WILEY & TIMELY. PRACTICAL. RELIABLE.

Professional

Java User
Interfaces

Mauro Marinilli

Professional Java User
Interfaces

Mauro Marinilli

&

John Wiley & Sons, Ltd

Main Patterns and Design Strategies organized by functional layer
Adaptation 272

/ N

Interaction and Control

Scattered Control 260

Mediator Pattern 263

Explicit Control State 260

Observer Pattern 240

Event Arbitrator 245
Message-Based Communication 250
Command Pattern 258

Active Object 280 p.

Presentation
Separate GUI Design Details from Other code 234

Business Domain

Model- View-Controller 252
Model- View-Presenter 254
Domain-Driven Patterns 354

M
DatalO
Data Transfer Object 234

Proxy 234
Broker 234
Value Model 282

Content

Composite Pattern 59
Explicit Navigation 231
Composite Context 277

Main principles

GUI design and overall development
— User-centered design (44)

A design approach for building highly usable user interfaces, putting the emphasis
on the user.

— Cost-driven design (81)

GUI design comes first, with an eye on development complexity. For example,
avoid using ad-hoc components (81) in your GUI as far as possible.

— Iterative GUI development (169)
Iterate: GUI design and implementation, profiling, software and usability testing.
Implementation
— The principle of Single Functional Responsibility (227)
Provide only one functional responsibility per class/method.
— Object lifecycle management — a general mindset (281)
Instantiate lazily and dispose eagerly, avoid garbage collector bottlenecks.
— Don’t go against the flow (284)
GUI toolkits are complex beasts, so don’t ignore them and implement fancy

designs counter to the architecture or style of the underlying GUI toolkits and
infrastructure (RCP).

Visual refactorings

Other refactorings are discussed in Chapter 5.

Extract explicit panel (195), Extract stand-alone panel (196), and Composable units (292)

Extract the code of an existing GUI panel into a separate implementation to enhance
modularity and reusability.

Merge panel (197)
Merge different implementations representing the same panel into a common one.
Add parameter to panel (197) and Remove parameter from panel (198)

Add parameters to customize a panel and its opposite refactoring, Remove parameter
from panel (198).

Parameterize panel (199)

Implement two slightly different panels with a unique code base.

Replace parameter with panel (200)

Instead of adding a parameter, separate the implementation of the two panels.
Rename panel (201)

Change the name of a panel.

Cheat Sheet

An extremely simplified and by no means exhaustive basic reference to some of the topics
discussed in the book.

GUI Design

How do I signal to the user my GUI is busy?

Change mouse pointer to hour glass for any operation that lasts more than two
seconds, always use progress indicators, and update progress every five seconds.

How do I validate my GUI?

Involve users in design, use prototyping, software testing, memory profiling
(Chapter 5), questionnaire evaluation (Appendices A and B), and usability testing.

How do I organize the GUI window area?

Use the Area Organization design strategy (120).

How do I allow the user to select or create information in a GUI?
Use the Chooser design strategy, 126.

How do I deploy my GUI?

Use Java Web Start when the user population is confident with approving certificates,
as for internal software. Use installers in other cases, and for large installation
bundles. Consider also using applets!

Software Design

How do I keep my GUI responsive to user interaction during long-running
operations?

Use the Active Object pattern, 280 (for Swing, the SwingWorker class) for any opera-
tion that might last more than one second.

How do I implement control (reaction to user interaction) in my GUI?

Depending on the number of items to be controlled by control rules, use:
— Scattered control (260) — few items, reactive-only control rules.

- Centralized control, the Mediator pattern (263) — many items, any kind of control
rule.

— Explicit Control State (260) — complex control rules, need for flexibility.

How do I implement undo/redo in a GUI?

Build a queue or stack of edits (587), use the Command pattern (258) for user actions.
How do I implement role-based authorization/security in my GUI?

Build a dedicated authorization manager class using Adaptation (272).

How do I implement user customization and user profiles in my GUI?
Build a dedicated profile manager class using Adaptation (272).

How do I reuse existing panels in my GUI?

Use visual refactorings (194).

How do I organize implementation for modularity and extensibility in a large or
complex GUI?

Define and implement a Composable Unit strategy, 292.

How do I implement content assembly — adding components to a screen or panel — in
a GUI?

Depending on the features you want use:

— Static assembly (229), for simple layouts, no reusability.

— Simple Builders (229), for ease of use, separation of concerns, limited flexibility.

— Create and use Domain-specific or Little languages, 466 — good separation, maximum
flexibility.

How do I organize complex event-based interactions among objects in my GUI?

Use an Event Arbitrator (245) to:

— Avoid event loops and rationalize chains of observers-observables.

— Shield client classes from low-level events.

— Forward events to complex data structures based on the Composite pattern.

How do I handle large data collections?

Depending on the context of the problem, use:

— Eager disposal (281) of objects that are no longer needed — simple references,
extremely large trees.

— Weak or soft references, for cached objects and data that can be created or fetched
on the fly.

- Paging (281) for loading a few pages at time, discarding old ones, such as large
table models or large collections of expensive objects.

How do I communicate data remotely in a modular way?
Separate screen data state from domain objects using Data Transfer Objects (234).
How do I handle data represented in widgets?

Define Screen Data State (SDS, 330) and the widgets that will interface SDS to the
user. For synchronization with domain objects data (if any) use:

— Manual synchronization of SDS and data, for simple, small GUIs.

— Data binding support, for medium to large, complex GUIs.

Professional Java User
Interfaces

Professional Java User
Interfaces

Mauro Marinilli

John Wiley & Sons, Ltd

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 85Q, England, or emailed to permreq@uwiley.co.uk, or faxed
to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Marinilli, Mauro.
Professional Java user interfaces / Mauro Marinilli.
p. cm.

Includes bibliographical references and index.
ISBN 0-471-48696-5 (pbk. : alk. paper)
1. Java (Computer program language) 2. User interfaces (Computer
systems) L. Title.

QA76.73.J38M34954 2006

005.13'3--dc22

2006004498

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 13: 978-0-471-48696-5

ISBN 10: 0-471-48696-5

Typeset in 10/13.5pt Palatino by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Bell & Bain, Glasgow

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two
trees are planted for each one used for paper production.

www.wiley.com

To the person who keeps alive in his daily work
the Spirit of Wonder of the early days.

Brief Contents

Acknowledgements

Introduction

1 Putting GUI Development into Context

Part 1 User Interface Design
2 Introduction to User Interface Design
3 Java GUI Design

4 Recurring User Interface Designs

Part Il Software Design
5 Iterative GUI Development with Java
6 Implementation Issues
7 Code Organization
8 Form-Based Rich Clients
9 Web-Based User Interfaces
10 J2ME User Interfaces
11 Java Tools and Technologies

12 Advanced Issues

Part Il Examples

13 Rich Client Platforms

14 The Personal Portfolio Application
15 An Example OO User Interface

XXi

XXiii

31
7
119

169
223
287
323
359
375
393
447

471
497
535

viii Brief Contents

16 An Example Ad-Hoc Component 567
A A Questionnaire for Evaluating Java User Interfaces 607
B A Questionnaire for Evaluating J2ME Applications 613
References 621

Index 629

Contents

Acknowledgements

Introduction

The interactivity thrill
Usable GUIs and usable books
The organization of the book
Three levels of advice
Conventions used in the book
Source code
Reader feedback
Book readers and personas
Lars, a Java intermediate programmer
Keiichi, a tech lead
Shridhar, a professor in computer science
Melinda (Mellie), a manager
William, a first year student in a Master in CS course
Karole, a business analyst
Juan, an experienced programmer

1 Putting GUI Development into Context

1.1
1.2
1.3
1.4

1.5

1.6

Introduction
Focusing on users
A functional decomposition for user interfaces
Tool selection: the Java singularity

Of running little green men and wrong choices
Organizational aspects

People and GUIs

Team composition
Early design

Use case diagrams and GUIs

XXi
xxiii
XXiii
XXiv
XXV
XXVvii
XXViii
XXViii
XXiX
XXiX
XXX
XXX
XXXi
XXXi
XXXil
XXXiii
XXXii

Contents

1.7 Lifecycle models, processes and approaches 14
Rational Unified Process 15
Extreme Programming and other Agile approaches 20
LUCID methodology 22
Evolutionary Prototyping process 24
1.8 UML notation 26
Class diagrams 26
Sequence diagrams 28
State diagrams 29
1.9 Summary 30

Part IV User Interface Design

2 Introduction to User Interface Design 31

2.1 The human factor 32
A model of interactive systems — seven stages

and two gulfs 32

Developers are part of the design process 34

Short term memory and cognitive modeling 36

Interacting with human beings 39

User-centered design 44

Simplified thinking aloud 46

2.2 Display organization 47

Esthetic considerations 49

Abstract-Augmented Area for GUls 51

2.3 Interaction styles 57

Menu selection 57

Form filling 59

Language-based styles 62

Direct manipulation 63

2.4 Conceptual frameworks for Ul design 64

Entity-based approaches to Ul design 65

Metaphor-based approaches to Ul design 66

Function-based approaches to Ul design 67

‘Null’ approach to Ul design 67

Object-oriented user interfaces 69

2.5 Assessing the quality of a GUI 72

Usability heuristics 73

26 Summary 75

Contents

3 Java GUI Design

3.1

3.2

3.3

3.4

3.5

3.6

Java technology for GUIs
Assembling the components
Three levels of component cost
Cost-driven design
Ad-hoc versus custom — the difference between ‘run’ and ‘ride’
When ad-hoc is the only way to go
Exploring the design space for a point chooser
Standard designs
Ad-hoc designs
Mixed designs
Conclusions
Design guidelines for the Java platform
Introduction to the guidelines
J2SE user interface design guidelines
The Java look and feel design guidelines
Some definitions
The Java ‘look’
The Java ‘feel
Some terminology
An example — applying the guidelines for designing dialogs
Summary

4 Recurring User Interface Designs

4.1

4.2

4.3

4.4

GUI area organization
Terminology
Main frames
Multiple document interfaces
Wizards
Choosers
Chooser activation mechanisms
Chooser interaction styles
Broadening the choice
Conclusions
Memory components
Input history
Saving user preferences
Lazy initialization

xi

7

77
77
79
81
81
83
86
88
91
97
99
100
100
103
108
109
109
110
112
114
117

119

120
120
121
123
124
126
127
128
131
133
133
134
134
135

xii

4.5

4.6
4.7
4.8

4.9

4.10

4.1

4.12
4.13
4.14
4.15
4.16

Preference dialogs
Preference dialogs styles
Waiting strategies
Flexible layout
Common dialogs
The ‘About’ dialog
Log-in dialog
First-time message dialogs
Splash window
Command components
Graphic conventions
Toolbar composition
Command composition
Accessibility
Testing the final product for accessibility
Conclusions
Navigation and keyboard support
Keyboard shortcuts
Tab traversal
Internationalization
Help support
Icons and images
Leveraging object-oriented programming
Summary

Part V Software Design

5 lterative GUI Development with Java

5.1
5.2

5.3

Iterating wisely
Introduction to prototyping
Uses for prototyping
The two dimensions of prototyping
Competitors’ product as ready-made prototypes
Prototyping as a philosophy for development
Prototypes and customers
Prototyping alternatives
Different types of prototypes
Storyboards

Contents

137
138
141
144
146
146
149
150
151
152
156
157
158
160
161
161
161
161
162
163
164
165
166
167

169

171
173
174
176
177
177
178
179
179
182

Contents

54
5.5

5.6

5.7

5.8

5.9

5.10

5.11

GUI builders
Reusable prototyping widgets
A tree prototype utility class
A visual container prototype utility class
GUI refactoring
Some classic refactorings
Some GUI-specific refactorings
Failing with style
Introduction to user interface testing
Test-driven development
What's first — GUI design or implementation?
Software testing of Java GUIs
How to test — GUI software test approaches
What to test — test coverage criteria
Usability testing of Java GUIs
JRE runtime management
Introduction to profiling
Common problems
Continuous profiling
A posteriori profiling
Summary

6 Implementation Issues

6.1

6.2

6.3
6.4

6.5

Revisiting the abstract model
Testing the various layers

The principle of Single Functional Responsibility

Isolating presentation details
Content
Content assembly
Explicit navigation
Business domain
Data input-output
A comprehensive data IO design strategy
Some design patterns
Remote communication design
Security issues
Making objects communicate
The Observer pattern
Swing events

xiii

184
187
187
190
191
191
194
201
203
204
204
206
206
210
211
214
214
216
219
220
221

223

224
226
227
228
229
229
231
231
233
233
234
235
236
239
240
242

xiv Contents

SWT events 243
Design-time class decoupling with events 243
Event Arbitrator 245
Misuses of event-based messaging 248
Alternatives to event-based communication mechanisms 250
6.6 Separating data from views 251
Model-View-Controller 252
6.7 Interaction and control 257
Representing user actions with the Command pattern 257
Control issues 260
A state-oriented approach to GUI control 265
6.8 Some design patterns for GUls 271
Adaptation 271
Composite Context 277
Active Object 279
Object lifecycle management — a general mindset 280
Value Model 282
6.9 GUI complexity boosters 283
6.10 Summary 285
7 Code Organization 287
7.1 Introducing software architectures 287
Taming references 289
Composable units 292
Evolving order and appropriate architectures 294
7.2 Some common GUI architectures 295
The smart GUI antipattern 296
A semi-smart GUI architecture 297
A three-layer architecture 298
A four-layer architecture 299
7.3 A three-layer organization for GUI code 300
Overview 301
The presentation layer 303
The application layer 304
The service layer 305
7.4 Two examples of a three-layer implementation 306
An MP3 player 306

An electronic circuit simulator and editor 309

Contents

7.5 The service layer
Overview
Persistence services
Factory services
Other services

7.6 Summary
Key ideas

8 Form-Based Rich Clients

8.1 Introduction
Defining rich clients
Java rich clients
GUI design for rich clients: the Third Way
8.2 Reference functional model
Distributing behavior between client and server
Common problems
8.3 Runtime data model
Validation
When to validate and notify
8.4 The cake-ordering application, the XP way
Setting up the first lteration
Content first
Data second
Commands third
Closing the loop with the server
8.5 Summary

9 Web-Based User Interfaces

9.1 Anoverview of Web user interfaces
9.2 GUI design for the Web
Fine graphics details
Area organization
Levels of client-side control
Navigation issues
9.3 Implementing Web applications with Java
The typical architecture of a Web application
Basic Java Web GUI technologies
Java applets

XV

314
314
319
319
320
321
322

323

323
324
325
326
326
327
329
329
332
339
343
344
346
350
353
357
358

359

359
361
361
362
362
365
368
368
369
370

Xvi Contents

9.4 From Web applications to rich clients 371
Different development habits 372
9.5 Summary 373
10 J2ME User Interfaces 375
10.1 Introduction to the MID profile 375
Main Ul concepts 376
Main Ul limitations 379
Cost-driven design for J2ME GUIs 379
10.2 The MIDP Ul API 379
Ul widgets 379
10.3 Designing MIDP GUIs 382
Abstract GUI designs 384
10.4 Designing navigation 385
10.5 An example custom item 387
10.6 An example ad-hoc item 388
10.7 An example application 389
The code 391
10.8 Summary 392
11 Java Tools and Technologies 393
11.1 Introduction to tool selection 394
11.2 Evaluating open source software 394
Open Source Maturity Model 396
11.3 SWT or Swing? 397
The toolkits 397
Choosing a toolkit 403
Mix and match 409
11.4 Other GUI technologies 410
11.5 Utility libraries 411
Security tools 412
Deployment tools 413
Glazed Lists 413
JGoodies Swing Suite 414
L2FProd Common Components 415
Other OSS component libraries 415
Some commercially-available Swing components 418
11.6 Test tools 420

11.7 Profiling tools 421

Contents

11.8 GUI builders

11.9 Presentation layer technologies
Assessing a look and feel
Swing look and feels
SWT Presentation

11.10 Declarative GUIs with Java
XML-based formats

11.11 Summary

12 Advanced Issues

12.1 Building on top of existing libraries
Attributes
Roll your own framework

12.2 Memory management for complex GUIs
A practical case

12.3 Restructuring existing GUI code
Porting an old applet — a case study
Long-life GUIs
Providing new deployment support

12.4 Exploiting technology

12.5 Domain-specific and Little languages

12.6 The future of Java GUIs

12.7 Summary

Part VI Examples

13 Rich Client Platforms

13.1 Introduction to Java rich client platforms
The case for RCP applications
What's in an RCP
GUI design guidelines and RCPs
13.2 The NetBeans RCP
NRCP architecture
13.3 The Spring RCP
13.4 The Eclipse RCP
Eclipse plug-in architecture
Eclipse RCP plug-ins
The workbench — the building blocks of ERCP GUIs
GUI design guidelines for ERCP applications

422
424
425
426
442
443
443
445

447

447
448
451
454
455
457
459
463
464
465
466
468
469

471

471
472
473
474
474
475
476
477
477
478
479
482

xviii

Contents

13.5 Choosing the best RCP for your needs 483
When to employ an RCP 484
13.6 Legal issues 485
Eclipse 485
Netbeans 486
13.7 An example Eclipse RCP application 486
The application 487
Introducing client-side modular architectures 489
The Snooper application architecture 492
13.8 Summary 496
14 The Personal Portfolio Application 497
14.1 The scenario 497
A note on lifecycle models 498
14.2 Analysis 499
Early analysis 499
Some scenarios 503
A refined use case diagram 504
Individuating boundary classes 505
14.3 Choosing a technology 505
14.4 Aninitial GUI design 506
An initial GUI paper mock-up 506
A second GUI paper mock-up 508
A throw-away GUI prototype 511
Validating the throw-away prototype 512
14.5 The final GUI 513
14.6 Implementation 515
Software requirements 516
The software architecture 516
14.7 Resources 524
Localization bundles 525
Images 525
14.8 The code 525
The remote explorer director 526
The prototype 529
14.9 Deployment issues 529

Server support 529

Contents

14.10 An alternative, cost-driven implementation
Choosing a higher-level starting point
A cost-driven prototype using JDNC
A brief introduction to JDNC

14.11 Summary

15 An Example OO User Interface

15.1 Introduction
A matter of style
15.2 Implementing object-oriented user interfaces
The Viewable interface
15.3 Some uitility classes
Brief views
Making collections viewable
15.4 Configuration views
A utility class
15.5 Interacting with the user
The Commandable interface
15.6 Managing user commands
15.7 An example application
OOQUI objects
The code
Libraries
Some GUI design considerations
Control issues
15.8 An alternative implementation using Naked Objects
15.9 Summary

16 An Example Ad-Hoc Component

16.1 Introduction
16.2 The Drawing Sandbox application
The application
16.3 The Sandbox architecture
16.4 The Sandbox component
Top-down refinement of functional organization
Organizing object communication
Graphical objects

xix

530
530
531
531
533

535

536
536
537
538
542
542
543
544
544
546
546
549
550
551
555
558
559
560
563
565

567

568
569
570
573
575
575
575
579

XX

16.5 User interaction
Command composition
The Action framework
The Actions class
Undo-redo support
The Edit class
Recording edits
Memory issues
16.6 Control
The Director class
Managing actions
Enforcing logical constraints on actions
16.7 The whole picture
16.8 Stressing the software design
Adding objects and commands
The design’s weak points
16.9 Introducing JHotdraw
16.10 Summary
Key ideas

A A Questionnaire for Evaluating Java User Interfaces

B A Questionnaire for Evaluating J2ME Applications

References

General advice on usability and GUI design
Java-specific links

Index

Contents

582
582
583
584
587
588
589
590
592
594
595
596
597
598
599
600
601
605
605

607
613

621

626
627

629

Acknowledgements

I have been working on this book for more than five years, in one way or another.
It is by no means the result of a single person (the author). A very large number
of people shaped it, so many that it will be impossible to name them all.

I should first thank Sally Tickner and the management at John Wiley and Sons, for
allowing me to deliver the manuscript after such a huge delay, which was mostly
caused — only a partial excuse — by my never-ceasing joy of working on and
taming new and complex adventures, rather than lack of interest in the subject.

It’s easy to remember Steve Rickaby of WordMongers, whose expert hand made
this book readable and sometimes even enjoyable. If it wasn’t for his help this
gigantic work would have been very different.

A special thanks too to my students, who kept the fire of honest enthusiasm and
the Spirit of Wonder high, and who were extremely patient with my shameful
schedule. I hope I gave them back at least a small portion of what they gave to me.

I wish also to thank the reviewers for their careful work, the many clients and
colleagues for the countless lessons that I tried to put together in the book, and all
the people who spent precious time out of their lives putting into written form
their hard-won experience, often without any economic return.

Last but not least, my biggest thanks go to my family, my Bella, and my closest
friends. Without their presence, patience, and constant support, this book
wouldn’t have been possible.

Introduction

This introduction is structured as follows:
The interactivity thrill talks about the magic of the first time and other things.
The organization of the book discusses the book’s contents and organization.

Book readers and personas provides a more user-centered approach to the contents
of the book.

The interactivity thrill

Current software technology allows developers to build graphical user interfaces
(GUIS) for only the cost of the labor, and with greater simplicity than ever before.
Despite that, GUIs, and Java GUIs among them, are often totally frustrating and
disappointing. In the words of Alan C. Kay™:

“A twentieth century problem is that technology has become too ‘easy.’
When it was hard to do anything, whether good or bad, enough time was
taken so that the result was usually good. Now we can make things
almost trivially, especially in software, but most of the designs are trivial
as well. This is inverse vandalism: the making of things because you can.
Couple this to even less sophisticated buyers and you have generated an
exploitation marketplace similar to that set up for teenagers. A counter to
this is to generate enormous dissatisfaction with one’s designs using the
entire history of human art as a standard and goal. Then the trick is to
decouple the dissatisfaction from self worth — otherwise it is either too
depressing or one stops too soon with trivial results.”

Basically, inverse vandals don’t care about their work and its impact on the lives of
users and the many others affected by their work, which is a pity. Software has a
sort of magic in itself, and interactive software provides a concrete, vivid example
of such a magic. Whether you are a teenager playing a video game or an old guy
fiddling with an early computer in your garage, there was probably a moment in
your life when you were totally amazed by a piece of software — otherwise you
would probably have chosen another career.

1. The Early History of Smalltalk,
http:/ / gagne homedns.org/~tgagne/ contrib/EarlyHistoryST.html

xXxXiv

Introduction

Such a feeling alone, and perhaps a rather selfish and self-gratifying one, is not
enough to provide reliable, professional results. There is a need to study and
apply a wide array of subjects in depth, filtering user’s needs through experience
and the relentless application of ambitious but sensible designs and solutions,
both on the GUI side and in its implementation. Despite all this hard work — or
possibly because of it — the fun still remains, and I hope you can see it between the
lines of this book. Finally, some words about my professional background, that
could help in providing a better understanding and a more critical view of the
book’s contents.

My long experience is mostly on internal projects, that is, building software for
customers, and also spans a few products building shrink-wrapped software. As
far as Java is concerned, I started working with Java GUIs in 1998, trying to focus
on client-side aspects whenever possible. I worked on a couple of large and
complex GUIs, and on other projects that ranged from the weather forecasting
system for the Italian air force to large multinational corporate ERPs, various Web
sites, a large GUI framework for advanced enterprise clients — on various aspects
still unmatched on the market — and more recently have been hopping on and off
planes throughout Europe and US as a consultant while trying to find the time for
a number of EU and academic research projects.

Usable GUIs and usable books

Writing a book like this is in many ways similar to GUI development!. The
author has a target audience, at least in his mind (end users), and many little
daily hindrances. He needs to work to earn his keep, trying to maintain a
private life and struggle with mundane things like mastery of the English
language (GUI design guidelines), the wrong dpi settings in scanned pictures
(API inconsistencies), ever-newer technologies, and all the rest. Luckily he is
not alone. He is the less-experienced part of a great team of professionals (the
development team), good-willed reviewers (user representatives), and wonderful
private-life supporters. Nevertheless, new ideas and existing content that
should be better addressed seem never-ending (feature creep), and the manu-
script keeps growing (deadlines shifting). The author is constrained by
deadlines and wants to deliver something useful (at least within his definition
of usefulness). There are different kinds of GUI development. There are shrink-
wrapped products, where there is competition and users can easily opt for your
product or a competing one, as in the case of a shareware music player, and
various forms of internal projects where users have no choice but to read the

1. The term development is meant to indicate the general process of building a GUI, including
GUI design and implementation.

Introduction

XXV

book/use the application. A documentation manual fits the latter category®:
unfortunately for me, this book falls into the first category.

All the above has a common denominator: the end user. The ultimate objective is
to write a book that you would like to read, in which the message comes across as
smoothly and as richly as possible and as you expect, saving you time and effort,
while possibly providing you with a pleasant experience. This book —and the next
application you are going to create — will be effective and useful as long as its very
inception, its design and writing, focuses on end users.

The organization of the book

The book is organized in three parts. The first part introduces HCI and GUI
design, starting from general concepts and concluding with recurring GUI
designs. The second part, from Chapter 5 to Chapter 12, discusses general imple-
mentation advice. The third part, from Chapter 13 to Chapter 16, discusses some
examples applications, from analysis and GUI design to the software architecture
and the implementation — something rather rare to find in literature. Finally, two
appendices provide evaluation questionnaires specifically targeted at Java GUIs.

The following gives a brief description of the book’s contents.

Part Chapter Title Description
1 Putting GUI Development Framing GUI development in the wider context
into Context of software development, introducing a general
reference functional model for GUIs, and UML
diagrams.
2 Introduction to User Interface A basic introduction to some key themes of
Design HCI and user-centered, general user interface
design.
5
2 3 Java GUI Design Practical GUI design for the Java platform with
o some practical examples, introducing the Java
8 Look and Feel design guidelines.
4 Recurring User Interface Recurring design solutions in desktop applica-
Designs tions, with reusable code.

1. In real-world situations users have another popular choice: skip reading the manual
altogether.

Introduction

XXVi
Part Chapter Title Description
5 Iterative GUI Development Building GUIs iteratively using OOR Intro-
with Java ducing software testing, usability testing for
Java GUIs, and GUI-specific refactorings.
6 Iterative GUI Development Introduction to software design strategies and
with Java OOP design patterns for GUIs.
7 Code Organization Main software architectures for GUI applica-
tions and some reusable utility classes.
8 Form-Based Rich Clients An example iterative, test-driven GUI
c development.
o
'cfs 9 Web-Based User Interfaces Web GUI design basics and related Java
5 technologies.
IS
2 10 J2ME User Interfaces An introduction to J2ME GUI technologies and
£ GUI design for wireless devices, with some
example code for MIDP.

11 Java Tools and Technologies A review of the main tools and technologies
available for Java application development,
with particular focus on open source software.

12 Advanced Issues Some topics of interest for complex GUIs:

building custom frameworks, usability applied
to API design, memory management, legacy
GUI code, and domain-specific languages for
GUlIs.

Introduction

xxvii

Part Chapter Title Description
13 Rich Client Platforms Introduction to Rich Client Platforms (RCP)
and Eclipse RCP GUI design guidelines, with
an example service-oriented GUI for the
Eclipse RCP.
14 The Personal Portfolio Design and development of an example appli-
ﬁ Application cation using use cases. An alternative design
g using JONC is also discussed.
®©
x
w 15 An Example OO User Using the OOUI approach to design and imple-
Interface ment an example application, compared with
the use of the Naked Objects framework.
16 An Example Ad-Hoc An example ad-hoc component and its
Component comparison with the JHotDraw framework.
o A A Questionnaire for Evalu-
2 ating Java User Interfaces
o
C
L B A Questionnaire for Evalu-
& ating J2ME Applications

Three levels of advice

Building a usable, cost-effective, professional-quality GUI is a complex and multi-
disciplinary process that involves mastery of many different skills. In this book we
will cover three different perspectives: the design of the user interface, the soft-
ware architecture behind it, and the tactics related to the source code, as shown in

the figure below.

The three level of advice in the book

Professional GUISs are carefully designed and implemented pieces of software. For
this reason special attention is given in this book to implementation details, espe-
cially at the design and architectural level — in my experience the only way to
absorb reliably the sort of complexity-by-accretion that real world GUIs exhibit.
Source code listings and code-level tactics are mentioned only briefly, to save
space and reduce the danger of sending my copy-editor to sleep.

xxviii Introduction

T — .| GUI design

code tactics

software
architecture

Conventions used in the book

Throughout the book notes are represented using the graphical convention below.

This is a note.

All references are gathered in a reference section and represented following the
Chicago Manual of Style, fourteenth edition, University of Chicago Press, 1993.

Source code

Source code is provided on my Web site at:
http://www.marinilli.com/books/b1/b1.html

or you can start from the home page at http://www.marinilli.com and follow
the links from there. It is organized into separated bundles for each chapter, and
a single file containing the code for all the chapters is also available. Sources are
provided with Ant build files and with Eclipse projects.

Some of the example applications can also be launched on line using JNLP links,
available at:

http://www.marinilli.com/books/b1/b1.html

Introduction XX1X

The JNLP client will ask for authorization prior to installing the application.

Reader feedback

A book is an inherently limited means of communication, at least when compared
with computer-based interactive tools. In order to balance this unfair equilibrium,
a public forum will be available on my Web site for readers to give feedback, pose
questions, download the source code, or start a discussion.

Book readers and personas

You might have bought this book, and I do thank you for that. Unfortunately, it is
more than 707 pages long and you could not have the time or will to read it all from
end to end, neither would it be a time-efficient thing to do. The objective of this
section is to help you save your valuable time getting quickly to your point, gaining
also a first glimpse of techniques for focusing the design around end users.

The book can be used in a number of ways: it is useful for experienced developers
that want to explore ideas on GUI development, and can be used in courses on
practical GUI design and implementation. Intermediate developers can take
advantage of the many examples provided to explore sample implementations.

The book has been designed with three types of reader in mind:

i. Those that have better things to do in life than fiddling with theoretical
issues, and just need to put together something that works, now.

ii. Novice readers who want to explore the complexity of professional GUI
development.

iii. Those that are experienced and critical about ready-made solutions, and
would like a critical and wider discussion of the major issues for GUI devel-
opment in Java.

The following sections describe a set of fictitious readers, built with the persona
technique'. If you are lucky enough to recognize yourself as one of them, or some-
where in between, their approach to the book might suit you. Alternatively, if you
are one of those brave, tough, developers who think all this Lars and Melinda stuff
is a bit silly, skip the following section and jump directly to the first chapter.

1. These user representations are called Personge and were introduced by A. Cooper in
(Cooper 1999). They are useful for defining the user population clearly to designers, even
for a book.

XXX Introduction

Lars, a Java intermediate programmer

Lars, 24, doesn’t have time to waste. In his first glance at the book he sees
many interesting things, but he needs to deliver a small (twenty-some screens)
form-based corporate rich client application within five weeks. He needs to
interface with an existing J2EE application and with a third-party Web service.
After a quick look on the Web, he remains a bit confused by the many technol-
ogies and options available: he wants to look at some working code and get a
clear understanding of how it works, together with some advice to help him
to build a bigger picture of the best choices available, without wasting time on
other fancy details.

Lars will then...

* Take a bird’s eye view of Chapter 6 and an even quicker glimpse at Chapter 7
to see about client tier architectures.

* Perhaps take a look at Chapter 5, to see if there is some useful technique he
can take advantage of in his project.

* Read the discussion about SWT vs. Swing in Chapter 11, opting for SWT and
the Eclipse RCP for his project.

* Consequently focus his attention on Chapter 13 (RCP), and Chapter 8 (Form-
based GUISs).

* Use the quick references on the book’s reverse covers as required.
* After his project is completed, get back to the rest of the book...

Keiichi, a tech lead

Keiichi is a technical leader in a medium-sized software company in Japan who
wants to explore new ideas about GUI development. He is starting a new project
and has some spare time that wants to spend on refreshing his knowledge about
GUI design and development. He is particularly interested in the architecture of
complex desktop GUIs that provide undo/redo support, complex validation,
role-based fine-grained authorization, and more.

Keiichi will then...
* Read Chapter 1.
* Read parts of Chapter 2 and Chapter 3 to get an idea of GUI design.

* Browse Chapter 4 for a quick look at recurring GUI designs in desktop
applications.

* Read Chapter 5 about iterative GUI development — a subject in which he is
quite interested.

Introduction

XXX1

Have a look at Chapter 6 for some implementation strategies and common
issues related to complex GUI development.

Take a quick look at Chapter 7 and Chapter 8 for completing his introduction
to the implementation of complex rich client GUIs with Java.

Read Chapter 12 about advanced issues and ideas for implementing non-
trivial GUIs.

Browse the example applications in the third part of the book.

After adding notes and bookmarks, put back the book on his shelf, prom-
ising himself to get back to it when the new project has started...

Shridhar, a professor in computer science

Shridhar is an assistant professor in a university in Kanpur, India. He is 35,
married with two children. He is preparing a course on the practical development
of complex GUIs. He wants to include the essentials of user interface design,
advanced software design patterns, and many case studies that will form the
backbone of the course. He bought the book on line to evaluate its adoption as a
reference textbook for the course, integrating the parts in which he is more inter-
ested with other material. Shridhar finds some companion material for the book
on line and plans to use it for his course. In particular, he is interested in using
SWT for an interesting research project.

Shridhar will then...

Organize his course content around the functional model introduced in
Chapter 1.

Plan to devote the first part of the course to GUI design issues, based on
Chapters 2 and 3.

Use Chapter 6 as the theoretical base for the second part of his course, about
implementation of complex GUISs in Java.

Use the examples in Chapters 13-16 for the case studies. He plans to extract
software design patterns and architecture contents from these chapters to use
in the hands-on part of his course.

Think about creating assignments based on the ideas provided in the various
chapters he has read. Because he is interested in the Eclipse RCP and SWT, he
will focus on the ideas discussed in Chapter 8.

Melinda (Mellie), a manager

Mellie has a technical background and a basic overview of object-oriented tech-
nology. She wants to have an overview of current technology for GUI
development with OOP, and feels that she needs to refresh her knowledge of

XXX11

Introduction

current state-of-the-art development of client-side software. She worked in soft-
ware testing back in the 1980s, and is now a senior group manager in the IT
department of a medium-sized insurance company that does some in-house devel-
opment. She wants to get a basic, high-level understanding of the latest trends in
GUI design and development.

Mellie will then...

Read Chapter 1 about the development context of GUI design and
implementation.

Interested by the topic of GUI design, move to study Chapter 2 for an intro-
duction to basic user interface design.

Read Chapter 3 for an example of an OOP GUI technology stack, showing
guidelines, practical GUI design examples, and other technology-oriented
topics that can also be used outside the Java world.

Take a look at the pictures in Chapter 4, to see the most commonly-used GUI
designs in real world applications, and try to match them with her daily
practice of software applications (a mix of Microsoft Project, the Microsoft
Office suite, and some corporate intranet applications).

Have a look at Chapter 5 to get an idea of iterative GUI development.

Note a few useful terms to be inserted in her next presentation, such as
usability inspections, continuous profiling, and more.

Eventually, put the book in her ‘favorites” pile, hoping to have more time for
it another day.

William, a first year student in a Master in CS course

William has just moved to Vancouver and is excited about starting his masters
program in Computer Science and eager to become a proficient software devel-
oper. He already has some exposure to Java and the Swing toolkit, and he knows
that he is going to have some courses about these topics. He wants to know more
about software architectures and how complex desktop GUIs are built, possibly
starting his own open source project.

William will then...

Start reading the example applications, looking for interesting situations and
trying to understand the proposed solutions.

As he is interested in the Sandbox application discussed in Chapter 16,
download and compile the source code, tweaking it to add new features.

Introduction

xxxiii

* Jump to Chapter 6 for the theoretical background behind the implementa-
tions proposed in the example applications.

* Turn his interest to the qText application in Chapter 6, studying its simple
architecture, downloading the code, and adding new commands to the
editor.

¢ Browse the rest of the book as he needs to.

Karole, a business analyst

Karole has a degree in programming and works for a software company. While
working as a full-time analyst on her current project, she discovers that she enjoys
dealing with customers. She feels she would like to work more on the GUI side of
software development and move into GUI design. She would like to get a wider
picture of GUI development, using Java as a practical example, but also be exposed
to more general concepts.

Karole will then...

* Read Chapter 1 about the development context for GUI design and
implementation.

* Study Chapter 2 for an introduction to basic GUI design advice.

* Read Chapter 3 for a discussion of GUI guidelines, practical GUI design
examples, and other technology-oriented topics that can also be used outside
the Java world.

* Study Chapter 4, to understand the most commonly-used GUI designs and
the rationale behind them.

* Perhaps read Chapters 5 and 8 to gain a better grasp of the latest iterative
development techniques for client applications.

* Snoop around the rest of the book as required.

Juan, an experienced programmer

Juan is an experienced programmer in his late twenties living in Schaumburg, IL.
He has just bought the book in a bookshop and is excited about it. He has some
spare time, an hour or two, on a Saturday morning. He wants to browse the book
for something fun, taking it easy, while sipping his favorite blend of Cappuccino in
a café while waiting for his fiancé Francene, who is having her nails done. Juan is
looking for cool new technologies, interesting application architectures, exciting
techniques, or just a cartoon or fancy pictures before a long shopping session with
Francene'.

XXX1V

Juan will then...

Introduction

Browse Chapter 4 for a quick glimpse of common GUI design issues, such as
choosers, area organization, and so on.

Have a look at some of the pictures of the various look and feels in Chapter 11.

Look at Chapter 10 for information about J2ME GUIs, and have a quick look
at Chapter 9 for Web Java GUIs.

Have a glimpse at some of the techniques discussed in Chapter 12.

Take a look at the various pictures of the example applications in the third
part of the book.

Then, when he has more time, get back to this section to find another ficti-
tious user who matches his needs, so that he can start seriously reading the
book.

This is not a spurious use of a technical book, as it might seem at first. Establishing a posi-
tive emotional relationship with something we need in our work life is always a win-win
situation. Working with something pleasant will make us feel better, being more produc-
tive, and perhaps sparing precious energy for something other than dull work.

Putting GUI Development
into Context

This chapter provides a comprehensive introduction to the design and develop-
ment of Java applications with non-trivial user interfaces. After introducing a
general-purpose reference model that will guide our discussion in the remainder
of the book, we introduce the organizational aspects related to UI development,
discussing the role of people in the entire software lifecycle process for GUI soft-
ware. We then consider the issue of early design, where we briefly introduce the
delicate and often overlooked transition from analysis to Ul design. A section is
devoted to some interesting lifecycle models and the way they support the
process of building professional user interfaces. The chapter concludes with a
minimal introduction to some useful UML notation that will be used throughout
the book.

The chapter is structured as follows:

1.1, Introduction briefly discusses the current state of GUI technologies and the use
made of them by developers.

1.2, Focusing on users discusses user-centered design and development throughout
the software lifecycle.

1.3, A functional decomposition for user interfaces introduces an abstract model for
GUIs that is used throughout the book.

1.4, Tool selection: the Java singularity discusses the selection of a set of ingredient
libraries technologies, many of them open source, to speed up GUI development.

1.5, Organizational aspects introduces some of the issues related to the management
of the multidisciplinary teams that are common in GUI development.

1.6, Early design introduces requirements and use cases for professional GUIs.

1.7, Lifecycle models, processes and approaches briefly introduces some software life-
cycle models: Rational Unified Process, Extreme Programming and other Agile
approaches, the LUCID methodology, and evolutionary prototyping, focusing on
GUI design and development.

1.8, UML notation introduces some UML diagrams of interest that are used
throughout the book.

2 Putting GUI Development into Context

1.1 Introduction

The wealth of GUI design options provided by rich client GUI technologies is still
poorly mastered by developers struggling to provide remarkable designs in a
cost-effective way. This is what happens when powerful media and technologies
lack widespread, deep expertise and practical support.

The same thing used to happen two thousand years ago. Pliny the Elder, an
ancient Roman scholar and encyclopedist, despised his compatriots” paintings
and preferred Greek classic art. His complaint was about the use of newer tech-
niques that exploited a much wider number of colors, while Greek classic
paintings used only four colors. Today we have a chance to see these much
despised “excessive” paintings, thanks to the catastrophe that buried Pompeii in
79 AD, freezing a moment of history in one of the most rich and developed areas
of the age — similar to what California represents to Western civilization today —
and, unfortunately, accidentally killing Pliny. Surprisingly, these miraculous
survivals show a realistic and powerful use of the newer — and much harder -
techniques, together with some unskillful art works.

Moving from Roman paintings to user interfaces, in the 1980s the computer
industry experienced a similar mass-market technology shift in visual technolo-
gies with the introduction of powerful raster graphics with millions of colors,
large dedicated memory spaces and new, ad-hoc input devices. Today, after
another twenty years or more, we are in a situation no different from the Roman
paintings of the 60’s AD. These new technologies provided a steep increase in
complexity, and developers (like the Roman painters of Pliny’s age) are still strug-
gling to tame such power for building cost-effective, usable and enjoyable GUIs.

1.2 Focusing on users

The most striking difference between designing and building a desktop application
GUI and other software is the presence of the user. Users are those that will ulti-
mately use the product, but in current development-centric engineering settings,
they are usually completely neglected. ‘Focusing on users’ means focusing on
human details — cognitive factors such as perception, memory, learning, problem-
solving and so on —rather than implementation factors such as system and business
requirements, software architecture, hardware, and so on. User-centered design is a
well-established set of practices that place users at the heart of GUI design and
development. This is currently the only way known to obtain software that behaves
as users expect, ideally becoming transparent to them — they don’t realize they are
using it — and not getting in the way of getting work done. Adopting, or even
merely being aware of, the user-centered approach is critical, not only in the design
phase, but throughout the whole development process.

A functional decomposition for user interfaces 3

A number of practices have been established for centering the design and overall
iterative development on end users:

* Understanding users, their objectives, their current working practices, and
the general context in which the software will be used, all of this before
starting the design of the user interface.

* As part of this, an important role is played by two deeply intertwined central
issues: users and their tasks. User analysis—providing groups of users with
their goals — and task analysis — breaking down tasks in smaller subtasks —
are two disciplines that aim at defining these issues in useful terms.

* Involving end users or user representatives in the design from the early
phases. This practice is referred to as participatory design.

* A useful means for understanding users is to interview and observe them
while at work in their normal work environment. Techniques such as contex-
tual enquiries’ and adopting an ethnographic? approach to user studies are
widely used in this respect.

* Usability tests help to ground an application on user’s needs after various
iterations of design and development.

We will see user-centered techniques applied throughout this book, but apart
from these techniques, it is essential to always bear in mind that being aware of
the end user — playing the role of the advocate of the user —is essential in producing
a professional user interface, especially on fast-paced projects in which it is hard
to fully apply these techniques when other, more urgent deadlines are pressing.

1.3 A functional decomposition for user interfaces

Graphical user interface applications are a vast class of software systems with
recurring properties. In a GUI there is always a portion of the screen that is
designed for interacting with users, there are various forms of reactions to user
interactions, perhaps through some form of an internal representation of the busi-
ness domain at hand, and so on. Decomposing these functionalities into a set of

1. During a contextual enquiry, several potential users of an application or a process that we
want to capture in software are observed in their day-to-day work. The interviewers focus
on a specific objective and adopt a partner-like approach with users, rather than being
judgemental or inquisitive.

2. Ethnography is a method of studying and learning about groups of people. Typically, it
involves the study of a small group of subjects in their own environment in order to
develop a deep understanding of them.

Putting GUI Development into Context

layers is useful as a key to aid discussion of the various aspects of GUI develop-
ment, as a reference for discussions, and as a conceptual tool to tame the complexity
of GUI design and development. This is illustrated in Figure 1.1.

Interaction
and Control

Presentation
Business
Domain
Data
Input-Output

Content I

Infrastructure

Figure 1.1 ~ An abstract model for user interfaces

The layers in our reference model are:

Business Domain. A representation of the domain of interest, separated from
GUI and other non-business details.

Content. The “structure’ of the GUI: widgets, windows, and navigation flow
among different windows, screens, and so on.

Data 10. The interface with the rest of the world other than the end user. Data
formats, communication protocols and the like are represented by this layer.

Infrastructure. Low-level support, runtime environment, utilities, and so on.
The graphical toolkit of choice, libraries, frameworks and hardware support
belong in this layer.

Interaction and Control. Low-level events and control logic are gathered in this
layer. Note that this layer can be thought of as the “glue’ that holds the rest of
the GUI implementation together.

Presentation. This layer represents graphical details that are dependent on the
given presentation technology, such as pixels, colors, and fonts. This layer
can be thought of as (theoretically) orthogonal to the other layers.

A functional decomposition for user interfaces 5

An example of the application of this functional model to a simple form-based
GUI is shown in Figure 1.2.

Content:
1 screen, 3 fields,
3 labels, 2 buttons, etc.

Business Logic:
Only text,
max 20 characters

Business Logic:
Only text,
max 40 characters

Surname: Business Logic: Data 1O:
3":3‘ d'gns’"d = p.name «» nameField
f ey va (v p.sumame «» surnameField
Age >=0 && v < 100)

p.age «» ageField

Presentation:

background image,
look & feel, etc.

Inter. & Control:
Enabled only when
all data is valid and
non-empty

Inter. & Control:
Fire data changed
event when focus
lost & data is valid

Figure 1.2 Applying the abstract model to a simple form GUI

The figure shows a very simple form-based GUI that has been decomposed using
our model. Graphical aspects, no matter how implemented, belong to the presen-
tation layer. Widgets and their layout are part of the content layer. Widget's
behavior in reaction to user input — for example, the ‘Age’ field accepts only
digits — is enforced at a low level by the interaction and control layer, but the ulti-
mate logic lies in the business domain layer, where it is defined that an age is a
numeric, integer entity with values between 0 and 100. It is the responsibility of
the interaction and control layer to understand when the user has completed data
input and how to handle invalid values.

This model is general — for example, it could be applied to Web GUISs, wireless
device applications, touch-screen kiosks and so on — and somewhat arbitrary. It is
just one of the various possible decompositions of GUI functionalities: it focuses
on simplicity and practicality, and is independent of the particular implementa-
tion technology. You can use this model to represent any existing desktop
application GUI, or to organize the development of new ones.

6 Putting GUI Development into Context

We are going to apply it to Java GUIs, which are high-level component-based user
interfaces based on a strongly-typed object-oriented language and on an operating
system-independent execution platform. This simple model will form the basis
of our discussion about user interfaces in Java. We will analyze complex GUI
implementations using this model, discussing disparate GUI technologies, and
we will use it as a software architecture for one of the many examples proposed
in the book.

1.4 Tool selection: the Java singularity

In this book we will discuss GUIs of any size and complexity, all built with Java
technology. One of the most striking aspects of Java is its openness and the wide
range of companies, tools, and technologies that flourish under its umbrella. This
applies over a wide array of hardware, ranging from wireless devices and card
readers to powerful back-end enterprise servers.

Of course, similar to Pliny’s paintings, and the line of Alan Kay’s ‘inverse vandals’
in the introduction, there are wild differences in quality. Along with open source
tools with a rock-solid reputation, such as Hybernate and some good pieces of
server-side facility, and in many other application domains, we have hundreds of
ill-documented, partially working, hard-to-use libraries and would-be tools.
Nevertheless, the whole Open Source Software (OSS) movement is a remarkable
feature of Java technology, typical of the cooperative spirit that dominates this
community.

A characteristic that assumes special significance for Java projects is the tool
selection phase. With the sheer abundance of tools and technologies — thousands
of OSS tools for Java development — the selection of the “best” set of tools for a
Java project can prove hard. Some choices can be changed later with acceptable
cost, such as for example switching to another issue tracking system, as long as
the old one provides some data export facility, but others cannot be changed
without throwing away most of the work done. Choosing the right presentation
technology — specifically, choosing between Swing or SWT — is a strategic choice
that cannot be reversed easily. Peer opinions, Web forums and the like often
provide biased opinions, or might not take your particular context and needs in
account.

Commercial tools are usually better than OSS ones, but the same care in selection
and evaluation should be applied. My personal experience has guided me to start
with an OSS tool, and then, only if really necessary, move to a commercial one:
buying a tool of which you have no previous experience can prove a costly
mistake. It is wiser to start with an Open Source alternative and use it as long as
possible, and this will also help to clarify your real requirements.

Organizational aspects 7

One thing that always strikes me when I get involved in a new project is the care-
lessness shown in choosing portions of the base tool set. Sentences like ‘Oh, well
we started off with ‘X" and Y’ together with “Z’ because they were available on
the market and...” — and then usually there is a pause. Sometimes in large teams
developers don’t even know who started using a particular XML library or GUI
testing tool, “We just tried it, and it worked.” Then, after months of quiet work,
they find themselves dealing with, perhaps, unmanageably huge XML files for
acceptance tests®.

Of running little green men and wrong choices

A little green man dashing to a door is the universal icon for emergency exits in
public buildings. Similarly, alternatives and emergency plans should always be
considered when choosing a project’s ingredient technologies. When preparing a
list of technologies for a project, let’s not forget to make an alternative list with the
emergency sign icon on it, because some of choices we must make are irreversible
without losing much of the work already completed.

This process is like going to the forest to pick mushrooms. They are free, and they
could be so tasty — but they could be poisonous. As every developer knows, tools
usually work well at first, on simple tests and in recurring situations. But after
some month of use, or, even worse, after more than few months, you may find that
a tool can no longer support what we want to do, and you are then faced with the
need to switch to another solution. Sometimes it is impossible to step back, so that
there are no emergency exits for the situation. Rarely is technology the real
problem, although it is always a great excuse: most of the time it is having access
to the right people that will make the difference.

I have made several mistakes in tool selection. Some were inevitable at the time,
others were just my fault. The most classic mistake I made was to see problems
like nails to be driven in with my favorite hammers*, the tools I was most familiar
and confident with. At other times, more often than the wrong technology, the
problem was a wrong adoption of a given technology.

1.5 Organizational aspects

Developing a non-trivial professional GUI is perhaps the most interdisciplinary
kind of task to be found in software development. Many different roles need to
interact closely: the alchemy of such interaction is so delicate that the resulting

3. Chapter 11 is entirely devoted to the practice of tool selection.
4. To paraphrase the American psychologist Abraham Maslow, ‘If you only have a hammer, you
tend to see every problem as a nail.”

8 Putting GUI Development into Context

final outcome may be disappointingly poor, despite the dedicated people involved
and the substantial resources employed.

The user interface of an application is the most visible part of a software product
and the part where people external to the development team clash most. In some
projects non-developers in the organization feel entitled to advise on the user
interface, especially higher management. Repercussions on the Ul may be not
explicit or even foreseen — for example, decisions taken in database design can
affect the UlI, or the absence of a capable graphical artist can influence usability,
thus the overall performance of users, and so also of the system, right down to the
back-end servers.

People and GUIs

In this section we explore some of the issues related to the development of user
interfaces and the involvement of the people who build them.

Dermaphobic and graphic hedonists

GUIs are software artifacts with a strong human component. This is apparent for
end users, but it is true also for developers. In particular, there are usually two
main types of developers, of which the first is the more common: the GUI-phobic
developer.

There is a widespread tradition of distaste for GUI-related development. GUI
toolkits are perceived as cumbersome, complex and ultimately useless — “It’s just
cosmetics,” ‘I've more to do than struggle with pixels.” There are a large number
of implicit assumptions behind this attitude. All the ‘real action” goes on the
server side, and putting GUI technical skills in a resume is seen as something to
avoid, like a sound engineer who has worked on lipstick design.

This implicit phobia for the ‘skin’ of client applications, a sort of software derma-
phobia, surfaces in many ways and in various aspects of development. Sentences
like “We need to make our application totally decoupled from the GUI layer,’
‘Completely hide the presentation technology,” ‘I don’t have the vocation for GUI
stuff,” or ‘Let’s hand this to GUI specialists” are indicators of such ancestral fears.
Of course, hiding and decoupling are good qualities for any software, and GUI
toolkits tend to be complex and frustrating to master at first, but this phobic atti-
tude can only harm a project. The GUI-phobic developer often puts together
something that works, maybe by cutting and pasting some tutorial code found on
the Web, and then rushes back to a nobler task.

Sometimes GUI specialists are just developers who find it harder than others to say
‘No,” or that just don’t want to be on the front line. You can hear them rationalize
their phobias: “We decoupled things so that we are GUI toolkit-independent’ is the

Organizational aspects 9

official line, but a closer inspection of the code shows that this decoupling doesn’t
work in practice and that is not even required at all.

The other dangerous class of developers, although much rarer, is the GUI enthu-
siast, such as those who can happily spend an entire working day finding the
perfect gradient texture for the company’s new look and feel.

Both these kinds of people tend to perceive GUI development as a developer-
centric activity: the end user experience is just a by-product of a simple-to-build
and possibly fun implementation.

Developers’ attitude towards GUI development, and the resulting architectural
choices, shape the way the final product will look. GUI-phobic developers tend to
build bulky, low-bandwidth GUIs with fewer interactions, while GUI enthusiasts
tend to present useless fanciness to the user while overlooking more substantial
features. In both these extremes, the overall development cost is higher and the
quality of the final product is compromised.

Who owns the GUI?

Apart from simple cases in which only a small number of people are involved in
building simple applications, the implementation structure has social ramifica-
tions. Abstract, formal decisions about an architecture or, worse, no substantial
decisions at all, affect the real nature of the implementation structure only shal-
lowly, as mentioned in countless books®.

If no strong force is at work in a project, developers will ‘own’ the development
process. This can be fine for server-side applications, but needs special care for
client-side applications. The most common owners of a project are its customers
or other such stakeholders — although they rarely correspond to the application’s
final users. When a project is owned by its customers, a number of issues may
arise that are specifically confined to GUI design — we detail these in Chapter 2
and 3. In these cases, though, the implementation can be designed to reflect this
climate by providing effective mechanisms to absorb change at the GUI design
and interaction level.

Particular care is needed in those cases in which the project will build a product or
a service in a market where existing alternatives are available. Shareware software,
or competing Web sites, are examples of software that is ultimately chosen by the
end user, in contrast to, say, an intranet corporate portal or an ERP application,
whose end users have no power of choice. In cases in which users have a low barrier
to switching to a competing product or service, extra care is needed to safely ground
ownership with the end users, or there is a risk of producing software that nobody

5. We would just mention here two classics: (Brooks 1995) and (De Marco and Lister 1999).

10

Putting GUI Development into Context

will buy. This is achieved by adopting a fully-fledged user-centered design
approach with extensive usability testing and feedback from users, and in which
developers and the other stakeholders are constantly focused on the end user
ownership.

‘Ownership’ dictates the overall attitude toward the implementation. If you ask a
developer what a good architecture should be, they can hold forth for hours,
mentioning powerful virtues like usefulness, robustness, maintainability, scal-
ability, agility, responsiveness, extensibility, fitness to purpose, and so on.
Customers, in contrast, are often dangerously vague. For a user, anything is fine
‘as long as it helps with the business.’

Cost can be a major factor as well. Projects driven by cost tend to have their imple-
mentation and architecture deeply shaped by their financial climate.

An often overlooked aspect of any technical decision (languages, architectures) is
the emotional connotation people attach to it. One developer may not like Swing
(or SWT), while another might find it a wonderfully comfortable choice. Architec-
tures, tools and approaches have their own advantages and drawbacks, but they
are merely instruments to aid in to solving the problem at hand. It is dangerous to
let our feelings drive critical choices biased by personal feelings, as choosing the
wrong tool can prove disastrous in the long term.

Team composition

GUI development is a multidisciplinary activity that involves a number of diverse
skills. Here are some of the roles involved in a GUI development project:

* Ul designer. This role is responsible for driving the UI design and ensuring a
UI's usability, enhanced after usability testing.

* Analyst. Part of the analysis phase is often performed by means of discus-
sions about user interface prototypes.

* Developers. Programmers are the main resource in building a professional
desktop application GUI. The wide range of scenarios and requirements
make the use of GUI application frameworks and rich client platforms
impractical in some situations. Developers and labor-intensive development
is the only practical way to achieve professional GUI applications.

* Application architect. This role is perhaps the most important of all. A GUI
architect must be knowledgeable about GUI design, GUI implementation
technologies, programming, business and application domains, and server-
side issues, as well as being capable of dealing effectively with customers and
other stakeholders. Architectural decisions impact directly on the GUI For
example, the decision to adopt a Web service architecture for client-server

Organizational aspects 1

communication dictates the kind of interaction available on the client GUI.
The application architect is needed effectively to bridge the gap between
customers and end users’ unclear needs and the detailed information
required to translate such needs into working code.

* Usability expert. This role oversees usability issues throughout the whole
application lifecycle.

* Graphic artist. An artist design icons, colors and other graphics for the appli-
cation. Rich client applications have a wide range of graphical possibilities,
much wider than Web applications. This power can be misused, producing
confusing and unusable GUIS, if not properly mastered.

* Business domain expert. People expert in the client’s business domain should
work closely with GUI developers to ensure that the GUI reflects the actual
business domain terminology, skill, procedures, and so on. If a domain-
driven approach has been adopted for developing a rich domain model,
effort should be expended to verify with expert users that such a model
doesn’t remain buried behind the scenes, away from the user interface and
the end users, wasting the effort required for its creation.

* Client management. The management of the client organization can play an
important role in the development of the GUL

* Stakeholder. This generic term includes any person or organization that may
be affected by the success or failure of the software project. End users, devel-
opers, and managers are examples of stakeholders.

* Ul tester. Personnel skilled in GUI testing and GUI testing tools.

Quality assurance® experts. The feedback from the QA team involves the user
interface.

Of course, depending on the project, many of these roles might be performed by
the same person or team.

The composition of the team that will design and build the GUI is also important.
A multidisciplinary development team is essential to achieve a high-quality
design. The contribution of people with different backgrounds and points of view
is extremely important in building a professional GUL

For example, a graphic artist is indispensable, even if only working part time as a
consultant. You can see the difference a good artist can make by looking at the
(very unprofessional) icons used in this book — excluding the standard ones from
the graphics repositories from Sun and Eclipse.

6. We use the more general term ‘quality assurance” without distinguishing it here from
‘quality control,” although they are in fact distinct disciplines.

12 Putting GUI Development into Context

In very small development teams a common problem is the ‘usability death
spiral’: if they don’t try it out with external people, either other colleagues or
end-users, developers get accustomed to their own design. The longer a devel-
oper — either a designer or a programmer — deals with building a GUI, the
more reasonable and usable it appears to be to them!

1.6 Early design

Requirements are the backbone of any analysis. Requirements should be:

* Clear and unambiguous, and usually expressed in natural language.

* Complete — that is, covering the whole system.

* Consistent — they should form a consistent set of constraints for the system.

* Testable - for requirements than cannot be made testable, one cannot prove
their fulfilment.

* Traceable - it’s usually a good idea to establish a hierarchy among require-
ments, so that is possible to trace lower-level or newer system requirements
to older or more general ones.

Traceability can be also done graphically. We could trace requirements or their
equivalent counterpart, such as acceptance tests in XP practice, directly to
screen areas in our GUIL Chapter 2 introduces a general technique, A3GUI, that
can be used to tag screen areas with requirements or other useful information.

Use case diagrams and GUIs

In this book we will use UML notation extensively. This section introduces UML
use cases and class diagrams, a popular analysis and documentation device. Use
case diagrams are especially useful for defining functional requirements in the
early stages of GUI design’.

There are many books on UML: in particular we will refer to (Fowler 2003).
Although not strictly related to user interface design, use cases are commonly
used in real-world development for describing the requirements for a given appli-
cation. UML use case diagrams are used as the preliminary stage to elicit the
expected features of a software artifact.

7. We assume that the reader is already familiar with UML notation for use cases.

Early design

13

Use case diagrams describe a system in terms of the functionalities provided to its
users. They consist of actors and use cases. Actors are entities external to the
system that interact with the use cases, such as human users, other systems, and
so on. These in turn are generic functions the system provides to the rest of world.

A single function can be thought as a flow of actions. The example in Figure 1.3
shows a simple use case diagram that describes an arcade video game. We have
modeled the system with one external actor only, Player, and three main use cases:
join the game, play the game, and insert a high score. Possible actions could be:
push the ‘start” button, insert coins, push the ‘fire’ button, and so on.

Join the
Game

Insert
High Score

Play
Videogame

Figure 1.3 An example of use case diagram for an arcade video game

Player

Use case diagrams are often used as inputs to the GUI design process, because
they identify actors and functionalities within the system. Scenarios are used to
represent a set of paths of possible events through single use cases. Scenarios are
often described by means of natural language.

A possible scenario for the application in Figure 1.3 could the following:

* Player inserts two coins into the game console

* Player pushes the ‘one player” button

* Player plays the game

* The game is over

* Player breaks the record and inserts their name into the high score list

Scenarios are also used, often in a more complex way, as a technique for identi-
fying the typical interaction paths of a user interface. The next step could be to
refine the previous scenario, including a first description of the system behavior.
This is shown in Table 1.1.

14

Putting GUI Development into Context

Table 1.1 ~ An example of a scenario from an arcade video game system

Player System

The player inserts a coin into the The system shows the message: ‘Insert another
console. coin and try this game.’

The player inserts one more coin The system displays its availability to join the
into the console. game by pressing the 1P button.

The player pushes the 1P button. The player joins the video game, starting a new

game.
The player plays the game. The system engages the player in the video game.
The game is over. The system shows the message: ‘Game Over;’

signaling the possibility of joining the game again
by inserting more coins.

The player breaks the record and The system displays the high score list and lets the
inserts their name into the high user insert their name.
score list.

Use cases can be refined into more general and more detailed ones. Use case
diagrams say nothing about the implementation of the system. Use cases are not
the functional modules of the system: rather, they are functionalities offered to
external actors. UML does not prescribe how use cases should be represented —
they can be described in any way, although usually as a list of numbered items.

Apart from narrating the user’s experience of the system, use case diagrams can
be helpful in understanding how use cases relate to each other, such as frequent
functionalities instead of critical ones, or the possible event sequence’s interac-
tions, or as a way to expose the system analysis to customers.

For connections between use case diagrams and user interface prototyping,
see for example (Elkotoubi, Khriss and Keller 1999), (Shirogane and Fukazawa
2002). Later in this chapter we will see an example of an extension to use case
models to account for GUI design and usability.

1.7 Lifecycle models, processes and approaches

This section sets user interface development in the wider perspective of the whole
software lifecycle. If we are to have usable software, it is essential to focus the
whole design and development process around usability and GUI design issues.

Lifecycle models, processes and approaches 15

We will introduce some different approaches to modeling the software lifecycle
that take GUI design into particular consideration.

Rational Unified Process

The Rational Unified Process, or RUP, is a software engineering process made up
of a number of best practices, workflows and various products (here called
artifacts).

The key aspect of RUP lies in its iterative model for software development. RUP
organizes projects in terms of disciplines and phases, each consisting of one or
more iterations. There are four different phases: inception, elaboration, construction,
and transition. The importance of each workflow depends on the given iteration.
Using an iterative approach makes the development process more robust, with
demonstrable progress and frequent executable releases.

Don’t confuse RUP with UML. UML is a modeling language for software
systems, while RUP is a software engineering process that provides a controlled
approach to assigning and managing tasks and responsibilities within a devel-
opment organization. RUP uses UML notation extensively in its guidelines
and best practices, however.

RUP supports the following best practices:

* Develop iteratively — that is, adopt an iterative lifecycle model

* Manage requirements explicitly

* Use component architectures — a wise use of OOP plays an important role
* Model visually — that is, adopt UML

* Manage change in the form of a number of best practices

* Continuously verify quality, an essential aspect for minimizing risk

RUP defines a set of roles for modeling people involved in activities. One actual
person can have the responsibility for many roles. For example, a “stakeholder’
role can represent customers, end users, buyers, and so on, or anyone who repre-
sents them in the developer’s organization.

A discipline in RUP terminology is a group of homogeneous activities that shows
all the different procedures needed to produce a particular set of artifacts.

RUP considers the following disciplines:

* Business Modeling is a discipline that aims at comprehending the structure
and the dynamics of the target organization — that is, where the system will
be deployed — to understand problems and identify possible solutions within
such an organization.

16

Putting GUI Development into Context

Business modeling aims to ensure that customers, end users, and developers
have a common understanding of the target organization, produce a vision
of the new target organization, and based on that vision, define the processes,
roles, and responsibilities of the organization in a business use-case model
and a business object model.

Requirements. This discipline aims to establish and maintain an agreement
with customers and other stakeholders about what the system should do, the
definition of the system’s boundaries, an estimate of the technical contents of
iterations, and the cost and time to develop the system. Part of this discipline
is to define the user interface, focusing on the needs and goals of the users.
As a part of this activity stakeholders are identified, together with their
requirements.

Analysis and Design. The objective of this discipline is to transform the
requirements into a design for the future system.

Implementation. The purpose of implementation is to define the organization
of the code, in terms of implementation modules, to implement classes and
objects in terms of components (source files, binaries, executables, and
others), to test the developed components as units, and to integrate the
results produced by implementers or development teams into an executable
system. Unit testing is included in implementation, while system test and
integration test are part of the Test discipline.

Test. This discipline oversees the proper integration of all software compo-
nents. It verifies that all requirements have been correctly implemented, and
tries to isolate all defects prior to software deployment.

Deployment. Prior to deployment the software is tested at the development
site, followed by beta-testing before it is released.

Environment. This discipline focuses on the activities necessary to configure
the process for a project. It describes the activities required to develop guide-
lines to support a project. The purpose of the environment activity is to
provide the software development organization with the software develop-
ment environment — both processes and tools — that will support the
development team.

Project management. The objective of this discipline is to provide a framework
for managing software-intensive projects, providing practical guidelines for
planning, staffing, executing, and monitoring projects, as well as to provide a
framework for managing risk. This discipline focuses mainly on the impor-
tant aspects of an iterative development process: risk management, planning
an iterative project, both through the lifecycle and for a particular iteration,
monitoring progress of an iterative project, metrics.

Lifecycle models, processes and approaches 17

Configuration and change management (CM and CRM). These disciplines
involve identifying configuration items, auditing changes, restricting access
to those items, and defining and managing configurations of those items.

A CM system is an essential and integral part of the overall development
processes. It is useful for managing multiple variants of evolving software
systems, tracking which versions are used in given software builds,
performing builds of individual programs or entire releases according to
user-defined version specifications, and enforcing site-specific development
policies.

To describe what the system will do, RUP requires that a number of documents be
written: a vision document, a use-case model, a number of use cases, and eventu-
ally a supplementary specification document.

The vision document provides a complete vision for the software system
under development, and supports the contract between the customer’s orga-
nization and the developer’s organization. It is written from the customers’
perspective, focusing on the essential features of the system and acceptable
levels of quality. The vision should include a description of the features that
will be included, as well as those considered but not included.

Use cases focus on describe functional requirements. A use case describes a
significant amount of functionality using narrative text. The use-case model
serves as a contract between the customer, the users, and the system devel-
opers for the functionality of the system, which allows customers and users
to validate that the system will become what they expected, and system
developers to build what is expected.

The use-case model consists of use cases and actors. Each use case in the
model is described in detail, showing step-by-step how the system interacts
with the actors, and what the system does in the use case. Use cases function
as a unifying thread throughout the software lifecycle: the same use-case
model is used in system analysis, design, implementation, and testing. A use
case should always describe the intended functionality — what a system
should do — and not how it will be done.

The supplementary specifications are an important complement to the use-
case model, because together they capture all software requirements, both
functional and nonfunctional, that need to be described, to serve as a
complete software requirements specification.

Complementing these documents, the following are also developed:

A requirements management plan. This specifies the information and control
mechanisms that will be collected and used for measuring, reporting, and
controlling changes to the product requirements.

18

Putting GUI Development into Context

* A glossary, defining a common terminology that is used consistently across
the project or organization. Note that the glossary can overlap with the Ubig-
uitous Language® document if Domain-Driven Design has been used in the
project.

* Use-case storyboard and user-interface prototype, both results of user-interface
modeling and prototyping, which are done in parallel with other requirements
activities. These documents provide important feedback mechanisms in later
iterations for discovering unknown or unclear requirements.

The RUP project structure is usually represented in two dimensions:

* The horizontal axis represents time and shows the lifecycle aspects of the
process.

* The vertical axis represents the disciplines (Business Management, Require-
ments, Analysis & Design, Implementation, Deployment, Configuration and
Change Management, Project Management, and Environment).

This is illustrated diagrammatically in Figure 1.4. The first dimension repre-
sents the dynamic aspect of the process as it is performed. This is expressed
in terms of phases, iterations (initial, elaboration, construction and transi-
tion), and milestones. The second dimension represents the static aspect of
the process: how it is described in terms of process components, disciplines,
activities, workflows, roles, and artifacts. The graph shows how the
emphasis varies over time.

The key difference between small and larger projects is the level of formality used
when producing the different artifacts: project plan, requirements, classes, and so
on. Furthermore, only a limited number of artifacts can be produced by small
projects.

Use cases alone do not specify user interface details. Perhaps the most common
objection against RUP from GUI designers is the strong bias for requirements over
design aspects.

This has been addressed in a number of ways, providing custom approaches and
various extensions to the standard process. As an example of these customiza-
tions, there is an optional extension to RUP called the User Experience Model, or
UX, for handling GUI design issues (Kruchten and Ahlqvist 2001), (Conallen
2002). Building a UX model is a non-trivial task, needed only when the GUI
design needs a special focus within the whole project.

8. Rather than a methodology, Domain-Driven design is an approach and a set of techniques
aimed at dealing with the construction of software for complicated business domains: see
(Evans 2004). ‘Ubiquitous Language’ is one such technique, focusing on building a
language that defines the domain model and is used by all team members to connect their
activities, including the construction of the software.

Lifecycle models, processes and approaches 19

Phases
e

Inception Elaboration Construction Transition
e e e

i i SO N » Al

- Jre
= L_. ;@
Test!‘...nj
[j_—' = — et |ttt il
c&cuk N

[EE}_“ ———..)

Dep

e ¥ S iR, .
{ SRR GHNR S Gy S GRS VS 5 NS S Gy —
Initial El E2 C1 c2 €3 Tl Tl
R —
S
Iterations

Figure1.4 RUP Overview

User experience storyboards

The User Experience Model bridges the gap between analysis and GUI design,
enriching the use case model with GUI design information. The UX model is a
conceptual model that specifies visual elements (the content layer) in an abstract
representation. It helps architects and GUI designers determine what will go into
the Ul before committing to technology details such as widget toolkits and GUI
technology.

A UX model and its storyboards describe actors (user characteristics) and
screens, as well as input forms, screen flows, navigation between screens, and
usability requirements. The actor characteristics and usability requirements are
added to the use-case descriptions. The other elements are described in UML and
remain part of the UX model.

The two most important RUP disciplines relative to UX storyboards are Require-
ments and Analysis & Design:

* Use cases are developed in Requirements, while in Analysis & Design they
are used to design the system, including the UI. RUP uses models to repre-
sent the various parts of a software system. The use-case model is the most
important one to build in Requirements.

20

Putting GUI Development into Context

The design models are developed in Analysis & Design. For systems with a
significant amount of user interaction, the development team should also
create a UX model and storyboards within that discipline. This integrates
usability issues into the RUP development approach.

There are five steps to creating UX storyboards:

1.

Add actor characteristics to the use case. Being non-functional, this informa-
tion should be added in the special requirements section. This may include
the users’ average level of domain knowledge, general level of computer
experience, working physical environment, frequency of use of the system,
and the approximate number of users represented by an actor.

Add usability guidance and usability requirements to the use case. Usability
guidance provides hints on how users should use the system, including
average attribute values and volumes of objects, and average action use.
Usability requirements might specify how fast a user must be able to do
something, maximum error rates, maximum number of mouse clicks, learn-
ing times, and so on.

Identify UX elements. UX models use the same appearance as UML but with
a different meaning: screens are rendered with UML classes, using the spe-
cial stereotype «screen», navigation maps are expressed with class dia-
grams, screen instances with objects, and screen flow diagrams with UML
sequence diagram.

Model the use-case flows with the UX elements.

Model screen navigation for the use case using UML navigation diagrams.
These are essentially class diagrams with oriented links for navigation.

UX is just one possible approach to capturing GUI design and usability within
the RUP.

Extreme Programming and other Agile approaches

Agile software methodologies are a radical departure from the traditional,
document-heavy (usually) waterfall processes still in widespread use. These meth-
odologies share a set of common values. They all try to find a useful compromise
between informal development processes and formalized, traditional ones
(Larman 2003).

Extreme Programming (Beck and Andres 2004) is perhaps the most ‘extreme” of
these Agile methodologies. XP is composed of the following practices:

Customer as a team member and on-site customer. Development teams have one
person (or a group of people) that represents the interests of the client,
referred to as ‘Customer.” Customer decides which features to add to the
system.

Lifecycle models, processes and approaches 21

* The planning game. Customer and developers cooperate to determine the
scope of the next release. Customer defines a list of desired features for the
system. Each feature is written out as a user story (see below). Developers
estimate how much effort each story will take, and how much effort the team
can produce in a given iteration, typically of two weeks. Customer decides
which stories to implement and in what order, as well as when and how
often to make available production releases of the system.

* User stories. These represent small features of the system that can be
completed by a single developer in one iteration. Customer gives the user
story a name, and broadly describes what is needed. User stories are typi-
cally written on paper cards.

* Small releases. Development starts with the smallest set of features that are
useful. Releases are kept small by releasing early and often.

* Simple and incremental design. The simplest possible design that works is
favored. Providing more design than is needed can be a waste of time, given
that requirements can change, and is a needless cost for the project.

* System metaphor. Each project may have an organizing metaphor, which
provides an easy to remember and guiding naming convention. This practice
can be slightly confusing when adopted for GUI design: other design
approaches, such as domain-driven design, suggest a focus on the core
domain model to shape naming conventions and development abstractions.

* Test-driven development (ITDD). Before writing any code, developers devise a
test that defines the expected behavior of the new code, and write the test
first. These are typically unit tests. Each unit test usually tests only a single
class or a few classes.

* Acceptance tests. These are specified by Customer to test that the overall
system is functioning as specified. Acceptance tests typically test the entire
system, ideally automatically. When all the acceptance tests pass for a given
user story, that story is considered complete.

* Refactoring. This is the practice of making small changes to a portion of code
to improve its internal structure without changing its external behavior. This
is a practice born in Smalltalk development and popularized by Martin
Fowler (Fowler 1999). Refactoring fits nicely with continuous testing,
because after every change, tests are run to ensure code integrity.

* Pair programming. All production code is written by a pair of programmers
working at the same machine.

* Collective code ownership. No single person ‘owns’ a package or any portion of
code. Any developer is expected to be able to work on any part of the code
base at any time.

22

Putting GUI Development into Context

* Continuous integration and ten-minute builds. All changes are integrated into
the code base at least daily. A build should not last more than ten minutes.
A build encompasses building the whole system and running all the tests,
which should be able to be run both before and after integration, and
deploying the system.

* A sustainable pace of work (‘energized work’). Some XP practices advocate a
forty-hour working week, to avoid the prolonged strain of work overload,
usually a warning signal for a project.

* Coding standards. Homogeneous coding standards are applied by every
member of the development team.

Official XP doctrine doesn’t go into the details of user interface design, which are
left to designers. A first version of the GUI design can be built up front (that is, the
customer, together with developers) then used to feed the project’s user stories.
Alternatively, GUI design can be focused on iterations built on top of a reference
framework consisting of GUI design guidelines and other constraints. Other
approaches are also possible. No matter what GUI design details are chosen
within the XP approach, a stable and continuous feedback loop from story
creation through usability and user acceptance testing, and involving end users,
is always instrumental to effective GUI design and development.

Early critics of the effectiveness of GUI designs performed with XP noted that user
interface designers and usability engineers don’t have a defined role within XP,
and that the whole approach risks being developer-centric. However, a closer look
at XP shows a number of strong points in this approach that favor sound GUI
design practices. By building on the XP practices of communication, simplicity
and continuous testing, usability can be achieved, not only in terms of end user
acceptance and satisfaction, but also for other tenets of XP, such as implementation
efficiency, developers comfort, and shared responsibility for the final product.

LUCID methodology

Classic LUCID methodology, as described for example in (Shneiderman 1998) and
more recently updated, is an example of a user interface—driven approach to the
whole software lifecycle, in contrast to the iterative approaches discussed previ-
ously. It is essentially a variant of the classic waterfall process, focused on usability
and GUI design®. This is illustrated in Figure 1.5.

9. See http:/ /www.cognetics.com/lucid/

Lifecycle models, processes and approaches 23

Define
Product
Concept

Research and
Requirements
Analysis

Design
Concepts
Prototype

Iterate
Design

Implement

Software

Rollout
and
Release

Figure 1.5 The LUCID lifecycle model

This lifecycle model can be broken down into the following elementary activities:

1. Develop the product concept:

Define the product concept. Begin writing down early use case diagrams.

Establish business objectives.

Set up the usability design team.

Identify the user population.

Identify technical and environmental issues.

Produce a staffing plan, schedule and budget.

2. Perform research and requirements analysis:

Partition the user population into homogeneous groups.

Break job activities into task units.

Conduct requirements analysis through construction of scenarios and
participatory design.

Sketch the process flow for sequence of tasks.

24

Putting GUI Development into Context

- Identify major objects and structures that will be used in the software
interface.

— Research and resolve technical issues and other constraints.

3. Design concepts and an initial prototype:
— Create specific usability objectives based on user needs.
- Initiate the guidelines and style guide.
— Select a navigational model and one or more design metaphors.
— Identify the set of key screens: log-in, major processes, and so on.

— Develop a prototype of the key screens using a rapid prototyping tool,
paper mock-ups, or other prototyping techniques.

— Conduct initial reviews and usability tests.

4. Perform iterative design and refinement:

Expand key-screen prototype into a full system.

Conduct heuristic and expert reviews.

Conduct usability tests.

Deliver the prototype and the application specifications.

5. Implement the software:
— Develop standard practices.
— Manage late state change.
— Develop on-line help, documentation and tutorials.
6. Provide rollout support:
- Provide training and assistance.
— Perform deployment, logging, evaluation and maintenance.

Modern software projects tend to require more flexible and rich models than
this: we introduced it essentially for didactical reasons, because all main activi-
ties related to GUI development are listed in a sequentially ordered, simple
arrangement.

Evolutionary Prototyping process

Many user interface design approaches use intermediate prototypes in order to
produce the final GUI design more easily, reducing the risks (and costs) of the
design phase.

The natural evolution of the prototype idea is to base the whole development
around prototypes of increasing functionality. With this approach the prototype is
never abandoned, but is constantly refined and expanded until it is good enough

10. We discuss prototyping in Chapter 3.

Lifecycle models, processes and approaches 25

to be the final product. The discussion of this lifecycle approach is inspired from
(McConnell 1996). The methodology is represented graphically in Figure 1.6.

Initial :

Concept Design and
Implement Refining
Initial The
Prototype Prototype

pffort
v

Figure 1.6 The Evolutionary Prototyping lifecycle model

This approach can be useful when requirements are changing — for example, when
the customer is reluctant to commit to a defined set of requirements. It may prove
useful in situations in which nobody fully understands the application domain at
first, for example in advanced research projects. This model tends to produce
visible progresses thanks to the steady prototype evolution.

There are however several drawbacks and potential risks when adopting this
approach. First, as the application concept evolves as you develop the prototype,
there are no predefined time and qualitative deadlines for ending refinement iter-
ations. The risk is that as an important deadline approaches, the current prototype
stage is declared ‘good enough’ to be released. Customer judgment may also not
be a reliable criterion for concluding refinement iterations.

Another common risk is production of a poor-quality implementation in which
code maintainability is low — if not addressed properly, continuous changes may
produce code full of patches. Feature creep is another potential risk. When no clear
and definitive requirements are set at the beginning of the development process,
there is the concrete risk of adding too many new features to the prototype during
its refinement.

Some guidelines help to tackle the commonest risks with this approach:

* Itis essential to focus on a limited set of important aspects of the product
before starting the development. These aspects will be the focus of the proto-
typing activity. An obvious choice is the GUI. Beginning the prototyping
process with the GUl is a good way to give usability and GUI design top
priority.

26

Putting GUI Development into Context

The code used in evolving the prototype should be of the best possible
quality, continuously refactored (Fowler et al. 2000) and enhanced, because
frequent changes risk deteriorating it.

For this reason, it is essential to avoid employing entry-level programmers
when adopting this development model.

Be sure of getting high-quality feedback from customers and end users,
otherwise the prototype will prove poor and ineffective no matter what effort
has been spent in refining it

Avoid evolving a throw-it-away prototype with this model. It should be clear
from the initial inception of the concept whether to create a throw-it-away
prototype, or to keep working on the prototype until it is refined into a final
product. All members of the development team should be committed to this
choice.

Evolutionary prototyping shares many characteristics with other iterative
processes, such as RUP and the family of Agile models.

1.8 UML notation

This section introduces some UML notation that will be used in the rest of the
book. Readers that are knowledgeable about UML’s state, interaction and class
diagrams may choose to omit this section.

Class diagrams

We introduce UML class diagram notation without discussing it thoroughly: if
you are not familiar with UML class diagrams, many books are available on the
topic.

In this book we will use simplified class diagrams. We won’t use visibility indica-
tors (‘+, #, -" symbols for showing public, protected and private fields) nor other
details such as initial values.

Figure 1.7 shows a sample class diagram that illustrates the level of detail of the
class diagrams used in the book.

11. See the discussion on prototyping in Chapter 5.

UML notation

Observer
«interface»
«utils»

dependency

Figure 1.7

assoc

labeled

27

multiplicity

Observable

realization
«util» -
| dependenc

iation

ordered : p|AbstractSymbol

SandboxPanel y,"
““““““ 0, 0| «abstracts e
- . ’ ‘\\\\‘\
JPanel *. BitmapSymbol | PoliLine Commandable
«swing» -

extends
class

A sample class diagram

We use stereotypes — for example «swing» in the JPanel class — to represent the
Java package to which the class belongs, or whether the Java type is an interface,
an abstract class, or (when absent) a normal class. Figure 1.8 represents the class
details we will use for documenting code.

class
compartment | "

class name
class
g stereotype

attributes [-. - Perstn
compartment T, <<persona>>
., o age : int additional
operations f-. sex : Sex class details
compartment . getAge () : int
setAge (int)
actionPerformed ()
Fiqure 1.8 Class details

For brevity we will avoid the stereotype «abstract» for abstract classes, using
only the italicized name, as in the AbstractSymbol abstract class in Figure 1.7.

28 Putting GUI Development into Context

We will also highlight the slight difference between realization and dependency
relations:

* Realization means that a class implements behavior specified by another
class. This is the common case when a class implements an interface or an
abstract class.

* Dependency indicates that the implementing class depends on the other.

Whenever the interface Observer in Figure 1.7 changes, the SandboxPanel class
may also have to change. The dependency relation is also used to express depen-
dencies among different class packages.

Sequence diagrams

Throughout the book we will use both UML sequence and collaboration diagrams.
Such diagrams, which are interchangeable, describe a behavior by means of a
number of objects and the messages they exchange in a given temporal sequence.

Figure 1.9 shows an example of a sequence diagram that describes the typical
behavior of a CustomListener instance that is registered for a JButton’s
ActionEvents.

MainClass

new JButton

» CustomListener

AddActionListener () Dinit ()

actionPerformed ()

Figure 1.9 A sample sequence diagram

In the figure, an unspecified instance of the class MainClass creates a new
instance of the class JButton and a new instance of the class CustomListener.

UML notation 29

This in turn invokes the method init () on itself asynchronously, then invokes
the method addActionListener() to the unspecified instance of JButton. After
some time — not related to the previous sequence of method calls — the unspeci-
fied JButton instance method init () is invoked onto the unspecified instance of
CustomListener.

For brevity we usually avoid indicating instance names: Figure 1.9 only specifies
class names.

This section does not detail all the UML conventions used in the book for reasons
of space — we have not mentioned collaboration diagrams, even though we will
use them. Given the ubiquity of UML, we leave the interested reader to conssult
one of the many sources available in literature or on the Web.

State diagrams

UML state diagrams are useful for describing the internal state transitions within
a GUL

Figure 1.10 shows an example of an UML state transition diagram.

As shown in the legends in the diagram, the initial state is indicated with a jagged
arrow, while state transitions are indicated by arrows tagged with the event that
triggers the transition from one state to the other. States are drawn as circles.
Hence the state of the class described by the diagram in Figure 1.10 gets to State B
after Event x happens when the class is in its initial state. Other events might
change the internal state of the class, either restoring the initial state again or

bringing it to a final state.
. state

State C

indicates .
the initial |-
state

Event x

State
transition
after event
“x” occurred

1 the final
state
State B

Fiqure 1.10 State changes within a class

30

Putting GUI Development into Context

1.9 Summary

This chapter has presented some introductory discussions about effective soft-
ware and GUI design. In particular:

We discussessd the important concept of focusing on end users throughout
the whole development process.

We illustrated a general decomposition of GUI implementations based on
functional criteria.

Tool selection (the topic of Chapter 11) was presented briefly.
We briefly introduced organizational aspects related to UI development.

We discussed lifecycle issues, showing some design methodologies focused
on usability and GUI-centered development.

We introduced UML use case diagrams as a means of documenting systems
from an end user's perspective.

We also introduced sequence and state UML diagrams.

2

Introduction to User
Interface Design

The field of user interface design and human-computer interaction is complex
and vast. It has many different contributors and perspectives, and still lacks a
uniform descriptive language. It is fragmented into different approaches and
practices, a fact that stems directly from the very nature of human-computer inter-
action (HCI): the presence of the human component makes it impossible to
develop an exact foundational theory. HCI, its derived design guidelines and
criteria are thus based mainly on empirical evidence and practical principles.

The term “"HCI" was adopted in the mid-1980s. HCl is an interdisciplinary practice
that aims at improving the utility, usability, effectiveness and efficiency of interac-
tive computer systems. SIGCH]I, the special interest group in HCI, defined it as ‘a
discipline concerned with the design, evaluation and implementation of interac-
tive computing systems for human use and with the study of major phenomena
surrounding them?!.

In this chapter we introduce some HCI concepts that are fundamental to the
professional design of user interfaces. The chapter is structured as follows:

2.1, The human factor discusses the role of people in the design process.

2.2, Display organization introduces the esthetics of GUI design, and discusses
ways in which an application can interact with its users.

2.3, Interaction styles goes into more details about human-computer interaction,
and presents the five major categories of human-computer interaction.

2.4, Conceptual frameworks for Ul design describes a set of coherent concepts that
structure the different phases of development of Uls, and which provide a reliable
and proven mindset for organizing the design, thus reducing risks and improving
quality.

2.5, Assessing the quality of a GUI describes ways in which testing of user interfaces
can be conducted and its results collected.

1. Many disciplines contribute to HCI: computer science, cognitive psychology, ergonomics,
social and organizational psychology, design, engineering, anthropology, sociology,
philosophy and linguistics.

32

Introduction to User Interface Design

For simplicity we use the term ‘GUI’ as a general term to refer to any graphical
user interface. In this chapter we distinguish between different classes of
graphical user interfaces that are gathered under the common name of GUIs
when applicable.

2.1 The human factor

We begin our quick tour of HCI with end users and how they perform actions.

A model of interactive systems — seven stages and two gulfs

One of the simplest approaches to modeling interactive systems is to describe the
various actions users go through when faced with the task of using an interactive
system (Norman 1998). Users:

Form a goal

Form an intention

Specify an action

Execute the action

Perceive the system state

Interpret the system state

NSk wh

Evaluate the outcome

The user first forms a conceptual intention from their goal — for example, deleting
an item in the application shown in Figure 2.1 — then tries to adapt this intention
to the functionality provided by the user interface. From these commands, as
perceived by the user, they execute the action — for example by dragging an
element in the tree to delete it, as Figure 2.1 shows. The user then tries to under-
stand the outcomes of the action. This is particularly important in computer
systems, where the inner workings are hidden and users have to guess the
internal state from few artificial hints (Norman 1998). The last three stages listed
above help the user to evolve their idea of the system. The entire interaction
process is performed in such cycles of action and evaluation: by interpreting the
outcome of their actions, the user refines their mental model of the system.

Action and evaluation are often illustrated by means of the gulf metaphor, after
(Hutchins et al. 1986):

* The gulf of execution. This phrase describes the mismatch between a user’s
intentions and the allowable actions: for example, a user might be used to
removing items by dragging them into a wastebasket, but in some applications

The human factor

33

items may be not draggable. Gulf of execution describes the practical difficulty
of performing tasks with a GUL

The gulf of evaluation. This phrase refers to the difference between a user’s
expectations and the system’s representation. Referring to Figure 2.1, the
user observes that even if an item can be dragged onto the wastebasket icon,
the intended delete operation did not work, because the application
displayed the message shown in Figure 2.2. Gulf of evaluation describes the
difficulty users experience in evaluating the outcome of an action they

perform with a GUL

= An Example of Evaluation/Execution Gulf Mismatch E|@|z|

2 [J MyFiles
@ Draft 12,2006
@ Draft 01.2007
¢ = Figures
@ Introduction
¢ =] Chapter 1
% [Drawings
e =] Final
& Sketch 01
¢ Drafts
@ DrattFlg.o1
@ DraftFig.02
& [Other Drafts
#® Picture 0.99
& Fig.o1
¢ [Screenshots
® Windows 3.11
@ Mac 1.0

Figure 2.1

1. User wants to drag
an item onto the
wastebasket icon

052
¢ 3 Others

@& Crop Fig.01

¢ [Archive

@ Original 2.903

& Resized Deskiop 02

= S

e

The gulf of execution: execution mismatch

2. the application
didn't accept
the user

interaction

The cognitive distance between two such worlds — the user’s and the software’s —
corresponds to the potential mismatch between the way a person thinks about a
task and the way it is represented in the GUI (Preece 1994). This mismatch, and
the distance between the two gulfs, can be reduced by designing the user interface
in a way that reduces the differences between the users” goals and the GUI’s state
and form.

As an aside, messages such as that shown in Figure 2.2 are rather intrusive. A
better choice would be to signal the error with a less intrusive form of feedback,
such as changing the mouse pointer shape or producing a beep.

34

Introduction to User Interface Design

5, diTiple O 3 d h. 13
¢ L2 Wy Files |-
@ Drafl 12.2006
@ Draft 01.2007
¢ [Figures
@ Infroduction
¢] Chapter 1
¢ [Drawings
o [Final
B Chotei (14

¥ Ille;-;alOperation [Z|

meeEmn

® It is not possible to drop items on a toolbar

&

T naons 37T
@ Mac 1.0
® 0si2
% [Others
@ Reszized Desktop 02
@ Crop Fig.01
@ Crop Flg.32

] ‘m 5‘|3<

@ Resized Fig.02
& Original 2,902
¢ [Archive -

...... Mismatch

Fiqure 2.2 The evaluation gulf: evaluation mismatch

Developers are part of the design process

So far we have only described the user’s perspective of the GUI. We have not yet
talked about the designers and the programmers who design the application,
including the user interface. Just like end users, designers and programmers also
have their own vision of an application. What for the end user might be an incom-
prehensible command description, such as clear action stack, may be an ‘obvious’
choice for the programmer that implemented it. A graphical design inspired by
some new award-winning product might represent an accolade for the designer,
but a nightmare for the developer to implement and an awkward thing for an end
user to work with.

Many of the problems involved in creating effective user interfaces stem from the
differences between the designer’s and the end user’s viewpoints. Designers can
sometimes become so absorbed in their work that they lose focus and overlook the
importance of the user's needs.

Ideally, the designer is the mediator between users and developers. Unfortunately
professional GUI designers are thin on the ground and often expensive to hire.
Hence developers often fill the role of designers, especially in small and medium
sized organizations. This creates a potential problem: such developers-turned-
designers often adopt their habitual programmer’s mental model unconsciously,
producing less usable GUIs as a result. On the other hand, fortunately, the effect

The human factor 35

of good design is contagious. Design guidelines, which are often promoted by
organizations that can afford a team of full-time professional designers, are slowly
making their way in everyday software, not just that produced by large
corporations.

The refinement of a user’s model of an application is often distorted by accidental
interaction, bad design or software bugs. Even developers themselves, as users of
other software, sometimes struggle to understand the internal model of a buggy
application. Suppose that a developer uses an application that shuts down unpre-
dictably, corrupts data, or causes other serious trouble. They will of course try to
bypass the internal states that cause such harmful behavior. To do that in the
absence of implementation documentation, they must develop a mental model of
the application’s inner workings. Computer programs, contrary to other types of
technology, are both complex and inherently abstract. A mechanic can guess from
the weird noise a car makes that it probably has a problem with its suspension,
but even a seasoned developer cannot determine the actual implementation
behind a GUI merely by using it.

End users only have the direct experience of the GUI with which they are inter-
acting, coupled with their previous knowledge, to work out what is going on
inside an application. Humans need semantic models to enable them interact with
the world sanely, and always build such models, even unconsciously. Users act
like the early philosophers, trying to make sense of an incomprehensible world
using only their current and past experience — it is common to hear them
explaining how an application works in their own terms. As personal computers
have been around for decades, many people are accustomed to concepts such as
files, databases and mouse gestures?

In some ways this is a problem — ideally we should be able to use a complex device
such as a car or a software application without having to be aware of its inner
working, although a minimum coupling with the underlying technology is
unavoidable. A professional GUI design should therefore start with an abstract
model in the designer’s head. In addition, what might seem a natural choice for
the designer can later reveal awkward details that are difficult to understand and
to employ by users. It is important therefore for designers to adhere to a concep-
tual model that is as close as possible to the prior knowledge of the intended end
user population.

2. The term gesture in HCI denotes a single basic interaction performed by the user. Usually it
refers to mouse-based systems in which sequences of gestures will make the software
perform certain operations. Sequences of gestures can be organized in a specific syntax,
such as “press right button-drag mouse-release right button.”

36 Introduction to User Interface Design

To recap, we have highlighted some important issues:

* Software is abstract. Good user interfaces are those that communicate their
internal state to users effectively, encouraging the seven-stage cognitive
sequence described on page 32. In computer applications, the inner workings
are hidden, and human beings have to figure out the internal state from few
artificial hints. Such hints should be coherent, otherwise the GUI won't be
successful: it will be difficult to use, producing convoluted mental models
that are hard to remember, inducing a negative response from users. Hence it
is important to develop a sound conceptual model to stand behind the GUI.
The basic concepts, visible items, their interaction, names and everything else
should be carefully thought through at the design stage.

* People use conceptual representations of reality based on their current and
past experience. Consequently, different mental models of the same applica-
tion exist in the minds of its designers, its developers and its end users. It is
important for designers to be aware of the different mental models involved
in the development and subsequent use of a user interface as a social artifact —
something that will be used by more than one person.

We mentioned that cognitive psychology was a contributing discipline to HCL
The next section discusses some simple cognitive models that underlie well-
designed user interfaces.

Short term memory and cognitive modeling

We will now discuss some basic principles of cognitive modeling, and include
some practical advice on their application to HCI design. In particular, we discuss
briefly a useful — although rather crude — model of human memory, and some of
its implications for interface design.

In human beings, short-term memory (STM) is a limited form of memory that acts
as a ‘buffer’ for new information, used to process perceptual input. Empirical
studies have shown that humans usually have an STM capacity of between five
and nine items. Such items can be single objects or coherent chunks of informa-
tion. The size of non-atomic pieces of information that can be stored in STM
depends on the individual’s familiarity with the subject, but usually the informa-
tion survives no longer than 15-30 seconds.

You can try this for yourself: it is relatively easy to remember seven random colors,
but it is not easy to remember seven Spanish words unless you speak Spanish — not
to mention seven Urdu words. STM is very volatile. Distractions, external “infor-
mation noise’ or other interrupting tasks quickly disrupt its contents.

The other type of memory is long-term memory (LTM), more stable and with far
greater capacity, but with slower access than STM. A major problem with LTM is

The human factor 37

the difficulty of the retrieval phase. Many of us use mnemonic aids to access LTM,
such as mental associations for remembering a personal code or password.

STM influences the efficiency of an HCI interaction. Interactions that can be
processed using only STM are easier and faster to accomplish than those that
require LTM or some external cognitive help. Complex interactions are made
more difficult by the need to maintain a data context throughout the whole
process, using working memory and STM.

GUIs should be designed as much as possible to let users work with STM, but this
kind of memory has its own limits as well. To illustrate these ideas, here is an
example of the pitfalls of placing excessive trust in STM.

An example of STM misuse

Our example GUI here is designed to allow users to reserve a train seat. It is orga-
nized as a sequence of dialog in which only partial information is shown at any
one time. Such an interaction style is often referred to as a wizard, a term popular-
ized by Microsoft’s extensive use of it.

Our GUI has been designed only for this example, and is not intended to be an
example of good user interface design — see for example our weird use of tabbed
panes!

In the first dialog we are asked for the basic details for our trip, as shown in
Figure 2.3.

£ An Example of STM Bad Design g@g

| Input Departure Time | Choose Available Train | Inj | »

Choose the Preferred Departure Time and Destination

Departure time: |8-10 a.m, '.

Destination: Honol| |

Fiqure 2.3 An example of excessive STM burden: entering some data

After some input, such as reserving a window seat, food options and so on, we are
presented a reservation code, as shown in Figure 2.4. This is meant to help the user
to choose between different reservations. Users can remember this sort of code for
varying times.

A recap screen is then presented, and the user is asked to choose one reservation,
prompting for the data of choice (as shown in Figure 2.5).

38 Introduction to User Interface Design

£ An Example of STM Bad Design E|@I8|
Input Train Options | Reservation Details | Reserva « | »

Your Seat Reservation Code

Assigned Reservation Code: 97882

Figure2.4 An example of excessive STM burden: memorizing the reservation code

£ An Example of STM Bad Design E|@IZ|

etails | Reservation S v | Input Chosen Train [
Input Seat Reservation Code and Train Humber

Reservation Code: |

Train k H | |

Figure2.5 ~ An example of excessive STM burden: retrieving data from STM

Naturally, few users can remember this information, and the wizard will probably
produce the message in Figure 2.6. At this point the user’s STM memory has been
overloaded. Clearly, more cognitive aids, such as displaying a list of reservations
made, or providing some way to point to them, would make the GUI much more
robust and usable.

- An Example of STM Bad Design E”_IZ|

Final Summa « | »

Input Chosen Train I Final S
Your Reservation

Sorry, but your reservation code is not correct.
You'll be charged twice the first class price.

[] Buy the ticket

Fiqure 2.6 An example of excessive STM burden: negative feedback

The human factor 39

Nobody design GUIs like this one any longer, but such design inconveniences
were frequent before the widespread use of mature user interface solutions and
the advent of direct manipulation techniques. In this situation the GUI shouldn’t
rely exclusively on the user’s short term memory. But consider the case in which
the client device cannot support a rich user interface, such as a mobile phone.
Even in such a case, an alert message, such as ‘Please print confirmation for your
records...” is needed.

These problems have lead to the widely-used practice of exploiting the context for
selecting and manipulating information. For example, users are now familiar with
contextual menus, usually activated by right-clicking on an object, or some other
platform-dependent gesture, that make all the possible commands for the selected
item in the given context available. There is then no need for extra memory load
on the part of the user. A designer should always try to design the user interface
to make users work as much as possible with STM, as this lightens their memory
load and makes the interaction speedier and less error-prone.

In contrast, something like a Unix command-line interface needs continuous
access to LTM or some external cognitive aid. It is not uncommon for Unix novices
users to use post-it or paper notes to remember commands and their syntax, or the
sequences of commands required to carry out a certain task. With the advent of
GUIs, this situation has changed. Now designers have a powerful set of tools for
designing expressive, easier-to-use interfaces.

Another means of avoiding placing an excessive memory burden on users is to
adopt a standard and consistent design. In this way, users can reuse the knowl-
edge acquired from use of other parts of the GUI, or of other GUISs the adopt the
same standards. Later we will show how expensive providing an arbitrary menu
organization, with an incoherent command organization can be in user memory.

In conclusion, STM is a valuable aid to well-designed interfaces. STM requires
concentration, so in general users should be in a proper environment for maxi-
mizing their performance. Users should feel at ease with the application, and have
a predictable idea of how it works, without the fear of making catastrophic errors
or of excessive time pressures. We cannot, of course, control the environment in
which the application will be used, but we can consider it in our design.

UI design can be organized around basic criteria that are derived from cognitive
modeling-based human psychology considerations: try to eliminate distractions,
minimize user anxiety, provide feedback about task progress, and either avoid
errors or handle them gracefully.

Interacting with human beings

In this section we discuss some practical issues related to interacting with users.

40 Introduction to User Interface Design

Response time

Even a brief introduction to cognitive modeling would be incomplete without
mention of an important dimension of a user’s experience when interacting with
a computer system. Response time is a significant factor, in that slow response time
is a cause of errors and user frustration. This is particularly true for Java-based
applications, where performance can be a serious bottleneck®.

Response time affects users in different ways. Their expectations and past experi-
ence play an important role in their reaction. If a user is accustomed to a task
completing in a given amount of time, both excessive or too rapid a completion
can confuse them. Short response times also aid more easy exploration of the GUI
where such behavior is encouraged, for example by undo-able actions and low
error costs.

Balancing human control and automation

It is often useful to provide automation of some features in an application, but this
takes away some control from users. People become frustrated and nervous if
they feel they don’t have full control over the work they are doing. It is therefore
important to provide the sense of control to end users.

In contrast, by definition a GUI should provide a high-level, easy-to-use view of
an application’s services and data, hiding irrelevant details from the user. A crit-
ical factor in a successful GUI design is determining the balance between
automation and user control, between showing meaningful details and hiding the
rest, and in doing so adaptively depending on the particular user. For example, a
user may want to skip some automatic feature by taking full control of it as they
become confident with the application.

It is useful to assess the levels of control that can be exerted in a GUI. This helps
to make explicit in the design the layers of automation that can be provided, such
as defining macros, providing wizards for most common operations, and so on.
Nevertheless, a computer program is an inherently limited artifact, in that it
cannot take into account all possible situations, only a restricted set of combina-
tions thought out in advance.

Consequently, balancing human control over automation is a typical trade-off of
GUI design. Providing fully-automated GUIs could be too risky, especially when
the task is a critical one, such as managing a chemical plant, and there are many

3. In general, interpreted bytecode and the overhead of a Java virtual machine only impacts
the overall performances of Java applications to a minor degree, thanks to sophisticated
technologies like ‘just-in-time’ compilers, garbage collectors and various other optimiza-
tions. However, GUI technologies like Swing implement low-level graphical details and
infrastructure interactions as fine-grained Java objects, requiring a high number of runtime
objects just to implement simple user interfaces.

The human factor 41

independent variables that may cause unforeseen behavior. On the other hand,
allowing users to have a too much control could create GUIs that are too difficult
or even dangerous to use. When exposing too much detail that can be manipu-
lated in a GUI, the risk arises that users could modify some valid data or use the
interface in unanticipated ways.

To recap, in designing a correct level of automation, much depends on the user
population and the nature of the application domain. For a business-oriented
application, some simple rules can be applied:

* For the same application, always provide two routes through the UI: one for
experienced users, with more control and less automation, and a simplified
(that is, more automated) set of functions for inexperienced users.

* Provide warning messages when critical data is being manipulated directly,
even by experienced users.

* Whenever possible avoid automated features and the pro-active behavior
exemplified by some “agent-like” applications (“Hi, I'm Tom, I'll check the
mail for you”). This latter kind of approach hasn’t proved successful and also
can quite expensive to implement. Proactivity is still an untamed beast*.

Showing the application’s internal state

Users build their own system model unconsciously while interacting with the GUL
It is essential to provide the right hints and to correctly signal the system state to
the user. This can be achieved using various techniques. Those most commonly
used are modifying the mouse pointer or using some form of animation:

* Changing the pointer shape. Changes of pointer shape are widely employed for
signaling an application’s internal state, for example a “busy’ pointer, and
currently-available operations, for example resizing a window by dragging
its corner. The Java Look and Feel guidelines, which we introduce in the next
chapter, prescribe the use of the ‘busy’ pointer for any operation that takes
more than two seconds.

* Animation. can be used to show both the progress of an operation, often by
means of a progress bar component, or generic activity, using for example an
ad-hoc animation. The Java Look and Feel guidelines suggest that a progress
indicator should be updated at least every 4 seconds. The example GUI in
Figure 2.7 below shows a progress bar that can be set to update at various

4. At a recent international conference on autonomous agents the speaker (an authority in
the field, praising the many benefits of proactivity) was interrupted abruptly by his lap-
top crashing. It took many embarrassing minutes to recover his presentation. It turned out
to be an unforeseen interaction between the screen saver (the proactive, yet unintelligent
agent) and an operating system patch he had loaded the night before the presentation.

42

Introduction to User Interface Design

intervals in the range of 1 to 4 seconds. The task is completed in one minute.
Readers are encouraged to download and try this sample GUI to directly
familiarize themselves with update times.

£ slider Demo Q@B|

est Refresh Time

| |
:Cb

Refresh Time {sec):

Figure 2.7 'lesting the update time for a progress indicator

One controversial notion that should be considered is the use of modes in an appli-
cation GUI Modes are specific states or an application that affect some of the user
interface behavior. A designer or developer can think of them as contexts in which
some previous user interaction changed the meaning of current actions. For
example, on a cellphone the ‘hang up’ red button has different functionalities,
depending on whether a call is in progress or not. An application can behave in a
completely different way in different modes in response to the same user input.
Design guidelines normally discourage the use of modal interfaces, or even ban
them altogether. Modes are difficult to manage by users and easily confuse them.

It is vital to show explicitly the current mode within the GUL This is usually done
by modifying the pointer shape, for example in drawing software when a specific
graphic tool is selected from the palette, or by means of toggled buttons, status bar
icons or messages.

Techniques for getting the user’s attention

Techniques for getting the user’s attention are employed widely in user interfaces.
These techniques are derived from empirical studies and can be summarized as
follows:

* Animation. Animation is often used to express the internal state
of the GUI, showing work in progress or generically signaling activity. Often
this latter use is the only one suggested by official design guidelines.
However, flashing items on the screen easily capture a user’s attention —
often too easily: this technique can be disturbing and invasive.

* Color. Like animation, this technique should be used carefully. As with
animation, the Java Look and Feel uses few system colors. Too many colors
tend to produce confusing GUISs.

The human factor

43

Audio cues. This technique, used carefully, can be very effective®.

Bold fonts and other graphic adornments. When used carefully and coherently,
such graphic conventions can be effective without being disrupting. As we
will see later, the Java Look and Feel design guidelines adopt some simple
graphic conventions to signal importance.

Relying on professional design guidelines avoids many obvious errors. This is
especially true for attention-catching devices such as flashy labels, colors and the
like. All major Ul design guidelines provide reliable but noninvasive mechanisms
for catching user attention.

Some general principles for user interface design

Before going further it is useful to recap what we have said so far. Here we distil
the previous discussions into a few high-level general principles that should
always be kept in mind when designing a user interface:

Minimize the load on users. Reduce the memory and cognitive load on users by
providing informative feedback, memory aids and other cognitive support.
Ensure that a work session can be interrupted for a few minutes without
losing the work in progress, as users are only able to focus attention for a
limited time.

Ensure overall flexibility and error recovery. Flexibility is essential when dealing
with users. Human beings make errors: providing mechanisms for reversing
actions allow users to explore the GUI free from the anxiety of being trapped
in an unrecoverable mistake.

Provide user customization. The interface should be customizable by the user.
Flexibility also includes the provision of different use mechanisms for
different classes of users: novices can use wizards or other simplified means
for easy interaction, while expert users can take advantage of keyboard accel-
erators and other shortcuts, all within the same GUI. For specific users, such
as those with disabilities, such flexibility could provide the only way in
which they could use the application.

Follow standards to preserve consistency. Many standards and guidelines exist
for interactions, abbreviations, terminology and so on, such as the Java Look
and Feel Design Guidelines (Java L&F Design Guidelines 2001), (Advanced
Java L&F Design Guidelines 2001). Such user interface design standards are
essential for the support of consistency between applications. They ensure
professional quality while reducing the design effort.

Consistency within a single GUI is even more important than correctly
adopting a set of GUI design guidelines: for example, in labeling, terminology,

Audio clues are supported in J2SE’s Swing from Version 1.4.

44 Introduction to User Interface Design

graphical conventions, component layout and so on. In this book we will
discuss many such guidelines and principles, as well as systematic
approaches to software design that are oriented towards consistency.

User-centered design

Perhaps the single most cited rule in user interface guidelines is ‘know thy user.
Without a reliable model of the end-user population, a design may be too general,
relying only on the designer’s, possibly restricted, cognitive model of an applica-
tion’s use®.
A good designer not only knows the target users, but thinks like them. Learning
to think as a user is essential for building a high-quality GUIL
Taking the user into account in the design process leads to an approach known as
user-centered design, in which users are central to both the early design process and
to later testing and evaluation. A user-centered technique known as participatory
design stresses the active involvement of users throughout the design process,
especially in the evaluation phase.
User-centered design focuses on three concepts:
* Users. Usually the following general user categories apply:

- Novice users

- Intermediate users

— Expert users
* Users’ tasks. The most common categories are:

— Frequent tasks — designers should optimize these tasks

— Infrequent tasks — such tasks can be assigned a lower priority than

frequent ones as regards design/development resources and time

— Critical tasks — those that should be engineered most carefully in the GUI

* Context. In what context will users be performing their tasks?

The involvement of end users in GUI design should be carefully managed. Users
are not GUI designers, and their interaction should be managed so that their role
in the design process is mostly reactive, providing feedback over proposed
designs rather than producing new designs from scratch. The use of a prototypes
is central to early design iterations (design-evaluate-refine): such prototypes can
that function both as the current GUI representation as well as its requirements
documentation. Prototyping is an important activity in the design of high-quality
user interfaces, and we discuss it in Chapter 5.

6. The concept of “users” should also include those whose activity is affected by the software,
such as system administrators, support staff, customers, etc. We refer to these as
stakeholders.

The human factor 45

In the following sections we discuss the two major issues in user-centered design:
users and tasks.

User analysis

User analysis is a vital part of the design process. The output of user analysis is a
model of the end-user population. Such a model is usually a decomposition of the
intended user population into homogeneous classes identified by some character-
istic such as domain knowledge, skill level, role, system knowledge and so on.
Such a model, and its underlying knowledge of the user population, is often docu-
mented by means of user profiles. This kind of information is always needed in any
GUI design process, even at an informal level.

An example of a user profile — for a cellphone Java music player — could be the
following;:

* Buys a new wireless game or ring-tone at least every month.

* Buys at least one CD every two months.

* Is proficient with high-functionality cellphones.

* Isaged 16-30.

* Uses an MP3 player, possibly combined with a cellphone.

* Listens to/watches the following radio station/music shows: ...
(etc.)

As far as possible designers must study representative users directly, possibly in
their workplace, to take into account their typical working environment.

Task design and analysis

The concept of tasks is an important one in GUI design. Tasks implicitly define
users, not just the details of the actions needed to accomplish a certain result
within the GUI For example, the task of creating a sophisticated glossary in a
word processor automatically underlies an expert user, while checking e-mail is a
task that can be performed by any kind of user and should be thought of as char-
acteristic of novice ones.

Tasks are used also for usability testing. To test specific parts of the GUI, designers
create particular tasks the users have to accomplish in the testing environment.
Task analysis studies the way in which users accomplish such tasks while using
the system. This analysis produces a list of the tasks users want to achieve using
the GUI, together with the information needed and the intermediate steps needed
for completing them. Task analysis is be performed by interviewing users and by
observing the way they complete preset tasks.

For example, suppose we are designing a music manager applet for J2ME-enabled
devices, such as that shown in Figure 2.8.

46 Introduction to User Interface Design

5@ Savefile-2
¥ [select the output for

Select Format
@ yma
O omp3
Coay

Music 2X¥+ Home Page

Figqure 2.8 A music manager applet for [2ME wireless phones

Examples of the tasks and subsequent task realizations for this kind of GUI may be:
* Convert an MP3 into a ring-tone:

— from the main menu, select Format Conversions
— in the ‘Format Conversions’ screen, select the input MP3 file
- in the ‘Format Conversions’ screen, select the Export option
- in the “Export’ screen, select the ring-tone format and rename the resulting
file
* Send a piece of music to another cell phone:
— from the main menu, select Clipboard
from the ‘Clipboard’ screen, select the desired file
from the “Clipboard” screen, select the Send option
in the ‘Send’ dialog, select the Another cell phone option

in the ‘Send to another cell phone’ screen, select the recipient’s number or
type it using the numeric pad

* Configure the application preferences:

— from the main menu, select Preferences

Tasks depends on the GUI - the same task performed on two different GUIs may
result in completely different task realizations.

Simplified thinking aloud

This technique prescribes testing the GUI with users who are asked to express
their thoughts verbally while interacting with the system. An observer can use
such additional insight into user’s interaction process to identify unforeseen
misunderstandings in the interface design. Users are usually videotaped while
interacting with a GU], as this allows better analysis.

A simplified, more practical version of this technique involves observers who take
notes while the user is interacting with the GUI. Precision and exhaustiveness are

Display organization 47

traded for economic feasibility and practicality. Even in this simplified version,
this type of test can reveal extremely useful information. Testers need to be aware
of the added strain on users that this type of testing usually entails, and manage
it accordingly, for example by limiting the duration of individual tests to a few
minutes.

Graphical user interfaces are all about the visual arrangement of information. The
next section moves the focus of our discussion from the human user to the
computer, discussing the visual organization of graphical user interfaces.

2.2 Display organization

The organization of the display is clearly one of the most important aspects of the
design of a graphical user interface.

It can help a developer to think of display organization as a language made up of
the following basic constructs, which can be combined together to produce very
complex display organizations:

* Composition. Display organizations can be nested into others, recursively.
Readers familiar with software design patterns know this mechanism as the
Composite Pattern (Gamma et al. 1994).

* Separation. Specific portions of the display can be separated from others for
semantic reasons. Static or dynamic separators, using rules or other graphic
cues such as different windows, resizable areas in the same window and so
on can be used. For example, a set of check boxes can be grouped and sepa-
rated from other items with additional space.

* Layout strategy. This is the final element of our hierarchy of visually nested
area organizations. We will discuss strategies for laying out the items in our
GUI below.

* Temporal sequence. The display content depends upon external input such as
user interaction or task completion. Such temporal ‘screenplay” should be
carefully thought through by the designer.

Layout strategies for a display area can be of two types:
* High-density, for conveying an high volume of information.

* Its opposite, which we call the limited information strategy, in which the aim is
to reduce the amount of displayed data.

Such strategies are complementary and should always be used together in the
design of every window or portion of it. Depending on the individual case, one or
other will be dominant, but it is essential to take care with the balance of both.
Interfaces that are either too cluttered, or too uncommunicative, are both hard to

48

Introduction to User Interface Design

use. Figure 2.9 shows an example of a design in which the high density strategy is
predominant. This interface has been designed mainly for expert users.

The limited information strategy is also used in the GUI in Figure 2.9 — see the use
of drop-down menus, configurable areas, collapsing items and so on.

Map Manager - GUI Prototype

File Edit View Maps Tools Window Help
la|o|e| @8] [«|n|e| = =<2 = =
harne 1 S =7 .
T B Personal fra ECE Sample 025 - o' & B Misc 098
o Dirafts
o @ Favorites ; I | =] et =
o & Local N = = | |]
g | B -
o= Frivate -
o i@ Pub i : 5‘;’:\ (*-“, \(‘{i’ £
¢ & Meteo Database | LW T N
¢ B Northem Europe Satellite| | | J | | T3] oS L[ﬁ 1 1 __
® 2003-04-01 00:1 2159 i o 2
® 2003-04-01 001 6:344 - 1~ =
® 2003-04-01 00:18:004 - __,r—-m—"“:a’fmr‘“— = o
¢ B2 Reference Maps :
* NPS Referance 001 - = <
® nNPS Reference 101 | 7 S
® Southern Europe Satelite] | 4 [__&\" = \
o Widdle East Forecasts i [{({P«
@ 'WWSF Database ; [[™
& Eurottap Datavase V! [[T
¢ @ AIC Database : : i
¢ B Nothem Europe Satelite || @ | & | @ | I & & & @ 8
: 53333131 gg:: é;f: i Source Tipe Size Time Date Projection Data walidat.,
- bl s hitpiiveeew.mapszz.j.. (Referen..|312 KB 2003 Apr ... |[12:37:48+5 CE (1286430128, v =
2003-04-01 0009004 it vww gz jug.e.. [Refaren. [104 KB 2002 dpr .. 12.37:4846 |ECE (12850128, v
? E'iefmﬂceh"aps Ahitp:ihveew nasa.orgl. |Referan.. [202 KB 2003 May . [12.37:48+5 |ORT (128,64)(128,.] vl
o NPSReference 001 | Jhiy iy maps 2z, [Referen..[31 KB (2003 Apr .. |123748+5 |NSP (12864128, vl |
. NPS Reference 101 |y jwwmaps.z).. [Referen..[312KB 2003 Apr.. 12.37:48+5 [ECE (128540128,]
Southern Europe Satelile) |an i jug ed orgima... |Refaren. |33 KB 2002 Jan . [1237:48+5 |SIN (12860(128,.] | |=
? ET“”'BE"WWWSB Arttp:ariwmarinilli.c... [Refaran.. 71 KB 2003 Jan . 1237:46+6 [MOL (128,64)(128,. vl
node AMniizivuged.orgima.. [Referen.[T98 KE 2003 Apr .. |12.37:48+5 |ORT (12864)(128,..] V]
Anttpiveew.maps 2. [Referen.[224 KE 2003 Apr .. |12:37:48+5 |ECE (12864128, vl
hitp: e gozz jug.e.. ([Refaren., 124 KB 2002 Jan _,.[12:37:48+5 ECE (12865400128, v
ity fvrene nasa.orgl.. |Referen...[412 KB 2003 May .. 1237:48+5 ORT (1286400128, v
Anttpiveew.maps.zz).. [Referen.[62 KB 2003 May..|12.37.48+5 |NSP (12864128,] | |
Ahitp:iveww. maps zz.j. |Referen. [162 KB |2003 May . |12:3748+5 |ECE (128583128, v |~
&l [=] [&]

Figure 2.9

A predominantly high-density display organization

A high-density layout strategy can be usually achieved using three general

mechanisms:

* Tabular organization. Data is organized in a list of (possibly) structured values.
Typical examples are spreadsheets and database grids.

* Hierarchical organization. Information is structured into a tree-like hierarchy,

such as in the file system’s graphical representation shown on the left of

Figure 2.9.

Display organization 49

Graphical organization. Data is represented graphically in the form of a chart
or diagram.

A limited information layout strategy instead aims at minimizing the displayed
data. There are several approaches to controlling the volume of displayed data:

Step-by-step interaction. Data is serialized and shown in stages separated in
time. A classic example of this approach is the wizard.

Details on demand. Optional data is only shown on user request. A common
example of this strategy is dialogs that have a More details button that
enlarge the dialog to provide further information. This type of mechanism
should be used with care, however, because users prefer predictable
windows and may feel uncomfortable with a GUI that changes its appear-
ance too much.

Minimize irrelevant information. There are many ways to minimize data; for
example by shading it. Figure 2.10 shows a contextual menu in which some
commands are grayed out to signal that they are currently unavailable. We
often take such features of user interfaces for granted, but think how frus-
trating it is for the user to select a command only to be slapped in the face
with an error message because the command is currently unavailable.

(B Home

$ Favourites
@ Discussing Petrography
o An Introduction to PseudoPharmaceditic

2

Transfer Ctrl-T

Figure 2.10 Disabling unavailable information at its simplest

These general techniques can be applied to many parts of the GUI — not just to
menus, but also dialogs, radio buttons and so on.

Stated in this way, however, such principles are of limited help. We will see more
concrete examples of the use of these ideas in the following chapters.

Esthetic considerations

Undoubtedly, professional-designed GUIs are pleasant to look at, but wrong
assumptions are often made about the meaning of the term “pleasant.” One of the

50

Introduction to User Interface Design

common pitfalls in GUI design is to get stuck into creating an excessively elabo-
rate visual experience on the (wrong) assumption that more is better. GUIs should
be as least astonishing as possible. A successful GUI is one that is barely noticed,
that works smoothly, swiftly and predictably.

I like to call such counterproductive and ‘fancy” GUIs ‘Louis XIV-style user inter-
faces’ — this is often the case with novice or amateur designers who indulge in too
much baroque design. This is also a common error even for seasoned designers.
In fact, given the current pace of software releases, the most obvious and visible
place to add new features, and so justify the new release, is always the user inter-
face. Hence, feature creep is often concentrated in the GUI".

Feature creep is a well-known phenomenon, referred to as featuritis in the
classic The Mythical Man-Month (Brooks 1995): “The besetting temptation of
the architect... is to overload the product with features of marginal utility, at
the expense of performance and even of ease of use.’

On the other hand, esthetics are important. Too often developers take little interest
in the visual appearance of their user interfaces, producing unusable designs as a
result. Some find details of appearance such as buttons size, overall visual balance
and the rest boring. Such developers are mostly implementation-driven, tending
to automate the user interface as much as possible, implicitly seeing it as a dull,
unnecessary activity. Unfortunately there is no substitute for human design:
devices such as dialogs that automate the layout of the data they contain without
semantic input can seem attractive, but produce poor user interfaces.

On the other hand, such appearance details can be hidden using wise use of
object-oriented software architecture®, in which you get all the benefits of a
professional visual appearance with only a little extra work. We will show many
techniques for promoting such advantages, from general approaches to practical,
reusable classes.

This book promotes an industrial approach to user interface design, especially as
regards visual appearance. Our idea of a good-looking user interface is one that
adheres to official guidelines, is sober and usable as much as is economically
feasible and provides extras only in a limited, ‘withdrawn’ fashion. This is the
reason why, for example, Java libraries for advanced graphics handling, such as
the 2D package, are covered only marginally. Some examples of visual details in
a professional design are shown in Figure 2.11.

7. You can find many examples of wrongly-designed GUIs — not only limited to the purely
visual aspects — by searching the Web for ‘User Interface Hall of Shame.”

8. Alternatively, GUI layout may be done in a semi-automatic way, in which the semantic
data that describes the layout of the visual components is stored externally, for example in
property files or some special field derived from the class documentation or metadata.

Display organization 51

Carefully designed title

and other textvabels
visual symmetry

-—

(> Search Paramet=.s

- o
f[ﬁie: ! |Jgva search

I -
| Kebwords: l |
1Pages: 1|0,]
vy, S
‘f,'__"__ﬁg_('__' T| Cancel EEE::,
-‘\
Mnemonics standardized buttons

(size shape, etc.)

Figure 2.11 A simple dialog design

The interested reader can see (Mullet and Sano 1995) for an introduction to the art
of visual design of software user interfaces, or the classic trilogy from Edward
Tufte (Tufte 1990), (Tufte 1997), (Tufte 2001).

Abstract-Augmented Area for GUIs

Abstract-Augmented Area for GUIs (A3GUI or A3GUI) is a term that describes a
simple approach to the definition and general management of graphical user
interfaces. The key idea is to organize a GUI and all its underling dynamics
conceptually — user interactions, intended behavior, design requisites, constraints,
implementation and so on — by areas, that is, the ‘real estate” of our GUISs.

A3GUI represents a GUI as a set of augmented areas. These areas are abstractions
over the real GUI that help the design, implementation, testing or any other aspect
of the GUI in which we are interested. A3GUI can be thought of as describing a
general mindset that is independent of the chosen UI design approach.

By the term real GUI, we mean one concrete execution of our application ata given
time. This will in turn depend on the surrounding context that may affect our GUI,
such as the current user, the OS on which the application is running, and so on.
All such context data can change the GUI's behavior and appearance for a given
execution in a given situation. For example, a GUI may change depending on the
given locale, or show only specific features to specific users, depending on their
roles. We all deal with GUIs by managing abstractions of real executions.

Augmented areas, which for brevity we refer to merely as areas, are pictorial repre-
sentations of specific facets of the GUI (whole windows, panels or single widgets)
augmented with other information. Areas can be represented as paper sketches,
in electronic form as drawings, diagrams, bundles of files, UML 2.0 diagrams and
so on, or in any other convenient way. Areas can be visually nested inside other

52 Introduction to User Interface Design

areas, can be related to other areas, and documentation attached to them, such as
requirements, documents, the implementation’s Java classes, and so on. The need
is to provide a pictorial representation, a unique ID and an explicit or implicit set
of abstractions we are representing throughout the area in the real GUI The
A3GUI concept also happens to dovetail nicely with modern OO GUI toolkits
such as those used to build Java GUIs.

The type and level of abstractions really depend on our purpose. For example,
Figure 2.12 shows a number of possible abstractions for a real GUI in a specific
execution context.

ce———— 500
\
O | voen 1 |

- |
| v T | pwt
W o | Rt

Focuses on the functional L&D ‘

representation only

| Represents also the
widgets current status

i.Ref-i.nes the grapf:-ic S0 : .
layout and appearance | Cancol || Holp Represents only the type
~ -) of dialog
= N LG {
oG NAHE == | = \
pasiword [N DALGE N\ \
'ajs'(_g‘tu) & LS h RN

Figure 2.12 Some possible abstractions over a given GUI execution

A3GUI provides a formalized yet flexible framework for designing and managing
GUIs that helps to solve the conceptual twists that we commonly face when
defining GUISs at various levels of detail.

An example

Suppose we want to design a very simple GUI to display the bank accounts of
specific customers. We want to provide a list of all transactions recorded for a
given customer (which for simplicity are chosen outside our GUI). Only certain

Display organization 53

users may have access to transaction details: for example, if a clerk is inspecting a
customer’s account, we don’t want to allow access to customer-sensitive data.

For simplicity we can think our GUI as having only two requirements:

* (R1) Our GUI has to show a list of all available transaction for a given
customer.

* (R2) Depending on the role of the current user, only a small subset of a trans-
action’s details can be seen.

We start by devising the following areas’® — see Figure 2.13.

AQ
UUH M N Ty e) v

MAIN Hewy
+

TRANJACToNS
LT

"Clors

Figure 2.13 A possible GUI representation in three areas (adopting functional
abstractions)

The following abstractions relate to each pictorial representation shown in Figure
2.13:

* A0 represents the login functionality each user has to accomplish to access
the rest of the application.

* Al represents the access to all the functionalities provided by the main menu,
and also provides the list of available transactions to the user (fulfilling R2).

* A2 represents access to the transaction details, available only for the given
role.

The diagram also shows some relationships between the various areas. These rela-
tionships express informally the intended navigation between the various areas.
We will use the same notation to express navigational relationships between areas
in the following figures also.

9. In this example we use ‘A’ as a prefix for areas ids to specify that these areas came from
analysis, and are meant to capture requisites and decompose functional behavior only.

54

Introduction to User Interface Design

The areas shown in Figure 2.13 were the result of a functional refinement activity —
we can think these areas as roughly equivalent to the use cases for the GUI.

A further step is to refine the previous areas for the Ul design, deciding whether
areas will become fully-fledged windows, or parts of other areas. A possible Ul
design refinement step is shown in the following figure®.

vleiade [—
PRIy [

@-m
\

‘rﬂ&u}hmw * PrES /
iwjec: E::D
DaTe:

Ao, ::;
Reddon "'_L_._“‘:]
D& VP I - r

= (

Fiqure 2.14 A Ul design refinement step

The following abstractions related to the pictorial representation depicted in
Figure 2.14:

* DO represents the log-in dialog,.

* D1 represents the main windows with the available commands and the list of
all the transactions for the chosen customer. Whenever the current user
(already logged in from DO) is not entitled to see transaction details, the View
button is disabled.

* D2 represents the pop-up modal dialog that appears whenever the user has
selected one transaction and presses the View button.

10. Inkeeping with the previous step of this example, we use ‘D’ to prefix areas ids, to specify
that these areas arise from UI design refinements.

Display organization 55

We have omitted some implicit relationships between the areas in Figure 2.14
and those in Figure 2.13 for simplicity. For example, DO is the GUI design
refinement of A0. These implicit relationships are useful in a number ways, as
we will see in the many examples provided later in the book.

We could have provided an alternative Ul design for the same area as Figure 2.13.
Imagine that we provide two different windows, depending on the user’s role.
This design is shown in Figure 2.15, in which D0 is the same area as that shown
with the same id in Figure 2.14, while the other two areas are new.

Def
)\‘:@@-i VSEL ENMRGED
I _'Q) ol Tran/ viawing

ujel wor

ENARe)

TOL ARSACTRMS
VISWN G

SucT——
—_

DaTe S)
fy (5 o] Ve ||
on T

e, -!'_ e |

SEWECTING A Pow (v THE usT 7

~_ TAB(E Thow| Detals
{leaT W e

—_—

Figure 2.15 An alternative Ul design

However, we decide to use the design in Figure 2.14, because it avoids having
different navigation paths based on user role.

We then focus on refining area D1 in Figure 2.14 further. Now that the require-
ments are clearly addressed and the overall Ul design is almost complete, we
want to further refine the GUI for implementation reasons. This is usually
performed by an experienced developer when setting out the implementation

Introduction to User Interface Design

architecture for the GUI. We focus on refining area D1 into two reusable areas for
technical reasons™. The resulting areas are shown in Figure 2.16.

CL | 3

Figure 2.16 Representing an area as composed of two other areas (adopting the visual
containment abstraction)

Note how we iteratively refined our GUI as a set of augmented areas. The areas
have a number of semantic relationships between them. Figure 2.17 shows the
iterative refinements we made to get to the final UL

We have obtained the following benefits by using this conceptual approach:

* Centralizing several notions such as functional decomposition, requisites,
technical aspects and so on in one representation, organized by GUI areas at
various levels of abstraction.

* [teratively refining our application at several levels of granularity and at
several stages of the development lifecycle.

* C(Clearly assigning responsibilities — for example, requirement R1 is now
handled by area C1.

The A3GUI approach will be used as a common expression language throughout
the book for the discussion of the various aspects of GUIs.

We go into more detail of available user interface interaction styles in the next
section.

11. These areas are mapped directly to one or more Java classes to define the implementation
criteria of our GUIL

Interaction styles 57

i
H"—".'LN HeENU | Implementation-
+ | Driven Abstractions
TRANJACTIon S
| LT |
e i
(9 [Tagni Ta)
= \
a1 Y
Functional | ‘ I'-
Decomposition \
| M
——
F=——=i=s
UI Design !
Refinement k

Figure 2.17 Refinement relationships among areas

2.3 Interaction styles

It is possible to identify several basic interaction styles for user interfaces (Shnei-
derman 1998), (Tidwell 1999).

* Menu selection. Here the user interacts with the system by selecting items in
the UI from menu.

* Form filling, used for simple data input such as when inserting data in a Web
form.

* Direct manipulation, used for example when performing operations by drag-
ging or dropping items in a working area.

* Language-based interaction styles, such as interpreting users’ natural
language directly, or interacting by means of simple form of artificial
language such as command line or scripting languages.

Such interaction styles are often combined together. Below we summarize design
aspects that derive from the general principles outlined above for each style. Such
styles can be thought of as abstract recurring patterns for GUIs.

Menu selection

The menu selection interaction style is an academic term in which a user selects
items from a list of available choices. With this term we mean here a generic,
abstract situation that doesn’t only refer to GUIs — for example, graphical menus

58

Introduction to User Interface Design

are only a particular case of such an interaction style — but the any type of user
interface.

Menus are used for selecting items such as commands in a systematic way. The
generic term “menu’ covers any selectable item, such as links in a hypertext page,
commands in a drop-down menu, buttons, voice commands in voice interfaces
and so on.

Figure 2.18 shows an example of a two-dimensional graphical menu implemented
as a list. In the following we focus on graphical menus only, because they are the
most common form of menu selection in Java user interfaces. The selection process
is quick and users have a clear view of all possible choices. However, as the number
of items grows, or if items lack a clear indexing organization such as a geographical
or alphabetical ordering in this example, this approach reaches its limits.

g Country Input I':|E|g|

Algeria Bahrain Emqymt
Jordan Kuwait Lebanon
Morocco Oman Qatar
Syria Tunisia United Arab Emirates
Bulgaria Belorussia Spain
Croatia Czech Republic Denmark
India Ireland Ireland
South Africa Estonia Finland
Switzerland Greece
Hungary Iceland Latvia
Macedonia Horway Poland
Romania Russia Yugoslavia
Slovenia Argentina Bolivia
Colombia Costa Rica Dominican Republic
El Salvador Guatemala Honduras
Nicaragua Panama Paraguay
Puerto Rico Uruguay Venezuela
Turkey Ukraine
| OK | | Cancel |

Figure 2.18 An example of a (rather unusable) two-dimensional graphical menu

Organizing menus is an important issue, especially when many items are avail-
able for selection.

The criteria mostly used are:

* Task-related organization. This is the single most successful strategy for orga-
nizing menu items. If items are organized at design time following some
relevant semantic criteria, it greatly helps users in accessing them at runtime —
as long as the semantic criteria used is clear to the end users.

Interaction styles

59

Hierarchical grouping in tree structures. Hierarchical menus are characterized
by the number of levels (depth) and the number of items per level (breadth).
Empirical studies have shown the advantage of breadth over depth in menu
hierarchies. As a rule of thumb, menu hierarchies shouldn’t be deeper than
three levels. There are some practical rules for choosing the right hierarchical
structure. A greater depth at the root is recommended, taking care to make
sure that items are distinct and not overlapping. A broader range can be
adopted on the leaves — the lowest-level items in a menu hierarchy.

Standardized organizations. Adopting a standard menu organization helps
users to acclimatize to new applications quickly, minimizing their required
memory load when working. Later will see the Java Look and Feel guide-
lines prescriptions for organizing menus.

These strategies, used in combination, relieve users from the time-consuming task
of finding an item in a potentially large menu space.

Figure 2.19 shows a simple File menu that follows the Java Look and Feel guide-
lines. Even in such a simple case, adhering to well-established conventions is
essential. Providing non-standard, arbitrary menu structures confuses users and
can wreck an application’s productivity potential.

Eie |

% New... Ctrl-H

= Open Cti-0
Reopen k file D001
Close Crl-in file 0001

Save Ctil-s

@ Save As

Sawve All Ciri+ b aiusc-&

E}z Page Setup

& Print... Ctil-F
Exit

Figure 2.19 An example of commands menu using the Java Look and Feel

Form filling

Form filling is also used widely in user interface design. The general principles of
a form-filling interaction style are those for general data entry (Shneiderman 1998)
or (Nielsen 1993), among others. These are:

Ensure that data-entry transactions are consistent

Focus on minimizing end-user input actions

60

Introduction to User Interface Design

Keep memory load on users as low as possible
Ensure compatibility of data entry with data display

Allow user flexibility and control of data entry

These criteria closely resemble the general ones discussed previously (see Some
general principles for user interface design on page 43). There are a number of general
guidelines for designing data entry forms:

Group and sequence fields logically, for example by grouping together
related items using the separation display strategy introduced on page 47.

Supply clear instructions. Specifically, provide meaningful labels and titles
for forms, and add explanatory messages for fields. This can be achieved
both via contextual help and through tooltips — pop-up labels that appear if
the mouse pointer is held over a particular item.

Adopt consistent terminology and abbreviations. Avoid cumbersome termi-
nology and provide names as close as possible to the business domain to
which users are accustomed.

Design the form’s appearance using a visually-appealing layout — we detail
one in Chapter 3 for J2SE — and by means of signaling visually which fields
are mandatory and which are optional.

Provide effective navigation focus'?. Apart from the mouse, other navigation
options such as the keyboard should be considered.

Handle errors using two strategies: prevention, whenever possible, or
displaying meaningful error messages if error states cannot be avoided.

Provide an effective completion signal, making it clear how to complete the
data entry task associated with the form.

The representation of text, wherever it appears in the GUI (buttons, menu items
and so on), is another important aspect in GUI design that is not limited to form
design. Some general rules apply:

12.

Keep labeling text brief, and preferably locate it beside the related compo-
nent, as shown in Figure 2.19 on page 59.

Use ellipses in menu items and buttons to show that another dialog will
appear to accomplish the command. For commands that show a dialog as
their entire result, the ellipses are redundant and should not be used. For
example, an Open command doesn’t need ellipses, because its sole purpose
is to show a File Chooser dialog, while a Print... command does, because it

The term focus refers to the active area in a window or a panel where the user's next
keystroke will be received. Focus represents which GUI area or widget is going to receive
keystrokes.

Interaction styles

61

will prompt the user with a supplementary print properties dialog, instead of
directly starting printing.

To avoid visually overloading them, do not use ellipses in toolbar buttons.

Adopt a coherent rule for titles in windows. An example of such a rule could
be object name - application name, while titles in secondary windows could
follow the format descriptive name - application name. This rule is adopted in
several standards, including the Java Look and Feel guidelines. If you prefer
to create your own rules, be sure to apply them consistently.

All messages in English, such as command names, labels windows title, tab
names and so on, should follow the headline capitalization rule:

— Every word is capitalized except articles (‘the, “an,” and “a’), coordinating
conjunctions (‘but,” ‘or,” and ‘and’) and short prepositions (such as “to,” “in’).
— The first and last words in a sentence are always capitalized, no matter to
what category they belong.
These rules are not used for full sentences, where normal sentence capitaliza-
tion is used instead — only the first word is capitalized. Examples of such text
include alert message boxes, error or help messages, status bar messages, or
general labels that indicate a status change, for example “Download is 30%
complete,” in contrast to a text label, which would follow the headline capi-
talization rule: ‘Download Progress.’

These rules only apply to English text. For other languages, you should refer
to language-specific official guidelines, where these are available.

Creating effective forms

Creating an effective form requires some care. Figure 2.20 shows an example of a
simple yet well-designed form dialog. Navigation has been enhanced and the
whole interaction process smoothed with few simple details:

Every field in the form is easily reachable using a related mnemonic — for
example typing alt+x moves the focus to the combo box that indicates the
gender of the person to be input. (A combo box is a GUI widget that users
click to show an associated list of possible values. Some combo box options
can be selected directly using the keyboard, while others allow new values to
be input only through the drop-down list, thereby constraining input to the
available values).

Tab traversal — using the tab key to move the focus from field to field —is
logical. For example, tab traversal skips the disabled File name field, so that
if tab is pressed when the focus is on the combo box, it transfers to the
Browse... button.

When the dialog first appears the focus is automatically set on the Name
field to facilitate input.

62

Introduction to User Interface Design

* Standard globally-applicable buttons are added at the bottom of the dialog.
In this way the user knows from past experience how to dismiss the dialog.

» Effort has been spent on the visual appearance of the dialog to avoid extra-
neous graphics and provide a pleasant overall effect.

* Information about accessibility — providing ease of access for users with
disabilities — has been added to the GUI, even if this is only partly visible. In
fact, some accessibility information is stored in the GUI to allow it to be
accessed by special tools such as text magnifiers or interaction facilitators.
Such invisible features could be very important in some situations and
should always be used.

* The field’s alignment and layout of widgets provides a pleasant overall
visual appearance.

Such little details greatly enhance a dialog’s usability. Try it for yourself by down-
loading and running the relevant code.

B A Simple For... E|E|g|
Name: lli
Surname: ,7

Age: ’:

File: documertsfdefa

| OK || Cancel || Help |

Figure 2.20 An example of form dialog

Well-designed forms should always provide a clear completion signal. As shown
in Figure 2.20, the prescribed mechanism in the Java design guidelines is to
provide buttons — usually at the bottom or right-hand side of the window — with
explicatory text such as OK and the associated behavior of closing the dialog and
accepting its contents. Figure 4.15 on page 138 shows a prototype GUI that does
not respect this rule, and in which the completion buttons are included within the
information area, potentially confusing the user.

We will return to form design in Chapter 4.

Language-based styles

There are two other interaction styles that we will mention here for completeness,
although we won’t cover them extensively in this book.

Interaction styles

63

Command language. Using a language that must be input by users via a
command line is sometimes the only solution in certain situations. For
example, using a command-line user interface sometimes is the only solution
in certain domains, such as a rich programming environment in which rules
represented as scripts needs to be manipulated and executed. Providing a
graphical Ul for representing such scripts can be expensive and might ulti-
mately result in lower usability.

Natural language. Though quite complex to implement, natural language
(both via text or speech recognition) can be useful in some cases.

In the next section we discuss an important interaction style for building high-
quality user interfaces.

Direct manipulation

Figure 2.21 shows an example of a direct-manipulation interaction mechanism for
dealing with visual objects. The items in the user interface can be dragged, edited
or deleted by performing operations on them in a consistent way.

Sandbox Edit Window

B =3 changeimage -

Figure 2.21 A direct manipulation interaction example

We will come across many examples of direct manipulation GUIs throughout the
book. Direct manipulation is attractive from an implementation viewpoint,
because it can be implemented easily using Java 2 Standard Edition (J2SE) tech-
nology, rather than another client technology such as Web pages. Direct
manipulation is more difficult to implement on Java 2 Micro Edition (J2ME)
devices, due to its limited pointing facilities and graphics display®.

13. J2SE is the Java environment designed for desktop computers and laptops (those that

provide a mouse pointer, a large graphic display, keyboard and so on), while J2ME is the
Java environment for handheld and portable devices (ranging from palm top devices to
wireless phones).

64

Introduction to User Interface Design

The appearance of the mouse cursor is often used to give some hints about the
affordances'* of the given items. For example, when a dragged object can be
dropped onto another, the cursor appearance changes accordingly. We will see
some examples of this feedback technique in the book.

2.4 Conceptual frameworks for Ul design

In designing complex artifacts, the gap between the intended results and the
chosen technology can be so wide that some conceptual structure is needed. By
conceptual framework we mean a set of coherent concepts that structure the different
phases of development — design, implementation, and so on—of Uls. Developers
and designers therefore follow an abstract, principled approach to organizing
the UI".

Conceptual frameworks provide a reliable and proven mindset for organizing the
design, reducing risks and improving quality. Furthermore, by leveraging reuse,
designs can be standardized and various economies derived.

Figure 2.22 shows some of the major conceptual frameworks used in today’s Ul
design.

Various approaches to Ul design are shown in the figure:

* Entity-based. This is a family of conceptual frameworks that structure Ul
development around the concept of abstract entities, their properties and
interactions. The members of this family of conceptual frameworks vary only
in the way in which the abstract concept of entity is defined. Object orienta-
tion applied to Ul design is a member of this family of conceptual
approaches.

* Metaphor-based. This approach focuses the whole design around metaphors.
By leveraging those metaphors, users can use the software without having to
learn the underlying system model.

14. The term affordance was introduced by Gibson and subsequently used by Donald Norman
(Norman 1990) to describe the possible functions of an object. In Norman’s words “a chair
affords support, a pencil affords lifting, grasping, turning, poking, supporting, tapping
and, of course, writing”.

15. We focus this discussion on conceptual framework for UI design, and not its implementa-
tion, or other development phases. This discussion is completely separated from the actual
implementation of the Ul itself. Some of the approaches described here can in fact be
applied to the entire software development lifecycle, not just Uls.

Conceptual frameworks for Ul design 65

Entity-Based Metaphor-Based ‘?'\I:ICF ion-based Null

couI Component UI

Figure 2.22 Major conceptual framework for GUI design

* Function-based. Uls developed using the function-based approach can be
thought of as set of functions derived directly from the analysis of use cases
and requirements. This Ul design approach is also known as application-
oriented. For example, we can think of a word processor as of a set of func-
tions like ‘save current document,” ‘reformat selected text’ and so on. The
resulting Ul is simply the most usable way to provide these functions given
the chosen implementation technology.

* “Null’ conceptual framework. This represents the default conceptual approach
of novice designers that have never came across a sound Ul design
introduction.

Entity-based approaches to Ul design

Entity-based approaches to UI design are characterized by the notion of the abstract
concept of an entity and its relationships.

Such entities provide different views of their internal state to users, and interact
with other entities within the Ul environment. When designers adopt such an
approach, any item in the Ul is thought of as being part of an abstract entity, and
users directly manipulate these entities to perform their tasks. This is usually
accomplished through contextual interactions — that is, users select an entity and
perform some operation on it, such as invoking a pop-up contextual menu.

A particular class of entity-based conceptual frameworks leverage object-
orientation theory for defining the abstract model. We introduce this in Object-
oriented user interfaces on page 69. Other members of this family of approaches are
component-based Ul design, in which the term component refers to a higher level
of granularity than ‘classic’ OO objects, and various others such as the Naked
Object approach to Ul design — see www.nakedobjects.org.

66 Introduction to User Interface Design

Metaphor-based approaches to Ul design

Ul designs can also be shaped around the concept of metaphors. Designing a Ul
that resembles some real-world situation — a metaphor — helps users better under-
stand the system, leveraging their knowledge of the metaphor instead of the
system’s actual implementation. Thus for example dragging icons could be equiv-
alent to moving items in the physical world, and dropping an icon onto the
wastebasket in the GUI is equivalent to invoking the ‘delete” operation on that
item. Such idioms are coherent with a desktop metaphor and do not require the
user to learn implementation-dependant commands.

Historically the metaphor approach to Ul design represented the first major
improvement over the functional approach. Its most famous example is the
desktop metaphor for operating systems originally adopted in the Xerox Star soft-
ware around 1982. Metaphors can also be used at various levels in UI design even
without using a fully-fledged metaphor-based conceptual framework. Examples
of limited metaphors could be the wastebasket for deleting items, or using the
metaphor of a restaurant menu to display the available features in a product.

Metaphor-based approaches are different than entity-based ones in that the
latter devise a generic abstract world that is applicable and repeatable in
different domains. For example, one can model both a bank account and a file
system directory with the same abstract concept of an ‘entity.” Metaphors, in
contrast, are domain-dependent, and are defined in an ad-hoc way. For example,
we can model bank accounts in our Ul as following a “personal logbook” meta-
phor, which would not be useful for representing the file system UL

This approach suffers from two problems:
* Good metaphors are hard to find.
* Even when a good metaphor is found, it may turn out to constrict our design.

As a trivial example of this, consider the way in which file systems are rendered
in current operating system GUIs. At first it may seems that a file system is
adequately modeled by means of the folder and file metaphor. However, if we had
to follow the real-world metaphor of files and folders, as we know them in the
physical world, we would end up of a deficient UL First of all, real world folders
cannot be nested indefinitely — this is only a mathematical abstraction that soft-
ware provides us, constrained by memory resources. Second, the folder and file
metaphor works fine for certain interactions such as renaming and moving, but
seems a bit odd for other, such as cutting and pasting folders. It also has no
parallel at all in the real-world metaphor for some operations, such as compressing
the content of a folder.

Conceptual frameworks for Ul design 67

Many software development approaches advocate metaphors in software design
and implementation. Software documentation also benefits from the use of clear,
higher-level, lifecycle-wide metaphors. Chapter 11 shows a practical example of
employing an articulate metaphor in a GUI design.

Examples of metaphors used as tools can be found in different fields of computer
science, such as software development (Beck and Andres 2004), with a hands-on
perspective (McConnell 1993) or in the analysis process (Fowler 1997).

There are many resources available on the Web for the use of metaphors in Ul
design: for a critical view of such a Ul design approach, see for example (Cooper
1995).

Function-based approaches to Ul design

Function-based Ul designs are built around the functions the system is required
to perform and the interactions between them. The academic meaning of the term
‘GUI historically refers to the first generation of Uls using rich graphical tech-
nology that leveraged the underling procedural implementation approach. Menu
bars, toolbars and menu items are extensively used in this approach because they
help to bundle together a set of disparate functions the Ul performs on behalf of
the user. This Ul design approach, as well as the ‘null” approach, are the most
common in current software.

‘Null’ approach to Ul design

The so-called ‘Null” approach is the approach implicitly used by developers when
they do not appear using any explicit approach at all. As we said on page 35,
human beings always interact with the world through semantic models, even
when they are unaware of them. The Null approach, given a Ul software tech-
nology, consists of putting all user requirements on the screen in one way or
another, often trying to mimic other existing Uls. This is not really a bad approach
in itself, but clearly lacking the backing of a sound theory, this approach has a
tendency to produce confusing Ul designs that do not scale well.

To better grasp the differences in the approaches described above, let’s take a
common example: the GUI of an OS. In order to make our point we will simplify
our discussion and overlook details:

* The GUI of Windows 3.1 (Figure 2.23) can be seen an example of a functional
design approach mixed with a limited use of metaphors (mainly for files and
folders): the GUI was designed around a set of operations to be performed on
the file system.

Introduction to User Interface Design

= Program Manager M E
File Settings Window Help
Control Panel Accessories | v |~
Settings Help = N
_.' . =] @
Q = MWEACKUP Microsoft GBASIC
Eolor Fonts Port Mouse Deskiop Keyboard Printers .
[’l"
@B ¢o kS
" ME-DOS Edi
International D ate/Time Enhanced Dnvers Sound ot

Specifies communications setiings for serial ports

Smarttdon Microzoft QBASIC
=] Network [~]=
e =5 | R B
le Sewﬂp Remote Access MS-Setup Loader MF?['D?_H%?
[[[»
Maximize
Close Alt+F4
Switch To... Cirl+Esc

EF4

Accessoties Metwork Games Startp Autostart Mal

Figure 2.23 Windows 3.1

* In contrast, the original Macintosh UI (Figure 2.24) was designed following
the desktop metaphor approach, with very few exceptions, thus providing a
homogeneous and reliable concept model for end users.

&% File Edit UView Special

Mac System Software
3 items 227K in disk 173K available

System Folder Empty Folder k

E[I=—————— System Folder

<é 3 items 215K in folder 173K available
7

Sys\ersion

Finder Sysiem Imagewriler Mote Pad File Scrapbook File

Figure 2.24 The original Apple Macintosh Ul

Conceptual frameworks for Ul design 69

* OS/2 (Figure 2.25) was designed completely as an entity-based GUI - every
item accessible through the GUI was a conceptually well-defined entity, with
its own set of available operations, properties and configuration attributes.

Despite these GUIs basically representing the same domain — the file system and
basic OS functionalities — the UI design approach behind them was very different,
shaping the Ul in its various detail aspects.

The next section describes a particular case of entity-based approaches to Ul
design in detail, the Object-Oriented User Interface approach.

Folder Edil View Selecled Help

W W B0 0 1 3 N

AMFAQ (RechDE DuvpDE FAQ gu-COPYRG-GRL BMGSTALLosOse ShePumwrd Alssss

Hatecape

o NN N . NS
"Qf L Lt | Configurafion FAD ‘ebsle
Med

=

(5/2FA0 Wetede WebAdmindrdin README

| || mozum

| EP|) [[|6 0ivprs) EEETME Free
Figure 2.25 The OS/2 Ul

ESIETETEIEY

Object-oriented user interfaces

The idea behind the Object-Oriented UI (OOUI) design approach is simple: apply
OO abstract principles to Ul design. An OOUI consists of a set of abstract objects
designed following OO principles such as abstraction, implementation hiding,
and so on.

Unfortunately the term OOUI, despite widely accepted in the literature (see
for example (Mandel 1997)) is rather confusing when applied in OO program-
ming contexts such as the Java language. In fact, despite being two approaches
founded on the same conceptual footing (object orientation) they are separate
in practice. OOUI relates to Ul design, while OOP focuses on software
programming. Avoid confusing the two approaches, by ignoring for now the
underlying technology on which the Ul will be implemented.

70

Introduction to User Interface Design

OOUI focuses on defining abstract objects with which the user will interact via the
user interface. Unlike the metaphor-based design approach, such ‘objects” are not
required to follow any metaphor from the physical world. OOUIs are a coherent
collection of such objects — usually referred to as an ecosystem — that are available
for user interaction.

The direct manipulation interaction style couples naturally with the object-oriented
paradigm. Think for example of the windowing metaphor used in the Apple
Macintosh, IBM OS/2, Microsoft Windows, and others, on which you can manip-
ulate objects such as files and directories directly. A file object behaves
consistently throughout many different applications, providing the same set of
functionalities — move, copy, rename, and so on — like an abstract object.

Once you have designed your application GUI as a coherent object ecosystem, it
is natural to interact with it by means of direct manipulation, because the Ul
appears as a virtual world made up of objects that can be operated on by the user.
We will explore such a GUI design approach extensively, because it happens to
dovetail nicely with the object-oriented nature of Java.

Java developers should be careful over some subtleties. Object-oriented program-
ming and object-oriented user interfaces are different. One could implement an
object-oriented user interface using non-OOP languages and platforms, while an
OOP language like Java can be used to build any kind of user interface, command-
line ones included. Furthermore, OOUI is limited to the software as it appears to
the user — that is, the concepts, tasks and overall semantics exposed by the appli-
cation to its users — while OOP is used to implement all of the application. A
specific OOULI object, as perceived by the end-user, can be implemented with
many Java classes, and, conversely (although more rarely) one Java class can
implement several different OOUI objects.

Despite these differences, with thoughtful software design it is possible to bridge
the two worlds systematically, providing a natural mapping between the OOUI
GUI design and its underlying Java implementation.

OOUI objects are used to represent the internal state of the application and to
enable user interaction. Accordingly, there is little point in providing OOUI
classes. These are an OOP mechanism for conveniently creating objects. While
interacting with an OOU]I, users create new objects by manipulating existing ones.

To better grasp the OOUI concept, consider the main differences between tradi-
tional graphical user interfaces (function-based or application-oriented) and
OOUIs*:

16. These differences hold also between generic entity-based Ul approaches and function-
based ones.

Conceptual frameworks for Ul design 71

* Inan OOUI users interact with objects, while in application-oriented inter-
faces the interaction is organized by function. In functional-based GUIs the
software is rigidly organized by function. In OOUlISs, in contrast, the user
interacts with objects in a less structured, freer environment.

* In OOUI there are few, common objects. Combining and manipulating them
produces many different results. The aspect of a coherent metaphor for object
interaction is key. In traditional GUIs there are many applications, one per
task, while in OOUIs the environment is common and functionalities lie
within objects and their possible interactions.

* Each approach fosters different cognitive theories: traditional GUIs enforce
the traditional cognitive model (a set of predefined operations that need to be
learned by end users as conceived at design time by the developers), while
OOUIs allow for a learning style closer to the constructivist cognitive
approach in which users are free to interact with the system at their own
pace, constructing their user experience without strongly predetermined
constraints.

* Functional-based GUIs are composed of global menus. Groups of items are
represented with lists. In OOUISs the objects themselves essentially convey all
possible interactions.

Function-based user interfaces can be best suited for stand-alone programs, in
which the user wants to accomplish one or more well-defined, circumscribed
tasks. GUI designed following the OOUI approach can be useful for large appli-
cations such as operating systems, in which many functions are available and a
large number of possible combinations are legal.

In this book we will combine these design approaches, with the ultimate aim of
providing the most usable user interface depending on the current situation.

Object views and commands

In OOUlIs, each object can be manipulated in several ways. Following Donald
Norman’s terminology (Norman 1990), each object has its own affordances. For
example, some objects can be dragged, dropped onto other objects, or can provide
a list of their available commands via contextual menus. Other objects cannot be
dragged at all. Generally, every object provides a set of commands with which it
can be manipulated. Contextual menus are the proper place to provide object
command access. By convention, clicking an object on the screen with the right
mouse button (or in other ways, depending on the given platform) triggers the
contextual menu that contains all the valid commands for the object.

Objects can be viewed in different ways. Suppose you have a file directory. You can
see it as a 2-dimensional container of icons, or as a tree in which each node can be a
file or a folder. Thus the same items are viewed in different ways. You can also open

72

Introduction to User Interface Design

a file to see its contents, providing yet another view of your file object. (Mandel
1997) mentions four basic types of object views: composed, contents, properties,
and help:

* Composed views are views of an object obtained by combining other objects.

* Contents views show the contents of an object, used especially for containers
objects.

* Properties views are used to show specific details of an object, and can also
allow editing by inspecting a value and modifying it as required if this is
meaningful within the application. Properties views for discrete data usually
use the form-filling interaction style.

* Help views shows help data.

We don’t adopt a fully-fledged OOULI approach in this book: all the OOUI
examples we provide use a simplified version of the OOUI approach. For a
‘full”’ OOUlI-driven design methodology, see for example IBM’s OVID (Objects,
Views, and Interaction Design).

We will see the OOUI approach implemented in Java in Chapters 14 and 15.

2.5 Assessing the quality of a GUI

The quality of a user interface is dependent on its usability. Software usability is
the characteristic of a given application of being easy to use within a set of
constraints such as the target user population, development budget, and so on.

Ease of use can be measured by the number of mistakes made in the use of the
application by a sample user group, how quickly they can perform given tasks,
users satisfaction, and how quickly the system is learned by novice users.

We won't discuss robustness and other implementation-related parameters here.
An example of testing for robustness is systematically trying all combinations of
buttons and other controls to see whether the GUI responds coherently, or
produces unforeseen behavior.

Assessing the quality of a user interface is not a trivial task. There are many aspects
to consider, and much depends upon the particular situation — the design approach
followed, the end user population and other constraints. Over time several
approaches have consolidated, although the fact that there are so many different
criteria for GUI quality assessment underlines the complexity of such an activity.

Some of the main approaches are:

* Expert review and survey. Usability experts review the GUI and produce a
document in which GUI weak points are identified and suggestions

Assessing the quality of a GUI 73

proposed. The review may involve a formal inspection in which the user
interface is discussed with designers.

* Usability testing. This term encompasses all types of trial that test the GUI for
usability. These involve considerations such as choosing the usability param-
eters to measure, the way in which such parameters will be evaluated and so
on. In general usability testing is a complex discipline that need specialized
personnel.

* Acceptance testing. Here the developer’s quality assurance department define
objectively measurable tests for the final GUI. A key point is the establish-
ment of precise acceptance criteria. Acceptance tests usually cover:

— Novice user’s performance, in which the first part of the learning curve for
users new to the application is measured.

— Regular user’s performance, the most commonly used acceptance tests.

— Testing for retention, in which user expertise with the system is measured
after a period of non-use of the application under test, usually of some 2-3
weeks.

* Robustness and other software-related tests. Usability depends on the reli-
ability of the implementation. Buggy GUISs, no matter how well-designed,
result in a poor-quality end user experience.

Other approaches to GUI assessment exist, for example Cognitive Walkthrough.
The interested reader can find more details in (Nielsen 1993) or (Preece 1994).

Cognitive Walkthrough is an approach for evaluating user interfaces. A group of
evaluators first determine the major tasks the system must perform. They then
analyze each task, decomposing it in a sequence of steps. For each step they adopt
a cognitive approach — they evaluate how difficult is for the user to identify and
operate the interface element most relevant to their current subgoal, and how
clearly the system provides feedback to that action. This approach is especially
useful for assessing the usability of a system for users in exploratory learning
mode — that is, first-time or infrequent users. Cognitive walkthrough can be
performed on early prototypes as well as the final GUL

The next section discusses a common approach to evaluate a GUI by adopting a
set of rules (heuristics) that have been devised for assessing its overall quality.

Usability heuristics

When evaluating a GUI, whether in review or in usability testing, experts use this
simple set of criteria in order to assess its effectiveness. The “classic” set of such
heuristics is:

* Visibility of application status. This involves checking whether the GUI
expresses its current internal state by appropriate feedback. This is usually

74

Introduction to User Interface Design

done by means of a status bar, mouse pointer shape, progress dialogs and so
on. This criterion checks whether these means are properly used in the GUI,
and whether they effective, or merely disturbing?

* Match between application and the real world. Terminology and the overall GUI
should be as ‘current’ as possible. This criterion checks whether the GUI uses
weird metaphors or other unnatural kinds of interaction.

* Consistency and standards. When checking for this evaluators should ask
themselves whether the given GUI is compliant with required design guide-
lines, and whether any specific part of the GUI is coherent with the
remainder. Evaluators look for consistency by asking themselves questions
like ‘Do the completion buttons always appear at the same place in a dialog?’

* User control and freedom. This criterion checks whether the GUI encourages
exploration and error recovery. Typical hints are the effective support for
undo/redo functionalities.

* Error prevention. This criterion checks whether the GUI is designed in such a
way as to minimize user errors. A common means to achieve this is an apt
use of constraints and metaphors. Another common expedient for avoiding
user errors is to disable commands when they are not meaningful.

* Helping users recognize, diagnose and recover from errors. Not all possible errors
may be prevented by clever design. This criterion checks whether the appli-
cation provides helpful messages and constructive communication in the
case of errors, as well as assessing the quality of error messages.

* Recognition rather than recall. Users need to remember specific commands or a
particular interaction, and the GUI need to offer a clear visual route through
all the available options. This criterion checks how effectively the users STM
is exploited.

* Flexibility and efficiency of use. This criterion checks the extent to which it is
possible to customize the GUI, and whether the GUI is suitable for expert
users. It checks for the availability of accelerator keystrokes and other short-
cuts that can make the GUI suitable for expert users as well as for novices.

* Aesthetic and minimalist design. This criterion focus on the rational and func-
tional graphic appearance of the GUI. It checks whether the GUI is appealing
visually, without being distracting or annoying.

* Help and documentation. This criterion checks the quality of the help system. It
verifies that the supplied documentation is practical and concise, easy to
search and effective in solving user needs.

Appendix A shows a simple questionnaire for evaluating Java user interfaces.
This is am empirical adaptation of general questionnaires — see for example (Shnei-
derman 1998).

Summary 75

2.6 Summary

In this chapter we presented some introductory discussions about effective GUI
design. In particular:

* We introduced some basic principles for human-computer interaction,
showing how a basic understanding of human cognition can help in the
design of high-quality user interfaces.

* We presented five main interaction styles. We will deal with three of these in
the remainder of the book: menu selection, form filling and direct manipulation.

* We introduced object-oriented user interfaces (OO Uls) as a special case of
direct manipulation. This approach will be adopted in some of the examples
provided in the book.

In the next chapter we introduce practical GUI design for Java platforms, and
introduce the Java Look and Feel guidelines.

3 Java GUI Design

In this chapter we introduce user interface design for the Java platform, focusing
our attention on J2SE GUISs. The chapter is structured as follows:

3.1, Java technology for GUIs introduces the components that Java provides for
building user interfaces.

3.2, Cost-driven design describes how cost constraints can be taken into account in
user interface development.

3.3, Exploring the design space for a point chooser gives some examples of practical
GUI design, using as an example the design of a component for selecting points
on the earth surface.

3.4, Design guidelines for the Java platform introduces the idea of user interface
design guidelines, specifically those for Java.

3.5, The Java look and feel design guidelines describes the Java look and feel guide-
lines in detail.

3.1 Java technology for GUIs

This book deals principally with graphical user interfaces composed of visual
components. This kind of interface is made up of widgets and windows, following
the well-established syntax of point-and-click GUIs.

Assembling the components

This section discusses the basic organization of a Java-based GUI. Java GUIs are
organized in reusable units that are directly mapped onto groups of Java classes.
For example, in the Swing library a visual tree component (also called an expand-
able list) is implemented as a set of more than a dozen standard classes and
interfaces that can be configured or specialized as necessary. Such classes include
specialized event listeners, cell renderer, and data models — see for example
(Geary 1999).

In contrast, the analogous component in the SWT library is implemented using
only three Java classes.

Focusing on the Swing library, even the simple dialog in Figure 3.1 below is imple-
mented using instances of several different Java classes. Figure 3.2 shows the

78

Java GUI Design

conceptual layering of the main user interface components that implement the

dialog in Figure 3.1.
EE’,J}'A simple Dialog Box | [O] x|
Select Continent: |[America ¥
Europe
America Q
Asia
Africa

Oceania
OK | cancel ‘

Figure3.1 A simple dialog

The number of Java classes involved in the previous example is in fact much
larger — Figure 3.2 shows only some of them. For example, the main container
JDialog and the bottom panel use a layout manager instance that supervises to
the contained widgets layout. Note that we have employed two separate panels

JDialog
JPanel
LayoutManager
JLabel JComboBox
JPanel 2 =
JButton | JButton u

Figure 3.2 The conceptual layering behind a simple dialog using the Swing toolkit

Java technology for GUIs 79

in our design, one for the buttons at the bottom and the other one for the content
area at the center. This is essentially for engineering reasons — it allows us to reuse
the standard buttons panel. We discuss component reuse in Leveraging object-
oriented programming on page 166 in Chapter 4. For a complete list of widgets
available in the Swing, SWT, and AWT toolkits, refer to Chapter 11.

Three levels of component cost

In my experience I have found it helpful to distinguish between three kinds of
visual component, depending on their relationship to the existing base libraries
(such as Swing, AWT, or third-party ones like SWT). Categorizing GUI compo-
nents in this way is useful for driving top-down development, from GUI design
to software development, testing and so on:

* Standard components. These are standard GUI objects that are typically used
with only shallow customization. These are therefore the cheapest compo-
nents to use.

* Custom components. These are non-trivial subclasses of the standard library
objects. They are also relatively inexpensive to develop, but limit designers in
the degree to which they can customize existing components.

* Ad-hoc components. These visual components are developed to solve some
special problem that cannot be solved by extending an existing component.
These are of course expensive to build, as they often require additional GUI
design effort, but can provide the highest quality resolution of requirements.

Figure 3.3 shows some examples of these components.

In Figure 3.3, from the left-hand side we have an example of the JTree standard
component for the Swing library. Developers only need to change a few properties
from the default values, and populate it with the required data. The center of the
figure contains a custom JTree component, in which the same widget has been
deeply customized and some of the standard classes have been extended to
provide custom behavior. Finally, the right-hand side shows an example of an ad-
hoc component that needed to be built from scratch because the standard library
does not provide it.

This categorization is based on standard libraries such as Swing and SWT, is
cost-driven and somehow arbitrary. Depending on the target Java environment,
designers can rely on various GUI libraries (AWT for basic Java 1.x applets,
Swing for Java 2 GUIs, and some specific toolkits for J2ME profiles).

This classification approach can be used by designers based not on standard
libraries, but rather on third-party ones such as specialized set of components, or
proprietary, in-house developed GUI toolkits, for example).

80

£ Some examples of types of components

Java GUI Design

standard component §§ custom component
JTree : JTree HIGH SCORE

I?ﬁ calors |7 E B> colors - leeee
[blue B hlue
[vinlet : :.Ieocﬂlet
D red =]
[vellow o- [sports

o= sports ¢ B2 food :

¢ Ctond % hot dogs
D hat dogs & pizza :
N . Sravioli
D ravioli .
D hananas % bananas e U EL I

Figure 3.3 Example of the three kinds of visual component

The components in Figure 3.3 are organized by increasing development cost, from
the cheapest on the left to the most expensive on the right.

This classification is however blurred, because it depends on many factors, not
least the experience of the developers involved. For example, a design team that
has a background in video game development may find easier to use a particular
ad-hoc component than to employ a custom tree component from a complex GUI

toolkit, potentially reducing development costs.

At this point some readers may wonder why, when we are discussing GUI design,
we are making such an implementation-driven distinction among different visual
components? The reason is because, in my opinion and experience, quality-driven
industrial design cannot be separated from its implementation.

We have used three words in the latter sentence that need explanation:

* Quality-driven design. Quality should always drive a GUI design. Quality
here means usability. For example, when it would enhance usability, a good
GUI design should employ direct manipulation instead of other cheaper but
more convoluted metaphors.

* Industrial design. As long as you are not developing your GUI for fun or for
some artistic purpose, you should remain grounded in basic principles like
the development cost and usefulness of the final product. No-one works in
an environment of limitless resources. In real-world projects, both time and
human resources are often limited, and your design cannot ignore this. The
search for perfection is limited by practical industrial constraints.

Cost-driven design 81

* Implementation. Designers should always consider the final implementation,
especially when developing for Java. The richness and sophistication of the
platform shouldn’t waylay professional designers into over-using objects
and classes, degrading performance.

Generally speaking, in practice a final design is determined by the trade-offs
between quality and practical constraints — this is one of the main assumptions of
this book. Distinguishing visual components by their cost impacts directly on the
overall GUI design, and can make the difference between an inexpensive or a
costly GUIL The cost is comprised of design (plus usability testing) and the
required software development, debugging and testing. A standard component is
almost ready-to use: designers don’t have to design its GUI from scratch or test it
for usability, having only to adapt it to the current situation.

When the customization cost passes a specific threshold — for example, non-trivial
subclasses need to be written — we call them custorn components.

3.2 Cost-driven design

The term cost-driven design describes an approach to GUI design that explicitly
takes into account development costs.

Ad-hoc versus custom — the difference between ‘run’ and ‘ride’

What is the actual difference between an ad-hoc component and a customized

one? When should one employ one instead of the other?

A number of parameters influence this design choice:

* The application domain. Sometimes the application domain dictates the kind of
components used in a GUIL. We will see some examples in the following
sections.

* Required GUI quality. The quality of a GUl is a further input parameter to the
design.

* Types of users. Depending on the user population — for example, novice users
accustomed to drag-and-drop GUIs — one type of components could be
preferred.

* Practical constraints. These include time-to-market, development costs,
context-dependent constraints and so on.

In this section we discuss the difference between ad-hoc and customized compo-

nents by means of practical examples.

Figure 3.4 shows the prototype GUI of a hypothetical control panel for the under-
ground railway network in Rome, Italy.

82

Java GUI Design

@Rome Underground Control Console [Prototype] | _ O] %]

B attistini o]

Figure 3.4 Ad-hoc prototype of the Rome underground system control console

Such a design is quite intuitive, pleasant to interact with, as it is essentially based
on the direct manipulation interaction style, and relatively simple to use. Acciden-
tally, because of its audience — it is intended for railway technicians — it is full of
acronyms and technical jargon. It looks like a simple 2D-video game. Trains move
on the tracks, data is queried both via tool tips for a brief summary or by double-
clicking on the particular item, when a dialog pops up with the details.

This design has one major shortcoming. Such an attractive GUI is quite hard to
develop. Because of the domain — complex but well-formalized — and the special-
ized technical audience — some of the complexity can be transferred out of the GUI
to the users themselves. This can be done by a greater dependence on manuals,
help support and internal training. Sadly, however, this is also often the case
with badly designed GUISs.

We can imagine that such an approach might produce a much cheaper prototype
like the one shown in Figure 3.5.

Cost-driven design 83

Rome Underground Control Console [Prototype]

File Modifica Stazioni Archivio Finesfre Aiuto
Comvogll Parerza _ |Conducentei[Conducente? Stalo Press. |DecrA] MNo
[AHI0233 2] Battistini [~ | |12:37:48 Antinooi Rossi Mormale 2 [v] o
[AHS0836 7] Rebibbia 12:39:41 Eallo DeAndreiis |[Emergenza ag |l
[AH90TT7Z] Rebibbia Ei:gigi g’“ i :‘a_“”it_ i :Pfrft‘f'a'tg 838 L
e . EER rossi wicentini iattivato : v
iﬂ;ﬁgg f::g::iia =| [12:50:02 Corti sartini KNormale 3 |
o 125645 mdirandi Rossi Kormale [™
[AH80993 11 Rebibbia 130319 wattese |- Vuoto(cod.10) T O =
[arig08864] Battistini || li3naz Montella [Orciuoli Mormale |
[AH9TT353] Laurentina | [13:21:48 Flobari - Vuoto(cod 10) | 14 |
JAH2TT6.2] Anagnina — | |13:37:29 Mari Milli Usurata 12 J
FALIGADIR T e s =] 13:45:01 Millizzichi |Poggio Riattivato 3 [
Foglio Macchinista | [13:52:18 tanti Milli Mormale as il
14:06:57 Antoniali Califano Matle Rotab. 5 | |
14:23:39 Marting Rossi Mornale L]
14:31:48 Caifhe Batistuta Mormale 2 []
144319 Anselmi Califano Normnale [L] =]
FWREW-EY " " F-yvPT = L]
il 1] vl
Dettagli Corsa
Composizione Vetiura 1 3 A et ianiu ® il
Locomotore Centrale | Finale MNote Sery.| Servo... | Ausiliarl | G
167488 [Rebibiia] | 14A-6B Battisti_|11A-9W Re . 14A-68 Battistini_| Normale 6-42.| 8 | <
8501258 [Rebibbia] | 14C-21D Rebi..|B4A-9E La... |37A-6C Rebibbia |Emerge... 16-42.. ‘J
135E.22C [Battistini] | |n‘.<|n o s IEY T ekt i lalic o |\ﬂ 2
il lio per visualizzarne i dettaglhi - [16:18:34]-[24/00/2002]

Fiqure 3.5 Prototype of the Rome underground system control console using
specialized components

This second design is at first much less appealing. An additional memory
burden is placed on the user, more training is needed — technicians understand
technical acronyms, but would need to be specifically trained in how to use table
views such as those in Figure 3.5 — and novice users can initially be lost and
therefore unproductive. Even if the Rome underground system is relatively
simple (consider Figure 3.4), a design such as that in Figure 3.5 gives the impres-
sion of a more complex application than does its ad-hoc counterpart: its design
favors a high density layout approach over the ‘lean’ strategy preferred in the
design shown in Figure 3.4.

When ad-hoc is the only way to go

It is not always possible to resort to a GUI composed of customized components,
no matter how cleverly they are used. Consider the next two examples, illustrated
in Figure 3.6 and Figure 3.7.

The first prototype is an editor for UML class diagrams. Users drop symbols on
the diagram and manipulate them as needed. We will see the actual code for
something similar to this in Chapter 9, but here we are interested in discussing the
design issues involved in making the choice between ad-hoc versus specialized
component development options.

84

Java GUI Design

&) UL Editor - Class Diagram View [Prototype]
File Edit View Windows Help

[ela][m[a]=][A[4]2][#] [®]8]X]
- ArraylList Undoahb leEdit -
wutils «SWings =]
i T
1, n
CommandHistory e > Edit
'“1
Director <1 Main ::‘;ia:;

SandboxPanel C ordered P Ibstract3ynbol Ohservs
o, —D «utilf |

T

I —
select a symbol to add to the diagram

Fiqure 3.6 A UML class diagram editor

In this case we could imagine ways to present the same information that are
simpler to develop, for example using a tree that gathers the relations of each
class. Though a much poorer interaction method to the direct manipulation
proposed in Figure 3.6, it is a viable and relatively usable interaction mechanism.
The only problem is that one of the benefits this editor is supposed to provide lies
in the visual representation itself. This GUI oversees the manipulation of UML class
diagrams, which are themselves pictorial representations. In this case, the ad-hoc
design approach, and its associated cost, is justified because it is part of the very
purpose of the application. This is the case in many application domains, such as
video games.

Consider another example. Even if not strictly related to graphical issues, there
are domains that are intrinsically hard to manipulate via discrete widgets such
as those provided by general-purpose GUI libraries. Such libraries were devel-
oped to serve well-formalized discrete domains like business management, data
base manipulation and so on. The scientific domain, for example, is one such
“difficult’ domain. In Figure 3.7 we show a fictitious viewer for physical data

Cost-driven design 85

related to Oceanography. The data, rendered with an equidistant, cylindrical
equatorial projection, is not a mere image, but something that can be manipu-
lated, queried and processed (although in this prototype is a mere bitmap).
There is a database behind such GUISs, but the best way to structure the interface
is often radically different from those such as the underground railway network
shown in Figure 3.5.

Oceanography - Data Viewer - [Prototype]

Edit Wiew Import Windows Help

<]
|select a Point on the Map

Figqure 3.7 An example of a scientific data viewer and editor

Here it would be unthinkable to present the user with a set of grid views extracted
from our database. It would be literally like an ocean of numbers, impossible to
read, not to mention manipulate properly.

In these cases an ad-hoc development route is unavoidable. The only alternative
would be to reduce the quality of the GUI by lowering interaction. In the applica-
tion in Figure 3.7, for example, instead of providing complex commands to
manipulate the scientific data, one can imagine an almost batch-like interaction
style in which the user is prompted with a form that defines all the details of the
required data manipulation, together with a Submit button that dismiss the
dialog, launches the command and then displays an image that is the user cannot

86

Java GUI Design

manipulate. While this interaction style might be acceptable in some cases, it can
be intolerable in other contexts.

Cost-driven design is a form of system-centered design, and as such appears
to conflict with user-centered design, as described in Chapter 2. This conflict is
only apparent, though. Whenever in doubt, user requirements (for usability)
should prevail over system-centric considerations. If development costs are
not taken into consideration, even a good GUI design can be implemented
poorly, producing applications that are de-facto less usable.

3.3 Exploring the design space for a point chooser

In this section we examine some diverse examples of practical GUI design. We
introduce practical design using the case of a simple visual component that illus-
trates the many possibilities the designer would consider as they relate to the
chosen technology (which in the example is J2SE Swing).

Let’s suppose we have to design the user interface of a component for selecting
points on the earth surface, which itself forms part of a wider GUIL. We will refer
to this as a Geopoint chooser. We won’t go into the details of the GUI design process
here, but we will explore the design space in order to discuss few of the many
design choices available, even for such a limited problem.

Of course we know that there is no absolute ‘good” design. GUI design depends
on many factors that include tasks!, users, and cost. We deliberately do not
commit to a fixed scenario, so that we have the freedom to discuss some more of
the practical subtleties GUI designers often face in their work.

The functional requirements for our example GUI component are really simple.
The related use case diagram is shown in Figure 3.8.

Use case diagrams can also be employed for describing the details of specific
parts of GUISs, such as this example. See for example the ‘Complete Selection’
use case above, which can be further detailed using ‘Commit’ or” Cancel” selec-
tion use cases independently of the given component used to implement a GUI
component.

Having seen the functional requirements for our component, it’s time to focus on
the GUI design itself. For simplicity we focus on the selection use case only. There
are established guidelines for implementing a selection completion use case, for

1. By task we mean one of the tasks performed by the user, coinciding with the same term
used during task analysis (see Chapter 2, page 45)

Exploring the design space for a point chooser 87

User

Complete
Selection

Fiqure 3.8 The use case diagram for a geographic point chooser component

example by placing OK and Cancel buttons at the bottom of a model dialog, as we
will see later in this

chapter. Here we will focus on the design of the selection area only, the use of
which is illustrated in the simple paper sketch? in Figure 3.9.

Figqure 3.9 The intended use of the Geopoint chooser

In the following subsections we show a number of possible designs for these
requirements, and introduce them in relation to their underlying implementation.
Our purpose is to illustrate a number of design details that appear only in practice.

We begin with designs that are implemented by means of standard components.

2. Chapter 5 discusses paper prototypes in more detail.

88 Java GUI Design

Standard designs

The first and most obvious idea is to rely on existing cultural conventions, such as
latitude and longitude, for selecting a point on the Earth’s surface. We could adopt
the form-filling interaction style, as shown in Figure 3.10. Fortunately measure-
ments expressed in latitude and longitude are widely accepted around the world,
so we don’t have to worry about localization subtleties.

Lat: |—|
| |

Lon:

Fiqure 3.10 Using a form-filling interaction style

We can refine our simple design by leveraging the usual form-filling techniques,
for example by providing a history facility — a drop-down window showing past
input values — or by separating latitude and longitude values into degrees and
minutes, as in Figure 3.11.

Figure 3.11 Using a form-filling interaction style — refined

Depending on whether latitude or longitude can be accessed separately in the
remainder of the GUI, it could be useful to address this concept explicitly, for
example by providing an icon for value. This makes sense only if such icons are
used elsewhere in the GUI and with the same meaning, otherwise it is just useless
visual ‘noise.” Apart from additional visual clue, which might be difficult to
enforce, for example in third-party components to whose GUI design we do not

Exploring the design space for a point chooser 89

have access, another useful enhancement might be to use spinners for selecting
input values, as shown in Figure 3.12.

Fiqure 3.12 Using a form filling interaction style — even more refined

Of course we could choose to employ this sort of standard component because of
the nature of our application domain, for example the required precision for lati-
tude and longitude.

Without a proper task analysis, a design remains incomplete, because there are so
many possible twists that an effective general design is often not viable.

Adopting the form-filling interaction style in our design is very cheap, as it requires
only standard GUI components. It can work well if (in this case) our GUI tasks use
latitude and longitude and our end-users are accustomed to such measurements. If,
alternatively, we were designing a component for choosing a time zone in a non-
technical GU]I, or for setting locale data such as choosing a home country, clearly
this design wouldn’t work well.

We can use these designs to help make a point about a common situation that
arises when using sophisticated GUI toolkits like Swing. Consider the following
situation, which gives rise to an unexpected additional implementation cost, even
for the cheap design in Figure 3.10-3.12. Suppose we are developing a GUI for a
client that employs our Geopoint chooser as shown in Figure 3.10 and, some-
where else in the GUI, a date input field. Such a date input field is implemented
using Swing widgets that provide extra behavior and formatting for dates. One of
the features provided automatically by Swing is the ability to use arrow keys to
increase days, months, and years directly in the date field (mainly through the
JFormattedTextField class). This feature is appreciated by users, so they find it
odd that the same handy mechanism is not available in our Geopoint chooser.

Thus we have an unforeseen problem of consistency with the rest of the GUI,
because of the automatic facilities provided by the standard library we are using.
If we decide to fill this gap, our design shifts from a standard to a custom one, as
we have now to implement the behavior in our Geopoint’s Lat/Lon text field that

90 Java GUI Design

is available in date fields. This underlines an important point: in practice, effective
GUI design is always an iterative process, no matter how simple the design may
appear at first.

A geopolitical design

Even in its simplest form, the previous design is not suited to some tasks. The
design shown in Figure 3.13 illustrates a different approach that uses the menu
selection interaction style — which is by no means limited to commands menus —
for selecting an area. This can be thought of as a point with a degree of tolerance.
The advantage here is that such an area is identified by geopolitical coordinates,
such as continent name, region and so forth. Depending on the user population or
the nature of the task, this could be the most usable solution.

Continent: Europe -

Country; Germamy |«

Region: Holstein |+

Local Area: |Argen -

District: Argenhof |
Argenhof

Figure 3.13 A geopolitical chooser

The design in Figure 3.13 highlights an interesting point about the low cost of
building a GUI using standard components. Such cost savings relate only to the
GUTI's appearance, not to the remainder of the implementation. Even if we use
standard components, the data needed to make this design work (countries,
regions, counties, etc.) could be expensive to gather, offsetting or cancelling the
cost savings.

Exploring the design space for a point chooser 91

Nevertheless, this solution is very robust: as long as the combo boxes automati-
cally populate themselves with valid data, users cannot choose an impossible
value. This is often referred to as the power of constraints. Well-designed GUIs
should be like that — by careful design of their interaction rules, they should
reduce to a minimum the possible sources of errors at the outset.

A cryptic design

An important aspect that we have not yet had the chance to discuss in detail is the
importance of operational feedback. To illustrate this, we consider an absurd
design choice: form filling-based selection without operational feedback.

We are usually unaware of its importance, but while we are typing into a field on
a form, we actually watch what we are doing. This is a basic form of operational
feedback, like seeing the mouse pointer move while we move the mouse to select
a point in a GUI that employs direct manipulation. To illustrate the importance of
such feedback, try out the interface in Figure 3.14, in which password fields are
used for latitude and longitude input!

Lat; (= |

Lon: |"""""| |

Figure 3.14 Using a cryptic form-filling interaction style

Ad-hoc designs

The simplest way to indicate a point on a map is by pointing at it with the mouse.
Such as design is shown in Figure 3.15. From a technical viewpoint, this design
choice needs the use of ad-hoc components, and is therefore usually more expen-
sive to develop than those that use toolbox components.

92

Java GUI Design

Figure 3.15 A direct manipulation Geopoint chooser

As natural and user-friendly as it may seems, there are cases in which this type of
design is not the best. In highly repetitive scenarios, for example, in which users
need to input many points routinely, extra consideration should be given to the
use of the keyboard as the main input device to speed up selection. The design in
Figure 3.15 does not provide such a facility, and this can be a serious shortcoming
in such cases.

Let us now consider the details of the design of a direct manipulation Geopoint
chooser.

The direct manipulation design in detail

Given the nature of the application, we assume that our users are non-occasional
and skilled experts in the domain of interest.

Configuration settings such as the precision of mouse hovering and other prefer-
ences are kept separate in another dialog. We won’t discuss such configuration
issues here.

The direct manipulation interaction employed in the design in Figure 3.15 seems
a perfect choice. However, it may not be obvious to a novice user — there is nothing
into the GUI that suggests the point-and-click behavior.

Instead of adding a label or a tooltip to signal the intended interaction, and so
risking annoying regular users, we chose to change the cursor shape and add a
label that indicates the geographical point indicates by the mouse focus, shown on
the left bottom of the map, together with a label that shown any point already

Exploring the design space for a point chooser 93

selected, as seen in Figure 3.16. These are all discreet hints that ‘invite’ the user to
click on the map to see what happens. There is no need to overload the design
with explicit signals — in this way both first-time and regular users are well served.

When the user selects a point, it is signaled by an ‘X" on the map and represented
numerically at the bottom-right of the map. On the left- hand side of the screen the
point corresponding to the current mouse position is shown.

We place the selected and the current point in the status bar, following the
Java look and feel design guidelines (introduced later in this chapter),
although further usability testing should be done to check that our choice is
not confusing to users.

@Uontenls E3

"/‘___1_-"‘__“-—,‘_ —————

S F -"’W

=2 TR S ;E?
65° 24° 00" S /001° 12" 00" W Selected: 60° 36° 00" S /0227 12° 00" W
ok || cancel | mew |

Fiqure 3.16 An implementation of a Geopoint chooser visual component

When the user has chosen a point on the map, they can dismiss the chooser, so
committing the operation by clicking the OK button, or just cancel the selection
operation by using the Cancel button.

Allowing editing of the currently selected point helps fine-tune inputs. Figure 3.17
shows a typical interaction with an enhanced version of the chooser.

This version allows users to edit latitude and longitude values directly, and so
refine a chosen point more easily, to any level of precision.

94

Java GUI Design

ECDnlenls E3
S

o \“‘"52522,_ - %553; = J“‘E?'J
p Rk)

S it

W7 By A

\ <

iy 8
&"y =5
= = AT e e o e e
ma il Pﬂ\éé e <
42°36' 00" S /083° 24' 00" E |39[€C[9d. ar |12' 00" S/009" 36' 00" ‘\.’\I’é
o [Comwa [o |

Figure 3.17 An enhanced version of the Geopoint chooser

The design in Figure 3.17 illustrates a subtlety regarding the commit behavior of
the editable field for the selected point. The designers have to decide how the
editing in the field is going to be committed and so change the location of the ‘X’
mark on the screen. One possibility is to accept the editing as soon as the user
types valid numbers into the field (this is called immediate mode). This has the
unpleasant side-effect of making the ‘X’ mark scatter all over the map while users
are typing the digits of a coordinate. The other option is to commit the value after
a special ‘completion event’ is performed by the user, such as pressing Enter or
pressing a button (this is called deferred commit mode). A third possibility is to
delay the commit for a specific time after the last user keystroke (perhaps a few
seconds), giving users the time to fully input the value. This option (delayed imme-
diate mode) and deferred mode are important when the commit cost could be
high, for example to send data to a remote server.

Quality assurance testers love to fiddle with such subtleties. What if the
chosen commit mode is delayed immediate — say after 2 seconds after last user
keystroke in the field — and as soon as the user types a digit, they quickly close
the dialog by pressing the OK button? The new value does not have time to be
committed, and they developers can find themselves dealing with a new and
unpleasant bug.

Exploring the design space for a point chooser 95

A further evolution of this design could involve spinners — using the JSpinner
Swing component — instead of free text. Figure 3.18 shows such a solution.

Figure 3.18 A Geopoint chooser that employs spinners

The design shown in Figure 3.18, although visually loading the chooser window a
little, allows for a finer user data input. The use of spinners is also self-explanatory —
users understand their actual purpose easily, so that they can use this additional
control whenever a fine, but constrained, input is needed.

Figure 3.19 shows another version of our design, in which users can specify the
current geographical projection adopted at the top right. Whenever the projection
is changed, the underlying map and the selected point change accordingly.

Changing the map projection is an example of a configuration item that can
become a part of the operational GUI, depending on the situation. If this feature
is used by unskilled users, it might be distracting or even confusing. This is a
common dilemma, where the user population is not easily predictable at design
time?.

3. Asone can imagine, designing ‘catch-all’ visual components isn’t an easy job.

96 Java GUI Design

f=3 Contents E

Projection: | Cindrical (ECE) '_I
P 2

T

“eiC¥lindrical (ECE) |

& "' & N 1}
ST

E e B
o s ey P
e -\..,-.F“é __s....-" ?
_— e o

35° 24' 00" N/ 057° 36' 00" W lselected: 30° 00 00° &/ 024* 36' 00" W]

| ok || cancel || mew |

Fiqure 3.19 Interacting with the chooser

Finally, the class diagram related to the version shown in Figure 3.16 is shown in
Figure 3.20. The implementation code for this Geopoint chooser is available on the
book’s Web site — see the GeoPoint and related classes.

Figure 3.20 The Geopoint chooser class organization

Next we look at alternative designs that employ combinations of design
approaches.

Exploring the design space for a point chooser 97

Mixed designs

As seen in the previous section, it is possible to combine direct manipulation
and the use of standard components in a GUI design. These are the most expen-
sive designs, due to the cost of building the different representations, plus the
extra cost of establishing the coordination between the two. The use of such an
approach should be thought through carefully, because it can actually produce
more cluttered — and so less usable — designs. This is a classic phenomenon
known as feature creep: designers feel somehow more reassured by adding extra
functionalities to the GUI in a vague attempt to make it more usable.

An obvious solution for increasing the ease of use of our Geopoint chooser design
is to employ two different representations of the same data simultaneously.
Choosing the two representations carefully can lead to larger usable selection
areas, for example one quicker to use, but less precise, together with a slower but
more accurate one.

A set of different designs are possible. For example we could employ sliders for
selecting the point indirectly on the map, as shown in the design in Figure 3.21.

Figure 3.21 Indirect manipulation

This solution has a flaw. Depending on the projection used for the map, the sliders
could indicate meaningless measurements (the geographic projection used in
Figure 3.21 is only a mock-up).

One possible solution is to decouple the sliders from the visual representation of the
map, as shown in Figure 3.22. This new solution has the advantage of combining
the two required parameters (which may not necessarily be latitude and longitude)
with the powerful visual feedback given by the chosen point indication on the map.
More importantly, it does not depend on a specific map projection.

98

Java GUI Design

Fiqure 3.22 Another attempt

Like the design illustrated in Figure 3.21, this design imposes a degree of coor-
dination between the two representation of the same data: the two sliders
above being the indirect representation, and the map in the center being the
direct representation of a point on the Earth’s surface. When the user changes
one of the sliders, the point in the map changes accordingly. This is an example
of the concept of different views — that is, different representations — of the same
data. We will see in the second part of the book how Java GUIs, by leveraging
OO design pattern technology, can implement such constraints in complex
applications.

Combining two designs in one

In some case is not possible to accommodate both expert and novice users with the
same design without hampering one or both of the groups. In these cases one solu-
tion is to provide two slightly different versions of the same Ul in combination,
providing the simpler path for novice users and a more elaborate but powerful one
for expert users.

Returning to our Geopoint chooser, suppose expert users want to define the infor-
mation about a point on the earth surface in a more articulate way. To avoiding
cluttering the Ul for novice users, who are happy with point-and-click interaction,
we can devise a design that conceals more complex data input in a separate area.
The design in Figure 3.23 shows this solution.

We can draw a number of lessons from the design in Figure 3.23. When providing
such a two-way Ul differentiated by user skill, it is always a good idea to favor
novices over experts, for example by starting up the GUI with the default view for
novice users, or by providing simpler interactions for them. This is not always

Exploring the design space for a point chooser 99

Lon: DEDE

Figqure 3.23 A two-way Ul differentiated by user skill

possible, though. Sometime the GUI needs to be engineered for expert users over
novices, for example to optimize user’s interaction speed.

From a visual viewpoint, the ‘expert’ form-based view could be switched on and
off in a number of ways, for example by means of a button, or by adding a tab
pane with two tabs, one for the map and the other for the numerical representa-
tion. Two tabs would avoid confusing novice users, who can use the less precise,
direct manipulation map and ignore the more elaborate form-based input area.
But with two tabs, the Ul loses the very useful operational feedback of seeing the
point selected with spinners directly on the map.

Conclusions

Even in these simple examples we find many design choices that complicate our
GUI design process. We can see how categorizing components based on their
development cost can sometime be misleading, because it doesn’t take account of
non-GUI costs, such as data collection, such as that needed to make the design in
Figure 3.13 work.

One aspect that recurs in each design we have examined is the phenomenon of
feature creep. The more designers work on a design, the more they are tempted to
add extra functionality, overloading the design beyond what is needed and poten-
tially making it less usable.

In the next section we enter the world of user interface guidelines, introducing the
official design guidelines for GUIs built with the J2SE Swing toolkit.

100 Java GUI Design

3.4 Design guidelines for the Java platform

Fortunately it is not necessary to start from general principles when designing a
new GUI for a given computing platform?. The platform provides many concep-
tual and coding constraints that help us to build a professional GUI economically.
However, many developers aren’t aware of such guiding principles. This can be
seen in many GUIs, in which the designer didn’t understood the principles
behind the visual components employed, or even misused them altogether.

Using a sophisticated and powerful GUI toolkit doesn’t make one immune from
gross Ul design errors, as shown in Figure 3.24.

Icon misuse, poor status

message , wrong alignment Input text fields

= : wrong aligmment,

™ = - inconsistent sizing
8 An example of desg@®gLidelines misuse £|@Jm — -
| Buttons’ eryptie L =3 input atues then commit /
labelling, slightly IS 1 Required valoes -

uneven sizing,] | Inconsistent |
lack of keyboard Cancel insert name here; |~ Vertical spacing
AURROLE ;. s Dismiss | tast name hore: = I
L . | e | Tcon misuse , lack |
mﬂcmmﬂ check.. of clarity (in
— — - relation to the
g y | =l Flcwse 54— other buttens)
Bad overall dialeg's _/ 4 — — “‘__‘_ - — =
visual balancing | Wrong labeling text , | Wrong button positioning ,
inconsistent alignment , inconsistent alignment with
no keyboard support the rest of the widgets

Figure 3.24 A badly-design form

What is missing from the figure is a coherent, systematic organization of the
layout and intended user interaction. Such an organization is required to ensure
UI consistency — users expect dialogs, panels and other GUI parts to have the
same mechanisms and conventions, possibly sharing those of similar products —
and ensuring the required levels of usability.

Introduction to the guidelines

Professional Ul designs are the result of many contributions, ranging from the Ul
toolkit in use to the general Ul design guidelines available for that platform, and

4. Java is not only a mere development environment in the traditional sense, in that a Java
runtime is also deployed with the execution code, thus providing a sort of “Java platform’
in which a minimum set of services (constantly growing with each release) are available
for all Java applications. At the same time, the Java platform is not always totally indepen-
dent of the underling native OS.

Design guidelines for the Java platform 101

also comprising the general international standards and guidelines for usability,
design best practices and so on. In Figure 3.25 shows some of the contributions to
the final design of a simple J2ME MIDP form for a handheld device.

HIcTR: MIDE. N3 Technibloqy Standard Java MIDP UI e
¥ Viges 3 ner 1 s5e De. gn Guidelines
Pr =ribe n v UI lesian
) ga — 1 Kighievel Companents
\ —
\ / [s
\/ —
- —d— Ticker tape [Optional, device
A L e e A e
Juan Flores: 5551234 0D | e
Jan Brown: Jan@MyCo com l --'..'__-__: — Area header
lei Huang: 5553863 (H) | [-CO_H t t;-_-'-—“'.;;-l:.:._“! /‘ = Titte
Duke's Diner: 555-3853 i E u rpo: a_ e. ea:.q1:| qu:. .u?e? / 4
: I s bu n E - 1 omman
1 '<-—“;-- — :Auunns
] ork —
- r'l Area High-level Camponants
i f ——]
. o f
International Guidelines and Standards for
handheld and wireless devices 1 Ticker tape [Gptional. device

manulasiurer sun place i sl
the Lap ot beottaw of the seraen]

50 Wi

Figure 3.25 Every good design is the final result of many guidelines

Note that in general Ul design guidelines are built on top of other more general
ones, to provide a complex and coherent set of Ul design directions — that is,
guidelines that don’t contradict other more general guidelines. This can be seen in
Figure 3.25 above, in which the corporate Ul design guidelines restrict the stan-
dard general design guidelines for MIDP GUIs. The presentation technology,
including widget toolkits, is also built following standard guidelines.

Guidelines provided by the platform vendor are not exhaustive, and organiza-
tions can expand them to meet their needs, to add extra features, or to provide a
‘branded” look and feel. One could provide further design guidance for a family
of applications that in turn specializes corporate design guidelines. Figure 3.26
shows the general layering of user interface design constraints for any graphical
interactive platform.

The layering metaphor in Figure 3.26 is used to convey the idea of a set of
harmonized guidelines, which, when put together, form a coherent language
for building graphical user interfaces.

102 Java GUI Design

Product Design
Guidelines

Corporate Design Guidelines

Figure 3.26 Stacking up design guidelines in general

Starting from the bottom layer:

* Basic concepts, pointing devices and the remaining items that make up the
‘plumbing’ of modern GUIs are based on broader and more general guide-
lines such as:

- ISO 9241 (ergonomic requirements for office work with visual display
terminals)

— IS0 20282 (usability of everyday products)

— IEC TR 61997 (guidelines for the user interfaces in multimedia equipment
for general purpose use)

- ISO/IEC 10741-1 (dialog interaction — cursor control for text editing)

- ISO/IEC 11581 (icon symbols and functions)

while, for J2ME other standards apply:

- ISO/IEC 14754 (pen-based interfaces — common gestures for text editing
with pen-based systems)

- ISO/IEC 18021 (information technology — user interface for mobile tools)®

* Above this is the basic infrastructure for interactive GUI features provided
by the platform. Such an infrastructure in modern multipurpose software
environments is usually organized around the concept of component-based
GUISs. These are graphical items (also called components or widgets) that can
be assembled to create a large number of different GUIs. Some specialized

5. There are many hardware standards too: for computer displays, keyboards, etc. For a
comprehensive list of the wvarious usability and HCI standards, see: http://
www.hostserver150.com/ usabilit/ tools/r_international . htm.

Design guidelines for the Java platform 103

platforms (or those with limited hardware, such as hand-held devices) may
use other approaches to model the basic infrastructure of their user interface.

* The display presentation technology is built using a conceptual Ul architec-
ture and a set of basic guidelines and standards. This software allows
developers to build Uls by means of specialized APIs.

* At ahigher abstraction level, presentation technology alone is not enough
to guarantee effective and usable Uls. A set of Ul design guidelines and
best practices needs to be taken into account during the UI design process.
Such a set of guidelines is strictly dependent on the underling presentation
technology: for example, a set of voice interfaces design guidelines is mean-
ingless for graphical-only presentation technologies. An example of a Ul
design guideline for a GUI could be ‘command buttons should all be the
same size.” These guidelines are usually provided by the same companies
that develop the related display presentation technology, or by indepen-
dent standard bodies.

* Corporate design guidelines are built on top of the standard Ul design guide-
lines by private organizations to provide a higher level of consistency for the
software developed in or for the organization, and to enable other benefits
such as support for a proprietary toolkit, product documentation purposes,
quality assurance, UI cost estimation, and so on.

* Above corporate Ul design guidelines could be further specification for
single products, perhaps for providing special Ul features, branding, better
user targeting, and so on. Imagine for example the GUI of a software music
player, as opposed to the GUI of an e-mail client built by the same company.
This and the corporate level of guidelines are usually owned by organiza-
tions and not available for public use.

J2SE user interface design guidelines

The same layering of design guidelines shown in Figure 3.39 also exists for Java 2
standard edition (J2SE) too. Figure 3.27 shows how the final design of a simple
J2SE Swing GUI is influenced by the different Ul design guidelines layers intro-
duced in the previous section.

The various design guidelines are compounded, enforced by the GUI technology,
here Swing, to create the final result.

This layering is illustrated in Figure 3.28. The pyramid of constraints and guide-
lines for the design of GUIs stands on top of the same international standards
mentioned above — the hierarchies in Figure 3.26 and Figure 3.28 share the same
lowest level. The architects of Java adopted a common approach based on compo-
nents for modeling GUIs, indicated by the Basic Infrastructure layer in Figure 3.26.

104

Java GUI Design

=l oglIn Product UI Design Guidelines
- _| A special Look and Feel
< defines the product brand

Corporate Design guidelines
_| A set of rules that
S specialize the standard L&F

| Java Look and Feel

[| Design Guidelines

Java Foundation L —
Classes (JFC)
Technology

| Component-Based UI — —
Architecture

International
Guidelines and
Standards

Figure 3.27 The final design of a J2SE GUI

The idea that a J2SE GUI is inherently composed of elementary, reusable compo-
nents impacts both the design and implementation of GUIs. Such components can
be visual objects, such as a combo box, more abstract ones, such as a layout
manager, or non-GUI objects, such as the data model behind a list®. Building on
top of this conceptual model, we are offered a number of visual components that
can be combined to build GUIs.

Sun provides two, in part overlapping, toolkits created around this component
approach: Swing and AWT, plus a number of auxiliary libraries such as Java2D

6. Values displayed in widgets are usually stored in runtime memory structures known as
data models. When users modify the value in the widget through the UI the changes are
transferred to the related data model.

Design guidelines for the Java platform 105

and JavaHelp. These are the more popular GUI toolkits for J2SE, but there are
others. At a higher level of abstraction, Sun also supplies a set of design criteria
and guidelines for harmoniously composing the building blocks provided in
these libraries. Finally, developers are free to add their own design constraints and
guidelines by building on top of other guidelines. Figure 3.28 shows the layering
of user interface design constraints for J2SE platform.

Product Design
Guidelines provided
by Sun

Corporate Design Guidelines

N

L
]
]
L
L
L}
t
I
L
i
'
)

>

Figure 3.28 Stacking up design guidelines for J2SE

Any GUI toolkit include abstractions and mechanisms related to the use of the
widgets it offers. Such interaction mechanisms may be closely linked to higher-
level design guidelines. This is the case with the Java look and feel design guide-
lines and the underlying Swing library — in fact, the Java look and feel design
guidelines have been designed specifically for the Swing toolkit. For example, the
Java look and feel provides detailed guidelines for changing the visual appear-
ance of the whole GUI at runtime, and such a feature is technically available only

for Swing-based GUIs.

By taking advantage of corporate design guidelines, it is possible to create new
GUI styles that highlight the product’s identity, or that are specialized for some
particular case. Figure 3.29 shows an example of such a custom style, built on top
of the Java look and feel, used for the JetBrains IDEA? integrated development

environment.

7. Intelli] IDEA is a trademark of Intelli] Corp.

106

Java GUI Design

I3 intelli IDEA 2.5.2 - [E\IntelliJ-IDEA-2.5.2\test.ipr] - B\ JBuilders' jdk 1.3.1 src.jarf src' javah applet' Applet.java

| 8
testipr * @rf)pplet, jave 1.66 00505715 s
-
o = _4 Edntelli-IDEA-2.5.2 b g
= 24 bin - = In a Ri =
E) - o
* inrormatci I Sun Micros
[@
£
8 >
2 =1 _A migration : R . £
- £l Swing__1_0_3 package j=va.applet; =
= _oplions . -]
s &) templates import java.awr.*;
g i A o import java.awt.image.ColorHodel:
E 1 —teols import java.net.1RL:
Q = _J hel? import java.net.HalforzpedURLException:
= idea irport java.util.Hashoeble:
1 lib import java.util.Locale:
=1 sre import Jjavax,accessibility.®;
= __| system
- __1 UninstallerData
9 Changes.ta
[Z] Instal tt
D

[| I o | 2182]E@_H:nsu:l ”Pmnlim#*mmwﬂ']

Figure 3.29 The Intelli] IDEA GUI

As the figure shows, the designers had to solve various GUI-related problems,
and resorted to adopting a specialized version of the Java look and feel style.
Many of the conventions used in the standard Java look and feel were maintained,
but new visual components were provided.

It is important to point out that Swing, although the most popular, is not the only
toolkit available to GUI designers using Java. Developers can create their own
toolkits that build on top of standard libraries, or even substitute them altogether,
as IBM did for Eclipse®. On platforms such as Eclipse, its SWT library still offers a
component-based approach to GUI building, but also provides an alternative set
of widgets to developers. The design guidelines also differ from those proposed
by Sun. The Eclipse design constraints are shown in Figure 3.30.

SWT design guidelines are different than Swing guidelines, as can be seen from
the example GUI developed for Eclipse shown in Figure 3.31. Notice, for example,
the status/message bar at the top of the dialog just below Java Settings. The SWT
library is described in Chapter 11.

8. See Chapter 11.

Design guidelines for the Java platform

Product Design
Guidelines

Corporate Design Guidelines

provided
by

Fiqure 3.30 Stacking up design guidelines for the Eclipse platform

£ New Java Project

Java Settings
Define the Java build settings.

Ly

3

Source folders on build path:

|Define the Java build settings. |

@ source | @ projects | M\ Lbraries | T4 Qrder and Export |

i T sample

[~ allow output Folders For source Folders.

Add Folder. .. |

Edit

Bemove |

Default oukput Folder:

| sample

|| Einish I

Cancel

Figure 3.31 An Eclipse standard GUI

107

108

Java GUI Design

The standard Java Look And Feel design guidelines provided by Sun is not the
only such set of guidelines available. The layering shown in Figure 3.26 on
page 102 can be highly customized, and each guideline layer can be replaced
with others. This is a powerful feature in the hands of seasoned designers, as it is
expensive and time-consuming to create an original yet professional set of design
guidelines. An easier and safer way is to build on top of existing guidelines.
Fortunately, the Java look and feel provided by Sun is an effective set of design
guidelines that fits J2SE’s technical constraints and allows easily for some
customization.

In contrast to the look and feel of single components, the style (the systematic
layout of widgets in windows and the set of interaction patterns recurring in
the GUI) cannot be strictly enforced by a class framework no matter how
clever it is devised, and it should be put into practice explicitly by designers
and developers in their applications.

3.5 The Java look and feel design guidelines

Adhering to a particular set of design guidelines is key to the creation a profes-
sional GUI on any platform, and on Java in particular. But Java software can be
run on many platforms. This raises the issue of which design guideline to adopt.
While the visual appearance of the GUI can be changed easily — as long as the
Swing library is used — the underlying window layouts, interaction mechanisms
and other important aspects of the GUI cannot. It would be quite expensive to
provide a single GUI that can look and behave like a Windows application on
Windows and like an Aqua application running on an Apple Macintosh. And
even this wouldn’t really solve the problem, because Java applications are
different than native ones, no matter how cleverly you code them.

To address this problem, Sun proposed a standard set of design guidelines specific
to the J2SE platform. If your application is compliant with these guidelines, it will
look and behave (almost) the same on all the platforms Java on which can run.
Even if you are not planning to exploit the multi-platform capabilities of Java, you
will be able to create professional-looking GUIs with little effort by adopting the
Java look and feel design guidelines.

Our aim here is to provide a general introduction to the Java look and feel design
guidelines, and for J2SE in particular, rather than provide a thorough exposition
of topic such as how to space items in a window, how to handle raster graphics on
different platforms, and so on. Readers interested in the detail can refer the official

The Java look and feel design guidelines 109

guides provided by Sun’, Java L&F Design Guidelines 2001, Advanced Java L&F
Design Guidelines 2001.

Some definitions

First, there is a small terminological twist related to two different meanings of
term ‘look and feel.” In Java code, ‘look and feel” refers strictly to the visual
appearance of GUI components, and is also known as ‘Metal” in the code. In a
design context, however, the same term may indicate both the visual appearance
and a set of abstract behaviors that identify the design’s style at large . We there-
fore use the term ‘look and feel design guidelines’ to describe collectively the set
of abstract behaviors and design guidelines plus the resulting visual appearance
of the GUI components.

A set of look and feel design guidelines is therefore more than a mere collection of
appearances for visual components. It implies also a set of behaviors and conven-
tions that are used throughout the applications. To take an analogy, you might
build a house from bricks. and wood, but look and feel design guidelines would
define the architectural style and how your constructional materials should be
used to produce an effective and comfortable design. A look and feel implemen-
tation is a set of coherent components that comply with these guidelines.

The designers of the Java look and feel tried to cope with the diverse habits or
users by creating a rather ‘neutral’ set of design guidelines that could be
employed to create GUIs that could be used easily by Mac, Linux or Windows
users. The Java look and feel was designed therefore as far as possible to be cross-
platform. To have an idea of what such a design guideline is all about, we will
examine some of its details in the following sections. As long as you employ stan-
dard or custom components in your GUI, you are not required to master all the
details of the Java look and feel visual appearance, because Swing’s designers
have already worked them out for you. You need to be aware only of some general
style guidelines — we will discuss these later in this chapter, and in the many
examples in the rest of the book.

The Java ‘look’

This is the most visible part of any GUI, the part that creates a user’s first impres-
sions. Three visual elements characterize the “classic’ Java look and feel:

* The flush 3D style. This describes the way in which component surfaces
appear, making use of beveled edges. From a graphical viewpoint, compo-
nent surfaces with beveled edges appear to be at the same level as the
surrounding screen area.

9. Available on the Web at http:/ /wwwjava.sun.com/products/jlf.

110

Java GUI Design

* The drag texture. A particular graphic pattern indicates items that users can
drag with the mouse.

* The color model. A simple set of theme colors ensures a consistent look across
different platforms. The Java look and feel uses eight system colors — three
primary and three secondary colors, plus two general colors for the display
of text and highlights.

Figure 3.32 shows an example of an application that uses the Java look and feel,
highlighting the three basic elements of the Java look and feel. To grasp the differ-
ence, Figure 3.33 shows the same application, but using the Windows look and feel.

The visual appearance of widgets is a shallow part of a GUIL Another important part
of a user’s experience is the way in which the GUI reacts to user manipulation — the

‘feel.”

The Java ‘feel’

A set of look and feel design guidelines doesn’t only define the visual appearance
of an application’s components. An important part of the design guidelines

defines the way they respond to user interaction.

gl‘f;m to-Peer File Exchange Frototype GUI

9@

> [Size

File Name

[4.59 M8

Freezed | Status | Type
|Checksum Error |Music 14.59 MB mp3
\Downloading Music 39mMB
‘Searching Image 1459 KB
Downloading |Music_ _1439MB | _aW = \Wo
i TMusi

Ouverlure Ensemble (459 MB Music ___mp3
Are you Lonesome Tonight 13.9MB |Music mp3
Marac Desert [450KB___[Image Ipg
It’!EFJ.d?ﬂ.S?'F!*’.e_r March_ [1429MB _ [Music v
Sweet Jane 4.59 MB IMusic mp3
{Morandi's Best Botfles 1.29MB lImage gif
Della Francesca's True Cross Cycle 453 KB \Image aif
Me 45KB [Image avl
Gold Cycle 1.49 MB Image aif

|y Dogay

(245 KB

4]

\

Figure 3.32 An application using the Java look and feel

Beveled
border

Drag texture

The Java look and feel design guidelines

Peer-to-Peer File Exchange Prototype GUI

Fle Edit View Help

v Image

Searching

#2090 9@8 [X Db o (B
Frozen Size Type Extension Status File Name
v 4.59 MB Music mp3 Checksum Ermor [Ouverture Enge A
3.9 MB Music mp3 Downlo_ading Are you Lonesi

Music
Image gif Searching Morandi's Best
Irmage gif Downloading Della Francesc
Image avi 0K Me
= Imaae aif Downloading Gold Cvcele 5 M
I
File Name Size Type Extension Statu:
Ouverture Ensemble 4.59 MB Music mp3 Checka
Are you Lonesorme Tonight 3.9 MB Music mpd Downl
Maroc Desert 459 KB Image Jpg Searc
Wooden Soldier March 14.29 MB Music avi Downl -
Sweet Jane 4,59 MB Music mp3 oK
Morandi's Best Bottles 1.29 MB Image gif Searc
Della Francesca's True Cross Cycle 459 KB Image gif Diawnl
e 45 KB Image avi Ok
E(%old Cycle 1.49 MB Imace aif Dow;ﬂ =
il
~Chat |
bl
Ready.

Figure 3.33 A Java Application using the Windows look and feel

111

Any visual component has its own interaction rules. These rules describe how
components react to user manipulation. As an example, here are the rules for user
selection for some of the Java widgets.

For text — multiple line or single line text-based components, such as text fields or

text areas:

* Asingle click deselects any existing selection and sets the insertion point.

* A double click on a word deselects any existing selection and selects the

word.

* A triple click on a text line deselects any existing selection and selects the

whole line.

* A shift-click extends a selection by the same unit as the previous selection
(single character, word, line, etc.).

112

Java GUI Design

Mouse dragging deselects any existing selection and selects the currently
selected range.

Direct manipulation for cutting or copying a text selection is not provided.

While for lists and tables:

A single click on an item deselects any existing selection and selects the
object.

A shift-click on an item extends the selection from the last selected item to
the new one.

A control-click on an item toggles its selection without affecting the previous
selection.

Even from simple rules such as those above, it is clear that if you allow users to
change the look and feel at runtime, you should also change the underlying
behavior, terminology and standard layouts (what we called the style) to match
the chosen look and feel. This is much trickier than simply changing the widgets’
visual appearance. For this reason, if you plan to deploy your application on
different target platforms, the wisest choice is to adopt the standard Java look
and feel guidelines. Although technically possible, the official design guidelines
strongly discourages the provision of features that allow end users to switch to
a different look and feel at runtime.

Some terminology

We introduce here some terminology related to user GUI interaction that we will
use throughout the book to describe the support of keyboards and other input
devices.

Mrnemonics are look and feel and locale-dependent combinations of a letter
and a modifier key such as Alt. Mnemonics are used for menu item selec-
tion and for setting the focus. They are shown by an underline under the
given character. For example, the Windows or the Java look and feels allow
menu items to be selected by combining the underlined letter with the Alt
modifier.

Figure 3.34 and Figure 3.37 on page 115 show examples of use of mnemonics
for focus control in dialogs. Note that mnemonics are used also for command
buttons.

Accelerators or keyboard shortcuts are key combinations completely defined by
the designer. For example Ctrl-x is the keyboard shortcut for activating the

‘cut’ command on the selected items. Figure 2.21 on page 63 shows a pop-up
menu in which every command is provided with accelerators. The Java look

The Java look and feel design guidelines 113

Mnemonics

Cancel | “\Help

[=m
=

Fiqure 3.34 An example of mnemonics

and feel requires that accelerators are indicated to the right of the command
label for menu items, and in the tooltip as well where relevant.

Focus navigation. Using the keyboard, it is possible to switch the focus from
one component to another. This provides a quick way to manipulate the GUI,
and is very convenient for data entry forms.

The scope of accelerators and mnemonics is limited to the current window. When
deciding which characters to use, some guidelines apply:

10.

Use standard accelerators whenever possible. The official guidelines!
provide a list of the most common ones.

If this is impossible, use the first letter, as long as it doesn’t conflict with other
mnemonics. In the example in Figure 3.37, ‘L’ is used for ‘Log in.’

If the first letter of the label is not available, resort to the next suitable conso-
nant. For example, if ‘1" is reserved, ‘'n” could be used. If this also fails, choose
a suitable vowel. Locales with non-Latin alphabets should use the English
mnemonic. (For languages other than English, internationalization guide-
lines are provided.)

Finally, do not provide mnemonics or accelerators for potentially dangerous
commands such as ‘delete,” ‘cancel,” or for the default button in a dialog, as
this can be triggered merely with the Return key.

See http:/ /www.sun.com

114 Java GUI Design

An example — applying the guidelines for designing dialogs

Dialogs provide a useful means delivering an application’s functionalities in
logical ‘chunks,” which can enhance user’s understanding. Dialogs also provide
an indication of task completion, providing feedback to users.

We introduce some general guidelines for the design of dialogs here: in Chapter 5
we will illustrate these with coded examples.

Figure 3.35 shows a dialog designed following the Java look and feel guidelines.
Some of the minor details, such as standard dimensions in pixels are also
shown.

12 Payload area

Look [validation |~

[] Allow for empty ISBN fields
v Validate ISBN fields|
[always connect to the server

[_] accept invalid ISBN fields

e b e e e e e e e e 17
.............. T T T T T
;

: oK Cancel Help
4 |

.

11
general command buttons area

Figure 3.35 A Java look and feel guideline—compliant dialog

It is important to emphasize the prescribed structure — the style — for dialogs.
Figure 3.36 shows the two standard arrangements for area organization within a
Java look and feel compliant-dialog. Note that the second arrangement, using
vertically placed buttons, is less common in practice.

The Java look and feel design guidelines 115

Container Dialog Container Dialog

payload area payload area

general command buttons area, oo

Figure 3.36 General structure for Java look and feel dialogs

Note in Figure 3.36 that buttons and other component can also be employed in the
payload area. The general command buttons refer to the dialog as a whole, while
Content-specific components will be organized within the payload area.

This simple structure guarantees a systematic and predictable layout for dialogs.
Users easily discover how to dismiss a dialog or to perform the intended opera-
tion, which is always associated with the left-most button. This is illustrated in
Figure 3.37, which shows an example of a log-in dialog: instead of the OK label,
the dialog’s acceptance button has a more expressive label, Log In.

Login Name: | |

Password: | |

| Logn H Cancel H Help ‘

Fiqure 3.37 An example of standard Java look and feel login dialog

We will see the graphic details of such a scheme when we discuss some real cases
in Chapter 5.

116

Java GUI Design

Regrettably, not all the dialogs provided by the standard Java libraries are
compliant with this simple organization. This is partly because the arrangements
described in Figure 3.36 can sometimes result in inefficient use of space. Figure 3.38,
for example, shows an example of a well-known JFC standard dialog that doesn’t
follow the suggested area organization. In the 1.4 release of J2SE, Sun’s designers
amended the design to that shown in Figure 3.39.

Look in: ‘deucs V‘ @ @ @ ﬁg:
T api Create New Folder

guide
images
[relnotes
dtooldocs
3 index.html

File name: |docs | Open

Files of type: | AN Files (*.') v| ‘ Cancel |

Figure 3.38 The not-so-standard file chooser of J2SE 1.3

The design in Figure 3.39 illustrates internationalization support for standard
components — it shows an open file dialog for the Italian locale.

We will use a dialog classification scheme extensively in rest of this book. We
group dialogs by the way they allow interaction:

* Modal dialogs. Users are forced to interact with the currently-open dialog. If
the user wants to interact with the remainder of the application, they must
first dismiss a modal dialog. Typical general commands for this kind of
windows are ‘OK and Cancel, or some other context-dependent command
such as Log In.

* Modeless dialogs. Modeless dialogs don’t prevent users from interacting with
other windows in the same application. Such dialogs can be used for toolbox

Summary 117

T | @8
Nome |Dimensioni Tipo | Modificato | Attributi
[1 books Cartelladifile 21712001 16.25
I myclasses Carelladifile 14/07/0211.14
[other Cartelladifile 2171201 16.23
C projects Cartelladifile 21712001 16.23
Nome file: | |
Tipao file: l.Tlltli ifile vl
| |
| apri Annulla |

Fiqure 3.39 The file chooser dialog of J2SE 1.4

or other auxiliary windows that assist users with details of the operations
being performed on the main window.

3.6 Summary

In this chapter we have discussed the general principles of user interface design,
mentioning common aspects of user interface design, and have provided a brief
introduction to the Java look and feel guidelines. We also discussed the GUI
design space for a simple chooser.

Here are some of the ideas we discussed in this chapter.
* We saw that Java user interfaces for J2SE are organized into components that
can be assembled to create complex user interfaces.
* We distinguished three types of visual components based on their construc-
tion complexity:
— Standard components are obtained from standard library components with
few adaptation to their code.

— Custom components are major customizations of standard components,
involving the creation of new, non-trivial specialized classes.

118 Java GUI Design

— Ad-hoc components are components created from scratch for solving specific
problems that aren’t addressed by existing libraries, either those provided
by Sun, or by other third-party component vendors.

* We suggested that user interface design guidelines can be visualized as a
hierarchy for building a coherent framework for professional GUI design.

* We briefly introduced some of the aspects of the Java look and feel, that we
will assume as the reference look and feel throughout this book.

In the next chapter we discuss some frequent GUI designs for Java GUIs.

Recurring User Interface
Designs

This chapter illustrates some common GUI designs. We will present them in a
practical way, sometimes sacrificing exactness and completeness for practical
utility and intuitiveness. The idea is to make you aware of some common issues,
together with their possible solutions, that have been developed and refined over
recent years. Unfortunately, user interface design is a human-dependent task, and
it doesn’t make sense to constraint it in precise, formal rules.

Following the multidisciplinary approach of this book, we will see both GUI
design and development issues together, often switching between the designer’s
and the implementer’s viewpoints. We discuss both Sun’s Java Look & Feel
design guidelines, as available for Swing applications, and IBM-backed Eclipse
GUI design guidelines, as available for SWT applications, although focusing more
on the former: we discuss SWT extensively in Chapter 13.

This chapter is organized as follows:

4.1, GULI area organization discusses the issues related to the GUI design of screen
areas in the main GUI window.

4.2, Choosers deals with a GUI design strategy that focuses on allowing users to
select items and objects.

4.3, Memory components discusses the use of widgets that remember previous user
choices and input, to enhance GUI usability.

4.4, Lazy initialization discusses the important approach of instantiating objects
only when needed from a GUI design viewpoint.

4.5, Preference dialogs illustrates some typical GUI designs for application prefer-
ences and configuration information.

4.6, Waiting strategies introduces the most common choices for interacting with
users during long-running tasks.

4.7, Flexible layout discusses the use of dynamic layout managers.

4.8, Common dialogs introduces some standard dialogs — About, Log in, and first-
time dialogs, splash windows, providing reusable code.

4.9, Command components illustrates the GUI design issues related to providing
toolbars, menus and buttons in GUIs.

120

Recurring User Interface Designs

4.10, Accessibility discusses how to provide accessibility support in Java GUIs.

4.11, Navigation and keyboard support introduces keyboard input and tab navigation
to allow a GUI to be used from the keyboard.

4.12, Internationalization discusses the problems and solutions involved in interna-
tionalizing and localizing Java GUIs.

4.13, Help support describes the adoption of a help system in applications.

4.15, Leveraging object-oriented programming discusses how to employ OOP to build
better Java GUIs more effectively.

4.14, Icons and images illustrates some GUI design issues related to icons and
images with Java GUIs.

4.1 GUI area organization

User interfaces often need to show different information at the same time. In
this case it is essential to determine a suitable organization for the screen area.
Over the years several arrangements have been established for this purpose. A
common layout for ‘average’ applications implements an area devoted to the
work itself, such as the text editor pane in a RAD (rapid application develop-
ment) environment, a command area, usually at the top of the frame,
containing the menu bar and some toolbars, and a selection or exploration area
on the left.

When there is more data to show, additional areas can be combined with these
basic ones. We will see some examples of area organizations in the sections that
follow.

Terminology

For container visual components, we will use the following terms in this chapter,
which are taken from Swing terminology:

* A window is a visual container used for organizing the information that users
see in an application. We will use this term to indicate both dialogs and frames
(generic screens) or to indicate “plain” windows — that is, those without the
top header — used for example in splash screens.

* A frameis a window in which the user’s main interaction takes place.

* A dialog is a secondary window that is dependent on a frame or on another
dialog, and is used to support the main interaction that takes place in
frame(s).

GUI area organization 121

* Finally, a panel is a generic visual container that represents an area assembled
with visual components. Panels can be composed within other panels or
within any window.

Main frames

Essentially, except for the command area — the upper area, which gathers the
menu bar and the toolbars — and a status bar on the bottom, the rest of the window
is left to the designer’s creativity.

A top-down design approach begins with the identification of the following stan-
dard areas in a GUI, or those of them that are required:

* Selection area, situated on the left of the main area. This usually contains a tree
view or other selection components.

* Work area. the main area of the dialog, and where the user’s attention is
focused most of the time.

* Secondary area, which can be devoted to the details of the current operation,
or to messages, or to some notification message not captured by the work
area.

* Other areas. Depending on the GUI's complexity, additional display areas
can be needed.

This type of organization has some common properties. Apart from the main
area or application-specific areas, the other areas should be made visible and
customizable as required by the user, and a means provided to make such
settings persistent. This may be done with toggle buttons in the toolbar for the
most commonly-used areas, while others may be located in a related drop-down
menu. Areas other than the selection and work areas should be designed as
simply as possible, in order not to distract the user’s attention. For complex
interactions that are not supported by the work area, a modal dialog is often the
best choice.

Figure 4.1 shows a sample area organization for an application’s main frame. This
(fictitious) application manages a set of geographic databases containing images
of the earth using different projections.

As we know from previous chapters, many design choices ultimately depend on
the end user population. Their working habits, the tasks they regularly perform,
and other variables all contribute to the final design. In the application above, for
example, the need for comparison of different images prompts the use of a
multiple document interface (MDI) display organization, implemented by using
the internal frames in the main area (top right). The selection sub-area in the

122 Recurring User Interface Designs

bottom left of Figure 4.1 has been added to accommodate the frequent task of
selecting the various available projections for a given image.

@ Map Manager - GUI Prototyp
File Edit View WMaps Tools Window Help

slelel [a/a] (x/0]s] [a]< 2] [&

gme N [Jn gustorn area
@ Parsonal = a prai H Misc 058
o & Drafis ECE Sample 025 10 @ main area
© [Favorites [= bott area
© [| ocal
o D - =
- [Private % i I'V
& Pub o :
& Weteo Database ! 7 \(]

@ B Northern Europe Satellite
® 2003-04-01 00:1 2:154
® 2003-04-01 001 6:344
® 2003-04-01 00:13:004
& @ Reference Maps
® Southern Europe Sateliite
@ [Middle East Foracasts
@ WWSF Database
EuroMap Database
o] AIC Database
L=l Morthern Europe Satellite
@ Reference Maps
* Southern Europe Satellite

@ = Middle East Forecasts \\ \ i
SR J."/ L
@ Jléailable Projections ﬂLE"EJ |E£J|E " = " ' " E‘|
o @\ ézg:[ln;:::a Cylindrical Equidig Source Type Size | Time | Date | Projection Diafa Validated
B Mollweide hﬂpJ’Mfw.map?.zz.jug... Reference (312 KB (2003 Apr 05 12:37:48+5 ECE {128,64)(128 64) v
& Norih Polar Siereographicl | |Tob2/wvw.dazz jug.ed. . [Reference |104 KB 2003 Apr19 12:37:48+5 ECE (128,64)(12864) v
¢ E Orthographic hiip diwenw nasa.orgim... [Reference |292 KB (2003 May 13 12:37:48+45 ORT (128,64)0128,64) vl
B Polart htipfiwsnw.maps 22 jug...[Reference |91KB |2003Apr22 [12:37.48+5 |NSP [(128,64)(12664) v
B Polar? hitpfemew.mans 2z jug.. Reference 312 KB 2002 Aprd5 12:37:48+5 ECE (128, 6H(12864) v
B satelits HEO192 Mpuiizz jug.ed.orgimapy...[Reference |93 KB 12003 Jan 10 12:37:46+5 EI (128,64)(125,64)] [
B Satellite HEG202 hitpoiterwnw. marinilli.co.. |Reference 71 KB 2003 Jan 10 12:37:48+5 BMOL (128,64)(128,64) %
H Sinusoldal ’M.ed.org}mapx... Reference |198 KB 2003 Apr05 12:37:48+5 ORT (128,64)0128,64) el
—— E— hilpuitesess . maps.azjug... |Reference | 224 KB (2003 Apr 22 12:37:48+5 ECE (1286411285 64) v/
hitifesars ez iun pd | Refarance 174 KR 003, Jan 15 1237 48+5 ECE 128 A1 28 il [l

ready.

Fiqure4.1 A typical main frame area organization (Compiere)

GUIs built using Eclipse can take advantage of the ‘flat look” GUI library, an
example of which is shown in Figure 4.2. Essentially, it exploits HTML-like
widgets to save space in high-density form-based panels. It is available only
within specialized panel subclasses, and it cannot be used in toolbars and other
general-purpose containers.

The Eclipse ‘flat look” is a valuable tool in the GUI designer’s toolbox for SWT
applications. As of Eclipse 3.1, though, it is still needlessly hard to use for

GUI area organization 123

| Example Plug-in X

Overview @ =
General Information Plug-in Content
This section describes general information The content of the plug-in is made up of four
about this plug-in: sections:
i An Example Plug-n | [/ Dependencies: lists &l the plug-ins required on
Yersion: 1.0.0 this plug-in's classpath to compile and run.
Mame: Cixt Plug-in [# runtime: lists the libraries that make up this
Provider: | plug-in's runtime.
7 i ; .
Class: . ChP g Browse... [Extensions: declares confributions this plug-in
as.s) SO makes to the platform.
Flatform fiter: [Extension Points: declares new function points
this plug-in adds to the platform.
Testing @
Test this plug-n by launching a separate Exporting @

Eclpse application: To package and export the plug-in:

1. Specify what needs to be packaged in the
deployable plug-in on the Bulld Configuration
page

2. Export the plug-in in a format suitable for
deployment using the Export Wizard

v

Cverview | Dependencles| Runtime | Extenslons Extension Points Buld | MANIFEST.MF plugin.<ml | buld.properties

Figure 4.2 Eclipse’s flat look to the rescue of crammed forms

developers. Ironically, an ‘old-fashioned” desktop application GUI should take
advantage of a newer and possibly more limiting technology: advanced Web
forms.

Multiple document interfaces

Multiple document interfaces (MDlIs) are GUIs in which several different fully-
fledged internal windows are responsive to user interaction at the same time, like
the application shown in Figure 4.1. MDlIs can be implemented in different ways,
for example as a collection of frames or non-modal dialogs in Swing.

The Swing library contains a special set of components, called internal windows,
for providing a way to manage multiple windows that are confined inside a main
window. From a usability perspective, internal frames and MDIs in general are
difficult to manage for average users, and their use is usually not needed for most
applications. Eclipse itself is an example of a complex GUI in which designers
succeeded in minimizing the use of MDI, as shown in Figure 4.3.

Another common approach to the efficient exploitation of precious GUI real estate
is to serialize it — that is, to split a long task into a sequence of simpler steps, each
rendered with the same subset of the screen area. This approach has different
names, but is most commonly known as a wizard.

124

Wizards

Recurring User Interface Designs

£ Java - FlexibleLayoutExample. java - Eclipse SDK

Fle Edt Scurce Refactor Mevigate Search Frogect Run Window Helo

L BrOTQ T | EEGT &S YT 27| &ava =

m 111 FlasibleLsyruSxampls,ava i ==
i package com.marinilli. bl.cd; A=

o5 | & sdmpert jsvax.zwing.border.*:[]

P el -~
B od
Rl bin
& sre
E-E com
Fol= mal

* gJome SUL '_eiigm PatTetrns

¥ fauther Mauro Marinilli
* Eversion 1.0

B p a -public class FlexiblsLayoutExampls extends JPrame |

;r = public FlexiblelayoutExample[) |
1 initGUI();
pack{l;
& setVisible (true);
B
.
4 >
Problems Jawacdor Search Coreole |Progress Hisrarchy [Outine I A8« ew™=0
+-07 Import declaratons ~
v | = 19, Flexble_sycutExample
< » @ © FlexbleLaycutEamplad) I

o4 farofeommarilifb fodFesdolel ayoutExamole Java

Fiqure 4.3 Eclipse’s GUI design avoids the use of multiple document interfaces

Wizards are a well-known and widespread way to organize GUI functionalities in
order to support inexperienced users. A wizard guides the user through the
features provided by the application in a simplified way, proposing only a few
choices and limited information at a time. By narrowing the available choices,
novice users are better guided through an interaction with the application. Histor-
ically, wizards made their debut in the mass market with Windows 95.

The (Advanced Java L&F Design Guidelines 2001) provides some useful advice
on designing wizards for the Java Look and Feel, and the Eclipse guidelines also
provide such advice. An example of a wizard designed to Eclipse design guide-
lines is shown in Figure 4.4.

The buttons at the bottom of the wizard are used for navigating through the various
panels, and are disabled according to the semantic state of the current pane.

In an attempt to lower the cognitive burden needed to understand GUI interac-
tions, all interactions should be kept localized and their context narrowed as
much as possible. If user data prompts a GUI notification, this should be kept
linked with the triggering cause as far as possible, so that the user will interpret it
more easily. In the case of a wizard, an awkward situation arises when a data item
inserted in a previous panel affects the behavior of another panel. In this case the
user might not be able to notice the connection, and so fail to understand the
behavior of the application.

GUI area organization 125

* Generate Javadoc ﬁ|

Javadoc Generation @
Configure Javadoc arguments for standard doclet, 1! J !

[Document tife: |

Basic Ophions Document these tags
[+ Gererate uss page [+ @author

[v" Generate hierarchy ree [+ @wersion

[v' Ganerate navigator bar [v" @deprecated

[v Ganarate Index ¥ deprecanad Ist

v Separate ndex per letter

Select referenced archives and projects to which links should be generated:

[Tz c10 - riot configured ~ Select 4l
[Ji=c4 - nat canfigured
1 o5 - nat configured Clear All
[Ji=c7 - nat configured
1 cLoaks_120.jar - not configurad
[1i7 dnsrs jar - not cenfigured
O1i gteswing, jar - nat configured
[0 hippolf. jar - not configured
1 JswaGPe. jar - not configured
17 jee.jar - not configured M
[Style sheet: |

< Back | Next > | Finish | Cancel

Fiqure 44 An Eclipse wizard to Eclipse design guidelines

Designing a wizard

We conclude this section by discussing some basic, general advice for designing
wizard GUIs. Fortunately there is much literature and infrastructure support for
building wizards in the form of high-level reusable API and classes.

Designing a usable wizard is usually not a complex task if a few simple rules are
followed. Conversely, given their simplicity and the relatively cheap develop-
ment cost of using a general framework to implement them, the opposite problem
often the case — a proliferation of wizards in application that do not really need
them. As a rule of thumb, wizards should provide an alternative interaction
mechanism to an existing feature, or be employed for non-repetitive tasks for
occasional users only.

Well-designed wizards clearly declare their boundaries, so that users know where
the wizard begins, where it finishes, and the sequence of operations within it. The
inputs and the final result should be clearly outlined, so that the user can be sure
of what they are doing.

126 Recurring User Interface Designs

Usability studies have demonstrated some interesting aspects of this kind of user
interface device. Users tend to employ a wizard only to complete a given task, and
are relatively uninterested in learning new concepts in the meantime.

Wizards can be particularly useful for the following activities:

* Dividing a complex input process into many sequential steps. ‘Serializing” a
complex input form, such as for the creation of complex data structures, is a
common case of this.

* Performing tasks that are inherently composed of a well-defined sequence of
steps. By focusing on each step, correct task completion is much more likely
to be achieved.

* Whenever users lack domain knowledge in some field and need to be guided
through operations. Consider the integration of new hardware into an oper-
ating system, or the completion of some task involving decisions and
knowledge in other fields.

Wizards for occasional, hard-to-undo operations should also provide a final recap
screen where all the important data is summarized before the user leaves the
wizard and completes the task.

The design ideas for organizing the application display area that we have shown
in this section are rather general and can be applied to many different situations.
Next we discuss another common pattern in practical GUI design — choosers.

4.2 Choosers

Principled, systematic area organization is essential in secondary windows,
dialogs and choosers, as well as in any other part of the GUI. By chooser we mean
a screen area specialized for a performing a selection task on a given item.
Choosers deserve their own discussion, both because they happen to be a useful
means of interaction in Java GUIs, and also because quite often their use has been
misunderstood.

Figure 4.5 shows an example of a chooser with three distinct areas where the user
can focus their attention:

¢ On the left-hand side the selection area contains a list that shows the items
that can be picked.

* Theright-hand side is the preview area, where the currently-selected item is
shown.

* The bottom-most part of the dialog is occupied by the standard command
buttons for deferred mode interaction and preview option.

Choosers 127

Note that in choosers the main area coincides with the selection zone, because of
the purpose of these components. To make the design coherent with the standard
layout, the selection area is still organized on the left-hand side.

I Image Chooser Demo
CompanyLogo.gif
Aboutlogo.jpg
LoginLogo.jpg

Splash.jpg

A0 5= - = r =
[¥] Show Preview e e : - = : - =

o

Fiqure 4.5 Area organization in an image chooser (Wood)

Often users need to specify one or more items while using the GUL. When this
type of choice is occasional and involves a dedicated interaction because of its
complexity, a chooser should be designed to accommodate it.

Choosers are often designed as pop-up dialogs that contain the information
needed to specify the given item. Once the item has been chosen, the dialog is
dismissed and the new value is used in the application.

Choosers are often activated by means of a button, usually a More... button. Such
a button indicates the availability of further related data that can be showed by
clicking the button. Such a behavior is signaled by the ellipsis (...) in the button’s
caption, together with a brief description of the planned action. For example,
when selecting a file from a file chooser, instead of directly entering the file’s path,
a common choice for the related ‘more” button label is Browse...

Chooser activation mechanisms

There are two main ways to show a chooser in a new window: as a pop-up
window, or as a fully-fledged dialog (often a modal one).

A useful convention is to use a downward arrow to signal a pop-up chooser for
buttons only, referred to as drop-down buttons'. In all other cases, a More... button
that triggers the related chooser dialog is the most common solution.

1. Seeicon images in Graphic conventions on page 156.

128 Recurring User Interface Designs

A chooser can be also contained in a lightweight pop-up such as the one used by
Combo boxes, which in this respect can be seen as choosers for one text value
among a list of available alternatives.

Chooser interaction styles

As we know from Chapter 3, we can have two main kinds of interaction modali-
ties for dialogs: immediate and deferred mode.

The following two examples illustrate these two modalities and their implication
for choosers: some of this discussion can be generalized for any other dialog type.

Figure 4.6 shows the standard file chooser provided by the JFC? in a fictitious text
editor application. The file is first selected, and only when the choice is committed
by hitting the OK button is the dialog dismissed and the new value transmitted to
the underlying application. This is the deferred mode interaction style.

o' X

[chooser Example

HeIIoChooser

Open

Look In: | docs ‘v‘ @E

api
5 guide
S images
T relnotes
T tooldocs
D index.html

FReady.

File Name: | |

Files of Type: |n|| Files | = |

| Open H Cancel |

Figure 4.6 A deferred mode chooser (Smooth Metal)

2. Java Foundation Classes (JFC) are the foundational libraries needed for building GUIs
with Java for JSE. They comprise the AWT and Swing libraries.

Choosers

129

Figure 4.7 shows activation of the ‘choose color” button in the toolbar, causing the
color chooser to appear. The difference from the previous example is two-fold: the
changes made in the chooser dialog are instantly transmitted to the application,
and consequently the dialog is modeless.

[F Chooser Example

o’ o’ EM

| f choose background color

FRearly.

[Swatches | HSB | RGB |

Recent:

Preview

D Sample Text Sample Text

| Reset || Close H Help |

Figure 4.7 An immediate mode chooser (Smooth Metal)

There is another possible kind of interaction, which can be thought of as a combi-
nation of deferred mode — an explicit user commit action is required — and
immediate mode: the window is not dismissed after user commit. In our fictitious
text editor, we click the font button in the toolbar, and we are prompted with a font
chooser dialog, as in Figure 4.8. Note the standard Java Look and Feel-compliant
button organization.

In this example, using an immedjiate interaction style for the font selection could
be confusing for the user and resource-consuming for the application. On the
other hand, a deferred mode interaction style like the one in the file chooser is not
optimal, because users prefer to see changes take place in a more interactive way.
By using a multiple-use, deferred mode interaction style, we allow users to interact

130 Recurring User Interface Designs

[Chooser Example

f}ﬁ;{/@ %3/50{:&6#

choose text font
Font: |Edwardian Script ITC |~|
lReady. Size: (36 | v
] Bold
| Apply &‘ Reset H Close || Help ‘
|

Figure 4.8 A multiple-use, deferred mode chooser (Smooth Metal)

more closely throughout the choice process at a level that is intermediate between
the immediate and deferred interaction style (Figure 4.6 and Figure 4.7).

The presence of two modeless dialogs can bring some unforeseen combinations.
Figure 4.9 shows our application when both modeless choosers are activated.
Note that we allowed only one chooser for each kind, by disabling the corre-
sponding command whenever the related chooser was up, although such a
combination might be required in some applications.

[F chooser Example ©

Gd m]]
‘ = ‘ choose background color =~
| Swatches | HSB | RGB |

Ee dy.]
== EEENENNEE N
choose text font 15| A 5
S Y 1 Y o I O
Font: |Mat||ra MT Script Capitals v|
Size:
[v] Bold
= view
apply || Reset | Close || Help | D 0
|
Sample Text Sample Text
: O

| Reset || Close | Help |

Figure 4.9 Possible combinations of modeless choosers (Smooth Metal)

Choosers 131

Designing the interaction mode for choosers depends on several factors. The most
important one is the kind of users that will be using them. Deferred mode should
generally be preferred over immediate mode when the user population is made
up of novices and inexperienced users. Because it provides an easier way of
undoing a choice, it implies a cleaner interaction — the chooser dialog is modal, so
it has to be dismissed to return to the application, hence the number of floating
windows is kept under control — and keeps users more focused on the main task.
Furthermore, deferred mode dialogs are more widespread in common, commer-
cial GUISs, so users are more familiar with them. Essentially we trade usability for
interaction power.

Immediate mode dialogs are used in cases in which a higher degree of interac-
tivity is preferred and more freedom is left to the user. This happens when
immediate feedback on a choice is important. Such a higher level of interactivity
helps to enhance the choice process, because it allows the differences between the
manipulated items to be seen immediately.

Item selection is distinct from item creation, but this is an artificial separation in
practical GUIs. We discussed item selection first for clarity, but a chooser is often
meant to allow users to create new items as well as selecting them from a list. In
real-world choosers these two features are often blended.

Broadening the choice

From a practical viewpoint, the chooser approach is very close to the task of
creating a new item. Real-world choosers frequently offer a way to create a new
item as well as choosing from a list of available ones. The file chooser shown in
Figure 4.10 below allows users to create a new file or folder as required.

Itis always a good idea to provide an explicit way to create new items. In the case
of file choosers, for example, new file creation is often obtained by entering a file
name that doesn’t yet exist. Unfortunately, there often is no visual hint that this
is the way to do it, and users can be puzzled by this ‘hidden’ interaction mecha-
nism, which often looks more like an implementation trick rather than an explicit
design choice.

Other than creating new items and choosing existing ones, choosers shouldn’t be
overloaded with other functionalities. One of the benefits of this design solution
is that it keeps the user’s perception of the GUI highly structured, so that users feel
comfortable and secure when interacting with it. Users know that they are dealing
with such-and-such kind of item, and can be confused if the same chooser offers
other functionalities. Real-world choosers are often polluted with management
functionalities. Such features are less frequently accessed than choice-related
ones, and are usually required only by experienced users.

132 Recurring User Interface Designs

|
= | [books - | = EJ
Create Mew Folder
= b [Crez
= b2
= b3
File Name: [bouks Open
Files of Type: AllFiles - ‘ Cancel ‘

Figure 4.10 Creating new items through a chooser (Oyoaha)

More sophisticated dialogs, like management dialogs, can be built with the same
design principles as choosers, but kept separate from them. In a word processor,
for example, one could choose the style to be applied to a portion of text using a
chooser, but the management dialog — where styles can be browsed in detail,
edited, saved, imported and exported from the outside, and so on — should be
kept separated from the simple chooser. A “‘more’ button, perhaps with a caption
like Styles..., can be made available in the chooser if the design allows users to
access the management dialog directly from the chooser.

The chooser approach can be used for selecting more than one item, as in Figure
4.11, in which users can select a list of items.

@ List Chooser Demo :”E”Z|

source destination
Cyan
elow €

Gray
Wihite k

B2

Purple
Black n Add Al ==
Qrange << Remove Al
=17 w
’ oK] ’ Cancel] ’ Help]

Fiqure 4.11 A list chooser (JGoodies Windows)

Memory components 133

Conclusions

Choosers save GUI real estate in forms and selection screens, relegating selection
to a specialized window. Choosers should be used only when the selection task is
an infrequent one — in other cases, the use of a fully-fledged selection area or other
more direct, faster selection mechanisms are better solutions.

Using choosers systematically in a GUI brings some benefits:

* The task of selecting an item is limited and circumscribed at a precise point,
both in terms of interaction time and within the GUL

* Completion signals indicating the end of the selection task to the user are
provided automatically.

* Users understand the chooser concept, and by leveraging this repetitive
interaction schema GUISs tend to be more predictable, enhancing their
quality.

* Choosers are useful both for the GUI designer and for code developers.

Item creation and item selection are two conceptually separate tasks, although
providing them in the same chooser is often good practice. When users are
allowed to create a new item, there is usually a short-cut to such a feature within
the chooser.

4.3 Memory components

Memory components are GUI components that are capable of maintaining a
persistent state. This is an implementation-oriented distinction. As an example, a
text field that keeps the history of previously-input strings in a drop-down can be
implemented with a memory Combo box.

Memory components are usual Java visual components that can have one or more
of their properties made persistent from session to session. Implementing them
can be done through a specialized service provided in Service layer®. Designers
usually need to specify only the persistent properties — in its JavaBeans meaning —
of the given widgets.

There are many applications of memory components in GUI design. We will
mention just a few here to better illustrate the concept.

3. See Chapter 7.

134

Recurring User Interface Designs

Input history

Keeping track of previous user inputs is a way to record the current user’s context,
thereby enhancing the overall usability of the GUI. Figure 4.12 shows a simple
prototype example of a text field that registers the data inserted into it persistently
throughout a session, or even across sessions*. Searching capabilities further
enhance its usability.

History Input Exarmple
Search Parameters

[Rark for Relevance
[subfolders

Keywords:

[] Sawve Res

LT
Lizer interfaces
Swing

[ox |

=p

Fiqure 4.12 A memory combo box (JGoodies Plastic)

The field in Figure 4.12 is an example of support for user input provided auto-
matically by the GUL. We will see in Chapter 13 that this and other stricter
forms of control over user input can also be implemented for Web interfaces.

Saving user preferences

Memory components allow you to make GUI preferences persistent from session
to session.

Figure 4.13 shows an example application that saves some GUI-related data persis-
tently. The figure shows some example information that is retained for the user
from session to session. Referring to the indicated areas on the figure, these are:

1.

2.
3.
4

Tree structure and expanded path

Area separators

Toolbar customizations

Internal windows, their dimension and positions

This latter feature was implemented in the pioneering character-based GUI of Borland’s
TurboPascal.

Lazy initialization 135

@ Map Manager - GUI Prototype - “E [E

Fle Edt View Maps Tools Window Help E]
[=[efo] [e]a] [x]n]e][s] [[<[>] [z][m] ry=?

Iﬁ home = ; i
=B personal B Ortrect 21
BB Drafts

- @M Favorites

. B0 Private
=@ Pub y
=8 Meteo Database

1B Northern Europe Saf [i]
= ® 2003-04-0100:1 i
- ® 2003-04-0100:1 ‘

~® 2003-04-01 00:1

o B Reference Maps

. +® Southern Europe Sa

- - Middle East Forecasti—

- @ WWSF Database

@ EuroMap Database

=8 AIC Database =l
i —|;:| B Misc 251 |
[|@ svaiable Projection %9 || = | E & || i

(B azmutnd TP Source Type | Sze | Time | Date | Projction | Data | Vald..

#- B Equatorial Cylindrical Equiq = w ey Ty 0 &

B Molweide hittp: /fainw.qazz.... Refere,., 104 KB 2003 A... 12:37:48+5 ECE (128,643(1... |

H | Ihttpo: i nasa..,, Refere.., 292 KB 2003 M... 12:37:48+5 CRT (128541, [

- B North Polar Stereographic| |nep:/fwww.maps. ., Refere... 91KE 2003 A... 12:37:48+5 NSP (12854)(1... [J

-B Orthographic http: /fainw.maps... Refere,.. 312KB 2003 A... 12:37:48+5 ECE (128541(1... ¥

LB Sinusoidd fip:/fzz jug.ed.or... Refere... 93 KB 2003 Ja... 12:37:48+5 SIN (128541, ¥
it /A marin, . Refere... 71 KB 2003 Ja... 12:37:48+5 MOL (128841, [
fip:ffzz.jug.ed.or.,., Refere., 198 KB 2003 A, 12:37:48+45 ORT (128541(1... ¥

1 | |' b e f sy e o MLeFime 27A LD WD R 172740, C_CrC 190 £ AN L4l i

eady. [l (=] (&

Fiqure 4.13 A customized application (JGoodies Plastic)

Memory components are quite important and useful in professional GUIs. They
allow user customization in a way that is natural from an end user perspective,
and inexpensive for developers. When the display organization becomes complex
it is important to provide personalization features to allow users to customize
them.

4.4 Lazy initialization

The start-up time, especially for complex GUISs, is an important aspect of GUI
responsiveness and overall user experience. This is even truer for Java applica-
tions. The latest JRE technology considerably enhances start-up time, but a
professional GUI can’t blindly rely on the invisible hand of the Java Runtime

136

Recurring User Interface Designs

Environment. There are cases in which start-up time is critical to a system’s
usability — think for example of a never-ending applet download and initializa-
tion, or a rich client application that takes ages to fill the screen with server-
sourced data. In stand-alone applications, too, snappy start-up is a feature that
end users will undoubtedly appreciate.

Optimizing start-up times should be a general habit rather than a circumscribed
procedure to be applied only in specific cases. It originates from implementation
considerations, but involves GUI design as well. GUI designers should be aware
of such considerations when designing the first window the application shows to
the user.

A note for Swing programmers. The UIDefaults class implements a
common access point to all Ul-related default values needed by Swing
components. Some of these default values are rarely accessed, for example
internal frame borders, so that employing a lazy instantiation mechanism
make sense. Swing designers used an interface, UIDefaults.LazyValue,
that is implemented by those classes that represent lazy values. Such an
interface is composed of a single method, createvalue, that returns an
Object instance. The get method in UIDefaults first checks whether the
type is an instance of UIDefaults.LazyValue. In this case the createvalue
method is invoked and the value is then returned.

Concretely, pieces of the GUI could be left hidden, and only when needed will
they be instantiated on the fly®. Suppose we have a database management utility
in which some databases are hosted on remote servers. To speed up GUI start-
up, we could avoid the expensive (in time) remote connection, the application
only connecting when prompted by the user.

Such an arrangement is implemented in the mock-up shown in Figure 4.14.

This prototype simulates an expensive connection time with a delay in expanding
the third database node in the tree: you can try it yourself by running the proto-
type. To implement this mock-up we used some of the utility classes discussed in
Chapter 5. What is interesting here is the addition of the connection delay simula-
tion in the mock-up to make the prototype more realistic.

5. Lazy instantiation (or lazy initialization) is a strategy focused on deferring the allocation of
costly resources that are not always needed until they become necessary. In this way the
cost of those resources can be saved in cases where they are not required, both in terms of
runtime and memory allocation.

Preference dialogs 137

% Database Managerment Console Prototype GU E E
File Edit Wiew Sql Help
2<¢ 2@ UYL & $Da E
- @ Auailable Databases MName Surname Age Gender Address Telephone
= a Databaze ane Juohn Doa 3z male Cne Road, Morganstein CT 0001-99-9.., | =
Customers Mary Caruso 22 female Upper street two, Manhat,,, 0039-11-7
Billz Jaimie Foe &7 male 1221 Street, Valensine ., 0043-5&-5..
Warehouse Mike Hennie 24 male 99 Ashdale Crescent, Me.., 0043-16-9..,
Log John Coe 3z male ©ne Road, Marganstein CT 0001-99-9..,
+ 8 Databasze two Elizabeth Wee 44 fermale 1542K Street, Washingto.., 001-52-76..,
+ 8 Database three James Woe 37 male 21 Street, Octen MB, C& 0023-26-5.,
Jike Hennie 94 male 99 Ashdale Crescent, Me... 0043-12-3...
John Wae 57 male Aspen Road, Pittsburgh oooi-99-9,,,
Jaimie Foe &7 male 1221 Street, Valensine ... 0043-56-5...
Lou McBennie 24 male 99 Moon Crescent, Giopt.., 0088-10-9..,
Lile Bee 34 female 1542k Street, Ormont 001-52-76...
Jike Hennie 94 male 99 Ashdale Crescent, Me... 0043-12-3...
John Woe 57 male Aspen Road, Pittsburgh 0001-99-9..,
Frank Faoe &7 male 1221 Street, Yalensine ... 0043-5&-5., =
1l U A el lenra e e lannn 100
lReadl,l.

Figure 4.14 A snappy startup GUI (Hippo)

This GUI design does not need to sacrifice performance in its implementation.
For example, we could keep a lightweight cache of the nodes the user
expanded the last time they used the GUI The net effect would be quick appli-
cation start-up, with a delay being perceived by the end user only on node
expansion. There are many possible enhancements such as this, for example
keeping only few expensive nodes in memory at time, and re-adding them to
the tree as needed, and so on.

4.5 Preference dialogs

User preferences are a common feature of modern GUIs. A widely-accepted prac-
tice that makes sense in terms of usability is to gather all user configuration-
related commands into one configuration dialog. At design time it is important to
decide what configuration information each Ul object has. Usually the preference
dialog is activated via a menu item and a standard button on the toolbar — see for
example the Library application in Chapter 15.

Even in simple GUIs there is often a need for a preference dialog, especially when
supporting a coherent means of expanding the application’s features for future
releases.

It is customary to organize preferences in a deferred mode dialog. To understand
why, consider the application shown in Figure 4.15. This shows a fictitious GUI
for a simple HTTP server. Given the simplicity of the application, operative and
configuration commands are arranged together.

138

Recurring User Interface Designs

n‘;f& HTTP Serwer Prototype SGUI

Status | Preferences | Extensions | About

http port: 050
maximum cliants: 10
min free space(KB): | 2048

£l [

Log Style: normal +
Log File: C:flogon.log

W] Hide Window an Startup
[Allew Passwerd Changes

Security Level: normal +

OK Cancel Help

Figure 4.15 A confusing GUI design (Hippo)

This confuses users at first, because they can’t easily understand the impact of the
given commands on the application, even if they are neatly separated in different
tabs. This is another case of developers dictating the GUI design. The “catch-all’
use of the tabbed pane stems directly from the implementation. Preferences
should be gathered in a specialized dialog and triggered by the related option, as
prescribed for example in the Java Look and Feel design guidelines.

The design choice for preference dialogs shown here of course differs from that
prescribed in the official Java Look and Feel design guidelines. We discuss some
of the different design choices for preference dialogs in the next section. Other
visual errors demonstrated by Figure 4.15 are incorrect alignment of the check
boxes and the incoherent vertical spacing between widgets.

Preference dialogs styles

Preference dialogs are an area in which designers’ creativity is plentifully applied.
One common design, demonstrated for example by Netscape Navigator’s prefer-
ence dialog, is that of using a tree to organize the selection area, like the one shown
in Figure 4.18 on page 140.

In simple or medium-complexity applications particularly, using a tree results in
a less usable design. It excessively burdens the user’s memory (‘Where was that
option?”) and obliges users to expand the selection area to look for a specific prop-
erty, when a simpler design would have been more effective. The Java Look and
Feel design guidelines suggest a different design choice, one that simplifies the
selection area as a non-hierarchical list. Figure 4.16 shows such a design for a ficti-
tious Java Internet browser application.

Unfortunately, such a design doesn’t scale well to complex GUIs, such as those
with many options. In such cases — when the exploration area on the left doesn’t

Preference dialogs

139

Browser Preferences

general
content
connection
security
editor
plug-ins
fonts
advanced
languages
java options
XML support

scripts options

cache

[] show only system fonts

[] use fast fonts
Predefined Font:

Agency FB

[CAmSTo W
Castellar
Centaur
Century
Century Gothic
Century Schoolbook
Chiller

Colonna MT

e mas

| »

b

4]

|0K

|| Cancel || Help |

Figure 4.16 A preference dialog designed following the Java L&F guidelines
(Smooth Metal)

result in sparse tree — the best solution is to organize the many options into a hier-
archy. A possible solution, adopted in some of the Swing examples in this book, is

shown in Figure 4.

17.

The hierarchy is realized by means of a JTabbedPane, and the exploration area on
the left-hand side, implemented with a list, points to the categories of options on
the right-hand side. Icons can be used in the selection list to strengthen the mental
association of label to options category, making options more recognizable for
occasional users as well.

Eooks

ARPlICatonPIeTErences

J General | Look | Validation |

%

D Always ask before deleting a book
default values for new hooks

@ emptyvalues
() use as atemplate:

| default

18

'f 6154)(— Cancel)(— Help)

Figure 4.17 A preference dialog with a different design (Liquid)

140 Recurring User Interface Designs

This design isn’t too dissimilar to that prescribed by the Java Look and Feel design
guidelines and shown in Figure 4.16, but can accommodate more complex GUIs
as well. Moreover, it forces designers to organize the options in a hierarchy at most
only two levels deep.

When a GUI is complex, the previous design doesn’t work well and we need to
resort to a more powerful design, such as that shown in Figure 4.18, which is taken
from the Eclipse 3.1 preference dialog.

= Preferences

bypa fiter text bl General

- I _

Appearance [Abwares runin backgroond
Copabiitioz [Keep nextirevious part didsg open
ComparePalteh Dpen mode
Content Types " Double cick

i Ecilars. Singe dick
Kevs I
Parspectves
Saarch ft
Startup and Shutdown Note: Tris preference may not take affect cn Al views
Web Browssr

=-Wirkspace

+ AT
+ Hep
+ [rstaliUpdate

+ Java
11 FlLgHn Deveprment

1 RuDebug
= Team
®H-CVS
Fie Cortart
Igrored Resources M HERY

Il ancel

Figure 4.18 A view of the Eclipse 3.1 preference dialog

The Eclipse 3.1 preference dialog employs a search facility — the Combo box at
the top of the exploration area on the left-hand side of Figure 4.18 — that acts as
a filter for showing only those pages with occurrences of keywords that match
the filter text. This makes it possible for users to access the required preference
pages by keyword, instead of walking the exploration tree looking for the right
preference page.

For complex applications this preference dialog design can be used for functional
purposes, for example to gather business domain configuration data. Figure 4.19
shows an example of this idea, again from the Eclipse GUI. See how the general
Content structure is almost identical to that used for the dialog in Figure 4.18.

Waiting strategies 141

® Properties for ¢4

type fiter text ~| Java Build Path Y
Inf
Buldrs i Source | 1 Frojects = Lbraries | % Order and Export |
MRz and class fokders on the buld path:
Jarva Code Sty + g ClLooks_120.ar - DiMauro\work\bocks\B Dpriock & Add 1ARS...

Code Templates
Formatter
Organize Imparts

= gswing jar - DeipMarciwork\book iR Npriilocks &
= @ hippolf jar - C\Mauroiwork\books\B prfiocks & fe

|

Add External 148s... |

5) JavaGRE Jar - DMauro\work books\B 1\prijooks & Add Variable... |
|

|

T “‘: ::T’m = s Mgr-1_00s - Di\Maroiwork\projectsyibs
: :N v i) bt Jor - D MaLrotwork \books B e Tkocks & fe Add Liwary...
1:;;:. A= W @ looks-1.3,1)ar - O Waroiwork\books\B Tprlooks Add Class Foldar...
g o &) metoua 2p - D:\Maro\work\bocks\B 1\prNocks 8 b
vt oodiion 5 @ rapkriaf far - DAMaro\work\books\B 1\prifocks &
Profect Refererces = Nextflar - DOMBrciwork\Books B I\prijooks & fedl
it +) oanfjar - DMaroiwork\books\B I\orfdocks & feels

= f OfficelnPs jar - D-Maureiwerkibocks\B lprjilocks &
+ &) [pagosoft-plaf jar - D\MaLro\work\books\B I\prijocks @ fees)
< ¥

Defauit output folder:
cafbn Browse... |

o] o

Fiqure 4.19 The Eclipse 3.1 project properties dialog

Despite the fact that the GUI design device is almost identical, the two
previous designs are different and should be kept distinct in the GUI to avoid
confusion. A useful approach is to always stick to rigorous naming conven-
tions: ‘properties’ are business-domain data, with one property dialog per
business domain type, such as Person, Project, and Account properties, while
‘preferences’ are extra functional configuration data, with one preference
dialog for the whole application. Designs should also be optimized for each
user type: only repetitive users should need access to preferences, while prop-
erties dialogs should be made more easily accessible and usable, for example
by providing contextual menu access.

4.6 Waiting strategies

Managing user interaction while tasks are being carried out by an application is a
common issue in GUI design. Responsiveness, as we saw in the first part of this
book, is an important feature in modern user interfaces. Just as with people, we
have the feeling that a slowly-responding person is somehow unintelligent, and,
false as it may be, we call them a ‘slow” person. On the other hand, gadget-laden,
baroque GUIs are no more usable than sober, plainer GUIs. The Java Look and
Feel favors the latter approach both as a deliberate, wise choice, and as an unde-
niable practical necessity.

Java desktop GUIs — mainly J2SE, but also J2EE — may suffer from responsiveness
problems. Indeed, competing platforms have listed this as a major drawback of
Java GUIs. However, careful design and implementation can easily produce

142

Recurring User Interface Designs

(relatively) snappy, responsive GUIs in Java. We will see some of the little details
that can enhance the responsiveness of Java GUIs in this chapter. We will again
consider both GUI design and low-level implementation details.

One of these techniques is quite effective when medium-long tasks must be
accomplished, and turns out to be quite common and easy to implement in prac-
tice. A common problem is to inhibit user input during computation. A solution
to this when using the Swing toolkit is to use the ‘glass pane’” component or
similar methods to divert input events from the GU]I, as it is temporarily unable
to process them correctly. These can be neat technical tricks, but they often lack
usability considerations and a sound cost-benefit balance.

A better solution would be to focus on communicating with the user, showing
them the current application state. A modal progress dialog does the trick nicely:
an example is shown in Figure 4.20.

£ Operation in Progress

Connecting to the Server..

I ' Stop

Figqure 4.20 An example progress dialog (Ocean1.5)

This simple solution has a number of advantages:

i. It shows the user what is happening.

ii. It gives the user the option of canceling the process.

iii. As an aside, the modal progress window intercepts all the events directed to
the underlying visual controls.

In practice there are many cases in which tight control over a task is not possible,

for example a client—server connection to a Web service, where completion time is

not known a priori. In this cases a simple solution is to provide an activity indicator

only, using an “indefinite progress bar,” as shown in Figure 4.21.

2. Connection in Progress

Retrieving Preferences from Server..

| I stop

Figure 421 An example of a indefinite progress dialog (Ocean1.5)

Unfortunately, progress windows are not commonly seen in older Java GUIs, even
in the simplistic arrangement proposed above, because of the cost of implementing
them with low-level Swing components and the related threading infrastructure.

Waiting strategies 143

Things are simpler with SWT GUIs and the Eclipse RCP that provides a framework
for supporting concurrent tasks. It is possible to choose between asynchronous
(running in background) and synchronous (blocking user interaction until done)
tasks, and this choice can be also offered to the end user, as shown in Figure 4.22,
which is taken from Eclipse 3.1.

Cleaning selected projects
y Cperation in progress...

Cleaning output folder

Cancel Details >=

Figure 4.22 A progress indicator in Eclipse 3.1

Background execution basically uses the same implementation, but leaves users
the ability to interact with the IDE while the task thread is running. When this is
chosen, Eclipse 3.1 represent the task in the bottom right-hand side of the main
frame in order to be less intrusive. Users can still interact with the task, stopping
it, viewing details, and so on, by clicking on the button icon in the low-right
corner, shown in Figure 4.23.

B\ e w0

Ea

W

7 2 1l Building workspace: (2% m ¢

Figure 4.23 An Eclipse 3.1 progress indicator

The same indicator implemented with Flat Look is shown in Figure 4.24.

& Building workspace
ENRENNRENNRRENRERRRNRRRNRRRNNRRNNRRNNRRNNEE
{Found 138 errors + 1537 warnings) C...c8/src/com/marinillib1,/c8Aimezone

Figure 424 An Eclipse 3.1 Flat Look progress indicator

144 Recurring User Interface Designs

4.7 Flexible layout

Generally speaking, a well-designed window is first a usable one. Usability is
frequently helped by the capability of resizing the window to enlarge it, or even
to enlarge only a portion of it, according to the user’s wishes.

Translating this into Java code means reconsidering our component layout philos-
ophy. Usually designers tend to design “static’ windows, in which the widget
visual organization is designed in a once-and-for-all fashion: such windows are
easier and cheaper to design and build. Only for the main window or particularly
critical windows is the layout is allowed to be variable, usually in the form of
window resizing or using some JSplitPane here and there. This is easier than
considering all possible user resizing needs or other related interactions, and also
eases development.

Consider the fictitious GUI in Figure 4.25, which represents a hypothetical mock
up for a peer-to-peer file exchange application. The first two areas list locally-
available files and currently-exchanging ones. The bottom-most area represents a
chat facility.

Consider the dynamic layout organization of the main frame. Allowing the
window to be resizable is not a proper solution: the user might need to enlarging
some of the internal lists, and this is not allowed by the design — its developers
wrongly thought that a scroll pane would provide all the flexibility the user needed.

< pger-to-Peer File Exchange Prototype GUI -- Inftial Version = |ﬁ|&|
Flz Edit iew Help
i< >® @@L |7 ¥ Db [
File Nama Siza Typa Extansion Status Fraazad
COLnar ure Ensa mble .50 VB IiLisic mp3 Checksum Error | | A
Are you Lonesome Tonight 3.9 MB Music mp3 Diovenloading
Maroc Desert 453 KB Image jjue] Searching
\inoden Soldier March 1429 MB Pusic avi Downloading | v
Sweet Jane 450ME Music mp3 oK |
Morandl's Bast Botties 1.20MB Image alf |Searching
Cells Francesca's True Cross Cy... 459 KB Image aif Dovenloading
Me 45 KB Image & Ok |
Gald Cycle |1.40MB Image aif Downloading | |
My Doggy 245 KB Image il oK b
File Hame Sizz Type Extensian Status Freezad
Cuverture Enssmble B5EMB Music mp3 Checksum Error | o I P
Are you Lonesome Tanight 29 ME IiLisic mp3 Downloading | |
Maroc Dasert 459 KB Irnaga jlelx} Searching
Afoocen Soldier March 14.29 MB Pusic ai Dovenloading W
Sweet Jane 4.50 VB Music mp3 ok
orandi's Bast Bottas |1.2oMB Image aif Searching |
Della Francesca's True Cross Cy... 453 KB Image gl Downlaading
Me A5 KB Image ai Ok
Gold Cycle 1.49 M8 Image aif Dovwrloading
My Dooggy 243 KB Irmage avi Ok] 1
Chat -
v
Ready,

Fiqure 4.25 A not-so-flexible layout (Office2003)

Flexible layout 145

A slightly more sophisticated design like the one in Figure 4.26 greatly enhances
the usability of the application. Note that the two designs look pretty much the
same from their (static) screenshots. It is in their dynamic behavior that the better
quality of the second design becomes clear. Figure 4.26 shows this by using
arrows.

Peer-to-Peer File Exchange Prototype GLUI
File Edit Wiew Help

#<42@ @@0 m X b
File Marne Size Type Extension Status Frozen

ULVENURE ENSEBIE 4.5 Wik MILISIC [iy=F] _NECKSLIM EFror v F.

Are you Lonesorme Tanight 3.9 MB Iusic mp3 Diowriloading v —
IMaroc Desert 459 KB Image g Searching v
\Wooden Soldier March 1420 MB |Music avi Dowriloading P
lSwreet Jane 450ME [Music rmp3 oK, /
WMorandi's Best Bottles L20ME [Image gif Searching Y
lCella Francesca's True Cross Cy... 453 KB Image gif Dowriloading !
e 45 KB Image avi oK, v
lGold Cycle 1.49 MB Irmage gif Dovwriloading

Saggy 245 KB Image awi Ok —
ter Holidays 2004 453 MBE Maovie rmpz Checksum Errar v h
File Marne Size Type Extension Status Frozen
Maroc Desert 459 KB Image irg Searching A
Wiooden Soldier March 1420 MB |Music awi Dowriloading v
Sweet Jane 4.59 MB Music mp2 Ok o
Marandi's Best Bottles 1,20 M Irnage gif Searching i =
Della Francesca's True Cross Cy... 459 KB Irnage gif Dowriloading
45 KPR, Imane i i b
~

eady,

Figure 4.26 A more flexible layout (Office2003)

Any component in the window can now be enlarged as required, greatly adding
to the GUI’s usability. The implementation of this enhancement came quite
cheaply, as we used only two split panes to do the trick. The point here is in the
idea of thinking of any of a GUI's window layouts as flexible ones.

Hence, thinking dynamically about the layout of windows is essential for quality
design, and has a relatively low impact on their development. Considering the
possible degrees of freedom of a GUI usually isn't a demanding operation.

146 Recurring User Interface Designs

Unfortunately, developers and designers tend to neglect this aspect, producing
nice-looking but totally rigid windows that could be made much more usable
with only a little additional effort. Systematically considering how to make your
GUI flexible is essentially a change in design and implementation habits, but one
that can greatly improve the quality of the resulting GUIs with only a little extra
effort.

It is usually a good idea to make all dialogs —not to mention frames — resizable
by the user. Unforeseen combinations of local and language locale settings,
monitor resolution, and other factors can make your GUI unusable, even if it
looks neatly designed in the development environment.

4.8 Common dialogs

GUI designers often tend to find themselves dealing with the same problems,
such as showing information about their product, or notifying something basic to
novice users. Over the years some design solutions have become consolidated in
the industry. This section describes a few of the best-known, as implemented for
the Java platform.

The ‘About’ dialog

This is a very common feature of GUIs, where details of the application are shown.
Such a facility isn’t mere cosmetics, in that information such as the license data,
the software version, or the list of the JAR files currently loaded, can be accessed
by users. As prescribed by the Java Look and Feel design guidelines, this informa-
tion is usually organized into two dialogs, one for the essential data, and a second
with additional information.

Depending on the complexity of the application and — more importantly — the
degree to which you want to make it visible to end-users, you may decide to show
only a portion of such data in your “About’ dialog. Technologies like JNLP® solve
many of the commonest debugging and deployment problems, so that showing
too many details of your application in the “About’ dialog may not be really
needed.

6. See the example application in Chapter 14

Common dialogs 147

Main panel

The organization of the main panel is discussed in the official Java Look and Feel
design guidelines. Figure 4.27 shows an example of an “‘About” dialog.

About J-Mailer Pro

J—Mailer Pro

Wersion 1.00.0.0002

© 2002 J-Azymuth Technologies Inc, All Right Reserved,
Portions of this software are copyright of 3-SpellChecler
and Atamata Software Ltd. of @ 1998-2003 ZZ Group.

All rights reserved.

blah blah blah blah blah blah blah blah blah Blah blah blah

Info.. Close

Figure 4.27 An About dialog example (Hillenbrand Windows)

Exploiting Web visual conventions, some areas of the ‘About’ dialog, such as
manufacturer’s information, may be made clickable like a link on a HTML page.
The ‘About’ dialog in the example application in Chapter 15 shows such a tech-
nical trick at work. Here however we prefer a plain implementation to introduce
the issue.

The visual organization of the main information panel, as prescribed in the Java
Look and Feel design guidelines, is shown in Figure 4.28. The highlighted areas
are: (1) product name, (2) dialog banner, (3) text information, (4) company logo,
and (5) interaction buttons.

The way to reach the additional information dialog is suggested in the form of a
single Info... button in Figure 4.27 and Figure 4.28.

148

Recurring User Interface Designs

@l S
© 2002 }Azymuth Technologies Inc. All Right Re ;
Portions of this software are copyright of 3-SpellC

and Atamata Software Ltd, of @ 1998-2003 ZZ
“All rights reserved.

bIaH'blatL_tiIah blah blah blah blah blah blah blfﬁblah E:ﬁ’h

—_ —_

Fiqure 4.28 JL&F About dialog main panel organization (Hillenbrand Windows)

Additional info panel

A few words about the additional information panel, displayed prompted as a
separated modal dialog when the Info... button is clicked, are relevant.

You aren’t obliged to provide an additional information dialog in your ‘About’
dialog, as long as the data you need to show can be neatly accommodated in the
main panel. If required, information stored in the additional information dialog
can include:

JAR files listing, each with its dimension and exact version.

Java system properties, such as the current JRE used, the heap size, the locale,
and so on.

The version of the application.
Some of the more important application-dependent configuration data.

Other configuration data, such as the version and type of some of the Java
extensions currently used.

External modules, required applications, third-party libraries and the like.

Common dialogs 149

This data is usually organized in tables and labels ordered by means of a
JTabbedPane.

A general-purpose implementation of an ‘About’ dialog component that
complies with the Java Look and Feel design guidelines is provided with the
code bundle for this chapter. Our class implementation offers many construc-
tors: you can specify the parent frame, the additional information dialog, the
main image, and the company logos. When the empty constructor is used, the
dialog is instantiated with a set of default values documented in the source
code for that class.

Log-in dialog
Some applications need to identify specific users before they are granted access
to the full functionalities of the GUL This is usually done by means of an authen-
tication phase, in which the user is requested to insert a log-in name and a
password. An example might be a thick client application that needs to access
sensitive data on the server, or a personalized application that has been tailored
to a particular user.

In such cases a log-in dialog is shown. The Java Look and Feel design guidelines
prescribe principles for the design of such dialogs. Figure 4.29 shows an example
of a standard Java log-in dialog.

Log In

Login Marne: |Mau| |

Password: | |

Fiqure 4.29 An example of a log-in dialog (Tonic)

Simpler dialogs, such as those without a product header at the top of the
dialog, can also be provided, but it is always a good idea to make the identity
and the purpose of the authentication phase explicit to the user, providing a
recognizable indication of your application.

150 Recurring User Interface Designs

First-time message dialogs

The first time an operation is performed, inexperienced users might need to be
reassured about the GUI’s internal state, to answer the mental question ‘what is
going to happen now?” This can be done neatly by using message dialogs that
describe the operation that is about to be performed, or that has just been
performed. Allowing these dialogs to be shown only when required avoids
annoying the user in subsequent sessions and makes the application more usable.

Figure 4.30, Figure 4.31, and Figure 4.32 show three examples of this kind of expla-
nation dialog:

* The dialog in Figure 4.30 notifies the user of the consequences of an opera-
tion they have performed.

Command Info 8|

@ This command will affect only this view. It will not affect
neither the other views nor the global data model.
Use the ‘delete all' command to affect all views and the
global data model.

[Don't show this message again

Fiqure 4.30 An example of a first-time only explanation dialog (Ocean1.5)

* The dialog in Figure 4.31 allows the application to both acquire an answer
from the user and to avoiding asking the question again.

Unknown message type management B|

Iz‘ You received new messages of an unknown type (“.msg").
This message type is not registered with the application.
Do you want to save these messages in the
Message Inbox Folder?

Remember this choice in the future.

[_] twou can always change it from the
Preferences Dialog)

Figqure 4.31 A first-time only explanation dialog (Oceanl.5)

Common dialogs 151

In Figure 4.31 the dialog also explains where to find the option even when
turned off. Sometimes insecure users avoid switching off a feature, fearing that
they won't be able to restore it easily in the future. If wisely employed, such
little details greatly increase the overall usability of a GUL

* Finally, Figure 4.32 shows another example of a first-time dialog, in which
such a facility is used to warn the user explicitly about the effect of the opera-
tion they have performed.

First-time dialogs can be implemented easily using simple memory components.

Settings Notification

A To make these changes effective
you should shut down and restart the server.

Don't show this message again

Figure 4.32 Another first-time only explanation dialog (Oceanl.5)

Splash window

Another commonly-used window in non-trivial GUIs is the screen that appears
during application start-up. This window entertains the user during start-up and
informs them of what is going on while waiting for the application. The Java Look
and Feel design guidelines suggest a way to organize the visual appearance of a
splash window.

A splash window is a good place to show an application’s identity. A GUI
compliant with the Java Look and Feel design guidelines doesn’t loose its iden-
tity — rather, it becomes more usable and recognizable by users. The splash
window is one of the correct places to put your application’s “personal” touch,
so is important to not to waste such a chance.

152 Recurring User Interface Designs

An example is shown in Figure 4.33.

Sahara-J

z

almost done

Fiqure 4.33 Splash window example

In this case you might find it interesting to look at the source code. This
consists of a reusable yet simple class that provides all the functionality for a
splash window. It provides a way to set up the static image shown in the
window, the text in the message label at the bottom, and a mechanism to hide
or show it as needed. The SplashWindow class is provided in the code bundle
for this chapter.

4.9 Command components

This section discusses GUI components for managing user commands.

Menus, toolbar buttons and other means of asserting commands are an important
part of a GUL It is therefore no wonder that the Java Look and Feel design guide-
lines describe how such components should be organized in detail. We will give
some examples here.

Figure 4.34 through Figure 4.38 show examples of a fictitious application that
adopts the official guideline’s suggestions for menu organization. As with all the
other examples, you can run these on your own computer. Apart from menus,
Figure 4.34 shows the use of command palette internal frames, which can be used
in a multiple document interface (MDI) environment.

Command components

Figqure 4.34 Examples of various command components (Ocean1.5)

B

-r] Commands Example Proto... |:||E”Z|

File Edit View Window Help

=

¢|2|¢||w|ss]a|=s

Just an example..

--- » |

@lajs]a]a[s/e

-] Commands Example Proto... |:||E”z|
Eile| Edit View Window Help

RN E I
& Open Ctrl-0
., Reopen ¥ file 0DD1
o = file 0001
S TS
i Save As
Save Ml Cti+MaiuscA
&> Page Setup
& Print... CHil-P
Exit

153

Let’s focus on menus first. The Java Look and Feel design guidelines prescribe a
suggested structure for common menus, like File, Edit, and Help. Figure 4.35
shows the File menu. When the same commands are available through a toolbar,
it is customary to associate a unique icon to the command to make it more recog-

nizable by the user.

154

Java - Ecli 1]

Open Fie. ..

[l Bt Navigate Search Project

K

Corvert Line Delmiters To

Switch Workspace..,

i Imgert...
i Exprt,

1 Manjava [ca/snk
2 CcearngaptryApp.

oo manrd Lo
Wjava [e7fEcfom).]

3 veryLargeTree java [chl2frefoom/)...]

< Exampie java [chi

Bt

Figure 4.35 Eclipse menus

2fercjoom... (k]

Recurring User Interface Designs

& Package
@ Class
& Interface
@ Erum
& Arrtation
&5 Saurce Folder
L5 Folder
Fie
Uit Tt Fle
B 20l Tt Cae

Ciother... Cirle

The standard Edit menu is illustrated in Figure 4.36 for both Swing and Eclipse.

2 Undo Crl-z
& Redo
cut Ctrl-x
% Copy Cirl-C
Paste Cirl-
T Delete
Find... Ctrl-F
& Find Again Cti-G
@b Replace.. CilF
Select All Cirl-a
< undo chl+z
> Redo Chyl+ ¥
of Cut Shift+Delete
[= Copy Cirl+Insart
& Paste Chrl+
¥ Delete Delete
Selact All Cirl+A
Find/Replace.. Chl+F
Add Bookmark...
Add Task...

Figure 4.36 The suggested Edit menu organization for Swing (Metal) and Eclipse

Command components 155

Figure 4.37 illustrates an example of the View menu that employs radio button
menu items for selecting the application’s icon size.

When information is accessed only infrequently, as in the case of the icon size
for the application shown in Figure 4.37, the information can be put in a global
configuration (preferences) dialog instead of directly in a menu.

Another example of menu organization is shown in Figure 4.38, which is taken
from a fictitious graphics application.

o] Commands Example Pro... I':”E|g|

File Edit View Window Help

B = 0 Large lcons 0 oEm B
0 Small lcons —l

&, Zoom In
@, Zoom Out

*Zoom out

@ Refresh F5

Figure 4.37 An example of view menu organization (Napkin)

Help

Contents
Tutorials
Index
Search...
Release Motes

@ Tp of the Day
About MyApp

@ welcome

(@ Help Contents
37 Search
Dwnamic Help

Key Assist... Cirl+Shift+L
Tips and Tricks..,
Cheat Sheets...

Software Updates v

About Eclipse SOk

Fiqure 4.38 Help menu suggested organization for Swing (OfficeXP) and Eclipse

156 Recurring User Interface Designs

Contextual menus are another important category of menu, one that should be
made available for medium-large, non-form based applications, like that shown

in Figure 4.39.
k MemoryFactory . eventual lVShowopt lonFane |
- L L
Toggle Breakpaint
nge= effectivein’+
wut down and restart the secv
‘tion®,
Jjave y [TON,
W T 1 Java Apolicaton Hit+shift+D, 1
Team 4
Compare With y| B Debug..
a Replace with 4
wa Acd Bockmark...
A Task..
W Show Quick DIF i Shift+
Ehow Line Mumbers
Folding + iding | Problems
A i rogrammiiJavairel.5.0_02Vin\javaw.exe (10
Frefererces... et W -O2pin L

Figure 4.39 An Eclipse contextual menu

Expandable menus are a menu variant that is supported natively by SWT, as
shown in Figure 4.40, which is also available for Swing through third-party
libraries. Clicking on the title minimizes or expands the menu as required.

Related Topics

~ About Java Editor

Each workbench window containg one or more
perspectives, which are made up of varous
vigws and edtors,

B werkbench
B perspectives
= workbench Management

fit: Dynamic Help
ch reslts:
1% Preparing the workbench
[Sibling products in a common source tree

B Cverlapoing products in & commaon source
ree

B Crganizng sources
Fiqure 4.40 An expandable/collapsible menu

Graphic conventions

A number of conventions are adopted in SWT and the Java Look and Feel design
guidelines. The latter provides four standard adornments for expressing common
functionalities in button icons, as shown in Table 4.1.

Command components 157

Table 4.1 Graphic conventions for Java L&F button icons

Indicator name Use Example icon
Drop-down menu A pop-up menu appears when clicking @”

the button i
New object A new object of the given type is created

following the current GUI metaphor

Add object An object of the given type is added
following the current GUI metaphor
Properties Prompt a property/setting window for that
object ﬂ

The Java Look and Feel design guidelines describe the graphics for any of the
adornments in Table 4.1 in full detail. The guidelines also warn designers about
mixing two or more indicators in the same icon. Take the case of a ‘new item’
button that brings up a menu with a gallery of items available for creation. We
should use both ‘new object’ and the ‘drop down menu’ indicators. We can
slightly modify the button interaction to use only one indicator by resorting to an
object gallery dialog that will work as the pop-up menu, leaving only the ‘new
item” adornment to the toolbar button. When the user clicks the button, a dialog
appears that allows them to choose the type of new objects they want to create. In
this way the button can be left only with the ‘new” indicator.

An interactive example of the use of the button graphical indicators is provided
with the code for this book, and shown in Figure 4.41.

Ba¢de Planess
e e e e e |

Figure 4.41 Examples of button indicators at work for the Swing L & F

Apart from the standard adornments, there are a number of other common graph-
ical designs for buttons. For example, customizing the main window areas is a
common task. You can use a toggle button for collapsing unneeded window areas.
For more details, see (Java L&F Design Guidelines 2001).

Toolbar composition

Toolbar creation is a topic necessarily involves implementation considerations.
From a software design viewpoint, the toolbar composition is mainly a creational

158

Recurring User Interface Designs

problem. The issues with which developers are often concerned are how toolbars
are assembled, and from where the commands are obtained.

We provide various implementation strategies for command management
throughout this book that can be employed in a wide range of situations. Prob-
lems arise when the application needs to support dynamic toolbar composition.
There are of course several different levels of features that can be supported.
Loading new commands when new modules are plugged into the application can
be achieved via JNLP technology, and does not require any special programming
such as reading commands from properties files and the like. As the JNLP
protocol becomes more popular and widespread, its more advanced features,
such as the JARDIff format, which allows downloading of only the portions of the
JAR files that change from version to version, can ease the development of this
kind of feature, not only for mounting new modules, but also for applications
updates. The more popular solution, though, is to employ a plug-in architecture.

Another typical toolbar feature is enabling users to customize application tool-
bars. We briefly touched on the issue of user customization in the section about
memory components. Conceptually, menus act as a predefined and logically-
organized repository of the available commands for an application, while toolbars
are often left to the user to customize: they may contain a subset of all possible
commands, or can be even switched off completely by the user.

Some software designers like to use more sophisticated mechanisms for
toolbar creation, based on negotiation protocols between the GUI builder and
the objects that are publishing their functions via the GUI. We will not discuss
such architectures here, especially because they tend to needlessly complicate
the class architecture and weigh it down at application start-up — which, as we
have seen, is a critical issue for Java applications. Usually a thoughtful and
neat class design can provide many such features without sacrificing runtime
performance.

Command composition

Several implementation considerations affect GUI design.

Contextual menus are a useful way of organizing user interaction. The underlying
implementation should be taken into account for cost-aware, professional GUIs.
One common issue is the gathering of commands from different GUI items into
one menu. The user is not aware of such composition, but this mechanism has
several benefits:

* [t organizes the menu commands in more rational groups or hierarchies.

* It allows for an elegant mapping into an OOUI and the OO implementation
of the designed GUI. Each item is mapped into an OOUI object, then into

Command components 159

several Java objects. The complexity of the GUI is divided into smaller,
coherent pieces, each one exposing some specialized commands.

* The creation mechanism of complex menus is made systematic and general
in order to be extensively adopted in a wide range of GUIs.

* Itestablishes a standard, general logical division between the responsibilities
of complex commands, possibly involving several objects. Many commands,
belonging to different objects, can be composed together in a unique menu.
They are kept separated in compartments by separation lines within a menu
for a clarity.

Command composition is not merely the gathering of available commands from
each of the relevant GUI objects. The most general scenario involves the negotia-
tion of commands among the classes involved. In fact, some commands may be
not applicable in the given context — for example, an administrative user often has
more commands available than normal users — and they may not even appear in
the menus, or some commands may depend on the interaction of several objects,
and so on.

An example of this latter case might be a list of items: depending on the current
selection, the contextual menu can show selection-dependent commands. In a file
listing window, for example, when selecting all image files, a Create animation
menu item could be included in the pop-up contextual menu.

Figure 4.42 shows another example of this technique, in which the Eclipse GUI
requests all its loaded plug-ins to provide their available views.

Run Hep
gy @ New Window
Qpen Perspective 4
Show Vie 4 & At
Console Alt+Shift+Q, C
Customize Perspective... =)) Q
Save Perspective As [, Declaration Alt+Shift+Q, D
p
Reset Perspective 2] Error Log
Close Perspective e Hierarchy Alt+Shift+Q, T
Close All Perspectives @ Javadoc Alt+Shift+Q, 1
5. Mavigator
Navigation Y| Bz outine
Preferences... [% Package Explorer Alt+Shift+Q, P
|21 Problems
4" Search At+Shift+Q, S
Other...

Fiqure 4.42 Eclipse 3.1 Example of command composition

160

Recurring User Interface Designs

From a programmer’s viewpoint, in such complex cases it may be useful to
employ a Java class devoted exclusively to negotiating the commands, populating
the pop-up menu, and executing the more complex, cross-objects commands that
are often needed.

4.10 Accessibility

Software accessibility is now legislated for in the USA and some other countries.
It is an important commercial market, and supporting assistive technologies in Java
is quite easy. When designing a GUI, the following four main disabilities should
be taken in account as a minimum:

e Color blindness
¢ Partial or total deficit of vision
* Partial or complete lack of hearing

* Partial or total absence of mouse and keyboard use

Other more complex disabilities (including cognitive ones) exist, but we do
not cover them. The interested reader can refer to some of the URLs provided
at the end of this section.

Designers should prepare their application for interaction with external assistive
technology tools, such as screen magnifiers. This is only one side of the coin,
however. The GUI should be made highly customizable for fonts, their size,
colors, and so on. Color-blind users can need color combinations that may seem
strange to others, while users with impaired vision might require unusually large
fonts, and so on.

As a default, JFC applets and applications — and with some limitations, AWT ones
as well — use the settings from the underlying environment. Fonts, their sizes,
system colors, and other settings are therefore inherited automatically, as long as
the application does not explicitly set them.

When implementing ad-hoc components’, Swing developers implement the
Accessible interface, which provides the core of accessible data that is used by
assistive technologies. Naturally, Eclipse support for accessibility is provided
as well.

7. See Chapter 16.

Navigation and keyboard support 161

Testing the final product for accessibility

No matter how diligently accessibility is designed into an application, the final
test is its use by users with real disabilities. Although the next chapter covers GUI
testing, there are some practical considerations worth mentioning here.

Firstly, we need to test the application for keyboard support without the mouse
(you could even take it away). This allows an application to be tested entirely via
keyboard: we need to verify that all the parts of the GUI remain accessible using
only the keyboard. Usability should be verified as well — shortcuts, mnemonics,
accelerators, and so on. Colors and fonts settings can be tested by choosing a large
font size, say 24 points or more, and verifying what happens to each window in
the application.

A special Look and Feel class is available from the Sun Web site for Swing that is
designed for low-vision users. A GUI can also be tested with external assistive
tools such as IBM’s Self-Voicing Kit for Java.

Conclusions

This is only a brief discussion of accessibility in Java GUIs. There are many useful
resources on the Web: IBM provides an excellent source of material on this issue,
as does Sun’s Web sites:

http://www-3.ibm.com/able/guidelines/software/accesssoftware.html
http://www.sun.com/access/developers/developing-accessible-apps

Many other resources on this important issue are available on the Internet.

4.11 Navigation and keyboard support

Navigation is the flow of control from one window to another. This section
discusses navigation between elementary widgets. Navigation between screens
has been touched on in various parts of this chapter, such as the discussion about
wizard design, and will be discussed in depth in Chapter 9 in the section on Web
user interfaces.

Keyboard support for command selection is essential in usable GUIs. Experienced
users tend to use quicker ways of performing the same operation as they become
knowledgeable with an application. The keyboard is a good way to shorten inter-
action times for expert users, as it doesn’t make the application more complicated
for novices.

Keyboard shortcuts

The JFC library provides a complete set of tools for handling keyboard input at
various levels of abstraction. We won't get into programming details here, but it
is important to consider these features when designing a GUL

162

Recurring User Interface Designs

A useful feature for enhancing the navigability of your dialogs is to provide a
default button that is activated when the user hits the Return key. The Java Look
and Feel will signal this special button, as shown for example by the Close button
in Figure 4.30. Support for the Escape key is also widely used in dialogs, when-
ever appropriate.

Keyboard support should be designed while bearing in mind that it will often be
the main support for repetitive users. As such, it should be employed to cover all
the application’s functionalities, even though critical ones where data can be lost,
such as Delete, or closing a dialog, shouldn’t provide keyboard shortcuts.

Tab traversal

The tab key is used for moving the focus between components in a window. By
repeatedly pressing the tab key, users can navigate through all a window’s
components. Designing the correct traversal sequence enhances the usability of
the GUI for those users that take advantage of keyboard support.

This feature is especially important for windows that are used frequently, such as
data input forms. The default sequence is dictated by the order of component’s
addition into the window, as in the code listing, and can be modified explicitly by
the focus framework provided in J2SE 1.4 and subsequent versions. An example
of tab traversal in a simple dialog is shown in Figure 4.43 — the arrows indicate the
movement of the focus for repeated presses of the tab key.

& Library Of Congress - Contents @
name: iibraw Of Congrass _?

address: Wa|

Lecture Notes in Computer %...
Java Deployment

Proceedings of Computer Sci...
SuperPowerful GUls

Books:

Fiqure 4.43 Tab traversal in a dialog

Internationalization 163

Tab traversal is a form of keyboard support, and as such it follows the general
rules discussed here and in the Java Look and Feel design guidelines.

4.12 Internationalization

The design of applications suitable for a global marketplace, referred to as inter-
nationalization, and the related topic of customizing an existing application for a
given locale, localization, are important issues in GUI design.

The cost of localizing an application can be roughly thought of as the sum of the
development costs of the required infrastructure, plus the required messages
translation. For this latter cost, (Maner 1997) indicates a sum of between $0.25 and
$0.75 per word. For Java applications, however, such figures are usually an over-
estimate — thanks to the Java internationalization architecture, the translation
process can be accomplished cheaply, for example by sending the relevant text
files to be translated by a suitable localization company.

The key point is the provision of technical support for internationalization. Even
if it is not planned to distribute the application in different countries, it is a good
idea to consider the internationalization issue from the start of the GUI design
process. Unfortunately, for effective localization, it is not enough to provide
different translation files and a sound software design that supports external
resource bundles. Apart from the software architecture, the following factors for
international GUI design should be considered as a minimum:

* Translating messages and any other textual data, such as mnemonics, accel-
erators and help data, by means of properties or other support files.

* Other Java-specific technical facilities, such as input frameworks, good-
quality font sets, and so on.

* Flexible layout, which is essential to accommodate labels, buttons and other
text-based widgets in different languages.

* A thoughtful design of the general interaction style, to be as culture-neutral
as possible — a loquacious GUI that displays many information messages can
be viewed as polite in some cultures and arrogant in others.

* Specific cultural issues, such as:

— Images, colors, sounds and other graphics conventions: icons, images and
other locale-sensitive data references can be put in resource bundles so
that they can be easily localized.

— Currency, units of measurement, and any other number formats.

— Various conventions such as date formats, phone numbers, salutations,
and so on.

164

Recurring User Interface Designs

* Cultural issue in general. This is a complex problem, and involves the help of
specialists in the target culture. A large number of ‘cultural” accidents can be
found in commercial GUIs. Some are unimportant, such as a progress bar
that starts from the left in a country in which text is written from right to left,
but others are more serious. Even some apparently neutral associations like
using a Red Cross logo, for example, can be found offensive in some non-
Western cultures.

Using resources bundles for all the relevant resources (icons, text messages, and
the rest) can also be useful even if an application is not planned for international-
ization, as it allows all messages, icons, and other resources such as audio clips to
be polished more easily, by non-programmers if necessary.

A problem arises on platforms with different locales. From J2SE 1.4 onwards,
multilingual support covers standard JFC components such as the file chooser
dialog. This engenders the risk of providing users with fragmented multilingual
GUIs, for example with the main frame in English and other standard dialogs in
the application’s current language. As a work-around, the locale can be over-
written or labels can be set explicitly by developers, although this latter practice
results in a hack rather than a disciplined design.

It is always good practice to consider internationalization issues in the first place
when designing a GUL This involves not only providing a flexible and dynami-
cally-adjustable layout to handle text of unforeseen dimensions, or other technical
tricks, but also to rethink icons, interactions, and even GUI concepts from a multi-
culturally-aware perspective. Daunting as it may seem, such a task is well repaid
in the long run. The cost of localizing an already-developed application from
scratch is always much greater than the effort of designing it and testing it for
usability with internationalization in mind. Even if internationalization is not
foreseen in the near future, a preemptive minimal internationalization-aware
design, for example implementing global icons, flexible layouts, and text files for
messages, is always a wise choice.

4.13 Help support

J2SE ships with a library for full client-side help support. The JavaHelp library is
an example of this kind of support, which provides context-sensitive help of two
types: user-initiated and system-initiated. User-initiated help can be activated in
four different ways:

* By pressing the F1 key it is possible to display the help data about the
container that currently has the focus. This is called window-level help, as it is
recommended for use only in windows, frames and dialogs.

* After clicking the contextual help button, usually in the toolbar, or choosing
it from the Help menu, the mouse cursor changes to a special contextual help

Icons and images 165

cursor. This signals that the program is waiting for the selection of an item in
the GUI, using the mouse or the keyboard, when the contextual help avail-
able for the selected object is displayed. This is referred to as field-level help.

* By using the standard Help menu in the menu bar. This can be used to
provide help about specific tasks or objects. The Help menu contains a
submenu of items that provide help about various tasks.

* Indialog boxes via a Help button. This provides help information about how
to use the dialog. Clicking Help is usually equivalent to pressing the F1 key
while the dialog box has the focus.

System-initiated help is performed by the program itself reacting to some user
action that is not explicitly related to help commands.

Help support can be useful both in prototype building and GUI extension. In a
pre-release version for a selected user population, some of the functionalities to be
added can be explained in the help system. By default, help information is
displayed in the help viewer, but this can be customized as needed.

Other libraries also exist that provide help support, both for Swing and SWT
applications, providing a different mix of runtime performances, simplicity, and
range of available features.

4.14 Icons and images

A number of bitmap images are usually employed when creating a GUI with Java
technology. Table 4.2 lists the most frequent ones. Designers should provide these
images.

Table 4.2 Common images for swing applications

Description Use Size
Log-in app logo Shown in log-in dialogs ~ 280 x 64
App icon Shown in app frames small: 16 x 16

and dialogs large: 24 x 24
‘About’ app logo Used in the ‘About’ dialog ~ 280 x 64 or greater
Company logo Appears in the ‘About’ dialog
Splash window Startup splash window ~ 392 x 412
Toolbar icons Toolbar buttons small: 16 x 16

large: 24 x 24

Other app-dependent Depends on the application
graphics

166

Recurring User Interface Designs

The image sizes preceded by a ‘~” sign are merely illustrative.

We will provide a number of practical examples throughout the book. Chapter
14 discusses a complete application where all these images are instantiated for
a real case.

4.15 Leveraging object-oriented programming

Reusability of software components tends to produce better quality GUIs, because
behavior and appearance are replicated in a coherent way throughout the whole
interface, and coding effort is saved. OOP reusability is a key point for high-
quality inexpensive Java GUIs.

A common, concrete case is provided by the fact that some dialogs are served in
two main modalities that depend on how the user’s actions are recorded by the
application: deferred or immediate mode interactions. Some GUI design guidelines
prescribe dialog appearance. It is possible therefore to envisage a small compo-
nent that implements the area where buttons are displayed. Such a widget is
shown in Figure 4.44 and Figure 4.45 for a typical deferred interaction dialog in
which changes are committed using the OK button, or dismissed by means of the
Cancel button.

OK || Cancel !! Help

Fiqure 4.44 The OKCancelPane component for Java L&F

coe

Figure 4.45 The OKCancelPane component for Eclipse

A Help button could optionally be provided as well — in Swing GUISs this is offi-
cially mentioned, but not in the Eclipse guidelines.

The practice of adopting customized, reusable components is very useful. The
next logical step is to provide a deferred-mode dialog that can be used every time
you need to perform such an interaction in a GUIL. A simple component might
contain an OKCancelPane such as the one shown in Figure 4.44, as well as some
other standard behavior, such as being sensitive to the Escape key to dismiss the
dialog, or automatically visualizing the help data when the Help button is clicked.
This is provided out of the box by the Eclipse GUI libraries.

Summary

167

No matter which mechanism you use to assemble GUI Content?, the idea is to
engineer this activity in a coherent way, so that the final user experience will be
uniform and predictable throughout the whole GUIL A small investment in devel-
opment time in implementing such basic facility will be repaid many times during
software development and in the final, systematic aspect of the GUL

One flaw in this approach of employing only few, highly customized components
lies in visual components provided by someone else. This shouldn’t be a problem,
because GUI design guidelines nicely dictate all GUI details. Unfortunately third-
party vendors sometimes tend to ignore such prescriptions, especially in older
products. Such incompatibilities are being resolved over time with the Swing
library — at least as long as the latest versions are used. For third-party GUI
libraries, be careful to check out their design guideline compliance before
adopting them in your project. All your development effort can be wasted if you
provide your customers with an inconsistent user experience, no matter how
elegant the underlying software implementation.

The Swing implementation of the OkCancelPanel class is provided for
readers that are interested. This provides global action buttons as prescribed
by the Java Look and Feel design guidelines, and should be used extensively
throughout the GUI, enforced by quality assurance if necessary. For usability
reasons the appearance of the OK button may be changed in some cases. For
example, in a Print... dialog it makes more sense to label the OK button with
Print even if the underlying function remains the same. For the same reason
the range of possible customization of this panel is limited. No icons should
be used for the buttons, and the Cancel and Help buttons, although locale-
dependent, cannot be arbitrarily labeled.

4.16 Summary

This chapter introduced some common design problems, together with their solu-
tions for effective Java GUI design and subsequent development, and occasionally
considered implementation issues. The approach was aimed at highlighting some
often overlooked issues in GUI design, with particular relevance to the Java plat-
form. Some of the issues were too broad to be addressed exhaustively in this
chapter.

In particular, the chapter discussed:

* Window area organization, including some widely-accepted and used
criteria for organizing the functional areas of a non-trivial GUL

8. We discuss the main implementation alternatives available briefly in Chapter 6, in Content
assembly on page 229.

168

Recurring User Interface Designs

Choosers, including the preferred activation mechanism for choosers, and
how to expand them to handle other features such as item creation. Choosers
were also used for discussing the different types of dialog interaction:
deferred, immediate, and mixed.

Memory components, visual components that have a subset of their state
made persistent.

Lazy instantiation — complex Java applications can become excessively slow
in some situations. Mixing design and implementation can substantially
boost performance.

The preference dialog, a common design: a centralized access point for
configuration data is needed in all but the simplest applications.

Command composition. Negotiating commands is a common practice in
GUIs implemented with OOP, especially for OOUISs.

Wizards. Although relatively easy to implement, wizards should be used
only when needed, although they are a useful tool in a designer’s toolbox.

Waiting strategies, providing sound designs for situations in which the GUI
is performing internal work and is currently unresponsive.

Flexible layouts. It is not enough to provide scroll panes for the main compo-
nents and a resizable window for the container of the dialogs or frames of
your application.

Common dialogs and windows — in current GUIs there are many de-facto
standard windows and dialogs. We proposed only few of them with some
examples, both to show their suggested design, and to provide a utility
library that eases their development.

Menu and toolbar organization, important and frequent design issues.
Accessibility — it is always good practice to provide accessibility support in
your GUL

Navigation and keyboard support — providing a planned keyboard support
for any dialog or frame in your application is good design practice.
Internationalization and localization, important aspects of modern GUIs that
should be considered from the start of GUI design.

Help support — integrating help support into an application using the Java-
Help library.

Common icons and images.

We also discussed proposed design solutions, providing some practical examples
that highlighted the main advantages such architectures provide.

In the second part of the book we will leave GUI design and move to the imple-
mentation aspects of professional Java GUISs.

Iterative GUI Development
with Java

No design is ever perfected at the first attempt. Instead, a professional design in
many engineering fields is the result of several refinement cycles. This is true for
software engineering in general, and is even more true for GUI development,
where the presence of end users makes the engineering task highly unpredictable
and dependant on subjective criteria. In this chapter we will examine the major
approaches and the available techniques for building professional Java GUIs
through iterative cycles of refinement.

The iterative GUI development approach consists of frequent product releases
that continuously and smoothly expand the application by means of small addi-
tive changes, implementation refinements (such as refactorings) and continuous,
pervasive testing. Testing “in the large” is essential for achieving an effective iter-
ative development. We will discuss GUI testing, usability testing and memory
profiling, an often overlooked aspect of GUI development.

Readers are not forced to adopt an iterative development approach if they don’t
want to. Despite being a powerful development approach — see the discussion in
Chapter 1 — it is labor-intensive, involves mastering many techniques, and ulti-
mately leads to good and cost-effective results only when developers genuinely
embrace its philosophy. Nevertheless, the techniques discussed in this chapter can
be applied to a wide range of software engineering approaches, ranging from XP
(Extreme Programming) to traditional waterfall development.

Iterating a GUI design that has already been exposed to end users is a delicate art,
requiring skill, as well as a different attitude to that required for software refac-
toring. As we saw in Chapter 2, to a user the GUI is the application. As the most
externally visible part of a system, the user interface tends to evoke strong feel-
ings. Once a GUI design has been agreed, the process of changing it is often
complex and politically charged. Evolving a GUI design from one iteration to the
next can put a strain on end users. Users learn the application through the GUI,
and even minor refinements can be unpopular once familiarity is established.

170

Iterative GUI Development with Java

One of the advantages of iterative development is the possibility of constantly
evaluating and changing the application using end users. Without end users
and domain experts working with developers on a GUI there is little possi-
bility of progress — at most we are developing a nice, abstract application that
probably doesn’t solve actual users’” needs, just the needs of our fictitious idea
of end users.

This chapter begins by introducing the fundamental strategy behind effective
iterative development, followed by an introduction to Java GUI prototyping.
Various aids to prototyping are introduced as well (GUI builders and some
examples of utility prototyping classes). After an initial and inexpensive proto-
type has been assessed with users, iterative development will take care of
evolving the application to meet user’s needs. Common GUI-specific refactor-
ings are discussed together with testing and runtime memory profiling. This
chapter covers all these heterogeneous aspects, to provide a unique reference for
iterative GUI development, spanning diverse topics such as prototyping, refac-
toring, testing, and profiling.

This chapter is structured as follows:
5.1, Iterating wisely discusses the strategies behind iterative GUI development.

5.2, Introduction to prototyping deals with the basic concepts for the design of effec-
tive GUI prototypes.

5.3, Prototyping alternatives discusses the various approaches to prototyping avail-
able, such as paper prototyping, storyboarding, and so on.

5.4, GUI builders introduces this kind of tool, useful for prototyping as well as for
building final GUIs.

5.5, Reusable prototyping widgets discusses some widgets specialized for proto-
typing purposes, along with their implementation.

5.6, GUI refactoring illustrates the practice of refactoring GUI code, going into the
details of GUI-specific refactorings.

5.7, Introduction to user interface testing introduces the general topic of GUI testing,
focusing on some of its most controversial aspects.

5.8, Software testing of Java GUIs illustrates the role of software tests in producing
professional Java GUIs.

5.9, Usability testing of Java GUIs briefly touches the main points related to usability
testing of Java GUIs.

5.10, JRE runtime management discusses profiling of Java desktop GUIs.

Iterating wisely 171

5.1 Iterating wisely

Before introducing the various techniques and approaches for effective iterative
development, it is important to discuss the overall strategy behind the assignment
of priorities to development activities. This focuses on the development activities
that need to be carried out, as opposed to use cases or user stories. The latter will
depend upon the given project and customers, but will be influenced by the devel-
opment process chosen.

We will focus on questions such as how much interaction and control behavior
should be provided from one iteration to the next, the correct amount of GUI
design to implement in the first release, or whether an explicit domain model
should be implemented now or moved to a future release. We will use another
incarnation of the cost-driven principle introduced for GUI design in Chapter 3 as
the subject of this discussion, but this time apply it to an iterative style of software
design and implementation for desktop application GUIs.

At first glance iterative GUI development seems a perfect candidate for the well-
known 80:20 rule, or Pareto Principle!. This states that for many phenomena 80%
of the consequences stem from 20% of the causes. This principle has been empiri-
cally validated on many software projects, in various forms?. GUI development is
a circumscribed and well-known application domain in which experience can be
reused fairly well. If we suppose that this rule roughly applies to GUI develop-
ment, wouldn’t it make a big difference to the way we plan our development
activities? Such an 80:20 rule may not, however, apply to the design and develop-
ment of top-quality professional GUIs — those with a sophisticated, innovative
GUI design and substantial resources for their development — which is a fine art,
the result of many tiny details carefully crafted together. Nevertheless, even a
rough match with this rule would give us a very useful planning principle.

Clearly we will never be able to demonstrate empirically that the 80:20 law, or
something similar, applies to GUI design projects. The main problem lies in
assessing objectively the overall ‘quality” of a GUL How can we tell that a design
is 80% done while also accounting for subjective and ephemeral aspects such as
its usability and its overall appeal to users? Any developer who has built a
number of desktop application GUIs can observe that there are common patterns
of development activity that constitute the bulk of the job, in terms of an ‘effective
GUI’ (a subjective definition, of course). What is invariably needed is a mixture of

1. This principle can be seen as a special case of the Pareto Distribution, a power-law distri-
bution found in various cases in nature, such as the frequency of words in long texts, the
size of sand particles, the size of areas burnt in fires.

See http:/ /en.wikipedia.org/wiki/Pareto_distribution
2. See for example: A. Ultsch, Proof of Pareto’s 80/20 Law and Precise Limits for ABC-Analysis.

172

Iterative GUI Development with Java

a ‘minimum dose’ of the various contributions: overall team attitude, testing, suit-
able software architecture, basic usability testing, and so on.

Apart from these abstract considerations, the ranking between development activ-
ities is important. Imagine having such a ranking documented neatly in the form
of an ordered to-do list. Achieving cost-effective quality would then just be a
matter of executing the items in the list using a “greedy’ style — starting from those
activities that have the largest impact on the final result. Quality could be fine-
tuned in this way depending on the budget, without risk of wasting precious
resources in unproductive or counterproductive work.

Scheduling development activities following such an ‘optimum’ list mini-
mizes risk, by ensuring that roughly 80% of the required result is achieved
before focusing on inessential requirements. We can maintain the project in
good shape from early releases: customers gain confidence that the project
is progressing well, developers are gratified by their work, the project
manager enters the room whistling merrily, and so on. (Guess how often this
happens...)

Unfortunately, such a ranking is almost impossible to calculate, because it is the
final result of many intertwined factors — project details, business domain factors,
project timeline, the people involved — that vary widely from project to project.
Some rules of thumb can be given, but ultimately it is the developer, the team
leader, or the application architect, that has the last word and should actively
focus on cost-effectiveness when ranking development activities. A prioritized
list of development activities can be sketched by leveraging past experience and
the contents of this book, but an exact assessment is largely unattainable — a situ-
ation that applies to non-GUI development projects as well.

Here is an example of a mythical list of activities ordered by cost-driven criteria.
The example list refers to a simple form-based rich client project, with no need for
localization and with many simplifying assumption (people have been assigned
already, preliminary analysis has been performed, etc.).

Set up a basic production environment, choosing simple and reliable technologies
such as GUI and unit testing tools, version control tools, clear and simple look and
feel or presentation technology, GUI toolkits and application platforms, deploy-
ment technology, and so on.

1. Determine the basic contents for use cases X and Y from customers and
implement the control layer completely and without dynamic layout manag-
ers, validating it with end user representatives.

2. Define the data handled by the use case and implement it, whether it is part
of the business domain or data IO.

Introduction to prototyping 173

3. Identify and implement the minimum set of commands that realizes the use
case, given the data and the content from the previous steps. Provide a mini-
mal implementation of client-side data validation.

4. Verify the GUI by software testing of critical points and a brief usability-
testing session.

5. Provide extensive software testing and basic profiling, checking memory
leaks and thread deadlocks.

6. Add additional control logic to ease interaction in the form of further valida-
tion behavior.

7. Provide basic help support and keyboard navigation.
Supply further content details for dynamic layout support.

Add a branded Look and Feel/ presentation style, evaluated with end users
and available client runtime resources (such as memory, CPU power, hard
disk space, screen size).

10. Provide customized content widgets for easier interaction.

This list implicitly assigns different weights to the quality of the final result,
depending on the needs of the customers and the specifics of the project. It
assumes that about the first five points in the list will deliver roughly 80% of
the final result to users.

These assumptions are, of course, subjective and case-specific, yet intuitively
appealing. For example, the choice to regard dynamic layout as optional, perhaps
because localization is not needed, thereby ranking it ninth in the list, is debatable.

We are now ready to dip our toes into iterative GUI development with Java,
starting with a well-known tactic: prototyping.

5.2 Introduction to prototyping

The development of a representation of a system for testing purposes is common
practice in many engineering fields. It is an important method in GUI develop-
ment as well. Design flaws or other incorrect assumptions can be individuated
from the beginning, with resultant large savings in development costs. Prototypes
can range from simple paper mock-ups to fully-functional products. Prototyping
can be used not only for defining the GUI design, but also for eliciting require-
ments and as a mean of communication within the development team, with the
customer, and with users. This chapter discusses the many different options avail-
able for prototyping Java GUIs.

174

Iterative GUI Development with Java

Uses for prototyping

Prototyping is an essential aspect of any professional GUI development. During
the analysis phase and later in the development lifecycle a prototype can be seen
as another form of documentation. It can help the communication flow, both with
the customer’s organization and within the design and development team itself,
and of course also with the final users of the product. Some of the most useful uses
for prototypes are discussed below.

As a means of communication

Prototypes can convey a lot of information to people in a number of different
roles within the development organization, as well as other stakeholders. A
prototype can:

Demonstrate to users and customers how the final GUI will look. This
requires extra care, however, in order to avoid committing an early, sketchy
design as the final one.

Help to clarify the developer roles involved, especially on the client side —
who is ultimately in charge of the GUI design, whether or not the representa-
tive users are the same as the end users, who has authority over the design of
the GUI, and so on.

Define detailed terminology, which can be used as the basis for building a
domain-driven ubiquitous language for the project (see (Evans 2004)), as well as
small details that would be tricky to guess from mere discussions.

Document the GUI design: GUI prototypes are a powerful means of docu-
menting a design, throughout the software lifecycle, especially for
potentially risky aspect of the project.

Personally, and possibly unwisely, I love to amaze my clients. After a heavy
analysis session in which they expect a recap document, I often release a func-
tioning prototype instead, to much surprise. Pleasing clients early on in a
project usually rebounds in the form of extra work and greater expectations,
but I like to do so anyway. One of my favorite tricks is to add a general
comment mechanism to the prototype application, so that end users can attach
their own comments directly to specific areas of the prototype application. The
comments they register in this way are precious, because they show how users
think about the GUI in detail. They help to substantiate the A3GUI decompo-
sition of screens, for analysis and design, and sometimes they even shape the
final development.

Introduction to prototyping 175

Exploring the design space

Prototypes can also be used to explore the design space, especially for novel
classes of systems for which no mature design has been established. Several
parallel designs could be developed to try to generate as much diversity as
possible, or just to focus on evaluating a few alternatives. A number of prelimi-
nary designs are created and the best ideas are used for the definitive design, as
shown intuitively in Figure 5.1.

Prelminary
Prototypes
? — 5
H egis
i ie'
H H
i :
- - % .
' Original s o R N
product " Interme diate Final
concept version version
—
..... .
Prefiminary
Prototypes

Figure 5.1 Exploring the design space with different prototypes

Developing parallel prototypes is clearly rather expensive because — to have the
largest diversity possible — each prototype should ideally be developed by a sepa-
rate team or individual, with little contact with other teams. However, in most
actual cases, a single prototype is enough to produce a viable design.

As suggested in (Hunt and Thomas 2000), when nervous or insecure about the
beginning of a new project, or just about the design of specific screens, it is
wise to break the ice with a prototype instead of committing unwillingly to a
tentative solution.

A common risk is to close the design space prematurely, choosing as final a design
solution that has not been thoroughly tested and validated with users. On the

176

Iterative GUI Development with Java

other hand, keeping too many design choices open is needlessly expensive and
could lead to incoherent, ‘stratified” designs, to which different and unrelated
approaches were added over time.

Some software development approaches like XP (see Chapter 1) push the
prototyping approach outside the GUI domain, involving the whole software
development at large (Beck and Andres 2004). XP projects can employ proto-
typing for exploring possible GUI solutions. These limited systems are called
spikes. A spike solution is a very simple program built to explore potential
solutions, addressing only the problem under examination and ignoring all
other issues.

Capturing requirements

Prototypes are often used to elicit requirements for the system to be built. This is
done both when building the prototype, and later when gathering feedback from
the users on the prototype that has been built. Using prototypes in this way is a
natural extension of the adoption of other functional requirement techniques such
as use cases or XP’s ‘“user stories.’

Using prototypes as a mere form of requirements-gathering can lead to rather
unusable GUIs. Usability and GUI design are different from functional
requirement gathering, and should be handled in a different way, by using
approaches focused on GUI design, such as user-centric design techniques,
rather than system-centric ones like system requirements.

The two dimensions of prototyping

A prototype is a reduced version of the final system. Such a reduction can be
achieved either by implementing less functionality, or by reducing the level of
functionality of each feature. The former approach is called vertical prototyping —
demonstrating few features, fully implemented — while the latter is called hori-
zontal prototyping, demonstrating many features but with each shallowly
implemented. These two dimensions of prototyping are shown graphically in
Figure 5.2.

Horizontal prototypes are easier to build, as shown later in this chapter, because
they focus mostly on GUI aspects, and can help to test the whole prototype and
the full picture it produces. By reducing the number of features and their imple-
mentation level, we can obtain cheap ‘subsets of use” of the final application,
called scenarios. A scenario describes a single interaction session limited to few
functionalities.

Introduction to prototyping 177

Features of the Final Product
Scenario Horizontal Prototype
L ¥ 3
1\}\ .

A

<4
=

Kyjeuonaund jo |aaan

L -
— e — v
Vertical Prototype h

Figure 5.2 The two dimensions of prototyping (Nielsen 1993)

There are several different definitions of a scenario. We make the assumption that
a scenario corresponds to the definition given in Section 1.4, when we introduced
scenario use case diagrams.

Competitors’ product as ready-made prototypes

A design approach known as competitive analysis considers similar products that
are already available as a starting point for the design activity. A competing
similar product is already fully implemented, and can be easily tested in detail.
Even when we already have a prototype ready, we can compare concretely how
well analogous tasks are implemented by the competing product and by our
prototype application.

If several competing products are available, we can examine their differences and
the way they approach the same abstract application using different GUI designs.
This greatly helps the analysis and design phases — even if, as Nielsen points out,
competitive analysis and design does not mean stealing other’s hard-won
designs, but rather taking them into consideration in your own design analysis,
possibly to improve on them and overcome their weaknesses.

Prototyping as a philosophy for development

Evolutionary prototyping is a fully-fledged development philosophy in which the
GUI development is just a part of the overall software lifecycle. Agile and other

178

Iterative GUI Development with Java

fully-iterative approaches are inspired by this type of highly iterative view of
design and development. The prototype is constantly refined, expanded and
validated with users until it becomes definitive, when the final product is
released. This approach can be difficult to implement, due to the technical pitfalls
involved in working with prototypes that constantly evolve. We mentioned such
approaches and their lifecycle models in Chapter 1. For more details, see for
example (McConnell 1996) or (Beck and Andres 2004).

In conclusion, prototyping deals with building a GUI incrementally and in a cost-
effective way. The ability to state the quality of a given GUI is a key factor in
driving the evolution of one or more prototypes into the final design correctly. In
the next section we will see in detail the different kind of prototype presented
above.

Prototypes and customers

Prototypes can have a significant impact on end users. Handling this aspect
correctly is important in ensuring adoption of any prototype. Apart from the
technicalities involved in creating prototypes, they also guide the perception of
the product being developed by end users and customers. Customers often
have a non-technical background, and a number of misunderstandings are
possible:

* Abad GUI will impact negatively on the idea customers have of the product,
irrespective of the fact that it is only a prototype. Customers often implicitly
establish an emotional link with the software that will probably become part
of their daily working life.

* Agreeing on a given prototype with customers is an important statement.
From that moment on customers will be expecting that specific user inter-
face, and anything different could be considered as a change in any
agreement made with them.

* Anoverly-sophisticated prototype can convey to users the false idea that the
product is almost complete. When presenting a prototype, it is essential to
state the current state of development of the product, and not just focus on
how the prototype is different from the final product. One can provide some
graphical adornment such as watermarks to signal the fact that the prototype
is just a prototype, no matter how good it might look. There is even a Swing
Look and Feel that is expressly designed to provide this feeling of ‘sketchi-
ness,” as we will see later.

To recap, it's important to remember when dealing with customers that proto-
typing often represents their perceived image of the product you are building:
special care is needed to deal with such a delicate issue.

Prototyping alternatives 179

5.3 Prototyping alternatives

There are a number of possible approaches to prototyping, depending on which
aspects designers want to focus on.

Different types of prototypes

This section introduces the main types of prototyping discussed in this book: the
subsections that follow describe them in detail.

Storyboard prototyping

Storyboard prototyping is a technique for representing parts of an interface in a
way similar to the ‘storyboard’ used to represent and evaluate the script of a film
before committing to the expensive process of shooting the final motion picture.

Storyboarding is a simple, informal way of representing a scenario associated
with a given task in the user interface. It is mainly useful for the initial phases of
the design process, where accurate feedback from users is still not needed.

Figure 5.3 shows a simple storyboard for the task of selecting a color from a form
on screen. Storyboards usually comprise more GUI screens than is shown in this
example, as we will see later.

3. Userselects a
color from the

I

1. User wants to
change the color

2. User clicks on the
“.."button, a
popup shows.

<

4. User clicks the 'OK”
button, the Color
chooser dialog is closed

and the color is passed
in the underlying form

Figure 5.3 An example of a simple storyboard

180 Iterative GUI Development with Java

The storyboard in Figure 5.3 has been designed using a computer graphics
application. Storyboards are more often sketched informally, for example on
paper, as can be seen in the examples in Figure 5.5 and Figure 5.6.

Paper-based prototyping

Paper-based prototyping needs as its technical support only a piece of paper and
some pencils. Sketching out a GUI in this way usually produces rather coarse
prototypes, but helps to make key ideas explicit quickly and cheaply. For a thor-
ough discussion of this topic, see (Snyder 2003).

Several slightly different techniques are gathered under the term “paper proto-
type.” In a later section of this chapter we will discuss in detail this family of
techniques, maybe the most popular form of prototyping. Figure 5.4 shows an
example of a paper prototype taken from the example in Chapter 14.

[Pontroue PosTI?E o2 K

LegaL cornanDs D 1

FAvaRiTeS ALTwATED

CyTKTUAL
HEMY

doolel

Boswz

'\;T_m - \XJLL

%

REHGTE
ELPLEN CoNThINER

Figure 5.4 An example of a simple paper prototype

Paper prototypes can be used for usability testing with users (Snyder 2003).
Following this approach, one or more paper prototypes are built to model the GUI
and test it for usability. Testing for usability in this case means letting users try the
prototype as if it was the real interface, and try to discover any difficulties and
problems to which its design might give rise.

Prototyping alternatives

Rapid prototyping

181

Rapid prototyping (also known as throw-it-away prototyping) is the technique of
building scaled-down applications, usually using the same technology as the
final product. The prototype developed in this way is abandoned at some point
in the development process, after it has accomplished its duty — for example in
pinpointing defects in the design of the GUI with end users. The GUI prototype
is cheap and serves as a first point for requirements gathering and defining the

design space.

Rapid prototyping and GUI iterative development can complement each
other. Iterative development focuses on building a working GUI starting from
the most-needed and best-understood requirements, while rapid prototyping
is usually employed to validate or elicit specific aspects, and focuses on those

requirements that are poorly understood.

The different expressiveness of prototype techniques

The following table summarizes the different expressiveness properties of paper

versus rapid prototyping.

Table 5.1 Expressiveness of prototyping techniques

Category of entities that
can be represented using

Prototyping method

Entity type the given type of prototype Paper Rapid

Business Main concepts v v
Terminology v v
Documentation, help v v
Requirements, functionalities v v
Data size, dimensions - v

GUI Navigation, work flow v v
Appearance (Look and Feel) - v
Screen layout v v
Response time - 4
Keyboard, mouse, other input - v

182

Iterative GUI Development with Java

Clearly, paper prototyping has numerous disadvantages when compared with
rapid prototyping. Nevertheless, given its cheapness and simplicity — even end
users can come up with their own proposal — paper prototyping is widely used.
Rapid prototyping can be used in cases in which specific development risks that
need to be evaluated early in the development are not made explicit by a paper
prototype. Consider for example an application that is required to be close to an
existing application, with a high level of fidelity. Only a software prototype can
fulfill this need.

Different types of prototypes can be used in combination to give the best of both
approaches. Suppose we want to design the GUI for an application with a heavy
data load — perhaps tens of thousands of items. This aspect is a potential risk that
needs to be explicitly addressed as early as possible. The first informal prototypes
are written on paper: when a suitable design emerges, it is rendered in a rapid
prototype that simulates a large number of data items and their related latencies,
so that the design can be validated and agreed with end users.

Prototyping technologies

Prototypes rely on specific technologies, whether the same technology as the final
product (in our case Java) or another, for example using Web pages to sketch form-
based screens. Comparing Java with other technologies:

* Java technologies. A number of visual tools that generate Java sources for GUI
layouts and screens by direct manipulation are widely available. Open
source software (OSS) tools such as NetBeans or Eclipse VE, as well as
commercial products such as JBuilder and Idea, are commonly used in devel-
opment. A number of stand-alone Java visual builders are available too — we
discuss this in Chapter 11.

* Non-Java technologies. Prototyping technologies can be employed too:
drawing or authoring tools such as Microsoft Powerpoint and Visio,
CorelDraw, for sketching paper prototypes, or tools for building horizontal
prototypes, such as Visual Basic or MacroMedia Flash. None of these tools
effectively model the Java Look and Feel, however.

Storyboards

A storyboard documents how a part of a user interface is employed to accomplish
a given task. A storyboard is a simplified representation of the GUI, usually
drawn on paper, showing how a user interacts with the product to achieve a
specific task. Storyboards usually represent the user interface at a higher level of
abstraction than paper prototypes, allowing a wider perspective —storyboards are

Prototyping alternatives 183

often drawn on large sheets and hung on the wall. They provide navigation,
meaningful data, and all other details needed to represent the task performed in
the GUI to a suitable level of detail. Figure 5.5 shows a storyboard for an example

application.

“View" BTer

JELECTEN)

a
lhfax OLALYG T DB \;4

8 1 e Gl [<ovde-cuck? B ey
r

? PRESIRD il S———
el
(|

SRBETE s gl
| keuo eMe Jawe osfmio
| ELICHTS VAMEDA ©3[07[os
‘ THCABLE KARSLE 01 [azfog

Ciko Hiuio a}[uﬂog
Founviue FeLa s gdlo3fss

STATYS @nll

e

I'[.

SleuTeLice)
o5 up
A

EWAIL DAL (RERD-dawy)

(kP RHATIN AL

@ SV&G[i:l@

AOMAEY Bosl Jaleline

Y 0ZRL BMEND
€ T Pialat

EHAIL DTALLS [E’lj\()

Fiqure 5.5 An example storyboard

This storyboard describes navigation details as well as Ul details. Storyboards
usually focus on navigation and on providing a wider picture of the GUI. The

184 Iterative GUI Development with Java

storyboard in Figure 5.6 shows an example of this latter approach for an account
management user interface.

Lo O
—TT o - Tvpad we et ——Tom —
M| [oo | [p—
b = R—— S View/ent I'.' Faman | ViEwfenT | S Pz
faegn | ACcounT | C ekl TN ACConlT | | mecawT Tmk ' Comyon
IL | Tenacn | I e | VETALL \ | ketionn)
s ! I FRobue |
| T | L— ey _J
| | B
) o clexts |
> -‘!Pf‘.u‘(T -_'I ‘:‘.(\ J: ko
: i L ; HoTioMs | o ACCanT eyt
L | L1 - f.
Yuan it | Comn waea
| | Pai) |
] | -
= e s —
T '\IK A o |
- P - 1 1
PRERENENCE) PlateTinas | OimaE
beaL | [
| ' - |
O
L)) < U

Fiqure 5.6 Another example storyboard

A number of details can be seen in Figure 5.6:

Every screen is represented by a box showing a window title.

Transitions from one window to another are shown by arrows labeled with
the GUI action that triggers the transition.

Dashed arrows represent the navigation when the current screen is
dismissed.

Windows are identified with a unique id number in their upper-right
corners, for quick reference both during design and at runtime .

Storyboards are a valuable tool for describing GUI navigation and for sketching
the GUI, especially at early stages of design.

5.4 GUI builders

GUI builders are another commonly-used aid for building prototypes, as well as
entire simple GUIs. They consist of visual environments that ease the construction
of GUIs by means of a user-friendly construction interface that creates the code
behind the scenes. All major Java integrated development environments (IDEs)

provide such a graphical Ul editor. This section gives an example of the use of one
such tool.

GUI builders

A screenshot of the JBuilder IDE visual designer is shown in Figure 5.7.

lﬂ com marinillLg.c7templates. GUIBule |
U

@ Ethis
B <JRotPaned«
¢ [isplitPanet
[Ef jListt
& [T igcrollPanst
i Tetareat

[Tandareal

P L Meny
& [Menuban
§ & Ment
n Menutternt
: Menuttem?
H iMenultems
H Menultam3
=] inenuitarmd
& [0 jMenuz
[ienutame
= imenutem?
[= menutterna
B ez
B jMenud
_|Datafiecess
@] Other
* data

Fiqure 5.7 The JBuilder IDE designer

185

The final result of using the builder took less than ten minutes to create, and is
shown in Figure 5.8. No extra-GU]I, functional code was provided, to keep the

resulting code as short as possible.

2 GUI Builder Example

File | Edit View Help
Greel Cut Texléraat
Blue | eomy

Wl o e

Fink

Scarlet

Black

Fiqure5.8 An example GUI

The JBuilder editor creates an auxiliary method (jbInit) that gathers all the GUI-

related code. Code statements generated as commands are issued via the user
interface shown in Figure 5.8. Widget visibility is provided for all components,
which are created as instance variables of the visual container class. Instance vari-

ables are named automatically by the tool, but can be renamed manually.

186

Iterative GUI Development with Java

Even in such a simple case we needed to modify/insert the generated code by
hand. JBuilder is flexible enough to recognize lines of code added by hand.
This is illustrated in the code example that is available on-line, in which the
string array used for filling the list widget has been added in the source code.
This is still successfully recognized by the tool, as can be seen in Figure 5.8.

Using a GUI builder tool

Whether code builders are used or not, achieving a professional GUI is always a
matter of detail. You will therefore always need to dig into generated code to
polish the details of even the simplest GUI Visual editors do not simplify the
overall coding effort if your GUI is complex enough to require massive extension
or rewriting of the code automatically produced by the tool.

Visual editors can help quick development of content structure, such as widgets
and their layout. They can be used as aids to create the structure of the required
class quickly, which can be refined later manually. They can be useful for building
rapid prototypes, or can be used by novice programmers for learning the basics of
Java GUI libraries in a ‘learning-by-doing’ fashion.

Programmers tend to have their own opinions of these kinds of automatic tools.
Some find them stimulating but limited, others are confident they can save a lot
of time, while many simply hate them altogether. Clearly, the perception you have
of a tool directly impacts your performance when using it: it's a matter of usability
here as well, only here developers are the end users. The ultimate choice depends
on your preferences.

Visual editors do have a number of practical shortcomings:

* Itis cumbersome, if not impossible, to modify some parts of the generated
code. For example, some editors allow only Java Beans — widgets with void
constructors — to be created.

* Some editors, such as the one provided with Netbeans, rely on vendor-
specific files as well as vendor-neutral comments in source code. This ulti-
mately leads to a form of vendor lock-in. It also makes it harder to adapt the
generated code to particular needs without breaking the compatibility
between the tool and the edited GUI code.

* The general structure of the generated class is hard to tweak. Special
methods can be hard or even impossible to circumvent. In some cases main-
taining source code compatibility with the visual editor can become so
complex that the simplest solution is to abandon the GUI editor tool
altogether.

* Architectural issues are not supported by visual builders that tend to build
weak and deeply-coupled code.

Reusable prototyping widgets 187

5.5 Reusable prototyping widgets

In this section we will examine practical applications of reusable classes to proto-
typing. In particular, we will look at two classes that are specialized for building
rapid prototypes inexpensively.

A tree prototype utility class

The reusable class introduced here simplifies the creation of complex Swing tree
components. Such trees are limited to use as rapid prototypes. Despite that, their
use could be quite helpful for producing medium- and even high-fidelity proto-
types. The class we describe here is implemented as a specialized JTree that reads
its configuration from a properties file. In this way it is easy to populate a tree,
change its appearance and provide contextual menus, tooltips and drag and drop
(dummy) support. We will introduce and discuss a sample properties file first,
then present the class code, and conclude with another example of its use.

In our implementation, all the appearance is delegated to the properties file,
though for specific features it may be necessary to add an external listener class,
or to subclass the prototype class itself. For example, in Chapter 4 we saw a tree
prototype that simulated a delay by attaching a tree expansion listener to a
JProtoTree instance. The properties file used in the constructor dictates the
appearance and behavior of the prototype tree. Listing 5.1 below shows an
example of such a properties file. The resulting output is shown in Figure 5.9.

Listing 5.1 The Tree.properties file

00: root=home,a tooltip string,root.gif,command AS%scommand BS%S%- -%%com-
mand C%%command D,al,a2,a3,a4

01: al=1,tt1,bit1.gif,command E%%command F%%command G,al1,al12

02: a2=2,tt2,light.gif, -

03: a3=3,tt3,bitl.gif, -

04: ad4=4,tt4,-,-,a4dl

05: a41=another node, and its tooltip,biti.gif,-

06: al1=aaa,-,-,-

07: ail2=bbb,-,-,-

09: # special properties

10: setShowsRootHandles=true
11: setScrollsOnExpand=true
12: setRootVisible=true

13: setDragEnabled=true

14: setClosedIcon=closed.gif
15: setOpenIcon=open.gif

16: setlLeafIcon=dot.gif

19: # tree properties
20: JTree.lineStyle=Angled

188

Iterative GUI Development with Java

The properties can be specified in any order. In Listing 7.1 above there are three
main groups of properties:
* The first group dictates the structure of the tree. Line 0 says that the root

node has a label “home,” a tooltip ‘a tooltip string’ and should be
rendered using the image ‘root.gif.’

* The contextual menu is composed of four commands: string commands are
separated by ‘%% and the *- -’ represents a menu separator.

* Finally, the root node has two children, identified by the labels a1, a2, a3 and
a4 that in turn are defined in lines 01-04.

The final result. the JProtoTree instantiated with the properties file of Listing 7.1,
is shown in Figure 5.9.

L Test Prototype Tree ggﬂz
ame

@ L T
(S8

H ulqother node
oy carmrnand o
and s ool oo

caorrirrand C
cormrnand [

Fiqure5.9 An example of a prototype tree

Each line is composed of a string id that is used by the tree to identify the given
node. The special string ‘root’ is used to identify the root element, and is manda-
tory. There follow the appearance values for that node, separated by the =
character used by default in Java properties files.

Such values are the ordered sequence of the following data:

1. The ext label. This can be a sentence or even an HTML fragment.

2. Theicon used to render the node. When not used, the standard icons are
used instead.

3. The contextual menu that is activated by right-clicking with the mouse on
the given node. Note that contextual menus are inherited from a parent node
by its children. If we have only one type of contextual menu for all the nodes,
we therefore just specify the required menu in the root element, and this is
then used by all its descendents. If another node needs to show a different
contextual menu, we then have to declare it in the properties file for the
given node, as node ‘a1’ does in Listing 7.1.

Reusable prototyping widgets 189

4. The list of child node ids that builds the tree structure recursively, or *-” if the
node is a leaf.

In this way the nodes and their appearance are defined. There are other attributes
that can be defined as well, to control the global tree appearance, These are spec-
ified in lines 10-16 in Listing 7.1. It is possible to define properties such as whether
the root handles should be made visible, or whether the tree nodes should be
draggable. Finally, Swing tree properties can be added to the file.

Whenever an item of information is missing — for example omitting to specify a
particular icon, so that the node will be rendered using the standard icons for leaf,
open and closed folder nodes — we use the ’-’ character.

For brevity, we don’t show the implementation here. For readers interested in it,
the JProtoTree class uses two inner classes: a custom tree cell renderer and a
custom tree model.

The constructor simply instantiates a specialized tree model based on the input
properties file, then queries it to change the tree’s appearance. This use of the tree
model is incorrect — the purpose of the Swing modified MVC architecture is
primarily for separating appearance from data. Loading the model with appear-
ance data is thus conceptually incorrect. The tree is created using default tree
nodes that have an array of strings as the user object. Such an array contains the
appearance information extracted from the properties file.

The ProtoTreeModel inner class reads the properties file and creates the related
tree model, which will be used by the enclosing tree class. In particular, the create-
Node method is used for populating the tree recursively using a deep-first strategy.

The inner class ProtoCellRenderer is a subclass of the DefaultTreeCell-
Renderer, and is used to customize the node appearance as prescribed in the
input properties file. The main method of the JPro-toTree class shows a sample
use of the class, and requires a properties file named “tree.properties.’

Another example of the use of a properties file for defining tree appearance is
shown in the sample code for this chapter, in the DBTree.properties file. The
corresponding instantiated tree is shown in Figure 5.10.

Note that in this prototype we have modified the appearance of few special nodes
only, while allowing all the remaining nodes to comply with the general tree
rendering rules. These distinguish between open and closed folders — any node
that has at least one child — and leaves, those nodes that have no children. We then
modified the appearance of these three types of nodes in turn, allowing us to use
a cheaper standard component for the working implementation.

The sample syntax shown in the previous listing can be seen as a simple,
although rough and very simplistic form of a Little Language specialized for
rapid prototyping. Little Languages are described in Section 12.5.

190 Iterative GUI Development with Java

file Coit View Sol el
4| ® &7 D0 |H ¥ B

[7 R Avallable Databazes Andress [
o B Databaze one One Road, Morganstein T |32 |4

Cslomins Upper sireet two, Manhatian... |41 |

[u]
B sin:

E Warehouss
Log

v B Database o
-emz

v B patabase three
Animals

E Marumss

Rentiles

E Hirths
Deaths

B vaaine Ereads

reel, Crmont D!
lir Crisicinl, Miswe |34 |

purgh 157 |
liensina: AB, CART

1271 Bl AT |
99 Moon Crescent, Gloptow... |24 |
1547K Streat, Ormont 8 |

freaay

Fiqure 5.10 Another example of a prototype tree

We also supply a simplified version of this utility class for the SWT (Standard
Windowing Toolkit) library in the source bundle for this chapter.

To recap, utility classes can be useful for quickly building tree samples from
scratch for use in rapid prototypes, whether for Swing or SWT programs.

A visual container prototype utility class

This section introduces a reusable class for creating prototypes of directly-manip-
ulatable, two-dimensional containers, such as file system folders in Windows or
the Macintosh operating system. We will see these working in Chapter 15. Figure
5.11 shows an example of such a prototype component.

= =]
another icon nello
\E{
anicon dragking
e
Glag,—
cut [
paste
hella delete

Figqure 5.11 An example of a container prototype

Users can drag the icons within the container and right-click on them to show
their contextual menus. This kind of component is not provided by the standard
Sun libraries, but it can be employed usefully in GUISs, especially OOUlIs. The
SandboxExample class provided with the code for this chapter shows a sample
use of this component for creating rapid prototypes.

GUI refactoring 191

5.6 GUI refactoring

Having explored the various options available to Java developers for building
effective GUI prototypes, we now focus on iterative GUI development, in which
the code is not meant to be thrown away, but instead is refined and improved
continuously by means of small steps that do not alter its functional behavior.
These are called refactorings.

Fowler’s classic work on refactoring (Fowler et al. 2000) describes a set of changes
that improve the internal structure of code without changing its external behavior.
Refactoring is ‘a disciplined way to clean up code that minimizes the chances of
introducing bugs.” Refactoring changes the design of a system without modifying
its observable behavior. We discuss refactoring in this chapter because it is instru-
mental to iterative GUI development. We refer to Fowler’s refactorings as ‘classic,’
to differentiate them from the higher-level, GUI-specific refactorings introduced
in this section.

The refactoring we introduce here is performed as a sequence of classic (low-level)
refactorings that focus on enhancing the structure of GUI code while preserving
its external behavior. Some of these GUI-specific refactorings might slightly
modify the GUI's appearance, however. When this happens, the changes are
always focused on standardizing the GUI design and making it systematic
throughout the application.

One important point is when to refactor. (Fowler 2000) suggests refactoring the
third time we happen to do something similar — this is called the “rule of three” and
is credited to D. Roberts. This means duplicating things at first and living with the
duplication temporarily. For example:

* The first time we implement our panel.

* Later it happens that we find ourselves implementing a panel that is very
similar to the one we have just implemented. The rule says we should leave
the two panels separate.

* The third time we encounter the same situation we proceed to apply the
required refactoring — see Parameterize panel on page 198.

Some classic refactorings

In this section we briefly introduce some classic refactorings commonly used in
GUI development — for a complete discussion, refer to (Fowler et al. 2000). In the
next section we discuss the most common GUI-specific refactorings.

The refactorings described here are simple and specifically concern GUI code
restructuring. Refactoring techniques apply to any piece of code, of course, not
just GUI code. We describe four refactoring techniques that can come to our rescue
when restructuring GUI-oriented code. The first three, Move Method, Duplicate

192 Iterative GUI Development with Java

Observed Data and Extract Method, are simpler and are all used in the final tech-
nique, Separate Domain from Presentation.

Move method

This is one of the most useful and frequent refactoring techniques, and consists
simply of moving a method from one class to another. Of course you should check
whether the method is declared in the superclass or in some subclasses of the
current class.

After moving the method to the other class, the old method could be emptied and
transformed into merely a delegating one — that is, one that invokes the corre-
sponding new method in the other class — or it can be removed altogether. In the
latter case all references are made directly to the new method in the other class.

There are no clear-cut criteria for applying this pattern — it depends on many
factors, such as the semantic coherence of the code, its coupling with other classes,
and so on. Move Method, and other refactoring techniques as well, are needed for
example when enforcing a given structure in existing code by moving methods to
different classes. This is discussed in Chapter 7.

Duplicate observed data

Business domain methods need to access business data hosted by GUI widgets —
also referred to as screen data state, and discussed in Chapter 8. A solution is to dupli-
cate the data, so that one representation lives in the content layer, and the other in
the business domain?, and keep them synchronized through an event-based mech-
anism. In the example in Figure 5.12 the latter mechanism is provided by means of
the java.util implementation of the Observer design pattern (Gamma et al. 1994).

Figure 5.12 Duplicate observed data

3. The layers’ names may vary according to the architecture of choice.

GUI refactoring 193

There is a facility in the java.util package that helps with the implementa-
tion of such a pattern through the Observer interface and the Observable
class, as used for example in the Sandbox application in Chapter 16.

As we saw at the beginning of this chapter, such an approach is employed in the
MVC pattern and in its variant adopted in the Swing framework.

Extract method

This is another very common refactoring technique. It consists of grouping code
statements into a new method, and is often used with GUI code. For example, in
a frame or dialog initialization, when the visual container is filled with compo-
nents and these are initialized, one can organize this code into a number of
methods. This is shown in the following example, in which all initialization code
of a JFrame subclass has been organized in few self-explanatory methods.

private void initGUI(){
createToolbar();
createMainPanel();
populateDataTable();

This organization makes the same code more readable and easy to understand
without modifying its externally-observable behavior. Clearly, new methods
should be devised depending on the function the code performs, and not on how
it is implemented. The objective is to clarify the code rather than make it more
complicated with the addition of more methods.

Separate domain from presentation

This is perhaps the most obvious refactoring in the large for GUI code. It is a
‘macro’ refactoring technique, taking many small steps to be accomplished, and
cannot be performed automatically, but is all-important in GUI development. Its
result is to separate business logic and data from the presentation, as shown in
Figure 5.13.

Figure 5.13 Separating domain from presentation

194

Iterative GUI Development with Java

Figure 5.13 uses UML stereotypes to show the functional layer — related to the
functional decomposition shown in Chapter 1 — to which the class belongs.

This technique deals with the guiding principle of separating presentation code
from domain logic. We have already discussed this principle and its implications:
here we present a refined version of the corresponding refactoring technique. In
fact, the rules stated in (Fowler et al. 2000) are:

1. Create a domain class for every window

2. Study the data shown in the GUI windows. If there is any data that is used
only in the window, leave it in the presentation layer. If some data is not
shown, move it into the domain class for that window using Move Method
refactoring. Finally, if any data is used both in the presentation and in the
application layer, use Duplicate Observed Data refactoring to split them into
two separate classes, as discussed earlier.

3. Separate the domain logic inside a presentation class using Extract Method
refactoring. When the domain logic is clearly separated into one or more
methods within the presentation class, move these methods to the corre-
sponding domain object.

4. Finally, when all the code for the domain logic is separated from the presen-
tation, “polish” the resulting domain logic classes with further refactoring.

This approach can be further refined depending on the kind of libraries on which
your application relies. For example, if your GUI uses the Swing framework,
instead of relying on the first rule (create a domain class for every window) you
can take advantage of the modified MVC model adopted in the Swing toolkit.

Some GUI-specific refactorings

Before introducing some of the most common refactorings used in iterative GUI
development, we need to introduce the concepts of Composable Unit and Content
Assembly, which we discuss in greater detail in Chapter 6.

In medium or large applications there could be a need to aggregate code following
some defined abstractions. These “units’ are fully-fledged autonomous entities
that handle their own data, control behavior, content, and so on. They are sort of
‘mini-GUIs” within the GUI itself, aggregated following the Composite pattern.
We call them composable units.

These aggregations can be useful for a number of reasons, such as code organi-
zation and code reusability. A composable unit is a formal building block of the
GUI represented within our architecture. For example, if we adopted an MVC
architecture for composable units — that is, an adoption of MVC in the large,
different than using it at widget-level as in Swing or JFace — then an Employ-
eeMVC would be a triplet of a Model, View and Controller that together would
form a single, formalized unit of reuse within our application. Following this

GUI refactoring 195

architecture, whenever we need a panel that represents an employee, we just
instantiate the related MVC triplet.

Many approaches are possible, apart from technical-oriented ones such as MVC,
as we discuss in Chapter 6. The OOUI approach shown in Chapter 15 also illus-
trates this. Of course reuse and other functionalities can also be provided more
informally, without resorting to a fully-fledged approach like an architecture
based on composable units.

Content assembly is the procedure of assembling widgets using a given layout
manager. The simplest way to compose widgets and composite aggregates of
widgets into working panels and windows with OO technology is to use panel
subclasses and put the assembly code into their constructor. This scheme works
well in the majority of cases, but there could be situations in which this intuitive
approach can be problematic. Other techniques are possible, and we discuss them
in Chapter 6. Here, for ease of discussion, we refer to the case of content assembly
implemented via subclassing. Nevertheless the following refactorings can be
applied as well when other content assembly approaches are used, such as
specialized factories or builders.

Extract explicit panel

We are now ready to discuss some explicit refactoring in the large for desktop
application GUIs based on OO technology.

A common situation is that in which we design a panel for some purpose and then
realize we may want to make a part of it an explicit, separated panel, perhaps
because we may need it for reuse somewhere else in the class. This situation is
shown in Figure 5.14, in which an explicit panel, AddressPanel, in extracted from
the PersonPanel implementation.

addAddressPanel (..)

Figure 5.14 Extracting an explicit panel

196 Iterative GUI Development with Java

After the refactoring, PersonPanel now invokes AddressPanel, while the GUI
design remained unchanged. Usually an explicit panel is implemented as a
private method within the same class as the container panel. Even this simple
refactoring can be complicated to achieve in practice because of the intricacies of
layout management.

Extracting a panel can be tricky, because we want to have a flexible panel that can
adapt to different use scenarios — when it was implicit, there was no need to
provide this flexibility. Let’s consider visual composition, for example. We might
in some cases want our extracted panel to align seamlessly with the containing
panel without knowing about it. Think about the address panel in Figure 5.14. When
we add it to another panel, we expect all its fields to be nicely and seamlessly
aligned with the other fields in the containing panel.

We have two basic strategies for providing widget layout flexibility in our newly
extracted panel:

* Black box support. The panel is provided as a unique visual container, and it is
up to the layout manager to adapt it to the rest of the containing panel. In
practice this might mean providing your own implementation of a layout
manager that deals with this aspect.

* White box support. The explicit panel exposes its internal structure to the
outside world so that its component pieces can be aligned with the widgets
in the containing panel. An example of support for this kind of approach can
be provided by means of attributes, as discussed in Chapter 12.

You can of course provide an approximated alignment without resorting to the
complex mechanisms outlined above — for example alignment values for form-
based GUISs, or even no alignment at all. This will result in slightly poorer visual
symmetry, but it will simplify development.

Extract stand-alone panel

We might go one step further and make our explicit panel a stand-alone class. This
encompasses moving the code of the private method implementing the explicit
panel in a separate panel class, together with the address widgets. This allows us
to reuse the content for addresses in different places of the application, as shown
in Figure 5.15, in which the same address panel is used in two different contexts.

Extracting stand-alone panels is performed routinely when implementing GUIs
through panels, instead of windows or other containers. Focusing on panels
promotes reuse and simplifies GUI changes, even if it may seem unnatural at
first. It can be a needless complication in simple applications, however — see the
discussion of the Smart GUI Antipattern in Chapter 7.

GUI refactoring 197

Forson Dutails _Ox Company 5 _DOx
rirstweme: [] coopany wmbers [|
st wane: [e
Zip Code | ; State hvd
State 7 Zip Code |_—J
Country v Country v

Address:

Zip Code: | 1
State: | - -v
Country: | oo}

Figure 5.15 Extracting a standalone panel

Of course, extracting a stand-alone panel guarantees only content reuse — that is,
the graphical aspects — and some simple, local kind of control and business code.
For full reuse, we may need to escalate to a composable unit, as discussed in the
next section.

Extract composable unit

Transforming a standalone panel into a composable unit means adding all the
required code to make the new unit a coherent reusable block, comprising inter-
action and control, data IO, and domain code. Architectural behavior must also be
provided — for example, composable units may be needed to implement some
interfaces, or bind to a register facility. Figure 5.16 shows an example of the extrac-
tion of a composable unit from a stand-alone panel and its support code, scattered
among other classes.

Merge panel

Refactorings of this type aim at visually merging a panel — either a stand-alone or
an explicit panel — into another existing panel. Merge panel is the twin of the
extract refactorings discussed previously.

Add parameter to panel

While building a GUI iteratively, we may find that we need to add a degree of flex-
ibility to the code to avoid duplicating it. Suppose we implemented an address
stand-alone panel that is embeddable in other panels or windows. In a new

198

Iterative GUI Development with Java

Address: |
Zip Code: |
State: | Lvi
Country: | "
.—v q Address: | |
AddressPanel Zip Code: | |
State: | v
g Country: v
idress(
Other code lated
to Address Panel

Fiqure 5.16 Extracting a composable unit

window we are coding, though, we then find that there is an address to display,
but it should be laid out differently than would our reusable address panel.

This is a frequent problem in many places in a GUI. When new objects need to use
our ‘reusable’ visual components, many unforeseen subtleties arise. Working in a
continuous iterative way as we do, we don’t worry too much about adding all the
required behavior up-front, but instead add it as required, trying to keep our code
as simple as possible.

We then:

1. Decide on the abstractions to be provided by our parameterization.
2. Implement these abstractions by means of a number of refactoring steps.

In our example, we may add to our address panel a setVerticallLayout (boolean)
method that by default is false, to preserve backward compatibility with all
existing clients, which accommodates this special case without revealing internal
details of the address panel implementation.

Remove parameter from panel

As with methods, sometimes specific parameters are not used at all in a panel
implementation. In this case it is good practice to remove them from the
implementation.

Parameterize panel

Most of our development efforts focus on avoiding code duplication. Sometimes
we end up having two slightly different panels that share a great deal of code,

GUI refactoring 199

such as business logic, content, control, and so on, but that differ in detail. A
simple solution is to extract a stand-alone panel and provide some means of
configuration — usually using an accessory method — that implements the differ-
ences between the two approaches, as shown in Figure 5.17.

Parnon Deta -0« CE:]
First Hame: | Inwoice Mo: [—]
Loae s Hema) |—i Adress Tip Code: l:l
Rkl ol] State: [Countzy: 7
Zip Code: Sl
State: -
Country: vi

T — T -
Statae: 4 Country: 7

setVertica lLayout (false)

setVerticalla yout (true)

Figqure 5.17 Parameterizing a panel

A trivial use of this refactoring is that in which you have the same panel dupli-
cated in different parts of the GUI, and you want to extract a single implementation.
In this case there is no need for parameters, because the designs are the same
(although they might differ slightly in unimportant details).

This refactoring technique, like the similar Add Parameter to Panel, tends to
create procedural code within panels to handle configuration behavior. This can
be limited by using classic refactorings such as Replace Conditional with Poly-
morphism and Convert Procedural Design to Objects, as discussed in (Fowler
et al. 2000).

Parameterize Panel and Add Parameter to Panel are similar in theory, but are
used in different contexts in practice. You find yourself using this refactoring
when developers were not able to exert tight control over GUI design, in cases
in which GUI design was done by others — GUI designers, analysts, and so on —
or when the initial design was implemented with a GUI builder that made
panel extraction and reuse difficult. In these cases we would use Parameterize
Panel for factoring out common panels into a single implementation.

200 Iterative GUI Development with Java

Replace parameter with panel

The more parameters we add to a panel, the more complex it gets. We may end up
with an overly intricate panel that would be better off split into two or even more
separate panels. This is the dual of the Parameterize Panel refactoring technique.
It should be used when a panel represents conceptually different aspects that
would be more meaningfully represented with different stand-alone or explicit
panels.

The address panel implementation has become too complex because it imple-
ments two different panels in one class: a simple and an extended address panel.
A better solution would be to separate them into two different panels, as illus-

trated in Figure 5.18.
AddressPanel

Address: |

city: [
Address: | Zip Code:
i 1 idential
fiRisace <:;;:‘ Rn-mmu:-:

grave: I—v Country: f—__
cmemrel|) cmtucts [
setExtended (false)

setExtended {true)

Address:
Zip Code: l:l Ciky:
State: v Residential
hddress: !
Country: b d -
ountry: i

ExtendedAddressPanel

Figure 5.18 Replace parameter with panel

Here, as in all the refactoring techniques presented in this chapter, depending on
the content assembly technique we use, panels will be implemented as visual
panel subclasses, methods or builder strategies (see Chapter 6). Various classic
refactorings can be applied to minimize code duplication between the two newly-
created panels, depending on the implementation chosen.

GUI refactoring 201

Rename panel

Like methods or classes, the names of panels, as well as windows and other
explicit visual composites, are of great importance in defining the specific
conceptual identity of visual areas. If the A3GUI approach is used during anal-
ysis, then the identifiers of the areas found can be used to name the
corresponding panels’ implementations. Even more important than A3GUI,
renaming should be done following domain-driven abstractions and a domain-
driven Ubiquitous Language (Evans 2004).

Failing with style

We conclude this section with a discussion of general strategies for managing
implementation errors — that is, software and systemic errors, not business-related
ones. We include it here because it is an often-overlooked aspect of GUI develop-
ment that should be tackled from early on in the development cycle.

Despite not being a refactoring technique, defining a clear, explicit failure strategy
early in development is important for providing a coherent, usable GUI from the
earliest iterations. By the term failure, we mean some software error or unexpected
situation that hinders the execution of a program. We focus here on situations in
which it is possible to continue execution, provided that the program is allowed
to make some assumptions in order to proceed. That is, “hopeless’ situations for
which we have no alternatives are not taken into account. Clearly, if an application
is unable to find any resource bundle, messages cannot be shown at all and the
GUI is unable to run. In these cases we have no option but to fail to provide the
required amount of information — as described in the discussion that follows on
security and error messages.

The chances are that any application will break one day, no matter how skillful we
might be. This issue needs to be addressed explicitly, because providing a coherent
failure strategy will affect not only the developers, but ultimately end users as well.

There are two broad strategies for dealing with failure:

* Fail first. As soon as there is an unexpected situation, we halt execution,
providing a clear explanation of what happened. This makes it easier to
detect the problem and fix it.

* Fail later. This approach tries to carry on program execution as far as possible.
Suppose, for example, we detect that a required remote connection is down:
we can signal this to the user, but still continue execution.

In practice, the problem is that the best strategies for failure are conflicting. For
developers, a fail first strategy is advisable because the program does not enter into
unforeseen behavior, and the problem is more easily detected. Filling code with
default, specific behaviors degrades its readability, forcing us to constantly ask

202

Iterative GUI Development with Java

ourselves tortuous questions of the form Ok, if the program can’t find the resource
bundle, then it connects to the server, but if the server is down...” and so on.

On the other hand, end users don’t want to be bothered by problems that might
be handled without sacrificing the current session data. When driving I wouldn’t
like my car to stop because it is signaling something like ‘Running out of air condi-
tioning fluid. This might seriously damage the air conditioning system,” and
refusing to start until a mechanic is provided.

Despite the fact that the optimum failure strategies for end users during runtime
and the chosen failure strategy of developers during development are conceptu-
ally separate, it happens in practice that although maintaining two completely
opposite strategies in the same application is hard, it is not impossible.

When default behavior becomes non-trivial, it can be useful to resort to a
specific class to represent it, to decouple it from the rest of the GUI, enhancing
code readability and eliminating tangled conditionals dispersed in the code.
This allows default strategies, spanning client to server and database tiers, to
be represented at a high level of abstraction.

The nastiest situations arise in practice from the repercussions of unforeseen data
such as null values or empty lists on the subsequent execution of the application.
When encountering an unforeseen value such as a null query result, applications
are usually programmed to make some assumptions in order to provide a
minimum degree of ruggedness, for example by displaying an empty results
table, instead of throwing an embarrassing NullPointerException in a pop-up
message dialog.

The problem is that from that point on the application slips into uncharted waters,
while still being fully responsive to the unwary user — that is, its actual behavior
is no longer clearly defined. When an unrecoverable error happens five minutes
later, it might be quite hard for developers to track down the sequence of events
that led to it.

Extensive testing will hopefully catch most of these situations, but without an a
priori strategy the code will contain a cluttered tangle of if (al!=null){ state-
ments and endless, convoluted chains of default behaviors.

A simple remedy to this is to provide a clear, global strategy for failure and its
implementation with OO technology as early as possible, such as a set of instances
of the Special Case pattern (Fowler et al. 2003) that explicitly represent special
cases by defining subclasses for handling special cases only, such as Empty-
SearchResults, UnspecifiedAddress, NullObject. These classes will know
what to show on the screen without forcing conditional control to be scattered
throughout the GUI, will properly log themselves, and will prevent the applica-
tion from being crippled unpleasantly in some unforeseen situation.

Introduction to user interface testing 203

Error messages

Making an application fail is a well-known form of security threat. A surprisingly
high number of Web sites are relatively weak in this respect, and can sometimes
be made to fail by reusing the data obtained from empty or non-meaningful
queries, for example. Web applications are supposed to be much simpler than
fully-fledged GUISs, so the threat is even more serious for rich clients and other
client applications. Alas, GUI developers usually overlook security threats,
because they assume that a restricted end user population, as is often the case with
Java GUIs, will shield them from malicious use.

Fortunately, client GUIs are less restricted than Web applications, and a local log
file will be able to provide technical information to the developers, and not to the
end user — who shouldn’t be bothered by these details, or even worse, might
potentially use them against the system. Separating technical error messages from
end user messages in two different distribution channels (log files and the GUI)
simplifies the error notification architecture, while ensuring higher levels of
security.

In some scenarios it could even be desirable to provide users with low-level
technical details of errors, for example an application that is intended to be
used by developers such as an Eclipse plug-in.

5.7 Introduction to user interface testing

When developing iteratively it is essential to maintain the code tested, launching
unit tests after every change. More rarely, we might change the GUI design too,
perhaps refining an existing feature or adding new ones. In this case we may want
to test the application for usability as well as for technical soundness. While being
two different practices involving different skills, both GUI test and usability
testing are essential for an effective final result.

Agile approaches offer a new and refreshing ‘take” on testing. The approach of
giving test responsibility to the developers themselves from the early stages of
development is a radical departure from ‘old school” QA approaches, in which
an unspoken adversarial climate often arises between developers and testers,
complete with different cultures and career paths and a perception of testing
as an authoritarian practice that takes place after completion of development.

Testing can be seen as a long-term investment in code — the additional investment
is repaid in the small cost of further code modifications in the medium to long
term. Simple forms of testing can escalate into testing practices that influence the
structure of production code heavily.

204

Iterative GUI Development with Java

Tests should be written to cover newly-written code and existing code that has
been modified. Unit testing is perhaps perceived by developers as the most valu-
able form of testing, because of its fine granularity that allows a high coverage of
the code base. No matter which type of test you use, automatic tests should be
launched as part of a continuous build environment.

Test-driven development

Perhaps the single most important advice about testing, which has been vali-
dated empirically by decades of development practice, is to test early. The sooner,
the better. Taking this to the extreme, we have test-driven development, which
prescribes that tests should be written even before the code itself. This strategy
works well when developers are motivated to build effective tests, but can other-
wise result in a development overhead that produce vapid, ineffective tests.

Test-driven development (TDD) focuses on developers writing unit tests before
writing code. It improves the design by providing goals, guidance and early feed-
back to developers, reduces coupling, and improves cohesion. It may involve
major use of refactoring and other practices such as specifications and testing by
example, as well as Agile techniques such as providing automated regression tests
written in collaboration with customers.

Tests also provide a measure of a project’s success and a realistic indication of
overall progress. All of this nice magic comes to a price, of course. The price is
higher development costs, a change in mind-set requiring greater motivation
from developers and managers, and a generally more labor-intensive, responsible
development style.

It is common for developers to focus the implementation and even the architec-
ture on easing testing or other implementation aspects. While this is common
practice for software that does not interact with end users, for desktop application
GUIs this practice needs deeper thought. The real question behind this approach
is how much the development should influence the final product —in our case, the
GUI design, its performance, and its overall usability.

What’s first — GUI design or implementation?

In the early Middle Ages in Western Europe towers, a very important means of
defense in those days, were built with an iterative process in which scaffolding
was attached to the tower itself as construction progressed, greatly simplifying
the building process. Traveling across Europe you can still see these old towers,
which can be recognized by regular patterns of holes in their walls that were used
to insert scaffolding logs.

A tourist might dislike this effect, as it is a temporary construction trick that
affected the overall result right through to today. Moving from the building

Introduction to user interface testing 205

techniques of the past to current software engineering practice, a frequent ques-
tion is how much a GUI design should be influenced by its implementation. We
saw in Chapter 2 and at the beginning of this chapter that cost-driven design is
an all-important practice, but even with this approach, usability and end user-
centered considerations always have the last word over implementation details.

In real situations, especially with developers not familiar with GUI design issues
and concerned mostly with implementation aspects, such as providing a robust,
cost-effective and easily maintainable GUI, this might not be the case. To them,
implementation is the priority, with GUI design considered a sort of a nice-to-
have, slightly dangerous luxury.

Such developers would probably consider holes in medieval towers to be part of
the design, not a side effect. Structural integrity is a quality achieved by means
of the building technique employed, and not a spurious, secondary effect. Cost-
effectiveness is an important part of a construction technique. Others may argue
that GUI design is the final product, and development must serve the final result
only, possibly constrained by cost-driven considerations. You can imagine how
such topics were debated in past millennia for civil engineering and architecture.

Such considerations are also important in software engineering practice, because
implicit assumptions made by developers can drive the project towards unfore-
seen and dangerous situations. Contrary to server-side development, GUI
builders also face customers’ judgment. Imagine that you are an architect and
your client, a wealthy entrepreneur, is paying you a substantial sum to design
and build his next factory, a place where people will spend most of their daytime
and which should be optimized to provide the best possible working conditions.
Now imagine your feelings when during a design review the top managers and
the boss ask you about the weird holes into the walls shown the drawings of the
new building... equally, you don’t want any holes showing in your GUL

These apparently abstract considerations boil down to very practical situations
when developing real-world GUIs. Think for example of the habit of many
developers of keeping the GUI layer as thin and simple as possible. This makes
extensive unit testing much easier, bypassing the GUI ‘skin,” and confines
presentation details outside the ‘real application” automatically. Unfortunately
this approach becomes burdensome as the complexity of the GUI increases, espe-
cially with regard to complexity of interaction with end users — think for example
of complex, extensive interaction and control behavior.

To use a metaphor, it's like trying to build an easy-to-maintain and robust
Formula 1 race car. It is hard to design your car for other objectives than speed
and performance. Providing additional equipment and mechanisms for easing
car maintenance could decrease performance and, as the competition gets
tougher, be a costly luxury.

206 Iterative GUI Development with Java

The bottom line is to design and develop as much as possible focusing on imple-
mentation details, as long as this strategy doesn’t clash with usability and the
overall, user-perceived effectiveness of the final GUI.

5.8 Software testing of Java GUIs

This section describes details of GUI implementation testing, and some techniques
that help to build a GUI that is easy to test.

Exhaustive software testing of a GUI can be complex and expensive. You can trade
technical complexity for cost, and let human beings test your GUI, or you can
automate part of the testing to save time and money, but this may prove to be
complex and limited, at least with current technology, a problem not confined to
Java. GUIs and their building blocks are built for users. Only as an afterthought
are they made available for automatic manipulation, and even when they are, it is
not easy to declare interactions and expected behavior.

Expressing interaction properties of any complexity in a formal language in a
simple and widely-adoptable way is a long-held dream of the GUI engineering
community that is yet to prove feasible in reality.

This section provides a complete perspective of GUI testing. Practical exam-
ples are provided in some of the later chapters of the book.

How to test — GUI software test approaches

Referring to Figure 5.19, we divide our code into three broad categories for GUI
software testing.

GUI back end Business
Objects

/]

Q‘:@l" |

Figure 5.19 Partitioning code for software GUI testing

Software testing of Java GUIs 207

These are:

GUI front end code. This is where widgets and all the graphics code lies,
including the content layer. It is important to note that copies of the business
data are stored within widgets as well, referred to as the screen data state —
this is described in Chapter 8. We assume a general lifecycle as follows:
some business objects’ data is copied to widgets” data, and after specific user
interactions via the GUI back end code, data is passed from or to the busi-
ness objects.

GUI back end code. This code oversees at the binding between GUI and data.
In MVC terminology it is the controller code. This part of the code also
contains the business rules and other control code. In the particular MVC
flavor implemented in Swing, this code is contained within the widgets
themselves.

Business objects. These are the domain-dependent business data our GUI is
representing, referred to here as the business domain layer. We assume that
developers have tested these objects autonomously, using libraries such as
JUnit, so we will not discuss their testing here, and take their integrity for
granted.

Some toolkits like Swing allow business objects to be used as GUI models
directly, but for various reasons developers sometimes do not use this
feature — that is, business objects are copied in and out of the MVC’s model
objects — so that we keep the MVC'’s controller and model explicitly sepa-
rated for clarity.

The commonest way to test the implementation of a GUI is to get a person to
test it. This is the kind of testing all of us have done many times in our lives.
Figure 5.20 shows this situation.

(1) stimulating

the GUI Front

(2) measuring the GUI Front End

Figure 520 Manually testing a GUI

208

Iterative GUI Development with Java

The tester stimulates the GUI — pressing buttons in a certain order, typing in
values, and so on — and sees whether the expected result is obtained. This kind of
testing has all the problems we can imagine for testing:

* Itis not repeatable. Even if a written test script is used, someone has to
perform all the steps requested by the script.

* Itis not 100% safe. Humans may make errors, both in manipulating the GUI
and in interpreting the outcomes.

* Itis expensive, because testers need a lot of time to perform extensive testing.

It has also some benefits, the major one being that unexpected problems can be
found easily. Some tools allow the recording of test sessions and other limited
forms of automation, as we will see, but for fully testing a real-world complex
GUI, human beings are still necessary.

For effective automatic testing of a GUI, some form of modification of the imple-
mentation is needed. Special software access points must be added to the GUI
code to allow it to be tested without (or with limited) human intervention, to
allow the kind of interactions described above.

An example can help to explain this: think about a text field within a panel that a
developer may want to manipulate and then make the resulting value available
to the program. Access to the specific widget might require some form of OO visi-
bility relaxation, such as making the field protected, for example, or some other
form of runtime access.

A practical discussion of testing is provided in Chapter 8, focused on form-based
rich client applications, although limited to a concrete case only.

Adding a layer of indirection between presentation and the rest of the GUI imple-
mentation works well for GUIs with a low level of interactivity. The higher the
interactivity bandwidth with the user — that is, the more interaction and control
behavior in our GUI - the more work is needed to maintain the additional decou-
pling. Ultimately, some form of testing through the GUI is always needed: for end-
to-end tests, for testing interaction logic, or for (automated) acceptance tests.

Framework-dependent code in GUIs can be confined to the presentation and
content layers — that is, the GUI toolkit in use. By adopting a Rich Client Plat-
form, however, container-dependent code grows through the addition of
business rule validation, data binding, multithreaded operations, and so on,
and unit testing code needs to pass through this container-managed code. This
situation resembles the testing of application-server contained Java server
code.

Software testing of Java GUIs 209

The three most frequent approaches to GUI software testing are fully manual, semi-
automatic and fully automatic. Each approach has its own benefits and drawbacks,
and the best result is obtained when using two or all three approaches together:

* Fully manual. A test team ensures the robustness of the GUI by testing it
directly. Documents such as refinements of analysis use cases describe
detailed scenarios of use and their expected outcomes.

* Semi-automatic. Testers use some form of tool to automate some tests, usually
lower-level ones. They launch scripts and inspect the results in the GUL

* Fully automatic. Developers implement test cases provided by the test team.
Such tests can be run together with the other unit tests as part of the code for
the GUI.

The characteristics of these testing approaches are briefly summarized in the
following table.

Table 5.2 The characteristics of testing techniques

Initial Run
Type setup cost costs Precision GUI coverage
Fully manual Medium / Low (writing High High Low
test cases in plain
language)
Semi-automatic =~ Medium /High Low Medium Medium/ High
(human tester with (learning/ purchasing (depends
recording device) tool, ...) on tool)
Automatic High / Very High (tweak Low High Medium
existing code, write (some GUI-only
code test cases) interactions cannot

be tested fully)

Designing for testing

A number of techniques can be employed to simplify automatic unit testing of
GUI code. These techniques range from high-level design strategies to practical
details. A number of design strategies can be employed to simplify API access to
GUI code:

* Presentation Model is a design technique used in Smalltalk VisualWorks that
aims to decouple toolkit-dependent code completely from the rest of the
application. The data and the behavior of the GUI are isolated from the
content. The class that represents the Presentation Model contains data that is
displayed in a visual container such as a panel or a window and needs to be
maintained in sync.

210 Iterative GUI Development with Java

* Model-View-Presenter (MVP) is a variant of the Model-View-Controller
(MVC) pattern discussed in the next chapter. This design pattern allows for a
certain level of decoupling between the toolkit-dependent code and the rest
of the application.

* Provide programmatic access. This approach aims to make as much as
possible in a GUI reachable by API methods, so that automatic unit testing
can be used to include behavior such as GUI events, interaction and control,
and other parts of GUI implementation that are usually not accessible to unit
tests. This is a fairly intrusive technique that requires many methods to be
added to support automatic testing.

What to test — test coverage criteria

The following table shows the most useful types of tests available for “unit’-testing
widgets, that is, without interactions with other areas. For example, when ticking
in a check box, are panels of related properties disabled? The italics show the tests
than can only be run through the GUI back-end layer — that is, tests that are not
available through GUI interaction.

Table 5.3 Data-bound widgets ‘unit’ tests

Data Type Widgets Typical Tests

List-Of Combo box, table, List 0 elements,
1 elem.,
Random N elems.,
Null value,
1 Null elem.

(Formatted) Field Data formatted fields Empty value,
(Date, currency, etc.) Random valid* value,
Invalid* value,
Null value,
Ad-hoc Ad-hoc component (for ~ Ad-hoc property,

example color chooser, Empty value

and so on .
) Random valid* value,

Invalid* value,
Null value

Group of Boolean Check box, radio button 0 elements selected,
values 1 Null elem.,
Null value

(* Indicates values whose validity as defined by business rules, if any)

Usability testing of Java GUIs 211

This type of testing can be extensively automated, including testing for special
cases. We discuss some testing frameworks and tools that can be used for this
purpose in Chapter 11.

In my experience many of the problems with robust GUI development today
are due to non-optimal use of testing tools. The market offerings for GUI
testing tools for Java are still fragmented and oblige developers to use a careful
tool selection process, often using more than one test tool, depending on need.

An ideal GUI testing tool for Java

Every test tool currently on the market has some nice, unique feature that would
be good to have in a comprehensive product. Perhaps this will never happen, but
the characteristics listed here may be useful when choosing an existing tool.

The ideal tool should be simple and lightweight, built with customers as
reference users for acceptance tests, thus ensuring usability, simplicity, and
SO on.

It should use a high-level scripting language, easily embeddable and usable
by developers and non-developers alike.

It should have a basic set of elementary GUI test functions that apply equally
to SWT or Swing GUISs, and specialized libraries that provide both higher-
level and toolkit-dependent behavior.

It should provide hooks to the JVMPI interface, so that stress tests can be
automated, abstract-to-concrete pick-selection, allowing the use of a widget
logical identifier to find a component, then use GUI low-level events to fully
simulate human interaction and integration with unit testing libraries.

Essential features should include: proved in large, complex projects,
provided with some IDE support, well documented with non-developers in
mind, possessing a recording/ playback facility, a lively support forum, and
so on.

Most importantly, it should be designed with a testing philosophy in mind.
Instead of being a set of loosely-assembled diverse features, it should
support testers, developers and customers throughout the product lifecycle.

Is this asking too much?

5.9 Usability testing of Java GUIs

Usability testing is an all-important form of testing, related to the semantic and
emotional impact the GUI has on end users, the consumers of the product and
those for whom it was built.

212

Iterative GUI Development with Java

Usability testing of user interfaces is very different than the GUI implementation
testing described in the previous section. While the latter can be thought of as the
equivalent of testing text for grammar and spelling errors, usability testing is the
equivalent of testing for poetical resonance and pathos. It involves a completely
different set of skills and is a subjective form of evaluation, because it depends on
the user population that will use the application. Results obtained in this way
should not be generalized to other situations and users outside those in the test
population.

Usability testing is important. An application that is difficult or aestheti-
cally unpleasant and punishing to use will frustrate end users and increase
the proportion who will ask for support or who will fail to complete appli-
cation tasks effectively. This can ultimately cost more than the software’s
development.

We do not discuss usability testing in detail here — many books on this subject
exist, such as (Nielsen 1993), (Rubin 1994), or (Snyder 2003) for paper prototypes.
We do briefly discuss a practical approach to usability testing, leaving the inter-
ested reader to more specialized resources.

Usability tests are carried out with real users and using a specific number of
defined tasks. They comprise the following activities:

1. Determine the goal of the testing. Possible goals include:
— Testing the ease of understanding and ease of use of certain features.

— Verifying empirically the way real users perform specific tasks in partic-
ular situations .

— Collecting some form of data for an empirical assessment of specific GUI
aspects, such as the average time to accomplish a task, how often a critical
operation is achieved successfully, and so on.

2. Defining the user population and the user profile for the intended tests.

3. Finding suitable users that correspond to the profile, or picking representa-
tive users from the client’s organization.

4. Defining the tasks that users will perform in the testing
environment.

5. Preparing the application, or the prototype that will cover the tasks, for
usability testing, including data and other simulated support, such as remote
communication delay times.

6. Defining the boundaries of the prototype (see Figure 5.2 on page 177) and
testing the application or prototype internally before using it for usability
testing with real users.

Usability testing of Java GUIs 213

7. Conducting usability tests with users on given tasks:

— Usability testing is a delicate form of testing. Giving guiding instructions
or letting the tester struggle fruitlessly for half an hour with a particularly
cumbersome feature can both make testing a waste of time.

— A single test usually lasts half to one hour.

— Testing consist of letting the user use the application to perform the
planned task while recording details about their experience unobtrusively.

— Special attention should be given during usability testing to issues such as
choosing the most realistic test context.

8. Collecting results from the tests, prioritizing the issues found.
9. Applying the feedback obtained. This implies modification of the GUI design
to address the most important issues discovered during testing.

In the development of an experimental plug-in for Eclipse I created a special
additional plug-in to observe the user at work, producing a sequence of screen
shots that provided a record of the user’s behavior while solving the proposed
tasks. Such material, together with handwritten notes taken during the testing
sessions, is extremely precious in understanding the usability shortcomings of
the application with a specific user population.

Don't forget to use some form of ‘informed consent’ agreement signed by your
users prior to testing, explaining the purpose of the tests, the amount and type of
data being collected, and other privacy concerns, such as the fact that all user data
is collected in an anonymous way.

Several different roles are involved in the creation and running of usability tests:

* Those who design the GUI, comprising some developers, and those who
created the prototype.

* Usability testers, who conduct the tests and takes notes.
* End users, the subjects of the testing.

Many problems can be isolated by the use of simple prototypes. Once spotted
during usability testing with a prototype, such problems can be tackled at an
early development stage, saving money and time. The most frequent problems
are:

* Navigation and ease of accessibility of features within the GUIL
* Lack or unsatisfactory implementation of business requirements.
* The terminology and concepts used in the application.

* Visual issues such as widget layout in form-based applications, and so on.

214 Iterative GUI Development with Java

5.10 JRE runtime management

This section discusses the profiling and tuning of application runtime resources,
which is an often overlooked aspect of GUI development. We discuss this topic in
this chapter because a simplified, focused form of profiling can be carried out
during iterative development, and this can save valuable time and energy in the
medium to long term, much as can continuous testing.

Performance is a concern in any non-trivial Java application. Making a Java appli-
cation perform well is a matter of design, implementation and profiling skills, as
we will see.

Introduction to profiling

Profiling an application allows a developer to glean useful metrics, such as the
memory use of a given object and the execution times of specific methods. This
can provide detailed and valuable insights into how an application is performing.
Even with a good design and the best developers, issues related to performance
or memory management can be introduced, particularly in programs that consist
of multiple layers and deep object graphs.

We introduce JRE profiling here in a general way, abstracting from the many tools
that are available for it. The general concepts can be applied to any tool. It is
important that every developer is confident with even a simple profiler, at least
for detecting blocking runtime issues early in the development process. The good
news is that profiling for desktop application GUIs is easier than profiling server
applications, and after a little practice results will be easy to achieve.

There are two main approaches to profiling:

* Preemptive. Profiling is done to prevent problems occurring. We want to keep
preemptive profiling as simple and cheap as possible, because if it becomes
too difficult we will abandon it. For this reason preemptive profiling should
be fully automated and as rapid as possible.

* A posteriori. This is done after something wrong is discovered in an applica-
tion and we need to understand the problem. Usually it is a deeper and more
comprehensive analysis than preemptive profiling, and it is performed
manually by expert developers.

The JRE provides a standard interface for profiling agents, JVMTI. The old
profiling interface (JVMPI) is supported only in Java 1.5. Both these interfaces
are native (through JNI) and provide a two-way interaction with the JRE.

Developers usually discover profiling when a problem is found in the application,
and this often happens close to the release deadline — or even later — when inte-
gration tests are run extensively. This can result in quick and dirty solutions that
might spoil an otherwise carefully thought-out design.

JRE runtime management 215

Systemic and application-level concerns

Measuring, inspecting, and acting on threads and JRE runtime memory allocation
is different than working with GUI events and widgets’ data models. Using a
debugger and executing tests are application-level activities, while profiling oper-
ates at the ‘systemic’ level. Systemic is a concept borrowed from biology, and is
used to indicate something relating to or affecting an entire living organism or one
of its subsystems. To make an analogy with newspaper editing, when we perform
tests of any type, it’s similar to editing an article for grammar, while when we do
profiling, it’s like examining the paper on which the newspaper is printed.

It can be hard to track a problem from its systemic, low-level effects back to its
application-level causes. For example, an improper use of the GUI event queue can
cause unnecessary production of GUI events, which will in turn appear at a
systemic level as an excessive thread overhead, or in some cases thread contention.

Luckily, Java technology allows for fairly transparent access to the JRE’s inner
workings, allowing developers to inspect the fine-grained detail of runtime
objects, threads, and resources.

Profiling techniques

Two main techniques exist for inspecting runtime performance in Java code,
which are often used together:

* Bytecode instrumentation, also known as ‘bytecode injection” or “bytecode
insertion.” This technique transparently modifies the .class bytecode and
inserts special code to capture events like method entry, method exit, object
allocation, and object freeing, while the code is executing.

* Profiling agent sampling. The JRE-native interface to profiling agents allows
for interactions with a running JRE. Examples of such interactions are
querying for current threads and their status, obtaining a memory heap
dump, or invoking the garbage collector.

At the application level we don’t have to know how these features are accom-
plished when we use a profiling tool.

Profiling can also be used for understanding the working mechanism of
portions of an application whose source code cannot be accessed, or that it is
extremely hard to understand. This is often the case with third-party libraries
or with large and tangled code bases. In this cases it can be useful to inject
special data into the application that has a recognizable pattern, and track its
transit inside the application at the systemic level, much as chemical or radio-
active tracers are used in medicine. When code is truly obfuscated, however,
even this technique can prove ineffective.

216 Iterative GUI Development with Java

Common problems

A number of problems can be detected by profiling, discussed in the following
subsections.

Memory leaks

Memory leaks are characterized by an unstable memory allocation that will even-
tually halt the JRE with a OutOfMemoryException error. Memory leaks are
characterized by the following equivalent effects:

* The heap decreases after every garbage collector (GC) invocation: the
average heap size appears graphically as a downward linear graph. The
steepness of this graph reveals the rate of memory leaking after each GC
invocation — see Figure 5.21 below.

* On average the GC successfully discards fewer and fewer objects at every
invocation.

As Figure 5.21 shows, the free memory heap size in a Java application should
oscillate around an average value, which can be roughly shown as a straight line.
The application execution will create new objects, while the garbage collector will
periodically remove those that are no longer referenced. In the case of a memory
leak, the average heap size appears as rising graph.

The greater the slope of this graph, the easier it is to isolate the location of the
problem at the application level. This happens both because it is easier to notice
large changes in time, and also because for a developer it is easier to spot differ-
ences to other object allocation trends that remain roughly constant.

Memory
Leak

LJ{WL/AWUIAVQ/IL ,P\JAL/“-J\JJ\'J/\(%

(1) Healthy Application (2) Sick Application

Fiqure 521 JRE heap memory allocation profiles

The strategy for finding memory leaks is similar to the strategy used for finding
other performance problems. Start from the effects and backtrack, from the
invoked method to the method invoking it, and so on, until the source of the
problem is detected. Most profiling tools have special performance data view to
make problem detection easier.

JRE runtime management 217

OutOfMemoryException errors can be thrown for reasons other than memory
leaks. An infinite recursion loop, or just too small a heap size, can exhaust the
JRE’s available memory.

Typical occasions when memory leaks can occur in desktop application GUIs
include screen disposal that is not performed thoroughly by means of an explicit
disposeResources() method. This is specially true of Swing applications, as
many developers refuse to write such methods, convinced that resource disposal
is performed automatically by the library+.

Consider the case in which you have an Observer instance registered to a
Subject, for example a subclass of Observable. Now you dispose of the screen,
which is perhaps implemented as an SWT Dialog. The Observer instance does
not get disposed, because a reference to it is kept into the Subject’s list of
listeners.

Another common situation is that in which some utility class such as the help
manager is used, and we register an object contained in a screen to such a utility
class — for example, through JavaHelp’s CSH.setHelpIDString(widgett,
"widget id"); method. This reference now keeps the object alive, as well as all
other objects it refers to within the disposed screen.

Sometimes it can be time-consuming to track down the location of a perfor-
mance problem. It may be the case that a memory leak is so negligible that you
would need hours of interaction to spot the cause of the problem. To speed up
the detection process, you can artificially exaggerate the problem. In the case
of memory leaks caused by an incorrect resource deallocation, for example, it
might be useful when working with Swing to install a Look and Feel with very
memory-expensive graphics and resource consumption, so that after just a few
interactions you can spot easily where the problem lies.

CPU hot-spots

Profiling can help you to identify methods that consume the most CPU execution
time®. This is achieved by isolating the points in the code where the program
spends most time, starting from the effects — the location where the time hot-spot
is detected — and backtracking from method to method, starting from the method

4. This is true only as far as graphics resources are concerned, and provided that developers
follow common use patterns.

5. Generic execution time also includes other running threads and the time resources
consumed by the profiler process itself. As a first approximation, they can be thought of as
equal.

218 Iterative GUI Development with Java

currently executing to the one that invoked it, and so on, to detect where the
problem lies.

Threading issues

Threads that are competing for locks exhibit the phenomenon of thread conten-
tion. Luckily, a careful design and implementation will prevent this sort of issue
in Java GUI code. Desktop application GUIs in Java are usually built on a simple
single-thread scheme, as adopted by Swing and SWT. Simple design criteria
ensure no threading issues as long as some basic rules are observed.

In Swing applications, for example, two main rules shape thread design:

* Manipulate Swing components — that is, invoke methods on Swing widgets —
only from the event dispatch thread (EDT). This is because JFC/Swing is not
thread safe, contrary to AWT.

* Lengthy tasks should not be performed on the event dispatch thread,
because this will freeze the whole application. Instead, use the SwingWorker
class to fork a new thread, allowing the application to remain responsive.
Return to the EDT only when the results from longer processes are available.

Access to the EDT is achieved by means of the SwingUtilities.invokelLater()
method. Too many such method invocations can hinder performance. The Swing-
Worker class supports the coalescing of Runnables — that is, many small Runnable
instances merged into one — to ease this problem. Simple test classes can verify
automatically that all widget manipulation is performed within the EDT®, and
that the EDT is not clogged by too many Runnables. For example, you could peri-
odically create a Runnable to be inserted in the EDT that measures the elapsed
time for its execution since its insertion into the EDT.

Thread problems with SWT are immediately obvious — in contrast to Swing, SWT
does not allow widget manipulation outside the EDT at all: instead, a runtime
exception is thrown. In cases in which data from another thread needs to be
provided to a SWT widget, the method display.asyncExec () provides a similar
function to Swing’s invokelLater (), allowing a separate thread to communicate
with widgets.

Garbage collector activity

Excessive garbage collector (GC) activity should be a primary concern when opti-
mizing performance. An application may exhibit excessive object creation or
object retention due to bad design. This will cause the GC to be launched more

6. See for example the Spin project at http:/ /spin.sourceforge.net/.

JRE runtime management 219

frequently than it should, slowing the application’s execution and thus its interac-

tion with the user. The following situations can pose an excessive burden on the
GC:

* Excessive object turnaround. Creating too many short-lived objects will cause
the GC to be invoked more often than needed. This is the case in a loop that
creates many temporary objects, for example.

* Excessive object retention. Storing objects that are no longer needed reduces the
available memory and thus forces more GC invocations.

In interactive GUIs, excessive GC activity may affect the application’s responsive-
ness. Imagine that you are using an application that occasionally and
unpredictably freezes for few seconds, then returns to normal responsiveness. This
is very frustrating. A reason for this bumpy type of interaction could be an exces-
sive heap size, requiring much time to parse during GC activity, or some other
form of poor GC tuning.

In tuning the GC for interactive GUISs, the focus is usually on minimizing pauses —
the times when an application appears unresponsive because garbage collection
is occurring — instead of maximizing throughput — the percentage of total time not
spent in garbage collection, averaged over long periods.

J2SE 1.5, differently than 1.4, chooses the GC algorithm automatically depending
on the type of machine on which the application will run. For more information
about JRE’s GC tuning, read the excellent Sun documentation for the J2SE version
of interest.

In enterprise applications and rich clients by far the predominant source of
latency and lack of responsiveness is caused by remote communication and
the way it is designed. No matter how well the work of the garbage collector
is streamlined, or how well local threads handle complex operations on the
client, the latency of remote communication is almost always orders of magni-
tude greater than these client-side enhancements.

In this common case, optimizing data communication over the network will
have an enormous impact over the overall performance perceived by the end
user.

Continuous profiling

Continuous profiling is an automated, simplified version of application profiling
that focuses on isolating the most serious systemic problems as early as possible,
such as:

* Memory leaks

¢ Thread deadlocks and contentions

220

Iterative GUI Development with Java

Continuous profiling doesn’t reveal the exact line of code where the problem lies.
Instead, it generates an alarm signal for developers to investigate a serious
problem while an application is still in production, using a smaller and easier-to-
examine application. Developers will have fresher knowledge of the implementa-
tion at this stage and will be able to spot the issue more quickly than they might a
few months after product release. Finding the problem and solving it in parallel
with on-going iterative development augments the chances of providing a good
solution without a last-minute rush.

Continuous profiling demands automation, at least of input stimuli, to emulate
end-user interaction. At least two main scenarios must be simulated in an auto-
matic and repeatable fashion: stress and average use of the application. These tests
are applied to the application and appropriate performance measurements —
elapsed time, available memory after a GC invocation — are verified. When using
JUnit, for example, JUnitPerf, a collection of specialized test decorators, can be
used to measure performance automatically.

Premature optimization is the root of all evil”

Continuous profiling should focus only on isolating systemic problems that may
seriously hinder the application, or stop its execution completely. Any further
optimization should be postponed to a posteriori profiling sessions, if any. This
ensures that the application will work well without last-minute nasty surprises,
and without wasting precious time optimizing code that may later be heavily
modified or discarded.

A posteriori profiling

7.

This is the commonest form of profiling, performed when a serious, blocking
problem is threatening development and it needs to be isolated and fixed, usually
in a short time-frame. Common issues for this kind of profiling are:

* Finding the slowest methods. Optimizing performance is a frequent theme in
Java GUISs, especially in cases of non-trivial tasks and limited memory
resources. As with CPU hotspots, this is achieved by backtracking from
invoked methods to the invoking ones to discover where the bottleneck lies.

* Detecting where most garbage collection activity is concentrated. Mysterious
abnormal GC activity degrades the performance of an application, making it
almost impossible to use on some machines. The culprit is usually an area in
the code where there is excessive object creation and subsequent disposal,
possibly within a loop.

Despite being traditionally credited to Donald Knuth, this popular quote is of uncertain origin. Others
credit it to Edsger Dijkstra.

Summary

221

Several other common profiling and optimization issues can be verified during a
posteriori profiling. This is unfortunately the most common case in practice. We are
pressurized to find memory leaks and thread contentions only after they bring the
application to a halt, and in the worst possible time-frame: close to the product
release date.

A posteriori profiling is also concerned with careful fine tuning of application
performance, if necessary. This can be different than the profiling work we have
discussed previously, which is only aimed at avoiding blocking problems during
program execution.

A posteriori profiling often needs the data from the particular context in which
the problem surfaced in order to solve it. An interesting aspect of Java profiling
and debugging technology is the ability to perform these operations remotely
using a dedicated communication protocol. This allows developers to ‘plug
into” a client’s JRE at a specific point during execution and inspect its current
internal state, thus studying a problem within the actual scenario that caused it.

5.11 Summary

This chapter discussed the various techniques that are collectively used when
developing desktop application GUIs iteratively using Java technology. Although
we focused on J2SE and desktop GUIs, much of the advice provided here is appli-
cable to J2ME applications as well, and, with some modifications, to Web GUIs too.

We discussed the important issue of ordering activities to provide a more practical
approach to iterative development by focusing on the most important issues first.
We then presented the different alternatives available for producing scaled-down,
inexpensive representations of real GUIs using Java technology.

We also provided an introduction to refactoring practice and testing for software
soundness and general usability, both much-needed techniques when developing
iteratively. The chapter concluded with an introduction to the often overlooked
practice of profiling for runtime resources, another useful tool for producing
sound and usable GUIs.

The next chapter delves into software design details for building professional Java
GUI applications.

6

Implementation Issues

As we saw in the first part of the book, user interface design is not a matter of taste,
or at least, shouldn’t be. On the contrary, while the exterior appearance of a GUI
should adhere to standard design guidelines, in practice the inner software design
is more or less left to the developer’s goodwill, with the tacit assumption that the
implementation is okay as long as it works.

This chapter discusses some of key issues in the implementation of Java GUIs,
such as how many closely-intertwined objects can communicate in a modular
fashion, which criteria are traditionally followed for organizing the code of
complex GUIs at design time, and how user interactions and the way the GUI
reacts to them are represented and managed. General problems are introduced
and the most effective solutions to those problems proposed. Such solutions
usually imply adopting one or more OOP design pattern and other techniques’.
The chapter organization follows the functional decomposition of the general
model introduced in Chapter 1. The chapter is structured as follows:

6.1, Revisiting the abstract model discusses various issues related to the implemen-
tation of GUIs and the abstract model presented in Chapter 1.

6.2, Content discusses common design solutions for implementing the content
layer, such as content assembly and navigation.

6.3, Business domain illustrates the main issues related to representation of the
business domain in GUISs.

6.4, Data input-output discusses general design issues concerning the data I/O
layer, data communication and code security, and the Data Transfer Object (DTO)
design pattern.

6.5, Making objects communicate introduces the Observer pattern and its variants,
and discusses the pitfalls of event-based designs and other related issues.

6.6, Separating data from views discusses the main design strategies used for sepa-
rating data from its visualization, discussing MVC and its various flavors.

1. Most of the patterns described here can be found in (Gamma et al. 1994). For a discussion
that is more specific to Java (but with a smaller selection of patterns) see for example
(Cooper 2000). GUI-specific and original patterns are also discussed.

224 Implementation Issues

6.7, Interaction and control introduces the three main design strategies for imple-
menting this functional layer in Java — scattered, centralized, and explicit design.

6.8, Some design patterns for GUIs introduces other patterns and design strategies
that are useful in more than one functional layer.

6.9, GUI complexity boosters lists some implementation issues that dramatically
complicate software development for Java GUIs.

6.1 Revisiting the abstract model

Chapter 1 presented a generic, abstract GUI model, in which functionalities are
decomposed in layers, as shown in Figure 6.1.

Interaction
and Control

Business
Domain

Content

E Infrastructure

Fiqure 6.1 An abstract model decomposition

The functional layers in the figure are:

* Business domain. The representation of the domain of interest, without refer-
ences to GUI details. This layer can be modeled using a domain-driven
approach (Evans 2004).

* Content. The ‘structure’ of the GUIL: widgets, panels, windows, and naviga-
tion among different windows. Layout is also included, to ease the
understanding and manipulation of widgets.

* Data IO. The interface with the rest of the software that supports all interac-
tion with the GUI other than the user’s. This layer defines the

Revisiting the abstract model 225

communication data in applications that need to exchange information with
remote servers.

* Infrastructure. Low-level support, GUI frameworks, runtime environment,
utilities.

* Interaction and control. Low-level events and control logic. This layer contains
controls such as disabling the commit button in a form when a required field
is empty. Despite being business-dependent (like any form of software) this
type of control is also generic and can be factored out as a separate layer,
leaving the domain model more focused on business logic and less on GUI
details.

* Presentation. Graphical details dependent on the given presentation tech-
nology. Pixels, colors and the like are confined in this functional layer.

Functional organization — that is, storing and organizing things depending on
their use — is a criterion we all use extensively in everyday life: for example, we
don’t look for our car keys into the fridge. This model suggests a comprehensive
organization of GUI implementations based on function, together with a minimal
organization of relationships in layers®. The main purpose of this model is to
provide a useful trade-off between generality and practicality. For example, navi-
gation is considered part of the content layer, and not of the presentation layer.
This is because it is easier to define navigation during prototyping and early
design, together with GUI content. As with any classification, the decomposition
into layers proposed in this abstract model highlights some aspects and ignores
others.

One of the most useful benefits of the model is in decoupling responsibilities. For
example, having a clearly-separated business domain layer helps when applying
all the experience and tools object-orientation has provided over the years. Anal-
ysis and design patterns, refactorings, Domain Driven Design and more become
available for non-trivial GUIs. All of this power and its related complexity may
not always be needed, of course. In such cases some of the layers can be merged,
until a unique, comprehensive ‘blob” of presentation, data and business logic is
obtained, such as the one-layer architecture discussed in Chapter 73.

Having a general functional model also helps to move more easily between tech-
nologies. This is especially useful for the Java world, in which many competing
technologies and tools can be used interchangeably. Several libraries exist for data
binding, multithreading, or GUI testing. They can be mixed effectively as long as
a sound decoupling between different functional aspects can be enforced.

2. See Chapter 7 for a definition of a software layer.
3. Also known as the ‘Smart GUI antipattern” (Evans 2004).

226

Implementation Issues

Some issues are common to all the layers of the abstract model in Figure 6.1:

Adaptation. Desktop application GUIs adjust themselves to context data such
as the locale or the graphics resources available. From an implementation
viewpoint, these external factors work like parameters to the GUI. There are
many forms of adaptation that may affect some or all of the abstract layers in
Figure 6.1, as we will see later.

Requirements. Requirements may apply to any aspect of the GUI and need to
be addressed explicitly throughout the software lifecycle. Some requirements
may be specific to only one functional layer, such as for example a business
rule, or cross several layers, such as details of the data handled in a given
screen.

Testing. The various kinds of testing discussed in Chapter 5 affect all the func-
tional layers.

Preferences and configuration data. GUIs need to accommodate a wide range of
situations. Each layer may have a set of configuration data and user prefer-
ences. Preferences are set directly by users by means of a preference panel, as
discussed in Chapter 4. An example of preference data, which mainly affects
the presentation layer, might be selection of a special look and feel for visu-
ally-impaired users. Configuration data is more implementation-oriented,
for example defining the time interval between which clients ping their
servet, or the JRE memory configuration, and is set manually by users, or in
some circumstances by an administrator.

Testing the various layers

Testing follows the general model proposed in Figure 6.1. Because the content
layer is the base for the other functional layers, testing it is also useful for testing
all other layers. The infrastructure layer and its code — GUI toolkit, third-party
libraries, and so on — usually don’t need to be tested. A common approach to unit
testing is to limit testing to a functional area of interest. Depending on the layers
in Figure 6.1, different tests are possible:

Business logic tests. Testing domain logic should be done in business logic
terms, not through the GUI. It is pointless indirection to translate

business logic tests into GUI interactions that in turn invoke business
domain objects. Client business logic tests are usually a subset of the
comprehensive test suites found on server software. Integration and accep-
tance tests will of course check all the functional layers in an application via
the GUL

Content tests. To perform these tests, the content layer implementation should
provide a means to access data and widget properties. As a basic facility,

Revisiting the abstract model 227

content units such as widgets, panel and windows should be made acces-
sible, usually by means of a registry* and unique ids.

* DataIO. Data tests are predictable and can be largely automated or gener-
ated. Some possible tests are:

— Data binding from data transfer objects (DTO) to widgets. Testing for null
values, for empty collections, and so on.

— Results of commands, especially from server to client. Client to server
testing is performed as part of interaction testing.

— Sequences of commands and other control data.

* Infrastructure. This layer is composed of support frameworks, GUI toolkits,
and other third-party libraries outside the application developer’s control.
Although it should be possible to take the infrastructure’s soundness for
granted, sometime this may not be the case. When developing for a new
release of a rich client platform, for example, or isolating the causes of some
unexpected behavior, infrastructure testing can be useful.

* Interaction and control. Trigger interactions and assessment of the results can
be performed thanks to facilities in Java GUI toolkits that simulate input and
allow widget properties to be probed. Such tests are the cornerstone of auto-
matic GUI testing. By building on them, it is possible to represent complex
interactions and define GUI acceptance tests. This kind of testing is funda-
mental in agile methodologies such as XP.

* Presentation. Presentation testing is rarely done, because presentation is more
closely related to general usability testing rather than to specific unit tests. If
graphics plays an important role in the software (such as a GUI toolkit or
some visual tool) it may make sense to provide presentation tests. Such tests
might look for expected pixel patterns in the resulting GUI, or prescribed
colors, and so on.

The principle of Single Functional Responsibility

The Single Functional Responsibility principle is a simple yet useful design tech-
nique, and its associated code documentation, that can be used in the development
of any GUL I derived this technique from my practical experience of applying
R. Martin’s principle to GUI development (Martin 2002). This is a formulation of
the cohesion principle in designing classes, and states that a class should be
designed to have only a single responsibility.

This principle can be mapped to the functional layers in Figure 6.1 by striving,
when it is meaningful, to have classes that belong only to a single functional
layer. When this is not possible, sometimes we might apply this approach to the

4. See for example (Fowler et al. 2003).

228

Implementation Issues

fine-grained level of methods as well. By designing fine-grained methods to
belong to a single functional layer, code can be kept decoupled and different
responsibilities organized by functional layer, additionally to domain-specific
responsibilities (managed by the single functional responsibility principle). This
can be seen as an addition to the general single functional responsibility principle.

A simple technique for applying this principle in code is to tag methods and
classes with metadata. One simple tagging approach is to tag the method (or class)
with the main functional layer from Figure 6.1 to which it is thought to belong.

Assigning a single functional responsibility to a method or class is a good discipline
that tends to keep code more decoupled. This is less important when adopting a
layering technique that is based on functional decomposition, as metadata tagging
becomes redundant because the functional responsibility of the class is then defined
by package or layer identity.

Suppose you are developing a widget library in which pixel spacing must comply
with specific guidelines. To test this, you could prepare a testPixelCompli-
ance () test fixture and tag it as @Presentation, meaning that you mean to test
the presentation layer:

@Presentation Public void testPixelCompliance() {

The use of metadata could enable automatic processing and other features beyond
mere code documentation, even though the main intent is to support a clean OOP
design. It's possible to build on this approach, describing complex architecture
information with metadata and their attributes. This is discussed in Chapter 7 in
the context of evolving architectures.

Isolating presentation details

The presentation layer in the abstract model of Figure 6.1 is composed of those
graphical details that are not strictly related to content functionality, data, and
other non-graphical aspects. A common design strategy is to enforce the same type
of separation as is provided in the reference model. This is often done at the level
of infrastructure libraries and basic GUI toolkits, in that presentation details are
intrinsically extensive values (that is, they are common to all widgets and screens in
a GUI) and centralizing them in a separate implementation module eases their
application throughout the whole GU]I, transparently from application code.

In particular, it is useful to isolate the implementation of the following details
from the rest of the implementation:

* High-level visual details such as graphics design (that is, the visual aspects in
a look and feel).

* Interaction behavior. Some forms of user interaction styles can be separated
from the implementation, such as whether a button is triggered by a single or

Content

229

a double click. Although a powerful feature, it is one that is seldom used:
achieving this kind of separation would provide a complex implementation
structure that will complicate the overall implementation, providing little
practical utility.

* Fonts are an example of a presentation detail whose management is usually
defined separately from the rest of the GUI implementation, to provide sepa-
rated management and centralized access.

* Colors and color themes are usually factored out in separate modules to
provide easy customization of GUI appearance.

Separations of this type are achieved by Swing thanks to its pluggable Look and
Feel design, but SWT, AWT, and many other modern GUI toolkits also enforce
some variants of this modularization. It provides important advantages: for
example, GUI appearance can be customized independently of the application,
maybe by setting a large font in the current profile and so changing the font in all
other applications. GUI can also be made ‘skinnable” — different visual styles can
be applied without modifying application executables, even by the user. User
preferences can be adjusted transparently to application code, which is very
useful for supporting visually- or kinetically-impaired users.

6.2 Content

This section discusses two key engineering issues for the content layer: content
assembly and screen navigation.

Content assembly

A practice common to all desktop GUISs is to place a set of widgets on screen. The
widget’s layout depends strongly on the chosen layout manager, the object that is
responsible for abstracting layout details. The positions of widgets are abstrac-
tions of real X, Y screen locations handled by the layout manager. We refer to the
procedure of preparing widgets and assembling them in a visual container to be
shown on screen as content assembly.

The simplest way to implement content assembly with OOP is to subclass a
container class (that is, panels, or windows) and provide widget initialization and
layout code in its constructor, or in another method, as in the following idiom:

panel.add(new OkCancelPanel());

An alternative way to implement content assembly is to provide factory methods
that create the required, pre-assembled panels, as in the following code:

panel.add(Factory.createOkCancelPanel());

230

Implementation Issues

When there are many variants of panels, or when the application is extremely
large and complex, one can resort to a ‘little language™ to describe the layout and
widgets involved:

panel.add(Builder.create(“btn:ok, btn:cancel”));

Content assembly is almost always a statically-defined behavior (that is, content
doesn’t change at runtime). In a few cases content assembly can be adapted to
external parameters — this is discussed in Section 6.8. For usability reasons content
assembly should be made variable at runtime only in few situations, for example
when changing the layout of widgets in reaction to some event, such as showing
advanced search features in a search dialog.

Who assembles content?

From a pure OO approach, content should be created by objects that own the corre-
sponded data and that represent the business domain. Such ‘responsible” objects
are in charge of representing domain knowledge and also of how such information
should be represented on the screen. From a practical perspective, though,
enforcing such an approach extensively can be complex, because in following it, it
is easy to mix business logic with presentation details.

Assembler intermediaries can be called in to take care of the visual details needed
to represent domain information objects. But such intermediary objects, such as a
BankAccountPanel class that represents a BankAccount instance visually, should
be treated with care by developers, in that they carry sensitive information and are
not just a mere implementation requirement.

Content details are extremely important, because they convey essential semantic
information to users. When this information is business domain-dependent, it
should not be overlooked or, even worse, automated. Consider for example the
position of an Account number field within a bank account form. While this is
just another string in the class BankAccount, it may be the most frequently-
accessed information within the account form, and as such deserves a prominent
position within the form. It may also need some additional real-time searching
facility, assuming that users search accounts usually by their number. Other
content, conversely, obeys domain-independent rules, such as Ok and Cancel
buttons at the bottom of a dialog. Such content can be assembled automatically,
or, at least domain-independently of the rest of a screen. In this case content
assembly can be implemented as support code, separately from domain-sensitive
GUI design behavior.

5. See Domain-specific and Little languages on page 466.

Business domain 231

Explicit navigation

Navigation, the flow of control from one window to another, is a major part of
the user experience in GUIs with many screens, such as form-based applica-
tions. It is usually hard-wired into the code, like content assembly. Navigation
behavior is usually assigned to event listeners, which invoke methods such as
actionperformed() and the like.

In a few cases, though, navigation need special attention. In cases in which user
adaptation is needed, for example if screen navigation depends upon the current
user’s role, using the Adaptation pattern will suffice, as it leads to the implemen-
tation of a suitable NavigationManager class.

In other cases, when navigation changes often, for example during development,
or in a complex navigational mapping scenario, a centralized, explicit navigation
scheme can be useful. Such a mapping of event — screen transition can be imple-
mented with a hash map, or with a more elaborate structure in which other
support information is represented together with transition rules.

6.3 Business domain

Representing domain logic within a GUI is always a tricky engineering issue. In
client-server applications, domain logic should be limited as much as possible to
the server tier. ‘Pollution” of the GUI implementation with business code brings
classic problems such as duplication of code — the same business rule code dupli-
cated on the client and on the server — and code rigidity. On the other hand,
confining business logic to the server can transform a rich client into a dumb
HTML-like application, degrading responsiveness and overall usability. It is still
useful to isolate business-related code, because it is likely to be one of the most
volatile parts of a GUI, even for applications that don’t exhibit repetitive remote
connections, or for very simple ones.

In the following the term business rule is used to refer to a very specific form of
domain-specific behavior in which domain logic is represented in the form of
a declarative rule suitable to be handled by rule engines or an embeddable
little language interpreter. By representing domain logic with business rules,
developers can leverage the wide literature and tools available.

Many solutions have been considered for implementing a business domain effec-
tively on a client application. Some of the possible strategies are:

* Including a rich domain model representation in the client application.
Usually this is a subset of the wider domain model that resides on a server
application, or is dispersed on various servers. This is the case for example
when using Web services from multiple organizations.

232 Implementation Issues

* Adopting a software architecture for separating domain logic from the rest of
the GUI implementation, as we will see in Chapter 7.

* Using an explicit representation of business rules that can interoperate with
the rest of the GUI code and that can be deployed from a server at runtime as
needed. This solution may involve the adoption of a little language, such as a
script language specialized for business logic. This is a technically non-trivial
solution that makes sense in large applications with many, mission-critical,
and dynamic business rules.

A cheaper alternative is to formalize business rules with a lightweight OOP
framework that is embeddable into the rest of the client application and
provides some form of ‘zero-deployment® mechanism.

* Separating business logic in packages or classes that are shared with the
server code base. This eliminates code duplication, but necessitates a new
application build and deployment to clients after changes in business rules.

* Asa minimum solution, using the principle of single functional responsi-
bility to identify explicitly portions of code that are intended to capture
business behavior. This ensures simple traceability of business logic code
within the application, but alone does not enforce decoupling and
modularity.

Domain logic can creep into GUIs in unexpected ways. Suppose you have a form
that shows customers loans. Your client wants customers with a debit rate higher
than 10% of their annual income to be signaled by the GUI with a special warning
icon, and to require extra confirmation when such customer’s data is manipu-
lated. A rule isCautionCustomer() is then clearly part of the business domain
layer, even if it is used only on the client.

It is important to address explicitly the representation of business logic within the
application design. Lack of awareness can easily lead to tangled code that becomes
increasingly hard to maintain as the application evolves. For large applications it
is also important to maintain common policies among developers to keep the code
uniform and coherent.

In practical situations, some form of tolerance is often used to simplify the soft-
ware design. Defining mandatory fields” directly in client code, for example, is a
violation of the separation between presentation and business logic, because if
such data should subsequently become no longer mandatory, the client code
would need to be modified.

6. Zero deployment, also known as ‘dynamic deployment,” is a general term for a number of
techniques and technologies aimed at simplifying software installation and update, both
for users and for developers (Marinilli 2001).

7. Mandatory fields are those widgets that must be filled in to complete data entry in a form.

Data input-output 233

6.4 Data input-output

Data IO is the conceptual layer that defines all possible interactions of an applica-
tion with software external to the GUIL Depending on the application, interaction
might be with a local database, with a remote server, or with a set of Web services.
Figure 6.2 shows such a situation.

server or
database, or
other Tiers,
etc.

Data 10:
Data Transfer Objects,
Remote Commands,

Control Data, etc.

Fiqure 6.2 Interacting with external software

The main benefit of a well-thought-out data 1O layer is the decoupling of the GUI
from the rest of the system. This provides many benefits, such as clear conceptual
and practical borders, technology independency, and greater flexibility, but also
affect the whole application. Data IO is often overlooked as a detail, ‘backyard’
facility. But GUI performance, even GUI navigation and structure?, depend directly
on the data 1O layer.

A good design for this layer should always consider a comprehensive data 10
design strategy. For example, how will external communication evolve, and what
will future requirements be? What's the driving force behind 10? Typical design
criteria could be performance, flexibility, security, and interoperability.

A comprehensive data IO design strategy
While approaching the design of the data IO layer it is a good idea to work out an

explicit design strategy. The main design criteria are:

* Performance. If the runtime responsiveness of a client-server application is a
requirement, then DTO structure and the serialization format must be chosen
carefully.

* Flexibility. Allow for ease of modification.

8. For example, windows are often mapped directly to DTOs.

234 Implementation Issues

* Technology independence. If independence from technology is required, the
data IO layer should be designed accordingly. A common case is the ability
to provide different presentation technologies for the same application cost-
effectively. Depending on the type of technology, this can be achieved with
various levels of reuse. A Web application and a rich client, for example, can
share DTO and service information, such as commands and responses, while
such sharing may be less for a J2ME applet, which might need much custom
DTO. Designing DTO explicitly with flexible reuse in mind may be
worthwhile.

* Security. Even if communication protocols provide authentication and secu-
rity, it is always important to think about security up-front for security-
sensitive applications.

* Network topology. Particular network topologies might favor some form of
DTO structure rather than others. As a basic example, for communication
performed with network portions using unreliable protocols/connections,
small and simple DTOs should be designed.

* Scalability. An application deployed on a large number of clients, or exhib-
iting peak-like use patterns — say several thousands of users submitting
transactions at the same time — should have a specific DTO design.

* Interoperability. Will the application provide its communication format to
others?

* Infrastructure services such as security and authentication. These services are
provided “for free’ by the underlying technology and should be taken into
consideration as part of a data IO design strategy. Is there really a need to
provide a home-grown, custom ‘ping” protocol facility when adopting HTTP,
for example?

It is good practice to focus only one main criterion. This will drive a clearer design
and avoid dangerously ambiguous statements such as ‘our application will perform
the fastest possible remote communication while ensuring maximum levels of inde-
pendency from data formats.’

Some design patterns

A number of design patterns are commonly used when implementing the data IO
layer. These patterns are used for designing distributed systems, such as Proxy,
and Broker. This section discusses the Data Transfer Object pattern, because it is
specific to GUISs.

Data Transfer Objects

A Data Transfer Object (DTO) is an object used for holding business data in trans-
actions between client and server. A single method call is used to send and

Data input-output 235

retrieve the DTO, which is passed by value. In this way DTOs are used to reduce
bandwidth: by substituting them for a number of remote calls to exchange data
between client and server, data is clustered in coarse-grained chunks. Needless to
say, DTOs should be kept as simple as possible, to speed up their translation to
other formats such as XML. For this reason, when remote communication can be
a bottleneck in an application, DTOs should contain other objects only when
strictly necessary.

Remote communication design

The way a client application communicates with the external world over the
Internet affects its user interaction style and the overall user experience. When
designing the details of communication between a client application and its server
counterpart, a number of options are available:

* Asynchronous/synchronous communication. Asynchronous communication is
preferable when the communication channel is intermittent or unreliable, as
in wireless communications, and also when synchronous communication
might take too long. Synchronous communication is used in desktop applica-
tions as well because of its familiar conceptual model, similar to method
invocation: issuing a request to the server and waiting for the response.

* Bandwidth constraints. From a bandwidth consumption viewpoint, desktop
application GUIs are a blessing when compared with Web applications, in
which all the presentation information must be sent with the data. In some
cases, however, such as for wireless devices, bandwidth can still be an impor-
tant issue. In such cases a proprietary binary format, or some form of object
serialization, can be a necessary choice over other more common protocols
such as HTTP.

* User population. Users affect the way a client-server communication channel
is designed. The number of users concurrently using the application, the
nature of the transactions, user habits, and various other details all influence
the choice of communication design.

* Scalability. If you plan to deploy a client over thousands of installations,
communication protocol should be able to cope with the likely scenario of
thousands of concurrent communications.

Multithreading issues aren’t considered here, as they are taken for granted.

Most of the time client-server communication will take advantage of the HTTP
protocol, especially for desktop applications. HTTP is extremely useful in that it
shields developers from a whole array of network-related issues, such as avoiding
additional communication ports, proxies, and firewall administration. Most impor-
tant of all, though, is its ubiquity.

236 Implementation Issues

Seamless deployment

Some form of remote connection is needed to install an application and keep it up-
to-date, as this feature is now expected. CD ROMs or other physical means are
usually expensive to create and distribute when compared with on-line deploy-
ment, and in a world of continuous releases, are useful only for major installations.

Seamless deployment, the ability to install an application directly from the
Internet and update it as required during its lifecycle, is a must for modern
desktop applications. In this book we treat it as a basic infrastructure service, such
as fresh water or electricity. Without powerful and seamless deployment support,
modern client applications could not exist. Such a feature can be achieved with a
variety of technologies:

* OS-dependent ones like those provided by Microsoft on Windows machines.
* Fully Java-based ones, such as Java Web Start and JNLP.

* The Eclipse deployment facility (with a different feature set).

* On-line installer files.

What is important is that the installation is as automated as possible, even though
for first-time Java users this will mean downloading JRE’s 7 MB-plus and that,
after installation, the deployed clients can be controlled remotely for the provision
of updates’. Java technology also provides remote debugging and profiling, so
that the idea of “standalone clients, remotely connectable” is now largely obsolete.

Familiarity with these new technologies is important, as they affect the way the
application is built and conceived, and affect the user’s perception of the software.
For example, they allow business domain code on the client tier to be updated
seamlessly and inexpensively as required, or additional functionalities installed
while the application is running.

Security issues

Security is seldom considered at the start of design when developing desktop
application GUIs. Usually there is more to security than a secure transmission
channel. An important part of security for client applications is ensuring the
authenticity of the other party — clients to trust their servers, servers to authenti-
cate clients.

Desktop application GUIs need to add another link to this chain of authenticated
transactions: the user. The mechanism of user name and password is a widely-used
form of authentication. Authentication mechanisms are needed for applications

9. See (Marinilli 2001) for a general discussion of Java deployment, even if slightly out of date
for some technologies.

Data input-output 237

that transfer sensitive data to external entities, and also for accessing local resources.
For example, a security XML file might be stored in one of the application’s JAR files
and used for collecting the addresses of trustworthy servers. Ensuring that it is
never tampered with and fake (and dangerous) addresses inserted is vital.

Fortunately, security is addressed at various levels in all the technologies on
which Java applications rely. HTTPS can be used to ensure secure communication
channels, while fine-grained Java security policies or signed JAR files can be used
for almost any aspect of the Java platform, or for local resources authentication.

Given the additional complexity that such technologies pose to development,
developers often postpone these aspects to subsequent releases, even if the required
details can be added relatively easily to the build environment, such as automati-
cally signing sensitive files with certificates, and obfuscating executable code.

When using iterative development on a project on which security is a major issue,
security should be implemented from the initial releases.

|, S, W
GUI <:::> Remote
: Server (s)
r}_L_,_}_“_‘

g

% Other
@ resources

Secure, authenticated
communication channel

T\ Resocurce
% JAR files

Figure 6.3 Securing communication

The following high-level steps are involved in securing desktop application GUIs:

1. Identify sensitive assets within the application.

2. Create a security architecture that considers security throughout the whole
software lifecycle.

3. Detect and document possible vulnerabilities. This usually implies the enti-
ties shown in Figure 6.3.

4. Assess the risks and plan a risk strategy.

10. See Chapter 11, Security tools on page 412.

238

Implementation Issues

How users perceive security and privacy impacts their experience of an applica-
tion as well. Such a perception is not limited to the GUI. This is a large topic that
goes far beyond the scope of implementation issues.

One thing has been taken for granted so far — that the code base of the application,
the .class binaries stuffed into the JAR files installed on the local machine, is
safe. Unless you actively take care of this issue, the chances are that your execut-
able code is absolutely open to all sort of attacks and malicious behavior. The very
first step in securing an application at all levels therefore lies in securing its bina-
ries first.

Securing the code base

Java code can be decompiled very easily. This exposes not only your intellectual
property, algorithms, and architecture, but also the management of license keys,
where an application is distributed with some form of license control, and virtually
any other aspect of the application, including encrypted remote communication
and authentication protocols.

Using a good code obfuscator™ is not enough, because a good protection strategy
begins with the design of the code itself. There might for example be situations in
which you want to leave some classes open to your users, maybe because they are
supposed to extend or interact with them, or times when you rely on class names
for some reason, such as logging a class name along with an error message. In
such common situations obfuscation cannot be a last-minute matter, but should
be an integral part of the whole design.

Securing the code base goes beyond obfuscation to target the way an API can be
exposed to malicious eyes, or unforeseen breaches left open through inattention.
Imagine for example what could be extracted from a running application with a
debugger.

In most cases, perhaps, nobody would be interested in your code, so a standard
security policy would be fine — and always better than nothing. In cases in which
security is an issue, because your code contains some secret algorithm, or just
because competitors would love to see how you have implemented a specific
feature, you need to resort to a thoughtful security strategy to protect your code
base.

Such a strategy should focus on sensitive Java packages — those that need to be
absolutely secure — and also on other code with a lesser security priority. The
signature of methods and the structure of classes belonging to these sensitive

11. Chapter 11 describes a selection of available tools.

Making objects communicate 239

packages need to be planned explicitly and carefully designed, to expose the least
possible information to malicious eyes.

The default approach to security is to include obfuscation in the build environ-
ment as a routine task, even if it is limited only to some packages, together with
unit testing and continuous profiling.

6.5 Making objects communicate

This section focuses on a foundational aspect of GUIs implemented with OOP: the
basic communication infrastructure as implemented with event-based communi-
cation mechanisms.

The following sections discuss the various OOP implementations of event-based
communication that are part of the Interaction layer in the abstract GUI model
shown in Figure 6.1 on page 224. Such implementations are not perfect, as they
suffer from typical OOP shortcomings, such as too low a level of representation
and an excessive cognitive burden on developers'2. They are nevertheless one of
the most successful applications of OOP to practical software engineering.

The event-driven object communication mechanism is a cornerstone of modern
OOP GUI implementations. We first introduce the Observer pattern, then, after
looking at some uses of its concepts in Java GUI technology, conclude by discussing
two conflicting forces in any software design, object communication and decou-
pling, from a software design viewpoint.

The following section refers to OOP design patterns. A design pattern describes
a proven solution to a common design problem, emphasizing the context of the
problem and the consequences of the proposed solution. OOP design patterns
have a number of benefits:

i. They are proven designs: they are the results of the experience, knowledge,
and insights of developers who have successfully used these patterns in their
own work.

ii. They are reusable: when a problem recurs, there is no need to invent a new
solution.

iii. They are expressive: design patterns provide a common vocabulary of solu-
tions that can be used to describe complex systems succinctly.

12. These shortcomings become significant in medium-sized and large systems with complex
designs. A cognitive abstraction effort is often needed to mentally visualize and to correctly
manipulate abstract concepts such as events from just reading the source code or the avail-
able documentation.

240 Implementation Issues

iv. Design patterns reduce the time for designing, describing, and understand-
ing software. Clearly, wisely applying design patterns helps in writing better
software, but it does not guarantee software quality.

The Observer pattern

GUI implementations typically suffer from the problem of trying to make many
loosely-coupled classes communicate. The Observer pattern defines a one-to-
many communication method by means of a publish-and-subscribe mechanism.
Objects that are interested in changes in a source object’s state, referred to as
observers or listeners'®, register for later notification by subscribing to the source
object’s changes. Later, when the source changes — for example, if a new item is
added to a collection — all its registered observers are notified. The source object
does this by invoking a conventional method on each of the observers, passing a
representation of the given event as a parameter.

Note that it is the source object that is responsible for triggering the notification
event, by scanning its list of registered observer instances and invoking the
method associated with the given event on each of them.

Although many possible variants of this pattern are possible, we will focus on the
scheme shown in Figure 6.4.

Fiqure 6.4 The Observer design pattern

13. Both terms are in common use, and we use them here as synonyms.

Making objects communicate 241

Figure 6.5 shows an example of the runtime behavior of an example of the
Observer pattern represented as a sequence diagram.

AClass

|...-.

new Source

A 4

new Observer obs

|-
L Observer

F___________________

addObserver (obs)

]

notify ()

update ()

I

Figure 6.5 ~ An example of runtime execution of the Observer design pattern

Each event can be described by an object that encapsulates useful information
about what happened, typically the event source and other event-dependent data.
Each source object can have multiple observers registered on it in a one-to-many
communication mechanism that is defined at runtime by observers subscribing to
the source object. Like any modern high-level GUI toolkit, the Swing library
makes extensive use of specialized events — that is, specialized classes that handle
particular kinds of events, such as KeyEvent, ListSelectionEvent, CaretEvent,
and so on. SWT also uses an additional low-level simplified event representation.

The listener class needs to provide the related methods for handling the event, for
example using Swing events:

public class ListenerClass implements ActionListener

Any instance listenerClass1 of the listener class registers itself with the event
source, for example:

eventSourcel.addActionListener(listenerClass1);

242

Implementation Issues

This design is an example of another useful strategy in OOP design, that of
favoring object composition over class inheritance. For example, compare the
difference between using object composition instead of subclassing when defining
the action triggered by a button widget. In the case of object composition, you will
be setting an action listener object (that is, an Adapter object implementing the
ActionListener interface) while in the other case you would be obliged to
extend the JButton class. Clearly the first approach is much more versatile and
flexible.

The event-based approach is widely used in GUIs, because it provides various
benefits:

* Itis simple to understand and use, while general enough to accommodate a
large number of practical cases.

* It implements a mechanism of broadcast communication. Observer objects
need to adopt the event description defined at design time (the classes
defining the event), so that source objects don’t have to know anything about
their observers apart from a reference to each of them.

* Observers don’t need to know anything about each other, and in practice
they don’t. This minimizes the visibility references among objects, although
this could be a problem in some cases, because of reduced compile-time
dependencies between different parts of a program.

* Itincreases extensibility and encourages code reuse, while easing the main-
tainability of code.

* It makes the coupling between source and observer object instances more
abstract.

Perhaps the greatest shortcoming of event-based mechanisms regards the control
flow indirection they bring to code. The Observer pattern can be thought of as a
scheme in which control flow (procedural runtime execution) bounces back and
forth from the source object to all its observers whenever they invoke methods.
This implies that reading the source code alone is not enough to work out the
actual flow of a chain of events. Developers need to run a sort of simulation of
runtime execution in their heads to understand the control flow. The real situation
can be determined only through careful, time-consuming debugging. Heavy reli-
ance on event-based mechanisms makes the actual behavior of an application at
runtime hard to understand.

Swing events

The Swing framework has adopted a variation of the Observer pattern since JDK
1.1 in which listeners listen for events using the same mechanism as for Java
Beans — not surprisingly, as Swing widgets are Java Beans.

Making objects communicate 243

Figure 6.6 shows the classes involved in this approach. Compare this with Figure
6.4, which shows the classic Observer pattern.

<<interface>> Triggers events
EventXListener Source =7 EventObject
eventPerformed () addEventXListener () source: Object
removeEventXListener () getSource ()
fireEvent () T
- ’ Concrete
<<1nterfacel>> Event
ConcreteEventXListener Observer
:] state: Object
eventPerformed () fireBvent () getstate ()

This further
interface can
be an avoided

Figure 6.6 Swing events

Given the fact that Swing widgets are also Java Beans, they may use another
event-based mechanism specific to Java Beans: PropertyChangeListener. We
will see an example of the use of this variant of the Observe pattern later in this
chapter.

SWT events

SWT’s event architecture is similar to Swing’s, although Swing-like high-level
events are implemented as a convenience for the application developer. In fact, a
low-level, simplified event mechanism is used by SWT classes for implementing
the typed events SWT event mechanism. All subclasses of the Widget class can
have an observer added to them by using the method: void addListener(int,
Listener), where the int parameter defines the event type. All available event
types are supported by constants within the SWT class (such as SWT.Selection,
SWT.Collapse, SWT.Deiconify, and the like).

Design-time class decoupling with events

Suppose you are going to develop a multi-player video game for the Java 2 Micro
Edition. The video game will show a large 2D world in which a number of entities
‘live” and interact. Players control one of the actors through a Java-enabled wire-
less device, while some entities are controlled by the game server. Figure 6.7
shows what this might look like.

244

Implementation Issues

Suppose one of the requirements of the implementation is that users should not
be forced to download newer versions of the client software from time to time to
play the game, as newer features or classes are added, as downloads might involve
expensive communication apart from normal client-server data exchange. The
code has to be designed to work with new classes added in newer versions of the
game. Older versions of the game should work with newer ones as far as possible.

Fiqure 6.7 Using design-time class decoupling through events in a J2ME application

This is a situation similar to the design of an OOP library, for which you design
utility classes that will be used by other programmers in the future. When you
design a reusable library, you don’t know which client class will use it, all you can
do is to try to minimize the constraints imposed on clients that will use the code.

Suppose a player runs a teddy bear instance in the video game using Version 1.0
of the code, downloaded few months ago. When it encounters another game char-
acter released in Version 1.1 two weeks ago, the code in Version 1.0 of the game
must be able to deal with it!.

The simplest and most effective solution is to define an event-based decoupling
mechanism among entities. When the teddy bear class is designed, all the possible
entities it might encounter during its lifetime, and the possible reactions, are
unknown, but what a teddy bear can ever do in the virtual world is known. By
formally defining its possible interactions with the external world by means of
Java code, you can make it available to future classes to interact with. For example,

14. This is a design issue: in fact, thanks to dynamic class loading, the J2ME client running
Version 1.0 can load the new Version 1.1 class, but without proper software design they
cannot interact.

Making objects communicate 245

you might decide that a teddy bear instance can sleep, run, and possibly do more
in future releases. The class diagram would then be like that shown in Figure 6.8.

Figure 6.8 Decoupling class interaction

When an entity wants to interact with the rest of the world it will prompt an event
to interested parties — that is, it will issue a coded representation of a change in its
internal state.

You could design one or more types of event for your video game, or even a fully-
fledged hierarchy. The essential point here is about communication. Subjects
make public predefined messages to whichever instance is interested, without
having to know anything about the observers. Such event messages are published
to the rest of the world, and interested classes know how to deal with them. This
kind of communication mechanism guarantees a powerful, dynamic decoupling
among interacting classes.

When developing ad-hoc components it is common to create new, specialized
kinds of events. Extensive use of event-based communication mechanisms among
classes is demonstrated in the examples in the chapters that follow. In this chapter
the QuickText example application (Figure 6.18 on page 263) shows a simple
example of the Observer pattern at work in detail.

Event Arbitrator

Events are so useful for implementing modern GUIs that they easily become one
of the predominant aspects in the runtime execution of a Java GUI, and one of the
main sources of difficulty in understanding the actual execution of the applica-
tion. This provides an additional degree of complexity, especially for readability
and extensibility — adding a new class implies adding extra code to connect the
new class with the event mechanism.

An Event Arbitrator is a class that listens to a number of events and redirect or
manipulates them according to some objective. It is used to simplify or provide

246

Implementation Issues

structure to the software design, enhance performance by rationalizing event
distribution instead of broadcasting to many listeners, and to centralize event
flow. An Event Arbitrator can:

* Forward events, by shunting specific events to interested parties for some
particular situation.

* Absorb events, for example for debugging purposes.

* Aggregate events, for example by aggregating low-level events into higher-
level events.

* Manipulate events to provide some useful service.

An Event Arbitrator does three things:

1. Receives events it is in charge of, called input events. It needs to register as a
observer to the objects that fire those events.

2. Arbitrates events, processing them to provide a specific feature.

3. Possibly transmit other events, or those it received, to interested parties, fol-
lowing some given organization criteria. In some cases it can also provide
some collateral effect, such as modifying global variables, as well as issuing
new events.

The most common form of Event Arbitrator works synchronously with its input
events, so that the reaction to the received input event is performed sequentially
to its reception. Other Event Arbitrators work with more sophisticated arbitration
schemes and require extra care when handling threading issues.

The following subsections discuss the most common applications of this pattern
in desktop application GUIs.

Aggregating events

A particular case of the Event Arbitrator strategy is for aggregating events from
various sources, exposing them in a simplified, centralized fashion to interested
parties®. In this case the Event Arbitrator acts as a single source of events, hiding
other detail events fired by other objects. The Arbitrator class registers for all the
detail events, so that clients need to register only with it.

Suppose we are designing an address composable unit (CU), that is, an assembly
of simple widgets that act like a unique macro-component representing addresses,
as shown in Figure 6.9. We want to hide detail events of the internal widgets and
its clients. When using the AddressCU class, other client objects only need to
register for DataChangedEvents.

15. This case is also called Event Aggregator by Martin Fowler.

Making objects communicate 247

'- An Address CU g@|®
Adddress —

dp Code
Country J

Figure 6.9 The SWT Address CU

Aggregated events can be of the same or different types as the detail events
listened for by the Arbitrator. In this example the AddressCU works like an Event
Arbitrator and fires new high-level events, as shown in Figure 6.10.

Figure 6.10 The SWT address CU as an event aggregator

Forwarding events over hierarchies of closely-related objects

It is often useful to organize event flow in hierarchical fashion, with a master
event listener asnd many slave listeners that receive events forwarded by the
master. This organization can be nested using the Composite pattern — that is,
the master can contain other masters. This is the case with HMVC controllers,
introduced in a later section, and with various other designs that we discuss
below.

Sometimes many domain-specific objects enclosed in a container object must be
handled in a GUI, possibly a subclass of a standard class such as a panel, or the
root of a complex text document. The container forwards events to its contained
objects, implementing a hierarchical Event Arbitrator.

248

Implementation Issues

The example ad-hoc component discussed in Chapter 16 implements a 2D desktop-
like container into which items can be dragged, dropped, and manipulated by the
user. In order to achieve maximum flexibility and decoupling, the container doesn’t
know anything about the nature of the contained items apart from their basic
behavior, and forwards mouse events to them in a hierarchical fashion, thus imple-
menting an Event Arbitrator. This might also be the case in a complex CAD GUL in
which a given scene is made up of a large number of small objects organized
following a recursive Composite structure. Container objects will behave as Event
Arbitrators on contained objects, enforcing some sort of domain-specific event-
forwarding criteria.

An important property of Event Arbitrators, and especially for hierarchical Event
Arbitrators, is that they should never allow loops in the graph induced by the
event flow. The Composite structure of a hierarchical Event Arbitrator should
form at least a direct acyclic graph (DAG), even if a simpler tree structure is much
easier to manage and fits most practical cases. In the simple tree case it’s sufficient
to avoid any cross-references among objects in the Composite structure. Having
cycles in the flow of events will of course lead to StackOverflowExceptions, as
the same event is forwarded indefinitely.

Misuses of event-based messaging

Like every good thing, you can have too much of the Observer pattern. A common
problem with the overuse of this pattern is Observer chains longer than one, for
example when an Observer A observes another Observer B that in turn observes
another object, and so on'®. Control flow becomes very hard to figure out in such
situations, and unforeseen behavior is likely. In some particularly unfortunate
cases events can go into resonance — that is, an event X can cause a chain of events
in which a new event X is triggered, causing another chain of events to be fired all
over again, and so on.

In some case this incorrect behavior is not apparent from application execution,
other than users noticing weird delays in particular circumstances, and log
inspection or debugging are needed to work out what is really going on in the
application. A possible solution is to use an Event Arbitrator, although this should
be used carefully: adopting this pattern alone does not guarantee a cleaner design
or a solution to unwanted event-based side effects.

Understating event-infested code

When inspecting someone else’s code, it can be difficult to work out the actual
chains of events. I personally remember a few cases in which there was such a

16. See for example a discussion on this aspect on Martin Fowler’'s Web site, http//:
www.martinfowler.com.

Making objects communicate 249

massive use of events that fully understanding the runtime execution control flow
was very hard. In one case an event-based composable unit strategy was adopted
at a very fine level of granularity, making even the simplest local communication
a matter of event messages. With time I resorted to a simple sketch diagram while
inspecting code, and for the unfortunate reader who needs to decipher a tangled
web of events, describe it here.

Depending on the situation, you might be interested either in who fires events, or
in who is observing them. A simple variant of the standard UML sequence
diagram can help to identify potential hot-spots in event chains. This diagram can
be drawn by hand as you navigate the code, and can be applied to other event-
based designs as well, such as those discussed in the next section.

Start by inspecting the code to see which objects register for changes in a source/
subject. A simplified version of this diagram that takes into account only classes,
and not objects, is much simpler to draw, but nevertheless useful. Whenever you
find an object observing another object, draw an arrow from the subject to the
observer representing the change propagation event, as shown in Figure 6.11.

XClass YClass ZClass WClass VClass
P 1 ' 1] :
i
1 1
i i
e []
1 1
1 1
1 L}
i i
1 1 L}
1 ~ 1 1
[~ 1 1
i i I
| i 1 I \
1} [} 1 1
1} 1 1} 1 1
1} 1} 1 1
\ i \ i \
1} 1 1} 1 1
[} i [} 1 1
1} 1 1} 1 1
. Q .
1} 1} L}
] [e
' T - [
| i
1} 1}
| |
1} 1}
[} [}
1} 1 1} 1
1} 1 1} 1
1} 1 1 1
R] 1]
1 1
i 1
1 1
] | T
—>

Figure 6.11 Informally describing events

250

Implementation Issues

This diagram!” represents an object of class XClass that has two observers for a
property P. Instances are invoked whenever P changes the listener methods in
YClass and ZClass. An instance of YClass is also observed by an instance of
WClass.

At the end of the code inspection this diagram will tell you roughly the possible
chains of events in the code. The next step is to individuate those classes that have
two or more boxes — for example, YClass and XClass in Figure 6.8. Focus your
attention on these classes, for example adding debug breakpoints, because they
are likely candidates for odd behavior.

You may think that problems arise only from combinations of ingoing events and
outgoing events, such as YClass in Figure 6.8. This is not always the case,
however — in some situations a subject that is common to more than one set of
observers can create unexpected problems as well, like XClass in Figure 6.8. For
example, this can arise when a change to a property A in a class also modifies
another property B, and these properties are observed by two different sets of
observers with a common class C. This could lead to unexpected side effects in C
when the observer is notified.

A good guideline is to have chains of observers no longer than one, to avoid such
possible problems and to keep runtime behavior easily understandable. For
complex event schemes, consider using one or more Event Arbitrators to simplify
and handle the resulting complexity, carefully designing the desired event flow.

Alternatives to event-based communication mechanisms

Message-oriented approaches are an alternative to event-based communication.
Such approaches focus on sending messages asynchronously on a common
message bus, where interested parties register to receive messages without any
knowledge of who could be sending them. Event-based communication instead
obliges the connection of the source — the object that fires the event — with the
destination to be established explicitly.

How does this affect the design of client GUIs, with communications performed
on the same machine and within the same JVM? Message-based communication
for desktop application GUISs is most useful for interaction in-the-large, where the
problem is to have an object X be visible to an object Y, rather than as a substitute
for low-level interactions such as key presses and “item selected” notifications. The
easy solution to this, although not such a nice solution from an OOP design view-
point, is to use some form of static visibility to access the required object references.

17. The diagram in Figure 6.8 is not a standard UML sequence diagram, nor does it have
similar semantics. To avoid confusion, it uses different graphical details than UML sequence
diagrams.

Separating data from views 251

This might be done by implementing some form of object registry in which all
required objects can be located by accessing a static service or Singleton class, or
by making key objects available from a number of Singletons and then extracting
the required references from them.

To avoid this drudgery you could resort to message-based communication, or, for
the bravest, to a well thought-out OOP design — which is almost invariably the
scarcest resource in real-world, deadline-tight, fast-paced production environments.

Message-based communication can be useful at an application level, in medium
to large GUISs built by large teams for whom employing communication-specific
infrastructure code makes sense. Outside such scenarios, message-based interac-
tion is still attractive, because it provides a simple mechanism for communicating
among different classes within the same application with a level of automated
threading support. Queues usually run transparently in different threads, so that
developers can focus on sending messages via specific queues to communicate
with other classes and perform operations. The presence of a centralized bus also
makes other automatic forms of control over the messages themselves possible,
such as enabling or postponing actions. This approach appears natural to devel-
opers used to working with server-based messaging technologies.

Despite the possible benefits of message-based communication systems, they are
not so popular among Java GUI developers. Technologies such as JMS'*® exist to
enable message-based communication in distributed heterogeneous environ-
ments, but they are beyond the scope of this discussion.

As with any technology, message-based communication can be misused, bloating
the volume of messages published on the message bus, or even worse, using it as
a short-cut for serious design effort.

6.6 Separating data from views

GUI implementations usually need to define many classes and other support
resources. As the complexity of the GUI increases, the code size increases dramat-
ically. Therefore some code organization, usually at class or package level, is
needed in all but the most trivial cases. The most common organizational criterion
focuses on the separation between data and presentation.

This section introduces the Model-View-Controller (MVC) pattern (Buschmann et
al. 1996), a popular design that enforces the separation of presentation and busi-
ness code. In reality the MVC approach has proved far from perfect, as witnessed
by the many variants that have been developed to try to cope with its shortcom-
ings. Nevertheless, MVC still proves a popular design strategy for GUI code.

18. Java Message Service (JMS) API

252 Implementation Issues

Model-View-Controller

The MVC approach builds on the Observer pattern for connecting data models and
their graphical representations (called views) by means of specialized entities
called controllers. MVC was introduced and popularized by Smalltalk (Burbeck
1992) along with the Observer pattern. A variation of MVC has been adopted in
the Swing library for separating business data from its GUI representations®.

The model is the part that represents the state and the abstract data of the given
component, separately from its visual representation. The model oversees the
state and manipulates it as requested from outside. Following the Observer
pattern, the model has no specific knowledge of either its controllers or its views.
The view is thought of as being the graphical representation of the model’s data.
It handles the visual display of the state represented by the model. The controller
manages user interaction with the model, providing the mechanism by which
changes are made to the model.

One of the critical points in the large-scale adoption of MVC derives from the
deeply-coupled relationship of controllers with models and views. In non-
trivial scenarios controllers tend to become deeply intertwined with models
and views.

In the Swing implementation of MVC, both the controller and the view are gath-
ered in the same class, the user interface component, while the model is
implemented as a separate entity, thus enforcing the separation between presen-
tation and business logic. Each controller-view pair is associated with only one
model. However a particular model can have many controller—view pairs.

The MVC design is also widely used for Web-based architectures. A simpler and
less sophisticated version of MVC is used for server-side Web GUIs, briefly
mentioned in Chapter 9.

Adopting an MVC approach provides the following major benefits:

* Design clarity. The list of a model’s public methods describes a model’s
behavior clearly. This trait makes the entire program easier to implement and
maintain.

* Design modularity. New types of views and/or clients can be created and
plugged into existing models at design time just by adding new view and
controller classes. MVC works well even when only enhancing existing
classes — that is, when supporting incremental development. Controller and
view implementations can be modified independently from the model.

19. Following SWT's design philosophy of being lightweight and performance-driven, there is
no built-in support for MVC, which is delegated to the JFace library.

Separating data from views 253

Older versions of views and controllers can still be used as long as a common
interface is maintained.

* Multiple concurrent views on the same model. The separation of model and view
allows multiple views to use the same business data model. Views could be
even different classes, for example a tree view and a table view on the same
data model instance. Despite being one of the most interesting features of
MVC, the possibility of many concurrent views on the same model is rarely
used in common GUISs.

Hierarchical MVC (HMVC)

The HMVC pattern decomposes the client tier into a hierarchy of parent-child
MVC layers. The repetitive application of this pattern allows for structured archi-
tecture, as shown in Figure 6.12.

MVC Triad

Controller

~
Triad MVC Triad

Controller Controller

Figure 6.12 The HMVC pattern

Views hide the presentation technology from the model and the controller. GUI-
related events are intercepted within the view, and eventually a request is made
to the related controller in the form of an HMVC event. If the controller cannot
handle the request on its own — each controller is responsible only for its own view
and controller — it dispatches the request to its parent controller®, and so on
recursively.

20. Following the Chain of Responsibility design pattern.

254

Implementation Issues

This hierarchical structure relies on controllers, which are in charge of responding
to HMVC events for navigation, such as changing screens and so on, and updating
visual data.

HMVC, when applied to non-trivial applications, adds additional complexity to
the implementation in the form of burdensome machinery — events and messages
are exchanged through dispatchmethods that follow a hierarchical structure —and
cognitive workload, as it can be hard to track down bugs and work out the current
behavior of an application with many nested HMVC composable units. As a
result, HMVC is not one of the most used variants of MVC for client desktop
application GUIs.

Model View Presenter (MVP)

Model View Presenter (MVP) is a variant of MVC that attempts to loosen the
coupling between the view and both the model and the controller in classic MVC.
This tight relationship complicates MVC adoption and makes it hard to use in
practice, resulting in MVC’s various variants and workarounds.

In the MVP approach the actors have the following characteristics:

* The view in MVP is mainly responsible for graphical output. It also performs
user-input gathering of low-level events like keystrokes and mouse events
that are redirected to the presenter via events. Views communicate with their
model via events. This limited responsibility of views in MVP makes this
approach useful for reducing the amount of behavior to be tested without the
view — and hence without testing through widgets and GUI toolkit classes.
This in turn allows the testing to be accomplished without GUI testing tools,
possibly using simpler unit testing tools.

* The presenter holds direct references to both the view and the model and is
responsible for manipulating the view and the model to keep them in synch.
The presenter does this by reacting to the events forwarded by the view
itself.

¢ The model is similar to the classic MVC model. It is a business domain class
that has no connection with GUlI-related code, and also no connection with
the presenter.

MVP experienced a new popularity with the advent of Test-driven development
(TDD) and test-intensive practices, where the view is kept as simple as possible so
that the application code can be tested, without full coverage, by writing standard
unit tests focused only on the presenter and model.

Figure 6.13 shows the differences between MVC and MVP designs. Dashed lines
represent event notifications, while solid lines denote object messaging (that is,
direct method invocation).

Separating data from views 255

MVC Triad MVP Triad
Contreoller Presenter
/ \ / “’.\
~
~
~
\\
I S
f— 2 | o |emeeme— >
Model Loy View Model View

Figqure 6.13 Differences between the MVC and MV P approaches

Concluding notes on MVC

The MVC design strategy enjoys a wide popularity among developers and in
GUI-related frameworks, especially for Web user interfaces, where the level of
interactivity and the overall complexity are lower than desktop application GUIs.
One might wonder why it has been so successful, given that it produced a number
of secondary issues that the various MVC variants have been created to solve. A
simple answer is that MVC is an intuitive, practically-proven arrangement that
works better than alternative solutions in real cases.

MVC, or one of its many variants, is already provided by all major presentation
technologies and frameworks: adding another MVC layer on top of the one
provided by the toolkit (as in Swing for example) usually adds complexity
without providing any important benefit to the design?'.

In practical cases the MVC approach or one of its many variants, used alone,
provides a minimal, localized decoupling between presentation and non-
presentation code. The kind of decoupling provided by MVC may be improved
by adopting some other complementary approach, such as a layering scheme?
or a composable unit structure. This is especially true for non-trivial GUIs, when
the implementation architecture is more important.

MVC is often used as a means of design, while it should always be treated as a
solution to a given problem - it should be used as a design means rather than a
design end. If there is no serious problem, perhaps there should be no need for its
solution, and thus no need for MVC. In other cases MVC is used as a solution to
a different problem, for example in an attempt to provide a structural organiza-
tion to a design. This is not bad in itself, but should be achieved with a more
comprehensive strategy, including layering, defining Java packages and so on,
rather than just ‘applying the MVC pattern’ to a bunch of classes.

21. This is another example of the ‘going against the flow” antipattern mentioned at the end of
this chapter — in this case adding too much of a given solution to a design!
22. See Chapter 7.

256

Adapters

Implementation Issues

For more information about MVC, see (Burbeck 1992), and as an example of its
numerous variants (Potel 1996), while for some of the problems it raises and the
possible remedies, see (Reichert 2000). See (Sundsten 1998) for an article introducing
the Swing version of MVC, or (Fowler 2000b) for a comprehensive overview of
Swing’s MVC flavor.

The flavors of MVC discussed so far employ the Observer pattern for synchro-
nizing views, and models to provide the ease of use and flexibility modern GUIs
need. This comes at the price of increased complexity, even for simple situations
in which a fully-fledged MVC architecture is not really needed.

Building such a powerful, complex, and expensive design into a basic toolkit would
force all users to employ it and to pay its price in terms of complexity and perfor-
mance. This was the dilemma faced by Eclipse’s architects when deciding how to
provide data models on top of raw SWT widgets. To avoid over-engineering the
JFace library, which provides utility features on top of SWT, including data support,
Eclipse’s architects employed a different design than MVC to separate data from
presentation — they used Adapters.

The org.eclipse.jface.viewers.Viewer class implements a general Adapter
for SWT widgets and handlers of data objects. A concrete example is the Table-
Viewer class. This class adapts an SWT table widget with a content provider object.
Such an object is responsible for providing content data, taken from a data object.
The content provider therefore acts as a mediator between the viewer and the
domain-specific data object itself.

This scheme is not a traditional MVC design as we discussed it, because it doesn’t
couple data with view — if you change the data model object, neither the viewer
nor the content provider will automatically notice the change. It is nevertheless a
simple and effective way to decouple data from presentation. It is even better than
full MVC designs, such as Swing, in this respect. In a full MVC implementation,
to have a table model for a JTable requires domain-specific data classes to extend
a Swing class or interface such as DefaultTableModel or TableModel. With the
SWT approach based on Adapters of content providers and raw widgets — called
viewers in JFace — data can be provided by any Java class, without any constraint
or dependency on SWT/]JFace classes. A drawback of this simple design is that
developers are in charge of managing coherence between data objects and views.

A traditional, event-powered MVC design is of course possible using SWT and
JFace, and has been implemented in some of the standard libraries, such as the
GEF? viewer classes.

23. The Graphical Editing Framework (GEF) is a Java library for creating ad-hoc components
on top of SWT.

Interaction and control 257

6.7 Interaction and control

One major source of complexity in modern GUISs is the high level of interactivity
derived from sophisticated GUI designs. Features like undo/redo, or highly
responsive GUI designs, need a sound implementation architecture.

Interaction here means the explicit representation of user interactions with an
application, and the GUI's reactions to user interactions. A very simple GUI
doesn’t need to represent user interaction explicitly, it only needs to react to
simple user input such as a button press by just executing the associated code.
More elaborated GUIs can react in more sophisticated ways, for example by trig-
gering a set of reactions throughout the user interface itself.

Control means an explicit form of management of interactions. Handling complex,
changing interaction rules during the lifetime of an application can be a major
source of architectural degradation if not addressed properly in the design from
the beginning.

Representing user actions with the Command pattern

Handling user commands is a common problem when building GUIs. This book
illustrates a number of solutions, most of them based on the Command design
pattern. Such a pattern essentially transforms requests (commands) into objects:
the request is contained within the object itself. This involves encapsulation of the
code associated with the request or, more specifically, the code that actually
performs the command.

Figure 6.14 shows the Command pattern directly instantiated for the Swing library.

-

Figure 6.14 The Command design pattern

258

Implementation Issues

For the Swing library, the invoker can be a JMenuItem, a JButton instance, or
similar. The ConcreteCommand is the command instance that is set up by the
Client class, usually the main frame or the director. The Receiver is the class that
actually carries out the action’s execution. It implements the ActionListener
interface for Swing and its analog for JFace’s actions, implementations of
org.eclipse.jface.actions.Action.

At the price of a little additional complexity, the main benefits of using actions are:

* The whole implementation is more natural than with command code central-
ization, taking advantage of OOP polymorphism over centralized, procedural
mechanisms such as chains of conditions for executing commands.

* Behavior specific to a single command is kept logically localized within an
Action subclass.

* Undo and redo features stem naturally from this approach.

* The class organization that derives from this approach is clearer and more
systematic than that using a centralized mechanism for commands. This is
especially true for large and complex applications.

* This pattern has been officially adopted in the Java API, in both Swing* and
SWT.

Such an approach also has some drawbacks. It produces many small classes (the
commands themselves), scattering command code among them. This implies
additional complexity that must be addressed at design time, essentially in the
form of communication between classes and overall management.

An unorthodox use of Swing actions

The Swing implementation of the Command pattern in this book make two
different uses of Swing’s Action subclasses. The difference lies in where the
command code is located.

* Those Action instances that delegate command execution to an external
class are referred to as shallow actions, acting as mere containers of data
related to the given command, such as icon, mnemonic key, command name.
These classes work like an expanded version of the action command string
used in the AWT framework, holding GUI data passively, but not the
command logic itself, which is stored somewhere else. Shallow actions do
not therefore implement the Command pattern, even if they subclass the
Action interface of the Swing library®.

* In contrast, deep actions those classes that fully implement the Command
pattern — that is, normal action classes. In this case the behavior of the

24. A brief introduction on the use of Swing actions can be found in (Davidson 2000).
25. See also the use of retargetable actions in the Eclipse framework.

Interaction and control 259

given command is coded into the Action subclass, as the Command
pattern suggests.

The shallow use of actions has been introduced in this book only for practical
convenience. In simple GUIs, or where we don’t want to use the Command
pattern but still want to use a framework that adopts it, like Swing, it is handy to
have Action subclasses delegating the execution of their command to a central-
ized point. This is shown in the sequence diagram in Figure 6.15.

invoker aShallowAction theActualExecutor

1
—

N
ey

N
-

|.A_h

actionPerformed | \

actionPerformed *,

Figure 6.15 Shallow actions at work

Here the actionPerformed() method merely invokes the actionPerformed()
method of the registered class. This simplistic delegation mechanism supports
only one invoked class.

An example of fully-fledged ‘deep” actions can be seen in Chapter 16. The code
provided in Chapter 15 uses the unorthodox, shallow use of the Action class
introduced here.

Command composition

A frequent solution for making command menus available to users is to aggregate
commands hierarchically. Every object in the GUl is responsible for the commands
it supports. In an iterative sequence similar to the Chain of Responsibility pattern
(Gamma et al. 1994), commands are aggregated in pop-up menus suitable for use
in menu bars or contextual menus.

Chapter 16 contains an example of such a behavior for container objects, which
negotiate with their contained items the list of available commands to be incorpo-
rated in a common menu. This mechanism allows for maximum flexibility in an
OO way, in that every object only knows its available commands, while keeping
clearly-defined responsibilities among different classes.

260 Implementation Issues

Control issues

Some common issues arise when implementing control in professional GUIs. We
have seen in the first part of the book how alert or error messages can disrupt the
usability of an application. A good GUI provides coherent metaphors and low-
level interaction rules that avoid the possibility of inconsistent interactions as far
as possible. This translates into software that constantly manages parts of the GUI
to enforce the abstract rules that govern it.

Depending on the complexity of the controls to be implemented, different design
strategies are possible:

* Scattered control. Control is implemented on a local basis, attaching observers
to the areas to control and executing reactive code as required. Control code
is scattered throughout the GUI implementation and is thus hard to main-
tain. This approach is quite simple to adopt, but is useful only for limited
control needs.

* Centralized control: the Mediator design pattern. As a rule of thumb, when more
than three objects need to be controlled in a window, we need to escalate to
another design strategy: centralizing the control behavior in one place. This
has several benefits: tangled event listeners and references derived by the
extensive adoption of the previous strategy are limited, and control is
centralized in one place. This technique scales to a non-trivial number of
controlled objects, even though references to controlled objects become a
problem, together with handling the control logic code.

* Explicit control state. When things get really complicated even the Mediator
pattern shows its limits. In these few cases, very articulated control logic can
be represented in explicit classes. These classes represent the concepts behind
the control logic and interact with the rest of the GUI. In this way screen
control state is not represented within a Medjiator class, but is shared among
explicit objects.

While some control behavior strongly depends on business logic? other control
logic is essentially domain-independent. This latter form of control can usefully
be extracted in reusable, general-purpose code. We can tell whether specific
control logic is business-dependent or not by answering the following question:
if the business rule changes, would the given control logic on the GUI change?

Distinguishing between business and non-business control rules is also useful
because it is frequently the case that changes in business rules also impact the
GUL Separating them from the rest of the code helps maintenance and implemen-
tation clarity. Non-business control behavior rarely changes after the initial design

26. Such as data validation — see Chapter 8, Validation on page 332.

Interaction and control 261

phase, so it can be treated differently than business-dependent controls. An
example of a non-business control might be the following: in a GUI in which users
can inspect item properties, whenever they modify data for an item and close the
property dialog, the application asks whether the modified data should be saved
or discarded. Such control can be performed automatically for any kind of item,
independently from the business domain.

When control layer behavior that comes from actuating a domain’s business logic
rule in the GUI is used extensively within an application, for example in a highly
interactive application with a formalized business domain, it can make sense to
capture this behavior in a domain-based interaction control framework.

Figure 6.16 shows examples of interaction control rules governing in an example
GUL

- Map Manager - GUI Prototyp) clpboard management enables §
File Edit View Maps Tools Windo ik

@ home

these commands shoulkd get
enabled only when an internal
window gets the focus

“; ...I

o I: anata

%F’ub
3 Meteo Database
o~ @ Morthem Europe Sataliite
o Reference Maps
® Southern Europe Satellite
o Micldle East Forecasts
& VWWSF Database
%Eummap Database
o @ 21C Datah
ortherm Europe BRI
= Referance Maps
. Suuthem Eurone Sarell' ¢

these items cannat be manipuksted
without a default prajection

[@ mzicbeFrojectons |
E Azimuthal @L_. [m}|] " i3 ’E%

¢ B Equatorial Cylindrical Equidistal : Source Type > “ugect.| Data Walidated

E Folart |hitp:fiwany maps zz.jug, R these commands are enabled onfy (128,641, 4 -

B8 Polar2 5_E:ﬂ\v\nww.qggjgg.ed_o._. [Reference il when atable row is selected (128,64)(1... V]
B Satellite HEO152 Ahttp:fiveew nasa orgima.. Referance 29 (128,643(1... v 1
B sSatellite HEE397 fhittpifoonen. mapszjug.... |Reference 91 KB 2003 Ap.. [12:37:48+5 (1286431, 3 r

B Molhwaide |rttpcifosay. maps = jug.... R 312KE 2003 Ap_ [12:3748+5 [ECE (1286431 . vl

B Maorth Polar Stereographic |ftn:iizz. jug. ed.orgirmapy). |Reference 493 KB 2003 Ja.. [12:37:48+5 |SIW (12864301, [w]

o B Orthographic http e marinilli.com... Reference 71 KB 12003 Ja... [12:37:48+5 |MOL (128,64)(1... ¥

M Sinusoidal ftpoizz jug, ed orgimapyj... Referance 198 KB 2003 Ap.. |[12:37:48+5 |ORT (128,641, v
q] [Tv] |nttpstemew mapszzjug. . Reference 224KE 2003Ap.. [12:37:48+5 [ECE [(12884(1..[W] [+
poauy 5](e][s

Figure 6.16 Examples of GUI control rules

262

Implementation Issues

Such a control behavior isss the essence of any credible user interface, one that
presents sound metaphors, that needs minimal memory load on users, minimizes
errors, and so on. The Mediator design pattern is commonly used in the imple-
mentation of this layer of control.

The Mediator pattern

A Mediator object (Gamma et al. 1994) provides a common connection point,
centralizing the behavior of a number of disparate classes.

The use of the Mediator pattern in GUIs typically consists of the organization of
relationships and interactions between visual components, their data models, and
related events, all in one controller class. Such a class enforces a form of domain-
dependent logic, so is specifically tailored for a given application — that is, it
belongs to the Application layer. Figure 6.17 shows the Mediator pattern class
diagram.

Y

1.1
>

| c

Figure 6.17 The Mediator design pattern

The Mediator pattern is useds in many of the examples in the third part of this
book.

The AbstractDirector class represented in the UML diagram in Figure 6.18 is a
simple and limited example implementation of the general behavior of a Mediator
class used in some of the example applications.

Mediators can also work as Event Arbitrators, tidying event management for
actions and other controlled objects. This is one of the advantages of centralized
control over scattered.

Any director class manages a number of actions. Apart from keeping them coherent
(enforcing business rules on them), other possible uses are to act as an Event Arbi-
trator, releasing actions to interested classes, and also possibly taking care of
executing actions by funneling (aggregating) various ActionPerformed events in

Interaction and control 263

Figure 6.18 The AbstractDirector class

the director’s actionPerformed () method. Such actions directly implemented by
the director usually need many references to various objects and involve a complex
web of references if they are to be executed outside the director class. This latter
arrangement can prove useful:

* In architectures in which commands are centralized at a unique point, as
could be the case when using shallow actions.

* When the nature of the action itself makes it simpler to handle this way — for
example when one action needs to manipulate other actions or other classes
that are already visible to the director.

Mediators can manage any class, not only actions. The example class in Figure 6.18
considers only actions, because in general they are the commonest case. Subclasses
can add similar functionality for other classes as well.

Thread management

Apart from control design patterns, thread management can also be considered
a form of dynamic runtime control.

Thread handling is essential for professional GUIs, and is the backbone of any inter-
action and control implementation. From Chapter 2 we know that response time is
an important parameter for the user’s perception of usability. GUIs that freeze while
executing a command, or that have unexpected concurrency problems, are unus-
able no matter how well-designed they are. As we will see later, multithreading is

264

Implementation Issues

necessary, but not sufficient in itself, to achieve a responsive GUI. Poor object life-
cycle management, and the overhead it poses to the garbage collector, might also
induce a ‘jagged’ user experience?, even for a multithreaded GUL

The basic issue with multithreading support in Java GUI derives from the fact that
GUI toolkits are single-threaded. This applies equally to SWT and Swing toolkits.
The underlying OS platform detects low-level GUI events and places them in the
application event queue using the toolkit’s event classes and other toolkit-specific
formats. The toolkit is acting as an Event Arbitrator, isolating a platform-specific
event model from a Java-specific one.

Multithreading is needed in several cases in GUIs:

* Most importantly, to keep the application responsive, a key characteristic
from the users’ viewpoint.

* By far I/O time is the commonest case of long-running task in client-server
applications.

* Whenever an asynchronous task must be performed, for example when a
background computation starts but the user must still be able to interact with
the GUL

* For faster initialization. Applications can resort to a separate thread to instan-
tiate details asynchronously from the application’s start-up process.

* To better take advantage of existing and future hardware power. People
always faithfully hope that newer, more powerful hardware will magically
and dramatically speed up their applications” performance. This is unlikely
to be the case if their GUIs keep doing all their work sequentially. Employing
multithreading wisely is an investment in higher performance on more
powerful machines.

* For object creation. Creating expensive objects in parallel with other tasks
whenever possible will enhance GUI performance and improve responsive-
ness. This use of multithreading couples with object lifecycle management,
which is the subject of a later section.

* In the general case of multiple, concurrent tasks that need to be performed
interactively, for example a memory manager thread that runs with a low
priority.

From a usability viewpoint it is important to communicate what is going on inside

the application during task execution. This is usually accomplished by displaying

progress indicators coupled, via events, to the running task thread.

27. During garbage collector activity the application freezes.

Interaction and control 265

Software bugs due to concurrency issues can be an annoying problem,
because they are difficult to track down, in that they are not always repeatable.
They can also occur in completely unexpected ways, as they depend on the
particular user interaction with the GUI So don’t use threading differently
than suggested for GUI applications (use threading for example by applying
the Active Object pattern, or for performance optimization) or in situations
where there is no apparent need for it.

A common way to organize threads on single-threaded architectures built using
Swing and SWT is to use objects that represent tasks that are executed within a
specialized support class or within a larger framework. This scheme is simple to
use and accommodates a vast number of practical cases. When using the Eclipse
RCEP, it is straightforward to use the thread management provided by the frame-
work, while for Swing one can use the SwingWorker class.

Chapter 5 contains a more technology-oriented discussion on threading in connec-
tion with profiling. Later in this chapter we introduce the Active Object design
pattern that is the design approach used for multithreaded support in both Swing
and Eclipse.

The next section discusses another approach to organizing design-time control
issues in GUIs.

A state-oriented approach to GUI control

In some cases the level of complexity of control needed in a GUI justifies the adop-
tion of some kind of formalized, explicit representation. Figure 6.16 shows the
GUI of a fictitious MP3 player. Such a GUI enforces a non-trivial set of interaction
control rules. A mode is maintained to represent the different operational states
(playing, paused, stopped, and so on), and this information affects the functional-
ities available in the GUI - such as which buttons are enabled, what information
is displayed. See the disabled buttons in the application toolbar in Figure 6.19, for
example.

OMegaPLayer 1.0 [c]) Mauro M arinilli

W_I_I_FW_F < [<]> D] W_

2. WA Mozart - Sonata (Aspen Philarmonics directed by Z.2. Yun) 4.20
. G. Mahler - Ouverture 5: 70
4. M. Ravel - Bolero 4:02

A Blastem All Off - Satans was 3 cool nice o 354

7. J.5. Bach - Little Fugue [128 kpslster=o| 0019

Figqure 6.19 An application with an internal state representation

266

Implementation Issues

A useful common abstraction is the use of states to describe the GUI's internal situ-
ation. States are defined when designing the GUI, and can be organized temporally
in a state transition diagram that shows how the GUI’s state changes when specific
events occur. The granularity of each state definition depends on the GUI design?.

States are also useful for clarifying the implementation of an application in which
states were not explicitly defined in the GUI's design. Most of the time software
designers don’t need to formalize the possible states of a GUI explicitly, either for
a single window, a part of the GUI, or the whole system. There are cases, though,
where they may be confused by the abstract working of the theoretical GUI
design, or its equivalent analysis documents. In these cases it's a good idea to try
to write down a list of the GUI's possible states at a suitable level of abstraction,
as well as their possible transitions. This exercise will make analysis clearer, even
if there is no need to represent states explicitly in the code.

These considerations bring us directly to the Memento pattern. After a brief intro-
duction to this pattern, we will see it at work in a practical example that implements
an explicit control state.

The Memento design pattern

Sometimes the state of an object needs to be manipulated as a whole. Doing this
straightforwardly may disrupt OOP encapsulation, leading to weaker code.

In the Memento pattern one class, called the Originator, is made responsible for
creating the Memento object, usually transferring a portion of its internal state
into it. Another class, called the Caretaker, requests the Memento from the Origi-
nator and uses it. Figure 6.20 shows the class diagram for Memento.

Figure 6.20 The Memento design pattern

28. The natural generalization of this approach — providing specialized classes for each mean-
ingful state and a common interface for any generic state — leads directly to the State
pattern (Gamma et al. 1994).

Interaction and control 267

The Caretaker object is responsible for the memento’s safekeeping, although it
never examines the contents of a memento instance. Memento objects are inher-
ently passive. They are used to encapsulate carefully-planned portions of the
Originator’s internal state for some specific purpose: a common case is to make it
persistent.

The Memento design pattern can be used to represent and manipulate both the
data state and control state? in a GUI. Consider for example a point of sale rich
client application. In no case must the application lose data about a transaction,
even when the connection is down and the user needs to close the application. In
such cases the application can make the memento that represents transaction data
persistent, so that it can be sent to the server as soon as the connection is restored.

We are now ready to see a practical application of these ideas to representing the
control state of a GUL

The QuickText application

This subsection describes an example application that uses several design strate-
gies and some code tactics that are oriented towards simplicity and performance.

In any GUI there is usually a practical need to access data from different places.
Such data can be variable over time, or needed just once in a session. An example
of the former could be the row and line values of the caret cursor in a text editor,
for example. We want to associate some control behavior to these values, for
example to issue a beep when the end of text is reached, and to show them in a
status bar component. This is a classic example of the use of an event-based mech-
anism — that is, some variant of the Observer pattern. In such cases it can be useful
to adopt a mental habit of centralizing the required information in a meaningful
way by providing abstractions over the current state of the GUI. Generalizing this
idea, we might consider a class that represents the GUI’s internal state, or at least
what we need of it, which can be accessed by all interested classes. Some portions
of the state could therefore be made observable.

In simple situations this approach can be pushed to the extreme, accommodating in
a common class both dynamic information, requiring an event-like communication
mechanism, and less variable data such as system properties and preferences. Such
a class could also enforce business logic rules for the GUI state as a whole.

Here is an example that can be useful when a basic approach to modeling a GUI's
state suffices. The idea is to model the dynamic part of a GUI's state as a set of
Boolean flags. Changes in these values are of interest to other classes. Examples
of state flags in a text editor application could be used to indicate things like

29. See Chapter 8 for more details about these definitions.

268

Implementation Issues

whether the current file is saved, or whether a spell checking error occurred. Here
we are only interested in a proof of concept, so the implementation is minimal to
just show the basic ideas at work. This model can be used with other more elabo-
rate abstractions for handling more complex situations.

Figure 6.21 shows the QuickText application, a simple text editor for compiling
and executing Java code that serves as a background for the implementation tech-
niques introduced here. Java code is entered into a text area, below which there is
a console showing the compiler/JRE command-line messages.

B qText (0.1) - HelloWorld. java

File Edit Tools Help
HEIEE NAe NCRENEE
public class HelloWorld {
public static void main(String[] a){
¥
1
¥
T e e e e T e e T BT e
CAProgrammavaldkl . 5.0minjavac -classpath)" "CADocuments and ing uroh piHelloWorld java"
(===
Compiling.. ®| 3

Figure 6.21 The QuickText application

A listener has been added to the text model (the document), so that whenever its
content changes, the Save and Save As buttons are enabled. The status bar at the
bottom of the main window reacts to this event as well as the commands, by
showing an icon on the right-hand side of the state code®. A green icon signals
correct compilation, while red means that errors occurred during compilation or
execution. Finally, the current caret line number is shown at the bottom right-
hand corner.

30. The state code is shown only for debugging — in a production application it would be
invisible.

Interaction and control 269

Whenever the text file is saved, the file is assumed to be unmodified and the appli-
cation returns to its initial state. The set of GUI state flags are implemented as
integer values, as you can see from the number shown in the status bar at the
bottom-right in Figure 6.22, the decimal equivalent of binary 011.

O

Figure 6.22 Text modifications as control state changes in the QuickText application

In this simple application only two classes are interested in state changes, as
shown in the class diagram in Figure 6.23: the director, which coordinates all
actions, and the status bar component. The director is in fact not really needed in
this arrangement, as single actions can listen to state changes without passing
through a common director class.

propagates
events

Figure 6.23 State changes

The ControlState class holds the current GUI state, and is responsible for
exposing changes® to interested parties using the Observer pattern. This class
implements a variant of the Memento pattern, shown in Figure 6.23 above.

31. Instead of writing an event class, the sample application uses the PropertyChangeEvent
class from the java.beans package to represent state change events.

270

Implementation Issues

Figure 6.24 The ControlState class

Only the required part of the control state has been made accessible through the
event mechanism. Minimizing event coupling is important to avoid needless
complexity and unforeseen behavior. Another class, Props, stores the applica-
tion’s properties, without using event notifications when a property changes.
Application properties must be queried when required, such as the application
name property used by the main window for its title.

For simplicity the event implementation does not use any event representation
when triggering a change notification message. Swing events use specialized
classes to represent event data that is sent with the event notification. In this
example, listeners retrieve the state when receiving the change notification
message, for example displaying the state value in the application’s status bar
whenever it changes.

The ControlState class implements the GUI state with one or more integers and
a bit mask. Interested readers can see this in the implementation of methods
isState(), which tests whether a given flag is true, addState(), which sets a
given flag to true, and subtractState(), which sets a given flag to false. Flags
are implemented as Java constants, powers of 2. Bit masks provide a simple and
extensible data representation mechanism. For the QuickText application the
possible control states are shown in Table 6.1.

An example of bit mask use in GUIs is provided by the SWT library, in which
component properties (called styles) are represented with sets of Boolean values.

The Director class implements the Mediator pattern in a very simple way. When-
ever the application control state changes, the Director class is notified. The
director then queries the GUI state and enables the Save and Save As actions

Some design patterns for GUIs 271

according to the value of the STATE_MODIFIED flag. The Director class is also
responsible for creating, managing and updating the internal state of all the
actions used in the application and executing them using the ‘shallow” action
approach.

The status bar component is another listener to changes in control state flags — like
the Director class, it implements the PropertyChangeListener interface. It
registers itself for changes in the GUI state, and the method propertyChange ()
reacts to state flag changes.

Table 6.1 Possible control states in the QuickText application

Type Data

RUNNING An external JRE process is currently executing code
COMPILING An external Javac process is currently compiling code
CNTX_HELP_ON Contextual help is on

NORMAL Start up, default value

SAVED Current text has been saved

The QuickText example application also demonstrates an alternative solution for
localization. Instead of using property files or other dynamic support for locale-
sensitive data, it employs Java constants, for performance reasons. This is demon-
strated in the Msgs interface provided with the source code of the application.

6.8 Some design patterns for GUIs

This section introduces designs typically used in OOP GUI implementations,
some formulated explicitly for the first time, others well-known design strategies
for desktop application GUIs.

Adaptation

Developing a professional GUI can be a complex task, with many requirements to
be met. Adding some form of adaptation to GUI code can help to decouple different
concerns and conceptually-separated responsibilities effectively. Typical of such
requirements might be different behavior depending on runtime information such
as different user roles or locale, or the resources available on the client machine.

272

Implementation Issues

These situations can be resolved in the same way:

i. Clearly define the adaptation mechanism.
ii. Elicit the context data the adaptation mechanism will need.
iii. Assign the runtime-dependent behavior to a separate manager class.

Providing a separated implementation avoids cluttered code by decoupling extra-
neous issues from existing code, making the whole application more modular.

The design goal of Adaptation is to make the application absorb the additional
complexity without degrading the quality of the final implementation. This
general approach can be applied to any functional layer.

Some examples of adaptation

Suppose a program contains the following code:
textField.setText(“controle el valor”);

We can make this message text locale-parametric as follows:
textField.setText (ResourceManager.get(“control.value”));

This confines the responsibility for locale-dependent messages to a specialized
class, ResourceManager, and only the minimum amount of information must be
provided for it to do its job of providing localized message strings.

Figure 6.25 shows an example of localization. Localization is not only a matter of
locale-dependent text messages, but can imply a deep adaptation of the whole
GUI, from widget layout, dimensions, and more, as discussed in Chapter 4.

fchantitons | SO | Ry Muster | 1SO | RGO

T)
22)).

1 o
deJJJJJJJ_IJJJ_ | N

Aguergu Vorschan
. n-.-
Echantillon de texte Echantiion de texde _
(m] [L oy |
El Anuler Gestaurer Oof Anbrechen Eurckastzan

Figure 6.25 Examples of locale-based GUI adaptation

Another example of adaptation might be authorization code. Suppose one
requirement in a GUI prescribes that sensitive information like employees” wage

Some design patterns for GUIs 273

details must be available only to certain user roles. This rule could be added to
every widget that required authorization. Suppose pressing a button in the GUI
shows the salary for the selected employee:

if (RoleManager.getCurrentRole().equals(BossRole.class)){
button.setEnabled(true);

} else
button.setEnabled(false);

Everything works well until the management want to change the authorization
policy because someone complained that they don’t want anyone else to see their
wage details. The new requirement now states that:

i. Senior managers can still see other employees” wages.

ii. Middle managers can know that wage details are available to their superiors,
but cannot actually see them.

iii. All other employees don’t have to know that there is such a button in the
GUI at all.

You could change the if-else code above to accommodate managers
(button.setEnabled(false)) and all other employees (button.setVis-
ible(false)). But what if managers complain and you have to change this
authorization policy yet again? You would need to go into the code again and
modify all this conditional behavior, which is likely to be scattered in many places
throughout the GUI's screens. Authorization code shouldn’t be intermingled with
presentation code, and should be made more flexible to change. After all, these are
business requirements, much as localization is a translator’s job, and they should
not burden programmers. It would be better if authorization could be handled to
some administrator or customer representative rather than being relegated to
developers.

This problem can be seen as an application of adaptation to runtime data. We
want a GUI to adapt to the current user role. As the role is only available at
runtime, a form of dynamic parameterization is required. The nice thing about
adaptation is that it is somebody else’s worry. Developers only need to enforce it,
while decisions will be taken somewhere else, away from code.

You could provide the following implementation:

AuthorizationManager.prepare(button, this);

where authorization is relegated to a specialized manager, much like localization,
and you provide the subject (the button) and the context (in the present example,
the parameter this) where the subject appears. The authorization manager then
retrieves the current user role and performs all the appropriate authorization poli-
cies on the subject.

274

Implementation Issues

Adaptation is common in any professional GUIL Some examples are:

Localization. Here the context parameter is the current locale. This is a classic
form of parameterization that is handled explicitly by the Java API.

Authorization and other role-based adaptations. Here the context parameter is the
current user role. Some commands, screens, or single widgets may depend
upon the user role.

User profiling. We may want to save preferences, customizations, and other
information on a single-user basis, so that different users using the same
application installation find their own settings and specific data.

Business-specific parameters. Country, international branch, or some other
domain-specific concept are examples of parameters for which adaptation
rules might be dictated by specific requirements.

Resource-dependent constraints. An example is a client application that runs in
two different remote connectivity scenarios: modem lines and broadband
connections. To provide a good GUI design, the commands available might
need to be adapted to the remote connection type.

Adaptation techniques make sense when the need for adaptation is common
to a sizeable part of the GUL. If only one or two panels need a limited form of
adaptation, and no extensions are planned in future, a simple local solution
would be cheaper to implement yet still effective.

Building a comprehensive API for parameterization could be a complex task for
most real-world applications, with few real benefits*>. What is important though
is to be aware of the problems adaptation may generate. Some guidelines for effec-
tive adaptation are:

32.

Clearly define parameters and carefully separate them. Define exactly what the
parameters are in your application and their reason for existing. It is impor-
tant to keep parameters conceptually separate. Implementing this conceptual
separation involves enforcing orthogonality in code (Hunt and Thomas 2000).
The effects of different adaptations should provide cumulative, predictable
results. If for example an application already provides localization and role-
based adaptation, and you add business rules parameterization, you expect
these three aspects to coexist gracefully without unexpected side effects.

Common parameterizations such as localization are already provided by standard APIs.
Other forms of adaptation can be achieved relatively easily without requiring a compre-
hensive, unique framework.

Some design patterns for GUIs 275

* Avoid explicit parameters scattered in the code. These are hard to modify and
make code fragile. All context information should be sent to the manager
object responsible for the parameterization, such as the following code
example:

if (user.getRole().equals(ROLES.ADMIN)){
// admin users-only code here

* Define a common strategy and enforce it. If some aspect is parameterized using
an XML file, for example, no code should deal with that parameter in a
different way, for example by means of local conditional clauses.

Advanced adaptation

Adaptation is normally performed at runtime depending on context information.
Other more complex forms of parameterization can exist, although these are
needed only in special cases.

Adaptation may become a source of complexity if differences between individual
adaptations are too wide to be housed in the same application. In such cases
different code bases should be considered. This could be the case for example
with the development of a single application that supports a multinational insur-
ance company. Laws, cultures, practices, and other differences in each country
could make it too complex to bundle such aspects into a single application code
base. Shipping such a huge single application would make little practical sense.
In such cases solutions other than dynamic adaptation should be considered,
such as a software family-based approach — building a common framework that
comprise all the common aspects, and creating the required adaptations using
different custom builds of the application, or simply building different applications
with a common organization, software reuse policy, development infrastructure,
and so on.

Another example of non-dynamic adaptation is parameterization of an applica-
tion at build time for security reasons. For example, you might want to generate
an application installation on demand to work only with a given license key. In
this case the license key is the parameter.

Using A3GUI for parameterization

A3GUI (Abstract-Augmented Area for GUIs) was introduced in Chapter 2 as a
flexible approach for expressing generic information about a GUIL The idea is to
identify areas of a GUI — a single widget, a panel, or a complex screen —and attach
useful information to these abstractions. Augmented areas can also be used to
express parameterization, even in cases in which there is no direct link with a
screen area, such as business rules parameterization.

276

Implementation Issues

This approach lends to a declarative parameterization style in which localities in
the GUI are identified by A3GUI identifiers, and their correct instantiation® is
done somewhere else, as we saw before when discussing the AuthorizationMan-
ager example. Suppose you must implement the security of a very sensitive
banking application. In certain parts of the GUI a number of controls are enforced
in reaction to specific GUI events, such as modifying sensitive fields, pressing
buttons, or displaying specific screens. Security practices may change over time —
some parts of the GUI may become sensitive, while other areas may have existing
checks loosened — so you need to make your implementation flexible.

Areas can occur in different places in the same application. Suppose the panel
shown in Figure 6.26 is currently an extra-sensitive part of the GUI. Whenever
such a panel appears in any part of the GUI, its behavior is dictated as follow:

* Depending on the current user and the current time of the day®, it is possible
to modify the Amount field. During holidays and at night, when there is no
central human control, some potentially dangerous transactions are not
allowed.

¢ In certain other circumstances, such as combinations of the context data
mentioned above, other behavior is needed, such as making the panel invis-
ible to the current user.

By providing a unique A3GUI id for the panel, you could associate the current
security level, stored in a signed encrypted file for example, with that identifier,
without scattering ad-hoc controls in the application’s code. This would centralize
the GUI’s security implementation in a specialized and reusable manager. Such
areas can be defined at analysis time, during GUI design, or later. A3GUI ids can
be composed following the GUI containment hierarchy, to provide an exact iden-
tification for a given panel instance in a given screen, or used generically for all
occurrences of relevant panels.

In cases in which a total A3GUI identification of the whole GUI is not needed, for
example when parameterized properties don’t change so often, ids for specific
widgets or panels can be provided directly in the code. This keeps the application
modular, but avoids the complications needed in the general case.

A useful technique for providing unambiguous context information for the adap-
tation design strategy is to take advantage of the visual composition of widgets
into screens. This technique can also be used for requirements other than defining
Adaptation contexts. It is discussed in the next section.

33. Here we mean the instantiation of an A3GUI area, that is, a portion of a screen that is
adapted depending on specific parameters. Implementing this in Java implies instanti-
ating a number of classes.

34. As measured on the server, for security reasons.

Some design patterns for GUIs 277

Person Details Oox Company Details _ax

, Account No: |

o [S

Account No: i

e ——

Figure 6.26 A sensitive panel

Composite Context

GUI content composition is heavily based on the Composite design pattern. In some
cases it is necessary to identify specific areas of the screen. Identifying components,
whether elementary widgets or composite aggregates, could be needed for various
reasons:

Suppose you want to provide every meaningful widget in a GUI with its
own unique identifier, for testing, ease of look-up, and so on. The problem is
that the widget may be nested in different panels, but you want it to have a
unique id throughout the entire GUIL One possible solution is to use the
Composite pattern for the ids as well, recursively attaching all components’
ids to create a global, unique id for the widget, no matter how many
instances there are of the same class.

You used the Adaptation pattern, but you need a formal context id to repre-
sent the adaptation context in a simple way.

You employed a composable unit strategy in your GUI in which all CUs are
registered in a common registry for look-up. You need to provide an infra-
structure service that will supply unique ids for CU instances automatically.

278

Implementation Issues

The Composite Context pattern describes a mechanism for providing identifiers
for widgets, panels (that is, composites), and screens. The idea is to use the hier-
archical organization of the visual composition to provide unique (or local) ids for
widgets, panels, and composable units. Figure 6.27 shows an example dialog in
which the ids of some widgets and CUs are shown.

Company Details 0o x

Status Bar

primaryTab

w1.sb1.primaryTab.
personi

Account No:

=

1.sb1.primaryTab.
ccount1.accntNo1

w1.sb1.primaryTab.
account1

]

Figqure 6.27 Composite Context at work

Referring to the figure, the screen w1 contains a status bar whose standalone id is
sb1, and when composed within the screen as shown in the figure, has an identi-
fier w1.sb1 that reflects the actual visual composition of the screen. The same
widget composed in another screen would have a different identifier.

Composite Context can also be used to provide ids for A3GUI areas in analysis
and design phases. In this case identifiers are simply applied by hand by analysts
or developers, following the hierarchical approach proposed above.

The hierarchical mechanism provided by Composite Context can be used to
provide information other than just identifiers. Support information, or an auto-
matic mechanism for generalizing ids, can be provided as well — for example, for
querying all items contained in a composite, or for simplifying the support XML
files with inherited values.

Some design patterns for GUIs 279

Active Object

The Active Object design pattern® focuses on the creation of objects whose state
develops asynchronously. As a consequence, the state, details about the operation
in progress, or the final result, need to be shared among different threads. In the
case of GUISs, the interested threads are the event dispatch thread and a worker
thread that is executing a long-running task such as a remote transaction. Another
thread is used by the scheduler object, which takes responsibility for executing
tasks requested by clients transparently to them.

The Active Object pattern consists of three phases:

1. Method request construction and scheduling. In this phase, the client invokes a
method on a proxy class, which in turn packages the task and forwards it to
an executor in the form of a method request. This maintains references with
the method itself, as well as any other data required to execute the method
and return its results. A reference to a Future® instance is returned to the cli-
ent that will provide the result when available.

2. Method execution. After the client requests the execution of a task, it continues
its normal activity. Within its own execution thread, the scheduler deter-
mines which method request can be executed, depending on its synchroniza-
tion constraints. When a method request becomes runnable, the scheduler
executes it, usually passing responsibility for its execution to a servant
instance.

3. Completion. In the final phase, the results are stored in the Future reference
for the client to access them. The method request and the Future instance are
no longer needed and are ready for garbage collection.

Both Swing and SWT toolkits provide framework support for this pattern. Given
its importance in supporting smooth interaction with users, it is used in all the
examples provided in the third part of the book.

A Swing example of Active Object

A simple implementation of a long-running task using the SwingWorker class is
provided as an example of the Active Object pattern in the code bundle for this
chapter. The task is activated by pressing the Paint Nicely button shown in

35. For more details, see http:/ /www.cs.wustl.edu/~schmidt/PDF/ Act-Obj.pdf, an updated
version of the original chapter in (Vlissides et al. 1996).

36. The java.util.concurrent.Future interface represents the result of an asynchronous compu-
tation. Additional methods are provided to check whether the computation is complete, to
wait for its completion, cancel the computation, to retrieve the final result, and more.

280

Implementation Issues

Figure 6.28. This starts an instance of the class FancyPaintWorker, which paints
the area in the window without freezing the rest of the application.

Paint Nicehy

Figure 6.28 An example of SwingWorker

Object lifecycle management — a general mindset

Any non-trivial Java desktop application GUI handles tens of thousands of
objects, especially if implemented using Swing. Large applications might handle
hundreds of thousands of objects or more. No matter how powerful and well-
tuned the garbage collector, it will always have a lot of work to do. Taking care of
the lifecycle of the objects we create is important for providing a simpler life for
the garbage collector, and thus providing smoother interaction for the user. We
don’t want an application to freeze from time to time, out of the blue, while the
hard disk whirs mysteriously. Neither do we want an application to take a long
time to start or launch specific features because it needs to create many expensive
objects at the same time.

From a GUI design viewpoint users generally prefer to have a partially-functional
application that starts up quickly, even if some secondary portions of the applica-
tion are initialized later, than wait longer to have the whole application up and
running at once. This general design strategy is more important in medium to
large applications that handle many objects, but the habit of taking care of the life-
cycle of objects is nevertheless always a healthy one, even in small applications.
To condense the experience of many projects into one line, instantiate lazily and
dispose eagerly.

The many virtues of lazy instantiation of objects in desktop application GUIs have
already been discussed. A less well-known strategy concerns object disposal.
Disposing of objects as soon they are known to be no longer needed is important,
in that it helps the work of the garbage collector and keeps the memory profile of
an application trim. This is also true for Swing applications, where there is no need
for explicit object-disposal policies, although disposing of particularly expensive
objects manually helps garbage collection, thus smoothing G