the
behavior of the application.

Figure 4.3 Eclipse’s GUI design avoids the use of multiple document interfaces

c04.fm Page 124 Thursday, March 9, 2006 2:22 PM

GUI area organization 125

2:21 PM 9 March 2006 c04.fm 1.0

Designing a wizard

We conclude this section by discussing some basic, general advice for designing
wizard GUIs. Fortunately there is much literature and infrastructure support for
building wizards in the form of high-level reusable API and classes.

Designing a usable wizard is usually not a complex task if a few simple rules are
followed. Conversely, given their simplicity and the relatively cheap develop-
ment cost of using a general framework to implement them, the opposite problem
often the case – a proliferation of wizards in application that do not really need
them. As a rule of thumb, wizards should provide an alternative interaction
mechanism to an existing feature, or be employed for non-repetitive tasks for
occasional users only.

Well-designed wizards clearly declare their boundaries, so that users know where
the wizard begins, where it finishes, and the sequence of operations within it. The
inputs and the final result should be clearly outlined, so that the user can be sure
of what they are doing.

Figure 4.4 An Eclipse wizard to Eclipse design guidelines

c04.fm Page 125 Thursday, March 9, 2006 2:22 PM

126 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

Usability studies have demonstrated some interesting aspects of this kind of user
interface device. Users tend to employ a wizard only to complete a given task, and
are relatively uninterested in learning new concepts in the meantime.

Wizards can be particularly useful for the following activities:

• Dividing a complex input process into many sequential steps. ‘Serializing’ a
complex input form, such as for the creation of complex data structures, is a
common case of this.

• Performing tasks that are inherently composed of a well-defined sequence of
steps. By focusing on each step, correct task completion is much more likely
to be achieved.

• Whenever users lack domain knowledge in some field and need to be guided
through operations. Consider the integration of new hardware into an oper-
ating system, or the completion of some task involving decisions and
knowledge in other fields.

Wizards for occasional, hard-to-undo operations should also provide a final recap
screen where all the important data is summarized before the user leaves the
wizard and completes the task.

The design ideas for organizing the application display area that we have shown
in this section are rather general and can be applied to many different situations.
Next we discuss another common pattern in practical GUI design – choosers.

4.2 Choosers
Principled, systematic area organization is essential in secondary windows,
dialogs and choosers, as well as in any other part of the GUI. By chooser we mean
a screen area specialized for a performing a selection task on a given item.
Choosers deserve their own discussion, both because they happen to be a useful
means of interaction in Java GUIs, and also because quite often their use has been
misunderstood.

Figure 4.5 shows an example of a chooser with three distinct areas where the user
can focus their attention:

• On the left-hand side the selection area contains a list that shows the items
that can be picked.

• The right-hand side is the preview area, where the currently-selected item is
shown.

• The bottom-most part of the dialog is occupied by the standard command
buttons for deferred mode interaction and preview option.

c04.fm Page 126 Thursday, March 9, 2006 2:22 PM

Choosers 127

2:21 PM 9 March 2006 c04.fm 1.0

Note that in choosers the main area coincides with the selection zone, because of
the purpose of these components. To make the design coherent with the standard
layout, the selection area is still organized on the left-hand side.

Often users need to specify one or more items while using the GUI. When this
type of choice is occasional and involves a dedicated interaction because of its
complexity, a chooser should be designed to accommodate it.

Choosers are often designed as pop-up dialogs that contain the information
needed to specify the given item. Once the item has been chosen, the dialog is
dismissed and the new value is used in the application.

Choosers are often activated by means of a button, usually a More… button. Such
a button indicates the availability of further related data that can be showed by
clicking the button. Such a behavior is signaled by the ellipsis (…) in the button’s
caption, together with a brief description of the planned action. For example,
when selecting a file from a file chooser, instead of directly entering the file’s path,
a common choice for the related ‘more’ button label is Browse…

Chooser activation mechanisms

There are two main ways to show a chooser in a new window: as a pop-up
window, or as a fully-fledged dialog (often a modal one).

A useful convention is to use a downward arrow to signal a pop-up chooser for
buttons only, referred to as drop-down buttons1. In all other cases, a More… button
that triggers the related chooser dialog is the most common solution.

Figure 4.5 Area organization in an image chooser (Wood)

1. See icon images in Graphic conventions on page 156.

c04.fm Page 127 Thursday, March 9, 2006 2:22 PM

128 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

A chooser can be also contained in a lightweight pop-up such as the one used by
Combo boxes, which in this respect can be seen as choosers for one text value
among a list of available alternatives.

Chooser interaction styles

As we know from Chapter 3, we can have two main kinds of interaction modali-
ties for dialogs: immediate and deferred mode.

The following two examples illustrate these two modalities and their implication
for choosers: some of this discussion can be generalized for any other dialog type.

Figure 4.6 shows the standard file chooser provided by the JFC2 in a fictitious text
editor application. The file is first selected, and only when the choice is committed
by hitting the OK button is the dialog dismissed and the new value transmitted to
the underlying application. This is the deferred mode interaction style.

2. Java Foundation Classes (JFC) are the foundational libraries needed for building GUIs
with Java for JSE. They comprise the AWT and Swing libraries.

Figure 4.6 A deferred mode chooser (Smooth Metal)

c04.fm Page 128 Thursday, March 9, 2006 2:22 PM

Choosers 129

2:21 PM 9 March 2006 c04.fm 1.0

Figure 4.7 shows activation of the ‘choose color’ button in the toolbar, causing the
color chooser to appear. The difference from the previous example is two-fold: the
changes made in the chooser dialog are instantly transmitted to the application,
and consequently the dialog is modeless.

There is another possible kind of interaction, which can be thought of as a combi-
nation of deferred mode – an explicit user commit action is required – and
immediate mode: the window is not dismissed after user commit. In our fictitious
text editor, we click the font button in the toolbar, and we are prompted with a font
chooser dialog, as in Figure 4.8. Note the standard Java Look and Feel-compliant
button organization.

In this example, using an immediate interaction style for the font selection could
be confusing for the user and resource-consuming for the application. On the
other hand, a deferred mode interaction style like the one in the file chooser is not
optimal, because users prefer to see changes take place in a more interactive way.
By using a multiple-use, deferred mode interaction style, we allow users to interact

Figure 4.7 An immediate mode chooser (Smooth Metal)

c04.fm Page 129 Thursday, March 9, 2006 2:22 PM

130 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

more closely throughout the choice process at a level that is intermediate between
the immediate and deferred interaction style (Figure 4.6 and Figure 4.7).

The presence of two modeless dialogs can bring some unforeseen combinations.
Figure 4.9 shows our application when both modeless choosers are activated.
Note that we allowed only one chooser for each kind, by disabling the corre-
sponding command whenever the related chooser was up, although such a
combination might be required in some applications.

Figure 4.8 A multiple-use, deferred mode chooser (Smooth Metal)

Figure 4.9 Possible combinations of modeless choosers (Smooth Metal)

c04.fm Page 130 Thursday, March 9, 2006 2:22 PM

Choosers 131

2:21 PM 9 March 2006 c04.fm 1.0

Designing the interaction mode for choosers depends on several factors. The most
important one is the kind of users that will be using them. Deferred mode should
generally be preferred over immediate mode when the user population is made
up of novices and inexperienced users. Because it provides an easier way of
undoing a choice, it implies a cleaner interaction – the chooser dialog is modal, so
it has to be dismissed to return to the application, hence the number of floating
windows is kept under control – and keeps users more focused on the main task.
Furthermore, deferred mode dialogs are more widespread in common, commer-
cial GUIs, so users are more familiar with them. Essentially we trade usability for
interaction power.

Immediate mode dialogs are used in cases in which a higher degree of interac-
tivity is preferred and more freedom is left to the user. This happens when
immediate feedback on a choice is important. Such a higher level of interactivity
helps to enhance the choice process, because it allows the differences between the
manipulated items to be seen immediately.

Item selection is distinct from item creation, but this is an artificial separation in
practical GUIs. We discussed item selection first for clarity, but a chooser is often
meant to allow users to create new items as well as selecting them from a list. In
real-world choosers these two features are often blended.

Broadening the choice

From a practical viewpoint, the chooser approach is very close to the task of
creating a new item. Real-world choosers frequently offer a way to create a new
item as well as choosing from a list of available ones. The file chooser shown in
Figure 4.10 below allows users to create a new file or folder as required.

It is always a good idea to provide an explicit way to create new items. In the case
of file choosers, for example, new file creation is often obtained by entering a file
name that doesn’t yet exist. Unfortunately, there often is no visual hint that this
is the way to do it, and users can be puzzled by this ‘hidden’ interaction mecha-
nism, which often looks more like an implementation trick rather than an explicit
design choice.

Other than creating new items and choosing existing ones, choosers shouldn’t be
overloaded with other functionalities. One of the benefits of this design solution
is that it keeps the user’s perception of the GUI highly structured, so that users feel
comfortable and secure when interacting with it. Users know that they are dealing
with such-and-such kind of item, and can be confused if the same chooser offers
other functionalities. Real-world choosers are often polluted with management
functionalities. Such features are less frequently accessed than choice-related
ones, and are usually required only by experienced users.

c04.fm Page 131 Thursday, March 9, 2006 2:22 PM

132 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

More sophisticated dialogs, like management dialogs, can be built with the same
design principles as choosers, but kept separate from them. In a word processor,
for example, one could choose the style to be applied to a portion of text using a
chooser, but the management dialog – where styles can be browsed in detail,
edited, saved, imported and exported from the outside, and so on – should be
kept separated from the simple chooser. A ‘more’ button, perhaps with a caption
like Styles…, can be made available in the chooser if the design allows users to
access the management dialog directly from the chooser.

The chooser approach can be used for selecting more than one item, as in Figure
4.11, in which users can select a list of items.

Figure 4.10 Creating new items through a chooser (Oyoaha)

Figure 4.11 A list chooser (JGoodies Windows)

c04.fm Page 132 Thursday, March 9, 2006 2:22 PM

Memory components 133

2:21 PM 9 March 2006 c04.fm 1.0

Conclusions

Choosers save GUI real estate in forms and selection screens, relegating selection
to a specialized window. Choosers should be used only when the selection task is
an infrequent one – in other cases, the use of a fully-fledged selection area or other
more direct, faster selection mechanisms are better solutions.

Using choosers systematically in a GUI brings some benefits:

• The task of selecting an item is limited and circumscribed at a precise point,
both in terms of interaction time and within the GUI.

• Completion signals indicating the end of the selection task to the user are
provided automatically.

• Users understand the chooser concept, and by leveraging this repetitive
interaction schema GUIs tend to be more predictable, enhancing their
quality.

• Choosers are useful both for the GUI designer and for code developers.

Item creation and item selection are two conceptually separate tasks, although
providing them in the same chooser is often good practice. When users are
allowed to create a new item, there is usually a short-cut to such a feature within
the chooser.

4.3 Memory components
Memory components are GUI components that are capable of maintaining a
persistent state. This is an implementation-oriented distinction. As an example, a
text field that keeps the history of previously-input strings in a drop-down can be
implemented with a memory Combo box.

Memory components are usual Java visual components that can have one or more
of their properties made persistent from session to session. Implementing them
can be done through a specialized service provided in Service layer3. Designers
usually need to specify only the persistent properties – in its JavaBeans meaning –
of the given widgets.

There are many applications of memory components in GUI design. We will
mention just a few here to better illustrate the concept.

3. See Chapter 7.

c04.fm Page 133 Thursday, March 9, 2006 2:22 PM

134 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

Input history

Keeping track of previous user inputs is a way to record the current user’s context,
thereby enhancing the overall usability of the GUI. Figure 4.12 shows a simple
prototype example of a text field that registers the data inserted into it persistently
throughout a session, or even across sessions4. Searching capabilities further
enhance its usability.

Saving user preferences

Memory components allow you to make GUI preferences persistent from session
to session.

Figure 4.13 shows an example application that saves some GUI-related data persis-
tently. The figure shows some example information that is retained for the user
from session to session. Referring to the indicated areas on the figure, these are:

1. Tree structure and expanded path
2. Area separators
3. Toolbar customizations
4. Internal windows, their dimension and positions

4. This latter feature was implemented in the pioneering character-based GUI of Borland’s
TurboPascal.

The field in Figure 4.12 is an example of support for user input provided auto-
matically by the GUI. We will see in Chapter 13 that this and other stricter
forms of control over user input can also be implemented for Web interfaces.

Figure 4.12 A memory combo box (JGoodies Plastic)

c04.fm Page 134 Thursday, March 9, 2006 2:22 PM

Lazy initialization 135

2:21 PM 9 March 2006 c04.fm 1.0

Memory components are quite important and useful in professional GUIs. They
allow user customization in a way that is natural from an end user perspective,
and inexpensive for developers. When the display organization becomes complex
it is important to provide personalization features to allow users to customize
them.

4.4 Lazy initialization
The start-up time, especially for complex GUIs, is an important aspect of GUI
responsiveness and overall user experience. This is even truer for Java applica-
tions. The latest JRE technology considerably enhances start-up time, but a
professional GUI can’t blindly rely on the invisible hand of the Java Runtime

Figure 4.13 A customized application (JGoodies Plastic)

c04.fm Page 135 Thursday, March 9, 2006 2:22 PM

136 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

Environment. There are cases in which start-up time is critical to a system’s
usability – think for example of a never-ending applet download and initializa-
tion, or a rich client application that takes ages to fill the screen with server-
sourced data. In stand-alone applications, too, snappy start-up is a feature that
end users will undoubtedly appreciate.

Optimizing start-up times should be a general habit rather than a circumscribed
procedure to be applied only in specific cases. It originates from implementation
considerations, but involves GUI design as well. GUI designers should be aware
of such considerations when designing the first window the application shows to
the user.

Concretely, pieces of the GUI could be left hidden, and only when needed will
they be instantiated on the fly5. Suppose we have a database management utility
in which some databases are hosted on remote servers. To speed up GUI start-
up, we could avoid the expensive (in time) remote connection, the application
only connecting when prompted by the user.

Such an arrangement is implemented in the mock-up shown in Figure 4.14.

This prototype simulates an expensive connection time with a delay in expanding
the third database node in the tree: you can try it yourself by running the proto-
type. To implement this mock-up we used some of the utility classes discussed in
Chapter 5. What is interesting here is the addition of the connection delay simula-
tion in the mock-up to make the prototype more realistic.

A note for Swing programmers. The UIDefaults class implements a
common access point to all UI-related default values needed by Swing
components. Some of these default values are rarely accessed, for example
internal frame borders, so that employing a lazy instantiation mechanism
make sense. Swing designers used an interface, UIDefaults.LazyValue,
that is implemented by those classes that represent lazy values. Such an
interface is composed of a single method, createValue, that returns an
Object instance. The get method in UIDefaults first checks whether the
type is an instance of UIDefaults.LazyValue. In this case the createValue
method is invoked and the value is then returned.

5. Lazy instantiation (or lazy initialization) is a strategy focused on deferring the allocation of
costly resources that are not always needed until they become necessary. In this way the
cost of those resources can be saved in cases where they are not required, both in terms of
runtime and memory allocation.

c04.fm Page 136 Thursday, March 9, 2006 2:22 PM

Preference dialogs 137

2:21 PM 9 March 2006 c04.fm 1.0

4.5 Preference dialogs
User preferences are a common feature of modern GUIs. A widely-accepted prac-
tice that makes sense in terms of usability is to gather all user configuration-
related commands into one configuration dialog. At design time it is important to
decide what configuration information each UI object has. Usually the preference
dialog is activated via a menu item and a standard button on the toolbar – see for
example the Library application in Chapter 15.

Even in simple GUIs there is often a need for a preference dialog, especially when
supporting a coherent means of expanding the application’s features for future
releases.

It is customary to organize preferences in a deferred mode dialog. To understand
why, consider the application shown in Figure 4.15. This shows a fictitious GUI
for a simple HTTP server. Given the simplicity of the application, operative and
configuration commands are arranged together.

This GUI design does not need to sacrifice performance in its implementation.
For example, we could keep a lightweight cache of the nodes the user
expanded the last time they used the GUI. The net effect would be quick appli-
cation start-up, with a delay being perceived by the end user only on node
expansion. There are many possible enhancements such as this, for example
keeping only few expensive nodes in memory at time, and re-adding them to
the tree as needed, and so on.

Figure 4.14 A snappy startup GUI (Hippo)

c04.fm Page 137 Thursday, March 9, 2006 2:22 PM

138 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

This confuses users at first, because they can’t easily understand the impact of the
given commands on the application, even if they are neatly separated in different
tabs. This is another case of developers dictating the GUI design. The ‘catch-all’
use of the tabbed pane stems directly from the implementation. Preferences
should be gathered in a specialized dialog and triggered by the related option, as
prescribed for example in the Java Look and Feel design guidelines.

The design choice for preference dialogs shown here of course differs from that
prescribed in the official Java Look and Feel design guidelines. We discuss some
of the different design choices for preference dialogs in the next section. Other
visual errors demonstrated by Figure 4.15 are incorrect alignment of the check
boxes and the incoherent vertical spacing between widgets.

Preference dialogs styles

Preference dialogs are an area in which designers’ creativity is plentifully applied.
One common design, demonstrated for example by Netscape Navigator’s prefer-
ence dialog, is that of using a tree to organize the selection area, like the one shown
in Figure 4.18 on page 140.

In simple or medium-complexity applications particularly, using a tree results in
a less usable design. It excessively burdens the user’s memory (‘Where was that
option?’) and obliges users to expand the selection area to look for a specific prop-
erty, when a simpler design would have been more effective. The Java Look and
Feel design guidelines suggest a different design choice, one that simplifies the
selection area as a non-hierarchical list. Figure 4.16 shows such a design for a ficti-
tious Java Internet browser application.

Unfortunately, such a design doesn’t scale well to complex GUIs, such as those
with many options. In such cases – when the exploration area on the left doesn’t

Figure 4.15 A confusing GUI design (Hippo)

c04.fm Page 138 Thursday, March 9, 2006 2:22 PM

Preference dialogs 139

2:21 PM 9 March 2006 c04.fm 1.0

result in sparse tree – the best solution is to organize the many options into a hier-
archy. A possible solution, adopted in some of the Swing examples in this book, is
shown in Figure 4.17.

The hierarchy is realized by means of a JTabbedPane, and the exploration area on
the left-hand side, implemented with a list, points to the categories of options on
the right-hand side. Icons can be used in the selection list to strengthen the mental
association of label to options category, making options more recognizable for
occasional users as well.

Figure 4.16 A preference dialog designed following the Java L&F guidelines
(Smooth Metal)

Figure 4.17 A preference dialog with a different design (Liquid)

c04.fm Page 139 Thursday, March 9, 2006 2:22 PM

140 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

This design isn’t too dissimilar to that prescribed by the Java Look and Feel design
guidelines and shown in Figure 4.16, but can accommodate more complex GUIs
as well. Moreover, it forces designers to organize the options in a hierarchy at most
only two levels deep.

When a GUI is complex, the previous design doesn’t work well and we need to
resort to a more powerful design, such as that shown in Figure 4.18, which is taken
from the Eclipse 3.1 preference dialog.

For complex applications this preference dialog design can be used for functional
purposes, for example to gather business domain configuration data. Figure 4.19
shows an example of this idea, again from the Eclipse GUI. See how the general
Content structure is almost identical to that used for the dialog in Figure 4.18.

The Eclipse 3.1 preference dialog employs a search facility – the Combo box at
the top of the exploration area on the left-hand side of Figure 4.18 – that acts as
a filter for showing only those pages with occurrences of keywords that match
the filter text. This makes it possible for users to access the required preference
pages by keyword, instead of walking the exploration tree looking for the right
preference page.

Figure 4.18 A view of the Eclipse 3.1 preference dialog

c04.fm Page 140 Thursday, March 9, 2006 2:22 PM

Waiting strategies 141

2:21 PM 9 March 2006 c04.fm 1.0

4.6 Waiting strategies
Managing user interaction while tasks are being carried out by an application is a
common issue in GUI design. Responsiveness, as we saw in the first part of this
book, is an important feature in modern user interfaces. Just as with people, we
have the feeling that a slowly-responding person is somehow unintelligent, and,
false as it may be, we call them a ‘slow’ person. On the other hand, gadget-laden,
baroque GUIs are no more usable than sober, plainer GUIs. The Java Look and
Feel favors the latter approach both as a deliberate, wise choice, and as an unde-
niable practical necessity.

Java desktop GUIs – mainly J2SE, but also J2EE – may suffer from responsiveness
problems. Indeed, competing platforms have listed this as a major drawback of
Java GUIs. However, careful design and implementation can easily produce

Despite the fact that the GUI design device is almost identical, the two
previous designs are different and should be kept distinct in the GUI to avoid
confusion. A useful approach is to always stick to rigorous naming conven-
tions: ‘properties’ are business-domain data, with one property dialog per
business domain type, such as Person, Project, and Account properties, while
‘preferences’ are extra functional configuration data, with one preference
dialog for the whole application. Designs should also be optimized for each
user type: only repetitive users should need access to preferences, while prop-
erties dialogs should be made more easily accessible and usable, for example
by providing contextual menu access.

Figure 4.19 The Eclipse 3.1 project properties dialog

c04.fm Page 141 Thursday, March 9, 2006 2:22 PM

142 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

(relatively) snappy, responsive GUIs in Java. We will see some of the little details
that can enhance the responsiveness of Java GUIs in this chapter. We will again
consider both GUI design and low-level implementation details.

One of these techniques is quite effective when medium–long tasks must be
accomplished, and turns out to be quite common and easy to implement in prac-
tice. A common problem is to inhibit user input during computation. A solution
to this when using the Swing toolkit is to use the ‘glass pane’ component or
similar methods to divert input events from the GUI, as it is temporarily unable
to process them correctly. These can be neat technical tricks, but they often lack
usability considerations and a sound cost–benefit balance.

A better solution would be to focus on communicating with the user, showing
them the current application state. A modal progress dialog does the trick nicely:
an example is shown in Figure 4.20.

This simple solution has a number of advantages:

i. It shows the user what is happening.
ii. It gives the user the option of canceling the process.
iii. As an aside, the modal progress window intercepts all the events directed to

the underlying visual controls.

In practice there are many cases in which tight control over a task is not possible,
for example a client–server connection to a Web service, where completion time is
not known a priori. In this cases a simple solution is to provide an activity indicator
only, using an ‘indefinite progress bar,’ as shown in Figure 4.21.

Unfortunately, progress windows are not commonly seen in older Java GUIs, even
in the simplistic arrangement proposed above, because of the cost of implementing
them with low-level Swing components and the related threading infrastructure.

Figure 4.20 An example progress dialog (Ocean1.5)

Figure 4.21 An example of a indefinite progress dialog (Ocean1.5)

c04.fm Page 142 Thursday, March 9, 2006 2:22 PM

Waiting strategies 143

2:21 PM 9 March 2006 c04.fm 1.0

Things are simpler with SWT GUIs and the Eclipse RCP that provides a framework
for supporting concurrent tasks. It is possible to choose between asynchronous
(running in background) and synchronous (blocking user interaction until done)
tasks, and this choice can be also offered to the end user, as shown in Figure 4.22,
which is taken from Eclipse 3.1.

Background execution basically uses the same implementation, but leaves users
the ability to interact with the IDE while the task thread is running. When this is
chosen, Eclipse 3.1 represent the task in the bottom right-hand side of the main
frame in order to be less intrusive. Users can still interact with the task, stopping
it, viewing details, and so on, by clicking on the button icon in the low-right
corner, shown in Figure 4.23.

The same indicator implemented with Flat Look is shown in Figure 4.24.

Figure 4.22 A progress indicator in Eclipse 3.1

Figure 4.23 An Eclipse 3.1 progress indicator

Figure 4.24 An Eclipse 3.1 Flat Look progress indicator

c04.fm Page 143 Thursday, March 9, 2006 2:22 PM

144 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

4.7 Flexible layout
Generally speaking, a well-designed window is first a usable one. Usability is
frequently helped by the capability of resizing the window to enlarge it, or even
to enlarge only a portion of it, according to the user’s wishes.

Translating this into Java code means reconsidering our component layout philos-
ophy. Usually designers tend to design ‘static’ windows, in which the widget
visual organization is designed in a once-and-for-all fashion: such windows are
easier and cheaper to design and build. Only for the main window or particularly
critical windows is the layout is allowed to be variable, usually in the form of
window resizing or using some JSplitPane here and there. This is easier than
considering all possible user resizing needs or other related interactions, and also
eases development.

Consider the fictitious GUI in Figure 4.25, which represents a hypothetical mock
up for a peer-to-peer file exchange application. The first two areas list locally-
available files and currently-exchanging ones. The bottom-most area represents a
chat facility.

Consider the dynamic layout organization of the main frame. Allowing the
window to be resizable is not a proper solution: the user might need to enlarging
some of the internal lists, and this is not allowed by the design – its developers
wrongly thought that a scroll pane would provide all the flexibility the user needed.

Figure 4.25 A not-so-flexible layout (Office2003)

c04.fm Page 144 Thursday, March 9, 2006 2:22 PM

Flexible layout 145

2:21 PM 9 March 2006 c04.fm 1.0

A slightly more sophisticated design like the one in Figure 4.26 greatly enhances
the usability of the application. Note that the two designs look pretty much the
same from their (static) screenshots. It is in their dynamic behavior that the better
quality of the second design becomes clear. Figure 4.26 shows this by using
arrows.

Any component in the window can now be enlarged as required, greatly adding
to the GUI’s usability. The implementation of this enhancement came quite
cheaply, as we used only two split panes to do the trick. The point here is in the
idea of thinking of any of a GUI’s window layouts as flexible ones.

Hence, thinking dynamically about the layout of windows is essential for quality
design, and has a relatively low impact on their development. Considering the
possible degrees of freedom of a GUI usually isn’t a demanding operation.

Figure 4.26 A more flexible layout (Office2003)

c04.fm Page 145 Thursday, March 9, 2006 2:22 PM

146 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

Unfortunately, developers and designers tend to neglect this aspect, producing
nice-looking but totally rigid windows that could be made much more usable
with only a little additional effort. Systematically considering how to make your
GUI flexible is essentially a change in design and implementation habits, but one
that can greatly improve the quality of the resulting GUIs with only a little extra
effort.

4.8 Common dialogs
GUI designers often tend to find themselves dealing with the same problems,
such as showing information about their product, or notifying something basic to
novice users. Over the years some design solutions have become consolidated in
the industry. This section describes a few of the best-known, as implemented for
the Java platform.

The ‘About’ dialog

This is a very common feature of GUIs, where details of the application are shown.
Such a facility isn’t mere cosmetics, in that information such as the license data,
the software version, or the list of the JAR files currently loaded, can be accessed
by users. As prescribed by the Java Look and Feel design guidelines, this informa-
tion is usually organized into two dialogs, one for the essential data, and a second
with additional information.

Depending on the complexity of the application and – more importantly – the
degree to which you want to make it visible to end-users, you may decide to show
only a portion of such data in your ‘About’ dialog. Technologies like JNLP6 solve
many of the commonest debugging and deployment problems, so that showing
too many details of your application in the ‘About’ dialog may not be really
needed.

It is usually a good idea to make all dialogs – not to mention frames – resizable
by the user. Unforeseen combinations of local and language locale settings,
monitor resolution, and other factors can make your GUI unusable, even if it
looks neatly designed in the development environment.

6. See the example application in Chapter 14

c04.fm Page 146 Thursday, March 9, 2006 2:22 PM

Common dialogs 147

2:21 PM 9 March 2006 c04.fm 1.0

Main panel

The organization of the main panel is discussed in the official Java Look and Feel
design guidelines. Figure 4.27 shows an example of an ‘About’ dialog.

Exploiting Web visual conventions, some areas of the ‘About’ dialog, such as
manufacturer’s information, may be made clickable like a link on a HTML page.
The ‘About’ dialog in the example application in Chapter 15 shows such a tech-
nical trick at work. Here however we prefer a plain implementation to introduce
the issue.

The visual organization of the main information panel, as prescribed in the Java
Look and Feel design guidelines, is shown in Figure 4.28. The highlighted areas
are: (1) product name, (2) dialog banner, (3) text information, (4) company logo,
and (5) interaction buttons.

The way to reach the additional information dialog is suggested in the form of a
single Info… button in Figure 4.27 and Figure 4.28.

Figure 4.27 An About dialog example (Hillenbrand Windows)

c04.fm Page 147 Thursday, March 9, 2006 2:22 PM

148 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

Additional info panel

A few words about the additional information panel, displayed prompted as a
separated modal dialog when the Info… button is clicked, are relevant.

You aren’t obliged to provide an additional information dialog in your ‘About’
dialog, as long as the data you need to show can be neatly accommodated in the
main panel. If required, information stored in the additional information dialog
can include:

• JAR files listing, each with its dimension and exact version.

• Java system properties, such as the current JRE used, the heap size, the locale,
and so on.

• The version of the application.

• Some of the more important application-dependent configuration data.

• Other configuration data, such as the version and type of some of the Java
extensions currently used.

• External modules, required applications, third-party libraries and the like.

Figure 4.28 JL&F About dialog main panel organization (Hillenbrand Windows)

c04.fm Page 148 Thursday, March 9, 2006 2:22 PM

Common dialogs 149

2:21 PM 9 March 2006 c04.fm 1.0

This data is usually organized in tables and labels ordered by means of a
JTabbedPane.

Log-in dialog
Some applications need to identify specific users before they are granted access
to the full functionalities of the GUI. This is usually done by means of an authen-
tication phase, in which the user is requested to insert a log-in name and a
password. An example might be a thick client application that needs to access
sensitive data on the server, or a personalized application that has been tailored
to a particular user.

In such cases a log-in dialog is shown. The Java Look and Feel design guidelines
prescribe principles for the design of such dialogs. Figure 4.29 shows an example
of a standard Java log-in dialog.

A general-purpose implementation of an ‘About’ dialog component that
complies with the Java Look and Feel design guidelines is provided with the
code bundle for this chapter. Our class implementation offers many construc-
tors: you can specify the parent frame, the additional information dialog, the
main image, and the company logos. When the empty constructor is used, the
dialog is instantiated with a set of default values documented in the source
code for that class.

Simpler dialogs, such as those without a product header at the top of the
dialog, can also be provided, but it is always a good idea to make the identity
and the purpose of the authentication phase explicit to the user, providing a
recognizable indication of your application.

Figure 4.29 An example of a log-in dialog (Tonic)

c04.fm Page 149 Thursday, March 9, 2006 2:22 PM

150 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

First-time message dialogs
The first time an operation is performed, inexperienced users might need to be
reassured about the GUI’s internal state, to answer the mental question ‘what is
going to happen now?’ This can be done neatly by using message dialogs that
describe the operation that is about to be performed, or that has just been
performed. Allowing these dialogs to be shown only when required avoids
annoying the user in subsequent sessions and makes the application more usable.

Figure 4.30, Figure 4.31, and Figure 4.32 show three examples of this kind of expla-
nation dialog:

• The dialog in Figure 4.30 notifies the user of the consequences of an opera-
tion they have performed.

• The dialog in Figure 4.31 allows the application to both acquire an answer
from the user and to avoiding asking the question again.

Figure 4.30 An example of a first-time only explanation dialog (Ocean1.5)

Figure 4.31 A first-time only explanation dialog (Ocean1.5)

c04.fm Page 150 Thursday, March 9, 2006 2:22 PM

Common dialogs 151

2:21 PM 9 March 2006 c04.fm 1.0

• Finally, Figure 4.32 shows another example of a first-time dialog, in which
such a facility is used to warn the user explicitly about the effect of the opera-
tion they have performed.

First-time dialogs can be implemented easily using simple memory components.

Splash window

Another commonly-used window in non-trivial GUIs is the screen that appears
during application start-up. This window entertains the user during start-up and
informs them of what is going on while waiting for the application. The Java Look
and Feel design guidelines suggest a way to organize the visual appearance of a
splash window.

A splash window is a good place to show an application’s identity. A GUI
compliant with the Java Look and Feel design guidelines doesn’t loose its iden-
tity – rather, it becomes more usable and recognizable by users. The splash
window is one of the correct places to put your application’s ‘personal’ touch,
so is important to not to waste such a chance.

In Figure 4.31 the dialog also explains where to find the option even when
turned off. Sometimes insecure users avoid switching off a feature, fearing that
they won’t be able to restore it easily in the future. If wisely employed, such
little details greatly increase the overall usability of a GUI.

Figure 4.32 Another first-time only explanation dialog (Ocean1.5)

c04.fm Page 151 Thursday, March 9, 2006 2:22 PM

152 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

An example is shown in Figure 4.33.

4.9 Command components
This section discusses GUI components for managing user commands.

Menus, toolbar buttons and other means of asserting commands are an important
part of a GUI. It is therefore no wonder that the Java Look and Feel design guide-
lines describe how such components should be organized in detail. We will give
some examples here.

Figure 4.34 through Figure 4.38 show examples of a fictitious application that
adopts the official guideline’s suggestions for menu organization. As with all the
other examples, you can run these on your own computer. Apart from menus,
Figure 4.34 shows the use of command palette internal frames, which can be used
in a multiple document interface (MDI) environment.

In this case you might find it interesting to look at the source code. This
consists of a reusable yet simple class that provides all the functionality for a
splash window. It provides a way to set up the static image shown in the
window, the text in the message label at the bottom, and a mechanism to hide
or show it as needed. The SplashWindow class is provided in the code bundle
for this chapter.

Figure 4.33 Splash window example

c04.fm Page 152 Thursday, March 9, 2006 2:22 PM

Command components 153

2:21 PM 9 March 2006 c04.fm 1.0

Let’s focus on menus first. The Java Look and Feel design guidelines prescribe a
suggested structure for common menus, like File, Edit, and Help. Figure 4.35
shows the File menu. When the same commands are available through a toolbar,
it is customary to associate a unique icon to the command to make it more recog-
nizable by the user.

Figure 4.34 Examples of various command components (Ocean1.5)

c04.fm Page 153 Thursday, March 9, 2006 2:22 PM

154 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

The standard Edit menu is illustrated in Figure 4.36 for both Swing and Eclipse.

Figure 4.35 Eclipse menus

Figure 4.36 The suggested Edit menu organization for Swing (Metal) and Eclipse

c04.fm Page 154 Thursday, March 9, 2006 2:22 PM

Command components 155

2:21 PM 9 March 2006 c04.fm 1.0

Figure 4.37 illustrates an example of the View menu that employs radio button
menu items for selecting the application’s icon size.

Another example of menu organization is shown in Figure 4.38, which is taken
from a fictitious graphics application.

When information is accessed only infrequently, as in the case of the icon size
for the application shown in Figure 4.37, the information can be put in a global
configuration (preferences) dialog instead of directly in a menu.

Figure 4.37 An example of view menu organization (Napkin)

Figure 4.38 Help menu suggested organization for Swing (OfficeXP) and Eclipse

c04.fm Page 155 Thursday, March 9, 2006 2:22 PM

156 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

Contextual menus are another important category of menu, one that should be
made available for medium–large, non-form based applications, like that shown
in Figure 4.39.

Expandable menus are a menu variant that is supported natively by SWT, as
shown in Figure 4.40, which is also available for Swing through third-party
libraries. Clicking on the title minimizes or expands the menu as required.

Graphic conventions
A number of conventions are adopted in SWT and the Java Look and Feel design
guidelines. The latter provides four standard adornments for expressing common
functionalities in button icons, as shown in Table 4.1.

Figure 4.39 An Eclipse contextual menu

Figure 4.40 An expandable/collapsible menu

c04.fm Page 156 Thursday, March 9, 2006 2:22 PM

Command components 157

2:21 PM 9 March 2006 c04.fm 1.0

The Java Look and Feel design guidelines describe the graphics for any of the
adornments in Table 4.1 in full detail. The guidelines also warn designers about
mixing two or more indicators in the same icon. Take the case of a ‘new item’
button that brings up a menu with a gallery of items available for creation. We
should use both ‘new object’ and the ‘drop down menu’ indicators. We can
slightly modify the button interaction to use only one indicator by resorting to an
object gallery dialog that will work as the pop-up menu, leaving only the ‘new
item’ adornment to the toolbar button. When the user clicks the button, a dialog
appears that allows them to choose the type of new objects they want to create. In
this way the button can be left only with the ‘new’ indicator.

An interactive example of the use of the button graphical indicators is provided
with the code for this book, and shown in Figure 4.41.

Apart from the standard adornments, there are a number of other common graph-
ical designs for buttons. For example, customizing the main window areas is a
common task. You can use a toggle button for collapsing unneeded window areas.
For more details, see (Java L&F Design Guidelines 2001).

Toolbar composition

Toolbar creation is a topic necessarily involves implementation considerations.
From a software design viewpoint, the toolbar composition is mainly a creational

Table 4.1 Graphic conventions for Java L&F button icons

Indicator name Use Example icon

Drop-down menu A pop-up menu appears when clicking
the button

New object A new object of the given type is created
following the current GUI metaphor

Add object An object of the given type is added
following the current GUI metaphor

Properties Prompt a property/setting window for that
object

Figure 4.41 Examples of button indicators at work for the Swing L & F

c04.fm Page 157 Thursday, March 9, 2006 2:22 PM

158 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

problem. The issues with which developers are often concerned are how toolbars
are assembled, and from where the commands are obtained.

We provide various implementation strategies for command management
throughout this book that can be employed in a wide range of situations. Prob-
lems arise when the application needs to support dynamic toolbar composition.
There are of course several different levels of features that can be supported.
Loading new commands when new modules are plugged into the application can
be achieved via JNLP technology, and does not require any special programming
such as reading commands from properties files and the like. As the JNLP
protocol becomes more popular and widespread, its more advanced features,
such as the JARDiff format, which allows downloading of only the portions of the
JAR files that change from version to version, can ease the development of this
kind of feature, not only for mounting new modules, but also for applications
updates. The more popular solution, though, is to employ a plug-in architecture.

Another typical toolbar feature is enabling users to customize application tool-
bars. We briefly touched on the issue of user customization in the section about
memory components. Conceptually, menus act as a predefined and logically-
organized repository of the available commands for an application, while toolbars
are often left to the user to customize: they may contain a subset of all possible
commands, or can be even switched off completely by the user.

Command composition

Several implementation considerations affect GUI design.

Contextual menus are a useful way of organizing user interaction. The underlying
implementation should be taken into account for cost-aware, professional GUIs.
One common issue is the gathering of commands from different GUI items into
one menu. The user is not aware of such composition, but this mechanism has
several benefits:

• It organizes the menu commands in more rational groups or hierarchies.

• It allows for an elegant mapping into an OOUI and the OO implementation
of the designed GUI. Each item is mapped into an OOUI object, then into

Some software designers like to use more sophisticated mechanisms for
toolbar creation, based on negotiation protocols between the GUI builder and
the objects that are publishing their functions via the GUI. We will not discuss
such architectures here, especially because they tend to needlessly complicate
the class architecture and weigh it down at application start-up – which, as we
have seen, is a critical issue for Java applications. Usually a thoughtful and
neat class design can provide many such features without sacrificing runtime
performance.

c04.fm Page 158 Thursday, March 9, 2006 2:22 PM

Command components 159

2:21 PM 9 March 2006 c04.fm 1.0

several Java objects. The complexity of the GUI is divided into smaller,
coherent pieces, each one exposing some specialized commands.

• The creation mechanism of complex menus is made systematic and general
in order to be extensively adopted in a wide range of GUIs.

• It establishes a standard, general logical division between the responsibilities
of complex commands, possibly involving several objects. Many commands,
belonging to different objects, can be composed together in a unique menu.
They are kept separated in compartments by separation lines within a menu
for a clarity.

Command composition is not merely the gathering of available commands from
each of the relevant GUI objects. The most general scenario involves the negotia-
tion of commands among the classes involved. In fact, some commands may be
not applicable in the given context – for example, an administrative user often has
more commands available than normal users – and they may not even appear in
the menus, or some commands may depend on the interaction of several objects,
and so on.

An example of this latter case might be a list of items: depending on the current
selection, the contextual menu can show selection-dependent commands. In a file
listing window, for example, when selecting all image files, a Create animation
menu item could be included in the pop-up contextual menu.

Figure 4.42 shows another example of this technique, in which the Eclipse GUI
requests all its loaded plug-ins to provide their available views.

Figure 4.42 Eclipse 3.1 Example of command composition

c04.fm Page 159 Thursday, March 9, 2006 2:22 PM

160 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

From a programmer’s viewpoint, in such complex cases it may be useful to
employ a Java class devoted exclusively to negotiating the commands, populating
the pop-up menu, and executing the more complex, cross-objects commands that
are often needed.

4.10 Accessibility
Software accessibility is now legislated for in the USA and some other countries.
It is an important commercial market, and supporting assistive technologies in Java
is quite easy. When designing a GUI, the following four main disabilities should
be taken in account as a minimum:

• Color blindness

• Partial or total deficit of vision

• Partial or complete lack of hearing

• Partial or total absence of mouse and keyboard use

Designers should prepare their application for interaction with external assistive
technology tools, such as screen magnifiers. This is only one side of the coin,
however. The GUI should be made highly customizable for fonts, their size,
colors, and so on. Color-blind users can need color combinations that may seem
strange to others, while users with impaired vision might require unusually large
fonts, and so on.

As a default, JFC applets and applications – and with some limitations, AWT ones
as well – use the settings from the underlying environment. Fonts, their sizes,
system colors, and other settings are therefore inherited automatically, as long as
the application does not explicitly set them.

When implementing ad-hoc components7, Swing developers implement the
Accessible interface, which provides the core of accessible data that is used by
assistive technologies. Naturally, Eclipse support for accessibility is provided
as well.

Other more complex disabilities (including cognitive ones) exist, but we do
not cover them. The interested reader can refer to some of the URLs provided
at the end of this section.

7. See Chapter 16.

c04.fm Page 160 Thursday, March 9, 2006 2:22 PM

Navigation and keyboard support 161

2:21 PM 9 March 2006 c04.fm 1.0

Testing the final product for accessibility

No matter how diligently accessibility is designed into an application, the final
test is its use by users with real disabilities. Although the next chapter covers GUI
testing, there are some practical considerations worth mentioning here.

Firstly, we need to test the application for keyboard support without the mouse
(you could even take it away). This allows an application to be tested entirely via
keyboard: we need to verify that all the parts of the GUI remain accessible using
only the keyboard. Usability should be verified as well – shortcuts, mnemonics,
accelerators, and so on. Colors and fonts settings can be tested by choosing a large
font size, say 24 points or more, and verifying what happens to each window in
the application.

A special Look and Feel class is available from the Sun Web site for Swing that is
designed for low-vision users. A GUI can also be tested with external assistive
tools such as IBM’s Self-Voicing Kit for Java.

Conclusions

This is only a brief discussion of accessibility in Java GUIs. There are many useful
resources on the Web: IBM provides an excellent source of material on this issue,
as does Sun’s Web sites:

http://www-3.ibm.com/able/guidelines/software/accesssoftware.html

http://www.sun.com/access/developers/developing-accessible-apps

Many other resources on this important issue are available on the Internet.

4.11 Navigation and keyboard support
Navigation is the flow of control from one window to another. This section
discusses navigation between elementary widgets. Navigation between screens
has been touched on in various parts of this chapter, such as the discussion about
wizard design, and will be discussed in depth in Chapter 9 in the section on Web
user interfaces.

Keyboard support for command selection is essential in usable GUIs. Experienced
users tend to use quicker ways of performing the same operation as they become
knowledgeable with an application. The keyboard is a good way to shorten inter-
action times for expert users, as it doesn’t make the application more complicated
for novices.

Keyboard shortcuts
The JFC library provides a complete set of tools for handling keyboard input at
various levels of abstraction. We won’t get into programming details here, but it
is important to consider these features when designing a GUI.

c04.fm Page 161 Thursday, March 9, 2006 2:22 PM

162 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

A useful feature for enhancing the navigability of your dialogs is to provide a
default button that is activated when the user hits the Return key. The Java Look
and Feel will signal this special button, as shown for example by the Close button
in Figure 4.30. Support for the Escape key is also widely used in dialogs, when-
ever appropriate.

Keyboard support should be designed while bearing in mind that it will often be
the main support for repetitive users. As such, it should be employed to cover all
the application’s functionalities, even though critical ones where data can be lost,
such as Delete, or closing a dialog, shouldn’t provide keyboard shortcuts.

Tab traversal

The tab key is used for moving the focus between components in a window. By
repeatedly pressing the tab key, users can navigate through all a window’s
components. Designing the correct traversal sequence enhances the usability of
the GUI for those users that take advantage of keyboard support.

This feature is especially important for windows that are used frequently, such as
data input forms. The default sequence is dictated by the order of component’s
addition into the window, as in the code listing, and can be modified explicitly by
the focus framework provided in J2SE 1.4 and subsequent versions. An example
of tab traversal in a simple dialog is shown in Figure 4.43 – the arrows indicate the
movement of the focus for repeated presses of the tab key.

Figure 4.43 Tab traversal in a dialog

c04.fm Page 162 Thursday, March 9, 2006 2:22 PM

Internationalization 163

2:21 PM 9 March 2006 c04.fm 1.0

Tab traversal is a form of keyboard support, and as such it follows the general
rules discussed here and in the Java Look and Feel design guidelines.

4.12 Internationalization
The design of applications suitable for a global marketplace, referred to as inter-
nationalization, and the related topic of customizing an existing application for a
given locale, localization, are important issues in GUI design.

The cost of localizing an application can be roughly thought of as the sum of the
development costs of the required infrastructure, plus the required messages
translation. For this latter cost, (Maner 1997) indicates a sum of between $0.25 and
$0.75 per word. For Java applications, however, such figures are usually an over-
estimate – thanks to the Java internationalization architecture, the translation
process can be accomplished cheaply, for example by sending the relevant text
files to be translated by a suitable localization company.

The key point is the provision of technical support for internationalization. Even
if it is not planned to distribute the application in different countries, it is a good
idea to consider the internationalization issue from the start of the GUI design
process. Unfortunately, for effective localization, it is not enough to provide
different translation files and a sound software design that supports external
resource bundles. Apart from the software architecture, the following factors for
international GUI design should be considered as a minimum:

• Translating messages and any other textual data, such as mnemonics, accel-
erators and help data, by means of properties or other support files.

• Other Java-specific technical facilities, such as input frameworks, good-
quality font sets, and so on.

• Flexible layout, which is essential to accommodate labels, buttons and other
text-based widgets in different languages.

• A thoughtful design of the general interaction style, to be as culture-neutral
as possible – a loquacious GUI that displays many information messages can
be viewed as polite in some cultures and arrogant in others.

• Specific cultural issues, such as:

– Images, colors, sounds and other graphics conventions: icons, images and
other locale-sensitive data references can be put in resource bundles so
that they can be easily localized.

– Currency, units of measurement, and any other number formats.
– Various conventions such as date formats, phone numbers, salutations,

and so on.

c04.fm Page 163 Thursday, March 9, 2006 2:22 PM

164 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

• Cultural issue in general. This is a complex problem, and involves the help of
specialists in the target culture. A large number of ‘cultural’ accidents can be
found in commercial GUIs. Some are unimportant, such as a progress bar
that starts from the left in a country in which text is written from right to left,
but others are more serious. Even some apparently neutral associations like
using a Red Cross logo, for example, can be found offensive in some non-
Western cultures.

Using resources bundles for all the relevant resources (icons, text messages, and
the rest) can also be useful even if an application is not planned for international-
ization, as it allows all messages, icons, and other resources such as audio clips to
be polished more easily, by non-programmers if necessary.

A problem arises on platforms with different locales. From J2SE 1.4 onwards,
multilingual support covers standard JFC components such as the file chooser
dialog. This engenders the risk of providing users with fragmented multilingual
GUIs, for example with the main frame in English and other standard dialogs in
the application’s current language. As a work-around, the locale can be over-
written or labels can be set explicitly by developers, although this latter practice
results in a hack rather than a disciplined design.

It is always good practice to consider internationalization issues in the first place
when designing a GUI. This involves not only providing a flexible and dynami-
cally-adjustable layout to handle text of unforeseen dimensions, or other technical
tricks, but also to rethink icons, interactions, and even GUI concepts from a multi-
culturally-aware perspective. Daunting as it may seem, such a task is well repaid
in the long run. The cost of localizing an already-developed application from
scratch is always much greater than the effort of designing it and testing it for
usability with internationalization in mind. Even if internationalization is not
foreseen in the near future, a preemptive minimal internationalization-aware
design, for example implementing global icons, flexible layouts, and text files for
messages, is always a wise choice.

4.13 Help support
J2SE ships with a library for full client-side help support. The JavaHelp library is
an example of this kind of support, which provides context-sensitive help of two
types: user-initiated and system-initiated. User-initiated help can be activated in
four different ways:

• By pressing the F1 key it is possible to display the help data about the
container that currently has the focus. This is called window-level help, as it is
recommended for use only in windows, frames and dialogs.

• After clicking the contextual help button, usually in the toolbar, or choosing
it from the Help menu, the mouse cursor changes to a special contextual help

c04.fm Page 164 Thursday, March 9, 2006 2:22 PM

Icons and images 165

2:21 PM 9 March 2006 c04.fm 1.0

cursor. This signals that the program is waiting for the selection of an item in
the GUI, using the mouse or the keyboard, when the contextual help avail-
able for the selected object is displayed. This is referred to as field-level help.

• By using the standard Help menu in the menu bar. This can be used to
provide help about specific tasks or objects. The Help menu contains a
submenu of items that provide help about various tasks.

• In dialog boxes via a Help button. This provides help information about how
to use the dialog. Clicking Help is usually equivalent to pressing the F1 key
while the dialog box has the focus.

System-initiated help is performed by the program itself reacting to some user
action that is not explicitly related to help commands.

Help support can be useful both in prototype building and GUI extension. In a
pre-release version for a selected user population, some of the functionalities to be
added can be explained in the help system. By default, help information is
displayed in the help viewer, but this can be customized as needed.

Other libraries also exist that provide help support, both for Swing and SWT
applications, providing a different mix of runtime performances, simplicity, and
range of available features.

4.14 Icons and images
A number of bitmap images are usually employed when creating a GUI with Java
technology. Table 4.2 lists the most frequent ones. Designers should provide these
images.

Table 4.2 Common images for swing applications

Description Use Size

Log-in app logo Shown in log-in dialogs ~ 280 x 64

App icon Shown in app frames
and dialogs

small: 16 x 16
large: 24 x 24

‘About’ app logo Used in the ‘About’ dialog ~ 280 x 64 or greater

Company logo Appears in the ‘About’ dialog

Splash window Startup splash window ~ 392 x 412

Toolbar icons Toolbar buttons small: 16 x 16
large: 24 x 24

Other app-dependent
graphics

Depends on the application

c04.fm Page 165 Thursday, March 9, 2006 2:22 PM

166 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

The image sizes preceded by a ‘~’ sign are merely illustrative.

4.15 Leveraging object-oriented programming
Reusability of software components tends to produce better quality GUIs, because
behavior and appearance are replicated in a coherent way throughout the whole
interface, and coding effort is saved. OOP reusability is a key point for high-
quality inexpensive Java GUIs.

A common, concrete case is provided by the fact that some dialogs are served in
two main modalities that depend on how the user’s actions are recorded by the
application: deferred or immediate mode interactions. Some GUI design guidelines
prescribe dialog appearance. It is possible therefore to envisage a small compo-
nent that implements the area where buttons are displayed. Such a widget is
shown in Figure 4.44 and Figure 4.45 for a typical deferred interaction dialog in
which changes are committed using the OK button, or dismissed by means of the
Cancel button.

A Help button could optionally be provided as well – in Swing GUIs this is offi-
cially mentioned, but not in the Eclipse guidelines.

The practice of adopting customized, reusable components is very useful. The
next logical step is to provide a deferred-mode dialog that can be used every time
you need to perform such an interaction in a GUI. A simple component might
contain an OKCancelPane such as the one shown in Figure 4.44, as well as some
other standard behavior, such as being sensitive to the Escape key to dismiss the
dialog, or automatically visualizing the help data when the Help button is clicked.
This is provided out of the box by the Eclipse GUI libraries.

We will provide a number of practical examples throughout the book. Chapter
14 discusses a complete application where all these images are instantiated for
a real case.

Figure 4.44 The OKCancelPane component for Java L&F

Figure 4.45 The OKCancelPane component for Eclipse

c04.fm Page 166 Thursday, March 9, 2006 2:22 PM

Summary 167

2:21 PM 9 March 2006 c04.fm 1.0

No matter which mechanism you use to assemble GUI Content8, the idea is to
engineer this activity in a coherent way, so that the final user experience will be
uniform and predictable throughout the whole GUI. A small investment in devel-
opment time in implementing such basic facility will be repaid many times during
software development and in the final, systematic aspect of the GUI.

One flaw in this approach of employing only few, highly customized components
lies in visual components provided by someone else. This shouldn’t be a problem,
because GUI design guidelines nicely dictate all GUI details. Unfortunately third-
party vendors sometimes tend to ignore such prescriptions, especially in older
products. Such incompatibilities are being resolved over time with the Swing
library – at least as long as the latest versions are used. For third-party GUI
libraries, be careful to check out their design guideline compliance before
adopting them in your project. All your development effort can be wasted if you
provide your customers with an inconsistent user experience, no matter how
elegant the underlying software implementation.

4.16 Summary
This chapter introduced some common design problems, together with their solu-
tions for effective Java GUI design and subsequent development, and occasionally
considered implementation issues. The approach was aimed at highlighting some
often overlooked issues in GUI design, with particular relevance to the Java plat-
form. Some of the issues were too broad to be addressed exhaustively in this
chapter.

In particular, the chapter discussed:

• Window area organization, including some widely-accepted and used
criteria for organizing the functional areas of a non-trivial GUI.

8. We discuss the main implementation alternatives available briefly in Chapter 6, in Content
assembly on page 229.

The Swing implementation of the OkCancelPanel class is provided for
readers that are interested. This provides global action buttons as prescribed
by the Java Look and Feel design guidelines, and should be used extensively
throughout the GUI, enforced by quality assurance if necessary. For usability
reasons the appearance of the OK button may be changed in some cases. For
example, in a Print… dialog it makes more sense to label the OK button with
Print even if the underlying function remains the same. For the same reason
the range of possible customization of this panel is limited. No icons should
be used for the buttons, and the Cancel and Help buttons, although locale-
dependent, cannot be arbitrarily labeled.

c04.fm Page 167 Thursday, March 9, 2006 2:22 PM

168 Recurring User Interface Designs

2:21 PM 9 March 2006 c04.fm 1.0

• Choosers, including the preferred activation mechanism for choosers, and
how to expand them to handle other features such as item creation. Choosers
were also used for discussing the different types of dialog interaction:
deferred, immediate, and mixed.

• Memory components, visual components that have a subset of their state
made persistent.

• Lazy instantiation – complex Java applications can become excessively slow
in some situations. Mixing design and implementation can substantially
boost performance.

• The preference dialog, a common design: a centralized access point for
configuration data is needed in all but the simplest applications.

• Command composition. Negotiating commands is a common practice in
GUIs implemented with OOP, especially for OOUIs.

• Wizards. Although relatively easy to implement, wizards should be used
only when needed, although they are a useful tool in a designer’s toolbox.

• Waiting strategies, providing sound designs for situations in which the GUI
is performing internal work and is currently unresponsive.

• Flexible layouts. It is not enough to provide scroll panes for the main compo-
nents and a resizable window for the container of the dialogs or frames of
your application.

• Common dialogs and windows – in current GUIs there are many de-facto
standard windows and dialogs. We proposed only few of them with some
examples, both to show their suggested design, and to provide a utility
library that eases their development.

• Menu and toolbar organization, important and frequent design issues.

• Accessibility – it is always good practice to provide accessibility support in
your GUI.

• Navigation and keyboard support – providing a planned keyboard support
for any dialog or frame in your application is good design practice.

• Internationalization and localization, important aspects of modern GUIs that
should be considered from the start of GUI design.

• Help support – integrating help support into an application using the Java-
Help library.

• Common icons and images.

We also discussed proposed design solutions, providing some practical examples
that highlighted the main advantages such architectures provide.

In the second part of the book we will leave GUI design and move to the imple-
mentation aspects of professional Java GUIs.

c04.fm Page 168 Thursday, March 9, 2006 2:22 PM

5 Iterative GUI Development
with Java

1:39 PM 9 March 2006 c05.fm 1.0

No design is ever perfected at the first attempt. Instead, a professional design in
many engineering fields is the result of several refinement cycles. This is true for
software engineering in general, and is even more true for GUI development,
where the presence of end users makes the engineering task highly unpredictable
and dependant on subjective criteria. In this chapter we will examine the major
approaches and the available techniques for building professional Java GUIs
through iterative cycles of refinement.

The iterative GUI development approach consists of frequent product releases
that continuously and smoothly expand the application by means of small addi-
tive changes, implementation refinements (such as refactorings) and continuous,
pervasive testing. Testing ‘in the large’ is essential for achieving an effective iter-
ative development. We will discuss GUI testing, usability testing and memory
profiling, an often overlooked aspect of GUI development.

Readers are not forced to adopt an iterative development approach if they don’t
want to. Despite being a powerful development approach – see the discussion in
Chapter 1 – it is labor-intensive, involves mastering many techniques, and ulti-
mately leads to good and cost-effective results only when developers genuinely
embrace its philosophy. Nevertheless, the techniques discussed in this chapter can
be applied to a wide range of software engineering approaches, ranging from XP
(Extreme Programming) to traditional waterfall development.

Iterating a GUI design that has already been exposed to end users is a delicate art,
requiring skill, as well as a different attitude to that required for software refac-
toring. As we saw in Chapter 2, to a user the GUI is the application. As the most
externally visible part of a system, the user interface tends to evoke strong feel-
ings. Once a GUI design has been agreed, the process of changing it is often
complex and politically charged. Evolving a GUI design from one iteration to the
next can put a strain on end users. Users learn the application through the GUI,
and even minor refinements can be unpopular once familiarity is established.

Iterative GUI Development with Java

c05.fm Page 169 Thursday, March 9, 2006 1:40 PM

170 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

This chapter begins by introducing the fundamental strategy behind effective
iterative development, followed by an introduction to Java GUI prototyping.
Various aids to prototyping are introduced as well (GUI builders and some
examples of utility prototyping classes). After an initial and inexpensive proto-
type has been assessed with users, iterative development will take care of
evolving the application to meet user’s needs. Common GUI-specific refactor-
ings are discussed together with testing and runtime memory profiling. This
chapter covers all these heterogeneous aspects, to provide a unique reference for
iterative GUI development, spanning diverse topics such as prototyping, refac-
toring, testing, and profiling.

This chapter is structured as follows:

5.1, Iterating wisely discusses the strategies behind iterative GUI development.

5.2, Introduction to prototyping deals with the basic concepts for the design of effec-
tive GUI prototypes.

5.3, Prototyping alternatives discusses the various approaches to prototyping avail-
able, such as paper prototyping, storyboarding, and so on.

5.4, GUI builders introduces this kind of tool, useful for prototyping as well as for
building final GUIs.

5.5, Reusable prototyping widgets discusses some widgets specialized for proto-
typing purposes, along with their implementation.

5.6, GUI refactoring illustrates the practice of refactoring GUI code, going into the
details of GUI-specific refactorings.

5.7, Introduction to user interface testing introduces the general topic of GUI testing,
focusing on some of its most controversial aspects.

5.8, Software testing of Java GUIs illustrates the role of software tests in producing
professional Java GUIs.

5.9, Usability testing of Java GUIs briefly touches the main points related to usability
testing of Java GUIs.

5.10, JRE runtime management discusses profiling of Java desktop GUIs.

One of the advantages of iterative development is the possibility of constantly
evaluating and changing the application using end users. Without end users
and domain experts working with developers on a GUI there is little possi-
bility of progress – at most we are developing a nice, abstract application that
probably doesn’t solve actual users’ needs, just the needs of our fictitious idea
of end users.

c05.fm Page 170 Thursday, March 9, 2006 1:40 PM

Iterating wisely 171

1:39 PM 9 March 2006 c05.fm 1.0

5.1 Iterating wisely
Before introducing the various techniques and approaches for effective iterative
development, it is important to discuss the overall strategy behind the assignment
of priorities to development activities. This focuses on the development activities
that need to be carried out, as opposed to use cases or user stories. The latter will
depend upon the given project and customers, but will be influenced by the devel-
opment process chosen.

We will focus on questions such as how much interaction and control behavior
should be provided from one iteration to the next, the correct amount of GUI
design to implement in the first release, or whether an explicit domain model
should be implemented now or moved to a future release. We will use another
incarnation of the cost-driven principle introduced for GUI design in Chapter 3 as
the subject of this discussion, but this time apply it to an iterative style of software
design and implementation for desktop application GUIs.

At first glance iterative GUI development seems a perfect candidate for the well-
known 80:20 rule, or Pareto Principle1. This states that for many phenomena 80%
of the consequences stem from 20% of the causes. This principle has been empiri-
cally validated on many software projects, in various forms2. GUI development is
a circumscribed and well-known application domain in which experience can be
reused fairly well. If we suppose that this rule roughly applies to GUI develop-
ment, wouldn’t it make a big difference to the way we plan our development
activities? Such an 80:20 rule may not, however, apply to the design and develop-
ment of top-quality professional GUIs – those with a sophisticated, innovative
GUI design and substantial resources for their development – which is a fine art,
the result of many tiny details carefully crafted together. Nevertheless, even a
rough match with this rule would give us a very useful planning principle.

Clearly we will never be able to demonstrate empirically that the 80:20 law, or
something similar, applies to GUI design projects. The main problem lies in
assessing objectively the overall ‘quality’ of a GUI. How can we tell that a design
is 80% done while also accounting for subjective and ephemeral aspects such as
its usability and its overall appeal to users? Any developer who has built a
number of desktop application GUIs can observe that there are common patterns
of development activity that constitute the bulk of the job, in terms of an ‘effective
GUI’ (a subjective definition, of course). What is invariably needed is a mixture of

1. This principle can be seen as a special case of the Pareto Distribution, a power-law distri-
bution found in various cases in nature, such as the frequency of words in long texts, the
size of sand particles, the size of areas burnt in fires.
See http://en.wikipedia.org/wiki/Pareto_distribution

2. See for example: A. Ultsch, Proof of Pareto’s 80/20 Law and Precise Limits for ABC-Analysis.

c05.fm Page 171 Thursday, March 9, 2006 1:40 PM

172 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

a ‘minimum dose’ of the various contributions: overall team attitude, testing, suit-
able software architecture, basic usability testing, and so on.

Apart from these abstract considerations, the ranking between development activ-
ities is important. Imagine having such a ranking documented neatly in the form
of an ordered to-do list. Achieving cost-effective quality would then just be a
matter of executing the items in the list using a ‘greedy’ style – starting from those
activities that have the largest impact on the final result. Quality could be fine-
tuned in this way depending on the budget, without risk of wasting precious
resources in unproductive or counterproductive work.

Unfortunately, such a ranking is almost impossible to calculate, because it is the
final result of many intertwined factors – project details, business domain factors,
project timeline, the people involved – that vary widely from project to project.
Some rules of thumb can be given, but ultimately it is the developer, the team
leader, or the application architect, that has the last word and should actively
focus on cost-effectiveness when ranking development activities. A prioritized
list of development activities can be sketched by leveraging past experience and
the contents of this book, but an exact assessment is largely unattainable – a situ-
ation that applies to non-GUI development projects as well.

Here is an example of a mythical list of activities ordered by cost-driven criteria.
The example list refers to a simple form-based rich client project, with no need for
localization and with many simplifying assumption (people have been assigned
already, preliminary analysis has been performed, etc.).

Set up a basic production environment, choosing simple and reliable technologies
such as GUI and unit testing tools, version control tools, clear and simple look and
feel or presentation technology, GUI toolkits and application platforms, deploy-
ment technology, and so on.

1. Determine the basic contents for use cases X and Y from customers and
implement the control layer completely and without dynamic layout manag-
ers, validating it with end user representatives.

2. Define the data handled by the use case and implement it, whether it is part
of the business domain or data IO.

Scheduling development activities following such an ‘optimum’ list mini-
mizes risk, by ensuring that roughly 80% of the required result is achieved
before focusing on inessential requirements. We can maintain the project in
good shape from early releases: customers gain confidence that the project
is progressing well, developers are gratified by their work, the project
manager enters the room whistling merrily, and so on. (Guess how often this
happens…)

c05.fm Page 172 Thursday, March 9, 2006 1:40 PM

Introduction to prototyping 173

1:39 PM 9 March 2006 c05.fm 1.0

3. Identify and implement the minimum set of commands that realizes the use
case, given the data and the content from the previous steps. Provide a mini-
mal implementation of client-side data validation.

4. Verify the GUI by software testing of critical points and a brief usability-
testing session.

5. Provide extensive software testing and basic profiling, checking memory
leaks and thread deadlocks.

6. Add additional control logic to ease interaction in the form of further valida-
tion behavior.

7. Provide basic help support and keyboard navigation.

8. Supply further content details for dynamic layout support.

9. Add a branded Look and Feel/presentation style, evaluated with end users
and available client runtime resources (such as memory, CPU power, hard
disk space, screen size).

10. Provide customized content widgets for easier interaction.

These assumptions are, of course, subjective and case-specific, yet intuitively
appealing. For example, the choice to regard dynamic layout as optional, perhaps
because localization is not needed, thereby ranking it ninth in the list, is debatable.

We are now ready to dip our toes into iterative GUI development with Java,
starting with a well-known tactic: prototyping.

5.2 Introduction to prototyping
The development of a representation of a system for testing purposes is common
practice in many engineering fields. It is an important method in GUI develop-
ment as well. Design flaws or other incorrect assumptions can be individuated
from the beginning, with resultant large savings in development costs. Prototypes
can range from simple paper mock-ups to fully-functional products. Prototyping
can be used not only for defining the GUI design, but also for eliciting require-
ments and as a mean of communication within the development team, with the
customer, and with users. This chapter discusses the many different options avail-
able for prototyping Java GUIs.

This list implicitly assigns different weights to the quality of the final result,
depending on the needs of the customers and the specifics of the project. It
assumes that about the first five points in the list will deliver roughly 80% of
the final result to users.

c05.fm Page 173 Thursday, March 9, 2006 1:40 PM

174 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Uses for prototyping
Prototyping is an essential aspect of any professional GUI development. During
the analysis phase and later in the development lifecycle a prototype can be seen
as another form of documentation. It can help the communication flow, both with
the customer’s organization and within the design and development team itself,
and of course also with the final users of the product. Some of the most useful uses
for prototypes are discussed below.

As a means of communication

Prototypes can convey a lot of information to people in a number of different
roles within the development organization, as well as other stakeholders. A
prototype can:

• Demonstrate to users and customers how the final GUI will look. This
requires extra care, however, in order to avoid committing an early, sketchy
design as the final one.

• Help to clarify the developer roles involved, especially on the client side –
who is ultimately in charge of the GUI design, whether or not the representa-
tive users are the same as the end users, who has authority over the design of
the GUI, and so on.

• Define detailed terminology, which can be used as the basis for building a
domain-driven ubiquitous language for the project (see (Evans 2004)), as well as
small details that would be tricky to guess from mere discussions.

• Document the GUI design: GUI prototypes are a powerful means of docu-
menting a design, throughout the software lifecycle, especially for
potentially risky aspect of the project.

Personally, and possibly unwisely, I love to amaze my clients. After a heavy
analysis session in which they expect a recap document, I often release a func-
tioning prototype instead, to much surprise. Pleasing clients early on in a
project usually rebounds in the form of extra work and greater expectations,
but I like to do so anyway. One of my favorite tricks is to add a general
comment mechanism to the prototype application, so that end users can attach
their own comments directly to specific areas of the prototype application. The
comments they register in this way are precious, because they show how users
think about the GUI in detail. They help to substantiate the A3GUI decompo-
sition of screens, for analysis and design, and sometimes they even shape the
final development.

c05.fm Page 174 Thursday, March 9, 2006 1:40 PM

Introduction to prototyping 175

1:39 PM 9 March 2006 c05.fm 1.0

Exploring the design space

Prototypes can also be used to explore the design space, especially for novel
classes of systems for which no mature design has been established. Several
parallel designs could be developed to try to generate as much diversity as
possible, or just to focus on evaluating a few alternatives. A number of prelimi-
nary designs are created and the best ideas are used for the definitive design, as
shown intuitively in Figure 5.1.

Developing parallel prototypes is clearly rather expensive because – to have the
largest diversity possible – each prototype should ideally be developed by a sepa-
rate team or individual, with little contact with other teams. However, in most
actual cases, a single prototype is enough to produce a viable design.

A common risk is to close the design space prematurely, choosing as final a design
solution that has not been thoroughly tested and validated with users. On the

As suggested in (Hunt and Thomas 2000), when nervous or insecure about the
beginning of a new project, or just about the design of specific screens, it is
wise to break the ice with a prototype instead of committing unwillingly to a
tentative solution.

Figure 5.1 Exploring the design space with different prototypes

c05.fm Page 175 Thursday, March 9, 2006 1:40 PM

176 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

other hand, keeping too many design choices open is needlessly expensive and
could lead to incoherent, ‘stratified’ designs, to which different and unrelated
approaches were added over time.

Capturing requirements

Prototypes are often used to elicit requirements for the system to be built. This is
done both when building the prototype, and later when gathering feedback from
the users on the prototype that has been built. Using prototypes in this way is a
natural extension of the adoption of other functional requirement techniques such
as use cases or XP’s ‘user stories.’

The two dimensions of prototyping

A prototype is a reduced version of the final system. Such a reduction can be
achieved either by implementing less functionality, or by reducing the level of
functionality of each feature. The former approach is called vertical prototyping –
demonstrating few features, fully implemented – while the latter is called hori-
zontal prototyping, demonstrating many features but with each shallowly
implemented. These two dimensions of prototyping are shown graphically in
Figure 5.2.

Horizontal prototypes are easier to build, as shown later in this chapter, because
they focus mostly on GUI aspects, and can help to test the whole prototype and
the full picture it produces. By reducing the number of features and their imple-
mentation level, we can obtain cheap ‘subsets of use’ of the final application,
called scenarios. A scenario describes a single interaction session limited to few
functionalities.

Some software development approaches like XP (see Chapter 1) push the
prototyping approach outside the GUI domain, involving the whole software
development at large (Beck and Andres 2004). XP projects can employ proto-
typing for exploring possible GUI solutions. These limited systems are called
spikes. A spike solution is a very simple program built to explore potential
solutions, addressing only the problem under examination and ignoring all
other issues.

Using prototypes as a mere form of requirements-gathering can lead to rather
unusable GUIs. Usability and GUI design are different from functional
requirement gathering, and should be handled in a different way, by using
approaches focused on GUI design, such as user-centric design techniques,
rather than system-centric ones like system requirements.

c05.fm Page 176 Thursday, March 9, 2006 1:40 PM

Introduction to prototyping 177

1:39 PM 9 March 2006 c05.fm 1.0

There are several different definitions of a scenario. We make the assumption that
a scenario corresponds to the definition given in Section 1.4, when we introduced
scenario use case diagrams.

Competitors’ product as ready-made prototypes

A design approach known as competitive analysis considers similar products that
are already available as a starting point for the design activity. A competing
similar product is already fully implemented, and can be easily tested in detail.
Even when we already have a prototype ready, we can compare concretely how
well analogous tasks are implemented by the competing product and by our
prototype application.

If several competing products are available, we can examine their differences and
the way they approach the same abstract application using different GUI designs.
This greatly helps the analysis and design phases – even if, as Nielsen points out,
competitive analysis and design does not mean stealing other’s hard-won
designs, but rather taking them into consideration in your own design analysis,
possibly to improve on them and overcome their weaknesses.

Prototyping as a philosophy for development

Evolutionary prototyping is a fully-fledged development philosophy in which the
GUI development is just a part of the overall software lifecycle. Agile and other

Figure 5.2 The two dimensions of prototyping (Nielsen 1993)

c05.fm Page 177 Thursday, March 9, 2006 1:40 PM

178 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

fully-iterative approaches are inspired by this type of highly iterative view of
design and development. The prototype is constantly refined, expanded and
validated with users until it becomes definitive, when the final product is
released. This approach can be difficult to implement, due to the technical pitfalls
involved in working with prototypes that constantly evolve. We mentioned such
approaches and their lifecycle models in Chapter 1. For more details, see for
example (McConnell 1996) or (Beck and Andres 2004).

In conclusion, prototyping deals with building a GUI incrementally and in a cost-
effective way. The ability to state the quality of a given GUI is a key factor in
driving the evolution of one or more prototypes into the final design correctly. In
the next section we will see in detail the different kind of prototype presented
above.

Prototypes and customers

Prototypes can have a significant impact on end users. Handling this aspect
correctly is important in ensuring adoption of any prototype. Apart from the
technicalities involved in creating prototypes, they also guide the perception of
the product being developed by end users and customers. Customers often
have a non-technical background, and a number of misunderstandings are
possible:

• A bad GUI will impact negatively on the idea customers have of the product,
irrespective of the fact that it is only a prototype. Customers often implicitly
establish an emotional link with the software that will probably become part
of their daily working life.

• Agreeing on a given prototype with customers is an important statement.
From that moment on customers will be expecting that specific user inter-
face, and anything different could be considered as a change in any
agreement made with them.

• An overly-sophisticated prototype can convey to users the false idea that the
product is almost complete. When presenting a prototype, it is essential to
state the current state of development of the product, and not just focus on
how the prototype is different from the final product. One can provide some
graphical adornment such as watermarks to signal the fact that the prototype
is just a prototype, no matter how good it might look. There is even a Swing
Look and Feel that is expressly designed to provide this feeling of ‘sketchi-
ness,’ as we will see later.

To recap, it’s important to remember when dealing with customers that proto-
typing often represents their perceived image of the product you are building:
special care is needed to deal with such a delicate issue.

c05.fm Page 178 Thursday, March 9, 2006 1:40 PM

Prototyping alternatives 179

1:39 PM 9 March 2006 c05.fm 1.0

5.3 Prototyping alternatives
There are a number of possible approaches to prototyping, depending on which
aspects designers want to focus on.

Different types of prototypes

This section introduces the main types of prototyping discussed in this book: the
subsections that follow describe them in detail.

Storyboard prototyping

Storyboard prototyping is a technique for representing parts of an interface in a
way similar to the ‘storyboard’ used to represent and evaluate the script of a film
before committing to the expensive process of shooting the final motion picture.

Storyboarding is a simple, informal way of representing a scenario associated
with a given task in the user interface. It is mainly useful for the initial phases of
the design process, where accurate feedback from users is still not needed.

Figure 5.3 shows a simple storyboard for the task of selecting a color from a form
on screen. Storyboards usually comprise more GUI screens than is shown in this
example, as we will see later.

Figure 5.3 An example of a simple storyboard

c05.fm Page 179 Thursday, March 9, 2006 1:40 PM

180 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Paper-based prototyping

Paper-based prototyping needs as its technical support only a piece of paper and
some pencils. Sketching out a GUI in this way usually produces rather coarse
prototypes, but helps to make key ideas explicit quickly and cheaply. For a thor-
ough discussion of this topic, see (Snyder 2003).

Several slightly different techniques are gathered under the term ‘paper proto-
type.’ In a later section of this chapter we will discuss in detail this family of
techniques, maybe the most popular form of prototyping. Figure 5.4 shows an
example of a paper prototype taken from the example in Chapter 14.

Paper prototypes can be used for usability testing with users (Snyder 2003).
Following this approach, one or more paper prototypes are built to model the GUI
and test it for usability. Testing for usability in this case means letting users try the
prototype as if it was the real interface, and try to discover any difficulties and
problems to which its design might give rise.

The storyboard in Figure 5.3 has been designed using a computer graphics
application. Storyboards are more often sketched informally, for example on
paper, as can be seen in the examples in Figure 5.5 and Figure 5.6.

Figure 5.4 An example of a simple paper prototype

c05.fm Page 180 Thursday, March 9, 2006 1:40 PM

Prototyping alternatives 181

1:39 PM 9 March 2006 c05.fm 1.0

Rapid prototyping

Rapid prototyping (also known as throw-it-away prototyping) is the technique of
building scaled-down applications, usually using the same technology as the
final product. The prototype developed in this way is abandoned at some point
in the development process, after it has accomplished its duty – for example in
pinpointing defects in the design of the GUI with end users. The GUI prototype
is cheap and serves as a first point for requirements gathering and defining the
design space.

The different expressiveness of prototype techniques

The following table summarizes the different expressiveness properties of paper
versus rapid prototyping.

Rapid prototyping and GUI iterative development can complement each
other. Iterative development focuses on building a working GUI starting from
the most-needed and best-understood requirements, while rapid prototyping
is usually employed to validate or elicit specific aspects, and focuses on those
requirements that are poorly understood.

Table 5.1 Expressiveness of prototyping techniques

Entity type

Category of entities that
can be represented using
the given type of prototype

Prototyping method

Paper Rapid

Business Main concepts

Terminology

Documentation, help

Requirements, functionalities

Data size, dimensions -

GUI Navigation, work flow

Appearance (Look and Feel) -

Screen layout

Response time -

Keyboard, mouse, other input -

c05.fm Page 181 Thursday, March 9, 2006 1:40 PM

182 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Clearly, paper prototyping has numerous disadvantages when compared with
rapid prototyping. Nevertheless, given its cheapness and simplicity – even end
users can come up with their own proposal – paper prototyping is widely used.
Rapid prototyping can be used in cases in which specific development risks that
need to be evaluated early in the development are not made explicit by a paper
prototype. Consider for example an application that is required to be close to an
existing application, with a high level of fidelity. Only a software prototype can
fulfill this need.

Different types of prototypes can be used in combination to give the best of both
approaches. Suppose we want to design the GUI for an application with a heavy
data load – perhaps tens of thousands of items. This aspect is a potential risk that
needs to be explicitly addressed as early as possible. The first informal prototypes
are written on paper: when a suitable design emerges, it is rendered in a rapid
prototype that simulates a large number of data items and their related latencies,
so that the design can be validated and agreed with end users.

Prototyping technologies

Prototypes rely on specific technologies, whether the same technology as the final
product (in our case Java) or another, for example using Web pages to sketch form-
based screens. Comparing Java with other technologies:

• Java technologies. A number of visual tools that generate Java sources for GUI
layouts and screens by direct manipulation are widely available. Open
source software (OSS) tools such as NetBeans or Eclipse VE, as well as
commercial products such as JBuilder and Idea, are commonly used in devel-
opment. A number of stand-alone Java visual builders are available too – we
discuss this in Chapter 11.

• Non-Java technologies. Prototyping technologies can be employed too:
drawing or authoring tools such as Microsoft Powerpoint and Visio,
CorelDraw, for sketching paper prototypes, or tools for building horizontal
prototypes, such as Visual Basic or MacroMedia Flash. None of these tools
effectively model the Java Look and Feel, however.

Storyboards

A storyboard documents how a part of a user interface is employed to accomplish
a given task. A storyboard is a simplified representation of the GUI, usually
drawn on paper, showing how a user interacts with the product to achieve a
specific task. Storyboards usually represent the user interface at a higher level of
abstraction than paper prototypes, allowing a wider perspective – storyboards are

c05.fm Page 182 Thursday, March 9, 2006 1:40 PM

Prototyping alternatives 183

1:39 PM 9 March 2006 c05.fm 1.0

often drawn on large sheets and hung on the wall. They provide navigation,
meaningful data, and all other details needed to represent the task performed in
the GUI to a suitable level of detail. Figure 5.5 shows a storyboard for an example
application.

This storyboard describes navigation details as well as UI details. Storyboards
usually focus on navigation and on providing a wider picture of the GUI. The

Figure 5.5 An example storyboard

c05.fm Page 183 Thursday, March 9, 2006 1:40 PM

184 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

storyboard in Figure 5.6 shows an example of this latter approach for an account
management user interface.

A number of details can be seen in Figure 5.6:

• Every screen is represented by a box showing a window title.

• Transitions from one window to another are shown by arrows labeled with
the GUI action that triggers the transition.

• Dashed arrows represent the navigation when the current screen is
dismissed.

• Windows are identified with a unique id number in their upper-right
corners, for quick reference both during design and at runtime .

Storyboards are a valuable tool for describing GUI navigation and for sketching
the GUI, especially at early stages of design.

5.4 GUI builders
GUI builders are another commonly-used aid for building prototypes, as well as
entire simple GUIs. They consist of visual environments that ease the construction
of GUIs by means of a user-friendly construction interface that creates the code
behind the scenes. All major Java integrated development environments (IDEs)
provide such a graphical UI editor. This section gives an example of the use of one
such tool.

Figure 5.6 Another example storyboard

c05.fm Page 184 Thursday, March 9, 2006 1:40 PM

GUI builders 185

1:39 PM 9 March 2006 c05.fm 1.0

A screenshot of the JBuilder IDE visual designer is shown in Figure 5.7.

The final result of using the builder took less than ten minutes to create, and is
shown in Figure 5.8. No extra-GUI, functional code was provided, to keep the
resulting code as short as possible.

The JBuilder editor creates an auxiliary method (jbInit) that gathers all the GUI-
related code. Code statements generated as commands are issued via the user
interface shown in Figure 5.8. Widget visibility is provided for all components,
which are created as instance variables of the visual container class. Instance vari-
ables are named automatically by the tool, but can be renamed manually.

Figure 5.7 The JBuilder IDE designer

Figure 5.8 An example GUI

c05.fm Page 185 Thursday, March 9, 2006 1:40 PM

186 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Using a GUI builder tool

Whether code builders are used or not, achieving a professional GUI is always a
matter of detail. You will therefore always need to dig into generated code to
polish the details of even the simplest GUI. Visual editors do not simplify the
overall coding effort if your GUI is complex enough to require massive extension
or rewriting of the code automatically produced by the tool.

Visual editors can help quick development of content structure, such as widgets
and their layout. They can be used as aids to create the structure of the required
class quickly, which can be refined later manually. They can be useful for building
rapid prototypes, or can be used by novice programmers for learning the basics of
Java GUI libraries in a ‘learning-by-doing’ fashion.

Programmers tend to have their own opinions of these kinds of automatic tools.
Some find them stimulating but limited, others are confident they can save a lot
of time, while many simply hate them altogether. Clearly, the perception you have
of a tool directly impacts your performance when using it: it’s a matter of usability
here as well, only here developers are the end users. The ultimate choice depends
on your preferences.

Visual editors do have a number of practical shortcomings:

• It is cumbersome, if not impossible, to modify some parts of the generated
code. For example, some editors allow only Java Beans – widgets with void
constructors – to be created.

• Some editors, such as the one provided with Netbeans, rely on vendor-
specific files as well as vendor-neutral comments in source code. This ulti-
mately leads to a form of vendor lock-in. It also makes it harder to adapt the
generated code to particular needs without breaking the compatibility
between the tool and the edited GUI code.

• The general structure of the generated class is hard to tweak. Special
methods can be hard or even impossible to circumvent. In some cases main-
taining source code compatibility with the visual editor can become so
complex that the simplest solution is to abandon the GUI editor tool
altogether.

• Architectural issues are not supported by visual builders that tend to build
weak and deeply-coupled code.

Even in such a simple case we needed to modify/insert the generated code by
hand. JBuilder is flexible enough to recognize lines of code added by hand.
This is illustrated in the code example that is available on-line, in which the
string array used for filling the list widget has been added in the source code.
This is still successfully recognized by the tool, as can be seen in Figure 5.8.

c05.fm Page 186 Thursday, March 9, 2006 1:40 PM

Reusable prototyping widgets 187

1:39 PM 9 March 2006 c05.fm 1.0

5.5 Reusable prototyping widgets
In this section we will examine practical applications of reusable classes to proto-
typing. In particular, we will look at two classes that are specialized for building
rapid prototypes inexpensively.

A tree prototype utility class

The reusable class introduced here simplifies the creation of complex Swing tree
components. Such trees are limited to use as rapid prototypes. Despite that, their
use could be quite helpful for producing medium- and even high-fidelity proto-
types. The class we describe here is implemented as a specialized JTree that reads
its configuration from a properties file. In this way it is easy to populate a tree,
change its appearance and provide contextual menus, tooltips and drag and drop
(dummy) support. We will introduce and discuss a sample properties file first,
then present the class code, and conclude with another example of its use.

In our implementation, all the appearance is delegated to the properties file,
though for specific features it may be necessary to add an external listener class,
or to subclass the prototype class itself. For example, in Chapter 4 we saw a tree
prototype that simulated a delay by attaching a tree expansion listener to a
JProtoTree instance. The properties file used in the constructor dictates the
appearance and behavior of the prototype tree. Listing 5.1 below shows an
example of such a properties file. The resulting output is shown in Figure 5.9.

Listing 5.1 The Tree.properties file

00: root=home,a tooltip string,root.gif,command A%%command B%%--%%com-
mand C%%command D,a1,a2,a3,a4
01: a1=1,tt1,bit1.gif,command E%%command F%%command G,a11,a12
02: a2=2,tt2,light.gif,-
03: a3=3,tt3,bit1.gif,-
04: a4=4,tt4,-,-,a41
05: a41=another node, and its tooltip,bit1.gif,-
06: a11=aaa,-,-,-
07: a12=bbb,-,-,-
08:
09: # special properties
10: setShowsRootHandles=true
11: setScrollsOnExpand=true
12: setRootVisible=true
13: setDragEnabled=true
14: setClosedIcon=closed.gif
15: setOpenIcon=open.gif
16: setLeafIcon=dot.gif
17:
18:
19: # tree properties
20: JTree.lineStyle=Angled

c05.fm Page 187 Thursday, March 9, 2006 1:40 PM

188 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

The properties can be specified in any order. In Listing 7.1 above there are three
main groups of properties:

• The first group dictates the structure of the tree. Line 0 says that the root
node has a label ‘home,’ a tooltip ‘a tooltip string’ and should be
rendered using the image ‘root.gif.’

• The contextual menu is composed of four commands: string commands are
separated by ‘%%’ and the ‘--’ represents a menu separator.

• Finally, the root node has two children, identified by the labels a1, a2, a3 and
a4 that in turn are defined in lines 01–04.

The final result. the JProtoTree instantiated with the properties file of Listing 7.1,
is shown in Figure 5.9.

Each line is composed of a string id that is used by the tree to identify the given
node. The special string ‘root’ is used to identify the root element, and is manda-
tory. There follow the appearance values for that node, separated by the ‘=’
character used by default in Java properties files.

Such values are the ordered sequence of the following data:

1. The ext label. This can be a sentence or even an HTML fragment.
2. The icon used to render the node. When not used, the standard icons are

used instead.
3. The contextual menu that is activated by right-clicking with the mouse on

the given node. Note that contextual menus are inherited from a parent node
by its children. If we have only one type of contextual menu for all the nodes,
we therefore just specify the required menu in the root element, and this is
then used by all its descendents. If another node needs to show a different
contextual menu, we then have to declare it in the properties file for the
given node, as node ‘a1’ does in Listing 7.1.

Figure 5.9 An example of a prototype tree

c05.fm Page 188 Thursday, March 9, 2006 1:40 PM

Reusable prototyping widgets 189

1:39 PM 9 March 2006 c05.fm 1.0

4. The list of child node ids that builds the tree structure recursively, or ‘-’ if the
node is a leaf.

In this way the nodes and their appearance are defined. There are other attributes
that can be defined as well, to control the global tree appearance, These are spec-
ified in lines 10–16 in Listing 7.1. It is possible to define properties such as whether
the root handles should be made visible, or whether the tree nodes should be
draggable. Finally, Swing tree properties can be added to the file.

Whenever an item of information is missing – for example omitting to specify a
particular icon, so that the node will be rendered using the standard icons for leaf,
open and closed folder nodes – we use the ’-’ character.

For brevity, we don’t show the implementation here. For readers interested in it,
the JProtoTree class uses two inner classes: a custom tree cell renderer and a
custom tree model.

The constructor simply instantiates a specialized tree model based on the input
properties file, then queries it to change the tree’s appearance. This use of the tree
model is incorrect – the purpose of the Swing modified MVC architecture is
primarily for separating appearance from data. Loading the model with appear-
ance data is thus conceptually incorrect. The tree is created using default tree
nodes that have an array of strings as the user object. Such an array contains the
appearance information extracted from the properties file.

The ProtoTreeModel inner class reads the properties file and creates the related
tree model, which will be used by the enclosing tree class. In particular, the create-
Node method is used for populating the tree recursively using a deep-first strategy.

The inner class ProtoCellRenderer is a subclass of the DefaultTreeCell-
Renderer, and is used to customize the node appearance as prescribed in the
input properties file. The main method of the JPro-toTree class shows a sample
use of the class, and requires a properties file named ‘tree.properties.’

Another example of the use of a properties file for defining tree appearance is
shown in the sample code for this chapter, in the DBTree.properties file. The
corresponding instantiated tree is shown in Figure 5.10.

Note that in this prototype we have modified the appearance of few special nodes
only, while allowing all the remaining nodes to comply with the general tree
rendering rules. These distinguish between open and closed folders – any node
that has at least one child – and leaves, those nodes that have no children. We then
modified the appearance of these three types of nodes in turn, allowing us to use
a cheaper standard component for the working implementation.

The sample syntax shown in the previous listing can be seen as a simple,
although rough and very simplistic form of a Little Language specialized for
rapid prototyping. Little Languages are described in Section 12.5.

c05.fm Page 189 Thursday, March 9, 2006 1:40 PM

190 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

We also supply a simplified version of this utility class for the SWT (Standard
Windowing Toolkit) library in the source bundle for this chapter.

To recap, utility classes can be useful for quickly building tree samples from
scratch for use in rapid prototypes, whether for Swing or SWT programs.

A visual container prototype utility class

This section introduces a reusable class for creating prototypes of directly-manip-
ulatable, two-dimensional containers, such as file system folders in Windows or
the Macintosh operating system. We will see these working in Chapter 15. Figure
5.11 shows an example of such a prototype component.

Users can drag the icons within the container and right-click on them to show
their contextual menus. This kind of component is not provided by the standard
Sun libraries, but it can be employed usefully in GUIs, especially OOUIs. The
SandboxExample class provided with the code for this chapter shows a sample
use of this component for creating rapid prototypes.

Figure 5.10 Another example of a prototype tree

Figure 5.11 An example of a container prototype

c05.fm Page 190 Thursday, March 9, 2006 1:40 PM

GUI refactoring 191

1:39 PM 9 March 2006 c05.fm 1.0

5.6 GUI refactoring
Having explored the various options available to Java developers for building
effective GUI prototypes, we now focus on iterative GUI development, in which
the code is not meant to be thrown away, but instead is refined and improved
continuously by means of small steps that do not alter its functional behavior.
These are called refactorings.

Fowler’s classic work on refactoring (Fowler et al. 2000) describes a set of changes
that improve the internal structure of code without changing its external behavior.
Refactoring is ‘a disciplined way to clean up code that minimizes the chances of
introducing bugs.’ Refactoring changes the design of a system without modifying
its observable behavior. We discuss refactoring in this chapter because it is instru-
mental to iterative GUI development. We refer to Fowler’s refactorings as ‘classic,’
to differentiate them from the higher-level, GUI-specific refactorings introduced
in this section.

The refactoring we introduce here is performed as a sequence of classic (low-level)
refactorings that focus on enhancing the structure of GUI code while preserving
its external behavior. Some of these GUI-specific refactorings might slightly
modify the GUI’s appearance, however. When this happens, the changes are
always focused on standardizing the GUI design and making it systematic
throughout the application.

One important point is when to refactor. (Fowler 2000) suggests refactoring the
third time we happen to do something similar – this is called the ‘rule of three’ and
is credited to D. Roberts. This means duplicating things at first and living with the
duplication temporarily. For example:

• The first time we implement our panel.

• Later it happens that we find ourselves implementing a panel that is very
similar to the one we have just implemented. The rule says we should leave
the two panels separate.

• The third time we encounter the same situation we proceed to apply the
required refactoring – see Parameterize panel on page 198.

Some classic refactorings

In this section we briefly introduce some classic refactorings commonly used in
GUI development – for a complete discussion, refer to (Fowler et al. 2000). In the
next section we discuss the most common GUI-specific refactorings.

The refactorings described here are simple and specifically concern GUI code
restructuring. Refactoring techniques apply to any piece of code, of course, not
just GUI code. We describe four refactoring techniques that can come to our rescue
when restructuring GUI-oriented code. The first three, Move Method, Duplicate

c05.fm Page 191 Thursday, March 9, 2006 1:40 PM

192 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Observed Data and Extract Method, are simpler and are all used in the final tech-
nique, Separate Domain from Presentation.

Move method

This is one of the most useful and frequent refactoring techniques, and consists
simply of moving a method from one class to another. Of course you should check
whether the method is declared in the superclass or in some subclasses of the
current class.

After moving the method to the other class, the old method could be emptied and
transformed into merely a delegating one – that is, one that invokes the corre-
sponding new method in the other class – or it can be removed altogether. In the
latter case all references are made directly to the new method in the other class.

There are no clear-cut criteria for applying this pattern – it depends on many
factors, such as the semantic coherence of the code, its coupling with other classes,
and so on. Move Method, and other refactoring techniques as well, are needed for
example when enforcing a given structure in existing code by moving methods to
different classes. This is discussed in Chapter 7.

Duplicate observed data

Business domain methods need to access business data hosted by GUI widgets –
also referred to as screen data state, and discussed in Chapter 8. A solution is to dupli-
cate the data, so that one representation lives in the content layer, and the other in
the business domain3, and keep them synchronized through an event-based mech-
anism. In the example in Figure 5.12 the latter mechanism is provided by means of
the java.util implementation of the Observer design pattern (Gamma et al. 1994).

3. The layers’ names may vary according to the architecture of choice.

Figure 5.12 Duplicate observed data

c05.fm Page 192 Thursday, March 9, 2006 1:40 PM

GUI refactoring 193

1:39 PM 9 March 2006 c05.fm 1.0

As we saw at the beginning of this chapter, such an approach is employed in the
MVC pattern and in its variant adopted in the Swing framework.

Extract method

This is another very common refactoring technique. It consists of grouping code
statements into a new method, and is often used with GUI code. For example, in
a frame or dialog initialization, when the visual container is filled with compo-
nents and these are initialized, one can organize this code into a number of
methods. This is shown in the following example, in which all initialization code
of a JFrame subclass has been organized in few self-explanatory methods.

private void initGUI(){
 createToolbar();
 createMainPanel();
 populateDataTable();
}

This organization makes the same code more readable and easy to understand
without modifying its externally-observable behavior. Clearly, new methods
should be devised depending on the function the code performs, and not on how
it is implemented. The objective is to clarify the code rather than make it more
complicated with the addition of more methods.

Separate domain from presentation

This is perhaps the most obvious refactoring in the large for GUI code. It is a
‘macro’ refactoring technique, taking many small steps to be accomplished, and
cannot be performed automatically, but is all-important in GUI development. Its
result is to separate business logic and data from the presentation, as shown in
Figure 5.13.

There is a facility in the java.util package that helps with the implementa-
tion of such a pattern through the Observer interface and the Observable
class, as used for example in the Sandbox application in Chapter 16.

Figure 5.13 Separating domain from presentation

c05.fm Page 193 Thursday, March 9, 2006 1:40 PM

194 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Figure 5.13 uses UML stereotypes to show the functional layer – related to the
functional decomposition shown in Chapter 1 – to which the class belongs.

This technique deals with the guiding principle of separating presentation code
from domain logic. We have already discussed this principle and its implications:
here we present a refined version of the corresponding refactoring technique. In
fact, the rules stated in (Fowler et al. 2000) are:

1. Create a domain class for every window
2. Study the data shown in the GUI windows. If there is any data that is used

only in the window, leave it in the presentation layer. If some data is not
shown, move it into the domain class for that window using Move Method
refactoring. Finally, if any data is used both in the presentation and in the
application layer, use Duplicate Observed Data refactoring to split them into
two separate classes, as discussed earlier.

3. Separate the domain logic inside a presentation class using Extract Method
refactoring. When the domain logic is clearly separated into one or more
methods within the presentation class, move these methods to the corre-
sponding domain object.

4. Finally, when all the code for the domain logic is separated from the presen-
tation, ‘polish’ the resulting domain logic classes with further refactoring.

This approach can be further refined depending on the kind of libraries on which
your application relies. For example, if your GUI uses the Swing framework,
instead of relying on the first rule (create a domain class for every window) you
can take advantage of the modified MVC model adopted in the Swing toolkit.

Some GUI-specific refactorings
Before introducing some of the most common refactorings used in iterative GUI
development, we need to introduce the concepts of Composable Unit and Content
Assembly, which we discuss in greater detail in Chapter 6.

In medium or large applications there could be a need to aggregate code following
some defined abstractions. These ‘units’ are fully-fledged autonomous entities
that handle their own data, control behavior, content, and so on. They are sort of
‘mini-GUIs’ within the GUI itself, aggregated following the Composite pattern.
We call them composable units.

These aggregations can be useful for a number of reasons, such as code organi-
zation and code reusability. A composable unit is a formal building block of the
GUI represented within our architecture. For example, if we adopted an MVC
architecture for composable units – that is, an adoption of MVC in the large,
different than using it at widget-level as in Swing or JFace – then an Employ-
eeMVC would be a triplet of a Model, View and Controller that together would
form a single, formalized unit of reuse within our application. Following this

c05.fm Page 194 Thursday, March 9, 2006 1:40 PM

GUI refactoring 195

1:39 PM 9 March 2006 c05.fm 1.0

architecture, whenever we need a panel that represents an employee, we just
instantiate the related MVC triplet.

Many approaches are possible, apart from technical-oriented ones such as MVC,
as we discuss in Chapter 6. The OOUI approach shown in Chapter 15 also illus-
trates this. Of course reuse and other functionalities can also be provided more
informally, without resorting to a fully-fledged approach like an architecture
based on composable units.

Content assembly is the procedure of assembling widgets using a given layout
manager. The simplest way to compose widgets and composite aggregates of
widgets into working panels and windows with OO technology is to use panel
subclasses and put the assembly code into their constructor. This scheme works
well in the majority of cases, but there could be situations in which this intuitive
approach can be problematic. Other techniques are possible, and we discuss them
in Chapter 6. Here, for ease of discussion, we refer to the case of content assembly
implemented via subclassing. Nevertheless the following refactorings can be
applied as well when other content assembly approaches are used, such as
specialized factories or builders.

Extract explicit panel

We are now ready to discuss some explicit refactoring in the large for desktop
application GUIs based on OO technology.

A common situation is that in which we design a panel for some purpose and then
realize we may want to make a part of it an explicit, separated panel, perhaps
because we may need it for reuse somewhere else in the class. This situation is
shown in Figure 5.14, in which an explicit panel, AddressPanel, in extracted from
the PersonPanel implementation.

Figure 5.14 Extracting an explicit panel

c05.fm Page 195 Thursday, March 9, 2006 1:40 PM

196 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

After the refactoring, PersonPanel now invokes AddressPanel, while the GUI
design remained unchanged. Usually an explicit panel is implemented as a
private method within the same class as the container panel. Even this simple
refactoring can be complicated to achieve in practice because of the intricacies of
layout management.

Extracting a panel can be tricky, because we want to have a flexible panel that can
adapt to different use scenarios – when it was implicit, there was no need to
provide this flexibility. Let’s consider visual composition, for example. We might
in some cases want our extracted panel to align seamlessly with the containing
panel without knowing about it. Think about the address panel in Figure 5.14. When
we add it to another panel, we expect all its fields to be nicely and seamlessly
aligned with the other fields in the containing panel.

We have two basic strategies for providing widget layout flexibility in our newly
extracted panel:

• Black box support. The panel is provided as a unique visual container, and it is
up to the layout manager to adapt it to the rest of the containing panel. In
practice this might mean providing your own implementation of a layout
manager that deals with this aspect.

• White box support. The explicit panel exposes its internal structure to the
outside world so that its component pieces can be aligned with the widgets
in the containing panel. An example of support for this kind of approach can
be provided by means of attributes, as discussed in Chapter 12.

You can of course provide an approximated alignment without resorting to the
complex mechanisms outlined above – for example alignment values for form-
based GUIs, or even no alignment at all. This will result in slightly poorer visual
symmetry, but it will simplify development.

Extract stand-alone panel

We might go one step further and make our explicit panel a stand-alone class. This
encompasses moving the code of the private method implementing the explicit
panel in a separate panel class, together with the address widgets. This allows us
to reuse the content for addresses in different places of the application, as shown
in Figure 5.15, in which the same address panel is used in two different contexts.

Extracting stand-alone panels is performed routinely when implementing GUIs
through panels, instead of windows or other containers. Focusing on panels
promotes reuse and simplifies GUI changes, even if it may seem unnatural at
first. It can be a needless complication in simple applications, however – see the
discussion of the Smart GUI Antipattern in Chapter 7.

c05.fm Page 196 Thursday, March 9, 2006 1:40 PM

GUI refactoring 197

1:39 PM 9 March 2006 c05.fm 1.0

Of course, extracting a stand-alone panel guarantees only content reuse – that is,
the graphical aspects – and some simple, local kind of control and business code.
For full reuse, we may need to escalate to a composable unit, as discussed in the
next section.

Extract composable unit

Transforming a standalone panel into a composable unit means adding all the
required code to make the new unit a coherent reusable block, comprising inter-
action and control, data IO, and domain code. Architectural behavior must also be
provided – for example, composable units may be needed to implement some
interfaces, or bind to a register facility. Figure 5.16 shows an example of the extrac-
tion of a composable unit from a stand-alone panel and its support code, scattered
among other classes.

Merge panel

Refactorings of this type aim at visually merging a panel – either a stand-alone or
an explicit panel – into another existing panel. Merge panel is the twin of the
extract refactorings discussed previously.

Add parameter to panel

While building a GUI iteratively, we may find that we need to add a degree of flex-
ibility to the code to avoid duplicating it. Suppose we implemented an address
stand-alone panel that is embeddable in other panels or windows. In a new

Figure 5.15 Extracting a standalone panel

c05.fm Page 197 Thursday, March 9, 2006 1:40 PM

198 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

window we are coding, though, we then find that there is an address to display,
but it should be laid out differently than would our reusable address panel.

This is a frequent problem in many places in a GUI. When new objects need to use
our ‘reusable’ visual components, many unforeseen subtleties arise. Working in a
continuous iterative way as we do, we don’t worry too much about adding all the
required behavior up-front, but instead add it as required, trying to keep our code
as simple as possible.

We then:

1. Decide on the abstractions to be provided by our parameterization.
2. Implement these abstractions by means of a number of refactoring steps.

In our example, we may add to our address panel a setVerticalLayout(boolean)
method that by default is false, to preserve backward compatibility with all
existing clients, which accommodates this special case without revealing internal
details of the address panel implementation.

Remove parameter from panel

As with methods, sometimes specific parameters are not used at all in a panel
implementation. In this case it is good practice to remove them from the
implementation.

Parameterize panel

Most of our development efforts focus on avoiding code duplication. Sometimes
we end up having two slightly different panels that share a great deal of code,

Figure 5.16 Extracting a composable unit

c05.fm Page 198 Thursday, March 9, 2006 1:40 PM

GUI refactoring 199

1:39 PM 9 March 2006 c05.fm 1.0

such as business logic, content, control, and so on, but that differ in detail. A
simple solution is to extract a stand-alone panel and provide some means of
configuration – usually using an accessory method – that implements the differ-
ences between the two approaches, as shown in Figure 5.17.

A trivial use of this refactoring is that in which you have the same panel dupli-
cated in different parts of the GUI, and you want to extract a single implementation.
In this case there is no need for parameters, because the designs are the same
(although they might differ slightly in unimportant details).

This refactoring technique, like the similar Add Parameter to Panel, tends to
create procedural code within panels to handle configuration behavior. This can
be limited by using classic refactorings such as Replace Conditional with Poly-
morphism and Convert Procedural Design to Objects, as discussed in (Fowler
et al. 2000).

Parameterize Panel and Add Parameter to Panel are similar in theory, but are
used in different contexts in practice. You find yourself using this refactoring
when developers were not able to exert tight control over GUI design, in cases
in which GUI design was done by others – GUI designers, analysts, and so on –
or when the initial design was implemented with a GUI builder that made
panel extraction and reuse difficult. In these cases we would use Parameterize
Panel for factoring out common panels into a single implementation.

Figure 5.17 Parameterizing a panel

c05.fm Page 199 Thursday, March 9, 2006 1:40 PM

200 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Replace parameter with panel

The more parameters we add to a panel, the more complex it gets. We may end up
with an overly intricate panel that would be better off split into two or even more
separate panels. This is the dual of the Parameterize Panel refactoring technique.
It should be used when a panel represents conceptually different aspects that
would be more meaningfully represented with different stand-alone or explicit
panels.

The address panel implementation has become too complex because it imple-
ments two different panels in one class: a simple and an extended address panel.
A better solution would be to separate them into two different panels, as illus-
trated in Figure 5.18.

Here, as in all the refactoring techniques presented in this chapter, depending on
the content assembly technique we use, panels will be implemented as visual
panel subclasses, methods or builder strategies (see Chapter 6). Various classic
refactorings can be applied to minimize code duplication between the two newly-
created panels, depending on the implementation chosen.

Figure 5.18 Replace parameter with panel

c05.fm Page 200 Thursday, March 9, 2006 1:40 PM

GUI refactoring 201

1:39 PM 9 March 2006 c05.fm 1.0

Rename panel

Like methods or classes, the names of panels, as well as windows and other
explicit visual composites, are of great importance in defining the specific
conceptual identity of visual areas. If the A3GUI approach is used during anal-
ysis, then the identifiers of the areas found can be used to name the
corresponding panels’ implementations. Even more important than A3GUI,
renaming should be done following domain-driven abstractions and a domain-
driven Ubiquitous Language (Evans 2004).

Failing with style

We conclude this section with a discussion of general strategies for managing
implementation errors – that is, software and systemic errors, not business-related
ones. We include it here because it is an often-overlooked aspect of GUI develop-
ment that should be tackled from early on in the development cycle.

Despite not being a refactoring technique, defining a clear, explicit failure strategy
early in development is important for providing a coherent, usable GUI from the
earliest iterations. By the term failure, we mean some software error or unexpected
situation that hinders the execution of a program. We focus here on situations in
which it is possible to continue execution, provided that the program is allowed
to make some assumptions in order to proceed. That is, ‘hopeless’ situations for
which we have no alternatives are not taken into account. Clearly, if an application
is unable to find any resource bundle, messages cannot be shown at all and the
GUI is unable to run. In these cases we have no option but to fail to provide the
required amount of information – as described in the discussion that follows on
security and error messages.

The chances are that any application will break one day, no matter how skillful we
might be. This issue needs to be addressed explicitly, because providing a coherent
failure strategy will affect not only the developers, but ultimately end users as well.

There are two broad strategies for dealing with failure:

• Fail first. As soon as there is an unexpected situation, we halt execution,
providing a clear explanation of what happened. This makes it easier to
detect the problem and fix it.

• Fail later. This approach tries to carry on program execution as far as possible.
Suppose, for example, we detect that a required remote connection is down:
we can signal this to the user, but still continue execution.

In practice, the problem is that the best strategies for failure are conflicting. For
developers, a fail first strategy is advisable because the program does not enter into
unforeseen behavior, and the problem is more easily detected. Filling code with
default, specific behaviors degrades its readability, forcing us to constantly ask

c05.fm Page 201 Thursday, March 9, 2006 1:40 PM

202 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

ourselves tortuous questions of the form ‘Ok, if the program can’t find the resource
bundle, then it connects to the server, but if the server is down…’ and so on.

On the other hand, end users don’t want to be bothered by problems that might
be handled without sacrificing the current session data. When driving I wouldn’t
like my car to stop because it is signaling something like ‘Running out of air condi-
tioning fluid. This might seriously damage the air conditioning system,’ and
refusing to start until a mechanic is provided.

Despite the fact that the optimum failure strategies for end users during runtime
and the chosen failure strategy of developers during development are conceptu-
ally separate, it happens in practice that although maintaining two completely
opposite strategies in the same application is hard, it is not impossible.

The nastiest situations arise in practice from the repercussions of unforeseen data
such as null values or empty lists on the subsequent execution of the application.
When encountering an unforeseen value such as a null query result, applications
are usually programmed to make some assumptions in order to provide a
minimum degree of ruggedness, for example by displaying an empty results
table, instead of throwing an embarrassing NullPointerException in a pop-up
message dialog.

The problem is that from that point on the application slips into uncharted waters,
while still being fully responsive to the unwary user – that is, its actual behavior
is no longer clearly defined. When an unrecoverable error happens five minutes
later, it might be quite hard for developers to track down the sequence of events
that led to it.

Extensive testing will hopefully catch most of these situations, but without an a
priori strategy the code will contain a cluttered tangle of if (a!=null){ state-
ments and endless, convoluted chains of default behaviors.

A simple remedy to this is to provide a clear, global strategy for failure and its
implementation with OO technology as early as possible, such as a set of instances
of the Special Case pattern (Fowler et al. 2003) that explicitly represent special
cases by defining subclasses for handling special cases only, such as Empty-
SearchResults, UnspecifiedAddress, NullObject. These classes will know
what to show on the screen without forcing conditional control to be scattered
throughout the GUI, will properly log themselves, and will prevent the applica-
tion from being crippled unpleasantly in some unforeseen situation.

When default behavior becomes non-trivial, it can be useful to resort to a
specific class to represent it, to decouple it from the rest of the GUI, enhancing
code readability and eliminating tangled conditionals dispersed in the code.
This allows default strategies, spanning client to server and database tiers, to
be represented at a high level of abstraction.

c05.fm Page 202 Thursday, March 9, 2006 1:40 PM

Introduction to user interface testing 203

1:39 PM 9 March 2006 c05.fm 1.0

Error messages

Making an application fail is a well-known form of security threat. A surprisingly
high number of Web sites are relatively weak in this respect, and can sometimes
be made to fail by reusing the data obtained from empty or non-meaningful
queries, for example. Web applications are supposed to be much simpler than
fully-fledged GUIs, so the threat is even more serious for rich clients and other
client applications. Alas, GUI developers usually overlook security threats,
because they assume that a restricted end user population, as is often the case with
Java GUIs, will shield them from malicious use.

Fortunately, client GUIs are less restricted than Web applications, and a local log
file will be able to provide technical information to the developers, and not to the
end user – who shouldn’t be bothered by these details, or even worse, might
potentially use them against the system. Separating technical error messages from
end user messages in two different distribution channels (log files and the GUI)
simplifies the error notification architecture, while ensuring higher levels of
security.

5.7 Introduction to user interface testing
When developing iteratively it is essential to maintain the code tested, launching
unit tests after every change. More rarely, we might change the GUI design too,
perhaps refining an existing feature or adding new ones. In this case we may want
to test the application for usability as well as for technical soundness. While being
two different practices involving different skills, both GUI test and usability
testing are essential for an effective final result.

Testing can be seen as a long-term investment in code – the additional investment
is repaid in the small cost of further code modifications in the medium to long
term. Simple forms of testing can escalate into testing practices that influence the
structure of production code heavily.

In some scenarios it could even be desirable to provide users with low-level
technical details of errors, for example an application that is intended to be
used by developers such as an Eclipse plug-in.

Agile approaches offer a new and refreshing ‘take’ on testing. The approach of
giving test responsibility to the developers themselves from the early stages of
development is a radical departure from ‘old school’ QA approaches, in which
an unspoken adversarial climate often arises between developers and testers,
complete with different cultures and career paths and a perception of testing
as an authoritarian practice that takes place after completion of development.

c05.fm Page 203 Thursday, March 9, 2006 1:40 PM

204 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Tests should be written to cover newly-written code and existing code that has
been modified. Unit testing is perhaps perceived by developers as the most valu-
able form of testing, because of its fine granularity that allows a high coverage of
the code base. No matter which type of test you use, automatic tests should be
launched as part of a continuous build environment.

Test-driven development

Perhaps the single most important advice about testing, which has been vali-
dated empirically by decades of development practice, is to test early. The sooner,
the better. Taking this to the extreme, we have test-driven development, which
prescribes that tests should be written even before the code itself. This strategy
works well when developers are motivated to build effective tests, but can other-
wise result in a development overhead that produce vapid, ineffective tests.

Test-driven development (TDD) focuses on developers writing unit tests before
writing code. It improves the design by providing goals, guidance and early feed-
back to developers, reduces coupling, and improves cohesion. It may involve
major use of refactoring and other practices such as specifications and testing by
example, as well as Agile techniques such as providing automated regression tests
written in collaboration with customers.

Tests also provide a measure of a project’s success and a realistic indication of
overall progress. All of this nice magic comes to a price, of course. The price is
higher development costs, a change in mind-set requiring greater motivation
from developers and managers, and a generally more labor-intensive, responsible
development style.

It is common for developers to focus the implementation and even the architec-
ture on easing testing or other implementation aspects. While this is common
practice for software that does not interact with end users, for desktop application
GUIs this practice needs deeper thought. The real question behind this approach
is how much the development should influence the final product – in our case, the
GUI design, its performance, and its overall usability.

What’s first – GUI design or implementation?

In the early Middle Ages in Western Europe towers, a very important means of
defense in those days, were built with an iterative process in which scaffolding
was attached to the tower itself as construction progressed, greatly simplifying
the building process. Traveling across Europe you can still see these old towers,
which can be recognized by regular patterns of holes in their walls that were used
to insert scaffolding logs.

A tourist might dislike this effect, as it is a temporary construction trick that
affected the overall result right through to today. Moving from the building

c05.fm Page 204 Thursday, March 9, 2006 1:40 PM

Introduction to user interface testing 205

1:39 PM 9 March 2006 c05.fm 1.0

techniques of the past to current software engineering practice, a frequent ques-
tion is how much a GUI design should be influenced by its implementation. We
saw in Chapter 2 and at the beginning of this chapter that cost-driven design is
an all-important practice, but even with this approach, usability and end user-
centered considerations always have the last word over implementation details.

In real situations, especially with developers not familiar with GUI design issues
and concerned mostly with implementation aspects, such as providing a robust,
cost-effective and easily maintainable GUI, this might not be the case. To them,
implementation is the priority, with GUI design considered a sort of a nice-to-
have, slightly dangerous luxury.

Such developers would probably consider holes in medieval towers to be part of
the design, not a side effect. Structural integrity is a quality achieved by means
of the building technique employed, and not a spurious, secondary effect. Cost-
effectiveness is an important part of a construction technique. Others may argue
that GUI design is the final product, and development must serve the final result
only, possibly constrained by cost-driven considerations. You can imagine how
such topics were debated in past millennia for civil engineering and architecture.

Such considerations are also important in software engineering practice, because
implicit assumptions made by developers can drive the project towards unfore-
seen and dangerous situations. Contrary to server-side development, GUI
builders also face customers’ judgment. Imagine that you are an architect and
your client, a wealthy entrepreneur, is paying you a substantial sum to design
and build his next factory, a place where people will spend most of their daytime
and which should be optimized to provide the best possible working conditions.
Now imagine your feelings when during a design review the top managers and
the boss ask you about the weird holes into the walls shown the drawings of the
new building… equally, you don’t want any holes showing in your GUI.

These apparently abstract considerations boil down to very practical situations
when developing real-world GUIs. Think for example of the habit of many
developers of keeping the GUI layer as thin and simple as possible. This makes
extensive unit testing much easier, bypassing the GUI ‘skin,’ and confines
presentation details outside the ‘real application’ automatically. Unfortunately
this approach becomes burdensome as the complexity of the GUI increases, espe-
cially with regard to complexity of interaction with end users – think for example
of complex, extensive interaction and control behavior.

To use a metaphor, it’s like trying to build an easy-to-maintain and robust
Formula 1 race car. It is hard to design your car for other objectives than speed
and performance. Providing additional equipment and mechanisms for easing
car maintenance could decrease performance and, as the competition gets
tougher, be a costly luxury.

c05.fm Page 205 Thursday, March 9, 2006 1:40 PM

206 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

The bottom line is to design and develop as much as possible focusing on imple-
mentation details, as long as this strategy doesn’t clash with usability and the
overall, user-perceived effectiveness of the final GUI.

5.8 Software testing of Java GUIs
This section describes details of GUI implementation testing, and some techniques
that help to build a GUI that is easy to test.

Exhaustive software testing of a GUI can be complex and expensive. You can trade
technical complexity for cost, and let human beings test your GUI, or you can
automate part of the testing to save time and money, but this may prove to be
complex and limited, at least with current technology, a problem not confined to
Java. GUIs and their building blocks are built for users. Only as an afterthought
are they made available for automatic manipulation, and even when they are, it is
not easy to declare interactions and expected behavior.

Expressing interaction properties of any complexity in a formal language in a
simple and widely-adoptable way is a long-held dream of the GUI engineering
community that is yet to prove feasible in reality.

How to test – GUI software test approaches

Referring to Figure 5.19, we divide our code into three broad categories for GUI
software testing.

This section provides a complete perspective of GUI testing. Practical exam-
ples are provided in some of the later chapters of the book.

Figure 5.19 Partitioning code for software GUI testing

c05.fm Page 206 Thursday, March 9, 2006 1:40 PM

Software testing of Java GUIs 207

1:39 PM 9 March 2006 c05.fm 1.0

These are:

• GUI front end code. This is where widgets and all the graphics code lies,
including the content layer. It is important to note that copies of the business
data are stored within widgets as well, referred to as the screen data state –
this is described in Chapter 8. We assume a general lifecycle as follows:
some business objects’ data is copied to widgets’ data, and after specific user
interactions via the GUI back end code, data is passed from or to the busi-
ness objects.

• GUI back end code. This code oversees at the binding between GUI and data.
In MVC terminology it is the controller code. This part of the code also
contains the business rules and other control code. In the particular MVC
flavor implemented in Swing, this code is contained within the widgets
themselves.

• Business objects. These are the domain-dependent business data our GUI is
representing, referred to here as the business domain layer. We assume that
developers have tested these objects autonomously, using libraries such as
JUnit, so we will not discuss their testing here, and take their integrity for
granted.

Some toolkits like Swing allow business objects to be used as GUI models
directly, but for various reasons developers sometimes do not use this
feature – that is, business objects are copied in and out of the MVC’s model
objects – so that we keep the MVC’s controller and model explicitly sepa-
rated for clarity.

The commonest way to test the implementation of a GUI is to get a person to
test it. This is the kind of testing all of us have done many times in our lives.
Figure 5.20 shows this situation.

Figure 5.20 Manually testing a GUI

c05.fm Page 207 Thursday, March 9, 2006 1:40 PM

208 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

The tester stimulates the GUI – pressing buttons in a certain order, typing in
values, and so on – and sees whether the expected result is obtained. This kind of
testing has all the problems we can imagine for testing:

• It is not repeatable. Even if a written test script is used, someone has to
perform all the steps requested by the script.

• It is not 100% safe. Humans may make errors, both in manipulating the GUI
and in interpreting the outcomes.

• It is expensive, because testers need a lot of time to perform extensive testing.

It has also some benefits, the major one being that unexpected problems can be
found easily. Some tools allow the recording of test sessions and other limited
forms of automation, as we will see, but for fully testing a real-world complex
GUI, human beings are still necessary.

For effective automatic testing of a GUI, some form of modification of the imple-
mentation is needed. Special software access points must be added to the GUI
code to allow it to be tested without (or with limited) human intervention, to
allow the kind of interactions described above.

An example can help to explain this: think about a text field within a panel that a
developer may want to manipulate and then make the resulting value available
to the program. Access to the specific widget might require some form of OO visi-
bility relaxation, such as making the field protected, for example, or some other
form of runtime access.

A practical discussion of testing is provided in Chapter 8, focused on form-based
rich client applications, although limited to a concrete case only.

Adding a layer of indirection between presentation and the rest of the GUI imple-
mentation works well for GUIs with a low level of interactivity. The higher the
interactivity bandwidth with the user – that is, the more interaction and control
behavior in our GUI – the more work is needed to maintain the additional decou-
pling. Ultimately, some form of testing through the GUI is always needed: for end-
to-end tests, for testing interaction logic, or for (automated) acceptance tests.

Framework-dependent code in GUIs can be confined to the presentation and
content layers – that is, the GUI toolkit in use. By adopting a Rich Client Plat-
form, however, container-dependent code grows through the addition of
business rule validation, data binding, multithreaded operations, and so on,
and unit testing code needs to pass through this container-managed code. This
situation resembles the testing of application-server contained Java server
code.

c05.fm Page 208 Thursday, March 9, 2006 1:40 PM

Software testing of Java GUIs 209

1:39 PM 9 March 2006 c05.fm 1.0

The three most frequent approaches to GUI software testing are fully manual, semi-
automatic and fully automatic. Each approach has its own benefits and drawbacks,
and the best result is obtained when using two or all three approaches together:

• Fully manual. A test team ensures the robustness of the GUI by testing it
directly. Documents such as refinements of analysis use cases describe
detailed scenarios of use and their expected outcomes.

• Semi-automatic. Testers use some form of tool to automate some tests, usually
lower-level ones. They launch scripts and inspect the results in the GUI.

• Fully automatic. Developers implement test cases provided by the test team.
Such tests can be run together with the other unit tests as part of the code for
the GUI.

The characteristics of these testing approaches are briefly summarized in the
following table.

Designing for testing

A number of techniques can be employed to simplify automatic unit testing of
GUI code. These techniques range from high-level design strategies to practical
details. A number of design strategies can be employed to simplify API access to
GUI code:

• Presentation Model is a design technique used in Smalltalk VisualWorks that
aims to decouple toolkit-dependent code completely from the rest of the
application. The data and the behavior of the GUI are isolated from the
content. The class that represents the Presentation Model contains data that is
displayed in a visual container such as a panel or a window and needs to be
maintained in sync.

Table 5.2 The characteristics of testing techniques

Type
Initial
setup cost

Run
costs Precision GUI coverage

Fully manual Medium / Low (writing
test cases in plain
language)

High High Low

Semi-automatic
(human tester with
recording device)

Medium /High
(learning/ purchasing
tool, …)

Low Medium
(depends
on tool)

Medium/ High

Automatic High / Very High (tweak
existing code, write
code test cases)

Low High Medium
(some GUI-only
interactions cannot
be tested fully)

c05.fm Page 209 Thursday, March 9, 2006 1:40 PM

210 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

• Model-View-Presenter (MVP) is a variant of the Model-View-Controller
(MVC) pattern discussed in the next chapter. This design pattern allows for a
certain level of decoupling between the toolkit-dependent code and the rest
of the application.

• Provide programmatic access. This approach aims to make as much as
possible in a GUI reachable by API methods, so that automatic unit testing
can be used to include behavior such as GUI events, interaction and control,
and other parts of GUI implementation that are usually not accessible to unit
tests. This is a fairly intrusive technique that requires many methods to be
added to support automatic testing.

What to test – test coverage criteria
The following table shows the most useful types of tests available for ‘unit’-testing
widgets, that is, without interactions with other areas. For example, when ticking
in a check box, are panels of related properties disabled? The italics show the tests
than can only be run through the GUI back-end layer – that is, tests that are not
available through GUI interaction.

(* Indicates values whose validity as defined by business rules, if any)

Table 5.3 Data-bound widgets ‘unit’ tests

Data Type Widgets Typical Tests

List-Of Combo box, table, List 0 elements,
1 elem.,
Random N elems.,
Null value,
1 Null elem.

(Formatted) Field Data formatted fields
(Date, currency, etc.)

Empty value,
Random valid* value,
Invalid* value,
Null value,

Ad-hoc Ad-hoc component (for
example color chooser,
and so on)

Ad-hoc property,
Empty value,
Random valid* value,
Invalid* value,
Null value

Group of Boolean
values

Check box, radio button 0 elements selected,
1 Null elem.,
Null value

c05.fm Page 210 Thursday, March 9, 2006 1:40 PM

Usability testing of Java GUIs 211

1:39 PM 9 March 2006 c05.fm 1.0

This type of testing can be extensively automated, including testing for special
cases. We discuss some testing frameworks and tools that can be used for this
purpose in Chapter 11.

An ideal GUI testing tool for Java

Every test tool currently on the market has some nice, unique feature that would
be good to have in a comprehensive product. Perhaps this will never happen, but
the characteristics listed here may be useful when choosing an existing tool.

• The ideal tool should be simple and lightweight, built with customers as
reference users for acceptance tests, thus ensuring usability, simplicity, and
so on.

• It should use a high-level scripting language, easily embeddable and usable
by developers and non-developers alike.

• It should have a basic set of elementary GUI test functions that apply equally
to SWT or Swing GUIs, and specialized libraries that provide both higher-
level and toolkit-dependent behavior.

• It should provide hooks to the JVMPI interface, so that stress tests can be
automated, abstract-to-concrete pick-selection, allowing the use of a widget
logical identifier to find a component, then use GUI low-level events to fully
simulate human interaction and integration with unit testing libraries.

• Essential features should include: proved in large, complex projects,
provided with some IDE support, well documented with non-developers in
mind, possessing a recording/playback facility, a lively support forum, and
so on.

• Most importantly, it should be designed with a testing philosophy in mind.
Instead of being a set of loosely-assembled diverse features, it should
support testers, developers and customers throughout the product lifecycle.

Is this asking too much?

5.9 Usability testing of Java GUIs
Usability testing is an all-important form of testing, related to the semantic and
emotional impact the GUI has on end users, the consumers of the product and
those for whom it was built.

In my experience many of the problems with robust GUI development today
are due to non-optimal use of testing tools. The market offerings for GUI
testing tools for Java are still fragmented and oblige developers to use a careful
tool selection process, often using more than one test tool, depending on need.

c05.fm Page 211 Thursday, March 9, 2006 1:40 PM

212 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Usability testing of user interfaces is very different than the GUI implementation
testing described in the previous section. While the latter can be thought of as the
equivalent of testing text for grammar and spelling errors, usability testing is the
equivalent of testing for poetical resonance and pathos. It involves a completely
different set of skills and is a subjective form of evaluation, because it depends on
the user population that will use the application. Results obtained in this way
should not be generalized to other situations and users outside those in the test
population.

We do not discuss usability testing in detail here – many books on this subject
exist, such as (Nielsen 1993), (Rubin 1994), or (Snyder 2003) for paper prototypes.
We do briefly discuss a practical approach to usability testing, leaving the inter-
ested reader to more specialized resources.

Usability tests are carried out with real users and using a specific number of
defined tasks. They comprise the following activities:

1. Determine the goal of the testing. Possible goals include:

– Testing the ease of understanding and ease of use of certain features.
– Verifying empirically the way real users perform specific tasks in partic-

ular situations .
– Collecting some form of data for an empirical assessment of specific GUI

aspects, such as the average time to accomplish a task, how often a critical
operation is achieved successfully, and so on.

2. Defining the user population and the user profile for the intended tests.

3. Finding suitable users that correspond to the profile, or picking representa-
tive users from the client’s organization.

4. Defining the tasks that users will perform in the testing
environment.

5. Preparing the application, or the prototype that will cover the tasks, for
usability testing, including data and other simulated support, such as remote
communication delay times.

6. Defining the boundaries of the prototype (see Figure 5.2 on page 177) and
testing the application or prototype internally before using it for usability
testing with real users.

Usability testing is important. An application that is difficult or aestheti-
cally unpleasant and punishing to use will frustrate end users and increase
the proportion who will ask for support or who will fail to complete appli-
cation tasks effectively. This can ultimately cost more than the software’s
development.

c05.fm Page 212 Thursday, March 9, 2006 1:40 PM

Usability testing of Java GUIs 213

1:39 PM 9 March 2006 c05.fm 1.0

7. Conducting usability tests with users on given tasks:

– Usability testing is a delicate form of testing. Giving guiding instructions
or letting the tester struggle fruitlessly for half an hour with a particularly
cumbersome feature can both make testing a waste of time.

– A single test usually lasts half to one hour.
– Testing consist of letting the user use the application to perform the

planned task while recording details about their experience unobtrusively.
– Special attention should be given during usability testing to issues such as

choosing the most realistic test context.
8. Collecting results from the tests, prioritizing the issues found.

9. Applying the feedback obtained. This implies modification of the GUI design
to address the most important issues discovered during testing.

Don’t forget to use some form of ‘informed consent’ agreement signed by your
users prior to testing, explaining the purpose of the tests, the amount and type of
data being collected, and other privacy concerns, such as the fact that all user data
is collected in an anonymous way.

Several different roles are involved in the creation and running of usability tests:

• Those who design the GUI, comprising some developers, and those who
created the prototype.

• Usability testers, who conduct the tests and takes notes.

• End users, the subjects of the testing.

Many problems can be isolated by the use of simple prototypes. Once spotted
during usability testing with a prototype, such problems can be tackled at an
early development stage, saving money and time. The most frequent problems
are:

• Navigation and ease of accessibility of features within the GUI.

• Lack or unsatisfactory implementation of business requirements.

• The terminology and concepts used in the application.

• Visual issues such as widget layout in form-based applications, and so on.

In the development of an experimental plug-in for Eclipse I created a special
additional plug-in to observe the user at work, producing a sequence of screen
shots that provided a record of the user’s behavior while solving the proposed
tasks. Such material, together with handwritten notes taken during the testing
sessions, is extremely precious in understanding the usability shortcomings of
the application with a specific user population.

c05.fm Page 213 Thursday, March 9, 2006 1:40 PM

214 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

5.10 JRE runtime management
This section discusses the profiling and tuning of application runtime resources,
which is an often overlooked aspect of GUI development. We discuss this topic in
this chapter because a simplified, focused form of profiling can be carried out
during iterative development, and this can save valuable time and energy in the
medium to long term, much as can continuous testing.

Performance is a concern in any non-trivial Java application. Making a Java appli-
cation perform well is a matter of design, implementation and profiling skills, as
we will see.

Introduction to profiling
Profiling an application allows a developer to glean useful metrics, such as the
memory use of a given object and the execution times of specific methods. This
can provide detailed and valuable insights into how an application is performing.
Even with a good design and the best developers, issues related to performance
or memory management can be introduced, particularly in programs that consist
of multiple layers and deep object graphs.

We introduce JRE profiling here in a general way, abstracting from the many tools
that are available for it. The general concepts can be applied to any tool. It is
important that every developer is confident with even a simple profiler, at least
for detecting blocking runtime issues early in the development process. The good
news is that profiling for desktop application GUIs is easier than profiling server
applications, and after a little practice results will be easy to achieve.

There are two main approaches to profiling:

• Preemptive. Profiling is done to prevent problems occurring. We want to keep
preemptive profiling as simple and cheap as possible, because if it becomes
too difficult we will abandon it. For this reason preemptive profiling should
be fully automated and as rapid as possible.

• A posteriori. This is done after something wrong is discovered in an applica-
tion and we need to understand the problem. Usually it is a deeper and more
comprehensive analysis than preemptive profiling, and it is performed
manually by expert developers.

Developers usually discover profiling when a problem is found in the application,
and this often happens close to the release deadline – or even later – when inte-
gration tests are run extensively. This can result in quick and dirty solutions that
might spoil an otherwise carefully thought-out design.

The JRE provides a standard interface for profiling agents, JVMTI. The old
profiling interface (JVMPI) is supported only in Java 1.5. Both these interfaces
are native (through JNI) and provide a two-way interaction with the JRE.

c05.fm Page 214 Thursday, March 9, 2006 1:40 PM

JRE runtime management 215

1:39 PM 9 March 2006 c05.fm 1.0

Systemic and application-level concerns

Measuring, inspecting, and acting on threads and JRE runtime memory allocation
is different than working with GUI events and widgets’ data models. Using a
debugger and executing tests are application-level activities, while profiling oper-
ates at the ‘systemic’ level. Systemic is a concept borrowed from biology, and is
used to indicate something relating to or affecting an entire living organism or one
of its subsystems. To make an analogy with newspaper editing, when we perform
tests of any type, it’s similar to editing an article for grammar, while when we do
profiling, it’s like examining the paper on which the newspaper is printed.

It can be hard to track a problem from its systemic, low-level effects back to its
application-level causes. For example, an improper use of the GUI event queue can
cause unnecessary production of GUI events, which will in turn appear at a
systemic level as an excessive thread overhead, or in some cases thread contention.

Luckily, Java technology allows for fairly transparent access to the JRE’s inner
workings, allowing developers to inspect the fine-grained detail of runtime
objects, threads, and resources.

Profiling techniques

Two main techniques exist for inspecting runtime performance in Java code,
which are often used together:

• Bytecode instrumentation, also known as ‘bytecode injection’ or ‘bytecode
insertion.’ This technique transparently modifies the .class bytecode and
inserts special code to capture events like method entry, method exit, object
allocation, and object freeing, while the code is executing.

• Profiling agent sampling. The JRE-native interface to profiling agents allows
for interactions with a running JRE. Examples of such interactions are
querying for current threads and their status, obtaining a memory heap
dump, or invoking the garbage collector.

At the application level we don’t have to know how these features are accom-
plished when we use a profiling tool.

Profiling can also be used for understanding the working mechanism of
portions of an application whose source code cannot be accessed, or that it is
extremely hard to understand. This is often the case with third-party libraries
or with large and tangled code bases. In this cases it can be useful to inject
special data into the application that has a recognizable pattern, and track its
transit inside the application at the systemic level, much as chemical or radio-
active tracers are used in medicine. When code is truly obfuscated, however,
even this technique can prove ineffective.

c05.fm Page 215 Thursday, March 9, 2006 1:40 PM

216 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Common problems

A number of problems can be detected by profiling, discussed in the following
subsections.

Memory leaks

Memory leaks are characterized by an unstable memory allocation that will even-
tually halt the JRE with a OutOfMemoryException error. Memory leaks are
characterized by the following equivalent effects:

• The heap decreases after every garbage collector (GC) invocation: the
average heap size appears graphically as a downward linear graph. The
steepness of this graph reveals the rate of memory leaking after each GC
invocation – see Figure 5.21 below.

• On average the GC successfully discards fewer and fewer objects at every
invocation.

As Figure 5.21 shows, the free memory heap size in a Java application should
oscillate around an average value, which can be roughly shown as a straight line.
The application execution will create new objects, while the garbage collector will
periodically remove those that are no longer referenced. In the case of a memory
leak, the average heap size appears as rising graph.

The greater the slope of this graph, the easier it is to isolate the location of the
problem at the application level. This happens both because it is easier to notice
large changes in time, and also because for a developer it is easier to spot differ-
ences to other object allocation trends that remain roughly constant.

The strategy for finding memory leaks is similar to the strategy used for finding
other performance problems. Start from the effects and backtrack, from the
invoked method to the method invoking it, and so on, until the source of the
problem is detected. Most profiling tools have special performance data view to
make problem detection easier.

Figure 5.21 JRE heap memory allocation profiles

c05.fm Page 216 Thursday, March 9, 2006 1:40 PM

JRE runtime management 217

1:39 PM 9 March 2006 c05.fm 1.0

Typical occasions when memory leaks can occur in desktop application GUIs
include screen disposal that is not performed thoroughly by means of an explicit
disposeResources() method. This is specially true of Swing applications, as
many developers refuse to write such methods, convinced that resource disposal
is performed automatically by the library4.

Consider the case in which you have an Observer instance registered to a
Subject, for example a subclass of Observable. Now you dispose of the screen,
which is perhaps implemented as an SWT Dialog. The Observer instance does
not get disposed, because a reference to it is kept into the Subject‘s list of
listeners.

Another common situation is that in which some utility class such as the help
manager is used, and we register an object contained in a screen to such a utility
class – for example, through JavaHelp’s CSH.setHelpIDString(widget1,
"widget id"); method. This reference now keeps the object alive, as well as all
other objects it refers to within the disposed screen.

CPU hot-spots

Profiling can help you to identify methods that consume the most CPU execution
time5. This is achieved by isolating the points in the code where the program
spends most time, starting from the effects – the location where the time hot-spot
is detected – and backtracking from method to method, starting from the method

OutOfMemoryException errors can be thrown for reasons other than memory
leaks. An infinite recursion loop, or just too small a heap size, can exhaust the
JRE’s available memory.

4. This is true only as far as graphics resources are concerned, and provided that developers
follow common use patterns.

Sometimes it can be time-consuming to track down the location of a perfor-
mance problem. It may be the case that a memory leak is so negligible that you
would need hours of interaction to spot the cause of the problem. To speed up
the detection process, you can artificially exaggerate the problem. In the case
of memory leaks caused by an incorrect resource deallocation, for example, it
might be useful when working with Swing to install a Look and Feel with very
memory-expensive graphics and resource consumption, so that after just a few
interactions you can spot easily where the problem lies.

5. Generic execution time also includes other running threads and the time resources
consumed by the profiler process itself. As a first approximation, they can be thought of as
equal.

c05.fm Page 217 Thursday, March 9, 2006 1:40 PM

218 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

currently executing to the one that invoked it, and so on, to detect where the
problem lies.

Threading issues

Threads that are competing for locks exhibit the phenomenon of thread conten-
tion. Luckily, a careful design and implementation will prevent this sort of issue
in Java GUI code. Desktop application GUIs in Java are usually built on a simple
single-thread scheme, as adopted by Swing and SWT. Simple design criteria
ensure no threading issues as long as some basic rules are observed.

In Swing applications, for example, two main rules shape thread design:

• Manipulate Swing components – that is, invoke methods on Swing widgets –
only from the event dispatch thread (EDT). This is because JFC/Swing is not
thread safe, contrary to AWT.

• Lengthy tasks should not be performed on the event dispatch thread,
because this will freeze the whole application. Instead, use the SwingWorker
class to fork a new thread, allowing the application to remain responsive.
Return to the EDT only when the results from longer processes are available.

Access to the EDT is achieved by means of the SwingUtilities.invokeLater()
method. Too many such method invocations can hinder performance. The Swing-
Worker class supports the coalescing of Runnables – that is, many small Runnable
instances merged into one – to ease this problem. Simple test classes can verify
automatically that all widget manipulation is performed within the EDT6, and
that the EDT is not clogged by too many Runnables. For example, you could peri-
odically create a Runnable to be inserted in the EDT that measures the elapsed
time for its execution since its insertion into the EDT.

Thread problems with SWT are immediately obvious – in contrast to Swing, SWT
does not allow widget manipulation outside the EDT at all: instead, a runtime
exception is thrown. In cases in which data from another thread needs to be
provided to a SWT widget, the method display.asyncExec() provides a similar
function to Swing’s invokeLater(), allowing a separate thread to communicate
with widgets.

Garbage collector activity

Excessive garbage collector (GC) activity should be a primary concern when opti-
mizing performance. An application may exhibit excessive object creation or
object retention due to bad design. This will cause the GC to be launched more

6. See for example the Spin project at http://spin.sourceforge.net/.

c05.fm Page 218 Thursday, March 9, 2006 1:40 PM

JRE runtime management 219

1:39 PM 9 March 2006 c05.fm 1.0

frequently than it should, slowing the application’s execution and thus its interac-
tion with the user. The following situations can pose an excessive burden on the
GC:

• Excessive object turnaround. Creating too many short-lived objects will cause
the GC to be invoked more often than needed. This is the case in a loop that
creates many temporary objects, for example.

• Excessive object retention. Storing objects that are no longer needed reduces the
available memory and thus forces more GC invocations.

In interactive GUIs, excessive GC activity may affect the application’s responsive-
ness. Imagine that you are using an application that occasionally and
unpredictably freezes for few seconds, then returns to normal responsiveness. This
is very frustrating. A reason for this bumpy type of interaction could be an exces-
sive heap size, requiring much time to parse during GC activity, or some other
form of poor GC tuning.

In tuning the GC for interactive GUIs, the focus is usually on minimizing pauses –
the times when an application appears unresponsive because garbage collection
is occurring – instead of maximizing throughput – the percentage of total time not
spent in garbage collection, averaged over long periods.

J2SE 1.5, differently than 1.4, chooses the GC algorithm automatically depending
on the type of machine on which the application will run. For more information
about JRE’s GC tuning, read the excellent Sun documentation for the J2SE version
of interest.

Continuous profiling

Continuous profiling is an automated, simplified version of application profiling
that focuses on isolating the most serious systemic problems as early as possible,
such as:

• Memory leaks

• Thread deadlocks and contentions

In enterprise applications and rich clients by far the predominant source of
latency and lack of responsiveness is caused by remote communication and
the way it is designed. No matter how well the work of the garbage collector
is streamlined, or how well local threads handle complex operations on the
client, the latency of remote communication is almost always orders of magni-
tude greater than these client-side enhancements.

In this common case, optimizing data communication over the network will
have an enormous impact over the overall performance perceived by the end
user.

c05.fm Page 219 Thursday, March 9, 2006 1:40 PM

220 Iterative GUI Development with Java

1:39 PM 9 March 2006 c05.fm 1.0

Continuous profiling doesn’t reveal the exact line of code where the problem lies.
Instead, it generates an alarm signal for developers to investigate a serious
problem while an application is still in production, using a smaller and easier-to-
examine application. Developers will have fresher knowledge of the implementa-
tion at this stage and will be able to spot the issue more quickly than they might a
few months after product release. Finding the problem and solving it in parallel
with on-going iterative development augments the chances of providing a good
solution without a last-minute rush.

Continuous profiling demands automation, at least of input stimuli, to emulate
end-user interaction. At least two main scenarios must be simulated in an auto-
matic and repeatable fashion: stress and average use of the application. These tests
are applied to the application and appropriate performance measurements –
elapsed time, available memory after a GC invocation – are verified. When using
JUnit, for example, JUnitPerf, a collection of specialized test decorators, can be
used to measure performance automatically.

Premature optimization is the root of all evil7

Continuous profiling should focus only on isolating systemic problems that may
seriously hinder the application, or stop its execution completely. Any further
optimization should be postponed to a posteriori profiling sessions, if any. This
ensures that the application will work well without last-minute nasty surprises,
and without wasting precious time optimizing code that may later be heavily
modified or discarded.

A posteriori profiling

This is the commonest form of profiling, performed when a serious, blocking
problem is threatening development and it needs to be isolated and fixed, usually
in a short time-frame. Common issues for this kind of profiling are:

• Finding the slowest methods. Optimizing performance is a frequent theme in
Java GUIs, especially in cases of non-trivial tasks and limited memory
resources. As with CPU hotspots, this is achieved by backtracking from
invoked methods to the invoking ones to discover where the bottleneck lies.

• Detecting where most garbage collection activity is concentrated. Mysterious
abnormal GC activity degrades the performance of an application, making it
almost impossible to use on some machines. The culprit is usually an area in
the code where there is excessive object creation and subsequent disposal,
possibly within a loop.

7. Despite being traditionally credited to Donald Knuth, this popular quote is of uncertain origin. Others
credit it to Edsger Dijkstra.

c05.fm Page 220 Thursday, March 9, 2006 1:40 PM

Summary 221

1:39 PM 9 March 2006 c05.fm 1.0

Several other common profiling and optimization issues can be verified during a
posteriori profiling. This is unfortunately the most common case in practice. We are
pressurized to find memory leaks and thread contentions only after they bring the
application to a halt, and in the worst possible time-frame: close to the product
release date.

A posteriori profiling is also concerned with careful fine tuning of application
performance, if necessary. This can be different than the profiling work we have
discussed previously, which is only aimed at avoiding blocking problems during
program execution.

5.11 Summary
This chapter discussed the various techniques that are collectively used when
developing desktop application GUIs iteratively using Java technology. Although
we focused on J2SE and desktop GUIs, much of the advice provided here is appli-
cable to J2ME applications as well, and, with some modifications, to Web GUIs too.

We discussed the important issue of ordering activities to provide a more practical
approach to iterative development by focusing on the most important issues first.
We then presented the different alternatives available for producing scaled-down,
inexpensive representations of real GUIs using Java technology.

We also provided an introduction to refactoring practice and testing for software
soundness and general usability, both much-needed techniques when developing
iteratively. The chapter concluded with an introduction to the often overlooked
practice of profiling for runtime resources, another useful tool for producing
sound and usable GUIs.

The next chapter delves into software design details for building professional Java
GUI applications.

A posteriori profiling often needs the data from the particular context in which
the problem surfaced in order to solve it. An interesting aspect of Java profiling
and debugging technology is the ability to perform these operations remotely
using a dedicated communication protocol. This allows developers to ‘plug
into’ a client’s JRE at a specific point during execution and inspect its current
internal state, thus studying a problem within the actual scenario that caused it.

c05.fm Page 221 Thursday, March 9, 2006 1:40 PM

1:39 PM 9 March 2006 c05.fm 1.0

c05.fm Page 222 Thursday, March 9, 2006 1:40 PM

6 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

As we saw in the first part of the book, user interface design is not a matter of taste,
or at least, shouldn’t be. On the contrary, while the exterior appearance of a GUI
should adhere to standard design guidelines, in practice the inner software design
is more or less left to the developer’s goodwill, with the tacit assumption that the
implementation is okay as long as it works.

This chapter discusses some of key issues in the implementation of Java GUIs,
such as how many closely-intertwined objects can communicate in a modular
fashion, which criteria are traditionally followed for organizing the code of
complex GUIs at design time, and how user interactions and the way the GUI
reacts to them are represented and managed. General problems are introduced
and the most effective solutions to those problems proposed. Such solutions
usually imply adopting one or more OOP design pattern and other techniques1.
The chapter organization follows the functional decomposition of the general
model introduced in Chapter 1. The chapter is structured as follows:

6.1, Revisiting the abstract model discusses various issues related to the implemen-
tation of GUIs and the abstract model presented in Chapter 1.

6.2, Content discusses common design solutions for implementing the content
layer, such as content assembly and navigation.

6.3, Business domain illustrates the main issues related to representation of the
business domain in GUIs.

6.4, Data input-output discusses general design issues concerning the data I/O
layer, data communication and code security, and the Data Transfer Object (DTO)
design pattern.

6.5, Making objects communicate introduces the Observer pattern and its variants,
and discusses the pitfalls of event-based designs and other related issues.

6.6, Separating data from views discusses the main design strategies used for sepa-
rating data from its visualization, discussing MVC and its various flavors.

1. Most of the patterns described here can be found in (Gamma et al. 1994). For a discussion
that is more specific to Java (but with a smaller selection of patterns) see for example
(Cooper 2000). GUI-specific and original patterns are also discussed.

Implementation Issues

c06.fm Page 223 Monday, March 13, 2006 1:20 PM

224 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

6.7, Interaction and control introduces the three main design strategies for imple-
menting this functional layer in Java – scattered, centralized, and explicit design.

6.8, Some design patterns for GUIs introduces other patterns and design strategies
that are useful in more than one functional layer.

6.9, GUI complexity boosters lists some implementation issues that dramatically
complicate software development for Java GUIs.

6.1 Revisiting the abstract model
Chapter 1 presented a generic, abstract GUI model, in which functionalities are
decomposed in layers, as shown in Figure 6.1.

The functional layers in the figure are:

• Business domain. The representation of the domain of interest, without refer-
ences to GUI details. This layer can be modeled using a domain-driven
approach (Evans 2004).

• Content. The ‘structure’ of the GUI: widgets, panels, windows, and naviga-
tion among different windows. Layout is also included, to ease the
understanding and manipulation of widgets.

• Data IO. The interface with the rest of the software that supports all interac-
tion with the GUI other than the user’s. This layer defines the

Figure 6.1 An abstract model decomposition

c06.fm Page 224 Monday, March 13, 2006 1:20 PM

Revisiting the abstract model 225

12:35 PM 13 March 2006 c06.fm 1.0

communication data in applications that need to exchange information with
remote servers.

• Infrastructure. Low-level support, GUI frameworks, runtime environment,
utilities.

• Interaction and control. Low-level events and control logic. This layer contains
controls such as disabling the commit button in a form when a required field
is empty. Despite being business-dependent (like any form of software) this
type of control is also generic and can be factored out as a separate layer,
leaving the domain model more focused on business logic and less on GUI
details.

• Presentation. Graphical details dependent on the given presentation tech-
nology. Pixels, colors and the like are confined in this functional layer.

Functional organization – that is, storing and organizing things depending on
their use – is a criterion we all use extensively in everyday life: for example, we
don’t look for our car keys into the fridge. This model suggests a comprehensive
organization of GUI implementations based on function, together with a minimal
organization of relationships in layers2. The main purpose of this model is to
provide a useful trade-off between generality and practicality. For example, navi-
gation is considered part of the content layer, and not of the presentation layer.
This is because it is easier to define navigation during prototyping and early
design, together with GUI content. As with any classification, the decomposition
into layers proposed in this abstract model highlights some aspects and ignores
others.

One of the most useful benefits of the model is in decoupling responsibilities. For
example, having a clearly-separated business domain layer helps when applying
all the experience and tools object-orientation has provided over the years. Anal-
ysis and design patterns, refactorings, Domain Driven Design and more become
available for non-trivial GUIs. All of this power and its related complexity may
not always be needed, of course. In such cases some of the layers can be merged,
until a unique, comprehensive ‘blob’ of presentation, data and business logic is
obtained, such as the one-layer architecture discussed in Chapter 73.

Having a general functional model also helps to move more easily between tech-
nologies. This is especially useful for the Java world, in which many competing
technologies and tools can be used interchangeably. Several libraries exist for data
binding, multithreading, or GUI testing. They can be mixed effectively as long as
a sound decoupling between different functional aspects can be enforced.

2. See Chapter 7 for a definition of a software layer.
3. Also known as the ‘Smart GUI antipattern’ (Evans 2004).

c06.fm Page 225 Monday, March 13, 2006 1:20 PM

226 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Some issues are common to all the layers of the abstract model in Figure 6.1:

• Adaptation. Desktop application GUIs adjust themselves to context data such
as the locale or the graphics resources available. From an implementation
viewpoint, these external factors work like parameters to the GUI. There are
many forms of adaptation that may affect some or all of the abstract layers in
Figure 6.1, as we will see later.

• Requirements. Requirements may apply to any aspect of the GUI and need to
be addressed explicitly throughout the software lifecycle. Some requirements
may be specific to only one functional layer, such as for example a business
rule, or cross several layers, such as details of the data handled in a given
screen.

• Testing. The various kinds of testing discussed in Chapter 5 affect all the func-
tional layers.

• Preferences and configuration data. GUIs need to accommodate a wide range of
situations. Each layer may have a set of configuration data and user prefer-
ences. Preferences are set directly by users by means of a preference panel, as
discussed in Chapter 4. An example of preference data, which mainly affects
the presentation layer, might be selection of a special look and feel for visu-
ally-impaired users. Configuration data is more implementation-oriented,
for example defining the time interval between which clients ping their
server, or the JRE memory configuration, and is set manually by users, or in
some circumstances by an administrator.

Testing the various layers

Testing follows the general model proposed in Figure 6.1. Because the content
layer is the base for the other functional layers, testing it is also useful for testing
all other layers. The infrastructure layer and its code – GUI toolkit, third-party
libraries, and so on – usually don’t need to be tested. A common approach to unit
testing is to limit testing to a functional area of interest. Depending on the layers
in Figure 6.1, different tests are possible:

• Business logic tests. Testing domain logic should be done in business logic
terms, not through the GUI. It is pointless indirection to translate
business logic tests into GUI interactions that in turn invoke business
domain objects. Client business logic tests are usually a subset of the
comprehensive test suites found on server software. Integration and accep-
tance tests will of course check all the functional layers in an application via
the GUI.

• Content tests. To perform these tests, the content layer implementation should
provide a means to access data and widget properties. As a basic facility,

c06.fm Page 226 Monday, March 13, 2006 1:20 PM

Revisiting the abstract model 227

12:35 PM 13 March 2006 c06.fm 1.0

content units such as widgets, panel and windows should be made acces-
sible, usually by means of a registry4 and unique ids.

• Data IO. Data tests are predictable and can be largely automated or gener-
ated. Some possible tests are:

– Data binding from data transfer objects (DTO) to widgets. Testing for null
values, for empty collections, and so on.

– Results of commands, especially from server to client. Client to server
testing is performed as part of interaction testing.

– Sequences of commands and other control data.

• Infrastructure. This layer is composed of support frameworks, GUI toolkits,
and other third-party libraries outside the application developer’s control.
Although it should be possible to take the infrastructure’s soundness for
granted, sometime this may not be the case. When developing for a new
release of a rich client platform, for example, or isolating the causes of some
unexpected behavior, infrastructure testing can be useful.

• Interaction and control. Trigger interactions and assessment of the results can
be performed thanks to facilities in Java GUI toolkits that simulate input and
allow widget properties to be probed. Such tests are the cornerstone of auto-
matic GUI testing. By building on them, it is possible to represent complex
interactions and define GUI acceptance tests. This kind of testing is funda-
mental in agile methodologies such as XP.

• Presentation. Presentation testing is rarely done, because presentation is more
closely related to general usability testing rather than to specific unit tests. If
graphics plays an important role in the software (such as a GUI toolkit or
some visual tool) it may make sense to provide presentation tests. Such tests
might look for expected pixel patterns in the resulting GUI, or prescribed
colors, and so on.

The principle of Single Functional Responsibility

The Single Functional Responsibility principle is a simple yet useful design tech-
nique, and its associated code documentation, that can be used in the development
of any GUI. I derived this technique from my practical experience of applying
R. Martin’s principle to GUI development (Martin 2002). This is a formulation of
the cohesion principle in designing classes, and states that a class should be
designed to have only a single responsibility.

This principle can be mapped to the functional layers in Figure 6.1 by striving,
when it is meaningful, to have classes that belong only to a single functional
layer. When this is not possible, sometimes we might apply this approach to the

4. See for example (Fowler et al. 2003).

c06.fm Page 227 Monday, March 13, 2006 1:20 PM

228 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

fine-grained level of methods as well. By designing fine-grained methods to
belong to a single functional layer, code can be kept decoupled and different
responsibilities organized by functional layer, additionally to domain-specific
responsibilities (managed by the single functional responsibility principle). This
can be seen as an addition to the general single functional responsibility principle.

A simple technique for applying this principle in code is to tag methods and
classes with metadata. One simple tagging approach is to tag the method (or class)
with the main functional layer from Figure 6.1 to which it is thought to belong.

Assigning a single functional responsibility to a method or class is a good discipline
that tends to keep code more decoupled. This is less important when adopting a
layering technique that is based on functional decomposition, as metadata tagging
becomes redundant because the functional responsibility of the class is then defined
by package or layer identity.

Suppose you are developing a widget library in which pixel spacing must comply
with specific guidelines. To test this, you could prepare a testPixelCompli-
ance() test fixture and tag it as @Presentation, meaning that you mean to test
the presentation layer:

@Presentation Public void testPixelCompliance() {

The use of metadata could enable automatic processing and other features beyond
mere code documentation, even though the main intent is to support a clean OOP
design. It’s possible to build on this approach, describing complex architecture
information with metadata and their attributes. This is discussed in Chapter 7 in
the context of evolving architectures.

Isolating presentation details

The presentation layer in the abstract model of Figure 6.1 is composed of those
graphical details that are not strictly related to content functionality, data, and
other non-graphical aspects. A common design strategy is to enforce the same type
of separation as is provided in the reference model. This is often done at the level
of infrastructure libraries and basic GUI toolkits, in that presentation details are
intrinsically extensive values (that is, they are common to all widgets and screens in
a GUI) and centralizing them in a separate implementation module eases their
application throughout the whole GUI, transparently from application code.

In particular, it is useful to isolate the implementation of the following details
from the rest of the implementation:

• High-level visual details such as graphics design (that is, the visual aspects in
a look and feel).

• Interaction behavior. Some forms of user interaction styles can be separated
from the implementation, such as whether a button is triggered by a single or

c06.fm Page 228 Monday, March 13, 2006 1:20 PM

Content 229

12:35 PM 13 March 2006 c06.fm 1.0

a double click. Although a powerful feature, it is one that is seldom used:
achieving this kind of separation would provide a complex implementation
structure that will complicate the overall implementation, providing little
practical utility.

• Fonts are an example of a presentation detail whose management is usually
defined separately from the rest of the GUI implementation, to provide sepa-
rated management and centralized access.

• Colors and color themes are usually factored out in separate modules to
provide easy customization of GUI appearance.

Separations of this type are achieved by Swing thanks to its pluggable Look and
Feel design, but SWT, AWT, and many other modern GUI toolkits also enforce
some variants of this modularization. It provides important advantages: for
example, GUI appearance can be customized independently of the application,
maybe by setting a large font in the current profile and so changing the font in all
other applications. GUI can also be made ‘skinnable’ – different visual styles can
be applied without modifying application executables, even by the user. User
preferences can be adjusted transparently to application code, which is very
useful for supporting visually- or kinetically-impaired users.

6.2 Content
This section discusses two key engineering issues for the content layer: content
assembly and screen navigation.

Content assembly

A practice common to all desktop GUIs is to place a set of widgets on screen. The
widget’s layout depends strongly on the chosen layout manager, the object that is
responsible for abstracting layout details. The positions of widgets are abstrac-
tions of real X, Y screen locations handled by the layout manager. We refer to the
procedure of preparing widgets and assembling them in a visual container to be
shown on screen as content assembly.

The simplest way to implement content assembly with OOP is to subclass a
container class (that is, panels, or windows) and provide widget initialization and
layout code in its constructor, or in another method, as in the following idiom:

panel.add(new OkCancelPanel());

An alternative way to implement content assembly is to provide factory methods
that create the required, pre-assembled panels, as in the following code:

panel.add(Factory.createOkCancelPanel());

c06.fm Page 229 Monday, March 13, 2006 1:20 PM

230 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

When there are many variants of panels, or when the application is extremely
large and complex, one can resort to a ‘little language5’ to describe the layout and
widgets involved:

panel.add(Builder.create(“btn:ok, btn:cancel”));

Content assembly is almost always a statically-defined behavior (that is, content
doesn’t change at runtime). In a few cases content assembly can be adapted to
external parameters – this is discussed in Section 6.8. For usability reasons content
assembly should be made variable at runtime only in few situations, for example
when changing the layout of widgets in reaction to some event, such as showing
advanced search features in a search dialog.

Who assembles content?

From a pure OO approach, content should be created by objects that own the corre-
sponded data and that represent the business domain. Such ‘responsible’ objects
are in charge of representing domain knowledge and also of how such information
should be represented on the screen. From a practical perspective, though,
enforcing such an approach extensively can be complex, because in following it, it
is easy to mix business logic with presentation details.

Assembler intermediaries can be called in to take care of the visual details needed
to represent domain information objects. But such intermediary objects, such as a
BankAccountPanel class that represents a BankAccount instance visually, should
be treated with care by developers, in that they carry sensitive information and are
not just a mere implementation requirement.

Content details are extremely important, because they convey essential semantic
information to users. When this information is business domain-dependent, it
should not be overlooked or, even worse, automated. Consider for example the
position of an Account number field within a bank account form. While this is
just another string in the class BankAccount, it may be the most frequently-
accessed information within the account form, and as such deserves a prominent
position within the form. It may also need some additional real-time searching
facility, assuming that users search accounts usually by their number. Other
content, conversely, obeys domain-independent rules, such as Ok and Cancel
buttons at the bottom of a dialog. Such content can be assembled automatically,
or, at least domain-independently of the rest of a screen. In this case content
assembly can be implemented as support code, separately from domain-sensitive
GUI design behavior.

5. See Domain-specific and Little languages on page 466.

c06.fm Page 230 Monday, March 13, 2006 1:20 PM

Business domain 231

12:35 PM 13 March 2006 c06.fm 1.0

Explicit navigation

Navigation, the flow of control from one window to another, is a major part of
the user experience in GUIs with many screens, such as form-based applica-
tions. It is usually hard-wired into the code, like content assembly. Navigation
behavior is usually assigned to event listeners, which invoke methods such as
actionperformed() and the like.

In a few cases, though, navigation need special attention. In cases in which user
adaptation is needed, for example if screen navigation depends upon the current
user’s role, using the Adaptation pattern will suffice, as it leads to the implemen-
tation of a suitable NavigationManager class.

In other cases, when navigation changes often, for example during development,
or in a complex navigational mapping scenario, a centralized, explicit navigation
scheme can be useful. Such a mapping of event → screen transition can be imple-
mented with a hash map, or with a more elaborate structure in which other
support information is represented together with transition rules.

6.3 Business domain
Representing domain logic within a GUI is always a tricky engineering issue. In
client–server applications, domain logic should be limited as much as possible to
the server tier. ‘Pollution’ of the GUI implementation with business code brings
classic problems such as duplication of code – the same business rule code dupli-
cated on the client and on the server – and code rigidity. On the other hand,
confining business logic to the server can transform a rich client into a dumb
HTML-like application, degrading responsiveness and overall usability. It is still
useful to isolate business-related code, because it is likely to be one of the most
volatile parts of a GUI, even for applications that don’t exhibit repetitive remote
connections, or for very simple ones.

Many solutions have been considered for implementing a business domain effec-
tively on a client application. Some of the possible strategies are:

• Including a rich domain model representation in the client application.
Usually this is a subset of the wider domain model that resides on a server
application, or is dispersed on various servers. This is the case for example
when using Web services from multiple organizations.

In the following the term business rule is used to refer to a very specific form of
domain-specific behavior in which domain logic is represented in the form of
a declarative rule suitable to be handled by rule engines or an embeddable
little language interpreter. By representing domain logic with business rules,
developers can leverage the wide literature and tools available.

c06.fm Page 231 Monday, March 13, 2006 1:20 PM

232 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

• Adopting a software architecture for separating domain logic from the rest of
the GUI implementation, as we will see in Chapter 7.

• Using an explicit representation of business rules that can interoperate with
the rest of the GUI code and that can be deployed from a server at runtime as
needed. This solution may involve the adoption of a little language, such as a
script language specialized for business logic. This is a technically non-trivial
solution that makes sense in large applications with many, mission-critical,
and dynamic business rules.

A cheaper alternative is to formalize business rules with a lightweight OOP
framework that is embeddable into the rest of the client application and
provides some form of ‘zero-deployment6’ mechanism.

• Separating business logic in packages or classes that are shared with the
server code base. This eliminates code duplication, but necessitates a new
application build and deployment to clients after changes in business rules.

• As a minimum solution, using the principle of single functional responsi-
bility to identify explicitly portions of code that are intended to capture
business behavior. This ensures simple traceability of business logic code
within the application, but alone does not enforce decoupling and
modularity.

Domain logic can creep into GUIs in unexpected ways. Suppose you have a form
that shows customers loans. Your client wants customers with a debit rate higher
than 10% of their annual income to be signaled by the GUI with a special warning
icon, and to require extra confirmation when such customer’s data is manipu-
lated. A rule isCautionCustomer() is then clearly part of the business domain
layer, even if it is used only on the client.

It is important to address explicitly the representation of business logic within the
application design. Lack of awareness can easily lead to tangled code that becomes
increasingly hard to maintain as the application evolves. For large applications it
is also important to maintain common policies among developers to keep the code
uniform and coherent.

In practical situations, some form of tolerance is often used to simplify the soft-
ware design. Defining mandatory fields7 directly in client code, for example, is a
violation of the separation between presentation and business logic, because if
such data should subsequently become no longer mandatory, the client code
would need to be modified.

6. Zero deployment, also known as ‘dynamic deployment,’ is a general term for a number of
techniques and technologies aimed at simplifying software installation and update, both
for users and for developers (Marinilli 2001).

7. Mandatory fields are those widgets that must be filled in to complete data entry in a form.

c06.fm Page 232 Monday, March 13, 2006 1:20 PM

Data input-output 233

12:35 PM 13 March 2006 c06.fm 1.0

6.4 Data input-output
Data IO is the conceptual layer that defines all possible interactions of an applica-
tion with software external to the GUI. Depending on the application, interaction
might be with a local database, with a remote server, or with a set of Web services.
Figure 6.2 shows such a situation.

The main benefit of a well-thought-out data IO layer is the decoupling of the GUI
from the rest of the system. This provides many benefits, such as clear conceptual
and practical borders, technology independency, and greater flexibility, but also
affect the whole application. Data IO is often overlooked as a detail, ‘backyard’
facility. But GUI performance, even GUI navigation and structure8, depend directly
on the data IO layer.

A good design for this layer should always consider a comprehensive data IO
design strategy. For example, how will external communication evolve, and what
will future requirements be? What’s the driving force behind IO? Typical design
criteria could be performance, flexibility, security, and interoperability.

A comprehensive data IO design strategy

While approaching the design of the data IO layer it is a good idea to work out an
explicit design strategy. The main design criteria are:

• Performance. If the runtime responsiveness of a client–server application is a
requirement, then DTO structure and the serialization format must be chosen
carefully.

• Flexibility. Allow for ease of modification.

8. For example, windows are often mapped directly to DTOs.

Figure 6.2 Interacting with external software

c06.fm Page 233 Monday, March 13, 2006 1:20 PM

234 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

• Technology independence. If independence from technology is required, the
data IO layer should be designed accordingly. A common case is the ability
to provide different presentation technologies for the same application cost-
effectively. Depending on the type of technology, this can be achieved with
various levels of reuse. A Web application and a rich client, for example, can
share DTO and service information, such as commands and responses, while
such sharing may be less for a J2ME applet, which might need much custom
DTO. Designing DTO explicitly with flexible reuse in mind may be
worthwhile.

• Security. Even if communication protocols provide authentication and secu-
rity, it is always important to think about security up-front for security-
sensitive applications.

• Network topology. Particular network topologies might favor some form of
DTO structure rather than others. As a basic example, for communication
performed with network portions using unreliable protocols/connections,
small and simple DTOs should be designed.

• Scalability. An application deployed on a large number of clients, or exhib-
iting peak-like use patterns – say several thousands of users submitting
transactions at the same time – should have a specific DTO design.

• Interoperability. Will the application provide its communication format to
others?

• Infrastructure services such as security and authentication. These services are
provided ‘for free’ by the underlying technology and should be taken into
consideration as part of a data IO design strategy. Is there really a need to
provide a home-grown, custom ‘ping’ protocol facility when adopting HTTP,
for example?

It is good practice to focus only one main criterion. This will drive a clearer design
and avoid dangerously ambiguous statements such as ‘our application will perform
the fastest possible remote communication while ensuring maximum levels of inde-
pendency from data formats.’

Some design patterns

A number of design patterns are commonly used when implementing the data IO
layer. These patterns are used for designing distributed systems, such as Proxy,
and Broker. This section discusses the Data Transfer Object pattern, because it is
specific to GUIs.

Data Transfer Objects

A Data Transfer Object (DTO) is an object used for holding business data in trans-
actions between client and server. A single method call is used to send and

c06.fm Page 234 Monday, March 13, 2006 1:20 PM

Data input-output 235

12:35 PM 13 March 2006 c06.fm 1.0

retrieve the DTO, which is passed by value. In this way DTOs are used to reduce
bandwidth: by substituting them for a number of remote calls to exchange data
between client and server, data is clustered in coarse-grained chunks. Needless to
say, DTOs should be kept as simple as possible, to speed up their translation to
other formats such as XML. For this reason, when remote communication can be
a bottleneck in an application, DTOs should contain other objects only when
strictly necessary.

Remote communication design

The way a client application communicates with the external world over the
Internet affects its user interaction style and the overall user experience. When
designing the details of communication between a client application and its server
counterpart, a number of options are available:

• Asynchronous/synchronous communication. Asynchronous communication is
preferable when the communication channel is intermittent or unreliable, as
in wireless communications, and also when synchronous communication
might take too long. Synchronous communication is used in desktop applica-
tions as well because of its familiar conceptual model, similar to method
invocation: issuing a request to the server and waiting for the response.

• Bandwidth constraints. From a bandwidth consumption viewpoint, desktop
application GUIs are a blessing when compared with Web applications, in
which all the presentation information must be sent with the data. In some
cases, however, such as for wireless devices, bandwidth can still be an impor-
tant issue. In such cases a proprietary binary format, or some form of object
serialization, can be a necessary choice over other more common protocols
such as HTTP.

• User population. Users affect the way a client–server communication channel
is designed. The number of users concurrently using the application, the
nature of the transactions, user habits, and various other details all influence
the choice of communication design.

• Scalability. If you plan to deploy a client over thousands of installations,
communication protocol should be able to cope with the likely scenario of
thousands of concurrent communications.

Multithreading issues aren’t considered here, as they are taken for granted.

Most of the time client–server communication will take advantage of the HTTP
protocol, especially for desktop applications. HTTP is extremely useful in that it
shields developers from a whole array of network-related issues, such as avoiding
additional communication ports, proxies, and firewall administration. Most impor-
tant of all, though, is its ubiquity.

c06.fm Page 235 Monday, March 13, 2006 1:20 PM

236 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Seamless deployment

Some form of remote connection is needed to install an application and keep it up-
to-date, as this feature is now expected. CD ROMs or other physical means are
usually expensive to create and distribute when compared with on-line deploy-
ment, and in a world of continuous releases, are useful only for major installations.

Seamless deployment, the ability to install an application directly from the
Internet and update it as required during its lifecycle, is a must for modern
desktop applications. In this book we treat it as a basic infrastructure service, such
as fresh water or electricity. Without powerful and seamless deployment support,
modern client applications could not exist. Such a feature can be achieved with a
variety of technologies:

• OS-dependent ones like those provided by Microsoft on Windows machines.

• Fully Java-based ones, such as Java Web Start and JNLP.

• The Eclipse deployment facility (with a different feature set).

• On-line installer files.

What is important is that the installation is as automated as possible, even though
for first-time Java users this will mean downloading JRE’s 7 MB-plus and that,
after installation, the deployed clients can be controlled remotely for the provision
of updates9. Java technology also provides remote debugging and profiling, so
that the idea of ‘standalone clients, remotely connectable’ is now largely obsolete.

Familiarity with these new technologies is important, as they affect the way the
application is built and conceived, and affect the user’s perception of the software.
For example, they allow business domain code on the client tier to be updated
seamlessly and inexpensively as required, or additional functionalities installed
while the application is running.

Security issues

Security is seldom considered at the start of design when developing desktop
application GUIs. Usually there is more to security than a secure transmission
channel. An important part of security for client applications is ensuring the
authenticity of the other party – clients to trust their servers, servers to authenti-
cate clients.

Desktop application GUIs need to add another link to this chain of authenticated
transactions: the user. The mechanism of user name and password is a widely-used
form of authentication. Authentication mechanisms are needed for applications

9. See (Marinilli 2001) for a general discussion of Java deployment, even if slightly out of date
for some technologies.

c06.fm Page 236 Monday, March 13, 2006 1:20 PM

Data input-output 237

12:35 PM 13 March 2006 c06.fm 1.0

that transfer sensitive data to external entities, and also for accessing local resources.
For example, a security XML file might be stored in one of the application’s JAR files
and used for collecting the addresses of trustworthy servers. Ensuring that it is
never tampered with and fake (and dangerous) addresses inserted is vital.

Fortunately, security is addressed at various levels in all the technologies on
which Java applications rely. HTTPS can be used to ensure secure communication
channels, while fine-grained Java security policies or signed JAR files can be used
for almost any aspect of the Java platform, or for local resources authentication.

Given the additional complexity that such technologies pose to development,
developers often postpone these aspects to subsequent releases, even if the required
details can be added relatively easily to the build environment, such as automati-
cally signing sensitive files with certificates, and obfuscating executable code.

When using iterative development on a project on which security is a major issue,
security should be implemented from the initial releases10.

The following high-level steps are involved in securing desktop application GUIs:

1. Identify sensitive assets within the application.
2. Create a security architecture that considers security throughout the whole

software lifecycle.
3. Detect and document possible vulnerabilities. This usually implies the enti-

ties shown in Figure 6.3.
4. Assess the risks and plan a risk strategy.

10. See Chapter 11, Security tools on page 412.

Figure 6.3 Securing communication

c06.fm Page 237 Monday, March 13, 2006 1:20 PM

238 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

How users perceive security and privacy impacts their experience of an applica-
tion as well. Such a perception is not limited to the GUI. This is a large topic that
goes far beyond the scope of implementation issues.

One thing has been taken for granted so far – that the code base of the application,
the .class binaries stuffed into the JAR files installed on the local machine, is
safe. Unless you actively take care of this issue, the chances are that your execut-
able code is absolutely open to all sort of attacks and malicious behavior. The very
first step in securing an application at all levels therefore lies in securing its bina-
ries first.

Securing the code base

Java code can be decompiled very easily. This exposes not only your intellectual
property, algorithms, and architecture, but also the management of license keys,
where an application is distributed with some form of license control, and virtually
any other aspect of the application, including encrypted remote communication
and authentication protocols.

Using a good code obfuscator11 is not enough, because a good protection strategy
begins with the design of the code itself. There might for example be situations in
which you want to leave some classes open to your users, maybe because they are
supposed to extend or interact with them, or times when you rely on class names
for some reason, such as logging a class name along with an error message. In
such common situations obfuscation cannot be a last-minute matter, but should
be an integral part of the whole design.

Securing the code base goes beyond obfuscation to target the way an API can be
exposed to malicious eyes, or unforeseen breaches left open through inattention.
Imagine for example what could be extracted from a running application with a
debugger.

In most cases, perhaps, nobody would be interested in your code, so a standard
security policy would be fine – and always better than nothing. In cases in which
security is an issue, because your code contains some secret algorithm, or just
because competitors would love to see how you have implemented a specific
feature, you need to resort to a thoughtful security strategy to protect your code
base.

Such a strategy should focus on sensitive Java packages – those that need to be
absolutely secure – and also on other code with a lesser security priority. The
signature of methods and the structure of classes belonging to these sensitive

11. Chapter 11 describes a selection of available tools.

c06.fm Page 238 Monday, March 13, 2006 1:20 PM

Making objects communicate 239

12:35 PM 13 March 2006 c06.fm 1.0

packages need to be planned explicitly and carefully designed, to expose the least
possible information to malicious eyes.

The default approach to security is to include obfuscation in the build environ-
ment as a routine task, even if it is limited only to some packages, together with
unit testing and continuous profiling.

6.5 Making objects communicate
This section focuses on a foundational aspect of GUIs implemented with OOP: the
basic communication infrastructure as implemented with event-based communi-
cation mechanisms.

The following sections discuss the various OOP implementations of event-based
communication that are part of the Interaction layer in the abstract GUI model
shown in Figure 6.1 on page 224. Such implementations are not perfect, as they
suffer from typical OOP shortcomings, such as too low a level of representation
and an excessive cognitive burden on developers12. They are nevertheless one of
the most successful applications of OOP to practical software engineering.

The event-driven object communication mechanism is a cornerstone of modern
OOP GUI implementations. We first introduce the Observer pattern, then, after
looking at some uses of its concepts in Java GUI technology, conclude by discussing
two conflicting forces in any software design, object communication and decou-
pling, from a software design viewpoint.

The following section refers to OOP design patterns. A design pattern describes
a proven solution to a common design problem, emphasizing the context of the
problem and the consequences of the proposed solution. OOP design patterns
have a number of benefits:

i. They are proven designs: they are the results of the experience, knowledge,
and insights of developers who have successfully used these patterns in their
own work.

ii. They are reusable: when a problem recurs, there is no need to invent a new
solution.

iii. They are expressive: design patterns provide a common vocabulary of solu-
tions that can be used to describe complex systems succinctly.

12. These shortcomings become significant in medium-sized and large systems with complex
designs. A cognitive abstraction effort is often needed to mentally visualize and to correctly
manipulate abstract concepts such as events from just reading the source code or the avail-
able documentation.

c06.fm Page 239 Monday, March 13, 2006 1:20 PM

240 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

iv. Design patterns reduce the time for designing, describing, and understand-
ing software. Clearly, wisely applying design patterns helps in writing better
software, but it does not guarantee software quality.

The Observer pattern

GUI implementations typically suffer from the problem of trying to make many
loosely-coupled classes communicate. The Observer pattern defines a one-to-
many communication method by means of a publish-and-subscribe mechanism.
Objects that are interested in changes in a source object’s state, referred to as
observers or listeners13, register for later notification by subscribing to the source
object’s changes. Later, when the source changes – for example, if a new item is
added to a collection – all its registered observers are notified. The source object
does this by invoking a conventional method on each of the observers, passing a
representation of the given event as a parameter.

Note that it is the source object that is responsible for triggering the notification
event, by scanning its list of registered observer instances and invoking the
method associated with the given event on each of them.

Although many possible variants of this pattern are possible, we will focus on the
scheme shown in Figure 6.4.

13. Both terms are in common use, and we use them here as synonyms.

Figure 6.4 The Observer design pattern

c06.fm Page 240 Monday, March 13, 2006 1:20 PM

Making objects communicate 241

12:35 PM 13 March 2006 c06.fm 1.0

Figure 6.5 shows an example of the runtime behavior of an example of the
Observer pattern represented as a sequence diagram.

Each event can be described by an object that encapsulates useful information
about what happened, typically the event source and other event-dependent data.
Each source object can have multiple observers registered on it in a one-to-many
communication mechanism that is defined at runtime by observers subscribing to
the source object. Like any modern high-level GUI toolkit, the Swing library
makes extensive use of specialized events – that is, specialized classes that handle
particular kinds of events, such as KeyEvent, ListSelectionEvent, CaretEvent,
and so on. SWT also uses an additional low-level simplified event representation.

The listener class needs to provide the related methods for handling the event, for
example using Swing events:

public class ListenerClass implements ActionListener

Any instance listenerClass1 of the listener class registers itself with the event
source, for example:

eventSource1.addActionListener(listenerClass1);

Figure 6.5 An example of runtime execution of the Observer design pattern

c06.fm Page 241 Monday, March 13, 2006 1:20 PM

242 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

This design is an example of another useful strategy in OOP design, that of
favoring object composition over class inheritance. For example, compare the
difference between using object composition instead of subclassing when defining
the action triggered by a button widget. In the case of object composition, you will
be setting an action listener object (that is, an Adapter object implementing the
ActionListener interface) while in the other case you would be obliged to
extend the JButton class. Clearly the first approach is much more versatile and
flexible.

The event-based approach is widely used in GUIs, because it provides various
benefits:

• It is simple to understand and use, while general enough to accommodate a
large number of practical cases.

• It implements a mechanism of broadcast communication. Observer objects
need to adopt the event description defined at design time (the classes
defining the event), so that source objects don’t have to know anything about
their observers apart from a reference to each of them.

• Observers don’t need to know anything about each other, and in practice
they don’t. This minimizes the visibility references among objects, although
this could be a problem in some cases, because of reduced compile–time
dependencies between different parts of a program.

• It increases extensibility and encourages code reuse, while easing the main-
tainability of code.

• It makes the coupling between source and observer object instances more
abstract.

Perhaps the greatest shortcoming of event-based mechanisms regards the control
flow indirection they bring to code. The Observer pattern can be thought of as a
scheme in which control flow (procedural runtime execution) bounces back and
forth from the source object to all its observers whenever they invoke methods.
This implies that reading the source code alone is not enough to work out the
actual flow of a chain of events. Developers need to run a sort of simulation of
runtime execution in their heads to understand the control flow. The real situation
can be determined only through careful, time-consuming debugging. Heavy reli-
ance on event-based mechanisms makes the actual behavior of an application at
runtime hard to understand.

Swing events

The Swing framework has adopted a variation of the Observer pattern since JDK
1.1 in which listeners listen for events using the same mechanism as for Java
Beans – not surprisingly, as Swing widgets are Java Beans.

c06.fm Page 242 Monday, March 13, 2006 1:20 PM

Making objects communicate 243

12:35 PM 13 March 2006 c06.fm 1.0

Figure 6.6 shows the classes involved in this approach. Compare this with Figure
6.4, which shows the classic Observer pattern.

Given the fact that Swing widgets are also Java Beans, they may use another
event-based mechanism specific to Java Beans: PropertyChangeListener. We
will see an example of the use of this variant of the Observe pattern later in this
chapter.

SWT events

SWT’s event architecture is similar to Swing’s, although Swing-like high-level
events are implemented as a convenience for the application developer. In fact, a
low-level, simplified event mechanism is used by SWT classes for implementing
the typed events SWT event mechanism. All subclasses of the Widget class can
have an observer added to them by using the method: void addListener(int,
Listener), where the int parameter defines the event type. All available event
types are supported by constants within the SWT class (such as SWT.Selection,
SWT.Collapse, SWT.Deiconify, and the like).

Design-time class decoupling with events

Suppose you are going to develop a multi-player video game for the Java 2 Micro
Edition. The video game will show a large 2D world in which a number of entities
‘live’ and interact. Players control one of the actors through a Java-enabled wire-
less device, while some entities are controlled by the game server. Figure 6.7
shows what this might look like.

Observer

fireEvent()

Source
<<interface>>
EventXListener

eventPerformed()

Concrete
Event

EventObject

source: Object
getSource()

state: Object
getState()

addEventXListener()
removeEventXListener()
fireEvent()

<<interface>>
ConcreteEventXListener

Triggers events

eventPerformed()

This further
interface can
be an avoided

Figure 6.6 Swing events

c06.fm Page 243 Monday, March 13, 2006 1:20 PM

244 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Suppose one of the requirements of the implementation is that users should not
be forced to download newer versions of the client software from time to time to
play the game, as newer features or classes are added, as downloads might involve
expensive communication apart from normal client–server data exchange. The
code has to be designed to work with new classes added in newer versions of the
game. Older versions of the game should work with newer ones as far as possible.

This is a situation similar to the design of an OOP library, for which you design
utility classes that will be used by other programmers in the future. When you
design a reusable library, you don’t know which client class will use it, all you can
do is to try to minimize the constraints imposed on clients that will use the code.

Suppose a player runs a teddy bear instance in the video game using Version 1.0
of the code, downloaded few months ago. When it encounters another game char-
acter released in Version 1.1 two weeks ago, the code in Version 1.0 of the game
must be able to deal with it14.

The simplest and most effective solution is to define an event-based decoupling
mechanism among entities. When the teddy bear class is designed, all the possible
entities it might encounter during its lifetime, and the possible reactions, are
unknown, but what a teddy bear can ever do in the virtual world is known. By
formally defining its possible interactions with the external world by means of
Java code, you can make it available to future classes to interact with. For example,

14. This is a design issue: in fact, thanks to dynamic class loading, the J2ME client running
Version 1.0 can load the new Version 1.1 class, but without proper software design they
cannot interact.

Figure 6.7 Using design-time class decoupling through events in a J2ME application

c06.fm Page 244 Monday, March 13, 2006 1:20 PM

Making objects communicate 245

12:35 PM 13 March 2006 c06.fm 1.0

you might decide that a teddy bear instance can sleep, run, and possibly do more
in future releases. The class diagram would then be like that shown in Figure 6.8.

When an entity wants to interact with the rest of the world it will prompt an event
to interested parties – that is, it will issue a coded representation of a change in its
internal state.

You could design one or more types of event for your video game, or even a fully-
fledged hierarchy. The essential point here is about communication. Subjects
make public predefined messages to whichever instance is interested, without
having to know anything about the observers. Such event messages are published
to the rest of the world, and interested classes know how to deal with them. This
kind of communication mechanism guarantees a powerful, dynamic decoupling
among interacting classes.

When developing ad-hoc components it is common to create new, specialized
kinds of events. Extensive use of event-based communication mechanisms among
classes is demonstrated in the examples in the chapters that follow. In this chapter
the QuickText example application (Figure 6.18 on page 263) shows a simple
example of the Observer pattern at work in detail.

Event Arbitrator

Events are so useful for implementing modern GUIs that they easily become one
of the predominant aspects in the runtime execution of a Java GUI, and one of the
main sources of difficulty in understanding the actual execution of the applica-
tion. This provides an additional degree of complexity, especially for readability
and extensibility – adding a new class implies adding extra code to connect the
new class with the event mechanism.

An Event Arbitrator is a class that listens to a number of events and redirect or
manipulates them according to some objective. It is used to simplify or provide

Figure 6.8 Decoupling class interaction

c06.fm Page 245 Monday, March 13, 2006 1:20 PM

246 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

structure to the software design, enhance performance by rationalizing event
distribution instead of broadcasting to many listeners, and to centralize event
flow. An Event Arbitrator can:

• Forward events, by shunting specific events to interested parties for some
particular situation.

• Absorb events, for example for debugging purposes.

• Aggregate events, for example by aggregating low-level events into higher-
level events.

• Manipulate events to provide some useful service.

An Event Arbitrator does three things:

1. Receives events it is in charge of, called input events. It needs to register as a
observer to the objects that fire those events.

2. Arbitrates events, processing them to provide a specific feature.
3. Possibly transmit other events, or those it received, to interested parties, fol-

lowing some given organization criteria. In some cases it can also provide
some collateral effect, such as modifying global variables, as well as issuing
new events.

The most common form of Event Arbitrator works synchronously with its input
events, so that the reaction to the received input event is performed sequentially
to its reception. Other Event Arbitrators work with more sophisticated arbitration
schemes and require extra care when handling threading issues.

The following subsections discuss the most common applications of this pattern
in desktop application GUIs.

Aggregating events

A particular case of the Event Arbitrator strategy is for aggregating events from
various sources, exposing them in a simplified, centralized fashion to interested
parties15. In this case the Event Arbitrator acts as a single source of events, hiding
other detail events fired by other objects. The Arbitrator class registers for all the
detail events, so that clients need to register only with it.

Suppose we are designing an address composable unit (CU), that is, an assembly
of simple widgets that act like a unique macro-component representing addresses,
as shown in Figure 6.9. We want to hide detail events of the internal widgets and
its clients. When using the AddressCU class, other client objects only need to
register for DataChangedEvents.

15. This case is also called Event Aggregator by Martin Fowler.

c06.fm Page 246 Monday, March 13, 2006 1:20 PM

Making objects communicate 247

12:35 PM 13 March 2006 c06.fm 1.0

Aggregated events can be of the same or different types as the detail events
listened for by the Arbitrator. In this example the AddressCU works like an Event
Arbitrator and fires new high-level events, as shown in Figure 6.10.

Forwarding events over hierarchies of closely-related objects

It is often useful to organize event flow in hierarchical fashion, with a master
event listener asnd many slave listeners that receive events forwarded by the
master. This organization can be nested using the Composite pattern – that is,
the master can contain other masters. This is the case with HMVC controllers,
introduced in a later section, and with various other designs that we discuss
below.

Sometimes many domain-specific objects enclosed in a container object must be
handled in a GUI, possibly a subclass of a standard class such as a panel, or the
root of a complex text document. The container forwards events to its contained
objects, implementing a hierarchical Event Arbitrator.

Figure 6.9 The SWT Address CU

Figure 6.10 The SWT address CU as an event aggregator

c06.fm Page 247 Monday, March 13, 2006 1:20 PM

248 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

The example ad-hoc component discussed in Chapter 16 implements a 2D desktop-
like container into which items can be dragged, dropped, and manipulated by the
user. In order to achieve maximum flexibility and decoupling, the container doesn’t
know anything about the nature of the contained items apart from their basic
behavior, and forwards mouse events to them in a hierarchical fashion, thus imple-
menting an Event Arbitrator. This might also be the case in a complex CAD GUI, in
which a given scene is made up of a large number of small objects organized
following a recursive Composite structure. Container objects will behave as Event
Arbitrators on contained objects, enforcing some sort of domain-specific event-
forwarding criteria.

An important property of Event Arbitrators, and especially for hierarchical Event
Arbitrators, is that they should never allow loops in the graph induced by the
event flow. The Composite structure of a hierarchical Event Arbitrator should
form at least a direct acyclic graph (DAG), even if a simpler tree structure is much
easier to manage and fits most practical cases. In the simple tree case it’s sufficient
to avoid any cross-references among objects in the Composite structure. Having
cycles in the flow of events will of course lead to StackOverflowExceptions, as
the same event is forwarded indefinitely.

Misuses of event-based messaging

Like every good thing, you can have too much of the Observer pattern. A common
problem with the overuse of this pattern is Observer chains longer than one, for
example when an Observer A observes another Observer B that in turn observes
another object, and so on16. Control flow becomes very hard to figure out in such
situations, and unforeseen behavior is likely. In some particularly unfortunate
cases events can go into resonance – that is, an event X can cause a chain of events
in which a new event X is triggered, causing another chain of events to be fired all
over again, and so on.

In some case this incorrect behavior is not apparent from application execution,
other than users noticing weird delays in particular circumstances, and log
inspection or debugging are needed to work out what is really going on in the
application. A possible solution is to use an Event Arbitrator, although this should
be used carefully: adopting this pattern alone does not guarantee a cleaner design
or a solution to unwanted event-based side effects.

Understating event-infested code

When inspecting someone else’s code, it can be difficult to work out the actual
chains of events. I personally remember a few cases in which there was such a

16. See for example a discussion on this aspect on Martin Fowler’s Web site, http//:
www.martinfowler.com.

c06.fm Page 248 Monday, March 13, 2006 1:20 PM

Making objects communicate 249

12:35 PM 13 March 2006 c06.fm 1.0

massive use of events that fully understanding the runtime execution control flow
was very hard. In one case an event-based composable unit strategy was adopted
at a very fine level of granularity, making even the simplest local communication
a matter of event messages. With time I resorted to a simple sketch diagram while
inspecting code, and for the unfortunate reader who needs to decipher a tangled
web of events, describe it here.

Depending on the situation, you might be interested either in who fires events, or
in who is observing them. A simple variant of the standard UML sequence
diagram can help to identify potential hot-spots in event chains. This diagram can
be drawn by hand as you navigate the code, and can be applied to other event-
based designs as well, such as those discussed in the next section.

Start by inspecting the code to see which objects register for changes in a source/
subject. A simplified version of this diagram that takes into account only classes,
and not objects, is much simpler to draw, but nevertheless useful. Whenever you
find an object observing another object, draw an arrow from the subject to the
observer representing the change propagation event, as shown in Figure 6.11.

Figure 6.11 Informally describing events

c06.fm Page 249 Monday, March 13, 2006 1:20 PM

250 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

This diagram17 represents an object of class XClass that has two observers for a
property P. Instances are invoked whenever P changes the listener methods in
YClass and ZClass. An instance of YClass is also observed by an instance of
WClass.

At the end of the code inspection this diagram will tell you roughly the possible
chains of events in the code. The next step is to individuate those classes that have
two or more boxes – for example, YClass and XClass in Figure 6.8. Focus your
attention on these classes, for example adding debug breakpoints, because they
are likely candidates for odd behavior.

You may think that problems arise only from combinations of ingoing events and
outgoing events, such as YClass in Figure 6.8. This is not always the case,
however – in some situations a subject that is common to more than one set of
observers can create unexpected problems as well, like XClass in Figure 6.8. For
example, this can arise when a change to a property A in a class also modifies
another property B, and these properties are observed by two different sets of
observers with a common class C. This could lead to unexpected side effects in C
when the observer is notified.

A good guideline is to have chains of observers no longer than one, to avoid such
possible problems and to keep runtime behavior easily understandable. For
complex event schemes, consider using one or more Event Arbitrators to simplify
and handle the resulting complexity, carefully designing the desired event flow.

Alternatives to event-based communication mechanisms

Message-oriented approaches are an alternative to event-based communication.
Such approaches focus on sending messages asynchronously on a common
message bus, where interested parties register to receive messages without any
knowledge of who could be sending them. Event-based communication instead
obliges the connection of the source – the object that fires the event – with the
destination to be established explicitly.

How does this affect the design of client GUIs, with communications performed
on the same machine and within the same JVM? Message-based communication
for desktop application GUIs is most useful for interaction in-the-large, where the
problem is to have an object X be visible to an object Y, rather than as a substitute
for low-level interactions such as key presses and ‘item selected’ notifications. The
easy solution to this, although not such a nice solution from an OOP design view-
point, is to use some form of static visibility to access the required object references.

17. The diagram in Figure 6.8 is not a standard UML sequence diagram, nor does it have
similar semantics. To avoid confusion, it uses different graphical details than UML sequence
diagrams.

c06.fm Page 250 Monday, March 13, 2006 1:20 PM

Separating data from views 251

12:35 PM 13 March 2006 c06.fm 1.0

This might be done by implementing some form of object registry in which all
required objects can be located by accessing a static service or Singleton class, or
by making key objects available from a number of Singletons and then extracting
the required references from them.

To avoid this drudgery you could resort to message-based communication, or, for
the bravest, to a well thought-out OOP design – which is almost invariably the
scarcest resource in real-world, deadline-tight, fast-paced production environments.

Message-based communication can be useful at an application level, in medium
to large GUIs built by large teams for whom employing communication-specific
infrastructure code makes sense. Outside such scenarios, message-based interac-
tion is still attractive, because it provides a simple mechanism for communicating
among different classes within the same application with a level of automated
threading support. Queues usually run transparently in different threads, so that
developers can focus on sending messages via specific queues to communicate
with other classes and perform operations. The presence of a centralized bus also
makes other automatic forms of control over the messages themselves possible,
such as enabling or postponing actions. This approach appears natural to devel-
opers used to working with server-based messaging technologies.

Despite the possible benefits of message-based communication systems, they are
not so popular among Java GUI developers. Technologies such as JMS18 exist to
enable message-based communication in distributed heterogeneous environ-
ments, but they are beyond the scope of this discussion.

As with any technology, message-based communication can be misused, bloating
the volume of messages published on the message bus, or even worse, using it as
a short-cut for serious design effort.

6.6 Separating data from views
GUI implementations usually need to define many classes and other support
resources. As the complexity of the GUI increases, the code size increases dramat-
ically. Therefore some code organization, usually at class or package level, is
needed in all but the most trivial cases. The most common organizational criterion
focuses on the separation between data and presentation.

This section introduces the Model-View-Controller (MVC) pattern (Buschmann et
al. 1996), a popular design that enforces the separation of presentation and busi-
ness code. In reality the MVC approach has proved far from perfect, as witnessed
by the many variants that have been developed to try to cope with its shortcom-
ings. Nevertheless, MVC still proves a popular design strategy for GUI code.

18. Java Message Service (JMS) API

c06.fm Page 251 Monday, March 13, 2006 1:20 PM

252 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Model-View-Controller

The MVC approach builds on the Observer pattern for connecting data models and
their graphical representations (called views) by means of specialized entities
called controllers. MVC was introduced and popularized by Smalltalk (Burbeck
1992) along with the Observer pattern. A variation of MVC has been adopted in
the Swing library for separating business data from its GUI representations19.

The model is the part that represents the state and the abstract data of the given
component, separately from its visual representation. The model oversees the
state and manipulates it as requested from outside. Following the Observer
pattern, the model has no specific knowledge of either its controllers or its views.
The view is thought of as being the graphical representation of the model’s data.
It handles the visual display of the state represented by the model. The controller
manages user interaction with the model, providing the mechanism by which
changes are made to the model.

In the Swing implementation of MVC, both the controller and the view are gath-
ered in the same class, the user interface component, while the model is
implemented as a separate entity, thus enforcing the separation between presen-
tation and business logic. Each controller–view pair is associated with only one
model. However a particular model can have many controller–view pairs.

The MVC design is also widely used for Web-based architectures. A simpler and
less sophisticated version of MVC is used for server-side Web GUIs, briefly
mentioned in Chapter 9.

Adopting an MVC approach provides the following major benefits:

• Design clarity. The list of a model’s public methods describes a model’s
behavior clearly. This trait makes the entire program easier to implement and
maintain.

• Design modularity. New types of views and/or clients can be created and
plugged into existing models at design time just by adding new view and
controller classes. MVC works well even when only enhancing existing
classes – that is, when supporting incremental development. Controller and
view implementations can be modified independently from the model.

19. Following SWT’s design philosophy of being lightweight and performance-driven, there is
no built-in support for MVC, which is delegated to the JFace library.

One of the critical points in the large-scale adoption of MVC derives from the
deeply-coupled relationship of controllers with models and views. In non-
trivial scenarios controllers tend to become deeply intertwined with models
and views.

c06.fm Page 252 Monday, March 13, 2006 1:20 PM

Separating data from views 253

12:35 PM 13 March 2006 c06.fm 1.0

Older versions of views and controllers can still be used as long as a common
interface is maintained.

• Multiple concurrent views on the same model. The separation of model and view
allows multiple views to use the same business data model. Views could be
even different classes, for example a tree view and a table view on the same
data model instance. Despite being one of the most interesting features of
MVC, the possibility of many concurrent views on the same model is rarely
used in common GUIs.

Hierarchical MVC (HMVC)

The HMVC pattern decomposes the client tier into a hierarchy of parent-child
MVC layers. The repetitive application of this pattern allows for structured archi-
tecture, as shown in Figure 6.12.

Views hide the presentation technology from the model and the controller. GUI-
related events are intercepted within the view, and eventually a request is made
to the related controller in the form of an HMVC event. If the controller cannot
handle the request on its own – each controller is responsible only for its own view
and controller – it dispatches the request to its parent controller20, and so on
recursively.

Controller

Model View

MVC Triad

Controller

Model View

MVC Triad

Controller

Model View

MVC Triad

Controller

Model View

MVC Triad

Figure 6.12 The HMVC pattern

20. Following the Chain of Responsibility design pattern.

c06.fm Page 253 Monday, March 13, 2006 1:20 PM

254 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

This hierarchical structure relies on controllers, which are in charge of responding
to HMVC events for navigation, such as changing screens and so on, and updating
visual data.

HMVC, when applied to non-trivial applications, adds additional complexity to
the implementation in the form of burdensome machinery – events and messages
are exchanged through dispatchmethods that follow a hierarchical structure – and
cognitive workload, as it can be hard to track down bugs and work out the current
behavior of an application with many nested HMVC composable units. As a
result, HMVC is not one of the most used variants of MVC for client desktop
application GUIs.

Model View Presenter (MVP)

Model View Presenter (MVP) is a variant of MVC that attempts to loosen the
coupling between the view and both the model and the controller in classic MVC.
This tight relationship complicates MVC adoption and makes it hard to use in
practice, resulting in MVC’s various variants and workarounds.

In the MVP approach the actors have the following characteristics:

• The view in MVP is mainly responsible for graphical output. It also performs
user-input gathering of low-level events like keystrokes and mouse events
that are redirected to the presenter via events. Views communicate with their
model via events. This limited responsibility of views in MVP makes this
approach useful for reducing the amount of behavior to be tested without the
view – and hence without testing through widgets and GUI toolkit classes.
This in turn allows the testing to be accomplished without GUI testing tools,
possibly using simpler unit testing tools.

• The presenter holds direct references to both the view and the model and is
responsible for manipulating the view and the model to keep them in synch.
The presenter does this by reacting to the events forwarded by the view
itself.

• The model is similar to the classic MVC model. It is a business domain class
that has no connection with GUI-related code, and also no connection with
the presenter.

MVP experienced a new popularity with the advent of Test-driven development
(TDD) and test-intensive practices, where the view is kept as simple as possible so
that the application code can be tested, without full coverage, by writing standard
unit tests focused only on the presenter and model.

Figure 6.13 shows the differences between MVC and MVP designs. Dashed lines
represent event notifications, while solid lines denote object messaging (that is,
direct method invocation).

c06.fm Page 254 Monday, March 13, 2006 1:20 PM

Separating data from views 255

12:35 PM 13 March 2006 c06.fm 1.0

Concluding notes on MVC

The MVC design strategy enjoys a wide popularity among developers and in
GUI-related frameworks, especially for Web user interfaces, where the level of
interactivity and the overall complexity are lower than desktop application GUIs.
One might wonder why it has been so successful, given that it produced a number
of secondary issues that the various MVC variants have been created to solve. A
simple answer is that MVC is an intuitive, practically-proven arrangement that
works better than alternative solutions in real cases.

MVC, or one of its many variants, is already provided by all major presentation
technologies and frameworks: adding another MVC layer on top of the one
provided by the toolkit (as in Swing for example) usually adds complexity
without providing any important benefit to the design21.

In practical cases the MVC approach or one of its many variants, used alone,
provides a minimal, localized decoupling between presentation and non-
presentation code. The kind of decoupling provided by MVC may be improved
by adopting some other complementary approach, such as a layering scheme22

or a composable unit structure. This is especially true for non-trivial GUIs, when
the implementation architecture is more important.

MVC is often used as a means of design, while it should always be treated as a
solution to a given problem – it should be used as a design means rather than a
design end. If there is no serious problem, perhaps there should be no need for its
solution, and thus no need for MVC. In other cases MVC is used as a solution to
a different problem, for example in an attempt to provide a structural organiza-
tion to a design. This is not bad in itself, but should be achieved with a more
comprehensive strategy, including layering, defining Java packages and so on,
rather than just ‘applying the MVC pattern’ to a bunch of classes.

Figure 6.13 Differences between the MVC and MVP approaches

21. This is another example of the ‘going against the flow’ antipattern mentioned at the end of
this chapter – in this case adding too much of a given solution to a design!

22. See Chapter 7.

c06.fm Page 255 Monday, March 13, 2006 1:20 PM

256 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

For more information about MVC, see (Burbeck 1992), and as an example of its
numerous variants (Potel 1996), while for some of the problems it raises and the
possible remedies, see (Reichert 2000). See (Sundsten 1998) for an article introducing
the Swing version of MVC, or (Fowler 2000b) for a comprehensive overview of
Swing’s MVC flavor.

Adapters

The flavors of MVC discussed so far employ the Observer pattern for synchro-
nizing views, and models to provide the ease of use and flexibility modern GUIs
need. This comes at the price of increased complexity, even for simple situations
in which a fully-fledged MVC architecture is not really needed.

Building such a powerful, complex, and expensive design into a basic toolkit would
force all users to employ it and to pay its price in terms of complexity and perfor-
mance. This was the dilemma faced by Eclipse’s architects when deciding how to
provide data models on top of raw SWT widgets. To avoid over-engineering the
JFace library, which provides utility features on top of SWT, including data support,
Eclipse’s architects employed a different design than MVC to separate data from
presentation – they used Adapters.

The org.eclipse.jface.viewers.Viewer class implements a general Adapter
for SWT widgets and handlers of data objects. A concrete example is the Table-
Viewer class. This class adapts an SWT table widget with a content provider object.
Such an object is responsible for providing content data, taken from a data object.
The content provider therefore acts as a mediator between the viewer and the
domain-specific data object itself.

This scheme is not a traditional MVC design as we discussed it, because it doesn’t
couple data with view – if you change the data model object, neither the viewer
nor the content provider will automatically notice the change. It is nevertheless a
simple and effective way to decouple data from presentation. It is even better than
full MVC designs, such as Swing, in this respect. In a full MVC implementation,
to have a table model for a JTable requires domain-specific data classes to extend
a Swing class or interface such as DefaultTableModel or TableModel. With the
SWT approach based on Adapters of content providers and raw widgets – called
viewers in JFace – data can be provided by any Java class, without any constraint
or dependency on SWT/JFace classes. A drawback of this simple design is that
developers are in charge of managing coherence between data objects and views.

A traditional, event-powered MVC design is of course possible using SWT and
JFace, and has been implemented in some of the standard libraries, such as the
GEF23 viewer classes.

23. The Graphical Editing Framework (GEF) is a Java library for creating ad-hoc components
on top of SWT.

c06.fm Page 256 Monday, March 13, 2006 1:20 PM

Interaction and control 257

12:35 PM 13 March 2006 c06.fm 1.0

6.7 Interaction and control
One major source of complexity in modern GUIs is the high level of interactivity
derived from sophisticated GUI designs. Features like undo/redo, or highly
responsive GUI designs, need a sound implementation architecture.

Interaction here means the explicit representation of user interactions with an
application, and the GUI’s reactions to user interactions. A very simple GUI
doesn’t need to represent user interaction explicitly, it only needs to react to
simple user input such as a button press by just executing the associated code.
More elaborated GUIs can react in more sophisticated ways, for example by trig-
gering a set of reactions throughout the user interface itself.

Control means an explicit form of management of interactions. Handling complex,
changing interaction rules during the lifetime of an application can be a major
source of architectural degradation if not addressed properly in the design from
the beginning.

Representing user actions with the Command pattern

Handling user commands is a common problem when building GUIs. This book
illustrates a number of solutions, most of them based on the Command design
pattern. Such a pattern essentially transforms requests (commands) into objects:
the request is contained within the object itself. This involves encapsulation of the
code associated with the request or, more specifically, the code that actually
performs the command.

Figure 6.14 shows the Command pattern directly instantiated for the Swing library.

Figure 6.14 The Command design pattern

c06.fm Page 257 Monday, March 13, 2006 1:20 PM

258 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

For the Swing library, the invoker can be a JMenuItem, a JButton instance, or
similar. The ConcreteCommand is the command instance that is set up by the
Client class, usually the main frame or the director. The Receiver is the class that
actually carries out the action’s execution. It implements the ActionListener
interface for Swing and its analog for JFace’s actions, implementations of
org.eclipse.jface.actions.Action.

At the price of a little additional complexity, the main benefits of using actions are:

• The whole implementation is more natural than with command code central-
ization, taking advantage of OOP polymorphism over centralized, procedural
mechanisms such as chains of conditions for executing commands.

• Behavior specific to a single command is kept logically localized within an
Action subclass.

• Undo and redo features stem naturally from this approach.
• The class organization that derives from this approach is clearer and more

systematic than that using a centralized mechanism for commands. This is
especially true for large and complex applications.

• This pattern has been officially adopted in the Java API, in both Swing24 and
SWT.

Such an approach also has some drawbacks. It produces many small classes (the
commands themselves), scattering command code among them. This implies
additional complexity that must be addressed at design time, essentially in the
form of communication between classes and overall management.

An unorthodox use of Swing actions

The Swing implementation of the Command pattern in this book make two
different uses of Swing’s Action subclasses. The difference lies in where the
command code is located.

• Those Action instances that delegate command execution to an external
class are referred to as shallow actions, acting as mere containers of data
related to the given command, such as icon, mnemonic key, command name.
These classes work like an expanded version of the action command string
used in the AWT framework, holding GUI data passively, but not the
command logic itself, which is stored somewhere else. Shallow actions do
not therefore implement the Command pattern, even if they subclass the
Action interface of the Swing library25.

• In contrast, deep actions those classes that fully implement the Command
pattern – that is, normal action classes. In this case the behavior of the

24. A brief introduction on the use of Swing actions can be found in (Davidson 2000).
25. See also the use of retargetable actions in the Eclipse framework.

c06.fm Page 258 Monday, March 13, 2006 1:20 PM

Interaction and control 259

12:35 PM 13 March 2006 c06.fm 1.0

given command is coded into the Action subclass, as the Command
pattern suggests.

The shallow use of actions has been introduced in this book only for practical
convenience. In simple GUIs, or where we don’t want to use the Command
pattern but still want to use a framework that adopts it, like Swing, it is handy to
have Action subclasses delegating the execution of their command to a central-
ized point. This is shown in the sequence diagram in Figure 6.15.

Here the actionPerformed() method merely invokes the actionPerformed()
method of the registered class. This simplistic delegation mechanism supports
only one invoked class.

An example of fully-fledged ‘deep’ actions can be seen in Chapter 16. The code
provided in Chapter 15 uses the unorthodox, shallow use of the Action class
introduced here.

Command composition

A frequent solution for making command menus available to users is to aggregate
commands hierarchically. Every object in the GUI is responsible for the commands
it supports. In an iterative sequence similar to the Chain of Responsibility pattern
(Gamma et al. 1994), commands are aggregated in pop-up menus suitable for use
in menu bars or contextual menus.

Chapter 16 contains an example of such a behavior for container objects, which
negotiate with their contained items the list of available commands to be incorpo-
rated in a common menu. This mechanism allows for maximum flexibility in an
OO way, in that every object only knows its available commands, while keeping
clearly-defined responsibilities among different classes.

Figure 6.15 Shallow actions at work

c06.fm Page 259 Monday, March 13, 2006 1:20 PM

260 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Control issues

Some common issues arise when implementing control in professional GUIs. We
have seen in the first part of the book how alert or error messages can disrupt the
usability of an application. A good GUI provides coherent metaphors and low-
level interaction rules that avoid the possibility of inconsistent interactions as far
as possible. This translates into software that constantly manages parts of the GUI
to enforce the abstract rules that govern it.

Depending on the complexity of the controls to be implemented, different design
strategies are possible:

• Scattered control. Control is implemented on a local basis, attaching observers
to the areas to control and executing reactive code as required. Control code
is scattered throughout the GUI implementation and is thus hard to main-
tain. This approach is quite simple to adopt, but is useful only for limited
control needs.

• Centralized control: the Mediator design pattern. As a rule of thumb, when more
than three objects need to be controlled in a window, we need to escalate to
another design strategy: centralizing the control behavior in one place. This
has several benefits: tangled event listeners and references derived by the
extensive adoption of the previous strategy are limited, and control is
centralized in one place. This technique scales to a non-trivial number of
controlled objects, even though references to controlled objects become a
problem, together with handling the control logic code.

• Explicit control state. When things get really complicated even the Mediator
pattern shows its limits. In these few cases, very articulated control logic can
be represented in explicit classes. These classes represent the concepts behind
the control logic and interact with the rest of the GUI. In this way screen
control state is not represented within a Mediator class, but is shared among
explicit objects.

While some control behavior strongly depends on business logic26 other control
logic is essentially domain-independent. This latter form of control can usefully
be extracted in reusable, general-purpose code. We can tell whether specific
control logic is business-dependent or not by answering the following question:
if the business rule changes, would the given control logic on the GUI change?

Distinguishing between business and non-business control rules is also useful
because it is frequently the case that changes in business rules also impact the
GUI. Separating them from the rest of the code helps maintenance and implemen-
tation clarity. Non-business control behavior rarely changes after the initial design

26. Such as data validation – see Chapter 8, Validation on page 332.

c06.fm Page 260 Monday, March 13, 2006 1:20 PM

Interaction and control 261

12:35 PM 13 March 2006 c06.fm 1.0

phase, so it can be treated differently than business-dependent controls. An
example of a non-business control might be the following: in a GUI in which users
can inspect item properties, whenever they modify data for an item and close the
property dialog, the application asks whether the modified data should be saved
or discarded. Such control can be performed automatically for any kind of item,
independently from the business domain.

When control layer behavior that comes from actuating a domain’s business logic
rule in the GUI is used extensively within an application, for example in a highly
interactive application with a formalized business domain, it can make sense to
capture this behavior in a domain-based interaction control framework.

Figure 6.16 shows examples of interaction control rules governing in an example
GUI.

Figure 6.16 Examples of GUI control rules

c06.fm Page 261 Monday, March 13, 2006 1:20 PM

262 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Such a control behavior isss the essence of any credible user interface, one that
presents sound metaphors, that needs minimal memory load on users, minimizes
errors, and so on. The Mediator design pattern is commonly used in the imple-
mentation of this layer of control.

The Mediator pattern

A Mediator object (Gamma et al. 1994) provides a common connection point,
centralizing the behavior of a number of disparate classes.

The use of the Mediator pattern in GUIs typically consists of the organization of
relationships and interactions between visual components, their data models, and
related events, all in one controller class. Such a class enforces a form of domain-
dependent logic, so is specifically tailored for a given application – that is, it
belongs to the Application layer. Figure 6.17 shows the Mediator pattern class
diagram.

The Mediator pattern is useds in many of the examples in the third part of this
book.

The AbstractDirector class represented in the UML diagram in Figure 6.18 is a
simple and limited example implementation of the general behavior of a Mediator
class used in some of the example applications.

Mediators can also work as Event Arbitrators, tidying event management for
actions and other controlled objects. This is one of the advantages of centralized
control over scattered.

Any director class manages a number of actions. Apart from keeping them coherent
(enforcing business rules on them), other possible uses are to act as an Event Arbi-
trator, releasing actions to interested classes, and also possibly taking care of
executing actions by funneling (aggregating) various ActionPerformed events in

Figure 6.17 The Mediator design pattern

c06.fm Page 262 Monday, March 13, 2006 1:20 PM

Interaction and control 263

12:35 PM 13 March 2006 c06.fm 1.0

the director’s actionPerformed() method. Such actions directly implemented by
the director usually need many references to various objects and involve a complex
web of references if they are to be executed outside the director class. This latter
arrangement can prove useful:

• In architectures in which commands are centralized at a unique point, as
could be the case when using shallow actions.

• When the nature of the action itself makes it simpler to handle this way – for
example when one action needs to manipulate other actions or other classes
that are already visible to the director.

Mediators can manage any class, not only actions. The example class in Figure 6.18
considers only actions, because in general they are the commonest case. Subclasses
can add similar functionality for other classes as well.

Thread management

Apart from control design patterns, thread management can also be considered
a form of dynamic runtime control.

Thread handling is essential for professional GUIs, and is the backbone of any inter-
action and control implementation. From Chapter 2 we know that response time is
an important parameter for the user’s perception of usability. GUIs that freeze while
executing a command, or that have unexpected concurrency problems, are unus-
able no matter how well-designed they are. As we will see later, multithreading is

Figure 6.18 The AbstractDirector class

c06.fm Page 263 Monday, March 13, 2006 1:20 PM

264 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

necessary, but not sufficient in itself, to achieve a responsive GUI. Poor object life-
cycle management, and the overhead it poses to the garbage collector, might also
induce a ‘jagged’ user experience27, even for a multithreaded GUI.

The basic issue with multithreading support in Java GUI derives from the fact that
GUI toolkits are single-threaded. This applies equally to SWT and Swing toolkits.
The underlying OS platform detects low-level GUI events and places them in the
application event queue using the toolkit’s event classes and other toolkit-specific
formats. The toolkit is acting as an Event Arbitrator, isolating a platform-specific
event model from a Java-specific one.

Multithreading is needed in several cases in GUIs:

• Most importantly, to keep the application responsive, a key characteristic
from the users’ viewpoint.

• By far I/O time is the commonest case of long-running task in client-server
applications.

• Whenever an asynchronous task must be performed, for example when a
background computation starts but the user must still be able to interact with
the GUI.

• For faster initialization. Applications can resort to a separate thread to instan-
tiate details asynchronously from the application’s start-up process.

• To better take advantage of existing and future hardware power. People
always faithfully hope that newer, more powerful hardware will magically
and dramatically speed up their applications’ performance. This is unlikely
to be the case if their GUIs keep doing all their work sequentially. Employing
multithreading wisely is an investment in higher performance on more
powerful machines.

• For object creation. Creating expensive objects in parallel with other tasks
whenever possible will enhance GUI performance and improve responsive-
ness. This use of multithreading couples with object lifecycle management,
which is the subject of a later section.

• In the general case of multiple, concurrent tasks that need to be performed
interactively, for example a memory manager thread that runs with a low
priority.

From a usability viewpoint it is important to communicate what is going on inside
the application during task execution. This is usually accomplished by displaying
progress indicators coupled, via events, to the running task thread.

27. During garbage collector activity the application freezes.

c06.fm Page 264 Monday, March 13, 2006 1:20 PM

Interaction and control 265

12:35 PM 13 March 2006 c06.fm 1.0

A common way to organize threads on single-threaded architectures built using
Swing and SWT is to use objects that represent tasks that are executed within a
specialized support class or within a larger framework. This scheme is simple to
use and accommodates a vast number of practical cases. When using the Eclipse
RCP, it is straightforward to use the thread management provided by the frame-
work, while for Swing one can use the SwingWorker class.

Chapter 5 contains a more technology-oriented discussion on threading in connec-
tion with profiling. Later in this chapter we introduce the Active Object design
pattern that is the design approach used for multithreaded support in both Swing
and Eclipse.

The next section discusses another approach to organizing design-time control
issues in GUIs.

A state-oriented approach to GUI control

In some cases the level of complexity of control needed in a GUI justifies the adop-
tion of some kind of formalized, explicit representation. Figure 6.16 shows the
GUI of a fictitious MP3 player. Such a GUI enforces a non-trivial set of interaction
control rules. A mode is maintained to represent the different operational states
(playing, paused, stopped, and so on), and this information affects the functional-
ities available in the GUI – such as which buttons are enabled, what information
is displayed. See the disabled buttons in the application toolbar in Figure 6.19, for
example.

Software bugs due to concurrency issues can be an annoying problem,
because they are difficult to track down, in that they are not always repeatable.
They can also occur in completely unexpected ways, as they depend on the
particular user interaction with the GUI. So don’t use threading differently
than suggested for GUI applications (use threading for example by applying
the Active Object pattern, or for performance optimization) or in situations
where there is no apparent need for it.

Figure 6.19 An application with an internal state representation

c06.fm Page 265 Monday, March 13, 2006 1:20 PM

266 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

A useful common abstraction is the use of states to describe the GUI’s internal situ-
ation. States are defined when designing the GUI, and can be organized temporally
in a state transition diagram that shows how the GUI’s state changes when specific
events occur. The granularity of each state definition depends on the GUI design28.

States are also useful for clarifying the implementation of an application in which
states were not explicitly defined in the GUI’s design. Most of the time software
designers don’t need to formalize the possible states of a GUI explicitly, either for
a single window, a part of the GUI, or the whole system. There are cases, though,
where they may be confused by the abstract working of the theoretical GUI
design, or its equivalent analysis documents. In these cases it’s a good idea to try
to write down a list of the GUI’s possible states at a suitable level of abstraction,
as well as their possible transitions. This exercise will make analysis clearer, even
if there is no need to represent states explicitly in the code.

These considerations bring us directly to the Memento pattern. After a brief intro-
duction to this pattern, we will see it at work in a practical example that implements
an explicit control state.

The Memento design pattern

Sometimes the state of an object needs to be manipulated as a whole. Doing this
straightforwardly may disrupt OOP encapsulation, leading to weaker code.

In the Memento pattern one class, called the Originator, is made responsible for
creating the Memento object, usually transferring a portion of its internal state
into it. Another class, called the Caretaker, requests the Memento from the Origi-
nator and uses it. Figure 6.20 shows the class diagram for Memento.

28. The natural generalization of this approach – providing specialized classes for each mean-
ingful state and a common interface for any generic state – leads directly to the State
pattern (Gamma et al. 1994).

Figure 6.20 The Memento design pattern

c06.fm Page 266 Monday, March 13, 2006 1:20 PM

Interaction and control 267

12:35 PM 13 March 2006 c06.fm 1.0

The Caretaker object is responsible for the memento’s safekeeping, although it
never examines the contents of a memento instance. Memento objects are inher-
ently passive. They are used to encapsulate carefully-planned portions of the
Originator’s internal state for some specific purpose: a common case is to make it
persistent.

The Memento design pattern can be used to represent and manipulate both the
data state and control state29 in a GUI. Consider for example a point of sale rich
client application. In no case must the application lose data about a transaction,
even when the connection is down and the user needs to close the application. In
such cases the application can make the memento that represents transaction data
persistent, so that it can be sent to the server as soon as the connection is restored.

We are now ready to see a practical application of these ideas to representing the
control state of a GUI.

The QuickText application

This subsection describes an example application that uses several design strate-
gies and some code tactics that are oriented towards simplicity and performance.

In any GUI there is usually a practical need to access data from different places.
Such data can be variable over time, or needed just once in a session. An example
of the former could be the row and line values of the caret cursor in a text editor,
for example. We want to associate some control behavior to these values, for
example to issue a beep when the end of text is reached, and to show them in a
status bar component. This is a classic example of the use of an event-based mech-
anism – that is, some variant of the Observer pattern. In such cases it can be useful
to adopt a mental habit of centralizing the required information in a meaningful
way by providing abstractions over the current state of the GUI. Generalizing this
idea, we might consider a class that represents the GUI’s internal state, or at least
what we need of it, which can be accessed by all interested classes. Some portions
of the state could therefore be made observable.

In simple situations this approach can be pushed to the extreme, accommodating in
a common class both dynamic information, requiring an event-like communication
mechanism, and less variable data such as system properties and preferences. Such
a class could also enforce business logic rules for the GUI state as a whole.

Here is an example that can be useful when a basic approach to modeling a GUI’s
state suffices. The idea is to model the dynamic part of a GUI’s state as a set of
Boolean flags. Changes in these values are of interest to other classes. Examples
of state flags in a text editor application could be used to indicate things like

29. See Chapter 8 for more details about these definitions.

c06.fm Page 267 Monday, March 13, 2006 1:20 PM

268 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

whether the current file is saved, or whether a spell checking error occurred. Here
we are only interested in a proof of concept, so the implementation is minimal to
just show the basic ideas at work. This model can be used with other more elabo-
rate abstractions for handling more complex situations.

Figure 6.21 shows the QuickText application, a simple text editor for compiling
and executing Java code that serves as a background for the implementation tech-
niques introduced here. Java code is entered into a text area, below which there is
a console showing the compiler/JRE command-line messages.

A listener has been added to the text model (the document), so that whenever its
content changes, the Save and Save As buttons are enabled. The status bar at the
bottom of the main window reacts to this event as well as the commands, by
showing an icon on the right-hand side of the state code30. A green icon signals
correct compilation, while red means that errors occurred during compilation or
execution. Finally, the current caret line number is shown at the bottom right-
hand corner.

30. The state code is shown only for debugging – in a production application it would be
invisible.

Figure 6.21 The QuickText application

c06.fm Page 268 Monday, March 13, 2006 1:20 PM

Interaction and control 269

12:35 PM 13 March 2006 c06.fm 1.0

Whenever the text file is saved, the file is assumed to be unmodified and the appli-
cation returns to its initial state. The set of GUI state flags are implemented as
integer values, as you can see from the number shown in the status bar at the
bottom-right in Figure 6.22, the decimal equivalent of binary 011.

In this simple application only two classes are interested in state changes, as
shown in the class diagram in Figure 6.23: the director, which coordinates all
actions, and the status bar component. The director is in fact not really needed in
this arrangement, as single actions can listen to state changes without passing
through a common director class.

The ControlState class holds the current GUI state, and is responsible for
exposing changes31 to interested parties using the Observer pattern. This class
implements a variant of the Memento pattern, shown in Figure 6.23 above.

31. Instead of writing an event class, the sample application uses the PropertyChangeEvent
class from the java.beans package to represent state change events.

Figure 6.22 Text modifications as control state changes in the QuickText application

Figure 6.23 State changes

c06.fm Page 269 Monday, March 13, 2006 1:20 PM

270 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Only the required part of the control state has been made accessible through the
event mechanism. Minimizing event coupling is important to avoid needless
complexity and unforeseen behavior. Another class, Props, stores the applica-
tion’s properties, without using event notifications when a property changes.
Application properties must be queried when required, such as the application
name property used by the main window for its title.

For simplicity the event implementation does not use any event representation
when triggering a change notification message. Swing events use specialized
classes to represent event data that is sent with the event notification. In this
example, listeners retrieve the state when receiving the change notification
message, for example displaying the state value in the application’s status bar
whenever it changes.

The ControlState class implements the GUI state with one or more integers and
a bit mask. Interested readers can see this in the implementation of methods
isState(), which tests whether a given flag is true, addState(), which sets a
given flag to true, and subtractState(), which sets a given flag to false. Flags
are implemented as Java constants, powers of 2. Bit masks provide a simple and
extensible data representation mechanism. For the QuickText application the
possible control states are shown in Table 6.1.

The Director class implements the Mediator pattern in a very simple way. When-
ever the application control state changes, the Director class is notified. The
director then queries the GUI state and enables the Save and Save As actions

An example of bit mask use in GUIs is provided by the SWT library, in which
component properties (called styles) are represented with sets of Boolean values.

Figure 6.24 The ControlState class

c06.fm Page 270 Monday, March 13, 2006 1:20 PM

Some design patterns for GUIs 271

12:35 PM 13 March 2006 c06.fm 1.0

according to the value of the STATE_MODIFIED flag. The Director class is also
responsible for creating, managing and updating the internal state of all the
actions used in the application and executing them using the ‘shallow’ action
approach.

The status bar component is another listener to changes in control state flags – like
the Director class, it implements the PropertyChangeListener interface. It
registers itself for changes in the GUI state, and the method propertyChange()
reacts to state flag changes.

The QuickText example application also demonstrates an alternative solution for
localization. Instead of using property files or other dynamic support for locale-
sensitive data, it employs Java constants, for performance reasons. This is demon-
strated in the Msgs interface provided with the source code of the application.

6.8 Some design patterns for GUIs
This section introduces designs typically used in OOP GUI implementations,
some formulated explicitly for the first time, others well-known design strategies
for desktop application GUIs.

Adaptation

Developing a professional GUI can be a complex task, with many requirements to
be met. Adding some form of adaptation to GUI code can help to decouple different
concerns and conceptually-separated responsibilities effectively. Typical of such
requirements might be different behavior depending on runtime information such
as different user roles or locale, or the resources available on the client machine.

Table 6.1 Possible control states in the QuickText application

Type Data

RUNNING An external JRE process is currently executing code

COMPILING An external Javac process is currently compiling code

CNTX_HELP_ON Contextual help is on

NORMAL Start up, default value

SAVED Current text has been saved

c06.fm Page 271 Monday, March 13, 2006 1:20 PM

272 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

These situations can be resolved in the same way:

i. Clearly define the adaptation mechanism.
ii. Elicit the context data the adaptation mechanism will need.
iii. Assign the runtime-dependent behavior to a separate manager class.

Providing a separated implementation avoids cluttered code by decoupling extra-
neous issues from existing code, making the whole application more modular.

The design goal of Adaptation is to make the application absorb the additional
complexity without degrading the quality of the final implementation. This
general approach can be applied to any functional layer.

Some examples of adaptation

Suppose a program contains the following code:

textField.setText(“controle el valor”);

We can make this message text locale-parametric as follows:

textField.setText(ResourceManager.get(“control.value”));

This confines the responsibility for locale-dependent messages to a specialized
class, ResourceManager, and only the minimum amount of information must be
provided for it to do its job of providing localized message strings.

Figure 6.25 shows an example of localization. Localization is not only a matter of
locale-dependent text messages, but can imply a deep adaptation of the whole
GUI, from widget layout, dimensions, and more, as discussed in Chapter 4.

Another example of adaptation might be authorization code. Suppose one
requirement in a GUI prescribes that sensitive information like employees’ wage

Figure 6.25 Examples of locale-based GUI adaptation

c06.fm Page 272 Monday, March 13, 2006 1:20 PM

Some design patterns for GUIs 273

12:35 PM 13 March 2006 c06.fm 1.0

details must be available only to certain user roles. This rule could be added to
every widget that required authorization. Suppose pressing a button in the GUI
shows the salary for the selected employee:

if (RoleManager.getCurrentRole().equals(BossRole.class)){
button.setEnabled(true);

} else
button.setEnabled(false);

Everything works well until the management want to change the authorization
policy because someone complained that they don’t want anyone else to see their
wage details. The new requirement now states that:

i. Senior managers can still see other employees’ wages.

ii. Middle managers can know that wage details are available to their superiors,
but cannot actually see them.

iii. All other employees don’t have to know that there is such a button in the
GUI at all.

You could change the if–else code above to accommodate managers
(button.setEnabled(false)) and all other employees (button.setVis-
ible(false)). But what if managers complain and you have to change this
authorization policy yet again? You would need to go into the code again and
modify all this conditional behavior, which is likely to be scattered in many places
throughout the GUI’s screens. Authorization code shouldn’t be intermingled with
presentation code, and should be made more flexible to change. After all, these are
business requirements, much as localization is a translator’s job, and they should
not burden programmers. It would be better if authorization could be handled to
some administrator or customer representative rather than being relegated to
developers.

This problem can be seen as an application of adaptation to runtime data. We
want a GUI to adapt to the current user role. As the role is only available at
runtime, a form of dynamic parameterization is required. The nice thing about
adaptation is that it is somebody else’s worry. Developers only need to enforce it,
while decisions will be taken somewhere else, away from code.

You could provide the following implementation:

AuthorizationManager.prepare(button, this);

where authorization is relegated to a specialized manager, much like localization,
and you provide the subject (the button) and the context (in the present example,
the parameter this) where the subject appears. The authorization manager then
retrieves the current user role and performs all the appropriate authorization poli-
cies on the subject.

c06.fm Page 273 Monday, March 13, 2006 1:20 PM

274 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Adaptation is common in any professional GUI. Some examples are:

• Localization. Here the context parameter is the current locale. This is a classic
form of parameterization that is handled explicitly by the Java API.

• Authorization and other role-based adaptations. Here the context parameter is the
current user role. Some commands, screens, or single widgets may depend
upon the user role.

• User profiling. We may want to save preferences, customizations, and other
information on a single-user basis, so that different users using the same
application installation find their own settings and specific data.

• Business-specific parameters. Country, international branch, or some other
domain-specific concept are examples of parameters for which adaptation
rules might be dictated by specific requirements.

• Resource-dependent constraints. An example is a client application that runs in
two different remote connectivity scenarios: modem lines and broadband
connections. To provide a good GUI design, the commands available might
need to be adapted to the remote connection type.

Building a comprehensive API for parameterization could be a complex task for
most real-world applications, with few real benefits32. What is important though
is to be aware of the problems adaptation may generate. Some guidelines for effec-
tive adaptation are:

• Clearly define parameters and carefully separate them. Define exactly what the
parameters are in your application and their reason for existing. It is impor-
tant to keep parameters conceptually separate. Implementing this conceptual
separation involves enforcing orthogonality in code (Hunt and Thomas 2000).
The effects of different adaptations should provide cumulative, predictable
results. If for example an application already provides localization and role-
based adaptation, and you add business rules parameterization, you expect
these three aspects to coexist gracefully without unexpected side effects.

Adaptation techniques make sense when the need for adaptation is common
to a sizeable part of the GUI. If only one or two panels need a limited form of
adaptation, and no extensions are planned in future, a simple local solution
would be cheaper to implement yet still effective.

32. Common parameterizations such as localization are already provided by standard APIs.
Other forms of adaptation can be achieved relatively easily without requiring a compre-
hensive, unique framework.

c06.fm Page 274 Monday, March 13, 2006 1:20 PM

Some design patterns for GUIs 275

12:35 PM 13 March 2006 c06.fm 1.0

• Avoid explicit parameters scattered in the code. These are hard to modify and
make code fragile. All context information should be sent to the manager
object responsible for the parameterization, such as the following code
example:

if (user.getRole().equals(ROLES.ADMIN)){
// admin users-only code here
...
}

• Define a common strategy and enforce it. If some aspect is parameterized using
an XML file, for example, no code should deal with that parameter in a
different way, for example by means of local conditional clauses.

Advanced adaptation

Adaptation is normally performed at runtime depending on context information.
Other more complex forms of parameterization can exist, although these are
needed only in special cases.

Adaptation may become a source of complexity if differences between individual
adaptations are too wide to be housed in the same application. In such cases
different code bases should be considered. This could be the case for example
with the development of a single application that supports a multinational insur-
ance company. Laws, cultures, practices, and other differences in each country
could make it too complex to bundle such aspects into a single application code
base. Shipping such a huge single application would make little practical sense.
In such cases solutions other than dynamic adaptation should be considered,
such as a software family-based approach – building a common framework that
comprise all the common aspects, and creating the required adaptations using
different custom builds of the application, or simply building different applications
with a common organization, software reuse policy, development infrastructure,
and so on.

Another example of non-dynamic adaptation is parameterization of an applica-
tion at build time for security reasons. For example, you might want to generate
an application installation on demand to work only with a given license key. In
this case the license key is the parameter.

Using A3GUI for parameterization

A3GUI (Abstract-Augmented Area for GUIs) was introduced in Chapter 2 as a
flexible approach for expressing generic information about a GUI. The idea is to
identify areas of a GUI – a single widget, a panel, or a complex screen – and attach
useful information to these abstractions. Augmented areas can also be used to
express parameterization, even in cases in which there is no direct link with a
screen area, such as business rules parameterization.

c06.fm Page 275 Monday, March 13, 2006 1:20 PM

276 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

This approach lends to a declarative parameterization style in which localities in
the GUI are identified by A3GUI identifiers, and their correct instantiation33 is
done somewhere else, as we saw before when discussing the AuthorizationMan-
ager example. Suppose you must implement the security of a very sensitive
banking application. In certain parts of the GUI a number of controls are enforced
in reaction to specific GUI events, such as modifying sensitive fields, pressing
buttons, or displaying specific screens. Security practices may change over time –
some parts of the GUI may become sensitive, while other areas may have existing
checks loosened – so you need to make your implementation flexible.

Areas can occur in different places in the same application. Suppose the panel
shown in Figure 6.26 is currently an extra-sensitive part of the GUI. Whenever
such a panel appears in any part of the GUI, its behavior is dictated as follow:

• Depending on the current user and the current time of the day34, it is possible
to modify the Amount field. During holidays and at night, when there is no
central human control, some potentially dangerous transactions are not
allowed.

• In certain other circumstances, such as combinations of the context data
mentioned above, other behavior is needed, such as making the panel invis-
ible to the current user.

By providing a unique A3GUI id for the panel, you could associate the current
security level, stored in a signed encrypted file for example, with that identifier,
without scattering ad-hoc controls in the application’s code. This would centralize
the GUI’s security implementation in a specialized and reusable manager. Such
areas can be defined at analysis time, during GUI design, or later. A3GUI ids can
be composed following the GUI containment hierarchy, to provide an exact iden-
tification for a given panel instance in a given screen, or used generically for all
occurrences of relevant panels.

In cases in which a total A3GUI identification of the whole GUI is not needed, for
example when parameterized properties don’t change so often, ids for specific
widgets or panels can be provided directly in the code. This keeps the application
modular, but avoids the complications needed in the general case.

A useful technique for providing unambiguous context information for the adap-
tation design strategy is to take advantage of the visual composition of widgets
into screens. This technique can also be used for requirements other than defining
Adaptation contexts. It is discussed in the next section.

33. Here we mean the instantiation of an A3GUI area, that is, a portion of a screen that is
adapted depending on specific parameters. Implementing this in Java implies instanti-
ating a number of classes.

34. As measured on the server, for security reasons.

c06.fm Page 276 Monday, March 13, 2006 1:20 PM

Some design patterns for GUIs 277

12:35 PM 13 March 2006 c06.fm 1.0

Composite Context

GUI content composition is heavily based on the Composite design pattern. In some
cases it is necessary to identify specific areas of the screen. Identifying components,
whether elementary widgets or composite aggregates, could be needed for various
reasons:

• Suppose you want to provide every meaningful widget in a GUI with its
own unique identifier, for testing, ease of look-up, and so on. The problem is
that the widget may be nested in different panels, but you want it to have a
unique id throughout the entire GUI. One possible solution is to use the
Composite pattern for the ids as well, recursively attaching all components’
ids to create a global, unique id for the widget, no matter how many
instances there are of the same class.

• You used the Adaptation pattern, but you need a formal context id to repre-
sent the adaptation context in a simple way.

• You employed a composable unit strategy in your GUI in which all CUs are
registered in a common registry for look-up. You need to provide an infra-
structure service that will supply unique ids for CU instances automatically.

Figure 6.26 A sensitive panel

c06.fm Page 277 Monday, March 13, 2006 1:20 PM

278 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

The Composite Context pattern describes a mechanism for providing identifiers
for widgets, panels (that is, composites), and screens. The idea is to use the hier-
archical organization of the visual composition to provide unique (or local) ids for
widgets, panels, and composable units. Figure 6.27 shows an example dialog in
which the ids of some widgets and CUs are shown.

Referring to the figure, the screen w1 contains a status bar whose standalone id is
sb1, and when composed within the screen as shown in the figure, has an identi-
fier w1.sb1 that reflects the actual visual composition of the screen. The same
widget composed in another screen would have a different identifier.

Composite Context can also be used to provide ids for A3GUI areas in analysis
and design phases. In this case identifiers are simply applied by hand by analysts
or developers, following the hierarchical approach proposed above.

The hierarchical mechanism provided by Composite Context can be used to
provide information other than just identifiers. Support information, or an auto-
matic mechanism for generalizing ids, can be provided as well – for example, for
querying all items contained in a composite, or for simplifying the support XML
files with inherited values.

Figure 6.27 Composite Context at work

c06.fm Page 278 Monday, March 13, 2006 1:20 PM

Some design patterns for GUIs 279

12:35 PM 13 March 2006 c06.fm 1.0

Active Object

The Active Object design pattern35 focuses on the creation of objects whose state
develops asynchronously. As a consequence, the state, details about the operation
in progress, or the final result, need to be shared among different threads. In the
case of GUIs, the interested threads are the event dispatch thread and a worker
thread that is executing a long-running task such as a remote transaction. Another
thread is used by the scheduler object, which takes responsibility for executing
tasks requested by clients transparently to them.

The Active Object pattern consists of three phases:

1. Method request construction and scheduling. In this phase, the client invokes a
method on a proxy class, which in turn packages the task and forwards it to
an executor in the form of a method request. This maintains references with
the method itself, as well as any other data required to execute the method
and return its results. A reference to a Future36 instance is returned to the cli-
ent that will provide the result when available.

2. Method execution. After the client requests the execution of a task, it continues
its normal activity. Within its own execution thread, the scheduler deter-
mines which method request can be executed, depending on its synchroniza-
tion constraints. When a method request becomes runnable, the scheduler
executes it, usually passing responsibility for its execution to a servant
instance.

3. Completion. In the final phase, the results are stored in the Future reference
for the client to access them. The method request and the Future instance are
no longer needed and are ready for garbage collection.

Both Swing and SWT toolkits provide framework support for this pattern. Given
its importance in supporting smooth interaction with users, it is used in all the
examples provided in the third part of the book.

A Swing example of Active Object

A simple implementation of a long-running task using the SwingWorker class is
provided as an example of the Active Object pattern in the code bundle for this
chapter. The task is activated by pressing the Paint Nicely button shown in

35. For more details, see http://www.cs.wustl.edu/~schmidt/PDF/Act-Obj.pdf, an updated
version of the original chapter in (Vlissides et al. 1996).

36. The java.util.concurrent.Future interface represents the result of an asynchronous compu-
tation. Additional methods are provided to check whether the computation is complete, to
wait for its completion, cancel the computation, to retrieve the final result, and more.

c06.fm Page 279 Monday, March 13, 2006 1:20 PM

280 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

Figure 6.28. This starts an instance of the class FancyPaintWorker, which paints
the area in the window without freezing the rest of the application.

Object lifecycle management – a general mindset

Any non-trivial Java desktop application GUI handles tens of thousands of
objects, especially if implemented using Swing. Large applications might handle
hundreds of thousands of objects or more. No matter how powerful and well-
tuned the garbage collector, it will always have a lot of work to do. Taking care of
the lifecycle of the objects we create is important for providing a simpler life for
the garbage collector, and thus providing smoother interaction for the user. We
don’t want an application to freeze from time to time, out of the blue, while the
hard disk whirs mysteriously. Neither do we want an application to take a long
time to start or launch specific features because it needs to create many expensive
objects at the same time.

From a GUI design viewpoint users generally prefer to have a partially-functional
application that starts up quickly, even if some secondary portions of the applica-
tion are initialized later, than wait longer to have the whole application up and
running at once. This general design strategy is more important in medium to
large applications that handle many objects, but the habit of taking care of the life-
cycle of objects is nevertheless always a healthy one, even in small applications.
To condense the experience of many projects into one line, instantiate lazily and
dispose eagerly.

The many virtues of lazy instantiation of objects in desktop application GUIs have
already been discussed. A less well-known strategy concerns object disposal.
Disposing of objects as soon they are known to be no longer needed is important,
in that it helps the work of the garbage collector and keeps the memory profile of
an application trim. This is also true for Swing applications, where there is no need
for explicit object-disposal policies, although disposing of particularly expensive
objects manually helps garbage collection, thus smoothing GUI interaction.

Figure 6.28 An example of SwingWorker

c06.fm Page 280 Monday, March 13, 2006 1:20 PM

Some design patterns for GUIs 281

12:35 PM 13 March 2006 c06.fm 1.0

An object’s lifecycle can be optimized as follows:

• Object creation. When is an object needed, and is it possible to postpone its
creation until required using lazy instantiation?

• Object disposal. As soon as it is known that an object is no longer needed, it
can be disposed of explicitly, easing garbage collector work and enhancing
the application’s responsiveness. Object disposal in Java is achieved very
easily by setting the variable that refers to (and holds) the object to null.

• Multithreading support. Sometimes the instantiation of many objects, or of a
few expensive ones, can be performed in parallel with other tasks, thus
speeding up performance.

Here are some common scenarios of object lifecycle management that can be used
for enhancing application performance:

• Application start-up. Forking threads to allocate resources and the essential
start-up configuration of an application as soon as possible is the best intro-
duction an application can give to its users. As we know from Chapter 2, the
overall user experience is often dictated by the first impression they have of
an application.

• Lazy instantiation of hidden panels in tabbed panes. This is a relatively simple
and useful optimization, especially on large forms with many complex tabs.
Only the first tab is populated, and the others are created lazily when
opened. For forms with mandatory tabs – that is, tabs that must be opened to
complete a task – it is better to let them be populated asynchronously after
the first tab is completed and is occupying the user’s attention.

• Partial initialization of widgets. Some widgets can be shown empty to the user
initially, and while they are interacting with the GUI, initialize themselves
asynchronously. Examples might be a table that populates itself asynchro-
nously, or an ad-hoc panel showing a graphic chart that requires a lot of data
to be drawn, so is shown initially as a grayed-out area. In such cases it is
important to exert robust control over any unintended interactions the user
can cause on partially-instantiated widgets.

• Dataset paging in large lists, trees, and tables. For large data sets, paging is the
only viable design solution for loading only visible data and discarding
previously-seen values. This technique consists of fetching only a number of
pages of data at any time. The minimum number of items fetched is usually
1.5 to 2 times the current visible view size, or a constant, reasonable value
derived from that. Hence, if you have a table showing 100 rows, you would
fetch 150 or 200 rows, to fill the view and allow for some leeway for scrolling.
An efficient mechanism for coarse-grained scrolling is needed, so that it is
possible to jump directly from, say, the 100th element to the 5000th. The topic
is clearly more complex than this, and is a perfect fit for a utility library such

c06.fm Page 281 Monday, March 13, 2006 1:20 PM

282 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

as those available for Swing. An example of lifecycle management for large
trees is described in Chapter 15.

Special care is needed over handling events and interactions on objects that are
not yet instantiated, such as data models for expensive widgets, to preserve the
robustness of the GUI.

Such techniques should be used conservatively and without over-doing it. Trying
to optimize code preemptively is always asking for trouble, and ultimately needs
extra care to avoid weaker implementations.

Value Model

The Value Model design pattern originated in Smalltalk to allow sharing values
between different actors. It can also be used as a form of Adapter between an
actor interested in a single value and a large object that stores the value along
with other data.

Sometimes this design is used for coupling data models with widgets in Java
applications. An Adapter class could be used to bridge the different method
signatures of a widget with a data model, for example an SWT Text with the
street string property in an Address class, and change property events used for
notification when the value changes. This arrangement requires an Adapter for
each widget – if another widget PostalCode needs to be synced or bound to
another string property of the same instance of the Address class, a new Adapter
is required. We can solve this by using a Value Model object that complies with
a standard signature, using the value property of type Object. An Adapter
object is still needed to convert widgets’ method signatures to the ValueModel.
Figure 6.29 illustrates this design.

Figure 6.29 How Value Model works

c06.fm Page 282 Monday, March 13, 2006 1:20 PM

GUI complexity boosters 283

12:35 PM 13 March 2006 c06.fm 1.0

This design can be thought of as an application of the Chain of Responsibility and
Adapter design patterns. Communication the ‘other way around,’ that is, when a
property value changes in a data object, is ensured by events. Note that this mech-
anism implements the binding between a widget and a generic data Object.
When values are copied back and forth this binding can be made automatic on
data changes, or it can be enforced explicitly. The latter choice eases debugging,
because synchronization events are easier to track at runtime than data changes
(see Figure 6.30).

An example of use of this design is discussed in Chapter 8 for binding widgets to
data objects in form-based rich client applications.

6.9 GUI complexity boosters
This chapter concludes by discussing some issues in GUI development that signif-
icantly raise the level of complexity in an implementation.

J. Coldewey describes typical ‘complexity boosters’ in the development of distrib-
uted applications37 as issues that dramatically complicate software development.
More circumscribed, common sources of complexity can be found in GUI devel-
opment as well. Even when such sources of complication cannot be avoided, as is
unfortunately often the case when developing professional GUIs, being aware of
them is nevertheless important. To use a colorful metaphor, you can imagine these
issues as being like items on your workbench with a ‘Danger!’ label on them, to
remind you to handle them with extra care.

Figure 6.30 Value Model class diagram

37. These are distribution, multithreading, multi-platform, extreme performance, and para-
digm gaps (such as Object-Relational Mapping), as mentioned in (Fowler et al. 2003).

c06.fm Page 283 Monday, March 13, 2006 1:20 PM

284 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

The main sources of sharp increases of complexity in developing GUIs are:

• Extensive control. When you want to control explicitly a large and increasing
number of disparate objects, such as a word processor with hundreds of
commands that need to interact.

• Going against the flow. Some solutions are naturally supported by GUI tool-
kits, while others are just unnatural. Deciding on a personal, arbitrary design
approach may prove a useless and expensive choice. An example might be
deciding to avoid the Command pattern for representing commands in favor
of a homegrown approach. This is a general situation that can apply to GUI
design as well as software architecture. It can be paraphrased as avoid unnat-
ural choices.

• Ad-hoc solutions. This can be seen as a special case of the previous point.
Creating alternative solutions to those provided in standard toolkits, such as
developing special ad-hoc widgets, can be a necessity in certain situations,
but it remains an expensive choice.

• Flexible layouts. Despite the fact that we take dynamic layout managers for
granted (also known as ‘liquid layouts’), these are an explicit cause of
complexity in GUI development.

• Internationalization and localization. Providing a GUI ready for multiple
languages is a common source of complexity. This in turn involves flexible
layouts – fixed sized screens and widgets are a certain recipe for internation-
alization troubles, as we saw in the GUI design perspective in Chapter 4.

• Multithreading. This issue comes into play in different ways depending on
the GUI toolkit and runtime platform of choice. Multithreading is also at the
root of remote IO. Even the simplest communication in fact requires an
explicit management of threading control. While standard IO needs are
serviced with toolkit facilities, other specific threading issues must still be
developed in-house.

• Remote IO. Everything works fine in a GUI until you start to interact with the
rest of the world, either via a single remote server or several Web services.
Suddenly your code gets messed up with try-catch clauses, multithreading,
and remote connection code spread all over its once neat implementation.
Note that multithreading is usually involved with interactive remote access,
depending on the support provided by the underlying infrastructure, as
mentioned in the point above.

• Distribution of business domain code among client and server. This is typically the
case with rich client applications, in which business logic needs to reside on
the client side as well as the server to allow the client to perform meaningful
operations off line.

c06.fm Page 284 Monday, March 13, 2006 1:20 PM

Summary 285

12:35 PM 13 March 2006 c06.fm 1.0

• Runtime constrains. Requirements like a maximum memory footprint of 128
MB, or a maximum limit of thirty seconds for obtaining the list of all regis-
tered passengers in a flight reservation application, will impact deeply on a
GUI design and its subsequent development, constraining the possible
choices of a Java application.

Issues such as these are often closely intertwined, so that they exhibit a ‘burst-like’
behavior. For example, suppose you decide to provide internationalization in an
application, but also need to adopt flexible layouts throughout the GUI – for some
locales, such as Asian ones, this might involve installing a custom input method
implementation, which could in turn require multithreading support for better
performance. I use to call these situations, in which a single feature prompted a
domino-like effect, ‘complexity bursts.’ Good engineers should be aware of them,
ideally before triggering the burst, and be daring in evaluating the real benefits of
the features to be added.

6.10 Summary
This chapter introduced several techniques useful in the design of the implemen-
tation of professional GUIs using Java technology. We have seen how the main
implementation issues, presented as the functional layers in the model in Figure
6.1, can be addressed, and how objects communicate by means of the Observer
pattern and its various variants, as well as the main problems in over-use of event-
based communication mechanisms. The chapter also discussed the three main
strategies for implementing control: scattered, centralized, and explicit represen-
tation of screen control state information.

Other common design strategies for building professional user interfaces were
discussed, such as Adaptation, Composite Context, Active Object, Objects Lifecycle
Management, and Value Model. It is useful to recap the main design strategies
discussed:

• The principle of Single Functional Responsibility for a clear definition of
functional responsibilities.

• Content Assembly and its various implementation strategies for handling
widgets’ layout.

• Explicit Navigation for managing explicitly the navigation among the
various screens in an application.

• Some issues for representing business domain logic effectively in an
application.

• Devising a comprehensive data IO design strategy.
• Addressing security concerns in an application explicitly, and including

them in the overall architecture.

c06.fm Page 285 Monday, March 13, 2006 1:20 PM

286 Implementation Issues

12:35 PM 13 March 2006 c06.fm 1.0

• The Data Transfer Object (DTO) pattern for exchanging information
remotely.

• Designing remote communication with server applications.

• The Observer design pattern, its various flavors, and the high-level designs
built with it: MVC and its main variants, HMVC and MVP.

• Representing user commands, composing them, and taking advantage of
existing support frameworks for your design needs.

• Representing reactive control behavior with implementations that depend on
the complexity required by the GUI design.

• Other design strategies commonly used in GUI implementations, such as
Adaptation, Composite Context Active Object, and Value Model.

Figure 6.31 recaps the main design strategies used specifically in GUI designs,
represented by the functional layer on which they mainly focus. These are only
the commonest solutions used in modern OO client software designs, and the
techniques listed in the figure are not exhaustive.

The next chapter discusses the main issues involved in the definition of the overall
software architecture for applications, covering the most popular solutions found
in real-world GUIs.

Figure 6.31 Common solutions by functional layer

c06.fm Page 286 Monday, March 13, 2006 1:20 PM

7 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

This chapter discusses the main trade-offs and issues related to the organization
of code and other implementation artifacts for application GUIs. Experimental or
unproven approaches, or solutions that don’t fit within existing Java GUI technol-
ogies, are not considered. The client tier – that is, the portion of software that is
deployed on a client machine – is the principal focus. The chapter includes some
implementation details for an example layering scheme. It focuses on J2SE/J2EE,
but the design strategies discussed here can be applied to J2ME applets, as shown
in Chapter 10, as long J2ME’s resource constraints are observed.

The chapter is structured as follow:

7.1, Introducing software architectures discusses some general issues of software
architectures and related software design strategies for GUI applications.

7.2, Some common GUI architectures introduces some of the most useful software
architectures for GUIs.

7.3, A three-layer organization for GUI code goes into the details and the trade-offs of
the layering scheme.

7.4, Two examples of a three-layer implementation shows examples of the application
of the layering scheme, one to a simple project and one to a large one.

7.5, The service layer describes the details of the proposed implementation of the
service layer for the three-layer architecture.

7.1 Introducing software architectures
Layering is a well-known technique for reducing dependencies between parts of
a software system. An element in a particular layer is only permitted to access
elements in the same layer or in layers below it. Strict layering, which is more labo-
rious to enforce, prescribes communication only with the layer immediately
beneath the current layer1.

1. This induces a directed acyclic graph (DAG) structure in which nodes are layers, and arcs
are dependencies, ensuring that, among other things, there are no circular dependencies.

Code Organization

c07.fm Page 287 Thursday, March 9, 2006 1:51 PM

288 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

Organizing implementation artifacts is a vast field for which a large amount of
literature is available. It is also an important topic that will affect any project
during its lifetime, even though it is not a guarantee of quality.

Layering is an attempt at structuring code by minimizing dependencies, removing
duplication, and possibly attempting some form of reuse. The most important
issue when deciding a strategy for organizing GUI implementation artifacts is the
definition of clear responsibilities for each layer. That is, what is the main issue we
want to address with our architecture? Some of the main practical strategies are:

• Data flow. This decomposes an application based on the flow of data within
the application. The runtime data flow is a vivid concept, easily defined and
shared. This strategy is used particularly in data-centric applications such as
form-based GUIs. Chapter 8 has an example of a runtime data model in the
context of rich client applications.

• Domain-driven. This strategy aims at enabling a portion of a rich (OO)
domain model to operate on the client machine. To achieve this, a number of
services and infrastructures are built to host the domain model as well as
possible2. Developers focus on domain-driven issues first, carefully decou-
pling them from any technical ‘plumbing’ or graphical details. This strategy
works well with GUIs for complex application domains, where non-trivial
domain representation is needed on the client side and some form of a rich
domain model is available (or planned) on the server side.

• Functional. This approach focuses on the function of each module, decou-
pling concerns on a functional basis. Business concepts usually drive the
Composable Unit3 strategy, if any. Instead of domain concepts, a commoner
strategy for Java GUIs is to use implementation-driven concepts. An example
could be using a variant of the functional decomposition proposed in
Chapter 1 to define the layering scheme.

• Reuse. The main objective of this layering strategy is to simplify future reuse
of software. ‘Reuse’ is a magical word that implies different things to
different people. We could reuse concrete code, code patterns, or abstract
approaches and skills – for example, we might want to use a full OO tech-
nology because we can then leverage our existing design patterns
experience. This is one of the most often-used organizational strategies, even
if the results are not always guaranteed to be fully reusable.

2. That is, leaving the domain model in its purest form, free of GUI or low-level details.
3. See Chapter 6.

c07.fm Page 288 Thursday, March 9, 2006 1:51 PM

Introducing software architectures 289

1:50 PM 9 March 2006 c07.fm 1.0

These are just some of the strategies for breaking down GUI code: other are
possible. Our underlying assumption is that there is no one single ‘killer archi-
tecture,’ not even in the relatively well-defined and circumscribed domain of
Java GUIs. Instead, each implementation organization has its advantages and
drawbacks, as we will see. Successful adoption of one architecture over another
also depends upon the development team’s skills, the problem at hand, the
chosen technology, the timeline, and other non-technical factors.

Choosing the right strategy is the most difficult point in using a layering scheme
(Fowler et al. 2003). Lack of deep knowledge, conservative attitudes, or just plain
sloppiness are possible causes for naïve GUI architectures. This is often the case
with Swing, due to its high-level feature-rich design. Imagine for example that you
are called to help a project in trouble. Its developers show you a complex tabbed
form, containing hundreds of Swing widgets, then explain that a PAC (Presenta-
tion-Abstraction-Controller4) variant was used as a layering on top of Swing
widgets ‘to make things clear.’ The implicit underlying concept here is ‘We don’t
care about that Swing mess.’ The PACs are nested in reusable panels, so there are
nearly thirty PAC triads in the form, plus all the associated specialized event
machinery, all of this sitting on top of Swing widgets that add hundreds of other
objects (Swing’s MVC support, decorators, and so on). At that point you realize
what causes the room’s lights to dim every time the application is launched…

Taming references

Suppose our team has developed the application shown in Figure 7.1. We adopted
a clean architecture, unit-tested all our code, and did everything we considered
beneficial. Next week we are going to release the application – guess what… we
are late with the planned schedule.

We then observe a strange problem in the data in the exploration tree on the left-
hand side, and need more time to track the source of the problem. For some
mysterious reason our caching mechanism, which we thoroughly tested, is not
responding well. We run more unit tests, but the problem seems to be caused by
the final integration with the server application. We don’t want to spend time on
an ad-hoc basis, such as profiling by hand, or spending too much time trying to

4. The Presentation-Abstraction-Control (PAC) pattern was defined in (Buschmann et al. 1996).
This pattern defines a hierarchy of cooperating agents for structuring interactive software
systems. Each agent is responsible for an aspect of the application’s functionality and
consists of three components: presentation, abstraction, and control. These components
separate the human and computer aspects of the agent from its business domain-depen-
dent core and its communication with other agents.

c07.fm Page 289 Thursday, March 9, 2006 1:51 PM

290 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

replicate the problem, or involving time-consuming end-to-end test sessions.
What we really want is a reusable, lightweight test that will also be useful in the
future.

We think this is a great opportunity to set up some partial integration testing, even
if we are late with the schedule. When we try to simulate data from the server to
the client realistically, however, we stumble on a number of unforeseen issues. A
number of services, both server-side and local facilities on the client application,
need to be started up front to prepare the scene for even the simplest test. Testing
the exploration tree in this way involves also starting the table component on the
right-hand side, otherwise we would be obliged to step back to a previous CVS
snapshot, and this in turn needs other parts as well. Ultimately we find we need
to launch the whole application!

Although the previous situation is not such a nightmare, it is a common experience
that at a late stage of development and without careful planning and continuos
discipline, application modules start to look ‘tangled’ together, despite our initial
commitment. What happens in reality is that dependencies are added very easily
to code, so easily that you don’t even realize, but are much harder to get rid of.

Application GUIs are composed of many interacting parts. Some of these parts are
outside our control, such as GUI toolkits or third-party libraries. As the applica-
tion grows and parts are added over time, such interactions tend to intensify,
driving the implementation toward degradation of the decomposition strategies
we initially devised. Intertwined references are not only a problem for testing,
they are also a problem for the stability of the whole implementation – degrading

Figure 7.1 A buggy application (Squareness)

c07.fm Page 290 Thursday, March 9, 2006 1:51 PM

Introducing software architectures 291

1:50 PM 9 March 2006 c07.fm 1.0

the system’s ‘orthogonality’ (Hunt and Thomas 2000), they hinder maintenance,
parallel work, future reuse, and so on.

Layering helps to avoid mutual references, at least at the level of specific layers.
Various solutions have been proposed for this: the well-known OO design prin-
ciple of ‘designing to abstractions’ is one – abstraction being usually interfaces,
but in some cases also abstract classes. A useful principle for untangling layer
references is to use the ‘dependency inversion principle’ (DIP) discussed in
(Martin 2002). Although there are many other principles around for clean OO
structuring, we focus here only on the simplest and most useful.

The Dependency Inversion principle

The dependency inversion principle (DIP) (Martin 2002) states that:

• High-level modules should not depend on low level modules. Both should
depend on abstractions.

• Abstractions should not depend on details. Details should depend on
abstractions.

This principle suggests designing to interfaces rather than to concrete implementa-
tions. This newly-added layer of static indirection helps in the overall decoupling.
‘Dependency inversion’ refers to the effect that results from applying this principle
to software layers, as shown in Figure 7.2.

A class MyPanel directly invokes a utility class ContentBuilder for content
assembly of common widgets such as buttons, panel structure, and so on. This
single invocation makes the whole application layer dependent on the utility
layer. Whenever something is changed in the utility layer we need to modify all
its clients.

Figure 7.2 Inverted layers

c07.fm Page 291 Thursday, March 9, 2006 1:51 PM

292 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

A better solution would be to decouple the two layers by means of a Builder
abstraction (usually an interface or an abstract class). This inverts the dependen-
cies: the utility layer now depends on the application layer. JLFBuilder, a
concrete ContentBuilder specialized for the Java Look and Feel design guide-
lines, will implement the details of building common widgets without strong
dependency on its clients.

This technique does not protect designs from the annoying problem of modifying
an interface that is already implemented by many clients, of course. This problem
can disrupt a design if we are not in control of client code, for example when
releasing a library to clients. A careful design of abstractions such as interfaces is
extremely important in such cases.

As a variant of this technique, you can expose all your abstractions in a separate
package, allowing implementation classes to extend them, so that violations of the
DIP principle become evident as package dependencies.

Separated Interface

The Separated Interface pattern, as described in (Fowler et al. 2003), can be seen
as a generalization of DIP for decoupling two packages by providing interfaces
(or, when meaningful, abstract classes) in separate packages. The separate
package can belong to the client package that uses the interfaces, or to a third
separated package when more clients are possible. There are usually a set of
‘concepts’ – the interfaces – separated from their various concrete implementation
classes. This in turn requires factories for generating concrete implementations of
such interfaces, which might themselves require other separate interfaces. To
provide the right implementation for separated interfaces, we can use static refer-
ences (that is, at compile time) or adopt a more flexible form of code configuration,
such as the plug-in approach discussed in Chapter 13.

Composable units

Disciplining references is just one aspect of organizing OO code for non-trivial
GUIs. Another aspect concerns aggregation criteria, that is, principles for orga-
nizing an implementation into useful clusters.

A simple form of code organization is the notion of reusable stand-alone units,
following the Composite design pattern. These ‘composable units’ can be thought
of as micro-GUIs, because they encapsulate content, presentation, data IO, busi-
ness domain, and interaction and control in a set of classes that are thought of as
a single reusable unit that can be composed together with similar units to build

The Observer design pattern discussed in Chapter 6 uses DIP in separating
Subject from ConcreteSubject.

c07.fm Page 292 Thursday, March 9, 2006 1:51 PM

Introducing software architectures 293

1:50 PM 9 March 2006 c07.fm 1.0

user interfaces in a modular fashion. Clearly a support infrastructure needs to be
provided to enable this approach.

There are two common, practical main strategies for composable units:

• Implementation-oriented abstractions, such as MVC designs and their many
variants. In these designs the focus is on implementation-oriented abstrac-
tions.

• Domain-oriented abstractions. These can be defined at various levels of
formality. For example, we can define an Address composable unit as a set of
classes responsible for rendering and managing data about addresses in a
GUI. A design can range from simple, informal aggregations to fully-formal-
ized component-based decompositions.

Composable units are useful for aggregating code in medium to large projects.
They favor reuse, clean organization, and a systematic approach to decomposi-
tion. The drawback of endorsing a composable unit formal design is that the
design process becomes more complex, and with a more formalized (that is,
heavy) infrastructure. Therefore consider the use of a composable unit-based
design only if the project is medium to large, or if many developers are involved,
possibly in multiple locations, so that 5an objective, formal code aggregation
criteria is needed.

Microsoft’s Composite UI Application Blocks architecture is an example of a
composable unit strategy. This approach uses the concept of a shell application,

Composable units can either partially or fully coincide, or be orthogonal to the
layer architecture of an application. For example, you can have a three-layer
architecture and use MVP triads as composable units. That is, MVP triads form
the autonomous macro components that compose the application: each triad
spans the three layers into which the implementation is decomposed.

5. The concept of intensive and extensive entities is borrowed from physics. Intensive
measurements are specific to some point in space, such as pressure. Extensive measure-
ments tend to be constant in a whole environment, such as temperature.

Composable units are intensive code aggregations, that is, they only focus on
limited parts of the implementation. Layering architectures, in contrast, are
extensive aggregations, in that every class in the application belongs to a layer,
with no exceptions. These differences are important in practice, because a
layering architecture always guarantees a total decomposition of the implemen-
tation code, while composable units, being specific to a time and location, do not
enforce full code coverage and are consequently harder to put into effect5.

c07.fm Page 293 Thursday, March 9, 2006 1:51 PM

294 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

for example a Windows form application that provides services to composable
units, within which one or more composable units – called ’SmartParts’ – can
interact. Such units are the building blocks of rich client applications delivered as
plug-ins, here referred to as ‘Modules.’

Once a good architecture is devised for a GUI, and perhaps some form of clus-
tering has been decided on, either extremely formal like a composable unit
strategy, or a more informal approach such as panel reuse, we are still left with one
last issue: facing the reality of development.

Evolving order and appropriate architectures

Changing an architecture during the implementation of a GUI is an apparently
bizarre idea. However, client applications have common design aspects, and are
usually smaller and more manageable than server-side applications. These aspects
make architecture evolution more feasible for desktop application GUIs than for
large server applications that have many external dependencies. Changing archi-
tectures is not a new idea – it occurs for example in Agile approaches, and also in
the Evolving Order pattern for domain-driven designs (Evans 2004). But given the
nature of desktop application GUIs, one could question the real effectiveness of
such a potentially costly activity.

The Book of Five Rings contains all the art and science of the famed duellist and
undefeated Japanese Samurai Miyamoto Musashi, who died in 16456. Among the
many insights in this book, one interesting thing concerns the acquisition of
knowledge about an opponent. Musashi said that if you know your enemy, and
you know yourself, you can’t lose a duel – although that is clearly different from
always winning. Transferring this idea to software engineering, we may say that
if we know ourselves (our organization, people skills, technologies, and so on)
and the problem to solve (the enemy) we cannot fail – at worse we can wisely give
up a task that is too daunting. Then why do so many projects fail or produce poor
results from so much effort?

Whole forests have been chopped down to explain this, and we don’t want to event
try here7. Luckily we can say something about architectures and the structuring of
implementation artifacts, especially as regards desktop application GUIs.

The reality is that most of the time we don’t know the problem exactly (including
the domain, its context, technologies, the potential of our own organization).
This is even truer when problems change over time, through relentless itera-
tions, changing requirements, and so on. Our initial assumptions based on past

6. For an on-line version, see http://www.samurai.com/5rings/.
7. As the reader can see, I am following Musashi’s advice here too.

c07.fm Page 294 Thursday, March 9, 2006 1:51 PM

Some common GUI architectures 295

1:50 PM 9 March 2006 c07.fm 1.0

experience and reasonable evidence might look completely misplaced after a few
months in this challenging environment. To what extent will our old architecture
design be able to copy effectively with the current problem?

If the architecture has to fit the given scenario (domain, extra-functional require-
ments, team composition, implementation technology) and the scenario is changing,
the architecture should change as well. In order to have a ‘fit’ architecture – that is,
one that matches the engineering task as a whole without uselessly wasting
resources – we need to provide an architecture that, if necessary, can evolve
smoothly.

Individuating patterns

It is possible to modify the structural configuration of an application using
sequences of basic refactoring steps. The required input is a number of patterns
that need to be present systematically in the code. It is possible to refactor GUI code
at a macro level under limited circumstances, such as finding precise patterns in
the code automatically, a simple transformation path to the new structure. This is
normally possible only for rather specific scenarios within GUI implementations.

When a given architecture is applied systematically and extensively, it is possible
to refactor GUI code at a macro level to modify existing patterns into new ones,
thus evolving the software architecture. In fortunate cases these refactorings can
be automated, for example perhaps factoring out all Command pattern instances
from the view layer in a three-layer architecture, making them part of the Appli-
cation Model in a four-layer architecture8.

The ability to modify an architecture inexpensively and predictably during devel-
opment makes the whole issue of guessing the perfect architecture at project start-
up less crucial. This in turn allows for more flexibility and a greater degree of
adaptation to the problem at hand as it evolves during development iterations.

7.2 Some common GUI architectures
Having discussed some of the main issues of software architectures for GUIs, we
are now ready to see some of them in action. This section discusses some common
architectures seen in real-world projects. It briefly reviews some of the most used

Using this assumption, one could see some aspects of a software architecture
as a set of systematic low-level patterns found in the code. It does not really
matter which particular pattern is present, as long as it is used extensively and
systematically throughout the whole application.

8. See the next section for details about these architectures.

c07.fm Page 295 Thursday, March 9, 2006 1:51 PM

296 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

architectures for client applications in order of the complexity of the problem at
hand. A three-layer organization for GUI code then discusses one particular architec-
ture in detail, providing a practical implementation of it.

The smart GUI antipattern

The shame of every GUI book is the ‘smart GUI antipattern’ (Evans 2004). This
consists of shoveling all implementation into one class and forgetting about
sophisticated layering techniques or fine OO design. Building a GUI this way has
a small start-up complexity, but one that tends to grow sharply. Nevertheless, this
could be just what we need in some situations. Simple projects with form-based
GUIs and with little business behavior are good candidates for this approach.

By adopting such an approach, developers don’t have to worry about decoupling,
reuse, and domain-driven wisdom. The approach is to provide a class for each
dialog or screen, and incorporate all the business logic, interaction, control,
threading, and client–server communication we may need into this class. The only
thing to worry about is providing some form of defined protocol for:

• Presentation. No matter how we have built them, screens must comply with
standard GUI guidelines and other constraints.

• Data IO. Having everything encapsulated in a single (possibly bloated) class,
all we need to care about is data transfer with a remote server. By providing a
data transfer protocol with the rest of the world9, we ensure a minimal protocol
that can be used to decouple the poorly-implemented client from the server.

This approach couples well with the many visual builder tools available, doesn’t
require sophisticated developers, and results are almost immediate. With this
organization, GUI testing options are limited to testing through the GUI (both
automatic and manual), and some limited unit testing.

On the principles of continuous architectural refactoring and iterative devel-
opment, one could think of these architectures as various evolutionary stages
of the same application in its lifecycle, even though refactoring of a working
architecture should be done only when needed.

9. Perhaps using data transfer objects (DTOs), as discussed in Chapter 8 in the case of rich
client applications.

This architecture was the default choice in the early days of mainstream
distributed computing (the early 1990s) when OO technology was still to
become widespread and the server side of an application usually consisted of
a relational database.

c07.fm Page 296 Thursday, March 9, 2006 1:51 PM

Some common GUI architectures 297

1:50 PM 9 March 2006 c07.fm 1.0

A semi-smart GUI architecture

This approach is a slightly more structured variant of the previous architecture. A
layering scheme attempts to factor out content – widgets and layout – and a data
IO layer that defines the remote connection with a server. The rest of the applica-
tion remains as a ‘blob’ of business rules, event listeners, and everything else that
is needed.

In cases in which this scheme is just a temporary stage towards a more well
thought-out architecture, the ‘blob’ layer will be thrown away and replaced by a
more structured implementation. The important aspect of this layering approach
is that the front-end interface (GUI) and the data transfer backend interface are
implemented in separate, and therefore more easily evolvable and reusable, layers.
This is as shown in Figure 7.3.

This organization can be applied to cases that lie between the smart GUI antipat-
tern and more demanding requirements that might await future iterations.
Suppose for example that you are asked to port a Web application to a rich client,
leveraging an existing J2EE server application. Suppose either that this is an
exploratory project, or that you simply don’t feel confident with a more complex
architecture. You could then organize your GUI into three layers:

• The presentation layer is a passive container for widgets, layout, and other
graphical details. No interaction or control is provided here. Widgets are
manipulated passively by the core layer. Visibility is provided by package-
level visibility or accessor methods. The responsibility of the presentation
layer is only to contain widgets and organize their layout (for example
content assembly). This allows panels to be assembled using visual builders,
possibly by less skilled developers.

Figure 7.3 A semi-smart application architecture

c07.fm Page 297 Thursday, March 9, 2006 1:51 PM

298 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

• The data transfer layer contains the POJO classes (or their XML equivalent, or
the like) that enable communication with the external world.

• The core is the ‘glue’ layer that controls and drives the other two. This layer
will be the most complex of the three, and potentially the least maintainable
in the long term.

This approach has the same drawbacks and advantages of the semi-smart archi-
tecture, while providing a smoother curve regarding evolution costs.

A three-layer architecture

Following this popular approach, code is organized into three layers: one for the
presentation (the GUI code), another for the application (a suitable representation
of the business domain), and one for common utility services, as shown in Figure
7.4. This layering scheme focuses on reuse. Factoring services into a common layer
modularizes the rest of the implementation and enables the reuse of the service
layer.

Some variants are possible, especially regarding the ‘thickness’ of the presentation
layer. Some versions also have a quantity of control logic built into the presentation

I like to call this approach the ‘ice cream cookie sandwich architecture,’ in
which you are only concerned about the two ‘cookies’ – the end user interface
and the server application – and not about the ‘ice cream’ – the business logic
and control – which remains a fluid, monolithic implementation.

Figure 7.4 Three-layer application architecture overview

c07.fm Page 298 Thursday, March 9, 2006 1:51 PM

Some common GUI architectures 299

1:50 PM 9 March 2006 c07.fm 1.0

layer, while others prefer to maintain only simple control in the presentation as
long as it is needed to spare the presentation layer from low-level GUI details.

Developers can use visual builders for defining content. Application layer code
may contain some spurious reference to GUI classes, possibly concerning their
higher-level aspects10. The service layer contains infrastructure code such as data-
base connections, client server communication, and so on. Some layering strategies
also put graphics utilities in the service layer, while others prefer to keep such
toolkit-dependent code with the presentation layer.

The main differences between this approach and a semi-smart architecture are:

• In the semi-smart GUI approach, the view layer is thin and passive, while in
three-layer architectures the presentation layer undertakes more responsi-
bility, decoupling the application layer from widget details.

• The service layer gathers infrastructure behavior and works as a façade for a
number of services, both in the presentation, such as providing the message
localization service, and in the application, such as packaging a server
request or handling a database connection. The service layer works also as a
dynamic indirection facility at runtime.

• The purpose of this architecture is to provide a simple yet beneficial organi-
zation that allows for a robust application layer representing a business
domain to operate within the application separately from presentation
details, both statically, for example code references, and conceptually. For
example, we might have exported existing business classes from a server
application and want to reuse them in a client application.

• The ‘glue’ code is provided by the presentation layer. Most of the time this is
just limited to a main() method that launches various components shared
between the other layers.

A possible incarnation of this architecture is detailed later in this chapter.

A four-layer architecture

Four-layer architectures are a well-known extension to the three-layer approach,
in which the application layer is split into an application model, responsible for
decoupling the view layer from the domain model, and a domain model, in which
view-independent domain representations manage information (see Figure 7.5).

This organization allows for better decoupling of the domain model from the rest
of the view layer details. Depending on the variant chosen, the application model

10. This is the case with Swing applications in which model classes need to extend abstract
toolkit classes, or interfaces where SWT+JFace domain classes don’t have any dependency
on GUI toolkits.

c07.fm Page 299 Thursday, March 9, 2006 1:51 PM

300 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

can factor out both commands and operations, not just GUI-related commands, so
that the domain model remain a foundational layer for domain-specific knowl-
edge (Evans 2004).

The application model layer will typically contain all the commands offered to
users by the application: the Command pattern is used in both Swing and SWT
for this. A ‘thin’ variant of the application model would typically contain no state
apart from that needed by GUI commands.

As we are only discussing desktop application GUIs, we are implicitly assuming
that all four layers will be deployed on the client side. This architecture can also
be deployed with the upper two layers (the view and application models) on the
client and the other two layers on the server. This latter scenario is more common
for Web clients, in which there is no need for off-line capabilities and the whole
domain model can comfortably operate on the server side.

7.3 A three-layer organization for GUI code
It is now possible to look at the details of a specific implementation of the three-
layer architecture discussed in the previous section. This section discusses a reuse-
based decomposition of a client implementation that is based on three parts:

In cases in which a high level of sophistication is needed, the infrastructure
layer can also handle the application’s internal communication infrastructure,
or other services typical of server-side applications, such as JMS support,
advanced caching mechanisms, and the like.

Figure 7.5 Four-layer application architecture overview

c07.fm Page 300 Thursday, March 9, 2006 1:51 PM

A three-layer organization for GUI code 301

1:50 PM 9 March 2006 c07.fm 1.0

presentation, application, and service. These three parts are composed mainly of
Java classes, possibly with other resources such as images, support files, and so on.

This scheme has its strengths and weaknesses, as we will see. Our objective is to
discuss this type of GUI architecture in some detail, rather than suggest that it is
some sort of ‘silver bullet’ architecture.

Overview

The presentation layer is what we see on the screen. Users interacting with dialogs
or watching a splash window at application start-up are dealing with presentation
objects. The other two layers are the ‘behind-the-scenes’ of the software:

• The application layer is where the application domain’s objects are gathered,
the business objects or domain logic.

• The service layer provides a wide range of standardized utility services.

Figure 7.6 illustrates this.

There is always a presentation layer in a user interface. It is made up of compo-
nents that are usually inherited from javax.swing.JComponent (or, in SWT, from
org.eclipse.swt.widgets), plus other classes that represent user input, or that
are responsible for interaction and control. The user interacts with the presenta-
tion layer mostly with mouse and keyboard. This layer separates users from the
application’s logic.

Figure 7.6 Three-layer GUI architecture overview

c07.fm Page 301 Thursday, March 9, 2006 1:51 PM

302 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

The application layer lies immediately behind the presentation layer, tightly
coupled to it. It is made up of Java classes that implement the logic and the busi-
ness objects that are represented graphically in the presentation layer. If we have
a clock window, for example, the application layer will contain a Date object that
is tightly coupled with a DateViewer widget in a panel with some buttons, and so
on, all of them in the presentation layer.

The third layer comes into play when we want to reuse some aspect of the code.
Let’s suppose we want to add more features to the clock. We want to offer inter-
national language support, with on-line help, and the option of customizing the
clock’s appearance depending on a user’s tastes, and in such a way that users
customizations are persistent across sessions. Thinking of these services as a sepa-
rate layer helps in reusing them more systematically.

The following table shows how data is managed by the various layers:

Some of the benefits of this layering scheme are:

• Division of work. In the early stage of a development cycle, somebody will
work on the GUI, designing and validating it with users, while perhaps

Table 7.1 Relationship between layers and data

Type Data

Presentation Depends on the underlying GUI technology

Service Authorization

Configuration

Help

Localization

Security

User Profiles

Etc.

Application Application-dependent

This basic architecture is not intended to be all-encompassing, but rather to
impart a minimum organizational infrastructure to GUI code, without being
too pervasive. Developers can adapt it to their own production environments
and needs.

c07.fm Page 302 Thursday, March 9, 2006 1:51 PM

A three-layer organization for GUI code 303

1:50 PM 9 March 2006 c07.fm 1.0

someone else will take care of the business objects specific to the application
domain, database issues, and so on. The two groups might even work in
parallel after an initial period. This architecture helps to divide responsibili-
ties neatly and so better organize the work.

• Integration with existing toolkits. This approach fits nicely with the Model-
View-Controller (MVC) architecture and with similar object-oriented mecha-
nisms that are in widespread use in Java programming, even though it can be
used with simpler libraries such as SWT or AWT as well.

• Flexibility. One of the main practical advantages of such an architecture is its
neutrality – it can be used for both medium-sized and small GUIs.

• Common reference. Like any kind of structured organization, this architecture
is also useful for reference. Throughout the product lifecycle (and in this
book as well) we can address functional parts with the same name. This
helps developers working in teams to standardize their cooperative efforts. It
also gives us an overview of all the challenges and problems designers and
developers will face during the product lifecycle.

Some of this scheme’s drawbacks are:

• It needs a clearly-defined separation between presentation and application. If this is
not maintained, the architecture can easily degrade.

• Extra care in testing is required. The service layer can be a problem for testing.
Mock-ups are needed for expensive services such as remote connections,
databases, and so on, and special care is needed with Singletons that
initialize statically.

• It gives poor insulation for complex domain models. The model doesn’t scale well
for projects with a complex domain model. In these cases a four-layer archi-
tecture is strongly recommended.

The following three sections look more closely at the three individual layers.

The presentation layer

The structure of the presentation layer is repetitive: the user interacts with some
widgets, clicking with the mouse, filling up text fields, and so on. A control
manager11 is normally used to support the widgets, supervising all the widgetry
and keeping it coherent – for example, disabling fields in a form until all required
data is valid.

Figure 7.7 shows a high-level conceptual view of the presentation layer with a
centralized control state that implements the Mediator design pattern.

11. See Chapter 6.

c07.fm Page 303 Thursday, March 9, 2006 1:51 PM

304 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

In Swing this layer includes all the views in the MVC, plus related support classes
such as table decorators, together with the objects that represent user input and
control. In SWT it includes the content widgets.

The application layer

If we use Swing or other MVC-based frameworks, all the MVC models needed for
the views in the presentation layer can be gathered here, as shown in Figure 7.8.
As well as these, other objects are needed for the particular domain with which
we are working. The application layer is the most variable of the three, because it
implements the logic of the application domain (possibly accessing remote
services) and also commands that use that logic. The application layer might also
include other details apart from a representation of the business domain, such as
commands, domain-specific support functions, and so on, and for this reason we
prefer to call it the application layer.

MVC models can be used as the interface with the application layer. This is a
simple choice and helps to decouple the two layers clearly – but ‘pollutes’ the
application layer with classes that are needed to extend the GUI toolkit’s inter-
faces for data models.

The application layer, also known as the ‘business domain model,’ is domain-
specific. You can find a comprehensive and insightful discussion of its design in
(Evans 2004).

Figure 7.7 The presentation layer

Even if your GUI does not use the Swing library, or JFace on top of SWT, this
architecture still turns out to be useful – as shown in Chapter 10 in the context
of J2ME GUIs.

c07.fm Page 304 Thursday, March 9, 2006 1:51 PM

A three-layer organization for GUI code 305

1:50 PM 9 March 2006 c07.fm 1.0

The service layer

The service layer implementation described here has just one class, Service-
Manager, as its interface with the other two layers. It usually performs all the
initializations – loading configuration files, initializing external devices, and so
on – and offers infrastructure services to the application and presentation layers.
A common service offered to the presentation layer, for example, is localization
support of widget appearance. Figure 7.9 illustrates a possible structure for this
layer.

Figure 7.8 One flavor of application layer

Figure 7.9 The service layer

c07.fm Page 305 Thursday, March 9, 2006 1:51 PM

306 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

Providing a single point of access is useful and intuitive, and can be used in a wide
variety of situations, but it may pose problems in non-trivial applications. Code
supervision should be enforced to prevent invalid services being moved into this
layer, such as specialized Factories, for example. A configuration facility can be
used to plug in new services, such as support for special hardware devices.

Even in simpler GUIs that have a minimal service layer implementation a service
layer could be useful, because it enforces a standard, systematic yet simple struc-
ture on the code.

7.4 Two examples of a three-layer implementation
Two examples of the three-layer architecture serve to illustrate it:

• A simple example describes the architecture from a technical, programmer’s
viewpoint.

• The second example zooms out to see how the model can be used to organize
a more complex and formal project.

These examples illustrate the practical application of the architectures described
in the previous section, and will be discussed in detail in the following chapters.

We know from Chapter 3 that we can think of components – that is, subclasses of
the Component class – as being divided into three groups, in order of complexity
and development cost:

• Standard components, such as Tree, Panel.

• Custom components, such as DataBaseTree, MyCoolButton, obtained from
the specializations of standard – Sun, Eclipse, or third-party – components.

• Ad-hoc components, such as the graphic equalizer in a music player, for
example, that have no counterpart in standard components and must be
developed from scratch.

An MP3 player

Kenrick and Rajeev are two friends in their first university year of study in
computer science. They are developing some Java classes for playing MP3 files,
for fun. One day Kenrick comes to his friend, very excited. He has found out from
a Web site that a Java shareware distribution being launched on CD-ROM in a
week’s time. They will therefore have only a very short time to ship their product,
and although their MP3 decoder classes work nicely, there is no GUI at all at the
moment.

Rajeev has some experience with the Java Swing library, and decides to develop the
GUI with the help of this book, while Kenrick will add the file streaming and other
essential features to the Java audio subsystem classes they have already developed.

c07.fm Page 306 Thursday, March 9, 2006 1:51 PM

Two examples of a three-layer implementation 307

1:50 PM 9 March 2006 c07.fm 1.0

Rajeev is amazed by the possibilities Java can give their GUI, such as portability
and a pluggable look and feel, but at present he has no time for advanced GUI
features. He decides to build a simple GUI for the first release, leaving ‘cool’
features for future releases. The paper mock-up is straightforward, and the GUI
design is inspired by similar products already on the market.

Rajeev gets into the implementation details of his GUI, devising the following top-
level containers:

• A main frame.

• Four modal, unrelated dialogs, one for information about the current track,
another for application settings, one for the help, and one for choosing files.

• Two accessory pop-ups – a pop-up window for the volume control, and a
simple pop-up menu triggered by the right mouse-button on the track list.

Rajeev decides not to use any particular UI approach, mainly because he has
never used one before and feels that he has no time to learn new material at
present. He sketches the main window on paper, defining all its components,
shown in Table 7.2, together with their development complexity.

The next step – to define the required services – is straightforward: Rajeev decides
not to use any standard service at all. He then defines the user interaction, basing
it on the following commands.

• Track-related commands:

– Play
– Stop
– Rewind
– Fast forward
– Pause
– Show track properties, which displays the track properties dialog
– Step back, which rewinds the current track by five seconds
– Step forward, which steps the current track forward by five seconds

Table 7.2 The main frame components for the MP3 player

Component name Java class Type

ToolBar JtoolBar Standard

TrackList Jlist Custom

TrackSlider Jslider Standard

StatusBar JstatusBar Ad-hoc

c07.fm Page 307 Thursday, March 9, 2006 1:51 PM

308 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

• General commands:

– Preferences, which shows the dialog for changing the application’s options
– Help, which shows a simple dialog with a text area describing authors and

product
– Set volume, which shows the pop-up window with the volume slider

control

• Track-list commands:

– Next track
– Previous track
– Add to track list
– Remove from track list
– Select from track list, which plays the selected track in the list

The other user interactions are the right-click on the track list, which displays a
menu with track list-related commands, the double-click that launches the ‘Select
from track list’ command, and the keyboard accelerators.

A simple director class will manage all the GUI coherence – for example, the track
list navigation arrows should be disabled when it is not possible to use them, such
as at the beginning or the end of the list.

Once finished with the director class, the presentation layer and the service layer
(here empty) are defined. The last step is to define the model classes in the appli-
cation layer. There are three MVC models: the track list, the current track elapsed
time, and the volume slider models. Another application class represents the
tracks to be played.

Rajeev decides to incorporate the elapsed time model in the track class, because
this simplifies the handling of the two views. The same object – the current elapsed
time for the track – is observed by two views: the interactive slider and the read-
only digital display at the bottom-right of the main frame. This type of model –
the slider model and the ad-hoc digit display model within the status bar – is quite
simple. The track list model is just an ordered collection of Track object special-
izations of the ListModel class.

Rajeev adds the other application classes that have been refined by Kenrick
meanwhile, resulting in the GUI shown in Figure 7.10. Kenrick simply couldn’t
believe it.

With his remaining time, Rajeev refines the StatusBar component and tests the
GUI with the help of their friends.

This example shows how a principled, top-down general implementation organi-
zation also helps in the development of small applications, not only at a technical
level, but also in team organization.

c07.fm Page 308 Thursday, March 9, 2006 1:51 PM

Two examples of a three-layer implementation 309

1:50 PM 9 March 2006 c07.fm 1.0

An electronic circuit simulator and editor

In the next example we take another perspective, without going into technical
details, to see how a three-layer architecture can be used for managing large
projects.

A joint venture by a university and a private software firm is set up to develop a
graphical electronic circuit simulator and editor in Java. The plan is to begin by
wrapping an existing, reliable simulation tool that is based on a command-line
user interface that has been developed by university researchers over the past ten
years. In future releases the code will be ported entirely from C to Java, so that the
application will become 100% pure Java and totally cross-platform.

The goal for the first release is to lay out the GUI, while the backend will interface
with the existing legacy command-line application. Users are both engineers and
academics, and the software will be released in two versions:

• A basic one as freeware, which will provide the same functions as the
existing command-line application.

• A ‘professional’ edition that will be the starting point for future
enhancements.

The software company will hold the copyright for the source code, possibly
expanding the software to handle more features in the professional edition. They

Figure 7.10 The MP3 player’s GUI (Metal1.2)

This highlights an interesting and important aspect of the Java community –
not only its end users, but also developers, architects and designers. Java
technology is widely used by open source and not-for profit organizations,
where the Java characteristics of portability, inexpensiveness, and inherent
multi-vendor sourcing, make it the perfect development choice in these
cases.

c07.fm Page 309 Thursday, March 9, 2006 1:51 PM

310 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

will manage the overall development, while leaving the university partner to
work with the legacy code they know well.

We won’t discuss the management of the project here, although this can be
handled within the three-layer architecture as well: we just focus on the code
development effort.

After the development group is created, three teams are formed, one for each
functional layer:

• The presentation team will interact with the other two teams and with end
users.

• The application team will interact with the other two teams, and with the
researchers who developed the command-line simulator for the domain
analysis.

• Finally, the service team will interact with the other two internal teams.

Development begins with an estimation of key numbers, such as how many and
which type of services the GUI will need. Then, after several meetings with users
of the command-line version of the application, the presentation team proposes the
first GUI mock-up. In the meantime the application team starts discussions with
the developers of the command-line simulator, while trying to define the software
architecture best suited for a graceful migration to Java in forthcoming releases.

The first version of the GUI is shown in Figure 7.11. It took less than half an hour
for an expert developer to build the mock-up using a visual GUI builder12.

The idea behind the proposed GUI is to centralize circuit building and manipula-
tion in one ad-hoc component, the circuit editor, shown on the right-hand side of
the figure, while the left-hand side provides a data navigation facility that allows
circuit elements to be inspected. The designed interaction is from the data
inspector to the circuit editor and back – that is, selecting an element in the circuit
editor automatically selects the data in the inspector, and vice-versa. A palette of
circuit elements is used to add items to the circuit editor and the underlying circuit
model interactively.

The circuit editor is chosen as a key component in the whole design, so the
presentation team divides its responsibilities in two sub-teams: one responsible
for the circuit editor and its related classes, the other for the remaining classes in
the presentation layer, together with the organization of the feedback interviews
with users.

The second presentation sub-team plan thirty or so commands (action classes),
with one director and two auxiliary classes, allowing an initial approximate cost

12. See Chapter 5.

c07.fm Page 310 Thursday, March 9, 2006 1:51 PM

Two examples of a three-layer implementation 311

1:50 PM 9 March 2006 c07.fm 1.0

estimation for the whole development. The design of the exploration area requires
an extra meeting with end users.

After a feedback session with users, it emerges that the command-line interface,
which is provided as an on-demand pop-up dialog in the first version, is so
important and frequently used that needs a more central place in the GUI. The
presentation team therefore decides to incorporate it permanently in the GUI. This
change won’t affect the application team that is working on the business classes.

The project needs the following services: standard internationalization, interac-
tive help, and basic persistence. The service team does not need to implement
these functions immediately, but needs to publish the interfaces other teams have
to use right from the beginning.

The two presentation teams continue the design phase. The first team has a some-
what easier job, in that they already have a clear idea of what to develop in the
circuit editor component. The second team still has to define some design issues.
For the data inspector, two hypotheses are viable:

• A table-like solution, possibly implemented with a specialized JTable
component that adopts a high-density approach to data visualization13.

• A hierarchical browser style using a specialized JTree and opting for a
limited information layout strategy.

13. See Chapter 2.

Figure 7.11 The first version of the mock-up

c07.fm Page 311 Thursday, March 9, 2006 1:51 PM

312 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

The former solution with a tabular inspector is shown in Figure 7.12, and the latter
solution has been sketched in the mock-up in Figure 7.13.

After some discussion within the development team and some brief usability
testing with users, it becomes clear that the table-like solution is less usable and
more difficult to manage, especially for large circuits with a greater number of
elements. For budgetary reasons no other ad-hoc component will be implemented
for this release, for example for the exploration area.

Figure 7.12 The second version of the mock-up

Figure 7.13 The third version of the mock-up

c07.fm Page 312 Thursday, March 9, 2006 1:51 PM

Two examples of a three-layer implementation 313

1:50 PM 9 March 2006 c07.fm 1.0

Meanwhile, the application team is working on the overall analysis, starting from
the business classes and leaving the model classes, the part that is more change-
able – at least at the beginning of the development cycle – to last.

The service team is working in parallel on the services the application needs:
internationalization, persistence of the application settings, and help support.
These features will be implemented using standard libraries (such as those
provided with this book) so the implementation cost is almost zero.

After another meeting with users and university staff, it transpires that the GUI is
mature enough to be considered definitive, at least for this release. An internal
meeting is also held between the presentation and the application teams to define
the interfaces (classes) that describe the boundaries across which the team’s code
will communicate. This is often just a matter of defining the models of the MVC
architecture. In this version of the GUI there are three main models, corre-
sponding to the three views used:

• A DataTreeModel, which subclasses the TreeModel.
• A CircuitModel that represents the electronic circuit managed by the circuit

editor component.
• A CommandLineModel, for the command line component, which is a special-

ized JTextArea component.

While the DataTreeModel and the CommandLineModel are relatively easy to write,
the first because it is just an implementation of the standard Swing tree model,
and the second because of the intrinsic simplicity of the command line compo-
nent, the CircuitModel is a new component, and hence needs more effort.

The interfaces required are agreed, and from now on the four groups have defined
their responsibilities more clearly. The two presentation teams will use dummy
model classes to refine the prototype, while the application team is still busy with
domain analysis. The only possible problems could be in the definition of the
CircuitModel class, which could change in the future. The service team finishes
its job and its members join one of the three remaining teams. The two presenta-
tion teams work to refine the prototype, adding dummy delays and other real-
world constraints, the second team constantly validating the user interface with
end users.

In time the application team finishes the implementation of the three models,
together with the remaining classes. After local tests, the three set of classes (appli-
cation, presentation, and service) are merged in one application, while the three
teams – the two presentation teams and the application team – continue to work
separately. The end of the integration produces the first alpha release of the whole
application.

This example shows a possible division of work for development teams on non-
trivial GUIs and how this architecture can be applied on medium-scale projects.

c07.fm Page 313 Thursday, March 9, 2006 1:51 PM

314 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

7.5 The service layer
The service layer is essentially a reusable library that implements a number of
services offered to both application and presentation classes. The key value of the
service layer lies in its specialization. Centralizing general-purpose, service
classes in a top-down manner provides a number of benefits. This section looks
at the implementation details of the service layer, together with a simple
implementation.

Overview

The services offered by the service layer are centralized in a ServiceManager class
whenever this is meaningful. Expanding on Figure 7.6 on page 301 gives us the
architecture details shown in Figure 7.14.

We keep the organization of the proposed service layer as simple as possible,
providing a static structure with no dynamic discovery or plug-in of services.
Figure 7.15 shows a possible set of services.

Figure 7.14 Architecture overview for the service layer

c07.fm Page 314 Thursday, March 9, 2006 1:51 PM

The service layer 315

1:50 PM 9 March 2006 c07.fm 1.0

The ServiceManager class is a Singleton that acts as a one-stop access point for
many of the services provided in the service layer. From a software design
perspective, such a class is a useful container for the many utility services needed
by a graphical application.

The ServiceManager class also provides useful features at development and
testing time. For example, when resources aren’t found, a dummy (non-null)
default resource is always supplied to keep the application running: a dummy
image is built programmatically by the initializeDefaultResources()
method. In this way a default image is always available, even when no resources
are provided. For example, a picture (EMPTY_ICON) is returned by the getImage-
Icon method whenever the requested image is not found. Similarly, the getMsg
method doesn’t abruptly break execution when a resource string is not found,
returning an empty string instead.

The private constructor initializes each specialized service class by using lazy
instantiation. Only when a particular service is needed is it instantiated on the fly.
The same technique can be used during application shut-down.

Service interfaces should be kept as simple and homogeneous as possible,
following the Segregation Interface Principle14, especially when shared among
diverse developer groups. General advice for developing public APIs should be

14. The Segregation Interface Principle states that clients should not be forced to depend on
methods that do not pertain to them and that they won’t use. Such external methods
clutter the design and should be made available separately. For more details, see (Martin
2002).

Figure 7.15 Service layer class diagram

c07.fm Page 315 Thursday, March 9, 2006 1:51 PM

316 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

used when designing the public interface of the service layer15. The enforcement
of the principle of Single Functional Responsibility also helps to keep services
‘fit’ (that is, focused only on a well-defined, coherent responsibility) and more
understandable.

Loading services

Loading external resources is a common functionality in an application. Images,
property files, and other data should be loaded in a coherent way, because a Java
application can be launched in different contexts.

More common situations could be:

• Development time execution. During development, testing or debugging, the
application is in a protected environment in which some parts (resources or
code) could be missing.

• Standalone runtime execution. This is the standard way to run a Java
application.

• Java Web Start runtime execution. Given the particular implementation of Java
Web Start technology, some mechanisms for loading resources cannot work.

• Java programs run as applets. In this case the loading mechanism is simplified
by the applet container.

It is good practise to centralize external accesses to the local file system and the
Internet. This strategy could prove useful also for security control and other
issues. It will be far easier to change the loading mechanism used in the program
if this is centralized in a service class. If the application is planned to be
deployed in different scenarios, a pluggable specialized ResourceLoader could
be provided. Nevertheless, in all common situations the loading mechanism
provided by the ServiceManager implementation in the code bundle will
suffice.

Localization services

Localization is essentially the loading of files that translate text messages or other
resources shown in an application appropriately for different countries and
cultures. These files can store references to the relevant resources, such as images
and text strings, that need to be localized. For simplicity we will deal here only

15. Countless book discuss good OO design, such as (Martin 2002) mentioned above. For a
more specific discussion, see for example ‘Evolving Java-based APIs’ by Jim des Rivières,
available at http://eclipse.org/eclipse/development/java-api-evolution.html

c07.fm Page 316 Thursday, March 9, 2006 1:51 PM

The service layer 317

1:50 PM 9 March 2006 c07.fm 1.0

with properties files, although more elaborate schema are possible, such as XML
files.

Localization properties files are often edited and managed by different people,
such as programmers or translators. To prevent problems, the development team
can agree on simple guidelines for their format. The localization files provided
here are compliant with a simple standard.

There are a few simple properties that should be enforced for localization files, as
well as other configuration and development files:

• It should be possible to navigate back to the point in the source code where a
text string in a resource bundle is used. Traceability is essential for main-
taining the files in a complex development environment.

• The files should be owned by only one member of the development team. In
this way responsibilities are clearly defined.

• The files should be kept to a reasonable size. Excessively large files are diffi-
cult to maintain and manage, while too many small files could be excessively
resource-consuming at runtime.

We use a simple convention for resource files in this book that ensures these prop-
erties, and that has proved quite robust in large projects:

• Key strings are composed of tokens separated by a period. They begin with
the fully-qualified class name, excluding common paths, and eventually
include inner classes. A brief explicatory label is used.

• A two-character code is used for special-purpose labels, to distinguish the
type of label. In this book we use the following suffixes:

– ‘tt’ for tooltip text
– ‘ad’ for accessible descriptions
– ‘mn’ for mnemonics
– ‘im’ for images
– longer, ad-hoc suffixes such as ‘title’ where required

• Finally, some additional information can be inserted in the heading
comments, such as the current version, the authors, and so on. This would
typically follow your company standards.

You can adapt this type of convention to suit your project’s needs and devel-
opment organization as required. If the planned application is not complex, or
the development team is limited in number and stable over time, you can
consider dropping any convention on properties files altogether.

c07.fm Page 317 Thursday, March 9, 2006 1:51 PM

318 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

An example of a resource bundle file following this convention is provided in
Listing 7.1 below.

Listing 7.1 the message.properties file.

00: #
01: # Naming convention adopted here:
02: # (especially useful for large projects)
03: #
04: # 1.package path (excluded common base like "com.marinilli.b1") to
the first class that uses it, then the classname followed by "." and
05: # 2.optionally 2-char code (tt=tooltip, mn=mnemonic, ad= accessi-
ble desc., im=image), followed by "." and
06: # 3.finally a short description of the string
07: # (in case of simple text label the 2-char code is omitted)
08: #
09: # (c) 2000-2006 Mauro Marinilli
10: #
11:
12: c6.util.ui.memory.MemoryCheckBox.label=Don't\ show\ this\ message\
again
13:
14: c4.common.LoginDialog.title=Log\ In
15: c4.common.LoginDialog.login=Login\ Name:
16: c4.common.LoginDialog.login.mn=l
17: c4.common.LoginDialog.login.tt=insert\ user\ name
18: c4.common.LoginDialog.pword=Password:
19: c4.common.LoginDialog.pword.mn=p
20: c4.common.LoginDialog.pword.tt=insert\password
21:
22: c4.common.AboutDialog.title=About\ J-Mailer\ Pro
23: c4.common.AboutDialog.close=Close
24: c4.common.AboutDialog.info=Info..
25: c4.common.AboutDialog.logos.im=CompanyLogo.gif
26: c4.common.AboutDialog.about.im=AboutLogo.jpg
27: c4.common.AboutDialog.version=Version\ 1.00.0.0002
28: c4.common.AboutDialog.text1=©\ 2002\ All\ Right\ Reserved.
29: c4.common.AboutDialog.text2=blah\ blah\ blah\ blah\ blah
30:

This listing refers to the message labels in two classes:

• com.marinilli.b1.c4.common.LoginDialog
• com.marinilli.b1.c4.common.AboutDialog

Remember that once your application is deployed, zipped JAR files eliminate
most of the redundancy seen in message keys, both in properties files and in
compiled classes.

Note that the ‘\’ character is needed to enable portability only when developing
on multiple platforms, for example mixing Unix, Microsoft, or Apple Macintosh
machines.

c07.fm Page 318 Thursday, March 9, 2006 1:51 PM

The service layer 319

1:50 PM 9 March 2006 c07.fm 1.0

Persistence services

Persistence services are provided as a way to save data persistently from session
to session. Memory components16, for example, are implemented by using persis-
tence services. From J2SE 1.4, a limited form of persistence is provided by the
library java.util.prefs. We will use such a library in the example application
in Chapter 14 and its utility libraries. This example code is provided with the rest
of the source code bundled with the book.

The PersistenceManager is organized as a Singleton, following the design of the
other specialized service handlers. Its private constructor loads a specialized
properties file from the local disk that stores class-persistent data in a text format.
This method can be used for static variables and common object instances.
Saving static fields requires you to serialize the whole instance. The get() and
put() methods, and their various versions specialized for handling elementary
types, work on the class-instance persistent cache. This is written and read as a
properties (text) file. In contrast to binary serialized objects, text can be read and
manipulated by humans easily.

Interested readers can experiment to see what is written in the persistence.prop-
erties file in the application directory, set to ‘.app’ by default in the system root.
This mechanism is quite useful for storing GUI options and other persistent data so
that it can be manipulated with a text editor outside the application. For more
details about class and instance persistence, see (Marinilli Persistence 2000).

For more details, see the implementation of the PersistenceManager class
provided in the code bundle. Apart from class persistence, the proposed Persis-
tenceManager class supports instance-level persistence by means of the
loadInstance and saveInstance methods. This type of persistence is handled
using normal serialized files, one for each object. The proposed implementation
can be modified to use external libraries or other persistence means such as
remote servers, databases, and so on.

Factory services

One example of an additional service that can be provided by a service layer is
a facility for creating new objects from prototypes. This is an implementation of
the classic Prototype software design pattern (Gamma et al. 1994). This service

Resource bundles and other configuration files are also useful for non-tech-
nical staff that need access to messages and other GUI appearance material.
For example, designers can use them to finely tune the final GUI.

16. See Chapter 4.

c07.fm Page 319 Thursday, March 9, 2006 1:51 PM

320 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

can be used by the application for creating new objects from templates, or
directly by the user, as in the Library example application in Chapter 15. In this
latter case, users can modify the templates themselves using the same GUI that
is used to modify normal objects, so providing a handy reuse of an object’s prop-
erty screens for developers.

This general service can be employed in a variety of different contexts. The imple-
mentation of the PrototypeManager class supports a cache for storing class
instances. Such a cache, implemented by the repository instance, is made persis-
tent by means of the standard persistence services provided by the service layer.

To avoid unnecessary commits when the cache has not been modified, a ‘dirty’ bit
is employed. The firstTimeInitialization method performs the initialization,
building a number of default prototypes that are used when the program is first
launched. These default prototypes can then be overwritten by new instances. The
PrototypeManager.defaultValues property defines where the default values –
used only at start up – are stored. The (private) constructor loads the array of
default prototypes from disk. The static method createNewFrom creates a new
instance, given the prototype object. It tries to fetch the prototype from the cache,
and returns a new instance from it. In this way new types that are not provided at
design time can be managed by the program at runtime. Finally, accessory
methods like remove, get, and put can be used to manipulate the cache directly.

The PrototypeManager class is available in the code provided for this chapter.

Other services

Different kinds of services may be needed, depending on the application domain.
Designers often include graphical utilities with the sort of general services
discussed above, especially for medium to large projects. This approach can easily
lead to a fully-fledged graphical-utility static class (that is, a collection of static
methods) that solves common graphical problems such as component resizing,
dynamic container introspection, and so on. A potential problem with this approach
is that novice developers tend to reinvent the wheel, providing features that are
already present in the standard GUI library, but often of a lower quality, because of
a lack of knowledge of the technology used.

Common services are often those related to application IO, such as client–server
communication or database connection management. A database manager can
centralize connection pooling and other related features. Specialized managers
providing adaptation can also be gathered here.

c07.fm Page 320 Thursday, March 9, 2006 1:51 PM

Summary 321

1:50 PM 9 March 2006 c07.fm 1.0

Providing new services

A few words about the boundary between the application domain classes and the
service layer are relevant here.

Consider for example the domain of GIS applications, such as the Geopoint
example in Chapter 3. In this context the API for geolocalization and managing
physical values on the Earth’s surface can be included as a general-purpose
service within the service layer. Although wrong from a theoretical viewpoint
(such an API is not a general-purpose one), it could be an appropriate decision if
the company is specializing in geolocalization products and the API will be used
in other applications as well.

The Swiss army knife syndrome

Improper design of the ServiceManager class can easily lead to a do-it-all service
class with many disparate utility methods patched together. In (Brown et al. 1998)
this scenario is called the Swiss Army Knife Antipattern.

A common solution to this problem is to differentiate the classes that provide the
different services, eventually providing a more elaborated architecture within the
service layer itself. This is another point of friction in the proposed implementa-
tion of the three-layer architecture in real-world scenarios.

7.6 Summary
This chapter presented advice about code organization, and proposed a three-
layer architecture suitable for Java GUI development in detail. Such an architec-
ture is composed of three layers, as follows:

• Presentation. This layer contains all the GUI-related classes and resources,
essentially Component subclasses, and graphical resources such as images.

• Application. This layer gathers the business-specific classes and the remainder
of the MVC classes whose view components were included in the presenta-
tion layer.

• Service. This layer consists of a standard reusable library of services that recur
in all non-trivial GUIs. It can sometimes be expanded to handle special
services typical of the current application.

We discussed the proposed architecture, providing two practical examples that
highlighted the main advantages such an architecture provides.

c07.fm Page 321 Thursday, March 9, 2006 1:51 PM

322 Code Organization

1:50 PM 9 March 2006 c07.fm 1.0

Key ideas

Here are some of the more interesting ideas seen in this chapter:

• The main criteria and issues related to code organization for desktop applica-
tion GUIs, especially for layering.

• Providing a code structure organized around service classes has a number of
benefits, such as code reusability, a systematic software design, better
communication among developers, and so on.

• Service classes can be reused easily to provide sophisticated services inex-
pensively. The factory services implemented by the PrototypeManager class
is a good example of this.

• For simple applications the service layer approach can still be used,
compacting the services offered to reduce the additional runtime overhead.

Aside from general discussion and practical examples of implementation organi-
zations, we also have looked at the three layers of a proposed layering scheme in
detail.

c07.fm Page 322 Thursday, March 9, 2006 1:51 PM

8 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

In this chapter we will explore a very popular class of GUI applications: rich
clients (also known as ‘smart’ or ‘fat’ clients). While we focus our discussion on
desktop applications, most of the concepts and approaches discussed here can be
applied also to J2ME applications, as described in Chapter 10.

This chapter focuses on form-based GUIs, on their design, and on issues such as
input validation, and distribution of code between client and server tiers, while
other chapters complete the puzzle by providing related advice on this popular
class of GUIs – Chapter 11 discusses various tools and technologies for Java GUIs,
while Chapter 13 focuses on Java rich client platforms.

The chapter is organized as follows:

8.1, Introduction clarifies various details related to rich clients.

8.2, Reference functional model applies the abstract functional model discussed in
Chapter 1 to rich clients.

8.3, Runtime data model introduces a general, simple, informal model for runtime
data representation that is used in the example application.

8.4, The cake-ordering application, the XP way proposes an example form-based
application created using this methodology.

8.1 Introduction
Figure 8.1 shows a screen shot of a fictitious application for Java-powered cell
phones. This illustrates a type of Midlet1 (see Chapter 10) that is provided by the
central transportation authority of a major city to its clients. The user is admitted
into the transportation system by means of an ingenious system – when requested
by the user, the cell phone screen displays a special machine-readable pattern that
is interpreted by fixed devices.

The application also works as an ‘e-wallet’ – the user can purchase transportation
credits electronically – and receives broadcast messages about transit and other
transport-related news. These messages are optional: the user needs to pay their

1. A small Java application that is intended to be executed within a managed container
conforming with CLDC and MIDP profiles for mobile devices.

Form-Based Rich Clients

c08.fm Page 323 Thursday, March 9, 2006 2:04 PM

324 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

carrier provider for the cell phone traffic, so it can be disabled by users who do
not wish for the service. This type of application works mostly off line – displaying
the machine-readable pattern and thus allowing the cell phone owner to pay for
the ticket – but needs some on-line type of connection from time to time, to
update the user’s credit and to show news messages.

This type of application cannot be implemented as a WAP (or Web) page, because
it needs to be able to function off site. At the same time, by working off site and
using the same appearance as the cell phone’s software environment, it can
camouflage itself alongside the other cell phone applications, and so appear more
natural to its users.

The application must be easy to download, for example from a Web page, and be
easy to use, because repetitive users are going to use it more than once a day. Being
written in Java allows it to be deployed inexpensively to a wide range of devices.
This is an imaginative – and imaginary – example of a particular breed of client
GUIs, straddling the ground between complex Web pages and lightweight tradi-
tional applications.

Defining rich clients

There are many definitions for rich and smart clients, some of them elegant and
useful, but none yet suit the uniqueness of the Java platform. We will introduce
Java rich clients (RC) gradually, starting from their differences from Web applica-
tions, and next from the other GUI client environments.

First of all, let’s look at the properties that define a rich client for the purposes of
this book:

• They offer richer user experience than other media. If rich clients are to be
useful, they should be superior to existing alternatives, namely Web-based
applications. This is true for both end users and developers.

Figure 8.1 A J2ME rich client

c08.fm Page 324 Thursday, March 9, 2006 2:04 PM

Introduction 325

2:4 PM 9 March 2006 c08.fm 1.0

• They offer a network-centric approach. The ability to connect to remote
servers smoothly, also for first-time deployment, together with the ability to
operate off line, are two important characteristics of rich clients.

• They are local environment-savvy. In contrast to Web applications, RCs might
have access to local resources, and can fit into the overall GUI experience of
existing applications and operating systems. Also in contrast to Web applica-
tions, rich clients have to be designed with a specific target environment in
mind, both technically and as regards the user experience.

It’s useful to briefly review the reasons why we might need to develop a rich client
application:

• When the application is targeted at many different platforms, or when ease
of deployment and administration is favored over end-user experience, Web-
based applications should be preferred over other client strategies. In situa-
tions in which a computer is used by more than one user, by occasional users,
or when users access the application from more than one machine, then Web
applications are also preferable.

• When end user productivity and overall experience are important, or when
off-line capabilities are needed, rich clients should be preferred over Web
applications. This latter decision should be based on an assessment of the
real need, however, rather than ‘nice-to-have’ features.

Java rich clients

A wide variety of rich client technologies exist, such as Microsoft client technolo-
gies, Macromedia Flash, and many others. There are at least three factors that
make Java different: a fully-fledged object-oriented approach, multi-platform
execution, and a lively, highly collaborative developer community. While the first
two factors can be problematic if not mastered, these three aspects together offer
a unique blend of features.

Before going further, it is important to highlight the fact that Java desktop clients
suffer from one major drawback due to Java’s multi-platform characteristics. The
hurdle is the Java Runtime Environment, which requires at least 7.2 MB to run
(J2SE 5.x, using special optimized installers). This can be a problem that should be
considered in advance before opting for Java client technology.

On the other hand, OO technology has been around for decades, and developers
can rely on a host of well-proven techniques and patterns, of which this book
takes advantage heavily. As domain complexity rises and application scale grows,
OO technology has proven a valuable although labor-intensive approach. In addi-
tion, thanks to the availability of SWT, the portability of pure Java GUIs can be
sacrificed for tighter integration with the underlying OS environment on some
platforms.

c08.fm Page 325 Thursday, March 9, 2006 2:04 PM

326 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

GUI design for rich clients: the Third Way
First came traditional desktop application GUIs, which thrived unchallenged for
decades. Then came Web browser-based GUIs, with their document-like struc-
ture, hyperlinks, lots of scrolling, and so on. Now, an interesting design cross-
breed is slowly making its way onto our desktops. Perhaps you have already
noticed some desktop applications that have hyperlink-like buttons, panels that
resemble Web pages, and other features. This convergence is taking place on the
Web side as well – think of ‘rich’ Web applications such as Google’s services, and
those offered by similar Web sites.

Unfortunately, this middle ground is still largely uncharted territory, in which
GUI design habits and conventions are not yet established. There are no GUI
design guidelines, nor even established informal idioms, and this ‘third way’ of
lightweight rich clients remains a wild land that GUI designers enter at their peril.

This is a pity, because Java rich clients have the potential to offer a unique end user
experience that falls between traditional desktop applications and Web applica-
tions, by providing a unique, platform independent ‘Web desktop’ feeling, backed
by traditional software engineering technology and libraries proven by decades
of industrial development.

8.2 Reference functional model
Returning to the functional decomposition we presented in Chapter 1 and
discussed in Chapter 6, in this section we will specialize it further for rich clients.
Figure 8.2 repeats the model from Chapter 1.

Figure 8.2 A functional decomposition for rich clients

c08.fm Page 326 Thursday, March 9, 2006 2:04 PM

Reference functional model 327

2:4 PM 9 March 2006 c08.fm 1.0

It is worth reiterating that this is just one possible, general functional decomposi-
tion of a rich client application, merely a reference to theoretical concepts. On the
other hand, when organized as a practical decomposition, rich client implemen-
tations help in the discussion of common issues at a higher level of abstraction.

To recap briefly, the various functional layers possible in a rich client application,
following the model in Figure 8.2, are:

• Content. This is the ‘base’ of the GUI, composed of widgets, screens, and
navigation. For convenience we can also represent widget layout informa-
tion here.

• Presentation. This is an orthogonal layer to the others, containing graphics
appearance and low-level presentation details such as look and feel informa-
tion, icons and the like.

• Business domain. This is the logic of our application. Very simple rich clients
do need very little client logic, so this layer would be almost empty in their
cases

• Data IO. This layer contains behavior and data needed for exchanging infor-
mation with the outside world. It mainly gathers data related to client–server
communication and data binding information.

• Interaction and control. This is the topmost layer and ‘glues’ the other layers
together. It is responsible for enforcing data validation by invoking rules
from the business domain’s layer, together with low-level interaction and
control, such as disabling buttons or executing commands.

• Infrastructure. This layer is the foundation of the entire application, and
includes the Java platform, the GUI toolkit (such as Swing or SWT), and
other infrastructure frameworks such as a rich client platform like Spring
RCP or Eclipse RCP. We won’t focus on this layer here.

This functional decomposition will be a guide when discussing the many details
and issues related to rich client application development. It applies not only to
code, data and resources, but also to testing and business analysis as well.

Distributing behavior between client and server

One of the most obvious bonuses of developing a Java rich client lies in the syner-
gies possible with server-side Java code. One such advantage is the ability to use
the same code on both client and server. Another advantage lies in using the same
proprietary protocols between client and server, such as RMI. The latter situation

This discussion applies to all Java GUI technologies, libraries and toolkits – the
model is even valid for Web applications and non-Java GUIs.

c08.fm Page 327 Thursday, March 9, 2006 2:04 PM

328 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

is less often available and it is fairly straightforward to implement: a wide range
of tutorials are available on the topic.

A less-discussed although important issue concerns the distribution of common
code between client and server, from a client application perspective. (Although
we are discussing it here for rich clients, this point is valid also for other applica-
tions that need to connect remotely with server-side applications.)

One of the achievements of multi-tier systems is the ability to keep business code
away from clients. This was a major step in implementing business logic that is
dispersed on remotely-installed clients. Changing deployed business logic with
1990s technology was about as hard as updating the firmware of a space probe
that had already landed on Mars. With today’s deployment technologies, it is
possible to bring business code back to client machines while maintaining central-
ized control, allowing rich clients to work off line as well, and to provide a richer
user experience with more natural and responsive GUIs. See for example the
discussion about data validation later in this chapter.

The important point is to control business logic, not on which tier it is physically
located. With technologies such as JNLP and Java Web Start, for example, it is
possible to update business code seamlessly, and also to force clients to update to
a specific required version of the business code before running the application.

Unfortunately, even today’s technology is still far from perfect, and distrib-
uting code between client and server is still one of the ‘complexity boosters’ for
GUI applications. Bringing business code to the client complicates design,
because apart from deployment issues, we need to design remote communica-
tion, with coarse-grained interfaces, DTOs, and all the required machinery of its
implementation2.

Business logic on the client also generates a number of issues concerning caching
of data and code. Code caching can be performed with deployment technologies,
but data caching it is still up to the application developer. Considering the trans-
portation Midlet example, we need to set up a mechanism for synchronizing the
user’s local e-wallet, contained in the application, with the account held on the
central server. Client validation logic might also need to refresh some parameters
periodically – for example, we might want to update the currency exchange rate
used to give customers an approximate transaction value before issuing them.

Rich clients need business logic locally, usually for data validation and other
calculations on user-input data. Suppose we implement a loan calculator screen
as part of a larger financial application, for example. This could instantly calculate

2. See for example the discussion on Data Transfer Objects in Chapter 6.

c08.fm Page 328 Thursday, March 9, 2006 2:04 PM

Runtime data model 329

2:4 PM 9 March 2006 c08.fm 1.0

the market interest rate of financial data as soon as we insert some amounts,
without incurring the overhead of time-consuming connections.

Common problems

There are several common problems related to rich client development. The most
common solutions, in the form of OOP design patterns or simple best practices,
were briefly discussed in Chapter 6, and will be shown in the various examples in
this book. Figure 8.3 shows the choices needed when developing rich clients,
together with the functional layer to which they belong.

The next section discusses a key aspect of rich client applications: the business
domain data they handle.

8.3 Runtime data model
As well as the functional model discussed in the previous section, another useful
model exists that is particularly apt for form-based, rich client applications. This

For more details about designing client/server communication, read the tech-
nical discussion in Chapter 6, or one of the many sources available on line and
in the literature, such as (Fowler et al. 2003).

Figure 8.3 Common decisions for rich clients

c08.fm Page 329 Thursday, March 9, 2006 2:04 PM

330 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

model abstracts the data concepts that recur in all data-centric GUI applications.
Data is the ‘lymph’ of rich client applications, and its management is essential for
well-designed software.

We have data in a GUI that is first represented in a buffer within widgets, the
screen data state. This data can be transferred in business domain objects (BDOs) for
further processing, and eventually copied into other objects – or equivalent struc-
tures, such as XML files – for remote transfer as data transfer objects (DTOs).

Figure 8.4 shows this simple model of data representation within a GUI. Screen
data state is the software interface to the user data with the remainder of the client
application.

While they represent the same data for different functional purposes – end-user
input-output, business processing, and remote communication respectively –
these concepts help to clarify the implementation design.

The concept of screen data state can lead directly to application of the Memento
design pattern to the data backed by content widgets. This approach is useful
in a number of cases. Suppose we are building a form in which a great deal of
data needs to be input by users to complete a transaction. A requirement states
that at any point users can close the screen, and all the data they input previ-
ously should reappear when they re-run the application in a new session to
complete the transaction. A simple way to achieve this is to serialize the screen
data state Java Bean locally and resume it as needed.

Figure 8.4 Runtime data model for rich clients

c08.fm Page 330 Thursday, March 9, 2006 2:04 PM

Runtime data model 331

2:4 PM 9 March 2006 c08.fm 1.0

As shown in Figure 8.4, we refer to three different representations of the informa-
tion manipulated by an application at runtime. These are essentially copies of the
same data, represented in different parts of the implementation. The synchroniza-
tion of these various representations is dictated by the GUI design between screen
data state and business domain objects (for example at form commit) and by tech-
nical constraints over transferring information between BDO and DTO. For
simple applications these three types of data can collapse into just one represen-
tation: you can use the same class as widgets’ data state, domain data, and transfer
object, all at the same time. Such a trick is quite limiting, though, and might work
only on very simple implementations.

(Fowler et al. 2003) distinguishes three types of data, depending on the runtime
lifecycle. Screen state is the data that is deleted when a screen is disposed, so it
chiefly corresponds to the screen data state. Session data lasts for a whole session,
while record state is persistently recorded from session to session. Our approach
here focuses on practical abstractions over implementation models, and not on the
strict lifetime of data. Hence, for example, screen data state can survive even after
the window is disposed – for example, because we dismissed a modal dialog, but
we still have to access to its data – and business objects can be created for specific
business logic computation, then dismissed along with a dialog.

While SWT can be used without a predefined screen data state implementation –
such as JFace – Swing can be used only with its MVC models. This means that

Part of the J2EE community refers to DTO as value objects. This is misleading,
because VOs have a different, more general meaning – their identity is based
on their state, rather than on their usual object identity. VO examples are
numbers, dates, strings, and currency values (Evans 2004).

A common problem with data representation in Swing widgets comes from
an incautious use of the default model classes. These models come with
predefined data structures that may not adapt well to the given application
needs. I am still amazed by how often I have seen the results of a database
query copied into some form of default table model subclass, thus uselessly
duplicating data and wasting precious client execution time. Developers
doing this have applied the idioms learned in simple tutorial applications, in
which a couple of rows are loaded into a dummy data collection, to real-
world situations. They can be apprehensive of going outside what they
learned in tutorials and tackling the complicated internals of Swing’s
widgets. This problem is less frequent with SWT and JFace, but it is still
possible.

c08.fm Page 331 Thursday, March 9, 2006 2:04 PM

332 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

Swing models are the only available option for implementing the screen data
state buffer.

Validation

We want to assess the validity of user input as soon as possible. From an imple-
mentation viewpoint, validating data early is good, because code can be more
robust and simpler. From a usability viewpoint, the closer to its input invalid data
is notified to users, the easier it will be for them to understand the problem.

The simple runtime data model introduced in the previous section is useful for
discussing validation. Validation is basically a form of interaction and control
based on user input and business logic. From an implementation viewpoint, it can
be seen as defining security perimeters over the data within our application. When
designing an application, we can:

• Decide to confine invalid data to screen data state only, so that business
objects and DTO remain secure.

• Decide to evaluate some data as BDO.

• Delegate the evaluation directly to the server.

These security perimeters are enforced by means of widget interactions, data
filters, notifications to users, and the like. If we adopt extensive testing, this secu-
rity check becomes less critical, but validation and notification still remains
important, because it has an impact on end users. If data has already been vali-
dated in the GUI, it relaxes the need to further validation later, for example on the
server.

As with any design, the more quality we pour into it, the more it will cost. The
cheapest form of validation is of course no validation. We offload all responsibility
to the server, which eventually returns notification to the client, for example the
list of fields that didn’t match some business rule. This kind of interaction slows
down a GUI terribly.

On the other hand, as soon as we start to perform non-trivial business validation
on the client, we observe an increase in development complexity on the client side.
This is because we now need business domain classes on the client side, causing
a whole new host of implementation and design issues.

Let’s expand the runtime data model in Figure 8.4 to better illustrate validation,
to give that shown in Figure 8.5. This figure represents examples of different
forms of validation that can occur during a rich client session.

c08.fm Page 332 Thursday, March 9, 2006 2:04 PM

Runtime data model 333

2:4 PM 9 March 2006 c08.fm 1.0

The figure shows the following examples of validations, in chronological order:

1. The simplest validation – that with the narrowest data scope3 – can be done
on low-level events. For example, filtering out all invalid characters in a Zip
code text field.

2. Single values can be validated only when user data entry is completed. This
is usually performed when the field loses the focus. Here the validation
scope is a single field value.

3. More complex or wide-ranging validations also need other values. For exam-
ple, to assess if a Zip code matches a State field, even in an approximate way.
This type of confirmation needs a number of values to be assessed.

4. Before packaging data for transfer to the server, an overall validation can be
performed, limited by the data and business logic available on the client.

5. Further validation can be performed on the server connection, such as time
out, reliability, and so on.

6. When the DTO arrives at the server, a preliminary corroboration should
always be performed, checking for (i) client authenticity, (ii) an eventual ses-
sion consistency, and (iii) other forms of basic validation.

Figure 8.5 The journey of valid data from client to server

3. Here scope does not refer to the lifecycle of objects, as in the EJB specification, but just to
the amount of data needed to evaluate a specific business constraint.

c08.fm Page 333 Thursday, March 9, 2006 2:04 PM

334 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

7. After the DTO is transformed back in business domain objects, plus further
data that is available only on the server, a complete business validation is
possible – possibly repeating the evaluation of client-side business rules.

8. Another validation is performed when persisting the business data. Excep-
tions and errors are trapped and treated as a (non-business) negative valida-
tion result.

9. Finally, the validation result is returned to the client for notification to the user.

The situation in Figure 8.5 is only an example, of course. Real-world situations can
be simpler or more complex. In some situations business validation is performed
entirely on the server, while in other cases data is requested from other servers to
perform some form of business validation on the client – consider for example a
transaction that requires results from various Web services that we might want to
validate on the client.

No matter how complex a validation rule may be, it is always composed of the
following six elements:

• The triggering event: when a validation rule has to be started. Activation
events could be:

– A low-level GUI event, such as a selected checkbox, a keystroke, and so on.
– Focus lost or other forms of entry field completion. In the good old days

mainframes used the Enter key to validate user input data, and comple-
tion was so much simpler to detect as a result.

– Screen completion. When committing a dialog, either for submission,
disposal, and the like. This type is also referred to as ‘deferred mode,’
while the previous two are referred to as ‘immediate mode.’

– At client–server connection. Before connecting – usually an expensive
operation – data can be safely assumed to be ready for evaluation.

– Other events as well may trigger a validation process, depending on the
given situation.

• The scope: what needs to be validated. That is, the data needed in order to
assess the result. Scope can be:

– Simple low-level interaction data. Imagine a function that takes as its
input a single character and validates it against some built-in criteria.

– A single field value. This usually needs a simple validation
– Some values. This case is mostly handled in the business domain layer.
– Internal and external data. For example, an application may need to

invoke a remote Web service in order to retrieve data about a user’s iden-
tity, to be used together with input data to validate the current operation.

c08.fm Page 334 Thursday, March 9, 2006 2:04 PM

Runtime data model 335

2:4 PM 9 March 2006 c08.fm 1.0

• Where the rule is to be evaluated, whether on the client or on a remote
server.

• The business rules that logically define the rationale behind the validation.
Even a simple rule, like ‘only digits,’ is rooted in a business rule.

• The notification to the end user. This is an essential feedback that can take
different forms, depending on the kind of conventions we have established:

– If we establish the ‘silent success’ convention, nothing will be provided in
the case of valid values.

– In other designs we could provide feedback, such as a change in the
value’s formatting, to provide response to the user that the value was
input correctly.

• Further reactions to the evaluation outcome. For example, other fields might
change value, or other control rules could be triggered, enabling/disabling
other widgets, and so on. Such forms of reactive validation have the purpose
of ensuring a specific level of quality on the application data, hence defining
the security perimeter.

Note how the data scope depends upon the domain situation at hand, while the
‘when’ of validation is decided by the designer.

Figure 8.6 shows the interactions that occur among the various layers in the func-
tional decomposition when a validation rule is triggered.

The interaction and control layer is notified by the triggering event, and assembles
the scope data needed to evaluate business rules. The results are used to prepare
notifications, depending on some reaction policy, for example ‘always delete
invalid data if focus lost.’ Further reaction is still possible.

This is just a theoretical scenario. In real-world cases we would probably
require validation at the business domain layer only for complex, abstract busi-
ness rules. Trivial rules like ‘field must be numeric-only’ don’t need such a
complex organization.

The distinction made in Control issues in Chapter 6 between business domain-
dependent and non-business domain dependent logic also applies to validation.

For example, disabling the Submit button in a form until at least one field has
been modified – to save the bandwidth required to submit unchanged data to
the server – is a form of validation that is not dependent on the given applica-
tion domain, and can be implemented as part of a reusable, domain-
independent infrastructure framework.

c08.fm Page 335 Thursday, March 9, 2006 2:04 PM

336 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

When seeking a validation framework to include in a project – to build, or to
extend an existing one – we need to look for the following requirements in addi-
tion to the usual ones of good documentation, reliability, and so on:

• Integration. The framework should integrate well with other infrastructure
code – data binding, and especially with business rules. Even if not manda-
tory, the ability to work with both Swing and SWT, for example through
specialized presentation decorators for notification, would be an advantage.

• Flexibility. It should allow a wide range of validation strategies and designs.
The ability to allow for a high-quality design of end-user notification is
essential.

• Extensibility. It should be simple to extend, to provide unforeseen behavior or
for handling particular cases (for example, validating JDNC components).
For large projects, the ability to provide extensibility for higher-level valida-
tion behavior, within a more complex framework, is also important.

• Non-intrusiveness. The framework should not require special widget
subclasses and other invasive design constraints. Ideally the framework
should fit the interaction and control layer, as shown in Figure 8.2, without
invading other functional areas.

• Transparent remotization. Whether we validate on the client or on the server
shouldn’t change the way the framework is used and the way in which it

Interaction
and

Control

validate(Scope)

notify(Outcome)

Business
Domain

Content
/

Presentation

validate

decide
reaction

further
reaction

Figure 8.6 Sequence of interaction among functional layers

c08.fm Page 336 Thursday, March 9, 2006 2:04 PM

Runtime data model 337

2:4 PM 9 March 2006 c08.fm 1.0

works. When validating remotely, latencies must be taken in account auto-
matically. This feature allows for an easy distribution of business domain
code along distribution tiers.

An important question is ‘Do you really need explicit validation support?’ In
simple cases, and for early development iterations, we can provide a good GUI
without extra machinery. Criteria for adopting explicit validation support in our
implementation are:

• We already have a formalized representation of business rules, even if on a
functional decomposition basis only. That is, business rules are still repre-
sented informally but systematically in our code, for example as a collection
of static methods.

• We are going to build more than a few screens that need a non-trivial amount
of control.

• The development team is not homogeneous and/or we need to enforce fine-
grained systematic development patterns. We are outsourcing part of the
development, or we want to impose uniform development in a large team.

The user side

Our discussion so far has been mostly technical. Unfortunately, the trickiest issues
in validation lie in usability. To begin with, reactions should be designed uniformly.
While an improvised implementation of validation (if thoroughly tested) may pass
unnoticed by the end user, an improvised validation interaction design certainly
won’t.

In practice, we might be forced to validate some data entirely on the client, because
we have all the required information there, while in other parts of the same appli-
cation we may need to send it to the server and wait for the outcome. Our GUI
design should manage this heterogeneous form of validation in such as way that it
provides a predictable and reliable experience to end user. This implies, among
other things, that we must provide a clear indication in the GUI of those areas
where validation is going to be performed remotely. Notification plays an impor-
tant role in ensuring a high-quality user experience. If the user doesn’t know why
the focus cannot leave a field, or why the filled-in values have errors, the whole
experience can be frustrating.

Too high level of reactivity can be confusing, such as fields that change value
in reaction to other events too often, and it may be expensive to provide
uniformly throughout the whole application. Such details are never a purely
technical decision. Customers are always eager to automate data entry as
much as possible, even by devising less-than-usable GUI designs. Our job is
also to say ‘no’ to customers when we have to.

c08.fm Page 337 Thursday, March 9, 2006 2:04 PM

338 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

Even little hints can make an enormous difference for the user. Figure 8.7 shows
some hints that reveal the data affordances4 allowed by two fields, a date and a
currency field. This speeds up interaction by preventing users from making erro-
neous inputs.

Another common example of signaling explicit validation constraints preemp-
tively is the use of mandatory fields, which are illustrated by the dialog in Figure
8.9 on page 342.

Given the double nature of validation – the user side and the software side – its
careful design is important from early development iterations. During develop-
ment it is useful to think about intermediate validation strategies, and to evaluate
them with users. Changing sensitive interaction issues such as validation from
iteration to iteration can be frustrating for end users.

The overall validation policy should be defined in terms of a general objective.
Completion time or data integrity could be possible objectives. In specific situa-
tions we might want the user to be able to work as smoothly as possible, always
providing correct values when possible, while adjusting entries to match mean-
ingful values, providing default values when possible, automatic completion with
previous input, and so on.

In other cases the input data may be too important to make use of default values
or automatic adjustments, and we might have to slow down the user’s interaction,
using an analog of speed bumps in the GUI, and implement a stricter validation
policy. We might even want to be intentionally cryptic for security reasons. For
example, while filling in a bank account transfer operation with codes that don’t

4. See Chapter 2.

Visual or interaction clues help users to understand why data is not valid: they
are part of the notification strategy. If the user knows that a given text control
is a currency field and they entered an asterisk, they could probably figure out
the reason for a validation error.

Figure 8.7 Providing visual hints as a form of preemptive validation

c08.fm Page 338 Thursday, March 9, 2006 2:04 PM

Runtime data model 339

2:4 PM 9 March 2006 c08.fm 1.0

match, we might want to issue a generic error instead of being more specific and
by so doing, reveal sensitive data.

The general objective should be defined in terms of the user population. Most of
the time Java rich clients are built mainly for repetitive users. In such cases visual
and interaction smoothness must be balanced against the clarity and complete-
ness of information.

We provided general advice for form-based GUIs in Chapter 2. Here we briefly
recap the main points from a validation perspective, referring to Chapter 2 for
more details.

• Provide clear, consistent, and visually non-intrusive validation signals:

– Provide a hint to the data affordances allowed by a field, as shown in the
example in Figure 8.7.

– Signal mandatory fields, using an asterisk in the field label, a border deco-
ration or the like. Don’t provide signals for optional fields.

• Guide user input as much as possible, but without getting in the way of
users’ work. Consider the investment in creating your own widget support.

• Provide meaningful feedback. Validation errors, warnings and status should
be devised early in the development process, so that inconsistencies across
the application and costly modifications can be avoided. Enabling or
disabling portions of the GUI can be a valuable form of interaction. Try to
minimize the cognitive load on users by providing local feedback, instead of
messages like:

Wrong value on <address> field

Don’t forget that you have full control of the GUI in a rich client!

Validation should also harmonize with the local visual conventions. This will save
development time and provide a uniform experience to end users. For example,
when building an Eclipse plug-in, we should always use Eclipse’s built-in valida-
tion design, as shown in Figure 8.8.

In the Eclipse GUI guidelines, validation is performed as much as possible in
immediate mode, and feedback is provided at the top of the dialog. This notifica-
tion mechanism, simple to implement for developers, is fine for repetitive users,
the main target of the Eclipse user population, but can be a little uncomfortable
for occasional users, who might have to scan the GUI to find the package field that
happens to cause the problem.

When to validate and notify

Ideally data should be validated as early as possible, so that users have the lowest
possible cognitive burden in associating notification with their input. Validating

c08.fm Page 339 Thursday, March 9, 2006 2:04 PM

340 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

and notifying data as early as possible means that, when the data scope is limited
to values already known, the best moment to validate a piece of information is
immediately after the user has completed data input.

Three strategies are usually used for starting validation and subsequent
notification:

• During user input. As the user enters data, it is validated constantly, even if
incorrect values are typed before completion of input. This is the strategy
chosen by Eclipse – see the dialog in Figure 8.8, for example. This requires
constant invocation of validation methods, which can be a costly overhead in
complex Swing forms. If validation involves expensive calculations (in time
or resources) this method should be avoided. From a GUI design perspective,
immediate validation should be unintrusive as possible – we don’t want to
disturb the user with bells and whistles while they are entering data that is
only temporarily invalid.

• At user input termination. This usually corresponds to the user leaving the
field (on the ‘focus lost’ event). This is cheaper, but it might involve some
subtleties, as explained in The hidden pitfalls of validation on page 342.

• Deferred to a given event. Examples might be form submission to the server, or
when the user presses a button. The farther the notification from the input,
both in time and space, the harder it is for the user to correctly interpret it.
For this reason deferred notification is usually best performed with local,
extensive clues.

Figure 8.8 Eclipse GUI as an example of local validation style

c08.fm Page 340 Thursday, March 9, 2006 2:04 PM

Runtime data model 341

2:4 PM 9 March 2006 c08.fm 1.0

How and where notify

A number of approaches can be used throughout a rich client application for noti-
fying users of the outcome of input validation. Also in this case, consistency is a
very important factor for an effective notification strategy. Some common forms
of notification are:

• Final summaries. In deferred notification it can be useful to recap a form’s
data before submission. This approach is rarely used in rich client
applications, however, as developers can use more powerful and direct
communication.

• A notification area. This consists of a fixed area of the screen that is devoted to
communicate with users, for example a status bar. This technique makes it
possible to convey more information than with other approaches, and can be
a good choice for applications designed for occasional users. In some cases
navigation cues can be useful, for example signaling the notification informa-
tion (text message plus icon) of the current focus. The major drawback of this
approach is the load of keeping the notification area updated, and shortening
the link between the focus and the notification area.

• Local notifications, done with:

– Icons. Icons are a simple yet effective notification means that is better
suited for repetitive users. Be aware that people with visual deficiencies
may have problems with icons that are too small.

– Text messages. Labels beside fields can convey notification information and
constraints. The problem with this approach is that it can be expensive in
terms of screen real estate.

– Colors and other adornments. Special borders, background colors or other
visual signals can notify the user of the outcome of input validation.

• Control. Disabling widgets after validation can be useful, but it needs an
expressive notification support, otherwise occasional users can find it hard to
understand the reasons for specific reactions to their input.

To simplify our discussion, we assume that validation and notification are close in
time. In some cases this may not be the case.

Figure 8.9 shows some examples of local notifications.

For brevity Figure 8.9 shows various notification styles together, which explains
its confusing and inelegant appearance. The figure shows examples of various
local notification strategies:

• Providing an icon, in the case of the Postal Code field.

• Using label adornments such as color, or font style, to signal mandatory
fields or invalid values, and so on.

c08.fm Page 341 Thursday, March 9, 2006 2:04 PM

342 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

• Using tooltips or hyperlink-like labels to provide more information to occa-
sional users about why their input value is not valid.

• Supplying borders or background colors to communicate notification result,
or that a given field is mandatory.5

The hidden pitfalls of validation

Just because a specific GUI technology allows a specific feature, it doesn’t neces-
sarily mean that it should be employed in a GUI design. This applies equally to
validation. In this section we discuss a concrete case of misuse of technology in
implementing validation in a rich client application.

There is an interesting quirk in Swing’s validation support – one of several – that
highlights some of the complexities involved in handling low-level events, specif-
ically focus-lost events, and validation at the same time. Swing provides the class
InputVerifier to allow developers to validate user input before the focus
leaves a widget. Using this mechanism in the case of invalid data, we could
restore an old value, or we could force the focus back to the field to allow valid

Carry out at least a basic but effective usability test with your end users, even
if you are adopting a supposedly harmless validation design, perhaps
provided as the default by a third-party library. Colors or other adornments
such as borders can be hard to notice – 1 in 12 people have some sort of color
deficiency5 – or be too visually overbearing for repetitive users.

5. Source http://www.iamcal.com/toys/colors/stats.php.

Figure 8.9 Local notification examples

c08.fm Page 342 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 343

2:4 PM 9 March 2006 c08.fm 1.0

data to be input. When we choose this latter approach, though, we have an addi-
tional problem – users remain trapped in fields that have invalid values.

Suppose we have a date field that forces users to type in a valid date before
leaving the field. In the case of an invalid date, users cannot leave the widget.
Clearly this is clumsy GUI behavior. Users cannot close a dialog, as this would
involve moving the focus from the date field to push the Cancel button, or to click
on the x icon, or do almost anything else before entering a valid value.

To solve this problem in a general way, a specific method was added to the JCom-
ponent class: setVerifyInputWhenFocusTarget() defines when a component
can circumvent an InputVerifer block on focus. Thus, by setting the verifyIn-
putWhenFocusTarget property of the Cancel button to true, users can close a
dialog even when trapped in a field with an invalid date value.

Unfortunately, this still doesn’t solve the issue, for a number of reasons. A partic-
ularly nasty one is the following. Imagine that an indecisive user clicks on the
Cancel button without releasing the mouse button and moving the mouse pointer
away from the Cancel button. The Cancel button will not be triggered and the
dialog will not close. The focus is now transferred to the Cancel button, thus
escaping the block on invalid values and crippling the entire validation schema.

The bottom line is to avoid being trapped in complex situations. If we observe a
steady increase in complexity in our implementation without any real benefit, we
should question our previous choices and be prepared to lose some work instead
of heading towards an increasingly convoluted situation.

8.4 The cake-ordering application, the XP way
This section introduces an example of a simple rich client GUI developed with
iterative design practices that follows the Extreme Programing (XP) methodology
introduced in Chapter 1. Our intention is to illustrate common issues that arise
when following an iterative development approach to GUI development.

Our customer is the Cake-o-Matic company. This company makes custom cakes
to order that are then delivered to clients. They order their cakes through a call
center. Phone operators use a rich client application to place orders with the

In this example the mistake was to block user input of invalid values in the
first place. Things can get even more complicated such an application is
released without extensive testing. Users are now accustomed to a blocking
validation approach, and it becomes a political issue to change the data vali-
dation interaction throughout the whole GUI. This is a typical case in which
developers might blame perverse end users, or the toolkit, rather than
themselves.

c08.fm Page 343 Thursday, March 9, 2006 2:04 PM

344 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

factory and to organize delivery. The application’s end users are call-center oper-
ators – frequent, but possibly unskilled, users – who will use the GUI while
interacting by phone with Cake-o-Matic’s clients.

Setting up the first Iteration

The first iteration will take two weeks and will implement the first story, the place-
ment of a simplified delivery order on the server. In an Agile approach we focus
constantly on the specific practises discussed in Chapter 1. Figure 8.10 shows the
simple application decomposed in its functional parts. For the purposes of this
example, we adopt the theoretical functional decomposition as the layering archi-
tecture for code and tests as well.

Following an XP approach, the first iteration of the application will be the simplest
thing that could possibly work. There will be no business domain layer at all, we
provide no custom presentation, and data IO will be limited to plain XML serial-
ization. The runtime data model will be even simpler. There will be no DTO, nor a
business domain model. We avoid all validation.

An occasional misunderstanding is that following an Agile approach means
focusing on implementation, then deriving the GUI design accordingly. This
is a completely wrong assumption. GUI design should always drive the imple-
mentation. Iterative development is just a mechanism for implementing GUI
applications effectively. Considering development costs during design, as in
the cost-driven design approach described in Chapter 3, is part of GUI design,
not of its subsequent implementation.

Figure 8.10 Functional parts for a first iteration

c08.fm Page 344 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 345

2:4 PM 9 March 2006 c08.fm 1.0

Defining the testing strategy

It remains to define the overall test strategy for the project. We know from
Chapter 5 that we need to find the best mix of two main options:

• Testing through the GUI (TTG). This is slow and somewhat coarse-grained
when compared with traditional unit testing. We need TTG at least because
it’s needed for automated acceptance testing – another useful XP practice.

• Testing bypassing the GUI. This is faster than testing through the GUI, and
we are going to adopt it extensively in our project.

As we pointed out in Chapter 5, TTG is useful for writing acceptance tests – ideally
created by the customer, but we can provide them with some support – for testing
interaction and control, although we won’t have this at least until the second itera-
tion, for end-to-end coarse testing, and for all those tests that necessarily involve the
GUI. Non-GUI testing (such as plain unit testing à la xUnit) it is required for Agile
approaches such as XP – continuous refactoring and integration, TDD, and so on.

To highlight the differences in the two approaches to testing:

• Unit testing can be performed thousands of times for each integration.

• TTG is much slower, running at users’ speed – open a dialog, click here,
insert text there, wait for the result to appear here, and so on.

The first approach would be much better than TTG, but unfortunately it is not
exhaustive enough for GUI testing. We may want to use TTG selectively for auto-
matic acceptance tests, interaction tests – for example testing our interaction and
control rules with the most extreme data/interaction sequence we can think of.
We may also want to use it for generic end-to-end testing, such as inserting some
data, submitting to the server and check the final result, and profiling – an often
overlooked aspect of GUI testing that can be fully assessed only with a TTG
approach. (Imagine for example a GUI in which we want to perform hundreds of
transactions and probe the inner state of the client JRE, for example to look at
memory allocation or other properties on the server side.)

In a real world scenario, with such a simple application, manual TTG would
probably make more sense than using the various testing tools we are going to
use in our example. To illustrate the chosen development approach, we opt for
a fully-automated testing strategy. Chapter 5 discusses more considerations
for general cases.

To achieve a pervasive testing mechanism, one could resort to extending the
underlying toolkit to provide automatic test behavior. Given its flexibility,
Swing is particularly well-suited for this technique. For example, we could
register a custom ComponentUI factory for testing presentation details, or
extending one of the many default factories such as that for Formatter classes.

c08.fm Page 345 Thursday, March 9, 2006 2:04 PM

346 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

Content first

Content is the base of any rich client application. Beginning iterative development
from content implementation is a simple approach – we just translate use story
GUI prototypes directly into code, thereby lowering risk as long as we validate
our work with the customer, and providing a basis for all subsequent work.
Working with the customer results in the sketch GUI shown in Figure 8.11.

Our first step is to implement it. Using a TDD approach, we start with our first test
case6:

public void testWidgetsExists() throws Exception {
DeliveryPanel dp = new DeliveryPanel();
Assert.assertTrue(PrivateAccessor.getField(dp,"recipeDesc")instan-

ceof JTextField);
Assert.assertTrue(PrivateAccessor.getField(dp,"deliveryDate")instan-

ceof JTextField);
Assert.assertTrue(PrivateAccessor.getField(dp,"expressDelivery")

instanceof JCheckBox);
Assert.assertTrue(PrivateAccessor.getField(dp,"pickUpDelivery")

instanceof JCheckBox);
Assert.assertTrue(PrivateAccessor.getField(dp,"submitButton")

instanceof JButton);
Assert.assertTrue(PrivateAccessor.getField(dp,"cancelButton")

instanceof JButton);
}

6. This first step is probably too big: our objective here is not to introduce XP practices (there
are many books about that) but to show common issues when adopting XP practices for
effective GUI development.

Figure 8.11 GUI prototype for the delivery order panel

c08.fm Page 346 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 347

2:4 PM 9 March 2006 c08.fm 1.0

This test fixture was written with JUnit and the JUnit-Addons suite, which
provides the PrivateAccessor class for testing private members and methods.
Clearly this test fails, because class DeliveryPanel does not exist yet. Neverthe-
less, it is defining the content of the application, because it mentions the class
DeliveryPanel, its intended widgets and their types. For brevity, we will skip
testing the DeliveryPanel class.

After a brief discussion between our two programmers, they decide to go with
private members for widgets. As with every beginning, we are full of good inten-
tions and we definitely want to keep the widgets for our forms private.

Our work now focuses in implementing the DeliveryPanel in order to make the
test pass.

We quickly write the following class implementation:

public class DeliveryPanel extends JPanel {
private JFormattedTextField deliveryDate;
private JTextField recipeDesc;
private JCheckBox expressDelivery;
private JCheckBox pickUpDelivery;
private JButton submitButton;
private JButton cancelButton;

}

This choice gives us the chance to discuss the possibility of testing properties
on private methods and members. This is not regarded as an orthodox
approach, otherwise the class PrivateAccessor wouldn’t be part of an
optional package. From encapsulation and data hiding dogma, we know that
modifying the inner (private) behavior of a class shouldn’t necessitate
rewriting its tests. On the contrary, if we need to access such private members
only for testing, would it be wise to make them publicly available through acces-
sors, thus cluttering DeliveryPanel without providing any real application-
level behavior? The two programmers could go on discussing this issue in
length: “Application and testing behavior are at the same level… this way
production code can be in a separated package from tests… once you have the
accessor methods you might want to use them for other purposes… but this
violates Agile methods’ simplicity principle…” and so on. This is important,
because such a dilemma underlies implicitly the importance we want to give to
unit testing within our GUI development. A whole school of thought asserts the
need to make unit testing drive any implementation, especially complex ones
like GUIs. We will return to this important and often overlooked aspect of GUI
development later.

c08.fm Page 347 Thursday, March 9, 2006 2:04 PM

348 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

To our surprise, we still don’t pass the test. Fields need to be instantiated. We
therefore provide a constructor:

public DeliveryPanel() {
deliveryDate = new JFormattedTextField();
pickUpDelivery = new JCheckBox();
recipeDesc = new JTextField();
expressDelivery = new JCheckBox();
submitButton = new JButton("Submit");
cancelButton = new JButton("Cancel");

}

This time we get the green light. Now basic content is secured. What’s next?

We would like to have some concrete, reassuring feedback – that is, we’d like to
have something that we can see working and make us feel good. We want to put our
widgets onto the panel. This will also serve as a basis for writing acceptance tests.

Laying out widgets is not that difficult, but how should we test it? The easy way
would be to prepare a clever unit test fixture, but this cannot test our layout visu-
ally. Testing for properties within the layout class leads to brittle test code. If we
change the layout class or some layout parameter, as is more than likely in future
when we refine the details, we would need to change the test as well.

On the other hand, we can use a GUI testing framework to define an all-visual test.
The developers opt for this choice. They use JFCUnit, an extension of JUnit –
although in this example tools are not important, as we are focusing on concepts.
We would like to express the visual properties of the widgets in Figure 8.11 in a
form of automated test. We therefore define the following JFCUnit fixture:

public void testWidgetsVisible() throws Exception {
 NamedComponentFinder finder = new NamedComponentFinder(JCompo-
nent.class, "cancelButton");
 JButton cancelButton = (JButton) finder.find(dp, 0);
 assertNotNull("Could not find cancel button", cancelButton);

 finder.setName("submitButton");
 JButton submitButton = (JButton) finder.find(dp, 0);
 assertNotNull("Could not find Submit button", submitButton);

 finder.setName("recipeDesc");
 JTextField recipeDesc = (JTextField) finder.find(dp, 0);
 assertNotNull("Could not find the recipeDesc TextField", recipe-
Desc);
 assertEquals("recipeDesc field is empty", "", recipeDesc.getText(
));
...
}

We can make a couple of observations from this. First of all, we are merely asserting
that the widgets are found in the container panel, and that they are empty. Then,

c08.fm Page 348 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 349

2:4 PM 9 March 2006 c08.fm 1.0

there is a lot of machinery for interfacing with the Swing toolkit. This time we went
closer to reality, as this test is stronger than the previous ones. We observe that the
previous test (JUnit) took 0.1 seconds to execute. This one takes 0.95 seconds.
Clearly, we expect a proportional increase in time consumption as the number and
the size of tests grows. But we can also observe that the tests are largely
overlapping.

When we launch the test, it fails, complaining that it cannot find widgets, despite
the fact that we created a frame in the fixture’s setup() method and showed the
panel properly.

The reason is that Swing requires widgets to be named, using the setName()
method, for the finder facility to work.

So our DeliveryPanel constructor becomes:

public DeliveryPanel() {
deliveryDate = new JFormattedTextField();
deliveryDate.setName("deliveryDate");
pickUpDelivery = new JCheckBox();
pickUpDelivery.setName("pickUpDelivery");
recipeDesc = new JTextField("");
recipeDesc.setName("recipeDesc");
expressDelivery = new JCheckBox();
submitButton = new JButton("Submit");
submitButton.setName("submitButton");
cancelButton = new JButton("Cancel");
cancelButton.setName("cancelButton");

}

The Model View Presenter (MVP) pattern is an approach to better decouple the
view from the rest of the implementation. With the valuable advent of extensive,
early testing, MVP also became useful as a way to test a GUI by bypassing its
graphical ‘skin.’

To build really effective testing tools and GUI technologies with TDD in mind, we
wouldn’t need systematically to adopt MVP as a workaround for easy testing:
unfortunately this is not only the case with current GUI technologies. Decoupling
and structuring GUIs is of course beneficial and a valuable best practice, apart
perhaps from simple cases, and MVP can be very useful.

One question remains unanswered: how to balance the two types of testing
approaches in the most effective way for Java applications?

Testing overhead can be seen as a long-term investment in code. Simple forms
of testing can escalate into testing practices that influence the structure of
production code heavily, but ultimately what makes things work well is a deep
understanding and faith in the approach, rather than a list of ‘gotchas’ such as
‘we need to do extensive testing in our project.’

c08.fm Page 349 Thursday, March 9, 2006 2:04 PM

350 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

Getting back to work

We need TTG only for interaction and control, and content and presentation –
which rarely needs to be tested, as discussed in Chapter 5. Business domain, data
IO and some parts of other layers can be tested with non-GUI practices.

Our team decide to continue using both approaches. Non-GUI testing will be used
as much as possible, because it is much more fine-grained, faster to develop and
run, and code coverage can be assessed easily. TTG, on the other hand, is needed
for testing the whole application and for GUI-only details.

Now that we have tested our simple content, we can write the acceptance test for
this simple user interface. To do so, we would like to have an easy-to-use tool,
because writing acceptance tests is often done by the customer under the XP
approach. For this simple example we can still use JFCUnit. We could arrange for
the customer to record the acceptance tests, for example in an XML file, or we can
record them in association with our customers.

JFCUnit shows its limits here. Acceptance tests don’t look good as JUnit-like Java
code, and they look even worse as bloated XML files. We need to resort to another
tool, as discussed in Chapter 11 in the GUI test tools section.

Our next move in moving from the GUI to the server is to focus on data. Rich
clients are discrete data-driven applications, so we now focus on designing the
data structure.

Data second

The next step is creating the data that will back up our content. Here we have a
number of choices available: we choose the one that seems the simplest and
provides enough feedback. We define the data in a 1:1 fashion from the data we
represented in the content layer, then we implement the server support for it,
deliberately ignoring any additional behavior or data so far. Our objective is to
demonstrate content data moving back and forth between the client and the
server.

We want to define a plain Java Bean – sometimes called a Plain Old Java Object,
or ‘POJO’ – that holds content data within the GUI. We can think of it as screen
data state (SDS), thus replacing the default Swing models built into the panel so
far, or as a data transfer object – it doesn’t really make much difference at the
moment. We opt for an SDS, part of the content layer. We define its structure by
means of a test, and we work on creating the class to make this test pass. Speeding
up our iterative development a little, we don’t show these steps.

c08.fm Page 350 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 351

2:4 PM 9 March 2006 c08.fm 1.0

We are provided with the class in Figure 8.12.

It’s now time to bind the data to the content. We decide to use the JGoodies data
binding framework, which is based on the MVP and Value Model patterns7 and
serves as a basis for the Spring RCP implementation.

Before we even think about the way to implement this binding, we should first
focus on expressing it in a unit test. We want to bind the content to a POJO using
a support library. Of course, we could write copy methods that copy values into
the data holder and vice-versa, or even automate them in a general utility class
that uses reflection, for example. We prefer to use this approach to show a more
realistic but simple scenario.

No matter how we do it, we need some specialized behavior that performs the
binding and some test on it. Let’s work first on the route from user to data. This is
a tentative test fixture:

DeliverySDS sds = new DeliverySDS();
DeliveryPanel dp = new DeliveryPanel();
dp.setDeliveryData(sds);
testWidgetsExists();

We can now work on the setDeliveryData method in DeliveryPanel.

Our idea is to bind the data holder object to the content while honoring the
layered architecture in Figure 8.2, which we decided to use as the reference archi-
tecture for this example. For DTO, we will use the same SDS class. This separates
the two layers (data IO depending upon content). We decide for simplicity to use
a plain Object instead of the SDS class: this will ease subsequent refactorings, but
we now lack compile-time checks, especially when field names are changed.

7. See Chapter 6.

Figure 8.12 Delivery panel data transfer object

c08.fm Page 351 Thursday, March 9, 2006 2:04 PM

352 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

Anyway, we are confident in our tests for this kind of control – that’s why we use
them so extensively, after all. This results in the following code in the Delivery-
Panel class:

public setDeliveryData(Object data) {
this.deliveryData = data;
PropertyAdapter pickupVM =

new PropertyAdapter(deliveryData, "pickupDelivery", true);
Bindings.bind(pickUpDelivery, pickupVM);

 ...
}

In the previous code we only provided one example of field binding, to keep
the code short. The JGoodies binding framework needs an adapter object
(which works as a Value Model) for adapting a given Swing widget’s model to
a generic POJO, the deliveryData Object. The true value as a parameter
passed in the constructor of the PropertyAdapter object will make it actively
reactive to change events. In this way we have bound the content panel to the
related SDS class.

What are the implications of the fact that the data holder now is our SDS object?
What happened to the default Swing models built in each widget we created
with an empty constructor? Here is the implementation of the method Bind-
ings.bind() for Boolean values in the JGoodies framework:

public static void bind(JCheckBox checkBox, ValueModel valueModel) {
boolean enabled = checkBox.getModel().isEnabled();
checkBox.setModel(new ToggleButtonAdapter(valueModel));
checkBox.setEnabled(enabled);

}

That is – via a newly-created Swing model that is specialized for representing
values as of the Value Model pattern – data is directly bound to the SDS. We still
have Swing models, but they are connected dynamically to our data source. In
order for this mechanism to work, though, we need some event-plumbing
machinery in the data holder, such as methods for adding and removing listeners
and firing events. The simplest way to achieve this is to make DeliverySDS
extend the Model class provided by this data binding library.

Before moving on, one of the developers started discussing the use of the
accessor method for setting the data holder. He found it disturbing, arguing that
a setScreenDataState() method, used to substitute the model, was useless or
even dangerous now that such an automatic binding is established, and that only
the constructor method should be provided. After a brief discussion they refac-
tored the panel class in order to have only a data constructor. This choice may turn
out to be too inflexible, but they decide to provide the data class at construction
time only.

c08.fm Page 352 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 353

2:4 PM 9 March 2006 c08.fm 1.0

The DeliverySDS class now serves as a screen data state via the Swing adapters
provided by the JGoodies binding framework. We don’t yet have a business
domain class.

An alternative and simpler solution that avoids using third-party data binding
libraries would be manually to synchronize the SDS and the panel, thus making
the DeliverySDS class a plain POJO extending Object.

Commands third

In our use story, after users fill in the order form, they have to submit the order
to the server. We need to add commands for this to our GUI. For content, we
add the two standard buttons Submit and Cancel. We use a content factory, part
of the content layer of a utility library, that provides standard buttons out of
AbstractActions:

public static JButton[] createButtons(AbstractAction...
action) {

It is responsibility of the interaction and control layers to integrate all the indi-
vidual parts. In our case we bind the buttons to the related commands8. In the
interaction and control layer we define the class SubmitOrderAction and the class
CancelOrderAction for the commands.

For further details on the Command pattern, see Representing user actions with the
Command pattern in Chapter 6.

A first version of the submit command is shown below, skipping TDD tests for
brevity:

public static class SubmitOrderAction extends CtrAction<DeliveryPanel>
{

public SubmitOrderAction(){
super("Submit");

}
public void actionPerformed(ActionEvent e) {

Application.server().submitOrder(panel.getData());
}

}

This code assumes that we have a class Application that centralizes utility
access – so far, only the remote access to the server application – and initializes
the whole application. We also have the class CtrAction that subclassed
AbstractAction, for generic support of commands that need to operate on

8. The Command design pattern centralizes graphics and control together, which works
against our extremely articulated layering scheme. See (Gamma et al. 1994) or (Buschmann
et al. 1996).

c08.fm Page 353 Thursday, March 9, 2006 2:04 PM

354 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

content objects. For more details of this, see the source code provided with the
book.

Clearly, being our first step, the naïve implementation of the Submit command
shown in the code above is limited:

• Error handling is not defined – what happens, for example, if the server is
down?

• The GUI doesn’t support asynchronous submissions: the application will
completely freeze until the results are available to the client. Despite the fact
that we might want to enforce this behavior, because users could not do
anything useful anyway in this interval, we always need to provide some
basic form of asynchronous behavior for long operations, at least to allow the
user to abort the process if desired.

• No feedback is provided to the user: the return value from the remote
connection is not used. It is likely that a mere boolean value for success/
failure will not be enough to describe a remote operation outcome in the
future, but we are working iteratively and we need to keep things simple at
this stage!

• There is no basic low-level Control. If we have an asynchronous remote invo-
cation, we need to disable the submit action, thus disabling all the bound
widgets, otherwise the user could click the Submit button again, potentially
invoking the same transaction many times.

Despite the fact that all these issues are important, perhaps the most delicate one
regards multithreading. This aspect, specific to Control, needs to be addressed
early in the implementation, because it can be costly to upgrade a non-trivial code
base with some tens of remote commands or more.

We need a mock object9 for the proxy server class that simulates latencies and server
failures, plus some good tests that will assess whether our code is performing as
expected with respect to multithreading.

Defining the tests is not difficult as long as we have a library for unit testing that
support time constraint test decorators, provided that we expect the instruction
after the command execution to be executed without any substantial delay. The
interesting point arises when devising the simplest functional multithreading
scheme.

9. Mock objects replace real objects with mock implementations that are used only for ease of
testing. Mock objects are widely employed in unit testing, because they help to mask
unnecessary factors during testing, helping developers to focus on the specific aspects to
be tested.

c08.fm Page 354 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 355

2:4 PM 9 March 2006 c08.fm 1.0

We now change the natural order of iterative steps followed so far to get to this
important issue quickly.

Implementing robust commands

Dealing effectively with time-consuming operations that might have non-
predictable completion time, such as a remote request, requires some precautions
when working with single-threaded toolkits like Swing and SWT. Here are the
main issues:

• Operations that take more than a few seconds to complete should be handled
in a separate thread, to maintain the GUI’s responsiveness.

• Such threads should be handled judiciously. Most of the time we don’t need
to fork many new threads at once in a GUI, but simply to keep the main
event dispatch thread (EDT) working while one or two other worker threads
are performing some specialized task on behalf of the user.

This seems to be a perfect scenario for the Executor pattern10. This technique
essentially applies a simple indirection layer to shield the developer from
thread execution details. This allows the developer to focus on writing the
Runnable at hand (that is, the task) while leaving its execution details to a
specialized class that can implement an optimized thread pool privately, a
simple task queue, or a simple thread fork.

• Tasks have a common lifecycle:

1. They are forked from the EDT on a separate thread.

2. At a certain point in their execution they may produce intermediate
results. The thread now needs to interact with the rest of the GUI. Because
the task’s code is currently executing on a thread different than the EDT, it
needs to invoke the synchronizing utility methods: Swing’s invoke-
Later() or SWT’s asyncExec().

3. Eventually the task concludes its work, producing a final result. This situa-
tion is similar to point 2. The task now interacts with the EDT via synchro-
nous utility methods, invokeandWait() for Swing and SWT’s
syncExec() for SWT.

4. The worker thread is no longer needed. All its resources are freed, and
testing should ensure this. The thread might be recycled or garbage-col-
lected, depending on the Executor’s policy.

• During the whole of their lifecycle tasks can be interrupted at any moment.
A server connection can time out, or a user can change their mind. Before
or immediately after halting a task, we should take care to switch the GUI

10. See http://www.cse.buffalo.edu/~crahen/papers/Executor.Pattern.pdf

c08.fm Page 355 Thursday, March 9, 2006 2:04 PM

356 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

Control state from ‘work in progress’ to ‘[no] work done.’ For example, in the
delivery panel, when the Cancel button is pressed, the Submit button
becomes re-enabled and the dialog’s content becomes active again, as if
nothing had ever happened.

This discussion applies equally to Swing and SWT applications.

In general we can think of the possible scenario:

1. A command object is invoked by user interaction.

2. The operation is started in a worker thread separated from the EDT so that
the GUI remains responsive. From a GUI design viewpoint, we need to
address the ‘command in execution’ Control state in our GUI.

3. The result is returned to the user, represented as an OperationResult object.
Such instances are fed to a VisualDecorator instance, which notifies to the
user of the outcome of the transaction in a meaningful way. The outcome
could be nothing – in the case of success, we just dismiss the dialog – or some
visual decorations, for example to notify validation errors, or some Control
behavior (perhaps because we don’t have enough credit in our bank account,
so that a Purchase button – yet to be implemented – gets disabled). From a
GUI design perspective, we are handling the ‘command executed’ state.

4. The application implementation usually returns to the state just before step 1.
This is important from an implementation viewpoint. After a command is
concluded, all involved objects should be released apart from notification
graphics or other meaningful data. Testing should aim to check for a fully
restored situation.

Handling the operation in progress

When the worker thread is ready to go we are left with the task of providing feed-
back to the user. This can be done in several ways:

• Enforce the ‘work in progress’ state of the dialog or the whole GUI by
changing the mouse cursor and/or the state of the Cancel button.

• Disable all the content in the dialog, or put a semi-transparent panel on it, or
some other visual hint that signals to the user that the window is ‘busy’ at the
moment11.

• Provide some simple means of controlling the time-consuming operation.
Usually the same button that is used to dismiss a dialog can be used to stop
its operation as well, but in this case the operation is interrupted and the

11. This solution applies to communications where the final result is needed to conclude the
operation. Suppose you have a text chat application in which, once submitted, you don’t
need to know what happened to a message: in this case there is no need to freeze the GUI.

c08.fm Page 356 Thursday, March 9, 2006 2:04 PM

The cake-ordering application, the XP way 357

2:4 PM 9 March 2006 c08.fm 1.0

dialog is not dismissed. Clicking the Cancel button a second time would
dispose the dialog12. Alternatively, the dismissing button in the dialog,
shown in the top-right corner of Figure 8.13, will close the dialog and stop
the task, possibly after a confirmation dialog.

Figure 8.13 shows these steps visually, and uses the solution of recursively
disabling all the widgets within the content area of the dialog. This solution is
visually less appealing that using a semi-transparent overlay panel.

At this point our cake delivery GUI is roughly equivalent to a Web application,
in that we have content, a limited form of command execution, and no business
logic.

Closing the loop with the server

For the sake of this exercise, we assume that we already have a J2EE server where
all domain logic is implemented: all we have to do is to connect to it. We assume
that our client will interface with a Session Facade instance – that is, an application
of the Facade design pattern for J2EE in which coarse-grained session beans hide
server-side fine-grained business objects (Alur, Crupi and Malks 2001), (Mari-
nescu 2002).

The next step would be to represent this behavior in our architecture, providing a
stub implementation for the server application.

12. Note that this design slightly overloads the Cancel button’s semantics, creating a poten-
tially tricky state-dependent interaction (see Chapter 2) in the GUI’s design.

Figure 8.13 Providing visual hints for remote communication

c08.fm Page 357 Thursday, March 9, 2006 2:04 PM

358 Form-Based Rich Clients

2:4 PM 9 March 2006 c08.fm 1.0

8.5 Summary
This chapter discussed some details of the development of form-based rich client
applications with Java. We focused on the following issues:

• Common implementation challenges and software design choices for Java
rich clients, discussed by means of the functional decomposition proposed in
Chapter 1.

• A simple runtime data model that applies well to form-based rich clients.

• The design of an effective validation strategy for rich client applications.

• An example iterative development that abstracted from the particular situa-
tion/technology to discuss general and common issues in rich client practical
development, such as testing approaches, multithreading management, and
so on.

c08.fm Page 358 Thursday, March 9, 2006 2:04 PM

9 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

This chapter introduces user interfaces delivered within a Web browser using Java
technology. This covers a wide array of options, spanning classic server-side
markup-based Java technologies such as JSP, JSF, Servlets, and so on, Java applets,
and other Web-based GUI technologies. We will also consider technologies for
Web GUIs that are not strictly Java, such as Javascript, XMLHttpRequest, and
others, because they can be generated by a server-side Java application alone. In
general Java can be used in a wide number of different combinations, both on the
client and on the server, so covering all the possible alternatives would make the
discussion needlessly detailed.

A brief discussion of Web GUI1 design is provided for consistency with other
chapters book that discuss analogous topics for different platforms, such as wire-
less devices and the desktop.

The chapter is structured as follows:

9.1, An overview of Web user interfaces briefly introduces the main characteristics of
Web GUIs.

9.2, GUI design for the Web introduces some considerations for GUI design for Web
user interfaces.

9.3, Implementing Web applications with Java provides an overview of the the tech-
nical details of implementing Web applications with Java.

9.4, From Web applications to rich clients discusses the common case of Web devel-
opers facing the task of building a rich client interface for an existing application
that supports a Web client.

9.1 An overview of Web user interfaces
Web-based user interfaces are GUIs executed within a Web browser, usually
rendered using a form of markup language such as HTML, XML, or XHTML. The
richness and variety of the markup and scripting languages available allow for a
great number of choices, ranging from pure HTML to the use of sophisticated

1. This chapter uses the term ‘Web GUI’ to mean the client-side GUI application that runs
within a Web browser, whether it is a Web page, Java applet, or some other technology.
‘Desktop GUI’ is used to refer to the user interface of applications.

Web-Based User Interfaces

c09.fm Page 359 Thursday, March 9, 2006 2:09 PM

360 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

frameworks based on scripting and forms of client-side control, or to code inter-
preted by separate plug-ins such as Flash or Java applets.

Web applications have a number of distinctive traits:

• The Web user experience2 is hard to design down to the final pixel on the
Web, given the wide differences in display size, connection types, hardware
platforms, and software infrastructures of the various possible clients. This
forces the designer to adopt a conservative approach and to give up the
notion of cross-platform fidelity.

• Due to the nature of Web GUIs, designers have to limit their exploitation of
Web technology to enforce fine-grained control, as the amount of control they
can enforce is limited. Navigation buttons are always accessible to the user,
and it is hard, if not impossible, to impose any form of flow control. Even
browser configuration settings can limit the interactivity of a Web site, such
as security options that block local storage of information. These shortcom-
ings are an intrinsic part of the Web medium, and have the result that users
expect a great deal of control when interacting with a Web application.

• GUI design coherence is usually limited to a single Web site – few GUI
design guidelines apply across multiple Web sites. This is the opposite of OS
GUI design guidelines, which apply to all applications executing on a client
machine. This makes the Web GUI design process more delicate.

• The main reason for the rapid diffusion of Web applications lies in the ubiq-
uitous presence of Web browsers on client machines. Among other things,
this provides the ability to update and maintain Web applications without
distributing and installing software on clients3.

• Web applications are usually available only when the client is on line and the
server is accessible and working4. That is, they cannot operate when discon-
nected from the server unless using an embedded client-side HTTP server or
similar technique. Web clients that implement some form of active control

2. User experience denotes the overall experience perceived by a customer engaged with a
product, a service, or some form of communication from a company. Such an experience
includes feelings, observations, perceptions, and interactions. This definition aims to bring
the concept of customer experience to the digital world.

3. Unfortunately this reason, as economically compelling and practical as it might seem, is
inherently technical. It turns out in reality that porting complex applications to the Web
makes economic sense, but, given the nature of Web technology when compared with
conventional applications, ultimately results in greater difficulty in providing usable and
compelling user interfaces.

4. Technologies like Macromedia Flash can be made to operate off line, and, using some form
of local caching, it is possible to execute applets or other Web-based content while off line.

c09.fm Page 360 Thursday, March 9, 2006 2:09 PM

GUI design for the Web 361

2:8 PM 9 March 2006 c09.fm 1.0

can run disconnected for some time, even though their initial deployment
always requires download of the relevant page from the remote server.

9.2 GUI design for the Web
Every type of Web application domain has its own type of users and established
GUI design idioms. The details of GUI design for the Web would take another
book (or more) on its own. The general material in Chapters 2 and 3 applies to
Web GUIs as well: this section introduces topics specific to Web GUI design.

Fine graphics details

The potential audience for Web applications is much wider than for desktop
application GUIs. Appealing and creative graphical contents are more important
than in classic desktop GUIs. When it comes to delivering ‘rich’ visual experi-
ences, designers often resort to plug-ins. However, despite being a powerful tool
in this respect, Java applets are not a popular choice among Web designers. This
is essentially due to two reasons:

• The lack of pre-installed JRE support within the most widespread Web
browser, Internet Explorer. Applets can also be created with the older
Java 1.1, even though sophisticated GUI support is missing.

• The burden of using object-oriented technology for Web designers, graphic
artists and other non-programmers.

Nevertheless, there are many examples of well-executed applets on the Web, and
the sound OO framework provided by Java is well suited to tackling complex
domains and implementing sophisticated user interactions.

Other technologies related to Java are also available for creating Web-based GUIs,
such as specialized XML formats and other proprietary technologies.

Unexpected shortcomings

Even though graphic details in a Web GUI can be specified only at an approximate
level of definition, in a few cases such low-level details can be handled better by
the Web browser than by a desktop application GUI, potentially providing a
greater level of control.

For example, aligning widgets along their text baseline provides a pleasant visual
effect that enhances usability, as shown in Figure 9.1. Even a basic effect such as
this is not available automatically in Swing (as of JSE 1.5), and developers wishing
to fine-tune visual appearance must provide this kind of alignment explicitly in
their code, consuming time that could have been spent on more business-critical
issues.

c09.fm Page 361 Thursday, March 9, 2006 2:09 PM

362 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

Area organization

The organization of display area in Web applications strongly depends on the
type of Web site and its intended audience. Wireframe prototypes are non-graphical
layouts of a GUI design that are popular for the design of Web pages. Content-rich
Web sites need a clear and well-defined organization of contents, layout, and
control flow, and specialized prototypes can be used to evaluate such a critical
aspect of their design.

Figure 9.2 shows an example of such a technique applied to a generic corporate
home page.

Levels of client-side control

Current Web GUIs are starting to compete head-to-head with traditional desktop
application GUIs in terms of graphics and interactive features, and also their ease
of use for developers. This section briefly discusses the current landscape for Web-
based GUIs, from a user interface design viewpoint, without going into details of

Figure 9.1 Text baseline alignment in a Web GUI

Figure 9.2 An example wire frame prototype for a Web GUI

c09.fm Page 362 Thursday, March 9, 2006 2:09 PM

GUI design for the Web 363

2:8 PM 9 March 2006 c09.fm 1.0

the many available technologies. The technologies considered here work within
the client browser, so that they can also be used together with server-side Java
technology.

Web developers used to face the challenge of low bandwidth and control-free Web
pages, which taken together provided a poor interaction experience for users.
This problem is disappearing thanks to better connections – greater bandwidth,
increased availability, and decreased cost – and better Web GUI technologies.

Bandwidth and interaction

A peculiar aspect of Web GUIs is the relationship between the available commu-
nications bandwidth and the perceived quality of interaction. We know from
Chapter 2 that items remain in people’s short-term memory for fifteen to thirty
seconds at most. For computer interaction, most users tolerate long delays poorly,
and become highly frustrated when interactions take more than, say, ten seconds.
Connections are increasingly improving in this respect, but consuming band-
width and time with glitzy graphics and presentations5 never increased the
usability of a Web site. A good means of providing more responsive Web applica-
tions lies in the use of client-side control technologies. These also impact on the
server tier, in that a lesser number of interactions are required between client and
server, allowing server code to be simplified to handle fewer and more specific
requests.

More responsive Web GUIs such as this can be built using a number of technolo-
gies and approaches, ranging from plug-in-specific code such as Flash, OpenLazlo,
or Java applets, to combinations of scripting and other recent technologies widely
available in Web browsers.

In Web applications where there is little client-side control behavior, the applica-
tion forwards all the requests to the server, as shown in Figure 9.3. This is the
situation with older applications, or where development simplicity was preferred
over a more sophisticated GUI.

5. I am a great fan of the ‘skip intro’ link found in many home pages.

This type of highly interactive Web GUI should not be confused with rich
clients, introduced in the previous chapter. Rich clients are client applications
installed locally that don’t need a Web browser, can operate off line, and allow
for a certain level of integration within the host client machine.

c09.fm Page 363 Thursday, March 9, 2006 2:09 PM

364 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

In Web applications with a control layer, requests are intercepted and processed on
the client, and only in some cases are they forwarded to the server, as shown in
Figure 9.4.

Newer Web technologies such as XHTML, DOM scripting, XMLHttpRequest, and
JavaScript, not to mention plug-ins such as Flash, and combinations of these tech-
nologies6, can be used together to provide more responsive and interactive Web
GUIs. For example, the use of XMLHttpRequest object support in all major
browsers allows for background server connections without reloading a Web
page, thus providing a more fluid and interactive experience than classic plain
Web applications.

A substantial client-side control layer allows for some form of business logic to be
hosted on the client, even if this incurs all the dangers discussed in Chapter 6, such
as duplicating code for handling the same domain-specific representation, both in
the client and on the server, establishing some form of control over deployed code
for upgrading obsolete business logic, and so on.

6. Various Web technologies used together and wrapped in a convenient framework are
often dubbed with acronyms as if they were themselves fully-fledged new technologies,
such as AJAX and its variants, or the new client scripting support from Microsoft, code-
named ATLAS.

Figure 9.3 Web application with thin control

Figure 9.4 Advanced Web application with client-side control

c09.fm Page 364 Thursday, March 9, 2006 2:09 PM

GUI design for the Web 365

2:8 PM 9 March 2006 c09.fm 1.0

Navigation issues

Because of the many different screens involved in Web GUIs, well-designed navi-
gation becomes essential in providing a usable Web GUI. This involves designing
hyperlinks and connections within and between pages in a way that is both usable
and that provides an effective means to access required information or perform
the task in hand.

It is important to provide clear navigation aids, such as consistent and clear
graphics, systematic organization, and so on, to provide support for access to
information or to perform some operation via the Web site. A common form of
support is to provide feedback about the location of the current page within the
Web site. Figure 9.5 shows an example of use of ‘breadcrumbs’ to provide naviga-
tional feedback.

Basic navigation links, for example back to the home page and other navigation
crossroads within the Web site, should be present in consistent locations on every
page, to help users avoid dead-end pages, and to take account of users that
jumped into the Web site without following a planned navigation path, for
example through the use of a search engine. Ideally, all valuable content within a
Web site should be one or two clicks away from the home page.

The following subsections provide some examples of various GUI design strate-
gies, organized by the main layout strategy employed. Layout strategies were
introduced in Chapter 2 in the section Display Organization. Various combinations
of such strategies are often used in real-world Web sites. For a more comprehen-
sive discussion about navigation, see for example (Fleming 1998).

High-density information strategy

This strategy is used to provide users with a quick and informative overview of
the primary choices available. It is usually employed in home pages only, because
it eats up precious screen estate and tends to clutter other content information in
the page. An example of such an approach for a fictitious Web site is shown in
Figure 9.6.

Figure 9.5 Providing feedback of Web site navigation

c09.fm Page 365 Thursday, March 9, 2006 2:09 PM

366 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

Another solution is to rely on Web page scrolling – another key difference between
Web GUIs over traditional desktop application GUIs – and providing a scrollable
navigation area on the left-hand side of the page, as shown in the example in
Figure 9.7. Alternative solutions can be used, such as adopting hierarchical
menus, or only showing the main categories.

Figure 9.6 Example design of Web site navigation employing a high-density strategy

Figure 9.7 Design of Web site navigation arranged vertically employing a
high-density strategy

c09.fm Page 366 Thursday, March 9, 2006 2:09 PM

GUI design for the Web 367

2:8 PM 9 March 2006 c09.fm 1.0

Limited information strategy

A dual strategy for high-density visualization consists of hiding unnecessary
navigation information, and is frequently used in real cases. Figure 9.8 shows a
navigation menu modeled on traditional desktop application GUI menu bars.

When only two levels of navigation are shown, a common design is that shown in
Figure 9.9, in which the lower bar changes dynamically depending on the cate-
gory activated by hovering the mouse in the upper row.

Web sites are accessed and used differently than desktop application GUIs, and
usability tests are crucial for ensuring that a pleasant-looking abstract idea is
really working with target users. From various empirical evaluations conducted
on Web GUIs, most users seem to adopt a very aggressive approach to informa-
tion seeking within a Web page, focusing almost exclusively on their current goal.
The very compact navigation design shown in Figure 9.10 certainly saves precious
screen estate, but more than likely some of the menus are going to pass unnoticed
by many users.

Other possible solutions can range from a combo box containing the most popular
link destinations – a sort of a collection of navigation shortcuts – to combinations
of graphics and interactive features. The important issue is still the same: devising
the best GUI design for the given user audience.

Figure 9.8 Classic application menu-like navigation

Figure 9.9 Showing navigation items on two levels

c09.fm Page 367 Thursday, March 9, 2006 2:09 PM

368 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

9.3 Implementing Web applications with Java
This section discusses the main technologies available for implementing Web
GUIs with Java. Before going into details, it briefly introduces the ‘big picture’ in
current architectures for Web GUIs.

The typical architecture of a Web application

One of the most striking differences in building Web interfaces using Java tech-
nology, rather than applications, is the fact that Web pages are defined in non-
object-oriented languages. This results in an ‘impedance mismatch’ between the
presentation technology and the remainder of the code that is implemented with
Java classes and other languages, similar to that created by relational databases.

Web presentation also impacts GUI interaction, which usually results in GUIs
with a lower level of user interaction than for desktop application GUIs, such as
lack of features like drag and drop, undo, and so on. In Web GUIs event-based
communication is usually needed less, because Web clients usually provide less
interactive features for users, which is reflected on the server-side implementa-
tion. Furthermore, additional care is devoted to simplifying the generation of the
GUI in the markup language of choice, and the content assembly of different areas
of the GUI.

A Web GUI typically communicates with a Web server, submitting HTTP requests
that the Web server forwards to other parts of the Web application. Such requests
contain the session state and the data related to the current request. Although
many arrangements are possible, the Web server is usually part of a Web tier in a
J2EE architecture, interacting with the business and enterprise information
system tier.

Design details of Java Web applications can be found in countless books, such as
(Alur, Crupi and Malks 2001) for J2EE patterns, (Fowler et al. 2003) for general

Figure 9.10 Too compact a navigation design

c09.fm Page 368 Thursday, March 9, 2006 2:09 PM

Implementing Web applications with Java 369

2:8 PM 9 March 2006 c09.fm 1.0

enterprise patterns, (Marinescu 2002) for EJB-specific design patterns and
(Johnson 2003) for a general introduction to J2EE applications.

Basic Java Web GUI technologies

Java Web technology can be seen historically as a stack of technologies that have
grown by accretion over the years – that is, a higher-level layer on top of an
existing, less powerful one – in an attempt to provide more powerful features with
lower complexity for developers. This technology stack can be roughly described
from the bottom as:

• Servlet technology (from the first half of 1997) accepts and processes Web
requests using server-side Java code executed in a specialized container
application, the servlet container.

• JSP (JavaServer Pages) technology (from the first half of 1999) builds on top
of the Servlet technology to provide easier management of dynamic Web
pages.

• JSF (JavaServer Faces) technology, whose first specification release was at the
end of 2003, builds on JSP technology to provide higher-level specification
for user interfaces.

Given its novelty, JSF deserves a brief introduction of its own. JavaServer Faces7 is
a framework for visual components for Web applications that allows the creation
of Web GUIs that run on a Java server. The GUI’s rendering is left to the browser.
Components are rendered separately from their logical definition – different types
of table widgets can be used, or the same command component can be rendered
as a button or hyperlink as needed, for example.

JSF comprises a Java API and custom tag libraries. The API represents UI compo-
nents, manages state, handles events, and validates input, as well as supporting
internationalization and accessibility options. JSP custom tag libraries are provided
for defining visual components within a JSP page, and for binding components to
server-side objects. Tag libraries can be created using various disparate Web presen-
tation technologies.

The stack of technologies for Web GUIs for server-side Java is shown in Figure 9.11.

7. Defined in Java Specification Request (JSR) 127.

c09.fm Page 369 Thursday, March 9, 2006 2:09 PM

370 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

Java applets

Instead of adopting a markup-based technology to represent primary content
within a browser, developers can use Java applets embedded in Web pages and
interpreted by a dedicated browser plug-in that launches a JVM to execute them.
Two main options are available:

• Java 1.1 support. This can be achieved by targeting the older JDK Version 1.1,
does not require any additional installation, as JRE 1.1 comes pre-installed on
all the main Web browsers, and can optionally take advantage of other
libraries for more sophisticated services. Swing can also be loaded as a sepa-
rate library, and a wide range of third-party libraries and client environments
that support JDK 1.1 exist. For a discussion about such third-party technolo-
gies, see Chapter 11.

• Targeting the Java 2 environment. Writing code for the Java 2 platform makes it
easier to achieve sophisticated graphical effects and in general to take advan-
tage of its more powerful and up-to-date software runtime environment. The
major drawback of this approach is the need to download and install the JRE
plug-in.

Java applets are not straightforward mini-applications written in Java, as Java
game developers know only too well. Code written for a general applet container
must target a number of different environments – different applet containers built
for different browsers all differ slightly from each other, even for different
versions of the same browser – and must cope with their quirks uniformly.

Figure 9.11 Basic technology stack for server-side Java Web GUIs

c09.fm Page 370 Thursday, March 9, 2006 2:09 PM

From Web applications to rich clients 371

2:8 PM 9 March 2006 c09.fm 1.0

Fortunately, Java applets have been available since late 1995, so a wide knowledge
base is available to developers. Despite their demise in favor of more domain-
specific technologies such as Flash, Java applets are still a viable and competitive
choice in many scenarios. There are niches of application domains in which Java
applet technology is widely used, such scientific simulation, didactic client-side
Web applications in general, small applications, video games, and so on.

9.4 From Web applications to rich clients
The architectural discussion of Web applications mentioned code that resides on
the server tier and provides Web content suitable for display on a client Web
browser. From a technical viewpoint, Web applications with basic GUI design
requirements are simpler to build than desktop applications, because of their
more regular structure and the wide availability of mature support frameworks.
On the other hand, the sheer range of possibilities available when building a
desktop application GUI can confuse developers with a background solely of Web
programming.

Accommodating a desktop application GUI as an additional client of an enter-
prise application poses the following challenges for Java developers whose
programming background is mainly in Web technology:

• The intricacies of putting together a desktop GUI go far beyond laying out
widgets on a screen, as this book demonstrates.

• Given the current stack of technologies available for building desktop appli-
cation GUIs, developers are more involved in GUI design details when
working on desktop applications than for Web-based ones. This poses a
number of critical issues regarding usability, visual design, and others that
only developers themselves can solve.

• Developers work in an environment in which the domain model and busi-
ness logic is already built and working on the application’s servers. Some
parts of it might be able to be extended to accommodate specific needs of the
desktop application GUI, but much of the domain is often given ‘as is’ to GUI
developers. This poses problems if the business domain was weakly
modeled on and/or influenced by the Web paradigm, or if details dependent
on Web issues leaked into the model itself, such as a page-oriented API for
obtaining query results.

• When it is not feasible to separate the Web-oriented user interface aspects
fully from the business domain, the simplest solution may be to reuse some
of the existing code for the rich client application. This will inevitably tend to
create a Web-like GUI that costs as much as a full-blown desktop GUI, as
well as being harder to maintain because of the common dependencies with

c09.fm Page 371 Thursday, March 9, 2006 2:09 PM

372 Web-Based User Interfaces

2:8 PM 9 March 2006 c09.fm 1.0

the Web-specific code. Such an approach, although sometimes unavoidable,
can lead to dangerous long-term maintenance scenarios, and impact the
quality of the GUI design itself, which can have extensive ramifications on
customers and the real value added to the whole application.

Different development habits

Web development and GUI development are slightly different animals, for a
number of reasons:

• Development and installation brings a number of issues and technical deci-
sions that Web GUIs don’t have.

• User are always ready to judge the results of your work, and expect a more
compelling experience from desktop application GUIs than from Web GUIs.
Desktop applications are usually preferred over Web clients because of their
better user experience, especially in specific areas, such as for repetitive
users, or business-critical tasks, so developers must satisfy higher expecta-
tions than merely providing a ‘Web interface.’

• Rich client platforms, although catching up, are still less refined and usable
than their server-side counterparts, and a unifying standard is missing8,
something like EJB on the server side, for example. This confuses developers
who are familiar with the Web technology landscape and who often prefer
using raw GUI toolkits and few other support libraries even when devel-
oping mid-sized projects.

Deeper software design differences also exist when the same design strategies are
applied to the two different scenarios. As an example of this, consider the differ-
ences between the MVC (Model-View-Controller) design introduced in Chapter 6
for desktop applications, and its corresponding version for the Web.

The classic MVC design for the Web9 organizes an application into:

• A model with its data representation and business logic.

• A number of views for the model, providing data presentation and user
input.

• A controller to dispatch requests and handle control flow.

This design works fine over the Web, where requests to the server comprise a
small fraction of the total volume of user interactions in the client GUI. There is
thus no need to add the Observer pattern to track changes among the various
parts, and hundreds if not thousands of MVC instances may be active at the same

8. See the discussion in Chapter 13 about standard components for rich client applications.
9. See the Struts library or, for a general reference, (Alur, Crupi and Malks 2001).

c09.fm Page 372 Thursday, March 9, 2006 2:09 PM

Summary 373

2:8 PM 9 March 2006 c09.fm 1.0

time, all needing to interact with each other (at least when the Swing toolkit is
used).

It is little wonder therefore that Web developers feel a bit lost when building
complex desktop GUIs, and resort to vague concepts like the ‘need to centralize
controllers’ or to set up some form of central command management. Despite
being called by the same name, client-side and server-side MVCs are very
different when it comes to their details.

9.5 Summary
This chapter discussed the scenario for Web GUIs using Java technology, covering
some aspects of Web GUI design in relation to the general concepts introduced in
Chapter 2.

We covered the implementation aspects of Java Web GUIs and the architecture of
Java Web applications. Differences between desktop and Web GUIs were high-
lighted for the common case of adding a rich client to an existing server application.
We also mentioned differences between client and server applications in the imple-
mentation of some common design strategies, such as MVC.

c09.fm Page 373 Thursday, March 9, 2006 2:09 PM

c09.fm Page 374 Thursday, March 9, 2006 2:09 PM

10 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

This chapter introduces the user interfaces supported by the Java 2 Micro Edition
(J2ME or JME) edition. Java platforms other than J2EE/J2SE, such as the JavaCard
environment, which has no explicit GUI support, won’t be covered. The practical
examples in this chapter are based on the J2ME Mobile Information Device Profile
(MIDP). However, most of the material in this chapter, whenever not explicitly
expressed otherwise, applies to J2ME GUIs in general, not only MIDP GUIs.

J2ME is introduced briefly with a technical introduction of this programming
environment, followed by some details about GUI design for this profile. Practical
examples are given. A questionnaire for assessing the usability of J2ME applica-
tions can be found in Appendix B.

This chapter is structured as follows:

10.1, Introduction to the MID profile briefly introduces the J2ME MID profile.

10.2, The MIDP UI API introduces the details of the API for MIDP GUIs.

10.3, Designing MIDP GUIs provides an overview of GUI design for MIDP GUIs.

10.4, Designing navigation discusses the specific of navigation in a MIDP GUI.

10.5, An example custom item discusses the customization of a MIDP GUI compo-
nent by means of a practical example.

10.6, An example ad-hoc item shows an example an ad-hoc item component for
representing numeric data using pie charts.

10.7, An example application introduces the Park MIDP application, illustrating a
GUI design and development approach to navigation.

10.1 Introduction to the MID profile
J2ME is targeted at embedded and consumer electronics devices. It has two
primary types of component – configurations and profiles. The J2ME architecture is
composed of a few configurations that define the common features for a class of
devices. Two configurations are currently available:

• The Connected Limited Device Configuration (CLDC), designed for devices
with constrained hardware resources. Such devices typically run on either a

J2ME User Interfaces

c10.fm Page 375 Thursday, March 9, 2006 2:15 PM

376 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

16- or 32-bit CPU and have 512 Kilobytes or less of memory available for
client applications and the Java platform itself.

• The Connected Device Configuration (CDC), aimed at next-generation
devices with more robust resources than CLDC devices.

These configurations dictate the Java virtual machine, core libraries and some
APIs, while leaving the differences between each device to be described by a
profile. User interfaces are defined on a per-profile basis, allowing for maximum
flexibility when taking advantage of device characteristics. Tailoring APIs to a
particular profile allows for efficiency and accuracy, but results in several different
class packages and slightly different vendor-specific API implementations.

This chapter concentrates on the MID profile, part of the CLDC configuration. The
MID profile is aimed at modeling the large category of Java-enabled wireless
handheld devices. Such profiles describe all issues, such as the user interface, the
application model, networking, and persistence storage, that are related to Java-
enabled mobile devices like two-way pagers and cellular phones. We focus on the
UI API here.

An application running on this type of Java-enabled devices is referred to as a
MIDlet, because it can be deployed seamlessly on a wide range of different MIDP-
compliant devices, just as an applet is deployed in different Web browsers. This
capability is one of the most important features of the J2ME initiative for wireless
devices, and has the potential to create a completely new and huge market for
such software applications. The MID profile has been designed both to abstract
applications from the client hardware on which they run, and to ease the develop-
ment of similar applications. The latter aspect arises when we discuss the UI API,
which has been modeled around the typical UI seen in today’s consumer cellular
phones.

Both the terms applet and application are used to refer to MIDP programs.

For more information about the J2ME platform, visit:

http://www.javasoft.com/products/j2me/

The code suggested here was developed and executed using various develop-
ment tools. The J2ME Wireless Toolkit from Sun, for MIDP 2.0, is available at
http://www.javasoft.com/products/j2mewtoolkit/.

Main UI concepts

The J2ME MIDP GUI API has been designed for generic handheld devices with
LCD screens of various sizes, a typical minimum being 96 x 96 pixels, and running
on hardware with limited resources. The richness of concepts and software architec-
tures employed in the AWT and Swing APIs in the desktop Java world is clearly out

c10.fm Page 376 Thursday, March 9, 2006 2:15 PM

Introduction to the MID profile 377

2:14 PM 9 March 2006 c10.fm 1.0

of reach here, even if the MID profile assumes quite powerful hardware – at least
when compared with other embedded devices or the JavaCard specification.

The basic functionalities provided include the capability of manipulating the
device’s screen to show a top-level component, a widget that occupies the whole
screen, that has been decorated previously with simpler UI components, referred
to as items.

There is always only one screen object active at a time, representing the whole
contents of the current device’s display: the concept of multiple windows is
absent. Applications simply switch from one screen to another.

No navigation semantics have been provided, both for generality and because
applications are expected to be simple and not require many different screens and
menus. One common navigation semantic seen on such devices, for example, is
stack-like screen navigation, in which users find their way from one screen to
another, closing the current one and redisplaying the previous one as screens are
‘piled’ to resemble a hierarchical organization. Navigation styles are left to the
application developer’s implementation.

Only basic widgets and a simple user input framework are provided. The Java
classes provided are designed to reduce the need for subclassing by providing a
comprehensive range of built-in options.

It is important to note that, given the nature of the platform, developers must
always query the current screen size for all but the simplest UI screens: assuming
a fixed screen size can produce unusable UIs on MIDP-enable devices.

The lifecycle of a MIDlet

The lifecycle of a MIDlet is important, because it involves the concept of screen
management directly. The native module that handles MIDlets in the MIDP-
enabled device is called the application manager.

A MIDlet can be in one of the following three states:

• Paused. The MIDlet is shallowly initialized – that is, it does not use or hold any
resources. The instance is quiescent in device RAM and is waiting for the
application manager to be activated. This state is reached every time the appli-
cation management invokes the pauseApp method on the given MIDlet, not
only after its creation. The MIDlet screen is removed from the device display.

• Active. The application manager has activated the MIDlet by invoking its
startApp method. The MIDlet must explicitly assign the screen device.

• Destroyed. This state is entered only once, and instructs the MIDlet to release
all its resources and terminate its execution.

All the UI initialization is performed in the startApp method.

c10.fm Page 377 Thursday, March 9, 2006 2:15 PM

378 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

User input management

User input is handled both at high level, using Command objects, and at low level
using the device keys directly. Although the latter solution is available, it is
discouraged, because it can hinder the portability of an application.

The Canvas class provides a general abstraction for input keys that is portable
across all implementations, encompassing all the keys in the ITU-T standard tele-
phone keypad – numbers from 0 to 9, the ‘*’ and ‘#’ keys – as well as a set of
abstract input actions called game actions that include the four navigation keys (up,
down, left, right), a ‘fire’ button, and four application-dependent keys.

Commands are the most important means of expressing user directions.
Commands are managed by the underlying MIDP implementation, and can be
rendered as soft buttons – text labels shown above special buttons near the device
screen – voice commands, or in any other platform-specific way. To help the MIDP
implementation interpret a given command correctly, commands have different
types, each with a precise use:

• Back, used to return to the previous logical screen.

• Cancel, which cancels the current screen and all data previously set in it.
Cancel is the standard negation command.

• Screen, reserved for application-specific commands related to the current
screen.

• OK, the standard affirmative command.

• Help, used to show display content.

• Item, associated with a particular item on the current screen.

• Stop, which stops the current operation. This should be implemented, to
allow users to stop lengthy operations.

• Exit, used for quitting the whole application.

The command type is used only as a rendering hint for the MIDP implementation:
developers should always specify the corresponding action in their code by imple-
menting the CommandListener interface. This is demonstrated in the example
code provided for this chapter.

Two levels of API

While J2ME’s UI API is oriented towards easing development in most common
situations, some hooks have been left for implementing ad-hoc UIs as well. This
allows developers to subclass low-level general classes such as Canvas and
Graphics. This is however a complex procedure, and one that may ultimately
produce non-portable MIDlets, for example by relying on a key present on a
specific mobile phone model but not on other MIDP-compliant devices. Never-
theless, in some situations this is the only way to go.

c10.fm Page 378 Thursday, March 9, 2006 2:15 PM

The MIDP UI API 379

2:14 PM 9 March 2006 c10.fm 1.0

Figure 10.1 on page 381 shows the relationship of the Canvas class to other classes
of the package.

Main UI limitations

The J2ME API has several limitations, mostly dictated by hardware resource
availability. First, whenever possible UI implementation details are left to the
device vendor, to simplify the implementation of the MIDP for a given platform.
This encourages implementation differences between one device and another, not
only in the UI’s look and feel. Developers are urged to consider the API as a high-
level and not completely accurate specification. Furthermore, the absence of any
guidelines for navigation semantics encourages different approaches that could
confuse the user when moving from one application to another.

These and other similar considerations highlight the API ‘shortcomings when
used in non-trivial UIs – and such applications will be growing in number with
the trend towards more powerful devices in this industry sector.

Cost-driven design for J2ME GUIs

Cost-driven design can also be applied to J2ME GUIs, as for all the general tech-
nique discussed so far, from iterative GUI development to Agile methodologies,
test-driven development and the design patterns and architectures discussed in
the previous chapters. The devil, as usual, is in the details. Aiming for profes-
sional user interfaces on constrained devices should involve a constant focus on
usability rather than other, secondary, issues. This is not often the case: with tight
deadlines and tough technical challenges to cope with, usability concerns often
slip away.

10.2 The MIDP UI API
This section describes the practical UI component classes provided in the
javax.microediton.lcdui package using a top-down UI design–oriented
approach, rather than illustrating low-level API details. These can be found in the
related literature1.

UI widgets

This section describes the top-level components of the MIDP UI library.

Table 10.1 shows the built-in components provided for developing MIDP applets.

1. See http://java.sun.com/products/midp/.

c10.fm Page 379 Thursday, March 9, 2006 2:15 PM

380 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

In Table 10.1 the first two top-level containers, the Alert and Form classes, are
visual containers of simpler UI widgets called items, which all extend the Item
abstract class. The remaining two, List and TextBox, are specialized components
that are designed to fill the device screen.

The standard items provided with the MID profile are listed in Table 10.2.

When creating data input screens or other GUIs, developers use a Form instance
containing properly initialized Items. Menus are meant to be implemented through
List instances, while Alerts are used for notification only. TextBoxes are used for
displaying long text strings, such as SMS text messages, memos, and so on.

TextField and TextBox components provide built-in data input constraints.
Developers can specify which of the following constraints the component will

Table 10.1 MIDP UI Top-Level Components

Top-level component name Description

Alert Similar to a dialog box for showing
read-only messages., composed of
simple items (see Table 10.2).

Form Shows a collection of Items.

List Shows a list of homogeneous,
selectable elements .

TextBox Similar to a TextArea for editing
multiline text.

Table 10.2 MIDP UI Items

Component name Description

Label Shows a single line of read-only text.

DateField Shows a calendar or other device-depen-
dent date / time picker.

ChoiceGroup Shows a set of boolean values.

ImageItem Shows an image.

StringItem Shows some text.

TextField Shows some formatted text.

c10.fm Page 380 Thursday, March 9, 2006 2:15 PM

The MIDP UI API 381

2:14 PM 9 March 2006 c10.fm 1.0

enforce when handling user input:

• URL format – only Web-compliant addresses will be accepted.

• E-mail format – only e-mail address will be accepted.

• Phone number format. This is implementation-dependent due to regional
conventions for phone number formatting, network requirements – the
GSM network, for example, may use ‘+’ at the beginning of every number –
and device implementations. Once a phone number format field is filled
out, a device-dependent key can start a telephone call on a cellphone host
device.

• Integer value format. In this case only digits can be entered, optionally
prepended with a minus sign. Range constraints can be enforced by
developers.

• Password field format. Inserted characters are masked as they are typed.

• Free text. Any character can be entered.

Other constraint types can be combined with the password constraint to create,
for example, a numeric-only, password-like text field.

Figure 10.1 shows the basic static class diagram of the major classes in the
javax.microediton.lcdui package: some classes, such as Font or Graphics,
are omitted.

Figure 10.1 Simplified class diagram of the lcdui package

c10.fm Page 381 Thursday, March 9, 2006 2:15 PM

382 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

10.3 Designing MIDP GUIs
Today’s J2ME GUIs range from basic cell phones to sophisticated personal assis-
tants, and new devices are broadening the already wide choice constantly, such
as WiFi-enabled ‘smart’ cell phones that can also be used as much cheaper, stan-
dard devices for a variety of computational tasks, ranging from work to personal
entertainment.

The main difficulty in designing GUIs for such a diverse set of devices arises from
the fact that J2ME technology provides only an approximate definition of the GUI’s
final details. Such details are rendered autonomously by the device on which the
application is hosted. This point is discussed in more detail later.

The main characteristics of a MIDP application that impact on its design, both the
GUI design and its implementation, are as follows:

• Personal devices. Differently than other computing means, wireless devices
are inherently personal devices, and as such they are used differently than
desktop PCs or other similar computing machines. Wireless devices are
carried with the owners throughout the day, and applets can be used at any
hour of the day or night.

• Privacy concerns. As an important detail of the previous point, users feel
uneasy in allowing foreign code to execute on devices that contain as much
private data as does a cellphone. This also applies to applications sharing
data externally. Even if J2ME poses important limits on applet intrusiveness,
users should not be expected to have to know the MIDP specification. GUI
designers need to consider this aspect when designing privacy-sensitive
applications.

• Type of users. Differently than desktop applications, mobile applications have
a much wider range of possible user types. Households, retired people and
teenagers can all be potential mobile users. Their education and levels of
computer literacy can vary greatly, requiring more care than for desktop
applications in the choice of language used in the application, and in general
in the whole GUI design. Outside North America cellphones are more wide-
spread than desktop computers.

• Limited bandwidth and intermittent connection. A wireless device typically has
much less bandwidth available for transmitting and receiving data than a
wired device. Furthermore, wireless connections are typically unreliable, so
an intermittent connection should always be assumed.

• Pay-per-use billing schemes on bandwidth/connection. Most carrier operators
charge for bandwidth consumption on a per-use basis. This is an additional
psychological factor in shaping use patterns, because users might be uneasy
about allowing applets to connect remotely.

c10.fm Page 382 Thursday, March 9, 2006 2:15 PM

Designing MIDP GUIs 383

2:14 PM 9 March 2006 c10.fm 1.0

• Power consumption and related use patterns. A wireless device is usually a
mobile device as well, with batteries as its only means of power supply while
on the move. Even the longest-lasting batteries offer a limited amount of
power. This dictates use patterns for such devices that GUI designers must
take into account.

• Limited hardware resources on client devices. Because of their mobile nature, the
available power source, and sometimes also for economical reasons as low-
end consumer devices – wireless devices have limited resources. The same
reasons limit processing power.

• Restricted input means. Limited keyboards and compact pointing devices are
available on only a small segment of devices. On others input is obtained via
keypad and navigation keys.

• Context of use. Wireless devices can be used in the most diverse surroundings,
such as in school classes, on a train, in a café. This obliges designers explicitly
to study sets of use contexts for applications. Furthermore, the context can be
an important input for the application, such as those making use of localiza-
tion services such as the Global Positioning System, GPS2.

• Intermittently active sessions. When interacting with mobile applications, users
can be interrupted at any moment, either by an incoming call on the same
device, or by some situation in the environment. This means that MIDP
applets should be able to chunk both user attention and transactions in small
quanta, and need to provide simple mechanisms for restoring session data.

• Limited GUI output screen. Typical displays are very small compared to other
devices. This makes viewing more difficult. Combining this limitation with
some classes of users, such as those with visual impairment, might transform
a GUI design that seems brilliant when run in an emulator into a totally
unusable and frustrating experience for some users.

• Fragmented market for client devices. This can result in a number of small
incompatibilities in the way the J2ME MIDP specifications are implemented
among different vendors, and even among different models of end device.
Fortunately the industry has provided a thorough set of test criteria for a
mobile device to be certified as ‘Java compliant.’ Vendors also tend to add
proprietary APIs that are not widely portable, so that developers are often
faced with choices about whether to restrict portability or simplify
development3.

2. Not to be confused with GPRS (General Packet Radio Service) a mobile telephone network
standard that can be used by wireless J2ME devices for remote connection.

3. This is especially true for those market segments in which Java applets follow consumer-
led paths – new devices are continuously released with a short time to market, shrunk
budgets, and quick obsolescence.

c10.fm Page 383 Thursday, March 9, 2006 2:15 PM

384 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

• GUI details are ultimately left to the actual client device implementation. GUI
design is ultimately dictated by the device that is executing the applet, and
there might be discrepancies between different, supposedly compatible,
devices. While this was a major problem with early versions of embedded
JVMs, it is still a hindrance for developers.

General advice about multi-presentation applications was given in Chapter 9 in
connection with Web GUIs, so won’t be repeated here.

Abstract GUI designs

Accommodating a professional GUI design in a lowest-denominator platform like
the J2ME MIDP is challenging. It should always involve thorough testing on the
commonest target devices available on the market, not just on their software
emulators used for early testing and development.

A simple solution to this challenge is to choose a target platform explicitly, usually
from one of the major vendors for the target user population that has a wide
choice of development resources, such as documentation, emulators, GUI design
guidelines, and so on. This situation is similar to that of designing for the Web in
the ‘old days’ when there was no single market-leading Web browser.

An incorrect solution to the problem is to try to bypass the JME (or J2ME) specifi-
cation by rolling out a home-grown look and feel in an attempt to provide a
consistent ‘branded’ user experience across various devices4. This usually results
in a poor, possibly weird-looking, user interface that is expensive to build: low-
level details need to be handled explicitly and cannot be left to the underlying
device’s implementation.

In cases in which the lowest common denominator is too problematic a solution
to pursue – and only in these extreme cases – a better strategy is to segment the
design in a divide-and-rule fashion. This is discussed in the next section.

Segmenting the GUI design

Some scenarios are clear-cut and allow two main segments to be easily identified.
Consider for example a traffic congestion applet being developed for a major city
traffic authority. The target user population is identified by means of preliminary
questionnaires, and is roughly divided into two groups:

• Those that will access the application from the Web.

• Those that will use it from a Java-powered consumer wireless device.

4. Possible because MIDP 2.0 allows more low-level GUI details to be specified. This is espe-
cially true for those market segments in which Java applets follow consumer-led paths –
new devices are continuously released with a short time to market, shrunk budgets, and
quick obsolescence.

c10.fm Page 384 Thursday, March 9, 2006 2:15 PM

Designing navigation 385

2:14 PM 9 March 2006 c10.fm 1.0

The latter group is better served by MIDP applets, because the user population
will be made mostly of repetitive users that prefer to download the applet only
once, instead of using other more expensive solutions. A WAP-based GUI, for
example, would require city maps to be downloaded for every session, while with
a rich client, only current traffic congestion data is needed.

Building a single GUI for these two group of users can prove tricky, as it is a situ-
ation in which designers cannot transfer complexity to end users, and one where
usability is an essential requirement. Such a GUI would have to serve two distinct
needs at once: that of satisfying both power-users and normal drivers, groups that
have very different information needs. Splitting the design serves both segments
better, greatly enhancing the usability of the overall application.

Two types of GUIs can therefore be designed:

• Using a high-density visual strategy. This version is aimed at expert users
that need more data and a richer interaction, such as people that spend most
of the day driving in the city – taxi drivers, delivery drivers, and so on.

• Leveraging a limited information style5. This type of user would prefer a
mainly textual application, where details are limited and only basic conges-
tion information is provided. This version will accommodate most users, so
cheaper phone models can be used, leaving the ‘power-user’ version to deal
with more powerful devices with larger screens.

For such an approach to be viable, however, requires thoughtful implementation,
otherwise it can escalate into an expensive and risky development situation.
Portions of code not common to the two GUI versions should be minimized, by
providing a rich set of utilities and a supporting architecture implemented in a
GUI-neutral way that factors out all commonalities among different GUI imple-
mentations. The objective of such a design is to minimize GUI-dependent code
and maximize GUI-independent code. Building and deploying the two versions
can be completely automated and a few classes can assemble the building blocks
to ship the different versions of the same application that are geared towards
different user segments. For larger application scenarios, this strategy leads to the
Software Families software engineering approach.

10.4 Designing navigation
MIDP GUIs have to cope with small physical screens. One of the main conse-
quences of this constraint is that GUIs will have to have more, and smaller,
screens. Navigating between such screens therefore becomes all-important for the
usability of all but the simplest applet.

5. See Chapter 2.

c10.fm Page 385 Thursday, March 9, 2006 2:15 PM

386 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

Finite State Automaton (FSA) is a formal model of computation for modeling UIs
on simple devices such as wireless phones. FSA, which can also be represented as
a finite state machine, consists of a set of states, with a special start state, an input
alphabet, which defines the type of input to the FSA, and a transition function that
maps input symbols and current state to the next state.

Given the simplicity of MIDP GUIs, the user interface structure can be expressed
by means of simple diagrams like that shown in Figure 10.2.

The diagram describes the possible transitions among different MIDP screens in
a typical mobile application. A later section shows an example of use of this
diagram for the design of a simple GUI.

GUI design needs to match the limited client resources of J2ME clients – memory,
processing power, screen real estate, and so on. From a usability perspective, this
involves placing a lower cognitive burden on users. The widely-used strategy of
localizing feedback6, for example, becomes increasingly difficult to enforce on
devices with limited screen space. Interaction design can then degenerate into a
sort of long wizard with tiny pages. Consider data input in one screen that affects

6. This was discussed in connection with validation in Chapter 8.

Figure 10.2 The structure of a typical MIDP GUI

c10.fm Page 386 Thursday, March 9, 2006 2:15 PM

An example custom item 387

2:14 PM 9 March 2006 c10.fm 1.0

data in another screen, for example disabling some option. With limited screen
estate it might not be possible to keep these related items close, presenting a
puzzling experience to the user.

10.5 An example custom item
We are now ready to see some practical examples of J2ME MIDP applications. In
contrast to desktop computers and other rich computing appliances, wireless
devices have a limited set of features, and this influences their user interfaces. A
common error when developing MIDP GUIs is to try and achieve a cross-device
look and feel – that is, a look and feel that is the same on all supported platforms.
This might initially seem highly desirable, because it is supposed to help users,
while giving a strong brand identification to the product. However, such efforts
sometimes end with incomplete, arbitrary GUIs that can confuse end users. Users
become accustomed to a mobile device’s look and feel, and may be uncomfortable
with a downloaded applet that behaves ‘weirdly.’ Figure 10.3 shows a sample
custom alert box that illustrates this7.

It is interesting to see how easy is to manipulate the display area directly. In the
MID profile there is no deep and complex class hierarchy like Swing’s, and taking
advantage of the paint() method is straightforward. The custom class that
creates the alert box shown in Figure 10.3, whose source code is provided in the
code bundle for this chapter, extends Canvas and draws directly on the display’s
Graphics.

7. Such a custom component is an extension to a standard visual component provided by a
reference toolkit, as discussed in Chapter 3.

Figure 10.3 An ad-hoc alert box developed for a specific task

c10.fm Page 387 Thursday, March 9, 2006 2:15 PM

388 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

10.6 An example ad-hoc item
Providing ad-hoc GUI solutions is a powerful feature of J2ME. It needs to be used
with care, but can enhances an application’s usability enormously.

This simple example of the correct use of ad-hoc components – from a GUI design
viewpoint – takes advantage of a custom item component. The Item class repre-
sents the generic component that can be used in lists and forms. With MIDP 2.0
the CustomItem class is available for subclassing, which provides a simple way to
create ad-hoc items.

Figure 10.4 shows a simple custom item for representing numeric data using pie
charts. It consists of a form composed of custom items on the left, and the legend
in the right-hand figure.

Each element is itself a form item, so it can be manipulated with the same conven-
tions, such as check boxes, text fields, and other standard items. This is a powerful
way to employ ad-hoc designs without disrupting native platform usability.
Figure 10.5 shows how users can move through items in the applet using the cell
phone’s navigational keys.

The implementation is organized around three classes8:

• The PieItemTest class, needed to launch the demo.

• The PieItem class, which implements the pie chart custom item.

• The PieData class, which represents all configuration data, such as colors.

The related classes are provided in the code bundle for this chapter. The
PieItemTest class is a test MIDlet that creates a screen composed of custom pie
chart items. The core of the example is the PieItem class. The values array stores

8. This is a demo implementation that has been developed only to show the visual compo-
nent customization features of standard J2ME MIDP widgets.

Figure 10.4 A form made of pie charts

c10.fm Page 388 Thursday, March 9, 2006 2:15 PM

An example application 389

2:14 PM 9 March 2006 c10.fm 1.0

the data related to the current item. Whenever a non-empty string label is provided
in the constructor, this is used as the item’s caption (see Figure 10.4 and Figure 10.5).

The methods getMinContentHeight(), getPrefContentHeight() and getPref-
ContentWidth() are needed by the CustomItem class. The paint() method draws
the data as a pie chart.

The PieData class gathers all configuration data relevant to pie charts. It provides
the chart legend shown in Figure 10.4. Such a screen itself employs another
custom item implementation, an inner class of the PieData class. The PieData
class manages configuration data for all pie chart items.

10.7 An example application
This section describes an example application that illustrates a simple mechanism
for implementing Finite State Automaton (FSA).

The example application manages the billing of car parking in which users pay for
parking via an applet. As only its user interface is of interest, the applet’s other
details are only sketched. For simplicity it use only few screens, as shown in
Figure 10.6.

Figure 10.5 Navigating through specialized items

c10.fm Page 389 Thursday, March 9, 2006 2:15 PM

390 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

Figure 10.7 shows the main menu for the applet on the left, and the ‘About’ box
on the right.

The most interesting screen in this applet is the Payment Details screen, which
persists the user data from session to session. In the demo applet it is imple-
mented very naïvely, as shown in Figure 10.7.

Figure 10.6 The Park applet’s GUI structure

Figure 10.7 The Park applet’s main menu

Figure 10.8 The payment details form

c10.fm Page 390 Thursday, March 9, 2006 2:15 PM

An example application 391

2:14 PM 9 March 2006 c10.fm 1.0

However, we are interested more in implementation solutions than the applet’s
realism.

The code

The MIDlet subclass (the ParkMain class) manages the overall UI, the user
commands, and the transitions between screens. In the ParkMain class the
commandAction() method handles all the applet’s command management. Most
of the code implements the transition diagram shown in Figure 10.6 – for example,
when the user issues the HELP command from the main menu screen, the help
screen is shown.

The ParkMain class implements the Explicit Navigation design strategy discussed
in Chapter 6.

We diverged from the simplest implementation to deal with main menu
commands more efficiently. More object-oriented mechanisms are possible, such
as using specialized CommandItem events, but minimizing implementation
complexity is a key objective when writing J2ME applications. The techniques
shown here try to minimize the number of employed classes and objects – that is,
static classes and their runtime instances – while maintaining a simple software
design by minimizing the number of classes.

Following this approach, all the application’s screens are gathered in the Screens
class. This class is invoked by the ParkMain instance whenever a screen is needed.
The Screens class lazily creates the required displays. Consider the help screen,
for example. Such a screen is only needed a few times, and experienced users
might never invoke it. Keeping it null until it is needed saves runtime space and
initialization time. Lazy instantiation, used here for screens, which are created
only when needed, is a key technique in the implementation of MIDP UIs.

There are cases in which keeping a reference to a screen that has already been
created is counterproductive. This may happen for example when the screen
needs to be created anew each time, or when it is accessed only once per session.
This latter case is exemplified by the About screen, displayed by the showAbout()
method. In this case it would be a waste of space to keep a reference to the screen
throughout the whole life of the applet (assuming of course that the ‘About’
screen contains only standard product information, rather than data that needs to
be frequently referenced). Some J2ME applications can run for weeks, so careful
memory management is essential.

Separating screens from control code may be beneficial for non-trivial applets, in
that it separates presentation from control and keeps the implementation orga-
nized coherently, even if it might favor closer coupling among classes. In this
example, the MIDlet and the Screens instances are tightly coupled.

c10.fm Page 391 Thursday, March 9, 2006 2:15 PM

392 J2ME User Interfaces

2:14 PM 9 March 2006 c10.fm 1.0

Finally, the AppData class contains all the business data required by the applica-
tion. In the trivial implementation used here, AppData uses has only two
attributes:

• The user’s amount of parking credit – the money attribute.

• The user’s name.

This class is also responsible for retrieving and saving data persistently, by means
of the J2ME MIDP RecordStore mechanism, which is properly initialized in its
constructor.

10.8 Summary
This chapter has discussed factors relevant to graphical user interfaces in Java 2
Micro Edition briefly, demonstrating the built-in support for GUIs in the J2ME
MID profile. It also discussed some simple demonstration examples of the use of
such libraries, together with some high-level strategies for organizing the user
interface of a MIDP applet GUI.

c10.fm Page 392 Thursday, March 9, 2006 2:15 PM

11 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

This chapter discusses an aspect that is critical for Java application development,
and one that is often overlooked – the right mix of ingredient tools and technolo-
gies for a project. It focuses mostly on GUI development and is slightly biased
towards open source software (OSS) over commercial products. It deals with Java
GUI development tools and technologies only.

After introducing the practice of tool selection for Java technology and covering
some aspect of OSS, we will focus on perhaps the most crucial, and often irrevers-
ible, choice in Java GUI tool selection: whether to opt for Swing or SWT. After
discussing the various issues related to these two toolkits in detail, other tools and
technologies available to Java GUI developers are outlined.

This chapter is structured as follows:

11.1, Introduction to tool selection discusses the general issues involved in selecting
ingredient technologies and tools for building a Java GUI.

11.2, Evaluating open source software illustrates various aspects of OSS technology
evaluation in more detail, introducing the OSS maturity model.

11.3, SWT or Swing? is dedicated to the differences in the two foundational tech-
nologies for Java desktop GUIs.

11.4, Other GUI technologies discusses some alternative technologies to SWT and
Swing for Java GUIs.

11.5, Utility libraries lists various (mostly OSS) GUI utility libraries, including
development, security and deployment tools, sets of specialized components, and
utility libraries such as JGoodies, Glazed Lists and others.

11.6, Test tools discusses some GUI testing tools for Java.

11.7, Profiling tools illustrates some profiler tools for Java GUIs.

11.8, GUI builders discusses some visual editors for content assembly that are
available for Java developers.

11.9, Presentation layer technologies demonstrates some Swing look and feels and
presentation technologies for SWT.

11.10, Declarative GUIs with Java discusses the various alternatives for specifying
GUIs declaratively for Java-based applications.

Java Tools and Technologies

c11.fm Page 393 Thursday, March 9, 2006 4:00 PM

394 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

11.1 Introduction to tool selection
Literally hundreds of Java libraries, plug-ins, and tools for Java development are
available on the market, with either OSS or commercial licenses. Not taking advan-
tage of such a bounty would be a pity, given the maturity of many of these products,
which have been built over years, and the added value they provide, often as OSS.
Perhaps the strongest aspect of Java technology as a whole lies in its community of
developers and its orientation towards open source and free collaboration: the OSS
offering is just the final by-product of this active, open, collaborative climate.

Such an abundance of products poses problems over the best mix of libraries and
tools. Many situations are possible, ranging from development teams tactically
choosing libraries and tools for a single project, to a company selecting tools and
libraries for a long-term strategic investment in personnel training and large-scale
adoption for multiple projects.

Assuming that you have a development environment already set up, which hope-
fully provides modern comforts such as code editors, unit testing, refactoring
tools, concurrent versioning, and continuous integration, to develop a decent GUI
the following ingredients are usually required:

• Support libraries – specific layout managers, look and feel, favorite logging
facility, XML parsing, and so on.

• A GUI testing tool of your choice. Such a tool would also be used for accep-
tance testing.

• Optionally, a visual GUI builder.

• A set of development tools specific to client application development, such
as deployment support (either using JNLP or creating an installer package),
code obfuscators, license management, and others.

• Domain-specific libraries, where required, such as a library for representa-
tion of currency and monetary values.

11.2 Evaluating open source software
Before reviewing the best OSS product currently available for Java GUI develop-
ment, how should you evaluate the usefulness of an OSS technology, and how can
you make an informed plan about the ingredient technologies that will be used in
a project?

When evaluating the adoption of a tool or a library, some practical considerations
apply:

• The type of product license, and whether it is compatible with other OSS you
plan to use and with your overall business goal. For example, suppose you

c11.fm Page 394 Thursday, March 9, 2006 4:00 PM

Evaluating open source software 395

4:0 PM 9 March 2006 c11.fm 1.0

plan to build an application for playing music using the Eclipse RCP. You
might find an OSS Java library that plays all sorts of popular music formats,
released under the GPL license1. In such a scenario, it is not legally possible
to combine such a library with the Eclipse RCP and obtain a commercial
product.

• Satisfying your requirements. The most important point is how effective the
OSS is for solving your problems. This is key. It doesn’t matter how well
documented, mature, and powerful a tool or a library is if it doesn’t meet
your needs.

• The community involved with the project – whether any active on-line
forums or other means for useful exchange exist with people that already use
and are knowledgeable with the technology or tool.

One consequence of a vibrant user community can be a reduction in the cost
of professional services.

• The availability of useful documentation. This can be easily checked with a
Web search. The quality and coverage of the documentation required
depends on the importance of the OSS in your application scenario. If you
are looking for something useful but not critical to your development, such
as, say, a GUI test tool for a small internal application, you may not be
concerned if there is no documentation for advanced customization features.
In contrast, if you are looking for a critical component of your GUI, you
should be careful in assessing the availability of effective documentation for
advanced users.

• How the tool or technology you are investigating integrates with your
existing basket of technologies. For example, if you use the JBuilder IDE and
you find an OSS layout manager library, you need to know how well it can
be integrated with JBuilder’s visual editor, and whether it is available as an
IDE extension than can be added to your development environment.

The only sure way to assess the compatibility of a new tool or library with an
existing environment and your class path is by testing. Overlooking compat-
ibility issues can lead to degradation of an implementation. For example,
including a library that use an XML file for configuration, while your appli-
cation is already using a preferences file, results in an application with
configuration data scattered over two separate files.

• The current maturity level of the product and its evolution strategy. Some OSS
libraries start off small and pretty but grow to be huge and ugly by trying to
solve everybody’s problems in the most comprehensive way. In such cases,

1. For more on OSS licenses, see the discussion about RCP licensing in Chapter 13.

c11.fm Page 395 Thursday, March 9, 2006 4:00 PM

396 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

you are either forced to fork2 the code base, and thus take responsibility for
the code, or put up with bloated installation JAR files and amend your code
for newer features you might not actually need.

Open Source Maturity Model

This section discusses a specific, formal model for assessing the maturity of OSS.
Despite being a general technique that can be applied to comprehensive scenarios,
including hardware, infrastructure software and large applications, the main
ideas can also be used for selecting the best tools for smaller projects and in daily
work.

The Open-Source Maturity Model (OSMM) described in (Bernard 2004) proposes a
model for assessing open source products for their readiness for use in an industrial
production environment. It can be useful to companies that are evaluating how a
given OSS technology can fit within a given software development organization. In
many cases though, when limiting to consider only OSS Java development technol-
ogies and for small projects, there is little need to resort to a fully-fledged model.

Factors such as functionality, support, documentation, training, product integra-
tion, and professional services are considered in the OSMM. The model considers
two types of users: early adopters, who are more keen to adopt new but unfinished
OSS technology, and their counterparts, the pragmatists, as well as three levels of
implementation of the OSS in a project: experimentation, pilot, production.

The OSMM assesses an OSS product’s maturity in three steps:

1. Assessing product elements. The output of this phase is a set of scores for
each of the key product elements. Sub-steps of this phase are:
– Define requirements. Determine the required functionality for the current

scenario.
– Locate resources. Determine whether essential resources are available to

assist your organization in implementing the open source software. Exam-
ples include specialized consultants, or an approved partner company.

– Assess element maturity. Maturity levels range from non-existent product to
production-ready.

– Assign a final element score in the range 1–10.
2. Assign weights summing to 10 to each element’s maturity score to reflect its

importance. For example, in evaluating a GUI testing tool, good documenta-
tion could be more important to the product’s overall maturity assessment
than the availability of professional services. Default values are shown in
Table 11.1.

2. Some licenses don’t allow modification of OSS source code that is to be used commercially.

c11.fm Page 396 Thursday, March 9, 2006 4:00 PM

SWT or Swing? 397

4:0 PM 9 March 2006 c11.fm 1.0

3. Calculate overall product OSMM score.
OSMM ranking = (Element Score × Element Weightings)
The output of an OSMM assessment is a numeric score between 0 and 100
that is then compared with recommended values. Table 11.2 shows the
minimum values suggested by default by the model.

11.3 SWT or Swing?
After a general introduction to OSS evaluation comes perhaps the most critical
choice in technology selection for a Java GUI project, one that will shape the devel-
opment and dictate support and testing tools: the base GUI toolkit. Deciding
which GUI toolkit to use for a GUI is extremely important, as this choice is hard
to reverse. This section discusses and compares both toolkits thoroughly.

The toolkits

We assume readers are more experienced with Swing than SWT, so a quick intro-
duction for readers not familiar with SWT is also provided.

Table 11.1 Table 1 OSMM default weights

Software 4

Support 2

Documentation 1

Training 1

Integration 1

Professional Services 1

Table 11.2 Table 2 OSMM recommended minimum scores

Purpose of Use

Type of user

Early adopters Pragmatist

Experimentation 25 40

Pilot 40 60

Production 60 70

c11.fm Page 397 Thursday, March 9, 2006 4:00 PM

398 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Although it is a valid choice in various situations, for brevity AWT has only been
considered briefly here.

The Swing toolkit and typical problems using it

Swing has been around since 1997, and a large number of resources such as docu-
mentation, code example, discussion forums, and so on, are available on line and
in books. This also implies the existence of a large number of experienced devel-
opers proficient in Swing.

While Swing can be seen as a more conservative and less risky choice over SWT,
it nevertheless suffers from a number of well-known issues that developers need
to deal with:

• Swing applications need to be finely tuned, both as regards the final appear-
ance of GUIs, by choosing or customizing an existing look and feel, adjusting
pixels for baseline text alignment3 and other fine details, and for the final
implementation, which needs to be profiled and optimized for almost every
non-trivial application.

Worse, operating system vendors constantly update their platforms both for
the appearance and richness of GUI components, involving Swing look and
feel implementations in a never-ending chase in which native GUIs are
constantly leading innovation and Swing is lagging behind4.

• Swing is currently too basic a toolkit to support any but the most basic GUIs.
In fast-paced production environments it therefore has to be complemented
by other support libraries to provide cost-effective implementation and high-
quality GUI detail. Producing good GUIs using the Swing toolkit alone is still
too labor-intensive and needlessly hard.

• Swing’s history lacks a complex project for effective testing, as Eclipse was
for SWT, and is characterized by premature release and the commitment of
Sun to diehard compatibility with legacy applications written as long ago
as 1997. Because of this, it feels cumbersome and convoluted in some
aspects. It is easy to criticize some of its architectural choices and imple-
mentation details, but nevertheless some parts of it are not of excellent
quality.

• In the past Sun’s support for Swing has been inadequate for its large devel-
oper base and its diffusion to the variety of applications built on top of
Swing. Today there still are many bugs that have been open since the late

3. See Chapter 9.
4. This does not even consider the case of users personalizing their desktop environment:

Swing Version 1.5 does not yet fully support native OS themes and some other
customizations.

c11.fm Page 398 Thursday, March 9, 2006 4:00 PM

SWT or Swing? 399

4:0 PM 9 March 2006 c11.fm 1.0

1990s5, and the toolkit itself has been merely maintained in recent years.
Sun’s Swing development team has coped with these issues heroically, but
perhaps only the advent of SWT and the jolt of fresh competition it brought
to the scene has revived Sun’s efforts with Swing.

Standard Windowing Toolkit

Readers familiar with Standard Windowing Toolkit (SWT) library can safely skip
this section: the next section discusses the differences between SWT and the Swing
toolkit.

Despite common folklore, SWT is not tied into Windows6. SWT runs on Apple
Macintosh, Linux (using GTK or Motif), and a number of J2ME platforms. The
design strategy of SWT focuses on building a simple, essential GUI toolkit that
produces GUIs that are closely linked to the native environment, but abstract
enoughs to be portable across supported platforms. SWT delegates common
components such as labels, lists, tables and so on to native widgets, as AWT does,
while emulating more sophisticated componesnts such as toolbars on Motif in
Java, similar to Swing’s strategy.

SWT has been designed to be as inexpensive as possible. One result of this is that
it is native-oriented to the current platform: SWT provides different Java imple-
mentations for each platform, and each of these implementations makes native
calls to the underlying platform implementation through the Java Native Inter-
face, JNI. AWT is different, in that all platform-dependent details are hidden in
native C code and the Java implementation is the same for all the platforms. This
is illustrated in Figure 11.1.

Despite similarity in the features they provide, SWT and AWT have different
design objectives:

• SWT explicitly aims at using native-driven widgets and being in control of
the underlying OS GUI toolkit, while AWT attempts a simple form of cross-
platform GUI support.

• AWT’s overall philosophy is to provide a least-common- denominator across
all platforms, while SWT also supports widgets by emulating them on plat-
forms on which they are not supported natively.

• AWT hides the native layer from the Java programmer, while SWT make it
available.

5. For example ‘ButtonGroup-cannot reset the model to the initial unselected state’ or
‘JMenuBar.setHelpMenu() not yet implemented’ are still open from 1997, as can be seen at
http://bugs.sun.com/bugdatabase.

6. Even though its API has been designed in a very Windows-centric fashion.

c11.fm Page 399 Thursday, March 9, 2006 4:00 PM

400 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

• AWT employs different peers on different platforms, and exposes a common,
cross-platform widget to the Java developer, while SWT provides less insula-
tion from the native widgets.

The following table sketches the different widgets available for the main Java GUI
toolkits.

Table 11.3 Comparison of visual components
in Standard toolkits

Component SWT Swing AWT

Advanced button

Advanced text area

Button

Internal windows

Label

List

Menu

Progress bar

Sash

Figure 11.1 Java GUI toolkit architectures

c11.fm Page 400 Thursday, March 9, 2006 4:00 PM

SWT or Swing? 401

4:0 PM 9 March 2006 c11.fm 1.0

The following figure shows the main classes of the class hierarchy of the SWT
toolkit.

Scale

Slider

Spinner

TabFolder

Table

Text area

Toolbar

Tree

Table 11.3 Comparison of visual components
in Standard toolkits (Continued)

Component SWT Swing AWT

Figure 11.2 SWT widgets essential class hierarchy

c11.fm Page 401 Thursday, March 9, 2006 4:00 PM

402 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Swing developers learning SWT might experience some difficulty in getting into
its API style, which is more practical and simplified than Swing’s. The main things
that usually perplex Swing developers learning SWT are:

• The use of styles – bit masks represented as integers that customize the
various aspects of a widget.

• The fact that when creating every widget, it is mandatory to specify the
parent container as a parameter in the constructor.

For example, check box and button widgets are obtained using the same SWT
widget (org.eclipse.swt.Button) with two different styles (respectively
SWT.PUSH and SWT.CHECK).

After initial puzzlement, developers usually start to appreciate the coherence and
predictability of the API and its good balance between the amount of control of
low-level details and overall ease of use.

Native resource management with SWT

An important difference between SWT and Swing is in SWT’s handling of native
resources – platform resources that are allocated natively through the SWT API.
Such resources must be explicitly released by the programmer through the
dispose() method. The JVM’s garbage collector finalizes unreferenced SWT
objects, just as for any other object, but it does not dispose of the native resources
used by them.

Native resources are represented in SWT by the following objects or their
subclasses: Color, Cursor, Display, Font, GC, Image, Printer, Region, and
Widget. Apart from the last, in the case of Container widgets, when disposing a
parent container automatically disposes of all its contents, all other instances
should be carefully disposed when no longer needed. The rule is that the object
that created them is also responsible for disposing of them.

Typical problems when using SWT

SWT also has its own shortcomings, the main ones being:

• Developers cannot expect wide diffusion of SWT to less popular platforms.
Porting the SWT toolkit to new platforms and maintaining existing ones is
complex work that require a deep knowledge of the various GUI platforms
and of SWT’s inner workings, so it is hard for the open source initiative to
successfully port SWT to minor platforms.

• SWT is a new API and as such requires costly learning. On the other hand,
the greater spread of Swing means that it is widely taught in universities,
and many organizations already have developers skilled in Swing who can
mitigate the learning effort for novice programmers. The balance is changing,

c11.fm Page 402 Thursday, March 9, 2006 4:00 PM

SWT or Swing? 403

4:0 PM 9 March 2006 c11.fm 1.0

however, as SWT gains in popularity over Swing, at least for some applica-
tion typologies.

• There is not yet a real market of SWT widgets and third-party libraries. This
is not a serious hurdle in itself, as SWT will continue to thrive under the
shadow of the Eclipse project, which today provides all reusable classes and
utilities for SWT-powered applications. In some niche application domains,
however, this could be a problem, such as the rich ad-hoc components or
chart widgets that are available for the Swing toolkit.

• Some developers and managers feel that SWT and its related technologies
(JFace, high-level utility classes, and the Eclipse RCP) have yet to prove their
maturity and viability as a fully-fledged base toolkit, not just the GUI frame-
work that powers Eclipse. Investing in learning and building a code base on
such a stack of technologies is still seen as controversial by some. This
perception may change with time and other factors, such as the evolution of
competing technologies like AJAX7.

JFace

A good design choice made by SWT’s architects was to separate the low-level
features (basic widgets, basic content handling, and events) clearly from the
utility support built on top of widgets (data handling, commands, application
windows, wizards, handy support for native resource disposal, and so on). The
latter layer is provided by the JFace library. Developers normally use JFace
support on top of SWT, and manipulate raw SWT widgets only when specifying
content details or handling low-level events. All data handling and high-level
control (commands) is processed by means of JFace.

One of the advantages of separating basic widget support from higher-level
features is that SWT remains compact and self-contained. This in turn makes SWT
easier to learn for a novice, and more straightforward to use also for experienced
developers.

Choosing a toolkit

Since SWT was released there has been a lot of discussion in the Java GUI devel-
oper community over which toolkit is the best – of an unexpectedly exasperated
tone. A sort of religious war has been raging among developers over such an
apparently mundane topic.

Putting away any religious bias, the solution to this puzzle is clear: there is no
single ‘best’ toolkit. Both SWT and Swing have their own strong points and weak-
nesses and are individually best suited for specific problems. This is actually great

7. A discussion of new Web-oriented GUI technologies (such as Ajax) is provided in Band-
width and interaction in Chapter 9 – see page 363.

c11.fm Page 403 Thursday, March 9, 2006 4:00 PM

404 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

news for Java developers, because it widens the possibilities. Increased power
comes at a price though – Java GUI developers need to stay up-to-date on more
than a single library.

The hidden cost of learning

Learning the basics of SWT is not too difficult for a Swing developer, given the fact
that both toolkits share the same architectural concepts (single event dispatch
thread, event model, overall toolkit widgets). SWT and Swing result in two
different programming experiences, however, Swing being higher-level and
Smalltalk-like, while SWT feels more like C/C++. Indeed at times it feels pretty
much like programming Windows MFC. These tactical differences in the API style
can confuse inexperienced programmers and double the workload of learning
and mastering both toolkits. This is the major drawback, and is the hidden cost of
the coexistence of two independent toolkits for Java.

Apart from basic concepts, however, such as events, layout managers, and simple
widget handling, the two toolkits are rather different, both in philosophy and prac-
tical features. Failing to acknowledge this and trying to use them without
considering their specificity – for example, trying to customize the appearance of
SWT widgets to the pixel, or avoiding fine-tuning the details of Swing GUIs – is
another example of the ‘going against the flow’ complexity booster discussed in
Chapter 6.

The speed myth

It is not normally possible to assess whether SWT is faster than Swing, because
there are so many parameters to consider in a fair comparison, such as raw speed
depending on a given port of SWT, the type of application, or the time spent
profiling and optimizing the particular application. Such factors make a thorough
assessment of the two technologies possible in only few cases.

The Swing team has worked hard to improve performance as much as possible
in recent releases, so that the ‘raw speed’ issue – SWT uses native OS-specific
resources, and thus faster than Swing – seems less important than in the past. In
these circumstances runtime performance of all but trivial GUIs depends mainly
on the overall design and amount of care spent in its optimization, rather than the
GUI toolkit alone. Having said that, one would expect an SWT profiled8 applica-
tion to take less memory and run faster than an equally profiled Swing application,
but this is more a personal expectation than a mathematical law.

8. An application whose runtime execution has been carefully examined by means of a
profiler tool and optimized accordingly.

c11.fm Page 404 Thursday, March 9, 2006 4:00 PM

SWT or Swing? 405

4:0 PM 9 March 2006 c11.fm 1.0

Heavily-loaded widgets

Another common assumption is that SWT supports situations in which compo-
nents need to sustain large volumes of data or other non-trivial situations, such as
very large trees, much better than Swing. While such differences still remain, they
are smaller than one would expect.

Consider a directory with 10,000 files on the local file system. If you don’t mind
cluttering your own file system, you could create such a directory by executing
the following raw lines of code:

public static void create10000Files(){
File f = null;
for (int i = 0; i < 10000; i++) {

f = new File("C:/temp/testfiles/file"+i);
try {

f.createNewFile();
} catch (IOException e) {

e.printStackTrace();
}

}
}

Opening a Swing file chooser dialog on such a directory and waiting for it to
populate takes roughly 2.1 seconds9, shown on the left in Figure 11.3. The equiva-
lent dialog in SWT takes 1.3 seconds to completely start up. When using 50,000
files instead, the Swing dialog takes roughly 4.9 seconds to fully start up, and its
SWT counterpart needs 7.6 seconds.

Even though this is a simple example, it nevertheless shows a couple of things:

• The power of competition. Swing performance used to be much worse than
SWT in the past. In one project in 2000 we spent almost a month optimizing
a Swing file chooser that was hanging when visualizing directories with
thousands of files in a core part of the application. This was a substantial
hindrance, and such accidents gave Swing a bad reputation among
developers.

• Using the underlying native widgets via SWT is more reassuring for devel-
opers than using Swing, especially if they know up front that an application
risks a potential performance bottleneck.

• Figure 11.3 shows how closely the Swing appearance in J2SE 1.5 using
Windows look and feel matches the native operating system. Such a

9. These measurements are indicative only and provide data useful for a first evaluation.
They were performed on a 1.6 GHz Pentium M 725 with 512 MB running Windows XP
Professional, with 90MB of available physical memory. The application was executed first
without measurement, then the results of the next three executions were averaged. Data
gathered in this way is by no means reliable or indicative of real performance.

c11.fm Page 405 Thursday, March 9, 2006 4:00 PM

406 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

similarity is limited mostly to the presentation layer rather than effective
interactions details, which still differ – for example, the native platform’s
contextual menus for files are not supported in the Swing dialog.

A similar comparison can be done for data tables with 10,0000 elements and a
specific render, in this case a check box for Boolean values. No conspicuous differ-
ences emerge, although the SWT version seems slightly more responsive than the
Swing case. Figure 11.4 shows this with Swing on the left and SWT on the right.

In conclusion, data loads foreseen for an application can influence the choice of
toolkit, but performance differences with JSE 1.5 are less dramatic than one
might expect.

Figure 11.3 Swing (left) and SWT (right) file choosers

Figure 11.4 Swing (left) and SWT (right) large tables

c11.fm Page 406 Thursday, March 9, 2006 4:00 PM

SWT or Swing? 407

4:0 PM 9 March 2006 c11.fm 1.0

Scenarios to which SWT+JFace is better suited than Swing

Behind the IBM marketing talk and the implacable facade of the Eclipse Founda-
tion there is real value in SWT (and JFace) that can support developers better than
existing alternatives in many practical cases. The following list summarizes the
main scenarios in which SWT is a good choice over Swing and other Java GUI
technologies:

• Where the main target platforms are Windows, MacOS, Linux, and some
J2ME profiles, SWT provides the many benefits discussed previously
without limiting development – although admittedly at various levels of
soundness.

• When the advantages of native widget support are important, SWT should
be considered over Swing. These advantages are:

– Different (that is, native) appearance and behavior on different platforms –
SWT makes it is possible to completely mimic a native application.

– A simpler API – all low-level details are left to the native GUI
infrastructure.

• When the use of an RCP framework is advisable, such as for large projects, or
applications with planned long-term maintenance, and it is viable to use
SWT, using the Eclipse RCP10 should be considered over similar technologies.
The Eclipse RCP is in fact probably one of strongest points in favor of the
adoption of SWT.

• Developers should be willing to embrace the technology, because effective
use of it ultimately depends on them. This means that developers should be
keen to learn the new API and deal with the typical problems SWT brings.

Scenarios in which Swing is a better choice than SWT

There are several cases in which Swing carries advantages over SWT:

• When maximum platform independence is needed Swing should be
preferred. Platform independence should always be considered from a cost-
driven perspective: vague long-term options should be examined very criti-
cally, as full platform independence is a costly and laborious feature to
achieve.

• When providing the exact appearance and behavior of the GUI across a wide
range of platforms is a requirement.

• For GUIs with particular graphics requirements (fancy, or extremely custom-
ized GUIs). Such developments should focus on Swing because of its greater
rendering flexibility.

10. See Chapter 13.

c11.fm Page 407 Thursday, March 9, 2006 4:00 PM

408 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

• If developers already experienced in Swing and the wider diffusion of Swing
skills are available. This means developers with a deep knowledge of Swing.
Given the complexity of the toolkit, having just – say – delivered simple
forms is not enough to be considered truly experienced with a complex
framework such as Swing.

• When ad-hoc components are required. Using Swing to create a component
such as the one discussed in the example application in Chapter 16 is
straightforward, while with SWT the Draw2D library, part of the GEF library,
must be used. There is no equivalent to Swing’s Graphics and Graphics2D
classes for accessing low-level raster rendering within standard widgets in
SWT.

Building ad-hoc components with SWT also renders one of its strong points
useless – its support for native widgets. If ad-hoc components form the main
parts of the GUI, some of the benefits of SWT, such as its native widgets, are
lost, while you pay the price of its shortcomings, such as lack of availability
on all Java-powered platforms.

From Swing to SWT

Some of the main differences between Swing and SWT are listed in the following
table.

Table 11.4 Some of the differences between Swing and SWT

Concept Swing SWT+JFace

Data provider MVC Models (that is,
TreeModel, TableModel,
and so on)

Implementations of
IContentProvider

Data presentation Cell renderers (that is,
CellRenderer)

Implementations of
ILabelProvider

Customization of data
presentation in data-
bound widgets (trees,
tables, and so on)

Complete (every widget can
be used)

Limited (for example, for
tables, only images and
check boxes can be
embedded in table cells)

Main choosers (file,
color, and so on)

Available as panels Mostly available only as
dialogs

Providing scroll
behavior

Explicitly add JScrollPane
instance

On main widgets use
SWT.*_SCROLL style.

c11.fm Page 408 Thursday, March 9, 2006 4:00 PM

SWT or Swing? 409

4:0 PM 9 March 2006 c11.fm 1.0

For more details, convenience wrapper classes, and a general discussion about
Swing versus SWT, a thorough tutorial for migrating Swing code to SWT available
on line11.

Mix and match

It is of course possible to avoid the choice of one toolkit over the other by mixing
them in the same application. Swing and SWT are increasingly being combined in
a variety of development scenarios. There is often a need to employ legacy code
in a newly-written SWT GUI, or to use a specialized third-party Swing widget in
a SWT GUI, such as for example packaging an existing Swing GUI into an Eclipse
plug-in, or to use some of the features of SWT from within a Swing GUI.

While mixing SWT and Swing widgets in the same application is technically
feasible, there are a few design points that must be observed:

• Swing and SWT are different toolkits in appearance and behavior. Mixing
them in the same GUI will confuse users. To avoid this, always try to follow
the GUI guidelines and style of the embedding toolkit. For example, when
developing an application using SWT and a third-party Swing widget, install
the native look and feel for Swing. More generally, when embedding Swing
widgets within SWT GUIs, always use the look and feel of the current
platform.

• Following from the previous point, it is good plan never to mix the same type
of widgets in the same application. For example, despite the fact that a Swing
JTree and an SWT Tree can be made to look very similar, they have different
behaviors and subtle interaction differences that will confuse users.

• From a visual viewpoint, carefully circumscribe the use of widgets from one
toolkit in another to minimize user confusion. For example, limit to a single
Swing ad-hoc component within an SWT application, or embed a whole
Swing-powered panel into an Eclipse plug-in.

Here are the various possible technical combinations that allow a mix of the two
GUI toolkit technologies.

• Swing with SWT. The most interesting situation is using Swing widgets from
within an SWT application, often from within Eclipse. This is made straight-
forward by using the SWT class org.eclipse.swt.awt.SWT_AWT and
adding the Swing or AWT widgets to it. This is the most frequent solution in
SWT applications that need to include a Swing GUI, chiefly because this

11. The Migrate your Swing application to SWT tutorial is available from IBM’s developerWorks
at: http://www-128.ibm.com/developerworks/edu/j-dw-java-swing2swt-i.html

c11.fm Page 409 Thursday, March 9, 2006 4:00 PM

410 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

approach works well in practice and it is well supported by the SWT toolkit
on a variety of platforms.

• Swing on top of SWT. SwingWT12 is an open source project that aims to build
the Swing API on top of SWT instead of AWT. The project has already been
adopted for some applications despite being currently still in beta.

• SWT on top of Swing. Some OSS projects focus on making SWT available on
top of Swing. This is particularly useful for executing an SWT GUI on a plat-
form that is not yet supported by the relative platform-dependent runtime.
Some tools that adopt such an approach, all in the early stages of develop-
ment, are SWTSwing and SWT on Swing13. At the time of writing, SWTSwing
appears to have been discontinued.

SWT and Swing together: the Java GUI dream team?

It is possible that the apparent schism within Java GUI toolkit technology between
SWT and Swing will be partially resolved with time. It is still unclear how, as
various options are viable. Practically, it is possible to incorporate some of the
SWT ideas or architecture into AWT, even though the two libraries are in reality
totally independent. SWT technology was in fact built as a total replacement for
Swing – there are no references to AWT and Swing from within SWT. Even simple
classes such as Point and Rectangle were duplicated in SWT.

The inclusion of portions of SWT within the standard Java API would however
pose some technical challenges, as SWT is not completely platform indepen-
dent. It would also further Balkanize and clutter the Java GUI API, which has
grown by accretion from AWT to Swing, and through the various API revisions
and enhancements of Swing. Perhaps the biggest obstacles are political and
organizational – SWT is maintained outside Sun’s control and is constantly
evolving alongside Eclipse. SWT also requires maintenance for its platform-
dependent lower layer on a variety of machines.

The GUI technology landscape has never been so rich and promising for Java. By
choosing between SWT and Swing, or a combination of both, developers can
build sophisticated user interfaces that leverage the power of Java technology.

11.4 Other GUI technologies
By themselves, or as the foundation of an RCP application, Swing and SWT are
not the only available base technologies for GUI development. This section
reviews other GUI technologies that are related to Java, both open source and
commercial. The list is partial and by no means complete.

12. http://swingwt.sourceforge.net/
13. Available at: http://www.3plus4.de/swt/

c11.fm Page 410 Thursday, March 9, 2006 4:00 PM

Utility libraries 411

4:0 PM 9 March 2006 c11.fm 1.0

Almost all the products listed in the table are bound to the Web browser, testifying
to the enormous interest for empowering Web technology with the power of fully-
fledged Java GUIs. The technologies in Table 11.5 that use declarative languages,
such as XUL and Thinlets, are discussed later in this chapter.

11.5 Utility libraries
This section lists a number of well-known and useful libraries and frameworks
available for creating Java GUIs. Most of them target the Swing toolkit, essentially
for historical reasons that reflect its longer availability than SWT. Similar libraries
for SWT are expected to appear with time.

The list provided here is not meant to be exhaustive or fully descriptive of the
features and details of each library. Interested readers are encouraged to visit the
related Web sites for more information.

Table 11.5 GUI technologies related to Java

Name Notes URL

Remote SWT Exports the graphic display of a
Java SWT application running on
one host on a remote host, also
transmitting GUI events.

http://rswt.sourceforge.net/

Canoo ULC Execute Java Swing application
with domain logic running on the
server. Requires a small-footprint
client installation.

http://www.canoo.com/

Asperon Combination of Java and XML
running in a browser using JVM 1.1.

http://www.asperon.com/

Thinlets Execute in browser using JVM 1.1. http://thinlet.sourceforge.net/
home.html

XUL Content in XML, Control and
Business Domain in Javascript,
for Firefox/Mozilla browsers.

http://www.mozilla.org/projects/xul

OpenLazlo XML and Javascript rendered in
Flash, standalone client or with
server support (J2EE)a.

http://www.laszlosystems.com/

a. Despite not using the Java language on the client (as of Version 3.x) OpenLazlo’s popularity is growing
among Java developers.

c11.fm Page 411 Thursday, March 9, 2006 4:00 PM

412 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Security tools

Before diving into widgets and components, let’s present some useful tools and
libraries for GUI development.

Note that source code obfuscation is always needed to secure a Java application.
License keys and the inner workings of the application can be tracked and hacked
easily when full decompilation of executables is possible. Effective code obfusca-
tion also impacts class design. At design time it is important to individuate
carefully the set of core classes and methods that will be made inaccessible by
means of obfuscation. Discussing the important topic of code obfuscation in depth
is beyond the scope of this section.

The following list illustrates some of the available tools and libraries useful for
securing the investment and hard work needed to build a professional Java appli-
cation. In addition, downloading a decompiler such as JAD, DJ or Cavaj will help
in testing the robustness of the security strategy chosen.

• yGuard is an OSS Java obfuscator packaged as an Ant task, and thus can
easily be integrated into many development environments.

http://www.yworks.com/en/products_yguard_about.htm

• Zelix KlassMaster is a Java obfuscator that claims to provide an unmatched
obfuscation technology while also attempting various optimizations to the
final obfuscated code. It is licensed commercially.

http://www.zelix.com/klassmaster

• JLicense is a library for managing, creating, and validating license keys, and
also includes a simple GUI tool. Its use in binary format is free, but source
code needs to be purchased separately.

http://www.websina.com/products/jlicense.html

• TrueLicense is an OSS library for handling the creation and validation of
licenses. It uses the Java Cryptography Extension library (JCE). A Swing-
based wizard is provided for installing new licenses by users .

https://truelicense.dev.java.net

Paradoxically, an OSS license tool can be more secure than a home-made or even
a commercial one, because its architecture and implementation has been publicly
exposed and all sorts of attacks and weak points have been studied as a result,
allowing countermeasures to be added to the public code. If you feel current OSS
license tools are not secure enough for your application, you can opt for a
commercial solution or a custom one, possibly by modifying an existing OSS
license library.

c11.fm Page 412 Thursday, March 9, 2006 4:00 PM

Utility libraries 413

4:0 PM 9 March 2006 c11.fm 1.0

Deployment tools

An important part of concluding the development of a client application is being
able to deploy it effectively on the target machine. A number of options are
available:

• For Java Web Start technology, a number of OSS and commercial tools ease
the generation of JNLP files and certificates, such as CSR Generator for
creating certificate signing requests, or the Java Web Start tools that form part
of JDK 5.0 and are available in various IDEs.

http://www.apgrid.org/csrgenerator

• Advanced Installer for Java provides native support for the installation of
Java code on Windows platforms. It allows also the creation of MSI
(Microsoft Installer) files.

http://www.advancedinstaller.com/java.html

• Install4J is a commercial multi-platform installer that provides native inte-
gration with the underlying platform.

http://www.ej-technologies.com/products/install4j/
overview.html

• IzPack is an OSS Java installer tested on Windows, MacOS X, Linux, and BSD
platforms.

http://www.izforge.com/izpack

• GCJ is an OSS compiler of Java to native code. Compilation can be done both
directly on Java source code and also on .class files. The result is a native
executable that is better performing and more secure, even if this approach
loses platform independency. This approach also suffers from a major draw-
back: compilation of Swing and AWT applications is not yet fully supported,
although that for SWT is working.

http://gcc.gnu.org/java/status.html

Deployment also impacts users, and its design should therefore consider them. In
some cases, such as shrink-wrapped products distributed on line as shareware, a
technically simpler solution such as Java Web Start might prove unappealing for
some users, as they might feel that accepting the certificate required to launch the
application represented a security risk.

The remainder of this section discusses widgets and components available to
Swing and SWT developers.

Glazed Lists

Glazed Lists is a library for handling GUI-savvy list collections. It provides a
number of useful features, such as easy creation of table and list models, support

c11.fm Page 413 Thursday, March 9, 2006 4:00 PM

414 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

for filtering and sorting (and their combinations), and a thread-safe architecture.
The library supports both Swing and SWT toolkits. Performance on large lists has
been considered, with optimized sorting and filtering algorithms. A number of
non-GUI utility manipulations on lists are also provided. Figure 11.5 shows a
screenshot of Glazed List at work.

Glazed Lists is provided with the LGPL OSS license. It is available at http://
publicobject.com/glazedlists/.

JGoodies Swing Suite

JGoodies Swing Suite is a comprehensive, professional suite for easing the burden
of writing Swing applications. It ranges from basic support (look and feel, data
validation, factories, utility code for form-based GUIs, data binding) to reusable
components such as wizards, splash windows, log-in, license, ‘About’ dialogs,
and so on, and includes various utility classes (enhanced help, lazy loading
support). While most packages are distributed under a commercial license, some
of them are freely available.

The following useful parts of the JGoodies Swing suite are released as OSS:

• Animation. A compact library for creating real-time animations with Swing,
using concepts and notions from the W3C specification for the Synchronized
Multimedia Integration Language (SMIL).

• Data binding. A useful library for binding Swing widgets to data sources
(data models) in various ways.

• Forms. An easy to use and effective layout manager and builder specialized
for form-based GUIs.

• Looks. A set of professional look and feels. Looks is discussed in more detail
on page 436.

• Validation. A library for performing data validation and notification.

Figure 11.5 Screenshot of the Glazed List demo

c11.fm Page 414 Thursday, March 9, 2006 4:00 PM

Utility libraries 415

4:0 PM 9 March 2006 c11.fm 1.0

A screenshot of the Looks demo is shown in Figure 11.6.

Among the many things I personally appreciate most in the JGoodies libraries is
the careful attention to detail they provide. For example, see the text baseline
alignment in the form shown in Figure 11.6, where the text in the label is aligned
with the text in the corresponding text field or combo box.

JGoodies is available at http://www.jgoodies.com.

L2FProd Common Components

L2FProd Common Components is a set of Swing components available as OSS.
The list of Swing widgets includes ‘tip of the day,’ property sheets, expandable/
collapsible lists, and others. Figure 11.7 shows the L2FProd JFontChooser
component, both as a panel contained in a tabbed pane, and as a pop-up dialog.

L2FProd Common Components is available at http://www.l2fprod.com.

Other OSS component libraries

Other OSS component libraries relevant to Java GUIs include:

• Buoy is a set of widgets on top of the Swing library that aims to provide a
simpler development environment at a higher level of abstraction than
plain Swing, with a minimal footprint of less than 200KB. Buoy is released
as OSS.

http://buoy.sourceforge.net/

Figure 11.6 Demonstration screenshot of JGoodies Looks

c11.fm Page 415 Thursday, March 9, 2006 4:00 PM

416 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

• The Java GUI Programming Extensions, Java-GPE, is an OSS library for
developing Swing GUIs. Java-GPE includes some look and feels, some
classes for preference dialogs, and other utility classes. See Figure 11.8 for a
screenshot from the demo application.

http://www.markus-hillenbrand.de/javagpe

• UICompiler is an OSS project that also provides a set of Swing widgets,
ranging from a look and feel to various specialized choosers and general
purpose components. A screenshot of the file chooser is shown in
Figure 11.9 on page 418.

http://uic.sourceforge.net

• Blazze provides a set of Swing components and utility classes specialized for
business application GUIs. It is licensed as OSS.

http://blazze.sourceforge.net

• JBalloon is a compact set of classes that provides balloon tooltips for Swing
GUIs under the LGPL license.

http://www.allworldsoft.com/software/17-476-
jballoontooltip.htm

• Geosoft provides some utility classes under LGPL. Among them, the 2D
graphics library provides a useful 2D graphics library and a rendering
engine featuring layered hierarchical graphical objects, 3D world extents,
style support, smart annotation, and image support.

http://geosoft.no

C:\print

Figure 11.7 Demonstration screenshot of L2FProd Components

c11.fm Page 416 Thursday, March 9, 2006 4:00 PM

Utility libraries 417

4:0 PM 9 March 2006 c11.fm 1.0

• Batik is a Swing library for managing and rendering SVG14 files licensed
under the Apache OSS license. This library is used by many other products
for managing and exporting data formats to SVG.

http://xml.apache.org/batik

• JFreeChart is a library for generating charts licensed under LGPL. It can
generate 2D and 3D pie charts, bar, line and area charts, scatter plots, Pareto,
Gantt, and many other types of chart. It provides zooming, printing, and
exporting to PDF, SVG, and bitmap formats.

http://www.jfree.org/jfreechart

• Various OSS architectural frameworks for separating data from views are
also available, such as TikeSwing or MVCMediator. For a critical discussion
of the usefulness of such libraries in your application, see Chapter 6.

TikeSwing: http://sourceforge.net/projects/tikeswing

MVCMediator: http://www.danmich.com/mvcmediator/1.0

• CUF is a utility library and an application framework for building GUI appli-
cations in Swing that is also available for .NET. It provides callback handling
close to .NET’s delegates (Java CUF), a JTable extension, declarative state
management of widgets, data binding, and more. Little documentation is
currently available.

http://cuf.sourceforge.net

14. SVG (Scalable Vector Graphics) is a language for describing two-dimensional graphics in
XML.

Figure 11.8 Demonstration of Java GPE preferences

c11.fm Page 417 Thursday, March 9, 2006 4:00 PM

418 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Some commercially-available Swing components

A great number of Swing-based widgets are available commercially from various
vendors, some tens of libraries. Some of them are summarized here. The objective
is not to promote one vendor over another, nor to provide an exhaustive and
detailed list of the available features for each product, but just to highlight their
existence. The list is not exhaustive and vendors were chosen without any preju-
dice towards their products.

• Eltima components provide a set of feature-rich widgets, although some of
them might need some tweaking to fit into a standard Swing application
coherently. Figure 11.10 shows a demo screenshot downloaded from the
Eltima Web site.

http://www.eltima.com

Figure 11.9 Demonstration of UI Compiler components

Figure 11.10 Screenshot of Eltima demonstration

c11.fm Page 418 Thursday, March 9, 2006 4:00 PM

Utility libraries 419

4:0 PM 9 March 2006 c11.fm 1.0

• JAPI Libraries sports a set of specialized components (XML editor, and
various browsers) and utility APIs.

http://www.japisoft.com

• JSuite from Infragistics is a comprehensive although pricey set of compo-
nents and utility classes for Swing: some AWT components are also
supported. It includes Gantt charts, scheduling and calendar panels,
advanced tables, navigation support, and more.

http://www.infragistics.com

• ICESoft provides various browsers implemented in Swing, capable of
rendering PDF, XML, XSL/XSLT, and many other formats and technologies.

http://www.icesoft.com

• Javio provides a Web browser that supports HTML 4.0, CSS, and Javascript,
plus other features, a graphic modeler component, and several widgets and
tools for editing and viewing JavaHelp files, all implemented in Java.

http://www.javio.com

• JGraph provides a range of specialized Swing ad-hoc graphic components
that implement direct manipulation, in-place editing, zooming, pluggable
routing algorithms, and more. Figure 11.11 shows the demo application of
the Layout Pro component. JGraph also provides some general-purpose
Swing components.

http://www.jgraph.com

• InfoNode provides a number of widgets, a dockable windows library for
creating GUIs similar to the Eclipse IDE workbench, and a look and feel

Figure 11.11 Screenshot of JGraph Layout Pro demonstration

c11.fm Page 419 Thursday, March 9, 2006 4:00 PM

420 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

family. InfoNode products are available under a dual license: as a commer-
cial product, or under the GPL license.

http://www.infonode.net

• ILOG’s JViews library is a set of ad-hoc and custom components ranging
from diagrams, maps, process control, Gantt diagrams, 2D and 3D charts,
and others.

http://www.ilog.com

• Quest’s JClass Desktopview library delivers a number of specialized
widgets, including 2D and 3D chart components.

http://www.quest.com

• JProductivity Components! is a suite of calendars and date-oriented widgets
that also includes a calculator and other components.

http://www.jproductivity.com

• JIDE provides a large set of components that include a dockable window
framework, action support, extended tables, and other widgets. A number
of look and feels are available as well that mimic Visual Studio and Eclipse
appearances.

http://www.jidesoft.com

• ConfigureJ from JASE software is a Swing library for creating configurable
menus, toolbars, and pop-ups that can be customized by the user.

http://www.configurej.com

• Webcharts3D from Greenpoint Inc. is a set of Swing components for
rendering various types of chart.

http://www.gpoint.com

• I-net Crystal-Clear is not a component library, but is a report generator that
can generate various types of report in many formats.

http://www.inetsoftware.de

• yWorks’ yFiles is a library of ad-hoc components for visualizing, analyzing,
and automatic layout of graphs and diagrams.

http://www.yworks.com

11.6 Test tools
This section lists only the most popular GUI testing tools specifically for Java
desktop GUIs. Being written specifically for Swing/Java GUIs, these tools allow
for a more robust widget location and other useful features tailored for Java GUIs.
Unit test tools and general GUI test tools that can also test Java GUIs, such as

c11.fm Page 420 Thursday, March 9, 2006 4:00 PM

Profiling tools 421

4:0 PM 9 March 2006 c11.fm 1.0

Eggplant, Rational Functional Tester, Xeus, and many others, are beyond the
scope of this discussion.

• Abbot is a GUI testing framework that was initially available only for Swing,
but has now also been ported to SWT – although its SWT support still needs
improvement. Due to its API-centric nature, Abbot combines well with a unit
test tool such as Junit. Costello is the companion tool for Abbot that enables
recording and playback of Abbot GUI tests. Both Abbot and Costello are
available as OSS.

http://abbot.sourceforge.net

• Jacareto is a GUI testing tool released under the GPL. It performs recording
and playback of GUI scripts, and can also be used for packaging animated
demonstrations of existing Swing applications.

http://jacareto.sourceforge.net

• Jemmy is an (OSS) module of the Netbeans IDE that can also be used without
Netbeans. Like the other tools listed here, it can record and play test scripts
and automatic demos of existing applications.

http://jemmy.netbeans.org

• JFCunit is an extension to Junit for testing GUIs and is distributed as OSS.
An example of use of JFCUnit is provided in Chapter 8.

http://jfcunit.sourceforge.net

• Marathon is a GUI testing framework built with Swing. It supplies a test
script recorder, a script player, and an editor to edit test scripts manually.
Scripts are implemented in Python. Among other features, it provides useful
support for writing acceptance tests.

http://marathonman.sourceforge.net

• qftestJUI is a test tool for Swing GUIs that provides a number of interesting
features such as record and playback of test scripts, including an integrated
test and debugger, and others. It is distributed under a commercial license.

http://www.qfs.de

11.7 Profiling tools
Profiling a Java application is an essential activity that is needed for refining the
implementation of any complex GUI. This section lists only the major products,
given the many OSS simple but effective Java profilers that are available.

• JProfiler is a commercial product featuring thread, memory, CPU profiling,
and specialized views.
http://www.ej-technologies.com

c11.fm Page 421 Thursday, March 9, 2006 4:00 PM

422 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

• Netbeans Profiler is the profiler part of Netbeans. Its functions include CPU,
memory, and thread profiling, as well as basic JVM monitoring by means of
dynamic bytecode instrumentation15. Note that, depending on the current
license scheme of JFluid, a proprietary Sun technology used in the Netbeans
profiler, the whole profiler is not licensed as OSS.

http://profiler.netbeans.org

• Eclipse Profiler is currently still in beta, but is nevertheless interesting for its
implementation built with SWT.

http://sourceforge.net/projects/eclipsecolorer

• JProbe is a commercial profiler that provides various features such as thread,
memory, CPU and heap profiling, and a number of task-oriented GUIs for
solving common profiling issues such as memory leaks and performance
bottlenecks.

http://www.quest.com/jprobe

• OptimizeIt from Borland is a powerful profiling tool that integrates with
various IDEs.

http://www.borland.com/us/products/optimizeit

11.8 GUI builders
Visual builders are tools for visually composing GUIs that then generate the final
Java code. They help to define widget layout and various components details
visually by means of direct manipulation. They leverage the fact that both SWT
and Swing-AWT have JavaBeans-compliant APIs, and as such can be processed
by automatic tools.

The utility of such tools can be explained in terms of cognitive burden. Humans
find it much easier to understand the map of a place as an image rather than as a
textual description, no matter how clever the description may be.

The following partial list summarizes some visual editors for Java GUIs. It is not
exhaustive – several tens of visual editors for Java GUI are currently in existence.

• JBuilder provides one of the first really complete GUI builders that remains a
competitive and unintrusive tool (see item 1 of the list on page 423).

http://www.borland.com/jbuilder

• Netbeans, with its much-trumpeted Matisse visual editor, was a leap beyond
its old GUI builder, even if some issues remain unresolved.

http://www.netbeans.org/

15. See JRE runtime management in Chapter 5, page 214.

c11.fm Page 422 Thursday, March 9, 2006 4:00 PM

GUI builders 423

4:0 PM 9 March 2006 c11.fm 1.0

• Eclipse, with its VE (Visual Editor) plug-in, has had to solve a couple of tech-
nical problems, that of integrating SWT and Swing, and building a powerful
foundation visual environment that can be extended easily by third-party
developers. Given these constraints design choices were made that currently
hinder its use as of Version 1.1, such as using a whole JVM per screen. These
issues will hopefully be optimized in forthcoming versions.

• Intellij Idea also provides its own GUI builder environment. This provides
basic two-way support and a number of layout managers, and, most impor-
tantly, it integrates elegantly with the rest of the IDE platform.

Good visual builders speed up development time, despite what diehard coders
such as the author might think about them. After all, there is little to be proud of
in the ability to put together a complex form with a grid bag layout without
touching a visual editor or the documentation, unless of course you don’t have
anything better to do with your time and mental energies. More importantly, the
real world contains various types of developers, each with different skills and
roles. Employing a good visual builder in your project can help less-skilled devel-
opers take charge of more mundane tasks.

Substandard GUI builders only decrease development time at first. Going
beyond basic use and integrating the generated code into a larger code base, or
tweaking it, often loses any time saved by consuming the precious time of
(usually) skilled developers.

A GUI builder is itself a GUI, and as such its main purpose should be to simplify
the work of its users. Assume that the objective of a GUI builder should be to
lower the cognitive burden of developing real-world GUIs instead of using a text
editor. A GUI builder should therefore affect only the visualization and manipu-
lation of a GUI, not the way the generated code is structured, nor impose other
hindrances like support files – such as the ghastly Netbeans’ .form files – or any
other by-product of the GUI builder tool.

Here is a checklist of desirable features for a GUI builder:

1. Integration with the application’s existing code. The generated code should
be exportable or importable into the GUI builder without any restrictions.
This avoids vendor lock-in, and generally ensures higher code quality
and productivity.

2. Modification and customization of every aspect of the generated code. Once
imported, the code should be made available for modifications as required.

3. Architectural flexibility. This is the higher-level version of the external code
integration property. Many GUI builders completely ignore the fact that Java
is an OOP language, and that developers work using design patterns as well
as their own frameworks and conventions. OOP-conscious developers are
often faced with the dilemma of using GUI builders and then having to

c11.fm Page 423 Thursday, March 9, 2006 4:00 PM

424 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

tweak the resulting code heavily. With some weaker GUI builders, this
means losing the possibility of importing the GUI into the visual editor,
or initially writing everything by hand.

4. Layout manager support. Unfortunately, this is the weakest aspect of any
GUI builder, in that they need some form of built-in support for a given
layout manager to be able to lay out widgets in the visual environment. The
newest or less-known layout managers are often unsupported in GUI
builders.

5. Quality of the generated code. GUI builders often generate unreadable,
lengthy, and structured code that is hard to understand. This is important
for applications with many screens and where code maintenance is an
important issue.

6. Real two-way support. ‘Two-way support’ is the term used to indicate the
automatic alignment of the source file with the visual representation pro-
vided by the GUI builder. Ideally, whatever modification is done in either of
these views should immediately be reflected in the other, and vice versa. If
something is easier to do in the text editor, rather than opening up a couple
of dialogs and clicking around in the visual builder view, then the tool
should support editing from the source code to the visual environment in
every respect.

7. Optimization. Like any good user interface, GUI builders should be opti-
mized for common tasks. Developers often need to put together form-based
GUIs with labels, fields, and buttons aligned on a grid basis managed in
some form of dynamic layout.

The next section covers look and feels and visual customizations for Swing and
SWT GUIs.

11.9 Presentation layer technologies
Customizing the visual appearance of a Java GUI can provide a strong branding
for a product, or give it the final touch that will make users enthusiastic. This is
the ‘magical power’ of professional GUI design, but as well as magic, graphical
appearance can also spoil an otherwise well-designed product when badly
employed. Fine-tuning the appearance of an application should be done very
carefully and not as an afterthought. Developers, following their mental model,
tend to think about a visual theme or a look and feel as very easily replaceable,
and thus secondary to the rest of the GUI. This is wrong.

Assuming that the visual appearance of a GUI is not an important issue is very
dangerous, a fact to which anybody who has ever chosen a look and feel in haste
can testify. Customizing the visual appearance of a GUI can also have powerful

c11.fm Page 424 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 425

4:0 PM 9 March 2006 c11.fm 1.0

political connotations. The author has personally witnessed the use of a new look
and feel as a ‘political’ means of quickly and easily demonstrating a result – any
result – in a troubled project.

This section deals with the practical choice of a look and feel or OS theme. Issues
like how to properly customize the visual appearance, whether to allow users to
change the installed look and feel, and similar GUI design concerns were
discussed in Chapter 3. For brevity the term ‘look and feel‘ is also used to refer to
SWT presentation layer customizations.

Assessing a look and feel

Choosing the right look and feel (L&F) for an application requires many parame-
ters to be considered and shouldn’t be an oversight – the L&F is often selected as
an afterthought on very ephemeral and subjective considerations, without consid-
ering users.

A Swing L&F is a Java library, and as such the general discussion for assessing
OSS in Section 11.2 applies. Specifically, the main criteria for assessing the suit-
ability of a L&F for a given application are:

• Fitness for purpose

• Usability testing

• Technical considerations

• Esthetic considerations

Fitness for purpose refers to the intended use of the presentation layer in an appli-
cation. A GUI’s visual appearance does not have to please developers or
managers, but it should have a purpose that is coherent with the whole product
experience. Simplifying things, a good criteria is to focus on the principal catego-
ries of users for an application. This is not an exact rule, but it will avoid gross
mistakes.

What is going to be the main group of users? When a GUI should please occa-
sional users, as in a kiosk GUI, for example, then an ‘eye-candy’ visually pleasant
L&F is a perfect choice. When the GUI is geared towards repetitive users, too
many bells and whistles get in the way of daily work, and usability-driven GUIs
should be preferred over visually compelling ones. Of course, both a visually
appealing and a usable L&F is possible at the same time for a given application.
The best way to assess the right balance of simplicity and visual appearance in any
scenario is to perform a usability test with users, covering the tasks that are more
frequent in real use and more dependent on visual appearance.

Technically-dependent performance is the easiest parameter to assess with
profiling, without the need to be exact or statistically meaningful. While some

c11.fm Page 425 Thursday, March 9, 2006 4:00 PM

426 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

statistics are more significant for Swing than for SWT GUIs, measurements never
hurt. The next subsection considers the following data for various L&Fs:

• Memory consumption. How much memory does the L&F alone consume to
support the required visual tricks?

• Time consumption. How fast is the L&F to load and operate? As an extreme
case, an ‘eye-candy’ and amateurish L&F could prove too slow to render crit-
ical components, making the whole user experience unacceptable.

Esthetic considerations are also important when choosing the best L&F for a given
application. GUIs are mundane artifacts, and they are subject to all the same fash-
ions, personal tastes and tiresomeness of this kind of thing. Think of the sort of
GUIs software had back in 1997. Would you like your hard-built application look
like one of those? How do you think your customers would react to it?

Swing look and feels

There are many L&F implementations around, so many that a comprehensive list
would be too large and of little practical use16. To provide a fair evaluation, the
same application was used to measure some performance data, a tweaked version
of the SwingSet2 demo application that forms part of Sun’s distribution of JDK 1.5.

Developers often stop bothering about L&F and visual details as soon as a good
candidate is found that works well with their application. An extra step that most
professional L&Fs support is customization of the L&F to optimize visual details
and enrich the appeal of the GUI. More important than optimizing appearance
details, most L&Fs support different color themes. Color themes, with their
varying contrasts, are especially useful for visually-impaired or color-blind users17.

Ocean 1.5

Ocean is the replacement for the glorious Steel L&F18, the default cross-platform
L&F for the Swing library. A cross-platform L&F should define behavior and
appearance that are consistent between all the platforms on which Java can run.
Despite Swing architecture making this technically simple19, a number of other
details are also required, such as pixel-level tuning of images, or smoothing the
various differences between Java’s and the native L&F. For example, MacOS Aqua
users are used to certain conventions, while Windows users to others. Ocean uses

16. The L&Fs listed here were selected from http://javootoo.l2fprod.com/.
17. A starting point for color themes associated with color blindness can be found at http://

www.visibone.com/colorblind/.
18. The Steel L&F is more commonly known as Metal. The name Metal is used to refer to the

cross-platform Java L&F at large, of which Steel and Ocean are particular implementations.
19. The same Swing code runs on all the J2SE platforms.

c11.fm Page 426 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 427

4:0 PM 9 March 2006 c11.fm 1.0

graphics gradients to enhance the look of an application, and a caching mecha-
nism for speeding up rendering.

In cases in which visual compatibility with existing applications running on JSE
1.5 or higher is needed, the old Steel L&F can still be obtained by setting the
system property swing.metalTheme=steel. For compatibility with the older
L&F, Ocean uses bold fonts for labels and text. This can be turned off with the
system property: swing.boldMetal=false.

The above data was measured over three runs, discarding first-time executions to
avoid JIT compilation overhead and other initializations, and also spurious
values, for example when a garbage collection occurred. These measurements
depend heavily on the machine on which they are performed and are indicative
only.

The time to load the L&F is the time measured between the moment the L&F
loading is started and when it is completed. It is not rigorously determined: a L&F
that forks a thread to complete its installation will show a shorter loading time.
Clearly for Ocean, because it is the default option, the time to load is zero.

The time to launch figure is an indication of the time needed to launch the appli-
cation after all initialization is done and the GUI is ready for user interaction. For
the purpose of these benchmarks, a particularly crammed form was added to the
standard demos to see the effect of the L&F for form-based GUIs.

Table 11.6 Ocean 1.5 details

L&F name Ocean

Time to load L&F at startup
(seconds)

0

Time to launch application
(seconds)

1.71

Free memory (KB) Initial - after
startup

67.29

License Sun’s Binary Code License Agreement

Author / Company Sun Microsystems Inc.

URL http://java.sun.com/products/jfc/

c11.fm Page 427 Thursday, March 9, 2006 4:00 PM

428 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Finally, free memory shows the total amount of free memory consumed by the
application, that is, initial free memory minus the free memory remaining after
start-up. This figure gives some indication of the L&F’s memory footprint.

The larger these numbers – time to load, time to launch, and the memory occupied
by the application – the more expensive it is to use the given L&F. Of course they
only give an initial intuitive and non-rigorous evaluation of the L&F’s perfor-
mance. They are by no means substitutes for profiling and other measurements
performed within the real context of a given application use domain. Figure 11.12
shows two screenshots of this L&F.

Figure 11.12 Ocean 1.5

c11.fm Page 428 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 429

4:0 PM 9 March 2006 c11.fm 1.0

Synthetica

Synthetica was one of the first professional L&Fs available on the market. Despite
being based on Synth, which loads its data from external XML files, its perfor-
mance isn’t too bad, possibly because the example uses the default XML file
contained in the JAR file along with the classes and loaded by the JRE at class
loading time. Figure 11.13 shows two screenshots of this L&F.

Table 11.7 Synthetica details

L&F name Synthetica 1.0.0

Time to load L&F at startup
(seconds)

0.61

Time to launch application
(seconds)

0.98

Free memory (KB) Initial - after
startup

1527.18

License Dual license: LGPL and commercial

Author / Company Javasoft

URL www.javasoft.de/jsf/public/products/
synthetica

Figure 11.13 Synthetica 1.0.0

c11.fm Page 429 Thursday, March 9, 2006 4:00 PM

430 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Alloy

The Alloy L&F is a commercial L&F that extends the standard cross-platform Java
L&F. It has been around for many years, although it still lacks support for some of
the latest features, such as scrollable tabs in tabbed panes. Figure 11.14 shows two

screenshots of this L&F.

Figure 11.13 Synthetica 1.0.0 (Continued)

Table 11.8 Alloy details

L&F name Alloy 1.4.4

Time to load L&F at startup (seconds) 0.06

Time to launch application (seconds) 1.15

Free memory (KB) Initial - after startup 650.93

License Commercial

Author / Company INCORS GmbH

URL http://www.compiere.org/looks/

c11.fm Page 430 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 431

4:0 PM 9 March 2006 c11.fm 1.0

Metal 3D

Despite being relatively lightweight on memory, this L&F has a rather outdated
look that appears cluttered when used in crammed forms (see Figure 11.15).

Figure 11.14 Alloy 1.4.4

c11.fm Page 431 Thursday, March 9, 2006 4:00 PM

432 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Table 11.9 Metal 3D details

L&F name Metal 3D

Time to load L&F at startup
(seconds)

0.3

Time to launch application
(seconds)

1.30

Free memory (KB) Initial - after
startup

274.19

License LGPL (OSS)

Author / Company Marcus Hillenbrand

URL http://www.markus-hillenbrand.de/
3dlf/index.shtml

Figure 11.15 Metal 3D

c11.fm Page 432 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 433

4:0 PM 9 March 2006 c11.fm 1.0

Hippo

The purpose of Hippo is to provide a simple, clean, and essential look and feel. It
provides a clean result for complex form GUIs, although it is still not fully
complete (see Figure 11.16).

Figure 11.15 Metal 3D (Continued)

Table 11.10 Hippo details

L&F name Hippo 0.7.1

Time to load L&F at startup (seconds) 0.03

Time to launch application (seconds) 1.34

Free memory (KB) Initial - after startup 904.29

License BSD (OSS)

Author / Company Robert Blixt

URL http://www.diod.se/

c11.fm Page 433 Thursday, March 9, 2006 4:00 PM

434 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Compiere

Compiere L&F is part of an OSS framework for building ERP applications. The
Compiere L&F is geared towards form-based GUIs, is relatively fast to load, and
can be customized through a dedicated GUI (see Figure 11.17).

Figure 11.16 Hippo 0.7.1

c11.fm Page 434 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 435

4:0 PM 9 March 2006 c11.fm 1.0

Table 11.11 Compiere details

L&F name Compiere Looks 1.2.0

Time to load L&F at startup
(seconds)

0.01

Time to launch application
(seconds)

1.40

Free memory (KB) Initial - after
startup

1460.33

License Variant of Mozilla Public License (OSS)

Author / Company Compiere Inc.

URL http://www.compiere.org/looks/

Figure 11.17 Compiere Looks 1.2.0

c11.fm Page 435 Thursday, March 9, 2006 4:00 PM

436 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

JGoodies Looks

JGoodies Looks is a family of look and feels that provides quality design to the
pixel and multi-platform coherence. The Plastic L&F, for example, has been
designed especially for Windows users (see Figure 11.18).

Figure 11.17 Compiere Looks 1.2.0 (Continued)

Table 11.12 JGoodies Looks details

L&F name JGoodies Looks 1.3.1

Time to load L&F at startup (seconds) 0.05

Time to launch application (seconds) 1.37

Free memory (KB) Initial - after startup 1355.59

License BSD (OSS)

Author / Company Karsten Lentzsch

URL http://www.jgoodies.com/

c11.fm Page 436 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 437

4:0 PM 9 March 2006 c11.fm 1.0

Liquid

Liquid provides a Swing look and feel based on the Mosfet Liquid KDE 3.x theme
(see Figure 11.19).

Figure 11.18 JGoodies Looks, Plastic L&F

c11.fm Page 437 Thursday, March 9, 2006 4:00 PM

438 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Table 11.13 Liquid details

L&F name Liquid

Time to load L&F at startup (seconds) 0.13

Time to launch application (seconds) 1.11

Free memory (KB) Initial - after startup 617.76

License (OSS)

Author / Company M. Lazarevic and E. Vickroy

URL https://liquidlnf.dev.java.net/

Figure 11.19 Liquid

c11.fm Page 438 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 439

4:0 PM 9 March 2006 c11.fm 1.0

Oyoaha

Despite Oyoaha’s coherent design, some visual details, particularly the 3D effect
of buttons and text fields, result in a cluttered ensemble when the L&F is
employed in non-trivial forms. For an example, see Figure 11.20.

Figure 11.19 Liquid (Continued)

Table 11.14 Oyoaha details

L&F name Oyoaha 3.0

Time to load L&F at startup (seconds) 0.08

Time to launch application (seconds) 0.92

Free memory (KB) Initial - after startup 1017.26

License (OSS)

Author / Company Philippe Blanc

URL http://www.oyoaha.com/
lookandfeel/

c11.fm Page 439 Thursday, March 9, 2006 4:00 PM

440 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

Napkin

Napkin is a simple look and feel that provides an informal and provisional
appearance to Swing GUIs. It is not intended to be used with a final product, but
only in development and during demonstrations to users. This enables devel-
opers to avoid committing to a given L&F until needed by highlighting the fact
that the GUI is not ready.

AS it is a L&F that is not used in production, Napkin’s performances lags behind
other L&Fs, with a relatively large memory occupancy due to the many bitmap it

Figure 11.20 Oyoaha 3.0

c11.fm Page 440 Thursday, March 9, 2006 4:00 PM

Presentation layer technologies 441

4:0 PM 9 March 2006 c11.fm 1.0

uses, as well as long time to load and launch values. Given the intended use of this
L&F, these are not problems, especially if the application is executed on powerful
development machines. Napkin is a good example of the many possible uses of
Swing L&F technology. See Figure 11.21.

Table 11.15 Napkin details

L&F name Napkin Beta 0.07

Time to load L&F at startup
(seconds)

0.95

Time to launch application
(seconds)

1.85

Free memory (KB) Initial - after
startup

2394.29

License BSD (OSS)

Author / Company Ken Arnold

URL http://napkinlaf.sourceforge.net/

Figure 11.21 Napkin L&F

c11.fm Page 441 Thursday, March 9, 2006 4:00 PM

442 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

SWT Presentation

Although less flexible than Swing’s counterpart, SWT also allows for the custom-
ization of the toolkit’s visual appearance via native OS themes. This option is still
poorly supported as of Eclipse 3.0. To enable Windows XP themes in SWT, a
special manifest file is included in the same directory that contains the JRE that
launches the application.

Figure 11.22 shows Eclipse on Windows with two different themes: XP (above)
and Windows classic (below).

Figure 11.21 Napkin L&F (Continued)

Figure 11.22 Eclipse 3.0 with different themes

c11.fm Page 442 Thursday, March 9, 2006 4:00 PM

Declarative GUIs with Java 443

4:0 PM 9 March 2006 c11.fm 1.0

11.10 Declarative GUIs with Java
Many projects aim to provide declarative capabilities to Java GUIs, mostly to
express content, even if some projects also strive to provide a minimum amount
of interaction and control behavior.

XML-based formats

Unsurprisingly, the largest family of declarative formats is based on XML. There
are more than a dozen such XML schemas20, with projects like JDNC21, Mozilla
XUL, Luxor, SwiXml, XUI, Beryl XML GUI, Purnama XUI, SwingML, Thinlet,
jXUL, KoalaGML, WidgetServer, Gui4j, and XAMJ.

The Thinlet project is an example of this family of formats, a LGPL-licensed, tiny-
footprint (39 KB) interpreter of Thinlet XML files. Thinlets can run in a Java 1 JVM,
the default shipped with Microsoft Internet Explorer, and other J2ME profiles, and
don’t require Swing. Figure 11.23 shows a sample GUI demo using Thinlet.

Figure 11.22 Eclipse 3.0 with different themes

20. For a quick comparison, can see: http://xul.sourceforge.net/counter.html.
21. JDNC is discussed briefly as an alternative implementation for the example application in

Chapter 14.

c11.fm Page 443 Thursday, March 9, 2006 4:00 PM

444 Java Tools and Technologies

4:0 PM 9 March 2006 c11.fm 1.0

An extract of the source file that generates the GUI in Figure 11.23 is shown in
Listing 11.1 below.

Listing 11.1 The demo.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>
<panel columns="1" gap="4">
 <menubar weightx="1">
 <menu text="File" mnemonic="0">
 <menuitem text="New" icon="/icon/new.gif" mnemonic="0" />
 <menuitem text="Open..." icon="/icon/open.gif" />
 <menuitem text="Save" icon="/icon/save.gif" />
 <menuitem text="Save As..." icon="/icon/saveas.gif" />
 <separator />
 <menuitem text="Page Setup" icon="/icon/pagesetup.gif" />
 <menuitem text="Print" icon="/icon/print.gif" />
 <separator />
 …
 </menubar>
 <tabbedpane selected="1" weightx="1" weighty="1">
 <tab text="Texts">
 <panel columns="5" top="4" left="4" bottom="4" right="4" gap="4">
 <label text="Find in the text:" mnemonic="10" />
 …
 <tab text="Lists" mnemonic="0">
 <panel columns="1" top="4" left="4" bottom="4" right="4" gap="4">
 <panel gap="4">
 <label text="Update list:" />
 …

Another approach that avoids the use of Java on the client altogether is to take
advantage of other presentation technologies, such as Macromedia Flash, that are
installed on clients as Web browser plug-ins. SWF bytecode can be generated

Figure 11.23 Thinlet demonstration

c11.fm Page 444 Thursday, March 9, 2006 4:00 PM

Summary 445

4:0 PM 9 March 2006 c11.fm 1.0

dynamically on the server side by tools such as OpenLaszlo, using servlet tech-
nology, or Flex. Both these approaches make use of XML-based user interface
languages in which the XML is generated and prepared on the server side,
compiled, and send to the client’s Flash player.

11.11 Summary
This chapter discussed some of the most popular technologies and products for
developing Java GUIs. We introduced the issue of evaluating an OSS in general,
and specifically for the purpose of creating Java GUIs. Major Java GUI technolo-
gies and tools currently available were discussed and compared, including
development aids, third-party components, utility libraries, and presentation
technologies.

c11.fm Page 445 Thursday, March 9, 2006 4:00 PM

c11.fm Page 446 Thursday, March 9, 2006 4:00 PM

12 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

This chapter deals with various issues that are encountered less often by devel-
opers. Rather that being classified as ‘advanced,’ these topics can be seen as
solutions to specialized problems that seldom occur in average GUIs and would
not be of interest for the average reader, but that are still useful to consider, as they
apply to a wide range of real cases.

The chapter is organized as follows:

12.1, Building on top of existing libraries discusses some of the issues related to
creating APIs and frameworks, also taking advantage of usability.

12.2, Memory management for complex GUIs illustrates problems and possible solu-
tions with practical examples.

12.3, Restructuring existing GUI code discusses various issues related to renewing
and restructuring existing Java GUI code.

12.4, Exploiting technology proposes alternative uses of some Java GUI
technologies.

12.5, Domain-specific and Little languages discusses the use of this technique for Java
GUIs.

12.6, The future of Java GUIs attempts to forecast the future of Java GUI
technologies.

12.1 Building on top of existing libraries
A frequent habit of designers is to create reusable classes in order to save devel-
opment time in future projects. Even if full reusability is often an unfulfilled
dream, there are certain common patterns, as we have seen throughout this book.
We have discussed some possible strategies, focusing mostly on more reusable
patterns. Here we will explore another approach to code reuse for non-trivial
GUIs: to formalize the support for higher-level attribute implementation into
reusable classes.

We mentioned this issue when discussing OOUIs. Imagine that we have to
develop a business application that needs many data structures that are in turn
composed of simpler attribute data such as strings, integers, files, and so on. We
could assign a great deal of common behavior to these attribute classes, sparing
developers from writing many lines of service code, for example to implement

Advanced Issues

c12.fm Page 447 Monday, March 13, 2006 1:25 PM

448 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

persistence, or for sophisticated content assembly, and so on. Providing a high-
level library for such utility functions will also help to speed up the software
design process. This is not a new idea. Standard libraries and much corporate
effort have devised this strategy to simplify GUI development, especially for
predictable applications such as business management, database-oriented
domains, and so on. We will explore this idea in the next section.

Attributes

A common solution for easing the implementation of non-trivial applications is to
think of a given business class as a compound of high-level attributes. Such
attributes can themselves be composed of other attributes, and so on, imple-
menting a Composite pattern (Gamma et al. 1994). Basic attributes (which we will
call fields) will wrap basic data types, such as strings, dates, and numerical inter-
vals. Apart from wrapping business data at a higher abstraction level, attributes
provide several useful services.

Usually attributes are responsible for handling the following services:

• Providing GUI interfaces for accessing the business data.

• Providing automatic mechanisms for default values, message bundles,
preference storage, serialization, and so on

• Negotiating appearance and layout with their composite parents (similarly
to Swing’s and AWT’s components).

• Providing a business logic layer for administering their data.

By way of demonstration, will discuss a simple, lightweight example implemen-
tation of a possible attribute framework. The class diagram in Figure 12.1 shows
the design of such a library.

Adopting the Composite pattern, we could have simple ‘leaf’ attributes, our
fields, and compound attributes, represented by the abstract class Composite-
Attribute. Fields are the basic building blocks we use to build complex data
structures. Each field has a name and other common properties that are used for
initialization, such as a default value, for example, or for GUI purposes, such as
tooltip and a mnemonic key for example. Taking advantage of the Viewable
interface1, each attribute can provide different views of its data suitable for
aggregation into a larger view in its parent’s composite attribute.

Many proprietary or publicly-available GUI frameworks exist, such as JFace
for the Eclipse platform, that – with different degrees and perspectives – take
advantage of the attribute concept.

1. See Chapter 15, The Viewable interface on page 538.

c12.fm Page 448 Monday, March 13, 2006 1:25 PM

Building on top of existing libraries 449

1:25 PM 13 March 2006 c12.fm 1.0

Among developers, attribute frameworks are often seen as suspect, given the
additional complexity they bring to a design and the subsequent application
development. Usually such frameworks justify themselves in terms of future
reusability (but we know how vague this can be) and faster development. But like
any other class library, they need to be properly mastered.

This solution is needlessly powerful for simple GUIs in which there is no need for
multiple views of the same attributes. In such cases the attribute framework can
be greatly simplified. Avoiding the use of multiple views and a fully-fledged
MVC architecture leads to the design shown in Figure 12.2 below.

Figure 12.1 A complete framework for attribute management

Figure 12.2 A slimmed-down class diagram for attribute management

c12.fm Page 449 Monday, March 13, 2006 1:25 PM

450 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

Let’s look at this second solution in detail, sketching out a skeleton of a basic
attribute framework. Our attributes will provide the following services:

• Preferences persistence.

• Default values.

• Naming and other labeling facilities, such as tooltip, field name, and
mnemonic key, obtained from the message bundle properties file.

• Simple graphical views, with basic commit/rollback behavior similar to the
Viewable interface.

An implementation of the AbstractAttribute class is provided with the code
bundle for the book.

The createLabelFor method is a convenient method for obtaining a label
component from the attribute. The createComponent method is implemented by
AbstractAttribute’s subclasses.

The persistence mechanism, which is used mostly for user-customized data, has
been implemented using the preferences mechanism present in J2SE from Version
1.4 onwards. The text messages have been managed using properties files directly,
to ease localization, relying on the ServiceManager class.

Concrete subclasses of AbstractField (BooleanField and StringField) are
provided with the code bundle for the book. The Employee class in the code
bundle is an example of a composite attribute that represents data for an
employee. In our simple implementation, an employee is composed of three
elementary fields:

• name – the employee’s first name, implemented with a StringField
instance.

• surname – the employee’s family name, implemented with a StringField
instance.

• senior – whether or not the employee is a senior worker, implemented with
a BooleanField instance.

The Employee class is itself an attribute, so it can be combined with other
attributes to create bigger attributes, such as a PayRoll class, or standard
compound attributes such as a CollectionAttibute for modeling sets of
employees.

Attributes can carry domain-dependent information that is needed in the
content layer, such as validation constraints, or whether or not an attribute
is mandatory, for example. This enables a clear and systematic separation
between the business domain and the other functional layers to be obtained.

c12.fm Page 450 Monday, March 13, 2006 1:25 PM

Building on top of existing libraries 451

1:25 PM 13 March 2006 c12.fm 1.0

In our implementation we choose to adopt static encapsulation – that is, the
attributes of a composite class are instances of variables of that class – instead of
dynamic encapsulation, where a collection variable holds all the attributes. This
means that a lower degree of automation is possible. Methods such as
doCommit() or doRollBack() therefore do not need to invoke any sub-attribute.
The doLayout() method is different, because a semantic notion of each sub-
attribute is needed to achieve an effective layout.

Finally, the Example class creates an Employee and requests it to show its contents
on the screen in a test frame. The final result is shown in Figure 12.3.

Roll your own framework

Sometimes there is a need to extend an open source library that falls short in the
features needed for the current project. At other times we might want to collect
utilities and code we keep on writing over and over again for every GUI into a
coherent API, or we are called on to provide some specialized framework for an
organization, and so on. In all these situations, developers need to wear the API
provider’s hat rather than that of the client.

Java GUI developers are often faced with this kind of task for two main reasons.
Reusable GUI libraries aren’t so reusable in practice, given the sheer number of
requirement our ‘reusable’ code should fulfill for real-world GUIs. For example,
imagine that you have found the ‘perfect’ calendar widget for your applications,
but that it unfortunately doesn’t fit within your existing GUI design because it
cannot be inserted in a lightweight pop-up window like all your other choosers.

Static attribute encapsulation has its own advantages. The main ones are read-
ability – inspecting the class source is enough to understand its attributes –
and simplicity, as the attribute instances look like normal class members.

The example implementation is very simplistic and lacks many useful
features, for example the ability to open the attribute’s visual component in
read-only mode, better persistence support, localization, and so on.

Figure 12.3 The Example class shows an employee (PGS)

c12.fm Page 451 Monday, March 13, 2006 1:25 PM

452 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

Open source libraries encourage developers to tweak someone else’s source code
and enhance it, providing of course acknowledgements are given and license
compliance is met.

Building GUI code for other developers instead of final users is a gratifying expe-
rience that need extra technical care in its details. Two very useful documents on
this perspective are Evolving Java-based APIs (Des Rivières 2000) and, specifically
on the client side, How to Use the Eclipse API (Des Rivières 2001). There is much
more material available on this topic, but this is out of our scope.

Designing usable APIs and frameworks

This subsection discusses the idea of applying usability principles to general API
and OOP framework design. This is of course not a new idea, but the original
approach taken here is to leverage sound usability and HCI advice taken from the
first part of the book to guide us through our revisit of API design as a product.

Unsurprisingly, GUI design and API design have many points in common. Both
have users of many types and levels of experience, API users being mainly devel-
opers. Both design processes leverage devised metaphors and abstract concepts
embodied in the design, be it a GUI design or an API, to solve user’s needs effec-
tively. On the other hand the user experience of the product – the new API to be
designed – is shaped by many factors: class and method names, the design
patterns employed, concepts and abstractions, documentation, and the general
‘feeling’ of its use, as perceived by the developer.

As examples of existing APIs we refer to the APIs and frameworks for GUIs such
as Swing, Netbeans API, and Eclipse API, as the reader is likely to be more
familiar with these. Nevertheless, the ideas discussed here apply to any kind of
API and OOP framework, not only graphical ones.

Here is a list of the main GUI design concepts, which briefly discusses how they
translate to API design. The term user and developer are used here as synonyms.

• Focus on your users:

– Design for different types of users. Usually you’ll have novice users,
expert full-time developers, and possibly also knowledgeable, part-time
developers as well. Each class of users has its own needs and priorities.

– Provide a user-centered, task-oriented, and context-aware design.
Performing a classic task analysis, adding context and user data, seems an
almost trivial suggestion, but it will shape the final API design tremen-
dously. Think about what the main tasks your API will solve are, with user
goals, how developers carry out these task now without your API, their
context of work, task breakdown decompositions, ethnographic study of
developers in their work environment, and so on.

c12.fm Page 452 Monday, March 13, 2006 1:25 PM

Building on top of existing libraries 453

1:25 PM 13 March 2006 c12.fm 1.0

For example, a task could be to create and customize a data-bound table
for expert SWT users, for adding to an existing panel. But beware – such
an approach can bring a subtle but conceptually devastating consequence:
API designs, just as GUI designs, depend heavily on their context of use
and on their intended users. So there is no such a thing as perfect API for
all seasons.

• Ensure consistency and predictability. This can be also understood in terms
of lowering the use of long-term memory (LTM) and using short-term
memory (STM) as much as possible. To ease management of STM, use no
more than 7±2 items (that is, parameters in methods, methods in interfaces,
and so on). Consistency involves the use of design guidelines, analogous to
GUI design guidelines, that prescribe how errors should be handled, patterns
to use and those to avoid, naming conventions, and so on.

• Design effective metaphors and concepts to:

– Solve user problems. This is implicit, but is important to point out.
Unless your API won’t solve problems, it won’t be worth developer’s
time using it.

– Behave as expected by its intended users. For example, if you are
designing a domain-specific language (a ‘little language’) don’t use an
exotic, fancy syntax with which Java developers are not familiar.

– Keep close to the application domain. Don’t use first-order logic for a
dynamic layout API, even if it looks cool. Concepts too distant from the
domain and users should be avoided. For example, even if quantum
physics provides a wonderful and elegant metaphor for (say) a GUI
toolkit, hide the internal details of the implementation, so that users
don’t need to study physics before putting together a form using
your API.

– Communicate the API effectively. Documentation, training, and other
forms of learning are very important, but ultimately what makes an API
(or a GUI design) usable are the concepts themselves.

• Test your API with user representatives not previously exposed to the design
process for usability – classic usability testing – and effectiveness –
productivity: how easy is to achieve the required goal with the API? You
might want to test also for flexibility – can expert users tweak any aspect of
the framework – and future modifications – what are the unforeseen needs of
our users? Developers are like GUI users: putting them in control of the GUI
will make them feel better. How can your API be modified to accommodate
them without degrading its architecture? Releasing a badly-tested API
implies many modifications on a tight schedule that will deteriorate the
initial design.

c12.fm Page 453 Monday, March 13, 2006 1:25 PM

454 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

• Make the API pleasant to use and easy to learn.

– There is no need to torture developers, who are stressed enough already.
Designing your API to provide early gratification is a good technique for
keeping them interested and stimulated.

– Hide unnecessary complexity, for example by separating interface from
implementation2 or by providing a carefully thought-out class hierarchy.

– Provide default behavior, to employ it usefully with minimal effort, and
ready-to-use, predefined behavior for common cases.

– Provide informative feedback. Learning an API by trial and error is a
common habit among developers. Providing useful feedback, such as the
Amazon Web Service API feedback in the example application in Chapter
13, eases API comprehension and developer productivity.

• Design in error prevention and management. Many techniques can be used
here:

– Use immutable objects when possible, providing their mutable counter-
part when performances or usability are a concern.

– Decide what to do with null. Despite appearing a trivial suggestion, many
‘home-grown’ APIs fail to define such a basic issue consistently and effec-
tively, causing a number of minor weaknesses, and opening the door to
some annoying errors. By generalization, also consider using Special Case
design (Fowler et al. 2003).

– Design the API as you might design a GUI, to try and make errors impos-
sible. For those errors that cannot be eliminated by clever design, provide
both a ‘baby-proof’ path – safe objects that only allow a protected and safe
subset of all possible data and behavior – and a ‘pro’ path, allowing for
maximum freedom and customization power, but also allowing inconsis-
tent and dangerous behavior.

– Devise a comprehensive failure strategy, as discussed in Chapter 5.

12.2 Memory management for complex GUIs
A common problem with large Java applications is managing the memory needed
during execution. The situation can be complicated when such applications need
to run for a long time, requiring more sophisticated memory policies.

The simplest solution for such a class of Java applications is to provide a means
for the end user to control the JRE’s garbage collector directly. Clearly this is
feasible only when the typical user population can be assumed to be knowledge-
able enough to manipulate such a low-level feature like the garbage collector. This

2. See Chapter 7.

c12.fm Page 454 Monday, March 13, 2006 1:25 PM

Memory management for complex GUIs 455

1:25 PM 13 March 2006 c12.fm 1.0

is the case in all major development environments implemented in Java, such as
JBuilder Eclipse or Idea.

When providing access to the garbage collector is not feasible, for application-
dependent reasons, for end user characteristics, or whatever other reason, you
have to employ some ad-hoc strategy. A common solution is to provide a low-
priority thread that takes care of memory management, invoking the garbage
collector when needed.

There is another reason for adopting such an ad-hoc approach. Usually the
garbage collector takes some time to perform its operations, and this appears to
the end user as if the application is freezing for a moment. This kind of pause,
which can appear random, can be unacceptable. In such cases it’s advisable to
‘pilot’ garbage collection at a specific time, such as just before a heavily interactive
session. In general, there could be too many different situations in practice to
discuss them all here, but we can suggest a simple test situation that can be
adapted to manage a wide range of practical cases.

Some applications are required to handle vast amount of data, such as the large
datasets shown in table components of database clients GUIs. The amount of data
to be viewed is largely decided by the user. This poses some problems, because
memory management should be adapted to the current user interaction.

A practical case

Imagine a tree component that is bound to a large data source that can grow
almost infinitely. This could be the case for example with a client application that
shows data from a remote source that can supply a very large amount of informa-
tion. Clearly, some solution is needed to make this tree component manageable
without compromising GUI interaction. A screenshot is shown in Figure 12.4.

Figure 12.4 A very large and expensive tree (Tiny)

c12.fm Page 455 Monday, March 13, 2006 1:25 PM

456 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

Below the tree widget the demo application, available in the source code bundle,
shows the currently-available memory, overall memory, and the number of
current cached nodes.

The Node class represents a single tree node that gobbles up a large quantity of
memory (0.5 MB of dummy data), so a few new nodes can consume almost all
available client memory.

The VeryLargeTree class is the cornerstone of the example. This class invokes the
setRowHeight() method with a fixed size, and setLargeModel() with true on
a Swing JTree instance, to prompt the object to use an alternative code path opti-
mized for models with large data sets. One important consequence of this setting
is that the model will be queried more often – clearly in order to reduce the tree’s
cache size.

An interesting method in the VeryLargeTree class is treeWillExpand, part of the
TreeListener interface. This method is invoked whenever a folder node of the
tree is going to be expanded. In our fictitious example, we simply fill the folder
node with data obtained from the dummy server. Just before the tree expansion
takes place, this method is invoked, and a new request is issued to the server by
means of a queue of worker Runnable instances.

Another section of code in the example is the MemoryManager class, which imple-
ments a simple caching mechanism, the Cache inner class. The method
removeEldestEntry() removes the eldest entry in the cache. The findAllChil-
dren() method recursively finds all the child nodes of a given element that are
candidates for removal whenever the node is deleted by the tree. The MemoryMon-
itor class controls the MemoryManager instance, and shows the memory state
through a status label. This class provides a way to activate the JRE’s garbage
collector explicitly.

Finally, the DummyServer class simulates a remote server that returns data nodes
with an unpredictable latency, simulated by a pseudorandom delay via the simu-
lateIOLatency() method.

A simpler and ‘lighter’ implementation, in that it takes advantage of special refer-
ence types, part of the J2SE standard API, is also possible. The SimpleLargeTree
uses the WeakReference type, contained in java.lang.ref. This makes it
possible to implement ‘soft’ reference types that are automatically cleared out
when the JRE runs out of available memory. This means that programmers don’t
have to bother too much about cache maintenance, because reclaiming memory

The example uses a lazy instantiation mechanism for the tree nodes. When-
ever the user expands a node, the branch is populated with fresh data from the
server. This avoids useless memory allocation for those folders that the user
will never explore, but we pay for it with a less interactive GUI.

c12.fm Page 456 Monday, March 13, 2006 1:25 PM

Restructuring existing GUI code 457

1:25 PM 13 March 2006 c12.fm 1.0

held by weak references will be done automatically by the JRE. This simplifies
coding, but shields programmers from tight control over memory management.

Which of these strategies is best will depend on the situation. Other solutions are
possible, using other special types of references provided in the java.lang.ref
package that allow for more control over garbage collection.

12.3 Restructuring existing GUI code
We have discussed how to apply our basic reference architecture and other tech-
niques to build high-quality GUI code from scratch. Sometimes, however, the
opposite problem arises – existing GUI code must be restructured in a scenario
that differs from development, for example code that was written elsewhere, that
was written more than a few years ago, and so on. Sometimes it’s cheaper to
throw legacy GUI code away, using it only to capture requirements for a new
implementation, while at other times this choice is quite hard to make in the
general case – it could be wiser to keep it, even in the form of an unmaintainable
patchwork of code.

Complex or large GUIs built over the years have usually absorbed so much
change in their source code under the influence of tight deadlines, different devel-
opers, and so on, that they appear very hard to maintain, especially when the
initial developers are no longer available. Despite that, building such GUIs from
scratch can prove to be too dangerous an enterprise, and step-by-step refactoring
could be the wiser approach to enhancing the quality of the code base while
keeping the product ‘alive’ without incurring release delays.

Several reasons for modifying such sources can exist:

• It must be ported to newer technologies, such as porting an old AWT applet
to Swing, or renewing an old open source library.

• The architecture and the overall software quality need to be enhanced, for
example for performance optimization.

• Routine software maintenance is required, where the goal is to intervene in a
specific portion of existing code.

• New features must be added to the application. This implies a deep under-
standing of at least some parts of the code, to modify it without disrupting
the rest of the application.

Restructuring may range from applying general-purpose techniques, Java-specific
manipulations, or other processes, such as applying coding guidelines. Neverthe-
less, some general principles apply – it’s important to:

• Understand the legacy code, or at least enough of it to carry out what is
required. Getting a ‘grip’ on old code may be hard, even for circumscribed

c12.fm Page 457 Monday, March 13, 2006 1:25 PM

458 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

and specific pieces of software like Java GUIs. No matter how deep your
understanding of Java GUIs and your toolkit knowledge, understanding and
modifying convoluted old code successfully is always time-consuming.

• Work with a clear objective in mind, such as enhancing performance, or
porting the code to a newer technology or a different layering architecture,
and so on.

• Develop a clear plan of what is going to be done, and deliver it one step
at a time.

As any programmer knows, modifying existing code is a complex task, and an
exhaustive discussion is out of scope here. One basic point, though, is the relation-
ship between the overall restructuring cost and the fraction of modified code.
Figure 12.5 shows data collected from NASA software projects (Selby and Porter
1998). Even if this data focuses on code reuse3 rather than code restructuring, it
still shows some interesting facts.

3. Even if OOP was meant to cut down such high reuse costs, it cannot spare today’s
programmers from code restructuring. Writing poor code, or the need to renew code from
time to time, is still an open problem in the software industry.

Figure 12.5 The cost of modifying existing code

c12.fm Page 458 Monday, March 13, 2006 1:25 PM

Restructuring existing GUI code 459

1:25 PM 13 March 2006 c12.fm 1.0

First, whenever we embark on a code restructuring project, we always pay a toll,
even if we don’t touch a line of code – see the first point on the left, which shows
that preliminary costs amounted to 4.6% of the cost of initially building the code.
Such costs comprise analysis, code comprehension, retrieving meaningful docu-
mentation, and so on.

Another interesting observation is that code modification has a nonlinear cost
associated with it as the proportion of modified code grows. This is intuitive – if
programmers don’t know the code very well, even small modifications in the
early phase may cause the whole application to behave unexpectedly. This is why
the first segment of the graph is much steeper than the others, while the last part
is less expensive (less steep) because by this stage developers are familiar with the
code, allowing additional changes to be made more cheaply.

Essentially, GUI code restructuring involves the following activities:

• Code analysis and comprehension, the necessary prerequisite for all other
manipulations.

• Code refactoring, as we introduced in Chapter 5.

• Code porting to newer features, such as to new libraries, new deployment
technologies, and so on. In general this kind of porting is not painless. and is
hard to estimate for a priori.

• GUI-specific higher-level manipulations, such as introducing particular
abstractions and architectural strategies.

• GUI-specific lower-level activities, such as providing internationalization
support, or increasing the performance of some GUI code.

It is therefore important to tackle GUI code renewal and porting incrementally,
especially complex GUI code. Once the process has been started, one should bear
the high initial costs of modifying existing code effectively. A sound approach is
to take advantage of the vast literature on the subject, and consolidate best prac-
tices about code enhancement.

Porting an old applet – a case study

A real case can help to illustrate some general issues about maintaining
existing GUI code. The Rubik Cube applet shown in Figure 12.6 on page 461

This discussion of code modification costs doesn’t take Agile coding
approaches into account. Having a solid suite of tests for code that is to be
modified, and proceeding in small iterative steps, as discussed in Chapter 5,
ensures a cheaper and less risky restructuring process. Alas, such practices
were not the norm even as recently as a few years ago.

c12.fm Page 459 Monday, March 13, 2006 1:25 PM

460 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

was developed by two students of mine4. At one point the program was
completed: it allowed users to play the Rubik’s Cube puzzle by means of direct
manipulation, rotating and manipulating the cube by mouse dragging in a virtual
3D space. It was implemented by interacting with low-level canvas and mouse
events, pure AWT code, desirable for an applet that, as a result, doesn’t need 7 MB
additional downloads for the JRE.

A year or so later another group of students came with the idea of building a
simple general framework for solving Rubik’s Cube. Basically the idea was to
provide heuristics, or even a small AI planner5, to drive resolution, or at least
some sort of tip for a player stuck at a difficult point. Clearly the old AWT applet
was the perfect fit for the GUI of the new program. I handed the students all the
documentation for the old applet and they started happily working on the
project.

It turned out that the simplest and most effective GUI for representing moves in
this domain was a tree widget. This posed some problems, though, because there
are no native tree widgets for AWT. Instead of resorting to one of the various AWT
trees available on the Internet, the idea of porting the old AWT applet to newer
technologies, such as Swing, was becoming more compelling, which in turn
would have fostered a whole host of new technologies, such as Java Web Start,
standard help support, and others.

A screenshot of the port of the old code to a Swing applet is shown in Figure 12.6.
The tree on the left-hand side represents the moves computed by a resolution
algorithm that takes advantage of heuristics. By double-clicking on a move
node in the tree, the move is directly performed on the 3D representation of
the cube.

4. Various people were involved, at various levels of commitment – I am sorry if I can’t cite
their names.

5. An artificial intelligence planner is a tool that plans domain-dependent steps automati-
cally in order to solve a problem using AI techniques.

From an implementation viewpoint, referring to the classification introduced
in Chapter 3, the applet is made up of a custom component tree for the moves
(on the left-hand side of the applet’s display area) and an ad-hoc component
for the cube representation on the right-hand side.

c12.fm Page 460 Monday, March 13, 2006 1:25 PM

Restructuring existing GUI code 461

1:25 PM 13 March 2006 c12.fm 1.0

The option of throwing everything away and rebuilding from scratch wasn’t
feasible because of the high cost of building the ad-hoc Cube component. In other
situations, though, this could be the best choice (and not just because I was called
in to consult on it). When old code is relatively easy to rebuild with a newer tech-
nology, the simplest way is just to use the running application as a black-box
prototype embodying a given set of requirements for the new program, while
throwing away its implementation.

We considered the available possibilities. Let’s recap them, organized by deploy-
ment means:

• Java applet:

– AWT applet, running in any browser. This is the simplest solution for
deployment, and it is almost straightforward in this case, but has some
drawbacks: AWT lacks a tree component, which would need to be created
in-house or bought from a third-party vendor. In the long term, when
expanding the applet further, we might be forced to switch to more
powerful technologies, and forced to migrate an expanded code base.

– Swing applet, running in any browser before Java plug-in installation.
This solution provides more benefits in the long run. All major libraries
and utilities are built for Swing rather than AWT (help support, layout
manages, and so on).

• Java application:

– Standalone AWT application. Similar to the case of the AWT applet config-
uration, even though it wastes the most important strong point of AWT:
ease of deployment. For this reason it’s less attractive than the AWT applet
solution.

Figure 12.6 A Rubik’s Cube applet (Ocean1.5)

c12.fm Page 461 Monday, March 13, 2006 1:25 PM

462 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

– Standalone Swing application. While a number of deployment means can
be devised, we discuss JNLP here, mostly.

– Standalone SWT application. This is the same as the AWT case, although
in this case SWT provides a standard tree component that works well with
large tree models. On the other hand, developers not familiar with SWT
need further study of the technology, and this can be an important prac-
tical hurdle. This is even truer for ad-hoc components such as the cube
panel, which require deep knowledge of the underlying graphics libraries.
Luckily, SWT’s low-level graphics rendering model is close to AWT’s.

– Native application created from pure Java code, for example using GCJ
with SWT libraries. This could be an interesting possibility, but we should
sacrifice pure Java deployment for a number of (limited) native executa-
bles. Given the current context – non-for-profit educational software – we
abandon this choice, even if it would have been very interesting in its
runtime performance for large puzzle solution plans.

We opted for the Swing applet solution, which appeared to provide the best cost/
risks/results ratio, although with a subsequent porting to a JNLP application in
the longer term.

We started from the first step, porting the old AWT applet to Swing. The idea was
to solve the most basic problems first, lowering risks and fostering many other
porting steps6. While porting graphics from AWT to Swing, essentially migrating
from the old Graphics class to Graphics2D, was easy, some unexpected problems
arose along the way, all related to incorrect assumptions made by the earlier
developers, such as too low-level code. User interaction such as mouse dragging
wasn’t working as expected in the Swing porting, and in-depth corrections were
needed to make things work. We will get back to this point in a later section that
discusses tips for ensuring greater longevity for Java GUIs.

As you can see, the array of possible configurations is complex even for such
a simple case. One possible pitfall lies in the programmers’ experience. Devel-
opers not familiar with the target technology can become unexpected and
dangerous obstacles in a porting process.

6. See the ranking of such steps in Chapter 5.

Applets are still among us. Even if they didn’t fulfill the triumphant vision of
Java’s early days, there are still a lot of them around, ranging from sophisti-
cated, commercial software to educational, scientific simulators, video games.
and so on. In many companies it is not unusual to find bloated applets – all the
rage at the end of ‘90s – still on duty in intranet business applications.

c12.fm Page 462 Monday, March 13, 2006 1:25 PM

Restructuring existing GUI code 463

1:25 PM 13 March 2006 c12.fm 1.0

When choosing the right client configuration, you should consider several factors:

• The intended user population and operating scenario. Will an Internet
connection be needed? Is one available, and to what extent can it be relied
on? Do the conditions and scenario prevalent when the code was first imple-
mented still apply today? A new port of an old Java GUI is a perfect
opportunity to consider such extra-functional issues.

• The cost of filling the gap between the old and the new technologies,
including the porting of higher-level runtime models and all the work
involved.

• Deployment means. This involves deciding between applet, JNLP or a ‘plain’
application, or even native executables (and their related family of installers),
or other possible arrangements.

• The developer’s skills. Obviously developers are more productive and effec-
tive when working with known technologies.

• The business model and other organizational constraints. In our previous
example we were developing a non-for-profit applet with no demanding
timeline, but in industrial scenarios the situation could be much more
complex, and such constraints could impact heavily on the chosen porting
strategy.

In conclusion, Java client technology is still evolving after more than ten years,
and the many possible choices available on the market demand a clear view and
a careful decision-making process by lead developers and architects.

Long-life GUIs

Despite the heroic commitment of Sun to supporting compatibility in the past, it
is still possible to experience glitches and unforeseen changes in behavior when
porting applications written for a given JRE to a newer version.

The problem is that compatibility can be ensured only at the API level. A perfor-
mance enhancement in Swing’s internals, such as resource loading, or small
enhancements in the way some details of the low-level event pump are handled,
should be transparent to client applications. This might not be case with software
built without attention to long-term maintenance, however. We are not talking
about good design and architectural details here, but about a clean separation
from low-level behavior. The main source of incompatibility with a newer Java
release lies in incorrect assumptions hard-wired into the code, making it depen-
dent on obscure and undocumented implementation details in the technologies
used in the application (for example the GUI toolkit). This is the case with the
order of execution of some low-level operations, for example. These details are
meant to be internal to the library used by an application, and relying on them will
jeopardize the stability of code in the long term.

c12.fm Page 463 Monday, March 13, 2006 1:25 PM

464 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

Even harmless code such as that for detecting specific mouse configurations, to
support right-clicking on a tree for example, can work well with old JREs but start
to behave bizarrely with newer versions. Other problems could arise as well, such
as unfortunate variable naming – for example enum as a variable name plus a
switch to JRE 1.5 or newer, or the like – but these are usually easily solved
compared with the kind of low-level incompatibility often found in graphics-
oriented code such as is used in video games or direct-manipulation GUIs.

Incorrect assumptions about specific thread timing combinations, and other
incidental situations that make the application work but are not formally docu-
mented anywhere, can cripple code when executing it with a newer JRE.
Unfortunately these sorts of issues are hard to detect at coding time, and devel-
opers are always uneasy about getting rid of hard-won code that works –
perhaps a little murkily and with a couple of low-level hacks – but that works
nevertheless.

As a rule of thumb, it is always better to resort to code that follows formally-docu-
mented features, to make a GUI independent of low-level, empirically-proven
details.

Providing new deployment support

We discuss the issue of deployment separately because it is a common theme that
can be handled easily by following some simple steps.

The JNLP protocol is suited to the deployment of Java applications via Web
browsers. Rich Java clients usually take advantage of the Java Network Launching
Protocol (JNLP) for launching and deploying Java application over the Web. This
protocol works by means of special XML files (.jnlp files) that instruct the JRE
how to deploy the application. This is done through a special launcher application
on the client that is bundled with every JRE.

Once your Java application is ready for deployment, you publish its JAR files,
together with the special JNLP file, on your Web server. Your customers only have
to click on the link to the JNLP file to launch it automatically without any extra
intervention. Actually JNLP does much more than this – interested readers can
find more details on Sun’s Java Web Start site or in (Marinilli 2001).

The specific case of porting to a newer deployment technology is interesting
because it is a common situation that luckily is easy to manage in practice. The
main point about porting applications to JNLP concerns external resource loading.
The JNLP protocol works thanks to the J2SE class loader mechanism – application
resources such as icons, property files and the like would not be accessible if loaded

c12.fm Page 464 Monday, March 13, 2006 1:25 PM

Exploiting technology 465

1:25 PM 13 March 2006 c12.fm 1.0

by any other mechanism. This can be easily demonstrated by substituting all
external access with the following idiom:

URL res = this.getClassLoader().getResource(name);
 if (res!=null)
 // use the resource URL as needed

Remember that you should also fix your development environment, as it might
now fail to load external resources if not properly set up. Here again a wise soft-
ware architecture, one that gathers all external accesses into a minimum number
of places, such as the Service layer implementation proposed in Chapter 7, can
greatly ease the porting effort.

It is worth making a final point about applet deployment porting, useful for the
many corporate applet-deployed applications still around. Applets are container-
managed programs, developed to run in an applet container. This means that they
have an underlying lifecycle model that is too simple for any but limited applica-
tion scenarios, covering only init(), start(), paint(), stop(), and destroy()
methods.

Apart from most business applications, today’s applets are usually strongly
graphics- and interactivity-oriented, such as video games or simulators, and this
in turn makes them lower-level oriented, employing low-level GUI events and
making assumptions about them. When porting an applet to an application,
usually a JNLP-powered one, one should always consider the hidden cost of
porting the program model as well, that is, the cost of making the applet code
work outside the applet container.

12.4 Exploiting technology
Java GUI technology is powerful, although its uses are still limited to the produc-
tion of GUI code. The technology can be used in other ways, however, such as
applying it to development phases other than production and execution. For
example, in Chapter 11 we discussed a look and feel, Napkin, that is specifically
targeted at prototypes and early GUI designs.

There are basically three different ways to deploy and subsequently manage
your software in J2SE: by using applets, taking advantage of the Java Plug-In
facility, by using JNLP-deployed applications, as discussed above, or by
simply providing your own deployment solution, for example supplying your
customers with installation CD-ROMs.

c12.fm Page 465 Monday, March 13, 2006 1:25 PM

466 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

Figure 12.7 shows an example of an original use of Swing’s flexibility in rendering
presentation details and applied to analysis and early development iterations. The
GUI in Figure 12.7 is a prototype in which various design choices are still to be
validated and finalized with customers, and on which additional analysis is
required. Blurred widgets have therefore been used to represent items that need
further work. Comments can also be embedded in the GUI itself that can help to
understand the final intended behavior of the application, even from this early,
limited version.

Instead of communicating this information in a document, possibly bloated,
costly to maintain, and ultimately unnatural when compared with the application
in Figure 12.7, we embed it directly in the real thing, removing it as the application
proceeds iteratively to its final refinement. After all, the GUI in Figure 12.7 is the
application as we know it today. Such details could also be made visible or invis-
ible under the control of a runtime flag.

12.5 Domain-specific and Little languages
Java is a general-purpose object-oriented programming language. It can repre-
sent and manipulate information in any domain of interest as long as it is
represented using the particular flavor of the OO paradigm realized by the Java
language. We can model business logic rules and weather forecast data, creating

Figure 12.7 An example of the use of presentation technology

c12.fm Page 466 Monday, March 13, 2006 1:25 PM

Domain-specific and Little languages 467

1:25 PM 13 March 2006 c12.fm 1.0

new specialized classes and intertwined relationships between them. The gener-
ality of Java has a drawback, however – its abstractness. For example, developers
have experienced the complexity of specialized OOP frameworks in expressing
domain-specific concepts, for example how cumbersome it is to use layout
managers in non-trivial situations. This is because dynamic layout classes
express what are essentially visual concepts using a text-based syntax optimized
for general-purpose problems.

‘Little languages,’ or ‘Mini-languages’ (Hunt and Thomas 2000), are specialized,
small languages that are created to fit a specific purpose and which are then
‘embedded’ into a more general-purpose language such as Java. This allows them
to be more effective and simple to use than a fully-fledged specialized OO class
framework. Little languages can grow out of the development environment and
become full languages, although simple and extremely specialized, such as the
Hibernate or Ant XML file formats, for example, which can be thought of as two
little languages specialized respectively for Object–Relational Mapping and
expressing tasks for driving the building process of Java programs.

On a more restricted level, the string format used by layout managers such as
JGoodies’s FormLayout, in which cell constraints are expressed compactly with
strings like right:pref:grow, left:max(50dlu;pref), l:m:g instead of
dozens of lines of code, can be thought of as a little language specialized in the
effective high-level definition of layouts. Even the rather crude properties file
protocol shown for developing throw-it-away prototypes in Chapter 5 could be
polished and to form a little language for customizing and populating widgets
quickly.

The syntax of choice for little languages is usually a simple one-line text format or
XML schema. In many cases, however, some form of more powerful language is
needed to combine the required expressivity with ease of use. Scripting languages
such as Groovy, Jython, Beanshell, and many others, provide a powerful environ-
ment that accommodates even the most complex problems. Escalating to such a
powerful solution, though, can be costly.

One example of the use of such language support could be the representation of
business domain logic, encoding business rules in a scripting language that can
also be used by non-developers, and which can be treated explicitly by the appli-
cation itself, easing deployment and perhaps providing features like a simple
COTS7 business rule editor.

7. COTS, ‘Component Off the Shelf’ are software components built by a third party organiza-
tion and ready to be employed in software.

c12.fm Page 467 Monday, March 13, 2006 1:25 PM

468 Advanced Issues

1:25 PM 13 March 2006 c12.fm 1.0

12.6 The future of Java GUIs
While authors should always avoid making risky forecasts in a book, some trends
can be recognized in the medium term, at least as regards the technologies avail-
able for Java GUIs.

Infrastructure and utility platforms are expected to flourish, growing more
powerful and providing sophisticated concepts and tools, such as high-level
support, sophisticated composable unit mechanisms, aspect-oriented support,
and the like. While it is unclear whether a fully-fledged market for ‘macro compo-
nents’ will ever gain momentum – paralleling the enterprise world and the history
of J2EE – more powerful application platforms and specialized frameworks are
expected to ease the lives of developers, at least in common scenarios such as rich
client development and form-based GUIs.

The evolution of declarative languages for GUIs discussed in Chapter 11, and
other non-Java based languages such as XHTML 2.0 for form-based GUIs, and
other competing languages, is also interesting. Declarative languages are already
used in conventional Java GUIs, in the form of little languages of greater or lesser
sophistication. The Adaptation pattern discussed in Chapter 6 lends itself natu-
rally to the declarative definition of aspects of GUIs independently of the rest of
the application. Declaring a GUI has several advantages over representing it
procedurally, especially for medium to large applications: it is easier to separate
the various issues and keep them more maintainable, in many cases the resulting
representation is more natural and easier to understand, and reuse is made easier
because of the clearer decomposition.

Perhaps the real issue of non-trivial GUIs built with Java technology lies in the
language issue. OOP scales to very complex scenarios and applications, but at the
price of complexity and manageability. Domain-specific languages and tools
can relieve this burden for such a well-known and circumscribed class of soft-
ware applications, but professional GUIs will always remain complex beasts
that need dedicated, multidisciplinary developers when tackling complex appli-
cation domains and providing usable, cost-effective software for their customers.

Deployment of business rules can also be achieved easily by means of JNLP
technology. By using conventional OOP, instead of adding another level of
complexity to a client application by introducing a script interpreter engine, it
is possible to provide all the required features using the same technology that
is used for initial deployment. Code updates can then be used to patch appli-
cation JAR files with new business rules.

c12.fm Page 468 Monday, March 13, 2006 1:25 PM

Summary 469

1:25 PM 13 March 2006 c12.fm 1.0

As a concrete example, imagine running a poll among developers: would they
prefer to have an XPanel component that provides full XHTML 2.0 form support
à la Eclipse Flat Look – that is, defining complex forms with validation and
binding by means of a standard, XML-based declarative language – or would they
prefer a comprehensive OOP framework that delivers the same high-level
powerful functionality by means of subclassing, API support and the like? My
personal choice would be to give both a try, but in the process the XML-based
language would perhaps be easier to understand and to tweak than a fully-
fledged OOP framework. But this is a personal choice – much lies in the quality of
the implementation and how well it exploits the specific details of the domain.

12.7 Summary
In this chapter we discussed specific design problems and some possible solutions.
We have seen the notion of specialized, high-level attributes for managing complex
data. We discussed some of the issues and possible solutions to the problem of
handling runtime memory in large Java applications. We presented a practical
example of porting a Java program to a new Java configuration, and we also
discussed the use of little languages in our applications. The chapter concluded
with a brief discussion of upcoming innovations in Java GUI technology.

c12.fm Page 469 Monday, March 13, 2006 1:25 PM

c12.fm Page 470 Monday, March 13, 2006 1:25 PM

13 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

This chapter discusses the practical use of Java rich client platforms (RCPs) for
developing desktop application GUIs. The trade-offs between adopting an RCP
infrastructure instead of using a more lightweight infrastructure such as a plain
GUI toolkit plus possibly some support libraries are also covered. An example
RCP application for the Eclipse RCP is included, focusing on its architecture.

The chapter contains the following sections:

13.1, Introduction to Java rich client platforms discusses the main issues involved in
employing an RCP framework to build an application GUI.

13.2, The NetBeans RCP briefly introduces this RCP.

13.3, The Spring RCP provides an overview of the Spring RCP.

13.4, The Eclipse RCP discusses the Eclipse RCP in detail, including its architecture,
windowing infrastructure, and GUI design guidelines.

13.5, Choosing the best RCP for your needs helps in picking the RCP best suited for
your application. A section discusses the general issue of when to adopt an RCP
for a project.

13.6, Legal issues introduces the main license issues related to the adoption of an
RCP.

13.7, An example Eclipse RCP applicationshows a practical implementation of an
application based upon the Eclipse RCP.

13.1 Introduction to Java rich client platforms
An RCP is an infrastructure framework for building medium-to-large desktop
applications. Basing an application on an RCP simplifies development in many
ways, providing structured GUI window support – including high-level widgets
such as dockable windows, utility dialogs, high-level integration for interna-
tionalization and accessibility – coherent GUI guidelines, a common application
environment, and an abundance of utilities, including user preferences, configura-
tion support, and data-driven editors. An RCP can be intuitively thought as of the
analog of an application server for the client side, even if this analogy works only
at a high level, the server side and GUI development being rather different worlds.
Both aim at relieving developers of the responsibility of domain-independent
development, leaving them free to focus on domain-specific development.

Rich Client Platforms

c13.fm Page 471 Thursday, March 9, 2006 2:52 PM

472 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

The slow evolution of RCPs in the Java world compared to application servers
and middleware is due mainly to the unexpected explosive success of the Web,
which has made RCPs appear as ‘dinosaurs from the desktop era’ (as they were
dubbed a couple of years ago). This is no longer true: today’s Java RCPs are
modern, Web-aware platforms that perfectly fit the need for developing cost-
effective, Internet-aware, medium to large desktop application GUIs in Java1.

The case for RCP applications

RCPs are not a panacea, of course. They tend to be costly to learn and even more
time-consuming to master in detail. Employing a RCP is not always a cost-effective
solution. In small projects there is no need to resort to an RCP application, espe-
cially if the developers are not familiar with the technology and deadlines are
tight. Learning an RCP is learning a complex OOP framework, with all the related
issues. Learning an RCP can be seen as an investment for the future, meaningful
in a large project, or over several small ones, that could take advantage of a RCP.
RCPs do provide a number of benefits, such as proven solutions to common prob-
lems, and a higher-level framework than low-level GUI toolkits such as
SWT+JFace or Swing, in which developers can focus on domain-specific code
rather than reinventing the wheel. They also benefit users, because the risk of
producing bizarre or clumsy GUI designs is much lower when using a RCP
framework.

RCPs fit nicely into an iterative development scenario: given their modular struc-
ture, developers are forced to conceive their code in terms of loosely-coupled
components that can be added or updated with newer releases,. This makes it
easy to build an extensible application on top of an RCP, with all the benefits that
this brings.

RCPs are in many ways still focused on their origins: the integrated develop-
ment environment (IDE). General-purpose and useful components – referred to
as ‘modules’ or ‘plug-ins,’ depending on the RCP, are not yet available, such as a
general-purpose security model, or an administrative console and services for
system administrators. However, there are plenty of well-executed CVS clients,
Ant support tools, and sophisticated text-based source editors that are fine if some-
thing like a development environment is to be built, but of little use in the majority
of applications. This is unlikely to be a long-term problem, as a market for RCP
extensions is growing rapidly, along the same lines as the well-established
‘ecosystem’ for IDE extensions.

1. Especially Eclipse RCP, with its native support for integrated browser and its Web-like
form widgets.

c13.fm Page 472 Thursday, March 9, 2006 2:52 PM

Introduction to Java rich client platforms 473

2:52 PM 9 March 2006 c13.fm 1.0

What’s in an RCP

RCP support ranges from high-level GUIs to data models, GUI design and presen-
tation details or, put another way, everything but the domain. Figure 13.1
illustrates the services provided by RCPs using the same functional decomposi-
tion adopted in Chapter 1, in which grayed areas represent the degree of coverage
of the features provided by RCPs. These areas represent what is already provided
for solving most application problems in the specific functional area.

While RCPs provide many features ‘out-of-the-box,’ developers have a certain
degree of freedom in customizing them – for example, presentation graphics are
easier to modify in NetBeans RCP-powered applications than in a GUI built using
the Eclipse RCP. For some domains, though, even the wide array of support
libraries provided by RCPs is not enough, and developers have to resort to specific
solutions, such as domains that require ad-hoc components.

From the diagram in Figure 13.1 it is clear that RCPs can be used as powerful tools
for building client applications using the Domain-Driven Design approach2, in
which complex domains can be represented effectively by assigning all non-
domain concerns to infrastructure components.

2. See (Evans 2004).

Content

P
r
e
s
e
n
t
a
t
i
o
n

B
u
s
i
n
e
s
s

D
o
m
a
i
n

D
a
t
a

I
n
p
u
t
-
O
u
t
p
u
t

Interaction
and Control

Figure 13.1 RCP support organized functionally

c13.fm Page 473 Thursday, March 9, 2006 2:52 PM

474 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

GUI design guidelines and RCPs

Large IDEs built collaboratively by large teams, such as NetBeans and Eclipse,
have precise guidelines for rationalizing their GUI design and smoothing user
interaction. Strict GUI design guidelines become necessary for extensible applica-
tions that need to accommodate many third-party components seamlessly. While
NetBeans fully adopted the Java Look and Feel design guidelines3 (Java L&F
Design Guidelines 2001), Eclipse created its own GUI design guidelines for effec-
tive use of the SWT toolkit.

Clearly, there are no strict rules regarding the adoption of the original platform’s
GUI guidelines in an application, even though all the GUI details and machinery
used by the application will conform to these guidelines, and departing widely
from them could make the overall GUI of an application look awkward.

Conversely, the GUI details of the various widgets and windowing support
employed in large IDEs might not necessarily fit your own project: when in doubt,
the wisest choice is always to avoid using such free solutions in a GUI and to limit
an RCP-powered GUI for simplicity and usability.

SWT and the Eclipse RCP deserve a separate discussion, which is done in Section
13.4., while an example application based on the Eclipse RCP is discussed in
Section 13.7.

13.2 The NetBeans RCP
The NetBeans RCP (NRCP) is a general-purpose platform for building desktop
application GUIs with Java. It is the result of a refactoring of the code originated
in NetBeans, the open source IDE provided by Sun.

NRCP provides roughly the same features as the Eclipse RCP, which is introduced
in Section 13.4. Both RCPs provide a modular architecture for adding new compo-
nents, and provide agile installation bundles, stripped of any unnecessary code4.
The main difference between the two RCPs lies in the GUI toolkit employed:
NRCP uses Swing and related technologies, such as JavaHelp for help support,
while Eclipse RCP uses SWT and JFace, which were built expressly to support the
IDE.

The learning curves differ too: there is a wealth of documentation (both in litera-
ture and on line) for Eclipse-related technologies, but little material regarding
Netbeans RCP. Eclipse also provides many generated template applications that
speed learning of the platform considerably. The NetBeans IDE does provide a
wizard for creating an application based on NCRP.

3. These guidelines were discussed in Chapter 3.
4. The NRCP 4.1 download is 4.41 MB.

c13.fm Page 474 Thursday, March 9, 2006 2:52 PM

The NetBeans RCP 475

2:52 PM 9 March 2006 c13.fm 1.0

The most surprising thing about NRCP is its lack of popularity, despite the fact
that it was around long before the Eclipse RCP. This is perhaps partly due to the
current momentum of SWT technology over Swing. It is a pity, because the set
of features NRCP offers to developers is quite impressive, ranging from window
management, generic data access, scripting support, auto-update, and user
settings management.

Figure 13.2 shows a screenshot of Version 4.1 of the NetBeans IDE, showing some
of the windowing components that are available for NRCP applications. Note the
sliding panel containing a tree on the right-hand side of the screen.

NRCP architecture

NetBeans’ modules, equivalent to Eclipse plug-ins, are components that provide
various functionalities to the NetBeans platform. They are implemented following
the Java standard for extensions that is built into the JAR file definition, as defined
in the JAR MANIFEST.MF file. The modular architecture of NetBeans takes advan-
tage of various Java standards, such the JavaBeans Activation Framework (JAF) for
determining the type of arbitrary data and others.

Rather than a fully modular architecture, current NetBeans organization more
closely resembles a sort of large API-centered ecosystem, in which several complex
APIs interact at a fine level of detail. In the future the architecture of NetBeans

Figure 13.2 NetBeans 4.1 window support

c13.fm Page 475 Thursday, March 9, 2006 2:52 PM

476 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

will probably evolve towards a more componentized approach, following Eclipse’s
architecture.

The API for windowing support is based on the idea of supplying components
to be displayed, which are positioned and rendered as decided by the plat-
form’s window management system. All components are subclasses of the
org.openide.windows.TopComponent class, which provide methods for basic
GUI management, such as activating the component view, opening it, and so on,
in a high-level fashion.

13.3 The Spring RCP
The Spring RCP is a framework built on top of Swing to support the construction
of medium to large client applications. The Spring RCP is still in its early stages of
development5 compared with both NetBeans and Eclipse RCPs. In contrast to the
latter two RCPs, the Spring RCP is not the result of refactoring the implementation
of an existing IDE, so its features don’t include those typical of development-
oriented tools, such as version control and advanced text editor support.

Perhaps the strongest point of the Spring RCP over the other RCPs lies in its
coupling with server-side Spring applications, both in its coding approach and
runtime object communication. The Spring RCP project focuses on providing ‘an
elegant way to build highly-configurable, GUI-standards-following Swing appli-
cations faster by leveraging the Spring Framework and a rich library of UI
factories and support classes6.’ This means that developers familiar with the tradi-
tional Spring server application framework’s ‘elegant’ implementation style (a
popular mix of inversion of control7 and aspect-oriented programming8) can apply
the same approach to client applications.

It is too soon to say whether the independent efforts of both NetBeans and Eclipse
RCPs will be able to provide the same level of quality over the same array of
features that these two projects already provide. Nevertheless, the Spring RCP
takes an interesting approach that has already proved popular among Java devel-
opers building server applications.

5. At the time of writing (late 2005) the framework is still in alpha, so there is little practical
utility in discussing such an early product in detail.

6. Taken from the Spring RCP Web site, http://www.springframework.org/spring-rcp
7. Inversion of control, or its Spring-specific variant known as ‘dependency injection’ are

techniques for reversing the traditional flow of control in which client code invokes server
code directly, by making server code invoke callback methods in client code. The depen-
dency inversion principle is described in Chapter 7 – see page 358.

8. Aspect-oriented programming (AOP) is an approach to programming (which happens to
complement OOP nicely) to express different behaviors in a program in a more effective
and modular way.

c13.fm Page 476 Thursday, March 9, 2006 2:52 PM

The Eclipse RCP 477

2:52 PM 9 March 2006 c13.fm 1.0

13.4 The Eclipse RCP
The Eclipse RCP (ERCP) grew out of the standard Eclipse project when it became
clear that much of the work spent in building the various parts of Eclipse could
also be used for building general applications, following the example of
NetBeans. In fact, Eclipse itself can now be thought of as a specific application for
software development built using the ERCP.

This apparently simple refactoring was due mainly to the high quality of Eclipse’s
design and plug-in architecture, which allows for a clear decomposition of code
into separate units. Something described as ‘applies to Eclipse’ in this section
means that is applicable to the ERCP as well.

Eclipse plug-in architecture

In Eclipse plug-ins are loaded in their own class loader. Given the rules of visi-
bility for Java class loaders, plug-ins cannot access other classes or resources
loaded from other plug-ins. The basic interoperability mechanism among plug-
ins is provided by extension points that define how a given plug-in can be extended
by other plug-ins and, symmetrically, by providing extensions to other plug-ins
by extending their extension points. The details are declared in the plugin.xml
manifest file for that plug-in.

Extension points can be used to override the default behavior of a plug-in, or for
example to group related elements in the GUI, such as grouping commands in a
common point in the GUI. Every component in an ERCP ‘ecosystem’ is defined in
this way, apart from the importing of Java packages from another plug-in,
achieved by means of the specific requires attribute in the plugin.xml file. At
start-up the platform scans the plugin.xml declarations, creating an in-memory
registry of all available plug-ins, although they are loaded only when needed by
another plug-in.

The following (simplified) plugin.xml file defines an application launched
through the class com.marinilli.Application, containing only one command:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin>
 <extension
 id="application"
 point="org.eclipse.core.runtime.applications">
 <application>
 <run
 class="com.marinilli.Application">
 </run>
 </application>
 </extension>
 <extension

c13.fm Page 477 Thursday, March 9, 2006 2:52 PM

478 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

 point="org.eclipse.ui.commands">
 <category
 name="Save"
 id="app.category">
 </category>
 </extension>
</plugin>

From Eclipse 3.0 plug-ins can be added and removed (with certain restrictions) at
runtime as well as at deployment time, the former being referred to as dynamic
plug-ins. From Eclipse 3.1, some kernel support is factored out of the plugin.xml
file into OSGI’s MANIFEST.MF.

Eclipse RCP plug-ins

The Eclipse RCP can be defined as the minimum set of Eclipse plug-ins that can
be used to build an application using the Eclipse ‘bare-bones’ infrastructure. Only
two items are necessary:

• The Eclipse runtime plug-ins, which is comprised of three plug-ins,
including the OSGI9 kernel implementation.

• The GUI support, composed of three distinct layers: the SWT library, with
some native auxiliary code at the lower level, the JFace library for data-
driven support to SWT, and the workbench support for detachable windows,
dialogs, and so on.

A downloaded RCP installation from the Eclipse Web also contains other auxil-
iary plug-ins that are needed for file-related chores such as XML and various other
infrastructure support. Auxiliary plug-ins can be omitted to further decrease the
installation bundle size.

This set of plug-ins is the minimum set. Clearly SWT can be used without any
other plug-ins, so that GUIs can be built using this toolkit without using ERCP at
all, as discussed in Chapter 11. The ERCP 3.1 bundle for Windows is 5.80 MB to
downloaded and 8.38 MB unzipped, excluding JRE.

Figure 13.3 shows the main plug-ins organized in a layered fashion. Plug-ins
shown with dashed borders are optional.

9. The Open Services Gateway Initiative (OSGI) is an industry group responsible for defining
an open standard for component interoperability: see http://www.osgi.org for more
details.

c13.fm Page 478 Thursday, March 9, 2006 2:52 PM

The Eclipse RCP 479

2:52 PM 9 March 2006 c13.fm 1.0

As the figure shows, the main plug-ins in ERCP are the OSGI Runtime and the
user-interface support items – SWT, JFace, and the Workbench plug-in. All other
plug-ins can be optionally used in building an application.

The plug-in component model in Eclipse 3.1 is powerful and effective, allowing
the creation of very rich component ‘ecosystems,’ a thousand or more plug-ins in
some installations. It does still lack the features mentioned previously, however: a
sound security model that provides various levels of security, managing trusted
and non-trusted plug-ins, sandboxing10 non-signed plug-ins, and so on.

The workbench – the building blocks of ERCP GUIs

The Eclipse workbench, consisting of the Eclipse main window and its structure,
can be reused in ECRP applications. Eclipse developers are familiar with its orga-
nization, shown in Figure 13.4.

10. Sandboxing is a technique for containing code execution within predefined rules. It is used
for example in the code managed in the applet container, and also for Java Web Start appli-
cations. For example, an unsigned (untrusted) Java applet cannot access the local file
system.

Figure 13.3 Eclipse layers

c13.fm Page 479 Thursday, March 9, 2006 2:52 PM

480 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

The term ‘workbench’ usually indicates the set of classes and visual components
that implement the Eclipse GUI structure, and that are also used for ERCP
applications.

The main parts of the workbench are:

• Windows. It is possible to open several windows on the same workbench.

• Pages are containers for the current perspective, and are used mainly for
implementation purposes.

• Perspectives are organizations of views, editors, and actions within a window.
By customizing views, editors, and actions using a perspective, GUI
designers can optimize the same components and commands for different
tasks, thus creating more productive and task-centered GUIs.

• Editors are areas of a window devoted to information manipulation. In
complex GUIs, such as Eclipse itself, editors are the main focus of the user
interaction after the data to work on has been selected using a suitable
exploration view, so they occupy a central position within the window
layout.

Figure 13.4 The Eclipse workbench

c13.fm Page 480 Thursday, March 9, 2006 2:52 PM

The Eclipse RCP 481

2:52 PM 9 March 2006 c13.fm 1.0

• Views are the window areas other than editors. Views are used for exploring
and selecting data, for showing properties, or other auxiliary information.
Depending on the kind of application you are building you will use one or
more views to organize results, select data, and so on.

These entities are related as shown in the following UML class diagram, which
represents relationships among concepts, rather than the real Java implementa-
tion in ERCP. See Figure 13.5.

The workbench’s windowing organization, despite initially being intended for
IDE applications only, is highly flexible and can be adapted to a wide range of
different scenarios. Figure 13.6, for example, shows a workbench instance for the
Azureus application, a client for the BitTorrent file sharing protocol, which was
built with ERCP. The main window is implemented using only ERCP workbench
views, organized in a fixed layout.

The ERCP plug-in architecture and the workbench support together provide a
powerful mechanism for implementing composable units11. Despite the visual
composition of loosely-coupled GUI-based components being supported only at
the rather coarse-grained level of composing views and editors within a perspec-
tive, it is also possible to define plug-ins that participate in the composition of a
single view or editor.

11. See Chapter 6.

Figure 13.5 Eclipse workbench structure

c13.fm Page 481 Thursday, March 9, 2006 2:52 PM

482 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

GUI design guidelines for ERCP applications

This section gives GUI design guidelines for the Eclipse IDE12 annotated with the
related rule numbers. Basically, these guidelines can be summarized as ‘Follow
what the Eclipse IDE does.’

Views, editors, and perspectives in Eclipse should conform to the following rules:

• Views are used to navigate a hierarchy of information, open an editor, or
display the properties of an object (7.1). Commit in views must be done in
immediate mode (7.2) while in editors commit is achieved in deferred mode –
that is to say, data in views in saved immediately, while in editors it is saved
only by means of an user action such as ‘Save.’

• Editors are used to edit or browse a file, document, or other primary content.
Only one instance of an editor may exist for each editor input within a
perspective, but different input can be opened in separate editor instances.

• Perspectives should be created for long-lived tasks that involve the perfor-
mance of smaller, non-modal tasks (8.1). When only one or two views need to
be shown, it is suggested to extend an existing perspective type, rather than
create a new one (8.2).

Figure 13.6 An ERCP-based workbench example

12. Available at http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html.

c13.fm Page 482 Thursday, March 9, 2006 2:52 PM

Choosing the best RCP for your needs 483

2:52 PM 9 March 2006 c13.fm 1.0

The following is a brief list of other details from the GUI design guidelines for
Eclipse, with the relevant rule numbers in parenthesis:

• Use capitalization (1.5, 1.6) in text with headline style for menus, tooltips, titles
of windows, dialogs, tabs, column headings, and push buttons. Capitalize the
first and last words, and all nouns, pronouns, adjectives, verbs, and adverbs.
Do not include ending punctuation. Use capitalization of the first word (and
any proper names) only for all labels in dialogs or windows, including those
for check boxes, radio buttons, group labels, and simple text fields.

• Error handling (1.8). When an error occurs that requires either an explicit
user input or immediate attention from users, communicate the occurrence
with a modal dialog.

• Icons. There are eight different types of icons used in Eclipse, and new icons
should use the standard color palette provided by IBM (with a separate
palette for wizard icons). The guidelines also prescribe file naming and direc-
tory structure for placing icons.

• Object properties should be placed in a view (the Properties view) when they
can be calculated quickly, otherwise they should be placed in a dialog.

• Preferences. Global preferences are handled in a common Preferences dialog
(15.1). Local preferences, such as those related to single views or editors,
should be handled locally. Use the root page in the Preferences dialog for
frequently-used preferences, or those preferences that have widespread
effect. The root preference page should not be blank (15.4).

• Use Flat Look design for user scenarios that involve extensive property and
configuration editing (16.1).

The native twist

As long as an application is close to the Eclipse IDE in concept (or ideally is one of
its plug-ins) it is safe to follow the guidelines introduced above. Things start to
become blurred when the GUI design of an application departs from the original
IDE concept.

Because of SWT’s ‘native’ nature, it is possible instead to use OS-specific guide-
lines, such as the Windows GUI design guidelines. While this limits cross-
platform portability, it may make sense when there is only a need to target a single
platform. In such cases working directly with the native platform GUI design
style is the best solution.

13.5 Choosing the best RCP for your needs
So far we have described the three main open source RCPs available to Java devel-
opers for building medium- to large-scale applications. These provide roughly the

c13.fm Page 483 Thursday, March 9, 2006 2:52 PM

484 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

same features – Netbeans and the Eclipse RCP, in particular, have very similar
functionalities. What differs is the level of documentation and the community
base supporting them, and perhaps more importantly, the underlying GUI toolkit
used.

With the constant refinement of open source RCPs, GUI development for all but
trivial Java GUIs has changed dramatically. Apart from specific application
domains, RCPs can be used in a wide range of scenarios and business domains.
Gone are the days when the knowledge of the GUI toolkit alone was enough to
build GUIs – expensively, and sometimes with poor results. In the author’s
opinion, RCPs should be taught in university courses along with GUI toolkits,
both as a practical means of building GUIs, and as an example of current indus-
trial practice in constructing large applications13.

A potential problem in adopting an RCP instead of a more lightweight solution
such as the SWT/Swing toolkit and a GUI support library lies in the comprehen-
sive nature of RCP frameworks. RCP frameworks tend to have an ‘all-or-nothing’
effect on development. Before attempting a solution to a given problem, devel-
opers using an RCP should first focus on the way the RCP handles that situation,
and follow that design, instead of providing their own solution that might not
work. This requires time-consuming learning that goes beyond a mere study of
the documentation, otherwise problems could manifest themselves later in
development.

Ultimately every RCP fits a specific purpose. Spring RCP is aimed at developers
familiar with Swing and the Spring framework. NetBeans RCP addresses the
needs of the Swing community at large, while applications based on the Eclipse
RCP are shaped by the SWT toolkit14.

When deciding which RCP to adopt in a new project, if any, perhaps the most
important point lies in the choice of the GUI toolkit – that is, in the choice between
Swing and SWT. Other details such as documentation and support, the avail-
ability of a strong developer community, and the other factors discussed for tool
selection in Chapter 11, all shape a final decision. For general documentation and
practical support for the generation of plug-ins, ERCP is currently preferable to
the NRCP, but this may possibly change in future.

When to employ an RCP

When should one consider using an RCP for a small project? How small does a
project have to be not to warrant an RCP?

13. The Eclipse RCP seems the best suited to this from an architectural viewpoint.
14. Although it is still possible to use Swing, as discussed in Chapter 11.

c13.fm Page 484 Thursday, March 9, 2006 2:52 PM

Legal issues 485

2:52 PM 9 March 2006 c13.fm 1.0

Answering these questions involves knowledge of many details, such as the
developers’ previous knowledge of the platform, the schedule for the planned
releases, the future maintenance and extension plan for the application, and so on.
As a rule of thumb, building more than eight screens, or the need to actively main-
tain an application for more than six months, justifies the adoption of an RCP,
given that the time to learn it and the other constraints, such as the type of appli-
cation and the domain fit with an RCP, are satisfied. These are just rough rules of
thumb that should be customized to each case – each project has its own peculiar-
ities, and a universal set of rules is not practical.

In conclusion, learning an RCP or adapting it in a medium to large project can be
seen as a form of long-term investment. Even if both NetBeans or Eclipse disap-
pear in the near future, their source code is public, so that they still remain a viable
choice even for long-term projects. As regards cost and their competitiveness with
other similar frameworks, much remains to be done in enhancing ease of use,
documentation, code generation facilities, and other means of lowering the initial
adoption cost. In this respect, NetBeans needs to catch up with Eclipse.

13.6 Legal issues
You might think that all this discussion of RCPs sounds interesting, and perhaps
also useful, but what about the small print on the license page? What are the legal
constraints over use of an RCP as part of a commercial product, or in some other
form? Here is a brief overview, but for definitive information on such delicate
issues, you should refer to the licenses themselves.

Eclipse

The Eclipse Public License (EPL) evolved from the Common Public License (CPL)
created by IBM ‘to encourage a model in which commercial products could be
based on open-source efforts15.’ The EPL differs from the CPL in a few details,
such as a specific, less restrictive treatment of software patents16. Here is a brief
summary of the key points in the EPL: a contributor is a person or organization that
creates the initial code under EPL, or who originates changes or additions, or who
distributes the code under the EPL:

• Only mere distributors can be anonymous, all other contributors cannot.

• Contributors creating ‘modules’ that use or modify existing EPL code can
distribute the final result under their own terms, as long as the portion of the

15. From A history of IBM's open-source involvement and strategy, IBM Systems Journal, July
2005. Available on line.

16. For more details, see http://www.eclipse.org/legal/index.php.

c13.fm Page 485 Thursday, March 9, 2006 2:52 PM

486 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

derivative work under the EPL license is still acknowledged under an EPL-
compatible license. This clause causes incompatibility of EPL/CPL with a
popular OSS license, GPL17. Contrary to the EPL, extending/modifying code
licensed with the GPL forces the derivative product to be licensed under
GPL.

• Contributors can compile code licensed under the EPL and distribute it
commercially under EPL terms.

• Contributors that modify EPL code but don’t distribute it, perhaps for
internal use, are not obliged to make their modifications available to others.

Some problems might arise if for example you plan to use GPL-licensed code with
code licensed under the EPL, because these licenses are incompatible. You can
refer to the Free Software Foundation license page for more details18.

Netbeans

NetBeans is covered by the Sun Public License19 (SPL), which is a variant of the
Mozilla Public License. Both of them are ‘free software’ licenses, in that they
envisage software as a free artifact to which contributors are free to make modifi-
cations and use them privately, or distribute changes, without specific
permissions apart from those prescribed in the license itself. This doesn’t mean
that versions of so-called ‘free software’ cannot be distributed commercially –
license terms for ‘free software’ can still be enforced under copyright law.

Given its distribution philosophy, the SPL is not compatible with the GPL. For
more details, the reader is urged to consult the SPL text.

In conclusion, ERCP, NRCP, and Spring RCP allow commercial products to be
built on top of their platforms provided that legal information is provided when
the application is downloaded, and that the legal requirements dictated by the
various licenses are satisfied.

13.7 An example Eclipse RCP application
In this section we discuss a practical example of an application built on top of
ERCP. Given the number of examples freely available on line or discussed in other
books, we will focus on the architecture of the application and on its high-level
GUI design aspects.You can download the code and try the application yourself.

17. The GNU General Public License (GPL). For details, see: http://www.gnu.org/licenses/
gpl.html.

18. Available at: http://www.fsf.org/licensing/licenses/index_html.
19. Details available at: http://www.netbeans.org/about/legal/license.html.

c13.fm Page 486 Thursday, March 9, 2006 2:52 PM

An example Eclipse RCP application 487

2:52 PM 9 March 2006 c13.fm 1.0

To install the code of the example application, you need to:

i. Download the freely-available RCP distribution from the Eclipse Web site.
ii. Download the bundle code for this chapter.
iii. Copy the contents of the features and plugins directories into the same

directories as in the RCP directory (this procedure is also valid also for
installing Eclipse plug-ins).

iv. Copy the .ini file of your platform (Windows, Mac, GTK), renamed as
config.ini into the ERCP’s configuration directory, to replace the exist-
ing file of that name.

The application

Snooper is a demo application for gathering data about people. You may have seen
this kind of application at work in many movies or TV shows, where detectives or
secret agents type in the name of some bad character and everything about him is
magically discovered, from his driving license number to his favorite brand of shoe.

Despite the fact that such an application would be on the edge of legality on
grounds of personal data management, privacy, national security, and so on, at
least in some countries, our management has decided that this is the ultimate high-
margin market, so we are asked to provide an initial release in three months time.

We decide to use ERCP because it provides us with a robust and powerful plat-
form that can host future extensions, such as specialized searches, access to
specific databases, facial image processing, and all that fancy spy story stuff, and
it only needs to be available on the major OS platforms.

We would like to make the application available in a modular fashion, so that
premium customers can buy extra modules for more sophisticated research.

You will be disappointed to hear that the implementation provided with this
chapter doesn’t connect to a Pentagon database – for security reasons – but, more
humbly, to free resources available on the Web. Figure 13.7 shows the application
with the Amazon search service loaded.

The main interaction we design for the application in Figure 13.7 is as follows:

1. The user selects an individual from a persistent list, or creates a new person
as needed.

2. Selecting a person populates the other views with data about the selected
individual. For search views, or other calculated views, if the search button is
not used, nothing is displayed. When the button is clicked, the search process
starts for all the registered search providers (that is, all plug-ins loaded at
deployment time). For simplicity, no ‘stop search’ action has been provided.

3. Previously-launched searches, if not refreshed, show old data.

c13.fm Page 487 Thursday, March 9, 2006 2:52 PM

488 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

The first release of the application is a little vapid, in that you only get material
such as published books and data from standard Web sites, but it nevertheless
provides an interesting example of a simple ERCP application.

The GUI design of the application is organized as follows:

• We use ERCP views to represent all data managed within the application. We
don’t need editors because of the nature of the application: all data input is
performed in immediate mode – see GUI design guidelines for ERCP applica-
tions on page 482.

• Every module provides one or more views for user interaction.

• View capabilities are related to domain-specific issues, as will be shown later.

Building the application using modules provides many advantages, such as an
easier iterative development environment – we can add more features later
without modifying the core components – flexibility and extensibility, the possi-
bility of more powerful billing and licensing schemes, and clearer organization of
the development teams.

Figure 13.7 The Snooper application

c13.fm Page 488 Thursday, March 9, 2006 2:52 PM

An example Eclipse RCP application 489

2:52 PM 9 March 2006 c13.fm 1.0

The code provided shows many useful tricks, such as splash screen, a localized
‘About’ dialog (Figure 13.8), OS-dependent system tray support (Figure 13.9), and
others. See the code bundle for this chapter for more details.

The remainder of this section focuses on the architecture of ERCP applications,
and how to employ its plug-in architecture usefully.

Introducing client-side modular architectures

This section introduces general issues about the modular architecture of RCP
applications that are based upon a plug-in architecture, whether the Eclipse RCP,
NetBeans RCP, or other plug-in support frameworks. These general points are
then illustrated in the context of the Snooper application in the next section.

Plug-ins and pomegranate seeds

Most people find pomegranates tedious to eat. One needs a lot of patience to deal
with the inner intricacies of a pomegranate, so it comes as no surprise that such
fruits are not as popular as, say, peaches. Working with ERCP is much like eating
pomegranates. You have no choice but to deal with its ‘seeds’ one by one, because
much like a pomegranate, the bulk of an ERCP application is all in the seeds
themselves.

Figure 13.8 Bells and whistles in Snooper

Figure 13.9 The system tray support for Windows

c13.fm Page 489 Thursday, March 9, 2006 2:52 PM

490 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

Learning to deal with plug-ins is tedious and time-consuming, despite what the
IBM marketing department may claim. Mastering the subtleties of the OSGI mani-
fest or the flow of control during the platform start-up20 takes substantial time that
detracts from that available for, say, a thoughtful componentization of the various
plug-ins with which an application is to be implemented.

No wonder that few developers find the time, or are willing to see the ERCP plug-
in architecture (or NetBeans’) as an opportunity for fine, useful design, rather than
as a necessary hindrance on the route to the next release of their application.

Packing everything into one or two big plug-ins and using the plug-in architec-
ture only as a necessary means of integration of code with the rest of the ERCP
framework is a valid strategy for delivering small applications quickly. Unfortu-
nately, even for small- to medium-scale applications, the application’s structure
tends to degrade quickly as maintenance and code additions are performed
during the application’s lifecycle. A sound modular structure becomes a serious
concern in medium to large RCP applications and where long-term maintenance
is an issue.

The next section illustrates a simple approach to using the plug-in architecture in
ERCP and in other frameworks for building modular RCP applications, but first,
a brief introduction to software components.

Pomegranate seeds and software components

The use of the term ‘software component’ when talking about loosely-coupled
modules that execute on a client-side application is a little misleading. The defini-
tion of a software component is still controversial: many different approaches at
various levels of granularity, and focusing on different application scenarios and
business domains, all define themselves as ‘components,’ such as J2EE EJB, .NET
components, JavaBeans, CORBA, and COM components. All these approaches
share two characteristics:

• They focus on writing software units that comply with a given specification.

• Such units may be reusable in other contexts21.

Clearly we are interested in a smaller subset of the characteristics of enterprise
and distributed software components. For example, GUI aspects are extremely
important for us, while remoting capabilities are not, as our ‘components’ all
reside in the same RCP instance. For these reasons, and also because we used the
term ‘component’ throughout the book when referring to aggregates of basic

20. Sooner or later you need to face such details unless you can maintain your plug-in as a
carbon copy of those automatically generated by Eclipse PDE (Plug-in Development Envi-
ronment) wizards.

21. For more details. see for example: http://en.wikipedia.org/wiki/Software_component

c13.fm Page 490 Thursday, March 9, 2006 2:52 PM

An example Eclipse RCP application 491

2:52 PM 9 March 2006 c13.fm 1.0

widgets (that is, visual components), we will give our components the more
specific term of module.

To the Java programmer, components tend to resemble Java packages, as they can
be used to group elements into logical structures. Clearly components go beyond
mere structuring of multiple classes, providing a semantically-rich grouping
mechanism that discreetly takes advantage of the theoretical underpinnings of
object orientation – encapsulation, self-containment, loose coupling, and so on.

Figure 13.10 introduces UML2 component diagrams, which we will use here even
though we are not discussing fully-fledged software components. The diagram
uses the UML2 feature of visual stereotypes to represent components.

In the diagram Component B exposes one interface to the outside, while using the
interfaces provided by Component A and Component C. Component A requires
an interface (a set of services) that is provided by B, so Component B provides
the services Component A requires. The ‘lollipop’ icon expresses an interface a
component is providing to other components, while the half circle represents a
required interface.

A standard specification for a component model on the client side of Java
applications would give a great boost to medium to large GUIs in Java, espe-
cially for enterprise-level GUIs such as business-critical applications, ERP, or
financial software. Unfortunately, the availability of two major GUI toolkits,
and specifications such as JSF, make things more difficult for the creation of an
effective standard for client-side components. But a closer look suggests that
such apparent difficulties in fact represent strengths that such a specification
could leverage.

<<requires>>

Component A

Component B Component C

Figure 13.10 An example component diagram

c13.fm Page 491 Thursday, March 9, 2006 2:52 PM

492 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

Designing modular RCP applications

Plug-ins therefore interact mainly by exposing interfaces to other plug-ins
through extension points and by providing extensions to existing interfaces (that
is, extension points from other plug-ins). In a modular mindset like that briefly
introduced above, some guidelines can be defined:

• A module in a GUI-focused RCP should be fully self-contained: it has to
include its own GUI, typically as a number of views or editors, as well as
actions, help support, business domain classes, and so on, and it should also
contain everything needed for its own build: sources, resource files, test
cases, and the like.

• A module should be designed and made to interact with other modules only
by means of the underlying RCP architecture. When using Eclipse this is
accomplished by means of its plug-in architecture and, as a general design
guideline, by providing one module per plug-in. Despite the fact that this 1:1
mapping could seem limiting in some situations (such as large modules) it
provides a general, simple, and practical rule of thumb.

• Modules represent either business domain concepts or services. Two
commonly-used service modules are the Frame module, a base infrastructure
module providing framework support to all other modules, and optionally
the Main module, which glues together all other modules and launches the
application22.

These guidelines build on the existing RCP infrastructure, and also apply to RCPs
other than ERCP.

Here we take a more humble approach than that of designing general software
components. For example, reuse is a secondary concern in our approach, which
focuses on enhancing software design, development, and maintenance of
medium and large RCP applications. Modules are a means of rationalizing and
raising the abstraction level in the development of an RCP application.

The Snooper application architecture

The Snooper RCP application is designed around four modules:

• The People module handles:

– The management of a collection of individuals, shown on the left-hand
side of Figure 13.11.

22. In simple applications the one module that has the best fit semantically with the applica-
tion’s purpose can work as the main module, glue together all other modules, and launch
the whole application.

c13.fm Page 492 Thursday, March 9, 2006 2:52 PM

An example Eclipse RCP application 493

2:52 PM 9 March 2006 c13.fm 1.0

– The currently-selected person, shown in the Person view in Figure 13.11.
– The list of specialized searches for the selected person on a set of search

Web sites, the Web Resources view at the bottom right-hand side of
Figure 13.11.

• The AmazonSearch module, which provides search management specialized
for the Amazon site. This is shown in the Amazon.com Search Results view
in Figure 13.11.

• The Main module, which glues together the other plug-ins in order to run the
application.

• The Frame module, which provides common support services to all the
plug-ins.

Figure 13.11 shows the ERCP views provided by the various plug-ins in the
architecture. References to the underlying platform (org.eclipse.ui and
org.eclipse.core.runtime plug-ins) are excluded for brevity.

Figure 13.11 Component diagram of the Snooper application

c13.fm Page 493 Thursday, March 9, 2006 2:52 PM

494 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

The two business domain modules both extend the window support provided by
ERCP and provide their own specific interfaces. More specifically:

• The People module provides three Eclipse views (Person, People List, and
Web Resources) and an extension point useful for attaching customized
searches. The People module depends only on the Frame module.

• The AmazonSearch module provides one Eclipse view, Search Results, and
extends the People module’s extension point for implementing searches on
the selected person provided by the People plug-in.

For usability reasons the views are designed so that:

• The collection of people cannot be moved or closed, and its location is fixed
on the left-hand side of the main window. This view works as the exploration
area where the subject for searches is selected.

• The Person view cannot be closed, but it can be moved and docked as
required within the main window.

• The other views can all be closed or docked as required in the main window.

This arrangement is just one possible solution: the same application could be
partitioned into a different set of plug-ins. More importantly, the design is far from
perfect. It should be seen as the first version in an iterative development, in which
imperfections are tolerated for the sake of simplicity.

In this example, creating half a dozen almost-empty modules to anticipate their
use in future releases could be a mistake, because it entails the costs of creating the
modules without any functional added value. This design is also imperfect in that
it centralizes too many responsibilities in the People module, which could well be
split into two or three separate modules in a subsequent iteration. For example,
the Web Resources view should be a separate search provider, while People will
remain as a collection of Person instances, with Person possibly a separate
module with its own view, and so on.

Figure 13.12 shows an UML2 component diagram that illustrates the organization
of the plug-ins used in Snooper.

The modules in the figure are organized in a layered scheme to aid comprehen-
sion. The lowest layer, shown at the bottom of the diagram, is composed of the
Frame module. Business modules are represented in the middle, while the top-
most module depends implicitly or explicitly on all the modules below it. Note
that People provides the extension point for the various search providers
currently installed, currently extended only by the AmazonSearch module.

c13.fm Page 494 Thursday, March 9, 2006 2:52 PM

An example Eclipse RCP application 495

2:52 PM 9 March 2006 c13.fm 1.0

The People plug-in exposes the extension point for registering external search
providers, as shown in its plugin.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin>
 <extension-point id="peopleSearch" name="peopleSearch"
schema="schema/people.exsd"/>
…

The people.exsd schema file describes the details of the extension point
provided. The AmazonSearch plug-in extends such an extension point, declaring
it in its plugin.xml file and implementing the corresponding interface shown in
the following section of code:

package com.marinilli.b1.c13.snooper.search;
import com.marinilli.b1.c13.snooper.model.Person;
public interface ISearchProvider {

public void launchSearch(Person p);
}

Whenever the Search button is clicked in the GUI, all the registered search plug-
ins are requested to start a new search using the currently-selected person. This
mechanism is implemented by the People plug-in, invoking the launchSearch()
method on all registered plug-ins.

Figure 13.12 Component diagram of the Snooper application

c13.fm Page 495 Thursday, March 9, 2006 2:52 PM

496 Rich Client Platforms

2:52 PM 9 March 2006 c13.fm 1.0

13.8 Summary
This chapter introduced the main RCPs currently available to Java developers,
briefly discussing their characteristics. It then focused on the Eclipse RCP,
providing an example application that illustrates the many options available to
developers. The example is also useful to focus discussions of general design
strategies for medium- to large-scale desktop application GUIs built on top of a
Java RCP, using the Eclipse RCP as a practical example.

c13.fm Page 496 Thursday, March 9, 2006 2:52 PM

14 The Personal Portfolio
Application

1:33 PM 13 March 2006 c14.fm 1.0

In this chapter we will look at a complete application that covers all the important
issues in professional GUI design and subsequent development – or, better, two
distinct designs and implementations that solve the same needs. The application
has been developed from scratch for this chapter. Although the scenario for which
it is designed is totally fictional, it was chosen for its resemblance to real-world
situations, especially in the common problems it addresses. The demo applica-
tions are available for download together with the source code for the book. The
scenario is introduced with the first implementation: an alternative approach is
discussed later in the chapter.

14.1 The scenario
A publisher of scientific and technical material maintains a large document repos-
itory that is constantly growing with the addition of new documents from
disparate authors – books, scientific papers, conference proceedings, technical
articles, and so on. The repository is accessed by subscription via a Web interface,
and is known as the Personal Portfolio application.

One category of users find the GUI rather poor. Librarians, who use the reposi-
tory intensively, as well as editors and other frequent users, are unhappy with
the current browser-based interface, in that it offers limited functionality, and
performing advanced and repetitive searches on the repository is extremely
time-consuming. Furthermore, the publishers are considering launching new
advanced services such as specialized news streaming, personalized e-learning
content, P2P-based information dissemination, and more.

An engineering task force has been set up to address the issue. The objective is to
come up with an initial working prototype of a new GUI within three months. The
whole project is focused on addressing power users and their needs, while
creating a platform to which to add future advanced services.

After informal interviews with representative users and within the publisher’s
engineering branch, the landscape became clearer:

• The old Web-based GUI was adequate for average and non-repetitive users,
while repetitive users – for example, those who access the system more than
once in a day – need a ‘geared-up’ search facility.

The Personal Portfolio Application

c14.fm Page 497 Monday, March 13, 2006 1:34 PM

498 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

• Despite the fact that the repository is accessed by thousands of subscribers
world-wide, power users who demanded an advanced GUI were limited to
roughly a hundred people scattered around the world.

• Repetitive, power users were generally enthusiastic about the project and
willing to collaborate in its development. A group of such user representa-
tives was formed to investigate the new GUI, together with people from the
publisher’s organization. Another, larger, group of expert users was formed
for early testing of the prototype.

• The new GUI needs to be made expandable to handle sophisticated services,
which will be tested within the power user community. This will give the
publisher a privileged channel for testing new services, and in the medium to
long term, an edge over their competitors.

• The whole project will not affect the existing GUI and the well-established
Web repository site, but will instead be organized separately.

• After an initial start-up phase, during which a preliminary prototype with
some limited functionality will be tested within the power user community,
the project will eventually evolve into a new, stable service for advanced
users. Such a service will provide early access to new features.

That is the setting. Unfortunately, nobody in the engineering team discovered this
book, and this chapter in particular…

This development scenario is representative of a type of project that includes the
following characteristics:

• A complex, professional GUI needs to be developed within a relatively tight
timescale.

• Regardless of the inherently distributed nature of the problem, traditional
HTML-base Web-based interfaces cannot satisfactorily be employed.

• The focus is on quality, even if constrained by time-to-market and develop-
ment cost-effectiveness, just like any other real-world software project.

• Despite a small set of users being located geographically close enough for
some preliminary meetings, the test group and the remaining user popula-
tion is physically out of the reach of the development team. This poses some
interesting organizational and technical problems.

A note on lifecycle models

This chapter follows the Rational Unified Process software lifecycle model and
terminology. We introduced this model in Chapter 1: for convenience here we
highlight the phases of the process only. For more details on UML and the
Rational Unified Process, see for example (Fowler 2003) or (Rosenberg and Scott
1999).

c14.fm Page 498 Monday, March 13, 2006 1:34 PM

Analysis 499

1:33 PM 13 March 2006 c14.fm 1.0

The main phases of the software lifecycle according to the RUP model are illus-
trated in Figure 14.1.

For brevity we will only briefly touch on all the details of each phase – see
Figure 14.2: we discuss the software architecture in some detail, as well as the
final source code. The deployment, an important part of the whole engineering
scenario, is also briefly discussed.

Management and other issues, such as the business case, evaluation and change
control are glossed over, the focus being only on technical details.

14.2 Analysis
The project team started the analysis activity, following the RUP approach.

Early analysis

The core design group of users was chosen from those geographically close to the
development team, to speed up the initial design, while the test user group was
set up to cover people from different countries to test the prototypes extensively.

Figure 14.1 The phases and milestones of an RUP project

Figure 14.2 RUP phases covered in this example

c14.fm Page 499 Monday, March 13, 2006 1:34 PM

500 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

These groups were formed taking care to select a representative set of the user
population. Parameters like geography, culture, role in the end user population,
background computing skills, platform used, and so on were all taken into
account.

Figure 14.3 shows an initial use case diagram representing the use cases obtained
from an initial analysis.

Two actors were considered: the end user (a human) and the repository server (a
server machine). From this early analysis seven use cases were elicited, as shown
in Figure 14.3. Prior to refining the use case diagram, the intent needs to be better
defined, by means of a vision document.

Figure 14.3 An initial use case diagram

c14.fm Page 500 Monday, March 13, 2006 1:34 PM

Analysis 501

1:33 PM 13 March 2006 c14.fm 1.0

The vision

Before getting into the analysis phase in details, it’s important to focus on the
philosophy behind the product and its clear-cut definition. This focus is a typical
RUP concept – that of a clear ‘vision’ of the product being developed that meets
stakeholders’ real needs.

In the publisher’s situation, the vision is focused around the notion of a personal
document portfolio that manages document searches and found documents on
behalf of the user. More generally, however, the vision document should fulfill the
following requirements:

• State the problem(s) that the application will solve.

• Define the stakeholders, including the end users of the product, and their
needs.

• Identifying the product’s required features.

• Characterize the functional requirements, which can later evolve into the use
cases.

• Define non-functional requirements.

• Identify design constraints.

• Define a glossary of the key terms.

To fulfill these requirements requires a formal document, not just a mere list. This
chapter briefly covers the vision for the following aspects:

• Stating the problems that the application will solve:

– Managing personalized document searches for expert users.

– Relieving the strain and unnecessary complication of repetitive and
advanced searches performed with the existing Web-based GUI.

– Enabling the creation of an access point for future services for expert users
of the digital library.

• Identifying the stakeholders, among them the end users of the product, and
their needs:

– End users: expert, repetitive users of the old digital document repository
system. Often such users perform their searches on behalf of others, as is
the case with librarians.

– Engineers and other developers within or external to the publisher.

– The rest of the user population, even if they won’t be affected by the new
system.

c14.fm Page 501 Monday, March 13, 2006 1:34 PM

502 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

• Defining the product features:

– Providing an advanced user interface for the digital repository’s repetitive
users.

• Characterizing the functional requirements. The system will provide at least
the following basic functionalities:

– Authenticate the given user.
– Create a new search.
– Store and reuse/modify a search.
– Submit the search to the server.
– Managing billing, subscriptions and other related services.

• Identifying the non-functional requirements:

– Usability requirements. The application’s usability should be at least equal
as that provided by the existing Web-based interface.

• Defining the design constraints. The main ones will be:

– A user’s searches should be located on the server to support future
features such as collaborative working, and to improve reliability.

– The software interface with the server should be the same as the old Web-
based interface, to minimize risk.

– In general, the new application should have a minimum impact on the
existing server software.

• Eliciting a glossary of key terms. The main terms will be:

– Search. A set of values that embody a query to the remote digital
repository.

– Document. A single item obtained by searching the remote digital reposi-
tory. Documents are consumed by users.

– Search preferences. The information that composes a search. A common set
of properties, such as how often the search should be performed,
keywords, and the like.

– Digital document repository system. The existing, Web-based interface to the
digital library service offered by the publisher.

– Personal portfolio. This concept has been elicited from the early design
meetings for capturing the application’s basic approach, and subsumes the
overall ‘vision.’ The application will provide a personal portfolio of docu-
ments taken from the digital repository on behalf of the user.

The main risks to the project are found to be bounded mainly by usability. Since
the application will integrate with, rather than replace, the older digital document
repository, it should be superior to the existing application in order to be success-
fully accepted by expert users.

A further risk is the economic impact of the project.

c14.fm Page 502 Monday, March 13, 2006 1:34 PM

Analysis 503

1:33 PM 13 March 2006 c14.fm 1.0

Some scenarios

The following scenarios emerge from a few interviews with users in the design
group.

User search

Since the initial interviews, the focus has been on identifying the most typical
interaction. This is illustrated by the following scenario, represented in natural
language.

1. User accesses the application.

2. User logs in.

3. User creates a new search and enters the search details, then the search is
launched on the server automatically.

4. Server gives a response to the query.

5. The application presents search results.

6. User chooses some documents from the search results and transfers them to
their local machine.

7. The application handles requested documents, checking for permissions,
security, and performs billing.

8. User opens the transferred documents in the relevant OS-specific tool, for
example a PDF viewer.

9. The application automatically saves the user’s search for future use if user
doesn’t explicitly delete it.

Some alternative paths could be:

• Authentication failed.

• 2.1: the user is informed of the problem and a ‘Retry Y/N’ message is
displayed. If the user chooses ‘Y,’ step 2 is repeated, otherwise the applica-
tion exits.

• Server or connection is currently unavailable.

• 1.1: the application signals the condition with some unobtrusive feedback.
From now on certain functions (like creating a new search) are not available.

User manages search results

Another scenario could involve the following, a session in which the user’s objec-
tive is to access retrieved documents.

1. User accesses the application.

2. User logs in.

3. User accesses a previous search by means of the GUI.

c14.fm Page 503 Monday, March 13, 2006 1:34 PM

504 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

4. User changes search preferences (search name, search parameters, and so on)
to modify the set of retrieved documents.

5. User commits the changes. The search is submitted to the server.

From this point on this scenario follows the preceding one. In a real-world use
case document, more refined scenarios would follow.

A refined use case diagram

After further interviews with end users and more analysis activity, the following
use case diagram is defined.

Note that this refined diagram includes a new actor, the local operating system
(OS), which is needed to store and view downloaded documents, together with a
more structured use case organization. This diagram forms the input to the first
GUI paper mock-up prototype.

The next step in following an RUP methodology is to elicit the actors-system
boundary classes.

Figure 14.4 A refined use case diagram

c14.fm Page 504 Monday, March 13, 2006 1:34 PM

Choosing a technology 505

1:33 PM 13 March 2006 c14.fm 1.0

Individuating boundary classes

Boundary classes are those classes that lie at the boundary between the system
and the external actors. Using the concept of a personal portfolio of documents,
and studying the previous scenarios from the viewpoint of the end user actor, we
could think of the main boundary class as a collection of search objects: search
objects gather retrieved documents from the remote repository, and users will
mainly deal with a collection of searches.

After initial interviews a partial conceptual model of the application domain is
nailed down, as shown in Figure 14.5.

Before proceeding to the design, we need to make some basic choices about the
underlying technology. Clearly, our design will be radically affected by this stra-
tegic choice.

14.3 Choosing a technology
The choice of a suitable implementation technology is basically restricted to Web-
based technology, essentially JSP, php, or other Web page–based technologies, and
some form of client technology.

The choice of Java is driven by several cultural and practical issues:

• The repository server is implemented with J2EE technology.

• Developers feel more comfortable with Java rather than with other
technologies.

• It takes advantage of existing development tools to minimize risk and addi-
tional cost, such as expensive licenses, the evaluation of and training for new
software, and so on.

The class diagram in Figure 14.5 is related to the conceptual domain only, and
shouldn’t be confused with the implementation class diagram that we will
consider in a later section.

Figure 14.5 An initial conceptual class diagram

c14.fm Page 505 Monday, March 13, 2006 1:34 PM

506 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

• The end user population relies on recent machines with a variety of OSs, and
Java would be a cost-effective choice at least for the first generation of the
application – the riskier one.

This scenario dictates that, among the various Java client options, the most useful
deployment technology is the JNLP protocol, as it is available for all Java-enabled
platforms. Deployment aspects are considered later in this chapter.

The choice of JNLP choice ensures the following benefits:

• A team of developers is available that is familiar with the implementation
platform.

• Synergy between client and server technology is guaranteed.

• Ease of deployment and debugging facilities over the Web is supported. This
is particularly useful for the frequent deployment of updated prototypes.

Now that a stable set of functional requirements for the application exists and the
technology has been chosen, the GUI design phase can begin.

14.4 An initial GUI design
The main tasks that need to be addressed by the application are:

• Authenticate the user

• Create and manage repository searches

• Access documents retrieved by these searches

• Manipulate and modify the searches

• Store the searches

The preliminary design phase produces a number of documents that describe the
basic functional requirements, the product vision, a number of use case diagrams
and scenarios, plus some models that sketch the application domain, and other
informal observations. All this information is ready for convergence into a tenta-
tive GUI prototype. The team follows a participatory design approach, in which
users actively contribute to the GUI design. This method is chosen because of the
nature of the current case – the intended user population, the focus on usability,
and so on.

An initial GUI paper mock-up

From an informal meeting among designers, the first design proposal is sketched
out.

The main window is composed of a toolbar, a list of all the active searches, and a
status bar, as shown in Figure 14.6. Each item in the list represents a search, with
a title and other useful data, such as the current status of the search, an is available

c14.fm Page 506 Monday, March 13, 2006 1:34 PM

An initial GUI design 507

1:33 PM 13 March 2006 c14.fm 1.0

for quick selection. The commands in the toolbar affect the currently-selected
search item in the list.

By double–clicking on a search item, another window pops up that lists the docu-
ments retrieved by the search. This second window is sketched in the paper mock-
up in Figure 14.7.

Double–clicking on a single document in the list starts the download process,
following which the relevant viewer for the specific document type is opened. The
buttons in the toolbar manipulate the currently-selected document in the list. The
Info command pops up a dialog with the document’s data, such as author, publi-
cation date, and so on, without downloading the document. The View command
works like a double click: first the document is downloaded, then it is opened.

From a conceptual viewpoint, the prototype relies on the idea of a list of searches
created and maintained by the user. Any of these searches can be opened to show
all the retrieved documents and, in turn, the documents can be manipulated by
the user.

This mock-up is used as a starting point for a subsequent discussion with repre-
sentative users. The objective of this second meeting is to produce an early GUI
prototype that is representative of user’s needs, and which in turn will be vali-
dated with a larger user population.

Figure 14.6 The first paper mock-up

c14.fm Page 507 Monday, March 13, 2006 1:34 PM

508 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

A second GUI paper mock-up

The design team holds a second meeting, in which a selected group of users
discussed the GUI design sketched in Figure 14.6. Their objective is to nail down
an initial stable prototype that is validated by representative users.

This meeting results in a major redesign of the GUI: the users explain the most
frequent tasks for which they intend the GUI to be suited, using the first prototype
as a common discussion ground. A crucial aspect that emerges from this meeting
is the desire of users to be able to fully customize their workspace. They see this
as one of the major limitations of the existing Web interface.

Many different interaction strategies emerge from this second meeting. End users
turn out to have radically different (and unexpected) approaches to solving the
same tasks: for example, one uses several slightly different searches to explore the
documents on a given topic, carefully recording the best searches on paper for
future reference, while another is accustomed to launching broad queries and
then scanning the large list that results.

Other important issues expressed by users were:

• To be able to use more natural interaction styles, such as ‘drag and drop’
(there is a significant Apple Macintosh community among end users).

Figure 14.7 Another paper mock-up

c14.fm Page 508 Monday, March 13, 2006 1:34 PM

An initial GUI design 509

1:33 PM 13 March 2006 c14.fm 1.0

• The importance of having a lot of information in one screen, rather than
continuously switching between different windows.

• Gearing up the GUI for repetitive users, providing powerful ‘horizontal’
features rather than complex specialized ‘vertical’ ones – continuously
popping up windows to inspect search outcomes seemed too awkward.

• To focus the whole GUI on common tasks, or at least making them as easy as
possible.

• The difficulty of making comparisons between two different searches.
• A bookmark concept, very useful in practice, is lacking.
• A properties panel beside the search lists, including some basic information

about retrieved documents, would help the details of each search to be
inspected more easily.

The designers gather all these suggestions, and after further interaction, worked
out the prototype shown in Figure 14.8.

This GUI is substantially different than that shown in Figure 14.6 – ‘drag and
drop’ and a more flexible interaction allow for a richer GUI experience and more
intuitive interaction.

Figure 14.8 The revised paper mock-up

c14.fm Page 509 Monday, March 13, 2006 1:34 PM

510 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

Lurking behind the GUI design sketched in Figure 14.8 are some interesting
conceptual considerations. As often happens, limitations in a GUI design often
derive from a poor conceptual model. As well as the concept of an explorer object
that represents the searches performed by users, as previously implemented by
the list in the prototype in Figure 14.6, the prototype in Figure 14.8 introduces a
new and useful abstraction, the local container. This is an object that contains all the
documents of interest to the current user, and follows the Desktop metaphor used
by all modern OS GUIs. This container maintains an image of selected documents
that can be manipulated by the user, and documents transferred in the container
can later be downloaded to the user’s local file system.

A typical interaction for creating a search object now leads to the creation of a new
node in the tree on the left hand-side of the GUI, termed the remote explorer area.
Retrieved documents are shown as subnodes of the search node, mimicking a file
system hierarchy. Clicking twice on a document node, or dragging a node to the
right-hand side of the screen, transfers the relevant document into the local
container. Documents in the container can be managed just like documents in a
desktop environment. In particular, by double-clicking on a container document,
it is possible to view the document’s contents, perform background user authen-
tication, billing, and other operations, and finally download the document
content to a local cache.

The ‘drag and drop’ metaphor is intended to be coherent outside the container as
well – dragging a document out of the application window and onto the OS
desktop area should cause the document to be downloaded to the desktop or to a
target folder.

Locating the exploration task on the left-hand side of the screen and the manipu-
lation area on the right follows a general and widely-accepted pattern in modern
GUIs, as we saw in Chapter 4. Taking advantage of this kind of convention is
usually a ‘win-win’ approach: on one hand designers get useful guidelines for
limiting the initial design space to the promising avenues, while on the other users
feel comfortable using a GUI that resembles software with which they are familiar.

Nailing down the logical model

This is an important and often overlooked aspect of GUI design. Designers may
need to change their assumptions later in the development process, but a sound
conceptual analysis is still indispensable at an early stage to achieve a professional
GUI design. Designers should carefully refine the conceptual model behind the
GUI, searching for inconsistencies and conceptual fallacies.

The two abstract concepts the new document repository client’s GUI relies on so
far are:

• Remote explorer. A collection of search objects defined by the user and the
retrieved document metadata. The document metadata only contains sparse

c14.fm Page 510 Monday, March 13, 2006 1:34 PM

An initial GUI design 511

1:33 PM 13 March 2006 c14.fm 1.0

data, to avoid downloading useless information. The search objects reside on
the server, allowing for collaborative features, and are updated when the
application is started.

• Local container. This represents a collection of information about the docu-
ments transferred by the user as a result of document searches. Document
transferred into this container are not yet downloaded. The final step in fully
accessing a document – after initiating a search, selecting one or more
retrieved documents, and transferring them into the local container – is by
downloading the document and viewing it via a suitable OS-dependent
viewer application. Document metadata stored in the local container is kept in
a cache on the user’s local file system, together with document content files.

Clearly, this is only the first refinement of the GUI’s conceptual model, but it is
important to define it a soon as possible, even if it may be changed in the future.

A throw-away GUI prototype

Having tested the mock-up with users, the designers are ready to implement it in
order to build a more vivid representation of the final GUI that can be validated
by a larger number of users. Technology now enters directly into the design
process. The aim is not to produce a working GUI prototype, but rather to capture
basic interactions (inexpensively), and hence requirements, in further interactions
with users.

They produce the prototype shown in Figure 14.9.

Figure 14.9 The throw-away prototype (Ocean1.5)

c14.fm Page 511 Monday, March 13, 2006 1:34 PM

512 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

The GUI closely resembles the revised paper mock-up discussed in the previous
section (Figure 14.8). Users can drag items from the tree on the left-hand side into
the container on the right of the window, mimicking the transfer process.

Three system icons are placed in the virtual desktop container on the right-hand
side, as shown in Figure 14.10. These icons are used for ‘drag and drop’ manipu-
lation of documents . For example, dragging a document onto the wastebasket
icon removes the document from the local container.

We will go into the implementation details of this prototype later.

Validating the throw-away prototype

Usability tests done on a larger user population reveal that some of the GUI
assumptions were wrong. In particular, the system folders on the right-hand side
in Figure 14.9 and Figure 14.10 are misunderstood by the vast majority of users –
only few of them can correctly work out their use. Clearly, it seems that the design
team, including the users who participated in the design, were biased in their
preliminary assumptions.

In such cases – when the interaction needed to activate some functionality is not
clear – the best solution is to rely on the underlying platform guidelines. Here the

Figure 14.10 The throw-away prototype at work (Ocean1.5)

c14.fm Page 512 Monday, March 13, 2006 1:34 PM

The final GUI 513

1:33 PM 13 March 2006 c14.fm 1.0

designers adopted the Java Look and Feel design guidelines1, so in this case a
typical interaction would follow a contextual menu style. By right-clicking on the
chosen item, users could access all the available functionalities for the selected
item.

A second version of the prototype is produced in which the system icons were
removed. This second version, using contextual menus, was successfully vali-
dated with users.

Finally the design team came out with a reliable and detailed design, ready to be
used as a specification for the first release of the Portfolio project.

14.5 The final GUI
Before getting into the details of the implementation, let’s review the final GUI
from an end user perspective. This will help to better clarify the interaction details
while keeping the discussion at a intuitive and concrete level.

Figure 14.11 shows how the final application looks. Suppose we create a new
search My Search using the toolbar button, or by right-clicking on a remote
explorer folder via the contextual menu. The new search folder will appear in the
remote explorer, as shown in Figure 14.11.

1. See Chapter 2.

Figure 14.11 Creating a new search (Ocean1.5)

c14.fm Page 513 Monday, March 13, 2006 1:34 PM

514 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

After a while the first results appear from the server. We can manipulate them via
the contextual menu, as shown in Figure 14.12.

A document can be transferred into the local container in several ways: by
invoking the ‘transfer’ command, by dragging it into the local container, or simply
by double-clicking on its tree icon. When the transfer process begins, the corre-
sponding node in the remote explorer becomes disabled – see Figure 14.13.

Figure 14.12 Manipulating search results (Ocean1.5)

Figure 14.13 The GUI at work (Ocean1.5)

c14.fm Page 514 Monday, March 13, 2006 1:34 PM

Implementation 515

1:33 PM 13 March 2006 c14.fm 1.0

When the document is fully transferred into the local container, it can be manipu-
lated with a richer set of commands, as shown in Figure 14.14. Double-clicking on
documents in the local container opens them for viewing – the corresponding icon
will change to signal this when implemented in the final version.

Apart from the usual operations, the GUI provide a configuration command,
Preferences, that follows the standard Java Look and Feel design guidelines: icon
size, the text used on buttons and other configuration details can be set from the
preference dialog2.

The best way to understand the various parts of the GUI is by launching the
demo application and interacting directly with it. Let’s now see how it was
implemented.

14.6 Implementation
The project team is now ready to get into the implementation of their application.
They proceed in a typical top-down manner, beginning from the software archi-
tecture and finishing with its final implementation. The description here focuses
on architectural and reusable techniques rather than code-level aspects.

2. Preference dialog design is discussed in Chapter 4.

Figure 14.14 Manipulating a document transferred locally (Ocean1.5)

c14.fm Page 515 Monday, March 13, 2006 1:34 PM

516 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

Software requirements

An important step before proceeding with an implementation is eliciting its
required properties. These properties can be seen as fine-grained design constraints,
as describe in the vision document on page 501:

• Separation into different composable units. Separating the code into coherent
parts is a highly desirable property, making the code easier to manage, and
facilitating project team structure and possibly code reuse.

• Traceability of detailed software requirements to functional requirements,
another desirable property for an implementation, and often mandatory in
real-world projects.

• Maximizing software reuse. This could be a rather tough requirement to
meet – fully reusable code tends to be more expensive to build and only pays
back the investment in its creation in the future.

The team’s software solution will be designed to satisfy these high-level require-
ments, but we don’t have the space to discuss their list of detailed software
requirements here.

The software architecture

The team begin from the boundary – conceptual – classes established during the
analysis process.

Boundary classes

Their earlier analysis had the purpose of better identifying the boundary classes,
at least as regards the end user. RUP methodology focuses on beginning the
implementation phase from the boundary classes, which in turn are refined itera-
tively to obtain the final implementation class architecture. The class diagram in
Figure 14.15 shows the two major classes with which the user interacts.

Figure 14.15 Class diagram for main boundary classes

c14.fm Page 516 Monday, March 13, 2006 1:34 PM

Implementation 517

1:33 PM 13 March 2006 c14.fm 1.0

These two classes correspond to the two specialized macro-level components:

• The remote explorer, a collection of searches defined by the user and their
corresponding retrieved document images. The remote explorer is repre-
sented by a dynamic tree view loosely synchronized with the remote
document repository.

• The local container, a collection of document information manually transferred
by the user from the document searches. The local container is represented
by a desktop-like container. An example of an implementation of such as
container is given in Chapter 16.

In this version of the application the team adopt the OOUI (Object-Oriented User
Interface) approach outlined in Chapter 2. Chapter 15 contains a practical imple-
mentation of such an interface.

The organization of code into packages can be naturally derived from the soft-
ware requirements, and in particular, the identification of the two specialized
components. Such an organization is detailed below.

Package organization

The team know from their analysis that their application will be essentially
composed of three parts:

• The remote explorer component.
• The local container component.
• A global framework comprising all global-level functionalities and encapsu-

lating the other two components.

They will then add a further set of logical classes to the latter package for gath-
ering business objects. The package decomposition of the code is shown in the
UML diagram Figure 14.16.

Figure 14.16 Class diagram showing packages dependencies

c14.fm Page 517 Monday, March 13, 2006 1:34 PM

518 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

Note from the figure that the two visual components, which correspond to classes
in the packages explorer and container, don’t interact directly, as this would
disrupt reusability and code separation, some of the concerns for the construction
phase.

The other two packages are designed to allow for the integration of the two
components as one coherent and reliable macro-component – that is, the whole
application.

The team adopt a typical top-down approach that fits nicely both with the
chosen implementation approach (OOUI) and with the RUP design philosophy.
The next steps will be iteratively to refine the design to the final classes, then
turning them into code. The only digression from this pure top-down approach
will be to take the JFC classes that will constitute the basic building blocks into
account.

Business objects

Eliciting the business classes involved is a key step in implementation analysis.
For the first release of the Portfolio application, only three types of documents will
be available through the system:

• Articles, both academic papers and technical articles published by some
branch of the publishing group.

• Books. Book properties include titles, pages, authors, and so on. For simplicity
the team assume that searches are done only on keywords, as for all other
publication types.

• Subscriptions. These are special internal publications from the publishing
house.

A Publication is the top-level type in the simple hierarchy used for handling
published documents. A Publication object will follow the OOUI approach: it
will be Viewable (in the sense of being able to provide graphical views of its
content) and Configurable (that is, capable of providing special views for config-
uring itself)3. This results in the static class diagram of Figure 14.17.

Publications represent the document data types stored on the server, and are logi-
cally gathered in the objects package. As we will see, these documents can be
alternatively seen as nodes in the remote explorer tree or icons in the local
container.

The next step is to refine these two major components.

3. See Chapter 15 for more details about these interfaces.

c14.fm Page 518 Monday, March 13, 2006 1:34 PM

Implementation 519

1:33 PM 13 March 2006 c14.fm 1.0

The local container

This component is logically a folder of documents selected by the user. We imple-
mented it as a sandbox instance – that is, following the ‘desktop’ metaphor. Icons
in the sandbox all belong to the AbstractSymbol class type. Given the type of
publications the system will handle, three different concrete subclasses are
required for representing articles, books, and subscriptions. Note that in this first
release folders are not supported.

The static class diagram is shown in Figure 14.18.

Figure 14.17 Class diagram for publications

Figure 14.18 Class diagram for the local container’s symbols

c14.fm Page 519 Monday, March 13, 2006 1:34 PM

520 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

There is an interesting point to notice at the code level. AbstractSymbol
subclasses, one for each kind of document, are implemented as inner classes of
their corresponding business objects. This implementation approach tends to
minimize inter-class references and makes the code more readable, but at the price
of a stronger binding among different code packages (here objects and
container).

The remote explorer

The remote explorer component is a collection of remote searches. Each search in
turn contains a set of publication nodes, each of which can be of the three different
types discussed before, plus search nodes and special ‘system’ nodes. This is
summarized in the static class diagram of Figure 14.19.

The publication nodes – elements in the remote explorer tree – are conceptually
different than publication instances4, which in turn are different than publication
symbols – that is, items contained in the local container.

AbstractSymbols can issue their own commands within the sandbox
container. This is modeled with the Commandable interface, and is discussed in
Chapter 15.

4. Document instances are application domain entities.

Figure 14.19 Class diagram for the remote explorer’s nodes

c14.fm Page 520 Monday, March 13, 2006 1:34 PM

Implementation 521

1:33 PM 13 March 2006 c14.fm 1.0

The retrieval process follows the following mechanism:

• When a search operation is performed, the server returns a set of suitable
document metadata bundles to the client. The first release doesn’t use any
expiration or automatic refresh mechanism, users just have to refresh the
search manually.

• This document metadata needs to be as compact as possible to speed up
transfer time and ease the burden on the server. It therefore contains only a
brief description of each document and the id needed to eventually access it.
These lightweight document representations are rendered with nodes in the
remote explorer tree.

• When the user selects one or more such document metadata bundles and
drags them into the local container, the application queries the remote docu-
ment repository with the corresponding document ids, and the related
publication instances are downloaded. These in turn contain further details
of the publication, but still no content data.

• Only when the user explicitly requests download or view of the publication’s
content, by manipulating the local container representation, is the document
content downloaded.

Control

Control here refers to the functional layer introduced in Chapter 1. The GUI must
always preserve its coherence when responding to external events, such as the
Internet connection suddenly disappearing, or user–initiated events, such as
clicking a toolbar button. Interactivity is all about maintaining this consistency,
and you can judge professional GUIs by the way in which they ensure the correct
behavior under all conditions.

One of the key problems with control code is that it generally needs to span many
heterogeneous classes. This gives rise to a natural tendency for control code to be
scattered among many different classes, resulting in a spaghetti-like web of class
references. This Balkanization of control logic has many drawbacks. First of all, it
lacks a clear and systematic software engineering approach – the arbitrary defini-
tion of control responsibilities tends to generate subjective code organization that
is hard to understand, and even worse to maintain. Furthermore, the web of refer-
ences among classes may disrupt code reusability and architecture modularity.

We have discussed the Mediator pattern and its variants previously in this book.
Now we will see a hierarchical application of this pattern to a concrete, non-trivial
case. In our implementation we will call instances of the mediator class directors.

We basically have two components in our software architecture. These two
components (the remote explorer and the local container) should not interact
directly, to promote their future reuse in different contexts. Each has its own

c14.fm Page 521 Monday, March 13, 2006 1:34 PM

522 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

specialized director. The simplest integration approach is to provide a third
director that will take care of coordinating the other two, while also providing
control for global-level commands in the GUI. The class diagram in the following
figure shows this architecture.

This makes both code modularity and a neat class architecture possible. The
GlobalDirector class is also useful for wrapping components’ complexity by
providing a single interface to the rest of the world (that is, global-level classes)
for many different functionalities.

Looking at the details of the control code for the director classes results in the class
diagram in Figure 14.21.

Each director manages its own action classes, whether ‘shallow’ or ‘deep5.’ Hence,
for example, the remote explorer director class manages the following actions:

• Delete a search.

• Refresh the current search.

• Issue a new search.

• Inspect a search’s properties.

• Transfer a document metadata bundle (the outcome of a search) into the local
container.

5. See Chapter 6.

Note that ‘undo’ features are only provided in the local container director. This
is an accidental consequence of our GUI design.

Figure 14.20 A hierarchical organization of directors

c14.fm Page 522 Monday, March 13, 2006 1:34 PM

Implementation 523

1:33 PM 13 March 2006 c14.fm 1.0

This sketches enough of the static structure of the implementation – now for some
runtime aspects.

Start-up

The start-up of a complex Java GUI is always a delicate phase that should be engi-
neered carefully, as the initial impact of an application on its users is greatly
influenced by the way it launches. Start-up time should always be minimized as
much as possible. Fortunately, this kind of application can be optimized for this
aspect.

Figure 14.21 Class diagram for directors and their actions

c14.fm Page 523 Monday, March 13, 2006 1:34 PM

524 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

We saw from Chapter 4 that the main technique for cutting start-up time relies on
extensive use of lazy initialization technique and local caching. At start-up an
application needs to restore its state, which was stored in an instance of the
Application class. For simplicity in this implementation we only persistently
store and retrieve a small amount of configuration data, but this doesn’t hinder
start-up efficiency in general for the complete implementation of the Portfolio
application. The start-up phase for class creation and arrangement is shown in the
sequence diagram in Figure 14.22.

This sequence diagram refers to the activation procedure performed by the Main
class, the main application class. After creating and properly setting all the three
directors and their related visual counterparts, some GUI initialization is
performed and the application is ready to take off.

14.7 Resources
Resource loading is an important part of any application start-up process. Profes-
sional GUIs tend to make extensive use of resources such as message bundles,
help data, images, and so on.

Before getting into implementation code details, a few points about resources
management are relevant. This is an important aspect for advanced GUIs, but if
you are not interested in it, just skip this section.

ContainerPanel:
cp

Main

new

new ContainerDirector(cp)
ContainerDirector:

cd

RemoteExplorer:
re

new RemoteExplorer()

GlobalDirector:
gd

new GlobalDirector(cd, ed)

other GUI
init…

setDirector(cd)

new ExplorerDirector(re)

setDirector(ed)

ExplorerDirector:
ed

Figure 14.22 Startup sequence diagram

c14.fm Page 524 Monday, March 13, 2006 1:34 PM

The code 525

1:33 PM 13 March 2006 c14.fm 1.0

The code for the Personal Portfolio application makes extensive use of a service
layer library. This library provides code with service-layer features such as
advanced resource retrieval to support issues such as localization, image manage-
ment, and other resource-intensive aspects.

Localization bundles

Message bundles are organized on a per-package basis to support localization, as
you can see in the sample code for this chapter. Any string and any image can be
changed by modifying these text files, which can even be done by non-program-
mers. But this is not enough – professional resource management also requires the
externalization of tooltips, accelerators, mnemonics, and any other locale-sensi-
tive or important data.

Images

The team organize images on a two-level basis:

• When not specified, they are fetched directly by their identifying string as
usual. The service library supports a distinction between ‘small’ and ‘large’
images.

• When explicitly stated, an image is treated by the service layer as ‘large’ or
normal.

This distinction allows all button icons to be switched from small to large, for
example. This kind of functionality is essential, for example for users with visual
deficiencies. Apart from this, there are a large number of images that the GUI
manages. The main types are:

• Icons, used for buttons and menu items.

• Deployment images, used for short-cuts, during download, and
so on.

• Labeling images, used in the ‘About’ box, in the help data, and
so on.

Note that a splash window and its related images has not been provided, to
further speed up application start-up.

14.8 The code
This section goes into details of the code behind the Portfolio application. We don’t
have space to discuss the whole code of the application, so we will focus on a few
classes that shed light on the underlying implementation, chosen for complexity
and for the reusable high-level solutions they embody.

c14.fm Page 525 Monday, March 13, 2006 1:34 PM

526 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

The remote explorer director

The logical organization of command and control management within the appli-
cation has already been discussed, so it’s time look at the details of a director. The
remote explorer director is interesting because it is quite sophisticated, for
example by comparison to the GlobalDirector, and helps to clarify its basic
interaction within the remote explorer.

The basic structure of a director is dictated by its superclass, AbstractDirector.
Among other things, this affects where actions are located, for example in a hash
table for external access, and as instance variables for convenience of internal
manipulation, and where their initialization takes place6.

Actions managed by the remote explorer director are all of the ‘shallow’ type. That
is, they delegate command execution – the code executed whenever the user acti-
vates them – to the director. The container director, in contrast, handles a number
of ‘deep’ actions – those that fully implement the Command design pattern. No
undoable actions need to be performed within the remote explorer, so deep
actions aren’t really needed.

A further duty of a director class in this architecture is to package the toolbar and
other similar structures so that the external container can place them where
needed. This is done by the getActionToolBar() method. The director class is
also responsible for coordinating the GUI, especially for action enabling. This is
performed by the checkAction() method that is invoked whenever the
director’s actions state needs to be updated.

The remote explorer component takes charge of listening for DropTargetLis-
tener events using the standard methods of this interface. This means that when
the user drops something, the standard drop method is invoked. This will in turn
invoke the transfer() method – which can also be invoked by activating the
transfer action, or simply by double-clicking on a document metadata bundle in
the remote explorer tree. Note that the transfer method essentially fires a Remote-
ExplorerEvent for initiating the transfer process.

The getActionToolBar() method is invoked on correct initialization of the
remote explorer’s content. In the current implementation search objects are not
saved persistently and refreshed at start-up, but instead a random search only is
added, for demonstration purpose.

Explorer events

The remote explorer director also acts as a source of RemoteExplorerEvents. As
we know from Chapter 6, events offer one of the most effective techniques for
decoupling groups of classes. This allows new code to take advantage of existing

6. See the setupActions() method.

c14.fm Page 526 Monday, March 13, 2006 1:34 PM

The code 527

1:33 PM 13 March 2006 c14.fm 1.0

classes without modifying them. This technique is used in the RemoteExplorer
component for interacting with other classes. The events thrown by this class are
received by the GlobalDirector, which couples the remote explorer with the
local container, as shown in the class diagram in Figure 14.23 below.

The RemoteExplorerEvent class is shown in Figure 14.24.

Listeners for RemoteExplorerEvent events react depending upon the type of
event received. The current version supports only ITEM_TRANSFERRED events,
listened for by the global director, which takes care of transferring the document
into the local container, requesting the remote document repository for it using
its id.

Figure 14.23 Class diagram for remote explorer events

Figure 14.24 Remote explorer event class

c14.fm Page 527 Monday, March 13, 2006 1:34 PM

528 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

Representing application data

A common problem for non-trivial GUIs is storage of application preferences and
other properties. The Portfolio application uses the Memento design pattern to
encapsulate all meaningful data in a single class, the Application class, that can
be made persistent through sessions.

The simplest way to view the role of the Application class is to see it as a simple
Java Bean that stores useful application properties and is able to fire Property-
ChangeEvent events7 whenever some sensitive property is modified. But this
Bean is also able to show its contents graphically for configuration purposes. In
fact, thanks to the Configurable interface, the Application class can create
ConfigurableViews of itself – that is, of the application’s general preferences
data – just like any other entity in the architecture8. The properties handled by the
current implementation of this class are:

• largeIcons, a Boolean value representing whether the icons should be large
or small.

• textOnButtons, which may have one of four possible values:

– No text to be shown with button icons
– Text shown on top of the command icon
– Text shown to the left of the command icon
– Text shown to the right of the command icon

Note that while the textOnButtons property is updated immediately at runtime,
the icon size property needs the application to be restarted for changes to take
effect.

Implementing searches

The SearchNode class helps to illustrate a solution to the common problem of
interacting with remote hosts over unreliable and unpredictable connections. This
class implements a remote explorer tree node type and contains two inner classes:

• The ContentView class supports inspection and modification of search prop-
erties such as keywords, text caption, and so on.

• The ServerSearch class implements a particular server request.

This simple framework implements a work queue that queues Runnable instances
to be served by invoking their run() methods sequentially. The solution provided
here shows an alternative, older design that provides the same functionality that is
now provided by the standard SwingWorker class, which should be preferred in
general.

7. See for example the setTextOnButtons() method.
8. See the ConfigurableView inner class.

c14.fm Page 528 Monday, March 13, 2006 1:34 PM

Deployment issues 529

1:33 PM 13 March 2006 c14.fm 1.0

Client–server communication is a common problem for thick client applications
that need to connect to a remote computer network – connections delays, and the
state of the connection itself, cannot be predicted. When accessing the network,
therefore, the best solution is to fork a thread so that the user can perform other
operations while the application is waiting for the server ‘s response.

Depending on the design approach, this will be signaled to the user either by a
status bar message, as in the Portfolio application, by a progress dialog that allows
users to abort the process, or in other ways, for example by modifying the mouse
cursor shape. The demonstration code employs a minimal notice strategy, using
only the status bar and visually disabling the transferred/transferring node,
because its GUI is intended for experienced, repetitive users.

The prototype

Throw-it-away prototypes are often neglected pieces of software, mistreated by
programmers because they serve a limited function, restricted in time and in
overall interactivity. A support library can ease the development of such software
enormously. The source code for the Prototype1 class can be found in the source
bundle of this chapter – we are now left with the deployment aspects of the Port-
folio application.

14.9 Deployment issues
Deployment is an often overlooked part of the software lifecycle. Professional
products are characterized by the way they ship and how they can be managed
remotely. Deployment services are essential to high-quality software (Marinilli
2001).

Server support

A fully-fledged implementation of Portfolio requires server-side code that responds
to clients requests via HTTP. This would have required readers to install a servlet
container in order to see the application working. To simplify the installation, the
server side has been omitted and has been surrogated by the ServerProxy class.
This class replaces a real server in many aspects. Although this class is not properly
a part of the application, useful only for simulating a real remote server to under-
stand how the application reacts, it is nevertheless necessary to look briefly at how
the remote server is simulated.

Essentially, publications on the ‘server’ side are created randomly. The document
repository is simulated by a simple hash table where publications are stored for
future retrieval by the client. The process of creating publications is performed in
the getPublicationNode() method. A pseudorandom number between 0 and

c14.fm Page 529 Monday, March 13, 2006 1:34 PM

530 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

100 is created in this method. If the number is greater than 40, a new node for the
current search is retrieved, otherwise the search is finished. In this way searches
are filled with randomly-created documents. The retrieval time is also random-
ized to simulate connection delays, using the simulateIOLatency() method.

The server behavior affects the client’s performance. When a new search is issued,
the number of retrieved documents, and the duration of the retrieval process for
each of them that is experienced whenever the user tries to transfer a document
into the local container, are determined randomly. This behavior has been simu-
lated to better imitate ‘real’ server connections.

14.10 An alternative, cost-driven implementation
The GUI design the team proposed, along with its implementation, were both nice
and interesting, but expensive to build: the more GUI design involved, the more
usability testing is required, and analogously, the more code that is written, the
more tests must be created to validate it.

The first design proposed is expensive both because of the GUI interaction
devised and because of the relatively large code base needed to implement it. The
approach of domain-related composable units might also not be reusable other
than in very similar projects, as well as being vulnerable to changes in business
details. Focusing on more practical, industrial considerations, a more cost-driven
design and implementation would be advisable. Following this approach doesn’t
sacrifice usability completely, just counters it with engineering constraints.

Here is a description of an alternative design that will solve the requirements
outlined the Analysis section, but in a more cost-driven fashion.

Choosing a higher-level starting point

Optimal reuse of existing technology and design is key in a cost-driven approach.
In the first design the team built a small composable unit framework from scratch
and architected the Portfolio application around it. Here we focus on minimizing
the amount of code and GUI design we provide, with the idea that ‘less is better.’
The adoption of effective practices and technologies is instrumental in this
approach.

We choose JDNC (Java Desktop Network Components) as the basis of our cost-
driven implementation, because it provides a proven, higher-level set of compo-
nents that will minimize the code base. JDNC is a perfect example of what a
high-level, specialized library can do for developers in terms of savings in devel-
opment time. Many other third-party high-level toolkits exist, but we focus on
JDNC because it represents the ‘natural evolution’ of the Swing library provided
by Sun.

c14.fm Page 530 Monday, March 13, 2006 1:34 PM

An alternative, cost-driven implementation 531

1:33 PM 13 March 2006 c14.fm 1.0

Choosing a more sophisticated technology is only one prerequisite for a cost-
driven design – the other is its effective use. If I opt for an automatic excavator
instead of a shovel to dig a hole, the real benefit will still depend upon my ability
to use the tool!

To provide a truly cost-driven design, we need to focus on the GUI design first. By
examining the set of requirements in the Analysis section, we note that ‘drag and
drop,’ although nice to have, is not essential to a usable GUI, and could well be
left for a future release. Further, the nature of the data provided by the server is
inherently tabular, not hierarchical. A table widget would represent it in a more
effective and inexpensive way. By using a high-level widget, features like search,
ordering and filtering will be provided by the toolkit, enhancing the overall
usability of the GUI even though using the (supposedly) less intuitive representa-
tion of a table, versus trees or other more domain-oriented designs.

A cost-driven prototype using JDNC

The prototype shown in Figure 14.25 was built by implementing only few classes,
mostly for data support, with only one class for implementing content, but it
nevertheless provides a wide array of GUI features not covered by the previous
application, such as ordering, results filtering, and so on.

Clearly, JDNC components don’t allow for the wide array of customizations and
design freedom, both in implementation and in the GUI, that are provided by raw
Swing widgets, as seen in the previous application. Despite that, they provide a
cost-effective solution to most frequent implementation scenarios.

A brief introduction to JDNC

JDesktop Network Components are a family of GUI technologies based on J2SE
(and Swing) that aim to reduce the complexity of GUI building in common
scenarios, such as data-driven network-rich clients. They are organized into layers
so that developers can use those parts that best fit their development needs.

The most basic JDNC layer is a set of Swing classes that extended basic Swing
widgets to provide features like table sorting, better validation, and the like.

Figure 14.25 A cost-driven prototype built with JDNC

c14.fm Page 531 Monday, March 13, 2006 1:34 PM

532 The Personal Portfolio Application

1:33 PM 13 March 2006 c14.fm 1.0

(These extensions are increasingly being absorbed into the standard Swing
library.) A further layer built on top of the Swing extension classes is represented
by classes that implement high-level, rich visual components that can easily be
connected to data sources and which offer a simplified API for developers not
familiar with Swing – although a deeper Swing knowledge is clearly needed for
special customizations.

On top of this layer, a further set of classes implement a declarative markup
language that can accommodate developers’ needs very easily in a restricted,
although quite large, number of practical cases.

JDNC and its various layers are a promising and much-awaited development of
Swing which, with its basic palette of widgets, is still too labor-intensive to use in
professional GUIs. It is yet to be seen whether the higher levels of the JDNC
layering scheme, such as the markup language, will prove successful among
developers. What JDNC does provide, though, is a very important refinement of
basic Swing widgets for common practical cases.

An example of JDNC declarative language

The JDNC markup language allows developers to define most important proper-
ties for abstract components, which are then interpreted by the
org.jdesktop.jdnc.runner.Application class. As a very basic example of this
approach, Listing 14.1 shows the definition of a table widget with simple custom-
izations of data source at line 7 and row colors at lines 15–18.

Listing 14.1 Defining a table with JDNC markup

00: <?xml version='1.0'?>
01: <om:resource xmlns:om="http://www.openmarkup.net/2004/05/om"
02: xmlns="http://www.jdesktop.org/2004/05/jdnc"
03: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04: xsi:schemaLocation=
05: "http://www.jdesktop.org/2004/05/jdnc schema/ jdnc-1_0.xsd">
06: <table>
07: <tabularData source="http://...">
08: <metaData>
09: <columnMetaData name="AUTHORS"/>
10: <columnMetaData name="TITLE"/>
11: <columnMetaData name="PAGES" type="integer"/>
12: <columnMetaData name="ISBN" />
13: </metaData>
14: </tabularData>
15: <highlighters>
16: <alternateRowHighlighter oddRowBackground="white"
17: evenRowBackground="light grey"/>
18: </highlighters>
19: </table>
20: </om:resource>

c14.fm Page 532 Monday, March 13, 2006 1:34 PM

Summary 533

1:33 PM 13 March 2006 c14.fm 1.0

The resulting table is shown in Figure 14.26. All these features are available
programmatically using the JNTable class. Note the availability of automatic
sorting on column headers and field type validation on columns. For example,
non-integer values are not allowed in the Pages column, as defined by line 11 of
Listing 14.1.

14.11 Summary
In this chapter we have seen a complete yet simplified real-world example appli-
cation. We discussed all its lifecycle phases, following the RUP terminology –
inception, elaboration, construction, and transition – from a practical viewpoint,
trying to highlight the interesting points while emphasizing more reusable ideas
and solutions.

We discussed the Personal Portfolio application in two proposed incarnations. We
have shown with a practical case study how object-oriented technology can play
a critical role in developing quality GUIs. Leveraging existing technical skills and
the set of simple approaches highlighted in previous discussions can produce top-
quality software in a cost-effective way.

Figure 14.26 A simple table defined with JDNC content markup

c14.fm Page 533 Monday, March 13, 2006 1:34 PM

c14.fm Page 534 Monday, March 13, 2006 1:34 PM

15 An Example OO User
Interface

3:9 PM 9 March 2006 c15.fm 1.0

In this chapter we will explore some software design techniques for building
professional user interfaces, demonstrating a way to implement GUIs with the
Java programming language by taking advantage of the OOUI conceptual
approach introduced in Chapter 1, within the reference architecture introduced in
the previous chapter. As well as providing a set of Java classes that implement this
approach, we will also see it at work in a complex example that uses several of the
design patterns mentioned in Chapters 6 and 14, as well as a number of practical
code tactics. All the ideas proposed here are illustrative and can be used sepa-
rately in a wide range of contexts.

The chapter is structured as follows:

15.1, Introduction briefly discusses some general characteristics of the implemen-
tation solutions proposed in this chapter.

15.2, Implementing object-oriented user interfaces introduces a simple framework for
implementing object-oriented user interfaces (OOUI).

15.3, Some utility classes extends the simple framework introduced previously with
some useful classes.

15.4, Configuration views discusses the specifics of configuration views.

15.5, Interacting with the user discusses some general-purpose implementation
strategies for representing user interactions within the proposed OOUI frame-
work effectively.

15.6, Managing user commands clarifies how user commands are represented in the
proposed framework.

15.7, An example application describes the implementation of the Library applica-
tion using the proposed OOUI framework.

15.8, An alternative implementation using Naked Objects shows a different GUI
design and implementation of the same problem using an existing OOUI frame-
work, Naked Objects. It illustrates the great simplification that a specialized
framework provides to development, although at the price of a much constrained
GUI design.

The chapter concludes with a summary.

An Example OO User Interface

c15.fm Page 535 Thursday, March 9, 2006 3:09 PM

536 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

15.1 Introduction
As technology evolves, developers and designers can rely on more and more
powerful computers, enabling them to afford more sophisticated designs, a trend
that doesn’t only apply to the user interface – the software architecture behind
the UI has also been evolving. Nowadays, the creativity of software developers
can rely on a wealth of computational resources – not a bad thing in itself, but one
that inevitably adds a great deal of complexity that must be explicitly addressed.

A matter of style

This chapter illustrates a variety of design choices, so that the reader can grasp the
benefits and weaknesses of each. Depending on your needs, you may prefer one
solution over another. Personally, I still haven’t found the UI software architecture
‘silver bullet,’ and I don’t expect to find it in the near future.

As an example, let’s take a classic UI software design approach. The top-level
container (usually a JFrame instance) contains all the required widgets as instance
variables, eventually using other GUI-related classes as needed, for example a
subclass of JTree. Visibility and object communication is provided by the fact that
‘everybody sees each other’ thanks to the instance membership, so that, say, an
actionPerformed method of such a class can manipulate all the widgets as it
needs to.

This is not a bad approach per se – it works wonderfully for small GUIs, it’s
simple to understand and to master, it produces GUIs in a breeze – but unfortu-
nately it has its drawbacks. Among these, it doesn’t scale well – have you ever had
two dozens or more buttons to cope with? It also tends not to produce readable
code for large classes. This approach to GUI development is used by automatic
GUI builders found in the most popular IDEs, such as JBuilder, Netbeans Matisse,
and the like, and is also one followed by many programmers, especially novices.
We will take advantage of it as well whenever it is suitable.

The purpose of this chapter is to explore several design approaches to the soft-
ware architecture behind a GUI made with Java. The solutions proposed here are
partial and not intended to be definitive, as the task of choosing the correct soft-
ware architecture for a given GUI design is a complex one and involves many
variables, such as the architect’s preferences and habits, the GUI’s inherent
complexity, the project size, and so on.

As in the rest of the book, we use the term ‘GUI’ as a synonym for any generic
graphical user interface, OOUIs included.

c15.fm Page 536 Thursday, March 9, 2006 3:09 PM

Implementing object-oriented user interfaces 537

3:9 PM 9 March 2006 c15.fm 1.0

The solutions proposed have several properties in common:

• They tend to be initially costly, both conceptually in understanding and prac-
tice, and as regards practical coding, as they usually involve a more elaborate
code organization, but they will pay back in the long run.

• They tend to scale well – that is, to be more useful for large or complex GUIs
designs. They can however be usefully employed for mid-sized or even
simple projects.

• They were designed explicitly with priority given to the GUI design. Some-
times programmers tend to favor the software side of the development
process, resulting in GUIs that are simpler to build, but which may ulti-
mately be poorer.

• They are illustrative, rather than polished, commercial frameworks. The code
proposed here is not intended as a final product ready to be employed in a
production environment. However, all its flaws are highlighted.

• They are the result of many years of programming experience.

The code provided for this chapter, apart for the book package, which is related
to the example application, is also intended to be reusable in other projects.

15.2 Implementing object-oriented user interfaces
Object-oriented programming (OOP) is a good match with Object-oriented User
Interfaces (OOUI): although the two concepts are not strictly related, it is not by
chance that GUI widgets model nicely as objects.

On the other hand, from an OOP purist’s viewpoint, many of the GUI libraries
provided with Java, such as Swing or SWT, are not perfectly object-oriented. This
is because one of their goals is to enable the composition of a GUI by means of a
rapid development tool (RAD), dictating the choice of the Java Beans mechanism.
Such accessory methods – setter and getter methods, such as setTitle – are used
liberally in GUI libraries, even if they break the pure OOP paradigm. Accessory
methods are a necessary evil, and although they violate one of the main principles
of object-oriented development, data hiding, they help developers in many ways
if carefully used. Writing your code using accessory methods dovetails nicely
with pre-existing standard libraries such as SWT or Swing1.

Several existing OOUI implementations exist for Java, for example the Favabeans
project. Compared with such frameworks, we adopt a more lightweight approach

1. For an alternative approach to these issues, see (Holub 1999).

c15.fm Page 537 Thursday, March 9, 2006 3:09 PM

538 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

when designing an OOUI implementation, favoring simplicity and clarity over
advanced features and exhaustiveness.

In the following we indicate OOUI objects by capitalizing their names – the Book
object – to distinguish them from their Java implementation, the Book class.

The Viewable interface

From a GUI design perspective, views are visual proxies of the data manipulated
by users. How does one implement such a design paradigm? An object, among its
many attributes, may be given the ability to provide a graphical representation of
itself. This is not a violation of the data-hiding principle – it is in fact the proper
way to build a GUI with an object-oriented language, especially when the GUI
design is an OOUI.

Every suitable object should be able to provide a graphical representation of its
own state, at least as far as it concerns the current user. We refer to this as a view
of the object. Providing only one type of view is generally not enough, because
we could require the same object to supply several different views depending
on external situations. We can also imagine objects capable of providing their
own help data, or perhaps providing several levels of detail for the same view,
and so on.

As software designers we could provide a method getView(parameterType) that
would return the proper view given the right type. For illustration, and to make
this discussion easier to understand, we instead provide a static list of all possible
views in our generic Viewable interface. Wherever a new view is required, this
generic interface can be extended as required. This approach tends to produce
more understandable code, even if its classes won’t fully implement all the inter-
face’s methods. A specialization of the generic viewable interface that deals with
object configuration is considered later.

We will use four different types of views:

• Brief views are those that should fit in a small display area, like a short text
label defining the identity an object.

• Content views are the canonical views – those that show the object’s full state,
for editing or for inspection.

• Help views – it’s handy to accommodate the help facility within this mecha-
nism, as it makes every viewable object responsible for showing its own
help data.

• Partial views are the ‘wildcard’ views. In some special situations objects need
to offer different views, depending on some external parameter such as the
current user’s role. A partial view is provided by an Object to expose visually
some particular aspect of its state. Usually some extra parameter is needed to

c15.fm Page 538 Thursday, March 9, 2006 3:09 PM

Implementing object-oriented user interfaces 539

3:9 PM 9 March 2006 c15.fm 1.0

specify domain-specific details and a convention shared with the Viewable
class to use it.

Listing 15.1 shows the Viewable interface. Every object that implements this
interface provides one or more views of itself to the outside world.

Listing 15.1 The Viewable interface

00: package com.marinilli.b1.c15.util;
01:
02: /**
03: * The Presentation Layer
04: *
05: * @author Mauro Marinilli
06: * @version 1.0
07: */
08:
09: public interface Viewable {
10:
11: public View getBriefView(boolean editable);
12:
13: public View getContentView(boolean editable);
14:
15: public View getHelpView(boolean editable);
16:
17: public View getPartialView(boolean editable, Object
argument);
18:
19: }

Some simplifying assumptions

A general note is needed at this point. We are planning to build, bit by bit, a
complete framework to address the most common issues of GUI software
design. We need to make some choices and to decide the level of complexity and
resulting sophistication of this framework. For example, I used to have an
EmptyView Singleton object, a subclass of View, to neatly handle the case of a
view type requested from an object that doesn’t support it. This solution turns
out to be especially useful during development – I even subclass it for more
specialized behavior. To keep the discussion focused on general GUI software

Although the method naming seems correct, it hides a pitfall. In most common
cases objects are intended to create a new view whenever one of the methods
in the Viewable interface is invoked. So, for example, getBriefView should
be renamed createNewBriefView. Some objects may have the semantic
constraint of always returning the same view instance, so that the view is static
to the class and not dependent on the particular instance. For simplicity, to
maintain the same signature for every Viewable class, we keep this poten-
tially misleading naming convention.

c15.fm Page 539 Thursday, March 9, 2006 3:09 PM

540 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

implementation patterns and to avoid getting bogged down in detail, we’ll skip
this kind of refinement and provide just the basic framework, stopping in the
middle of the route towards a comprehensive, sophisticated GUI class frame-
work. The set of classes proposed here, and the concept behind them, can
nevertheless be adapted to manage complex GUIs.

A key factor in building professional GUIs is reliance on a set of utility classes
that consistently and exhaustively adopt and enforce the use of a coherent set of
GUI design guidelines – in our case, the standard Java Look and Feel design
guidelines. It’s also important to be able to build high-quality GUIs quickly and
cheaply. These advantages can be obtained both with general-purpose reusable
classes and with more abstract design patterns, focusing on GUI design as well
as software design, as we saw in Chapter 4 and we will see in the remainder of
the book.

Implementing views

Viewable objects return views of themselves, but is a View class really necessary?
Why not provide a Component – that is, a generically displayable object, both in
Swing and AWT frameworks – directly, instead of yet another layer of indirection?

Having an explicit, general View type is handy in many situations. For complete-
ness we want to implement both standard deferred and immediate mode
interactions2, so we need some form of control over the view object. Consider the
common situation of modifying the widgets’ state in a dialog and then saving the
changes with the OK button. The consequence of this action should be to commit
the changes to the view, which is in charge of keeping view’s screen data state3

aligned with the related domain data.

When working in deferred mode there should be a way to signal to the view the
undo of any changes that have occurred so far, so a doRollBack method should be
provided. It’s possible to imagine several mechanisms to describe this behavior.
We will choose the simplest: just one interface, View, that models both deferred
mode and immediate mode behaviors. Usually only one of these two methods will
be used. The View interface therefore has three methods: doCommit(), doRoll-
Back(), and getComponent().

The OOUI approach can be employed with SWT and other GUI toolkits as
well.

2. See Chapter 4, Waiting strategies on page 141.
3. See Chapter 8, Runtime data model on page 329.

c15.fm Page 540 Thursday, March 9, 2006 3:09 PM

Implementing object-oriented user interfaces 541

3:9 PM 9 March 2006 c15.fm 1.0

Conceptually, a view is responsible for coupling the widgets and the domain
data. Widgets’ data, such as the string manipulated by setText/getText in a
JTextField component, is thought of as a kind of temporary buffer that exists as
long as the corresponding GUI item exists. The domain data is the source and the
possible destination of the widgets’ data, following the MVC pattern.

The approach of using View/Viewable and other auxiliary classes can be extended
to handle every GUI transaction, so that even the main application window could
show itself via this mechanism, for example. We are not interested here in proof-of-
concept of a pure OOUI implementation with Java – we are more interested in
exploring some useful design solutions in order to apply them in common
programming practice. We therefore limit the use of the View/Viewable mecha-
nism to domain objects only, instead of applying it to every GUI object.

Let’s recap on what usually happens. Figure 15.1 shows a typical View/Viewable
interaction, in which a visual container, say a JPanel or a JFrame, asks viewable-
Object for a given visual representation of itself. The graphical container extracts
a visual component, say a JLabel instance, from the returned view and composes
a larger view with it as required. The MVC pattern fits well with this approach:
models are the responsibility of the Viewable object, while related Swing widgets
are provided by View instances.

The View/Viewable mechanism described here has several benefits for software
developers:

• It tends to produce more reusable code. GUI code is encapsulated in the
related class, so that whenever the class is reused in a new context, the
chances are that its views will work in the new GUI as well.

Figure 15.1 A typical interaction

c15.fm Page 541 Thursday, March 9, 2006 3:09 PM

542 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

• The mechanism works well with high-quality GUI projects. The extra care
and discipline spent in the software design turns out to be paid back in terms
of reliability and overall quality.

• It can be used in its broadest form as a common ground for discussions
among development team members, either engineers or GUI designers.

• It creates a common ground that can be exploited to produce a number of
reusable utility classes that turn out to be very useful in practice. This is
essential for minimizing the cost of software development, especially in
terms of time. We will not introduce such utility classes here because they
would be of little conceptual interest, and because you are encouraged to
develop your own. The more OOUI-aware reusable components are
employed, the more this approach pays back.

The approach has also some potential drawbacks:

• It tends to produce more intricate code in which the same results are
obtained in a more indirect way compared with more straightforward,
simple software design strategies4.

• It needs time to get used to, especially initially, making it hard for developers
to get involved in the project, especially at later stages. Once this strategy is
mastered, designers usually tend to develop frameworks on top of it, which
in turn makes it hard for newcomers to pick up the details of a project.

15.3 Some utility classes
There are a number of refinements that could be added to the ideas exposed
above. We will see just a few, to give an idea of the possibilities and of the most
common issues they raise. Any class library should provide convenience classes
to address the most frequent cases.

Brief views

Let’s look at some default implementations. Given the ability to handle generic
views, we could use default implementations to ease their creation.

A brief view can be implemented in a standard way, by means of a single JLabel
paired with a ‘More’ button. If the view is editable, the button is enabled,
allowing the user to modify the object’s state – the implementation of the More-
Button invokes the content view for editing. We can see an instance of this class
at work in Figure 15.6 on page 548, where it is used to describe the book template
currently used.

4. The advantages of such an apparently convoluted approach depend on the nature of the
project. Another example of this approach is shown in Chapter 14.

c15.fm Page 542 Thursday, March 9, 2006 3:09 PM

Some utility classes 543

3:9 PM 9 March 2006 c15.fm 1.0

The implementation of the DefaultBriefView class provided in the code bundle
for this chapter illustrates some interesting points:

• It consists of a brief view, obtained by a viewable instance passed through its
constructor, with a button placed beside it. Whenever the user clicks on the
button, a content view of the same viewable object pops up automatically in
a deferred mode standard dialog.

• The model behind DefaultBriefViews is a subclass of PlainDocument, the
simplest text model provided by Swing. By taking advantage of Swing’s data
models, we are implicitly using the MVC pattern in our class framework and
leveraging its advantages.

• We handle widgets within the class itself. This turns out to be by far the
simplest and most effective approach in situations with specialized, reason-
ably short classes.

• The DefaultBriefView removes its visual components from the underlying
model whenever they are removed from the container that held them. This
greatly improves garbage collection, minimizing the risk of dangling
pointers.

• For simplicity, we implemented the View interface in the widget class itself, a
tactic that you will see often in the demonstration code. This minimizes the
possible problems caused by the additional indirection layer introduced by
the Viewable-View mechanism.

• Implementing the View interface on the visual component itself can give rise
to unexpected problems, the commonest being name-space pollution. Widget
classes usually come from deep hierarchies and have large signatures (many
methods) that can conflict with domain-related names for methods or fields
in the business classes, which belong in the application layer in our
terminology.

Other reusable classes could be provided, for example for handling general collec-
tions of items.

Making collections viewable

The other general-purpose class presented in this chapter, DefaultViewableList,
deserves comment. Being reusable, it can be used in many different contexts. It

What we refer to as a ‘More’ button is a button with the conventional label ‘…’
(ellipsis), indicating the generic behavior of opening another window for
further interaction. An example is shown in Figure 15.2 on page 545 in the
Book’s brief view. For more details, see the use of this convention in (Java L&F
Design Guidelines 2001).

c15.fm Page 543 Thursday, March 9, 2006 3:09 PM

544 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

subclass the Swing default model class DefaultListModel, and provides content
views in the form of JList instances, opportunely bounded to the origin’s model.
At runtime such views can be manipulated by the user with a contextual menu to
provide the available commands.

15.4 Configuration views
Interactions with a GUI can be thought of as being divided in two broad groups:
operational and configurational. When you drive a car, you turn the steering
wheel and operate the pedals to control the vehicle. This is a normal, operational
interaction. If there is too little room, you can move the seat back and modify its
geometry accordingly to your preferences. Here you are configuring the car, that
is, modifying some parameters that are changed less often and that don’t impact
on normal operations.

Configuring GUI items is a common operation, and specialized facilities, often
under the form of a configuration dialog, are found in many GUIs.The Java Look
and Feel design guidelines terms such operations preferences.

A Configurable type that specializes Viewable for objects that can be configured
is available with the source code bundle for this chapter. This interface is made up
of two methods:

• The getConfigurationView is the straightforward specialization of the
View/Viewable mechanism for configuration views.

• The other method, getCategory, is an auxiliary method used for tagging the
configuration views, and is used in a specialized container.

We will see this interface at work in the following section.

A utility class

Designing OOUI objects requires a decision about whether to make them config-
urable – that is, to make them implement the Configurable interface. Although
in theory a utility class can inspect the current namespace to discover all Config-
urable instances automatically, it is far simpler to embed in the code the list of
configurable objects gathered in a specialized dialog. This list of configurable
items changes only at design time. In the implementation proposed, we have

We adopt a fully-automated approach to list manipulation. Those operations
that are allowed on the origin’s collection instance (create a new element,
remove a selected element, modify a selected element) are available to the
user. This aspect crops up again in the discussion of command composition
later in this chapter.

c15.fm Page 544 Thursday, March 9, 2006 3:09 PM

Configuration views 545

3:9 PM 9 March 2006 c15.fm 1.0

designed a ConfigurationDialog class that gets an array of Configurable
objects as a parameter for its constructor.

To see some real action, we have to anticipate this chapter’s example application.
Such an application offers two OOUI objects for user manipulation, books and
libraries. That is enough to understand the next couple of figures, while we will
see the details of the Library example application itself later in the chapter.

Figure 15.2 shows the structure of the Configuration dialog used by the example
application. Within a deferred mode dialog, a JSplitPane divides the list of all
available items on the left from the configurable data presented on the right.
When the user selects Books, the book’s ConfigurationView is shown on the
right. This design avoids a confusing set of nested tabbed panes, while preserving
the same data presentation5.

Note the following:

• The aspect of the item presented on the left – the categories into which the
system configuration is organized – is not bound to a given class, but is
obtained by querying the getcategory method in the Configurable
interface.

• The Configuration view of the Book class uses a brief view of itself to
describe the template book used for creating new book instances. More
precisely, they are two different instances of the same class.

• This utility class can be used for any configurable set of classes. For enhanced
usability, each of these classes should oblige their configuration views to use

5. Although with some limitations.

Figure 15.2 The configuration dialog

c15.fm Page 545 Thursday, March 9, 2006 3:09 PM

546 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

a deferred mode style of interaction, otherwise users could become confused.
This constraint is not enforced in our class framework.

Figure 15.3 shows how the book OOUI object’s appearance can be configured.

15.5 Interacting with the user
In the last section we discussed an approach to the task of building a configura-
tion facility for GUIs. This section looks in some detail at the more general
problem of setting out the software architecture for managing effectively GUI-
user coordination.

The Commandable interface

We plan to make OOUI objects capable of releasing different visual representa-
tions of their internal state. What we need is a way to model the set of possible
actions that each of them can support. Users are already familiar with contextual
menus and with right-clicking on a GUI object to see what commands the object
supports. The only method in the Commandable interface therefore returns an
array of menu items suitable for attachment to a pop-up or drop-down menu. We
use an array of JMenuItems instead of a generic collection make the code easier to
understand.

Composing commands

A common approach is to compose commands from multiple OOUI objects at a
centralized point in the GUI, to facilitate user access to specific actions, such as an
object that returns menu items ready to be incorporated into a toolbar or a menu
bar. This behavior also occurs in classes that are responsible for contained objects,
in a conceptual hierarchy that is similar to the Facade design pattern.

Figure 15.3 The book configuration panel -- book appearance

c15.fm Page 546 Thursday, March 9, 2006 3:09 PM

Interacting with the user 547

3:9 PM 9 March 2006 c15.fm 1.0

Such behavior can be created using the DefaultViewableList component.
Despite its long name, this is just a visual container of generic list objects. The
container itself issues several collection-related commands, such as add and remove
items. When the user selects a given object, the list of all available commands for the
object is displayed in a pop-up menu, as shown in Figure 15.4.

Behind the scenes, the container negotiates with the selected Commandable object
to acquire the list of available commands to be incorporated into the menu. In
Figure 15.4 Library objects can be created and removed, commands that are the
responsibility of the visual container, and offer two additional commands:

• Properties, to inspect an object’s internal state.

• Inventory, which is a Library business-related command.

Note the separator in Figure 15.4 that divides the two command groups.

This mechanisms allows for maximum flexibility – every object knows which
commands it supports and whether they are enabled or not at any specific
moment, while maintaining clearly-defined responsibilities between different
OOUI objects.

Similar behavior is employed in the tree view for Libraries, where no object-
dependent action is allowed, as shown in Figure 15.5.

Figure 15.4 The contextual menu for libraries

Figure 15.5 The contextual menu for books

c15.fm Page 547 Thursday, March 9, 2006 3:09 PM

548 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

The DefaultViewableList class goes a step further, adapting its menus dynam-
ically to the kind of list in use. For a collection that cannot be expanded or shrunk,
for example, only the Properties command is available, as shown in Figure 15.6.

The object interactions typical of this mechanism are illustrated by the sequence
diagram in Figure 15.7.

Figure 15.6 The contextual menu for a fixed-size list

Figure 15.7 Typical interactions for composing commands

c15.fm Page 548 Thursday, March 9, 2006 3:09 PM

Managing user commands 549

3:9 PM 9 March 2006 c15.fm 1.0

15.6 Managing user commands
So far we have looked at the Commandable interface and two different uses of the
Action class. It’s a good idea to take additional care when designing user
commands. Apart from standard commands like OK, Cancel, Help, commands
should be designed both from a GUI viewpoint and from an implementation
viewpoint, because they will be the main interaction points with users. Whether
you use shallow or deep actions in your programs, it’s useful to keep them
centralized in repository classes in your code.

The example implementation uses two classes:

• Commands, a factory class that creates all the actions used in the GUI, indexed
by unique string identifier.

• ActionRepository, an interface that contains a version of ShallowAction,
an implementation of the AbstractAction Swing class seen in Chapter 6.

The factory methods in the Commands class could have been implemented by
cloning prototypes stored in a hash table and indexed by the command strings.
Instead, the more hard-wired approach of a long chain of if statements is used
here. As a rule of thumb, it’s a good idea to consider the dynamic option (the hash
table) when the number of actions is greater than about a dozen.

Indexing actions with a unique key string has several advantages:

• It keeps the action’s creation centralized, for better code readability and
maintenance.

• It allows for faster string comparison (the ‘==’ operator can be used).

• It avoids any spurious operation with actions, such as a string mistyping,
which could be hard to track down in large programs.

In the solution proposed here, such strings are treated as class tokens, in that they
uniquely identify a class rather than a single action instance.

To keep the example simple, actions are not localized. Chapter 8 contains exam-
ples of localized (locale-dependent) actions.

We are now ready to put all these pieces together in a concrete example application.

The ‘token’ command strings in the Commands class are only used internally,
and not for presentation, so they must not be localized.

c15.fm Page 549 Thursday, March 9, 2006 3:09 PM

550 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

15.7 An example application
The task is to build a GUI that manages various libraries. Libraries have several
attributes (such as name, address, and so on), and a collection of books that are
publicly available.

We will build this application using the OOUI approach to drive the application
implementation. The example was constructed with the idea of using an architec-
ture of sufficient complexity to illustrate some of the main issues that can arise in
a real-world software development environment following the OOUI approach.
However, too complex an example would be confusing and distracting.

The example shows a GUI that serves merely as a showcase for the ideas
presented earlier. Try it for yourself: compile the code provided and run the
com.marinilli.b1.c15.book.MainFrame class, or more simply, just launch the
c15.jar file provided for this chapter.

The main window in Figure 15.8 shows a list of libraries on the left and the
currently-selected library on the right.

Library objects can be manipulated by right-clicking on the list of the available
libraries on the left-hand side. In particular, domain-dependent operations can be
invoked, such as making an inventory of the selected library, or performing collec-
tion operations such as creating or deleting libraries. The implementations of
these actions are all provided by the standard behavior of the DefautViewa-
bleList class.

A few sample commands have been implemented – the toolbar shows three. As
well as library creation, there is a Preferences button, which displays the system
configuration dialog, and a Help button.

Figure 15.8 The library application GUI

c15.fm Page 550 Thursday, March 9, 2006 3:09 PM

An example application 551

3:9 PM 9 March 2006 c15.fm 1.0

The nice thing about the OOUI approach is that it spans naturally from the GUI
design phase to the implementation details. Hence we focus our development
effort at designing and building the OOUI objects employed in the GUI that will
later be implemented as Java classes.

OOUI objects

Chapter 1 showed that OOUI objects are domain-related, conceptual objects that
are offered to users for manipulation. When it comes to implementing such
objects in practice, a single OOUI object is usually realized by several Java classes.

First we need to define carefully the OOUI objects needed in the GUI. We have
only two OOUI objects in this simple example: Books and Libraries. Libraries are
collections of Books, with some additional attributes. This situation is represented
in the UML class diagram in Figure 15.9.

Book objects and their implementation

For brevity we concentrate only on the implementation of the Book object, leaving
the classes that implement the Library object for interested readers.

We want the Book object to provide different views, depending on the part of the
GUI where books appear. The three normal views (brief, content, and configura-
tion) and a tree view are shown simultaneously in Figure 15.10.

We indicate OOUI objects with capitalized names, such as ‘Book’ or ‘Library.’
Don’t confuse these with the Java classes that are needed to implement them.
In the end, the user’s experience should be as close as possible to manipu-
lating a unique OOUI object, no matter if trees or tables (Java classes) are used
to represent its state and the intended interaction. Thus the class diagram in
Figure 15.9 refers to ‘abstract’ OOUI objects, not to Java classes.

Figure 15.9 OOUI object relationships

c15.fm Page 551 Thursday, March 9, 2006 3:09 PM

552 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

The Book object offers more views than OOUI objects normally do, but they will
help us to better explore the proposed approach.

The interaction mechanism is as follows: the requester, usually a graphic
container (a dialog or a panel) requests a view of itself from a viewable object. In
practice only complex views are coded into specialized classes: default and stan-
dard views work well for simpler cases, such as brief views, or for content views
of collections.

Suppose a brief view is requested of a Book instance. The Book UI is designed to
provide default brief views, so it is enough to provide the Book’s model for this
kind of view to a specialized factory that creates a standard brief view ready to be
used in the GUI container. This mechanism caters for views asking other for
views, and so on – the Composite pattern.

The sequence diagram in Figure 15.11 shows this scenario: the ViewableBook
uses a model – in the MVC meaning of ‘model’ – of its internal data for building
its views. Models are essential because they allow for the creation of ‘live’ views
that change as the model behind them changes, modifying the current view’s
appearance.

Taming complexity

When developing large and sophisticated GUIs, for example those in which the
same classes provide different types of views, it is essential to tame the complexity
of the resulting code.

Two problems always conflict:

• Visibility. Viewables and views need to be tightly coupled with their respec-
tive domain objects. This conflicts with the principle of separation of
presentation from domain-related code. The three-layer architecture
proposed in Chapter 7 dictates a separation of layers into presentation, appli-
cation, and service layers, which helps to create high-quality code.

Figure 15.10 Possible views of a Book object

c15.fm Page 552 Thursday, March 9, 2006 3:09 PM

An example application 553

3:9 PM 9 March 2006 c15.fm 1.0

• Code size. Inevitably, sophisticated GUIs tend to need more code. One
problem is that high-quality GUIs cannot rely on automatic, general-purpose
widget layout, and have to be positioned manually by the GUI designer on a
per-case basis. The OOUI mechanism described can lead to large class sizes if
not properly handled.

There are several approaches to these problems. The right mix of visibility and
class management is essential for long-term code maintenance. In the example
here we use class inheritance to separate presentation code from domain code and
to keep classes to a reasonable size. Inner classes are then used to keep view code
logically organized but still visible within the class. This simplifies manipulation
of domain-related fields by the presentation code.

Using inheritance is a less flexible solution than using object composition6. The
use of inheritance depends on the particular business domain, because if presen-
tation classes (here ViewableBook or ConfigurableBook) need to extend some
other class, we cannot subclass the domain object (Book). Using inner classes
solves many visibility problems, but tends to produce large files that could be
difficult to maintain. With this approach, we need a new package to protect the
domain class fields from outside, because we want only subclasses to be able to
access them. This could conflict with the analysis phase, in which class packages
should be designed, and on the fact that low-level implementation details should
not affect the domain analysis.

6. See Chapter 6.

ViewableBookFrame/ Panel/.. ViewFactory

Instantiates a
BriefDocument
if not already created

Requests the creation of a
DefaultBriefView

The DefaultBriefView
is created with the given
model

The instance is returned

The instance is returned

The component is
obtained and
attached to the GUI

getBriefView

Figure 15.11 A Book object’s views implementation

c15.fm Page 553 Thursday, March 9, 2006 3:09 PM

554 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

The classes in the example are organized as follows:

• One application class, Book, containing only domain-related code.

• Two presentation classes, one for managing all non-configuration views, and
one to produce configuration views as well. Throughout the GUI we will
always use the ConfigurableView class.

With this code organization long-term code maintenance is greatly improved. The
class hierarchy implementing the Book object is shown in Figure 15.12.

The following Java classes implement the Book object:

• ViewableBook contains the views the object releases to other classes, and the
model used for the brief view. It has the following inner classes:

– ContentView is the class that implements the content view for the object.
– TreeView is the tree view.
– BriefDocument relies on an adapter of the PlainDocument class, which in

turn extends the AbstractDocument class, both provided by the Swing
library.

• ConfigurableBook contains configuration-related code and has only one
inner class:

– ConfigurationView implements the book’s configuration view. Given the
many options available for books, we used a tabbed pane.

Unexpected views

We have added a twist to the example by providing an ad-hoc view, mainly to
show the practical limits of the view/viewable framework.

Figure 15.12 The implementation of the Book object

c15.fm Page 554 Thursday, March 9, 2006 3:09 PM

An example application 555

3:9 PM 9 March 2006 c15.fm 1.0

Views, in the meaning of graphic representations of an OOUI object, can come in
many flavors, and there is no standard, once-and-for-all way to implement them.
As proof of this, the Book object releases views of itself as a tree. Using trees is
quite useful, because they realize the Composite pattern (Gamma et al. 1994)
nicely. For example, an object that is composed of instances of itself can be repre-
sented easily, although this is not done in this example.

From the developer’s viewpoint, the general problem is that views can be imple-
mented with classes other than Components, which makes our View interface
unusable. There are a number of technical solutions to this problem, such as a
TreeView interface that specializes View. In this example we choose a more
straightforward solution, adding a getTreeView method to our ViewableBook
class. In this way, tree views return Swing TreeNode instances, ready to be
combined with other tree nodes to compose any hierarchical view we need.

Reducing development costs

The Book object, even if it implements more views than objects usually do,
exhibits some common factors for reusability. While content and configuration
views are often specialized GUIs tailored for their domain objects, brief views can
be implemented using reusable components, as our example shows.

Taking advantage of the View/Viewable mechanism, a number of general-
purpose classes can be used. For example, the DefaultViewableList class is
used by the Book’s content view to provide the representation of the Book’s
author list. The same component is used in other parts of the example GUI as well,
such as in the MainFrame container. This programming style also has conse-
quences for the GUI’s usability.

The code

We are now ready to look at the final code. Listing 15.2 shows the Book class.

Listing 15.2. The Book class.

00: package com.marinilli.b1.c15.book;
01: import java.net.URL;
02: import java.io.Serializable;
03:
04: /**
05: * The Presentation Layer
06: *
07: * @author Mauro Marinilli
08: * @version 1.0
09: */
10: public abstract class Book implements Serializable {
11: String title;
12: String[] authors;
13: String isbn;

c15.fm Page 555 Thursday, March 9, 2006 3:09 PM

556 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

14: int pages;
15: URL homePage;
16:
17: final static int BOOK_TITLE = 0;
18: final static int FIRST_AUTHOR = 1;
19: final static int ISBN = 2;
20:
21:
22: public Book() {
23: }
24:
25: public Book(String t, String[] a, String i, int p, URL u) {
26: title = t;
27: authors = a;
28: isbn = i;
29: pages = p;
30: homePage = u;
31: }
32:
33: public String toString() {
34: return title;
35: }
36:
37:
38:
39:
40: }

The Book class belongs the Application layer7. It embodies the domain-related
data and behavior associated with the Book object: the separation of business code
from its presentation is an essential benefit of such an architecture.

The business class is very simple: there are no methods, just a collection of fields.
These are the book title, an array that represents the authors, and a few other data
items. As we are primarily interested in the GUI-related code and its organization,
we kept the domain classes as simple as possible. The Library class, whose
implementation is not discussed here, is slightly more complex, in that it provides
a business-related method for the inventory.

The ViewableBook class

The ViewableBook class is the main graphical class that represents Books in the
GUI. Its source code can be found in the code bundle for this chapter. The class
essentially implements a book suitable for display and manipulation on screen via

7. See Chapter 7, A three-layer architecture on page 298.

c15.fm Page 556 Thursday, March 9, 2006 3:09 PM

An example application 557

3:9 PM 9 March 2006 c15.fm 1.0

the class framework. The class contains some configuration fields, such as
currentBriefViewType, used to decide what book data to use for the brief views,
and other GUI-related details.

The ViewableBook class contains the views it releases to other classes and the
model used for the brief view. Recapping, it has the following inner classes:

• ContentView is the class that implements the content view for the Book
object.

• TreeView is added for demonstration reasons and it is not fully
implemented.

• BriefDocument relies on an adapter of the PlainDocument class, which in
turn implements the model for DefaultBriefView instances. Note that
instances of this class are created only when brief views are requested. When
this is not the case, the related briefDocument field is kept null to minimize
space.

ViewableBook adopts a solution that is repeatedly applied in the code described
in this chapter: the main class extends a less-specialized version of the same OOUI
object, and all the auxiliary code required (view classes, MVC models, and the
like) is provided as inner classes. This guarantees high OOP cohesion among the
Java classes involved in the implementation of the Book OOUI object. As a result,
the visibility of the various instances involved is highly simplified. Whenever a
coupling can be relaxed, for example for views in the MVC meaning of the term,
there is no need to accommodate these code objects as inner classes, as is done for
BriefDocument within ViewableBook, for example.

The Book object implemented by these three Java classes is serializable. This is
required to allow Book instances to be made persistent. The book template is
recorded persistently so that it can be used for the initialization of books created
from scratch8.

The ConfigurableBook class

The configuration view is separated from the other views. Although there is no
precise conceptual reason for this, it is handy for practical code maintenance.
The ConfigurableBook class is the extension of the ViewableBook class,
providing configuration views in addition to all the other views the superclass
provides.

The ConfigurableBook class provides two implementations of Configurable
methods. The ConfigurationView inner class implements the preference

8. See Chapter 7 for details of localization mechanisms and naming conventions.

c15.fm Page 557 Thursday, March 9, 2006 3:09 PM

558 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

setting facility for Book objects in the GUI. Physically, it is a JTabbedPane made
up of three panels, built and added in the constructor, that correspond to the
three categories into which Book object preferences were divided by the GUI
designer:

• The General panel is created by the createGeneralPanel() method. It is
initialized with the persistent values from the last time the application was
run – see Figure 15.3 on page 546.

• The Look panel is created by the createLookPanel() method. Note that not
all the widgets are actually used: the treeLargeIconsCheckBox is shown to
the user but not bound to an actual use in the GUI, for simplicity.

• The Validation panel is created by the createValidationPanel() method –
see the right-hand side of Figure 15.10 on page 552.

The ConfigurationView method doCommit() is different than usual doCommit()
methods, because it doesn’t only affect one class instance, but also persists the
values through the persistence facility offered by the Service layer: when a user
commits the book configuration view, its settings are intended to be used by all
currently open books as well as those yet to be created. Configuration views are
often a type of Singleton view, that is, only one instance is shown to the user at any
one time.

Apart from the methods that take care of the GUI details, the clone method is
employed here to support advanced object creation, as discussed in Chapter 7 in
relation to the Service layer.

Libraries

We implement libraries following the same approach used for books, with some
small differences, like using accessory methods (get and set) to interface with the
application layer’s class, Library.

The implementation of the Library domain object closely resembles that of Book,
so we will illustrate only the essential details:

• ConfigurableLibrary has only one inner class:

– ConfigurationView, the configuration view of Library objects.
• ViewableLibrary has only one inner class:

– ContentView, the content view of Library objects.

Figure 15.13 shows the Library content view.

For brevity the Java code for the classes that implement Library objects is not
listed here. Nevertheless, we hope that, apart from conceptual ideas, the example
code can show you many useful, practical tactics.

c15.fm Page 558 Thursday, March 9, 2006 3:09 PM

An example application 559

3:9 PM 9 March 2006 c15.fm 1.0

Some GUI design considerations

One question remains unanswered: what kind of GUI do we get with the design
strategies described here?

Let’s look at the Library manager application. Suppose you want to modify the
author of one book in a given library. You right-click on the libraries in the main
frame, selecting Properties, and do the same on the book list that pops up. In turn,
you then select the author from the chosen book, and select the Properties
command again, finally obtaining what you need. Figure 15.14 shows this path.

One of the reasons an example application that uses container-contained OOUI
objects is chosen is to show some of the peculiarities of this kind of GUI. Using
heavily OOUI-modeled relationships such as containment hierarchies in domain
objects tends to produce highly ‘vertical’ GUI interactions, such as those shown in
Figure 15.4 – many pop-up windows stacked one above the other.

This is not a bad design per se. It keeps the whole GUI highly focused by lever-
aging the context the user creates during an interaction – in the figure, the context
of the Herman Melville string object is the Moby Dick Book object, that is in turn
inherent in the Tomistics Library object. But precautions are needed, such as
keeping the stacking level to a reasonable size, perhaps no more than three or four
depending on the type of application windows and intended users, or main-
taining a tight grip on the GUI by allowing only modal dialogs and hooking them
to the proper container to avoid floating dialogs when users switch to another
process window. Solutions to such problems are available in the literature and
were also mentioned in Chapter 4.

Applying the methods described here doesn’t guarantee a perfect GUI. Usability
and guidelines compliance should always be kept in mind, no matter of how
sophisticated an implementation may be.

Figure 15.13 The Library content view

c15.fm Page 559 Thursday, March 9, 2006 3:09 PM

560 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

Control issues

The example implementation follows both the centralized approach using the
Mediator design pattern (Gamma et al. 1994), and scattered control, both discussed
in Chapter 6.

Centralized control

The director class employed in the example application implementation super-
vises command management and other classes that need centralized control and
have a web of visibility references. In the example we kept the director simple and
straightforward: a more complex version of this pattern featured in Chapter 14.

The BookDirector class provides the following services:

• Initialization of data.

• Execution and management of application-wide commands.

• Conceptual centralization of all GUI-related control code.

This book contains several examples of directors at work, from the simple one in
the QuickText application (Chapter 7) to that presented in Chapter 16, as well as
the flexible arrangement proposed in the example application in Chapter 14, with
one global director coordinating two specialized ones.

Figure 15.14 Using the LibraryManager GUI

c15.fm Page 560 Thursday, March 9, 2006 3:09 PM

An example application 561

3:9 PM 9 March 2006 c15.fm 1.0

Scattered control

This is related to a common situation in many GUIs. When an event takes place
that is bound to some widget or domain data, something else should happen as a
consequence. For example, whenever the user fills in a text field, a group of
components are enabled, and vice-versa9.

More complex interactions are possible in GUIs, making a standard and system-
atic approach highly desirable. This is where the Mediator design pattern comes
into play: there is often no need for a fully-fledged director class. In the book’s
configuration dialog for the example application, some simple reactive behavior
is effectively handled locally to the class, without the need for an external director.

From the book configuration dialog, users can specify how new books are created.
They can decide whether empty values or template data should be used when a
new book is created from scratch. In the latter case, they can inspect and modify
the book template data, as shown in Figure 15.15.

Whenever the user selects the use as a template option, the area corresponding
to the book template is enabled, as in Figure 15.16. This area corresponds to a
DefaultBriefView component.

9. It is always best to keep such widgets – even if disabled – always on screen, rather than
making them appear magically, thus modifying content dynamically at runtime, because
this confuses the user.

Figure 15.15 Book configuration panel, general panel

c15.fm Page 561 Thursday, March 9, 2006 3:09 PM

562 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

Another case in the same OOUI object’s configuration panels is shown in the next
two figures. The first two check boxes in Figure 15.17 are unrelated, but whenever
the second is selected, the other two ‘nested’ checkboxes are enabled.

Figure 15.18 shows the situation in which the Validate ISBN fields option is
selected.

Figure 15.16 Book configuration pane

Figure 15.17 Book configuration panel –book validation

c15.fm Page 562 Thursday, March 9, 2006 3:09 PM

An alternative implementation using Naked Objects 563

3:9 PM 9 March 2006 c15.fm 1.0

In these two cases, interaction is so simple and circumscribed that setting up two,
or even one, separate directors would be a needless complication. In these specific
cases, using an ItemListener to listen for checkbox (Figure 15.18) and radio
button (Figure 15.16) events suffices These are examples of the scattered control
design strategy discussed in Chapter 6.

15.8 An alternative implementation using Naked Objects
This chapter concludes with an alternative implementation of the Library appli-
cation, built using a specialized framework, Naked Objects.

Naked Objects is a framework for building applications by defining the business
objects and their relationships only – that is, focusing on the domain model alone –
and letting the framework take care of GUI details. This is the main advantage
provided by this approach, but also its biggest weakness: developers have little
control over GUI design details. The framework (unsurprisingly) adopts a direct
manipulation, OOUI-inspired GUI design to show business objects to users ‘naked’
of any presentation-specific code.

A screenshot of a simplified version of the Library application implemented with
this framework is shown in Figure 15.19.

This version of the application was built with only three extremely simple
classes (Book, Author, and Library) and a framework-dependent launching
class, LibraryExploration. To give an idea of the simplicity of this version –
although providing a smaller feature set compared with the previous version –
the following listing shows the implementation of the Book class within the
Naked Objects framework.

Figure 15.18 Book configuration panel – enabling fields

c15.fm Page 563 Thursday, March 9, 2006 3:09 PM

564 An Example OO User Interface

3:9 PM 9 March 2006 c15.fm 1.0

Listing 15.3 The Book class

00: package com.marinilli.b1.c15.naked;
...
07:
08: public class Book extends AbstractNakedObject {
09:
10: private final TextString isbn = new TextString();
11: private final TextString title = new TextString();
12: private final WholeNumber pages = new WholeNumber();
13: private final InternalCollection authors =
14: new InternalCollection(Author.class, this);
15:
16: public TextString getTitle() {
17: return title;
18: }
19: public TextString getIsbn() {
20: return isbn;
21: }
22:
23: public Title title() {
24: return title.title().append(",", pages);
25: }
26:
27: public InternalCollection getAuthors() {
28: resolve(authors);
29: return authors;
30: }
31: }

Interested readers can look at the source code of the remaining classes provided
with this chapter. For more details on Naked Objects, see http://www.nakedob-
jects.org/.

Figure 15.19 The Library GUI – Naked Objects version

c15.fm Page 564 Thursday, March 9, 2006 3:09 PM

Summary 565

3:9 PM 9 March 2006 c15.fm 1.0

Figure 15.20 shows the rather unusual GUI generated by the framework for busi-
ness objects. It is possible to create new instances, assign them to their respective
containers, and make them persistent, with many available alternatives. The icons
on the left-hand side represent the classes, while their instances that are open for
modification or inspection are represented by the various internal frames. To add
an author to a book, for example, the user first has to create a new author instance
by right-clicking on the Authors icon on the left-hand side of the window,
selecting the create new command, filling in its data, then dragging it to the
Authors area within a book instance.

In conclusion, it is interesting to note the amount of code employed in the first
version of the Library application that is devoted purely to GUI details, compared
with the second version, in which all GUI details are handled automatically by the
framework. Unfortunately, GUI development is all about GUI details, and while
frameworks such as Naked Objects are appealing to developers, they appear less
effective to customers and GUI designers, no matter how well the GUI is automat-
ically generated.

15.9 Summary
In this chapter we discussed the details of developing an application following an
alternative approach, OOUI objects. We examined common situations that devel-
opers face when implementing non-trivial Java GUIs using the OOUI approach.
We introduced several classes, some of them reusable in many different situations,
and a complete example that leverages them to show how complex GUIs can be
built following the OOUI approach. We also contrasted our application with a
fully-fledged, OOUI-inspired framework, Naked Objects.

Figure 15.20 Managing data the Naked Objects way

c15.fm Page 565 Thursday, March 9, 2006 3:09 PM

c15.fm Page 566 Thursday, March 9, 2006 3:09 PM

16 An Example Ad-Hoc
Component

3:12 PM 9 March 2006 c16.fm 1.0

This chapter describes an example of the design and implementation of an ad-hoc
component with the Java programming language, focusing on the J2SE and the
Swing library only.

Chapter 2 stated that a GUI can be thought of as being composed of visual compo-
nents and their auxiliary elements. From a developer’s viewpoint, such components
can be thought of as belonging to three main groups, depending on their develop-
ment cost:

• Standard components, such as a ‘plain’ JTree instance.

• Specialized components, such as a complex JTree subclass that re-implements
many of the JTree auxiliary classes.

• Ad-hoc components. These are visual components completely different than
the standard ones provided by Swing or other GUI libraries. Ad-hoc compo-
nents are much more expensive to develop, because their development effort
comprises GUI design, testing, and coding.

If there were no reusable, standard libraries, we would develop components from
scratch over and over, at enormous cost and without any coherence between
different implementations of the same component. Luckily, the last twenty years
of software engineering has provided today’s developers with a wide range of
tools for reusability and easy customization of their programs. See for example
(McConnell 1993).

Unfortunately standard libraries don’t cover all the possible components so that,
although rarely, it is still possible to find yourself engaged in ad-hoc component
building.

This chapter is structured as follows:

16.1, Introduction discusses the issues related to the GUI design and implementa-
tion of ad-hoc components.

16.2, The Drawing Sandbox application introduces an example ad-hoc component,
showing an example of its use.

16.3, The Sandbox architecture discusses the overall architecture of the proposed
component.

An Example Ad-Hoc Component

c16.fm Page 567 Thursday, March 9, 2006 3:12 PM

568 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

16.4, The Sandbox component discusses the top-down refinement of the design of
the example application.

16.5, User interaction describes how user interactions are managed by the proposed
implementation of the Sandbox ad-hoc component.

16.6, Control discusses how control is implemented in the proposed ad-hoc
component.

16.7, The whole picture puts the various pieces together, showing a complete picture
of the implementation design.

16.8, Stressing the software design discusses the proposed design critically, high-
lighting its strong points and its drawbacks.

16.9, Introducing JHotdraw contrasts the implementation provided so far with
another implementation using the specialized library JHotdraw. After a brief
introduction of the library, the alternative implementation is discussed and
compared with the previous Sandbox implementation.

The chapter concludes with a summary.

16.1 Introduction
The design and development of high-quality ad-hoc components involves typical
dangers that are accentuated for novice developers:

• The unnecessary effort of reinventing the wheel. When developers launch
themselves into the process of creating ambitious ad-hoc components
together with their support classes – thus creating a de-facto specialized
small class framework – they tend to ignore the vast API that Java offers, re-
implementing existing functionalities in their code.

• Given the difficulty of the implementation process, developers tend to favor
coding aspects over the GUI design of the ad-hoc component being created.
This is a classic problem, but it is
accentuated for ad-hoc component development – the designer says: “We
need drag and drop here,” and the programmer replies “No way – it’s too
costly.”

• Ad-hoc components tend to be domain-specific, so developers often over-
look their development in favor of other parts of the system that are judged
more ‘important’ and reusable in future applications.

• All the typical risks associated with the design and development of new and
complex software artifacts, such as bad cost estimates.

• The risk of a bad design, originating not from technical deficiencies,
but rather the fruit of GUI design inexperience and over-ambition.

c16.fm Page 568 Thursday, March 9, 2006 3:12 PM

The Drawing Sandbox application 569

3:12 PM 9 March 2006 c16.fm 1.0

While standard and specialized components have been properly designed
and are thus harder to misuse, ad-hoc components are like a blank sheet in
the hands of eager and sometimes inexperienced designers and developers.

Given the potentially large costs associated with ad-hoc component development,
it’s best to discourage their use in GUI design and favor wiser, less bold GUI design
choices such as specialized components, as discussed in Chapter 14. Nevertheless,
when one of the requirements is high GUI quality, or when the business domain
dictates it, designers have to resort to ad-hoc components.

Essentially, ad-hoc components leave too much freedom to the designer. This can
be a great thing, or a disastrous one, depending on the designers’ experience and
the context. Venturing into such a complex and time-consuming task is best
avoided if it’s not absolutely necessary. While it can relatively cheap in some
cases, such as in the example presented here, in general it is a hazardous route rife
with unforeseen problems and delays that slow down the whole development
process. All the discussions in the first part of the book should be taken to heart
when evaluating ad-hoc component development. When the ad-hoc component
isn’t a supplementary part of the GUI, but is its cornerstone, the risk is not only to
at least double the development and design effort, but even to produce an unsuc-
cessful GUI.

In the next section we look at an example of a relatively complex ad-hoc compo-
nent implementation in some detail. The scenario is a familiar, interesting and
intuitive domain, enhanced by some ambitious requirements that demand sound
software design. Details have been reduced to a minimum to focus only on the
essential aspects of the problem and produce a concrete, working example of a
complex GUI cut down to its simplest implementation. The focus of this chapter
is on object-oriented software design. This is often the weakest point of an ad-hoc
component implementation – it is a less relatively visible aspect, but in the long
term the most delicate.

16.2 The Drawing Sandbox application
Most computer users are familiar with using a graphic drawing editor into which
you can drop graphic items, drag them, and modify them as you want. Commer-
cial applications such as Adobe Illustrator, Corel Draw, or the drawing palette in
Microsoft Word, provide such features.

We focus here on the mechanism of a graphic container that handles such items
and provides basic operations for manipulating them – a kind of ‘sandbox,’
similar to Windows or MacOS folders, into which users can drop items and arrange
them as desired. We will adopt something close to the direct manipulation
approach in our GUI design. We are not however so much interested in GUI

c16.fm Page 569 Thursday, March 9, 2006 3:12 PM

570 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

design issues as in the software design needed to implement them. The objective
is to build just such a visual component together with all its support classes. This
will be an ad-hoc component because such a visual container is not provided by
the standard Java API.

The application

We’ll begin with the user’s experience of the final product, then explore the
behind-the-scenes software design and discuss some of its aspects. Figure 16.1
shows the main application frame. For simplicity we have only one toolbar, which
groups all the commands, and no menu bar.

Following the order of buttons in the toolbar in Figure 16.1, you can:

• Add graphical objects1 to the Sandbox component.

• Cut, copy and paste an object as needed.

• Undo or redo previous operations.

• Move a selected graphical object to the front, so that it lies above all others.

1. Referred to as ‘symbols’ in the Java code.

Figure 16.1 The main application frame (Liquid)

c16.fm Page 570 Thursday, March 9, 2006 3:12 PM

The Drawing Sandbox application 571

3:12 PM 9 March 2006 c16.fm 1.0

All other actions are object-dependent. Two graphical objects, the bitmap and the
multiple-segment poly-line, have been implemented, to show how different
interactions are accommodated within the same class framework. For example,
the poly-line can be manipulated by mouse dragging and button combinations.

The interaction is rudimentary: you choose an object from the palette, then create
it in the sandbox by clicking on it. The mouse cursor’s shape changes to signal the
drawing mode. Toggle buttons or more refined mechanisms like drag and drop to
inform the user that the application is in ‘adding’ mode aren’t used. In this simple
implementation there is no way to exit object adding mode if you change your
mind – the only way is to add the object to the sandbox and then remove it. Such
niceties have been omitted to keep the code to a reasonable size for an example.
In Figure 16.2 shows a bitmap object being manipulated.

Each object independently provides its own commands, as shown in Figure 16.3
for the bitmap.

When interacting with the GUI, actions are automatically enabled or disabled
depending on context. For example, if no object is currently selected, the actions
appear as in Figure 16.3: note that the pop-up contextual menu, obtained by right-
clicking on the object, is coherent with the toolbar buttons.

Figure 16.2 Manipulating an object via its contextual menu (Liquid)

c16.fm Page 571 Thursday, March 9, 2006 3:12 PM

572 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

Try launching the executable sandbox.jar file, and have fun with the actual
program.

An example interaction

Suppose the user has already performed some manipulations on the objects
shown in Figure 16.2. First undo the rotation on the bitmap using the contextual
menu, as in Figure 16.3.

Note that in the interaction example the clipboard is not used – that is, nothing
was cut or copied, so the paste command remains disabled.

New lines are added just like objects of the type ‘image,’ by clicking on the rele-
vant tool button, then clicking in the sandbox area where the new line is to be
placed. Double-clicking on a line allows its control points to be edited, as shown
in Figure 16.4. Control points are moved by dragging them with the mouse. Line
editing mode is disabled by selecting another object, or by clicking somewhere
else on the sandbox area. To add new control points to a line when in edit mode,
the mouse right button and the control key are used together.

Figure 16.3 Undoing a rotation (Liquid)

c16.fm Page 572 Thursday, March 9, 2006 3:12 PM

The Sandbox architecture 573

3:12 PM 9 March 2006 c16.fm 1.0

16.3 The Sandbox architecture
Now we can look at the implementation of the Sandbox component.

Chapter 2 introduced the OOUI approach, mentioning its usefulness both as a
means for designing the GUI, as well as a way to organize the resulting implemen-
tation. The OOUI approach can be used as a fully-fledged composable unit
strategy2.

The software design discussed here is arranged around the development of the
ad-hoc component using a top down, functional partition. Figure 16.5 shows an
initial high-level division of the software design. A common approach in many
architectures is to separate the domain definition from the application logic – that
is, the functionalities made up of simpler, low-level features that expose the
domain to users3. An e-mail inbox, for example, represents the generic domain of
an archive of e-mails. Possible actions in such a domain depend on the purpose of
the application. For example, an inbox component could be used in a customer-
care application in which customer complaints are filed with e-mails that can

Figure 16.4 Modifying the control points of a poly-line (Liquid)

2. See Chapter 7.
3. From a GUI design viewpoint this reminds us of functional user interfaces – that is, appli-

cation GUIs designed around a set of functions.

c16.fm Page 573 Thursday, March 9, 2006 3:12 PM

574 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

sorted by specific heuristics to extract a tentative subject, category, urgency, and
so on. By implication, we are differentiating our ad-hoc component and the set of
elementary functions it provides for interaction with the rest of the world from the
commands a user will employ to interact with it.

Following this decomposition, we will build our component around a set of
generic, low-level functionalities that in turn will be used by other specialized
code that packs them into higher-level, useful commands for user interaction.

Figure 16.6 shows a possible refinement of the initial decomposition of Figure 16.5.
The most important part is the ad-hoc component itself, which interacts with the
control subsystem that is responsible for maintaining the coherency of the whole
GUI. The third division accounts for the commands issued by the user, each part
being composed from several Java classes. This high-level functional division
focuses only on the more important portions of the implementation, and inten-
tionally omits auxiliary code.

The GUI will be designed by refining the simple functional organization shown in
Figure 16.6 iteratively. This decomposition takes advantage of the peculiarity of
the application, that of an ad-hoc component as the center of the application, but
can be applied to the development of any GUI.

Figure 16.5 An initial high-level functional decomposition

Figure 16.6 Refining the functional decomposition

c16.fm Page 574 Thursday, March 9, 2006 3:12 PM

The Sandbox component 575

3:12 PM 9 March 2006 c16.fm 1.0

It would be nice to create a flexible, highly expandable framework, but the key issue
here is to provide a simple, lightweight design. Features that are desirable, such as
allowing for runtime palette loading – loading new graphical objects from a file and
using them without having to reinstall a new version of the application – can be left
for future versions.

16.4 The Sandbox component
First we concentrate on building the ad-hoc component, the core of the applica-
tion, beginning software design refinement from the ad-hoc component.

Top-down refinement of functional organization

Conceptually the Sandbox component is a container of graphical objects. Both the
objects and the container itself can issue commands by means of contextual
menus. This functionality can be modeled using the Commandable interface from
Chapter 15.

An initial refinement of the software design for the ad-hoc component in Figure
16.6 is shown in Figure 16.7.

So far there is the visual container, which we’ll implement as a Java class called
SandboxPanel, and the objects it contains that are manipulated by the user.
Different objects will extend a base class, AbstractSymbol.

Organizing object communication

How should we organize the communication between the container and its objects?

One of our requirements is to guarantee flexibility to the ad-hoc component in
terms of new object classes that can be used. A clean way to obtain this is to dele-
gate responsibility to the objects themselves. The container merely holds objects

Figure 16.7 From the component to an initial high-level class diagram

c16.fm Page 575 Thursday, March 9, 2006 3:12 PM

576 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

and performs some common operations on them. Objects are responsible for
drawing themselves on screen, for interacting with the user, and so on. This
approach offers a great deal of flexibility, allowing for the use of different object
types without impacting the container.

The container needs access to objects to draw them on the screen. Objects in turn
now have many responsibilities delegated to them, rather than keeping them all
centralized. Following this strategy, mouse input events, for example, need to be
re-issued to the relevant objects, so that the objects themselves can consume the
mouse event as required, transparently to the container and to other classes.
Objects are black boxes as far as the other classes are concerned – the essence of
object-oriented programming.

Suppose that an object is modified and the changes are committed. The container
needs to be notified so that it can refresh the screen to show the changes. Decou-
pling responsibilities at design time is always a great idea, but generally it needs
extra care when it comes to runtime object communication. One possible solution
is to adopt the Observable pattern (Gamma et al. 1994). This makes the design
more modular – components interested in object behavior just register themselves
as observers – and allows for future expansion, with more sophisticated events
being distributed by more complex objects, while keeping the overall design
simple. When we need to make the director class communicate with objects, we
can then just add it as another listener without making any change to the class
structure. Figure 16.8 shows this arrangement.

Instead of creating our own event classes, we adopt the Observer/Observable
mechanism implemented in the java.util package. This decision has the prac-
tical drawback that the Observable class must be extended, instead of an
interface for objects to be observed, but this is not a problem.

Figure 16.8 Making objects communicate with their container

c16.fm Page 576 Thursday, March 9, 2006 3:12 PM

The Sandbox component 577

3:12 PM 9 March 2006 c16.fm 1.0

Using the Observer design pattern simplifies class coupling enormously. A class
interested in object behavior registers itself as an Observer. This application has
two classes that are interested in monitoring object behavior:

• The graphic container – when an object changes, it is time to refresh the
screen.

• The director, which manages the coordination among interacting objects.

We could have mimicked the Swing API, for example for screen area invalidation,
but we prefer to explore and illustrate alternative mechanisms.

We avoid an MVC architecture for our ad-hoc component to show that similar
designs can solve the same problems. We don’t need the flexibility of multiple
views of the same model, and such a complex arrangement might make it difficult
to focus on the important ideas.

The SandboxPanel class

The SandboxPanel class is the graphical container of AbstractSymbol instances.
It is implemented as a specialization of the JPanel class, as shown in Figure 16.9.

The SandboxPanel class is responsible for showing objects to the user and making
them available for direct manipulation. Apart from this, the graphical container is

Figure 16.9 The SandboxPanel class

c16.fm Page 577 Thursday, March 9, 2006 3:12 PM

578 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

essentially a passive object, manipulated by the director class. To ease the interac-
tion between the two classes we allow the graphical container to invoke the
director directly.

Objects are drawn on the screen by means of the paint() method, which has been
customized to support our logical model. Interested users can find more informa-
tion on the paint() method in (Fowler 2000).

The container scans the ordered list of objects, drawing each of them by invoking
their draw() method. The order of the list defines the graphical layering of the
objects, so that the method putInFront() simply moves the given object to the
end of the ordered list, ensuring that it will be painted last and thus lie graphically
‘above’ all the others. The graphical container provides other methods for manip-
ulating objects, such as remove() for eliminating an object.

Another duty of the container is to capture user input by means of mouse event
listeners, decode it, and submit it to interested components.

The mouseClicked() method handles the following events:

• It adds new objects to the graphical container.

• It manages double clicks for placing objects into edit mode.

• It handles contextual menu pop-up.

• It selects objects.

• It issues events to the object itself.

The mouseDragged method simply reissues the event to the relevant object, so that
the object can manage the event accordingly.

Following a top-down approach, we now turn to the objects themselves. At this
level of detail we manage the AbstractSymbol class as the most general class
representing any object able to be added to the container. Now we refine the part
of the ad-hoc component that represents objects.

The features implemented in this example are chosen for illustrative reasons, and
the application has been simplified in a variety of ways. Only single selection is
available, for example, so its clipboard can contain only one object at a time. This
avoids the implementation of multiple-selection interaction with the mouse,
dragging a rectangle on the screen or holding the shift key while selecting more
objects. This could be implemented easily using an array of objects in the clip-
board. In addition, only two object types are implemented, but the design can
allow for a much larger object palette. The number of different object classes is
limited to focus on the more interesting aspects. There are no save or load features,
although they could be added relatively easily by means of serialization extended
to all the involved classes. There is no way to delete all the objects at once, or to
create a new, blank sandbox.

c16.fm Page 578 Thursday, March 9, 2006 3:12 PM

The Sandbox component 579

3:12 PM 9 March 2006 c16.fm 1.0

Graphical objects

The AbstractSymbol class is the most generic object to be contained and manip-
ulated by the Sandbox component. It represents the behavior of any object that
can be added to the framework, and is shown in Figure 16.10.

Users can select an object, move it within the container, and open it for editing by
double-clicking on it. These features translate into three properties of the
AbstractSymbol class shown in Figure 16.10, respectively: selected, editMode,
and location. There are a small number of methods that apply to any object, both
for convenience:

• The initializeAt() method for creating an object at a given point

• The contains() method, which verifies whether a given point lies within
that object area

and for interacting with the rest of the world:

• The processMouseEvent() method manages mouse input

• The getContextualMenuItems() method implements the Commandable
interface for publishing user commands).

Finally, we need a clone() method for creating new objects.

Figure 16.10 The AbstractSymbol class

c16.fm Page 579 Thursday, March 9, 2006 3:12 PM

580 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

From a practical viewpoint, the contains() method is used for picking an object,
given its screen coordinates. This method in turn uses getRectBounds(), so that
simple-shaped object classes don’t have to implement the contains() method.
This is helpful for objects that have a rectangular shape. For other objects types, it
will be necessary to override the contains() method. When the user clicks on an
object to select it, the container class scans the list of all objects to find the first one
whose contains() method returns true. Note that the first one in the list will also
appear to the user as the visually top-most one.

In real applications when several dozen or more different objects can be employed
in the same palette, it is crucial to design the object class hierarchy carefully, both
to maximize code reuse among different object classes, and to keep the design
easy to maintain and expand in the future. Such considerations are out of our
scope here, but (Marinilli 2000) gives more details.

The BitmapSymbol class implementation

The bitmap object represents an image in the container, as shown in Figure 16.1 on
page 570. The BitmapSymbol class implements this simple type of object. The
class is shown in Figure 16.11.

Figure 16.11 The BitmapSymbol class

c16.fm Page 580 Thursday, March 9, 2006 3:12 PM

The Sandbox component 581

3:12 PM 9 March 2006 c16.fm 1.0

The bitmap object exposes the following two commands to the user via the
getContextualMenuItems() method of the Commandable interface:

• Rotate the object, performed by the rotate() method.

• Change the bitmap image, implemented by the ChangeImage action class.
This is described in The Actions class on page 584.

A default image is used when creating a new bitmap object – see the related code
in the BitmapSymbol class.

The draw method is invoked to paint an object onto the screen. The image is
rotated at the current rotation angle, depending on the rotate commands previ-
ously performed on the object.

The setImage() accessory method implementation is worth mentioning. After
updating the internal data with the new bitmap image, the method invokes the
observer/observable mechanism. This will invoke all its listeners, giving them a
chance to react to the event. The director checks for logical – business domain –
coherence, while the graphical container repaints itself, refreshing the screen with
the new object image.

Open-ended communication via events

The BitmapSymbol class is very simple and doesn’t use all the flexibility the design
allows. The sequence diagram in Figure 16.12 shows a representation of the
PoliLine class’ mouseEvent() implementation.

SandboxPanel aSymbol

processes the
event

processMouseEvent(me)

a new
MouseEvent me is sent
to the component

processes
the event
internally,
without the
container knowing

Swing
framework

Figure 16.12 Objects independently process mouse events

c16.fm Page 581 Thursday, March 9, 2006 3:12 PM

582 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

The mouseEvent() method in the PoliLine class implements the GUI interaction
style used by poly-line objects. By dragging the control points that appear when
the line is being edited, the appearance of the poly-line changes. While standard
dragging is implemented for all object classes, when moving them around in the
container area, this class processes mouse events in a specialized way. Adding a
new control point to the line is achieved through the same method as is used to
process mouse events. We could also have used a custom action, such as those that
are provided by the Commandable interface.

An abstract poly-line shape, composed of a sequence of lines, is represented as a
sequence of control points – see the generalPath variable in the source code.
Straight lines connecting pairs of control points are drawn directly in the sandbox
graphical container by the draw method. If an object is selected, a bounding box is
drawn around it.

16.5 User interaction
This section discusses how user interactions are handled by the example application.

Command composition

The creation of command menus uses a typical command-composition scheme4.
The list of available commands for a given object is built by composing the
commands available to the object container and to the object itself. We could
equally have chosen a more general and powerful mechanism to implement
contextual menus for objects.

The container forwards all mouse events to listening objects. Objects are them-
selves left with the responsibility of interpreting low-level mouse events, as well
as the right-click for contextual menu pop-up. The code for commands common
to all objects is kept in the root class of the object hierarchy, AbstractSymbol (see
Figure 16.10). The approach of composing menus is chosen because it leads to a
simpler class arrangement, especially as regards visibility. Note that our solution
doesn’t limit the freedom of AbstractSymbols to handle mouse events.
Although programmatically feasible, it can be confusing for users to have the
same input event (a mouse right-click) associated with context-dependent actions,
such as for example both displaying a contextual menu and modifying control
points in a curve.

Figure 16.13 shows the sequence diagram for contextual menu composition.

4. See Chapter 4 for the GUI design for composing commands, and Chapter 6 for the soft-
ware design.

c16.fm Page 582 Thursday, March 9, 2006 3:12 PM

User interaction 583

3:12 PM 9 March 2006 c16.fm 1.0

The Action framework

The higher-level user commands are shown as one of the three main parts of our
initial decomposition in Figure 16.6. We used ‘shallow actions’ in the Library
application in Chapter 15 for handling user commands. The Sandbox application
instead demonstrates the Command pattern at work, employing what we referred
to as ‘deep actions’ in Chapter 6. We defined deep actions as the proper way to use
Swing’s Action class to implement the Command design pattern fully.

Figure 16.14 restates the Command design pattern from Chapter 6.

Commandable:
director

Commandable:
abstractSymbol

Creates menuItems
based on the director's
actions

getContextualMenuItems

getContextualMenuItems

Creates menuItems
based on the specific
actions

MouseListener:
sandboxPanel

Show the popup menu

Figure 16.13 Creating the contextual menu for an AbstractSymbol instance.

Figure 16.14 The Command design pattern

c16.fm Page 583 Thursday, March 9, 2006 3:12 PM

584 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

Using the Swing library, the Invoker is usually a JMenuItem, a JButton instance,
or similar. The ConcreteCommand is the command instance that is set up by the
Client class, usually the main frame or the director. The Receiver is the class that
actually carries out the action execution. Following Java conventions, the latter
class implements the ActionListener interface.

This approach enables several features, at the affordable price of a little additional
complexity. The main benefits are:

• The whole implementation becomes closer to the domain representation than
with command code centralization.

• Behavior specific to a single command is logically localized within an Action
subclass.

• Undo and redo features stem naturally from this approach.

• The class organization that results is clearer and more systematic than that
when using a centralized mechanism for commands. This is especially true
for large and complex applications.

• This pattern has been adopted extensively in Java APIs, both in Swing and
SWT and in other toolkits.

On the other hand, such an approach has some drawbacks, and these more evident
in smaller projects. Mainly, it produces more and smaller classes, the commands
themselves. This means additional complexity that has to be tamed with extra
effort at design time, primarily with class interaction and management.

One solution is to use a static repository, a cluster of many, small classes obtained
statically at design-time, or a dynamic one, using a runtime container such as a
hash table, for example. The Sandbox application uses both strategies in the
Actions class, which acts as a container class to rationalize action-related code
maintenance. Action classes are grouped statically in the Actions class as inner
classes, and held at runtime in a collection object managed by the Actions class
itself. This is an implementation trick to avoid a proliferation of small classes. The
Actions class is not a proper factory class because it doesn’t create new actions,
but merely provides the same action instances to interested clients.

The Actions class

The implementation of the Actions class is interesting for several reasons. It can
be seen essentially as a static design-time container of actions. This arrangement
has been adopted to ease code maintenance, as discussed in Chapter 15, where
the analogous class was ActionRepository. Apart from grouping the code for
the Action instances used in the application, the Actions class serves as a
dynamic repository as well – that is, live instances are kept in memory at runtime.
This is achieved using a hash map that stores the instances of the required actions.

c16.fm Page 584 Thursday, March 9, 2006 3:12 PM

User interaction 585

3:12 PM 9 March 2006 c16.fm 1.0

The class name string is used to retrieve such instances when they are needed.
This type of organization works nicely for this particular application, in which we
need only one instance of each command. When new instances are needed, you
can resort for example to the Prototype design pattern (Gamma et al. 1994), as we
do for objects.

Within each Action subclass is the related Edit inner class, needed for supporting
non-trivial undo/redo operations. The Actions class, and some of its inner
command classes, is shown in Figure 16.15.

The constructor is kept private to avoid instantiation by other objects, which in
turn is done through the init static method. The latter method is used to pass the
Director instance needed for correct Actions initialization. The constructor
initializes the dynamic repository (the static instance variable map) statically – that
is, it is hardwired into the code. The getAction() method is used to query the
dynamic repository.

Figure 16.15 The Actions class

c16.fm Page 585 Thursday, March 9, 2006 3:12 PM

586 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

This class is not a factory class, in that it doesn’t create new object instances, but
rather keeps a predefined set of them available to other classes as needed.

The Action subclasses used in the simple class framework are subclasses of the
UndoableAction class, which in turn specializes Action for undo behavior. We
adopt two slightly different designs for the Command pattern: the first one deals
with classes such as ChangeImage or Rotate, while the second arrangement is a
simplified version of the first and is discussed later.

The ChangeImage class implements the command for placing an image as a
bitmap object. The implementation could have employed a content view of the
bitmap object to gather all the properties of the object into one command with a
single dialog, but such an arrangement has already been used in Chapter 6, so
we’ve used a different approach here. All the details of the action, such as the icon,
the tool-tip, the shortcut, and so on, are prepared in the constructor. The heart of
this class is the actionPerformed() method, which executes the command,
manipulating the rest of the application directly as needed.

This is a completely different approach than the ‘shallow’ actions illustrated in
Chapter 6. Here the actionPerformed() method in the Action subclass takes
charge of everything needed to carry out the command, in a distributed fashion –
that is, the code related to commands is not centralized in one class, but is distrib-
uted throughout the related action classes. A file chooser dialog is displayed for
selecting an image from the file system that is then substituted for the previous
image. The old image is not lost, but is kept in the related Edit object in case it is
needed for undoing the action. The proper Edit instance is created and stored in
the history of executed commands, administered by the Director class. The
ChangeImage class also employs an inner class, an Edit subclass, which is in turn
an inner class of the Action class specialized for representing ‘change image’
commands.

Following the Command pattern, we define a class specialized in handling one
particular command. To fully support undo and redo operations we need a further
custom class that represents the ‘edits’ obtained by means of the command. Both
the Edit and Action subclasses are tightly coupled, so the inner class implemen-
tation mechanism is ideal in this case. The Edit0 inner class at lines 99–123 in the
ChangeImage action stores all the information and the code for undoing the master
class’ command.

This elaborate design has several characteristics:

• From an OOP viewpoint it is natural – that is, it stems directly from the enti-
ties involved, so that even the resulting static class diagram is expressive,
which could be useful if new developers are added to a team.

• It is easy to maintain, because the code is gathered systematically in well-
defined areas.

c16.fm Page 586 Thursday, March 9, 2006 3:12 PM

User interaction 587

3:12 PM 9 March 2006 c16.fm 1.0

• It is easy to expand without modifying the existing code.

• Drawbacks of static class clustering are scalability, the strain imposed on the
runtime class loader when a lot of small objects are loaded, and the runtime
occupancy when many such instances are kept in memory throughout an
application’s execution.

Our design is simplified by the double role we assigned to the Director class. The
director works as a central access point for the manipulation of the Sandbox
component. The use of fully-fledged Action classes poses the problem of the
many objects that need to be visible to the action itself for ‘doing’ and ‘undoing’
its commands. This is why we pass the director to the Action class.

It is a coincidence that we have just one instance of each action class alive at any
time in the application. We could equally have used just one Add class, for example,
and slightly modified the dynamic repository by providing two methods, getAc-
tion() and createNewAction(), the latter employing the clone() method for
creating new instances from those in the dynamic repository.

The design approach described above tends to produce many similar command
classes. To reduce the number of classes, we employ a simplified version of the
Command pattern. The simplest commands and their related specialized inner
edit classes can be factored out into common classes. We adopt this tactic for the
AbstractUndoableEdit subclasses, using the Edit class as the commonest edit
instance that all other edit classes specialize. We are interested in its use for
handling simple commands like cut, paste, and remove.

Take the Cut class. Here we have a different scheme than the ChangeImage action.
The cut command passes the request for command execution to the director. We use
a general-purpose edit class, Edit, that is manipulated by the Cut class’ methods.
This conservative design spares us code lines and unnecessary complexity. We can
use it because of the nature of some of the commands employed – when there are
many simple commands that resemble each other, this arrangement can make
sense over the cleaner and more powerful one seen for the ChangeImage action
class.

Undo-redo support

Another part of our command framework is undo/redo support. We need a class
to store executed commands. In the swing undo package these are called edits –
every action performed is stored in a new edit instance for future use5.

5. We are only interested here in undo/redo implementation issues. For details about GUI
design issues related to undo support, see (Cooper 2003).

c16.fm Page 587 Thursday, March 9, 2006 3:12 PM

588 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

When an object is rotated, for example, the application creates a new Edit object
that stores the rotate action, together with its argument – the object that has been
rotated. If the user asks for the operation to be undone, the Edit instance is picked
up and the undo method of the Rotate action class is invoked, restoring the situ-
ation as it was before the command was issued.

This scenario is a simple one. In real-world cases more sophisticated mecha-
nisms need to be employed, for example coalescing single small undos into
larger ones, supporting undoable commands by means of specialized excep-
tions, and so on.

The Edit class

The Edit class represents the generic ‘executed action’ by the user on the system,
and is recorded for future use in undo/redo operations. It is implemented as a
subclass of the AbstractUndoableEdit class, part of the swing library for undo
support. It is shown in Figure 16.16.

An Edit instance stores a command and its argument. Such a class can be used in
two ways:

• For instantiating simpler edits, those that take only one object as an argument
and that can be un/done by invoking the corresponding command class.

• As a base class for creating classes that are specialized for recording and
handling more complex edits.

Figure 16.16 The Edit class

c16.fm Page 588 Thursday, March 9, 2006 3:12 PM

User interaction 589

3:12 PM 9 March 2006 c16.fm 1.0

Recording edits

A few words about a data structure useful for managing undo and redo commands
are appropriate here, but readers not interested in such implementation details can
skip this section.

For simple undo support there is no problem, because a simple Stack instance
could contain all the edits to be undone. When a redo command is to be supported,
however, an additional stack can be used in which edits popped from the undo
stack are pushed onto the redo stack, and vice-versa, or a specialized data struc-
ture could be used. The following shows a simple implementation of such a data
structure.

Suppose the following user commands have been issued:

1. A new object symb1 is added to the Sandbox.

2. The object is rotated.

3. A new object symb2 is added to the Sandbox.

4. The first object is put in front of the others.

5. A new object symb3 is added to the Sandbox.

6. The previous action (addition of symb3) is undone.

7. The previous action (symb1 move front) is undone.

8. The redo command is issued, so that the symb1 rotation is restored.

Figure 16.17 shows the state of the command history at the end of these interactions.

If the user were to issue a new command, say ‘add new object4,’ it would be
inserted to the right of the one pointed to by the index value, and the index incre-
mented, moving right one position. For a redo command, the current index pointer
would be moved to the right, so that it points to the next command to be undone.
To keep the data structure to a manageable size and avoid expanding it indefi-
nitely, a maximum size parameter can be enforced and the oldest edits discarded.

The source code for this chapter is available in the sandbox package.

Figure 16.17 The CommandHistory implementation using an ordered list

c16.fm Page 589 Thursday, March 9, 2006 3:12 PM

590 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

Memory issues

Recording edits using strong references (that is, the usual normal Java refer-
ences) can result in a naïve design – memory occupancy grows indefinitely with
application use, so that sooner or later the heap memory is completely filled
with undo records. This is especially true when working with large images. This
is just the kind of situation we want to avoid.

Limiting the CommandHistory size to keep memory use under control circum-
vents this problem, but may limit the user experience – limiting the number of
commands that can be undone can result in nasty surprises for users.

To provide a more flexible mechanism, we could release memory only when it is
really needed. The simplest solution for this situation, from a technical viewpoint,
is to use WeakReferences, special references that can be reclaimed by the garbage
collector when the JVM is short of free heap memory. The net effect for the user is
to experience a sudden reset of the undo history. Using a ReferenceQueue
instance means that the application is notified when the most weakly referenced
edits are about to be discarded. The user can then be informed about what is going
on, for example by providing a pop-up message dialog like the one shown in
Figure 16.18.

From a technical perspective this solution is quite simple, as the garbage collector
takes charge of all the work. From a usability viewpoint, though, this solution could
cause problems, as the memory flushing happens unpredictably and ougtside of
user control – and it often tends to happen during delicate, complex, and memory-
consuming operations. It may therefore disrupt the user’s work, and will certainly
creates a vaguely unpleasant feeling.

A better solution from a usability viewpoint is to leave the user in control of the
application. This can be done by checking memory occupancy before issuing an
undoable command. This allows users to decide whether or not to continue with
the operation, reducing the probability of their being trapped in harmful situa-
tions. In this approach the application might show a dialog like that shown in
Figure 16.19 before executing the command.

Figure 16.18 Notifying users of undo history (Ocean1.5)

c16.fm Page 590 Thursday, March 9, 2006 3:12 PM

User interaction 591

3:12 PM 9 March 2006 c16.fm 1.0

Note that Figure 16.19 has a reassuring Cancel option – even though it is redun-
dant, given the No option. This design choice is provided deliberately to ease user
comprehension of the GUI in challenging situations when users are not used to
this messages and become anxious about the security of their data. Look and feel
design guidelines, for example those for Java and Apple Macintosh, explicitly
dictate that every command has a ‘cancel’ option.

This type of preemptive control can be achieved as shown in the following simpli-
fied code extract:

if (Runtime.getRuntime().freeMemory()<MINIMUM_THRESHOLD){
int userChoice = requirePermissionForCommand();
if (userChoice==JOptionPane.OK_OPTION) {

// execute command without undo support
} else {

// return without executing command
}

} else {
// execute command with undo support

}

Solutions that combine several techniques could of course be used. For example,
we could use preemptive controls together with a policy of releasing the oldest
edits explicitly, by setting their references to null and checking that they are no
longer referenced using a memory profiler.

Which solution is best? It depends on the application. When developing a finan-
cial application in which the effect of every command must be tracked, the
preemptive control shown in Figure 16.19 may be the simplest and most usable
solution. In other cases there may be no need to record every operation exactly,
and a less intrusive application could be used in which the oldest edits simply
‘slip away’ without users noticing.

Figure 16.19 Preemptive control provides less intrusive notification (Ocean1.5)

c16.fm Page 591 Thursday, March 9, 2006 3:12 PM

592 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

16.6 Control
So far we have defined the container, the contained objects, and the actions that
allow user interaction with the Sandbox component.

The design of the action control is left. In trivial GUIs such a feature is often not
needed, and actions operate directly on the GUI objects on behalf of the user. In
more complex situations, though, it is useful to add an additional layer of control,
usually achieved by means of a specialized class that enforces the business logic
among different parts of the GUI.

This is where the director class comes in, and has a twofold purpose. Its main duty
is to implement the Mediator design pattern6 for overseeing the interaction
among different parts of the GUI. Such a class also turns out to be a good candi-
date for centralizing action-related code, which minimizes class coupling. Actions
need only to see the director class, which in turn executes commands by manipu-
lating the rest of the GUI. This ensures logical coherence, undo/redo support, and
also rationalizes class communication. Intuitively, the director class represents the
‘brains’ of the application.

Figure 16.20 shows this connection scheme for the Cut action class.

6. See Chapter 6.

Figure 16.20 The Cut action executes the related command through the director class

c16.fm Page 592 Thursday, March 9, 2006 3:12 PM

Control 593

3:12 PM 9 March 2006 c16.fm 1.0

In this example we are going to limit control logic to action coherence, as we will
see later in the implementation details.

The director is coupled to the other classes by an event-based mechanism. The
director listens to object events and acts directly on the container class, as shown
in Figure 16.21.

The director also manages the undo/redo support by means of the CommandHis-
tory class, as shown in Figure 16.22.

Figure 16.21 Making objects communicate with the rest of the world

Figure 16.22 The control framework

c16.fm Page 593 Thursday, March 9, 2006 3:12 PM

594 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

The Director class

The Director class implements the Mediator design pattern, which was intro-
duced in Chapter 6. It is shown in Figure 16.23 below.

To see how this works, suppose the user invokes the cut command:

1. The cut method is invoked.
2. The currently-selected object is stored to the clipboard, then removed from

the graphical container.
3. The whole operation is recorded for undo support.
4. The graphical container is informed of the remove operation and updates

itself, making the selected object disappear.
5. An event is issued to the director to refresh command coherence.

Figure 16.23 The Director class

c16.fm Page 594 Thursday, March 9, 2006 3:12 PM

Control 595

3:12 PM 9 March 2006 c16.fm 1.0

6. If the clipboard was previously empty, after the execution of this command
the paste action is automatically enabled.

The sequence diagram in Figure 16.24 illustrates this operation.

The director manages the following:

• A group of actions, described in Managing actions next.

• The graphical container, the sandbox instance variable.

• The internal clipboard, where copied or cut objects are stored.

• The set of already-performed actions, for undo/redo support.

• The object to be added to the graphical container, if any – when the user
clicks the ‘add new object’ button, the director is informed and set to ‘add’
mode.

Managing actions

The director is responsible for a group of commands. These are initialized by
the setupActions() method common to all directors, and is overridden from
the AbstractDirector class. Such commands are packaged together for use via

Cut:
aCutInstance

Director:
aDirector

actionPerformed()

store the selected
symbol in clipboard

from the
Swing Framework

Edit:
edit1

CommandHistory:
cmdHst01

remove the selected
symbol from the
container

cut()

new

post(edit1)

Figure 16.24 Executing the ‘Cut’ action

c16.fm Page 595 Thursday, March 9, 2006 3:12 PM

596 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

the getActionToolBar() method. Other commands are out of director’s scope,
such as those that are contextual to a specific object. Keeping a group of commands
centralized in one class is useful in practice, because it minimizes class coupling
and visibility. The latter is a classic OOP technique: lessening visibility helps to
avoid cluttering the whole design and avoid misuses of public methods by
other classes.

The command composition mechanism is implemented with the methods getSe-
lectedSymbolsMenuItems() and getContextualMenuItems(). When the graphic
container is queried by the user – when requesting a contextual menu – the director
is invoked. The director merges the commands available from the currently-
selected object, if any, with those provided by the container.

The director also takes care of the execution of some commands. Consider the
copy() method invoked by the Copy action. The currently-selected object is
cloned and stored in the clipboard. It is then deselected, because the standard
clone() mechanism also copied the selected attribute value from the original,
selected object, so it needs to be explicitly de-selected. Finally a check for logical
coherence among actions is executed, as discussed in the next section7.

Enforcing logical constraints on actions

The checkActions() method maintains coherence among all actions. This is a
one of the key benefits of the Mediator pattern.

This application has three different kinds of constraints on actions:

• A group of commands (Move front, Cut, Copy, and Remove) operates on
selections: if no object is selected, these actions cannot be invoked and should
be disabled.

• Other action types need a non-empty clipboard: in the Sandbox application
only the Paste action has this constraint.

• Undo/redo commands are available only when an action has been
performed (undo) or when at least one old action has been undone (redo).

Abstracting from this simple example, the task of centralizing action coherence is
a common one in sophisticated GUIs. Enabling or disabling actions following the
application domain logic is a feature that is often dictated directly by the GUI
design. From an implementation viewpoint, when the number of actions to check
at any one time is non-trivial – perhaps ten or more checks, with related method
calls and the like – the design suggested in the director class used in the example

7. The example code does not include undo support for copying objects.

c16.fm Page 596 Thursday, March 9, 2006 3:12 PM

The whole picture 597

3:12 PM 9 March 2006 c16.fm 1.0

component needs to be modified. One solution is to provide specialized events,
and their related listeners, for the various types of constraint to be enforced. This
avoids the frequent computation of a unique, catch-all, expensive, method.
Instead, more specialized methods are invoked only when needed. This is the
same idea that was used for enhancing the event delivery mechanism of the old
AWT library.

As the size of applications grows, the use of a director class becomes more and
more useful. You may even end up with one or more specialized classes that are
solely responsible for keeping your many commands logically coherent. This
reduces the maintenance costs associated with dispersing control code locally
throughout the various widgets’ listeners.

We are now ready to see all the different parts put together in the final application.

16.7 The whole picture
Figure 16.25 shows the overall static class diagram of the Sandbox application.

We have finished the iterative refinement steps, and the application is ready to
run. But what about the top-down approach initially adopted to organize the
design? Figure 16.26 shows how the final classes match the initial functional
partition.

Figure 16.25 The static class diagram of the Sandbox application

c16.fm Page 597 Thursday, March 9, 2006 3:12 PM

598 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

Gray classes are not part of our framework. Note that the only class not contained
in any of the three parts devised at the beginning is the Main class containing the
window and the main method.

The preliminary high-level partition shown in Figure 16.6 on page 574 has been
respected almost completely, apart from the communication flows among different
functional parts.

16.8 Stressing the software design
At this point, some authors would hastily conclude the chapter, perhaps chanting
the many virtues of design patterns, or exhorting readers to tweak the proposed
source code. Instead, we take a different path, one rarely taken in technical publi-
cations in which only perfect – or supposedly perfect – solutions are presented.
We already know that our design is too simple and limited to deal effectively with
features like extensibility and flexibility. What we still don’t know is where its
major weak points are.

There is nothing wrong with code that works well. Code organization can of course
be improved by refactoring, or by more painful design restructuring, but the real
test of a design – the chances of making it better, or the risk of degradation – comes
when changes are needed. Below we briefly analyze how our ‘toy’ Sandbox design
reacts to change.

Figure 16.26 The static class diagram mapped to the functional partition

c16.fm Page 598 Thursday, March 9, 2006 3:12 PM

Stressing the software design 599

3:12 PM 9 March 2006 c16.fm 1.0

Adding objects and commands

The first experiment is to see what happens to the design when new commands
such as Print or Save are added to the application. Given the design, the
minimum set of steps needed to, say, add a new object class to the Sandbox appli-
cation are:

1. Create a new action class, usually by extending UndoableAction containing
the code for the relevant command.

2. Enlist the new action class in the dynamic repository held by the Actions
class.

3. Register the new action class semantically within the Director instance. This
in turn involves two steps: (i) Attaching the command to the toolbar, to make
it available to users, and (ii) Writing the code that determines how the new
command is going to interact with the rest of the application.

A further interesting expansion is the addition of new objects, such as text, box, or
ellipse, for example. This involves defining a new object class, and the creation of
an action for adding such objects to the drawing. The minimal steps we need to
add a new object class to the Sandbox application are:

1. Create the new class that implements the object, extending AbstractSymbol
or some of its subclasses.

2. Make a new action class for creating and adding objects of the new type to
drawings.

3. Register the new action class in the dynamic repository held by the Actions
class.

4. Make the director provide the new ‘create object…’ action to the rest of the
application by attaching it to the toolbar.

5. Modify the Director class to handle the intended interactions and control for
the new object.

The addition of a new object type to the design of the Sandbox application,
excluding its special commands, therefore involves the creation of a new class,
and adding code to other two classes, Actions (to add the ‘create new object’
command) and Director. The latter dependency is suspect, because the ‘create
new object’ action doesn’t involve any special control from the Director.

The point is that we gave the simple Director class the responsibility of creating
all the commands, not only those that need centralized control, such as Copy or
Undo. This may become a problem as the number of ‘not controlled’ actions
outnumbers the controlled ones – the Director class may become cluttered with
code unrelated to interaction control. Such code can be factored out in, for
example into a SymbolPalette class, that is provided with mechanisms for
semantic registration of specific actions with the director.

c16.fm Page 599 Thursday, March 9, 2006 3:12 PM

600 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

The design’s weak points

Adding new objects or commands is relatively easy: the real trouble starts when
we need to implement ‘horizontal’ features that might affect many existing
classes in unforeseen ways. Adding zoom support, for example, could impact
the whole design deeply. The effect of implementing other features might be
more circumscribed, such as multiple views of the same drawing, for example,
by adopting a fully-fledged MVC approach, or the ability to group and ungroup
objects.

The relative complexity of just adding a new command to the application should
ring alarms that suggest closer inspection.

Our director implementation seems to be centralizing some of other classes’
responsibilities too much, such as command execution and command status (that
is, whether a command should be enabled or disabled given specific external
states). This stems directly from the limited use of events in our design – command
classes delegate the execution of actions to the director. This simplifies many
things initially, such as control: the director pulls together all the data needed to
execute and control actions.

However, such a design is too tightly coupled to be maintainable in even a simple
real-world situation in which tens of commands to be managed: following such a
centralized design in the evolution of an application will lead to a large, convo-
luted Director class with a myriad of responsibility-free little classes delegating to
it. To use a colorful metaphor, it’s like feeding a baby monster, currently so small
and cute that we don’t realize its intrinsically evil nature that, once big enough to
be out of control, will devour us.

Despite that it seems that sound design patterns were adopted, and what happened
in reality was a misuse of them. For example, controlling whether the Cut action
should be disabled could be done within the Command pattern approach in a
decentralized fashion by letting the Cut action listen to clipboard events and enable
or disable itself accordingly.

There is another, subtler issue with the proposed design. Commands in the design
affect at least three classes: the Action subclass, the Actions repository that is
queried for new commands, and the Director that executes the command itself
and takes care of maintaining coherence among the actions and objects contained
in the sandbox container. This can be seen as a simple, currently harmless lack of
decoupling in the design. This is a well-known aspect of software. Orthogonal
systems, using (Hunt and Thomas 2000) terminology, are those systems in which
there are no ‘effects between unrelated things.’ Perhaps this is exaggerating a
little, but if it is necessary to modify the implementation of the Save command to
provide a new file format, for example, why should it also be necessary to study
the implementation of three other unrelated classes as well?

c16.fm Page 600 Thursday, March 9, 2006 3:12 PM

Introducing JHotdraw 601

3:12 PM 9 March 2006 c16.fm 1.0

16.9 Introducing JHotdraw
JHotDraw is a Java GUI framework for technical and structured graphics that is
derived from an initial Smalltalk design by Ward Cunningham and Kent Beck. It
has been developed as a ‘design exercise’ in Java by Erich Gamma and Thomas
Eggenschwiler, and has a design that relies heavily on standard design patterns.
It is freely available at http://www.jhotdraw.org.

We introduce this framework as a gallery of interesting design solutions to the
problems found with our simple Sandbox application. It would make little sense
to compare our toy application, with its ten classes, with such a framework, which
has more than 180 classes, the many systems developed using it, and the many
experienced designers who have worked on its design, but nevertheless its intro-
duction may help further discussions.

The class diagram in Figure 16.27 shows only the interfaces for clarity, not the real
implementations. The concrete class structure is made up of implementation
classes for the interfaces shown in the following diagrams.

A framework is a reusable, ‘semi-complete’ application that can be specialized
to produce custom applications (Johnson 1998).

Frameworks are different than usual class libraries, even though sometimes
the term is also used for complex class libraries. OOP frameworks usually
represent a domain of interest (for example insurance) or application area (for
example GUI toolkits) with OOP technology, with the explicit aim of being
reused. Frameworks are intended to be reused, with client code extending
them and make them concrete as required, and often define particular control
flows such as inversion of control, and other devices for reuse such as hook
methods, base types to be extended by client code, and so on.

Figure 16.27 The main core class diagram of the main classes of the JHotDraw
framework

c16.fm Page 601 Thursday, March 9, 2006 3:12 PM

602 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

The DrawingView implementation, such as org.jhotdraw.standard.Standard-
DrawingView, for example, redirects user input to the installed Tool instances.
Drawing implementations act as containers for Figure instances (the equivalent of
AbstractSymbol in the Sandbox application) taking care of firing Draw-
ingChanged events to registered DrawingChangeListeners. This type of listener
is specialized for dealing with three types of occurrence:

• When an area of the Drawing instance is invalid.

• When the Drawing instance requests an update.

• When the title string changes.

Instances of the DrawingEditor interface coordinate the various parties involved
in the editor interaction that realizes the Mediator design pattern, as does the
Director class in the Sandbox application. To minimize decoupling with the rest
of the interested classes, the main container implements the DrawingEditor
interface, for example like org.jhotdraw.application.DrawApplication, a
JFrame subclass.

It is interesting to contrast the concept of a JHotdraw tool with the way in which
user input is handled in the Sandbox application. Basically, a tool defines a
modality of the drawing view as perceived by the user. Tools are activated when
the user clicks on a button in the palette, and deactivated when the user clicks on
another button. While active, a tool consumes all input events captured by the
drawing view instance and redirected to the currently-active tool. Tools inform
their editor when they are finished with an interaction, for example after the
creation of a new figure, by calling the editor’s toolDone() method. Similarly to
Sandbox’s actions, tools are created once and then reused. Apart from this simi-
larity, however, JHotdraw tools and Sandbox actions represent the functions
available to the user in a different way. Specialized tools, subclasses of org.jhot-
draw.standard.CreationTool, handle the creation of new figures, while in the
much simpler Sandbox application, object creation is performed directly by the
application.

c16.fm Page 602 Thursday, March 9, 2006 3:12 PM

Introducing JHotdraw 603

3:12 PM 9 March 2006 c16.fm 1.0

(Christensen 2004) provides a more detailed static view of the core types of the
JHotDraw framework, which still apply in Version 6.0.b1, and this is shown in
Figure 16.28.

JHotDraw main classes can also be decomposed following the same simple decom-
position that guided the development of our ad-hoc Sandbox component, as shown
in Figure 16.29.

A functional decomposition like that shown in Figure 16.29 can be helpful in
showing alternative organizations for the OOP implementation of our own ad-hoc
component, but it might be more useful to show a decomposition based on a stan-
dard and not domain-dependent set of abstractions. The perfect candidates for
these abstractions are the well-known OOP design patterns. Following (Chris-
tensen 2004) again, we have the decomposition in Figure 16.30.

Figure 16.28 The static class diagram of the main classes of the JHotDraw framework

c16.fm Page 603 Thursday, March 9, 2006 3:12 PM

604 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

Figure 16.29 A functional decomposition of the main classes of the JHotDraw framework

Figure 16.30 The main design patterns in the JHotDraw framework

c16.fm Page 604 Thursday, March 9, 2006 3:12 PM

Summary 605

3:12 PM 9 March 2006 c16.fm 1.0

It is easy to customize the JHotDraw framework to provide the same features as
the Sandbox application. Figure 16.31 shows such a prototype.

16.10 Summary
In this chapter we have discussed an example of an ad-hoc component design.
Such components can be quite expensive, both in terms of design and implemen-
tation, but in some cases they can make the difference between a great GUI and a
mediocre product.

Key ideas

We saw many ideas at work that could also be useful in other contexts. Let’s recap
some of them:

• Design and use ad-hoc components only when it is really necessary. Usually,
this is the case only for domain-specific and/or high-quality GUIs.

• Small classes can be gathered into container classes at compile-time, a tech-
nique that is referred to as ‘static containment.’ When the same arrangement
is needed for runtime instances, a similar approach can be adopted,

Figure 16.31 The Sandbox application with the JHotDraw framework (Ocean1.5)

c16.fm Page 605 Thursday, March 9, 2006 3:12 PM

606 An Example Ad-Hoc Component

3:12 PM 9 March 2006 c16.fm 1.0

employing a container class that releases instances as needed. Such instances
can be released, or new ones created, by prototyping the stored instances.

• Adopting the fully-fledged Command pattern for handling GUI commands
has many advantages, but can increase code complexity. Some remedies can
be used, such as factoring out common commands or undo data to save on
the number of classes used, a technique demonstrated in the Sandbox
example.

• Ad-hoc components development can easily slide into the construction of
specialized, fully-fledged, small class frameworks. Beware of the ‘feature
creep’ phenomenon, which can be common among developers building ad-
hoc components.

c16.fm Page 606 Thursday, March 9, 2006 3:12 PM

A A Questionnaire for
Evaluating Java User
Interfaces

10:43 AM 8 March 2006 bapp01.fm 1.0

This questionnaire can be used as an acceptance test at the end of a test session
with users, or for a first-cut usability evaluation. It should not be used as a substi-
tute for usability tests.

Section A: Your experience with the program

How long have you worked with the program?

Section B: Overall reactions

Please rate your reactions to the program:

1 hour or less

1 hour to 1 day

1 day to 1 week

1 week to 1 month

1 to 6 months

6 months to 1 year

More than a year

terrible – wonderful

difficult – easy

frustrating – satisfying

boring – stimulating

rigid – flexible

A Questionnaire for Evaluating Java User Interfaces

bapp01.fm Page 607 Wednesday, March 8, 2006 10:43 AM

608 A Questionnaire for Evaluating Java User Interfaces

10:43 AM 8 March 2006 bapp01.fm 1.0

Section C: Past experience

How many other operating systems have you worked with?

Please rate your familiarity with Java:

For the following items, tick those that you have personally used and are familiar
with:

Section D: Terminology

How well does the program terminology relate to the work you are doing?

unhelpful – productive

extremely slow– very
responsive

1

2

3

4 or more

never used before – very high

PC Cellphone PDA Eclipse

Flash drive Web browser CD-ROM drive Database
software

Java runtime
software (JRE)

Java J2ME applet JavaCard

not at all – very well

bapp01.fm Page 608 Wednesday, March 8, 2006 10:43 AM

A Questionnaire for Evaluating Java User Interfaces 609

10:43 AM 8 March 2006 bapp01.fm 1.0

Program terminology is used:

The terminology is:

Messages are:

Message positions on the screen are:

How often do error messages clarify the problem?

Error messages seem:

How often do error messages help to solve the problem?

Section E: Feedback

Does the program keep you informed about what it is doing?

too frequently – appropriately

ambiguous – precise

confusing – clear

consistent – inconsistent

never – always

annoying – constructive

never – always

never – always

bapp01.fm Page 609 Wednesday, March 8, 2006 10:43 AM

610 A Questionnaire for Evaluating Java User Interfaces

10:43 AM 8 March 2006 bapp01.fm 1.0

The mouse pointer shape help in showing the current software state:

While performing a task, the program freezes without showing what it is doing:

Is it possible to configure the feedback level?

Section F: Learning the application

Learning to use the software was:

Getting started with the software was:

Learning advanced features was:

Exploring the application by trial and error was:

Discovering new features was:

never – always

never – always

impossible – easy

difficult – easy

difficult – easy

difficult – easy

risky – safe

difficult – easy

bapp01.fm Page 610 Wednesday, March 8, 2006 10:43 AM

A Questionnaire for Evaluating Java User Interfaces 611

10:43 AM 8 March 2006 bapp01.fm 1.0

Section G: Display organization

The display organization (windows, panels, etc.) was:

Characters and icons were:

The command icons were:

The overall graphic appearance was:

Section H: Help support

Technical manuals were:

On-line manuals were:

On-line manuals were meaningfully structured:

Help material covers the program features:

confusing – clear

hard to read – very readable

confusing – clear

annoying – pleasing

confusing – clear

confusing – clear

never – always

inadequately – completely

bapp01.fm Page 611 Wednesday, March 8, 2006 10:43 AM

612 A Questionnaire for Evaluating Java User Interfaces

10:43 AM 8 March 2006 bapp01.fm 1.0

Help support activation was:

Help material was concise and to the point:

Learning to use the program by using the help was:

Section I: Deployment

Installation was:

Launching the program is:

Upgrading to a newer software version was:

slow – quick

never – always

difficult – easy

difficult – easy

tricky – straightforward

difficult – easy

bapp01.fm Page 612 Wednesday, March 8, 2006 10:43 AM

B A Questionnaire for
Evaluating J2ME
Applications

10:43 AM 8 March 2006 bapp02.fm 1.0

This questionnaire can be used as an acceptance test at the end of a test session
with users, or for a first-cut usability evaluation. It should not be used as a substi-
tute of usability tests.

Section A: Your experience with the program

How long have you worked with the program?

Section B: Your overall reactions

Please quantify your reactions to the program:

1 hour or less

1 hour to 1 day

1 day to 1 week

1 week to 1 month

1 to 6 months

more than 6 months

terrible – wonderful

difficult – easy

frustrating – satisfying

boring – stimulating

rigid – flexible

unhelpful – productive

A Questionnaire for Evaluating J2ME Applications

bapp02.fm Page 613 Wednesday, March 8, 2006 10:44 AM

614 A Questionnaire for Evaluating J2ME Applications

10:43 AM 8 March 2006 bapp02.fm 1.0

Section C: Your past experience

How many cell similar devices have you used before?

Rate your familiarity with Java applets: never used before – very high

In the following items check those that you have personally used and with which
you are familiar:

Section D: Terminology

How close is the program’s terminology to what you would expect?

The terminology is:

Technical terminology is used:

1

2

3

4 or more

PC Smart phone Handheld device Portable Game
Console

SMS Web Browser Portable
MP3 Player

Digital Camera

Java Java Virtual
Machine (JVM)

J2ME applet WiFi Network

not at all – very close

ambiguous – precise

too frequently – appropriately

bapp02.fm Page 614 Wednesday, March 8, 2006 10:44 AM

A Questionnaire for Evaluating J2ME Applications 615

10:43 AM 8 March 2006 bapp02.fm 1.0

Messages are:

Messages positions on the screen are:

How often do error messages clarify the problem?

Error messages seem:

Error messages help to solve the problem?

Section E: Program feedback

The program keeps you informed about what it is doing?

How frequently does the pointer shape (if any) help in showing the current
application state?

How often does the program freeze without showing what it is doing?

confusing – clear

consistent – inconsistent

never – always

annoying – pleasant

never – always

never – always

never – always

never – always

bapp02.fm Page 615 Wednesday, March 8, 2006 10:44 AM

616 A Questionnaire for Evaluating J2ME Applications

10:43 AM 8 March 2006 bapp02.fm 1.0

Section F: Learning to use the application

Learning to use the application was:

Getting started with the application was:

Learning advanced features was:

Exploring the features by trial and error was:

Discovering new features was:

Configuring the application’s preferences was:

Section G: Display organization

The display organization (screens, forms, etc.) was:

Characters and icons were:

difficult – easy

difficult – easy

difficult – easy

risky – safe

difficult – easy

difficult – easy

confusing – clear

hard to read – very readable

bapp02.fm Page 616 Wednesday, March 8, 2006 10:44 AM

A Questionnaire for Evaluating J2ME Applications 617

10:43 AM 8 March 2006 bapp02.fm 1.0

The command icons were:

The overall graphic appearance was:

The application had the same look as other programs:

Section H: Navigation

It was possible to cancel an operation or navigate back to a previous screen:

Navigation keys and navigation commands were:

confusing – clear

The number of screens was:

Reaching a given screen was:

Section I: Help support

Help content was:

confusing – clear

annoying – pleasing

totally different – exactly the same

never – always

confusing – clear

too many – about right

difficult – easy

confusing – clear

bapp02.fm Page 617 Wednesday, March 8, 2006 10:44 AM

618 A Questionnaire for Evaluating J2ME Applications

10:43 AM 8 March 2006 bapp02.fm 1.0

Other manuals (if any) were:

Help material covers the program features:

Help activation was:

Help material was easy to find:

Learning to use the application by using the help support was:

Section J: Deployment

Installation was:

Launching the application the first time was:

Launching the application was:

confusing – clear

inadequately – completely

slow – quick

never – always

difficult – easy

difficult – easy

confusing – clear

tricky – straightforward

bapp02.fm Page 618 Wednesday, March 8, 2006 10:44 AM

A Questionnaire for Evaluating J2ME Applications 619

10:43 AM 8 March 2006 bapp02.fm 1.0

The waiting time for launching the application was:

Upgrading to a newer version was:

Section K: Mobile experience

Switching the application on or off (pausing and restoring it) was:

Operations required extra attention:

How many times did you have to start an operation all over again?

The application respected my privacy:

The application handled interruptions such as phone warnings, phone calls, other
external situations:

Remote connections were signaled:

extremely long – reasonable

difficult – easy

difficult – easy

never – always

never – more than three times

never – always

badly – very well

confusingly – clearly

bapp02.fm Page 619 Wednesday, March 8, 2006 10:44 AM

620 A Questionnaire for Evaluating J2ME Applications

10:43 AM 8 March 2006 bapp02.fm 1.0

The application asked permission before making remote connections:

The application respected the current phone settings, such as ringer off:

never – always

never – always

bapp02.fm Page 620 Wednesday, March 8, 2006 10:44 AM

References

11:17 AM 7 March 2006 bref.fm 1.0

(Advanced Java L&F
Design Guidelines 2001)

AA.VV. 2001. Java Look And Feel Design Guidelines: Advanced Topics.
Reading, Massachusetts: Addison-Wesley.

(Alur, Crupi and Malks
2001)

Alur, Deepak, Crupi, John and Malks, Dan. 2001. Core J2EE Patterns.
Englewood Cliffs, New Jersey: Prentice Hall.

(Beck and Andres 2004) Beck, Kent, and Andres, Cynthia. 2004. Extreme Programming Explained:
Embrace Change. Second Edition. Reading, Massachusetts: Addison-
Wesley Professional.

(Bernard 2004) Golden, Bernard. 2004. Succeeding with Open Source. Addison-Wesley.

(Brooks 1995) Brooks, Frederick P Jr. 1996. The Mythical Man-Month, Anniversary
Edition. Reading, Massachusetts: Addison-Wesley.

(Brown et al. 1998) Brown, William H et al. 1998. Anti Patterns. Refactoring Software, Architec-
tures, and Projects in Crisis. New York: John Wiley & Sons, Inc.

(Burbeck 1992) Burbeck, Steve. 1992. Application Programming in Smalltalk-80: How to Use
the Model-View-Controller (MVC). Technical Report.

Available at:
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

(Buschmann et al. 1996) Buschmann, Frank et al. 1996. Pattern-Oriented Software Architecture
Volume 1: A System of Patterns. New York: John Wiley & Sons, Inc.

(Buschmann et al. 2000) Buschmann, Frank et al. 1996. Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects. New York: John
Wiley & Sons, Inc.

(Christensen 2004) Christensen, Henrik B. 2004. Frameworks: Putting Design Patterns into
Perspective. In Proceedings of ITiCSE’04, June 28–30, 2004, Leeds, United
Kingdom.

(Conallen 2002) Conallen, Jim. 2002. Building Web Applications with UML, Second
Edition. Reading, Massachusetts: Addison-Wesley.

(Cooper 1995) Cooper Alan. 1995. The Myth of Metaphor.

http://www.cooper.com/articles/art_myth_of_metaphor.htm

References

bref.fm Page 621 Tuesday, March 7, 2006 11:17 AM

622 References

11:17 AM 7 March 2006 bref.fm 1.0

(Cooper 1999) Cooper, Alan. 1999. The Inmates Are Running the Asylum: Why High Tech
Products Drive Us Crazy and How To Restore The Sanity. Sams Publishing.

(Cooper 2000) Cooper James W. 2000. Design Patterns in Java Technology. Presentation at
the JavaOne Conference. California.

(Cooper 2003) Cooper, Alan, and Reimann, Robert. About Face 2.0: The Essentials of
Interaction Design. New York: John Wiley & Sons, Inc.

(Davidson 2000) Davidson, Mark. 2000. Using the Swing Action Architecture. Sun Technical
Article. http://www.sun.java.com/

(Daconta et al. 2000) Daconta, Michael C. et al. 2000. Java Pitfalls. Time-Saving Solutions and
Workarounds to Improve Programs. New York: John Wiley & Sons, Inc.

(De Marco and Lister 1999) De Marco, Tom, and Lister, Timothy. 1999. Peopleware. Productive Projects
and Teams. Second Edition. New York: Dorset House Publishing Co.

(Des Rivières 2000) Des Rivières, J. Evolving Java-based APIs
http://www.eclipse.org/eclipse/development/java-api-
evolution.html

(Des Rivières 2001) Des Rivières, J. How to Use the Eclipse API.
http://www.eclipse.org/articles/Article-API%20use/eclipse-api-
usage-rules.html

(Elkotoubi, Khriss
and Keller 1999)

Eloutbi, M, Khriss, I, and Keller, R. K. 1999. User Interface Prototyping
using UML Specifications. Université de Montreal. Technical Report.

(Evans 2004) Evans, Eric. 2004. Domain Driven Design. Reading, Massachusetts:
Addison-Wesley.

(Fleming 1998) Fleming, Jennifer. 1998. Web Navigation: Designing the User Experience.
Sebastopol, California: O’Reilly & Associates Inc.

(Fowler 1997) Fowler, Martin. 1999. Analysis Patterns: Reusable Object Models. Reading,
Massachusetts: Addison-Wesley.

(Fowler 1999) Fowler, Martin, et al. 1999. Refactoring: Improving the Design of Existing
Code. First Edition. Addison-Wesley, Boston, Massachusetts.

(Fowler 2000) Fowler, Amy. 2000. Painting in AWT and Swing. Technical Article.
Available at: http://java.sun.com/products/jfc/tsc/articles/painting/
index.html

(Fowler 2000b) Fowler, Amy. A Swing Architecture Overview. The Inside Story on JFC
Component Design. Technical Report. Available at
http://java.sun.com/products/jfc/tsc/articles/architecture/

bref.fm Page 622 Tuesday, March 7, 2006 11:17 AM

References 623

11:17 AM 7 March 2006 bref.fm 1.0

(Fowler 2003) Fowler, Martin. 2003. UML Distilled: A Brief Guide to the Standard Object
Modeling Language, Third Edition.

(Fowler et al. 2000) Fowler, Martin et al. 2000. Refactoring. Improving the Design of Existing
Code. Reading, Massachusetts: Addison-Wesley.

(Fowler et al. 2003) Fowler, Martin et al. 2003. Patterns of Enterprise Application Architecture.
Reading, Massachusetts: Addison-Wesley.

(Gamma et al. 1994) Gamma, Erich et al. 1994. Design Patterns. Reading, Massachusetts:
Addison-Wesley.

(Geary 1999) Geary, David M. 1999. Graphic Java 2. Mastering the JFC. Third Edition.
Englewood Cliffs, New Jersey: Prentice Hall.

(Holub 1999) Holub, Allen. 1999. Building Interfaces for Object Oriented Systems. Java-
World Article. http://www.javaworld.com/

(Hunt and Thomas 2000) Hunt, Andrew and Thomas, David. 2000. The Pragmatic Programmer.
From Journeyman to Master. Addison-Wesley.

(Hutchins et al. 1986) Hutchins, Edwin, Hollan, James, and Donald Norman. Direct Manipula-
tion Interfaces, in Norman, Donald, and Draper, Stephen, User Centered
System Design. 1986. pp. 87–124.

(Java L&F Design
Guidelines 2001)

AA.VV. 2001. Java Look And Feel Design Guidelines, Second Edition.
Reading, Massachusetts: Addison-Wesley.

(Johnson 1998) Johnson, Ralph and Foote, Brian. 1988. Designing Reusable Classes.
Journal of Object-Oriented Programming. SIGS, 1, 5 (June/July. 1988),
22–35.

(Johnson 2003) Johnson, Rod. 2003. Expert One-on-One J2EE Design and Development.
Indianapolis: Wrox; John Wiley & Sons, Inc.

(Kerievsky 2004) Kerievsky, Joshua. 2004. Refactoring to Patterns. Addison-Wesley
Professional.

(Kruchten and Ahlqvist
2001)

Kruchten, Philippe and Ahlqvist, Stefan. User Interface Design in the
Rational Unified Process. In M. van Harmelan, Ed., Object Modeling and
User Interface Design. Addison-Wesley, 2001.

(Larman 2003) Larman, Craig. 2003. Agile and Iterative Development. A Manager’s Guide.
Addison-Wesley Professional.

(Mandel 1997) Mandel, Theo. 1997. The Elements of User Interface Design. New York:
John Wiley & Sons, Inc.

bref.fm Page 623 Tuesday, March 7, 2006 11:17 AM

624 References

11:17 AM 7 March 2006 bref.fm 1.0

(Maner 1997) Maner, Walter. 1997. Internationalization of User Interfaces. Available at
http://web.cs.bgsu.edu/maner/uiguides/internat.htm

(Marinilli 2000) Marinilli, Mauro. 2000. A Java Drawing Editor. Gamelan Article.
http://www.gamelan.com/

(Marinilli Persistence 2000) Marinilli, Mauro. 2000. Class Semipersistence and Instance Semipersistence:
Two Powerful tools in the Software Designer Toolbox. Gamelan article.
http://www.gamelan.com/

(Marinilli 2001) Marinilli, Mauro. 2001. Java Deployment. Indianapolis: Sams Publishing.

(Marinescu 2002) Marinescu, Floyd et al. 2002. EJB Design Patterns: Advanced Patterns,
Processes, and Idioms. John Wiley & Sons, Inc.

(Martin 2002) Martin, Robert C. 2002. Agile Software Development. Principles Patterns,
and Practices. Englewood Cliffs, New Jersey: Prentice Hall.

(McConnell 1993) McConnell, Steve. 1993. Code Complete. A Practical Handbook of Software
Construction. Redmond, Washington: Microsoft Press.

(McConnell 1996) McConnell, Steve. 1996. Rapid Development. Taming Wild Software Sched-
ules. Redmond, Washington: Microsoft Press.

(Mullet and Sano 1995) Mullet, Kevin, and Sano, Darrel. 1995. Designing Visual Interfaces. Commu-
nication Oriented Techniques. Englewood Cliffs, New Jersey:
Prentice Hall.

(Nielsen 1993) Nielsen, Jakob. 1993. Usability Engineering. San Diego: California
Academic Press.

(Norman 1990) Norman, Donald A. 1990. The Design of Everyday Things. New York:
Doubleday.

(Norman 1993) Norman, Donald A. 1993. Things That Makes Us Smart. Defending Human
Attributes in the Age of the Machine. Cambridge, Massachusetts:
Perseus Books.

(Norman 1998) Norman, Donald A. 1998. The Design of Everyday Things. Bantam
Doubleday Dell Publishing.

(Potel 1996) MVP: Model-View-Presenter. The Taligent Programming Model for C++ and
Java. Technical Report.
ftp://www6.software.ibm.com/software/developer/library/mvp.pdf

(Preece 1994) Preece, Jenny. 1994. Human Computer Interaction. Reading, Massachu-
setts: Addison-Wesley.

bref.fm Page 624 Tuesday, March 7, 2006 11:17 AM

References 625

11:17 AM 7 March 2006 bref.fm 1.0

(Reichert 2000) Reichert, Raimond. 2000. Interact with Garbage collector to avoid memory
leaks. Use Reference Objects to Prevent Memory Leaks in Application Built on
the MVC Pattern. Javaworld article. http://www.javaworld.com/

(Rosenberg and Scott 1999) Rosenber, Doug, and Scott, Kendall. 1999. Use Case Driven Object
Modeling with UML. A Practical Approach. Reading, Massachusetts:
Addison-Wesley.

(Rubin 1994) Rubin, Jeffrey. 1994. Handbook of Usability Testing. How to Plan, Design
and Conduct Effective Tests. Wiley Technical Communication Library.
New York: John Wiley & Sons, Inc.

(Selby and Porter 1998) Selby R. W. and Porter. A. A. 1988. Learning from Examples: Generation and
Evaluation of Decision Trees for Software Resource Analysis. IEEE Trans. on
Soft. Eng., 14(12), pp. 1743–1757.

(Shirazi 2000) Shirazi, Jack. 2000. Java Performance Tuning. Sebastopol, California:
O’Reilly & Associates Inc.

(Shirogane and
Fukazawa 2002)

Shirogane, Junko and Fukazawa, Yoshiaki. 2002. GUI Prototype Genera-
tion by Merging Use Cases. Proceedings of the IUI Conference.
San Francisco, California.

(Shneiderman 1998) Shneiderman, Ben. 1998. Designing the User Interface, Third Edition.
Reading, Massachusetts: Addison-Wesley.

(Snyder 2003) Snyder, Carolyn. 2003. Paper Prototyping: The Fast and Easy Way to Design
and Refine User Interfaces. Morgan Kaufmann.

(Sundsten 1998) Sundsten, Todd. 1998. MVC meets Swing. Explore the underpinnings of the
JFC’s Swing components Pattern. Javaworld article.
http://www.javaworld.com/javaworld/jw-04-1998/
jw-04-howto.html

(Tidwell 1999) Tidwell, Jenifer. 1999. Common Ground. http://mit.edu/

(Tufte 1990) Tufte, Edward R. 1990. Envisioning Information. Cheshire, Connecticut:
Graphic Press.

(Tufte 1997) Tufte, Edward R. 1997. Visual Explanations. Cheshire, Connecticut:
Graphic Press.

(Tufte 2001) Tufte, Edward R. 2001. The Visual Display of Quantitative Information.
Second Edition. Cheshire, Connecticut: Graphic Press.

(Vlissides et al. 1996) Vlissides, John et al. (Eds.) 1996. Pattern Languages of Program Design 2.
Reading, Massachusetts: Addison-Wesley.

(Vlissides 1998) Vlissides, John. 1998. Pattern Hatching. Design Patterns Applied. Reading,
Massachusetts: Addison-Wesley.

bref.fm Page 625 Tuesday, March 7, 2006 11:17 AM

626 References

11:17 AM 7 March 2006 bref.fm 1.0

General advice on usability and GUI design
http://www.acm.org/sigchi/

CHI Conference proceedings abstracts and other academic research material.

http://www.acm.org/~perlman/readings.html

Suggested readings on HCI and UI development.

http://www.asktog.com

Bruce Tognazzini’s Web site.

http://developer.apple.com/documentation/UserExperience/Conceptual/
OSXHIGuidelines/

Apple Macintosh design guidelines.

http://www.gui-designers.co.uk

Practical examples of GUI design.

http://www.ibm.com//ibm/hci/

IBM’s human computer interaction Web site.

A couple of ’interface hall of shame’ sites are available on line:

http://homepage.mac.com/bradster/iarchitect/shame.htm

This is the most interesting and complete one, although now a little dated.

Other Web sites on the same subject:

http://www.pixelcentric.net/x-shame/
http://www.frankmahler.de/mshame/index.html
http://www.rha.com/ui_hall_of_shame.htm
http://msdn.microsoft.com/ui

Microsoft MSDN user interface resources.

http://www.pegasus3d.com/apple_screens.html

The evolution of the Macintosh interface.

http://www.tworivers.com

General and practical discussion on GUI design.

http://www.usabilityfirst.com

General advice on usability and GUI design.

http://www.useit.com

Jakob Nielsen’s Web site, with some useful articles.

Java-specific links
http://www.java.sun.com/products/jlf

Java look and feel design guidelines.

http://www.java.sun.com/products/jfc

bref.fm Page 626 Tuesday, March 7, 2006 11:17 AM

References 627

11:17 AM 7 March 2006 bref.fm 1.0

The Java Foundation Classes (JFC) official home page.

http://www.java.sun.com/products/jfc/tsc

The Swing Connection official home page.

http://www.sun.com/access/articles/#articles

Discussion of the Multiplexing look and feel, providing accessibility features.

http://deyalexander.com/resources/design-guidelines.html

A list of resources about GUI Design guidelines.

http://www.cs.usm.maine.edu/~welty/

A comprehensive list of useful HCI/ UI design links.

bref.fm Page 627 Tuesday, March 7, 2006 11:17 AM

11:17 AM 7 March 2006 bref.fm 1.0

bref.fm Page 628 Tuesday, March 7, 2006 11:17 AM

Index

1:31 PM 8 March 2006 bindex.fm 1.0

A
A Brief Introduction to JDNC 531
A Comprehensive Data IO Design Strategy 233
A Cost-Driven Prototype 531
A First GUI Design 506
A Four-Layer Architecture 299
A Functional Decomposition for User Interfaces 3
A Matter of Style 536
A More Refined Use Case Diagram 504
A Note on Lifecycle Model 498
A Posteriori Profiling 220
A Practical Case 455
A Second GUI Paper Mockup 508
A State-Oriented Approach to GUI Control 265
A Three-Layer Architecture 298
A Three-Layer Organization for GUI Code 300
A Throw-it-Away GUI Prototype 511
About Dialog 146
Accessibility 160
Activation Mechanism 127
Add Parameter to Panel 197
Adding Symbols and Commands 599
Advanced Adaptation 275
An Alternative Implementation 563
An Alternative, Cost-Driven Design 530
An Electronic Circuit Simulator and Editor 309
An Example

Designing Dialog Boxes 114
An Example Ad-Hoc Item 388
An Example Application 389
An Example Custom Item 387
An Example Eclipse RCP Application 486
An Initial GUI Paper Mockup 506
An MP3 Player 306
An Unorthodox Use of Swing Actions 258
Analysis 499
Application or Domain Layer 304
Architecture Introduction 314
Area Organization 120, 362
Assembling Components 77, 88, 91, 97, 99

Assessing the Quality of a GUI 72
Attributes 448

B
Basic Java web GUIs technologies 369
Broadening the Choice 131
Building on top of Existing Libraries 447
Business Domain 231

C
Choosers 126
Choosing a Higher-Level Starting Point 530
Choosing the Technology 505
Closing the Loop with the Server 357
Command Composition 158, 259
Commands Third 353
Common Dialogs 146
Common Problems 216
Composable Units 292
Composite Context 277
Conceptual Frameworks 64
Conclusions 133, 161
Configuration Views 544
Content Assembly 229
Content First 346
Continuous Profiling 219
Control 592
Control Issues 260
Cost-Driven Design 81
Cost-Driven Design for J2ME GUIs 379

D
Data Input-Output 233
Data Second 350
Defining Rich Clients 324
Dependency Inversion Principle 291
Deployment Issues 529
Dermaphobic and Graphic Hedonists 8
Design Guidelines for the Java Platform 100

Index

bindex.fm Page 629 Wednesday, March 8, 2006 1:31 PM

630 Index

1:31 PM 8 March 2006 bindex.fm 1.0

Design Patterns 234
Design Weak Points 600
Designing a Wizard 125
Designing MIDP GUIs 382
Designing Navigation 385
Direct Manipulation 63
Display Organization 47
Distributing Behavior between Client

and Server 327

E
Early Analysis 499
Early Design 12
Eclipse RCP 477
Effective 61
Esthetic Considerations 49
Evolutionary Prototyping Process 24
Evolving Order and Fit Architectures 294
Existing GUI Code 457
Explicit Navigation 231
Exploiting Technology 465
Exploring the Design Space

for a Point Chooser 86
Extract Composable Unit 197
Extract Explicit Panel 195
Extract Standalone Panel 196
Extreme Programming 20

F
Factory Services 319
Failing with Style 201
Fine Graphics Details 361
First-Time Message Dialog 150
Flexible Layout 144
Form Filling Style 59
From web applications to rich clients 371

G
Graphic Conventions 156
GUI Design for Rich Clients

the Third Way 326
GUI Design for the web 361
GUI Refactorings 191

H
Help Support 164
How to Test _ GUI Software Test Approaches 206

I
Icons and Images 165
Images 525
Implementation 515
Implementing Object Oriented

User Interfaces 537
Implementing web applications with Java 368
Individuating Boundary Classes 505
Input History 134
Interacting With the User 546
Interaction and Control 257
Interaction Style 128
Interaction Styles 57
Internationalization 163
Introducing JHotdraw 601
Introducing Software Architectures 287
Introduction 323, 536, 568
Introduction to the MID Profile 375
Introduction to User Interface Design

Guidelines 100
Introduction to User Interface Testing 203

J
J2SE User Interface Design Guidelines 103
Java Rich Clients 325
Java Technology for GUIs 77

K
Keyboard Shortcuts 161

L
Language Based Styles 62
Lazy Initialization 135
Levels of Client-Side Control 362
Leveraging Object Oriented Programming 166
Lifecycle Models, Processes and Approaches 14
Little Languages 466
Loading Services 316
Localization Bundles 525
Localization Services 316

bindex.fm Page 630 Wednesday, March 8, 2006 1:31 PM

Index 631

1:31 PM 8 March 2006 bindex.fm 1.0

Login Dialog 149
Long-Living GUIs 463
LUCID Methodology 22

M
Main Frames 121, 123
Main UI Concepts 376
Main UI Limitations 379
Managing User Commands 549
Memory Components 133
Memory Management for Complex GUIs 454
Menu Selection Style 57
Merge Panel 197
Model-View-Controller 252

N
Navigation and Keyboard Support 161
Navigation Issues 365

O
Object Views and Commands 71
Object-Oriented User Interfaces 69
Organizational Aspects 7
Organizing Objects Communication 575
Other Services 320
Overview 301, 314
Overview of Web User Interfaces 359

P
Parameterize Panel 198
People and GUIs 8
Persistence Services 319
Porting an Old Applet A Case Study 459
Preferences Dialog 137
Preferences Dialogs Styles 138
Presentation Layer 303
Provide Adaptation 271
Providing new Deployment Support 464
Providing new Services 321

R
Rational Unified Process 15
Recurring Problems 329
Reference Functional Model 326
Remote Communication Design 235

Remove Parameter from Panel 198
Rename with Panel 201
Replace Parameter with Panel 200
Resources 524
Revisiting the Abstract Model 224
Roll Your Own Framework 451
Runtime Data Model 329
Runtime Management, JRE 214

S
Saving User Preferences 134
Security Issues 236
Separated Interface 292
Server Support 529
Service Layer 305
Simplified Thinking Aloud 46
Software Requirements 516
Software Testing of Java GUIs 206
Some Classic Refactorings 191
Some Definitions 109
Some Design Patterns for GUI

Applications 271
Some GUI-Specific Refactorings 194
Some Recurring GUI Architectures 295
Some Scenarios 503
Some Utility Classes 542
Splash Window 151
Stressing our Software Design 598
Summary 30, 75, 117, 167, 221, 285, 321, 358,

373, 392, 445, 469, 496, 533, 565, 605
Symbols 579

T
Tab Traversal 162
Taming References 289
Team Composition 10
Test Tools 420
Test-Driven Development 204
Testing Out the Final Product

for Accessibility 161
The Application 570
The Cake Orders Application,

the XP Way 343
The Code 391, 525
The Commandable interface 546
The Difference Between Run and Ride 81

bindex.fm Page 631 Wednesday, March 8, 2006 1:31 PM

632 Index

1:31 PM 8 March 2006 bindex.fm 1.0

The Drawing Sandbox Application 569
The Final GUI 513
The First Iteration 344
The Future of Java GUIs 468
The Java Look and Feel Design Guidelines 108
The Mediator Pattern 262
The Memento Design Pattern 266
The MIDP UI API 379
The Overall Architecture 573
The Plain Direct Manipulation Design in Detail

90, 91, 92
The Prototype 529
The QuickText Application 267
The Remote Explorer Director 526
The Sandbox Component 575
The Situation 497
The Smart GUI Antipattern 296
The Software Architecture 516
The Viewable interface 538
The Whole Picture 597
Thread Management 263
Three Kinds of Components 79
Tool Selection

The Java Singularity 6
Toolbar Composition 157

Top-Down Refining of the Functional
Organization 575

Two Examples 306

U
UI Widgets 379
UML Notation 26
Usability Heuristics 73
Usability Testing of Java GUIs 211
User Interaction 582
Using A3GUI to Address Parameterization 275
Utility Libraries 411

V
Validating the Throw-it-Away Prototype 512
Validation 332
Value Model 282

W
Waiting Strategies 141
What to Test _ Test Covering Criteria 210
When Ad-Hoc is the Only Way to Go 83
Who _Owns 9
Wizards 124

bindex.fm Page 632 Wednesday, March 8, 2006 1:31 PM

